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Abstract 

Optimization plays an important role in the operation of chemical engineering systems. Due to 

their typical size, different optimization tools and techniques are required to improve the efficiency 

in process operations. In this thesis, a mathematical tool is developed to address the issue of 

optimal control for linear systems under uncertainty. Also, a comprehensive plant model 

describing the behaviour of an industrial-scale Sulphuric Acid plant is developed to assist in 

identification of the optimal operating conditions under uncertainty   

Model predictive control (MPC) is considered an attractive strategy for the optimal control of 

complex chemical engineering systems. Conventional MPC involves solving an optimization 

problem online to determine the control actions that minimize a performance criterion function. 

The high computational expense associated with conventional MPC may make its application 

challenging for large-scale systems. Explicit MPC has been developed to solve the optimization 

problem offline. In this work, adjustable robust optimization (ARO) is used to obtain the explicit 

solution to the MPC optimization problem offline for discrete-time linear time invariant systems 

with constraints on inputs and states. In the robust model formulation an uncertain additive time-

varying error is introduced to account for model uncertainty resulting from plant-model mismatch 

caused by un-measurable disturbances or process nonlinearities. The explicit solution is an optimal 

time-varying sequence of feedback control laws for the control inputs parameterized by the 

system’s states. The control laws are evaluated in a time-varying manner when the process is online 

using state measurements. This study shows that the resulting control laws ensure the implemented 

control actions maintain the system states within their feasible region for any realizations of the 
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uncertain parameter within the uncertainty set. Three case studies are presented to demonstrate the 

proposed approach and to highlight the benefits and limitations of this method. 

The optimal operating condition to which an optimal controller will drive a large industrial-scale 

plant is identified using a different set of tools. In this thesis, an industrial-scale sulfuric acid plant 

is considered. The production of sulfuric acid is an important process due to its many applications 

and its use as a mitigation strategy for Sulphur dioxide (SO2). The reactor of the sulfuric acid plant 

has been the focus of many studies, and thus there has been very limited works in the literature 

that have analyzed the complete sulfuric acid plant. In this work, the flowsheet for an industrial-

scale sulfuric acid plant with scrubbing tower is presented. The model is developed in Aspen Plus 

V8.8 and it is validated using historical data from an actual industrial plant. A sensitivity analysis 

was carried out, followed by optimization using two alternative objective functions: maximization 

of plant profitability or productivity. The optimization was extended to consider uncertainty in key 

operating and economic parameters. The results show that changes could be made in the current 

optimal operating condition of the plant to improve the annual profit of the process. 
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Chapter 1: Introduction  

Chemical engineering systems are typically large, capital intensive projects, that operate over long 

periods of time. They can have large economic, environmental, and societal impacts on the regions 

in which they are situated. Thus, it is important that these systems be designed and operated in an 

optimal fashion. This thesis is composed of two distinct projects which address the issue of optimal 

operation of large chemical engineering systems.  

In the first project a tool is developed to better enable the application of linear MPC to large 

systems under uncertainty. It is a framework for Explicit Linear Model Predictive Control (MPC). 

Linear MPC is considered an attractive strategy for achieving optimal control,1 however its online 

computational requirements have typically restricted its application.2 Explicit MPC circumvents 

this drawback by performing the expensive computation offline thereby reducing online 

computation to evaluation of a series of algebraic equations.3 In this work, adjustable robust 

optimization (ARO) is used to develop an Explicit MPC framework. 

The second study involves the simulation and economic optimization of an industrial-scale plant 

under uncertainty. This work is applicable when demand for the product being manufactured has 

increased and the operator wishes to identify the maximum profit or output that the plant can 

achieve given the current design and its associated safety, environmental and productivity 

restrictions. The use of simulation and optimization tools in this situation is highly advantageous 

as it can eliminate (or reduce) timely and costly experiments in search of the optimal operating 

condition. In this work, in collaboration with an industrial partner, a simulation was implemented, 

and a subsequent economic optimization was carried out to identify the optimal operating 
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condition for an industrial-scale sulfuric acid plant. Each of the research subjects mentioned above 

will be discussed next. 

1.1 Explicit MPC  

MPC has largely been accepted as the solution for optimal control of complex multivariable 

processes.4 The key idea in MPC is to compute the sequence of control actions that are expected 

to maintain the system on target by solving an optimization problem consisting of an internal 

process model, process constraints, and a user-defined objective function at each sampling interval. 

Only the first control action is implemented on the process and the procedure is repeated at the 

following sampling interval.4 The primary issue raised by this procedure is that a large 

computational effort may be required to evaluate online an optimization problem thereby limiting 

its application to slowly varying processes.2 However, this challenge can be overcome by solving 

offline the MPC optimization problem in a way that makes the relationship between the control 

actions and the measured outputs explicit.3 This is referred to as Explicit MPC. The majority of 

work in the area of Explicit MPC has been accomplished using multi-parametric programming 

(mp-MPC).3 Although it addresses the issue associated with online computation, the mp-MPC 

framework has its limitations. For instance, it is numerically difficult as it involves partitioning the 

state-space into polyhedral regions while avoiding overlaps in neighboring polyhedra.5 Also, it 

does not guarantee that the state variables will remain within their feasible region under 

deterministic or uncertain conditions.6,7 

1.2 Modeling and Optimization of an Industrial-Scale Sulfuric Acid Plant 

Sulfuric acid is an important industrial chemical because of its direct or indirect involvement in 

nearly all production industries. The main steps in the sulfuric acid manufacturing process are 
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combustion of sulfur into SO2, conversion of SO2 into SO3 in a multi-stage packed bed catalytic 

reactor with inter-stage cooling, and absorption of SO3 in sulfuric acid. This is referred to as the 

process gas cycle. An industrial sulfuric acid plant also consists of the process acid cycle, steam 

and cooling water utilities, and in some cases a scrubbing tower. Although this is a major 

industrial-scale application, the majority of modeling and optimization work in the literature aimed 

at sulfuric acid plants has focused solely on the catalytic reactor with very limited works 

integrating the complete process gas cycle. Moreover, there has only been two models that have 

been validated using actual plant data.8,9 Finally, no studies have considered the effect of 

uncertainty in key model parameters on the economic performance and productivity of the sulfuric 

acid plant. 

1.3 Research Objectives  

With respect to Explicit MPC, the aim of this work is to present a novel framework for obtaining 

the explicit solution to the linear MPC problem using adjustable robust optimization (ARO). This 

will be referred from heretofore as aro-MPC. Two objectives motivate this work: first, it is an 

alternative method to multi-parametric programming for obtaining the explicit solution to the 

linear MPC optimization problem; and second, the resulting framework is inherently robust with 

respect to the state variables, and thus guaranteed to satisfy process constraints without additional 

considerations. The novelty of this work, and its contribution to the area of optimal control, is the 

development of a new method for Explicit MPC. It is expected that the aro-MPC framework 

proposed here may broaden the applicability of Explicit MPC for controlling chemical engineering 

systems based on its differentiating features from mp-MPC.  
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In the second research subject, the objective is to develop a comprehensive model for an industrial-

scale single absorption sulfuric acid plant with scrubbing tower that includes process utilities. By 

including the utilities and scrubbing tower, the model can account for more of the interactions 

between process variables, and thus will capture a more realistic representation of an actual 

industrial-scale plant. The model will be validated using historical data from an industrial-scale 

sulfuric acid plant, and thus it can be used to identify economic opportunities based on changes in 

the current operating conditions. Those opportunities will be identified deterministically and under 

uncertainty in key parameters to understand the sensitivity of the optimal operating condition and 

the price of robustness for the plant model. The comprehensive development of this steady-state 

model is expected to reduce the time and cost associated with identifying the optimal operating 

condition of the industrial-scale sulfuric acid plant. Moreover, it will enable an improved 

understanding of the interactions between operating parameters. 

1.4 Structure of Thesis 

This thesis is organized as follows: 

Chapter 2 provides a literature review highlighting the relevant works in the areas of Explicit MPC, 

ARO, and the design, simulation, and optimization of sulfuric acid plants. 

Chapter 3 presents the proposed aro-MPC framework. Three notable computational experiments 

are included. The first uses a one input, two state system to demonstrate the general features of the 

framework. The second presents the aro-MPC for a 5x5 system. To the author’s knowledge, the 

largest system for which an Explicit MPC controller has been developed consists of three inputs 

and four outputs.10 The third system demonstrates the implementation of the aro-MPC framework 

on a nonlinear system. 
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Chapter 4 describes the model used to approximate the industrial-scale sulfuric acid plant and the 

validation strategy. The model is then used to identify the optimal operating condition under 

deterministic and uncertain conditions. The content in this chapter has been published in Industrial 

& Engineering Chemistry Research.11 This paper was written entirely by myself, and it was edited 

by my supervisor, Luis Ricardez-Sandoval. Permission has been granted by the publisher to use 

the published content in this thesis. 

Chapter 5 summarizes the methods and results of this thesis and presents conclusions of both 

works. Recommendations are provided for future work in the areas of aro-MPC and simulation 

and optimization of industrial-scale sulfuric acid plants.  
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Chapter 2: Literature Review 

This chapter provides detailed literature reviews on the most relevant contributions in the areas of 

Explicit MPC and ARO as well as the design, simulation, and optimization of sulfuric acid plants. 

Section 2.1 begins with a brief summary of linear MPC and is followed by a discussion on Explicit 

MPC and mp-MPC. Afterwards, an overview of ARO is presented. Section 2.2 presents the global 

importance of sulfuric acid by highlighting its most relevant applications. This is followed by a 

design overview of industrial-scale sulfuric acid plants and a presentation of the modeling works 

in the literature relevant to the production of sulfuric acid. A summary on the major findings and 

gaps identified from the literature review is presented at the end. 

2.1 Optimal Control Using MPC 

2.1.1 Linear MPC 

As discussed in the introduction, MPC is an optimization-based control technique that employs a 

model of the system to compute the control actions that can minimize plant offsets. When 

compared to the conventional feedback control schemes such as PID control, MPC poses two key 

advantages; it can take into account process constraints, e.g. on the states and control actions of a 

system, and it can drive the controlled variables of the system in such a way that a user-defined 

objective is optimized.1 More details about Model Predictive Control can be found elsewhere.5,12 

Linear MPC is typically defined by an optimization problem having linear constraints and a 

quadratic objective function, i.e. 
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min
𝐱{���∈ℝ��,
∀9�=,…�
𝐮���∈ℝ��,
∀9�b,…�a=

𝐪��(𝐲{lm9 − 𝐫lm9)h
�

9�=

+ 𝐰� �(∆𝐮lm9)h
�a=

9�=

 
(1a) 

s. t. 𝐱{lm9m= = 𝐀𝐱{lm9 + 𝐁𝐮lm9 ∀𝑖 = 0,… , 𝑃 − 1 (1b) 

 𝐲{lm9 = 𝐂𝐱{lm9 ∀𝑖 = 0,… , 𝑃 (1c) 

 𝐮M ≤ 𝐮lm9 ≤ 𝐮N ∀𝑖 = 0,… ,𝑀 − 1 (1d) 

 𝐱M ≤ 𝐱{lm9 ≤ 𝐱N ∀𝑖 = 1,… , 𝑃 (1e) 

 𝐮lm9 = 𝐮lm�a= ∀𝑖 = 𝑀,… , 𝑃 − 1 (1f) 

where 𝐱{lm9 ∈ ℝ}� is the vector of predicted states, 𝐲{lm9 ∈ ℝ}� is the vector of predicted outputs, 

𝐮lm9 ∈ ℝ}� is the input control vector, 𝐫lm9 ∈ ℝ}� is the vector of user-defined setpoints, and 

∆𝐮lm9 ∈ ℝ}� is the vector containing the magnitude of the change in process inputs between time 

interval 𝑡 + 𝑖 − 1 and 𝑡 + 𝑖 (i.e. ∆𝐮lm9 = 𝐮lm9 − 𝐮lm9a=). The initial condition is the measured 

output of the process at sampling time 𝑡, 𝐲l ∈ ℝ}�, which replaces 𝐲{lm9 at 𝑖 = 0. 𝑀 and 𝑃 are the 

user-defined control and prediction horizons, respectively. Along with the weights on the 

controlled and manipulated variables (i.e. 𝐪 and 𝐰), 𝑀 and 𝑃 are the tuning parameters of the 

controller.  

Linear MPC is implemented by solving online the MPC optimization problem (1a)-(1f). The 

general procedure is presented in Figure 1 for a single input single output system. At each time 

interval, 𝑡, the current output of the system yl is measured and used as an initial condition to 

identify the sequence of control actions ul, ulm=, … , ulm�a= that are expected to drive the future 

output predictions ylm9 towards the user-defined setpoint subject to process constraints. Once 

solved, the first control action, ul, is implemented on the process and the remaining are discarded. 
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Due to model limitations and plant-model mismatch, the predicted output, y{lm=, typically differs 

from the measured output, ylm=. Hence, feedback is incorporated in the framework by repeating 

the procedure at the following time interval.  

 

Figure 1. Model predictive control overview1 

2.1.2 Explicit MPC using Multi-parametric Programming 

In Explicit MPC, the MPC optimization problem is solved a priori to obtain explicit relationships 

between the control actions and measured outputs. The most general parametrization takes the 

following form: 

𝐮lm9 = 𝒇(𝐱lm9, 𝐫, 𝛉) (2) 
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such that function 𝒇 is an algebraic function that is used to evaluate online the control actions 𝐮lm9 

which are dependent on the process state 𝐱lm9, the setpoint 𝐫 that was considered when obtaining 

the parametric solution, and the remaining process model parameters 𝛉. The main feature of this 

approach is that the online computation of the control actions is reduced to evaluation of the 

function 𝒇 instead of solving an MPC optimization formulation at each sampling interval. 

As mentioned in section 1.1, the majority of work in the field of Explicit MPC has been 

accomplished using mp-MPC. This approach involves partitioning the state-space into polyhedral 

regions such that for each region, an affine control law parametrized by the states of the system is 

obtained. In addition to evaluating the parametric control law, online implementation of the mp-

MPC solution first involves selecting an appropriate control law by identifying the polyhedral 

region in which the current state measurement lies.  Since the seminal work in this area showed 

the development of a mp-MPC controller for a constrained linear quadratic regulator,6 the field 

has received much attention. Multiple studies have considered the topic of mp-MPC under 

uncertainty.2,13–16 Uncertain optimization problems are solved using stochastic or robust 

optimization techniques.17–25 In the former, the modeler must make an assumption regarding the 

probability distribution of the uncertain parameter whereas in the latter, no probability distribution 

is assumed, rather the uncertain parameter is defined by a bounded set. The robust solution is 

guaranteed to remain feasible over the entire range of uncertain parameter realizations whereas the 

stochastic solution only provides a probabilistic feasibility guarantee.  Studies that have considered 

mp-MPC under uncertainty have obtained the robust explicit solution for systems with exogenous 

disturbances and/or model parameter uncertainty in the state-space matrices.2,13,14 The area of 

Explicit Stochastic MPC has recently been referred to as an important area of future work.27 With 

respect to real-world applications, mp-MPC has been used to solve problems related to the energy 
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and medical sectors through the control of a PEM fuel cell and an intravenous anaesthesia system, 

respectively.10,28 Other chemical engineering applications that have been considered include 

control of distillation columns and pressure swing absorption systems.29,30 All of the previous 

works mentioned have developed the mp-MPC for systems with linear process models; however 

there has also been a few studies that have developed the mp-MPC for systems described by 

nonlinear models.31–33 The main limitation of mp-MPC is the numerical difficulty associated with 

computing every polyhedron in the state-space while avoiding overlaps and gaps in neighbouring 

polyhedra.5 To the author’s knowledge, the largest system to which mp-MPC has been successfully 

applied is the three input, four state PEM fuel cell system.10 In addition to eliminating the drawback 

associated with online computation, another advantage of the robust mp-MPC controllers is that 

they ensure controller feasibility against a user-defined uncertainty set. However, to the author’s 

knowledge, they do not guarantee that the state-space variables will remain within a feasible region 

in the presence of uncertainty. Although some works have been aimed at reducing the 

computational complexity associated with solving the mp-MPC optimization problem through the 

identification of suboptimal solutions using a variety of approximation techniques,34–40 there has 

been limited contributions that explore alternative methods of obtaining explicit functions (1) for 

linear MPC. However, there has been some works that explore the use of machine learning 

methods to obtain the explicit functions (1) for nonlinear MPC.41,42 A technique that will be 

considered in this study to address uncertainty in the Explicit MPC formulation developed in this 

work is presented next. 

