
Studies of tumor heterogeneity, tumor
microenvironment, and radiotherapy: A

mathematical and computational approach

by

Farinaz Forouzannia

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2018

c© Farinaz Forouzannia 2018



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Philip Maini

Professor, Wolfson Centre for Mathematical Biology,

University of Oxford

Supervisor(s): Sivabal Sivaloganathan

Professor, Dept. of Applied Mathematics,

University of Waterloo

Mohammad Kohandel

Associate Professor, Dept. of Applied Mathematics,

University of Waterloo

Internal Member(s): Zoran Miskovic

Professor, Dept. of Applied Mathematics,

University of Waterloo

ii



Sander Rhebergen

Assistant Professor, Dept. of Applied Mathematics,

University of Waterloo

Internal-External Member: Adil Al-Mayah

Assistant Professor, Dept. of Civil & Environmental Engineering,

University of Waterloo

iii



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final versions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iv



Abstract

Radiotherapy uses high doses of energy to eradicate cancer cells and thus destroy the bulk

of tumors. Radiobiologists try to precisely deliver radiation to a targeted area in order to

maximize the cancer cell kill rate while trying to minimize damage to normal cells. To

achieve this goal, various treatment schedules have been developed, but there still remain

significant obstacles to improving the effectiveness of these schedules. It has been observed

that various factors play important roles in the effectiveness of treatment. One important

factor is tumor heterogeneity, that is, the genetic and epigenetic variations in tumors. This

cellular diversity can influence the efficacy of radiotherapy due to the different radiosensi-

tivities among cancer cells. In addition, the interplay between this heterogeneous cellular

population and the tumor microenvironment can negatively affect the treatment process.

In this thesis, deterministic and stochastic mathematical models are developed to explore

the role of heterogeneity and the impact of cellular repair on radiotherapy outcomes. The

results suggest that shrinking a tumor is not sufficient to control the disease; the fraction

of cells resistant to treatment must also be reduced. In addition, supposedly optimal treat-

ment schedules can lead to markedly different results even in patients with the same type

of cancer, due to cellular and microenvironmental differences among tumors. Therefore,

based on these variations, it is important to design new therapeutic approaches for each

cancer type and even each patient. The modified Gillespie algorithm for discontinuous time

changing rates is applied to explore the impact of plasticity, as well as random demographic

factors on the tumor control probability. The random modification of tumor microenviron-

ment is shown to influence the efficiency of radiotherapy. Increasing the standard deviation
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leads to an initial rise in the tumor control probability, which thereafter drops over time

if a tumor is not eradicated entirely. The results also confirm that plasticity in a tumor

reduces the tumor control probability, especially in highly resistant tumors. In addition,

in the presence of plasticity, combining radiotherapy with a targeted therapy increasing

the differentiation of CSCs does not increase the probability of CSC and tumor removal

greatly. Finally, the impact of regulatory negative feedback on the sphere formation po-

tential of a single CSC is explored. The sphere formation efficiency and average sphere

size are shown to escalate when CSC division and dedifferentiation are subject to negative

regulatory feedback.
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Chapter 1

Introduction

1.1 Overview

Cancer is a highly complex disease that involves uncontrolled growth of abnormal cells and

often results in the death of the host. Although an incredible amount of effort has been

expended in trying to understand the process of angiogenesis, as well as the initiation,

progression and evolution of malignancies, our knowledge of the fundamental mechanisms

still leaves much to be desired. The original cause of cancer is believed to be the molecular

events that lead to the accumulation of genetic or epigenetic mutations in normal cells.

The majority of these genetic instabilities correspond to the upregulation of oncogenes

and inactivation of suppressor genes or gate keepers, which interrupt cellular functions

and prompt tumorigenesis (Sjöblomet al., 2006). In addition, cancer cells are subject to

ongoing evolution and mutation. In fact, tumors consist of genetically diverse cellular pop-
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ulations, presenting different phenotypic features with differing cell surface receptors, and

proliferative, angiogenic and metastatic strength. One suggested prospective on this di-

versity is given by the cancer stem cell (CSC) hypothesis, which explains the intratumoral

heterogeneity arising from the symmetric and asymmetric division of CSCs, regenerating

themselves and giving rise to their offspring. The interaction between heterogenous ma-

lignant cells, with their aberrant microenvironment, can increase aggressiveness and the

emergence of treatment resistance in tumors. Although exposure to most available cell-

kill agents results in tumor bulk shrinking, the resistant tumor cells remain unaffected.

Therefore, it is important to study the role and impact of tumor heterogeneity and the

microenvironment on therapeutic approaches.

In this thesis, a mathematical model is used to study the effect of tumor heterogeneity

on radiotherapy outcomes. In addition, the impact of random microenvironments on tumor

control is investigated using stochastic simulations. Chapter 2 presents a comprehensive

literature review of mathematical models exploring the specific role of CSCs in treatment.

Thus, this introduction is limited to a general overview of relevant biological information.

1.2 Tumor heterogeneity, CSCs, and microenviron-

ments

The characteristics and features of tumors change based on their site and cell of origin.

These variations also exist for the same cancer in an individual (Heppner, 1984). In general,

the cellular population within tumors are both phenotypically and genotypically heteroge-
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nous as a result of genetic and epigenetic changes. Clonal evolution theory posits that

the accumulation of these modifications in a single cell can lead to malignancy, and over

time, leads to heterogeneity within tumors. The more recent CSC hypothesis proposes a

hierarchical model in which CSCs sit at the apex, and have a tumorigenic ability to repro-

duce themselves and their progeny (Meacham & Morrison, 2013; Shackleton et al., 2009).

Recently, it has also been observed that there is a degree of bidirectionality, as a result of

plasticity among cancer cells. This suggests that non CSCs have the capacity to display

cancer-stem cell like behavior and posses higher tumorigenic potential (Marjanovic et al.,

2013b). Experimental observations have been able to identify CSCs in different types of

cancers ranging from leukemia, breast, colon, CNS, to head and neck cancers (Schatton et

al., 2009, and references therein). However, it is difficult to determine the fraction of CSCs

in a tumor due to the lack of perfect biomarkers for CSCs and due to the phenomena of

plasticity.

CSCs and cellular heterogeneity are linked with tumor progression, treatment resis-

tance, and metastasis. On the other hand, the tumor microenvironment also has a signifi-

cant impact on the initiation and propagation of tumors, in addition it can trigger cellular

diversity among cancer cells (Rich et al., 2016). The tumor microenvironment is a highly

variable and complex structure that regulates the connection among cancer cells, normal

cells, abnormal vascular system and signaling pathways. The formation of irregular vascu-

lar networks, which occurs through angiogenesis, leads to the aberrant of erratic transport

of oxygen and nutrition to the tumor cells. This variable blood flow results in metabolic

changes, high interstitial fluid pressure, hypoxia, and acidosis, all of which contribute to

treatment resistance and metastatic potential (Trédan et al., 2007). For example, there
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is a decrease in the proliferation of cancer cells under conditions of nutrition shortage.

The cells move into a quiescent state (cell cycle arrest) and become resistant to thera-

peutic approaches. In addition, hypoxia is believed to be correlated with the induction

of angiogenesis and cell survival, as well as with changing biochemical pathways, leading

to treatment resistance (Trédan et al., 2007). Therefore, a better understanding of the

impact of tumor heterogeneity and the tumor microenvironment on cancer evolution is

necessary in order to develop appropriate treatment strategies. In this frame work, it is

highly desirable to investigate the role and impact of intatumoral variation and arbitrary

microenvironments on treatment efficiency.

1.3 Radiotherapy

Radiotherapy is one type of cancer treatment that can be prescribed as a single agent

or in combination with other therapeutic strategies (such as chemotherapy, surgery, and

immunotherapy). Originally, the treatment was delivered as a large single dose, which

caused many complications and toxicities. Later, smaller fractions of radiation were ad-

ministered over a period of several weeks, (a process called fractionated radiotherapy), to

reduce radiotherapy-induced complications (Mitchell, 2013; Pajonk et al., 2010). To un-

derstand the idea behind fractionated radiotherapy, it is important to study cellular death

due to radiation.

In general, radiation damages critical targets such as the DNA of cells, resulting in

mutation or cellular death through apoptosis and necrosis if cells fail to repair the damage.

The biological effects of radiation on DNA can be both direct or indirect. In the former,
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radiation interacts with DNA directly; indirect effects are due to the ionization of water and

other molecules in the cells, which generate free radicals that are able to diffuse and alter

DNA (Cox & Ang, 2009; Hall & Giaccia, 2006). The radiation-induced damage leads to a

number of DNA lesions, resulting in single strand breaks that usually arise from exposure

to smaller doses of radiation, and double strand breaks that are mostly responsible for

cellular death and chromosomal aberrations.

The outcome of fractionated radiotherapy depends on the DNA repair mechanism,

redistribution of cancer cells in the cell cycle, and repopulation and reoxygenation of cells

between fractions (Pajonk et al., 2010). The main cause of radiation induced cell death is

the production of lethal damage such as double strand breaks in the DNA, which mainly

occurs at higher doses of radiation. Yet, the majority of damage to the DNA is sublethal

and can be repaired at lower doses. However, exposure to fractions of lower doses of

radiation can lead to the accretion of sublethal lesions contributing to destruction but

with lower toxicity to normal tissues (Mitchell, 2013).

The response of cells to radiotherapy depends on their stage in the cell cycle. The cell

cycle is a sequence of events leading to cellular division. It consists of four major phases G1,

S, G2, and M . In this process, cells expand in size and DNA control mechanisms monitor

and initiate any repairs needed during DNA synthesis (G1). Replication of DNA (S) follows

with further DNA check points and repair as required (G2). Finally, cellular growth stops

and cellular division is complete (M). Commonly, cells in the late synthesis phase (S) are

more radioresistant, and cells in late G2 or mitosis (M) are more readiosensitive (Otani

et al., 2016). Fractionation prepares surviving cells to move forward in the cell cycle into

more radiosensitive stages, where they can be targeted in the next fraction of treatment.
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Both normal and cancer cells show an increase in cellular proliferation after exposure

to radiation. This can be a potential benefit of fractionated radiotherapy, since quick

cellular proliferation can raise the number of damaged cells in the mitosis phase and so

increase radiosensitivity and cellular death. However, for prolonged radiation protocols,

the efficiency of downstream doses of fractions might diminish due to accelerated cellular

division. In addition, applying larger doses of radiation can increase toxicity and necessitate

stopping the treatment process for (Mitchell, 2013).

Hypoxic tumors are more radioresistant, and lack of oxygen has been shown to be

linked to better repair rates. In fact, the presence of oxygen can generate permanent

damage (through oxygen fixation), increasing cellular kill (Cox & Ang, 2009). The oxygen

level changes continuously in tumor microenvironments, and the hypoxic regions can be

categorized into two different groups, chronic and acute. Chronic hypoxia occurs in regions

beyond the limit of oxygen diffusion from the vascular system, but acute hypoxia occurs in

regions where there is temporary disruption of oxygen diffusion (Bayer & Vaupel, 2012).

The gap between radiation fractions is assumed to allow reoxygenation among cancer cells,

which increase radiosensitivity to the radiotherapy.

Radiotherapy protocols have improved with advancing technologies. Today’s better-

designed regimens allow tumors to be targeted with precision and reduce the risk of normal

tissue complications. For example, in addition to conventional schedules, which deliver a

fraction of the total radiation daily, hyperfractionated and hypofractionated protocols have

been suggested to enhance outcomes. The hyperfractionated strategy consists of two or

three fractions per day with small doses of radiation, decreasing late regime toxicity and

increasing total administered doses. In contrast, Hypofractionation shortens treatment
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durations by applying fewer number of fractions but higher doses of radiation per fraction.

Despite recent progresses, however, available therapeutic approaches have not been

successful in most cases. Although the underlying mechanisms are truly complicated and

not well understood, one important reason is the radiation refractoriness of CSCs to ra-

diation. As a result, radiation is more prone to kill differentiated cells than the CSCs,

responsible for driving tumor growth. Basically, CSCs benefit from superior DNA repair

mechanisms with enhanced checkpoint activation that can exacerbate cellular resistance to

radiotherapy (Bao et al., 2006; Wang, 2015). It is also assumed that CSCs are generally

in the quiescent state G0, in which cells stop dividing. This slow cycling subpopulation of

cells displays higher proliferation potency after exposure to fractions of radiation, which

explains the enhanced regeneration of cancer cells after treatment. In addition, stochastic

effects in tumor microenvironments also prompt CSC proliferation. In particular, CSCs

possess greater tumorigenicity in hypoxic conditions (Pajonk et al., 2010; Vlashi et al.,

2009). Therefore, targeting CSCs can be beneficial in developing more efficient radiother-

apy schedules. Moreover, there has been significant effort in treatment planning strategies

to take into consideration personalized therapeutic approaches that account for differences

in genetic backgrounds between individuals, and the heterogeneity and aggressiveness of

their specific tumors.

The effect of fractionated radiotherapy on tumor heterogeneity and the impact of ran-

domness in the microenvironment on tumor control are discussed in Chapters 3 and 4

respectively.
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1.4 Sphere forming assay

A Sphere forming assay is a cell culture technique that hinges on the ability of a single

cell to proliferate and form a sphere (Johnson et al., 2013; Pastrana et al., 2011). This in

vitro technique was initially used to study normal neural stem cells; later, it has since also

been applied to identify the subset of cancer cells that are capable of clonogenic growth

(Stamatakos et al., 2006). One variation known as the mammosphere, has been widely

used for mammary gland cells to investigate mammosphere formation efficiency (MFE),

and to study the effect of radiotherapy and chemotherapy as well as the microenvironment

on MFE (Lagadec et al., 2010; Lonardo et al., 2013).

The first intention of a sphere formation assay is to measure the activity of stem cells

or early progenitor cells. It is usually assumed that each plated cell has the ability to

form a sphere (Turner, 2009a). However, the former assumption has been questioned

by Stamatakos et al. (2006), who showed the existence of migration and fusion between

neurospheres.

Sphere forming assay protocols are usually designed guided by the underlying purpose

of the study, the type of cell line, and the questions that need to be answered by the

experiment. Nonetheless, almost all these procedures have common steps in which spheres

are harvested from single cells appropriately dispersed in a well. Cells are allowed to

grow for a number of days, which is determined based on the cell line and experimental

conditions. Finally, cultures of cells are deemed to be sphere when they exceed a certain

size threshold. Sphere formation efficiency is calculated as below:
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number of spheres per well

number of cells seeded per well
× 100. (1.1)

In this thesis, the mammosphere formation data for a breast cancer cell line is used for

parameter estimation in Chapter 3.

1.5 Thesis objectives

This thesis consists of the following four main chapters that cover the impact of hetero-

geneity and the microenvironment on radiotherapy efficiency. Chapters 2 and 3 are based

on peer-reviewed journal papers published from this thesis work.

1.5.1 Cancer stem cells, the tipping point: Minority rules?

Chapter 2, is a review of mathematical models, studying the impact of CSCs on therapeutic

outcomes and efficiencies. Consequently, the chapter splits into three sections. The first

section addresses the effect of CSCs on chemotherapy and radiotherapy resistance, the

second focuses on the developing of new strategies to raise CSC kill rates, and the final

section discusses the design of optimum treatment regimens based on the CSC hypothesis.
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1.5.2 Mathematical modeling of the effects of tumor heterogene-

ity on the efficiency of radiation treatment schedule

In Chapter 3, a minimal mathematical model is proposed to investigate the impact of

tumor heterogeneity and cell cycle arrest on the outcome of various radiotherapy regimens.

The model parameter values are determined using stochastic and deterministic simulations

applying mammosphere formation efficiency and the fraction of CSCs data on the breast

cancer cell line. The following questions are answered:

• How do different radiotherapy schedules affect the phenotypic heterogeneity of cancer

cell populations, in particular CSCs?

• Is tumor reduction after radiotherapy sufficient to control the disease?

1.5.3 The impact of random tumor microenvironment on tumor

control probability

Chapter 4 analyzes a stochastic framework for studying the impact of random fluctuations

on TCP, which is defined as the probability of cancer cell extinction. The derivation of the

analytical solution is not feasible in all cases, for example, when cellular birth and death

rates change arbitrarily over time. Therefore, a modified Gillespie algorithm is applied to

determine the TCP in the presence of random discontinuous alterations in demographic

rates. We investigate the following questions.

• What is the impact of random fluctuations on TCP?
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• How does TCP change as randomness increases?

• What is the effect of randomness on extinction time distribution?

1.5.4 The impact of plasticity on tumor control probability

In Chapter 5, a stochastic model is developed based on the CSC hypothesis, to study

the impact of plasticity on TCP. The model considers the time evolution of CSC and

progenitors in the presence of plasticity. Therefore, TCPS and TCPS+P are defined as the

probability of CSC and tumor removal, respectively. Consequently, a modified Gillespie

algorithm is used to evaluate TCPS and TCPS+P , because the derivation of an analytical

solution is not possible when plasticity comes into play. The following questions are studied.

• What is the effect of cellular plasticity on CSC and tumor removal?

• What is the effect of combination therapy, including radiotherapy and targeted ther-

apy designed to increase CSC differentiation, on CSC and tumor removal?

1.5.5 The impact of plasticity and negative feedback regulations

on sphere formation capacity

Chapter 6 explores the impact of negative feedback on CSC division and dedifferentiation

on the sphere formation potential of a CSC. For this purpose, a two compartment model

consisting of a population of CSCs and progenitors is considered, in which the stochastic
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behavior of cellular divisions is studied. Applying a Gillespie algorithm, the sphere forma-

tion efficiency and the average sphere size of a single CSC is measured in the presence of

plasticity. Thus, the following questions are addressed in this chapter.

• How does regulatory negative feedback affect the sphere formation ability of a single

CSC?

• What is the impact of plasticity and negative feedback on sphere formation efficiency?

(i.e. does a decrease in the plasticity rate have a direct impact on sphere formation

efficiency?)

Chapter 7 concludes this thesis, and suggests possible future work.
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Chapter 2

Cancer stem cells, the tipping point:

Minority rules?

Putative studies continue to support the assertion of the cancer stem cell (CSC) hypothesis,

namely that a very small subgroup of a malignant tumor population initiates and drives

tumor growth. These cells are purported to possess similar biological properties to their

normal adult stem cell counterparts. The CSC hypothesis arises from the observation that

tumors like normal tissues have their origin in cells that display potential for self-renewal

as well as the ability to generate differentiated cells of various lineages. In addition, CSCs

have developed basic characteristics that enable them to evade the effects of standard

therapies and these may in fact underly the mechanisms leading to chemo-resistance and

tumor relapse.

In recent years, mathematical and computational modeling have emerged as powerful
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tools in biomedical research that can be used to study biological systems at multiple scales

ranging from molecular processes to cell-cell interactions and how these interactions lead to

changes at tissue and organ levels. In addition to accelerating biomedical research through

computational simulation of physical experiments, modeling can also be used to guide

experimentalists by identifying possible factors and mechanisms underlying the particular

problem being studied; this in turn, may suggest physical experiments that eventually lead

to the resolution of this very problem.

