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ABSTRACT 

The presence of pharmaceutical and personal care products (PPCPs) in aquatic systems has been 

a growing cause for concern.  Advanced oxidation processes such as UV/TiO2 (ultraviolet light/ Titanium 

Dioxide) can break down PPCPs into smaller constituents, reducing the pharmaceutical activity. 

However, this process is limited by low photonic efficiency under UV systems. Controlled periodic 

illumination (CPI) is a promising solution to overcome the issues concerning low photonic efficiencies. 

Using a CPI controlled UV-LED/TiO2 process, a mixture of eighteen PPCP compounds were analyzed for 

their degradation removal on porous titanium – titanium dioxide (PTT) substrates. The kinetic rate 

constants of PPCPs may be analyzed using multiple regression analysis with parameters such as net 

charge at experimental pH, solubility, and molecular weight. Negatively charged PPCP compounds were 

found to have the highest removal compared to neutral and positively charged compounds due to 

electrostatic attraction forces. Decreasing the duty cycle under CPI or the UV-LED illumination period 

did not significantly change the individual and cumulative PPCP compound removal, suggesting that the 

CPI controlled UV-LED/TiO2 processes using PTT substrates were effective in reducing energy 

requirements without sacrificing removal performance.  

Keywords: titanium dioxide, emerging contaminants, controlled periodic illumination, advanced 

oxidation process, pharmaceutical and personal care products, Parrondo’s paradox 
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1. INTRODUCTION 

Pharmaceutical and personal care products (PPCPs) have been an increasing subject of interest 

with respect to their environmental impact. The influx of attention from the general population of the 

possible negative effects of various bioactive pharmaceuticals on both drinking water and wastewater has 

driven scientists to explore treatment options that render pharmaceuticals inactive [1]. A promising 

treatment option involves using UV-LED (ultraviolet-light emitting diode) light irradiation with titanium 

dioxide photocatalysts, which have been shown to degrade various emerging contaminants such as dyes 

and pharmaceuticals [2–9]. 

Advanced oxidation processes (AOPs) such as ozone (O3) and hydrogen peroxide (H2O2) are 

effective in treating organic contaminants but require a constant supply of chemical oxidants [10–14]. The 

use of UV-LEDs and photocatalytic materials, such as TiO2, can be used to drive AOPs with a renewable 

oxidant source. A natural or artificial radiation source, such as UV-LEDs, of enough energy will generate 

electron-hole pairs that can participate in redox reactions. These redox reactions can decompose small 

molecules such as organic micropollutants, driving AOPs [7,8,15–17].  

Conventional TiO2 photocatalysis suffers from low photonic efficiencies, which prevents 

application of photocatalytic technology for large scale water treatment operations [18]. Increasing the 

photonic efficiency and degradation rate constants of photocatalytic processes is an ongoing goal that is 

primarily focused on optimizing operational conditions such as catalyst type, catalyst concentration, light 

intensity, pH, and temperature [19]. A simple approach to increasing photonic efficiency is to optimize  

the light intensity or to use a doped catalyst [20–23] that increases light adsorption and/or lowers carrier 

recombination [23,24].   

Light intensity is typically linearly proportional to the kinetic reaction rate constant at low 

intensities. At high light intensities, the square root of light intensity is proportional to the kinetic reaction 

rate constant [19,25,26]. The photonic efficiency is therefore limited at high light intensities. However 

Sczechowski et al. suggested that intermittently turning on and off a UV source, known as controlled 
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periodic illumination (CPI) can increase the photonic efficiency of TiO2, while reducing light exposure 

times [27]. The practical application of CPI was limited with mercury lamps due to the warm up time 

required to output light and the tendency of filament failure if the lamp is turned on and off too quickly 

and frequently. Potential solutions, such as a rotating disk reactor with a pneumatic shutter [28], cannot be 

scaled up without substantially increasing economic and energetic costs.  Additionally, the workable 

wavelength of undoped TiO2 photocatalysis is below 400 nm and mercury lamps possess some emission 

peaks above the wavelength for undoped TiO2 photocatalysis, limiting the energetic efficiency of these 

light sources. With the advent of UV-LED technology, it is possible to pulse UV-LEDs using 

microcontrollers and pulsed width modulation (PWM), increasing the lifespan of the light source and 

lowering energy expenditure [18]. UV-LEDs can utilize much of the light energy that is emitted because 

of its single, narrow Gaussian distribution [29–31].  The use of microcontrollers also allows for easy 

customizability and optimization of conditions such as frequency and duty cycle, which would not have 

been feasible with a traditional mercury lamp. 

An analog of CPI employs the concept of Parrondo’s paradox, the unexpected outcome in which 

two “losing” strategies can, by alternating them, produce a favourable outcome. Parrondo’s paradox 

applied to photocatalytic processes may generate a higher yield of a measured product of interest when 

switching between UV light and dark conditions compared to the steady-state condition alone, even 

though the total irradiation period is lower than under steady-state illumination. Examples of this 

paradoxical behaviour under TiO2 photocatalysis includes the study by Tada et al. which demonstrated 

that using Pt-shell/Ag-core particles loaded on TiO2 and applying light on-off cycles to thiol (2-

mercaptopyridine) the H2 production rate was greater than  steady-state illumination or dark adsorption, 

which produced no H2 [32].  Additionally microorganisms and organic compounds under high frequency 

UV light on-off cycles showed higher removal compared to continuous illumination using similar UV 

intensities [33,34].  