2.1.3 Adjustable Robust Optimization 

Static robust optimization (SRO) is a method of solving problems subject to uncertainty; however, 

all decision variables are considered as “here-and-now.”26 The resulting solution is robust 
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(immune) against a user-defined uncertainty set but the user is unable to incorporate any 

information that becomes available after the optimization problem is solved without performing 

re-optimization. ARO has the same advantage of SRO in that the resulting solution is robust against 

a user-defined uncertainty set; however, the user can select “wait-and-see” decision variables to 

be adjustable in the ARO framework. In a conventional ARO problem, those variables selected as 

adjustable are replaced by a user-defined function where the independent variables (i.e. inputs to 

those functions) are the uncertain parameters. Hence, the coefficients of these functions replace 

the original variables as the decision variables in the ARO formulation. The resulting expressions 

are then used to evaluate the adjustable (manipulated) variables at a later point in time when the 

uncertain parameters have materialized (been observed).  

The optimization problem considered to obtain the ARO solution is a deterministic reformulation 

of the robust multistage optimization problem.43 This problem is referred to as the adjustable robust 

counterpart (ARC). For linear optimization problems, it consists of replacing all adjustable 

variables with their corresponding parametrized functions of the uncertain parameters followed by 

elimination of the uncertain parameters from all uncertain constraints including the objective 

function. This is performed by dualization for inequalities constraints and by coefficient matching 

for equality constraints. 

ARO has been applied in the area of process scheduling to develop two-stage and multi-stage 

robust schedules for batch processing plants.44–47 With regards to process control, it has been 

shown that ARO can be used to obtain time-varying control laws for fully linear control problems 

(i.e. linear objective function and linear constraints) by parametrizing the control action with the 

measured disturbances rather than the measured states as is done in the multi-parametric 

programming framework.26,48 However, online implementation of the control laws is not discussed 
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beyond stating that the laws are to be implemented in a time-varying fashion nor is their 

performance evaluated. Although those works focus on the design of optimal linear controllers, 

they represent the closest attempt to obtaining an explicit solution of the linear MPC problem with 

a quadratic objective function using ARO. 

2.2 Sulfuric Acid Manufacturing Process and Simulation 

The most dominant application of sulfuric acid is in the production of phosphate fertilizers, 

accounting for almost 60% of global consumption in 2009.49 Other applications include leaching 

of copper, nickel, and uranium ores, petroleum refining to convert low molecular weight alkenes 

to alkylates, manufacturing of rubber, plastics, pigments, pulp and paper, and the production of 

other chemicals and fertilizers.49 In addition to its application in multiple industries, a secondary 

benefit of sulfuric acid is that it is mainly produced involuntarily for the purpose of mitigating SO2 

and H2S.50 These gases are produced during the processing of metal ores and hydrocarbons, 

respectively, and are the sources of sulfur for sulfuric acid production. The sulfuric acid production 

process, also known as the contact process, can directly make use of the SO2 but H2S must first be 

converted into elemental sulfur. Globally, 60% of sulfur used in the production of sulfuric acid 

comes from hydrocarbons, 30% from metal ores, and the remaining 10% from the decomposition 

of spent petroleum and polymer sulfuric acid catalyst.51 

There are two types of manufacturing plants: single and double adsorption. Double absorption 

plants can operate at SO2 concentrations as high as 12% and can achieve SO2 conversion as high 

as 99.6% whereas single absorption plants can have SO2 concentrations up to 10% while achieving 

SO2 conversion as high as 98.5%.52 Furthermore, the resulting process gas from a double 

absorption plant can be directly vented to the atmosphere whereas a downstream scrubbing unit is 
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required to reduce the concentration of SO2 in the vent gas from a single absorption column to 

environmentally acceptable levels.53 This can be attributed to the inter-stage absorption column 

that is included between the third and fourth reactor stages for double absorption plants.54 

However, with the aid of the scrubbing unit, single absorption plants produce a vent gas with a 

concentration lower than 100 ppm SO2 whereas the double absorption plants produce a vent gas 

with a concentration of 400-450 ppm SO2.53 Moreover, the scrubbing tower makes operation 

during transient periods such as plant start up significantly easier. While the temperature in the 

packed beds of the reactor is increasing to the catalyst activation temperature, unreacted SO2 in 

the process gas is still being removed so that a vent gas which meets environmental standards is 

produced.53,55 For these reasons, single absorption sulfuric acid plants continue to be viable 

alternatives to the more productive double absorption plants.56 

Despite its importance, the majority of the theoretical work reported in the literature for this 

process has been very limited and focused only on modeling the reactor section of the contact 

process. To the author’s knowledge, only one reactor model has been validated using industrial 

plant data. In that work, a transient model of a multi-stage reactor was created in DYNAM to 

minimize SO2 emissions during plant start-up.8 That work was later extended to include transients 

during operation when SO2 concentration in the vent gas from the metallurgical plant may 

fluctuate.57 Moreover, other studies have considered the use of alternative reactors, mainly trickle-

bed and periodic flow reversal reactors, which eliminate the need for inter-stage cooling. In those 

works, mechanistic models of the reactors were developed. Those models were validated by 

comparison with experimental lab data and thereby established the relationships between the 

design, operating parameters and reactor performance.58–61 Furthermore, there have been reports 

that have made use of optimization tools to show potential improvements in the design and 
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operation of the multi-stage reactor through a reduction in entropy,62 re-distribution of the catalyst 

throughout the different stages,63 and real-time set-point calculation of the first stage inlet 

temperature for process gas with a fluctuating concentration of SO2.64 

To the author’s knowledge, there has only been very limited modeling studies in the literature 

which attempt to model other sections of the contact sulfuric acid plant, in addition to the reactor 

section. In one of those studies, a single absorption sulfuric acid plant using metallurgical ore 

roaster gas as the source of SO2 was simulated at steady state using PROPS.9 The simulation 

included the process gas and process acid cycles. To validate the simulation, temperature results 

from the multiple reactor stages and overall conversion from the model were compared to real 

plant data. An economic optimization was performed for the plant and it was found that a 0.32% 

increase in return on investment was possible at the optimal solution. This translated into an annual 

net earnings increase of $40,000. In that study, the decision variables being considered were the 

inter-stage heat exchanger outlet temperatures and catalyst loadings in the multiple reactor stages. 

In another study, a transient model of a double absorption sulfuric acid plant that uses elemental 

sulfur as the feedstock was completed using gProms.65 That model also included the complete 

process gas cycle; however, the process acid cycle only presented the acid streams in the absorption 

columns. That study suggested that potential SO2 emissions reductions of up to 40% were possible 

by optimizing feed flow rates and split fractions. Although there have been studies that aim to 

minimize the SO2 emissions from the sulfuric acid plant and maximize its economic performance, 

there has not been a study that provides insight on the sensitivity of the economic performance of 

a sulfuric acid plant with respect to the operating conditions. Also, the effect of uncertainty in key 

model and optimization parameters on economic performance has not been previously considered 
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for this plant. Furthermore, the cooling water utility and scrubbing tower have not been included 

in the models reported in the literature. 

2.3 Summary 

Explicit MPC is an attractive alternative to solving the linear MPC optimization problem online 

as it significantly reduces the online computational burden. It results in control laws that are 

parametrized by the measured states of the system and which are evaluated when the process is 

online. Many works have explored this topic using multi-parametric programming (mp-MPC). 

Studies in mp-MPC have explored the topics of MPC under uncertainty, MPC for real-world 

systems such as fuel cells and pressure-swing absorption columns, MPC for nonlinear systems, 

and approximate explicit solutions to the linear MPC optimization problem. The final topic in the 

previous list addresses one of the main drawbacks associated with mp-MPC. Namely, the 

complexity associated with identifying the explicit control laws as a result of the need to partition 

the state-space while avoiding partition overlaps. Secondly, although mp-MPC under uncertainty 

has been considered, the resulting control laws have not been shown to be robust with regards to 

the states of the system. ARO, a method for obtaining robust solutions to uncertain multi-stage 

optimization problems, is considered a suitable alternative to multi-parametric programming for 

obtaining the explicit solution to the linear MPC optimization problem. Its benefits are that it is an 

inherently robust technique and it does not require partitioning the state-space. Within chemical 

engineering it has mainly been applied to the area of process scheduling. The following chapter 

presents the proposed framework for aro-MPC.    

Sulfuric acid is an important global commodity due to its use in many production processes and 

its ability to mitigate SO2 and H2S. Although the sulfuric acid plant can consist of up to five process 
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cycles (process gas, process acid, steam utility, cooling water utility, and scrubbing tower) the 

majority of modeling works in the literature have focused on modeling the catalytic reactor. Of the 

limited works that develop more comprehensive models by incorporating other major process 

units, none have developed a complete sulfuric acid plant model. Moreover, the effect of 

uncertainty in key operating parameters on the plant performance has not been considered. Thus, 

there is great motivation for developing a comprehensive model that includes all components of 

the industrial-scale sulfuric acid plant, including its utilities, to explore the economic and 

environmental benefits of alternative operating conditions. This topic is addressed fully in chapter 

4.  
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Chapter 3: Design of an Explicit Model Predictive Controller using ARO 

In this chapter the proposed framework for Explicit MPC using ARO is presented. It begins with 

the reformulation of the deterministic linear MPC optimization problem presented in Section 2.1.1 

into the robust problem that is considered in this work. Afterwards, a detailed description of ARO 

is provided and is followed by the development of the aro-MPC framework and a comparison to 

mp-MPC. Finally, computational experiments consisting of three case studies are presented to 

demonstrate the features of the proposed framework. 

3.1 Robust State-Space Model for Linear MPC 

The present research work considers only those systems having all states as measurable variables, 

i.e. 𝐂 ∈ ℝ}��}� is an identity matrix. Thus, equation (1c) is not presented in future model 

formulations to simplify the analysis. Moreover, the following model subject to uncertainty (i.e. 

robust model) is considered:  

 𝐱{lm9m= = 𝐀𝐱{lm9 + 𝐁𝐮lm9 + 𝐃𝐞lm9m= ∀𝑖 = 0,… , 𝑃 − 1 (3) 

where 𝐞lm9 ∈ ℝ}�  is the vector of uncertain additive time-varying errors between the model and 

the actual plant, i.e. 𝐞lm9 = 𝐱lm9 − 𝐱{lm9. Thus, equation (3) replaces equation (1b).  

In an online MPC implementation, the newly introduced term above	𝐞 is more commonly 

recognized as a measurable input disturbance	𝐝. In the present explicit aro-MPC framework 𝐞 is 

used to capture all sources of error between the state prediction and actual state measurement. This 

capability has been demonstrated previously in the literature where the additive error was used to 

represent a variety of modelling uncertainties including nonlinearities and hidden dynamics.66,67 

At the time of obtaining the explicit solution (i.e. solving the ARO problem for the explicit control 
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laws), 𝐞lm9 is assumed to belong to a convex polyhedral set, i.e. 𝐞M ≤ 𝐞lm9 ≤ 𝐞N. Thus, the modeler 

is able to estimate a priori the bounds on the error between the state predictions obtained from the 

process model and those measured from the actual plant. When the explicit solution is being 

implemented online, 𝐞lm9 is assumed to be zero in the sampling interval 𝑡 + 𝑖 − 1 when predicting 

𝐱{lm9 and its actual realization is evaluated in the sampling interval 𝑡 + 𝑖 upon observing the actual 

state of the system 𝐱lm9. This is discussed in further detail in section 3.2.3.  

Unlike the typical state-space representation of the input disturbance, which has the same time 

index as 𝐮 (i.e. 𝐱{lm9m= = 𝐀𝐱{lm9 + 𝐁𝐮lm9 + 𝐃𝐝lm9), here the time index for the uncertain additive 

error is the same as the state being predicted, as shown in equation (3). This is done to guarantee 

that the state predictions of the present aro-MPC formulation are robust estimates for the actual 

measured states of the process. 

Whereas it would act as an initial condition in the online MPC framework, the state of the system 

𝐱l in the present aro-MPC framework will not be observed prior to resolving the problem given 

that the optimization is being completed offline. Hence, 𝐱l is also considered as an uncertain 

(unknown) parameter at the time of solving the explicit aro-MPC problem offline and is assumed 

to belong to a convex polyhedral uncertainty set: 𝐱M ≤ 𝐱l ≤ 𝐱N. 

Equations (1) and (3) with the exception of (1b) are referred to as the robust linear MPC 

optimization problem. The following section develops the aro-MPC framework out of the robust 
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linear MPC optimization problem and presents a control policy for online implementation of the 

explicit solution. 

3.2 Framework for Linear Explicit MPC using ARO (aro-MPC) 

This section begins with a general overview of ARO and its use in solving uncertain multistage 

optimization problems. Afterwards, the necessary components for solving the robust linear MPC 

optimization problem using ARO are presented and they are used to develop the adjustable robust 

counterpart (ARC), which is a necessary step in the ARO formulation. The procedure for 

implementing the aro-MPC framework is discussed at the end of this section. 

3.2.1 Handling Uncertainty in Linear MPC 

There are three approaches to handling uncertainty in MPC.4,5 The first involves ignoring the 

uncertainty in the closed loop nominal MPC and accepting its inherent, but limited, robustness. In 

the second approach referred to as open loop min-max MPC, uncertainty is taken into 

consideration by identifying a sequence of control actions for a known initial state and uncertainty 

set such that the states will remain feasible for any disturbance sequence that materializes. In the 

last approach, feedback min-max MPC considers the system as a closed loop subject to realizations 

of the uncertain parameter and optimization occurs over a sequence of control laws rather than 

control actions. In pursuing the latter approach, the robust linear MPC optimization problem can 

be considered as a multistage optimization problem. In this work, adjustable robust optimization 

(ARO) is used to obtain the feedback min-max MPC solution offline. As with the change from 

open loop to feedback min-max MPC,4 searching for the robust solution using ARO as opposed to 

SRO reduces its conservativeness, which makes the present aro-MPC approach attractive. 
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3.2.2 Developing the ARC for the Robust Linear MPC Optimization Problem  

As it applies to the robust linear MPC optimization problem the key decisions that the modeler 

must make to solve the problem using ARO are: 

• Identify the uncertain parameters and their corresponding uncertainty set.  

• Define the parametric representation for the “wait-and-see” decision variables. 

As mentioned above, the parameters in the uncertain linear MPC optimization problem being 

considered as uncertain are the initial state of the system 𝐱l and the additive time-varying uncertain 

error 𝐞lm9. Those uncertain parameters are recast as functions of primitive uncertain parameters 

𝝃lm9 ∈ ℝ�� referred to as factors. The formal definitions for the factor representations of the 

original uncertain parameters are as follows:  

𝐱l = 𝐱l}~� +𝚽𝟎𝝃l (4) 

𝐞lm9 = 𝚽=𝝃lm9					∀𝑖 = 1,… , 𝑃 (5) 

where	𝐱l}~� ∈ ℝ}� is the vector of expected values for the states of the process in the first 

sampling interval, whereas matrices 𝚽b ∈ ℝ}�×}� and 𝚽= ∈ ℝ}�×}� contain user-defined 

constants relating the primitive factors to the uncertain parameters.  

The uncertain factors 𝝃 are assumed to be represented by a bounded factor model. This definition 

of the uncertainty set has two attractive features when considering application of the framework 

proposed here to large, real-world systems. Firstly, the factors can capture non-trivial parameter 

correlations that can readily be identified from historical data.68 Secondly, the uncertainty set is 
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polyhedral; thus, it can be easily accommodated into linear ARO. The description of the 

uncertainty set is as follows:  

𝝇 =

⎩
⎪
⎨

⎪
⎧ ¤𝐱𝑡 ∈ ℝNx: 𝐱𝑡 = 𝐱𝑡Nom + 𝚽0𝝃𝑡	for	some		𝝃𝑡 ∈ Ξ𝑡; 𝐱

L ≤ 	 𝐱𝑡 ≤ 𝐱U®
¤𝐞𝑡+𝑖 ∈ ℝNe: 𝐞𝑡+𝑖 = 𝚽1𝝃𝑡+𝑖	for	some		𝝃𝑡+𝑖 ∈ Ξ𝑡+𝑖; 𝐞

L ≤ 	 𝐞𝑡+𝑖 ≤ 𝐞U®				∀𝑖 = 1, … , 𝑃
where	Ξ𝑡+𝑖	is	defined	as:

Ξ𝑡+𝑖 = ¤𝝃𝑡+𝑖 ∈ ℝ
NF: 𝝃𝑡+𝑖 ∈ [−𝐞𝐳, +𝐞𝐳], 𝐞𝐳

T𝝃𝑡+𝑖 ∈ [−𝛽F, +𝛽F], 𝛽 ∈ [0,1]®					∀𝑖 = 0, … , 𝑃⎭
⎪
⎬

⎪
⎫

 

(6) 

where 𝐞𝐳 ∈ ℝ}� denotes the vector of ones, F is the number of factors, and the scalar 𝛽 is a user 

defined constant in addition to the previously introduced matrices 𝚽b and 𝚽=. Thus, the range of 

the individual primitive factors is limited to |1| and additional information regarding their 

interdependencies can be used to further reduce their range by reducing the value of 𝛽, as shown 

in (6). Note that the convex polyhedral bounds for 𝐱l and 𝐞lm9 introduced in section 3.1 have also 

been explicitly included in the uncertainty set description (6). A description of how the uncertainty 

set is defined is presented in Section 3.3.1. 

