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Abstract

It was recently shown that a massive thin shell that is sandwiched between a flat interior and an exterior 
geometry given by the outgoing Vaidya metric becomes null in a finite proper time. We investigate this 
transition for a general spherically-symmetric metric outside the shell and find that it occurs generically. 
Once the shell is null its persistence on a null trajectory can be ensured by several mechanisms that we 
describe. Using the outgoing Vaidya metric as an example we show that if a dust shell acquires surface 
pressure on its transition to a null trajectory it can evade the Schwarzschild radius through its collapse. 
Alternatively, the pressureless collapse may continue if the exterior geometry acquires a more general form.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Hypersurfaces of discontinuity are idealizations of narrow transitional regions between space-
time domains with different physical properties. The thin shell formalism [1–3] makes this 
idealization consistent by prescribing joining rules for the solutions of the Einstein equations 
on both sides of the hypersurface. These rules — junction conditions — determine dynamics of 
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the shell. The resulting joined geometry is a solution of the Einstein equations with an additional 
distributional stress-energy tensor that is concentrated on the hypersurface.

The thin shell formalism plays a role in studies of cosmological phase transitions [4], im-
pulsive gravitational waves [5], gravastars and other non-singular substitutes of black holes [6], 
traversable wormholes [7], and gravitationally-induced decoherence [8]. A massive thin shell 
separating a flat interior from a curved exterior spacetime region provides the simplest model of 
collapse. Classically the exterior spherical geometry is described by a Schwarzschild metric and 
the shell collapses into a black hole in finite proper time.

Such models has also been used in investigations of collapse-induced radiation [9,10] antic-
ipated before formation of the event horizon. The basic idea is that the process of gravitational 
collapse excites fields in the spacetime, giving rise to asymptotically thermal radiation [9]. 
We shall refer to this as pre-Hawking radiation [11–13]. The consequences it might have for 
black hole formation and the information paradox have been a subject of interest in recent years 
[9,10,14–22]. While it has been argued that such effects are too small to prevent the formation of 
an event horizon [10,22], others contend that such approximations are not reliable and that hori-
zons may not form if pre-Hawking radiation is properly taken into account [16,19]. Indeed, it has 
been posited that this should be a generic feature of quantum gravity, with the black hole interior 
and accompanying singularity replaced with a genuine quantum geometry where the notion of 
event horizon ceases to be useful [23].

A number of researchers have argued [15–18] that there are two options for the evolution of 
a thin shell in a spacetime with pre-Hawking radiation. One possibility is that an event horizon 
never forms: either the shell does not cross its Schwarzschild radius rg before complete evap-
oration or a manifest breakdown of semiclassical dynamics, such as violation of the adiabatic 
condition [26], or formation of some quantum geometry [23] occurs. The other alternative is that 
evaporation stops producing a macroscopic or a Planck-scale remnant [25], forever preventing a 
distant observer at late times from detecting Hawking radiation. An outgoing Vaidya metric [27]
is often used as an example of the exterior geometry of this process despite its known limita-
tions [28].

This result applies to a broad class of possible exterior geometries. It is based on an implicit 
assumption that through their evolution a massive shell remains timelike and a massless shell re-
mains null. However, it was recently demonstrated by Chen, Unruh, Wu and Yeom (CUWY) [29]
that this assumption is unwarranted. Via an explicitly regular coordinate system, while CUWY 
confirmed horizon avoidance for an exterior geometry described by the outgoing Vaidya metric, 
they also demonstrated that it comes with a price.

Indeed, it was shown that if the exterior metric outside is outgoing Vaidya, a massive dust shell 
sheds its rest mass in finite proper time (while still outside its Schwarzschild radius), becoming 
null. It was further argued that if the evaporation continues the shell becomes superluminal. 
The choice is evidently between eventual tachyonic behavior or switching off the radiation. In the 
latter case the subsequent development is classical and the shell crosses rg at a finite value of a 
suitable affine parameter [29].

Our goal is to understand in this context the limits of the thin shell formalism in various 
geometries and validity of the semiclassical approximation taking pre-Hawking radiation into 
account. The detailed description of the basic assumptions of this approximation and their ap-
plication to thin shells is given in [17]. In practical terms, the standard curvature terms of the 
left hand side of the Einstein equations are equated to the expectation value of the renormalized 
stress-energy tensor. We assume its existence and consistency, but make no assumptions beyond 
that of spherical symmetry and certain regularity conditions that are described below. We leave 
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aside the conceptual implications of radiation suppression and/or horizon avoidance [17,24]. The 
question of the origin of the pre-Hawking quanta is open, as it has been posited that this takes 
place at or near the surface of the collapsing body [13,16] or within a region �r ∼ rg outside the 
horizon [30].

The flat geometry inside is given in the outgoing Eddington–Finkelstein (EF) coordinates,

ds2− = −du2− − 2du−dr + r2d�, (1)

where u− = t − r , and the most general spherically-symmetric geometry outside is

ds2+ = −e2h(u+,r)f (u+, r)du2+ − 2eh(u+,r)du+dr + r2d�, (2)

extending the set-up of the previous studies [17,29]. In the following we omit the subscript “+” 
from the exterior quantities when it does not lead to confusion. Here

f (u, r) = 1 − C(u, r)/r, (3)

the Schwarzschild radius is implicitly defined via rg = C(u, rg), where in the Schwarzschild 
geometry rg = C = 2M .