All of the current CPI studies  observed photochemical reactions using a single pollutant source 

[18,28,33–36]. However, natural water matrices contain many pollutants and components that compete 
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for adsorption sites in photocatalysts, thereby affecting the kinetic rate constants of pollutant removal [8]. 

Understanding the CPI conditions in  complex matrices is of interest because cycling conditions may 

influence interactions within this system that result in unexpected outcomes compared to single pollutant 

sources and under steady-state conditions [37].  

This study investigates the removal rate constants of 18 pharmaceuticals and personal care 

products (PPCPs) using synthesized porous titanium – titanium dioxide (PTT) substrates under CPI 

conditions using UV-LEDs. PPCPs are emerging contaminants (ECs) that are of major concern in source 

waters and have been investigated in recent years due to their increase in concentration in  wastewater 

treatment plant (WWTP) discharges from human activities, including  urban activity and development 

and agriculture [13,38,39], [40,41]. The apparent kinetic rate constants from the removal of PPCPs were 

correlated to their net charge, molecular weight, and solubility. The UV-LED pulse profile was controlled 

by duty cycle at a constant pulse frequency to observe the decomposition of a pharmaceutical cocktail 

containing eighteen pharmaceuticals over time. The study also investigates the electric energy 

consumption of the CPI-controlled UV-LED/TiO2 processes compared to steady-state conditions. 

2. MATERIALS AND METHODS 

2.1 Reagents and chemicals 

All solvents and chemicals for synthesis methods were purchased from Sigma Aldrich at >99% 

purity. Ultrapure water (18.2 mΩ∙cm resistivity at 25oC) was obtained from a Milli-Q® Integral Water 

Purification System by EMD Millipore. The suppliers for all the reagents and chemicals for running 

experiments (parent compounds, metabolites, and deuterated standards), sample preparation,  and LC-

MS/MS analysis are described in previous work [8]. 

2.2 PTT substrate synthesis 

The PTT substrate synthesis was similar to prior work [8,17]. Briefly, the porous titanium (PTi) 

sheets (0.254 mm thickness, Accumet Materials, Ossining, NY, USA) were cut into 50 mm diameter 

substrates and cleaned with ethanol and water. PTi substrates were immersed in 50 mL of 30% H2O2 in a 

jar (500 mL) at 80 oC for 2 h. After the reaction, oxidized PTi substrates were washed in water, dried at 
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80oC for 8 h, and calcined at 600oC for 2 h.  The resultant substrates had an oxidized TiO2 surface on 

porous titanium (PTT). It has previously been determined by Arlos et al. that the PTT substrates could be 

re-used without effecting the results [8]. The membranes were cleaned by heat treatment at 400°C for 3 h 

between uses to ensure there was not any carry-over between experiments. 

2.3 Materials characterization 

The morphology and features of PTi and PTT substrates was characterized using scanning 

electron microscopy (FE-SEM LEO 1550, Carl Zeiss Microscopy). Micro-Raman spectroscopy 

(Renishaw, He-Ne laser:   = 632.8 nm) and X-ray diffraction (XRD, XPERT-PRO) were used to 

determine the crystal structure.   

2.4 CPI UV-LED/TiO2 setup and experimental methods 

2.4.1 PPCPs and pharmaceutical metabolites  

Eighteen PPCPs and metabolites were selected and analyzed for the experiments based on 

previous studies and their prevalence in the environment (see Table 1 for a list of the compounds and their 

characteristics) [8,17,42,43]. Stock solutions of PPCPs (1 g L-1) in methanol were prepared and stored at -

20oC when not in use and the appropriate amount was pipetted into the reaction mix when needed [8]. 

Methanol was used to dissolve all pharmaceuticals at some expense to the degradation performance on 

photocatalysis [8,17]. This is due to the methanol scavenging holes and hydroxyl radical species, which 

has been addressed for a similar combination of PPCPs and catalyst in a previous study [8]. Despite the 

well-established effect of methanol, it was still used to improve the solubility of the PPCPs. Care was 

taken to ensure the concentration of methanol was consistent between reactions, so that its effect would 

be consistent. The inclusion of a scavenger also better-mimics the complex matrices that are seen in 

wastewater treatment, which is a goal of this work.  

2.4.2 UV-LED CPI standardized setup  

The experimental setup consisted of a stir plate, collimated UV-LED column, and a 

microcontroller arranged as seen in Fig. 1. The UV-LED was controlled using a microcontroller 

(Arduino) coupled with a LED Current Driver (LEDSEEDUINO) and a pulsed-width modulation (PWM) 
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script was programmed into the controller (see Pulse Width Modulation Setup section in Supporting 

Information for details). The average power of the UV-LEDs was measured using a power and energy 

meter (Thorlabs, PM100-USB). The UV-LEDs provided 1.7 x 10-3 W of power at a wavelength of 365 

nm. The power output of the UV intensity was measured from 10.5 cm from the UV-LED source is also 

shown in Table 2. The pH conditions (around pH ~ 5) were not adjusted. 