The control actions are the primary decision variables of interest to be adjustable to the uncertain 

time-varying error 𝐞. However, to maintain equality of the constraints (3) when adjusting the 

control action based on different realizations of the uncertain parameters, it is necessary to also 

define the predicted process states as adjustable variables. Several alternative representations for 

the parametrized function have been proposed by various researchers when developing an ARO 

framework.69–71 Affine relationships are often considered in the interest of numerical tractability.26 

Affine functions are used to represent the adjustable variables in this work and they are defined as 
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follows: 

𝐮lm9 ← 𝝊lm9b + � 𝐔lm9,º𝝃º

lm�a=

º�l

					∀𝑖 = 0,… , 𝑃 − 1 
(7) 

𝐱{lm9 ← 𝝌lm9b +�𝐗lm9,º𝝃º

lm�

º�l

					∀𝑖 = 1,… , 𝑃 
(8) 

where the vectors 𝝊lm9b ∈ ℝ}� and 𝝌lm9b ∈ ℝ}� represent the intercepts whereas the elements in the 

matrices 𝐔lm9 ∈ ℝ}�×}� and 𝐗lm9 ∈ ℝ}�×}� represent the slopes of the respective affine 

expressions. Thus, the variables 𝝊lm9b  and 𝐔lm9 as well as 𝝌lm9b  and 𝐗lm9 replace the original 

variables 𝐮lm9  and 𝐱{lm9, respectively, as the decision variables of the robust MPC optimization 

problem. 

To reduce the conservativeness of the control laws, full recourse is considered in the aro-MPC 

framework. That is, the adjustable variables are not restricted to be functions of the most recent 

realizations of the uncertain parameters but rather are allowed to be a function of all previously 

observed values of uncertainty. Thus, the control action 𝐮lm9 and the predicted process state 𝐱{lm9 

are both defined as explicit functions of the primitive factors 𝝃l, … , 𝝃lm9. This is reflected in the 

present framework by including the following non-anticipativity restrictions: 

𝐔9º = 𝟎					∀𝑗 > 𝑖 (9) 

𝐗9º = 𝟎					∀𝑗 > 𝑖 (10) 

In typical ARO applications a subset of the decision variables is designated as “here-and-now”. In 
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this work, the ARO method is adapted for the aro-MPC framework so that the first control actions 

can be computed as affine functions of the first observed state of the process, xt. Note that the mp-

MPC framework is the same in that all control actions are evaluated using measured states of the 

process. In the present aro-MPC formulation, this is accomplished by solving all of the original 

decision variables (𝐮lm9 ∀𝑖 = 0,…𝑃 − 1, 𝐱{lm9 ∀𝑖 = 1,…𝑃) as adjustable variables, and thus 

having no “here-and-now” decisions. 

3.2.2.1 Formulating ARC 

For the robust linear MPC optimization problem defined by equations (1) and (3), excluding 

(1b), the full ARC is formulated by replacing the adjustable variables with their affine 

expressions, equations (7) and (8), considering the non-anticipativity restrictions, equations (9) 

and (10), and incorporating the uncertainty set description (6) to reformulate the uncertain 

equality and inequality constraints by coefficient matching and dualization, respectively. Note 

that the adjustable variables in the objective function are only replaced by their respective 

intercepts and not the complete affine functions. Hence, the resulting solution is robust in its 

satisfaction of the process constraints, but the objective function is reflective of the expected 
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rather than the worst-case realization of the uncertain parameters. This was done to avoid the 

need to dualize the nonlinear objective function which is left for future studies. 

Based on the above, the following is the ARC for the equality constraint (3) after coefficient 

matching: 

𝝌lm=b = 𝐀𝐱l}~� + 𝐁𝝊lb  (11a) 

𝐗lm=,l = 𝐀𝚽𝟎 + 𝐁𝐔l,l  (11b) 

𝝌lm9m=b = 𝐀𝝌lm9b + 𝐁𝝊lm9b  ∀𝑖 = 1,… , 𝑃 − 1 (11c) 

𝐗lm9m=,º = 𝐀𝐗lm9,º + 𝐁𝐔lm9,º ∀𝑗 = 𝑡, … , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 − 1 

(11d) 

𝐗lm9m=,lm9m= = 𝐃𝚽= ∀𝑖 = 0,… , 𝑃 − 1 (11e) 

Similarly, the following is the ARC for each row 𝑛 = 1,… , N� of the lower bound of the uncertain 

inequality constraint (1e) after dualization: 
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�𝐞𝐳¾�𝐩lm9,¿,ºN +
lm9

º�l

�𝐞𝐳¾�𝐩lm9,¿,ºM +
lm9

º�l

�𝛽Fylm9,¿,ºN
lm9

º�l

+�𝛽Fylm9,¿,ºM
lm9

º�l

+ À𝐱N − 𝐱l}~�Á𝐫lm9,¿,lN

+ À𝐱l}~� − 𝒙MÁ𝐫lm9,¿,lM

+ � 𝐞N𝐫lm9,¿,ºN
lm9

º�lm=

+ � 𝐞M𝐫lm9,¿,ºM
lm9

º�lm=
≤ 𝒙lm9(¿)

b − 𝐱(¿)M  

∀𝑖 = 1,… , 𝑃 (12a) 

𝐩lm9,¿,lN − 𝐩lm9,¿,lM + ylm9,¿,lN 𝐞𝐳¾ − ylm9,¿,lM 𝐞𝐳¾
+ 𝚽b

�𝐫lm9,¿,lN − 𝚽b
�𝐫lm9,¿,lM = −𝐗lm9,l(¿)�  

	∀𝑖 = 1,… , 𝑃 

 

(12b) 

𝐩lm9,¿,ºN − 𝐩lm9,¿,ºM + ylm9,¿,ºN 𝐞𝐳Ã − ylm9,¿,ºM 𝐞𝐳Ã
+ 𝚽=

�𝐫lm9,¿,ºN − 𝚽=
�𝐫lm9,¿,ºM = −𝐗lm9,º(¿)

�  
∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

(12c) 

𝐩lm9,¿,ºN , 𝐩lm9,¿,ºM , 𝐫lm9,¿,ºN , 𝐫lm9,¿,ºM ≥ 𝟎 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

(12d) 

ylm9,¿,ºN , ylm9,¿,ºN ≥ 0 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

(12e) 

where 𝐩lm9,¿,ºN ,	𝐩lm9,¿,ºM ∈ ℝ}�, 𝐫lm9,¿,ºN ,	𝐫lm9,¿,ºM ∈ ℝ}�, and ylm9,¿,ºN ,	ylm9,¿,ºM ∈ ℝ, ∀𝑛 = 1,… , N�, 

∀𝑗 = 𝑡, … , 𝑡 + 𝑖, ∀𝑖 = 1,… , 𝑃. In equations (12a) to (12e), 𝐚(¿) and 𝐀(¿) are general 

representations used to denote the nth element of vector 𝐚 (a scalar) and the nth row of a matrix 𝐀 

(a row vector), respectively. The complete ARC for the robust linear MPC optimization problem 

can be found in Appendix A. For a complete description on formulating the ARC the reader is 

referred to other sources.47 

3.2.3 aro-MPC Framework Implementation 

The full ARC of the robust optimization problem defined by equations (1) and (3), excluding (1b), 
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is solved offline. In this work, the optimization solver IPOPT was used to identify the optimal 

solution. Note that the process is assumed to be in continuous operation. Thus, the state of the 

system is not explicitly considered at the time of solving the ARC to obtain the explicit control 

laws. Rather, any known state of the system at the time of solving the ARC is only implicitly 

considered since it is used as an estimate for 𝐱l}~�. The inputs to solve the ARC are 𝐱l}~�, the 

typical information required to solve the deterministic optimization problem defined by equations 

(1) with the exception of the initial state of the system, i.e. 𝑀, 𝑃, 𝐪, 𝐰, 𝐀, 𝐁, 𝐂, and 𝐃, and a fully 

defined uncertainty set 𝝇, as shown in (6). 

A timeline for solving offline the full ARC and implementing the explicit solution is presented in 

Figure 2. The sampling interval in which the first control law of the explicit solution is to be 

implemented is defined as 𝑡. The modeler must begin solving the ARC at an offline time 𝑡Æ~Ç= 

where the requirement is that the difference between 𝑡Æ~Ç= and 𝑡 be greater than or equal to the time 

required to solve the ARC. At 𝑡Æ~Ç= an estimate of 𝐱l}~� is required. The estimate can be obtained 

using the current state of the system. The number of affine expressions obtained as control laws, 

equations (7), is the same as the control horizon (𝑀) defined by the modeler. Moreover, the control 

laws are implemented in sequence in a time-varying manner. Thus, at sampling interval 𝑡 + 𝑀 −

1 the final control law is implemented and another explicit solution is required to continue 

controlling the process at sampling interval 𝑡 + 𝑀. Therefore, the ARC must be solved once again 
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at an offline time 𝑡Æ~Çh before 𝑡 + 𝑀, as shown in Figure 2. 

 

 

Figure 2. Key timepoints for the aro-MPC framework: 𝒕𝒔𝒐𝒍𝟏 and 𝒕𝒔𝒐𝒍𝟐, offline times for obtaining the 
explicit solution, 𝒕 and 𝒕 +𝑴, the sampling intervals for implementing the first control law in the sequence, 
and 𝒕 +𝑴− 𝟏 the sampling interval for implementing the final control law in the sequence. 

The online implementation of the resulting control laws is presented in Table 1. It is assumed that 

the control laws for time interval 𝑡 to 𝑡 + 𝑀 − 1 are available by solving the full ARC formulation 

at 𝑡Æ~Ç=, referred to as ARC Solution 1. Thus, at the sampling interval 𝑡 the state of the system 𝐱l 

is measured and compared to the expected state 𝐱l}~� to obtain the factor realization 𝝃l using 

equations (4). The control action 𝐮l and the predicted state of the system 𝐱{lm= are calculated using 

their respective affine functions, equations (7) and (8), as obtained in ARC Solution 1. For the 

latter, 𝝃lm= is assumed to be 0 as it has not yet materialized. 𝐱{lm= can be seen to be a function of 

𝝃lm= as per equation (11e) where the slope 𝐗lm9m=,lm9m= has not been eliminated by the non-

anticipativity restriction, equation (10). This occurs as a result of the uncertain time-varying error 

having the same time index as the state being predicted in the original robust model as shown in 

equation (3). The procedure for the sampling intervals 𝑡 + 1 to 𝑡 + 𝑀 − 1 is the same with the 

exception that comparison of the actual and predicted states of the system, 𝐱lm9 and 𝐱{lm9, 

respectively, is performed using equations (5) instead of (4). As discussed in Section 3.2.2, full 

recourse is considered in the present aro-MPC framework. Thus, the control law is a function of 
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all uncertain parameters materializing, starting from the first sampling interval in which the current 

ARC Solution was applied. Before the systems reaches 𝑡 + 𝑀, a second ARC formulation needs 

to be resolved at time tsol2 (referred to as ARC Solution 2). Accordingly, when implementing ARC 

Solution 2 in sampling interval 𝑡 + 𝑀, the first control law in the sequence is only a function of 

the uncertain factor 𝝃lm�, as shown in Table 1. 

Table 1. Online implementation of the aro-MPC solution 

ARC 
Solution 

1 2 

Sampling 
Interval 

𝑡 𝑡 + 1 

… 

𝑡 + 𝑀 − 1 𝑡 + 𝑀 

Measure 𝐱l 𝐱lm= 𝐱lm�a= 𝐱lm� 
Compare 
To 

𝐱l}~� 𝐱{lm= 𝐱{lm�a= 𝐱lm�}~� 

Calculate 𝐮l = 𝒇(𝝃l) 
𝐱{lm= = 𝒇(𝝃l, 𝝃lm=) 

𝐮lm= = 𝒇(𝝃l, 𝝃lm=) 
𝐱{lmh = 𝒇(𝝃l, 𝝃lm=, 𝝃lmh) 

𝐮lm�a= = 𝒇(𝝃l, … , 𝝃lm�a=) 
𝐱{lm� = 𝒇(𝝃l, … , 𝝃lm�a=, 𝝃lm�) 

𝐮lm� = 𝒇(𝝃lm�) 
𝐱{lm�m=
= 𝒇(𝝃lm�, 𝝃lm�m𝟏) 

A novel feature of the present aro-MPC framework is that it is guaranteed to remain feasible for 

any sequence of uncertain parameters of length 𝑀 belonging to the pre-defined uncertainty set 𝝇. 

Thus, the calculated control laws are such that the observed states of the system over the control 

horizon 𝑀 will remain within their bounds, equations (1d). This is a direct consequence of the 

ARO method and the resulting decision rules for adjustable variables being fully robust for 

realizations of the uncertain parameter within the user-defined uncertainty set.26 

3.2.4 Comparison to mp-MPC 

Although the mp-MPC and aro-MPC frameworks yield explicit feedback control laws to the linear 

MPC optimization problem, there are some key differences between the two approaches. The main 

advantage of the mp-MPC framework is the optimization problem does not have to be resolved 

for a new explicit solution after an elapsed number of time intervals. Both the aro-MPC and mp-
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MPC frameworks require re-optimization if the setpoints of the system change or the modeller 

wishes to update the uncertainty set. However, to guarantee feasibility, the time-varying nature of 

the aro-MPC controls laws results in required re-optimization when the sequence of control laws 

is exhausted, even if the system is at steady-state. In addition to not having to partition the state-

space into polyhedral regions, another advantage of the present aro-MPC framework is that 

controller feasibility is guaranteed, i.e. when evaluated, the control laws are guaranteed to maintain 

the states of the system within their feasible region for any sequence of uncertain parameters 

materializing within the user-defined uncertainty set.  

3.3 Results 

This section presents three case studies that demonstrate the capabilities of the proposed aro-MPC 

framework. The first case study highlights the effects of the size of the uncertainty set and the 

length of the control horizon on the CPU time required to obtain the control laws and the resulting 

controller performance. This is followed by a comparison to online MPC for four disturbance 

sequences. The second case study considers a 5x5 system to highlight the applicability of the 

framework to larger systems. In the final case study a linear model is used to approximate a 

nonlinear plant to demonstrate that the uncertain additive time-varying error can capture error 

resulting from plant-model mismatch. 

3.3.1  Case Study 1 

The following single input two state system has been adapted from the seminal work on mp-MPC:6 

𝐱lm9m= = È0.7326 −0.0861
0.1722 0.9909 Í 𝐱lm9 + È

0.0609
0.0064Í ulm9 + È

0.1 0
0 0.07Í𝐝lm9 

∀𝑖 ≥ 0 (13a) 
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𝐱lm9 ≥ −0.5 ∀𝑖 ≥ 0 (13b) 

−10 ≤ ulm9 ≤ 10 ∀𝑖 ≥ 0 (13c) 

È−0.11−0.11Í ≤ 𝐝lm9 ≤ È0.110.11Í 
∀𝑖 ≥ 0 (13d) 

The aro-MPC solution is obtained for the above system under the assumption that the plant defined 

by equations (13a) can be perfectly modeled with the exception of the unmeasurable disturbance 

d. Thus, the following equations are used as a robust model for the plant equations (13a): 

𝐱{lm9m= = È0.7326 −0.0861
0.1722 0.9909 Í 𝐱{lm9 + È

0.0609
0.0064Í ulm9 + È

1 0
0 1Í 𝐞lm9m= ∀𝑖 = 0,… , 𝑃 − 1 (14) 

As in the original mp-MPC work, the objective is to regulate the system to the origin. The robust 

linear MPC optimization problem for this system has the following objective function: 

𝑃𝑀 =�Àx{=,lm9h + x{h,lm9h Á
�

9�=

+ �(∆ulm9)h
�a=

9�=

 
(15) 

The bounded factor uncertainty set at 𝑡Æ~Ç= has the following representation:  

𝐹 = 2, 𝛽 = 1, 𝚽b = 𝚽= = È1 0
0 1Í, 	𝐱Ï

}~� = È11Í 

Note the definition of 𝐱Ï}~� above only applies to the ARC Solution obtained at 𝑡Æ~Ç=. For future 

ARC Solutions the final predicted state of the system was used to define 𝐱Ï}~�. Thus, 𝐱{lm� was 

used as an estimate for the initial state of the system in the first time interval of ARC Solution 2, 

𝐱ÏmÐ}~�.  