To represent evaporation we assume that ∂uC ≤ 0, and the evaporation stops at some u∗ either 
at f ≡ 1 or with some finite value of the mass function C(r) > 0. The null coordinates u± are 
distinct and the relation between them is determined by the first junction condition, while the 
radial coordinate is continuous across the surface [3].

We consider the transition of a massive evaporating shell to a null trajectory and investigate 
the circumstances under which such a shell continues along a null trajectory. We find this does 
not take place only if h(u, r) ≡ 0 and the absence of surface tension or pressure is imposed on 
the shell when it becomes null. Provided that the metric at the Schwarzchild radius is regular 
— specifically, the function h(u, rg(u)) is finite, we show by reworking the arguments of [18]
that the subsequent null trajectory will never cross the ever-shrinking rg(u). In this sense the 
massive-to-null-to-superluminal case considered by CUWY is exceptional among the metrics 
with the finite functions h(u, r). We find that a collapsing evaporating shell can undergo a number 
of possible endstates. We discuss the physical implications of the various possible cases in the 
concluding section of our paper, noting that which, if any, scenario is realized can be decided 
only by performing explicit analysis of the coupled matter-gravity system.

To simplify the notation in the following we use w := u− and refer the quantities on the shell 
� by capital letters, such as R := r|�, F := f (U, R). The jump of some quantity A across the 
shell is [A] := A|�+ − A|�− . All derivatives are explicitly indicated by subscripts, as in AR =
∂RA(U, R). The total proper time derivative dA/dτ is denoted as Ȧ, and the total derivative over 
some parameter λ is Aλ := ARRλ + AUUλ.

2. Transition to massless shell

The metric across the two domains can be represented as the continuous distributional ten-
sor [3]

ḡμν = ḡ+
μν	(z) + ḡ−

μν	(−z), (4)

using the set of special coordinates x̄μ = (w, z, θ, φ). Here 	(z) is the step function and the 
interior and exterior metrics ḡ±(x̄) are continuously joined at z = 0. The coordinate z is defined 
in Appendix A. A mathematically equivalent (and sometimes easier to implement) approach 
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is the thin shell formalism. We will use it in most of our analysis, both for the consistency with 
[17,18] and because it makes structure of the distributional stress-energy tensor more transparent.

The explicit form of the interpolating metric ḡμν when the exterior geometry that is modelled 
by the outgoing Vaidya metric is given in [29]. We treat a general spherically-symmetric exterior 
geometry and provide the resulting metric ḡμν in Appendix A.

In discussing the timelike-to-null transition it is particularly convenient to have a unified de-
scription that is applicable to both types of shells [31]. Unlike the proper time τ that stops 
increasing at the transition to the null trajectory, two additional parameterizations are regular 
there. When discussing the null shell it is convenient to use

λ := −R, (5)

while the Minkowski retarded coordinate w is used in calculations that involve the interpolating 
metric. We will primarily use the thin shell formalism in τ and λ parameterizations.

We first consider an initially massive thin shell � and assume that the exterior geometry is 
described by the outgoing Vaidya metric (eq. (2) with f (u, r) = 1 −C(u)/r , for some decreasing 
function C(u), h(u, r) = 0). While the shell is timelike its four-velocity is given by

v
μ
± = λ̇k

μ
±, (6)

where

k
μ
+ := (Uλ,−1,0,0), k

μ
− := (Wλ,−1,0,0), (7)

and

λ̇ = (−kμkμ)−1/2. (8)

The first junction condition identifies the induced metric on the two sides of �,

W 2
λ − 2Wλ = FU2

λ − 2Uλ, (9)

where F = f (U, R). Similarly, the condition k̄μ ≡ k̄
μ
− = k̄

μ
+ (see Appendix A) holds both for a 

massive shell and in the lightlike regime, where k2± = 0. For a massive shell we also have

U̇ = −Ṙ +
√

F + Ṙ2

F
, (10)

that approximately becomes U̇ ≈ −2Ṙ/F for large −Ṙ, and for the null shell

Uλ = 2/F. (11)

An important auxiliary quantity for a massive shell is the outward pointing (unit) spacelike nor-
mal,

n̂μ = λ̇nμ, nμ = (1,Uλ,0,0), (12)

and as the shell approaches the null trajectory nμ → −kμ. Both k̄μ and n̄μ are continuous across 
the shell (when written in the interpolating coordinates x̄μ).