The pharmaceutical stock solution was spiked into a beaker containing 300 mL of ultrapure water 

(2 µg L-1). The methanol concentration of the spiked solution was 5 x 10-3 mM. The PTT substrates were 

placed on stainless steel holders inside the beakers with stir bars underneath. The beakers were placed on 

a digital magnetic stir plate (four-position, Talboys), three of which contain a UV-LED ( = 365 nm) 

collimating column with a beam size of 4 cm. The UV-LEDs were situated 10.5 cm from the starting 

water level of the reactor with the PTT filter (sitting on the holder) 1.5 cm under the water level.  

The PTT batch reactor was illuminated under steady and intermittent UV light regimes using five 

duty cycles at a constant pulse frequency of 1 Hz and two frequencies at a constant duty cycle of 50% 

with varying light and dark times (ton and toff) as described in Table 2. The cycle is defined as the period 

of illumination for a complete light and dark cycle and is the sum of the time on (ton) and the time off (toff-

), whereas the duty cycle and frequency are defined as: 

 
  

   
        

      Eqn. 1 

 
       

 

        
.  

Eqn. 2 

 

2.4.3 Sample preparation and analysis 

Sample preparation and analysis was similar to previous work by Arlos et al. [8,17]. Aliquoted 

samples (4 mL) were spiked with deuterated standard stock solution to a final concentration of 20 µg L-1. 

Solid phase extraction (SPE) was not used as in previous publications because an ultrapure water matrix 

was used and no natural organic matter or other sources that could clog the liquid chromatography 

column were present [8,17].  Two 4 mL samples of ultrapure water were spiked with both 32  L of 100 
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 g L-1 regular and deuterated standard solution. A negative control consisting of 4 mL of ultrapure water 

was added to serve as a blank. Samples were evaporated completely using a solvent evaporator (Dionex 

SE 500, Thermo Scientific, Mississauga, ON). The dried samples were reconstituted with 160  L of 

methanol. The samples were transferred into 2 mL amber glass vials with plastic inserts, capped, and 

stored at -20oC until analysis (less than two weeks).up to a week later.  

The analysis of the compounds was completed using Agilent 1200 HPLC (Agilent Technologies) 

coupled to a mass spectrometer (3200 QTRAP, ABSciex, Concord, ON). The optimized parameter 

values, including chromatographic and ionization parameters, data acquisition, and quantitation are 

detailed in Tables S1-S3.  

2.4.4 Multiple regression and correlation analysis 

OriginLab (Version 8.0) was used to plot data and perform statistical analyses. Measured removal 

rate constants were fitted using pseudo first-order models. Multiple regression and correlation analyses 

were conducted on experimental sets. A multiple regression model was selected based on the relationship 

between the dependent variable, the kinetic rate constant, and three independent variables - net charge at 

experimental pH, molecular weight, and solubility - obtained from an online chemical database 

(Chemicalize, ChemAxon Ltd.). The best model was chosen based on minimizing the residual sum of 

squares, maximizing R2, and testing for the significance of the variables. Correlation analysis was 

performed on the dependent and independent variables. Three correlation coefficients (Pearson’s r, 

Spearman’s  , Kendall’s  ) that measure monotonic relationships were used. These correlation 

coefficients help discern whether the relationship is linear or non-linear (e.g. exponential, piecewise 

linear, and power functions). Spearman and Kendall’s coefficients are resistant to the effect of outliers, 

whereas Pearson’s r measures linear correlations, a specific type of monotonic relationship, and is 

affected by outliers [44].  

 

3. RESULTS AND DISCUSSION 

3.1 PTT Membrane characterization 
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TiO2 was synthesized on porous titanium (PTi) substrates as shown in Fig. 2. The unprocessed 

PTi substrate has an average pore size of 10 µm using a thermal sintering process (Fig. 2a).  The porosity 

of the substrate was 50% according to the manufacturer. Although the increase in porosity is proportional 

to the surface area and the number of adsorption sites will increase as a result, there is a trade-off to the 

mechanical strength of the substrate or adsorbent.  When  the porosity of absorbent exceeds 50%,  it is 

more brittle and has lower mechanical strength [45]. The thermal-chemical oxidation of PTi occurred 

under 30% H2O2 and produced an oxidized TiO2 surface containing a TiO2 complex. Upon drying, the 

PTi-TiO2 complex was heat treated at 600oC to form porous titanium – titanium dioxide (PTT) substrate. 

The difference can be seen by comparing Fig. 2b and Fig. 2a. TiO2 hierarchical nano-structures assembled 

on the surface of Fig. 2b were generated through the thermal oxidation process. 

The material characterization methods and values for the PTT substrate are given in Table 3. The 

PTT substrates weigh 1.33 ± 0.08 g and have  an average surface roughness determined to be 5-10  m 

[17].  The Raman spectra indicate that the TiO2 surface of the PTT substrate is of anatase phase (Fig. 3a). 