In the three case studies presented in this work, the 𝚽 matrices have been considered as identity 
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matrices. However, it is possible to consider nonzero entries in the off-diagonal elements. This 

represents the case where there is interaction between the process disturbances and their effects on 

the system states. As compared to the aro-MPC that does not consider interaction in the process 

disturbances, for the same uncertainty set, one that considers interaction may require less 

restriction on the input variables (i.e. relaxed constraints) to achieve a feasible solution. 

The remaining parameters for the uncertainty set remained constant for all ARC Solutions. 

To explore the effect of the size of the uncertainty set on the controller performance the bounds 

for 𝐱l and 𝐞lm9 are varied using the parameter ∝. For 𝐱l, ∝ defines the range around 𝐱b}~� whereas 

for 𝐞lm9 this parameter defines the absolute-value norm. Thus, for ∝= 0.05, 𝐱M = È0.950.95Í, 𝐱
N =

È1.051.05Í, 𝐞
M = È−0.05−0.05Í, and 𝐞N = È0.050.05Í. 

3.3.1.1 aro-MPC Performance Subject to Nominal Disturbance Sequence 

Figure 3a demonstrates the effects of controller horizon (M) and size of the uncertainty set on the 

performance of the resulting explicit controller as defined by the Performance Metric (PM) which 

is evaluated using equation (15). Thus, PM is evaluated a posteriori, i.e. at the end of the period 

under consideration using the actual measured states of the system and implemented control 

actions rather than when obtaining the explicit solution. The period under consideration consists 

of 100 time intervals. Note that the results presented in this case study initially assumed that the 

disturbance is assumed to materialize at its nominal value in each time interval. Consequently, the 

uncertain primitive factors also materialize at their nominal value. Figure 3b presents the average 

CPU time needed to solve the ARC of the robust linear MPC optimization problem (i.e. for the 
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controller having a control horizon (M) of 2, the optimization problem was solved 50 times in 

order to obtain 100 total time varying control laws).  

In Figure 3a, it can be observed that for ∝= 0.05 the PM is reduced by 42.8% by increasing the 

control horizon from 2 to 20, respectively. Beyond a control horizon of 20, the improvement in 

performance is negligible as the PM only reduces by a further 1.3% at a control horizon of 50. For 

the ∝ values of 0.1, 0.2, and 0.3 the minimum PM occurs at control horizons (𝑀) of 8, 2, and 2, 

respectively. Thus, the existence of an optimal control horizon for a particular size of the 

uncertainty set is expected. Figure 4 presents a sample comparison of two aro-MPC controllers, 

both with ∝= 0.1. This figure aims to highlight the cause of increasing PM value when the control 

horizon is increased beyond that resulting in the minimum PM. Figure 4a and Figure 4b show the 

state trajectory and sequence of control actions for the aro-MPC with 𝑀 = 8 whereas Figure 4c 

and Figure 4d are for the aro-MPC with 𝑀 = 10. As shown in these figures, the former controller 

achieves the minimum PM. Figure 4a demonstrates that the former aro-MPC is able to achieve the 

setpoint within the 100 time intervals whereas Figure 4b shows that the manipulated variable 

reaches a new steady-state under a nominal disturbance. For the aro-MPC with 𝑀 = 10 a steady-

state offset for the second state (x2) results as shown in Figure 4c. The cause of this is the additional 

uncertainty that the solution must accommodate when the control horizon is extended by two 

additional time periods (i.e. the change from 𝑀 = 8 to 𝑀 = 10) in the aro-MPC formulation, 

which results in the control actions not achieving a steady-state value of 0 as shown in Figure 4d. 

Hence, the increasing PM when the control horizon is increased beyond the value resulting in the 

minimum PM can be interpreted as the price of robustness. In order to guarantee constraint 

satisfaction under uncertainty in the system states, the aro-MPC must admit a degree of offset. 
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However, the controllers with steady-state offset still have the advantage of the aro-MPC 

framework in that the resulting explicit solutions are guaranteed to remain feasible for any 

realization in the bounded set of the states.  

As shown in Figure 3b, the average CPU time to solve the ARC of the robust linear MPC 

optimization problem increases as a function of the control horizon and the size of the uncertainty 

set. The effect of the control horizon on the offline CPU time is expected because the number of 

constraints and decision variables in the ARC formulation increases as the control horizon 

increases. 

a) 

 

b) 

 

 

Figure 3. aro-MPC controller for Case Study 1 results for a range of control horizons and 
uncertainty set sizes: a) PM between the observed states and the setpoint, and b) average offline 
CPU (s) required to obtain the sequence of control laws.  
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a)

 

 

b)

 

c)

 

d)

 

Figure 4. Case study 1: aro-MPC performance (∝= 0.1). a) state trajectory and b) control 
action profile (𝑀 = 8); c) state trajectory and d) control action profile (𝑀 = 10). 

3.3.1.2 aro-MPC Disturbance Rejection and Robustness 

Unlike Section 3.3.1.1, the scenarios considered in this section did not assume that the complete 

disturbance sequence materialized at its nominal value. Rather, a variety of disturbance sequences 

were considered to explore the disturbance rejection capabilities and robustness of the aro-MPC 
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controller. Table 2 presents the CPU times and objective value for two controllers: an aro-MPC 

controller with a control horizon of 50 and uncertainty set defined by ∝= 0.05 and a standard 

online MPC controller with a control horizon of 50. Both controllers where simulated under five 

different disturbance scenarios, as shown in Table 2. The simulation period was set to 100 time 

intervals. The offline CPU time for the aro-MPC controller is the total computation time required 

to obtain the explicit solution for the entire period under consideration, i.e. for the aro-MPC 

controller with 𝑀 = 50, the CPU time that is required to solve the optimization problem twice. 

For both controllers, the online CPU times are totals for the period under consideration. Thus, for 

the aro-MPC framework it is the time required to evaluate the complete sequence of control actions 

whereas for the online MPC it is the cumulative time required to solve the linear MPC optimization 

problem in each of the 100 time intervals. 

Table 2 highlights two key results. Firstly, the aro-MPC controller achieves the desired result of 

significantly reducing the online CPU time associated with linear MPC. The online CPU time for 

the aro-MPC is nearly 2 orders of magnitude smaller than that of the standard online MPC. 

Secondly, the loss in performance in restricting the control actions to be affine and obtaining their 

coefficients offline is minimal and in some cases results in an improved objective value (i.e. Sc3 

and Sc4 in Table 2). As in Section 3.3.1.1, PM is used to evaluate the performance of the resulting 

controller. As shown in Table 2, for Sc1 and Sc2 a maximum percent improvement of 2.14% is 

achieved in the online MPC but for Sc3 and Sc4 the aro-MPC improves closed-loop performance 

by 5.89% approximately. In Sc4, the online MPC experiences a state violation as a result of the 

linear MPC controller not being robust.  
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The main feature of the aro-MPC is highlighted in Sc5 that considers random realizations in the 

disturbances. Closed-loop simulations for Sc5 are shown in Figure 5. For this scenario, 20 random 

100-period disturbance sequences are uniformly sampled from the bounded disturbance set shown 

in equation (13d) and applied to the system in closed-loop. Moreover, the initial states are also 

randomly sampled from the bounded uncertainty set defined by ∝= 0.05. Figure 5a presents the 

state trajectories when the system is controlled by the online MPC with M = 50. As expected, the 

enlarged section of Figure 5a focusses on time intervals 3 to 10 where the system experiences state 

violations in 16 out of 20 scenarios. However, Figure 5b demonstrates that when the system is 

controlled by the aro-MPC with M = 50 and ∝= 0.05 no state violations occur. Moreover, the 

average PM improvement achieved by the online MPC as compared to the aro-MPC for the 

random realizations considered is only 1.70% though it does not comply with state bounds. Thus, 

the aro-MPC framework proposed here can be considered as a promising alternative to online 

MPC. 

Table 2. CPU time and PM for an aro-MPC with ∝= 𝟎. 𝟎𝟓 and 𝑴 = 𝟓𝟎 and an Online MPC 
with 𝑴 = 𝟓𝟎 subject to a variety of disturbance sequences over a 100-period time interval  
Scenario Disturbance 

Sequence 
aro-MPC  Online MPC  Percent 

Difference 
PM Total 

Offline 
CPU 
(s) 

Online 
CPU 
(s) 

PM Online 
CPU 
(s) 

PM Constraint 
Violation 

Sc1 Nominal 
Disturbance 

30.93 <0.1 17.77 7.36 17.39 No 2.14% 

Sc2 Upper 
Bounded 
Disturbance 

31.62 <0.1 20.43 6.90 20.00 No 2.10% 

Sc3 Low 
Frequency 

31.27 <0.1 19.40 6.97 20.21 No -4.18% 
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(1 time 
interval) 
Bounded 
Disturbance 

Sc4 High 
Frequency 
(10 time 
intervals) 
Bounded 
Disturbance 

31.47 <0.1 18.66 7.25 19.76* Yes -5.89% 

Sc5 Random 
Disturbance 
Sequences 

31.32 <0.1 18.19  7.12 17.88* Yes  1.70% 

*State violation 
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a)  

b)  

Figure 5. State trajectories for 20 random disturbance sequences. a) online MPC with 𝑴 =
𝟓𝟎, with focus on time intervals 3 to 10 to highlight time region where state violations occur, 
and b) aro-MPC with 𝑴 = 𝟓𝟎 and ∝= 𝟎. 𝟎𝟓. 

3.3.2  Case Study 2 

As in the previous case study, the present case study assumes that the model used to obtain the 

aro-MPC solution is a perfect approximation of the plant with the exception that the disturbance 
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is considered to be unmeasurable. The proposed 5x5 plant under consideration is defined by the 

following robust model and constraints: 

𝐱{lm9m=

=

⎣
⎢
⎢
⎢
⎡
0.7326 −0.0861 0.0009 0.0010 −0.0385
0.1722 0.9909 0.0700 −0.1500 0.0300
0.0900 0.0300 0.8500 0.0200 0.0100
0.1000 0.0500 −0.0600 0.9000 0.1300
0.0200 0.0900 0.0100 0.3000 0.7700 ⎦

⎥
⎥
⎥
⎤
𝐱{lm9

+

⎣
⎢
⎢
⎢
⎡
0.70 −0.08 0.01 0.20 −0.04
0.01 0.70 0.01 0.02 −0.30
0.10 0.02 0.80 0.02 0.01
0.05 −0.02 0.15 0.90 −0.04
0.01 0.02 −0.02 −0.01 0.5 ⎦

⎥
⎥
⎥
⎤
𝐮l

+

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
𝐞lm= 

∀𝑖 = 0,… , 𝑃 − 1 (16a) 

−0.5 ≤ 𝐱{lm9 ≤ 10 ∀𝑖 = 0,… , 𝑃 (16b) 

−1.5 ≤ ulm9 ≤ 1.5 ∀𝑖 = 0,… , 𝑃 − 1 (16c) 

The purpose of this case study is to test the performance of the aro-MPC by observing how the 

offline CPU time changes as the system becomes larger and its ability to drive the system states to 

their respective setpoints. When obtaining the ARC Solution, the uncertain additive error is 

bounded by the uncertainty set. However, in the present analysis, only the nominal disturbance 

sequence is considered. The objective in this case study is to drive the states to the setpoint, 𝐫� =

[0 1 0 0.73 0.5] the weights in the performance function (PM) are 𝐪� =

[1 1 1 1 1] and 𝐰� = [0.1 0.1 0.1 0.1 0.1]. The uncertainty set for the above 

system is defined as follows: 
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𝐹 = 5, 𝛽 = 1, 𝚽b = 𝚽= =

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
, 	𝐱Ï}~� =

⎣
⎢
⎢
⎢
⎡
5
5
1
5
1⎦
⎥
⎥
⎥
⎤
 

The parameter ∝ and M are set to 0.05 and 50, respectively. Note that the nominal measured states 

(𝐱Ï}~�) considered for this test are significantly far from their corresponding set-points (r). Figure 

6a demonstrates that the control laws for the present aro-MPC successfully drive the system to the 

setpoint when the disturbance sequence attains its nominal value. In Figure 6b the average online 

CPU times for this larger system (CS2) are compared to those of Case Study 1 (CS1) for the same 

size uncertainty set (i.e. ∝=0.05) and control horizons. As shown in this figure, the CPU times for 

CS2 are larger than CS1 as expected. However, for the largest control horizon considered, the CPU 

time remains below 200 seconds for CS2. Furthermore, although for the smaller control horizons 

considered the CPU time was as much as 17 times larger for CS2 as compared to CS1, for the aro-

MPC with 𝑀 = 50 the increase in CPU time from CS1 to CS2 was approximately two-fold. The 

optimization problem under consideration for CS2 was significantly larger than CS1. The former 

consisted of 161,876 constraints and 639,501 decision variables whereas the latter only involved 

16,001 constraints and 60,001 decision variables. Thus, these results show that the proposed aro-

MPC framework is attractive to address large-scale systems. 
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a) 

  

b)

 

Figure 6. Case Study 2 (∝= 0.05). a) state trajectory over a 100-period time interval, and b) 
comparison of average CPU times for aro-MPC controllers of varying control horizons for Case 
Study 1 (CS1) and Case Study 2 (CS2). 

3.3.3  Case Study 3 

To further demonstrate the implementation of the present framework to an actual application, the 

performance of the aro-MPC was tested under plant-model mismatch. To perform this test, the 

following nonlinear plant that describes the changes in the liquid hold-up in a mixing tank with 

two inlet streams and one outlet stream has been adapted from literature:72 

dV
d𝑡 = FR + FS − √V	 

(17a) 

0.05mÙ h⁄ ≤ FR ≤ 0.15mÙ h⁄  (17b) 

0.4925mÙ h⁄ ≤ FS ≤ 1.4925mÙ h⁄  (17c) 
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V ≥ 0.9	mÙ (17d) 

where FR represents the flowrate of the hot inlet stream which is an additive disturbance, FS is the 

flowrate of the cold inlet stream, a manipulated variable used for control, and V is the volume of 

the tank, the state variable. The plant defined by equation (17a) is linearized around the nominal 

point V = 1.19	mÙ, FS = 0.9925mÙ h⁄ , and FR = 0.1mÙ h⁄ . To implement the aro-MPC 

framework, FR is replaced with 𝑒 to yield the following linearized discrete process model: 

Vlm=Ü = el∆𝑡 + FS,lÜ ∆𝑡 + VlÜ Ý1 −
1

2ÞVb
∆𝑡	ß 

(18) 

where YlÜ is the variable Yl in deviation variables whereas Yb represents the variables’ nominal 

point; ∆𝑡 is the time interval. In addition to capturing the effects of the additive disturbance FR,l, 

el is able to capture the plant-model mismatch resulting from the use of equation (18) to model 

the plant defined by equation (17a) in the aro-MPC framework.  

The ARC is developed for the robust linear MPC optimization problem defined by equations (17c) 

to (17d) and (18) and has the following objective function:  

𝑃𝑀á =�(Vâlm9)h
�

9�=

+ �(∆FS,lm9)h
�a=

9�=

 
(19) 

The uncertainty set for this case study is defined as follows: 

𝐹 = 1, 𝛽 = 1, 𝚽b = 𝚽= = [1], 	𝐱Ï}~� = [1] 

Thus, the initial state of the plant is assumed to be different from the nominal condition around 

which the linear model was obtained. To capture the plant-model mismatch, the bounds for el are 
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estimated using the steady-state error between the equations (17a) and (18) after a bounded step 

change in the control action (FS) based on the feasible range defined by equations (17b). Thus, to 

accommodate additional error between the nonlinear plant and the linear model that may result 

from the uncertain parameter attaining its upper or lower bound, the parameter ∝ is set to a value 

of 0.4.  