The second junction condition relates the jump in extrinsic curvature

Kab := n̂μ;νeμeν, (13)
a b
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to the surface stress-energy tensor. Here we use the surface coordinates ya , a = 1, 2, 3, the shell 
is given via parametric expressions xμ

±(y), and eμ
a = ∂xμ/∂ya . In this case the optimal choice of 

the surface coordinates is (τ, 	 := θ |�, � := φ|�).
Assuming a general relationship between the proper mass density (that is related to the shell’s 

rest mass via m0 = 4πR2σ ) and the tension/pressure p(σ), we obtain equations that govern their 
evolution,

8πp(σ) = 2R̈ + FR

2
√

F + Ṙ2
− R̈√

1 + Ṙ2
+ FU(1 − 2ṘU̇ )

2F
√

F + Ṙ2

+
√

F + Ṙ2 −
√

1 + Ṙ2

R
, (14)

and

−4πσ =
√

F + Ṙ2 −
√

1 + Ṙ2

R
. (15)

The details of the derivation can be found in [17] and in Appendix C. The system can be 
solved for R̈ providing the basis for numerical integration. In the limit of large Ṙ the pressure is 
negligible, and the asymptotic expression becomes [17]

R̈ ≈ 4CUṘ4

RF 2 ≈ 4CCUṘ4

X2 , (16)

where we defined the gap between the shell and the Schwarzschild radius,

X := R − C, (17)

and the second equality in Eq. (16) holds for X � C.
To illustrate the timelike-to-null transition we set p(σ) = 0 and adopt the law

dC

dU
= − α

C2 . (18)

The results of numerical integration of (14) with p = 0 are presented in Fig. 1; using the same 
initial conditions as in [29] we obtain the same result.

Henceforth we use

FR = C

R2 , FU = −CU

R
= + α

C2R
, (19)

while

Fλ = FRRλ + FUUλ = −FR + FUUλ. (20)

We establish the divergence in Ṙ at finite proper time by considering the Taylor series for 
R (and thus Ṙ) at some regular point τ and showing that its radius of convergence goes to 
zero as τ increases. The third and higher derivatives R(r)(τ ) are calculated from the knowledge 
of the coordinates R(τ) and U(τ), velocity Ṙ and the function C(U). We estimate the radius 
of convergence of the series using Eqs. (16) (since for large values of |Ṙ| it is the dominant 
contribution to the derivative of Ṙ) and (18).

In the leading term the (r + 1)-th derivative pulls down the exponent from Ṙ (which equals to 
3r −2), increases the power of Ṙ by 3 = −1 +4 and increases the power of x in the denominator 
by 2, when we substitute R̈. As a result, the leading term in the derivatives scales as
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Fig. 1. The orange line represents M(τ) ≡ C(τ)/2. The rest mass m0(τ ) is shown as the thin black line, and the gap 
X(τ) = R(τ) − C(τ) as the blue dotted line. The initial conditions are as in [29], where Rw(0) = −0.1 is translated 
into Ṙ(0) = −0.111803 using Eq. (A.15). Other initial data is C0 ≡ C(0) = 20 and R(0) = 30. The coefficient in the 
evaporation law Eq. (18) is α = 8 that corresponds to α = 1 of [29]. The evaporation ends at time is u∗ = C3

0/3α =
1000/3, but the system breaks down at approximately τ0 = 27.179869, indicating transition to the null trajectory. Already 
at τm = 27.1796 (um = 116.431, wm = 39.6574) the timelike condition vμvμ = −1 is satisfied only with the precision 
of 8.93 × 10−9, while Eq. (23) gives the estimate of the radius of convergence � ≈ 0.00049. At the transition most of 
the gravitational mass is still contained within the shell: C(τm)/C(0) = 0.867. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

|R(r+1)| ∼ |Ṙ|(3r+1)

(R − C)2r

(
4α

C

)r r∏
n=2

(3n − 2), (21)

and the r-th coefficient in the Taylor series is

|cr+1| = |R(r+1)

(r + 1)! ∼ 12r

�( 1
3 )r−5/3

|Ṙ|(3r+1)

(R − C)2r

( α

C

)r

. (22)

Then the radius of convergence � is

� = (
lim

r→∞|cr |1/r
)−1 ≈ CX2

12α|Ṙ|3 (23)

which goes to zero with decreasing C and X and increasing |Ṙ|.
On the other hand, if the shell is still timelike the gap X begins to increase after reaching 

approximately X ≈ ε∗ = 2α/C ([17]; in Section 4 we revisit this estimate taking into account 
the timelike-to-null transition). Since the acceleration is negative and increasing in absolute value 
the transition to a null trajectory can occur only for X > 0, i.e. outside the Schwarzschild radius. 
While the above result does not allow identification of the transition point τ0, it shows that it 
exists.

Lightlike matter has a vanishing rest mass. Eq. (15) ensures that when the shell becomes null 
[i.e. Ṙ → −∞], its surface density goes to zero,

σ = C

8π |Ṙ|R2
+O(1/|Ṙ3|), (24)

causing the rest mass m0 = 4πσR2 to vanish. The rate of shedding of the rest mass at large 
velocities is
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ṁ0 ∼ − Ċ

2Ṙ
+ CR̈

2Ṙ2
≈ −2|CU |C2Ṙ2

X2 , (25)

where only the term proportional to R̈ < 0, approximated by using Eq. (16), appreciably con-
tributes to the final result. We see that this rate is much higher than the rate of decrease of C. 
Indeed, for macroscopic shells C 
 1 the fraction of the gravitational mass lost before the tran-
sition to the null trajectory goes to zero slower than 1/C (Appendix B).

For a general exterior geometry of Eq. (2) we find (Appendix C) that a sufficient condition for 
the transition to a light-like null trajectory in finite proper time is the requirement that the metric 
function h is finite everywhere and, in particular h

(
u, rg(u)

)
< ∞.

