
On the Manifold: Representing
Geometry in C++ for State Estimation

by

Leonid Koppel

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2018

© Leonid Koppel 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Manipulating geometric objects is central to state estimation problems in robotics.
Typical algorithms must optimize over non-Euclidean states, such as rigid transformations
on the SE(3) manifold, and handle measurements expressed in multiple coordinate frames.
Researchers typically rely on C++ libraries for geometric tasks. Commonly used libraries
range from linear algebra software such as Eigen to robotics-targeted optimization frame-
works such as GTSAM, which provides manifold operations and automatic differentiation of
arbitrary expressions. This thesis examines how geometric operations in existing software
can be improved, both in runtime performance and in the expression of geometric semantics,
to support rapid and error-free development of robotics algorithms.

This thesis presents wave_geometry, a C++ manifold geometry library providing
representations of objects in affine, Euclidean, and projective spaces, and the Lie groups
SO(3) and SE(3). It encompasses the main contributions of this work: an expression
template-based automatic differentiation system and compile-time checking of coordinate
frame semantics. The library can evaluate Jacobians of geometric expressions in forward
and reverse mode with little runtime overhead compared to hand-coded derivatives, and
exceeds the performance of existing libraries. While high performance is achieved by taking
advantage of compile-time knowledge, the library also provides dynamic expressions which
can be composed at runtime.

Coordinate frame conversions are a common source of mistakes in calculations. However,
the validity of operations can automatically be checked by tracking the coordinate frames
associated with each object. A system of rules for propagating coordinate frame semantics
though geometric operations, including manifold operations, is developed. A template-based
method for checking coordinate frame semantics at compile time, with no runtime overhead,
is presented.

Finally, this thesis demonstrates an application to state estimation, presenting a frame-
work for formulating nonlinear least squares optimization problems as factor graphs. The
framework combines wave_geometry expressions with the widely used Ceres Solver software,
and shows the utility of automatically differentiated geometric expressions.

iii

Acknowledgements

I am grateful for the constant mentorship and encouragement of my supervisor, Dr.
Steven L. Waslander. Thank you for the opportunities to work on amazing projects and for
the freedom and trust you give your students.

I would like to thank all of my colleagues at Wavelab for their friendship in the office
and at the test track. To my roommates, Ben, Jung, Nav, and Sean, thank you for always
being there. To my senior colleagues—Ali, Arun, Bek, Carlos, Chris, Jason, Melissa, Nik,
Stan—thank you for the advice and answers. Thank you to Ian Colwell, Michael Smart,
and Dr. Michał Antkiewicz for the coding companionship. Thank you to Nicholas Charron
and Matthew Pitropov for their help submitting this thesis, and to Adeel Akhtar for his
Lie group expertise.

Finally, I would like to thank my parents for their endless support and for everything
they do for me.

iv

Dedication

To my family,

Mom, Dad, and Olga.

v

Table of Contents

List of Tables x

List of Figures xi

List of Symbols xiii

1 Introduction 1

1.1 Related work . 3

1.1.1 Automatic differentiation . 3

1.1.2 Geometry frameworks . 4

1.2 Thesis structure . 7

2 Background 9

2.1 Notation . 9

2.2 Points, vectors, and spaces . 10

2.2.1 Points and vectors . 10

2.2.2 Affine spaces . 11

2.2.3 Affine frames . 12

2.2.4 Affine transformations . 13

2.3 Homogeneous coordinates . 14

2.3.1 Projective spaces . 15

vi

2.3.2 Normalization of homogeneous coordinates 15

2.4 Rigid motions . 16

2.4.1 Euclidean spaces . 16

2.4.2 Distances and orthogonality . 17

2.4.3 Rotations and Euclidean motions 18

2.5 Rotations and Euclidean motions . 18

2.5.1 The rotations SO(3) . 19

2.5.2 Manifolds and charts . 20

2.5.3 Lie groups and Lie algebras . 21

2.5.4 Exponential and logarithmic maps 22

2.5.5 The tangent space and adjoints . 22

2.5.6 Perturbations on a manifold . 24

2.5.7 Derivatives on Lie groups . 27

2.5.8 Operations on SO(3) . 28

2.5.9 Quaternions . 29

2.5.10 Perturbations of homogeneous points 30

2.5.11 The Euclidean motions SE(3) . 31

2.6 Automatic differentiation . 32

2.6.1 Forward mode . 33

2.6.2 Reverse mode . 34

2.6.3 Block automatic differentiation . 35

3 Manifold geometry in C++ 36

3.1 Expression templates for geometry . 37

3.1.1 Implementing expression templates 39

3.1.2 Spaces, parametrizations, and storage 41

3.1.3 Evaluating expressions . 44

3.2 Automatic differentiation . 49

vii

3.2.1 Forward-mode AD . 49

3.2.2 Testing for identity . 50

3.2.3 Strongly typed forward-mode AD 52

3.2.4 Reverse-mode AD . 53

3.3 Composing expressions at runtime . 54

3.4 Experimental results . 57

3.4.1 Benchmark experiments . 57

3.4.2 Rotation Chain . 58

3.4.3 IMU Factor . 61

3.4.4 Dynamic expressions . 61

4 Coordinate frame semantics checking 63

4.1 Coordinate frame semantics . 63

4.1.1 Coordinate-free geometry . 63

4.1.2 Expressing semantics through notation 64

4.1.3 Semantics in Code . 67

4.1.4 Free and bound transformations . 68

4.2 C++ library implementation . 69

4.3 Related works . 71

4.4 Rules for frame semantics . 72

5 Application to state estimation 74

5.1 State estimation as a least squares problem 74

5.1.1 Uncertain estimates . 75

5.1.2 Maximum a Posteriori . 77

5.2 Library implementation . 81

5.2.1 Design . 81

6 Conclusion 85

viii

References 88

APPENDICES 94

A Mathematical background 95

A.1 Lie group operations . 95

A.1.1 Exponential map onto SO(3) . 95

A.1.2 Logarithmic map of SO(3) . 98

A.1.3 Approximation of the exponential map 99

B Frames, coordinates, systems: a few words 100

C C++ library details 103

C.1 Storing temporary expressions . 103

C.1.1 Problems of using auto with expressions 103

C.1.2 Storing temporary objects in expressions 105

C.2 Evaluating proxies . 106

C.2.1 Optimizations . 107

C.2.2 Alternatives . 107

D Benchmark methodology 109

ix

List of Tables

1.1 Comparison of C++ Geometry Libraries 6

2.1 Operations on vectors and points in an affine space 12

2.2 Example of forward mode AD . 33

2.3 Example of reverse mode AD . 34

3.1 Terms describing geometric objects in wave_geometry 42

3.2 Time to Evaluate Value and Jacobians of (3.16) 61

4.1 Rules for Semantics of Geometric Operations 73

x

List of Figures

2.1 Representations of a point and a vector . 10

2.2 Rotations as an example of Lie group operations. 25

2.3 Computational graph of y = 3x1x2 + sin(x2). 33

3.1 Expression tree showing compile-time propagation of types, from bottom to
top, for expression (3.2). 38

3.2 Hierarchy of types in wave_geometry. 43

3.3 Example of library-inserted conversions. 49

3.4 Computation of the derivative of example (3.2) using forward AD. 55

3.5 Reverse-mode differentiation of example (3.2). 56

3.6 Simplified inheritance diagram for a Dynamic expression. 57

3.7 Example of a dynamically allocated expression graph. 58

3.8 Comparison of time taken to evaluate result and all N + 1 Jacobians in a
chain of N rotations (3.10). 59

3.9 Time taken to evaluate result and all N + 1 Jacobians in a chain of N
rotations stored dynamically. 62

4.1 Coordinate-free vector addition. 64

4.2 Vector addition expressed in a coordinate system. 65

4.3 Example of frame descriptor notation for vectors. 66

4.4 Free and bound transformations. 69

4.5 Error message printed by Clang when compiling Listing 4.3. 70

xi

5.1 Simple factor graph for robot localization. 81

5.2 Example of localization problem using our factor graph framework. 82

A.1 Comparison of exponential map functions. 97

xii

List of Symbols

a Font for real scalars
a Font for real column vectors
A Font for real matrices
a Font for homogeneous vectors
A Font for homogeneous matrices
A Font for spaces

a ,A Font for points on a manifold, other geometric entities independent of represen-
tation

AB Font for Lie groups
ab Font for Lie algebras

P,Q,R Points on an affine space
x (x) An entity x parametrized by x

In The n× n identity matrix
0m×n The m× n zero matrix

Jxy The Jacobian ∂x/∂y
FA A coordinate frame

A(·)BC A physical property of FC with respect to FB, expressed in FA
rBC Coordinate-free translation from B to C

ArBC The translation from B to C, expressed in FA
RAB The rotation such that ArBC = RABBrBC
TAB The transformation such that ArAC = TABBrBC
An n-dimensional affine space
Rn n-dimensional Euclidean space

RPn n-dimensional real projective space
Tn n-dimensional real oriented projective space
Sn n-dimensional unit sphere in Rn+1

Rm×n The vector space of real m× n matrices
G A Lie group

xiii

g A Lie algebra
SO(3) The special orthogonal group
so(3) The Lie algebra of SO(3)

SE(3) The special Euclidean group
se(3) The Lie algebra of SE(3)

C A 3× 3 rotation matrix
q A unit quaternion
Φ An element of either SO(3) or SE(3)
ϕ An element of either so(3) or se(3)
v An element of R3, so(3), or se(3)
N Gaussian distribution
≈ Approximately equal to
∼= Proportional to
, Definition
≡ Identity
:= Assignment
⇐⇒ If and only if
∀ For all
∃ There exists
∃! There exists one and only one
¬x Antipode of x

x̂ Posterior stimate for x
x̌ Prior estimate for x

xiv

Chapter 1

Introduction

Representation and estimation of geometric states is central to a broad range of problems
in robotics and computer vision. Problems such as simultaneous localization and mapping
(SLAM) and visual-inertial odometry (VIO) involve estimation of Euclidean motions and of
points in projective space. Most approaches rely on optimization over possible states, which
requires operations on differentiable manifolds. States are often represented in different
coordinate frames, requiring algorithms to keep track of and convert between frames.

Contemporary implementations of robotics algorithms typically use hand-coded, analyt-
ically derived derivatives and rely on external C++ libraries, examined in Section 1.1, for
numerical and optimization routines. For example, the Eigen (Guennebaud et al., 2010)
linear algebra library is often used for matrix operations, sometimes with a specialized
library for manifold geometry. These libraries are often used with a separate nonlinear
least squares solver, such as Ceres (Agarwal et al., 2010). Other optimization frameworks,
such as GTSAM (Dellaert, 2012), provide their own manifold representations, as well as
handwritten code for the derivatives of common cost functions. GTSAM also provides
automatic differentiation (AD) of arbitrary expressions.

This thesis examines the geometric representations in existing tools and seeks to improve
on them. It presents a C++ library for manifold geometry which includes the following
features:

• Manifold operations: geometric objects such as rotations and poses do not lie on
a vector space but on a manifold. The library supports operations on the manifolds
of rotations, SO(3), and rigid transformations, SE(3).

1

• Geometric semantics: while geometric objects are stored as an array of coefficients,
they must retain their geometric meaning in code. For example, our library makes
it impossible to accidentally add a rotation vector to a point, although both are
represented as 3D vectors. On the other hand, objects representing 3D rotations are
interchangeable regardless of their parametrization.

• Frame semantics: a measurement represented in one coordinate frame is not
interchangeable with one from another frame. The coordinate frames associated with
an object are automatically propagated through operations at compile time.

• Automatic differentiation: geometric expressions are differentiable with respect
to any variable. Derivatives are local, with respect to perturbations in the object’s
tangent space, and independent of parametrization.

• Uncertainty representation: states can be represented with their uncertainty,
including covariance between elements of a compound state. Multiple noise models
are supported.

• Optimization: we present a framework for composing geometric expressions into
automatically differentiable cost functions. Combinations of states and cost functions
can be represented as a factor graph, which is solved using nonlinear least squares
optimization.

• Flexible storage: geometric objects can hold parameters of any scalar type, and
wrap values provided by external libraries as raw arrays.

• Extensibility: the framework is extensible with arbitrary operations, object parametriza-
tions, and geometric spaces.

These features share common goals: type safety, performance, and flexibility. The
overarching goal of our library is to make it easier for the programmer to take a step back
and observe the mathematical meaning of their computations, without worrying about
details such as conversions between parametrizations and minor code optimizations.

While some of these features are offered by existing libraries, none offers all of them.
Our main contributions are the automatic differentiation and frame semantics systems. The
application of ETs to manifold geometry is itself novel, and this thesis describes several
ancillary contributions of our ET implementation, including the storage of temporary objects
within expressions, automatic insertion of conversions between geometric representations,
dynamic expressions, and the ability to use arbitrary storage types within geometric objects.

2

This thesis describes the background and implementation of these features, presenting
details beyond those offered in Koppel and Waslander (2018). It then describes the targeted
application of our library: on-manifold optimization. Here, an additional contribution is
a factor graph framework which combines our library’s expressions and AD system with
Ceres Solver, a widely used tool for optimization introduced in the next section.

1.1 Related work

1.1.1 Automatic differentiation

Automatic differentiation (AD) encompasses a wide body of work in the computer science
and machine learning fields. Griewank and Walther (2008) develop the theory of AD, while
Verma (2000) and Hoffmann (2016) provide accessible introductions. Baydin et al. (2018)
provides a survey of AD implementations.

AD implementations can be divided into several orthogonal groupings: they can use
forward or reverse mode, operator overloading or source code transformation, and scalar-
valued or matrix-valued operations (Andersson et al., 2012). Most AD libraries in C++,
including the popular ADOL-C (Walther and Griewank, 2012), use operator overloading.
This method uses AD-aware types for which elementary operations (such as addition and
multiplication) are defined to compute derivatives as well as the original function. Aubert
et al. (2001), and later Phipps and Pawlowski (2012) (with Sacado) and Hogan (2014) (with
Adept), show improvements in efficiency by using expression templates, a technique also
used in our library and discussed in Section 3.1. Carpenter et al. (2015) (with the Stan
Math Library) shows further improved performance through templates and caching. While
we do not intend to compete with these sophisticated, general-purpose AD libraries, we
apply some of their techniques to the specific domain of robot state estimation on manifolds.

The above AD implementations use scalar-valued atomic operations, which would
consider an operation such as matrix multiplication as a multivariate function of individual
coefficients. Andersson et al. (2012) (with CasADi) presents an implementation supporting
vector- and matrix-valued operations, which improves efficiency in such cases. Because
derivatives of geometric expressions are naturally expressed as matrix operations, our
implementation also uses matrix-valued elementary operations.

Today, AD is perhaps most widely used in machine learning, with implementations in-
cluding Autograd (Maclaurin et al., 2015), PyTorch (Paszke et al., 2017), and Tangent (van
Merriënboer et al., 2017). These Python libraries allow differentiation of near-arbitrary

3

functions with a high level of abstraction and parallel computation on GPUs. Our imple-
mentation, while comparatively simple, targets C++ code running on mobile robots with
constrained computational budgets, and aims for maximal CPU performance.

Our implementation is closest in principle to Sommer et al. (2013), which defines
block automatic differentiation on differentiable manifolds and its application to robotics
problems. The approach is to build a computation graph of basic operations (“blocks”) on
manifold elements, and evaluate derivatives using separately-provided optimized code for
each operation. This approach is essentially AD with matrix-valued atomic operations, but
with a focus on obtaining local Jacobians (defined in Section 2.5.7) of manifold operations.

Sommer et al. (2013) served as the basis1 for a block AD implementation in GTSAM,
which provides reverse-mode differentiation of expression graphs. Our work differs from
GTSAM in the use of expression templates. We provide a performance comparison in
Section 3.4.

Ceres Solver (Agarwal et al., 2010) provides its own AD implementation which integrates
with user-provided cost functions. Because one of our goals is to improve the process of
writing cost functions for optimizers such as Ceres, we include it in the performance
comparison.

1.1.2 Geometry frameworks

While the library presented in this work can be broadly described as a “geometry library,”
that term encompasses a huge range of software with diverse applications in computer
graphics, 3D modelling, simulation, games, and robotics. At one end of the spectrum are
graphics-centred libraries such as OpenGL, Ogre, and VTK. At the other are domain-specific
languages for specific robotics applications, such as motion control of industrial robots, as
surveyed by Nordmann et al. (2014). While both sets of works contain code for geometric
representations, and all embody the geometric theory introduced in Chapter 2, they are
typically not suitable for prototyping state estimation algorithms. We limit the scope of
our search to open-source C++ libraries commonly used for state representation in mobile
robotics research.

Eigen (Guennebaud et al., 2010) is widely used for storage and manipulation of states.
Primarily a linear algebra library, it provides an expression template (discussed in Section 3.1)
implementation of matrix operations allowing highly optimized, vectorized computation.
Similar expression template-based linear algebra libraries include Blaze and Armadillo.

1Personal communication with the authors.

4

Eigen’s Geometry module provides transformations and multiple parametrizations of rota-
tions. Although it lacks manifold operations, Eigen is ubiquitous in the fields of computer
vision and robotics, and is used internally by most manifold libraries listed here, including
ours.

CGAL is a mature and extensive computational geometry library, encompassing areas
such as surface reconstruction and higher-dimensional spaces as well as 2D and 3D linear
geometry. CGAL offers multiple kernels which determine the numeric types and precision
of the calculations used, including exact (non-floating-point) calculations. While the library
is unwieldy for our purposes and favours exactness over performance, we take inspiration
from its theoretical rigour and its regimented design. For example, points, vectors, and
directions are treated as separate primitives. The primitives are represented by different
“representation classes” (for example, points can be represented by homogeneous or Cartesian
coordinates) and generic code can be written independently of the representation.

Boost.Geometry, part of the widely distributed Boost libraries, is similar, providing
generic geometric primitives for arbitrary coordinate systems and precision.

Ceres Solver (Agarwal et al., 2010) is a nonlinear least squares solver which optionally
performs AD. Though it does not provide geometric types, it supports on-manifold opti-
mization through its LocalParameterization. Ceres’ interface uses raw arrays, which can
be interpreted as matrices using Eigen’s Map class. For example, the OKVIS visual-inertial
odometry package (Leutenegger et al., 2015) uses Ceres, Eigen, and hand-coded analytic
Jacobians.

Sophus implements manifold operations on the Lie groups SO(3) and SE(3), using Eigen
internally. Kindr provides manifold operations with a robotics focus, and includes Jacobians
of some operations.

The Manifold Toolkit (MTK), introduced by Hertzberg et al. (2013), provides a frame-
work for working on SO(3) and SE(3) as well as arbitrary compound manifolds formed by
combining multiple primitives. MTK is built around Eigen, and uses macros to provide
the compound manifold feature. While MTK includes Sparse Least Squares on Manifold
(SLoM), a library for on-manifold optimization, it uses numerical differentiation to compute
Jacobians. Hertzberg et al. (2013) is notable for presenting the theory of on-manifold
optimization, including the � and � operators which we rely on in Section 2.5.7.

The Kinematics and Dynamics Library (KDL) provides geometric classes, focusing on
kinematic chains. While it does not explicitly provide manifold operations, it supports pose
interpolation and Jacobians of kinematic chains.

The Mobile Robot Programming Toolkit (MRPT) is a collection of libraries for robotics

5

Table 1.1: Comparison of C++ Geometry Libraries

Library Typea Any
scalar
typeb

Manifold
ops.

Manifold
Jaco-
bians

Maps Expr.
Jaco-
bians

Frame
check-
ing

URL

Armadillo LA X X arma.sourceforge.net

Boost.Geometry CG X boost.org

CGAL CG X cgal.org

Blaze LA X bitbucket.org/blaze-lib/blaze

Eigen LA X X eigen.tuxfamily.org

g2o RO X X openslam.org/g2o.html

GTSAM RO X X X bitbucket.org/gtborg/gtsam

KDL KC p p k
orocos.org/kdl

Kindr LG X X p
github.com/ANYbotics/kindr

MRPT RO X X mrpt.org

MTK LG X X openslam.org/MTK.html

Sophus LG X X X github.com/strasdat/Sophus

tf2 SG t
wiki.ros.org/tf2

This work LG X X X X X X github.com/wavelab/wave_geometry

a LA: linear algebra, CG: computational geometry, LG: Lie geometry, RO: robotics algorithms and
optimization, KC: kinematic chains, SG: scene graph

b “Any scalar” also indicates a header-only library.
p Partial.
k The separate Geometric Relations Semantics library provides runtime frame checking for KDL.
t tf2 performs runtime frame conversion, but does not check calculations.

applications including SLAM, computer vision, and motion planning. It provides a 3D
geometry library, including Jacobians for operations on SE(3).

GTSAM (Dellaert, 2012) and g2o (Kümmerle et al., 2011) are frameworks for nonlinear
optimization based on factor graphs. They include their own implementations of manifold
geometry, including Jacobians.

Table 1.1 presents a non-exhaustive comparison of these libraries. This comparison is
narrowly focused on the features we are targeting—of course, these mature libraries have a
wide range of other features and use cases.

In Table 1.1, any scalar type refers to support for numeric types other than float and
double. This support makes functions compatible with many general-purpose AD libraries.
Here, any scalar support also indicates a header-only library. While header-only libraries
often increase compile time compared to precompiled libraries, they are more flexible and
can produce more highly optimized code. Maps, sometimes called views, allow zero-overhead
reuse of raw memory buffers, as demonstrated by Eigen’s Map class. Maps allow efficient

6

arma.sourceforge.net
boost.org
cgal.org
bitbucket.org/blaze-lib/blaze
eigen.tuxfamily.org
openslam.org/g2o.html
bitbucket.org/gtborg/gtsam
orocos.org/kdl
github.com/ANYbotics/kindr
mrpt.org
openslam.org/MTK.html
github.com/strasdat/Sophus
wiki.ros.org/tf2
github.com/wavelab/wave_geometry

interfacing with third-party libraries.

Frame checking, the topic of Chapter 4, is the use of software to catch mistakes in
geometric calculations by tracking the coordinate frame semantics associated with each
object. De Laet et al. (2013b,a) describe this idea and extend KDL with their Geometric
Relations Semantics software. DeRose (1989) addresses the same issue but takes a slightly
different approach in defining a “coordinate-free abstract data type.” We will return to
these works in Chapter 4. The most significant difference between these libraries and ours
is that they perform checks at runtime, while our goal is zero-overhead checks at compile
time.