As was done in Section 3.3.1.2, Figure 7 presents the state trajectories for two controllers subjected 

to 20 random disturbance sequences and initial state realizations sampled from equation (17b) and 

the uncertainty set, respectively. Figure 7a presents the results for the online MPC with 𝑀 = 25 

and Figure 7b for the aro-MPC with 𝑀 = 25 and ∝= 0.4. The average CPU time required to obtain 

the ARC Solution is 1.05 seconds. The aro-MPC is able to maintain the system in close proximity 

to the setpoint under a continuous disturbance sequence in FR. Moreover, it can be seen that the 

online MPC experiences larger oscillations around the setpoint. This leads to a significant 

performance improvement in the aro-MPC as measured by PMV, averaging 17.1% over the 20 

sequences considered.  

Figure 8 demonstrates the effectiveness of the aro-MPC framework for controlling the nonlinear 

plant when it is subjected to a series of setpoint changes. As expected, the plant-model mismatch 

increases as the setpoint deviates farther from the nominal operating point. This can be seen in 

Figure 8a where the uncertain primitive factor 𝜉 achieves increasing steady-state values, 0.11, 0.12, 

and 0.22 corresponding to the three setpoints in Figure 8c, 1.5, 1.7, and 2.2, respectively. 

Moreover, the performance of the controller deteriorates as the offset between the plant and the 

setpoint increases with each of the setpoint changes. Furthermore, from Figure 8b and Figure 8c it 

can be seen that the control actions and the state variables always remain within their bounds. 
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Moreover, the former remained at its upper bound for a small time period when the setpoint 

changed from 1.7 to 2.2.  

Many chemical engineering applications are defined by nonlinear models. Thus, the results of this 

case study are particularly promising as they indicate that the aro-MPC framework can be applied 

to nonlinear systems. Moreover, to obtain an explicit controller that performs well, the user must 

identify a linear model that captures the plant behaviour around a nominal condition.  

a) 

 

b) 

 

Figure 7. State trajectories for 20 random disturbance sequences. a) online MPC with 𝑀 = 25, 
and b) aro-MPC with 𝑀 = 25 and ∝= 0.4.  
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a)

 

b)

 

c)  

Figure 8. Case Study 3; a) factor realizations and disturbance sequence, b) control action 
sequence, and c) plant and model state trajectories as well as the user-defined setpoint. 

3.4 Summary 

The aro-MPC framework is a novel method for Explicit MPC. Its major feature is that the resulting 

parametrized relationships for the manipulated variables (control inputs) are inherently robust and 

guaranteed to maintain the state variables within their feasible region without additional 

considerations. The deterministic linear MPC optimization problem is adapted for the aro-MPC 
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framework by replacing the input disturbance with an uncertain additive time-varying error. In this 

framework, the future control actions and predicted states are solved as adjustable variables which 

are defined as linear functions of the uncertain parameters. The uncertain parameters, the initial 

state of the system and the additive error, are recast as functions of uncertain primitive factors 

defined by a bounded factor uncertainty set. By incorporating the definitions of the adjustable 

variables, the uncertain parameters, and the uncertainty set into the robust linear MPC optimization 

problem, the user is able to define the full ARC. Performance of the aro-MPC framework was 

determined to be a function of the control horizon and the size of the uncertainty set. Moreover, 

the resulting controller was shown to experience a negligible loss in performance as compared to 

Online MPC with the added benefit of being robust against the user-defined uncertainty set. The 

final two case studies highlight that the aro-MPC framework CPU time scales well for larger 

systems and that it is applicable to nonlinear systems. 
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Chapter 4: Economic Optimization of an Industrial-scale Sulfuric Acid Plant 

Under Uncertainty 

This chapter presents the modeling and economic optimization of an industrial-scale sulfuric acid 

plant under uncertainty. It begins with a description of the five plant sections that have been 

incorporated into the process flowsheet model of the single absorption sulfuric acid plant with 

scrubbing tower. The method used to achieve overall convergence of the flowsheet and the 

thermodynamic models that were used are also described. The model is validated by comparison 

with historical plant data and a sensitivity analysis is carried out to identify key process parameters. 

This culminates in an economic optimization to determine the combination of process parameters 

that maximizes the daily profit and an uncertainty analysis to understand profit variability. 

4.1 Sulfuric Acid Plant Model 

The 200-metric ton per day industrial sulfuric acid plant with scrubbing tower, from here on 

referred to as the Sulfuric Acid plant, that was modeled in this study consists of five process 

flowsheets that are connected as shown in Figure 9. The design and operating specifications of the 

key process units are defined in Table 3. The main purpose of the process gas flowsheet is to 

generate SO3 which is absorbed by the process acid flowsheet in the absorption towers and 

converted into H2SO4. The scrubbing tower reduces the concentration of SO2 in the vent gas stream 

from the process gas flowsheet to environmentally acceptable levels by reacting it with NaOH and 

producing a sellable stream of sodium bisulfite (SBS). Heat is dissipated from the process gas 

flowsheet via steam generation and from the process acid flowsheet using cooling water.  
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Sections 4.1.1 to 4.1.5 present a detailed description of each of the plant flowsheets and how they 

were implemented in Aspen Plus. Section 4.1.6 presents the convergence strategy that was used 

whereas section 4.1.7 presents the thermodynamic package details.  

Figure 9. Block flow diagram of the Sulfuric Acid plant. 

Table 3. Nominal operating conditions for the main units in the Sulfuric Acid plant 

Flowsheet Equipment Label Type Specifications 
Process 
Gas 

C-101 absorption column packing type = raschig ring, 
raschig torus-saddle, raschig 
torus-saddle 
packing size = 75 mm, 50 
mm, 25 mm 
packing height = 0.25 m, 5.49 
m, 0.30 m 
P = 125.49 kPa 

C-102 absorption column packing type = raschig torus-
saddle, raschig super-pak 
packing size = 50 mm, 
250mm 
packing height = 3.66 m, 0.10 
m 
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P = 107.30 kPa 
C-103 absorption column packing type = raschig ring 

packing size = 75 mm 
packing height = 5.13 m 
P = 104.81 kPa 

R-101 multi-stage catalytic 
packed bed reactor 

stage catalytic 
activity 

catalyst 
volume 
(L) 

1 2 4800 
2 2.2 6400 
3 8 10000 
4 0.16 9100 

H-101 furnace P = 122.50 kPa 
heat duty = 0 kW 

E-103 heat exchanger T = 710.93 K 
P = 117.02 kPa 

E-104 heat exchanger, hot side T = 710.93 K 
P = 113.78 kPa 

E-105 heat exchanger, hot side T = 463.71 K 
P = 108.80 kPa 

Process 
Acid 

E-106 heat exchanger, hot side T = 310.93 K 
P = 342.64 kPa 

E-107 heat exchanger, hot side T = 327.60 K 
P = 342.64 kPa 

E-108 heat exchanger, hot side T = 325.49 K 
P =  342.64 kPa 

Scrubbing 
Tower 

E-24 absorption column packing type = raschig 
torus-saddle 
packing size = 50 mm 
packing height = 3.05 m 
P = 104.81 kPa 
pumparound flowrate = 0.57 
m3/min 

E-25 absorption column packing type = raschig torus-
saddle 
packing size = 50 mm 
packing height = 3.05 m 
p = 101.33 kPa 
pumparound flowrate = 0.57 
m3/min 

Steam 
Utility 

E-104 heat exchanger, cold side T = 561.76 K 
P = 1495.47 kPa 

E-105 heat exchanger, cold side T = 469.84 K 
P = 1447.90 kPa 

Boiler Boiler T = 471.36 K 
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P = 1495.47 kPa 
E-109 Deaerator T = 388.71 K 

Cooling 
Water 
Utility 

E-106, cold side heat exchanger, cold side T = 308.89 K 
E-107, cold side heat exchanger, cold side T = 321.88 K 
E-108, cold side heat exchanger, cold side T = 303.03 K 
E-110 heat exchanger T = 300 K 

 

4.1.1  Process Gas Flowsheet  

As shown in Figure 10, the process gas flowsheet for the plant consists of a feed preparation step 

(B-101 and C-101), followed by combustion of sulfur (H-101), then reaction of SO2 in the multi-

stage catalytic packed bed reactor (R-101-1, R-101-2, R-101-3, R-101-4), and absorption of the 

SO3 using oleum and concentrated sulfuric acid (C-103 and C-102).  

The conversion reaction of SO2 proceeds as follows:52  

𝑆𝑂h +
1
2𝑂h ↔ 𝑆𝑂Ù	; 								∆𝐻 = −99

kJ
mol 

(20) 

The heat exchangers E-101, E-103, and E-104 cool the process gas thus improving the conversion 

of SO2. Similarly, the absorption of SO3 by sulfuric acid occurs as follows:50 

𝑆𝑂Ù + 𝐻h𝑂 → 𝐻h𝑆𝑂w;									∆𝐻 = −130
MJ

kg	mol	𝐻h𝑆𝑂w	
 (21) 

This reaction is highly exothermic and produces fuming sulfuric acid. In order to avoid significant 

production of this component, a portion of the SO3 is first absorbed by H2SO4 thereby creating 

oleum:52,73 
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𝐻h𝑆𝑂w + 𝑆𝑂Ù → 𝐻h𝑆h𝑂ì;									∆𝐻 = −84
MJ

kg	mol	𝐻h𝑆𝑂w	
 (22) 

The heat exchanger E-105 cools the process gas to improve the absorption of SO3. More details 

on this process can be found elsewhere.50,52 

 

Figure 10. Flowsheet for process gas (solid lines) and process acid (dashed lines). 

When compared to the double absorption sulfuric acid plant presented by Bhat et al.,74 the 

absorption columns in this work are modeled using the rate-based model as it is known that these 

provide a more realistic representation of the system behavior as compared to the equilibrium 

based models.74,75 The correlation by Bravo and Fair was selected as the mass transfer coefficient 

method and the Chilton and Colburn correlation was selected as the heat transfer coefficient 

method.76,77 The type and quantity of packing in the absorption columns was selected so as to 

match the industrial sulfuric acid plant for which the present model was developed. The other key 
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units in the flowsheet shown in Figure 10 are the blower (B-101), the furnace (H-101), and the 

multi-stage packed bed catalytic reactor (R-101-1, R-101-2, R-101-3, R-101-4). These units were 

implemented in the same manner as described in the study performed by Bhat et al.74 The catalytic 

activity for the different reactor sections was estimated using confidential data provided by the 

industrial partner.  

The highest molar concentration of SO2 is found at the outlet of H-101 and is referred to as the gas 

strength. At the nominal operating condition, the gas strength in the Sulfuric Acid plant is 

maintained at 11.5% by adjusting the sulfur flow rate based on the air flow rate. Although not 

necessary during the model development process, a design specification was created in Aspen Plus 

to maintain a gas strength of 11.5% by adjusting the molar flow rate of sulfur when the air flow 

rate was changed. 

4.1.2 Process Acid Flowsheet 

The process acid flowsheet for the plant is shown in Figure 10. It is composed of three circuits;52 

the sales acid (C-101, T-101, and E-106), the concentrated sulfuric acid (C-102, T-102, and E-

107), and the oleum (C-103, T-103, and E-108). In C-101, the sales acid becomes diluted by the 

absorption of water from the process gas whereas in C-102 and C-103, the concentrated sulfuric 

acid and oleum become more concentrated by the absorption of SO3 from the process gas. To 

maintain a constant concentration in each circuit they are connected as shown in Figure 10, and a 

water makeup stream is added. A fraction of the sales acid circuit is continuously sent to the sales 

acid storage tank. When the acid and oleum streams pass through their respective absorption tower, 
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their temperature increases. Thus, the heat exchangers E-106, E-107, and E-108 are used for 

cooling the acid streams prior to entering their respective absorption tower. 

4.1.3 Scrubbing Tower Flowsheet 

The scrubbing tower flowsheet for the Sulfuric Acid plant is shown in Figure 11. In the absorption 

tower (E-24 and E-25), the SO2 in the tail gas from the sulfuric acid plant is absorbed by an aqueous 

mixture of NaOH as follows:78 

𝑆𝑂h + 2𝑂𝐻a → 𝑆𝑂Ùha + 𝐻h𝑂 (23) 

𝑆𝑂Ùha + 𝐻h𝑂 ↔ 𝑂𝐻a + 𝐻𝑆𝑂Ùa (24) 

The SO2 in the vapor is further diluted in the exhaust stack (MX4) by mixing with the air from the 

heat exchanger E-103 and vented to the atmosphere. The liquid product is a sellable stream of 

SBS. 

The absorption column has been modeled as two absorption columns to represent the two sections 

of identical packing that are separated inside the Sulfuric Acid plant column. Both E-24 and E-25 

have individual pumparounds to recycle liquid to the top of the respective packing section. As it 

was performed for the absorption columns in the process gas flowsheet, the two columns in the 

scrubbing tower flowsheet are modeled using the rate-based models with the same heat and mass 

transfer coefficient methods as previously mentioned. The quantity and type of packing was 
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selected to match the actual plant column’s specifications. A calculator was used in Aspen Plus to 

set the flowrate of NaOH into the scrubbing tower equal to the flowrate of SO2 entering the column.  

 

Figure 11. Scrubbing tower flowsheet. 

4.1.4  Steam Utility flowsheet 

As shown in Figure 12, the main units in the steam utility flowsheet for the Sulfuric Acid plant are 

the economizer (E-105), the boiler (Boiler), the superheater (E-104), and the deaerator (E-109). In 

the economizer the boiler feed water is preheated by cooling the process gas stream after exiting 

the fourth stage of the catalytic packed bed reactor; a small amount of the boiler feed water is 

vaporized in this process unit. In order to generate saturated steam from the boiler, it was necessary 

to create a design specification in Aspen Plus which manipulates the flowrate in the makeup water 

stream so as to achieve a vapor fraction of 0.99 in stream S101B; at the nominal operating 

condition the makeup water flowrate was 9,105 kg/hr. In the superheater, the steam is superheated 

by cooling the process gas stream between the second and third stage of the catalytic packed bed 
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reactor. The purpose of the deaerator is to remove O2 and CO2 and to condense a portion of the 

steam by combining it with condensate and makeup water. As the water in the model was pure, 

the only purpose for the deaerator was to blend the liquid and vapor stream to produce a stream 

that is liquid. This was achieved by using a heat exchanger.  

The steam that is generated using the heat released by the reactions in the process gas flowsheet is 

sold elsewhere or used to serve a variety of purposes in the plant, e.g. it is used to power the pump 

P-109, cool the sulfur gun inside the furnace H-101, recycled for use in the deaerator E-109, and 

heat the sulfur pit, plant offices, and the oleum storage. A makeup stream of water is required due 

to losses, such as by degradation or steam sales.  

 

Figure 12. Steam utility flowsheet. 
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4.1.5 Cooling Water Utility Flowsheet 

As shown in Figure 13, the cooling water utility flowsheet for the plant consists of a discharge 

pump for increasing the pressure of the water (P-110A), the three heat exchangers previously 

presented in the process acid flowsheet (E-106, E-107, and E-108), and a heat exchanger to reduce 

the temperature of the cooling water for reuse (E-110). In the Sulfuric Acid plant, E-110 is a 

cooling tower that uses ambient air as the coolant. A cooling tower can be approximated in Aspen 

Plus using an absorption column as suggested in previous studies, however due to insufficient air 

data (temperature and humidity), it was modeled as a heat exchanger.79 E-110 has a maximum heat 

duty of 4.39 MW. The make-up water stream is used to replace the water that is released as 

blowdown, and in the case of the industrial plant, the water that is evaporated in the cooling tower.  

 

Figure 13. Cooling water utility flowsheet. 
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4.1.6 Process Flowsheet Implementation 

The complete process flowsheet of the Sulfuric Acid plant presented above was developed in 

Aspen Plus. The plant flowsheet contains many process units, with a significant number of them 

involving complex solution chemistry. Thus, a strategic approach must be taken in order to achieve 

complete model convergence. In this work, the first section that was implemented was the process 

gas flowsheet. That flowsheet cannot be developed independently of the process acid flowsheet as 

the gas and acid streams are in contact in the absorption columns C-101, C-102, and C-103, as 

shown in Figure 10. Initially, the only acid streams that were included were those at the inlet and 

outlet of those columns. Moreover, the absorption columns were first made to converge using an 

equilibrium-based model available on Aspen Plus.  