The PTi support showed no Raman peaks indicative of TiO2 crystalline phases (Fig. 3a). XRD confirms 

that there are also rutile and titanium crystalline phases in the PTT sample along with the anatase phase 

(Fig. 3b). The bandgap energy of PTT was estimated to be at 3.0 eV derived from the Tauc plot in 

previous work [8], which corresponds to crystalline TiO2. The isoelectric point was determined to be 6.0 

based on previous work [8]. 

3.2 UV-LED/TiO2 process against dark and photolysis controls 

The normalized parent compound concentration was used to determine the total cumulative 

pharmaceutical removal after the 60 min equilibration period, which is defined as: 

 
                                         

    
 
 

    
 
 

  Eqn. 3 

   

where   is the number of compounds tested,     is the concentration of  the   th compound at time  , and     

is the initial concentration of  the ith compound. The photocatalytic degradation of the individual or 
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cumulative organic compounds can be modelled using Langmuir-Hinshelwood kinetics  [46]. At low 

concentrations of adsorbates, the kinetic equation can be simplified to a pseudo-first order reaction 

equation:  

 
   

  

  
         

Eqn. 4 

and rearranged to its integrated form: 

 
   

 

  
         

 

Eqn. 5 

where kapp (min-1) is the apparent first-order reaction rate constant, C is the concentration at time t, and C0 

is the initial concentration. The apparent kinetic constant was obtained by taking the slope of the   

ln(C/C0) vs. t plot. Cumulative kinetic rate constants were calculated from the average of all compound 

concentrations at each time point. Both individual compound and total parent compound kinetic rate 

constants were obtained. 

Under continuous illumination the magnitude of the pharmaceutical removal rate constant was 

2.6 x 10-3 min-1. The fastest-removed compound was o-ATOR, with a rate of -2.195 x 10-2 min. The 

average removal rate was lower compared to previous studies due to higher total pharmaceutical 

concentration and substrate compound adsorption selectivity [8,17]. The surface charge of PTT substrate 

is positive at the experimental pH. The low removal rate constant is attributed  to  surface charge effects 

of pharmaceuticals that do not easily adsorb on the surface of the PTT substrate, such as negatively 

charged compounds (venlafaxine, atenolol, norfluoxetine, and fluoxetine) [8]. The individual compound 

kinetic rate constants are found in Table S4 and confirm that anionic compounds were not removed. The 

cumulative pharmaceutical removal profile (Fig. 4) depicts the changes in concentration over the 300 

minute UV exposure time. The continuous UV illumination of the PTT substrate shows a statistically 

significant removal compared to pure photolysis (p<0.04) and dark (p<0.004) conditions in which little to 

no reductions in concentrations were observed.  There was no significant difference between dark and 

photolysis conditions (p>0.1). 
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3.3 Effect of net charge, molecular weight, and solubility on kinetics 

The different decomposition rate constants of pharmaceuticals can be attributed to many physical 

and chemical characteristics of the PPCPs used in the study. The dark and photo-adsorption processes 

inherent in the TiO2/UV advanced oxidation process are dictated by the summation of interactions and 

forces in three interfaces: the adsorbate-adsorbent, the adsorbate and water, and the water and adsorbent 

[45]. These forces cannot be readily measured. They can, however, be related to measurable parameters 

such as pH, net surface charge, solubility, and size [45]. Adsorption is also driven by pH as the pH affects 

both the charge of the PTT substrate which has an isoelectric point of 6.0, and the charge of ionizable 

polar species in PPCP compounds.  

 The different multiple regression models in Table 4 were used to relate the apparent kinetic rate 

degradation constant of PPCPs using TiO2/UV under continuous illumination with three explanatory 

variables: net charge, molecular weight, and solubility. The 18 compounds are a mixture of PPCPs that 

are negatively charged (n = 8), neutral (n= 4), and positively charged (n = 6) at experimental pH. 

Additionally, the solubility of PPCPs range between 8 orders of magnitude. Regression analysis was first 

conducted on net charge alone (R2 = 0.62), followed by the sequential addition of molecular weight (R2 = 

0.82) and solubility (R2 = 0.89).  Each added variable improved the model based on higher adjusted R2 

and lower residual sum of squares when compared to one or two explanatory variables alone. All of the 

independent variables inputted were significant using t-tests at α = 0.05. The overall model using one-way 

ANOVA (Table S6) was also significant (p < 0.000). 

Correlation analysis was used to measure relationships with the apparent kinetic rate constant, the 

dependent variable, and the three independent variables: net charge, molecular weight, and solubility. The 

kinetic rate constant was monotonically correlated with the net charge of pharmaceuticals. The 

experimental pH of this study was 5, which means that the PTT substrate had a net positive charge and 

would attract and preferentially adsorb ionisable PPCP species with a net negative charge. This behaviour 

was demonstrated by the removal of anionic compounds and lack of removal of cationic compounds as 

shown in Fig. 5a. The monotonic relationship between the kinetic rate constant and charge may not be 
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linearly correlated. Pearson’s coefficient (r = -0.80) is sufficient to assume linearity, however Spearman’s 

coefficient (  = -0.91) is higher than r, suggesting that the relationship is non-linear. A power law, also 

known as Pareto Principle or the 80/20 rule, may be feasible to model this relationship.  The most 

negative pharmaceutical compounds at the experimental pH tend to degrade the fastest and represent 

much of the removal during the first 60 min under illumination, whereas less negative, neutral, and 

positive compounds are degraded much slower, or not at all. For instance, the five compounds with the 

highest negative net charge – diclofenac, atorvastatin, o-hydroxy atorvastatin, p-hydroxy atorvastatin, and 

naproxen – represent close to 22 % of the total pharmaceuticals in the water matrix tested, but account for 

75.0 + 3.3 % of the total compound removal after 60 min of illumination. 