3. Preserving the null condition

For the shell becoming null at λ = λ0 we now investigate the conditions necessary to keep it 
null in a general spherically symmetric metric (2). First we recall a few properties of the surface 
stress-energy tensor in the null case. Since the normal nμ “declines into tangency with �” [31]
an alternative auxiliary vector is used, defined by

N±
μ N

μ
± = 0, N±

μ k
μ
± = −1 (26)

on both sides of the shell. When the shell becomes null at some λ = λ0

N
μ
+ = (0, 1

2F,0,0), N
μ
− = (0, 1

2 ,0,0). (27)

Analogously to the vector k̄μ it is continuous at �, [N̄μ] = 0. On the null hypersurface that is 
orthogonal and tangent to the 4-velocity of the null shell we install the coordinates ya that consist 
of λ ≥ λ0, possibly non-affine parameter of the hypersurface generators, and the transversal yA

that are most conveniently taken to be (	, �). If the shell remains null it traverses the hypersur-
face. From the bulk point of view the shell is described by parametric relations xμ(ya), and the 
set of three tangent vector fields is formed by two spacelike vectors

e
μ
A := ∂x

μ
±

∂yA

∣∣∣
�
, (28)

transverse to it that are also continuous across the surface, and the null vector eμ
λ := kμ. The 

transverse inner product σAB := e
μ
AeBμ is continuous as well. For a spherical shell it is

σABdyAdyB = λ2(d	2 + sin2 	d�2). (29)

The surface stress-energy tensor of a massless shell depends on the observer. However, all such 
objects are derived from

Sμν = ςkμkν + pσABe
μ
Aeν

B + jA(kμeν
A + e

μ
Akν), (30)

where ς is the shell’s surface energy density, p is an isotropic surface pressure, and jA is surface 
current that is zero in the spherical case. From the extrinsic perspective these quantities are related 
to the discontinuity of the derivative of the continuous interpolating metric via γμν := [ḡμν,α]N̄α

where the calculation is performed using the coordinates x̄μ. From the intrinsic perspective the 
key quantity is a transverse curvature Cab,

Cab := −Nμe
μ

eν. (31)

a;ν b



26 R.B. Mann et al. / Nuclear Physics B 936 (2018) 19–35
Density, pressure and current are obtained from its discontinuity, [Cab] = 1
2γabe

μ
a eν

b . 
A straightforward calculation identifies

ς = C

8πR2 , (32)

while the pressure is directly connected to the preservation of the null condition kμkμ = 0,

p = −[κ]
8π

, (33)

where κ = Cλλ = −Nμk
μ

;νk
ν measures the failure of λ to be the affine parameter, with accelera-

tion aμ
± := k

μ

±;νk
ν± being

a
μ
± = κ±k

μ
±, (34)

on either side of the shell. Note that unlike its massive counterpart, a massless shell moves on a 
geodesic, possibly non-affinely parameterized. The shell that becomes null at λ = λ0 and contin-
ues as as null for λ > λ0 should satisfy Eq. (34) already at λ = λ0.

At this stage two options are possible. One is that the spacetime outside the shell is still 
described by the outgoing Vaidya metric. The other is that the form of the metric changes at the 
null transition. We shall explore each in turn.

Suppose the spacetime outside the shell retains its outgoing Vaidya form. The shell will 
continue on a null trajectory for λ > λ0, provided it acquires a surface pressure. Indeed, the 
acceleration of the shell expressed in the outside and the inside coordinates is

a
μ
+ =

(
Uλλ − 2FR/F 2

2FU/F 2

)
, a

μ
− =

(
Wλλ

0

)
, (35)

respectively, where we suppressed the trivial angular components. Then from Eqs. (7) and (35)
it follows that

κ− = 0, κ+ = −2FU/F 2, (36)

resulting in the surface pressure

p = − CU

4πR(1 − C/R)2 > 0 (37)

upon using (33). Furthermore, (as we shall see in Sec. 4) R ≥ C + ε∗, and so the pressure is 
finite for all finite values of CU . The shell moves on a null geodesic with a consistent value of 
the second derivative Uλλ ≡ d(2/F )/dλ for λ ≥ λ0.

Alternatively, one could impose the requirement p ≡ 0 as was done by CUWY [29]. A com-
bination of the null shell property Wλ = 2 (Eq. (A.16)) and

Fλ = −FR + FUUλ = −FR + 2FU/F, (38)

then ensures that the only consistent solution for λ > λ0 that is not superluminal is

FU ≡ 0, Uλλ = 2FR

F 2 = −2Fλ

F 2 , Wλ = 2. (39)

In other words, emission of any radiation terminates and (as Cu must drop to zero at λ = λ0) the 
metric has a discontinuity in the first derivative, reducing it to the Schwarzschild metric expressed 
in Eddington–Finkelstein coordinates. We discuss the superluminal solution in Appendix E.
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We therefore see that it is impossible to have both a pressureless null shell and a shrinking 
Schwarzschild radius drg/du < 0 if the exterior metric is the outgoing Vaidya.