In this chapter, we review mathematical models that explore the role of CSCs in treat-

ment response, in developing chemo and radio resistance, as well as those that suggest new

treatment strategies. In addition, mathematical models that focus on optimal therapeu-

tic protocols will be discussed. The work presented here has been published in the peer

reviewed journal of Current Stem Cell Reports:

Forouzannia, Farinaz, and Sivabal Sivaloganathan. Cancer Stem Cells, the Tipping Point:

Minority Rules? Current Stem Cell Reports. 2017;3(3):240-247. c© 2017 Springer. Reprinted

with permission.
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2.1 Introduction

Cancer is a group of diseases that involves abnormal cell proliferation in which the inter-

action of cellular mechanisms and the tumor microenvironment imbue some tumor cells

with metastatic potential resulting in the dissemination of malignant cells to other parts

of the body. Tumor heterogeneity is one of the important features that has been observed

in different types of cancers and this has a significant impact on tumor development and

response to treatment. Both the clonal and CSC hypothesis go some way to explaining

the genesis and evolution of this heterogeneity (Marjanovic et al., 2013a; Shackleton et al.,

2009). Cancer clonal evolutionary theory suggests that tumor initiation relies on multiple

mutations occurring in an arbitrary single cell (Nowell , 1976). However, the cancer stem

cell hypothesis proposes that a small sub-population of cells, known as cancer stem cells

(CSCs), are endowed with tumor initiation and propagation potential (Figure 2.1). These

CSCs are able to perpetuate themselves through selfrenewal and to generate non-CSC

progenies through symmetrical and asymmetrical divisions, respectively. Recent evidence

suggests that the transition from CSCs to normal cancer cells is not unidirectional, and

that there is a degree of plasticity between non-CSC and CSC states (Gupta et al., 2011;

Marjanovic et al., 2013b). Such interconversion can arise as a result of genetic modifications

to cancer cells, random mutations or microenviromental effects.

The therapies that patients receive are usually proposed based on the type, the stage

and location of a particular cancerous malignancy, and on the overall health of the indi-

viduals. The most common types of therapeutic interventions are surgery, chemotherapy

and radiotherapy and in practice, a combination of more than one treatment is applied.
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Figure 2.1: Schematic diagram of CSC hypothesis and clonal evolution theory. In cancer
evolution theory, the acquisition of mutations occurs, followed by expansion of the dom-
inant clone (a). But, the CSC hypothesis suggests that CSCs share similar properties to
normal stem cells (SCs) and are responsible for cancer initiation as well as the generation
of non-CSCs (b).

Chemotherapy drugs can target tumor cells in different ways. Generally, these drugs pre-

vent cancer cells from growing and reproducing rapidly through DNA damage; however,

in the process this often results in damage to normal cells, as well. Chemotherapy can

be given before, during and after radiotherapy (referred to as neoadjuvant, concurrent,

and adjuvant respectively). Current conventional radiotherapies also deliver high-energy

beams to tumor tissues, which induce various types of DNA damage and genomic insta-

bility. Some of the resulting types of lesions, such as double strand breaks, are severe
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enough to cause cell apoptosis. However, the majority of treatment failures for different

types of cancers are a direct result of the emergent resistance of cancer cells to conven-

tional therapies, which leaves patients with limited treatment options (Eyler & Rich., 2008;

Mathews et al., 2013). CSCs show higher resistance to available therapies due to upreg-

ulated DNA repair mechanisms. The ability of non-CSCs to reenter the CSC state can

also contribute to poor clinical results. Furthermore, most available treatment strategies

also target cells that are actively dividing, which is not the most efficient way to destroy

CSCs since they are relatively quiescent. In addition, dysregulated signaling pathways

that control CSC self-renewals, including Notch, PTEN, BMI-1, and WNT, are usually

not targeted by current conventional therapies (Boman et al., 2008). Thus, understanding

the tumorigenic potentials and the effective mechanisms that CSCs develop to enhance

their aggressive phenotype, is essential for the development of more efficient and effective

treatment strategies.

Along with the concerted effort that is underway in different branches of science to

combat cancer, mathematical models have also been effectively utilized to probe the un-

derlying mechanisms driving tumor growth and make predictions that can be validated

experimentally (Anderson & Quaranta, 2008; Altrock et al., 2015; Byrne , 2010; Enderling,

2015). For example, mathematical modeling that is grounded in experimental data can

be used to predict therapeutic outcomes and improve clinical results (Altrock et al., 2015;

Dionysiou et al., 2004; Dhawan et al., 2014; Enderling et al., 2009b; Stamatakos et al.,

2006). Mathematical modeling has been extensively used to try and understand cancer on

different scales, but in this chapter particularly we focus on models that try to simulate

and predict the effects of treatment. Hence, a brief review of these types of models will be
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given next.

Earlier seminal work of Norton & Simon (1977, 1986), utilized mathematical modeling

to integrate biological growth information in to treatment scheduling. This led to perhaps

the greatest clinical trial innovation in half a century, and the wide spread acceptance of

the ”Norton-Simon” hypothesis in clinical circles. Norton and Simon proposed that tumor

growth dynamics follows a sigmoidal function during chemotherapy and suggested that

a dense dose protocol would have better outcomes than standard schedules, which has

been clinically verified, for example in (Citron et al., 2003) amongst numerous others. In

addition, a number of mathematical models discussed tissue response to fractionated radio-

therapy treatments with either acute or protracted doses (Dale, 1985; Oliver, 1964; Roesch,

1978). One of the early models in this area was developed by Thames et al. (1984); Thames

(1985) who used it to investigate the dynamics of radiation damage repair. The approach

used a linear quadratic model to describe cell survival, modified to account for incomplete

repairs between fractions (for fractionated acute continuous exposure) and the repair dur-

ing the administration of the fractions (for low dose rate continuous exposure). The linear

quadratic model and its modifications have been considered extensively in the literature,

to simulate the response to radiation exposure. The evolution of resistance before and

during treatment is also one of the first problems that was addressed in the mathemati-

cal modeling of treatment responses (Coldman & Goldie, 1986; Goldie & Coldman, 1983;

Panetta, 1996; Swan, 2013). Coldman & Goldie (1986), and Goldie & Coldman (1983)

proposed a stochastic model to explore the risk of developing resistance during treatment.

The model assumed that sensitive cells can be eliminated upon receiving treatment and

that resistant mutations can occur with a certain given probability. The results imply
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that the probability of resistance (when treatment includes two drugs given sequentially)

depends on the total number of cells and their mutation rates. The authors suggested that

to improve success rates, drugs should be administered as soon as possible after diagnosis.

They proposed that drugs should be given in an alternating fashion rather than sequen-

tially to have a significant impact on the heterogenous cell populations; nevertheless, this

suggestion could not be confirmed clinically (Bonadonna et al., 2004).

In medicine, to proceed from bench to bedside, numerous clinical trials are needed

to determine the best treatment procedure and protocol. In this context, mathematical

modeling can play an important and critical role in the prediction of the most efficient

treatment strategies, thus avoiding unnecessary and often excessive clinical trials. Several

mathematical models have been developed in the literature to establish the most practical

treatment protocols (Foo & Michor, 2009; Martin et al., 1994; Michor et al., 2005). Many

models try to rapidly minimize the total tumor size; however, successfully controlling tu-

mor growth depends critically on reducing effectively both drug sensitive and drug resistant

cells. Some of the early work by Costa et al. (1992) describes the dynamics of a tumor

that includes drug resistant cells. The model aims to efficiently find the optimal treat-

ment schedule by minimizing the total tumor size. The development of better-designed

treatment regimens is still a field of significant research activity; nevertheless, the attain-

able benefits from treatment must still be evaluated and quantified to be of any clinically

relevant significance. The tumor control probability (TCP) is a measure that attempts

to quantify the probability of destroying or removing malignant cells using a variety of

radiation therapy schedules. In order to establish a better formalism for TCP, different

models have been introduced in the literature such as that of Kendal (1998); Munro &

19



Gilbert (1961); Tucker et al. (1990); Yakovlev (1993); Zaider & Minerbo (2000). For ex-

ample, one model frequently discussed in the radiation therapy literature is the so-called

Poisson model of TCP (Munro & Gilbert, 1961; Zaider & Minerbo, 2000). This model

assumes that the number of cells that survive radiation has a binomial distribution; and

if the survival probability is small enough, the probability of no malignant cells remaining

follows a Poisson distribution after treatment. However, the model neither captures the

proliferation of cells during treatment nor the stochastic effects. Later, Zaider & Minerbo

(2000) acknowledged the impact of stochastic effects on radiation-induced cell death and

suggested a model based on a simple stochastic birth/death process.

Generally, most of the primary mathematical models are established based on the clonal

evolution theory, where all cells are capable of giving rise to mutants that lead ultimately

to the formation of tumors. However, the emerging CSC hypothesis has become the sub-

ject of theoretical analysis to explore the role of CSCs in tumor response to treatment and

the acquisition of resistance. The main scope of this chapter is to highlight various math-

ematical models that incorporate the CSC hypothesis as well as some of the fundamental

traits of CSCs. These will be discussed in more detail in Sections 2.2, 2.3 and 2.4.

2.2 The roles of CSCs in evolving resistance and tu-

mor response

Despite much improvement in the design of practical cancer therapies, the majority of

patients often develop tumors resistant to standard therapies (Bao et al., 2006; Chen et
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al., 2016; Dean et al., 2005; Pajonk et al., 2010). It may be that conventional cancer

treatments act more efficiently on highly proliferating cells, and thus leave the quiescent

CSCs relatively unscathed . For example, resistance to Imatinib is one of the complications

that can arise for patients treated for chronic myelogenous leukemias (CML), which can

cause initial refractoriness of the disease and relapse. The evolution of resistance from

an exponentially growing cell population was studied using a continuous time branching

process by Iwasa et al. in (Iwasa et al., 2006). The model starts with a single sensitive

cell that can undergo mutations and become resistant to Imatinib. Finally, the probability

of resistance at the time of diagnosis was calculated and it was concluded that a higher

number of cell devisions increases the occurrence of resistant cells. The quiescence of cancer

stem cells is also a critical characteristic that safeguards them from Imatinib. Hence, a

mathematical model has been developed to explore the impact of cellular quiescence on the

dynamics of drug resistance (Komarova & Wodarz, 2007). For a single drug, if the resistant

cells exist before treatment, the quiescent cells do not modify the chance of resistance,

although they can increase the probability of developing resistant mutants when patients

receive a combination of more than one drug with various targets. In fact, the therapy phase

is not important for emergence of mutants since they existed before the diagnosis, but the

dormant cells may delay the time that is required for the therapy to eliminate the tumor

burden. The authors ultimately suggested that reducing the number of quiescent stem cells

during therapy is not beneficial for reduction of resistance risk, since plasticity is another

key factor that contributes to resistance and invasion. Poleszczuk et al. (2016) used a

mathematical model to simulate and investigate the effects of different rates of transitions

(from non-CSCs to CSCs) on tumor growth and treatment response. The results show
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that tumors with low rates of plasticity can regrow after radiotherapy. Nevertheless, for

tumors with high plasticity rates, post therapy cancerous cells undergo remission after

regrowth, because radiotherapy appears to increase CSC depletion. Although the results

seem interesting, more experimental investigation is required, to ensure this is not an

experimental or computational artifact.

Gupta et al. (2011) combines both biological experiments and mathematical simula-

tions to examine the sensitivity of distinct phenotypic states (Stem like, basal, luminal)

to treatment. For this purpose, breast cancer cell lines (SUM159 and SUM149) have been

treated with two conventional chemotherapy drugs: paclitaxel and 5-fluorouracil (5-FU),

which resulted in increasing the portion of cancer stem like cells for both cell lines. To gain

a comprehensive understanding of these results, a Markov model has been established to

examine the dynamics of breast cancer cell populations and transition between different

states. The results indicate that basal cells are more sensitive to paclitaxel in comparison

to the other two states for the SUM159 line. Moreover, the proportion of both stem like

cells and basel cells show approximately a 5 fold increase after receiving paclitaxel, but the

growth in basal cells is due to the resistance of stem like cells to the treatment, which can

reproduce basal cells afterwards. In addition, Gao et al. (2013) demonstrate that resistance

to radiotherapy is not the only critical factor responsible for CSC enrichment in gliomas

and that repeated exposure to radiotherapy can create a microenvironment that tilts the

proliferation in favor of symmetric divisions.

Cell surface protein expression profiles are the main tool used to isolate cancer stem cells

in different tissues. For example, CD34highCD38low, CD133+, and CD44highCD24low

are common biomarkers used for leukaemia and brain and breast tumors, respectively, see
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(Singh et al., 2004) and references there in. However, clearly not all cells that have the same

protein expression are necessarily cancer stem cells, and it appears that both cancer stem

cells and early generations of progenitors often express the same protein markers (Charafe-

Jauffret et al., 2009). These findings have been taken into consideration in developing

a hierarchical model that includes stem cells, the Nth generation of progenitor cells, and

mature cells. Dhawan et al. (2014) have employed a fully stochastic model for a hierarchy of

heterogenous cell populations and used numerical simulations to obtain the tumor control

probability (TCP). The TCP is defined as the probability of eradicating all cancerous cells

in a particular tissue and is used as a measure of radiotherapy efficacy. Based on the

CSC hypothesis, removing CSCs is essential to achieve a cure. Therefore, the probability

of controlling cancer stem cells only (TCPS) was also determined. Furthermore, because

of imperfect biomarkers for CSCs, the probability of eliminating biomarker positive cells

(TCPCD+) was calculated. Finally, it is suggested that TCPCD+ can be a potentially better

clinical alternative for TCPS.

2.3 New therapeutic strategies targeting CSCs

CSCs are generally not targeted by commonly used treatment strategies, so designing ther-

apies that are able to specifically target CSCs is of paramount importance (Koury et al.,

2017; Maugeri-Sacc et al., 2011; Ogawa et al., 2013). For example, it has been shown that

the fraction of CSCs is enriched after radiotherapy due to the highly efficient DNA damage

response in gliomas (Bao et al., 2006). Thus, developing effective treatment strategies that

target and eradicate CSCs is crucial to improving clinical results and minimizing recur-
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rence. Consequently, designing therapies that include both standard anticancer treatments

and CSC-targeting agents may be an effective double pronged attack to eliminate various

types of cancer cells. For instance, Goldman et al. (2015) used both mathematical model-

ing and experimental studies to investigate the mechanisms behind adaptive resistance in

breast cancer patients treated with a high concentration of taxanes. The results indicate

that treatment with taxane leads to a phenotypic cell state transition to the CSC popula-

tion, which can contribute to tumor resistance. Moreover, it is demonstrated that applying

inhibitors that can control the SFK/HcK pathways in a proper temporal schedule (after ex-

posure to taxanes) increases the sensitivity to chemotherapy treatment and thus increases

cell death. Furthermore, a simple mathematical model has been presented (Dingli & Mi-

chor, 2006) to illustrate the importance of eradicating CSCs. The model includes two layers

of differential equations to account for the hierarchy of stem cells and differentiated cells

for both normal and tumor cells. Analysis of different therapeutic possibilities implies that

increasing apoptosis or decreasing the generation of malignant mature cells are not useful

approaches to controlling and removing the disease due to plasticity and replenishment of

CSCs. However, the therapeutic protocols that prevent CSCs from reproduction have the

potential to eradicate the disease if CSCs are subjected to such a therapy for an extended

period of time. Furthermore, it is predicted that agents that either decrease the division

rate or increase the death rate of CSCs can improve the results, however the eradication of

cancerous mature cells is needed to minimize the risk of failure and eliminate the potential

impact of plasticity. Additionally, a mathematical model has been developed based on the

work of Youssefpour et al. (2012) to explore the advantage of ”differentiated” therapies

and radiotherapy combinations, which push CSCs to differentiate into descendants that
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are more sensitive to radiotherapy (Bachman et al., 2013). Consequently, applying ”dif-

ferentiated” therapies along with radiotherapy appears to improve treatment success and

decrease side effects for head and neck, brain and breast cancers.

Piccirillo et al. (2006) have reported that exposure to bone morphogenetic proteins

(BMPs) decreases proliferation and increases the expression of non cancer initiating cells

in glioblastomas (GBMs). This study demonstrated that brain tumor stem cells (BTSCs),

identified by biomarker CD133+, are induced by BMPs to differentiate into CD133− cells,

which are not tumorigenic and are more responsive to conventional cancer therapies. These

findings suggest that adding proteins like BMPs to the currently available radiotherapy

protocols might significantly improve outcomes; nevertheless, more investigation is required

due to other possible interactions in the complicated underlying mechanisms driving tumor

growth. From this perspective, Turner et al. (2009b) have proposed a mathematical model

that represents the effect of BMPs on radiotherapy results for glioblastoma based on the

cancer stem cell hypothesis. The model describes the stochastic effects of the small number

of cells for different types of BTSC divisions, symmetric self-renewal S → S+S, asymmetric

self-renewal S → S + P and symmetric proliferation S → P + P . These two subgroups of

cells can also undergo apoptosis and be discarded. On a larger scale, however, the model

considers the corresponding average equation to study the role of BMPs and the cell kill

response of radiotherapy on tumor dynamics. The model is mathematically given by:

dS(t)

dt
= ρ̃s(S, P )rS − ΓsS − αsS

∑
j

djf

(
t− tj
τs

)
dP (t)

dt
= ρ̃s(S, P )(1− r)S − ΓpP − αpP

∑
j

djf

(
t− tj
τp

)
,

(2.1)

25



where ρ̃s(S, P ) = ρs(1 − S/Slim − P/Plim), which employs logistic growth dynamics to

capture the competition between species for limited nutrition. Here, Slim and Plim stand for

the maximum population of BTSCs and progenitors, respectively. Additionally, ρs denotes

a rate of proliferation for stem cells that can occur with probability r = r1 − r3, where r1

and r3 are the probability that BTSCs go through symmetric self-renewal and symmetric

proliferation, accordingly. These two types of cells can undergo apoptosis with probability

Γi (i ∈ {S, P}). In addition to apoptosis, cells can also be removed with radiation dose

dj given at time tj on jth fraction of treatment. Here, the function f is assumed to be

negative exponential for x ≥ 0 and 0 otherwise. The clearance times for dead BTSCs and

progenitors after radiation are given by τs and τp, respectively. Further, αi for i ∈ {S, P}

represents the radiobiological parameters for BTSCs and progenitors. Experimental results

demonstrate that BTSCs are more resistant to radiation than CD133− cells (Bao et al.,

2006). Therefore, the radiosensitivity parameter for CD133− cells is chosen to be 3 fold

more than the radiosensitivity parameter for CD133+ cells (αs < αp).

The effect of BMPs is mathematically captured by reducing the probability r together

with fixing r2, which is the probability of BTSCs going through asymmetric self-renewal.

Following Piccirillo et al. (2006), it is assumed that r = r1 − r3 is changed from the

pretreatment value 0.1 to a negative value −0.1 after receiving BMPs. Modifying r to a

negative value implies an increase in symmetric differentiation divisions and a decrease in

symmetric self-renewing divisions. The effect of radiation kill is also examined for different

treatment schedules. Since the model assumes a higher radiosensitivity for CD133− cells,

the fraction of BTSCs is elevated. In addition, eradicating CD133− cells raises the number

of CD133+ due to the logistic growth impact on cell proliferation that necessitates a small
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increase in the number of BTSCs after radiotherapy (in comparison with the control group).

But, BMP therapy-only lowers the number of BTSCs at the expense of a slight increase

in the number of CD133− cells. Regardless, the results have shown that adding BMPs

or probably any other CSC targeting agents in addition to radiation therapy effectively

shrinks the tumor along with an associate decrease in CD133+ cells.

2.4 Finding the optimum treatment schedule under

the CSC hypothesis

Cancer treatments have evolved over time with the purpose of enhancing life expectancy

for cancer patients. In the last two decades, mathematical modeling has started to play

an important and pivotal role in developing optimal treatment strategies and protocols as

well as providing a new experimental tool for investigating the impact of a new proposed

therapy on tumor cells, in silico (Badri & Leder, 2016; Kohandel et al., 2006; Leder et

al., 2014; Powathil et al., 2007). For instance, the analysis and simulation of Powathil et

al. (2007) makes it clear that the combination of neo-adjuvent chemotherapy followed by

radiotherapy might be a better treatment strategy than adjuvant chemotherapy for gliomas.

Understanding the importance of targeting CSCs and their distinct properties may lead to

the development of new therapeutic protocols, which might achieve better tumor control.