There is a weak, significant correlation between the apparent kinetic rate constant and solubility 

(p = 0.04), and a weak, non-significant relationship with molecular weight (p = 0.25) when all eighteen 

compounds are considered (see Fig. 5b and Fig. 5c). The correlation coefficients are stronger when 

compounds with negative net charge are considered. The relationship between the kinetic rate constants 

of negative compounds and molecular weight is monotonic and significant using Pearson’s coefficient (r 

= -0.76, p = 0.030) and Spearman’s coefficient (  = -0.80, p = 0.017). There is an even stronger 

monotonic relationship between the kinetic rate constant and solubility of negatively charged PPCPs 

using Pearson’s coefficient (r = -0.75, p = 0.030) and Spearman’s coefficient (  = 0.87, p = 0.005). 

Kendall’s coefficient,  , is usually smaller than both r and   but are above | | = 0.70, suggesting that there 

are good monotonic relationships between apparent kinetic rate constant and the independent variables of 

molecular weight and solubility.  

3.3 The effect of duty cycle on the UV/TiO2 process 

To determine the effect of duty cycle on the apparent kinetic rate constants, duty cycles of   = 0% 

(dark), 10%, 25%, 50%, 75%, and 100% (continuous) at a constant pulse frequency of 1 Hz were tested 

(results are shown in Fig. 6a and Table S4) and the significance was calculated using one-way ANOVA 

(Table S7A).  At 0% (dark), there is little to no cumulative removal (kapp < 1x10-4
 min-1), which is 

significantly different compared to all duty cycles tested (p<0.001). This indicates that dark adsorption 
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has no effect after the initial 60 min equilibrium time.  There are also no significant differences in 

cumulative removal between any two    above 0 % at the α = 0.05 significance level (see Table S7A). 

However, there was a significant difference in the kinetic rate constant at    = 25 % compared to   = 100 

% and at   = 25 % compared to   = 10 % at the α = 0.05 significance level. Overall changing the duty 

cycle from a range between 10 % to 100 % has no bearing on the overall apparent kinetic rate constant. 

Further, it became apparent that the photocatalytic reaction of the PPCP cocktail on the PTT substrate is 

much more efficient under longer toff periods. It is therefore concluded that the reaction is not photon-

limited. 

In a study by Xiong and Hu [33], CPI-controlled UV/TiO2 was used to decompose 

acetaminophen at relevant treatment concentrations in the parts per billion range. The kinetic rate constant 

results were adjusted by normalizing with the kinetic rate constant at   = 100% and plotted as a function 

of duty cycle. The results were compared to the results in this work in Fig. 6b. Both experiments were 

conducted at a similar pH and light intensity, however in Xiong and Hu’s experiment the pulse frequency 

time is an order of magnitude higher and a TiO2 slurry was used rather than an immobilized TiO2 

substrate. Their results showed that the kinetic rate constant value decreases linearly as   decreases from 

20% to 80% even though the photonic efficiency increases. In the current work, there was no significant 

difference in the kinetic rate constants between the lowest duty cycle tested (  = 10%) and continuous 

irradiation (  = 100%). In the case of Xiong and Hu, the decrease in kinetic rate constants when 

decreasing   was due to less photon generation because the dark time, toff, increases and would be 

considered a rate-limiting step. In our work mass transfer was the rate-limiting step due to three possible 

factors: the lack of adsorption of positively charged and neutral pharmaceuticals, the relative difficulty in 

transferring micropollutants to a substrate compared to a slurry batch reactor, and less adsorption sites in 

TiO2 substrate compared to a TiO2 particle-based slurry batch reactor [25].   Under a mass-transfer limited 

regime the dependency of the reaction rate constant to light intensity is negligible (0th order) because of 
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saturated surface sites, low adsorption/desorption rates, and desorption products that may promote 

recombination [25].   

Only negatively charged compounds and select neutral compounds showed removal by 

photocatalysis with all   tested, including continuous illumination (  = 100%).   Lowering the duty cycle 

from 100% did not affect removal characteristics. The most negatively charged compounds still degraded 

first, select neutral compounds showed low removal rate constants, and positively charged compounds 

showed no removal. Fig. 7a depicts the negatively charged compounds that were capable of being 

removed at all duty cycles from 10% to 100% above the threshold of |kapp| = 0.1x10-2 min-1. All other 

compounds did not show removal above the threshold, except neutral compounds such as TCS and TCCB 

(Fig. 7b). There was no significant difference in removal rate constants between   for any individual 

compound, which matches the results obtained from the cumulative pharmaceutical removal rate 

constants at α = 0.05 (Table S7B).  