The surface stress-energy tensor of Eq. (30) satisfies the weak energy condition for positive 
values of ς and p. Indeed, for an arbitrary timelike vector tμ = (u̇, ̇r, θ̇ , φ̇) we have

Sμνt
μtν = ς(kμtμ)2 + pR2(θ̇2 + sin2 	φ̇2) ≥ 0. (40)

We discuss other energy conditions and additional properties of thin shells elsewhere [32]. The 
transverse pressure p, however, may not be a benign feature of the solution. Having normal 
matter is not sufficient to rule out the superluminal propagation of disturbances, i.e. to guarantee 
that the speed of sound is less then the speed of light [33,34]. However for the case at hand the 
motion of the shell determines the surface quantities (p, ς) via the junction conditions; there is 
no equation of state and thus no well-defined speed of sound. Note that for the most part the shell 
is super-stiff, i.e., p > ς [34].

This leads us to the other option: the metric has a different discontinuity at the null transition 
allowing both zero pressure and a shrinking rg . For a general metric (2) the two first components 
of Eq. (34) become

Uλλ +
(
− 1

2eH FR − eH FHR + HU

) 4e−2H

F 2 = κ
2e−H

F
, (41)

2e−H FU

F 2 + HR = −κ, (42)

where H = h(U, R). Given the functions f and h this pair of equations yields κ and Uλλ. The 
shells continues on a null trajectory, with the velocity Uλ = 2e−H /F in a general metric of 
Eq. (2) satisfying

Uλλ = d(2e−H/F)/dλ. (43)

Since κ− ≡ 0 it is enough to require κ = 0 to ensure that the shell remains pressureless while 
continuing to move on a null geodesic. In this case Eq. (42) will serve as a constraint on the ex-
terior metric: HR = −2e−HFU/F 2. The evaporation continues with FU > 0. There is a discon-
tinuity in the derivative of the metric, h

(
U(λ0), R(λ0)

) = 0, ∂Rh
(
U(λ0), R(λ0)

) = −2FU/F 2, 
and for λ > λ0 the metric is not of the Vaidya form, but rather of the form (2).

The question concerning which scenario is actually realized can be answered only through 
detailed study involving matching of the bulk stress-energy tensor that results in a self-consistent 
analysis of evaporation.

4. Horizon and singularity avoidance

We have seen that the shell, once it becomes null, continues as such. Here we show how the 
event horizon is avoided if we still model the exterior geometry by the outgoing Vaidya metric. 
In this case the shell must have a surface pressure (37). A general analysis, including comparison 
of the evolution described in different coordinate systems will be presented elsewhere.

The key quantity is the gap

X = R − rg = R − C, (44)

where the last equality holds only for the Vaidya metric. This quantity can be viewed as either 
function of w or λ, via the relationships R(w), U(w), or R(λ), U(λ) respectively. Evaluating its 
derivative over, e.g., λ, we have
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Xλ = Rλ − dC

dU
Uλ = −1 +

∣∣∣∣ dC

dU

∣∣∣∣ 2

F
> −1 + 2|CU |C

X
. (45)

As a result the gap decreases only until X ≈ ε∗ := 2C|CU |, and crossing of the Schwarzschild 
radius is possible only if the evaporation completely stops. A detailed evaluation of the approach 
to ε∗ is given in Appendix B.

We pause to comment that some solutions exhibiting collapsing matter that does not cross 
its Schwarzschild radius have been obtained, but these still have unavoidable singularities; for 
example, a (3 + 1) scenario based on the outgoing Vaidya metric [35] or a (2 + 1) solution that 
ends in a conical singularity [36].

Nevertheless, regular scenarios may arise in the outgoing Vaidya metric with finite evaporation 
retarded time, C(uE) = 0. We note first that if limu→uE

ε∗ > 0 then R > 0 at the last moment of 
evaporation. Since this limit implies that CU is divergent and F = 0, Eq. (37) results in divergent 
surface pressure.

On the other hand, if

0 < K := − lim
u→uE

Cu < ∞, (46)

Eq. (45) does not prevent the gap at uE being zero, i.e. collapse to the point R = C(uE) = 0. 
In this scenario the surface density ς ∝ C/R2 diverges. However, as the following necessary 
condition shows such collapse is possible only for some values of K . Consider Eq. (11) that 
using R(λ) = r0 − λ we write as

dU

dλ
= 2

(
1 − C

(
U(λ)

)
r0 − λ

)−1

, (47)

where the evaporation lasts from λ = 0 (and thus U(0) = 0) until λ ≤ r0, and the singularities 
can appear if uE = U(r0). Assume that this is the case. Then by taking the limit λ → r0 on both 
sides of Eq. (47) we obtain the equation

u′ = 2

1 − Ku′ , (48)

that u′ := limλ→r0 Uλ should satisfy. It has real solutions only if K ≤ 1/8. Hence if the limit of 
evaporation rate at the end of the process is K > 1/8 the shell disappears at finite radius R > 0
without singularity, as

ς → 0, p → 0. (49)

Conversely, if K ≤ 1/8 we expect the semi-classical approximation to break down before a 
singularity is reached.