When the process acid flowsheet was being extended to include the remaining streams and units, 

it was important to create this highly coupled section one unit at a time in order to establish suitable 

initial conditions for the connected flowsheet. It was not until this section was fully connected and 

converged that the model for the absorption columns was switched to a rate-based model in Aspen 

Plus. This was done so that the equilibrium-based solution could be used as a suitable (educated) 

initial condition for the more rigorous rate-based model. 

The scrubbing tower flowsheet was then added into the plant flowsheet. The two absorption 

columns E-24 and E-25 also result in a closed loop system so they were first developed in an open 

loop using the equilibrium-based model. When the section had been fully coupled and made to 

converge, the model was switched to the rate-based model. 
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The steam and cooling water utility flowsheets were the final flowsheets to be developed and 

connected to the plant model. There are no reactions taking place in these flowsheets, therefore it 

was only necessary to converge the units of each flowsheet in open loop prior to closing the loop. 

4.1.7  Thermodynamic Package 

Data regarding the thermodynamic properties of the water-sulfuric acid-sulfur trioxide system is 

widely available in the literature.80,81 In a previous study, Que et al. combined the results of all 

these works to develop a comprehensive thermodynamic model for this system by correlating the 

data over the entire concentration range using the symmetric electrolyte non-random two-liquid 

(NRTL) model.82 This is the thermodynamic package used for the sulfuric acid plant developed in 

this work and it uses the Redlich-Kwong equation of state to model the gas phase. The solution 

chemistry presented in the work of Que et al. was also adopted in the present analysis and is as 

follows: 

𝐻h𝑆𝑂w + 𝐻h𝑂 ↔ 𝐻𝑆𝑂wa + 𝐻Ù𝑂m (25) 

𝐻𝑆𝑂wa + 𝐻h𝑂 ↔ 𝑆𝑂wha + 𝐻Ù𝑂m (26) 

𝑆𝑂Ù + 𝐻h𝑂 ↔ 𝐻h𝑆𝑂w (27) 

𝑆𝑂Ù + 𝐻h𝑆𝑂w ↔ 𝐻h𝑆h𝑂ì (28) 

The liquid phase of the scrubbing tower section does not involve the water-sulfuric acid-sulfur 

trioxide system but instead an ionic solution, aqueous NaOH. For this section, the thermodynamic 

model used for the liquid phase was the electrolyte NRTL model and the Redlich-Kwong equation 
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of state for the gas phase.  This model was selected because it is recommended to model ionic 

systems.83 

4.2 Results 

The accuracy of the Aspen Plus flowsheet model presented in section 4.1 was evaluated during 

model fitting and validation by comparison with various data points collected from an industrial-

scale Sulfuric Acid plant. This was followed by a sensitivity analysis on the design and operating 

conditions of the plant model to identify those parameters that present the greatest impact on key 

output variables. An economic optimization was then performed to maximize the daily profit of 

the Sulfuric Acid plant. Furthermore, the coefficients of the objective function and the catalytic 

activities in the multi-stage reactor were considered as uncertain variables to evaluate the 

conditions under which the optimal solution changes. 

4.2.1 Model Fitting 

Data from the Sulfuric Acid plant were available at three operating conditions; plant configurations 

that resulted in the highest H2SO4 production (OP1), low H2SO4 production (OP2), and the 

production setting for which the plant was originally designed (OPD). The operating condition 

OPD was used for model fitting because it was the most complete dataset containing the 

composition, temperature, pressure, and total flowrate of nearly every stream in the plant. The 

operating conditions OP1 and OP2 were used in section 4.2.2 to validate the model by examining 

its prediction capabilities. 

The catalytic activity in the multistage reactor was used for model fitting. Unlike the design and 

operating specifications of the plant that are fixed, the expected value for this parameter is not 

known but it has an acceptable range as outlined by the industrial sponsor. Hence, its true 
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(expected) value is uncertain. As shown in section 4.2.5, the present plant model is optimized 

under uncertainty and one of the parameters considered as uncertain is the catalytic activity. 

The aim of the steady-state plant model was to capture the Sulfuric Acid plant behavior with 

reasonable accuracy; this was measured by evaluating the percent error between the Sulfuric Acid 

plant data at OPD and the model results. Due to the large number of streams in the Sulfuric Acid 

plant, only percent errors greater than 10% were further analyzed and only the percent error for 

key streams associated with each process flowsheet are presented in Table 4. Note that blank 

entries in Table 4 indicate that the particular data point was not available in the Sulfuric Acid plant 

data or, in the case of the component flowrates for the steam utility and cooling water utility 

flowsheets, the data points were not required because the streams are pure water. 

For the process gas, process acid, and scrubbing tower flowsheets, the key streams were chosen as 

those exiting a reactor vessel or absorption column. Those units involve changes in temperature 

and chemical reactions whereas the other process units are limited to changes in temperature, e.g. 

E-101. The additional complexity of the reactor vessels and absorption columns makes them the 

most likely to result in errors in the process streams. The only data point available for the liquid in 

the scrubbing tower flowsheet was the amount of SBS produced. That liquid data and the reactions 

shown in equations (23) and (24) were used to estimate the amount of NaOH solution used for 

scrubbing. Due to the incompleteness of the liquid data in the scrubbing tower flowsheet, the 

percent errors are only calculated for the gas streams. In the steam utility and cooling water utility 

flowsheets, the key streams were selected as those exiting the heat exchangers where the utility is 

in thermal contact with the process streams. 
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As shown in Table 4, there are several streams for which a component flowrate resulted in an error 

greater than 10%, i.e. the H2O in streams 210 and 21. In streams 210 and 21 the error in the H2O 

content is 15.87% and 10.77% below that reported in the data, respectively. This is caused by 

water making up a small fraction of each of these streams and the streams being overall low in 

total flowrate, 210 was 2.57% too low and 21 was 2.35%. In all those cases where there was an 

error in stream composition larger than 10%, the maximum impact on total stream flowrate was 

3.17%. Although an appropriate percent error could not be obtained for the SO3 flowrate in streams 

17 and 19, i.e. the entry for these values in Table 4 is DNA*, the results for these particular data 

points were validated by the industrial sponsor through their collection of actual plant 

measurements. The errors in stream composition were deemed acceptable for the purposes of this 

study as it was assumed that they may not significantly impact the model prediction capabilities, 

as it is shown in the next sections.  

The error in the temperature of streams 204, 210, and 216 had an absolute value between 12.89% 

and 19.16%. This error can most likely be attributed to the complexity of the solution chemistry 

as well as the highly coupled nature of the process acid flowsheet. Other areas of the plant model 

that may be affected by temperature error in the process acid streams are the process gas streams 

and cooling water utility streams. The only errors in the process gas streams that were larger than 

10% were compositional errors and these were identified as insignificant because the impact on 

overall stream flowrate was no larger than 0.61%. The errors in the temperature of the cooling 

water were no larger than 5.89%, which was also considered acceptable.  

In addition to the previously discussed compositional errors in the scrubbing tower flowsheet, a 

9.75% error is observed in the temperature of stream 21. For this stream, the most important data 
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point is the amount of SO2 as this will be vented to the atmosphere. The temperature error in stream 

21 did not affect the amount of SO2 in this stream significantly as the error was 1.98%. 

Furthermore, the error in temperature was reduced to -1.89% after combining with the heated air 

from the heat exchanger E-103. For these reasons, the temperature error in stream 21 was 

considered acceptable.  

The model shows a few errors that are greater than 10%. Further model fitting cannot be done as 

this would require adjusting design and operating specifications thereby reducing the validity of 

the plant model. However, the key results (H2SO4 flowrate in stream 202 and SO2 in streams 21 

and 24) are low in error, and thus the overall model is considered to capture the key processing 

characteristics of the actual Sulfuric Acid plant. 

Table 4. Model testing: Sulfuric Acid plant (percent error) 

Flowsheet Stream Flowrat
e 

Temperatur
e 

Pressure Component Flowrates 

Process Gas 
(molar) 

 SO3 SO2 O2 N2 H2O 
3 0.00 0.00 0.00 -0.09 0.00 -0.08 2.36 0.00 
5 0.00 -0.66 0.64 -0.09 0.00 -0.08 -2.34 0.00 
14 -0.61 -1.74 1.88 -0.09 0.00 -0.05 0.11 0.00 
17 DNA* -1.76 1.72 -0.24 0.00 -0.04 3.60 0.00 
19 DNA* -1.97 3.61 0.31 0.00 0.61 1.91 0.00 

 
Process 
Acid (mass) 

 SO3 H2SO4 H2O 
202 -2.28 0.00  0.00 -0.32 -1.10 
204 -2.37 12.89  0.00 -0.42 -1.06 
210 -2.57 -19.16  0.00 -0.41 -15.87 
216 -3.17 13.25  -3.10 -4.15 0.00 

 
Scrubbing 
Tower 
(molar) 

 SO3 SO2 O2 N2 H2O 
21 0.00 1.98 1.95 -0.10 -

10.7
7 

1.95 -
0.10 

10.77 

24 0.00 1.98 0.36 -0.05 -6.84 0.36 -
0.05 

6.84 
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Steam 
Utility 
(mass) 

      
S101B -3.22 0.83 3.73      
S104B -3.22 3.17 -3.73      
S105B 0.01 1.54 7.14      

 
Cooling 
Water Utility 
(volumetric) 

      
CW106
B 

0.29 0.89       

CW107
B 

0.69 0.46       

CW108
B 

0.17 4.92       

DNA*: Data not applicable.  The available data were confirmed by the industrial sponsor to be 

incorrect based on collection of actual plant measurements.  

4.2.2 Model Validation 

The plant flowsheet model was validated by comparison with the data obtained from the two 

operating conditions OP1 and OP2. The model validation is presented in Table 5. Due to the non-

disclosure agreement with the industrial sponsor the normalized data is presented here along with 

the associated relative error when compared to the model results.  

To simulate the plant at an operating point different from that presented in section 4.2.1, the raw 

material flowrates and operating conditions need to be adjusted accordingly. For the operating 

points OP1 and OP2, the flowrate of air entering the furnace was used to set the air flowrate of 

stream 1. The other raw materials were then adjusted accordingly based on the design 

specifications discussed in section 4.1. That is, sulfur flowrate was determined based on the 11.5% 

gas strength, NaOH flowrate in the scrubbing tower was set equal to the incoming flowrate of SO2 

in stream 19, and the flowrate of boiler feed water was set so that the stream at the outlet of the 

boiler was saturated. For the operating points OP1 and OP2, the temperatures of the process gas at 
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the inlets of the second and third catalyst packed beds were used to set the outlet temperatures on 

the process side of the heat exchangers E-103 and E-104, respectively. 

The catalytic activities were re-calibrated using the data for OP1 and OP2 so that the model was 

able to capture the current plant state. The catalytic activities were set so that the packed bed outlet 

temperatures when simulating OP1 matched the recorded values while ensuring that the range 

remained reasonable as per the confidential data provided by the industrial sponsor previously 

mentioned in section 4.1. The catalytic activities remained unchanged when simulating OP2 with 

the expectation being that the packed bed outlet temperatures will closely resemble the recorded 

values. 

The re-calibrated catalytic activities were good approximations because the outlet temperatures of 

the first three stages were very similar to those in the data of OP1 and OP2; for OP1 the errors are 

0% and this was expected as these temperatures were used to calibrate the catalytic activities but 

for OP2 the errors are no larger than 1%. The errors entering and leaving the fourth stage are larger 

at 8% and 4% for OP1 and 4% and 2% for OP2, respectively. This can be attributed to the air in 

stream 12 insufficiently cooling the process gas at the outlet of the 3rd stage of the reactor. The 

10% error in the temperature of superheated steam exiting the heat exchanger E-104 for OP1 and 

OP2 is related to the outlet temperature of the process gas from the second stage of the reactor. 

This was considered acceptable because the process side temperatures are the key variables. 

The errors in temperature at the midpoint and top of the scrubbing column were between 11% and 

21%. The key variable in the scrubbing column is the SO2 concentration in the vent stream. The 

industrial sponsor estimates that the SO2 concentration is below 50 ppm at all operating conditions 
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based on periodic measurements of this variable offline. This condition was satisfied by the model 

at operating conditions OP1 and OP2 as the SO2 concentrations in the vent stream were 37 ppm 

and 29 ppm, respectively. Based on the above, the model suitably predicts the operation of the 

Sulfuric Acid plant. 

Table 5. Model validation  

 Normalized Data Relative Error 

OP1 OP2 OP1 OP2 
Air Flowrate into Furnace 0.94 0.72 0% 0% 
Stage 1 Inlet Temperature 0.44 0.44 -4% -6% 
Stage 1 Outlet Temperature 0.59 0.59 0% 0% 
Stage 2 Inlet Temperature 0.43 0.43 0% 1% 
Stage 2 Outlet Temperature 0.51 0.51 0% 0% 
Stage 3 Inlet Temperature 0.43 0.43 0% 0% 
Stage 3 Outlet Temperature 0.47 

 
0.47 0% 1% 

Stage 4 Inlet Temperature 0.44 0.45 8% 4% 
Stage 4 Outlet Temperature 0.47 0.47 4% 2% 
Stream 19 Temperature 0.07 0.07 2% 6% 
Temperature of Gas Leaving E-24 0.04 0.04 16% 15% 
Temperature of Gas Leaving E-25 0.04 0.04 21% 11% 
Production Rate of H2SO4 1.00 0.84 -3% -6% 
E-104 Steam Temperature 0.28 0.28 10% 10% 

 

4.2.3 Sensitivity Analysis 

The purpose of the sensitivity analysis was to identify the process operating conditions that most 

affect the flowrate of raw materials, products, and the SO2 flowrate exiting the vent stack. 

Excluding air, all other products and raw materials were considered as responding variables during 

the analysis. Unlike the amount of sulfur and water consumed by the process, which respond based 

on their respective design specifications in the model, the air consumption is a user decision 
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variable and does not respond based on changes to other operating conditions. Hence, it was 

considered as an input during the sensitivity analysis. The NaOH flowrate was not observed during 

the sensitivity analysis as there are no side reactions involving sodium, and thus the flowrate of 

NaOH is equivalent to the flowrate of SBS.   

For the sensitivity analysis, 13 process operating conditions were considered as inputs and they 

are listed in Table 6. Each input was varied over six levels between -15% and +15% of its nominal 

value in increments of 5% to observe any nonlinear interactions between the input and responding 

variables. The nominal operating condition for the sensitivity analysis was taken to be the midpoint 

between OP1 and OP2. Although OPD represents the design operating condition of the plant, it 

does not represent the current nominal operating condition for this plant. The condition of the plant 

is known to fluctuate between OP1 and OP2, and hence the selection of the nominal operating 

condition. Note HX34T implies that the outlet temperature on the process side of the heat 

exchangers E103 and E104 were varied simultaneously. This was done to ensure that the process 

gas stream remained as the hot stream in both of these heat exchangers. For example, in the case 

that the outlet temperature of E-103 is reduced to 643 K, the heat generated in the second reactor 

stage only increases the process gas temperature to 703 K. If the outlet temperature from E-104 

remained constant at 711 K, the process gas stream would be heated rather than cooled in that heat 

exchanger, thus violating its purpose.  

Table 6. Process variables considered in the sensitivity analysis 

Category Process Variables Acronym 

Flow Rate Air Flow AF 
Design Specifications Gas Strength GS 

E-24 Recirculation pH pH 
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Process Side Outlet 
Temperature 

E-103 and E-104 HX34T 
E-105 HX5T 
E-106 HX6T 
E-107 HX7T 
E-108 HX8T 

Packing Height C-101 PK101 
C-102 PK102 
C-103 PK103 
E-24  PK24 
E-25 PK25 

 

The change in each responding variable with respect to each input variable is shown in Figure 14a 

to Figure 14. With the exception of the air flow in Figure 14, for all other response lines that cannot 

be distinguished, the input variables had a near zero effect on the respective responding variables. 