The tf2 library represents a different class of libraries used by roboticists to track coordi-
nate frames. Part of the Robot Operating System (ROS), the library stores transformations
between frames in a data structure resembling a scene graph, which is often found in 3D
graphics and simulation libraries (Foote, 2013). tf2 updates this graph dynamically and
asynchronously, and computes the transformation between any two frames on request.
However, the purpose of tf2 and other scene graphs differs from that of frame checking
software: its geometric primitives do not propagate frame information and cannot catch
mistakes in the user’s subsequent calculations.

Our implementation is inspired by long-existing methods for compile-time dimensional
analysis, described by Barton and Nackman (1994). We are not aware of prior works that
apply these techniques to coordinate frames.

1.2 Thesis structure

This thesis is organized as follows:

• Chapter 2 provides a theoretical introduction to geometric representations, Lie theory,
and automatic differentiation.

• Chapter 3 presents our C++ library, wave_geometry. The chapter considers the
design of the library, details its implementation in C++, and describes the sup-
ported operations. This chapter also presents experimental results measuring runtime
performance of our automatic differentiation system.

• Chapter 4 formulates a set of rules for coordinate frame semantics, and demonstrates
how semantics checking can be implemented in C++.

7

• Chapter 5 demonstrates an application of wave_geometry to a nonlinear least squares
state estimation problem. It presents a factor graph framework combining our
geometric expressions and AD system with Ceres Solver.

• Chapter 6 presents conclusions.

8

Chapter 2

Background

This chapter begins with a summary of the mathematics of translations, rotations, and
transformations, and the spaces in which they live: affine spaces, projective spaces, and Lie
groups. It focuses on the entities and representations relevant to state estimation and com-
puter vision problems. This chapter draws upon more comprehensive treatments (Hartley
and Zisserman, 2004; Gallier, 2011; Förstner and Wrobel, 2016; Barfoot, 2017).

This chapter is organized by type of geometric entity, with each section giving an
overview of that entity’s theoretical background. Section 2.2 presents points and vectors,
and introduces the idea of coordinate-free geometry. Section 2.3 presents homogeneous
coordinates and projective spaces. Section 2.4 introduces Euclidean space and rigid motions.
Section 2.5 defines manifolds, Lie groups, and Lie algebras, and examines the groups of
rotations and rigid transformations. We then consider differentiation: Section 2.5 covers
perturbations and derivatives on manifolds and Section 2.6 introduces the principles of
automatic differentiation.

2.1 Notation

This thesis works toward a concrete application in which geometric entities are encoded as
bits in memory. It is tempting, then, to jump directly to practical concerns: by its nature, a
computer program must handle orderings of coefficients, changes of coordinate frames, and
finite precision computations. However, as one goal of our library is to make it easier for the
programmer to focus on the mathematical meaning of these computations. The library seeks
to separate types of geometric entities from their parametrizations, and their semantics from

9

their value. Concordantly, this chapter strives to distinguish between geometric entities
and particular representations and, as Gallier (2011) exhorts, “use coordinate systems only
when needed.”

Following Förstner and Wrobel (2016), we use calligraphic letters to distinguish geometric
entities from representations. For example, a 3D point x may be expressed as a vector
x ∈ R3, or in homogeneous coordinates as x ∈ R4. The notation x (x) means “x , which is
represented by x.”

The symbol vBC denotes a (vector) physical quantity of object C with respect to object
B. That quantity expressed in a particular coordinate frame FA is written AvBC . RAB

denotes a rotation that takes points expressed in FB and re-expresses them in FA. This
notation is explained in detail in Chapter 4. The idea of coordinate-free geometry is
introduced in the next section.

2.2 Points, vectors, and spaces

This section introduces the geometric background of points, translations, and frames in a
coordinate-free manner. It draws from Gallier (2011), Goldman (1985, 2002), and DeRose
(1989), attempting to provide a simplified overview without glossing over the difference
between affine and Euclidean spaces, as is common. While we mostly work in Euclidean
spaces, we first introduce the more general affine spaces.

2.2.1 Points and vectors

While the typical matrix math library may not differentiate between points and vectors,
they are distinct geometric entities, as illustrated in Fig. 2.1.

P v

Figure 2.1: Representations of a point P and a vector v.

Per Goldman (1985), “intuitively, points have position but not direction or length;
vectors have direction and length but not position.” Conflation of points and vectors arises
because points can be represented by elements of a vector space, such as R3.

10

Vectors are subject to the operations of vector algebra: addition, subtraction, scalar
multiplication, dot product, and cross product. Definitions of these operations can be found
in Goldman (1985).

2.2.2 Affine spaces

Definition 2.1. A nonempty affine space is a pair (P ,V), where P is a nonempty set of
points and V is a set of vectors forming a vector space, along with an action + : P ×V → P
which has the properties (Gallier, 2011):

P + 0 = P, ∀P ∈ P (2.1)
(P + u) + v = P + (u + v), ∀P ∈ P , ∀u,v ∈ V (2.2)
There is a unique u ∈ V such that P + u = Q, ∀P,Q ∈ P . (2.3)

Equivalently, we can define a subtraction operation − : P × P → V , satisfying

There is a unique u ∈ V such that u = P −Q, ∀P,Q ∈ P . (2.4)

In this section, we denote the vector between two points as P −Q ,
−→
PQ. An alternative

definition of the affine space starts with properties of the subtraction operation and defines
addition and other operations from there (DeRose, 1989).

Although points can be represented in a vector space, they are better dealt with in an
affine space. In an affine space, there is no privileged origin and algebra can be performed
in an intrinsic or coordinate-free manner.

Definition 2.2. A coordinate-free algebra is one whose operations and entities are defined
independently of any coordinate system. While we must necessarily choose a coordinate sys-
tem to compute results, the geometric relationships expressed by coordinate-free operations
don’t depend on our choice.

While addition can be applied to pairs of vectors and between vectors and points, it
does not make sense to add two points. Intuitively, we can see the that result of adding two
points would depend on the coordinate system. As a simple example, consider adding points
represented in R1: the result of (0) + (1) is equal to the second point, while (1) + (2) is not,
although the pairs differ only by a change of origin. Table 2.1 summarizes well-defined and
undefined operations in an affine space.

11

Table 2.1: Operations on vectors and points in an affine space

Operation Legal expression Undefined expression

Addition w = u + v P +Q
Q = P + u

Subtraction w = u− v u− P
w = P −Q
Q = P − u

Scalar multiplication w = cu = uc cP

P,Q are points; u,v,w are vectors; c is scalar. Adapted from Goldman (1985).

Somewhat surprisingly, although P +Q is undefined, P+Q
2

is a meaningful expression.
It is an example of an affine combination, a linear combination with the added requirement
that scalar weights add to 1. Here, it produces the midpoint of P and Q independently of any
choice of coordinates, and can be written using the operations we have defined: (Goldman,
2000)

P +Q

2
= P +

1

2
(Q− P). (2.5)

2.2.3 Affine frames

To obtain numerical results from the relationships we derive, we must eventually introduce
coordinates. Because affine spaces have no privileged origin, points are assigned coordinates
using frames.

Definition 2.3. Given an affine space (P ,V), an affine frame with origin O is a collection
of points (O,A1, . . . , An) such that the vectors (

−−→
OA1, . . . ,

−−→
OAn) , (e1, . . . , en) are a basis

for V. The collection (O, e1, . . . , en) is also called an affine frame with origin O. Then,
every point X ∈ P can be expressed as:

X = O + x1e1 + . . .+ xnen, (2.6)

where (x1, . . . , xn) is a unique family of scalars called the coordinates of X w.r.t the affine
frame (O, e1, . . . , en). (Gallier, 2011)

For brevity, we call an affine frame simply a frame and denote it as FO, where O may
be replaced with the point serving as the frame’s origin or another associated object. We
will refine the idea and terminology of frames in Chapter 4.

12

2.2.4 Affine transformations

Definition 2.4. An affine transformation, or affine map, is a transformation which maps
points to points and preserves affine combinations. That is, for any affine combination of
points (with

∑
i ci = 1),

A

(∑
i

ciPi

)
=
∑
i

ciA(Pi). (2.7)

Every affine transformation A has a unique associated linear map ~A which maps vectors
to vectors,1 such that

A(Q+ v) = A(Q) + ~A(v) (2.8)

for every Q ∈ P and every v ∈ V . Substituting Q = O and v = P −O, we obtain

A(P) = A(O) + ~A(
−→
OP), (2.9)

showing that “every affine map is determined by the image of any point and a linear
map,” (Gallier, 2011): that the result of A on any point P can be obtained by knowing the
result of A on a single point O and how ~A acts on vectors.

Affine transformations can be expressed in matrix form. Subtracting O from (2.9) and
substituting back

−→
OP = v gives

A(P)−O = ~A(v) + A(O)−O, (2.10)
−−−−→
OA(P) = ~A(v) +

−−−−→
OA(O). (2.11)

Let FO be an affine frame with origin O and an arbitrary basis. Then we can define
A ∈ Rn×n as the matrix of the linear map associated with A over the chosen basis, and
x,b,y ∈ Rn as the the coordinates of v, A(O) and A(P) in FO, respectively. The result is

y = Ax + b. (2.12)

Note that although x, y, and b are described as coordinates with respect to a frame, we
are still demonstrating coordinate-free geometry: the choice of basis was arbitrary and we
used only the operations listed in Table 2.1. Equation (2.12) is valid no matter what frame
we choose.

1This definition follows Gallier (2011). Goldman (2002) omits ~A and defines an affine map that works
on both points and vectors .

13

This equation can be converted into a linear form by adding an (n+ 1)th coefficient to
the points’ coordinate vectors:

[
y
1

]
=

[
A b
0 1

] [
x
1

]
. (2.13)

In R3, the result is the familiar rigid transformation matrix. The extra coefficient is called
the affine coordinate, and is set to 1 for points and 0 for vectors to enforce that vectors
are not affected by translations (Goldman, 2002). These two categories can also be called
bound and unbound vectors (Kelly, 2013), and we will revisit them in Section 4.1.4. The
four-coordinate representation can be extended to produce homogeneous coordinates.

2.3 Homogeneous coordinates

A point in R3 can be expressed using a 4-vector of homogeneous coordinates,

p =

λx
λy
λz
λ

 (2.14)

where λ ∈ R, λ 6= 0.

More generally, homogeneous coordinates x ∈ Rn+1 can be used to represent any point
x in Rn including points at infinity (Hartley and Zisserman, 2004, Section 1.1). A point x
can be written as

x =

[
x0

xh

]
, (2.15)

where xh is the homogeneous part, and x0 is the inhomogeneous or Euclidean part (Förstner
and Wrobel, 2016). Points at infinity have xh = 0.

Homogeneous coordinates are invariant with respect to multiplication by a nonzero
scalar: x and y = λx represent the same geometric entity x .

14

2.3.1 Projective spaces

The projective space RPn is defined as (Förstner and Wrobel, 2016, Section 5.3.4) the
space of all n-dimensional points x with homogeneous coordinates x ∈ Rn+1 \ 0, with the
equivalence relation

x ≡ y ⇐⇒ ∃λ, x = λy. (2.16)

This equivalence relation can be written without an explicit scalar factor as x ∼= y, or
simply as x = y (Förstner and Wrobel, 2016).

Oriented projected spaces

Under the definition above, x and −x are equivalent. However, it is often useful to
distinguish these two as separate points, for example, to determine whether a point is in
front of or behind a camera image plane. The oriented projected space Tn is the space of all
n-dimensional points x with homogeneous coordinates x ∈ Rn+1 \ 0, with the relation

x ≡ y ⇐⇒ ∃λ > 0, x = λy, (2.17)

which differs from relation (2.16) by requiring the scaling factor between equivalent points
to be positive. Each point x (x) has a distinct antipode, ¬x (−x).

2.3.2 Normalization of homogeneous coordinates

Because of their scale invariance, homogeneous coordinates are not unique. The Euclidean
and spherical normalizations are two choices of constraints commonly used to impose
uniqueness (Förstner and Wrobel, 2016, Section 5.8).

Euclidean normalization

A Euclidean normalized point has homogeneous part 1:

xe =
x

xh
=

1

xh

[
x0

xh

]
=

[
x
1

]
(2.18)

Euclidean normalization is used for obtaining the Euclidean part of the point in inho-
mogeneous coordinates. It cannot be applied to points at infinity.

15

Note that we focus on homogeneous points. Homogeneous coordinates can also represent
lines and planes, for which Euclidean normalization is slightly different (Förstner and
Wrobel, 2016).

Spherical normalization

Spherical normalization sets the homogeneous vector to lie on a unit sphere by requiring
||x|| = 1. For example, the spherically normalized homogeneous coordinates of a 3D point
x are

xs =
x

||x||
=

1√
x2 + y2 + z2 + w2

x
y
z
w

 (2.19)

Under this constraint, 3D points lie on the the unit sphere S3 embedded in R4. This sphere
is a closed manifold (see Section 2.5.2), making it useful for optimization.

Spherical normalization has the effect of converting image coordinates to ray directions;
when dealing with measurements uncertainty, it converts “from uncertain image coordinates
to uncertain image ray directions” (Förstner and Wrobel, 2016, Section 10.2.2).

Note that the spherical normalization is not a unique representation because of the
antipodal equivalence relation

xs ∼= −xs. (2.20)

In fact, it is a unit quaternion representation of RP3 and closely related to rotations on
SO(3), as will be discussed in Section 2.5.9.

2.4 Rigid motions

2.4.1 Euclidean spaces

We have not yet introduced any concept of distance or angle between vectors, because
they are not present in affine geometry. We turn to Euclidean geometry to introduce these
metric notions.

Definition 2.5. A Euclidean affine space is an affine space (P ,V) whose vector space V is
a real vector space equipped with an inner product. For our purposes, the vector space is

16

Rn, whose inner product is the familiar dot product

x · y = x1y1 + x2y2 + . . .+ xnyn (2.21)

For brevity, we call a Euclidean affine space a Euclidean space, although that term
formally refers only to V (Gallier, 2011).

Note on notation

Because measurements of distance and angle are useful in robotics, consider Euclidean
spaces the default for the remainder of this work: space refers to a Euclidean space, and
frame refers to a Euclidean frame. Because affine geometry is a generalization of Euclidean
geometry, our earlier results are still valid. Analogous definitions can be made where
necessary: a Euclidean frame has the same definition as an affine frame, but in a Euclidean
space.

Following Chirikjian (2011), we will denote n-dimensional Euclidean space simply as Rn

and leave implicit the distinction between points and vectors. For example, it is understood
that a “translation on R3” is a vector that acts on points in 3-dimensional Euclidean space.

2.4.2 Distances and orthogonality

Two metric notions help define the familiar robotics concepts of rotations and poses: distance
and orthogonality.

Definition 2.6. The distance between any two points P,Q ∈ P is ||
−→
PQ||, the Euclidean

norm of
−→
PQ. The Euclidean norm of a vector x = [x1, . . . , xn]T is

||x|| =
√

x · x =
√
x21 + . . .+ x2n. (2.22)

A function which preserves distance is called an isometry.

Definition 2.7. Two vectors u and v are orthogonal if

u · v = 0. (2.23)

A matrix A ∈ Rn×n is an orthogonal matrix if

AAT = ATA = In×n, (2.24)

17

or equivalently if AT = A−1.

2.4.3 Rotations and Euclidean motions

Definition 2.8. Rigid motions are affine transformations which preserve the Euclidean
norm. That is, they are isometries, preserving the distance between points.

Rigid motions of an n-space form the group Is(n). Their associated linear maps form
the group of orthogonal transformations, O(n).

Definition 2.9. Rotations are elements of O(n) with det(A) = 1, where det(A) is the
determinant of the matrix representation of the linear map. They form the Lie group
SO(n), the special orthogonal group. Its elements are also called proper rotations or proper
orthogonal transformations. Groups and Lie groups are defined in Section 2.5.3, below.

The other subgroup of O(n), with det(A) = −1, holds improper rotations, which include
a reflection—they do not preserve handedness. Proper rotations are handedness-preserving
linear isometries of Euclidean space.

Definition 2.10. Euclidean motions are elements of Is(n) whose associated linear map
is a proper rotation. They form the Lie group SE(n), the special Euclidean group, of
handedness-preserving isometries of Euclidean space. They are also called proper rigid
transformations.

2.5 Rotations and Euclidean motions

In robotics, we are mostly concerned with rotations and Euclidean motions of three-
dimensional points, comprising the Lie groups SO(3) and SE(3). This section presents a
summary of these Lie groups and their Lie algebras based on Chirikjian (2011), Gallier
(2011), and Barfoot (2017). This section starts with an introductory description of the Lie
group of rotations, SO(3). Sections 2.5.2 to 2.5.5 define relevant concepts in the theory of
manifolds, Lie groups, and Lie algebras, and Section 2.5.7 defines derivatives on Lie groups.
Sections 2.5.8 and 2.5.11 return to concrete examples, covering operations and derivatives
on SO(3) and SE(3).

18

2.5.1 The rotations SO(3)

SO(3) is the group of proper rotations on R3, and “is simply the set of valid rotation
matrices”: (Barfoot, 2017)

SO(3) =
{
C ∈ R3×3 : CCT = I3, det(C) = 1

}
. (2.25)

Note that rotation matrices are parameter-free geometric objects lying on a three-dimensional
manifold, and should not be thought of as having 9 parameters.

SO(3)’s tangent space is described by its Lie algebra, so(3), the space of skew-symmetric
matrices which can be denoted

ϕ = φ× =

φ1

φ2

φ3

× =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (2.26)

The cross operator × converts 3-vectors into matrices such that a× b = (a×)b. In fact,
any element ϕ of so(3) can be written as a linear combination of matrices

ϕ =
3∑
i=1

λiEi, (2.27)

for λi ∈ R and Ei = e×i , where

e1 =

1
0
0

 , e2 =

0
1
0

 , e2 =

0
0
1

 . (2.28)

The matrices Ei form a basis for so(3), and are called generators of SO(3). The vector
φ = ϕ∨ is called a rotation vector, and represents a rotation of angle θ = ‖φ‖ about an
axis a = φ/θ.

Elements of so(3) are related to SO(3) by the exponential map, exp : so(3)→ SO(3). For
small rotations, this map is bijective, and its inverse is the logarithmic map, log : SO(3)→
so(3). In the context of software, elements of so(3) are represented directly as rotation
vectors, and the cross operator may be omitted: we can write exp(φ) , exp

(
φ×
)
n ∈ SO(3).

Before going further, we define several key concepts related to Lie groups.

19

2.5.2 Manifolds and charts

A manifold is a surface which locally resembles Euclidean space at every point. An example
of a manifold is the unit sphere in 3D space, S2, described as the subset of R3 satisfying

x21 + x22 + x23 = 1. (2.29)

Like the surface of the Earth, S2 locally resembles a Euclidean plane. It is a two-
dimensional manifold embedded in R3, meaning there is an injective map m : S2 → R3

which describes the embedded manifold in the higher-dimensional space. The sphere S3

embedded in R4 is another example of a manifold, which will be relevant in Section 2.3.
Trivially, Euclidean space is itself a manifold.

A more detailed, but still informal, definition of a manifold follows. Formal definitions
can be found in Chirikjian (2009, Chapter 7) and Gallier (2011, Chapter 18).

Definition 2.11. Let x be any point on an m-dimensional manifold M . We can choose a
local neighbourhood U of x which is a set of nearby points. For example, given a distance
function ρ : M × M → R, U can be defined as the set of points u such that ρ(x , u) < ε for
some ε ∈ R > 0. Let φ be an injective map φ : U → V , where V is an open subset of Rm.
A pair (U, φ) is a chart about x .

A collection of charts chosen so that each point falls into at least one neighbourhood is
called an atlas.2 Where a pair of neighbourhoods Ui and Uj overlap, the mapping between
charts φi ◦ φ−1j must be continuous.

A manifold, then, is a topological space with an atlas. If for each overlapping region,
φi ◦ φ−1j is differentiable with respect to any coordinate system chosen for the Euclidean
space Rm, M is a differentiable manifold. If each φi ◦ φ−1j is infinitely differentiable, M is a
smooth manifold.

For every point, φ(x) = q, where q ∈ Rm is the vector of local coordinates of x (with
respect to that chart). The inverse φ−1(q) is a local parametrization of M at x .3

In the case of S2, a chart is intuitively understood as a map, showing a flattened view
of part of the globe. Any set of charts spanning the whole globe—for example, a pair of
polar projections, each covering one hemisphere—forms an atlas.

2Chirikjian defines an atlas as a collection of all possible compatible charts, which other works (such as
Norton, 1993) distinguish as a maximal or complete atlas.

3Some works take an inverse view and use φ for the local parametrization and φ−1 for the chart.

20

2.5.3 Lie groups and Lie algebras

Definition 2.12. A group is a nonempty set G along with a binary operation ◦ : G×G→ G
with the requirements:

1. There is an identity element e ∈ G such that e ◦ g = g ◦ e = g , ∀g ∈ G.
2. Every element g ∈ G has an inverse g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e.
3. The operation is associative: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), ∀g1, g2, g3 ∈ G.

The operation ◦ is the group operation, sometimes called composition. The operation
(·)−1 : G→ G is called the inverse map.

Definition 2.13. A Lie Group is a group whose set G is a manifold, and whose group
operation and inverse map are smooth4.

Because it is a manifold, every element g of G has a tangent space TgG which is a vector
space.

The Lie groups we are interested in are matrix Lie groups, for which the set G is a smooth
(actually, analytic) manifold, its elements are n× n matrices, and the group operation is
matrix multiplication. It follows that the identity element of any matrix Lie group is the
identity matrix In. While the matrices can be complex, we consider only real matrices.

