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Abstract 

 

Evolution of novel DNA-based catalysts (DNAzymes) through in-vitro selection has 

expedited the research by manifolds, in both fundamental and analytical aspects of bio-

nanotechnology. DNAzymes are attractive for their high stability, high catalytic efficiency and 

ease of modification. Among the known DNAzymes, those cleaving RNA have attracted most 

attention. Many of the known RNA-cleaving DNAzymes recruit multivalent metal ions for 

successful catalysis, while the catalytic involvement of monovalent metal ions yet remains 

underexplored. Before this thesis work, only a few Na+-dependent DNAzymes are known, and 

I was interested in exploring monovalent transition metals, such as silver. In this thesis, an Ag+-

dependent selection experiment and its outcomes are described. In Chapter 1, relevant 

background information on DNA and DNAzymes is introduced, and the current state-of-the-

art of the field was reviewed.  

In chapter 2, a new RNA-cleaving DNAzyme named Ag10c with a well-defined bulged 

hairpin structure was isolated after six rounds of in-vitro selection. The selection was performed 

using Ag+ as the intended target metal, and Na+ was present in the selection buffer to maintain 

the ionic strength of the buffer. This DNAzyme shows remarkable selectivity for Ag+, and 

attains a maximum speed of 0.41 min-1 in the presence of 10 µM Ag+ in buffer 50 mM MOPS 

(pH 7.5) and 200 mM NaNO3. This discovery expands the repertoire of metal-dependent RNA-

cleaving DNAzymes and also draws much needed attention to the role of monovalent ions in 

DNAzyme catalysis. 

In chapter 3, the DNAzyme Ag10c was studied in extensive detail. The study revealed 

that most of the nucleotides in the catalytic loop are significant for activity. This study 
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confirmed that Ag10c bears a well-defined silver aptamer in its catalytic loop, and it can fold 

into a compact structure by binding Ag+. Most nucleotides in the catalytic loop are highly 

conserved and mutations to them often dropped the activity by over 1000-fold. Using salt-

dependent catalytic activity measurement, it was found that Ag10c was more active in buffers 

with higher NaCl concentration. However, other tested DNAzymes were inhibited by such salt. 

In addition, phosphorothioate modifications were made at the scissile phosphate. Based on these 

biochemical data, it was established that this Ag10c DNAzyme needs two metals for catalysis: 

one Na+ (or other group 1A metals or Mg2+) binds to the pro-Rp oxygen of the scissile phosphate, 

and two Ag+ ions bind cooperatively to Ag10c aptamer loop. It was also reported that Ag10c 

undergoes a single deprotonation step during catalysis. The investigation of Ag10c-Ag+ binding 

has been further characterized with fluorescence-based folding studies using 2-aminopurine as 

a probe. This study provides a new aptamer for Ag+ which is completely different from the 

well-known C-Ag+-C structure, and floats a new theme of DNAzyme catalysis that may be used 

by soft metals to escape interaction with the scissile phosphate and yet confer effective 

catalysis. 

In chapter 4, the DNAzyme Ag10c was used to develop a highly sensitive analytical 

probe for silver. This study reports a FRET-based system with the DNAzyme Ag10c for sensing 

low concentrations of Ag+ ions, with the limit of detection being 24.9 nM, which is far below 

the permissible limit of silver in water by WHO. The study exhibits that amongst the metals 

tested i.e. upto 100 mM, 10 mM and 100 μM of most of the group 1A metals, few of group 2A 

metals and many of the divalent transition metal ions respectively, the sensor is exceptionally 

selective for Ag+ ions. This study also demonstrates the robustness of the sensor in real world 

samples i.e. in Lake Huron water. This study puts forth a rare example of DNAzyme beacons 
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being used for sensing of monovalent ions, and highlights the possibility of using DNAzyme 

beacons for sensing transition metal ions up to low nanomolar concentrations. 

In addition to the work pertaining to the silver DNAzyme, in-vitro selection was also 

performed on another toxic heavy metal, lead. A very short DNAzyme PbE22 was obtained. 

This DNAzyme consists of only 5 nucleotides in its catalytic loop and shows excellent 

selectivity for Pb2+. This part of information is presented in the Appendix A (chapter 6) of the 

thesis. Previously known Pb2+-specific DNAzymes, 17E and GR5, have also been 

characterized. By performing systematic mutations in their catalytic cores, and side-by-side 

comparison of both, four highly conserved nucleotides in both DNAzymes playing similar roles 

were identified and it was deciphered that they share the same activity pattern. This part of 

information is presented in the Appendix B (chapter 7) of the thesis.  

In summary, in-vitro selection is a powerful tool to obtain interesting metal-specific 

DNA sequences. This work has expanded the previous work to a monovalent heavy metal, 

silver. By studying Ag10c, a new mechanism of DNAzyme catalysis was revealed.  
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1. Chapter 1 – Introduction to functional nucleic acids 

 

1.1 Nucleic acids and their interaction with metal ions 

 

1.1.1 Introduction to nucleic acids 

 

Polymeric biomolecules constitute a large part of the living organisms. These biopolymers 

contain monomeric units which are covalently bonded to each other. Biological systems are 

mainly made up of three classes of biopolymers: (a) polynucleotides (ribonucleic acids (RNA) 

and deoxyribonucleic acids (DNA)), which are composed of nucleotide monomers, (b) 

polypeptides, polymers of monomeric amino acids, and (c) polysaccharides, which are 

polymeric carbohydrate structures. Apart from these, the fourth major constituent of biological 

systems is a non-polymeric macromolecule called lipid. All these constituents work 

synergistically to successfully carry out the intricate functionality of all living systems, by 

storing energy and information, carrying out signaling and regulatory processes, and 

contributing as structural components. The polynucleotides DNA and RNA, have long been 

known to preserve, store and transfer genetic information in living cells and thus, hold an 

indispensable role in the propagation of life. However, the functional potential of nucleic acids 

outside living systems, has been underestimated and had not attracted much interest. Recently, 

owing to their interesting chemical structures, small size, and useful chemical and physical 

properties, nucleic acids have been discovered to bear multiple novel functions e.g. catalysis, 

molecular recognition, etc. Therefore, in today’s date, DNA is not only known as a genetic 

material, but it is now also acknowledged as a generic nanomaterial.  
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1.1.2 Chemical structure of nucleic acids 

 

As mentioned above, nucleic acids are vital biological molecules and can be classified into 

RNA and DNA, which are both linear biopolymers made from monomers called nucleotides. 