As an example, Enderling et al. (2009b) presented a mathematical model that studies

the effect of CSCs and quiescent cells on treatment outcomes. The CSC fraction size

and the stem cell proliferation rates have been reported as critical factors determining
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treatment response. Assuming less radiosensitivity for quiescent cells, which are mainly

located in the core of a solid tumor, it has been suggested that applying hypofractionated

radiation protocols can control the disease if the CSC pool size is small and as long as the

CSC repopulation does not interfere with the higher capacity of radiation kill. Moreover,

heterogeneity and instability among various lineages of cancer cells can reduce the potency

of available treatment options. Hence, a mathematical model and an experimental study

were designed to predict an efficient radiotherapy regimen for Glioblastoma (Leder et al.,

2014). The model considers plasticity between CSCs and differentiated cells and assumes

that CSCs are more radioresistant. Furthermore, surviving cells lapse into a quiescent

state after radiotherapy, but can repopulate again, after exiting quiescence. Consequently,

two radiotherapy protocols, which deliver larger fractions at the beginning and end of

radiotherapy treatment, have been recommended claiming to lead to better outcomes than

conventional therapies. These predicted regimens have been tested experimentally and

demonstrated to lead to greater survival in mice. The model was later extended to predict

a radiotherapy regimen maximizing survival and minimizing toxicity in the corresponding

tissues arising from exposure to larger doses of radiation at the beginning and end of the

therapy (Badri et al., 2016). The problem is reduced to two optimization problems: the

first deals with optimization of the total dose and dose per fraction, and the second handles

optimization of time intervals for each fraction. The results obtained imply that the best

arrangement for the time intervals corresponds to the dose distribution that maximizes the

return to the stem like state. However, these approaches may lead to a growth in CSC

population, which can contribute to therapy resistance and recurrence.

28



2.5 Conclusions

The emergence of resistance to conventional therapies has been long recognized as one of

the major causes of tumor relapse and recurrence. CSCs, also known as cancer initiating

cells, develop superior mechanisms such as activated DNA damage repair, upregulated

drug transporters, and maintenance of cellular pathways which allows them to survive

standard therapeutic protocols and triggers relapse in many cases. Therefore, identifying

and understanding the role of CSCs in therapeutic resistance can improve the overall

efficacy of available treatments and assist in the development of new treatment strategies

targeting CSCs. Here, mathematical modeling following experimental validation is useful

to understand the underlying mechanisms and design new treatment approaches.

Here, we have presented an idiosyncratic survey of mathematical models that inves-

tigate the impact of different characteristics of CSCs such as differentiation, quiescence,

and plasticity, on treatment response and emergent tumor resistance. However, CSCs em-

ploy other complex mechanisms such as upregulated drug transporters, which play critical

roles in the development of tumor resistance. Mathematical oncology is a nascent field of

research with the potential for significant clinical impact, but this requires much more the-

oretical investigation using mathematical and computational modeling validated through

experimental results. Moreover, studying the impact of microenvironmental effects ( e.g.

hypoxia) on the proliferation and control of CSCs may lead to significant advances in

clinical oncology.

Furthermore, in this chapter we have also reviewed mathematical models that provide

experimental predictions in the quest to develop new therapeutic strategies targeting CSCs.
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The main purpose of these new treatment strategies is to increase the sensitivity of CSCs

to chemotherapy and radiotherapy. This includes a combination of conventional therapies

with molecular inhibitors controlling CSC pathways, which enhance CSC death. Selfre-

newal is considered to be the main reason for radioresistance in CSCs, but understanding

other pathways such as those contributing to apoptosis is also of clinical interest (Ogawa et

al., 2013). Here, Mathematical modeling can be applied to predict other critical pathways

and possible clinical outcomes, which can be validated experimentally. In addition, using

chemotherapeutic agents together with radiotherapy to increase the effect of radiation on

CSCs have been shown to improve results. However, it is important that these agents

inflict minimal damage on normal stem cells since they share many of the same features

as CSCs (Eyler & Rich., 2008; Ogawa et al., 2013).

Current radiotherapy and chemotherapy schedules have been improved in an attempt

to optimize treatment outcomes and minimize toxicity. Mathematical models actively

play a crucial role in attempts to design better treatment strategies. Nevertheless, most

current clinical protocols still focus on reducing the tumor burden, and normally disregard

CSCs. This can lead to the emergence of resistant CSCs which in turn leads to relapse

and aggressive metastatic invasion. Thus, developing mathematical models suggesting

new therapeutic schedules that at the same time reduce the fraction of CSCs or include

recent molecularly targeted approaches can be helpful. Moreover, clinical and experimental

research to improve clinical outcomes are fields that have seen rapid growth in recent

years. For example Klement et al. (2000) suggested a combination therapy comprised of

continuous low dose chemotherapy regimen and a VEGF receptor-2 antibody, to increase

the antivascular effects of the treatment in order to shrink the tumor and reduce the
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evolution of drug resistance. Mathematical and computational approaches herald a new

era in clinical oncology with the potential to address questions arising from experimental

studies and vice-versa to guide experimental studies to resolve many of the puzzles and

paradoxes that are part and parcel of cancer biology. Indeed, we are optimistic that these

approaches will not only accelerate clinical developments, but elucidate and reveal some

of the basic mechanisms driving tumor growth.

(SS) is grateful for financial support provided by the Natural Science and Engineering

Research Council of Canada (NSERC) through a Discovery grant.
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Chapter 3

Mathematical modeling of the effects

of tumor heterogeneity on the

efficiency of radiation treatment

schedule

Radiation therapy uses high doses of ionizing radiation to eradicate cancer cells and con-

trol tumors. Various treatment schedules have been developed and tested in clinical trials,

yet there are still significant obstacles and there remains much room for improvement in

radiotherapy fractionation. Cellular diversity within tumors can lead to different radiosen-

sitivity among cancer cells that can affect radiation treatment outcomes. In this chapter,

we propose a minimal mathematical model to study the effects of tumor heterogeneity and

32



repair under different radiation treatment schedules. We perform stochastic and deter-

ministic simulations to estimate model parameters using available experimental data. Our

results suggest that gross tumor volume reduction is not sufficient to control the disease if

a fraction of radioresistant cells survives therapy. If a cure cannot be achieved, protocols

should balance volume reduction with minimal selection for radioresistant cells. We show

that the most efficient treatment schedule is dependent on the biology and model param-

eter values and, therefore, emphasize the need for careful tumor-specific model calibration

before clinically actionable conclusions can be drawn. The model is also applied to the

fractionated radiotherapy protocols discussed in the UK standardisation of breast radio-

therapy (START) trials. The work reported here has been published in the peer reviewed

journal of Bulletin of Mathematical Biology:

Forouzannia, Farinaz, Heiko Enderling, and Mohammad Kohandel. Mathematical Mod-

eling of the Effects of Tumor Heterogeneity on the Efficiency of Radiation Treatment Sched-

ule. Bulletin of mathematical biology. 2017: 1-11. c©2017Springer.Reprintedwithpermission.
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3.1 Introduction

Radiation is a commonly used modality in cancer treatment, either as monotherapy or

as combination therapy together with surgery and/or chemotherapy. Radiation is a DNA

damaging agent; and radiation as cancer therapy is predicated on cancer cells being less

efficient in repairing radiation-induced damage than normal cells. The total radiation dose

is divided into small fractions and administered in a regular periodic fashion to provide

temporal windows for normal tissue recovery. Treatment schedules (fractionation) are

predominantly based on evolving empirical knowledge and wisdom, but greatly constrained

by logistical considerations. Recent developments include hypo- and hyperfractionation for

various cancer types, that is delivery of either larger doses temporally further separated or

smaller doses more frequently.

Despite many technical improvements in the efficiency of radiotherapy, many tumors

become refractory to irradiation. Various clinical and biological factors explain such com-

plications, including DNA damage repair (Hall & Giaccia, 2006; Mathews et al., 2013),

prevalence of hypoxia, and tumor heterogeneity and plasticity. Recently, the presence of

cancer stem cells and a tumor hierarchy has been discussed as a source of intratumoral het-

erogeneity and poor therapy response (Marjanovic et al., 2013a; Shackleton et al., 2009).

The cancer stem cell hypothesis proposes that a small sub-population of so-called cancer

stem cells (CSCs) is critically important for the initiation and maintenance of a tumor.

These CSCs are able to self-renew indefinitely, and undergo symmetric and asymmetric

divisions to retrospectively increase the CSC population and produce progenitor cells that

will make up the bulk of the tumor (Reya et al., 2001). Recent evidence suggests plasticity
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between non-CSC and CSC states (Gupta et al., 2011), due to genetic or microenviron-

mental perturbations. CSCs have been shown to utilize superior radiation-induced DNA

damage repair mechanisms to prevent cell death (Bao et al., 2006). After radiation expo-

sure, cells with damaged DNA attempt different pathways of repair, and the repair time is

likely dependent on the delivered radiation dose (Lagadec et al., 2010; Sarcar et al., 2011).

The conventional radiotherapy protocol for most tumors delivers a total dose of 50−70

Gy in 2 Gy fractions on each weekday, with no treatment given on weekends. To reduce

toxicity and increase efficacy, alternative treatments have been considered, including a

hyper-fractionated protocol with 1 Gy per fraction twice a day; an accelerated regimen of

1.2 Gy per fraction twice daily; and hypo-fractionation with 5 Gy twice-a-week fractions.

Here, we develop a minimal mathematical model to study the effect of tumor heterogeneity

and repair in tumors exposed to theses different radiation treatment schedules.

Several mathematical models have been developed to simulate the effects of radio-

therapy. Most models utilize the so-called linear quadratic (LQ) model and its various

extensions (Hall & Giaccia, 2006). In the original LQ model, cell survival probability S

after acute doses of radiation d can be estimated as

S(d) = exp(−αd− βd2), (3.1)

where α (Gy−1) and β (Gy−2) are tissue-specific radiosensitivity parameters that are usu-

ally derived from fitting the LQ model to clonogenic survival data (Hall & Giaccia, 2006).

More recently, mathematical frameworks have been combined with experimental data to

investigate the different responses to clinically available radiation protocols (Dhawan et al.,
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2014; Dionysiou et al., 2004; Enderling et al., 2009b; Stamatakos et al., 2006). Recently,

Leder et al. (2014) proposed an optimized radiation dosing schedule for PDGF-driven

glioblastoma. The model, however, is dependent on a large number of parameters and,

with limited biological data, some parameters are far from biological realism. In partic-

ular, tissue-specific radiosenstivity parameters α and β are derived such that the derived

ratio of α/β = 865, 789 Gy is five orders of magnitude larger than frequently derived

α/β = 3 − 10 Gy (Leder et al., 2014). Nevertheless, the model-predicted optimal dose

fractionation showed prolonged survival in subsequent mouse experiments, emphasizing

that the currently applied standard-of-care radiation fractionation may not yield optimal

outcomes. Mathematical models may help decipher the complex biology underlying cancer

cell response to irradiation, with the ultimate aim of improving clinical applications of

radiotherapy.

Herein we propose a simple mathematical model of breast cancer cell dynamics under

fractionated radiation exposure. The model includes phenotypic cell heterogeneity and

plasticity, as well as radiation-induced cell cycle arrest, which may play a pivotal role in

analyzing radiation protocols with multiple doses per day. The effect of different model

parameters and repair mechanisms on heterogeneity are studied for different clinically

feasible radiotherapy treatments. Finally, the model is applied to fractionated radiation

protocols obtained from UK standardization of breast radiotherapy (START) trials. The

START trials (START A and START B) were two experiments applied randomly to a

group of women who received radiation as part of their treatment for breast cancer in the

UK between 1999 and 2002 (Haviland et al., 2013).
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3.2 Method

We developed a two-compartment mathematical model to analyze the effect of radiation

therapy on the two phenotypically distinct sub-populations of radioresistant and radiosen-

sitive cancer cells. In breast cancer, these populations have been identified by respectively

CD44highCD24low (CD+; biomarker positive) and CD44lowCD24high (CD−; biomarker

negative), which are also markers of cancer stemness (Al-Hajj et al., 2003; Fillmore &

Kuperwasser., 2008). Both sub-populations are capable of self-renewal, albeit with lower

rates for biomarker negative CD− cells that also feature higher death rates. We discuss

the balance of self renewal and cell death as the net population growth rate, which does

not affect the behavior of the system. As a visualization of phenotypic plasticity, cells

can switch from one phenotype to the other (Marjanovic et al., 2013a). After exposure

to radiation, cells in each compartment are forced into cell cycle arrest to attempt repair

from radiation-induced DNA damage. Biomarker positive cells have been shown to have

better repair mechanisms (Bao et al., 2006; Boman et al., 2008) and, thus, a larger fraction

of growth-arrested biomarker positive CD+ (calculated by the LQ model with phenotype-

specific αS and βS parameters) returns into the viable population after successful repair.

Figure 3.1 shows a schematic diagram of the proposed model, and model parameters are

summarized in Table 3.1.

We denote by NS, NRS, NP and NRP the population of resistant cells, resistant re-

pairing cells, sensitive cells, and sensitive repairing cells, respectively. The model can be

mathematically represented by the following system of equations
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ρS

ρSP ρPS

δS f

δP f

g(d)e(−αSd−βSd
2 )

g(d)e(−αPd−βPd
2 ) g(d)(1− e(−αPd−βPd

2 ) )

g(d)(1− e(−αSd−βSd
2 ) )

ρP

Positive biomarker cells
CD44high/CD24low (CD+) Repairing cells (CD+)  

Negative biomarker cells
CD44low/CD24high (CD-)

Repairing cells (CD-)  

Dead cells (CD+)  

Dead cells (CD-)  

Figure 3.1: Schematic diagram of the model.

dNS

dt
= ρSNS + ρPSNP + g(d)e(−αSd−βSd2)NRS − ρSPNS − δSfNS,

dNRS

dt
= δSfNS − g(d)NRS,

dNP

dt
= ρPNP + ρSPNS + g(d)e(−αP d−βP d2)NRP − ρPSNP − δPfNP ,

dNRP

dt
= δPfNP − g(d)NRP .

(3.2)

Cells acquire on average one DNA double strand break after exposure to 1 Gy of radiation.

Therefore we assume that each cell will enter cell cycle arrest and attempt repair after each

radiation fraction, but no new damage arises in the interval between radiation treatments.

Hence, f = 1 at discrete times when radiation is given, and f = 0 otherwise. Dependent on

radiosensitivity parameters αi and βi with i ∈ {S, P}, cells will either die due to radiation

induced DNA damage with probability 1 − Si(d) or return to the viable non-repairing
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Table 3.1: Description of the model parameters.

Parameters Description
ρS Net proliferation rate of CD+ cells.
ρSP Rate of switching of CD+ cells to CD− cells.
ρP Net proliferation rate of CD− cells.
ρPS Rate of switching of CD− cells to CD+ cells.
δSf Rate at which CD+ cells go for repair.
δPf Rate at which CD− cells go for repair.

g(d)(1− e(−αSd−βSd2)) Rate at which CD+ cells that are in repair die.

g(d)(1− e(−αP d−βP d2)) Rate at which CD− cells that are in repair die.

g(d)e(−αSd−βSd2) Rate at which CD+ cells that are in repair become active again.

g(d)e(−αP d−βP d2) Rate at which CD− cells that are in repair become active again.

population S or P with probability Si(d) at dose-dependent rate g(d). We assume the

function g(d) to be of the order of the inverse square of the dose (Lagadec et al., 2010;

Sarcar et al., 2011), such that cells irradiated with a dose of 1 Gy spend on average 1 hour

attempting repair, and 4 hours after exposure to 2 Gy.

3.2.1 Parameter estimation

Stochastic and deterministic simulations have been compared to two sets of experimental

data to derive suitable values for model parameters. The experimental study on breast

cancer initiating cells (i.e. CSCs) and mammosphere formation assay (MFA) data cali-

brates the fraction of biomarker positive CSCs (Lagadec et al., 2010). In this study, the

breast cancer cell line is irradiated with a single dose or daily doses of 2 Gy. After 48 hours,

single cells are seeded to form spheres for 20 days. The fraction of CSCs and mammosphere
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formation capacity are reported in Table 3.2 (Lagadec et al., 2010).

Table 3.2: The fractionated irradition effect on CSC population and mammosphere forma-
tion capacity (Lagadec et al., 2010).

CD24low/−/CD44high

Dose % of CSCs Sphere forming capacity
2 6.54 (+/- 1.95) 13.49 (+/- 1.32)

2-2 8.04 (+/- 1.47) 10.76 (+/- 0.96)
2-2-2-2 8.56 (+/- 1.21) 11.85 (+/- 1.81)
Overall average 7.71 12.03

As the MFA experiment was initiated from a single cell (Lagadec et al., 2010), stochastic

effects are important. We apply the Gillespie algorithm to compare model sphere forming

capacity predictions with the experimental data in Table 3.2. Since running the Gillespie

algorithm is computationally expensive, it is only used to fit the parameters of the model

when δs = δp = g = 0. We vary model parameters without repair to obtain the best fit to

the experimental data. At the same time, we use the deterministic equations 3.2 to compare

the theoretical results of average CSC fraction to experimental data. The estimated model

parameters are summarized in Table 3.3, alongside the fraction of CSCs and sphere forming

capacity using those values, which show good agreement with the experimental results in

Table 3.2. Of note is that the reported parameter value combinations are not unique and,

thus, we will perform a sensitivity analysis to investigate the impact of each parameter on

model outcome.

Herein, resistant and sensitive tumor cells are considered to have different radio-sensitivities.

Thus, the total population of cells at time t is given by N(t) = NS(t) +NP (t) (Hereafter,
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Table 3.3: Estimated model parameters when δS = δP = g = 0. The values of fraction of
CSCs and sphere forming capacity that are evaluated based on the estimated parameters
values are also reported. The unit of all parameters is 1/day.

Parameters ρS ρSP ρP ρPS % of CSCs Sphere forming capacity
Values 0.2 0.7 0.1 0.05 7.6 12.7

NS ≡ NS + NRS and NP ≡ NP + NRP unless stated otherwise); the population of cells

after exposure to treatment for the period of time τ can be calculated as

N(t+ τ)

N(t)
=
NS(t)

N(t)
e(−αSd−βSd2) +

NP (t)

N(t)
e(−αP d−βP d2). (3.3)

Assuming that the fraction of CSCs is at its steady state value before the radiation, and

using the experimental data of (Lagadec et al., 2010), we set NS(t)
N(t)

= 0.076 (and NP (t)
N(t)

=

0.924). Then, the modified linear quadratic model (Equation 3.3) is used to fit model

results to the experimental data of (Piccirillo et al., 2006), which yields αS = 0.14 Gy−1,

βS = 0.048 Gy−2 (αS/βS=2.9 Gy), αP = 0.41 Gy−1 and βP = 0.17 Gy−2 (αS/βS=2.4

Gy) (Figure 3.2). Since at each radiation fraction the majority of damaged cells undergo

repair mechanisms, we assume that 90% of cells will be arrested (Withers, 1992). However,

sensitivity analysis shows that reducing this fraction to as low as 40% does not qualitatively

change the results (see Figure A.1 and Figure A.6 in supplementary materials). The list

of all model parameters and their estimated values are reported in Table 3.4.
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Figure 3.2: Fitting the modified linear quadratic model to the experimental data of (Pic-
cirillo et al., 2006). The black points are the extracted experimental data. The solid
curve is the model result using the estimated radio-sensitivity parameters αS = 0.14 Gy−1,
βS = 0.048 Gy−2, αP = 0.41 Gy−1 and βP = 0.17 Gy−2.