5. Discussion

If the spacetime outside a massive thin shell is modelled by an outgoing Vaidya metric or by 
an arbitrary spherically symmetric metric with h

(
u, rg(u)

)
< ∞ then initially massive thin shells 

shed their rest mass and become null.
Once the shell becomes null there are several options, that are best illustrated by the evolution 

of a massive dust shell with the exterior geometry given by the outgoing Vaidya metric:
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1. The metric retains its Vaidya form but has a derivative discontinuity, though this perhaps 
could be ameliorated if the process halts sufficiently smoothly. The pre-Hawking radiation ei-
ther halts abruptly or smoothly if the latter situation holds. Collapse to a black hole proceeds 
classically on a null geodesic (as a hypersurface separating Minkowski and Schwarzschild 
geometries).

2. The metric retains its Vaidya form and the shell remains pressureless, in which case it must 
become superluminal. This option can be discarded as unphysical [29].

3. The shell acquires surface pressure discontinuously (though one could consider modelling 
this as a smooth but rapid transition) and propagates on a null geodesic (as a hypersurface 
separating Minkowski and outgoing Vaidya geometries). In this case an horizon does not 
form, as shown in Section 4. A transient naked singularity may form both in the case of 
the shell collapsing to a point at the last moment of evaporation and as ring singularity at 
finite radius. Alternatively, the shell may just evaporate away. What happens depends on the 
precise limiting form of the evaporation rate.

4. At the opposite extreme the shell remains pressureless, for a part or the entire duration of its 
evolution. There is a derivative discontinuity in the metric, but the exterior Vaidya form is not 
retained. The shell propagates on a null geodesic (as a hypersurface separating Minkowski 
and a generalized outgoing Vaidya geometries). It is possible to show by modifying the 
analysis of [18] along the lines of Sec. 4 that if h

(
u, rg(u)

)
< ∞ the shell does not cross its 

Schwarzschild radius. A more plausible option is a combination of some surface pressure 
and h(u, r) �= 0, ensuring subluminal propagation of density perturbations. We will address 
the questions of regularity of this scenario in future work [32].

In any version of scenarios 3 and 4 there three possibilities for the final fate of the shell: it 
may smoothly fade away, or may produce a point-like transient singularity with R = 0 or else 
shell-like with R > 0. Which possibility is realized depends on the metric and will be discussed 
in [32].

It is clear that radiation can modify thin shell collapse in a variety of ways. In particular, it can 
lead to horizon avoidance or to evaporation suppression. The avoidance scale ε∗ is sub-Planckian 
for a macroscopic shell. Since the Schwarzschild radius rg is inside the interior flat domain, 
this is also the physical scale of apparent horizon avoidance. Hence even a consistent scenario 
invokes sub-Planckian distances, and it may indicate an early breakdown of the semiclassical 
approximation at the scale of the Schwarzschild radius (as, for example, was argued in [23]) 
— well before the collapsing object is compressed to the Planck scale. Only a more explicit 
analysis of the coupled matter-gravity systems will allow use to determine whether avoidance 
or suppression are universal features, along with consistency of the resulting scenarios. Such 
investigations should point the way toward a more complete description of gravitational collapse 
that goes beyond the semi-classical approximation.
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Appendix A. Interpolating metric

Extending the construction of [29] we adapt the coordinates x̄μ = (w, z, θ, φ), where w := u−
and

r =:
{

R(w) + z, z ≤ 0
R(w) + z exp [−h

(
U(w),R(w)

)]/Uw, z > 0.
(A.1)

We abbreviate h
(
U(w), R(w)

)
as H(w). For general exterior point (u, r) the coordinates (w, z)

are obtained by identifying uw ≡ Uw . Equivalently, after finding the radial coordinate of the 
shell at the moment of the retarded time w, one obtains the equation R−(w) = R+(U) ≡ R+(u)

that can be solved for u(w). We explicitly use the subscripts indicating the spacetime domain 
because even if the radial coordinate is continuous, the functional dependence on the relevant 
retarded time is different in each region. In addition we note that

Rw := dR−
du−

= dR+
du+

Uw. (A.2)

We will need the explicit form of the Jacobian on the shell:

∂u

∂w

∣∣∣
�

= Uw,
∂u

∂z

∣∣∣
�

= 0,
∂r

∂w

∣∣∣
�

= Rw,
∂r

∂z

∣∣∣
�

= e−H

Uw

. (A.3)

The first junction condition in the form

1 + 2Rw = FU2
w + 2UwRw, (A.4)

and the requirement that both u− and u+ increase together result in the explicit expression

Uw = −Rw + √
R2

w + F(1 + 2Rw)

F
. (A.5)

The tangent vector is continuous in the coordinates x̄μ across the shell. Both

k
μ
+ = (Uλ,−1,0,0) = Wλ(Uw,Rw,0,0), k

μ
− = (Wλ,−1,0,0) = Wλ(1,Rw,0,0),

(A.6)

become

k̄μ = ∂x̄μ

∂xα±
kα± = (Wλ,−RwWλ − 1,0,0) = (Wλ,0,0,0), (A.7)

where we used Eqs. (A.1), (A.2) and (A.3).
In these coordinates the metric inside the shell is written as

ds2− = −(1 + 2Rw)dw2 − 2dwdz + (R + z)2d�2. (A.8)