Each of these monomeric nucleotide possess three constituents: a) a five-membered pentose 

sugar ring, b) a nitrogenous base and c) a phosphate group.  

 

 

Figure 1.1 Representation of the chemical structure of nucleobases, nucleosides and nucleotides. 

 

The sugar ring. The sugars in both DNA and RNA are pentoses (Figure 1.1). There is a small 

but crucial structural difference between the ribose and deoxyribose sugar ring in RNA and 

DNA respectively. DNA has a hydrogen instead of a hydroxyl at the 2ʹ-position of the pentose.  

The nitrogenous base. The nitrogenous bases are aromatic planar heterocyclic systems, and are 

classified into (i) pyrimidines: Cytosine (C), Thymine (T), and Uracil (U), and (ii) purines: 
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Adenine (A), and Guanine (G) (Figure 1.1). Within each nucleotide, one of these organic 

nitrogenous bases is attached to the 1ʹ-carbon of the sugar ring via a N-glycosidic bond. This 

molecule (sugar covalently bonded to the base) without any phosphate group is called a 

nucleoside. The nucleotides in RNA consist of C, G, A, and U, while those in DNA are made 

up of C, G, A, and T. 

The phosphate group. When a phosphate group is covalently bonded to the 5ʹ-carbon of the 

sugar ring in a nucleoside, the entire molecule is called a nucleotide. Within a polynucleotide, 

the nucleotide monomers are bonded together linearly by coupling of the 3ʹ-hydroxyl group (in 

the sugar) of one nucleotide to the 5ʹ-phosphate group of the successive nucleotide (Figure 1.2). 

This bond is usually referred as the phosphodiester linkage, and in a polynucleotide this chain 

of hydrophilic phosphates serves as a backbone for its structure. At physiological pH ~ 7.0, the 

backbone phosphates are completely ionized (pKa ~ 1.0), and are thus negatively charged. In 

DNA, the lack of the 2′-hydroxyl group in the pentose sugar ring (as compared to RNA) results 

in a ~ 100-fold more stable phosphate backbone that is lesser susceptible to hydrolysis. 

Base pairing. At the physiological pH ~ 7.0, all the nitrogen present in the aromatic bases are 

well protonated. Typically, within both DNA and RNA, guanine (G) is known to form 3 

hydrogen bonds with cytosine (C), while adenine (A) forms 2 hydrogen bonds with uracil (U) 

or Thymine (T) in RNA or DNA respectively. These base interactions are referred as Watson-

Crick base pairing (Figure 1.3 A and B). The base pairs contribute significantly to the structural 

stability of nucleic acids, making them exist as duplexes. In polynucleotides, the base stacking 

forces between the aromatic base rings of consecutive nucleotides, aid in stabilizing their 

structure.  
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Figure 1.2 A general schematic of the nucleotides bonded together linearly (through a phosphodiester bond) by 

coupling of the 3ʹ-hydroxyl group (in the sugar) of one nucleotide to the 5ʹ-phosphate group of the successive 

nucleotide. 

 

Apart from the canonical Watson-Crick base pairs, few other forms of base pairing also exist 

which differ in the pairing nucleotides, angle between the two glycosidic bonds, carbon - carbon 
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distances between the two sugar rings, etc. Figure 1.3 C, D and E shows the most studied 

Hoogsteen (found in triple helices and G-quadraplexes) and wobble (more common in RNA) 

base pairing. 

 

 

Figure 1.3 Representation of the chemical structure of Watson-Crick base pair of (A) adenine with thymine, and 

(B) guanine with cytosine. Representation of the Hoogsteen base pair of (C) cytosine with guanine, (D) adenine 

with thymine, and (E) guanine with thymine. The hydrogen bonds are shown as red dashed lines. 

 

1.1.3 Interaction of metals with nucleic acids 

 

Metal ions occupy an indispensable role in maintaining the structural and functional stability 

of many biological molecules. Coordination of metal ions with nucleic acids has been a topic 

of aggressive and significant research.1–3 DNA is a polyanion as the hydrophilic backbone 

phosphates have a pKa value near 1, making them completely ionized and negatively charged 

at pH ~ 7.0. The negative charges encourage electrostatic attraction of metal ions. Interaction 
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of metal ions with the phosphate backbone also facilitates the formation of a stable DNA duplex 

by screening the electrostatic repulsion between phosphate groups and increasing its melting 

temperature, Tm. DNA phosphates prefer to bind hard/borderline metals with high charge 

density, for e.g. group 1A and 2A metals. The nucleobases are also capable of coordinating 

with various metal ions with different affinities.2–6 The deprotonated forms of N1 (pKa ~ 3.5) 

and N3 of adenine, N3 of cytosine (pKa ~ 4.2), N3 of thymine (pKa ~ 9.9), and N3 and N7 (pKa 

~ 2.1) of guanine are potent sites for metal binding in the nucleobases. Although the N3 in 

thymine is protonated and unavailable for metal binding at neutral pH, Hg2+ is known to 

displace its hydrogen at neutral or even slightly acidic pH.7 The O6 of guanine and O2 of 

cytosine are also known to coordinate with metal ions. Interestingly, it has been deciphered that 

the affinities of metal ions are quite weak for the individual sites, but the presence of multiple 

binding sites or a chelation effect increases the stability of metal interaction with nucleobases.3 