The only design variable that affected the plant performance was PK25, the packing height in the 

absorption column E-25. According to the model, the absorption in this column is not as efficient 

as the other four absorption columns in the plant, and thus changing the packing height has a direct 

impact on the concentration of SO2 in the vent stream. As shown in Figure 14f, in the range of -

10% to +5% of the design variable PK25 the effect on the SO2 concentration in the vent stream is 

insignificant. At a -15% change in PK25 the SO2 concentration increases in the vent stream and 

beyond an increase of +10% only minor reductions in SO2 concentration are observed. The 

responding variables were insensitive to the other input variables in the packing height category 

as well as the pH, HX7T, and HX8T. Moreover, HX6T only affected the steam flowrate whereas 

HX5T affected both the water and steam flowrates. The effect of the input variables on the daily 

profit of the plant as calculated using (10) is shown in Figure 14g. Based on the results shown in 

Figure 14a to Figure 14f and subsequently in Figure 14g, the daily profit, the key input variables 

that were identified in the sensitivity analysis that affect the process performance and process 
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economics were AF, GS, and HX34T (see Table 6). AF and GS induced a response in all 

responding variables whereas the sulfur flowrate was the only output that was insensitive to 

HX34T. 

As shown in Figure 14a and Figure 14e, the key input variables have a direct correlation with the 

water flowrate required and subsequently the steam produced. This is a result of the condition 

specified in section 4.1.4 that the water flowrate should be such that the stream leaving the boiler 

has a vapor fraction of 0.99. In Figure 14b it can be observed that the sulfur flowrate is only 

affected by AF and GS based on the gas strength condition specified in section 4.1.1. As mentioned 

above, the results for AF in Figure 14b does not indicate that no response was caused in the sulfur 

flowrate but rather the same response as GS. For the H2SO4 and SBS flowrates, Figure 14c and 

Figure 14d, respectively, AF causes a direct response whereas GS and HX34T result in nonlinear 

responses. Increases in GS larger than +10% result in no additional H2SO4 production but rather 

an exponential increase in the amount of SBS produced. At a value of HX34T 5% below the 

nominal there exists a maxima in the H2SO4 production and a minima in the SBS produced. The 

concentration of SO2 vented also resulted in nonlinear responses to the input variables AF, GS, 

HX34T, and PK25. Due to limited relevant data at the operating conditions considered in the model 

validation stage, it was not possible to further validate the results presented in Figure 14f. As 

indicated in section 4.2.2, only periodic offline measurements are taken for this variable. However, 

at the nominal condition considered for the sensitivity analysis, the concentration of SO2 vented 

was 18 ppm. From Figure 14f it can be observed that the greatest increase in the concentration of 

SO2 vented is 5 ppm as a result of reducing GS by 5% from its nominal value. This increases the 

concentration of SO2 vented to 23 ppm, which is significantly below the 100 ppm maximum limit.  
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g)  

 

 

Figure 14. Changes in responding variables with respect to changes in the input variables. 

4.2.4 Economic Optimization 

The aim of this section is to formulate an optimization problem that can provide insights as to how 

the key input variables identified from the sensitivity analysis can be adjusted to improve the 

process economics of this plant. Hence, the objective function aims to maximize the daily profit 

of the plant by considering the difference in expenses and revenues from raw materials and 

products, respectively. Note that the objective function considered in this work resembles how the 

industrial sponsor measures daily profit; other objective functions that take into account other 

factors can be considered for different applications. The prices of raw materials and products are 

shown in Table 7.  

Table 7. Prices of raw materials and products  
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H2SO4 ($/kg) 0.16 
SBS ($/kg) 0.21 
Steam ($/kg) 0.014 
Sulfur ($/kg) 0.065 
NaOH ($/kg) 0.65 
Water ($/kg) 0.002 

 

The key input variables identified from the sensitivity analysis are the decision variables of the 

problem, i.e. AF, GS, and HX34T. The constraints of the optimization problem are the key design 

and operational limitations of the actual plant, namely the net energy requirement of the blower B-

101, the net heat duty of the cooling tower E-110, and the concentration of the SO2 in stream 24. 

The blower and cooling tower constraints are based on the design limitation of the respective 

process unit. The constraint on SO2 emission concentration is a corporate mandate to which the 

industrial sponsor adheres in order to produce in an environmentally sustainable manner. Based 

on the above, the optimization problem considered in this work is as follows: 

max
í
				Daily	Profit

= 𝑝ðqopñ𝑀̇ðqopñ + 𝑝ozo𝑀̇ozo + 𝑝elstu𝑀̇elstu − 𝑝eògóòr𝑀̇eògóòr

− 𝑝ôtpð𝑀̇ôtpð − 𝑝õ𝑀̇õ	 

(29) 

s. t. Plant Model (30) 

 𝑣opq,elrstu	hw < 100	ppm (31) 

 𝑄`a==b < 4.61	MW (32) 

 𝑊za=b= < 0.261	MW (33) 

 𝜉Mz < 𝜉 < 𝜉Nz (34) 

Where: 

𝑝V: price of raw material or product 𝑧 ($/kg) 

𝑀̇V: mass flowrate of raw material or product 𝑧 (kg/day) 
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𝑣opq,elrstu	hw: volumetric concentration of SO2 in stream 24 (ppm) 

𝑄`a==b: heat duty of the cooling tower E-110 (MW) 

𝑊za=b=: net work of the compressor B-101 (MW) 

𝜉: the set of decision variables, i.e. 𝜉 ={AF, GS, HX34T} 

𝑧: component with associated cost (H2SO4, SBS, steam, sulfur, NaOH, water) 

An alternative objective function considered based on the plant’s production target is related to the 

maximization of the production rate of H2SO4 (i.e. MaxProd). To account for this condition, the 

optimization formulation shown in (29)-(34) can be reformulated by replacing the Daily Profit 

objective function shown in (29) with the following function: 

MaxProd = 				 𝑀̇ðqopñ	 (35) 

The large size of the model led to convergence times on the order of 30 minutes; although 

considered, Aspen Plus’ optimization capabilities may result in highly intensive calculations. 

Hence, it was necessary to consider solvers outside of the Aspen environment. The implementation 

of other gradient based optimization methods may be challenging since the explicit plant model 

equations are not available, i.e. the plant can be considered as a black-box model. Conventional 

derivative free optimization methods, specifically genetic algorithms (GA), were therefore 

considered. Difficulties associated with model convergence were encountered as a result of the 

randomness with which GA selects candidate solutions within the search space; particular 

combinations of the decision variables may be infeasible for the plant model. Based on these 

limitations, the generalized pattern search method (GPS)84 was employed to find a local optimal 

solution to this problem. This method involves enumerating over the entire search space to identify 

the locally optimal solution out of the set of candidate solutions. The discrete realizations of the 

decision variables considered in the sensitivity analysis were used as a basis to define the initial 
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mesh considered in the optimization. For each of the operating conditions defined by the mesh, 

the Aspen plant model was simulated, and the relevant data required to evaluate the objective 

function and process constraints was gathered. The data collected for all the operating conditions 

were used to perform the GPS optimization. 

Figure 15a and Figure 15b show the objective function values at the locally optimal solution for 

the Daily profit and the MaxProd optimization problems, respectively. The locally optimal 

operating conditions for both Daily profit and MaxProd are identified as OBJ1 and OBJ2, 

respectively. Also included is the result for the operating condition OP1 which is considered by 

the plant operators to be the operating condition that results in the highest production rate of 

H2SO4. The operating condition OBJ1 occurs at GS = 12.075, air flowrate = 2,416 kg/hr, and 

HX34T = 700 K; the daily profit was $29,985. The operating condition OBJ2 occurs at GS = 12.65, 

air flowrate = 2,416 kg/hr, and HX34T = 705 K. The figures clearly illustrate that OBJ1 and OBJ2 

are local optima for their respective optimization problems. The current maximum daily profit of 

the plant is $28,989 at the operating condition OP1, ie. AF = 2,373 kg/hr, GS = 11.5, HX34T = 

713 K. Changing the operating condition to OBJ1 results in a 3.3% increase in profit. Conversely, 

if it is desired to achieve maximum plant productivity (i.e. MaxProd), then the operating condition 

OBJ2 can be selected. At this setting, the profit and the H2SO4 production rate are 2.3% and 4.3% 

higher than at OP1, respectively.   

Based on the above, changes are therefore required to move the operating condition of the plant 

from OP1 to OBJ1 or OBJ2. In order to operate at OBJ1, the air flowrate must be increased by 43 

kg/hr, GS must be increased by 0.575 and HX34T must be reduced by 13 K. In addition to 

increasing the air flowrate by 43 kg/hr, GS must also be increased by 1.15 to move the operating 
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condition of the plant to OBJ2. This is an indication that the model has good prediction capabilities 

as the optimal operating points that were identified are relatively close to the best operating 

condition already observed for this plant. Although this analysis identified that the plant is 

operating at near optimal conditions (OP1), a more economically optimal operating point can be 

selected (OBJ1 or OBJ2) for the industrial-scale plant. The improvement in annual profits as 

compared to the current nominal operating condition is in the order of $243,820 (OBJ2) to 

$363,540 (OBJ1). 

Figure 16 shows the constraint values at the optimal air flowrate. The constraints were fully 

satisfied in the range of optimal solutions. The net energy requirement of the blower B-101 was 

0.208 MW at OP1 and 0.212 MW at all other operating conditions shown. That occurred because 

the net energy requirement is a direct function of the air flowrate. The optimal air flowrate was the 

highest that was considered, and thus the constraint is also satisfied at the sub-optimal air flowrates. 
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a)

 

b)

 

 

Figure 15. Daily Profit and H2SO4 production rate near the optimal point at AF = 2,416 kg/hr, 
OBJ1 is shown in red and OBJ2 in green; the daily profit obtained at operating condition OP1 
has also been included. The different colored trend lines are used to distinguish the gas strengths 
(GS) evaluated at different operating points. 
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c)  

 

Figure 16. Evaluation of the process constraints. The different colored trend lines are used 
to distinguish the gas strengths (GS) at different operating points. 

 

4.2.5 Uncertainty Analysis 

The aim of this section is to identify the operating conditions that result in the maximum expected 

value and minimum standard deviation (i.e. minimum variability) when the plant is subjected to 

uncertainty in key process model and economic parameters. Understanding the variability of the 

optimal operating condition to uncertainty provides insight into how the operating condition of the 

plant needs to be adjusted to remain optimal in the presence of uncertainty. Moreover, the price of 

robustness gives an estimate for the expected profit loss associated with narrowing the spread of 

the daily profit and may be desirable under highly uncertain conditions so that a smaller range of 

profits can be guaranteed. 

The uncertain parameters that were considered in the present analysis are shown in Table 8. Sulfur 

and sulfuric acid are both commodities that experience price fluctuation based on their supply and 
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demand in the markets. The nominal price of NaOH is more than twice as large as that of any other 

raw material or product, and thus a change in its price can have a large impact on the daily profit 

of the plant. During model development, all operating conditions were defined explicitly except 

for the catalytic activities in the four stages of the packed bed reactor. As previously described in 

sections 4.2.1 and 4.2.2, the catalytic activities were used for model fitting and validation. 

Although over the catalyst cycle the catalytic activity will decrease monotonically, the precise 

value is unknown. Furthermore, the catalytic activity is a key plant variable as it has a significant 

impact on the conversion of SO2, and subsequently the production of H2SO4 and SBS. Hence, the 

precise values of those seven parameters may be unknown or fluctuating at any period in time, and 

thus are suitable for an uncertainty analysis. 

For each of the 7 uncertain variables a normal distribution was assumed with mean equal to the 

nominal value and standard deviation equal to 15% of the mean, as shown in Table 8. A normal 

distribution was selected given that it is the most accepted type of distribution for most engineering 

applications.85 Two optimization problems similar to that presented in section 4.2.4 are considered, 

in this case, however, the objectives are maximize the expected daily profit, and minimize the 

standard deviation in daily profit under uncertainty in the model parameters. Each of these 

problems is solved using the GPS method for a set of 5,000 scenarios (realizations) in the uncertain 

parameters; thus, the process constraints and a modification of the cost function shown in problem 

(29), i.e. maximum expectation and minimum standard deviation, were evaluated at each discrete 

realization in the uncertain parameters. The uncertainty set scenarios were obtained by random 

sampling from the normal distributions of the 7 uncertain parameters considered in the analysis. 

The daily profit distributions for the two scenarios are shown in Figure 17. For comparison the 
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daily profit distribution obtained under uncertainty at the operating condition OP1 is also presented 

in this figure. 

Table 8. Uncertainty descriptions 

Uncertain Variable Mean Standard Deviation 
Sulfur Price 0.065 9.75×10-2 
NaOH Price 0.65 9.75×10-1 
H2SO4 Price 0.16 2.4×10-2 
Stage 1 Catalytic Activity 1.3 0.195 
Stage 2 Catalytic Activity 1.4 0.210 
Stage 3 Catalytic Activity 1.5 0.225 
Stage 4 Catalytic Activity 1 0.150 

 

As shown in Figure 18, the process constraint on SO2 emitted from the vent stack is immune 

(insensitive) to uncertainty in the catalyst activity. Similarly, the process constraints, equations 

(32)-(33), i.e. the net energy requirement of the blower B-101 and the net heat duty of the cooling 

tower E-110, showed no variability to the uncertainty in catalyst activity. These results indicate 

that the locally optimal solution is insensitive to uncertainty since none of the constraints 

considered in the problem are active at the locally optimal solution. Therefore, the locally optimal 

operating condition for the maximum expected daily profit scenario remained unchanged from that 

identified under deterministic conditions as OBJ1. Accordingly, the operating condition of the 

plant does not have to be adjusted for variation in the uncertain parameters within the range 

considered. For this operating condition, the mean daily profit was $29,985. Although the local 

optimal point did not change with respect to the Daily Profit optimization problem, the daily 

variability in profits is significant at a value of $5,218. This represents 17.4% of the daily plant 

profit. 
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On the other hand, the operating condition that achieved the local minimum standard deviation 

was at AF = 1,785 kg/hr, GS = 10.35, and HX34T = 781 K. At that operating condition the mean 

daily profit was $18,510 and the standard deviation was $3,359. This shows that the price of 

robustness for this plant is high as the expected reduction in daily profit is $11,461 for a reduction 

in standard deviation of $1,859. Furthermore, the change in the plant operating condition to 

transfer from the maximum expected value condition to the minimum standard deviation condition 

is large; the air flowrate must be reduced by 26%, the gas strength must be reduced by 14%, and 

the outlet temperature of the heat exchangers E-103 and E-104 must be increased by 21%.   

At the operating condition OP1 the expected daily profit and standard deviation were $28,989 and 

$4,950, respectively. As was discussed in section 4.2.4, the operating condition of the plant can be 

changed from OP1 to OBJ1 by making changes in the air flowrate, gas strength, and outlet 

temperature of the heat exchangers E-103 and E-104. This results in a more economically optimal 

operating point with increased annual profits in the order of $363,540. 
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Figure 17. Histogram for the two scenarios: minimum standard deviation (purple) and maximum 
expected value (green); also shown is the distribution at the operating condition OP1 (red). 

 

Figure 18. Histogram for the SO2 concentration in the vent stream under uncertainty in the 
catalytic activity; also shown is the SO2 emission limit. 

4.3 Summary 

The industrial-scale single absorption sulfuric acid plant with scrubbing tower under consideration 

consisted of five process flowsheets: process gas used to generate SO3, process acid to absorb SO3 

into H2SO4, scrubbing tower for reducing the SO2 concentration in the vent stream, steam cycle 
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for cooling the process gas cycle, and cooling water cycle to remove heat from process acid cycle. 

As the aim of this research was to develop a comprehensive plant model, all of the flowsheets were 

included in the Aspen Plus simulation.  

The resulting Aspen flowsheet model was fitted using the catalytic activities in the multi-stage 

reactor as tuning parameters and by comparison to a historical operating point OPD. Afterwards, 

the prediction capabilities of the model were confirmed by comparison to two additional historical 

operating points that represented high and low operating conditions, respectively. 

The resulting Aspen flowsheet model was then used to perform a sensitivity analysis. Three 

process parameters were identified which most greatly influenced the quantities of raw materials 

and products and they were subsequently used to carry out optimization for economic and 

productivity objective functions. Optimal operating conditions were identified which could 

increase daily profit and the H2SO4 production rate. Moreover, the relevant process parameters at 

the locally optimal operating conditions were found to be well within their respective range as 

defined by the process constraints.  