3.3 Results

We consider different clinical radiotherapy treatment protocols for one week including stan-

dard of care (SoC; daily doses of 2 Gy), hyperfractionated (HR; two daily doses of 1 Gy),

accelerated hyperfractionation (AC; two daily doses of 1.2 Gy), and hypofractionated (HO;

twice a week doses of 5 Gy). Additionally we simulate the recently suggested optimal pro-

tocol for PDGF-driven glioblastoma by Leder (Leder et al., 2014) (Optimum-1, OP; see

Table 3.5). All protocols deliver a total dose of D = 10 Gy per week, except accelerated

hyperfractionated with a total dose of D = 12 Gy. However, the accelerated hyperfrac-

tionated protocol has the same biologically effective dose (BED) as SoC (see Table 3.6).

BED is used to describe the biological effect of dose fractionation, and is defined as
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Table 3.4: Model parameter values.

Parameters Value (unit) Reference
ρS 0.2 (day−1) Using experimental data (Lagadec et al., 2010)
ρSP 0.7 (day−1) Using experimental data (Lagadec et al., 2010)
ρP 0.1 (day−1) Using experimental data (Lagadec et al., 2010)
ρPS 0.05 (day−1) Using experimental data (Lagadec et al., 2010)

δS = δP 310 (day−1) Assuming 90% of cancer cells undergo repair
αS 0.14 (Gy−1) Using experimental data (Piccirillo et al., 2006)
αP 0.41 (Gy−1) Using experimental data(Piccirillo et al., 2006)
βS 0.048 (Gy−2) Using experimental data (Piccirillo et al., 2006)
βP 0.17 (Gy−2) Using experimental data (Piccirillo et al., 2006)
f 1 or 0 1: radiation, 0: no radiation

BED =
− ln(SF (d))

α
= D(1 +

d

α/β
), (3.4)

where SF (d) is the LQ Model derived single dose d dependent survival fraction with

radiobiological parameters α and β (compare Equation 3.1). Due to the linear quadratic

relationship of dose and survival, total dose can be increased when smaller doses are given in

each fraction (Fowler, 1989). The model introduced in Section 3.2 considered two subgroups

of cancer cells (resistant cells and sensitive cells) with different radiosensitivities. Thus,

following the survival fraction of cancer cells in equation 3.3, the BED is given by

BED =
− ln(mSFS + (1−m)SFP )

mαS + (1−m)αP
, (3.5)

where SFS and SFP are survival fractions for resistant cells and sensitive cells respectively.

The constant m represents the proportion of resistant cells in the tumor prior to irradiation.
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Table 3.6 shows the BED for the standard of care (SoC), hyperfractionated (HR), and

accelerated hyperfractionated (AC) protocols with different initial fractions of resistant

cells: Tumors containing only resistant cells (m = 1), tumors containing only sensitive

cells (m = 0), and heterogeneous tumors with a small subpopulation of resistant cells

(m = 0.076) as estimated. The BED is almost identical for standard of care and accelerated

hyperfractionation, but significantly smaller for hyperfractionation.

Table 3.5: Radiotherapy schedules for one week of treatment. Different colors are used for
corresponding colors in the figures.

Schedule Day 1 Day 2 Day 3 Day 4 Day 5

Standard of Care (SoC) 2 2 2 2 2
Hyperfractionated (HR) 2×1 2×1 2×1 2×1 2×1
Optimum-1 (OP) 3×1 1 2×1 1 3×1
Hypofractionated (HO) 5 - - - 5
Accelerated hyperfractionated (AC) 2×1.2 2×1.2 2×1.2 2×1.2 2×1.2

Table 3.6: The Biological effective dose for Hyperfractionation, Standard of Care, and
Accelerated Hyperfractionated protocols.

Schedules

BED HR (d=1, n=10) SoC (d=2, n=5) AC (d=1.2 n=10)

BEDS (m=1) 13.5 17.1 17.1
BEDP (m=0) 14.1 18.3 17.9
BEDSP (m=0.076) 11.1 12.7 12.7

Figure 3.3 shows the number of cancer cells NS + NP and fraction of resistant cells

NS/(NS + NP ) for all considered radiation schedules (compare Table 3.5). Simulations
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show that protocols with larger number of fractions leads to more cell kill, with acceler-

ated hyperfractionation yielding the smallest number of cells after one week of therapy.

However, the fraction of stem cells is largest compared to the other radiotherapy protocols.

Hypofractionation with smallest overall cell kill leads also to least competitive release of

the most resistant stem cell subpopulation (Enderling et al., 2009a).
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Figure 3.3: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for radiotherapy protocols reported in Table 3.5.

For the chosen parameter combinations (Table 3.4), accelerated hyperfractionation and

SoC schedules yield the lowest number of cancer cells after one week of treatment (Figure

3.3). Sensitivity analysis showed that the results are robust to changes in the parame-

ter values (Table 3.7), with the exception that decreasing αP and βP by 50% produces

hypofractionated and accelerated hyperfractionated as best protocols (Figure 3.4).

Heretofore we assumed that 90% of cells undergo arrest to attempt repair, and the pa-

rameter values for δS and δP were chosen large enough to satisfy this assumption. However,

decreasing the values for these parameters so that less than 40% of cells attempt repair
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suggests accelerated hyperfractionated as the best schedule (see Figure A.1 and Figure A.6

in Appendix A). Furthermore, the model considers that cells leave arrest with rate g(d),

which is assumed to be on the order of 1/dose2. If g(d) was proportional to 1/dose the

number of cancer cells at the end of the course of radiation therapy decreases significantly;

however, the accelerated hyperfractionated schedule remains the best treatment protocol

followed by SoC. Moreover, if g(d) = 1, the order of the best treatment regimens remains

(see Figure A.3, Figure A.4, and Figure A.5 in Appendix A).

Table 3.7: Sensitivity analysis for different parameters of the model.

Parameters αS, βS αP , βP ρS ρP ρPS ρSP 1st best 2st best

Default 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC
αS, βS (+50%) 0.21, 0.07 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC
αS, βS (-50%) 0.07, 0.04 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC
αP , βP (+50%) 0.14, 0.05 0.61, 0.25 0.2 0.1 0.044 0.73 AC SoC
αP , βP (-50%) 0.14, 0.05 0.21, 0.08 0.2 0.1 0.044 0.73 HO AC

ρS (+50%) 0.14, 0.05 0.41, 0.17 0.3 0.1 0.044 0.73 AC SoC
ρS (-50%) 0.14, 0.05 0.41, 0.17 0.1 0.1 0.044 0.73 AC SoC
ρP (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.15 0.044 0.73 AC SoC
ρP (-50%) 0.14, 0.05 0.41, 0.17 0.2 0.05 0.044 0.73 AC SoC
ρPS (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.066 0.73 AC SoC
ρPS (-50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.022 0.73 AC SoC
ρSP (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 1.09 AC SoC
ρSP (-50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 0.36 AC SoC

The UK standardisation of breast radiotherapy (START) trials constituted a study con-

ducted to reduce late normal tissue complications and local tumour control in women with

breast cancer exposed to radiotherapy after tumor removal (The START Trialists’ Group,

2008). The study consisted of two parallel trials, START A and START B, which con-
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Figure 3.4: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) when αP and βP are changed to αP −0.5αP and βP −0.5βP for radiotherapy protocols
reported in Table 3.7 .

sidered the standard radiotherapy protocol, including 50 Gy in 25 fractions delivered in 5

weeks, one highly-prescribed protocol. To reduce tumour relapse and normal tissue dam-

age, the schedule was improved based on normal and cancerous cells radiosensitivities and

their response to fractionated doses. Therefore, the conventional protocol was modified to

deliver higher amounts of radiation at each fraction with acceptable reduction in the total

dose. In the START A trial, patients were arbitrarily exposed to five weeks of treatment

with either 50 Gy in 25 fractions, 41.6 Gy in 13 fractions, or 39 Gy in 13 fractions. In the

START B study, patients were randomly assigned to either 50 Gy in 25 fractions over 5

weeks or 40 Gy in 15 fractions for three weeks (Haviland et al., 2013). The model proposed

in this current chapter uses the treatment schedules discussed in the START trials to ex-

plore tumour diversity after each course of radiation. In addition, sensitivity analysis has

been carried out to explore the effects of model parameters on the radiotherapy schedules

used in the START trials.
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The number of cancer cells and fraction of resistant cells for the treatment protocols

reported in the START trails are presented in Figure 3.5. The conventional regimen

treatment with total dose 50 Gy has the smallest number of cancer cells and a relatively

high fraction of resistant cells. Thus, this Conventional treatment schedule can be effective

to kill cancer cells, but the probability of relapse is fairly high. In addition, the treatment

schedule with total dose 40 Gy, represents the highest number of cancer cells and highest

fraction of resistant cells, which imply that this hypofractionated regimen is not efficient

in curing the disease and it can also cause late side effects and relapse. On the contrary,

the study conducted in the START trials reports that hypofractioned schedules are as

safe and effective as standard control protocols. The sensitivity of the results to the

parameters of the model was investigated. The outcome concluded that αP and βP were

the most important parameters. The number of cancer cells and fraction of resistant cells

when αP and βP are changed to αP − 0.5αP and βP − 0.5βP are sketched in Figure 3.6.

As seen, the hypofractionated regimen with total dose 41.6 Gy behaves similarly to the

standard control schedule with a lower fraction of resistant cells. Thus, the impact of

the radiotherapy with respect to the treatment for these two protocols are comparable,

however the hypofractionated schedule results in a smaller probability of relapse.

As previously stated, due to the fatal effects of 1 Gy of radiation, δS and δP are selected

adequately large such that 90% of cells undergo DNA repair pathways. The reduction in the

values of these parameters, so that less than 40% of cells go through repair stage, can change

the behavior of the hypofractionated regimen (with total dose of 40 Gy) significantly. This

hypofractionated protocol is improved to the second order in terms of the number of cancer

cells. Furthermore, the fraction of resistant cells is comparatively similar to the fraction
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Figure 3.5: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in START trials.

of resistant cells for the Control conventional treatment strategy, but still worse than the

other hypofractionated schedules. Thus, the hypofractioned protocol with total dose 40

Gy is at least as efficient as the conventional regimen (see Figure A.6 in Appendix A). The

sensitivity of the outcomes to the assumption of the function g(d) is also studied. Two

sets of assumptions have been considered for the function g(d) in this study: the inverse of

the dose delivered at each fraction of treatment and the constant value 1. For the former

assumption, the number of cancer cells decreases and the order of the schedules has not

been changed. For the latter, the number of cancer cells also decreases and the treatment

protocols show no qualitative differences (see Figure A.7 and Figure A.8 in Appendix A).

Furthermore, the hypofractionated schedule (with a total dose of 40 Gy) drops quickly in

comparison with the other three regimens when the function g(d) is changed from being

proportional to the inverse square of dose to the inverse of dose (see Figure A.9 in Appendix

A).
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Figure 3.6: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in START trials when αP and βP are changed
to αP − 0.5αP and βP − 0.5βP .

3.4 Conclusion

In this chapter, a two-compartment mathematical model has been developed to assess

the effects of tumor heterogeneity and radiotherapy fractionation on treatment response.

Model simulations suggest that radiotherapy can alter tumor heterogeneity, and elevate

the fraction of resistant cells. In future studies, we propose to further increase biological

complexity by considering increased self-renewal of the resistant population in response

to radiation (Gao et al., 2013). If the total radiation dose is insufficient to eradicate the

tumor, enrichment in cancer stem cells may lead to tumor relapse and recurrence. There-

fore, if total tumor control cannot be achieved, optimal therapies should balance decreases

in tumor burden and prevention of outgrowth of the most resistant subpopulation. Inter-

estingly, none of our simulations suggested the standard of care fractionation as the best

therapeutic approach, further emphasizing the need to prospectively evaluate alternative
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fractionation protocols in the clinic. Furthermore, our model calibrated for breast cancer

was unable to confirm the optimum treatment schedule for PDGF-driven glioblastoma (as

in Leder et al., 2014). This suggests that treatment optimization may be highly dependent

on the tumor biology, the mathematical model, and model parameter dependent, and the

utmost attention must be paid to identifying the underlying biological mechanisms. Hence,

a general optimal radiation schedule as suggested in (Conforti et al., 2008; Leder et al.,

2014; Wein et al., 2000) may not be feasible, and designing different efficient protocols may

be required for each type of cancer, and even each individual patient.

The model has also been applied to the START trials to investigate the effect of the

proposed protocols on tumor heterogeneity. In START trials, radiotherapy is administered

after surgery and chemotherapy. Many different features such as demographic factors, and

the stage and type of the disease can influence the results. Thus, our aim in this chapter was

not to compare the model predictions with START trials outcomes, but rather to consider

the impact of the radiotherapy schedules on tumor diversity. In general, the results suggest

that the number of cells is minimal after the standard regimen, but the fraction of resistant

cells is relatively high. In addition, the other three hypofractionated protocols, with larger

doses of fractions and lower total dose, have different effects on cancer cell dynamics. For

example, both the number of cancer cells and the fraction of resistant cells are large after

exposure to the schedule with a total dose of 40 Gy. The regimens with total doses of 41.6

Gy and 39 Gy reduce the fraction of resistant cells to the minimum in comparison with

other schedules, but the number of cells is still bigger than that after standard schedules.

At the moment, the study is hypothesis generating, and we sincerely hope that the pre-

sented results stimulate and encourage experimentalists and clinicians to test the presented
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model predictions.
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Chapter 4

The impact of random

microenvironmental fluctuations on

tumor control probability

The tumor control probability (TCP) is a metric used to calculate the probability of con-

trolling or eradicating tumors through radiotherapy. Cancer cells vary in their response

to radiation, and although many factors are involved, the tumor microenvironment is a

crucial one that determines radiation efficacy. The tumor microenvironment plays a signif-

icant role in cancer initiation and propagation, as well as in treatment outcome. We have

developed stochastic formulations to study the impact of arbitrary microenvironmental

fluctuations on TCP. Since the derivation of analytical solutions may not be possible for

complicated cases, we employ a modified Gillespie algorithm to analyze TCP, and take into
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consideration the random variations in cellular proliferation and death rates. Our results

show that increasing the standard deviation in demographic factors initially enhances the

probability of tumor eradication. However, if the TCP does not reach a probability of 1,

the increase in the standard deviation subsequently has a negative impact on treatment

effectiveness, decreasing the TCP over time. The greatest effect on TCP has been observed

when both birth and death rates are being randomly modified and are anticorrelated.
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4.1 Introduction

Radiotherapy delivers high doses of energy to disrupt cancer cell proliferation and destroy

tumor cells with the ultimate goal of maximizing tumor control and minimizing normal

tissue complication. Radiotherapy efficiency and tumor response depend on many different

factors, such as the degree of tumor heterogeneity, plasticity, hypoxia, the tumor microen-

vironment, and cell cycle regulation. The tumor microenvironment, which also creates

substantial barriers to the delivery and effectiveness of anticancer treatments, consists of

different cellular types such as vascular networks, immune system cells, fibroblasts, and

inflammatory cells. The complex interaction between the tumor microenvironment and

a heterogenous cancer cell population influences tumorigenesis, metastasis, and therapeu-

tic outcomes. For example, the irregular signaling pathways regulating malignant cells

simulate the activation of fibroblasts and other molecular mechanisms that impact cell

proliferation (Wang et al., 2017). Moreover, the active process of angiogenesis generates

abnormal vascular structures, which increase leakiness and elevate interstitial fluid pres-

sure in the tumor, and interrupting the regular blood flow in the tissue (Fukumura & Jain,

2007; Hanahan & Weinberg, 2011). Consequently, these random and complicated inter-

actions create regions of hypoxia and acidosis, leading to more aggressive and resistant

tumor cells that prevent effective therapeutic interventions. The impact of such irregular

fluctuations in natural selection and the fitness of emerging mutants have been discussed

for a heterogenous population (Mahdipour et al., 2017; Nowak et al., 2003), but the effect

of random environmental variations on tumor response to therapeutic protocols is not yet

well understood.
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The efficiency of radiotherapy and potential benefits of various treatment schedules

are commonly evaluated using a range of treatment-planning tools and approaches. For

example, the tumor control probability (TCP) qualitatively calculates the capability of

administered doses and radiotherapy regimens to eliminate a tumor. Several mathematical

models of TCP have been discussed in the literature (Kendal, 1998; Munro & Gilbert, 1961;

Tucker et al., 1990; Yakovlev, 1993; Zaider & Minerbo, 2000). One of the preliminary

models proposed that the probability of eradicating cancer cells approximates a Poisson

distribution, if the number of surviving cells follows a binomial distribution (Zaider &

Minerbo, 2000). However, the Poisson model of TCP does not consider cell proliferation

during treatment and might underestimate the exact TCP (Tucker et al., 1990; Yakovlev,

1993). Zaider & Minerbo (2000) developed another well known TCP model to incorporate

stochastic effects on cell proliferation and cell kill. This model was suggested based on a

simple birth/death process and can be applied to any treatment protocol. The extension of

these models and other approaches such as Monte Carlo simulations have been employed

to take cell cycles and quiescent effects into consideration (Dawson & Hillen, 2006; Gong,

2011).

In this chapter, a stochastic model is developed to investigate the role of tumor mi-

croenvironmental fluctuations on tumor control probability. The arbitrary fluctuations in

cell birth and death rates are modelled using a dichotomous Markov noise, which describes

either birth and/or death rates as correlated noise with random discontinuous jumps. The

derivation of the analytical solution is complicated when demographic rates change ran-

domly. Therefore, a modified Gillespie algorithm for time changing discontinuous transition

rates is applied to study the TCP. The results suggest that if either birth or death rates
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change randomly, the probability of tumor eradication initially improves, however, random

changes negatively impact TCP over time. Moreover, changing both birth and death rates

such that cells with higher proliferation rates die with lower death rates has the highest

impact on TCP. In this case, TCP is improved if birth and death rates are autocorrelated,

and the best outcome is when cells with higher birth rates die with higher death rates.

4.2 Method

We assume that cancer cells can reproduce by splitting into two at a rate of ρ(t) and can

die autonomously at a rate of Γ(t). In order to determine the stochastic dynamic of the

model, we first define the probability distribution function for the system. Suppose that at

an initial time, t0, the number of cancer cells is denoted by n0. The probability distribution

of having a population of nc cancer cells at time t is denoted by pnc(t) with the following

master equation

dpnc(t)

dt
= ρ(t)pnc−1(nc − 1)− (ρ(t) + Γ(t))pncnc + Γ(t)pnc+1(nc + 1), (4.1)

where ρ(t) and Γ(t) are the corresponding birth rate and death rate for cancer cells, respec-

tively. Here, the initial condition is given by pnc(t0) = δncn0 (with δi,j being the Kronecker

delta function). Considering the probability generating function U(z, t) =
∞∑
i=0

pi(t)z
i and

substituting (4.1) into
∂U(z, t)

∂t
, we get

∂U(z, t)

∂t
= (z − 1)(ρ(t)z − Γ(t))

∂U(z, t)

∂z
, (4.2)
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with initial condition U(z, 0) = zn0 .

Partial differential equation 4.2 can be solved using the method of characteristics. Let

C : [z(τ), t(τ)] be a curve in the (z, t) plane. Hence,

dU

dτ
=
dU

dz

dz

dτ
+
dU

dt

dt

dτ
. (4.3)

Assuming that U(z(τ), t(τ)) is constant along this characteristic curve, we get dU
dτ

= 0.