Some metals are known to bind with both the phosphates and the bases, e.g. the first row 

transition metals, Cd2+, Pb2+, and trivalent lanthanides. In general, soft metals mainly coordinate 

with DNA bases (e.g. Ag+ and Hg2+),1 and a few metals are capable of strong and nearly 

irreversibly (under ambient conditions) interaction with the nucleobases, e.g. platinum and 

chromium, due to extremely slow ligand exchange rates of these metals.8 As far as the 

deoxyribose sugar ring is concerned, it contributes little to metal coordination but in some 

instances, the ribose ring in RNA is known to bind metal complexes, e.g. Os4+.9,10 Metal ions 

have multiple properties that contribute towards coordination with DNA. Firstly, the size of 

metal ions is a very useful property. The size of hydrated metal ions is more pertinent because 

in aqueous solutions metal ions are hydrated with a water shell. The size of metal ions plays a 

crucial role in determining its charge density and both these properties are critical for inner-
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sphere (direct binding) and outer-sphere (water mediated binding) co-ordination. Secondly, 

charge is an important fundamental property. Because DNA is a polyanion, the number of 

charges on metal ions is pivotal for DNA binding. This is emphasized well by the fact that 

group 1A metals are effective above 10 mM, group 2A metals at ∼1 mM, while trivalent 

lanthanide ions at ∼10 μM. Thirdly, the pKa of metal bound water is an important property. At 

room temperature (25 °C), water has a pKa of 14, but when a water molecule binds with a metal 

ion, it often becomes more acidic and can hydrolyze to release a proton and become a metal 

bound hydroxyl group. This has important consequences like decrease in metal charge, metal 

hydrolysis into anions (e.g. MnO4-) which repel DNA, and formation of metal hydroxides or 

oxides (e.g. group 3A and 4A metals) that decrease their interaction with DNA. The metal 

bound hydroxyl (after deprotonation) can also act as a general base, and this property plays an 

important role in the catalytic activity of RNA-cleaving DNAzymes. Fourthly, since metal ions 

are electron deficient, they can generally accept electron pairs from ligands and thus act as 

Lewis acids. Therefore, hard metals (e.g. Mg2+) interact favorably with the phosphates (hard 

Lewis bases) in DNA. Fifthly, the coordination preference of metal ions plays a decisive role 

in DNA binding. For instance, Hg2+ prefers linear coordination and therefore in the B-form 

DNA, Hg2+ can mediate a with a thymine − thymine mismatch with high affinity and 

selectivity.11 Lastly, the ligand exchange rate of metal ions can be deterministic for its strength 

of DNA binding.  Most common metal ions have relatively fast ligand exchange rates in water 

(>1 s
−1).12 However, a few metals e.g. Pt2+ (<10

−3 s
−1),8,13 Ir3+ (<10

−9 s
−1), Rh3+ (<10

−8 s
−1), Cr3+ 

(<10
−5 s−1), and Ru3+ (<10

−5 s
−1) have very slow ligand exchange rates resulting in nearly 

irreversible DNA binding.12 
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1.2 Aptamers for metal ions 

 

1.2.1 Introduction 

 

Aptamers are nucleic acid sequences or peptides that are capable of binding to a specific target 

molecule. My interest lies in oligonucleotide aptamers. Aptamers are generally evolved and 

isolated through a method called ‘Systematic Evolution of Ligands by Exponential Enrichment’ 

or SELEX (Figure 1.4).14,15  

 

 

Figure 1.4 General schematic of Systematic Evolution of Ligands by Exponential Enrichment (SELEX). 

 

This combinatorial selection begins with a huge library constituted by 1013 to 1016 random 

sequences. Typically, the library is incubated with the target molecule under stringent 

conditions of temperature, pH, salt, time, etc. The sequences binding to the target are collected 

and amplified. The library is reconstituted from the amplified sequences for the next round. 
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This process is iterated until the desired aptamer (with high selectivity and affinity for the target 

molecule) is obtained. Metals are very small molecules and difficult targets for aptamer 

discovery. Multiple alterations and improvements have been reported in the experimental 

design of SELEX to make it favorable for small sized metal ions.16–20 Rational design of 

aptamers has also been explored. This is possible for metal ions which have specific nucleotide 

binding properties or have data available regarding their interaction with DNA. Multiple 

attempts have been made by all these methods to discover aptamers that bind selectively to 

metal ions and a gist of the same is presented in section 1.2.2. 

 

1.2.2 Metal-aptamer interactions 

 

Metal induced folding of nucleic acids. Metals are known to bind and fold nucleic acid 

sequences into specific 3-dimentional structures. The most extensively studied example of this 

phenomenon is the G-4 DNA. The G-4 nucleic acid structures are constituted by stacks of 

guanine tetrads which are assembled by Hoogsteen hydrogen bonding. These could be 

unimolecular, dimolecular, and even tetramolecular structures, and can exist in parallel or 

antiparallel orientation. The G-4 DNA are known to be stabilized by some monovalent ions 

Na+,21 K+, Li+,22,23, Tl+,24–26 Rb+,27 NH4
+,28 and a few divalent ions Sr2+, Ba2+ and Pb2+.29–34 Each 

of these metal ions is located differently within the G-4 structure, and stabilize the G-4 structure 

with different efficiency.22 For example, a schematic representation of the PS2.M DNA folding 

into a G-4 structure in presence of Tl+ is shown in Figure 1.5 A. 