3.4 The effect of pulse frequency on the UV/TiO2 process 

The effect of pulse frequency was determined under three pulse frequency profiles: 0.05 Hz, 25 

Hz, and alternating between 25Hz for 500 cycles and 1 cycle at 0.05 Hz (dual frequency) at   = 50% (Fig. 

8).  There were significantly different removal rate constants using one-way ANOVA (Table S8A) under 

continuous irradiation compared to 0.05 Hz pulse profile (p = 0.014) and dual frequency compared to the 

0.05 Hz profile (p =  0.002). There is also a significant difference between the 0.05Hz profile and the 25 

Hz profile (p = 0.025). All other comparisons were not significant at the   = 0.05 significance level. 

Under the dual frequency profile, the total pharmaceutical parent compound kinetic rate constant 

was greater than the 25 Hz and 0.05 Hz profiles alone (Fig. 9). This suggests that switching between high 

frequency and low frequency profiles can generate higher kinetic removal rate constants due to 

interactions between pharmaceuticals and the PTT substrate in the water matrix.  There are no statistical 

differences between the 25 Hz and 0.05 Hz frequency profiles of individual compounds (Table S8B). 

However under 0.05 Hz the average kinetic rate constants of more negatively charged compounds were 
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higher than under the 25 Hz profile but lower with more neutral compounds. The dual frequency profile 

has a synergetic effect that takes advantage of both single frequency profiles and has higher average 

degradation rate constants than individual 0.05 Hz and 25 Hz profiles. One compound, gemfibrozil, had a 

higher average kinetic rate constant under the dual frequency regime than at 0.05 Hz (p = 0.021,   = 0.05) 

and at 25 Hz (p = 0.096,   = 0.10).  The difference between continuous and dual frequencies is not 

significant, even though the kinetic rate constant is slightly higher compared to dual frequency than in the 

continuous regime kapp=-(2.39 + 0.36) x 10-3 min-1.  

3.5 Implications and energy analysis of the CPI controlled TiO2/UV process 

The photocatalytic process is initiated by UV light when the irradiation energy is greater than the 

TiO2 band gap energy. The generation of electrons and holes is in the order of femtoseconds. Slower 

reaction processes that do not require UV illumination and occur at the nanosecond to millisecond range 

are rate-limiting steps for TiO2 photocatalysis [18,47]. These slower reaction processes include charge-

carrier trapping, recombination, and interfacial charge transfer [18]. The incident photons that initiate 

charge separation are not efficiently used due to charge carrier recombination, which occurs from 0.1 ns 

(shallow trap states) to 10 ns (deep trap states). Recombination is faster than the interfacial charge transfer 

processes, so it limits charge transfer processes that are necessary for redox reactions [18,35]. 

Sczechowski et al. proposed that under continuous illumination, photocatalytic reactions will build-up 

electron-hole (e-/h+) charges and photogenerated species (OH*/O2*
-), leading to undesirable reactions that 

lower the photonic efficiency [27,48]. The introduction of CPI and alternating the ton and toff UV-LED 

profiles can limit these undesirable reactions. 

Ku et al. modelled the interfacial charge transfer processes under CPI by establishing transient 

and steady-state balances of holes and electrons, then generating a surface coverage profile for the 

adsorbate, dimethyl phthalate (DMP), OH-, O2, and O2
*- . It was assumed that DMP molecules were 

adsorbed onto the TiO2 surface, while electron-hole pairs were generated during the illumination period. 

DMP was oxidized into smaller constituents by radical species generated from interfacial charge transfer 
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(OH*, O2
*-, and h+) and were then desorbed from the TiO2 surface. During the dark period adsorption and 

desorption of reacting species and products occur as they do under illumination. The model showed that 

the carrier recombination of photo-induced electrons and holes was enhanced with decreasing surface 

coverage of OH- or DMP due to charge build-up when the illumination time was increased. The dark 

period allows O2˙
- to react with DMP, which may increase the surface coverage due to desorption 

oxidation of DMP molecules [35].  Once the surface coverage is replenished DMP, OH-, and O2 

molecules can be adsorbed under illumination. The overall process improves the utilization efficiency of 

photons.  

Because of the increased efficiency in the utilization of photons with CPI, it is expected that 

energy consumption for photocatalytic systems can be improved through periodic illumination. The 

evaluation of the unit treatment costs is one aspect that requires attention. Since the UV/TIO2 process 

requires electrical energy and can represent a significant amount of operating cost when it is scaled, 

figures-of-merit based on electrical energy consumption may be informative.  Electrical energy per order 

removal (EEO, Wh m-3 order-1) for low pollutant concentrations was determined for a batch-type reactor 

using the following equation [35,49]: 

 
    

       

       
 

 

Eqn. 6 

Where Pel is the input power (W) to the UV-LED system, V is the volume of water (L) in the reactor, and 

kapp (min-1) is the apparent rate constant.  

In Fig. 10a the EEO of the UV-LED source increases linearly with increasing illumination time 

(duty cycle) at a constant irradiation pulse frequency of 1 Hz.  Under the same experimental time of 5 h, 

the electric energy per order was decreased by a factor of ten from  =100% to  =10%. The decrease in 

energy required to remove an order of magnitude of pollutants is much lower using CPI at low   for the 

PTT substrate and may represent significant cost savings in energy if implemented in a larger scale for 

photocatalytic operations. Similarly the implementation of alternating single frequency profiles (dual 
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frequency) also lowers energy consumption compared to single frequency profiles alone without changing 

the duty cycle. The dual frequency profile lowers the EE0 by around 35 to 45% compared to continuous 

illumination. 