Comparing 4.2 and 4.3 results in

dz

dτ
= −(z − 1)(ρ(τ)z − Γ(τ)), (4.4)

relabelling τ as t gives

dz

dt
= −(z − 1)(ρ(t)z − Γ(t)), (4.5)

which can be written as

dz

dt
= −(z − 1)(β(t)− (1− z)ρ(t)), (4.6)

where β(t) = ρ(t)− Γ(t). It can be verified that multiplying λ(t) = exp(−
∫ t

0
β(t′)dt′) and

adding dz
dt

(z − 1)φ(t) to both side of equation 4.6, where φ(t) =
∫ t

0
ρ(t′)λ(t′)dt′ yields

d

dt

(
(1− z)

λ(t) + (1− z)φ(t)

)
= 0, (4.7)
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which is valid when β(t) is a continuous function. Consequently,
(

(1−z)
λ(t)+(1−z)φ(t)

)
is equal to

a constant, and since U(z, t) is constant along the characteristic curve, we get

U(z, t) = f

(
(1− z)

λ(t) + (1− z)φ(t)

)
. (4.8)

Applying the initial condition U(z, 0) = zn0 in 4.8 implies that f(z) = (1− z)n0 . Thus,

U(z, t) =

[
1− 1(

λ(t)
1−z +

∫ t
0
ρ(t′)λ(t′)dt′

)]n0

,
(4.9)

and TCP can be defined as the probability of eradicating all cancer cells, given as below

TCP (t) = U(0, t) =

[
1− 1(

λ(t) +
∫ t

0
ρ(t′)λ(t′)dt′

)]n0

.
(4.10)

Evaluating equation 4.10 is trivial for the simple functional forms of ρ(t) and λ(t). However,

the analytical computation can be difficult for more complicated functions ρ(t) and λ(t).

In this latter case, numerical methods are beneficial. One possible approach is to solve

differential equation 4.5 numerically (Appendix B). Alternatively, the master equation,

4.1, can be solved using the Gillespie algorithm. These three approaches are compared

below to show that the Gillespie algorithm is a suitable method when the rates are either

constant or vary over time (for simplicity we assume that ρ(t) is constant). Reducing

a partial differential equation to a related ordinary differential equation and deriving the

analytical solution may not always be possible. However, the Gillespie algorithm is a useful

approach for solving complicated systems.
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Constant Γ(t)

Here, the mortality rate is assumed to be uniform over time (i.e. Γ(t) is constant). The

results show that there is good agreement among the analytical solution, the numerical

method, and the Gillespie algorithm, assuming death rates are constant (Figure 4.1).

Figure 4.1: Comparison of the analytical solution, the numerical method, and the Gillespie
algorithm, when n0 = 100, ρ = 0.5 and Γ = 1.

Γ(t) changes over time

In practice, it is not realistic to assume that the death rate is constant over time. For

instance, when fractionated radiotherapy is given, the total administered dose is broken

down into smaller fractions of doses, decreasing toxicity and damage to normal cells as

well as increasing efficiency. Therefore, based on the prescribed protocol, each fraction is

given for 15-30 minutes once or twice a day. The cell kill effect can be described as a step

function in which there is a higher cell death rate in the presence of radiotherapy and a

lower death rate when there is no radiation. Hence, Γ(t) is assumed to be a piecewise
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function given as below when k1 > k2.

Γ(t) =


k1 radiation induced cell death,

k2 radiation independent cell death.

(4.11)

As described above, for an analytical solution, ρ(t) and Γ(t) must be continuous functions.

In this direction, in equation 4.10, Γ(t) can be defined using a hyperbolic tangent function

Hδ(t) = 1
2
(1 + tanh(x

δ
)) to smooth out the approximation to the discontinuous Heaviside

function H(x), where δ determines the width of the smooth transition. Figure 4.2 compares

the analytical, numerical, and Gillespie solutions for the two different cell-kill functions.

The last uses a modified Gillespie algorithm for rates that change discontinuously over

time (see Appendix C). The results show good agreement between the analytical solution

and the Gillespie algorithm. However, the numerical solution displays an error, which

is probably due to the instability of finite difference methods in the presence of sharp

changes. Although, the error is negligible for linear differential equations, it can be large for

nonlinear ones. Using the numerical method given in Appendix (B), TCP(t) equals the n0-

th power of the solution for the differential equation 4.5, and the relative error for TCP(t)

approximately equals n0δz, where δz is a relative error in z. Resolving this issue is not

within the scope of this work, which focuses on applying the modified Gillespie algorithm

(Shahrezaei et al., 2008) for solving problems with rates that are changing discontinuously

over time.
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(a) (b)

Figure 4.2: Comparison of the analytical solution, the numerical method, and the Gillespie
algorithm, when n0 = 100 and ρ = 0.5, for two different cell kill rates: (a) Γ = 0.4 for
6 < t ≤ 10 and Γ = 1 otherwise. (b) Γ = 8 (every day for 3 hours) and Γ = 1 otherwise.

The role of arbitrary fluctuations on TCP

Cancer cells live in a complex and ever-changing microenvironment that has a performed

impact on their behavior and fate. For example, inflammation, hypoxia, and acidosis in

and around a tumor can contribute to treatment resistance, reducing treatment induced

cell kill effects. In this direction, we investigate TCP for a cancer cell population that

is subject to microenvironmental randomness. Therefore, the simple birth/ death model

discussed above is considered. To incorporate microenvironmental-induced fluctuations in

the model, the proliferation and death rates are assumed to exchange stochastically between

two values, k1 and k2, with an average k = (k1 + k2)/2. This stochastic fluctuation occurs

continuously based on dichotomous Markov noise ξ(t) ∈ {−1,+1} with zero mean and

autocorrelation 〈ξ(t)ξ(t′)〉 = exp(−2ν|t − t′|), where ν is the rate of random changes and
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1/(2ν) is the finite correlation time. Thus, proliferation and death rates are given by

1

2
[ (k1 + k2) + ξ(t)(k1 − k2)] . (4.12)

The addition of this noise to the system describes birth and death rates as random step

functions, changing over time. Consequently, we calculate TCP using a modified Gillespie

algorithm for different switching rates, ν.

4.3 Results

4.3.1 Random birth rate

In this section, we consider Γ(t) = Γ to be constant, and ρ(t) = 1
2
[ (k1 +k2)+ξ(t)(k1−k2)],

which alters stochastically, following the dichotomous Markov noise explained above. Here,

TCP is measured for different random change rates ν. In addition, it is assumed that ρ(t)

alters randomly over time between two values k1 and k2 that are equidistant from the

average (k). Thus, k1 = k + σ and k2 = k − σ, where σ is a standard deviation. The

results show that tumor control probability approaches TCP, corresponding to a constant

proliferation rate, as the random change rate (ν) increases or the finite correlation time

(1/(2ν)) decreases ( Figure 4.3 ). Furthermore, as Figure 4.4 demonstrates, as the standard

deviation (σ) increases, the probability of eradicating cancer cells initially increases, and

thereafter decrease.
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Figure 4.3: Tumor control probability when proliferation rate switches randomly, with an
average ρ = 0.5, standard deviation σ = 0.3, n0 = 50, and Γ = 1 for the different switching
rates.

Figure 4.4: Tumor control probability when division rate is switching randomly with ρ =
0.5, n0 = 50, Γ = 1, and different standard deviations for switching rates ν = 0.02 and
ν = 0.2.

Moreover, as σ increases, extinction time distribution is skewed to the right, and the

average extinction time decreases (Figure 4.5). Therefore, Figures 4.4 and 4.5 confirm that

higher variation (σ) is initially beneficial for tumor removal, but reduces the probability

of tumor eradication over time. Increasing σ also modifies the dynamics of cell numbers,
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enhancing their average and variance (Figure 4.6).
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Figure 4.5: The average extinction time and extinction time distribution when ρ = 0.5,
n0 = 50, Γ = 1, and different standard deviations for switching rate ν = 0.02.
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Figure 4.6: The average and variance of cell numbers with n0 = 50, ρ = 0.5, Γ = 1, and
different standard deviations for switching rate ν = 0.02.

It is important to understand why increasing the standard deviation primarily enhances

TCP, but then reduces the efficiency of treatment over time. Consequently, TCP is cal-

culated when the rate of random fluctuations, ν, is sufficiently small, or when the finite

correlation time, 1/(2ν), approaches infinity. Therefore, the proliferation rate is either
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ρ+ σ or ρ− σ at each realization, and so can be used in cases when a patient’s randomly

assigned cell division rate is one of these two values. Assuming these two specific cases,

TCP can be measured using the analytical solution (equation 4.10), because both birth

and death rates are constant. Figure 4.7 graphs TCP for proliferation rates corresponding

to ρ, ρ + σ, and ρ − σ, respectively. This figure also displays the average tumor control

probability of TCPρ+σ and TCPρ−σ. The lower birth rate ρ− σ results in a greater TCP

value, which eventually saturates to the probability 1 over time. At the same time, the

higher birth rate ρ+σ leads to a lower probability of tumor removal. Therefore, on average,

TCP is controlled by TCPρ−σ before it approaches 1, and thereafter, TCP is determined by

TCPρ+σ. As a result, taking randomness into consideration, TCP can reduce to, at most,

a probability of 0.5, which is the average of the highest and lowest possible probabilities

for division rates ρ− σ and ρ+ σ, respectively, for enough large time t.
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Figure 4.7: Tumor control probability obtained from analytical solution with ρ = 0.5,
Γ = 1, σ = 0.4, and n0 = 50.
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In addition, Figure 4.8 shows (TCPρ−σ + TCPρ+σ)/2 evaluated using an analytical

solution for different standard deviations, confirming the same qualitative behavior as

reported when the proliferation rate is changing randomly over time (ν is not small).

Figure 4.8: Tumor control probability obtained from analytical solution with ρ = 0.5,
Γ = 1, n0 = 50, and different standard deviations.

4.3.2 Random death rate

We apply dichotomous Markov noise to describe the death rate Γ(t) = 1
2
[ (k1 + k2) +

ξ(t)(k1 − k2)] and we consider a constant birth rate ρ(t) = ρ. The results for random

death are similar to those explained above for the random birth case (see Figures D.1, D.2,

D.3, D.4, and D.5 in Appendix D). The results indicate that, although higher death rate

controls TCP at first, lower death rate basically governs the probability of tumor removal

later in time.
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4.3.3 Random birth and death rates

Figure 4.9 suggests that randomness in the death rate has more-negative impact on TCP

than randomness in the birth rate. In addition, there is a minimum tumor control prob-

ability, when both proliferation and death rates are changing arbitrarily and they are

anticorrelated (cells with smaller division rates die with higher death rates; conversely,

cells with higher division rates die with lower death rates). TCP improves for cases where

random birth and death rates are autocorrelated; finally, it approaches the TCP with

constant birth and death rates when they are correlated (cells with smaller proliferation

rates die with smaller death rates; in contrast, cells with higher proliferation rates die with

higher death rates)

Figure 4.9: Tumor control probability when division and death rates are switching ran-
domly, with ρ = 0.5, n0 = 50, and Γ = 1 for standard deviations σ = 0.2 and switching
rate ν = 0.02.
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4.3.4 The effect of randomness on TCP for a radiotherapy sched-

ule

Studying the affect of random fluctuations on the performance of the potential clinical

radiotherapy schedules is of practical interest. Fractionated radiotherapy usually splits

the total administered dose into a smaller number of fractions that are given over the

period of several weeks to reduce possible side effects. For instance, the standard regimen

is given once each weekday, with the rest over the weekend. Here, the impact of random

proliferation rate on the effectiveness of the standard schedule is investigated.

The proliferation rate ρ(t) is assumed to switch randomly using the dichotomous

Markov noise. It is also considered that cells can die during the radiation time inter-

val and that the radiation induced cell kill rate follows a linear quadratic model in which

the fraction of cells surviving a dose d is estimated by exp(−αd − βd2) (Hall & Giaccia,

2006). In this formulation, α and β are radiobiological parameters indicating the sensitivity

of cells to the radiation. Thus, the hazard function for a single dose d during a treatment

period ∆T is defined as

f(t, d) = α
d

∆T
+ β

d2

∆T
, (4.13)

Consequently, the cellular kill rate is explained using a following step function

Γ(t) =


α

dj
∆T

+ β
d2
j

∆T
t ∈ [tj, tj + ∆T ],

γ otherwise,

(4.14)
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where dj is the dose administered at the jth fraction of radiation. Here, ∆T is taken to

be 15 minutes, and the chosen radiobiological parameters are α = 0.41 and β = 0.17

(Forouzannia et al., 2018).

The graphs in Figures 4.10 and 4.11 demonstrate the probability of tumor extinction

versus, respectively, the time and dose for different standard deviations (σ) and rates of

random changes (ν). The results show similar behaviors, as reported in subsection 4.3.1,

when the birth rate is changing stochastically and the death rate is constant over time

(Γ(t) = Γ). The results confirm that when the standard deviation (σ) of the proliferation

rate increases, the stochastic changes in the birth rate initially improve the efficiency of the

standard schedule, but ultimately have a negative effect on treatment schedule efficacy over

time and for larger doses. In addition, when the rate of random change, ν, grows, the TCP

comes close to the tumor extinction probability found in the case where the proliferation

rate is constant over time (see Figure 4.10 and Figure D.6 in Appendix D). The same

results are also expected if the cellular death rate between radiotherapy fractionation alters

randomly.

4.3.5 Special cases

TCP quantitatively measures the effectiveness of radiotherapy protocols that result in a cell

kill rate which is higher than the cell proliferation rate, and this has been fully discussed

above. Here, another topic of interest is explored: the impact of random cell birth and

death rates on the extinction probability (EP) for two different cases. In the first, the

average birth rate equals the average death rate, and in the second, the average birth rate
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(a) (b)

Figure 4.10: Tumor control probability for standard radiotherapy schedule with respect to
time when proliferation rate switches randomly, with an average ρ = 0.5, γ = 0, n0 = 300,
and different standard deviations for (a) ν = 0.2 and (b) ν = 0.5.

is greater than the average death rate.

To study the first case, we take an approach similar to that taken in the previous section,

the extinction probability is studied when the proliferation rate ρ(t) (defined based on

dichotomous Markov noise) changes randomly between two values with an average ρ = Γ.

For the case when there is no noise in the system (ρ = Γ), the analytical solution (4.10)

is reduced to p0(t) = ( ρt
1+ρt

)n0 , which approaches 1 when t goes to infinity. The modified

Gillespie algorithm is applied to evaluate the extinction probability when ρ(t) changes

randomly. The results are similar to those studied in the previous section that explored

the extinction probability when the death rate is greater than the birth rate (Figures D.7,

D.8, D.9, D.10 in Appendix D). As σ increases, the extinction probability initially rises.

However, if the population does not become extinct, the probability of extinction decreases
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(a) (b)

Figure 4.11: Tumor control probability for standard radiotherapy schedule with respect to
dose when proliferation rate switches randomly, with an average ρ = 0.5, γ = 0, n0 = 300,
and different standard deviations for (a) ν = 0.2 and (b) ν = 0.5.

thereafter over time as σ gets larger. To better clarify the results, the extinction probability

is evaluated when the random fluctuation rate, ν, is small enough. Therefore, EPρ+σ and

EPρ−σ are calculated for two constant proliferation rates, ρ + σ and ρ − σ, respectively.

The extinction probability is larger for the lower division rate ρ − σ and approaches a

probability of 1 over time. However, the higher proliferation rate ρ + σ corresponds to

the lower extinction probability, which reaches ( Γ
ρ+σ

)n0 for sufficiently large time t, since

ρ+σ > Γ. Thus, the average probability of extinction is initially governed by EPρ−σ, which

goes to 1 over time. Thereafter, on average, the probability of extinction is controlled by

EPρ+σ (Figure D.10 in Appendix D). In addition, both the average and variance of cell

numbers is enhanced as σ escalates. Further, the extinction probability, when Γ(t) is

modified randomly between two numbers with an average Γ = ρ following a dichotomous

Markov noise, displays the same behavior as that for random birth.

72



The impact of random fluctuations on the proliferation rate ρ(t) is also investigated for

the second case, in which the average birth rate is greater than the average death rate. The

extinction time distribution is skewed to the right, and the average extinction time reduces

as randomness increases. The results indicate that the extinction probability increases as σ

increases. For further investigation, the extinction probability has been studied when the

finite correlation time ( 1
ν
) is large. Consequently, the extinction probability corresponding

to the proliferation rates ρ + σ and ρ − σ is evaluated. EPρ+σ approaches ( Γ
ρ+σ

)n0 as t

gets large since ρ + σ is greater than Γ. Furthermore, EPρ−σ reaches ( Γ
ρ−σ )n0 for large

time t if ρ − σ > Γ, but approaches 1 otherwise. As a result, the average of EPρ+σ and

EPρ−σ is mainly influenced by EPρ−σ. Thus, increasing randomness increases the extinction

probability, but the population does not become extinct (Figure D.11 in Appendix D). The

study of random fluctuations in random death also leads to the same results.

4.4 Conclusion and Discussion

In this chapter, a stochastic formulation has been developed to study the impact of random

demographic parameters on tumor control probability (TCP). In this direction, we have

analyzed a simple birth-death model, when birth and death rates are changing randomly

in response to dichotomous Markov noise. Therefore, these rates are defined using random

step functions. Consequently, when calculating TCP, a novel computational approach, a

modified Gillespie algorithm, has been employed to incorporate the effect of radiation-

induced cell kill and arbitrary fluctuations through discontinuous step functions. The

results confirm that higher randomness increases TCP, but thereafter, TCP decreases as
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time passes if the tumor has not been removed completely. Therefore, a higher standard

deviation corresponds to a greater TCP at the beginning and a lower probability of removal

later on. In addition, TCP has been measured when both birth and death rates were being

arbitrarily altered at the same time, lessening the effectiveness of radiotherapy when the

rates are anticorrelated. In general, tumor microenvironmental changes can negatively

influence the performance of radiotherapy protocols. Therefore, therapeutic approaches

should consider these variations and place more emphasis on personalized treatment, since

there is tumor diversity among patients, even with the same cancer types.

Considering a two compartment model consisting of a subpopulation of resistant and

sensitive cells, the stochastic dynamics of the resistant subpopulation is independent of

sensitive cells and can be explained using a simple birth/death model in the absence of

plastic transitions from sensitive cells to resistant cells. The results of this work can be

used to explain the impact of random changes in the birth and death rates of resistant cells

on the probability of a resistant cell’s eradication.

The existence of fluctuation and noise in biological systems has been observed at various

levels from the molecular, to the sub-cellular and organism level, and even at the population

level. Although the effects of noise in biological processes can differ, it has been suggested

that random fluctuations and noise can result in the variation of properties among identical

populations of cells (Schmidt et al., 2012; Tsimring, 2014). For example, experimental

results have shown that environmental noise can induce the production of different levels of

a specific protein in two genetically identical cells (Pilpel, 2011). In addition, although noise

can be beneficial, it may lead to more unfavorable conditions in a biological context. In

particular, bacteria use different strategies that help them to survive under stress conditions
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such as starvation, heat, and antibiotic. For instance, dormant cells can resist antibiotics

and maintain the population growth of bacterias (Schmidt et al., 2012; Tsimring, 2014).

The mathematical model and computational approach explored in this chapter can be used

to study the impact of noise in the response of bacteria and biofilms to antibiotics.
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Chapter 5

The impact of plasticity on tumor

control probability

The most efficacious administration of radiotherapy must be determined in order to deliver

the most potent dose of radiation to the bulk of a tumor while minimizing radiation to the

normal surrounding tissue and so reduce possible side effects. The tumor control probabil-

ity (TCP) is a treatment planning tool that evaluates the probability of tumor eradication

and helps in the assessment of the relative efficiency of different radiotherapy regimens.

The response of tumors to radiation differs greatly even in patients with same types of

cancers. Tumor heterogeneity or cellular diversity among cancer cells has a pronounced

impact on the success of the administered radiotherapy protocols. Tumor heterogeneity

can be explained using the (Cancer stem cells) CSC hypothesis, which posits that CSCs

are responsible for tumor initiation and propagation. CSCs are believed to be the main

cause of therapeutic resistance and metastasis, leading to treatment failure. Moreover, the
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existence of plasticity or bidirectional transition between CSCs and non-CSCs indicates

that, sometimes, non-CSCs appear to mimic CSC phenotypes, resulting in an increase in

resistance. We have developed a stochastic model to investigate the impact of plasticity

on the efficacy of radiotherapy. The effect of plasticity on TCP is explored by applying

the model on standard, hyperfractionated, and accelerated hyperfractionated radiother-

apy schedules. Results confirm that tumor control becomes more difficult in the presence

of plasticity. It is also observed that the impact of plasticity on accelerated hyperfrac-

tionated schedules is marginal, although the efficiency of this radiotherapy protocol drops

considerably with highly resistant tumors. In addition, the combination of radiotherapy

and targeted therapy increasing CSC differentiation, improves both the probability of CSC

and tumor removal in the absence of plasticity. However, in the presence of plasticity, the

effect of the combination therapy is not significant.