Isolated through SELEX. Some of the aptamers have been found for transition metal ions 

through SELEX. A few Zn2+ binding RNA sequences with Kd ~ 100-400 μM (e.g. Zn2+ binding 

motif in HIV-1 Tat aptamer),35–37 and DNA aptamers (e.g. Zn-6m2),16,17 are known. An RNA 
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aptamer for Ni2+ (Kd = 1μM) has been reported.38 Cd2+ is known to tightly coordinate with the 

nucleobases,3,39,40 and multiple Cd2+ binding DNA aptamers (e.g. Cd-4 and Cd-2-2) have been 

isolated.18,19 The lanthanide ions have high affinity to both the DNA phosphates and the bases.41 

Amongst the lanthanides, an aptamer for Gd3+ (Kd ~ 330 nM) has been discovered. For example, 

the secondary structure of Cd2+ binding Cd-2-2 aptamer and Zn2+ binding Zn-6m2 aptamer is 

shown in figure 1.5 B and C respectively. 

 

 

Figure 1.5 (A) A schematic representation of the PS2.M DNA folding into a G-4 structure in presence of Tl+ 

(figure adapted and modified with permission from ref 43. Copyright 2016, American Chemical Society).42,43 

Secondary structure of the (B) Cd2+ binding aptamer Cd-2-2,18,42 (figure adapted and modified with permission 

from ref 18, Copyright (2016), Elsevier) and the (C) Zn2+ binding aptamer Zn-6m2 (figure adapted and modified 

with permission from ref 17, Copyright 2007, Springer Science Business Media new York).17,42  

 

Developed through rational design. Rational design of aptamers is possible for certain metal 

ions which possess some specific DNA binding properties. The property of the formation of 

metal assisted base pairs by Ag+ (Cytosine-Ag+-Cytosine) (Figure 1.13 A and 1.14 A),44 and 

Hg2+ (Thymine-Hg2+-Thymine)45 has been utilized to do so. Here, the aptamer sequence is 

designed to be either C-rich or T-rich for Ag+ and Hg2+ respectively. The design is such that in 
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the absence of the metal ions, the sequence is free from any specific structure but binding of 

the metal ions folds the DNA upon itself into a hairpin.46 These aptamers turned out to be 

extremely metal specific and provided a platform for developing rapid and easy metal sensing 

strategies. 

 

1.3 Metal-dependent catalysis of nucleic acids 

 

1.3.1 Catalytic RNAs 

 

Enzymes are vital macromolecules that execute biological catalysis with remarkable speed and 

accuracy, and work in synchrony with all other cellular components to make life possible. The 

traditional viewpoint of proteins alone being considered as biocatalysts, was shaken with the 

discovery of RNA-based enzymes or Ribozymes.47 In today’s date, several naturally occurring 

and artificially developed ribozymes are known. The naturally occurring ribozymes can be 

categorized into: a) Small self-cleaving ribozymes- These are 50-150 nucleotides long 

nucleolytic ribozymes. These include the hepatitis delta virus (HDV),48,49 hammerhead 

ribozyme,50 GlmS ribozyme/riboswitch,51 hairpin ribozyme,52,53 and Varkud Satellite (VS) 

ribozyme.54,55 They mostly catalyze sequence-specific intramolecular cleavage of RNA and 

their activity is supported by metal ion cofactors, and the specific 3-dimentional arrangement 

of the nucleobases in their active sites.  b) Large ribozymes- These are large RNAs of several 

hundred nucleotides. These include the group I,47,56 and group II introns,57,58 which catalyze 

two different phosphoryl transfer reactions in mRNA splicing. While group I introns need Mg2+ 

or other divalent cations for activity, the group II introns often require protein cofactors. The 

RNA subdomain of RNase P also belongs to this category. It catalyzes the cleavage of a specific 
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phosphodiester bond during the 5’-maturation of tRNA.59,60 The RNase P RNA relies upon the 

presence of divalent cations for catalysis.61,62 Apart from these, a number of artificial ribozymes 

bearing different properties have been discovered. Some examples of these include RNA-

dependent RNA polymerase,63 a ribozyme catalyzing ribozyme synthesis,64 a Cu2+-dependent 

ribozyme that catalyzes phosphate transfer from GTP or thiophosphate transfer from GTPγS,65 

Diels-Alderase ribozyme which catalyzes carbon-carbon bond formation,66 etc. 

 

1.3.2 Introduction to catalytic DNAs  

 

DNA based catalysts are referred to as DNAzymes. They can be considered as DNA 

counterparts of Ribozymes. However, while ribozymes exist in nature, DNAzymes are evolved 

in test tubes using a specific methodology, called in-vitro selection (Figure 1.7 A).  

 

 

Figure 1.6 The general schematic of a typical RNA-cleaving DNAzyme. 

 

In 1994, the first DNAzyme ‘GR5’ (RNA-cleaving DNAzyme) was discovered through in-vitro 

selection.67 In today’s date multiple DNA-catalyzed reactions have been discovered, including 

RNA hydrolysis, RNA ligation (of native 3’-5’ and non-native 2’-5’ phosphodiester 



37 
 

linkages),68–70 RNA branching,71–73 RNA lariat formation,74 DNA depurination,75,76 oxidative 

DNA cleavage,77–79 DNA ligation via 3’ or 5’ activation,80,81 DNA branching,82 DNA coupling 

(by phosphorothioester linkage),83,84 DNA phosphorylation,85–87 DNA adenylation,88 

phosphoramidite cleavage,89 porphyrin metallation,90 peroxidation,91,92 thymine dimer 

cleavage,93 formation of nucleopeptide linkages,94 and formation of carbon-carbon bonds.95
  

However, DNAzymes that catalyze the cleavage of RNA are the largest class of catalytic DNA 

molecules.96 The general schematic of a typical RNA-cleaving DNAzyme is shown in Figure 

1.6. It consists of a DNA substrate strand which has enzyme binding sequences on both ends 

and one RNA nucleotide embedded in the center as the cleavage site. The second component is 

the DNA enzyme strand which consists of the catalytic core in the center and sequences at both 

the 5’ and 3’ ends which base pair with the substrate. Both these strands hybridize together 

and form an inactive DNAzyme complex. Upon interaction with a specific cofactor, the 

enzyme-substrate complex gets activated and confers the RNA bond cleavage in the chimeric 

substrate strand. 