 

4. CONCLUSIONS 

UV-LED/TiO2 photocatalytic decomposition of PPCPs was first conducted under continuous UV 

conditions. The kinetic rate constants of decomposition were affected by the water matrix containing 18 

pharmaceuticals of varying net charge, solubility, and molecular weight. The net charge at the 

experimental pH was the main factor in determining the kinetic rate constant of the decomposition of a 

specific PPCP compound, in which negatively charged compounds degrade first and positive compounds 

do not degrade over the time span of the experiment. Other factors such as solubility and molecular 

weight also explain the variations in kinetic rate constants using a multiple regression model. 

Programming UV-LEDs to operate under CPI and applying the process in TiO2 photocatalysis 

was determined to be an effective treatment option when TiO2 is immobilized on a substrate. The 

electrical energy that is required to reduce the concentration per order of magnitude, EE0, is lower at lower 

duty cycles (  <50%) than under continuous illumination. These results occur because mass-transfer is the 

rate-limiting step, so there was no significant difference between using  =10% and  =100%. 

Additionally,  =10% requires a tenth of the light source energy required to reduce the concentration of 

the PPCP compound mixture by an order of magnitude compared to  =100%. Alternating frequency 

profiles also lowered the EE0 compared to continuous illumination without changing the duty cycle. Under 

a mass-transfer limited regime, the dependency of the reaction rate constant to light intensity is negligible. 

This could be mitigated by using TiO2 particle based suspensions and increasing fluid turbulence, which 

would increase the energy costs of operation, including particle separation steps.  CPI is a feasible method 

from an operational standpoint to lower energy costs of light sources using immobilized TiO2. Using CPI 

UV/TiO2 process with complex water matrices, containing microorganisms or natural organic matter, may 



  

18 
 

be studied in the future to understand its effects and whether there are varying treatment outcomes 

compared to continuous illumination.  
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FIGURE CAPTIONS 

Figure 1: Experimental photocatalytic batch reactor with pulse width modulation (PWM) control unit 

containing a (a) microcontroller, (b) LED driver, and (c) UV-LED. 

Figure 2: SEM images of (a) PTi substrate and (b) PTT substrate at low magnification (1) and high 

magnification (2).  

Figure 3: (a) Raman and (b) XRD spectra of PTT substrates.  

Figure 4: Cumulative pharmaceutical removal profile under dark and UV illumination conditions (with 

PTT substrate) and under photolysis (without PTT substrate). 

Figure 5: Multiple regression analysis of kinetic rate constant as a function of (a) net charge, 

(b)molecular weight, and (c) solubility at experimental pH (pH=5). Negative (red), neutral (blue), and 

positive (green) compounds at experimental pH were distinguished. Highlighted region (light blue) 

represents region of interest for negative compounds only. 

Figure 6: (a) Cumulative kinetic rate constants of PPCPs at various duty cycles at a pulse frequency of 1 

Hz and (b) a comparison of normalized kinetic rate constants. Our work: [TotalPPCP] = 42 ppb, PTT 

substrate, light intensity = 2.2 mW cm-2, pH=5, pulse frequency = 1 Hz. Xiong and Hu: [Ace]0=200 ppb, 

[TiO2]=10 ppm, light intensity = 5.0 mW cm-2, pH=5.6, pulse frequency = 10 Hz. 

Figure 7: Kinetic rate constant of (a) negative, (b) neutral, and (c) positive compounds at various duty 

cycles. 

Figure 8: The (a) Concentration vs. Time Profile and (b) Kinetic Rate Constants of total compound 

degradation at different frequencies (0.05 Hz, 25 Hz, Dual Frequency., and Continuous). Bars that do not 

share a common letter are significantly different at   = 0.05 significance level as determined by one-way 

ANOVA using the Tukey post-hoc test. 
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Figure 9:  Kinetic rate constant of (a) negative, (b) neutral, and (c) positive compounds at different 

frequencies (0.05 Hz, 25 Hz, Dual Frequency, and Continuous). 

Figure 10: Energy per order magnitude of UV-LED/TiO2 process under various (a) duty cycles and (b) 

frequencies. 

TABLE CAPTIONS 

Table 1: Physical and chemical properties of target compounds 

Table 2: Light profiles for dark, continuous, and periodic illumination under various duty cycles (  . 

Table 3: Material characteristics of PTT substrate. 

Table 4: Multiple regression analysis (forward approach). 
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Table 1: Physical and chemical properties of target compounds. 

Compound Abbr. Use 

Mol. 