Outside the shell we have

du = Uwdw, (A.9)

and

dr =
[
Rw − z

eH Uw

(
Uww

Uw

+ Hw

)]
dw + dz

eH Uw

, (A.10)

where
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Hw = hR(U,R)Rw + hU(U,R)Uw. (A.11)

As a result the metric is

ds2+ = −
[
f̄ e2h̄U2

w + 2eh̄UwRw − 2zeh̄−H

(
Uww

Uw

+ Hw

)]
dw2

− 2eh̄−H dwdz + r2(w, z)d�2, (A.12)

where

f̄ = 1 − C
(
u(w, z), r(w, z)

)
r(w, z)

, h̄(w, z) = h
(
u(w, z), r(w, z)

)
. (A.13)

While the shell is timelike the normalization vμvμ = −1 implies

Ẇ 2(1 + 2Rw) = 1, (A.14)

resulting in

Ẇ = −Ṙ +
√

Ṙ2 + 1 ≈ −2Ṙ = 2λ̇, (A.15)

where the approximate equality holds for the large values of |Ṙ|. When the shell becomes null 
the first junction condition leads to

Wλ = 2, Rw = − 1
2 , Uw = e−H

F
, Uww = −e−H

F

(
Hw + Fw

F

)
. (A.16)

The interior metric becomes

ds2− = −2dwdz + (R + z)2d�2, (A.17)

and the exterior metric simplifies to

ds2+ = −
[

f̄

F 2 e2(h̄−H) − eh̄−H

F
+ 2zeh̄−H Fw

F

]
dw2

− 2eh̄−H dwdz + r2(w, z)d�2, (A.18)

with

r(w, z) = R(w) + zF (w). (A.19)

Appendix B. Estimate of gravitational mass loss and the closest approach to the 
Schwarzschild radius

First we show that from the moment the evaporation becomes important (or switched-on in 
the numerical simulation) and until the shell loses all of its rest mass only a relatively small 
fraction of the Bondi–Sachs mass C/2 evaporates. Equivalently, the elapsed interval of the EF 
coordinate u is much smaller then the evaporation time, �U � uE . If the evaporation is governed 
by Eq. (18) then

C = (
C3

0 − 3αu
)1/3

, (B.1)

where the evaporation time is given by uE = C3/3α.
0
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For C0 
 1 we can assume C = C0 up to the transition as the first approximation. In this case 
using Eqs. (5) and (10) we have

Uλ �
2

F
= 2λ

λ + C
≈ − 2C0

λ + C0
, (B.2)

where we also assume that X � C.
The integration from the “initial” Ri (a quantity sharply defined in the simulation and approx-

imately in, e.g., adiabatic approximation) to the radial coordinate R0 where the shell becomes 
null results in

�U ≈ 2C ln
Xi

X0
≈ 2C ln

Xi

2C|CU | ≈ 2C0 ln
C0Xi

2α
. (B.3)

The second equality is obtained by assuming that X0 = ε∗. Numerical simulations indicates 
the actual value is different by a factor 2–10, but this precision is sufficient for our estimate. 
Substituting this result into Eq. (B.1) we find that the relative reduction of the rest mass is

|�C|
C0

= α

C2
0

ln
C0Xi

2α
� 1. (B.4)

We now provide a better estimate of the mass loss that also demonstrates how the shell radius 
R approaches the Schwarzschild radius. We assume that X � C, but take into account Eq. (B.1). 
Hence the approach of the shell to the Schwarzschild radius is governed by the equation

dU

dλ
≈ − 2C(U)

λ + C(U)
⇔ dλ

dU
= −1

2
− λ

2C
. (B.5)

The first equation is exact for the null shell. Solution of the approximate equation is

−X ≡ λ + C = eC2/4α
(
L + √

απ Erf(C/2
√

α)
)
, (B.6)

where Erf(z) is the error function, and L is determined by the initial conditions.
It allows us to find the minimal gap X between a (massive or null) shell and its Schwarzschild 

radius. Setting U(λ0) = 0 and λ0 = −C0 − X0, and approximating the error function of a large 
argument as 1, we find that

L = −X0e
−C2

0/4α − √
πα, (B.7)

where we suppressed the exponentially small correction terms, and for C0 ≥ C 
 √
α we find

X = X0e
−(C2

0−C2)/4α + 2α

C
≈ ε∗, (B.8)

where the last equality holds for C0 
 C, in agreement with the discussion in Section 4. Note 
that the condition C2/α 
 1 corresponds to the adiabatic condition of [26].