Definition 2.14. A (real) Lie algebra g is a vector space together with an operation
[·, ·] : g× g→ g called the Lie bracket of g. The Lie bracket must satisfy certain properties
for all A,B,C ∈ g and λ ∈ R:

Bilinearity: [A + B,C] = [A,C] + [B,C], (2.30a)
[A,B + C] = [A,B] + [A,C], (2.30b)

[λA,B] = [A, λB] = λ[A,B]. (2.30c)
Alternativity: [A,A] = 0. (2.30d)
Jacobi identity: [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0. (2.30e)

It follows that the Lie bracket is anticommutative:

[A,B] = −[B,A]. (2.31)

The cross product on R3 is a familiar example of a Lie bracket.
4Formally, these functions must also be analytic, meaning the Taylor series at each point describes the

neighbourhood of that point. In practice most smooth functions meet this requirement (Chirikjian, 2011).

21

2.5.4 Exponential and logarithmic maps

The exponential map is a map from a Lie algebra to its Lie group,

exp : g→ G. (2.32)

The Lie algebra of a Lie Group G is the set of all X such that exp(X) ∈ G.

The logarithmic map is a map in the other direction,

log : G→ g. (2.33)

For Matrix Lie groups, these operations rely on the matrix exponential, a function
exp : Rn×n → Rn×n. It is defined as the series

exp(A) , eA =
∞∑
p=0

1

p!
Ap, (2.34)

where A ∈ Rn×n and A0 , In. It can be proven that the series converges. For subsets of
real matrices, such as rotations, it can be evaluated in closed form. There is also a matrix
logarithm log : Rn×n → Rn×n, such that

exp(log(g)) ≡ g . (2.35)

Despite this identity, the logarithmic map is not the inverse of the exponential map in
general. The exponential map is well-defined for every element of g, while the logarithmic
map is only defined in a neighbourhood of the identity element of G. For SO(3) and SE(3),
both operations are well-defined for all g but log(exp(A)) ≡ A is only true near identity.

2.5.5 The tangent space and adjoints

The Lie algebra of a Lie group G is the tangent space at its identity element e, denoted
TeG. The tangent space “linearizes” the Lie group. Specifically, TeG is the space of tangent
vectors to smooth paths in G as they pass through e (Stillwell, 2008). We can write such a
path as

g(t) = etX (2.36)

where g(t) ∈ G for some t ∈ R and X ∈ g. The tangent vector is d
dt
etX
∣∣
0

= X. If we do
not already know what g is, we can derive it by finding all X which satisfy (2.36).

22

Equation (2.36) can be considered interpolation from e (at t = 0) to exp(X) (at t = 1)
along a curve on G. For matrix Lie groups, we can approximate g(t) ≈ I + tX for
small t (Chirikjian, 2011). Stillwell (2008) points out a property of the exponential which
helps illustrate its connection to interpolation:

exp(X) = lim
n→∞

(
I +

X

n

)n
(2.37)

Using a very large n produces an infinitesimal element of G, which is iterated n times to
produce exp(X).

As Equation (2.27) shows for SO(3), group elements can be written as a linear combina-
tion of basis elements

g = exp

(
m∑
i=1

λiEi

)
(2.38)

where m is the dimension of the group. (For a group represented by n× n matrices, m is
the number of degrees of freedom, not the matrix size n× n.) The vectors of coordinates
are obtained by the “vee” operator (·)∨ : G→ Rm:

(
m∑
i=1

λiEi

)∨
,

λ1
λ2
...
λm

 (2.39)

The inverse to this operator is the “hat” operator (·)∧ : Rm → g such that (φ∧)∨ = φ. Note
that these operations are not uniquely defined, but depend on our choice of basis for G.
The cross operator for SO(3) is a special case of the hat operator.

What if we want to work in the tangent space of an element other than identity? The
answer lies in the conjugation map, ch : G→ G for some h ∈ G:

ch(g) = h ◦ g ◦ h−1. (2.40)

Figure 2.2 illustrates the effect of conjugation on rotations. For example, we can apply
a perturbation exp(tX) to some non-identity h by applying the map ch(exp(tX)). The
tangent of this map defines the adjoint : (Chirikjian, 2011)

Ad(h)X ,
d

dt

(
h ◦ etX ◦ h−1

)∣∣∣∣
t=0

= hXh−1. (2.41)

23

The adjoint Ad(h), also denoted Adh , is a map Adh : g → g. The Ad operator itself is a
homomorphism mapping group elements to GL(g), the group of all bijective linear maps
on g; the map Ad : G→ GL(g) is the adjoint representation of G.

As its definition (2.41) suggests, Adh can be seen as the Jacobian of the conjugation
map with respect to the coordinate vector in Rm. After introducing coordinates, adjoint
elements are expressed as m×m matrices which can multiply coordinate vectors in Rm.

There is also an adjoint representation of the Lie algebra, denoted by the lowercase
ad : g→ gl(g). Its definition also gives the Lie bracket of g:

ad(X)Y ,
d

dt

(
Ad(etX)Y

)∣∣∣∣
t=0

(2.42)

ad(X)Y , [X,Y] (2.43)

for all X,Y ∈ g. Just as the Lie group and algebra are connected via exp(X), it can be
shown that the adjoints are connected via

Ad
(
etX
)

= et ad(X). (2.44)

While we do not use the adjoint and Lie bracket directly in this work, their properties
make it possible to capture the structure of a curved object, the Lie group, with a flat one,
its tangent space at the identity (Stillwell, 2008). Thus, we can produce a perturbation in
the tangent space, apply it to the identity using the exponential map, and, as illustrated in
Fig. 2.2, apply it equivalently to any non-identity element of G.

2.5.6 Perturbations on a manifold

Hertzberg et al. (2013) defines the operators � (“boxplus”) and � (“boxminus”) to express
the mapping between a local neighbourhood of an m-dimensional manifold M and Rm:

� : M × Rm → M , (2.45)
� : M ×M → Rm. (2.46)

Hertzberg et al. (2013) further defines a �-manifold as a collection (M ,�,�,V) where
V ⊂ Rm is an open neighbourhood of 0 and the following axioms hold for all x , y ∈ M and

24

x
y

z

(a) RWB = I3

x
y

z

(b) RWB = g

x
y

z

(c) RWB = h

x
y

z

(d) RWB = g ◦ h

x
y

z

(e) RWB = h ◦ g = ch(g) ◦ h

Figure 2.2: Rotations as an example of Lie group operations. To visualize group elements,
let SO(3) elements represent RWB, the orientation of a robot body in the world frame,
with (a) showing identity. Consider group elements g , h ∈ G illustrated in (b) and (c). We
can compose g and h in either order (d, e) with different results. If we think of g as a
perturbation about identity (in this case, a roll about the robot’s body x axis) and wish
to apply that perturbation to the non-identity element h to obtain result (e), the desired
operation is h ◦ g . To get the same result while perturbing h only from the left, we can
equivalently apply the conjugation map ch(g) = h ◦ g ◦ h−1.

25

all a,b ∈ V :

x � 0 = x , (2.47a)
x � (y � x) = y , (2.47b)

(x � a)� x) = a, (2.47c)
(x � a)� (x � b) ≤ ‖a− b‖. (2.47d)

Additionally, x � a must be smooth in a and y � x must be smooth in y . Lie groups meet
these requirements (Hertzberg et al., 2013).

� and � on Lie groups

For Lie groups, the � operator adds a perturbation X ∈ g to a group element g ∈ G.
Following Bloesch et al. (2016) and Barfoot (2017), we adopt the convention of applying
the perturbation on the left and define:

� : G× g→ G,

g �X , exp(X) ◦ g .
(2.48)

As an analogue to vector subtraction, the � (“boxminus”) operator obtains the difference
between two group elements:

� : G×G→ g,

g � h , log
(
g ◦ h−1

)
.

(2.49)

� and � operators can also be defined for Rn, where they are equivalent to ordinary
vector addition and subtraction:

a� b , a + b, (2.50)

a� b , a− b. (2.51)

Compound �-manifolds

A compound �-manifold, defined by Hertzberg et al. (2013), is the Cartesian product of
multiple �-manifolds. For a �-manifold M = M1 ×M2, the � and � operators apply the

26

the original manifolds’ operators component-wise:

(x1, x2)�
[
a1

a2

]
, (x1 �1 a1, x2 �2 a2) (2.52)

(y1, y2)� (x1, x2) ,
[
y1 �1 x1
y2 �2 x2

]
(2.53)

Compound manifolds describe state models composed of multiple geometric primitives:
for example, a robot’s position, orientation, and velocity.

2.5.7 Derivatives on Lie groups

The directional derivative of a real-valued function f : Rp → R, giving the rate of change
of f in the direction v, is defined

∇vf(x) = lim
ε→0

f(x + εv)− f(x)

ε
(2.54)

for ε ∈ R,x ∈ Rp and unit vector v ∈ R. It can also be expressed as a weighted sum of the
partial derivatives with respect to each component of x:

∇vf(x) =

p∑
i=1

vi
∂f

∂xi
. (2.55)

The directional derivative can be extended to Lie groups by replacing the addition of εv
with a perturbation by exp(εX). Consider a function f : G→ R. Because the perturbation
can be applied on either side, we have two possible directional derivatives:

∇l
vf(g) = lim

ε→0

f(exp(εX) ◦ g)− f(g)

ε
(left Lie derivative) (2.56)

∇r
vf(g) = lim

ε→0

f(g ◦ exp(εX))− f(g)

ε
(right Lie derivative). (2.57)

We follow the convention of using the left Lie derivative. The analogy to derivatives on
vector spaces becomes clear when we apply definition (2.48) of the � operator:

∇l
vf(g) = lim

ε→0

f(g � εX)− f(g)

ε
. (2.58)

27

As with the vector derivative (2.55), we can split the Lie derivative (2.58) into a sum of
partial derivatives by substituting X =

∑m
i=1 λie

∧
i , where ei , E∨i are the basis elements

of Rm corresponding to the basis elements of the Lie algebra. The partial derivative with
respect to the ith component is

∂f(g)

∂λi
= lim

ε→0

f(g � εe∧i)− f(g)

ε
. (2.59)

We can extend this idea to any analytic function h : G1 → G2 between an m-dimensional
Lie group G1 and l-dimensional Lie group G2:

∂h(g)

∂λi
= lim

ε→0

(
h(g � εe∧i)� h(g)

ε

)∨
. (2.60)

This partial derivative is a vector in Rl. Concatenating the columns for each component
gives the l ×m Jacobian matrix

Jh =
[
∂h(g)
∂λ1

∂h(g)
∂λ2

. . . ∂h(g)
∂λn

]
. (2.61)

This matrix is also called the local Jacobian of h. The global Jacobian is the derivative with
respect to coefficients of the vector space in which G is embedded (Sommer et al., 2013).
For example, if h is a function mapping rotation matrices to rotation quaternions, its local
Jacobian will be 3× 3, and its global Jacobian will be 4× 9: quaternions have 4 coefficients
and rotation matrices have 9, although both have 3 degrees of freedom.

As discussed in Section 2.5.6, the � and � operators can be defined for manifolds that
are not Lie groups. Thus, with appropriate notation changes, equation (2.60) holds for
functions of the form Rm → Rl, Rm → G, and G→ Rl.

2.5.8 Operations on SO(3)

Having defined operations of generic Lie groups and Lie algebras, we return to the example
of SO(3). The matrices Ei form a basis for so(3), and are called generators of SO(3). The
vector φ = ϕ∨ is called a rotation vector, and represents a rotation of angle θ = ||φ|| about
an axis a = φ/θ. Its exponential map, as derived in Appendix A.1.1, is

exp
(
φ×
)

= I3 +
sin θ

θ
φ× +

1− cos θ

θ2
(φ×)2, (2.62)

28

where φ is the rotation vector introduced in Section 2.5.1, with θ = ||φ||. In fact, it is the
vector of components of so(3) with respect to our chosen basis. The previously defined ×
operator can now be recognized as the special case of the ∧ operator for so(3).

The Lie bracket of so(3) is [ϕ1,ϕ2] = ϕ1ϕ2 − ϕ2ϕ1, which is equivalent to the cross
product of rotation vectors: [ϕ1,ϕ2] = (φ1 × φ2)

∧ = φ×1 φ2. The adjoint of so(3) is then
trivially adϕ1

= ϕ1. Similarly, the adjoint of SO(3) can be shown simply to be AdC = C.

In practice, as suggested by Grassia (1998), it is advantageous not to calculate the
exponential map (2.62) but instead to map onto S3:

q(φ) =

[
sin
(
1
2
θ
)

θ
φ cos

(
1
2
θ
)]T

. (2.63)

The result is a unit quaternion representation of exp
(
φ×
)
and can be converted to a

rotation matrix if desired. A full discussion, performance comparison, and numerically
stable formulations of maps (2.62) and (2.63) are provided in Appendix A.1.1. Quaternions
are further discussed in Section 2.5.9.

2.5.9 Quaternions

A quaternion may be written as a column of four coefficients:

q =

x
y
z
w

 =

[
~q
s

]
. (2.64)

Rotations on SO(3) can be represented by quaternions of unit length, such that qTq = 1.

It is possible to define conversion of quaternions to rotation matrices, multiplication of
quaternions, and rotation of vectors such that

C(q1 ◦ q2) = C(q1) ◦C(q2), (2.65)
q(v) = C(q)v, v ∈ R3. (2.66)

The multiplication (2.65) is one possible quaternion multiplication. Conflicting conventions
for representation, conversion, and multiplication of quaternions are used in different fields
and software packages; this issue is discussed by Shuster (2008), Solà (2016), and Sommer

29

et al. (2018). Our implementation follows the convention used by Eigen. Full definitions of
quaternion operations under that convention can be found in Solà (2016).

In software, quaternions are often preferred over rotation matrices because they are easy
to interpolate, more space-efficient, and take fewer floating point operations to compose,
although they are slower at rotating vectors (Schneider and Eberly, 2003). However,
quaternions are useful for more than representing rotations.

Quaternions, S3 and RP3

The group of unit quaternions, SU(2), is isomorphic to the 3-sphere S3 (Gallier, 2011). Like
unit quaternions, S3 is represented in R4 by the set of points (x, y, z, w) such that

x2 + y2 + z2 + w2 = 1. (2.67)

As described by Gallier (2011), the map SU(2) → SO(3) is a surjective and continuous
homomorphism and “SO(3) is homeomorphic to the quotient of the sphere S3 modulo the
antipodal map.” In other words, for every element of SO(3), there are two elements of
SU(2), with the antipode ¬q = −q of any unit quaternion producing an identical rotation:

q ∼= −q, (2.68)
C(q) = C(−q). (2.69)

This equivalence relation is exactly that of spherically normalized homogeneous coordinates,
presented in (2.20). In fact, RP3 and SO(3) are homeomorphic topological spaces and
diffeomorphic manifolds (see also Chirikjian, 2009, Section 7.2). For our purposes, following
Stillwell (2008), we can simply say they are the same group.

2.5.10 Perturbations of homogeneous points

Because RP3 and SO(3) are equivalent, we can treat points in spherically normalized
homogeneous coordinates exactly like rotations, and apply the � and � operators of
definitions (2.48) and (2.49):

xs � v = exp(v) ◦ xs, (2.70)
ys � xs = log

(
ys ◦ (xs)−1

)
. (2.71)

30

Here, xs,ys are homogeneous points expressed as unit quaternions. The exponential map
is the map (2.63) onto quaternions, with the subtle difference that its argument is not
a rotation vector but a perturbation vector v. A small complication is that any vector
of length 2π is mapped to the same quaternion

[
0 −1

]T and requires renormalization
(see Hartley and Zisserman, 2004, Appendix A6.9.2); however, that is not a concern for
perturbations with ‖v‖ < π. The logarithmic map is given in Appendix A.1.2. For small
perturbations, it is possible to use a linear approximation of the exponential map, given in
Appendix A.1.3.

The homogeneous parametrization is preferred for estimation of 3D points because of
its well-conditioned behaviour for distant points, including points at infinity (Triggs et al.,
1999).

2.5.11 The Euclidean motions SE(3)

The special Euclidean group, of proper rigid motions, is represented by the set of transfor-
mation matrices whose linear part is a proper rotation:

SE(3) =

{
T ∈ R4×4 =

[
C t
0T
3 1

]
: C ∈ SO(3), t ∈ R3

}
. (2.72)

As described in Section 2.2.4, T acts by matrix multiplication on points represented as
vectors with an added affine coordinate:

T

[
x
1

]
=

[
C r
0T
3 1

] [
x
1

]
=

[
Cx + t

1

]
(2.73)

The Lie algebra se(3) is given by 4× 4 matrices

ξ∧ =

[
φ
t

]∧
=

[
φ× ρ
0T
3 0

]
, (2.74)

where φ,ρ ∈ R3 are respectively the rotation and translation vectors. Note that we use a
different ordering for the component vector ξ than Barfoot (2017).

The exponential map, exp : se(3)→ SE(3), is

exp(ξ∧) =

[
exp(φ∧) Jφρ

0T
3 1

]
, (2.75)

31

where Jφ is the Jacobian of the exponential map of SO(3) at φ. The logarithmic map is

log(T) =

[
log(C) J−1φ t

0T
3 1

]
. (2.76)

The adjoints of SE(3) are (Chirikjian, 2011)

T = Ad(T) =

[
C 03×3

t×C C

]
, ad(ξ∧) =

[
φ× 03×3
ρ×C φ×

]
, (2.77)

Since the adjoints depend on the order of the chosen basis, these definitions differ from
Barfoot (2017).

Similarly to the derivations for SO(3) in Appendix A, we can obtain derivatives for
these operations and use them to optimize over robot position and orientation. Notably
although SE(3) elements include a rotation matrix and a translation, these subobjects
cannot be independently perturbed. SE(3) is not the direct product of the groups SO(3)
and R3—if that were true, its exponential map (2.75) would be a simple combination of
exp(φ∧) and ρ ≡ t. The group that is the direct product of these manifolds is examined
by Chirikjian et al. (2018).

2.6 Automatic differentiation

Automatic differentiation (AD) presents the possibility of calculating accurate derivatives
of arbitrary functions without an analytical expression. Accessible introductions to AD can
be found in Hoffmann (2016), Baydin et al. (2018).

Briefly, AD finds a function’s derivatives by applying the chain rule to the sequence of
elementary operations used to evaluate the function. To adopt an example from Baydin
et al. (2018), consider the real-valued function:

y = f(x1, x2) = 3x1x2 + sin(x2), (2.78)

The evaluation of this function can be described as a sequence of elementary operations on
intermediate values. This evaluation trace is shown in Table 2.2. The function can also be
drawn as a computational graph, shown in Fig. 2.3.

AD has two main modes: forward and reverse.

32

yv4

v2v1v−1x1

v3v0x2

Figure 2.3: Computational graph of y = 3x1x2 + sin(x2). The intermediate variables vi are
defined in Table 2.2.

Table 2.2: Example of forward mode AD of y = f(x1, x2) = 3x1x2 + sin(x2) evaluated at
x1 = 5, x2 = 0.5. To compute ∂y

∂x1
, the primal trace of the original function evaluation (left)

is combined with the tangent trace (right). Adapted from Baydin et al. (2018).

Forward primal trace

v−1 = x1 = 5
v0 = x2 = 0.5

v1 = 3v−1 = (3)(5)
v2 = v1v0 = (15)(0.5)
v3 = sin v0 = sin 0.5
v4 = v2 + v3 = 7.5 + 0.479

y = v4 = 7.979

Forward tangent trace

v̇−1 = ẋ1 = 1
v̇0 = ẋ2 = 0

v̇1 = v̇−1 · 3 = 3
v̇2 = v̇1v0 + v̇0v1 = (3)(0.5) + (0)(15)
v̇3 = v̇0 cos v0 = 0 cos 0.5
v̇4 = v̇2 + v̇3 = 1.5 + 0

ẏ = v̇4 = 1.5

2.6.1 Forward mode

In forward accumulation mode, we assign a tangent to each intermediate variable in the
original function’s evaluation trace (the primal trace). Each tangent is the partial derivative
of an intermediate variable with respect to a single input. These tangents are propagated
forward using the chain rule to produce the forward tangent trace, shown in Table 2.2.

A single pass of forward mode AD gives the derivative with respect to a single input. For
a function f : Rn → Rm, a forward pass thus produces one column of the m× n Jacobian
matrix.

33

Table 2.3: Example of reverse mode AD of y = f(x1, x2) = 3x1x2 + sin(x2) evaluated at
x1 = 5, x2 = 0.5. After the primal trace (left), the adjoint trace (right) computes both ∂f

∂x1

and ∂f
∂x2

in one reverse pass. Note that the adjoint v̄0 is assigned more than once. Adapted
from Baydin et al. (2018).

Forward primal trace

v−1 = x1 = 5

v0 = x2 = 0.5

v1 = 3v−1 = (3)(5)

v2 = v1v0 = (15)(0.5)

v3 = sin v0 = sin 0.5

v4 = v2 + v3 = 7.5 + 0.479

y = v4 = 7.979

Reverse adjoint trace

x̄1 = v̄−1 = ∂f
∂x1

= 1.5

x̄0 = v̄0 = ∂f
∂x2

= 15.878

v̄−1 = v̄1
∂v−1

∂v1
= v̄1 · 3 = 1.5

v̄1 = v̄2
∂v2
∂v1

= v̄2v0 = 0.5

v̄0 = v̄0 + v̄2
∂v2
∂v0

= v̄0 + v̄2v1 = 15.878

v̄2 = v̄4
∂v4
∂v2

= v̄4 = 1

v̄0 = v̄3
∂v3
∂v0

= v̄3 cos v0 = 0.878

v̄3 = v̄4
∂v4
∂v3

= v̄4 = 1

v̄4 = ȳ = 1

2.6.2 Reverse mode

The reverse accumulation mode of AD propagates adjoints—derivatives of the output with
respect to intermediate variables—backward, from the output toward the inputs.5 This
mode, demonstrated in Table 2.3, simultaneously computes the derivatives of all inputs
with respect to one output.

Because the adjoints depend on the results of the primal evaluation, a “tape” of in-
termediate primal values must be recorded in memory during the forward pass. In our
implementation, this tape is provided by our use of expression templates and our Evaluator
cache structure, described in Section 3.2.

Note that AD is not symbolic differentiation. Symbolic differentiation would give
5This usage of adjoint is unrelated to the adjoint operator on Lie groups.

34

derivatives of example (2.78) as equations:

∂f

∂x1
= 3x2, (2.79a)

∂f

∂x2
= 3x1 + cosx2. (2.79b)

Although the results of forward and reverse AD, shown in Tables 2.2 and 2.3, match
these equations, they are obtained purely by propagation of numerical values. At the
same time, AD is not numerical differentiation, which is an approximation based on finite
differences. AD suffers from neither the accuracy and numerical stability problems of
numerical differentiation, nor the complexity issues of symbolic differentiation (Hoffmann,
2016).