 

1.3.3 Metal-dependent RNA-cleaving DNAzymes 

 

In-vitro selection. In-vitro selection is an innovative methodology for the discovery of novel 

functional nucleic acids. Within this process, a large random pool of nucleic acids (e.g. 1014 

unique sequences) undergoes directed evolution to isolate molecules bearing certain desired 

properties. It comprises of iterative series of selection, amplification and mutagenesis 

(optional). The general schematic for isolating metal-dependent RNA-cleaving DNAzymes is 

shown in Figure 1.7 A. One of the most important components of this method is the initial 

library. 
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Figure 1.7 General schematic of the (A) in-vitro selection for isolating metal-dependent RNA-cleaving 

DNAzymes (figure adapted with permission from ref 101. Copyright 2014, American Chemical Society).42,101 The 

protocol has five main steps. 1: metal induced cleavage, 2: PAGE-based separation and extraction of the cleaved 

strands, 3: polymerase chain reaction of the extracted pool (PCR1) to produce the full-length library, 4: PCR2 to 

introduce the FAM-label and the rA base in the reconstituted library, and 5: PAGE-based purification to isolate 

the positive strand (the one bearing the cleavage site) from the duplex PCR2 product. (B) General schematic of 

the library for the selection of RNA-cleaving DNAzymes. 

 

It consists of two parts, one of them is the randomized region (labeled as ‘random nucleotide 

region’ in Figure 1.7 B) which consists of the putative enzymes. Flanking the random region 

on both the 3’ and 5’ side is the fixed region of the library, which usually contains a single 

RNA linkage as the embedded cleavage site. The general schematic of the library used for the 

selection of RNA-cleaving DNAzymes is shown in Figure 1.7 B. The sequence of the fixed 

region is designed such that the library folds upon itself bringing the random region in proximity 

with the cleavage site. The library is incubated with a fixed concentration of a target metal ion 

under specific and stringent conditions, and a small library fraction may cleave the RNA 
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linkage. The cleaved sequences would be shorter, would migrate faster in denaturing PAGE 

(Poly Acrylamide Gel Electrophoresis), and can thus be collected and amplified by PCR. 

Usually, two PCR reactions are carried out to amplify the cleaved sequences, reconstitute 

library’s full length and to incorporate the RNA base (cleavage site) as well as a fluorophore. 

This new library is subjected to another round of selection and this entire process is iteratively 

performed to obtain the desired DNAzyme. To increase the selectivity of the library for the 

target metal, the non-specific sequences can be removed by carrying out negative selections 

where the uncleaved library is sequestered and amplified.97–100 

General role of metal ions in RNA-cleaving DNAzyme catalysis. The role of metal ions in 

DNAzyme catalysis can range from general charge shielding of the polyanioinc DNA to 

specific coordination at particular sites for structural and functional stability. In the catalysis of 

RNA-cleaving DNAzymes, the substrate cleavage dinucleotide comprises of a chimeric 

dinucleotide junction of one RNA and one DNA base. Generally, the cleavage takes place at 

the 3’ side of the RNA base. 

 

 

Figure 1.8 A general schematic of the RNA cleavage hydrolysis reaction (figure adapted and modified with 

permission from ref 102. Copyright 2014, American Chemical Society).102  
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Figure 1.9 The possible roles of metal ions (M or Mn+) in DNAzyme mediated RNA cleavage reaction (figure 

adapted and modified with permission from ref 102. Copyright 2014, American Chemical Society). Metal ion (A) 

acting as a general base or proton acceptor, (B) coordinating a general base near the cleavage site, (C) coordinating 

with the phosphate oxygen in the pentavalent phosphorene transition state intermediate, (D) acting as a general 

acid or proton donor, (E) coordinating a general acid near the cleavage site, (F) coordinating with the 2’-OH group 

/ the leaving group to assist the proton transfer steps, or (G) influencing the catalysis electrostatically.102  
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Usually, the RNA cleavage hydrolysis reaction is initiated by a nucleophilic attack on the 

phosphodiester bond between the cleavage site dinucleotide, proceeds through a phosphorane 

intermediate and finally results into intramolecular phosphoryl transfer leading to the breakage 

of the RNA bond (Figure 1.8). More than often, the activated oxygen of the 2’-OH of the RNA 

nucleotide is known to act as the nucleophile. Metal ions play a key role in the success of this 

catalysis.102 Potential roles of metal ions are: i) Metal hydroxides can act as general bases 

(proton acceptors) to deprotonate the 2’-OH of the cleavage site RNA and activate its oxygen 

making it a more potent nucleophile (Figure 1.9 A). ii) Inner sphere coordination of the metal 

with the cleavage site phosphate oxygen can help in stabilizing the accumulated negative charge 

on the pentavalent phosphorane transition state intermediate (Figure 1.9 C). iii) Metal 

hydroxides can act as general acids (proton donors) to donate protons to the leaving group for 

the final cleavage of the phosphodiester bond (Figure 1.9 D). iv) Metals can directly coordinate 

to the 2’-OH group / the leaving group to assist the proton transfer steps (Figure 1.9 F). v) 

Metals can help through outer sphere interactions by organizing a water molecule or by 

coordinating with a proton donor / acceptor in proximity to the cleavage site for general acid-

base catalysis (Figure 1.9 B and E). vi) Metal ions juxtaposed to the active site can have 

electrostatic influence on catalysis. For e.g. by stabilization of the highly anionic transition 

states, or by alteration of the pKa of the catalytically significant functional groups present in 

nucleobases (Figure 1.9 G). 