5.1 Introduction

Tumor heterogeneity, which arises due to genetic and phenotypic diversity as well as en-

vironmental differences among cancer cells, has a fundamental impact on treatment out-

comes. In particular, the resistance of CSCs to radiotherapy can lead to treatment failure

and tumor recurrence (Forouzannia & Sivaloganathan, 2017; Hanahan & Weinberg, 2011).

This cellular diversity has been observed between different patients and within a single

tumor. The cancer stem cell (CSC) hypothesis proposes that tumor growth is governed

by a scarce subpopulation of cancer cells (CSCs) undergoing symmetric and asymmetric

proliferation to regenerate themselves and produce other lineages of cancer cells, thus, con-
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tributing to intra-tumor heterogeneity. Furthermore, biological observations indicate that

sometimes non-CSCs display CSC properties, suggesting some degree of plasticity between

CSCs and non-CSCs (Marjanovic et al., 2013a,b). Several mathematical models have been

developed to incorporate the effect of plasticity in cancer cell dynamics and mammosphere

formation assays (Forouzannia et al., 2018; Gupta et al., 2011; Tonekaboni et al., 2017;

Turner & Kohandel, 2010; Zapperi & La Porta, 2012). However, the impact of plasticity

on the effectiveness of radiotherapy protocols has not been investigated, and this is the

direction we study in this chapter.

A large proportion of patients who are suffering from cancer receive radiation therapy

as part of their treatment. The aim of radiotherapy is to achieve a high probability of local

tumor control at a low risk of associated side effects. TCP is a measurement that is defined

as the probability of tumor-cell extinction by the end of the treatment. Consequently,

TCP can be used to evaluate the performance of potential radiotherapy protocols and

suggest the one with an optimum outcome. Several mathematical and computational

approaches have been developed in the literature to study TCP (Dawson & Hillen, 2006;

Gong, 2011; Kendal, 1998; Tucker et al., 1990; Yakovlev, 1993; Zaider & Hanin, 2011;

Zaider & Minerbo, 2000). Stochastic models based on Poisson statistics have been used to

investigate the probability of tumor control. One important model considers a simple birth/

death master equation that includes the stochastic effect of cell kill due to radiation. Thus,

TCP is defined as the probability of no cells remaining at the end of treatment (Zaider

& Minerbo, 2000). The model is based on clonal evolution theory, which claims that

carcinogenesis arises due to random mutations that occur in a single cell. But, based on

the CSC hypothesis, the elimination of CSCs is essential to achieve a cure, since the CSCs
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are capable of initiating and reestablishing tumor growth. Thus, Dhawan et al. (2014)

developed a unidirectional hierarchical model (based on the CSC hypothesis) to determine

the probability of eliminating CSCs from a heterogeneous cell population. However, the

model does not consider the plasticity between non-CSCs and CSCs.

Here, we develop a stochastic model based on the CSC hypothesis to study the impact of

plasticity on tumor control probability. The radiation induced cell kill rate is assumed to be

different between CSCs and non-CSCs, to account for the various radiosensitivities among

cancer cells. The cancer kill rate is also considered to be a step function such that the

kill rate is high during radiation and lower otherwise. Moreover, calculating the analytical

solution is not feasible in the presence of plasticity. Thus, a modified Gillespie algorithm

for the reactions with rates changing discontinuously is used to solve the time evolution of

the stochastic model and calculate the TCP. Consequently, the probability of CSC removal

(TCPS) and the probability of tumor eradication (TCS+P) are evaluated for three different

radiotherapy schedules: standard, hyperfractionated, and accelerated hypefractionated. In

addition, TCPS and TCS+P are calculated for a therapy that combines radiotherapy and

the targeted therapy in the presence and absence of plasticity. The results indicate that

the accelerated hypefractionated schedule obtains the best probability of CSC and tumor

removal. Yet, both TCPS and TCS+P noticeably decrease for the most resistant tumors.

Furthermore, applying combination therapy does not substantially improve the control of

either the CSC population or tumor in the presence of plasticity.

79



5.2 Method

This Chapter investigates how plasticity between progenitors and CSCs affects TCP. For

this purpose, a two compartment model is designed by splitting the total population of

cells into sub-populations of stem cells (S) and progenitor cells (P ). Stem cells have the

potential to go through numerous cell divisions to replicate themselves and to replace

progenitors. Furthermore, it is assumed that there is a degree of plasticity in the system

and that progenitors can revert to stem cells. In addition, cells can die independently of

each other at a rate of Γi, for i = S, P, (stem cell, progenitor). Therefore, we can consider

the following division pathways.

S → S + S : ρS,

S → P : ρSP ,

P → P + P : ρP ,

P → S : ρPS,

S → 0 : ΓS(t),

P → 0 : ΓP (t),

(5.1)

where ρS and ρP are, respectively, the rates of self renewal for stem cells and proliferation for

progenitors. In addition, stem cells can replace progenitors at rate ρSP , and progenitors

can replace stem cells at rate ρPS. Cells can die at rate Γi(t), for i = S, P, (stem cell,

progenitor).

CSCs are capable of unlimited proliferation to maintain a tumor. Furthermore, they dis-
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play resistance to radiotherapy through unregulated radiation-induced DNA repair mech-

anisms after exposure to treatment. Thus, the elimination of CSCs is essential to control

a tumor. Consequently, the probability of eradicating CSCs is a key element in measuring

the effectiveness of any particular treatment. In this context, the elimination of CSCs when

no plasticity exists in the tumor (i.e. ρPS = 0) can lead to tumor control. The study of

the probability of CSC removal in model 5.1 with ρPS = 0 is equivalent to analyzing the

extinction probability in a simple birth/death process, and is independent of the dynamics

of progenitors (as seen in Dhawan et al., 2014) and briefly explained in Appendix E. In

the presence of plasticity, however, the removal of CSCs may not result in tumor control.

The stochastic dynamic of model 5.1 is described using the following probability dis-

tribution function for a population of nS stem cells and nP progenitors at time t with the

initial condition pnS ,nP (t0) = δnSnS0δnPnP0
. Here, nS0 and nP0 denote the number of stem

cells and progenitors at time t0.

dpnS ,nP (t)

dt
= ρSpnS−1,nP (t)(nS − 1) + ρSP (nS + 1)pnS+1,nP−1(t) + ρP (nP − 1)pnS ,nP−1(t)

+ ρPS(nP + 1)pnS−1,nP+1(t) + ΓS(nS + 1)pnS+1,nP (t) + ΓP (nS + 1)pnS ,nP+1(t)

− (ρS + ρSP + ΓS)nSpnS ,nP (t)− (ρP + ρPS + ΓP )nPpnS ,nP (t).

(5.2)

Using the probability generating function U(S, P, t) =
∞∑
j=0

∞∑
i=0

pi,j(t)S
iP j, we obtain

∂U(S, P, t)

∂t
= [(S − 1)(ρSS − ΓS(t)) + (P − S)ρSP ]

∂U(S, P, t)

∂S

+ [(P − 1)(ρPP − ΓP (t)) + (S − P )ρPS]
∂U(S, P, t)

∂P
,

(5.3)
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with initial condition U(S, P, 0) = Sn
0
SP n0

P .

The derivation of an analytical solution for equation 5.3 is not possible. In addition,

the cancer cell death rates are defined as step functions in which the radiotherapy-induced

cancer kill rate is higher in each exposure duration and lower otherwise. Thus, the modified

Gillespie algorithm (Shahrezaei et al., 2008) is employed to evaluate TCP in the presence

of discontinuous death rates changes.

The radiation induced cell kill is assumed to occur directly in time intervals when

fractions of radiation are given. It is also suggested that CSCs are less likely to die than

progenitors, due to the former’s resistance to the therapy. Therefore, the cell kill rate at

each treatment time interval ∆T and given dose d is defined as

fi(t, d) = αi
d

∆T
+ βi

d2

∆T
, (5.4)

with different radiobiological parameters αi and βi (i ∈ {S, P}) for CSCs and progenitors.

The hazard function fi(t, d) is developed based on a linear quadratic model, and cell

survival after each fraction can be deduce by exp(−αid − βid
2), (i ∈ {S, P}) (Hall &

Giaccia, 2006). Thus, the cell death rates for CSCs and progenitors (i ∈ {S, P}) can be

considered as the following step function

Γ(t) =


αi

dj
∆T

+ βi
d2
j

∆T
t ∈ [tj, tj + ∆T ],

0 otherwise,

(5.5)

where tj and dj are the initial time and the given dose of the jth fraction of radiotherapy,
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respectively. The values of model 5.1 and radiosensitivity parameters are selected from

(Forouzannia et al., 2018). Thus, ρS = 0.1, ρSP = 0.7, ρP = 0.2, ρPS = 0.05 and

radiobiological parameters are αS = 0.14, αP = 0.41, βS = 0.048, and βP = 0.17. The

duration of treatment at each fraction of radiation ∆T is assumed to be 15 minutes.

5.3 Results and Discussion

Radiotherapy targets cancer cells and shrinks tumors, but CSCs are apt to escape the effect

due to their resistance to radiation. In general, tumors rich in CSCs are very difficult to

control relative to ones with a lower CSC fraction. Consequently, studying the efficiency

of radiotherapy protocols for eradicating CSCs is important. However, removing the CSC

population may not be sufficient to control the disease in the presence of plasticity. There-

fore, to investigate the impact of plasticity on tumor control, we evaluate the probability

of CSC removal, TCPS, and the probability of tumor eradication, TCPS+P , for model 5.1

in the presence and absence of plasticty.

In this direction, TCPS and TCPS+P are compared for standard (ST), hyperfraction-

ated (HR), and accelerated hyperfrationated (AC) radiotherapy schedules over three weeks

of treatment. The conventional treatment regimen delivers a dose of 2 Gy per fraction,

once each weekday. For the hyperfractionated and accelerated hyperfrationated protocols,

the respective doses of 1.2 Gy and 1.5 Gy are given twice each weekday.

Figure 5.1 represents TCPS and TCPS+P , applying a standard radiotherapy regimen

in both the presence and absence of plasticity in the system. The curves are relatively
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close to each other in Figure 5.1a due to the high radiotherapy-induced cell kill rates.

Consequently, the cell kill rates at each fraction of radiation are reduced by assuming that

βS and βP equal zero, to better distinguish the differences between various possible cases

(Figure 5.1b). The results confirm that both TCPS and TCPS+P reduce when non-CSCs

are able to behave like CSCs.

(a) (b)

Figure 5.1: TCPS and TCPS+P for a standard radiotherapy schedule in the absence and
presence of plasticity with initial numbers of cells n0

S = 100 and n0
P = 100. (a) αS = 0.14,

αP = 0.41, βS = 0.048, and βP = 0.17. (b) βS = 0 and βP = 0.

In Figure 5.2, TCPS and TCPS+P are compared for standard, hyperfractionated, and

accelerated hyperfactionated protocols. Whether or not plasticity exists, accelerated hy-

perfractionated and standard protocols correspond, respectively, to the largest and lowest

TCPS and TCPS+P . In general, the existence of plasticity leads to a smaller probability

of CSC and tumor removal for these three radiotherapy schedules. The probability of CSC

removal is relatively close for these three radiotherapy schedules in the absence of plasticity,
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but the calculated TCPS is more distinct in the presence of plasticity (Figure 5.2a). Fur-

thermore, Figure 5.2a reveals that the difference between the calculated values for TCPS

with and without plasticity are much less for the accelerated hyperfractionated schedule

than for the other two, indicating that the existence of plasticity does not substantially

impact the accelerated hyperfractionated schedule’s effectiveness. The same trend is also

observed for TCPS+P (Figure 5.2b).

(a) (b)

Figure 5.2: (a) TCPS and (b) TCPS+P with respect to time for standard, hyperfraction-
ated, and accelerated hyperfractionated schedules in the absence and presence of plasticity.
The initial numbers of cells are n0

S = 100 and n0
P = 100.

Figure 5.3 is the graph of (a) the probability of CSC and (b) tumor extinction with

respect to dose in the presence and absence of plasticity. The results confirm that a

larger total dose is required for CSC and tumor extinction in the presence of plasticity.

Furthermore, comparing 5.2 and 5.3 shows that although the accelerated hyperfractionated

schedule achieves a higher probability of CSC and tumor removal than the other two
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(a) (b)

Figure 5.3: (a) TCPS and (b) TCPS+P with respect to dose for standard, hyperfraction-
ated, and accelerated hyperfractionated schedules in the absence and presence of plasticity.
The initial numbers of cells are n0

S = 100 and n0
P = 100.

schedules over time, this protocol uses a larger total dose of radiation to obtain the same

TCPS and TCPS+P .

In addition, increasing the plasticity in the tumor decreases the TCPS and TCPS+P ,

implying greater challenges in controlling the disease (Figure F.1 in Appendix F). In Figures

5.4 and 5.5, TCPS and TCPS+P are graphed to explain the impact of a highly resistant CSC

subpopulation on treatment efficiency in both the presence and absence of plasticity. The

results confirm that reducing the sensitivity of CSCs to radiation yields a lower probability

of control of both the CSC subpopulation and tumor. Consequently, radiotherapy protocols

are much less efficient against highly resistant tumors than less-resistant ones (Figures 5.4

and 5.5). In particular, the performance of the accelerated hyperfractionated protocol

drops enormously. Furthermore, the probability of CSC eradication is comparatively close

for standard, hyperfractionated and accelerated hypefractionated schedules when plasticity
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does not exist in a tumor (Figure 5.4a). Consequently, increasing the number of fractions

does not improve the probability of CSC removal for extremely resistant tumors in the

absence of plasticity.

(a) (b)

Figure 5.4: (a) TCPS and (b) TCPS+P for standard, hyperfractionated, and accelerated hy-
perfractionated schedules in the absence of plasticity for different radiosensitivities among
CSCs.

It is necessary to understand that CSC removal can ultimately contribute to tumor

control when there is no plasticity in the system, although expecting this absence may not

be biologically realistic. CSC elimination is not enough to attain a cure when plasticity

exist, but is still important in decreasing the most-resistant subpopulation of cells. Conse-

quently, it is crucial to consider TCPS+P as a measure for evaluating therapeutic regimen

efficiency in the presence of plasticity, while simultaneously monitoring CSC elimination.
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(a) (b)

Figure 5.5: (a) TCPS and (b) TCPS+P for the three radiotherapy protocols in the presence
of plasticity for different radiosensitivities among CSCs. The initial numbers of cells are
n0
S = 100 and n0

P = 100.

Combination of treatments

Experimental results suggest that the fraction of CSCs increases following ionizing radia-

tion, due to the resistance of this subset of cells to the therapy (Bao et al., 2006; Lagadec

et al., 2010). This frequently results in relapse and treatment failure. In this direction,

both in vitro and in vivo experiments have shown that certain bone morphogenetic pro-

teins (BMPs) are capable of inducing positive biomarker cells (stem-like cancer cells) to

differentiate into negative biomarker cells (non-CSCs) in brain tumors (Piccirillo et al.,

2006). Consequently, applying this targeted strategy is expected to escalate the differ-

entiation of radioresistant cells into non-CSCs that are more sensitivite to radiation and

have less tumorigenic potential. Therefore, a reduction in the CSC pool can contribute to

better therapeutic outcomes. However, the plastic transition from non-CSCs to CSCs can
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reverse the process and diminish the impact of BMPs. Thus, it is of interest to investigate

the impact on TCP increasing CSC differentiation rates in the presence and absence of

plasticity, which will be discussed next.

Here, we consider three types of combination treatments over 15 days, consisting of

10 fractions of radiation (the dose of 2Gy is administered per fraction once a day) and

5 days of targeted strategy that trigger CSCs to differentiate into non-CSCs. The first

protocol includes 10 days of radiation, followed by a targeted strategy of increasing the

differentiation rate ρSP for 5 days (scheme 1). The second starts with 5 days of increasing

CSCs differentiation, followed by 10 days of radiation (scheme 2). Finally, the third involves

5 days of radiation, followed by 5 days of targeted therapy, and last, another 5 days of

radiation (scheme 3). We consider a base protocol for each of these three schedules, denoted

as schemes 1-b, 2-b, and 3-b, in which the ρSP does not change.

Figure 5.6 shows TCPS and TCPS+P for schemes 1-b, 2-b, and 3-b in the absence

and presence of plasticity. As explained in the previous section, both TCPS and TCPS+P

decrease when plasticity exists. Comparing the results for these three schedules indicates

that the minimum TCPS and TCPS+P are obtained by scheme 1-b, suggesting that a

large gap between fractionations reduces the probability of CSC and tumor removal (Solid

and dashed black curves) in the absence and presence of plasticity. In addition, scheme

3-b reports the highest TCPS+P , but this schedule does not lead to the best control of

the CSC population (solid and dashed red curves). Employing the targeted therapy in

combination with the radiotherapy (schemes 1–3) shows an improvement in TCPS and

TCPS+P for scheme 2 when plasticity does not exist, with the most increase occurring

in the former (TCPS). However, the impact of targeted therapy on schemes 1 and 3 is
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limited, with almost no increase in TCPS+P for either of the schemes (Figures 5.6a and

5.7a ). On the other hand, combining the targeted therapy with radiation in the presence

of plasticity enhances TCPS and TCPS+P somewhat for schemes 1–3, with almost no

increase in TCPS+P for scheme 1 (Figures 5.6b and 5.7b). Similar trends are also observed

when ρSP increases to 2.1. In Figure 5.7b, TCPS decreases over a short period of time

and increases after for scheme 3. This behavior occurs because reducing ρSP after 10 days

in the presence of plasticity decreases CSC elimination. Consequently, the generation of

CSCs from progenitors can reduce the probability of complete CSC removal.
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Figure 5.6: TCPS and TCPS+P for schemes 1-b, 2-b, and 3-b in the (a) absence and (b)
presence of plasticity, with initial numbers of cells n0

S = 100 and n0
P = 100.

The above results demonstrate that increasing ρSP before radiotherapy has the most

effect in improving the probability of CSC removal in the absence of plasticity. In addi-

tion, the probability of tumor control increases in this case. However, in the presence of

plasticity the tumor control is complicated, and even triggering CSCs to differentiate does
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Figure 5.7: TCPS and TCPS+P for schemes 1, 2, and 3 in the (a) absence and (b) presence
of plasticity, with initial numbers of cells n0

S = 100 and n0
P = 100. ρSP is increased to 1.4

during targeted therapy.

not enhance TCPS and TCPS+P significantly. Nevertheless, increasing CSC differentiation

before radiotherapy leads to better tumor removal control. But TCPS is still less than

the case when CSC differentiation increases after radiotherapy. In general, these outcomes

confirm that understanding the heterogeneity of tumors is important in order to develop

optimum protocols.

5.4 Conclusion

Here, we have presented a stochastic model to investigate the impact of plasticity on the

tumor control probability. The radiation induced cell kill rate has been modeled using

a step function in which the cancer cell kill rate is high during radiotherapy and lower

otherwise. Therefore, the time evolution trajectory of a hierarchical stochastic model
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consisting of CSCs and progenitors has been calculated using a modified Gillespie algorithm

for rates that are changing discontinuously. Thus, TCPS and TCS+P are defined as the

probability of removing CSCs and the probability of eliminating a tumor, respectively.