2.6.3 Block automatic differentiation

The above example demonstrates AD with scalar-valued atomic operations. To find the local
Jacobians described in Section 2.5.7, we use block automatic differentiation (BAD), defined
by Sommer et al. (2013). In BAD, the inputs, outputs, and primals x, y, v are manifold
elements, and the tangents and adjoints v̇, v̄ are matrices. Instead of scalar arithmetic, the
elementary operations considered under BAD are manifold operations such as composition
and inverse, as well as geometric operations such as transformation of a translation vector.
Section 3.2 demonstrates BAD applied to geometric expressions in forward and reverse
modes.

Note that our use of the term Jacobian diverges from Baydin et al. (2018): in robotics, a
Jacobian is often broken into multiple matrices, also called Jacobians. Each Jacobian matrix
is the partial derivative with respect to a single multidimensional input. Thus, we state that
one pass of forward mode AD produces the Jacobian with respect to one (multidimensional)
variable, while one pass of reverse mode AD produces multiple Jacobians.

35

Chapter 3

Manifold geometry in C++

This chapter discusses the design of a C++ library for manifold geometry. Our implemen-
tation, wave_geometry, is available at https://github.com/wavelab/wave_geometry.

Our library uses expression templates (ETs), introduced in Section 3.1, to represent
functions of geometric entities. Using ETs, we can manipulate and differentiate geometric
expressions as C++ objects:

Listing 3.1: Example of working with expressions
// Construct geometric primitives
wave::RotationMd R = wave::RotationMd::Random();
wave::Translationd v = wave::Translationd::Random();

// Construct expressions
auto expr = R * v;
auto expr2 = 2 * expr;

// Evaluate the result only
wave::Translationd v2 = expr2;

// Evaluate the Jacobian with respect to R
Eigen::Matrix3d JR = expr2.jacobian(R);

// Evaluate the result and Jacobians
auto [v2, JR, Jv] = expr.evalWithJacobians(R, v);

This chapter’s purpose is to explain how the library makes the user code in Listing 3.1
possible. The user in this context is the programmer making calls to the library from their
own code. As shown in Listing 3.1, the public interface of the library is defined in the wave

36

https://github.com/wavelab/wave_geometry

namespace. We attempt to make this interface as clean and intuitive as possible, and prefer
to return multiple values in a tuple instead of via output parameters. By contrast, internal
parts of the library described in this chapter are not meant to be called directly by the
user and often use unintuitive template metaprogramming techniques. Internals are usually
defined in the wave::internal namespace. In this work, we typically omit namespaces for
brevity.

Section 3.1.1 discusses how our library implements ETs. Section 3.1.2 discusses organi-
zation of types in the library. Section 3.1.3 describes expression evaluation using a recursive
evaluator structure. Section 3.2 describes automatic differentiation in forward and reverse
modes, and discusses how we use compile-time knowledge about the types in an expression
to optimize AD evaluation. Section 3.1.3 demonstrates how the library can be extended
with new types and operations.

3.1 Expression templates for geometry

Consider the expression
r2 := T−1r1. (3.1)

It may be represented in code as r2 = T.inverse()* r1.

In a simple C++ implementation, the call T.inverse() would compute the inverse
transformation and return it as a temporary object, the multiplication operation would
return another object, and that object would be used to assign (or initialize) r2. However,
this is not the most efficient way to evaluate the equation. There is no need to obtain
the matrix T−1; instead, it is cheaper to change the coefficients of T as needed (using the
rotation part in transposed order and subtracting the translation part) to perform the
transformation.

Normally, such optimizations would require changes to the calling code—for example,
KDL instructs users to call a separate function, T.Inverse(p1), for (3.1). A programming
technique called expression templates (ETs) allows the compiler to pick the more efficient
method without a change in user code. With ET, mathematical expressions are encoded as
template arguments. For example, T.inverse() might return an object of type Inverse<
↪→ RigidTransform>, a lightweight expression object holding a reference to the variable T.

Expressions combine to form trees (or, more generally, directed acyclic graphs). To use
a concrete example from wave_geometry, consider the C++ expression A_r_AC = inverse

37

ArAC

operator+

operator*

inverse

CBA

BrAB

ArBC

Translation

Sum<Rotate<Inverse<MatrixRotation>, Translation>, Translation>

Rotate<Inverse<MatrixRotation>, Translation>

Inverse<MatrixRotation>

MatrixRotation

Translation

Translation

Figure 3.1: Expression tree showing compile-time propagation of types, from bottom to
top, for expression (3.2). Leaf nodes are drawn as blue circles, the root node as a yellow
circle, and functions as rectangles. Above each function is its return type, which encodes
the subtree below. The scalar type (e.g. double) is omitted from type names.

↪→ (C_BA)* B_r_AB + A_r_B, representing

ArAC := RBA
−1

BrAB + ArBC . (3.2)

This mathematical expression can be thought of as a tree in which the three variables are
leaf nodes, the operations (inverse, rotation, addition) are unary or binary nodes, and the
final assigned-to variable is the root node. ETs encode the tree, as illustrated in Fig. 3.1.
In this case, the return type of operator+ holds the entire structure of (3.2). When it is
assigned to a Translationd object, the expression tree is evaluated.

Expression templates were originally invented to optimize numeric array operations (Van-
devoorde and Josuttis, 2002). Early ETs improved performance by eliminating unnecessary
temporaries and loops, while relying on the compiler’s decision-making to produce efficient
low-level code. On their own, such optimizations have relatively little effect on the small,
fixed-size vectors and matrices involved in pose representations, for which the compiler
is often able to optimize away temporaries (though the optimizations are still desirable,
as demonstrated by KDL’s Inverse). Modern “smart” ET implementations, introduced
by Iglberger et al. (2012), use ETs primarily as a parsing mechanism. Once they understand
the structure of the mathematical expression, they apply their own optimizations, such as

38

choosing the order of evaluation of subexpressions and selecting low-level compute kernels.
Eigen is one such library.

wave_geometry is an ET library built on top of Eigen. It builds its own representation of
geometric expressions, and uses Eigen for internal representation and final computation. As
discussed in Section 3.2, it also uses the expression-parsing property of ETs as a mechanism
for automatic differentiation.

3.1.1 Implementing expression templates

ETs rely on static polymorphism: they use a single interface to denote different specific
behaviours, which are resolved at compile time (Vandevoorde and Josuttis, 2002). For
example, the notation inverse(C) can be used whether C is a plain matrix or a placeholder
representing the result of another calculation. The implementation of statically polymorphic
classes is simplified by the curiously recurring template pattern (CRTP), a technique which
mixes templates with inheritance (Vandevoorde and Josuttis, 2002, Section 16.3). Its
application to ETs is described by Härdtlein et al. (2010).

An expression template using CRTP looks like the example in Listing 3.2. Here,
RotationBase is a base class template for which the rotation interface is defined, and
Compose is an ET representing the result of composing two rotations. The operator*
function template allows us to compose any two rotations by writing a * b. The pattern
of passing the derived class as a template argument to RotationBase lets it provide a
common interface while also being able to resolve, at compile time, the exact type of the
derived class.

RotationBase can be thought of as a concept1, which describes the interface required
of rotation objects. Particular rotation types such as MatrixRotation and Quaternion-
Rotation, as well as expressions such as Inverse<MatrixRotation>, model this concept.
For example, all rotation objects can be passed to the inverse() and log() functions, and
can transform vectors. Concepts can refine other concepts: the requirements of Rotation
objects are a superset of those on Transform objects.

In principle, there is no reason for models of a concept to be related via inheritance;
however, inheritance allows code reuse and simplifies the definition of generic functions
which accept only models of a concept (Abrahams and Gurtovoy, 2004). For example, a
function composing two RotationBase objects is shown in Listing 3.3. CRTP is thus little
more than an implementation detail which helps write generic code.

1Here, concept refers generally to a set of requirements on a type, as defined by Abrahams and Gurtovoy
(2004), and not to the concepts language feature planned for C++20.

39

Listing 3.2: Example of CRTP applied to expression templates
template <typename Derived>
class RotationBase {
// No data members. Methods common to all rotation objects may be defined here.

// Obtain a reference to the derived object
const Derived &derived() const & {
return *static_cast<Derived const *>(this);

}
}

template <typename Lhs, typename Rhs>
class Compose : public RotationBase<Compose<Lhs, Rhs>> {
const Lhs &lhs_;
const Rhs &rhs_;

public:
Compose(const Lhs &lhs, const Rhs &rhs) {...}

};

template <typename Lhs, typename Rhs>
Compose<Lhs, Rhs> operator*(const RotationBase<Lhs> &lhs,

const RotationBase<Rhs> &rhs) {
return Compose<Lhs, Rhs>{lhs.derived(), rhs.derived()};

}

Listing 3.3: Example of a generic function accepting rotation arguments
template <typename Lhs, typename Rhs>
Compose<Lhs, Rhs> operator*(const RotationBase<Lhs> &lhs,

const RotationBase<Rhs> &rhs) {
return Compose<Lhs, Rhs>{lhs.derived(), rhs.derived()};

}

40

Listing 3.4: Example of wave_geometry expression template
template <typename Lhs, typename Rhs>
struct Compose : internal::base_tmpl_t<Lhs, Rhs, Compose<Lhs, Rhs>>,

internal::binary_storage_for<Compose<Lhs, Rhs>> {
private:
using Storage = internal::binary_storage_for<Compose<Lhs, Rhs>>;

public:
// Inherit constructors from BinaryStorage
using Storage::Storage;

static_assert(std::is_same<RightFrameOf<Lhs>, LeftFrameOf<Rhs>>(),
"Adjacent frames do not match");

};

In reality, our implementation is more complex than the example in Listing 3.2 terms
of levels of inheritance and storage of data members. The actual Compose template in
wave_geometry is shown in Listing 3.4.

In Listing 3.4, internal::base_tmpl_t is a selector that evaluates to the correct
conceptual base class, which might be RotationBase or RigidTransformBase; the library
hierarchy is presented in Section 3.1.2. binary_storage_for selects a base class which
provides storage and constructors for the lhs and rhs members; storage details are discussed
in Appendix C.1. The static_assert is a frame semantics check, discussed in Chapter 4.
We note that the expression template itself contains little functionality; its main purpose is
to provide a simple tag for the type of geometric expression it represents and to appear in
user-facing compiler messages.

3.1.2 Spaces, parametrizations, and storage

We distinguish three orthogonal ideas related to representing a geometric primitive: spaces,
parametrizations, and storage. Each object belongs to a vector space or Lie group, which
we call a space. Each object embodies a representation of this space, such as rotation
matrix, quaternion, or angle-axis. Note that representations are not a subset of spaces:
three-dimensional points, translations, and rotation vectors can all be represented by vectors
in R3. Finally, each object has storage, which describes its representation in computer
memory. For example, a rotation matrix may be stored using floats or doubles, in row-major
or column-major order, or even in non-contiguous memory. Table 3.1 presents a summary

41

of these terms.

Table 3.1: Terms describing geometric objects in wave_geometry

Term Examples Implemented with

Space SO(3), se(3) Base class templates (CRTP)
Representation Matrix, quaternion Leaf templates
Storage Row-major, column-major Underlying Eigen classes

In wave_geometry, spaces are base class templates using CRTP, as described in Sec-
tion 3.1.1. This pattern allows defining a consistent interface for all objects of the same
space. Representations are defined as leaf class templates, such as MatrixRotation and
QuaternionRotation. These classes inherit the interface of RotationBase, and do not
define their own user-facing methods. However, each leaf class has its own internal eval-
uation and conversion functions. Figure 3.2 presents the hierarchy of base classes and
parametrizations.

The leaves are themselves class templates (not simple classes) to allow for different
storage types. As shown is Table 1.1, it is common for classes to be templated on the
scalar type, such as float or double. In wave_geometry, the classes are templated on the
whole storage type. While a rotation matrix may be stored using a plain Eigen::Matrix3d,
it may also be stored in any way supported by Eigen’s Map or Block expressions. The
template parameter may even be a placeholder Eigen expression such as a Product. In
a way, wave_geometry leaf classes can be seen as type-safe wrappers for the underlying
matrix classes.

Nullary expressions

In addition to the leaves shown in Fig. 3.2, there are several nullary ETs which serve as
leaves but have no storage. The Random ET evaluates to a random value of the given leaf
type. Identity represents the identity element of a given space, and Zero the zero element
of a vector space.

The term nullary is borrowed from Eigen. Our implementation does not distinguish
between nullary and other leaf expressions.

42

E
x
p
r
e
s
s
i
o
n
B
a
s
e

AffineBase

VectorBase

Translation-
Base

Translation

Relative-
RotationBase

RotationVector

TwistBase Twist

ScalarBase Scalar

PointBase Point

Transform-
Base

RotationBase

MatrixRotation

QuaternionRotation

AngleAxisRotation

Rigid-
Transform-
Base

MatrixRigidTransform

CompactRigidTransform

Projective-
Base

Homogeneous-
PointBase

HomogeneousPoint

UnitHomogeneousPoint

R3

so(3)

se(3)

R

A3

SO(3)

SE(3)

RP3

Figure 3.2: Hierarchy of types in wave_geometry. Each base class template defines a
common interface for a space of geometric objects. Leaves correspond to a particular
representation of a geometric object. Storage types are not shown.

43

3.1.3 Evaluating expressions

Following Eigen,2 we evaluate expression trees using a recursive evaluator structure. The
evaluator for each expression caches intermediate results for use by subsequent operations.

Each expression has one or more corresponding implementation functions. These
functions (actually function templates) define the actual code needed to evaluate the
expression for inputs of a particular representation. They are called internally by the
evaluator and never directly by the user.

Implementation functions are called using tag dispatch (Meyers, 2014, Item 27). This
technique selects an overloaded function definition using an empty tag type, instead of by
name or by type of (non-empty) arguments. For example, the implementation of Compose
for a pair of rotation matrices is:

Listing 3.5: Implementation function for Compose of rotation matrices
template <typename Lhs, typename Rhs>
auto evalImpl(expr<Compose>,

const MatrixRotation<Lhs> &lhs,
const MatrixRotation<Rhs> &rhs) {

return plain_eval_t<MatrixRotation<Lhs>>{lhs.value() * rhs.value()};
}

Here, expr<Compose> is an empty tag used to select this overload of evalImpl. In
this case, the implementation code is fairly trivial: since Eigen already defines matrix
multiplication, we obtain the underlying Eigen objects using value(), multiply them, and
return a suitable a plain leaf type chosen by the plain_eval_t selector.

We define implementation functions as free functions (instead of, for example, as static
member functions of Compose) to allow extending the library with new types, as described in
Section 3.1.3. We use tag dispatch instead of a template specialization to simplify defining
implementations with inheritance. The compiler will choose the best viable function
overload, including making derived-to-base conversions for one or more arguments if an
exact match is not found (ISO, 2017, over.best.ics). For example, the implementation for
rigid transformations is:

Listing 3.6: Implementation function for Compose of general transforms
template <typename Lhs, typename Rhs>
auto evalImpl(expr<Compose>,

2Eigen’s internal implementation is described at http://eigen.tuxfamily.org/index.php?title=
Working_notes_-_Expression_evaluator

44

http://eigen.tuxfamily.org/index.php?title=Working_notes_-_Expression_evaluator
http://eigen.tuxfamily.org/index.php?title=Working_notes_-_Expression_evaluator

const RigidTransformBase<Lhs> &lhs,
const RigidTransformBase<Rhs> &rhs) -> plain_eval_t<Rhs> {

plain_eval_t<Rhs> res{};
res.rotation() = lhs.derived().rotation() * rhs.derived().rotation();
res.translation() = lhs.derived().rotation() * rhs.derived().translation() +

lhs.derived().translation();
return res;

}

Listing 3.7: Example of wave_geometry expression template
template <typename Lhs, typename Rhs>
auto evalImpl(expr<Compose>,

const RigidTransformBase<Lhs> &lhs,
const RigidTransformBase<Rhs> &rhs) -> plain_eval_t<Rhs> {

plain_eval_t<Rhs> res{};
res.rotation() = lhs.derived().rotation() * rhs.derived().rotation();
res.translation() = lhs.derived().rotation() * rhs.derived().translation() +

lhs.derived().translation();
return res;

}

The evaluation sequence

Evaluation is invoked when an expression is passed to a constructor or assignment operator
of any leaf expression, or when the user explicitly calls eval(). In either case, the internal
evaluateTo function, presented in Listing 3.8, is called.

Listing 3.8: Internal evaluateTo function
template <typename Destination, typename Derived>
auto evaluateTo(Derived &&expr) -> Destination {
// Construct Evaluator tree
const auto evaluator = prepareEvaluatorTo<Destination>(std::forward<Derived>(expr));

// Evaluate and apply output functor (e.g. wrap in Framed)
return prepareOutput(evaluator);

}

If called from a constructor or assignment, the template parameter Destination is
the type of the target class. If called using eval(), Destination is chosen to be the
“natural” result of evaluating the expression tree without extra conversions. As suggested
by Listing 3.8, evaluation has several steps:

45

1. Make any needed transformations to the expression tree.

2. Construct the evaluator tree, which evaluates the expression.

3. Make any needed transformations to the output.

First, the expression tree may be transformed. wave_geometry adds conversions between
representations if needed, as described below in Section 3.1.3. In future work, optimizing
transformations such as rearrangement of operations may be applied here, following the
design of Eigen. An evaluator tree, described below, invokes the implementation functions
for the transformed expression tree. For some expressions, a final transformation is applied
before the result is returned; currently, this step wraps the result with frame semantics as
described in Chapter 4.

Note that these structures (the expression tree, the evaluator tree, and so on) are
constructs intended to guide the compiler. As observed by Phipps and Pawlowski (2012),
much of the task of implementing ET systems lies in coercing the compiler to make
favourable optimizations. In practice, the structures do not exist in the final executable
when optimizations are enabled.

The evaluator tree

The evaluator itself is a class template whose purpose is to invoke the evalImpl for each
expression and cache the results. It has different partial specializations for unary, binary,
and leaf expressions. The partial specialization for a binary expression is:

Listing 3.9: Evaluator template for binary expressions
template <typename Derived>
struct Evaluator<Derived, enable_if_binary_t<Derived>> {
using EvalType = eval_t<Derived>;
using LhsEval = Evaluator<typename Derived::LhsDerived>;
using RhsEval = Evaluator<typename Derived::RhsDerived>;

inline explicit Evaluator(const Derived &expr)
: expr{expr},
lhs_eval{expr.lhs()},
rhs_eval{expr.rhs()},
result{
evalImpl(get_expr_tag_t<Derived>(), this->lhs_eval(), this->rhs_eval())} {}

const EvalType &operator()() const {

46

return this->result;
}

public:
const wave_ref_sel_t<Derived> expr;
const LhsEval lhs_eval;
const RhsEval rhs_eval;
const EvalType result;

};

When each evaluator is constructed, it recursively constructs evaluators for its expres-
sion’s operands. It then calls the implementation function for its expression, passing the
cached results of its children and caches the result for its own parent to use. An expression’s
evaluation is thus simultaneous with the construction of the evaluator tree.

Evaluation can be seen as applying a fold to the expression tree, recursively reducing it to
single a return value. Fold is an operation which, given a combining function f : A×B → B
and some initial value, applies f recursively to a sequence of elements of A to produce a
single result in B. We do not attempt to use the formal definition of folds from recursion
theory (Hutton, 1999), and instead use the term loosely to provide an intuitive description
of expression trees. For our purposes, it is simplest to consider a family of combination
functions: for leaf nodes, f : A → B, for unary nodes, f : A×B → B, and for binary nodes,
f : A× B × B → B.

The combining function applied by each Evaluator is function composition. The
evaluator tree combines a tree of expression objects a ∈ A into a resulting leaf expression
v ∈ B; in this case, B ⊂ A . The combining functions can be written in terms of the
evalImpl function for a, represented by ga:

Leaf: f(a) = ga(a) (3.3a)
Unary: f(a, v) = ga(v) (3.3b)
Binary: f(a, vl, vr) = ga(vl, vr). (3.3c)

Note that while ga(a) = a for most leaves, there are exceptions such as Random expressions.
For binary nodes, vl and vr are the folded values of the left and right subtrees, respectively.

Conversions

Sometimes, conversions between representations are needed to evaluate an expression. In
the simplest case, a user attempts to direct-construct one representation from another:

47

Listing 3.10: Conversion of output representation
MatrixRotationd m{...};
AngleAxisRotationd a{m};

In fact, an AngleAxisRotation constructor accepting MatrixRotation does not exist. The
code in Listing 3.10 constructs and evaluates the conversion expression Convert<AngleAxis-
Rotationd, MatrixRotationd>. The library also attempts to add conversions between
representations whenever no matching implementation function is available. For example,
consider the composition of mismatching rotations:

Listing 3.11: Conversion of inputs to an operation
AngleAxisRotationd a{...};
MatrixRotationd m{...};
AngleAxisRotationd a2{a * m};

Since we implement composition for pairs of rotation matrices but not for angle-axis
arguments, a conversion is needed in Listing 3.11. In this case, wave_geometry will
insert Convert<MatrixRotationd, AngleAxisRotationd> before beginning evaluation.
Figure 3.3 illustrates how an expression tree is transformed when two conversions are
needed.

We use conversion expressions—instead of “normal” constructors or conversion operators,
like most C++ libraries—to avoid hidden implicit conversions and let the library track all
computations. In future work, the library can use this mechanism to estimate the cost
of evaluating an expression tree, and choose the cheapest option where more than one
sequence of conversions is possible.

Extending the library

The evaluator implementation described in this section makes it possible extend the library,
without modifying the original class definitions, with both new types and new operations.
The challenge of allowing such modular extensibility is related to the expression problem
described by Torgersen (2004). However, the problem we solve is simpler because we deal
only with static dispatch: the functions to be called can be resolved at compile-time.