Monovalent metal ion specific RNA-cleaving DNAzymes. The catalytic potential of 

monovalent cations has long been underestimated, but the recent discoveries of Na+-dependent 

RNA-cleaving DNAzymes have drawn attention to the catalytic abilities of group 1A metal 

ions. NaA43 (Figure 1.10 B) works selectively in the presence of Na+ with the reasonably high 
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rate of 0.1 min-1 in presence of 400 mM Na+.104 Another Na+ specific DNAzyme EtNa (Figure 

1.10 A), is highly selective with a rate of 0.06 min-1, and possess a unique property of catalyzing 

substrate cleavage in organic solvents.105  

 

 

Figure 1.10 Secondary structure of the monovalent ion-dependent RNA-cleaving DNAzymes (A) EtNa (figure 

adapted and modified with permission from ref 103, Copyright 2015, John Wiley and Sons ),103 and (B) NaA43 

(figure adapted and modified with permission from ref 104).104 

 

Divalent metal ion specific RNA-cleaving DNAzymes. This represents the largest class as most 

of the RNA-cleaving DNAzymes use divalent cations as cofactors. The first RNA-cleaving 

DNAzyme discovered through in-vitro selection in 1994 was GR5 (Figure 1.11 A), a highly 

selective and active (rate ~ >10 min-1) Pb2+-dependent enzyme.67 Another DNAzyme 17E 

(Figure 1.11 B) initially discovered in a Zn2+ selection, is now known to be highly active with 

Pb2+ (rate >10-1).112,113 However, the17E is less selective and apart from Zn2+ it has reoccurred 

as a result of Cd2+, Ca2+ and Mg2+ selections.112,114–118 As GR5 and 17E share the same critical 

nucleotides for catalysis, I have performed a detailed comparative study of the two DNAzymes 

which suggests that they both may have similar Pb2+ binding mechanism (See Appendix A – 

Chapter 6, for detailed experimentation).106 Leadzyme is a very small Pb2+-dependent ribozyme 

containing only 6 residues in its catalytic loop. Inspired by this, I had undertaken a Pb2+ 
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selection to see if a very small Pb2+-dependent RNA-cleaving DNAzyme exists. As a result, I 

reported the discovery of PbE22 (Figure 1.11 C) which was highly selective for Pb2+ and 

consists of only 5 nucleotides in its catalytic loop (See Appendix B – Chapter 7, for detailed 

experimentation).108  

 

 

Figure 1.11 Secondary structure of the divalent ion-dependent RNA-cleaving DNAzymes (A) GR5 (figure 

adapted and modified with permission from ref 67, Copyright (1994), Elsevier),67  (B) Mg5, 17E and 17EV1 

(variants of 8-17 DNAzyme) (figure adapted and modified with permission from ref 107. Copyright 2016, 

American Chemical Society),107 (C) PbE22 (figure adapted and modified with permission from ref 108, Copyright 

2015, Springer Science Business Media new York),108 (D) E5 (figure adapted and modified with permission from 

ref 109, Copyright (1995), Elsevier),109  (E) Bipartite II (figure adapted and modified with permission from ref 

110, Copyright (2001), Elsevier),110 (F) 10-23 (figure adapted and modified with permission from ref 111, 

Copyright (1997) National Academy of Sciences, U.S.A),111 (G) 8-17 (figure adapted and modified with 

permission from ref 111, Copyright (1997) National Academy of Sciences, U.S.A) ,111 and (G) 39E (figure adapted 

and modified with permission from ref 97, Copyright (2007) National Academy of Sciences, U.S.A).97 
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Being a physiologically significant metal ion, Mg2+ has been used to carry out multiple 

selections leading to the discovery of E5 (also shows activity with Cd2+ and Pb2+) (Figure 1.11 

D),109 BipartiteI (also shows activity with Ca2+, Mn2+, Zn2+, and Co2+),110 BipartiteII (Figure 

1.11 E),110 10-23 (Figure 1.11 F),111 8-17 (much more active with Pb2+ and Zn2+) (Figure 1.11 

G),111 and Mg5 DNAzyme (shows 10-fold more activity with Ca2+) (Figure 1.11 B).115,119 

Another Ca2+/Mg2+-dependent DNAzyme 17EV1 was discovered as a result of a selection in 

undiluted serum (Figure 1.11 B).107 The DNAzyme EtNa, initially known to work with Na+ in 

organic solvents, is now also known to catalyze with Ca2+ and Mg2+ in aqueous solutions 

(Figure 1.11 A).120 Amongst the actinides, UO2+ is utilized as the cofactor by the RNA-cleaving 

DNAzyme 39E, in which uranyl is known to bind specific nucleotides in the bulge-loop, stem-

loop and the substrate strand (Figure 1.11 H).97 In the transition metals, Cu2+ and Cd2+ have 

been used for in-vitro selection with a library containing a PS modification at the cleavage site, 

resulting into the DNAzymes PsCu10,99 and Cd16 respectively .98 A Hg2+-dependent 

DNAzyme has also been reported with a library consisting of two modified DNA bases.121 

Trivalent metal ion specific RNA-cleaving DNAzyme. Owing to their high charge density and 

affinity for the phosphates and nucleobases in DNA, the trivalent lanthanides (Ln3+) have been 

efficiently utilized as cofactors by multiple RNA-cleaving DNAzymes. Many Ln3+ specific 

selections have been undertaken. One of the most interesting RNA-cleaving DNAzymes Ce13d 

(Figure 1.12 A) was selected for Ce4+, and turned out to be active in presence of all trivalent 