Appendix C. Equations of motion and transition to a null trajectory in a general case

Dynamics of the shell is obtained via the second junction condition [3] that equates the dis-
continuity of the extrinsic curvature Kab with the surface energy-momentum tensor Sab,

Sab = −([Kab] − [K]hab

)
/8π, (C.1)

where K := Ka
a , and [K] := K|�+ − K|�− is the discontinuity of the extrinsic curvature K

across the two sides �± of the surface.
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We derive the equation of motion for a massive thin shell following the steps that are outlined 
in [17]. For a massive shell separating the flat Minkowski interior from a generic spherically-
symmetric geometry of Eq. (2) outside, components of the four-velocity vμ = (U̇ , Ṙ, 0, 0) satisfy

U̇ = −Ṙ +
√

F + Ṙ2

ĒF
, (C.2)

where H := h(U, R) and Ē := exp(H). The outward-pointing unit spacelike normal is

n̂μ = Ē(−Ṙ, U̇ ,0,0), (C.3)

and the most convenient coordinates to use on the surface are (τ, θ, φ).
Here we calculate the extrinsic curvature outside the shell (and to reduce the clutter suppress 

the subscript ‘+’). Expressions for the interior are analogous. Components of the extrinsic cur-
vature are given by

Kττ = −n̂αvα
;βvβ = −n̂αaα, Kθθ = n̂θ ;θ , Kφφ = n̂φ ;φ. (C.4)

Straightforward evaluation results in

Kττ = 2R̈ + FR

2
√

F + Ṙ2
+ FU

2F
√

F + Ṙ2

(
Ē−1 − 2ṘU̇

) + HR

√
F + Ṙ2, (C.5)

and

Kθ
θ = K

φ
φ =

√
Ṙ2 + F/R. (C.6)

The two independent equations are

Sτ
τ = −σ = 1

4π

(√
F + Ṙ2 −

√
1 + Ṙ2

R

)
, (C.7)

that determines the evolution of the rest mass m = 4πRσ , and

8πp(σ) = 2R̈ + FR

2
√

F + Ṙ2
− R̈√

1 + Ṙ2
+

√
F + Ṙ2 −

√
1 + Ṙ2

R

+ FU

2F
√

F + Ṙ2

(
Ē−1 − 2ṘU̇

) + HR

√
F + Ṙ2 (C.8)

that upon substitution of U̇ from Eq. (C.2) results in the equation of motion for R. The first three 
terms correspond to the classical collapse, the fourth term appears if the spacetime outside the 
shell is described by an outgoing Vaidya metric, and the full expression for a general spherically-
symmetric geometry outside. It reduces to Eq. (14) when h ≡ 0 and C(u, r) → C(u). Note that 
in the general case FR = C/R2 − ∂RC/R.

The asymptotic expression for the radial acceleration is

R̈ ≈ −2Ṙ2FU

FĒ

(
1 + 2Ṙ2

F

)
≈ 4CUṘ2

F 2Ē
. (C.9)

It is valid if both the classical contribution to acceleration and the term proportional to HR be-
come negligible close to the Schwarzschild radius rg , f (u, rg) = 0. This is possible if f eh → 0
when r → rg . If the function h is finite, i.e. h < h < ∞ for some constant h for all r ≥ rg(u) then 
Ē < eh < ∞ then this condition is satisfied and the shell becomes null in a finite proper time.
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Appendix D. Alternative expressions for the surface pressure

There are additional methods to calculate the surface pressure. One is based on Raychaud-
huri’s equation, giving

[κ]θ = [Gμνk
μkν], (D.1)

where θ is expansion of the geodesic congruences. In our case κ− ≡ 0, for an incoming spherical 
null shell θ = −2/R, and the non-zero components of the Einstein tensor outside the shell are

Guu = e2h1
∂rC

r2

(
1 − C

r

)
− eh1

∂uC

r2 , (D.2)

Gur = eh1
∂rC

r2 , (D.3)

Grr = 2∂rh1(u, r)

r
. (D.4)

A different method is based on the direct use of the discontinuity

p = − 1

16π
γμνk̄

μk̄ν, γμν := [ḡμν,α]N̄α. (D.5)

For the interpolating metric of Appendix A the tangent vector at the timelike-to-null transition 
becomes

k̄μ = (2,0,0,0), (D.6)

and the auxiliary null vector

N̄μ = (0, 1
2 ,0,0). (D.7)

Hence

p = − 1

16π
2 × 2 × 1

2 ḡ+
00,z = 1

8π

(
HR + 2FU

eH F 2

)
, (D.8)

in agreement with Eq. (42).

Appendix E. Tachyons and superluminality

The appearance of tachyonic behavior is most easily observed by expressing the equation of 
motion for the shell in terms of the parameter λ. While it can be done starting with the definition 
of Kab in Eq. (13), it is easier to substitute

Ṙ = −λ̇ = − 1√
Uλ(FUλ − 2)

, (E.1)

and

R̈ = −dλ̇

dλ
λ̇ = 1

2

(
FU2

λ − 2Uλ

)−2(2Uλλ(FUλ − 1) + FλU
2
λ

)
, (E.2)

into Eq. (14) and set p ≡ 0. We move directly to the asymptotic expression Eq. (16). 
In λ-parameterization it becomes
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2Uλλ(FUλ − 1) + FλU
2
λ = 8C|CU |

(R − C)2 . (E.3)

At the timelike-to-null transition at λ0 we have Uλ0 = 2/F (λ0) ≡ 2/F0. Hence we have

Uλ0λ0 + 2Fλ0

F 2
0

= − 4C0|CU0 |
(R0 − C0)2 . (E.4)

If the right hand side of this equation is non-zero, then the null consistency condition Uλλ =
d(2/Fλ)/dλ is violated and the shell must become tachyonic. However, this happens solely be-
cause the equation lacks the pressure contribution that appears in the correct equation of motion 
Eq. (41).
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