48

RAC

Compose

CAB

RBC

AngleAxisRotation

MatrixRotation

AngleAxisRotation

(a)

RAC

Convert

Compose

CAB Convert

RBC

AngleAxisRotation

MatrixRotation

MatrixRotation

AngleAxisRotation

(b)

Figure 3.3: Example of library-inserted conversions. The expression tree (a) is not di-
rectly evaluable because there is no suitable Compose implementation. Before evaluation,
wave_geometry inserts conversion expressions (b).

3.2 Automatic differentiation

3.2.1 Forward-mode AD

We previously described evaluating an expression tree as applying a fold operation to the
tree (see Section 3.1.3). The same approach lets us calculate the forward-mode derivative
∂a
∂x

of any expression a with respect to a leaf x In this case, the fold operation f ′x reduces a
tree of expressions a to a Jacobian matrix Jx. The combining functions apply the chain
rule:

Leaf: f ′x(a) =
∂ga
∂x

=

{
I, if a ≡ x

0, otherwise
(3.4a)

Unary: f ′x(a, v) =
∂ga
∂gr

∂gr
∂x

= J(a)v (3.4b)

Binary: f ′x(a, vl, vr) =
∂ga
∂gr

∂gr
∂x

+
∂ga
∂gl

∂gl
∂x

= Jl(a)vl + Jr(a)vr. (3.4c)

Here, gr and gl are the implementation functions of the left and right subtrees of a,

49

Listing 3.12: Jacobian implementation functions for composition of rotations
template <typename Val, typename Lhs, typename Rhs>
decltype(auto) rightJacobianImpl(expr<Compose>,

const Val &,
const MatrixRotation<Lhs> &lhs,
const RotationBase<Rhs> &) {

return lhs.value();
}

template <typename Val, typename Lhs, typename Rhs>
auto leftJacobianImpl(expr<Compose>,

const Val &,
const TransformBase<Lhs> &,
const TransformBase<Rhs> &) {

return identity_t<Val>{};
}

giving ∂gr/∂x = v. For any leaf, the identity check a ≡ x determines whether a is the
variable with respect to which we are differentiating, which we call the target expression.
The Jacobian functions, J for unary expressions and Jl and Jr for binary expressions, must
be provided separately by the library.

In wave_geometry, these Jacobians are provided by the jacobianImpl, leftJacobian-
Impl and rightJacobianImpl functions, which are similar to evalImpl. These functions
are invoked by the forward-mode Jacobian evaluator, illustrated in Fig. 3.4a. The Jacobian
evaluator closely resembles the standard Evaluator (see Section 3.1.3). However, instead of
traversing the original expression tree, the Jacobian evaluator traverses the Evaluator tree.
This design allows reuse of the Evaluator’s cached values: each jacobianImpl function is
passed the cached values of its expression and of its operands.

For example, the right Jacobian implementation for a composition of rotation matrices,
given in Listing 3.12, simply returns a reference to the cached left operand to implement
∂(ClCr)/∂Cr = Cl. The left Jacobian implementation, returning an identity matrix, need
only be defined once for all transform expressions.

3.2.2 Testing for identity

We use type information encoded in the expression tree to eliminate unnecessary operations.
The identity check used in the leaf derivative (3.4a) can be implemented as a boolean

50

function:

(a ≡ x) =

{
addr(a) = addr(x), if type(a) = type(x)

0, otherwise
(3.5)

where addr(a) is the address of the expression object, as given by &a, and type(a) is its
type excluding any const or volatile qualifiers. If the two leaves have different types, the
Jacobian is known to be zero at compile time, and we avoid traversing that branch of the
tree.

This optimization is possible because of C++’s strict aliasing rule (ISO, 2017, basic.lval).
An object cannot legally be accessed via a pointer to a different type (with a few exceptions,
such as pointers to a base class and char types). Therefore references to objects of different
types can be assumed not to alias each other, and there is no need to check the address at
runtime.

Note that it is possible to produce a standard-compliant form of “aliasing” using proxy
objects. For example, two Eigen Maps may write to the same memory region although the
Maps themselves have different addresses. Because this situation is impossible to detect in
general and is not special to differentiation,3 we do not consider it.

The corollary is that if two leaves do have the same type, we cannot tell at compile
time whether they refer to the same object, as noted by Hogan (2014). Because we cannot
predict evaluation flow, cached values must be dense matrices, not arbitrary expressions.
We mitigate the runtime cost by wrapping intermediate Jacobians in std::optional, which
allows efficient return of zero-valued Jacobians as a “null” object, ∅. The resulting combining
functions are:

Leaf: f ′x(a) =

{
I, if a ≡ x

∅, otherwise
(3.6a)

Unary: f ′x(a, v) =

{
∅, if v = ∅
J(a)v, otherwise

(3.6b)

Binary: f ′x(a, vl, vr) =

∅, if vl = vr = ∅
Jr(a)vr, if vl = ∅, vr 6= ∅
Jl(a)vl, if vl 6= ∅, vr = ∅
Jl(a)vl + Jr(a)vr, otherwise.

(3.6c)

3Examples of aliasing are given in Eigen’s documentation: https://eigen.tuxfamily.org/dox/group_
_TopicAliasing.html

51

https://eigen.tuxfamily.org/dox/group__TopicAliasing.html
https://eigen.tuxfamily.org/dox/group__TopicAliasing.html

These equations, together with compile-time optimizations which prune some checks,
describe wave_geometry’s JacobianEvaluator.

3.2.3 Strongly typed forward-mode AD

The implementation can be more efficient if it is guaranteed that all instances of a
type refer to the same object. We call this property uniqueness of objects in a expres-
sion. Our second forward-mode AD implementation, the strongly typed forward evaluator
(TypedJacobianEvaluator, assumes uniqueness. The identity check (3.5) is simplified to

(a ≡ x) =

{
1, if type(a) = type(x)

0, otherwise.
(3.7)

The combining functions used by TypedJacobianEvaluator are similar to functions (3.6)
but with the conditionals v = ∅ known at compile time. This knowledge means Jacobian
computation can be fully optimized, without converting placeholder expressions to dense
matrices and without branches. Figure 3.4b illustrates the effect.

Our contains_same_type metafunction determines v = ∅ at compile time by applying
another fold operation: it applies the type identity test type(a) = type(x) to every a in a
tree, and recursively combines the results with a logical OR.

Normally, the uniqueness property covers only a small subset of expressions, unless
variables are “tagged” specifically to differentiate their types. However, the coordinate frame
semantics system presented in Chapter 4 conveniently has the same effect, extending the
uniqueness property to a large set of physically meaningful expressions.

As Baydin et al. (2018) points out, we can efficiently calculate the Jacobian-vector
product Jx by initializing the forward pass with x instead of I in function (3.4a). However,
if the Jacobian is available as a placeholder Eigen expression, it would be just as efficient
to evaluate the product of that expression and the vector.

Is uniqueness guaranteed?

If every object in an expression tree has a unique type (which is true in Fig. 3.4b), the
uniqueness property is guaranteed. We check the guarantee at compile time using another
fold metafunction. This fold returns either a list of unique leaf types or a false value if

52

duplicate leaves exist in the tree. Its combining functions are:

Leaf: f(a) = {type(a)} (3.8a)
Unary: f(a, v) = v (3.8b)

Binary: f(a, vl, vr) =

∅, if vl = ∅ or ∪ vr = ∅
∅, if vl ∩ vr 6= ∅
vl ∪ vr, otherwise.

(3.8c)

Here, the results v are sets of types, and an expression has unique leaves iff v 6= ∅. In our
implementation, the result type represents the uniqueness value by deriving from either
std::true_type or std::false_type, and holds a type list (which acts as the set v) in the
true case. Each expression’s UniqueLeaves trait holds the result. Our concat_if_unique
metafunction implements function (3.8c) on type lists.

When expr.jacobian(x) is called, wave_geometry automatically selects the strongly
typed Jacobian evaluator only if uniqueness is guaranteed at compile time (if expr has
unique leaves). If uniqueness holds but is not guaranteed (when the same leaf appears more
than once in expr), the user may invoke the strongly typed evaluator directly by calling
evaluateTypedJacobian(expr, x). That function asserts uniqueness at runtime in debug
builds. However, it is often possible for the user to rearrange the expression so that each
variable appears only once.

3.2.4 Reverse-mode AD

In reverse-mode AD, adjoints flow from the root node toward all leaves, as illustrated in
Fig. 3.5. Here, assume that the expression is a true tree. We can loosely describe this
backward pass as three unfolding operations, which take a node a and an input adjoint win
and calculate the adjoint(s) w to pass on to its child(ren):

Leaf: w(a, win) = win (3.9a)
Unary: w(a, win) = winJ(a) (3.9b)
Binary: wl(a, win) = winJl(a)

wr(a, win) = winJr(a). (3.9c)

The algorithm starts at the root node with win = Im, where m is the dimension of the
expression’s tangent space. These unfolding operations are performed in the constructor of
our reverse evaluator, ReverseJacobianEvaluator. The Jacobian of the expression with

53

respect to a leaf, which is the adjoint that reaches that leaf, is cached at each leaf node of
the reverse evaluator tree.

To actually return the Jacobians to the user, we follow the unfold with a fold: the cached
Jacobians are packed into tuples, which are recursively concatenated using std::tuple_cat.

Our reverse evaluator is strongly typed, and the intermediate adjoints may be placeholder
expressions. It is invoked by calling expr.evalWithJacobians() with no arguments for
an expr with unique types. It returns a tuple of Jacobian matrices corresponding to all
leaves in the expression in left-to-right order.

Future work would provide a reverse evaluator for cases without the uniqueness guarantee.
For an expression that is a non-tree DAG, multiple adjoints reaching a node must be summed.
To support complex expressions, implementations must also deal with increasing storage
requirements (Baydin et al., 2018).

The unfolding operations (3.9) could be modified to compute derivatives only for some
target leaves, by limiting the backward propagation to branches which contain the targets.
In future work, the expr.evalWithJacobians(x, ...) interface could then be extended
to choose the fastest evaluator for the given expression and targets.

3.3 Composing expressions at runtime

The compile-time nature of ETs is both a benefit and a drawback. Compared to the
dynamic polymorphism provided by virtual functions, ETs allow superior optimizations and
extensibility. However, dynamic polymorphism lets us decide the structure of an expression
at runtime, make heterogenous vectors of expressions, spread compilation across translation
units, or build deep expressions that would exceed compilers’ template instantiation limits.
We combine the two forms of polymorphism using type erasure: “the process of turning a wide
variety of types with a common interface into one type with that same interface” (Abrahams
and Gurtovoy, 2004).

Our application of the type erasure idiom consists of three parts: the Proxy<L> template
class, which can hold any expression evaluating to a leaf type L; the DynamicBase<L>
abstract base class, which provides an interface for the expression through virtual functions;
and the Dynamic expression template, which acts as the “glue” between a concrete expression
and the DynamicBase<L> interface.

Figure 3.6 illustrates how an instance of the Dynamic ET inherits from DynamicBase
while retaining its concrete type. Dynamic is needed because expression types are unrelated

54

∂/∂BrAB

Matrix3

Sum

ArAC , CAB + 0

Compose

ArAB, RABI

inverse

CAB

CBA

RotationM

CBA

BrAB

Translation

BrAB, I3

ArBC

Translation

ArBC , 0

(a) Forward evaluator

∂/∂BrAB

Matrix3

Sum

ArAC , CAB + 0

Compose

ArAB, RABI

inverse

CAB

CBA

RotationM<B, A>

CBA

BrAB

Translation<B, A, B>

BrAB, I3

ArBC

Translation<A, B, C>

ArBC

(b) Strong typed forward evaluator

Figure 3.4: Computation of the derivative of example (3.2) using forward AD. Cached values
from the original function evaluation are shown above each node in blue, and derivatives in
red. Crossed-out nodes are not traversed at runtime.

55

y

Sum

ArAC , I3

Compose

ArAB, I3

Inverse

CAB, I · (−Ar×AB)

CBA

RotationM<B, A> ∂y

∂CBA

Matrix3

(−Ar×AB)(−RAB)

BrAB

Translation<B, A, B> ∂y

∂BrAB

Matrix3

I3 ·RAB

ArBC

Translation<A, B, C> ∂y

∂ArBC

Matrix3

I3

Figure 3.5: Reverse-mode differentiation of example (3.2). In the original function evaluation,
values (blue) propagate upward. In reverse AD, adjoints (red) propagate downward to
calculate the derivatives with respect to all leaves in one pass.

56

Dynamic<Compose<R, R>>

RotationBase<Dynamic<Compose<R, R>>>

ExpressionBase<Dynamic<Compose<R, R>>>

DynamicBase<R>

Figure 3.6: Simplified inheritance diagram for a Dynamic expression. Dynamic wraps an abri-
trary expression of some leaf type. It also inherits the abstract base class DynamicBase<R>,
which provides a common interface for all expressions which evaluate to R.

in terms of inheritance, even if they represent the same leaf type: for example, RotationMd
inherits from ExpressionBase<RotationMd>, while Inverse<RotationMd> inherits from
ExpressionBase<Inverse<RotationMd>>. (While it would be possible to have every
instance of ExpressionBase inherit from DynamicBase, that would introduce overhead
related to virtual functions even when unneeded.) Note that Dynamic is an otherwise
ordinary unary expression; it holds a reference to another expression and is implemented as
an identity map.

Users interact with dynamic expressions through the Proxy expression. Proxy expres-
sions are approximately equivalent to GTSAM’s Expression class template, except that a
proxy may itself contain an arbitrary static expression. Like GTSAM’s Expressions, each
proxy object holds a smart pointer to a dynamic expression allocated on the heap.

Proxies have pointer semantics: multiple proxies can point to the same dynamic
expression, and can be shallowly copied and reassigned at runtime. Each Proxy<L> has the
same static interface as the leaf type L, and is itself useable in other expessions. Proxies let
us build arbitrary expression graphs at runtime, as illustrated in Fig. 3.7.

Their performance is compared to GTSAM in Section 3.4.4. Details on evaluation of
dynamic expressions are given in Appendix C.2.

3.4 Experimental results

3.4.1 Benchmark experiments

We evaluate the runtime of our implementation compared to Ceres, GTSAM, and hand-coded
derivatives using Eigen 3.3.4. Clang 5.0 was used with optimization flags -O3 -DNDEBUG -
↪→ march=native on an Intel Core i7 Skylake processor. The Google Benchmark library

57

Dynamic<Compose<...>&&>

DynamicBase<R>

Compose<...>
Proxy<R>

Proxy<R>

Proxy<R>
shared_ptr

share
d_ptr . . .

shared_ptr
. . .

sh
ar
ed
_p
tr

. .
.

Figure 3.7: Example of a dynamically allocated expression graph. While the Dynamic<...>
object holds an arbitrary expression, the Proxy is only aware of its resulting leaf type, R.

was used for timing. Results were averaged over repeated trials on sequences of random
rotations.

3.4.2 Rotation Chain

First, we consider an increasingly long chain of rotations

r2 =

(
N∏
i=1

Ri

)
r1 (3.10)

where Ri are rotation matrices. For example, for N = 3,

r2 = R1R2R3r1. (3.11)

This example is similar to (Sommer et al., 2013, eq. (6)). Applying the chain rule to the
derivatives found in Bloesch et al. (2016) gives

∂r2/∂r1 = R1R2R3, (3.12)
∂r2/∂R1 = −r∧2 , (3.13)
∂r2/∂R2 = −r∧2R1, (3.14)
∂r2/∂R3 = −r∧2R1R2. (3.15)

We use Eigen to hand-code (3.11) to (3.15), reusing intermediate values and evaluating
−r∧R as column-wise cross products for efficiency.

Using Ceres presents a challenge, as explained with example code in Sommer et al.
(2013): its AutoDiffCostFunction produces global Jacobians. Obtaining a local Jacobian
requires the extra calculation of the derivative of the global parametrization with respect

58

2 4 6 8 10

0

1

2 Ceres

GTSAM

wave_geometry,
hand-coded (see right)

N

T
im

e
pe

r
ev
al
ua

ti
on

(µ
s)

2 4 6 8 10

0

0.05

0.1

0.15

Forward

Reverse

Typed Forward
Hand-coded

N

T
im

e
pe

r
ev
al
ua

ti
on

(µ
s)

Figure 3.8: Comparison of time taken to evaluate result and all N + 1 Jacobians in a chain
of N rotations (3.10). Results are averaged over many trials. The left plot compares our
results to existing libraries. The right plot shows the same data at a larger scale, comparing
our three implementations to the hand-coded reference.

to the local. This is so inefficient for rotation matrices that it is not a realistic use case of
Ceres, and the results we show for Ceres use quaternions.

Using GTSAM, we differentiate (3.11) as shown in Listing 3.13.

Listing 3.13: Automatic differentiation of a rotation chain in GTSAM
// Define expressions for inputs
Expression<Rot3> R1_{'R', 1}, R2_{'R', 2}, R3_{'R', 3};
Expression<Point3> p1_{'p', 1};

// Define expression for the rotation chain
Expression<Point3> p2_ = rotate(R1_ * R2_ * R3_, p1_);

// For each symbol, set a linearization point
Values values{};
values.insert(Symbol{'R', 1}, getRotation());
values.insert(Symbol{'R', 2}, getRotation()});
values.insert(Symbol{'R', 3}, getRotation()});

// Get result and all Jacobians
std::vector<Matrix> jacobians(4);
Point3 p2 = p2_.value(values, jacobians);

59

Listing 3.14 demonstrates the same task in wave_geometry, using the forward evaluator
combined with coordinate frame semantics (labelled “typed forward” in results). The reverse
evaluator is invoked by passing no arguments, as demonstrated in Listing 3.15. While these
examples show C++17 syntax, the library can be used in C++11 and above.

Listing 3.14: Automatic differentiation of a rotation chain in wave_geometry
// Define inputs (with frame semantics)
wave::RotationMd<D, C> R1 = getRotation();
wave::RotationMd<C, B> R2 = getRotation();
wave::RotationMd<B, A> R3 = getRotation();
wave::Translationd<A> r1 = getPoint();

// Define the expression and differentiate
auto expr = R1 * R2 * R3 * r1;
auto[p2, J1, J2, J3, Jr] = expr.evalWithJacobians(R1, R2, R3, r1);

Listing 3.15: Reverse-mode AD in wave_geometry
// Differentiate in reverse mode
auto[p2, J1, J2, J3, Jr] =
(R1 * R2 * R3 * r1).evalWithJacobians();

Figure 3.8 presents the results for N from 1 to 10. For this function, all three
wave_geometry methods clearly outperform the existing libraries. The time taken by
Ceres grows rapidly with N , matching the results of Sommer et al. (2013). GTSAM has a
high initial overhead, but scales linearly, at a rate about 14 times that of the hand-coded
reference.

Our typed forward evaluator’s performance matches the reference, while the reverse
evaluator has an average overhead of 24%. This represents an improvement over the 4×
slowdown reported in Sommer et al. (2013) for a similar example with quaternions. The
typed forward evaluator can outperform the reverse because it naturally exploits the
structure of this problem. In the next example, that is not the case.

GTSAM is disadvantaged in this comparison because it is designed for calculating sparse
Jacobians of large graphs, not individual expressions. While our approach is faster than
GTSAM’s runtime tree, it does have a limitation: it requires advance knowledge of function
flow, and cannot be used on arbitrary functions with unpredictable branching and loops, or
on expressions composed at runtime. A combination of the two methods, using optimized
ET-based AD within subtrees of a larger graph, could be a valuable improvement.

60

Table 3.2: Time to Evaluate Value and Jacobians of (3.16)

Algorithm Hand-coded Forward Typed Forward Reverse

Mean (ns) 302 642 596 360
Std. dev. (ns) 10 29 27 18

3.4.3 IMU Factor

Next, we evaluate our work on a sample expression simplified from a preintegrated IMU
factor (Forster et al., 2017, eq. (45)). Let C̃IJ represent a preintegrated measurement of
rotation between times i and j, for which RWI and RWJ are the estimated orientations
in the world frame. Let ϕ be an unknown small change in bias. The residual of the
bias-updated preintegrated measurement is

rij =
(
C̃IJ �ϕ

)
�R−1WIRWJ (3.16)

which can be expressed as

rij = log

((
C̃IJ exp(ϕ)

)−1
◦R−1WIRWJ

)
. (3.17)

Each of the four Jacobians of (3.17) contains the derivative of the logarithmic map (Forster
et al., 2017, eq. (9)) which, compared to the derivatives of (3.10), is expensive to compute.

Table 3.2 presents the results. As expected when multiple Jacobians rely on an interme-
diate Jacobian calculation, the reverse evaluator outperforms the forward evaluator in this
example, and is approximately 20% slower than the hand-coded reference.

3.4.4 Dynamic expressions

Figure 3.9 presents results of the rotation chain example (3.10) extended to large N using
dynamic expressions (Section 3.3). wave_geometry outperforms GTSAM in this test,
perhaps because GTSAM has an extra layer of indirection in identifying variables by a
user-assigned key instead of a memory address. Neither library is designed for extremely
deep expressions: GTSAM exceeds the system default 8192 KB stack size before reaching
N = 211, and wave_geometry before N = 214. For both libraries, the recursive algorithm
could be replaced with an iterative one to remove this limitation. wave_geometry takes

61

0 50 100

0

2

4

·104

N

E
va
lu
at
io
n
ti
m
e
(n

s)

gtsam::Expression

gtsam internal
wave::Proxy

2−1 22 25 28 211 214

103

104

105

106

107

108
exceeded 8192 KB stack

N
E
va
lu
at
io
n
ti
m
e
(n

s)
Figure 3.9: Time taken to evaluate result and all N + 1 Jacobians in a chain of N rotations
stored dynamically. Results for small N (left) and large N on logarithmic axes (right).
Because GTSAM performs an extra copying step compared to wave_geometry, we show
results for a comparable internal GTSAM function.

N logN time for large chains; this complexity is expected because the sorted vectors used
to hold leaf addresses have N logN operations, and were chosen to minimize overhead for
small N .

62

Chapter 4

Coordinate frame semantics checking

Geometric expressions encode semantics: information about the meaning of the symbols
and their relationships. This section gives an overview of the semantics associated with
coordinate frames, describes how checking semantics can detect common coding mistakes
at compile time, and presents a system of rules for semantics which extends to manifold
operations.