Ln3+ but not for Ce4+.101,124 Another DNAzyme Lu12 (Figure 1.12 B), initially selected for Lu3+ 

works with lighter lanthanides and exhibits decreased activity with heavier Ln3+.122 A Tm3+ 

specific selection has resulted into the DNAzyme Tm7 (Figure 1.12 C).123 Dy3+ has also been 

used for selection which finally evolved into the DNAzyme Dy10a (Figure 1.12 D).125  
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Figure 1.12 Secondary structures of the trivalent ion-dependent RNA-cleaving DNAzymes (A) Ce13d (figure 

adapted and modified with permission from ref 101. Copyright 2014, American Chemical Society),101 (B) Lu12 

(figure adapted and modified with permission from ref 122. Copyright 2014, American Chemical Society),122 (C) 

Tm7 (figure adapted and modified with permission from ref 123. Copyright 2014, Oxford university Press ),123 

and (D) Dy10a (figure adapted and modified with permission from ref 125. Copyright 2016, American Chemical 

Society).125  

 

Aptazymes. Aptazymes are DNAzymes which contain a specific aptamer sequence and whose 

catalytic activity is modulated by aptamer binding. Target-aptamer binding changes the 

structural fold of the aptazyme such that it gets activated for catalysis. Aptazymes have an edge 

over both DNAzymes and aptamers, in terms of enhancement of signal amplification and 

reduction of nonspecific signals respectively. Multiple strategies have been adopted to club a 

known aptamer with a known DNAzyme in order to make the catalytic activity dependent on 

target binding. The incorporation of aptamer in the hairpin of the catalytic loop,126 as well as in 

substrate binding strand,127 has been reported. Within these, catalysis is modulated by the 



46 
 

unfolded/ folded state of the DNAzyme in the absence/ presence of the target respectively. 

Apart from these rationally designed examples, some reports of in-vitro selection of aptazymes 

also exist. For instance, Co2+ binding aptazymes have been selected by Breaker and co-

workers.128 The unintentional discovery of aptazyme Ce13d is worth mentioning in this regard. 

Ce13d bears an aptamer for Na+ within its catalytic loop (Figure 1.12 A). Ce13d-Na+ binding 

brings in conformational changes and activates the enzyme, while a lanthanide ion interacts 

with the cleavage dinucleotide to carry out the catalysis.101,129,130 

Concerted action of multiple metal ions. While all the known DNAzymes require one specific 

type of metal ion for activity, it is worth noting that Ce13d can be categorized under a new 

section of DNAzymes which require two metal ions which are different in their identity. Ce13d 

is a unique DNAzyme which requires the concerted action of two dissimilar metal ions acting 

at two distinct sites for successful catalysis to take place.129 

 

1.4 Nucleic acid based metal sensing  

 

1.4.1 Need for metal biosensors 

 

Extensive use of metals in all domains of civilization ranging from large scale industrial 

applications to everyday household utilities, and their consequent disposal into natural 

resources, makes metal sensing indispensable for environmental monitoring. While traditional 

analytical methods such as inductively coupled plasma - mass spectroscopy (ICP-MS) are 

available, rapid and on-site measurement of metal ions in various types of environmental 

samples is an urgent need. Biosensors have the potential to attain excellent sensitivity and 

selectivity owing to the possibility of excellent target binding affinity and signal amplification. 
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With the advent of DNA based beacons, information regarding metal speciation can be quickly 

obtained e.g. Fe2+/Fe3+ or Cu2+/Cu+, while most of the instrumentation methods can report total 

metal concentration and not the oxidation state. Apart from environmental samples, it is also 

important to measure metal concentration in intracellular samples and biological fluids.  DNA 

based technology has made this possible in temporal and spatial resolution, which has expedited 

the development of diagnostic applications. Taken together, the advent of molecular sensors 

may have revolutionary effects on the society in multiples spheres of life. 

 

1.4.2 DNA based molecular beacons 

 

In the past decade there has been aggressive research to develop various platforms for detecting 

metal ions in water samples. With the high programmability and stability of nucleic acids, 

multiple types of DNA based sensing methods have developed over the years for aqueous metal 

ions. One of the most selective sensors are the catalytic beacons, which consist of mostly the 

RNA-cleaving DNAzymes. Typically, for such sensors, the substrate and enzyme strand is 

labelled with a fluorophore and quencher respectively. In the absence of the metal ion, the 

enzyme-substrate duplex is formed enabling the measurement of baseline fluorescence due to 

FRET between fluorophore-quencher pair. The sequence of the duplex is designed such that in 

the presence of the metal ion, the cleavage of the substrate causes the Tm between enzyme-

substrate to go below room temperature leading to dissociation of the fluorophore labeled 

substrate. This dissociation decreases FRET and the metal concentration-dependent rise in 

fluorescence can be calibrated and used as a sensitive metal ion sensor. Many variations in the 

sensor design to improve sensor performance have been explored e.g. position of labeling,131 

number of quenchers,132 asymmetric design of DNAzyme complex,133 etc. An extensive 
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category of sensors are aptamer beacons. Usually, upon binding to its target, the aptamer 

undergoes a specific 3-dimensional change in its conformation.134 Whether it be a local or a 

global change, it can be detected and utilized to indicate target-aptamer binding. Various 

different designs and signaling strategies have been used for this purpose. For e.g. calibrated 

changes in fluorescence (FRET, pyrrolo-cytosine, 2- amino purine, etc.),46,135,144,145,136–143 and 

color,146 is a popular detection method. In some cases, electrochemistry,147,148 Rayleigh 

scattering,149 SERS,150 Resonance Light scattering (RLS),151 and quantifiable digital signals,152 

have also been used in this regard. Apart from these methods which require covalent 

conjugation of signaling labels with the DNA, many label free and cost-effective options are 

also developed for both DNAzyme and aptamer beacons. These include dyes which can bind / 

intercalate into DNA or stain abasic sites,153,154 e.g. SYBR Green I (SGI),155 ethidium bromide 