Furthermore, the economic optimization was repeated under uncertainty in the catalytic activities 

and the prices of sulfur, NaOH, and H2SO4. It was found that the local optimal solution under 

deterministic conditions remain unchanged for the uncertainty set considered. However, it did 

result in a large amount of variability. Moreover, the price of robustness to minimize the variability 

was found to be a significant portion of the daily operating profit.   
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Chapter 5: Conclusions and Recommendations 

5.1 aro-MPC 

The advantages of the proposed method are that it is inherently robust. A sequence of time-varying 

control laws is obtained for the present aro-MPC controller and their performance was determined 

to be a function of the control horizon and the uncertainty set. The aro-MPC framework presented 

in this work is applicable to systems with additive input disturbance that can be described by a 

linear state-space model. In the aro-MPC framework the input disturbance is replaced with an 

additive time-varying error. The error term is the source of feedback and can accommodate 

mismatch in the states between the model and the actual plant resulting from unmeasurable 

disturbances (Case Study 1 and 2, sections 3.3.1 and 3.3.2, respectively) as well as nonlinearities 

(Case Study 3, section 3.3.3). When solving the robust optimization problem, the additive error is 

only known to belong to a bounded set, however during online implementation its realizations 

become known through feedback and are used to evaluate the control laws. A comparison to online 

MPC demonstrated that for the system under consideration the loss in performance of the aro-

MPC was negligible (section 3.3.1.1). Moreover, it was shown that the aro-MPC can be applied to 

larger systems (section 3.3.2) as well as to nonlinear systems (section 3.3.3). Based on these 

results, the present aro-MPC framework is considered a promising approach for applying MPC to 

large-scale, real world systems. 

5.2 Simulation and Economic Optimization of an Industrial-Scale Sulfuric Acid Plant 

under Uncertainty 

As stated in the introduction section, the second study conducted in this thesis sought to address 

the issue of understanding the maximum operating capacity of an industrial-scale plant given the 

current design and its associated safety, environmental and productivity restrictions. In this study 
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the complete flowsheet (consisting of 5 sub-flowsheets) for an industrial-scale single absorption 

sulfuric acid plant with scrubbing tower was presented. The resulting plant flowsheet model was 

fully validated using historical plant data and it was found to have suitable prediction capabilities; 

some errors in stream composition and temperature were large but justified, however the error in 

total flowrate of any particular stream was no larger than 6%. This enabled its use to gain insight 

on the sensitivity of key response variables with respect to the operating parameters of the plant. 

That analysis showed that the air flowrate, gas strength, and outlet temperatures of the heat 

exchangers following the second and third passes of the multi-stage reactor where the most 

sensitive variables in the plant. An optimization using those three variables as the decision 

variables was performed to identify the operating point that resulted in the maximum daily profit 

of the plant and the maximum H2SO4 production rate. As compared to the current best operating 

condition of the plant, the operating conditions identified during the optimization showed that 

improvements of 3.3% and 4.3% can be achieved in the daily profit of the plant and H2SO4 

production rate, respectively. The economic optimization problem was repeated under uncertainty 

in the prices of key raw materials and products as well as the catalytic activities in the multi-stage 

reactor. The optimal operating condition did not change significantly from that obtained under 

deterministic conditions and the price of robustness associated with minimizing the standard 

deviation in daily profits was found to be nearly 38% of the expected profit. 

5.3 Future Work 

In the area of aro-MPC, future works include implementing the aro-MPC on larger scale nonlinear 

systems, likely starting with a small multi-unit plant and proceeding to a large-scale industrial 

plant. As it would be necessary to use linear models that closely approximate the nonlinear plants, 

these studies may be an opportunity to explore the implementation of multiple aro-MPC controllers 
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on a single chemical system. That is, when the system enters a different operating region, a 

different explicit solution can take over which is based on a different linear model so as to 

minimize the degree of mismatch. Alternatively, the aro-MPC framework can be modified to 

accommodate nonlinear objective functions and nonlinear constraints. The main challenge with 

considering nonlinearities in the aro-MPC framework is the need to dualize uncertain constraints 

and objectives in formulating the ARC.86 Hence, a simplification was made in the current 

framework to optimize the nominal rather than the worst-case realization of uncertainty. 

Furthermore, an alternative method of accommodating variable recourse (non-deterministic A and 

B state-space matrices, equations (3)) should be explored. The framework presented here grouped 

the input disturbance and model parameter uncertainty (i.e. unknown mismatch between the 

nonlinear plant and linear model) into the additive time-varying error term due to the fact that ARO 

is restricted to deterministic recourse.26 However, it is likely that separating how the different 

model uncertainties are considered in the aro-MPC framework may lead to improvements in the 

formulation and therefore process performance. 

As it applies to the industrial-scale sulfuric acid plant developed in this work, the highest priority 

future work is to develop a dynamic model. This type of model would enable the study of plant 

controllability as well as a flexibility analysis under common disturbances such as weather 

conditions and market demands. However, as it applies to the broader field of simulation and 

optimization of large multi-unit processes at steady-state, the demand is for general frameworks 

for each stage of the analysis. Those stages are plant simulation, model convergence, model 

validation, and model optimization. Given the large human and computational time expenditures 

associated with each of these vital steps in the process, a robust framework would most surely 

benefit widespread application of these techniques.  
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Appendix A 

The decision variables of the ARC for the robust linear MPC optimization problem are the 

intercepts and slopes of the affine functions (𝝊lm9b ,	𝝌lm9b ,	𝐔lm9,	𝐗lm9) and the dual variables that are 

introduced when dualizing the inequality constraints. The dual variables have all been grouped 

together in equation (A1) and are represented by DL. DL consists of 𝐩lm9,¿,º,ùN ,	𝐩lm9,¿,º,ùM ∈ ℝ}�, 

𝐫lm9,¿,º,ùN ,	𝐫lm9,¿,º,ùM ∈ ℝ}�, and ylm9,¿,º,ùN ,	ylm9,¿,º,ùM ∈ ℝ, ∀𝑛 = 1,… , N�, ∀𝑗 = 𝑡, … , 𝑡 + 𝑖, ∀𝑖 =

1,… , 𝑃, ∀𝑘 = 1,2,3,4. The following is the complete ARC for the robust linear MPC optimization 

problem where references have been made to the original constraints of the robust problem. For 

the equation (1a): 

min
𝝊���
û ∈ℝ��,𝐔���∈ℝ��×��

∀9�b,…,�a=,
𝝌���
û ∈ℝ��,𝐗���∈ℝ��×��

∀9�=,…,�
üý

𝐪��(𝝌lm9m=b − 𝐫lm9)h
�

9�=

+ 𝐰� �(∆𝝊lm9b )h
�a=

9�=

 
(A1) 

For the equations (3): 

𝝌lm=b = 𝐀𝐱l}~� + 𝐁𝝊lb  

(A2) 

𝐗lm=,l = 𝐀𝚽𝟎 + 𝐁𝐔l,l  

𝝌lm9m=b = 𝐀𝝌lm9b + 𝐁𝝊lm9b  ∀𝑖 = 1,… , 𝑃 − 1 

𝐗lm9m=,º = 𝐀𝐗lm9,º + 𝐁𝐔lm9,º ∀𝑗 = 𝑡, … , 𝑡 + 𝑖					∀𝑖 = 1,… , 𝑃 − 1 

𝐗lm9m=,lm9m= = 𝐃𝚽= ∀𝑖 = 0,… , 𝑃 − 1 

 

Note in equations (A3) to (A6), 𝐚(¿) and 𝐀(¿) denote the nth element of vector 𝐚 (a scalar) and 

the nth row of a matrix 𝐀 (a row vector), respectively. For the lower bound of the equations (1d): 
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�𝐞𝐳¾�𝐩lm9,¿,º,=N +
lm9

º�l

�𝐞𝐳¾�𝐩lm9,¿,º,=M +
lm9

º�l

�𝛽Fylm9,¿,º,=N
lm9

º�l

+�𝛽Fylm9,¿,º,=M
lm9

º�l

+ À𝐱N − 𝐱l}~�Á𝐫lm9,¿,l,=N

+ À𝐱l}~� − 𝒙MÁ𝐫lm9,¿,l,=M

+ � 𝐞N𝐫lm9,¿,º,=N
lm9

º�lm=

+ � 𝐞M𝐫lm9,¿,º,=M
lm9

º�lm=

≤ 𝝊lm9(¿)
b − 𝐮(¿)M  

∀𝑖 = 1,… , 𝑃 

(A3) 
𝐩lm9,¿,l,=N − 𝐩lm9,¿,l,=M + ylm9,¿,l,=N 𝐞𝐳¾ − ylm9,¿,l,=M 𝐞𝐳¾

+ 𝚽b
�𝐫lm9,¿,l,=N − 𝚽b

�𝐫lm9,¿,l,=M

= −𝐔lm9,l(¿)�  

	∀𝑖 = 1,… , 𝑃 

 

𝐩lm9,¿,º,=N − 𝐩lm9,¿,º,=M + ylm9,¿,º,=N 𝐞𝐳Ã − ylm9,¿,º,=M 𝐞𝐳Ã
+ 𝚽=

�𝐫lm9,¿,º,=N − 𝚽=
�𝐫lm9,¿,º,=M

= −𝐔lm9,º(¿)
�  

∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

𝐩lm9,¿,º,=N , 𝐩lm9,¿,º,=M , 𝐫lm9,¿,º,=N , 𝐫lm9,¿,º,=M ≥ 𝟎 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖					∀𝑖 = 1,… , 𝑃 

ylm9,¿,º,=N , ylm9,¿,º,=N ≥ 0 ∀𝑗 = 𝑡 + 1,… , 𝑡 + 

∀𝑖 = 1,… , 𝑃 

For the upper bound of the equations (1d): 
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�𝐞𝐳¾�𝐩lm9,¿,º,hN +
lm9

º�l

�𝐞𝐳¾�𝐩lm9,¿,º,hM +
lm9

º�l

�𝛽Fylm9,¿,º,hN
lm9

º�l

+�𝛽Fylm9,¿,º,hM
lm9

º�l

+ À𝐱N − 𝐱l}~�Á𝐫lm9,¿,l,hN

+ À𝐱l}~� − 𝒙MÁ𝐫lm9,¿,l,hM

+ � 𝐞N𝐫lm9,¿,º,hN
lm9

º�lm=

+ � 𝐞M𝐫lm9,¿,º,hM
lm9

º�lm=
≤ −𝝊lm9(¿)

b + 𝐮(¿)N  

∀𝑖 = 1,… , 𝑃 

(A4) 𝐩lm9,¿,l,hN − 𝐩lm9,¿,l,hM + ylm9,¿,l,hN 𝐞𝐳¾ − ylm9,¿,l,hM 𝐞𝐳¾
+ 𝚽b

�𝐫lm9,¿,l,hN − 𝚽b
�𝐫lm9,¿,l,hM

= 𝐔lm9,l(¿)�  

	∀𝑖 = 1,… , 𝑃 

 

𝐩lm9,¿,º,hN − 𝐩lm9,¿,º,hM + ylm9,¿,º,hN 𝐞𝐳Ã − ylm9,¿,º,hM 𝐞𝐳Ã
+ 𝚽=

�𝐫lm9,¿,º,hN − 𝚽=
�𝐫lm9,¿,º,hM

= 𝐔lm9,º(¿)
�  

∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

𝐩lm9,¿,º,hN , 𝐩lm9,¿,º,hM , 𝐫lm9,¿,º,hN , 𝐫lm9,¿,º,hM ≥ 𝟎 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖					∀𝑖
= 1,… , 𝑃 

ylm9,¿,º,hN , ylm9,¿,º,hN ≥ 0 ∀𝑗 = 𝑡 + 1,… , 𝑡 + 

∀𝑖 = 1,… , 𝑃 

For the lower bound of the equations (1e): 
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�𝐞𝐳¾�𝐩lm9,¿,º,ÙN +
lm9

º�l

�𝐞𝐳¾�𝐩lm9,¿,º,ÙM +
lm9

º�l

�𝛽Fylm9,¿,º,ÙN
lm9

º�l

+�𝛽Fylm9,¿,º,ÙM
lm9

º�l

+ À𝐱N − 𝐱l}~�Á𝐫lm9,¿,l,ÙN

+ À𝐱l}~� − 𝒙MÁ𝐫lm9,¿,l,ÙM

+ � 𝐞N𝐫lm9,¿,º,ÙN
lm9

º�lm=

+ � 𝐞M𝐫lm9,¿,º,ÙM
lm9

º�lm=
≤ 𝒙lm9(¿)

b − 𝐱(¿)M  

∀𝑖 = 1,… , 𝑃 

(A5) 𝐩lm9,¿,l,ÙN − 𝐩lm9,¿,l,ÙM + ylm9,¿,l,ÙN 𝐞𝐳¾ − ylm9,¿,l,ÙM 𝐞𝐳¾
+ 𝚽b

�𝐫lm9,¿,l,ÙN − 𝚽b
�𝐫lm9,¿,l,ÙM

= −𝐗lm9,l(¿)�  

	∀𝑖 = 1,… , 𝑃 

 

𝐩lm9,¿,º,ÙN − 𝐩lm9,¿,º,ÙM + ylm9,¿,º,ÙN 𝐞𝐳Ã − ylm9,¿,º,ÙM 𝐞𝐳Ã
+ 𝚽=

�𝐫lm9,¿,º,ÙN − 𝚽=
�𝐫lm9,¿,º,ÙM

= −𝐗lm9,º(¿)
�  

∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

𝐩lm9,¿,º,ÙN , 𝐩lm9,¿,º,ÙM , 𝐫lm9,¿,º,ÙN , 𝐫lm9,¿,º,ÙM ≥ 𝟎 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖					∀𝑖
= 1,… , 𝑃 

ylm9,¿,º,ÙN , ylm9,¿,º,ÙN ≥ 0 ∀𝑗 = 𝑡 + 1,… , 𝑡 + 

∀𝑖 = 1,… , 𝑃 

For the upper bound of the equations (1e): 
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�𝐞𝐳¾�𝐩lm9,¿,º,wN +
lm9

º�l

�𝐞𝐳¾�𝐩lm9,¿,º,wM +
lm9

º�l

�𝛽Fylm9,¿,º,wN
lm9

º�l

+�𝛽Fylm9,¿,º,wM
lm9

º�l

+ À𝐱N − 𝐱l}~�Á𝐫lm9,¿,l,wN

+ À𝐱l}~� − 𝒙MÁ𝐫lm9,¿,l,wM

+ � 𝐞N𝐫lm9,¿,º,wN
lm9

º�lm=

+ � 𝐞M𝐫lm9,¿,º,wM
lm9

º�lm=
≤ −𝒙lm9(¿)

b + 𝐱(¿)N  

∀𝑖 = 1,… , 𝑃 

(A6) 𝐩lm9,¿,l,wN − 𝐩lm9,¿,l,wM + ylm9,¿,l,wN 𝐞𝐳¾ − ylm9,¿,l,wM 𝐞𝐳¾
+ 𝚽b

�𝐫lm9,¿,l,wN − 𝚽b
�𝐫lm9,¿,l,wM

= 𝐗lm9,l(¿)�  

	∀𝑖 = 1,… , 𝑃 

 

𝐩lm9,¿,º,wN − 𝐩lm9,¿,º,wM + ylm9,¿,º,wN 𝐞𝐳Ã − ylm9,¿,º,wM 𝐞𝐳Ã
+ 𝚽=

�𝐫lm9,¿,º,wN − 𝚽=
�𝐫lm9,¿,º,wM

= 𝐗lm9,º(¿)
�  

∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

𝐩lm9,¿,º,wN , 𝐩lm9,¿,º,wM , 𝐫lm9,¿,º,wN , 𝐫lm9,¿,º,wM ≥ 𝟎 ∀𝑗 = 𝑡, … , 𝑡 + 𝑖					∀𝑖
= 1,… , 𝑃 

ylm9,¿,º,wN , ylm9,¿,º,wN ≥ 0 ∀𝑗 = 𝑡 + 1,… , 𝑡 + 𝑖 

∀𝑖 = 1,… , 𝑃 

For the equations (1f): 

𝝊lm9b = 𝝊lm�a=b  ∀𝑖 = 𝑀,… , 𝑃 − 1 

(A7) 

𝐔lm9,º = 𝐔lm�a=,º ∀𝑖 = 𝑀,… , 𝑃 − 1 
∀𝑗 = 𝑡,… , 𝑡 + 𝑀 − 1 

𝐔lm9,º = 𝟎 ∀𝑖 = 𝑀,… , 𝑃 − 1 
∀𝑗 = 𝑡 +𝑀,… , 𝑡 + 𝑃 − 1 
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