4.1 Coordinate frame semantics

A coordinate frame is a coordinate system fixed to a frame of reference. In our work, the
coordinate system is always a right-handed Cartesian system, and the frame of reference is
associated with a physical object such as a sensor. For a detailed discussion of the terms
“reference frame,” “coordinate system,” and “coordinate frame,” see Appendix B.

4.1.1 Coordinate-free geometry

In Section 2.2, we introduced the idea of coordinate-free geometry, in which operations are
defined independently of the choice of coordinate system. For example, given three affine
points A,B,C, the vectors between them satisfy

rAB + rBC ≡ rAC . (4.1)

This relationship, called Chasles’ identity (Gallier, 2011), is illustrated in Fig. 4.1. It holds
independently of the coordinate system—if any—in which we choose to express the vectors.

63

A

rAB

B

rBC

CrAC

Figure 4.1: Coordinate-free vector addition.

Of course, to compute a numerical result, we need coordinates. In that case, the identity
requires all three vectors to be expressed in the same coordinate system. For example, if
we associate a coordinate frame with point A,

ArAB + ArBC ≡ ArAC . (4.2)

Mixing coordinate frames is invalid, in general:

ArAB + BrBC 6≡ ArAC . (4.3)

Figure 4.2 illustrates this vector sum in two dimensions, in two different coordinate frames.

4.1.2 Expressing semantics through notation

The notation used for translation vectors in (4.2) and (4.3) can describe any physical
quantity, as illustrated in Fig. 4.3. Vector quantities are written with three descriptors, in
the form

AvBC , (4.4)

where v stands in for any letter denoting a physical quantity; for example, r for translation
or ω for angular velocity. The right subscript (C) denotes the object which the quantity
describes. The middle subscript (B) denotes the object in whose frame of reference the
quantity is measured, also called the datum. The left subscript (A) denotes the object
whose coordinate system is used to express the quantity.

These definitions, paraphrased from Kelly (2013), intentionally distinguish coordinate
systems and frames of reference (see Appendix B). For simplicity, we let all three subscripts
identify a coordinate frame (which we can attach to any object of interest) and call them
frame descriptors.

64

A

ArAB

B

ArBC

rBC

C
ArAC

x

y

(a)

A

rAB

B

BrBC C

rAC

BrAC

BrAB

x

y

(b)

Figure 4.2: Vector addition expressed in a coordinate system. The vectors in the sum (4.1)
are illustrated in arbitrarily defined coordinate frames at points A (a) and B (b), drawn
with their orientation matching the page. While the coordinate-free result is always rAC ,
its representation in the chosen coordinate frames is different.

65

FA FB

FC

vAC

vAB

BvBC
AvBC

Property of
With respect to

Expressed in

Figure 4.3: Example of frame descriptor notation for vectors. Here, AvBC denotes the
velocity of FC as measured with respect to FB, expressed in the coordinate system of FA.

Maps (including rotations and rigid transformations) have two descriptors. The rotation
RAB rotates column vectors from FB to FA, such that

AvBC = RABBvBC . (4.5)

It can equivalently be interpreted as the rotation of axes from FA to FB.1

The subscript notation is described by Furgale (2014), who attributes it to Bremer
(2008). It is equivalent to the mixed script notation (AvBC = RA

B
BvBC) of Kelly (2013). The

subscript notation’s clear left-to-right sequence is advantageous for representation in code,
examined in Section 4.1.3. It is also easy to check for “cancellation” in equations, which is
demonstrated in the next section.

For points, we define a shorthand using only two descriptors:

ArB , AO + ArAB, (4.6)

where AO is the origin of FA; this detail is needed because points are not vectors (see
1 These opposite but equivalent interpretations can be called active and passive (Selig, 2006) or operator

and transform (Kelly, 2013). Because these terms—and the words “to” and “from”—are easily misinterpreted,
we do not rely on them to unambiguously describe a map.

66

Section 2.2). In effect, ArB has the same value as ArAB. This notation matches its
representation in code, making it slightly more cumbersome than Furgale’s Ar , ArAP .

Using frame descriptors for semantics checking

Consider transforming the position of a landmark L, from a camera frame, FC , to a robot
body frame, FB. We are given the landmark’s position as CrCL (“the translation from FC
to FL, expressed in FC”). One possible expression for the position in the body frame is

BrBL = (CCB)−1CrCL + BrBC . (4.7)

We can check the validity of this equation by propagating frame descriptors through
elementary operations and ensuring that adjacent descriptors cancel. Crucially, the semantics
of the final result are wholly determined by combinations of elementary operations:

(CCB)−1CrCL + BrBC = CB��CCrCL + BrBC (4.8a)
= BrCL + BrBC (4.8b)
= BrB�C + Br�CL (4.8c)
= BrBL. (4.8d)

Mistakes such as an omitted inverse result in invalid operations, which are indicated by
mismatching subscripts:

BrBL = CCBCrCL + BrBC . (4.9)

This analysis is independent of the numeric value and parametrization of the variables.
Equation (4.9) is semantically incorrect despite being readily computable.

4.1.3 Semantics in Code

To help avoid mistakes such as (4.9) in code, Furgale (2014) recommends using prefix
notation in variable names, as in Listing 4.1. While this convention helps programmers
parse the code and spot mistakes, it does not prevent an invalid expression from compiling.
To do so, we encode coordinate frame semantics into the types of variables, instead of their
names, as in Listing 4.2.

Listing 4.1: Frame semantics expressed in variable names
Position B_r_BL = C_C_B.inverse() * C_r_CL + B_p_B_C;

67

Listing 4.2: Frame semantics embedded in wave_geometry types
struct Body; // Represents the robot frame
struct Camera; // Represents the camera frame
struct Landmark; // Represents a landmark frame

TranslationFd<Body, Body, Landmark> landmarkToBody(
const RotationMFd<Body, Camera>& C_cam,
const TranslationFd<Body, Body, Camera>& p_cam,
const TranslationFd<Camera, Camera, Landmark>& p) {
return C_cam * p + p_cam;

}

This approach states the meaning of each variable and function at declaration, without
cluttering internal code. Invalid operations will cause an error at compile time.

Outside of this toy example, it would of course be simpler to use a single transformation
object instead of a separate rotation and translation. We examine transformations in the
next section.

4.1.4 Free and bound transformations

Consider the equation which obtains BrBL from CrCL: it is not only a coordinate transfor-
mation, as the coordinate-free meanings of rBL and rCL are different. It can be seen as
deriving a physical relationship dependent on the relationship of frames B and C. Kelly
(2013) describes this equation as a bound transformation.

A bound transformation to FB treats CrCL as a bound vector, moving its tail to produce
BrBL. A free transformation treats treats CrCL as a free vector, and merely expresses it
in the coordinate system of FB. For translations, we have the following transformations,
illustrated by Fig. 4.4:

Tbound
BA (ArAC) , BrBC = RBA(ArAC) + BrBA, (4.10)

Tfree
BA (ArAC) , BrAC = RBA(ArAC). (4.11)

For other quantities, such as angular velocity measured in a rotating frame, the bound
transformation is more complicated; however, the free transformation is always given by
equation (4.11).

When designing a geometry library, the question arises: should T * r produce the result
of Tbound or Tfree?

68

x

y x

y

A

rAB

B

ArAC

BrAC = Tfree
BA (ArAC)

BrBC = Tbound
BA (ArBC)

C

Figure 4.4: Free and bound transformations. A transformation treating ArAC as a free
vector expresses it in the coordinate system of FB. A transformation treating ArAC as a
bound vector performs a change of reference, changing its length and direction.

As mentioned in Section 2.2.4, it is common to represent both points and vectors
as 4-vectors and use the affine coordinate to determine the effect of a homogeneous
transformation matrix: an affine coordinate of 0 removes the effect of translation, producing
a free transformation. Points use an affine coordinate of 1. Kelly (2013) calls these classes
displacements (free vectors) and position vectors (bound vectors, which can represent
points)

In our library, inhomogeneous points are stored as 3-vectors and rigid transformations
are not always stored as 4× 4 matrices. Still, a transformation acting on a point has the
effect of Tbound. Our Translation objects are treated as bound vectors, although rotation
vectors are treated as free vectors. This choice is somewhat arbitrary but consistent with
other libraries which do not differentiate positions and displacements.

What is important is that the frame semantics of the result reflect which transformation
was applied: note that the results of (4.10) and (4.11) have different subscripts. With
semantics checking in code, it is impossible to mistakenly assign BrAC : 6= Tbound

BA (ArAC).

4.2 C++ library implementation

Frame semantics are integrated into wave_geometry’s expression template implementation.
Using frame semantics is optional, and is done by wrapping leaf types with the Framed class
template. For example, Framed<RotationMd, A, B> (or its alias RotationMFd<A, B>)
represents the rotation CAB. Framed objects have the same interface as their wrapped
leaves, modulo the frame semantics rules. For example, both sides of an assignment must

69

Listing 4.3: Mistaken frame transformation
TranslationFd<Body, Body, Landmark> positionInBody(
RigidTransformMFd<Camera, Body> T,
TranslationFd<Camera, Camera, Landmark> p) {
return T * p;

}

Figure 4.5: Error message printed by Clang when compiling Listing 4.3.

have matching frames. The frame descriptors A and B themselves are arbitrary type names,
which can be declared as structs with no definition. It is left to the user’s application
code to define appropriately named frames.

Each expression’s semantics are encoded in its traits class. Non-leaf expressions prop-
agate the frames of their operands according to the rules in Section 4.4. To simplify the
implementation of each expression, frames are stripped from Framed objects at the start of
the evaluation procedure (see Section 3.1.3). The result of the evaluation is wrapped in
Framed before output to the user.

Semantics checking is performed in each expression template, as seen in Listing 3.4.
C++’s static_assert mechanism is used to trigger a compilation error if semantics rules
are broken. For example, the error message produced by Listing 4.3, which is a mistaken
variation of Listing 4.2, is shown in Fig. 4.5.

In case the user wishes to except a particular operation from the usual frame semantics
rules, we provide a frame_cast function.

This function, demonstrated in Listing 4.4, explicitly overrides frame semantics of its
operand. It can be used in differentiable expressions.

70

Listing 4.4: Overriding frame semantics with frame_cast
TranslationFd<A, A, B> a{};
TranslationFd<A, B, C> b{};
// TranslationFd<X, Y, Z> c = a + b; // Error: mismatching frames
TranslationFd<X, Y, Z> c = frame_cast<X, Y, Z>(a + b); // OK

4.3 Related works

Our compile-time frame checking is inspired by C++ techniques for dimensional analysis
(unit checking), described by Barton and Nackman (1994). This task similarly involves
storing semantic operation in template arguments.

De Laet et al. (2013a,b) introduces “semantics checking” for geometric expressions with
a similar goal of preventing calculation errors. Their formulation is somewhat more complex
than ours and uses a larger set of descriptors because it models rigid bodies. Their Geometric
Relations Semantics software is meant to extend existing geometry libraries, essentially by
providing wrapper class templates. This software is demonstrated by extending KDL2.

Unlike our library, De Laet’s software stores semantic information inside objects and
performs checks at runtime. This design adds time and space overhead, and means semantics
violations may be missed until they occur in production.

DeRose (1989) addresses the same problem but takes a coordinate-free approach. Instead
of checking semantics, DeRose’s solution is to abstract away coordinate frames entirely,
leaving the programmer to work with coordinate-free objects (such as vAB), at least in
intermediate calculations.

DeRose’s “coordinate-free abstract data type” in C, updated to C++ by Mann et al.
(1997), supports Euclidean and projective operations. In the coordinate-free abstraction,
all objects are associated with a “space” but not a coordinate frame. Internally, all objects
sharing a space are actually stored in a single coordinate system. The library takes care of
transformations when objects are initialized or when coordinates of results are extracted.
For these operations, the user provides a Frame object.

The provided implementation3 also uses runtime objects for frames and spaces, and the
transformations themselves impose a runtime overhead. As De Rose describes, removing the
programmer’s control over the coordinate system for each object can also be a disadvantage.

2http://www.orocos.org/wiki/geometric-relations-semantics-wiki
3https://web.archive.org/web/20110514024435/http://www.cgl.uwaterloo.ca/software.html

71

http://www.orocos.org/wiki/geometric-relations-semantics-wiki
https://web.archive.org/web/20110514024435/http://www.cgl.uwaterloo.ca/software.html

4.4 Rules for frame semantics

Table 4.1 presents a system of rules used for checking and propagating coordinate frame
semantics.

While semantics checking can catch common mistakes, it is important to realize it
cannot handle every case. For example, it cannot verify that the numeric value of ArBB
is zero. Indeed, ArBB could reasonably represent a residual obtained by subtracting a
measured and estimated vector, or a perturbation to be added to ArAB at discrete time steps.
wave_geometry follows the principle that “everything which is not forbidden is allowed”,
and never requires distinct descriptors.4 Our choice of rules may change in future work
based on use of the library, as it is intended to support best practices without encumbering
common tasks.

For example, it is common to update a rotation by integrating an angular velocity at
discrete time steps:

RAB := RAB � (∆t · AωAB)∧. (4.24)

While the left hand side represents a perturbed or updated version of RAB, explicitly
representing the perturbed frame would require � to introduce a coordinate frame label
not present in its operands. We do not force the declaration of a perturbed frame, resulting
in the rule (4.20) for �.

Starting with (4.20), we apply (2.48) to obtain

ΦAB = exp(AϕAB) ◦ΦAB. (4.25)

It follows that (4.22) is exp(AϕAB) = ΦAA. This makes the exponential map semantically
non-bijective: it loses coordinate frame information, for which log(exp(ϕ)) = ϕ does
not hold. Consequently, applying (2.49) to (4.21) produces the unsatisfactory result
log(ΦAA) = AϕAB. A solution is to add an extra coordinate frame argument to the
logarithmic map, as shown in (4.23).

4In fact, all rules in Table 4.1 are satisfied by expressions with all-identical (or all-unset) descriptors,
such as AvAA, and using semantics checking in wave_geometry is entirely optional.

72

Table 4.1: Rules for Semantics of Geometric Operations

Operation Rule

Sum DvAC = DvAB + DvBC (4.12)

= DvBC + DvAB

Negative DvBA = −DvAB (4.13)

Difference DvAB = DvAC − DvBC (4.14)

Scaling AvBC = a(AvBC), a ∈ R (4.15)

Composition ΦAC = ΦAB ◦ΦBC (4.16)

Inverse ΦBA = (ΦAB)−1 (4.17)

Rotation DvBC = RDA(AvBC) (4.18)

Transformation (bound) ArAC = TAB(BrBC) (4.19)

= RAB(BrBC) + ArAB

Manifold plus ΦAB = ΦAB � AϕAB (4.20)

Manifold minus AϕAB = ΦAB �ΦAB (4.21)

Exp map ΦAA = exp(AϕAB) (4.22)

Log map AϕAB = logB(ΦAA) (4.23)

Valid operands for each operation are shown on the right hand side, and the result is
shown on the left. Repeated frame labels must match.

73

Chapter 5

Application to state estimation

5.1 State estimation as a least squares problem

Our goal in representing and differentiating geometric expressions is to simplify the writing
of state estimation algorithms. As defined by Barfoot (2017),

The problem of state estimation is to come up with an estimate, x̂k , of the true
state of a system, at one or more timesteps, k, given knowledge of the initial
state, x̌0 , a sequence of measurements, y0:K,meas, a sequence of inputs, v1:K , as
well as knowledge of the system’s motion and observation models.

In this section, we review how uncertain measurements are represented, how uncertainty
is propagated, and how measurement models are converted into cost functions. While the
broad range of estimation and SLAM algorithms is outside the scope of this work, this
limited summary is intended to motivate the use of automatically differentiated geometric
expressions as cost functions for state estimation.

We then consider a specific instance of the state estimation problem—batch, discrete-
time, nonlinear maximum a posteriori estimation with Gaussian assumptions—and formulate
it as a general nonlinear least squares problem. For simplicity, we will consider a problem
with K measurements yk and a prior x̌0, and no inputs v. Nonlinear least squares

74

5.1.1 Uncertain estimates

State estimates and measurements are uncertain. Typically, we represent discrete-time
quantities as Gaussian random variables. The notation

x ∼ N (µ,Σ) (5.1)

indicates a Gaussian variable x with mean µ and covariance Σ. Definitions and properties
of probability density functions (PDFs) and Gaussian variables can be found in Chirikjian
(2009, Chapter 3) and Barfoot (2017, Chapter 2).

For a Euclidean random variable x ∈ Rn, we simply have µ ∈ Rn and Σ ∈ Rn×n. We
consider propagating this random variable through linear and nonlinear functions before
making the extension to states lying on a manifold.

Propagating covariance

Consider the Gaussian random variable

x ∈ Rn ∼ N (µx,Σxx). (5.2)

The result of applying a linear map
y = Gx, (5.3)

where G ∈ Rm×n, is a Gaussian variable y ∈ Rm with the properties

y ∼ N (Gµx,GΣxxG
T). (5.4)

Passing the variable through a stochastic nonlinear function, however, does not always
allow a closed-form solution for the covariance. Consider a nonlinear map y = g(x) which
introduces purely additive zero-mean Gaussian noise with covariance R:

p(y | x) = N (g(x),R). (5.5)

For example, if g represents a sensor measurement model, R is the uncertainty associated
with measurement noise. Propagating covariance through g(x) requires the evaluation of
the PDF

p(y) =

∫
Rn

p(y | x)p(x)dx. (5.6)

75

The most common general solution is linearization. We use the first-order approximation

g(x) ≈ g(µx) + G(x− µx), (5.7)

where G is the Jacobian of g with respect to x:

G =
∂g(x)

∂x

∣∣∣∣
x=µx

. (5.8)

The linearized result (derived in Barfoot, 2017, Section 2.2.8) is

y ∼ N (g(µx),R + GΣxxG
T). (5.9)

Random variables on a manifold

There is no single definition of mean and covariance on manifolds, which are not in general
equipped with distance functions. For Lie Groups, the mean and covariance can be expressed
using the logarithmic map. Them×m covariance matrix of a PDF p(g) on anm-dimensional
Lie group G is (Chirikjian, 2011, eq. 20.51)

Σp =

∫
G

log(g)∨[log(g)∨]Tp(g)dg . (5.10)

The mean can be defined as the solution µ to (Barfoot, 2017, eq. 7.272)∫
G

log
(
gµ−1

)∨
p(g)dg = 0. (5.11)

However, it is not immediately clear how to define a PDF on a Lie group. As noted
by Barfoot (2017, Section 7.3), a Gaussian random variable x ∈ Rn ∼ N (µ,Σ) can be
equivalently expressed as

x = µ+ ε, ε ∼ N (0,Σ), (5.12)

but Lie groups do not have an addition operation.

Barfoot’s approach is to express the PDF in the Lie algebra (which, as a vector space,
has well-defined mean and covariance) and carry it to the Lie group using the exponential
map. We replace the vector addition operation + in (5.12) with a perturbation in the
tangent space. For example, applying a perturbation on the left (by convention), we can

76

express a random variable on SO(3) as

C = exp(ε∨)C̄, (5.13)

where C̄ ∈ SO(3) is a noise-free nominal rotation and ε ∈ R3 is a “small” random variable
in a vector space, for which we can easily define a PDF. If we let ε ∼ N (0,Σ), it can be
shown that C̄ is the mean rotation according to definition (5.11).

The reason ε must be “small” is that the exponential map is not injective: infinitely
many values of ε produce the same C. Thus the statistical properties of the PDF induced
onto the Lie group only match those of ε if all of the probability mass is restricted to
the neighbourhood where the exponential map is bijective. For a Gaussian ε, whose PDF
extends to infinity, this approach is a reasonable approximation when most of the probability
mass lies in the bijective region (for SO(3), the region ‖ε‖ < π). This issue is discussed in
Hertzberg et al. (2013, Appendix A.9).

Hertzberg et al. (2013) takes a similar approach to defining random variables on �-
manifolds (which are more general than Lie groups). Generalizing (5.12) and (5.13), we
can write

x = µ� ε, ε ∼ N (0,Σ). (5.14)

To a first order approximation, this variable can be propagated through a nonlinear
map with the resulting distribution given by (5.9). There are a number of approaches to
higher-order approximations (see Barfoot, 2017), but they are outside the scope of this
work.

5.1.2 Maximum a Posteriori

This section presents a brief summary of one kind of state estimation, maximum a posteriori
estimation with a nonlinear, Gaussian model. It is based on Barfoot (2017) and Dellaert
et al. (2017).

The maximum a posteriori (MAP) estimate is the solution to the problem

x̂MAP = argmax
x

p(x|y). (5.15)

That is, it maximizes the posterior probability density of the state x given the measure-
ments y. Bayes’ law gives

x̂MAP = argmax
x

p(y|x)p(x)

p(y)
, (5.16)

77

where we can discard the denominator because it does not affect the maximization over x.
Equivalently (because log is a monotonic function), we can minimize the negative log
likelihood:

x̂MAP = argmin
x

(
− log p(y|x)− log p(x)

)
. (5.17)

Here, p(y|x) is the PDF of the observed measurements given a state, and p(x) is a prior
probability distribution. If we assume that measurement noise is uncorrelated, we can
factor p(y|x) in terms of individual measurements:

p(y|x) =
K∏
k=1

p(yk|xk), (5.18)

log p(y|x) =
K∑
k=1

log p(yk|xk). (5.19)

If we further assume additive Gaussian noise on measurements, we can write each as a
factor in the form

fi(xi) ∝ exp

(
−1

2
‖hi(xi)− yi‖

2
Σi

)
, (5.20)

where hi(xi) is the measurement prediction function corresponding to yi, Σi is the mea-
surement covariance, and ‖·‖2Σ is the Mahalanobis distance defined as

‖θ − µ‖2Σ , (θ − µ)TΣT(θ − µ). (5.21)

In this formulation, there is no inherent difference between measurements and priors.
We can equally write Gaussian priors as factors of the form (5.20), substituting the identity
function for hi, and consider just one set of factors fi. Then, we can write the original
MAP problem as (Dellaert et al., 2017, eq. 2.4)

x̂MAP = argmin
x

∑
i

‖hi(xi)− yi‖
2
Σi
. (5.22)

The MAP estimation problem is now in the form of a nonlinear least squares (NLS)
problem. Given a sufficiently close initial estimate of x, a global minimum can be found
using iterative methods such as Gauss-Newton or Levenberg-Marquardt (Dellaert et al.,
2017).