Weight 

(g mol-1) 

pKa1, 

pKa2
a 

pIEPa 

Net Charge 

Distribution 

Value at 

pH=5a 

Solubility 

(logS) 

at pH=5a 

        

Atenolol ATEN Beta-blocker 

 

266.34 9.60 11.87 1(POS) 0.43 

Atorvastatin ATOR Lipid lowering 

 

558.64 4.33 0.98 -0.83(NEG) -6.28 

o-hydroxy atorvastatin o-ATOR ATOR Metabolite 

 

573.65 4.33 0.98 -0.83(NEG) -6.68 

p-hydroxy atorvastatin p-ATOR ATOR Metabolite 
 

573.65 4.33 0.98 -0.83(NEG) -6.68 

Atrazine ATZ Herbicide 214.68 1.6 8.74 0 (NEUT) 

 

-3.8 

Carbamazepine CBZ Anti-epileptic 309.33 13.9 6.10 0 (NEUT) 

 

-3.79 

Carbamazepine-10,11-
epoxide 

e-CBZ CBZ Metabolite 252.27 3.65, 5.13 9.39 0.46 (POS) -3.11 

Diclofenac DCF Anti-

inflammatory 

296.15 4.51 0.96 -0.91(NEG) -3.25 

Fluoxetine FLX Antidepressant 309.33 9.80 11.90 1.00( POS) <0.00 

Norfluoxetine NFLX Metabolite  

 

295.00 9.80 N/A 1.00 (POS) <0.00 

Gemfibrozil GFZ Lipid lowering 
agent 

 

250.33 4.42 N/A -0.79 (NEG) -2.63 

Ibuprofen IBU Anti-
inflammatory 

206.28 4.80 4.90 -0.58 (NEG) 
 

-3.16 

Naproxen NPX Anti-

inflammatory 

230.60 4.12 N/A -0.87(NEG) 

 

-2.58 

Sulfamethoxazole SULF Antibiotic 253.28 1.6, 5.7 4.06 -0.06(NEG) 

 

-2.17 

Triclosan TCS Antibacterial 
agent 

289.54 7.60 1.96 0 (NEUT) 
 

-5.27 

Triclocarban TCB Antibacterial 
agent 

315.58 12.70 3.40 0 (NEUT) 
 

-5.67 

Trimethoprim TRIM Antibiotic 290.32 7.16 12.24 0.99 (POS) -0.64 

Venlafaxine VEN Antidepressant 277.40 9.8 11.66 1.00 (POS) <0.00 

 

pKa= acid dissociation constant, IEP = isoelectric point, S = solubility (g mol-1) 
a Properties were taken from http://chemicalize.org 

N/A – Not Available 

 

 

 

 

 

 

 



  

Table 2: Light profiles for dark, continuous, and periodic illumination under various duty cycles (𝛾). 

Duty Cycle 

(𝜸) 

Average UV 

Power Intensity 

( 𝒎𝑾 𝒄𝒎−𝟐 ) 

Ton 

(ms) 

Toff 

(ms) 

Period 

(ms) 

Duty cycle experiments at constant frequency  

10% 0.22 100 900  

1000 (1 Hz) 25% 0.54 250 750 

50% 1.08 500 500 

75% 1.63 750 250 

100% 2.18 ------------------continuous illumination----------------- 

Frequency experiments at constant duty cycle  

50% 1.08 10000 10000 20000 (0.05 Hz) 

50% 1.08 20 20 40 (25 Hz) 

 

Ton – Time light source is on; Toff – Time light source is off; Period – time of one exposure cycle  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 3: Material characteristics of PTT substrate. 

Material 

Characterization 
Value Method of Determination 

 

Crystal Phase 

 

 

Anatase 

 

 

Raman Spectroscopy 

 

Bandgap Energy 

 

3.0 eV 

 

Diffuse-Reflectance Spectroscopy 

 

Surface Roughness 

 

5-10 um 

 

Optical Scanning 

 

Pore Size 

 

~10 um 

 

Scanning Electron Microscopy 

 

Isoelectric Point 

 

6.0 

 

Zeta Potential 

 

Mass of Substrate 1.33 +/- 0.08 g Analytical Balance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Table 4: Multiple regression analysis (forward approach). 

Forwards Model 1 Model 2 Model 3 

Constant 

Slope 0.604 -0.380 -0.285 

Std. Err. 0.113 0.239 0.190 

t 5.340 -1.591 -1.497 

p <0.000 0.132 0.157 

Net Charge 

Slope -0.821 -0.634 -0.924 

Std. Err. 0.153 0.114 0.127 

t -5.361 -5.579 -7.277 

p <0.000 <0.000 <0.000 

Molecular 

Weight 

Slope  0.003 0.004 

Std. Err. <0.000 <0.000 

t 4.353 6.396 

p <0.000 <0.000 

Solubility 

Slope   0.152 

Std. Err. 0.047 

t 3.210 

p 0.006 

Adjusted R2 0.620 0.821 0.889 

Residual Sum of Squares 3.68 1.628 0.938 
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Highlights 

 18 PPCPs were decomposed by an advanced oxidation process using UV-LEDs. 

 The TiO2 catalyst was immobilized on a porous Ti substrate. 

 Kinetic rates of PPCPs were explained by factors like charge, solubility, and molecular weight.  

 Negative PPCPs had the highest removal due to electrostatic attraction to the positive substrate.  

 Using controlled periodic illumination to decrease the energy usage did not sacrifice PPCP 

removal performance. 

 