The response of cancer cells to the radiation varies among cancer cells with, CSCs showing

more resistance to the treatment. TCPS and TCPS+P have been computed for standard,

hyperfractionated, and accelerated hyperfractionated protocols. The results suggest that

TCPS and TCPS+P are reduced in the presence of plasticity under these three radiotherapy

schedules. In the presence and absence of plasticity, the best control is achieved by the

accelerated hyperfractionated regimen. The existence of plasticity between non-CSCs and

CSCs does not greatly affect TCP for the accelerated hyperfractionated protocol. However,

the effectiveness of the accelerated hyperfactionated regimen is also decreased significantly

for highly resistant tumors. The lower sensitivity to radiation among CSCs also contributes

to a lower probability of CSC and tumor removal. The results also confirm that combination

therapy can improve TCPS and TCPS+P in the absence of plasticity, with the most increase

in the former. However, combination therapy does not increase the probability of CSC and

tumor removal appreciably when plasticity exists.

The results indicate that cellular heterogeneity and the existence of plasticity in a tumor

significantly impact the efficacy of treatment. Thus, it is important to consider this cellular

diversity when determining an appropriate treatment protocol.
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Chapter 6

The impact of plasticity and negative

feedback regulation on sphere

formation ability

CSCs are at the apex of a cancer cellular hierarchy and possess high tumorigenic potential

to reproduce themselves and their progeny which form the bulk of a tumor. Moreover, it

has been suggested that this hierarchical structure is not unidirectional; there is degree

of plasticity between CSCs and progenitor cells. The presence of tissue homeostasis is

maintained through cellular mechanisms and regulatory feedback, whose inhibition may

lead to tumor growth. For example, several mathematical studies have suggested that

disruption of the negative feedback controlling CSC proliferation and dedifferentiation

rates can lead to tumor growth in a large cellular population. In this chapter, we apply the
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Gillespie algorithm to investigate the effect of negative regulatory feedback on the ability

of a single CSC to form a sphere. The results suggest that both sphere formation efficiency

(SFE) and average sphere size (AVSS) decrease when CSC division and the process of

dedifferentiation are regulated by negative feedback.

94



6.1 Introduction

In healthy tissue, stem cells have the ability to undergo protracted selfrenewal, and to

generate progenitors with limited proliferation potential that finally produce terminally

differentiated cells. Therefore, the maintenance of tissue homeostasis is governed by the

regulatory mechanisms of positive and negative feedback loops that are properly governed

based on tissue requirements. For example, the regulatory feedback that prevents CSC

symmetric and asymmetric division is crucial to maintaining tissue homeostasis (Biteau et

al., 2011; Rodriguez-Brenes et al., 2011; Watt & Hogan., 2000).

Based on the CSC hypothesis, tumors also consist of a hierarchal structure in which

CSCs are capable of reproducing themselves, progenitors, and other cell lineages, resulting

in tumorigenesis. Recent evidence suggests that sometimes non-CSCs behave like CSCs,

implying a degree of plasticity among tumor cells (Cabrera et al., 2015; Gupta et al.,

2011; Hanahan & Weinberg, 2011; Kreso & Dick, 2014; Marjanovic et al., 2013a,b). In

addition, it has been proposed that escaping from feedback loops plays an important role

in the process of carcinogenesis (Vogelstein et al., 2004; Wodarz, 2018). For example, in

healthy tissues, the high number of differentiated cells keeps the process of plasticity under

control, and dedifferentiation can occur in cases of injury and tissue damages (Stange et

al., 2013; Yanger & Stanger, 2014). Consequently, disruption of the negative feedback

that controls plasticity can lead to an increased number of CSCs with high tumorigenic

potential. Therefore, it is clearly of interest and importance to investigate the impact of

plasticity on tissue homeostasis.

Several mathematical models have been developed based on the CSC hypothesis, to
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explore and develop an understanding of multiple different important factors driving the

process of tumorigenesis, therapeutic resistance, and treatment optimization (Anderson

& Quaranta, 2008; Enderling & Hahnfeldt, 2011; Forouzannia & Sivaloganathan, 2017;

Werner et al., 2016). In addition, the impact of plasticity on cancer progression and ther-

apeutic outcomes has also been investigated in the literature recently (Forouzannia et al.,

2018; Jilkine & Gutenkunst, 2014; Mahdipour et al., 2017; Tonekaboni et al., 2017). There

is also work on the effects of negative feedback on CSC differentiation and dedifferentia-

tion in a large population of cells in the literature (Rodriguez-Brenes et al., 2011; Wodarz,

2018). However, negative feedback has not been investigated in a stochastic context. In

this chapter, we explore the impact of negative feedback regulators that progenitors secrete

during CSC division and the negative feedback that CSCs trigger during in the process of

plasticity for a small number of cells. For this purpose, a stochastic Gillespie algorithm is

applied to study the negative feedback regulation on the ability of a single cell to generate

a sphere.

6.2 Method and discussion

We consider a simple mathematical model that describes the dynamics of tumor tissues,

composed of a hierarchical population of cells. The model is constructed by splitting the to-

tal cancer cell population into sub populations of cancer stem cells (CSCs) and progenitors.

CSCs (S) proliferate at a rate ρS and undergo symmetric and asymmetric selfrenewal with

probabilities r1 and r2, respectively. CSCs also generate two progenitor cells (symmetric

commitments), with a probability of r3, and so r1 + r2 + r3 = 1. Furthermore, progenitors

96



are capable of switching phenotypically into CSCs at a rate ρPS. It is also assumed that

progenitors can die at rate ΓP , but CSCs are considered not to go through apoptosis due

to their prolonged survival potential. Therefore, the dynamics of the cancer cells can be

mathematically represented by the following division pathways.

S → S + S : ρSr1,

S → S + P : ρSr2,

S → P + P : ρSr3,

P → S : ρPS,

P → 0 : ΓP ,

(6.1)

In addition, the dynamics of stem cells and progenitors are governed by the following

differential equations for large numbers of cells.

dS

dt
= ρS(r1 − r3)S + ρPSP

dP

dt
= ρS(r2 + 2r3)S − (ρPS + ΓP )P.

(6.2)

The model can be reduced to the one discussed in (Wodarz, 2018), by assuming r2 = 0, and

so r3 = 1 − r1. It has been suggested that progenitors imply a hidden negative feedback,

in which increasing the number of progenitors decreases the proliferation rate of CSCs

(Rodriguez-Brenes et al., 2011; Wodarz, 2018). To incorporate this effect, r1 is replaced

by r1 = r1
1+h1Pk1

and ρS is replaced by ρS = ρS
1+h2Pk2

with the positive constants h1, h2, k1,

and k2.

Clearly, in the absence of plasticity, ρPS = 0, and when there is no feedback in the sys-
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tem, the solutions become extinct for r1 < 0.5, undergo exponential growth for r1 > 0.5,

and converge to equilibrium (tissue homeostasis) for r1 = 0.5. The results show that tissue

homeostasis occurs when r1 > 0.5 if progenitors secrete negative feedback regulators that

impact the CSC division rate and the probability of CSC symmetric division. In addi-

tion, in the presence of plasticity when there is no feedback in the system, the population

grows when r1 > (ΓP − ρPS)/2ΓP , which implies the presence of a population for r1 > 0 if

the dedifferentiation rate is greater than the death rate for progenitors (ρPS > ΓP ). The

number of cells converges to equilibrium if r1 and ρS are subject to negative feedback and

ρPS < ΓP . However, if ρPS > ΓP , the population grows even in the presence of nega-

tive feedback regulators affecting CSC proliferation. On the other hand, if increasing the

CSC population decreases the number of progenitors through negative feedback regulation

(ρPS = ρPS
1+h3Sk3

), tissue homeostasis is possible even when ρPS > ΓP . In this direction

the results also confirm that if ρPS < ΓP and r1 < 0.5, negative feedbacks regulators in

both CSCs division and plasticity need to be removed for the population to grow (Wodarz,

2018). It also can be observed that if only r1 > 0.5, the negative feedback on CSC prolif-

eration is necessary for tissue maintenance, but if only ρPS > ΓP , the negative feedback

on the plasticity rate is crucial for tissue homeostasis.

In the next section, employing a Gillespie algorithm we explore the impact of negative

feedback regulation on a small number of such populations.
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6.2.1 Negative feedback impacts on sphere forming efficiency

Sphere forming efficiency is a measurement used to evaluate the ability of stem cells or early

progenitor cells to form a sphere. The related experimental protocols are usually designed

based on the purpose of the study, but nearly all these protocols start with seeding cells in a

well such that they are properly dispersed and then allowing them to grow. These cultured

cells are considered to be a sphere when they reach a certain size. Here, we investigate the

impact of negative feedback on sphere formation efficiency and on the average sphere size,

both in the presence and absence of plasticity.

As discussed above, the sphere formation experiment monitors the cell proliferation ca-

pacity by harvesting single cells. Thus, because stochastic simulations are well established

approaches to studying the evolution of small populations, the Gillespie algorithm is used

to simulate the ability of a single CSC to form a sphere. Initially, the simulation considers

cellular pathway 6.1 with no plasticity (ρPS = 0). The procedure is initiated by choosing

the number of single CSCs that are seeded in a well, and so the initial condition is S0 = 1

and P0 = 0. These single CSCs are allowed to grow for 10 days, and are said to have

generated a sphere if the total number of cells produced from each of these single cells hits

set goal of 50 plus cells. Therefore, the sphere formation efficiency is defined as the fraction

of the number of single stem cells that are able to form a sphere, and the average sphere

size equals the total number of cells divided by the total number of single stem cells that

reach 50 and above. The SFE and AVSS for different possible cases of negative feedback

are reported in Table 6.1.

The results (Table 6.1) confirm that the ability of a single CSC to form a sphere and the

99



average sphere size are reduced when the division rate ρS is subject to negative feedback.

Changing either r1 or r2 by r1 = r1
1+g2Pn2

or r2 = r2
1+g3Pn3

also results in a decrease of SFE

and AVSS. However, the SFE and AVSS slightly increase if progenitors secret factors that

reduce a negative feedback affecting the symmetric commitment rate r3. The reduction

in r3, in which one CSC is replaced with two progenitors, leads to a reduction in the

population of CSCs. Consequently, it can be observed that a lower r3 rate results in less

CSC death, showing the importance of CSCs in sphere formation. Furthermore, replacing

both ρS and r3 with ρS=
ρS

1+g1P
n1

and r3 = r3
1+g4Pn4

reduces SFE and AVSS.

No plasticity
conditions SFE AVSS
No feed back 0.11 73.17
ρS = ρS

1+g1Pn1
(g1 = 0.01, n1 = 1) 0.06 63.62

ρS = ρS
1+g1Pn1

(g1 = 0.02, n1 = 1) 0.034 59.9

ρS = ρS
1+g1Pn1

(g1 = 0.03, n1 = 1) 0.02 57.69

r1 = r1
1+g2Pn2

(g2 = 0.01, n2 = 1) 0.07 65.63

r1 = r1
1+g2Pn2

(g2 = 0.02, n2 = 1) 0.05 62.32

r1 = r1
1+g2Pn2

(g2 = 0.03, n2 = 1) 0.03 60.14

r2 = r2
1+g3Pn3

(g3 = 0.01, n3 = 1) 0.09 69.19

r2 = r2
1+g3Pn3

(g3 = 0.02, n3 = 1) 0.08 67.24

r2 = r2
1+g3Pn3

(g3 = 0.03, n3 = 1) 0.07 66.13

r3 = r3
1+g4Pn4

(g4 = 0.01, n4 = 1) 0.11 74.59

r3 = r3
1+g4Pn4

(g4 = 0.02, n4 = 1) 0.12 75.43

r3 = r3
1+g4Pn4

(g4 = 0.03, n4 = 1) 0.12 75.98

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.01, n1 = n4 = 1) 0.06 64.30

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.02, n1 = n4 = 1) 0.039 60.45

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.03, n1 = n4 = 1) 0.024 58.26

Table 6.1: The sphere formation efficiency and average sphere size in the absence of plas-
ticity when ρS = 0.9, r1 = 0.3, r2 = 0.6, r3 = 0.1, and ΓP = 0.1
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Plasticity

conditions SFE AVSS

No feed back 0.22 82.59

ρS = ρS
1+g1Pn1

(g1 = 0.01, n1 = 1) 0.15 68.9

ρS = ρS
1+g1Pn1

(g1 = 0.02, n1 = 1) 0.1 63.6

ρS = ρS
1+g1Pn1

(g1 = 0.03, n1 = 1) 0.07 60.55

r1 = r1
1+g2Pn2

(g2 = 0.01, n2 = 1) 0.18 72.55

r1 = r1
1+g2Pn2

(g2 = 0.02, n2 = 1) 0.14 68.09

r1 = r1
1+g2Pn2

(g2 = 0.03, n2 = 1) 0.11 65.39

r2 = r2
1+g3Pn3

(g3 = 0.01, n3 = 1) 0.19 76.14

r2 = r2
1+g3Pn3

(g3 = 0.02, n3 = 1) 0.17 73.13

r2 = r2
1+g3Pn3

(g3 = 0.03, n3 = 1) 0.15 71.41

r3 = r3
1+g4Pn4

(g4 = 0.01, n4 = 1) 0.23 83.96

r3 = r3
1+g4Pn4

(g4 = 0.02, n4 = 1) 0.23 84.85

r3 = r3
1+g4Pn4

(g4 = 0.03, n4 = 1) 0.24 85.57

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.01, n1 = n4 = 1) 0.16 69.55

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.02, n1 = n4 = 1) 0.11 64.25

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.03, n1 = n4 = 1) 0.08 61.29

ρPS = ρPS
1+g5Pn5

(g5 = 0.01, n5 = 1) 0.22 80.93

ρPS = ρPS
1+g5Pn5

(g5 = 0.02, n5 = 1) 0.21 79.95

ρPS = ρPS
1+g5Pn5

(g5 = 0.03, n5 = 1) 0.21 79.1

Table 6.2: The sphere formation efficiency and average sphere size in the presence of
plasticity when ρS = 0.9, r1 = 0.3, r2 = 0.6, r3 = 0.1, ρPS = 0.05 and ΓP = 0.1
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Plasticity

conditions SFE AVSS

No feed back 0.34 93.62

ρS = ρS
1+g1Pn1

(g1 = 0.01, n1 = 1) 0.26 74.98

ρS = ρS
1+g1Pn1

(g1 = 0.02, n1 = 1) 0.2 67.89

ρS = ρS
1+g1Pn1

(g1 = 0.03, n1 = 1) 0.14 64.05

r1 = r1
1+g2Pn2

(g2 = 0.01, n2 = 1) 0.3 80.7

r1 = r1
1+g2Pn2

(g2 = 0.02, n2 = 1) 0.26 74.72

r1 = r1
1+g2Pn2

(g2 = 0.03, n2 = 1) 0.22 71.26

r2 = r2
1+g3Pn3

(g3 = 0.01, n3 = 1) 0.31 84.03

r2 = r2
1+g3Pn3

(g3 = 0.02, n3 = 1) 0.29 80.02

r2 = r2
1+g3Pn3

(g3 = 0.03, n3 = 1) 0.26 77.33

r3 = r3
1+g4Pn4

(g4 = 0.01, n4 = 1) 0.35 94.87

r3 = r3
1+g4Pn4

(g4 = 0.02, n4 = 1) 0.35 95.57

r3 = r3
1+g4Pn4

(g4 = 0.03, n4 = 1) 0.36 96.3

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.01, n1 = n4 = 1) 0.27 75.63

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.02, n1 = n4 = 1) 0.21 68.73

ρS = ρS
1+g1Pn1

and r3 = r3
1+g4Pn4

(g1 = g4 = 0.03, n1 = n4 = 1) 0.16 64.7

ρPS = ρPS
1+g5Pn5

(g5 = 0.01, n5 = 1) 0.33 89.94

ρPS = ρPS
1+g5Pn5

(g5 = 0.02, n5 = 1) 0.32 87.43

ρPS = ρPS
1+g5Pn5

(g5 = 0.03, n5 = 1) 0.32 85.56

Table 6.3: The sphere formation efficiency and average sphere size in the presence of
plasticity when ρS = 0.9, r1 = 0.3, r2 = 0.6, r3 = 0.1, ρPS = 0.1 and ΓP = 0.1
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The results in Tables 6.2 and 6.3 show an increase in both the SFE and AVSS in the

presence of plasticity. Here, similar to the case with no plasticity, the negative feedback

on each of ρS, r1, and r2 leads to a reduction in SFE and AVSS. The SFE and AVSS are

slightly increased if negative feedback is applied to the symmetric commitment rate r3. In

addition, the impact of negative feedback regulators secreted from CSCs, which reduces

the dedifferentiation rate ρPS, is studied, showing minor reductions in SFE and AVSS. The

error for SFE and AVSS are σSFE = 0.00058 and σAV SS = 0.14, respectively, when there

is no plasticity and feedback in the system. The error corresponding to the other cases is

also similar.

6.3 Conclusion

In this chapter we have investigated how negative feedback controlling CSC proliferation

and plasticity affects the ability of a single cell to form a sphere. To do so, the trajectories

of cell numbers undergoing different cellular proliferation pathways have been calculated

using a Gillespie algorithm. Previous studies have shown that such negative feedback on

CSC division and dedifferentiation has an important role in the maintenance of tissue

homeostasis in large cell populations. The results in this chapter show a decrease in sphere

formation capacity and average sphere size when CSC division and dedifferentiation are

subject to negative feedback. The SFE and AVSS are increased if the probability of the

symmetric commitment division pathway in which a single CSC generates progenitors

undergoes negative feedback. Consequently, the increasing number of progenitors in the

tumor reduces the rate of symmetric commitments, corresponding to lower CSC death,
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underlying the importance of CSCs in SFE and AVSS. In addition, the results show that

SFE and AVSS increase slightly if cells escape negative feedback through dedifferentiation.
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Chapter 7

Conclusion

7.1 Concluding remarks

This thesis has introduced mathematical models developed to study the impact of tu-

mor heterogeneity and microenvironmental changes on the performance of radiotherapy

schedules. In this direction, Chapter 1 introduced the necessary background on tumor het-

erogeneity and tumor microenvironments as well as the underlying mechanisms explaining

radiation induced cell kill. Chapter 2 reviewed the role of the CSCs in therapeutic resis-

tance and new treatment approaches, and Chapter 3 presented a deterministic model for

exploring the effect of radiotherapy on the resistant subpopulation of cells. In Chapters

4 and 5, stochastic models have been developed to study the impact of random birth and

death rates, and plasticity on tumor control probability. In addition, the effect of negative

regulatory feedback on sphere formation efficiency and average sphere size were explored
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in Chapter 6.

In Chapter 2, we comprehensively reviewed mathematical models that probe the impact

of CSCs on therapeutic approaches. CSCs benefit from the development of upregulated

DNA repair mechanisms and underlying cellular pathways that support CSCs resulting

in the emergence of resistance to therapeutic kill agents. Furthermore, this resistant sub-

population is potentially tumorigenic, which enables them to regrow and lead to relapse.

Mathematical modeling is a useful approach for understanding these complicated biological

mechanisms grounded on valid experimental observations on a par with other experimental

techniques. In this direction, we also discussed mathematical models exploring various

CSC properties, and their role in developing new treatment strategies targeting CSCs, and

optimizing treatment outcomes. Cancer biology is extremely complex with many unknown

parameters that need to be identified and understood. Mathematical and computational

approaches can be applied to find the most important parameters and mechanisms using

experimental results. In addition, they can suggest new experimental studies that may

explain related biological questions, ultimately resulting in therapeutic improvements.

In Chapter 3, a simple mathematical model has been presented to study the impact

of radiotherapy on tumor heterogeneity. According to the numerical results, fractionated

radiotherapy can increase the fraction of CSCs and change the cellular diversity of tumors.