By applying the �-method of Hertzberg et al. (2013), we can extend equation (5.22) to

78

�-manifolds:
x̂MAP = argmin

x

∑
i

‖hi(xi)� yi‖
2
Σi
. (5.23)

The states being estimated can now be manifold elements. This formulation is known as
on-manifold optimization. We continue to apply this method in the next section.

Linearization

NLS optimization algorithms iteratively solve linear approximations of the objective function
(5.22). We take a linear approximation of each function about a linearization point x0

i :

hi(xi) ≈ hi(x
0
i)�Hiδi, (5.24)

where Hi is the measurement Jacobian

Hi =
∂hi(x)

∂xi

∣∣∣∣
x0
i

(5.25)

and δi is the state update vector,
δi , xi � x0

i . (5.26)

Each iteration then solves the linear least squares problem for the state update vector:

δ̂ = argmin
δ

∑
i

∥∥(hi(x0
i)�Hiδi

)
� yi

∥∥2
Σi

(5.27)

≈ argmin
δ

∑
i

∥∥Hiδi −
(
yi � hi(x

0
i)
)∥∥2

Σi
, (5.28)

where yi � hi(x
0
i) is the prediction error.

Whitening

When solving least squares problems it is simplest to work with variables whose covariance
is identity. To obtain these whitened variables we use a property of the Mahalanobis norm,

‖x‖2Σ =
∥∥∥Σ−1/2x∥∥∥2

2
, (5.29)

79

to obtain

Ai = Σ−1/2Hi (5.30)

bi = Σ−1/2
(
yi � hi(x

0
i)
)
. (5.31)

After whitening, the least squares problem in the standard form

δ̂ = argmin
δ
‖Aδ − b‖22. (5.32)

The resulting Jacobian A is large but with a sparse block structure which depends on the
structure of the estimation problem. There are a number of strategies to solve such systems
(see Triggs et al., 1999; Dellaert et al., 2017; Barfoot, 2017) that lie outside the scope of
this work. Our framework is designed to use an external optimizer such as Ceres Solver,
which can solve NLS problems of the form

argmin
x

∑
i

‖f i(xi)‖, (5.33)

where fi(xi) is a cost function1 returning a residual vector. This solver performs lineariza-
tion (5.24), but does not perform whitening nor calculation of prediction error. Thus, our
implementation’s task is to:

• Represent an estimation problems as a factor graph.

• Provide factors with differentiable nonlinear measurement functions hi and measure-
ments yi.

• Calculate whitened Jacobians (5.30) and residuals (5.31)

• Provide an interface to the solver to obtain these Jacobians and residuals at chosen
linearization points.

In the next section, we present our implementation and demonstrate optimization of an
example batch estimation problem.

1In this work, cost function refers to a function whose squared norm is a single term in the objective
function. This definition is used by Ceres, but conflicts with Barfoot (2017).

80

f0(x1)
x1
f1(x1, x2; m1)

x2
f2(x2, x3; m2)

x3

Figure 5.1: Simple factor graph for robot localization. Adapted from Dellaert (2012).

5.2 Library implementation

Estimation problems formulated as a sum over factors (5.23) can be formulated as a factor
graph. A factor graph is a bipartite graph with two kinds of nodes: variables, which are the
unknown states we wish to estimate, and factors, which represent probabilistic relationships
between variables (Dellaert et al., 2017). Edges connect each factor to an arbitrary number
of variables, and each variable to an arbitrary number of factors.

We implement a factor graph framework similar to that provided by GTSAM, which is
described in Dellaert (2012). The main difference is that our framework is designed to use
a third-party solver such as Ceres Solver in the back end, and uses cost functions defined as
wave_geometry expressions.

Figure 5.1 shows a simple factor graph used as an example by Dellaert (2012). This
graph models robot motion as a Markov chain, with three variables x1, x2, x3 representing
robot poses at different timesteps. There is one unary factor which encodes a prior on x1,
and two binary factors connecting the poses with measurements m1 and m2. We can recreate
this example with wave_geometry as shown in Listing 5.1. For simplicity, we replace the
2D poses of the original example with points, and use measurements of the translation
between them.

Figure 5.2 shows a more complicated localization problem optimized using our factor
graph framework. In a synthetic dataset, a simulated robot flies in a constant-speed spiral
path on a sphere. 256 poses are connected by noisy motion constraints, and have noisy
range measurements to known landmarks. The problem is formulated using our framework
and automatically differentiated measurement functions, and solved using Ceres Solver.

5.2.1 Design

The example in Listing 5.1 shows our interface is similar to GTSAM, but with minor
differences. The greatest difference is that we build the factor graph using variables
explicitly provided by the user, and use those variables to hold the solution. For example,
the graph in Fig. 5.1 can be evaluated simply by calling:

81

Listing 5.1: Creation of the factor graph in Fig. 5.1
// Prepare variables for each pose. Initial values are initialized to zero by default.
auto x1 = std::make_shared<FactorVariable<Pointd>>();
auto x2 = std::make_shared<FactorVariable<Pointd>>();
auto x3 = std::make_shared<FactorVariable<Pointd>>();

// Add a Gaussian prior on x1
auto prior_mean = Pointd{0.0, 0.0, 0.0};
auto prior_noise= DiagonalNoise<Pointd>::FromStdDev(0.3, 0.3, 0.3);
graph.addPrior(prior_mean, prior_noise, x1);

// Add two difference factors (using the same measurement for both)
auto meas_mean = Translationd{2.0, 0.0, 0.0};
auto meas_noise = DiagonalNoise<Translationd>{0.2, 0.2, 0.1};
auto meas = Uncertain<Translationd, DiagonalNoise>{meas_mean, meas_noise};
graph.addFactor<factors::Difference>(meas, x1, x2);
graph.addFactor<factors::Difference>(meas, x2, x3);

Figure 5.2: Example of localization problem using our factor graph framework. 256 poses
are initialized from noisy motion constraints (left) and optimized as a batch NLS problem
using motion constraints and noisy range measurements to known landmarks to produce
improved estimates (right).

82

graph.evaluate()

After evaluation, x1, x2, and x3 will contain the estimated values. GTSAM takes a
functional approach to representing graphs, and requires values to be passed in separately.
Accordingly, its factors are connected to not specific C++ variables, as in our example,
but to numeric indices associated with each variable. Keeping track of the variables, their
assigned indices, and their presence in the graph requires additional bookkeeping to be done
by the user. While GTSAM’s design has advantages, our more straightforward approach
is intended to reduce this unnecessary coupling between the graph and separately stored
values.

Noise models

Our Uncertain class template represents a value with associated noise. Like GTSAM, we
offer different noise models: For example, DiagonalNoise represents a diagonal covariance
matrix, and FullNoise a dense covariance matrix.

The case of zero noise—when perfect knowledge of a variable is available—requires special
handling, because it implies infinite information and is not compatible with the whitening
approach of equation (5.31). For this case we provide the method addPerfectPrior,
which excludes a variable from optimization by setting its parameter block constant in the
optimizer. Such “perfect” priors are used, for example, to constrain the first pose of a robot
trajectory to the origin.

Cost functions

wave_geometry expressions can be used to define the measurement functions used by factors.
For example, the Distance function is defined as the following functor:

Listing 5.2: wave_geometry expression used in a cost functor
struct Distance {
template <typename T, typename U>
auto operator()(const TransformBase<T> &a,

const TransformBase<U> &b) const {
return (a.derived() - b.derived()).norm();

}
};

83

This functor returns a differentiable wave_geometry expression of its inputs, and is used
by our framework to evaluate both the cost and Jacobian associated with a factor.

Ceres integration

Our factor graph framework includes an interface to Ceres as the back-end optimizer.2 For
every added factor, this interface adds parameter blocks to the internal ceres::Problem,
and generates a ceres::SizedCostFunction for each factor.

There are several challenges to achieving integration with Ceres. First, Ceres handles
parameter blocks as raw pointers to arrays of double, and passes these pointers back to the
user-provided cost function. This system is essentially a form type erasure. Our solution is
an automatically generated cost function which wraps the user-provided cost functor, and
wraps the Ceres-provided raw arrays with strongly typed wave_geometry objects. Here,
the ability of wave_geometry objects to use maps as storage is essential. Thus, although
the functor in Listing 5.2 must templated, it can use wave_geometry types with the usual
interface.

Second, Ceres requires global Jacobians, as described by Sommer et al. (2013). Therefore,
our automatically generated cost function must “lift” the local Jacobians to the dimensions
of the parameter block. We also generate a ceres::LocalParameterization for each
manifold object, which allows the solver to perform � operations on overparameterized
variables.

The template-based mechanism that generates the interface to Ceres while hiding the
implementation details from the user is the main contribution of our factor graph framework.
This framework also demonstrates an application of AD-enabled geometric expressions for
state estimation.

2Ceres integration is not part of the core wave_geometry library. It is planned for inclusion in the wider
libwave collection of libraries (https://github.com/wavelab/libwave).

84

https://github.com/wavelab/libwave

Chapter 6

Conclusion

Robotics and computer vision researchers rely on software libraries to develop and demon-
strate their algorithms. This thesis asks: how can these libraries be improved? In this work,
we discuss a range of topics related to representing and computing geometric relationships for
the purpose of state estimation. Our main contributions are embodied in wave_geometry,
a C++ library for manifold geometry.

We explore fundamental geometric objects and the spaces they inhabit, and discuss how
they can be rigorously but conveniently expressed in code. While geometry is often performed
using software for linear algebra, a number of modern libraries provide representations and
operations on manifolds. We compare commonly used libraries, and consider how their
geometric representations can be made more powerful. In Chapter 3, we apply expression
templates to geometric objects, allowing improved performance and extended functionality.
We also present a concept-based system of representing geometric types, allowing different
representations of the same geometric object to be used interchangeably with automatic
conversions where needed.

The use of ETs allows an efficient implementation of block automatic differentiation,
also presented in Chapter 3. AD can save time and prevent mistakes in deriving and
coding Jacobians of geometric functions. Arbitrary wave_geometry expressions can be
differentiated in forward or reverse mode, with optimizations taking advantage of compile-
time type information. We show that our AD system approaches, and in some cases matches,
the speed of hand-coded derivatives, and exceeds the speed of AD in the widely used Ceres
and GTSAM libraries.

The downside of our ET-based approach to AD is that expressions are static: their
structure must be known at compile time. To lift this restriction, we provide dynamic ex-

85

pressions which can be composed at runtime. These dynamic expressions are an application
of type erasure, and can hold arbitrary static expressions. They provide roughly equivalent
functionality to the dynamically composed expressions available in GTSAM, and are also
differentiable. While they are an order of magnitude slower than our static expressions, a
comparison shows slightly better differentiation performance than GTSAM.

Another common source of frustration and mistakes in the development of robotics
algorithms is coordinate frames conversions. In Chapter 4, we discuss the coordinate frame
semantics associated with geometric objects and how they can be used to check the validity
of expressions. These frame semantics can be tracked in code, and previous works have
introduced software checking them at runtime. We present a template-based method,
integrated into wave_geometry, which checks frame semantics at compile time and without
runtime overhead. We also present a set of rules for propagating coordinate frame semantics
through elementary geometric operations, including manifold operations.

Finally, we show how wave_geometry expressions can be applied to state estimation as
a nonlinear least squares optimization problem. Estimation problems involve optimizing
over possible states, constrained by multiple measurements and priors, and are often
formulated as a factor graph. Optimization algorithms work with linearized versions of
measurement models, and require Jacobians. We present a framework which combines
wave_geometry’s expressions and AD system with the Ceres optimizer, allowing rapid
development of automatically differentiated factor graphs.

In summary, the main contributions of this thesis are:

• A new C++ library providing geometric operations on affine, Euclidean, and projective
spaces, and on manifolds.

• The application of expression templates to geometric expressions, and an extensible
framework for defining geometric spaces, representations, and operations.

• A block automatic differentiation system allowing forward and reverse mode AD of
geometric expressions. This system achieves high performance through optimizations
leveraging compile-time type information, and also extends to expressions composed
at runtime.

• A method for propagating and checking coordinate frame semantics at compile time
in C++. This method relies on a system of rules for coordinate frame semantics of
manifold operations that we present.

86

• A framework for integrating wave_geometry automatically differentiated expressions
with Ceres Solver.

The library presented in this thesis is available at github.com/wavelab/wave_geometry.
As it continues to evolve, we hope that it will contribute to the development of efficient
and correct algorithms for robotics, and to the representation of geometry in software in
general.

87

github.com/wavelab/wave_geometry

References

Abrahams, D. and Gurtovoy, A. (2004). C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley, Boston.

Agarwal, S., Mierle, K., et al. (2010). Ceres Solver. http://ceres-solver.org.

Andersson, J., Åkesson, J., and Diehl, M. (2012). CasADi: A symbolic package for automatic
differentiation and optimal control. In Recent Advances in Algorithmic Differentiation,
pages 297–307. Springer.

Aubert, P., Di Césaré, N., and Pironneau, O. (2001). Automatic differentiation in C++
using expression templates and application to a flow control problem. Computing and
Visualization in Science, 3(4):197–208.

Barfoot, T. D. (2017). State Estimation for Robotics. Cambridge University Press.

Barton, J. J. and Nackman, L. R. (1994). Scientific and Engineering C++: An Introduction
with Advanced Techniques and Examples. Addison-Wesley.

Bauchau, O. A. and Trainelli, L. (2003). The vectorial parameterization of rotation.
Nonlinear Dynamics, 32(1):71–92.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic
differentiation in machine learning: a survey. Journal of Machine Learning Research,
18(153):1–43.

Bloesch, M. et al. (2016). A primer on the differential calculus of 3d orientations. arXiv
preprint arXiv:1606.05285.

Bremer, H. (2008). Elastic Multibody Dynamics. Springer.

88

http://ceres-solver.org

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., and Betancourt, M. (2015).
The Stan math library: Reverse-mode automatic differentiation in C++. arXiv preprint
arXiv:1509.07164.

Chirikjian, G. S. (2009). Stochastic Models, Information Theory, and Lie Groups, Volume
1: Classical Results and Geometric Methods. Applied and Numerical Harmonic Analysis.
Birkhäuser, Boston.

Chirikjian, G. S. (2011). Stochastic Models, Information Theory, and Lie Groups, Volume
2: Analytic Methods and Modern Applications, volume 2. Birkhäuser, Boston.

Chirikjian, G. S., Mahony, R., Ruan, S., and Trumpf, J. (2018). Pose changes from a
different point of view. Journal of Mechanisms and Robotics, 10(2):021008–021008–12.

Dai, J. S. (2015). Euler–rodrigues formula variations, quaternion conjugation and intrinsic
connections. Mechanism and Machine Theory, 92:144–152.

De Laet, T., Bellens, S., Bruyninckx, H., and De Schutter, J. (2013a). Geometric relations
between rigid bodies (part 2): From semantics to software. IEEE Robotics and Automation
Magazine, 20(2):91–102.

De Laet, T., Bellens, S., Smits, R., Aertbelien, E., Bruyninckx, H., and De Schutter, J.
(2013b). Geometric relations between rigid bodies (part 1): Semantics for standardization.
IEEE Robotics and Automation Magazine, 20(1):84–93.

Dellaert, F. (2012). Factor graphs and GTSAM: A hands-on introduction. Technical Report
GT-RIM-CP&R-2012-002, Georgia Institute of Technology.

Dellaert, F., Kaess, M., et al. (2017). Factor graphs for robot perception. Foundations and
Trends in Robotics, 6(1-2):1–139.

DeRose, T. D. (1989). A coordinate-free approach to geometric programming. In Theory
and practice of geometric modeling, pages 291–305. Springer.

Falcou, J., Gottschling, P., and Sutter, H. (2017). Implicit evaluation of “auto” variables.
Technical Report P0672R0, C++ Evolution Working Group. https://wg21.link/P0672.

Foote, T. (2013). tf: The transform library. In IEEE Conference on Technologies for
Practical Robot Applications (TePRA), pages 1–6. IEEE.

Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D. (2017). On-manifold preintegration
for real-time visual–inertial odometry. IEEE Transactions on Robotics, 33(1):1–21.

89

https://wg21.link/P0672

Förstner, W. and Wrobel, B. P. (2016). Photogrammetric Computer Vision. Springer,
Cham, Switzerland.

Furgale, P. T. (2011). Extensions to the visual odometry pipeline for the exploration of
planetary surfaces. PhD thesis, University of Toronto.

Furgale, P. T. (2014). Representing robot pose: The good, the bad, and the ugly. Presented
at workshop on Lessons Learned from Building Complex Systems, IEEE International
Conference on Robotics and Automation (ICRA). http://paulfurgale.info/news/
2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly.

Gallier, J. (2011). Geometric Methods and Applications: For Computer Science and
Engineering. Springer Science & Business Media, New York, second edition.

Goldman, R. (2000). The ambient spaces of computer graphics and geometric modeling.
IEEE Computer Graphics and Applications, 20(2):76–84.

Goldman, R. (2002). On the algebraic and geometric foundations of computer graphics.
ACM Transactions on Graphics, 21(1):52–86.

Goldman, R. N. (1985). Illicit expressions in vector algebra. ACM Transactions on Graphics,
4(3):223–243.

Grassia, F. S. (1998). Practical parameterization of rotations using the exponential map.
Journal of Graphics Tools, 3(3):29–48.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. SIAM, second edition.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Halliday, D., Resnick, R., and Walker, J. (2011). Fundamentals of Physics. John Wiley &
Sons, "Hoboken, New Jersey".

Härdtlein, J., Pflaum, C., Linke, A., and Wolters, C. H. (2010). Advanced expression
templates programming. Computing and Visualization in Science, 13(2):59–68.

Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition.

Hertzberg, C., Wagner, R., Frese, U., and Schröder, L. (2013). Integrating generic sensor
fusion algorithms with sound state representations through encapsulation of manifolds.
Information Fusion, 14(1):57–77.

90

http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
http://eigen.tuxfamily.org

Hoffmann, P. H. W. (2016). A hitchhiker’s guide to automatic differentiation. Numerical
Algorithms, 72(3):775–811.

Hogan, R. J. (2014). Fast reverse-mode automatic differentiation using expression templates
in C++. ACM Transactions on Mathematical Software, 40(4):26:1–26:16.

Hutton, G. (1999). A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355–372.

Iglberger, K., Hager, G., Treibig, J., and Rüde, U. (2012). Expression templates revisited:
a performance analysis of current methodologies. SIAM Journal on Scientific Computing,
34(2):C42–C69.

ISO (2017). ISO/IEC 14882:2017: Programming Language C++. International Organization
for Standardization, Geneva, Switzerland. [Working draft]. Retrieved from http://www.
open-std.org/jtc1/sc22/wg21/.

Kelly, A. (2013). Mobile Robotics: Mathematics, Models, and Methods. Cambridge University
Press.

Koppel, L. and Waslander, S. L. (2018). Manifold geometry with fast automatic derivatives
and coordinate frame semantics checking in C++. In 15th Conference on Computer and
Robot Vision (CRV). To be published. Preprint: arXiv:1805.01810.

Korn, G. A. and Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers
- Definitions, Theorems, and Formulas for Reference and Review. Dover Publications,
Mineola, New York.

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A
general framework for graph optimization. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3607–3613.

Lee, J. (2008). Representing rotations and orientations in geometric computing. IEEE
Computer Graphics and Applications, 28(2):75–83.

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-based
visual–inertial odometry using nonlinear optimization. International Journal of Robotics
Research, 34(3):314–334.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Autograd: Effortless gradients in
numpy. ICML Workshop.

91

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
https://arxiv.org/abs/1805.01810

Mann, S., Litke, N., and DeRose, T. (1997). A coordinate free geometry adt. Technical
Report CS-97-15, University of Waterloo.

Meyers, S. (2014). Effective Modern C++. O’Reilly Media, Sebastopol, CA.

Nehmzow, U. (2003). Mobile Robotics: a Practical Introduction. Springer, London.

Nordmann, A., Hochgeschwender, N., and Wrede, S. (2014). A survey on domain-specific
languages in robotics. In International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots, pages 195–206. Springer.

Norton, J. D. (1993). General covariance and the foundations of general relativity: eight
decades of dispute. Reports on Progress in Physics, 56(7):791.

Paszke, A. et al. (2017). Automatic differentiation in pytorch. NIPS Workshop.

Phipps, E. and Pawlowski, R. (2012). Efficient expression templates for operator overloading-
based automatic differentiation. In Recent Advances in Algorithmic Differentiation, pages
309–319. Springer.

Schneider, P. J. and Eberly, D. H. (2003). Geometric Tools for Computer Graphics. Morgan
Kaufmann, "San Francisco".

Selig, J. M. (2006). Active versus passive transformations in robotics. IEEE Robotics &
Automation Magazine, 13(1):79–84.

Shuster, M. D. (2008). The nature of the quaternion. The Journal of the Astronautical
Sciences, 56(3):359–373.

Soechting, J. and Flanders, M. (1992). Moving in three-dimensional space: frames of
reference, vectors, and coordinate systems. Annual Review of Neuroscience, 15(1):167–
191.

Solà, J. (2016). Quaternion kinematics for the error-state kf. Technical Report IRI-TR-16-02,
Institut de Robòtica i Informàtica Industrial.

Sommer, H., Gilitschenski, I., Bloesch, M., Weiss, S., Siegwart, R., and Nieto, J. (2018).
Why and how to avoid the flipped quaternion multiplication. Aerospace, 5(3).

Sommer, H., Pradalier, C., and Furgale, P. (2013). Automatic differentiation on differentiable
manifolds as a tool for robotics. In 16th Int. Symp. Robot. Res. (ISRR).

92

Spring, K. W. (1986). Euler parameters and the use of quaternion algebra in the manipulation
of finite rotations: a review. Mechanism and machine theory, 21(5):365–373.

Stillwell, J. (2008). Naive Lie Theory. Springer, New York.

Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis. Springer Science &
Business Media, New York, second edition.

Torgersen, M. (2004). The expression problem revisited. In European Conference on
Object-Oriented Programming, pages 123–146. Springer.

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages
298–372. Springer.

van Merriënboer, B., Wiltschko, A. B., and Moldovan, D. (2017). Tangent: Automatic differ-
entiation using source code transformation in python. arXiv preprint arXiv:1711.02712.