Most proposed radiotherapy regimens aim to reduce tumor bulk. However, our results

suggest that the impact of radiotherapy schedules on the population of CSCs needs to

be well understood since the enrichment of CSCs after treatment, can lead to relapse.

Thus, in addition to decreasing tumor size, optimal radiotherapy protocols should control

the CSC population and inhibit the increase of this resistant subpopulation of cells. The
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results suggest that the standard schedule is not the best treatment protocol, and highlights

the need to improve this conventional approach. The optimum regimen for PDGF-driven

glioblastoma suggested in the literature is not validated by our model, which has been

parametrized using breast cancer data. This observation indicates that optimization may

be affected by model design and model dependent parameters. Furthermore, due to the

biological diversity among different cancer types (and even for the same cancer type in

different patients), there may not exist one general optimum schedule that leads to the

best outcomes for all cancers. Consequently, devising personalized therapeutic approaches

would be the preferable route, but can not currently be accomplished on a large scale.

Thus, further work towards reaching this goal is of critical importance.

In Chapter 4, we have investigated the impact of random microenvironmental changes

on tumor control probability by applying stochastic models. In this direction, the effect

of random parameter changes was described using step functions. A modified Gillespie

algorithm for discontinuous changes was therefore applied to calculate TCP. Tumor control

probability was calculated for demographic rates randomly altered over time. An increase

in standard deviation (σ) initially leads to a corresponding increase in TCP. However, TCP

diminishes overtime if it does not saturate to 1, degrading the efficiency of the radiotherapy.

Furthermore, the effectiveness of radiotherapy protocols change significantly when birth

and death rates are anticorrelated and modified arbitrarily.

In Chapter 5 the effect of plasticity on TCP is explored. To do so, a stochastic model

consisting of a population of CSCs and progenitors was considered, in which cell kill rates

due to radiation are described using a step function to account for the higher kill rate

during fractionation. Using a modified Gillespie algorithm, TCPS and TCPS+P , which
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are, respectively, the probability of CSC elimination and tumor removal were computed to

explore the performance of standard, hyperfractionated, and accelerated hyperfractionated

protocols. The results confirm a reduction in both the TCPS and TCPS+P in the pres-

ence of plasticity. In addition, an accelerated hyperfractionated schedule results in better

control than the standard and hyperfractionated regimens, with or without plasticity. It

was also observed that the existence of plasticity does not impact the accelerated hyper-

fractionated protocol’s efficiency significantly. However, both TCPS and TCPS+P drop

noticeably for the accelerated hyperfractionated protocol in the case of highly resistant

tumors. The impact of plasticity on combination therapy that includes targeted therapy

triggering CSCs differentiation and radiotherapy has also been studied. The results show

that the probability of CSC and tumor removal is not enhanced greatly in the presence of

plasticity.

In Chapter 6, both the sphere formation efficiency and average sphere size are stud-

ied for a system of cellular pathways, subjected to regulatory negative feedback on CSC

proliferation and plasticity. A Gillespie algorithm has been used to study the trajectory

of cell numbers under negative regulatory feedback. The sphere formation efficacy (SFE)

and average sphere size (AVSS) decrease when CSC division and dedifferentiation are reg-

ulated through negative feedback. However, if the probability of symmetric commitment is

subject to negative feedback, both the SFE and AVSS are increased, due to the reduction

in CSC death. Furthermore, SFE and AVSS are decreased when the rate of plasticity is

controlled through negative feedback, and so inhibition of this feedback enhances sphere

formation capacity.

In summary, in this thesis, the effect of both cellular heterogeneity and microenviron-
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mental fluctuations on radiotherapy protocols have been investigated. The question of

how regulatory feedback on cellular division pathways affects sphere formation capacity

was also explored. The results show that increasing fractionation in radiotherapy proto-

cols modifies the heterogeneity of tumors. In addition, the existence of plasticity, which

allows transition between CSC and non-CSC compartments, reduces the efficiency of ra-

diotherapy protocols as well as of combination therapy (targeted therapy increases CSC

differentiation and radiotherapy). The random fluctuations of cellular demographic factors

have also been shown to influence the tumor control probability. Finally, the results con-

firm that avoiding the effects of the regulatory negative feedback controlling CSC division

and dedifferentiation rates, increases the ability of a single CSC to form a sphere.

7.2 Future work

This section describes a future avenue for the author’s research. This future work will

tackle some of the prospective points of the current work as well as an ongoing project

on second cancer risk estimation. Overall, the main areas for potential future work are as

follows.

7.2.1 Prospective future work

The impact of radiotherapy on tumor heterogeneity, investigated in Chapter 3, assumed

different radiosensitivities among cancer cells as well as dose dependent transition rates

from the repair phase to the active non repairing population. The model can be extended
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to consider more biological determinants, such as an increase in the selfrenewal ability of

the resistant cells after exposure to radiation. It would also be useful to calibrate the

model for other types of cancers so as to explore the alterations in cellular heterogeneity

due to fractionated radiotherapy for various cancers with different characteristic behav-

iors. Furthermore, the model can be extended to study the impact of immunotherapy on

radiotherapy performance.

The effects of both plasticity and random fluctuations on demographic factors and

ultimately on the TCP have also been studied. These works has been described in Chapters

4 and 5. The impact of arbitrary changes on tumor control probability has been investigated

for a single-cell-type population. This simple model can be extended, based on the CSC

hypothesis, to a hierarchical model consisting of CSCs and progenitors. The initial results

show the role of random alterations in birth and death rates for a two compartment model

on the TCPS has the same impact as that reported in Chapter 4. It would be useful and

interesting to understand the impact of these changes on the TCPS+P . In addition, the

existence of plasticity among cancer cells results in an increase in the number of resistant

cells in tumors. Thus, the effect of random changes in transition rates from non-CSCs to

CSC states on the overall TCP merits further exploration. It might also be worthwhile

to explore the impact of random spatial changes on the hypoxic and normoxic regions of

tumors.

The impact of negative regulatory feedback on the sphere formation capacity of a single

CSC was considered in Chapter 6. Extending the model to include mature cells would

facilitate studying the changes that occur in SFE and AVSS due to the negative feedback

secreted from mature cells and controlling CSC and progenitor division. Moreover, it is
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important to investigate the sphere formation potential of a single CSC when mature cells

escape from the negative feedback control that regulates the plasticity rate between either

mature cells and progenitors or mature cells and CSCs.

7.2.2 Second cancers

Fractionated radiotherapy uses high doses of radiation to destroy cancer cells. It is an

important part of cancer treatment and may contribute to an increase in the number of

survivors; however, it is a double-edged sword and this regimen can cause complications.

For instance, second cancers are among the possible late side effects of radiotherapy and

can arise in organs nearby the original tumor. Developing a second cancer as a result of

this treatment is an increasing concern, especially among younger survivors. Therefore,

it is clearly of importance to study the risks of second cancers in patients treated with

radiotherapy. A comprehensive study on atomic bomb survivors approximately correlated

the cancer risk from exposure to intermediate doses of radiation; however, there is not much

understanding of the effects of higher doses. The latency period between radiotherapy and

the evolution of second cancers is long, so it takes significant time to monitor survivors

carefully and also to provide good epidemiological data in order to explore new treatment

regimens. These difficulties highlight the importance of model-based predictions.

A cascade of complicated biological mechanisms underlie the initiation and growth

a second cancer in an organ. These underlying processes make it hard to introduce a

practical measure for estimating the cancer risk. Therefore, applying a well defined and

quantitative approach that accurately measures the cancer risk is crucial and necessary.
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The year-specific excessive relative radiation risk (ERR) is a quantity that estimates by

how much the risk for people who received radiotherapy exceeds the risk of non-exposed

people over a specific period of time (Angell et al., 2009). The ERR is mathematically

calculated for intermediate and high doses of radiation, and shows that the second cancer

risk increases for patients treated for Hodgkin’s lymphoma (Sachs et al., 2005). This model

is implemented based on clonal evolution theory, and all the cancerous cells are assumed

to be able to proliferate equally. It would be interesting to extend the model based on the

CSC hypothesis and the existence of heterogeneity among cancer cells, so as to account for

their differences in proliferation potentials and DNA repair mechanisms.

In addition, the dose-volume data, which shows the relation between radiation dose

and tissue volume, is available experimentally and reported as a dose-volume-histogram

(DVH). Hence, the organ specific ERR can also be evaluated by applying the data to the

model (Hodgson, 2007; Zhang et al., 2015). However, a dose volume histogram does not

provide enough information about the distribution of the dose in the tissue. Consequently,

further work is needed to understand the effects of various cases of dose absorption in the

tissue. Such work would assess the organ specific ERR for the same dose volume histogram

data and so determine the effects of different dose distributions.
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Appendix A

Supplementary Figures
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Figure A.1: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in Table 3.5 when approximately 40% of cells
undergo repair mechanisms.
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Figure A.2: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in Table 3.5 when approximately 80% of cells
undergo repair mechanisms.
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Figure A.3: The number of cancer cells NS + NP for the Accelerated hyperfractionated
and the Hypofractionated protocols when the function g(d) is assumed to be proportional
to the inverse square of dose, inverse of dose, and a constant value 1.
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Figure A.4: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in Table 3.5 when function g(d) is assumed
to be proportional to the inverse of dose.
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Figure A.5: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in Table 3.5 when function g(d) is assumed
to be proportional to a constant value 1.
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Figure A.6: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in START trials when approximately 40% of
cells undergo repair mechanisms.
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Figure A.7: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in START trials when function g(d) is assumed
to be proportional to the inverse of dose.
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Figure A.8: The number of cancer cells NS+NP and the fraction of resistant cells NS/(NS+
NP ) for the radiotherapy schedules reported in START trials when function g(d) is assumed
to be proportional to a constant value 1.

Figure A.9: The number of cancer cells NS + NP for the 50 Gy, 25 fractions (START A,
B) and the 40 Gy, 15 fractions (START B) protocols when the function g(d) is assumed
to be proportional to the inverse square of dose, inverse of dose, and a constant value 1.
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Appendix B

Supplementary information

The extinction probability at time t, can be defined as TCP(t) = U(0, t). Assuming

U(z(τ), t(τ)) is constant along the characteristic curve C : [z(τ), t(τ)], we obtain the fol-

lowing ordinary differential equation

dz

dt
= −(z − 1)((z − 1)ρ(t) + β(t)) = 0. (B.1)

Considering the initial condition t(0) = 0, U(z(τ), t(τ)) = U(z(0), 0) along the charac-

teristic curve. The final purpose of radiotherapy is to achieve zero cells remaining in the

system at some time t = t∗. As a result, to compute TCP at time t = t∗, the characteristic

curve z(t∗) = 0 should be considered. Thus, TCP(t∗) = U(z(0), 0) in which z(0) is deter-

mined solving differential equation B.1 with the final value condition z(t∗) = 0. Taking

t → t∗ − t changes the final value problem into an initial value problem. Finally, TCP(t)

is obtained by solving the ordinary differential equation B.1 and substituting the solution
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into the initial condition of PDE 4.2 (U(z, 0) = zn0).
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Appendix C

Gillespie algorithm

The time evolution of chemical systems can be studied using both deterministic and

stochastic approaches. Deterministic models describe the behavior of the system using

differential equations, but for small populations or in the presence of randomness, stochas-

tic models can provide a better description of the evolution of species using a master

equation (Erban et al., 2007). Although solving master equations is often challenging,

stochastic formulations can be solved numerically using the Gillespie algorithm.

The Gillespie algorithm is a Monte Carlo type method that samples from a probability

distribution that captures the underlying mechanisms governed by the master equation.

Consider a system of N molecular species {S1, ..., SN} in a well-mixed population that

undergoes M reactions {R1, ..., RN}. The purpose of the algorithm is to find the state

vector X(t) = [ X1(t), ..., XN(t)] given the initial condition X(t0) = x0, where Xi(t)

denotes the population size of species i at time t. The number of any particular species
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varies when they go through any of the reactions Rj, j = 1, ...,M , which are defined by a

state change vector vj = (vij, ..., vNj) (vij is the change in the number of molecular type Si

induced by an event Rj) and the propensity function aj(x). Morover, aj(x)dt represents

the probability of the reaction Rj being initiated in the time interval [ t, t + dt), given

X(t) = x.

Assuming that all the reactions are separated events, the main strategy in this simula-

tion method is to generate the trajectory of X(t) starting from an initial state X(t0) = x0

by repeatedly finding the next time step τ and the next reaction µ (Cao et al., 2004; Gille-

spie, 2007). These two quantities are randomly determined following the distributions of

the next time step τ and the next reaction µ.

Let p(τ = s) denote the probability density that one of the reactions Rj, j = 1, ...,M

occurs in an interval (t + s, t + s + ds). Thus, p(τ = s) = p0(s)a0(x), where p0(s) is the

probability of having no reaction during (t, t+ s), and a0(x) displays the probability that

one of the possible M reactions fires at (t+ s, t+ s+ ds) with a0(x) =
M∑
j=1

aj(x). It can be

shown that p0(s) = exp(−a0(x)s), which indicates that the next time step τ given X(t) = x

is chosen from the exponential distribution p(τ = s) = a0(x) exp(−a0(x)s) with mean 1
a0(x)

(Cao et al., 2004; Gillespie, 2007). The next reaction µ is also selected randomly with

probability p(µ = j) =
aj(x)

a0(x)
.

One basic formulation of the Gillespie algorithm is the direct method, which generates

two random numbers r1 and r2 from the uniform distribution U(0, 1). In this framework,

the next time t+ τ is estimated according to
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τ =
1

a0(x)
ln(

1

r1

). (C.1)

Moreover, the next reaction µ is represented by the smallest integers satisfying the inequal-

ity:

µ∑
j=1

aj(t) > r2a0(t). (C.2)

Thus, the number of species at each time step X(t) is calculated by applying the following

stochastic algorithm.

• Let t = 0 and X(0) = x0 (initialization)

• Evaluate propensity functions aj(x) and a0(x) at state X(t).

• Calculate τ and µ by generating random numbers r1 and r2 from the unit interval

uniform distribution and employing equations C.1 and C.2.

• Update time t← t+ τ and the status of species X ← X + νµ.

• Go to the second step or end the simulation.

The direct method has been improved and modified into other formulations (Cao et

al., 2004; Gillespie, 2007; Lu et al., 2004). One alternative to the direct method is the first

reaction method, which generates values of τ and µ differently. In this approach, a τj is

computed for each reaction Rj following
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τj =
1

aj(x)
ln(

1

rj
) (j = 1, ...,M), (C.3)

where r1,...,rM are M arbitrary numbers produced from the uniform distribution U(0, 1).

Consequently, the next time step is given as

τ = min{τ1, ..., τM}, (C.4)

and the next reaction µ corresponds to the index of the selected τj, j = 1, ...,M . Thus,

µ = the index related to the min{τ1, ..., τM}. (C.5)

Accordingly, the first reaction method algorithm is designed by changing the second and

third steps in the direct method approach as below

• Calculate propensity functions aj(x) at state X(t).

• Evaluate τj for each reaction using equation C.3 by generating r1, ..., rM random

number from the uniform distribution U(0, 1).

• Compute τ and µ applying derivations C.4 and C.5.

The two procedures discussed above are valid for time independent propensity func-

tions aj(x), j = 1, ...,M . However, the propensity functions can change continuously and

discontinuously over time to account for extrinsic and intrinsic fluctuations in the system.
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In this direction, Shahrezaei et al. (2008) developed a modified version of the Gillespie al-

gorithm to take into account time varying discontinuous propensity functions. Therefore,

assuming a discontinuous propensity function a(t) as below

a(t) =


a < (t) for t < t0,

a > (t) for t > t0,

the simulation time t is set to t0 if the next reaction time τ or the current time is larger

than t0 and a(t) is changed respectively. Hence, the algorithm is given by:

• Let t = 0 and X(0) = x0 (initialization)

• Calculate propensity functions aj(x) at state X(t).

• Evaluate τj for each reaction using equation C.3 by generating r1, ..., rM random

number from the uniform distribution U(0, 1).

• Compute µ applying equation C.5.

• If t + τµ < t0, update time t ← t + τµ and the status of species X ← X + νµ. If

t+ τµ > t0, change the propensity function a(t) and set t = t0.

• Go to the second step or end the simulation.

The direct method and the extended Gillespie algorithm for discontinuous reaction

rates are applied in Chapters 3 and 4 respectively.
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Appendix D

Supplementary Figures

Figure D.1: The tumor control probability when death rate is switching randomly, with
Γ = 1, ρ = 0.5, n0 = 50, and standard deviation σ = 0.3 for different switching rates.
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Figure D.2: Tumor control probability when death rate is switching randomly, with average
Γ = 1, ρ = 0.5, n0 = 50, and different standard deviations for switching rates ν = 0.02 and
ν = 0.2.

Figure D.3: The average extinction tome and extinction time distribution when Γ = 1,
n0 = 50, ρ = 1, and different standard deviations for switching rates ν = 0.02.
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Figure D.4: The average and variance of cell numbers with n0 = 50, Γ = 1, ρ = 0.5, and
different standard deviations for switching rate ν = 0.02.

Figure D.5: Tumor control probability obtained from analytical solution with Γ = 1,
ρ = 0.5, σ = 0.4, and n0 = 50.
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Figure D.6: The average and variance of cell numbers with n0 = 50, ρ = 0.5, Γ = 1, and
different standard deviations for switching rate ν = 0.02.

Figure D.7: The average and variance of cell numbers with n0 = 10, Γ = 0.5, ρ = 0.5, and
different standard deviations for switching rate ν = 0.02.
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Figure D.8: The average and variance of cell numbers with n0 = 10, Γ = 0.5, ρ = 0.5, and
different standard deviations for switching rate ν = 0.02.

Figure D.9: The average and variance of cell numbers with n0 = 10, Γ = 0.5, ρ = 0.5, and
different standard deviations for switching rate ν = 0.02.
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Figure D.10: Extinction probability obtained from analytical solution with ρ = 0.5, Γ =
0.5, σ = 0.2, and n0 = 10.

Figure D.11: Extinction probability obtained from analytical solution with ρ = 0.7, Γ =
0.5, σ = 0.4, and n0 = 10.

154



Appendix E

Supplementary information

The stochastic dynamic of model 5.1 in the absence of plasticity (i.e. ρPS = 0) can

be explained using the following master equation showing the probability of having a

population of nS stem cells and nP progenitors with the initial number of cells nS0 and

nP0 at time t0.

dpnS ,nP (t)

dt
= ρS(nS − 1)pnS−1,nP (t)− ρSnSpnS ,nP (t) + ρSP (nS + 1)pnS+1,nP−1(t)

− ρSPnSpnS ,nP (t) + ρP (nP − 1)pnS ,nP−1(t)− ρPnPpnS ,nP (t) + ΓS(t)(nS + 1)pnS+1,nP (t)

− ΓS(t)nSpnS ,nP (t) + ΓP (t)(nP + 1)pnS ,nP (t)− ΓP (t)nPpnS ,nP (t).

(E.1)

The initial condition is given next with δi,j representing the Kronecker delta function:

pnS ,nP (t0) = δnSnS0δnPnP0
. (E.2)
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Using the probability distribution function introduced above, we can define the marginal

probability distribution of the number of CSCs as

unS(t) =
∑
nP

pnS ,nP (t),

with the following master equation

dunS(t)

dt
= unS−1ρS(nS − 1)− (ρS + ρSP + ΓS(t))nSunS + unS+1(ρSP + ΓS(t))(nS + 1).

(E.3)
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Appendix F

Supplementary Figures

(a)
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Figure F.1: (a) TCPS and (b) TCPS+P for standard, hyperfractionated, and accelerated
hyperfractionated schedules with different dedifferentiation rates ρPS, between non-CSCs
and CSCs. The initial numbers of cells are n0

S = 100 and n0
P = 100.
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