Vandevoorde, D. and Josuttis, N. M. (2002). C++ Templates: The Complete Guide.
Addison-Wesley.

Verma, A. (2000). An introduction to automatic differentiation. Current Science, 78(7):804–
807.

Walther, A. and Griewank, A. (2012). Getting started with ADOL-C. In Combinatorial
Scientific Computing, pages 181–202. CRC Press.

93

APPENDICES

94

Appendix A

Mathematical background

A.1 Lie group operations

A.1.1 Exponential map onto SO(3)

Let φ ∈ R3 be a rotation vector. The exponential map of φ∧ ∈ so(3) is the matrix
exponential

exp(φ∧) =
∞∑
p=0

1

p!
(φ∧)p. (A.1)

As outlined in (Gallier, 2011, Section 8.10), it can be shown that (φ∧)3 = −θ2φ∧, where
θ = ||φ||. Substituting,

exp(φ∧) = I3 +
φ∧

1!
+

(φ∧)2

2!
− θ2φ∧

3!
− θ2(φ∧)2

4!
+
θ4φ∧

5!
+ . . . (A.2)

Separating the odd and even terms,

exp(φ∧) = I3 +

(
1− θ2

3!
+
θ4

5!
+ . . .

)
φ∧ +

(
1

2!
− θ2

4!
+
θ4

6!
+ . . .

)
(φ∧)2. (A.3)

Using the series sin θ = θ − θ3

3!
+ θ5

5!
. . . and cos θ = 1 − θ2

2!
+ θ4

4!
. . . we obtain Rodrigues’

95

formula,

exp(φ∧) = I3 +
sin θ

θ
φ∧ +

1− cos θ

θ2
(φ∧)2 (A.4)

When θ is small, the term 1− cos θ amplifies numerical error due to cancellation (Stoer
and Bulirsch, 2002). Therefore we replace 1− cos θ ≡ 2 sin2(1

2
θ) to obtain

exp(φ∧) = I3 +
sin θ

θ
φ∧ +

2 sin2(1
2
θ)

θ2
(φ∧)2 . (A.5)

For θ2 ≤ ε, where ε is machine precision, we use only the linear terms of the expan-
sion (A.3):

exp(φ∧) ≈ I3 + φ∧ . (A.6)

A geometric derivation of the formula (not using the matrix exponential) and discussion
of its variants can be found in Dai (2015).

Exponential map onto quaternions

While Rodrigues’ formula is a compact way of describing the exponential map, it may not
be the best way to compute it. Grassia (1998) proposes instead mapping onto S3, then
converting that quaternion into a matrix. The unit quaternion corresponding to a rotation
vector is given by Euler–Rodrigues parameters (also called Euler parameters) (Spring, 1986;
Bauchau and Trainelli, 2003)

q(φ) =
[
sin
(
1
2
θ
)
φ̂ cos

(
1
2
θ
)]T

,
[
~q s

]T
,
[
x y z w

]T
,

(A.7)

where φ̂ is the unit vector φ̂ = φ/θ, or the zero vector if θ = 0. This equation is the
exponential map exp : R3 → S3. For numerical stability, it is computed in the form (Grassia,
1998)

q(φ) =

[
sin
(
1
2
θ
)

θ
φ cos

(
1
2
θ
)]T

. (A.8)

Again, we use a Taylor expansion for small θ. Grassia (1998) suggests the first two terms,

sin
(
1
2
θ
)

θ
≈ 1

2
+
θ2

48
, (A.9)

96

0 10 20 30 40 50 60 70 80 90 100

clang

gcc

To quaternion

To quaternion

To matrix via quaternion

To matrix via quaternion

To matrix

To matrix

Time per evaluation (ns)

C
om

pi
le
r

Figure A.1: Performance of exponential map functions, comparing the approaches: map
to quaternion (A.8); map to quaternion, then convert to matrix (A.12); and map to
matrix (A.5). The input is a list of random double-precision rotation vectors with norm
0.1. This comparison shows mapping to a quaternion is at least as fast when using either
common compiler.

if θ ≤ 4
√
ε. Thus for small θ, we use

q(φ) ≈
[(

1
2

+ θ2

48

)
φ 1− θ2

8

]T
. (A.10)

The quaternion can then be converted to a matrix using (Spring, 1986)

C(q) = (s2 − ~qT~q)I3 + 2~q~qT + 2s~q× (A.11)

=

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2

 . (A.12)

We run a microbenchmark to demonstrate that code mapping to a matrix via the
map (A.8) onto S3 is, in practice, slightly faster than code implementing the direct
map (A.5). Figure A.1 presents the results. Methodology is described in Appendix D.
Source code is available at https://github.com/wavelab/wave_geometry.

Note that we show results only for rotation vectors in the “large”-angle regime (θ = 0.1);

97

https://github.com/wavelab/wave_geometry

it can be expected that Taylor series approximations are faster for either method. A linear
approximation of (A.8) is given in Appendix A.1.3.

Of course, these results merely show that of two C++ functions written with Eigen,
the quaternion version is more amenable to compiler optimization on our test system. A
carefully tuned routine written in assembly might outperform both. However, these results
support Grassia’s claims and are relevant to a library choosing a single C++ implementation
of the exponential map.

A.1.2 Logarithmic map of SO(3)

Logarithmic map of quaternions

The conversion from quaternion to rotation vector can be obtained by inverting the
exponential map (A.8), starting with the angle θ:

tan
θ

2
=

sin
(
1
2
θ
)

cos
(
1
2
θ
) =
‖~q‖
s

(A.13)

θ(q) = 2 atan
‖~q‖
s
, (A.14)

where we use tan instead of cos for the superior numerical properties of atan2. We also
ensure that θ is in the range [−π, π]:

θ(q) = 2 sgn(s) atan2(‖~q‖, |s|). (A.15)

The rotation vector is then:

φ(q) = 2 sgn(s) atan2(‖~q‖, |s|)
~q

‖~q‖
. (A.16)

For small angles (‖~q‖ ≈ 0, s ≈ 1), we use the first-order approximation

φ(q) ≈ 2~q. (A.17)

98

A.1.3 Approximation of the exponential map

Instead of calculating the full exponential map (A.8), it is possible to use a linear approxi-
mation. Furgale (2011) suggests the linearization

xs � v ≈
(

q(0) +
∂q(v)

∂v

∣∣∣∣
v=0

v

)
◦ xs, (A.18)

where

q(0) =

0
0
0
1

 , ∂q(v)

∂v

∣∣∣∣
v=0

=

1
2

0 0
0 1

2
0

0 0 1
2

0 0 0

 . (A.19)

Approximations will be added in a future version of wave_geometry.

99

Appendix B

Frames, coordinates, systems: a few
words

What is a “frame of reference”, a “coordinate system”, and a “coordinate frame”? Although
often used interchangably, these terms have distinct meanings.

Terminology related to frames is inconsistent in literature. Hartley and Zisserman (2004)
uses terms such as “world coordinate frame” and “world coordinate system” seemingly
interchangeably. Barfoot (2017) and Chirikjian et al. (2018) use “reference frames” in the
same sense that Furgale (2011) uses “coordinate frames.” Nehmzow (2003) conflates terms
while defining a “navigational frame of reference”:

In the simplest and most easily understood case, this frame of reference is a
Cartesian co-ordinate system.

Robotics papers whose use of frames is incidental, rather than definitional (for example,
Leutenegger et al., 2015; Forster et al., 2017) tend to use “coordinate frame”, “reference
frame,” and “frame of reference” interchangeably. These works do not necessarily suffer
from lack of clarity, since their meaning can be inferred from context.

On the other hand, “reference” is sometimes used as an adjective to distinguish one
particular frame from others, if only temporarily. Bremer (2008) often refers to “the reference
frame” (emphasis added) of a given system. Lee (2008), which uses all of the combinations
“coordinate frame,” “coordinate system,” “reference frame,” “reference coordinate frame,”
and “reference coordinate system,” appears to do the same.

Still, there is a difference between frames of reference and coordinate systems. The idea
of frames of reference is central to physics, of which Norton (1993) writes:

100

In traditional developments of special and general relativity it has been custom-
ary not to distinguish between two quite distinct ideas. The first is the notion
of a coordinate system, understood simply as the smooth, invertible assignment
of four numbers to events in spacetime neighbourhoods. The second, the frame
of reference, refers to an idealized physical system used to assign such numbers.

This distinction has consensus across fields. The introductory physics textbook of
Halliday et al. (2011) states, “for our purposes, a reference frame is the physical object to
which we attach our coordinate system.” Soechting and Flanders (1992), in a summary
for neuroscientists, describes a “frame of reference” as fixed to a physical object, such as
a person or a train, and a “coordinate system” as something defined “within the frame of
reference by choosing a set of base vectors,” and gives examples of Cartesian and spherical
coordinate systems.

These three works do not use the term “coordinate frame” (except for one stray appear-
ance in Norton). However, “coordinate frame” is widely used, as in Hartley and Zisserman
(2004); Bremer (2008); De Laet et al. (2013b); Foote (2013), to describe a construct—often
tied to a physical object, e.g. a “camera coordinate frame”—in which quantities are expressed
numerically.

Kelly (2013) gives the most definitive distinction between the three terms as used in
robotics. Of coordinate systems and reference frames, Kelly writes,

...these are not only not the same thing; in fact, they have nothing to do with
each other.

Specifically, “coordinate systems are conventions for the representation of physical quantities”,
while “a reference frame is a state of motion, and it is convenient to associate it with a real
physical body with such a state of motion.”

Kelly defines “conceptual embedded sets of axes,” fixed to physical bodies such as robot
sensors and manipulators, as coordinate frames. Because they are associated with a physical
object, these axes have a state of motion; simultaneously, they form the basis of a coordinate
system. Therefore, a coordinate frame “possesses the properties of both a frame of reference
and a coordinate system.”

Coordinates themselves can be defined as “an ordered set of numbers” used to represent
a point in some space (Korn and Korn, 2000).

We can form the following summary: A frame of reference is a state of motion from
which measurements can be made. Typically, it is tied to the motion of a physical object.

101

A reference frame is synonymous, although “reference” is sometimes used as an identifier of
a particular frame or coordinate system. A coordinate system associates coordinates with
points in a mathematical space; this space is often, but not necessarily, chosen to model a
physical system. A coordinate frame is a coordinate system fixed to a frame of reference.

102

Appendix C

C++ library details

This appendix discusses several technical implementation details of wave_geometry. It
assumes familiarity with C++ language topics such as value categories and object lifetimes.

C.1 Storing temporary expressions

Expression template libraries face a new challenge since the introduction of the auto type
specifier. Meyers (2014, Item 6) describes the problem, summarizing: “As a general rule,
‘invisible’ proxy classes don’t play well with auto. Objects of such classes are often not
designed to live longer than a single statement, so creating variables of those types tends
to violate fundamental library design assumptions.” Eigen warns against using the auto
keyword without care, and provides several examples of problems.1

C.1.1 Problems of using auto with expressions

Adapting Eigen’s examples to wave_geometry types, potential categories of problems are:

1. Redundant evaluation: Consider an automatically-deduced expression C, which
is not a RotationMd object but a Compose<RotationMd, RotationMd> expression
holding references to rotation matrices A and B. The expression is then used repeatedly:

1https://eigen.tuxfamily.org/dox/TopicPitfalls.html

103

https://eigen.tuxfamily.org/dox/TopicPitfalls.html

RotationMd A, B;
auto C = A * B;
for (...) { Translationd w = C * v; ... }

The product C = A * B will be needlessly evaluated on every loop iteration, unless
the compiler manages to optimize it out.

2. Change in value: If the values of A and B change between iterations in the above
example, the evaluated value of C will also change. In some cases this may be desired;
in others, the user may have assumed C’s value is fixed.

3. Undefined behaviour: Consider explicilty evaluating a subexpression while building
a larger expression,

auto C = inverse((A+B).eval());

or constructing a temporary object while building an expression:

auto C = A + RelativeRotationd{0., 0., 0.1};

In both cases, the code will compile but will produce undefined behaviour when C is
later used. The problem is that expression objects store references to other objects
even when, as above, the referents are temporary objects whose lifetime ends with
the line of code shown. The resulting reference is commonly known as a dangling
reference or dangling pointer, and its use falls under “Expired Pointer Dereference” in
the Common Weakness Enumeration.2

A proposal to allow classes to declare the deduced type of auto variables (Falcou et al.,
2017)3 may prevent these problems in a future language standard; until then, avoidance relies
on the user’s vigilance. This proposal also does not significantly help wave_geometry since
many of our intended use cases rely on the expression remaining alive as a non-temporary
proxy object.

Problems of the third category, causing undefined behaviour, are what Meyers (2014)
warns about and are the most dangerous. In our experience, dangling references are one of
the most insidious types of errors in C++, often hard to identify even with tools such as
AddressSanitizer and Valgrind. However, it is possible for a library author to prevent many
such errors by ensuring all expressions are “designed to live longer than a single statement.”

2https://cwe.mitre.org/data/definitions/825.html
3https://wg21.link/P0672

104

https://cwe.mitre.org/data/definitions/825.html
https://wg21.link/P0672

C.1.2 Storing temporary objects in expressions

Our solution to the third category of problems above is to store temporary objects inside
expression objects by value, instead of by reference. The solution is done at library level
and does not require user knowledge. It consists of two parts: storing by value in expression
objects and specializing functions for rvalue reference arguments.

Store-by-value in expression objects

wave_geometry’s storage type selector is an extension of Eigen’s ref_selector, a template
metaprogram which selects the storage type for the operands of an expression. In Eigen,
lightweight expression objects, which are cheap to copy, are saved by value, while objects
with their own storage, such as matrices, are stored by reference.

wave_geometry takes a different approach. ETs are instantiated with const and refer-
ence qualifiers in their template parameters. An ET instantiated like Inverse<Matrix>
Inverse<Matrix&&> stores a Matrix by value; an Inverse<const Matrix&> stores a ma-
trix by const reference. Even lightweight expressions can be stored by const reference.

Specializing functions for rvalue reference arguments

The correct template parameters are chosen by the user-facing functions which return
expressions. This is done by overloading the usual function and operator definitions, of the
form
template <typename Derived>
Inverse<Derived> inverse(const RotationBase<Derived>& rhs);

with a function that accepts rvalue references,
template <typename Derived>
Inverse<arg_t<Derived>> inverse(RotationBase<Derived>&& rhs);

where arg_t<Derived> selects ether Derived&& or Derived, depending on whether the
argument is a leaf expression. We add && for leaves only to signal to users that there is a
difference from Eigen.

This step is combinatorial; for binary functions, four overloads are needed in total:
3Eigen does have a mechanism, the NestByValue expression, for storing by value, but it is unused (see

http://eigen.tuxfamily.org/index.php?title=Working_notes_-_Expression_evaluator).

105

http://eigen.tuxfamily.org/index.php?title=Working_notes_-_Expression_evaluator

template <typename L, typename R>
Compose<const L&, const R&> operator*(const RotationBase<L>& lhs, const RotationBase<L

↪→ >& rhs);
template <typename L, typename R>
Compose<arg_t<L>, const R&>, operator*(RotationBase<L>&& lhs, const RotationBase<L>&

↪→ rhs);
template <typename L, typename R>
Compose<const L&, arg_t<R>> operator*(RotationBase<L>& lhs, RotationBase<L>&& rhs);
template <typename L, typename R>
Compose<arg_t<L>, arg_t<R>> operator*(RotationBase<L>&& lhs, RotationBase<L>&& rhs);

It would be possible to achieve the same effect with fewer overloads by templating the
entire parameter type and using forwarding references (template <typename T> inverse
↪→ (T&& rhs)). However, functions overloaded on forwarding references are “the greediest
functions in C++” Meyers (2014, Item 26) and would require additional SFINAE-based
constraints to achieve polymorphism. One reason we choose to use built-in static dispatch
is that it produces more readable compiler messages.

In wave_geometry, the extra overloads are generated by macros: see WAVE_OVERLOAD_
↪→ FUNCTION_FOR_RVALUES and similar macros.

We have not yet evaluated the performance of this solution, because preventing dangling
reference errors is its first priority. It is possible an improvement could be made by storing
temporary values in separately allocated memory using something like std::shared_ptr,
instead of inside the expression object itself. A further caveat is that this solution prevents
only errors arising from using temporaries in expressions, as discussed in Appendix C.1.1.
It cannot prevent dangling reference errors in general, such as when an expression object
referencing objects on the stack is returned from a function.

C.2 Evaluating proxies

To evaluate and differentiate dynamic expressions (introduced in Section 3.3), evaluators for
proxy types must go through the virtual methods of DynamicBase. For example, evaluation
uses the dynEvaluate function, declared in DynamicBase as

virtual auto dynEvaluate() const -> EvalType;

This function’s definition inside the derived Dynamic class constructs the appropriate
Evaluator for its concrete type. Forward-mode AD uses the function

106

virtual auto dynJacobian(const void *target_ptr) const
-> Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;

Here, we can see some of the costs of dynamic expression graphs: because virtual
functions cannot be templated, the Jacobian matrix must be dynamically sized. The
performance penalty is twofold: first, the compiler cannot apply optimizations based on
knowledge of expression types, such as eliding multiplication by identity; second, memory
must be allocated for every such matrix. The overhead of many small allocations can be a
significant proportion of the cost of differentiating an expression graph.

C.2.1 Optimizations

For reverse-mode AD, we apply several optimizations.

• Traverse the expression graph in advance, obtaining the address and tangent space
dimension (number of columns in the Jacobian matrix) of each leaf. Note the height
of the Jacobians is the dimension of the root node, which is known.

• Pre-allocate a single matrix large enough to store all Jacobians as submatrices, and
create a map of leaf address to column index in the large matrix. This is a simple,
specialized alternative to using a memory pool allocator.

• Provide multiple virtual functions accepting fixed-size adjoint matrices. Since (within
the derived Dynamic expression) the width m of the adjoint matrix is already known,
only several additional overloads are needed to cover most cases: for example, 1×m,
2×m, 3×m, and 6×m adjoints.

• Store the Evaluator for Dynamic expressions inside the Dynamic object itself to avoid
additional allocations.

Variations of the first three of optimizations are also used by GTSAM.

C.2.2 Alternatives

Virtual functions are not the only approach for attaining dynamic polymorphism. Type
erasure libraries4 replace virtual functions with their own implementations of vtables,

107

and offer value semantics (removing the need for a pointer-holding proxy object) and
improved runtime performance. Using such a library could improve wave_geometry’s initial
implementation.

4Examples of type erasure libraries are Boost.TypeErasure, Poly, and Dyno.

108

https://www.boost.org/doc/libs/1_68_0/doc/html/boost_typeerasure.html
https://github.com/facebook/folly/blob/master/folly/docs/Poly.md
https://github.com/ldionne/dyno

Appendix D

Benchmark methodology

For results in Figure 3.8 and Table 3.2, benchmarks were compiled with Clang 5.0 as
specified.

For other results, benchmarks were compiled by Clang 7.0.0 (and, where specified,
GCC 8.2.0) with options -std=c++17 -O3 -DNDEBUG -march=native on an Intel i7-8550U
processor. We used the following versions of libraries under test and dependencies: Ceres
1.14, GTSAM commit c1b14f08f, Eigen 3.3.4, Boost 1.65.1, libstdc++ 6.0.25. GTSAM
was compiled with its bundled Eigen 3.2.10 because of stability issues when using the newer
version.

To reduce the effects of system load, benchmarks were given an isolated CPU: the
isolcpus, nohz_full, and rcu_nocbs parameters were set on a tickless kernel (Linux 4.15
built with CONFIG_NO_HZ_FULL). Turbo boost was disabled.

We used the Google Benchmark library1 for timing. This library times each benchmark
over a large number of iterations (at least 0.5 s in duration) and divides the measurement
by the number of iterations. We report the mean of 3 runs.

With this configuration, the standard deviation between runs of the same test is small
(typically under 1 %), thus we do not show error bars. Note that the purpose of these
benchmarks is to compare different pieces of code on the same typical system. Performance
may vary on different compilers, processor architectures, hardware, or real-world invocations
of the code when integrated into a larger program.

1https://github.com/google/benchmark

109

https://github.com/google/benchmark

	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Related work
	Automatic differentiation
	Geometry frameworks

	Thesis structure

	Background
	Notation
	Points, vectors, and spaces
	Points and vectors
	Affine spaces
	Affine frames
	Affine transformations

	Homogeneous coordinates
	Projective spaces
	Normalization of homogeneous coordinates

	Rigid motions
	Euclidean spaces
	Distances and orthogonality
	Rotations and Euclidean motions

	Rotations and Euclidean motions
	The rotations SO(3)
	Manifolds and charts
	Lie groups and Lie algebras
	Exponential and logarithmic maps
	The tangent space and adjoints
	Perturbations on a manifold
	Derivatives on Lie groups
	Operations on SO(3)
	Quaternions
	Perturbations of homogeneous points
	The Euclidean motions SE(3)

	Automatic differentiation
	Forward mode
	Reverse mode
	Block automatic differentiation

	Manifold geometry in C++
	Expression templates for geometry
	Implementing expression templates
	Spaces, parametrizations, and storage
	Evaluating expressions

	Automatic differentiation
	Forward-mode AD
	Testing for identity
	Strongly typed forward-mode AD
	Reverse-mode AD

	Composing expressions at runtime
	Experimental results
	Benchmark experiments
	Rotation Chain
	IMU Factor
	Dynamic expressions

	Coordinate frame semantics checking
	Coordinate frame semantics
	Coordinate-free geometry
	Expressing semantics through notation
	Semantics in Code
	Free and bound transformations

	C++ library implementation
	Related works
	Rules for frame semantics

	Application to state estimation
	State estimation as a least squares problem
	Uncertain estimates
	Maximum a Posteriori

	Library implementation
	Design

	Conclusion
	References
	APPENDICES
	Mathematical background
	Lie group operations
	Exponential map onto SO(3)
	Logarithmic map of SO(3)
	Approximation of the exponential map

	Frames, coordinates, systems: a few words
	C++ library details
	Storing temporary expressions
	Problems of using <[>keywordstyle=<black>, basicstyle=<black>,breaklines=false]auto with expressions
	Storing temporary objects in expressions

	Evaluating proxies
	Optimizations
	Alternatives

	Benchmark methodology