(EB),156 picogreen (PG),157 fluorescent cationic conjugated polymers (CCP),158 etc. AuNPs are 

known to aggregate in the presence of folded aptamers while remain protected against 

aggregation with unfolded aptamers. This change in color of AuNPs upon aggregation due to 

metal-aptamer binding is an interesting label free signaling method. Similarly, change in 

dielectric constant (i.e. SPR signals),159 or mass (i.e. QCM signals),160 of aptamer functionalized 

gold surfaces upon metal binding has also been harnessed. Lately, lateral flow devices are also 

being explored and developed for metal detection.161–163 

 

1.5 Ag+ - DNA interaction 

 

1.5.1 Properties of Ag+  
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In terms of metal ions, their properties like size, pKa of metal bound water, Lewis acidity, 

charge, coordination preference, ligand exchange rate, etc. play an important role in 

determining their interaction with nucleic acids. Silver (Ag) is a chemical element that falls 

under the category of transition metals with an atomic number of 47 and a standard atomic 

weight of 107.8682. When solubilized, silver loses a 5s1 electron to form Ag+ and +1 is its most 

common oxidation state, while rare occurrence of -2, -1, +2, and +3 oxidation states has also 

been reported.164–166 The number of charges on metal ions is of great relevance for DNA 

binding, mainly because DNA is a polyanion. Usually, the effect of monovalent ions (mostly 

the group 1A metals) has been seen above 10 mM. In solution Ag+ exists in form of aqua 

complexes. Ag+ exhibits coordination numbers of 2, 3, 4, 6 with linear, trigonal planar, 

tetrahedral and octahedral stereo-chemistries respectively.167 The empirical atomic radius of 

silver is 144 pm, while the 6-coordinated Ag+ ionic radius is reported to be 129 pm.168 With 

respect to DNA binding, the size of hydrated metal ion is more significant, and the Ag(H2O)4
+ 

ion radius is reported to be 0.98 + 1.2 Å.169 The charge density of the 6-coordinated Ag+ ion is 

reported as 15 (C mm-3).170 Metal ions are electron deficient species, due to this they can accept 

electron pairs from ligands and thus act as Lewis acids. Similarly, the aqua coordinated Ag+ 

draws electron density from the O-H bond in water present in its coordination sphere. The 

subsequent release of aqueous proton makes Ag+ behave like a weak acid. The first pKa of Ag+ 

is around 10.0.171 These solution properties of metal ions majorly influence their interaction 

with DNA in a decisive manner. 

 

1.5.2 Known Ag+ - DNA interactions 
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Figure 1.13 Representation of the chemical structure of the Ag+ assisted base pairs between (A) two cytosines 

(figure adapted and modified with permission from ref 173. Copyright 2008, Royal Society of Chemistry),173 (B) 

cytosine and thymine (figure adapted and modified with permission from ref 183. Copyright 2007, John Wiley 

and Sons),183 (C) 2 imidazole rings (figure adapted and modified with permission from ref 189. Copyright 2010, 

Springer Nature) ,189 (D) cytosine and adenine thymine (figure adapted and modified with permission from ref 

181. Copyright 1999, Springer Nature),181 (E) two guanines thymine (figure adapted and modification with 

permission from ref 176. Copyright 2010, American Chemical Society),176  (F) two1, N6-ethenoadenines (figure 

adapted and modified with permission from ref 186 under Creative Commons Attribution License),186 (G) cytosine 

and guanine in a CG.CAg+ base triplet (figure adapted and modified with permission from ref 179. Copyright 

2009, American Chemical Society),179 and (H) thymine and 1-deazaadenine (figure adapted and modified with 

permission from ref 180. Copyright 2011, Elsevier).180 (I) A schematic of a Ag+ mediated i-motif (figure adapted 

and modified with permission from ref 175. Copyright 2013, American Chemical Society).175 The hydrogen bonds 

are shown as red dashed lines, and the Ag+ assisted bonds are shown as blue dashed lines. 
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As mentioned above, co-ordination of metal cations with nucleic acid is of high appeal because 

of their indispensable implication in biology and nano-biotechnology. Amongst the metal ions, 

the Ag+ cation has attracted noteworthy attention. Many interactions of Ag+ with nucleic acids 

or with nucleobases have been summarized below:  

C-Ag+-C base pair. Ag+ is known to co-ordinate with cytosine residue at its N3 position and 

selectively bring together two cytosines to form a stable C-Ag+-C metal assisted base pair 

(Figure 1.13 A). This binding has been testified by UV melting, ITC and ESI-MS, CD 

spectroscopy and NMR. Ag+ was found to be in a 1:1 ratio with the C:C mismatched base pair 

in the duplex with a binding constant of 106 M-1 , which is remarkably higher than other known 

nonspecific DNA-metal interactions.172,173 

I-motif.  It has been validated in 1993 through NMR structural studies that, at acidic pH hemi-

protonated cytosine+-cytosine base pairs form between oligomers containing tracts of cytosine 

residues to make a four stranded secondary structure called i-motif.174 It consists of two parallel 

duplexes hydrogen bonded together in an antiparallel orientation by intercalated cytosine+-

cytosine base pairs. In 2013 it was reported that owing to its ability to form C-Ag+-C base pairs, 

Ag+ can mediate the formation of i-motif (Figure 1.13 I) at neutral pH.175  

Ag+- Guanosine co-ordination. It is well established that silver can strongly chelate to the N7 

and O6 position in guanosine and GMP, and combines with them in a 1:1 ratio at neutral pH. 

pH-dependent Ag+ titrations, UV, IR and CD spectroscopy as well as ITC studies have 

confirmed that Ag+ uniquely form stable dimers of guanine (Figure 1.13 E) and can assemble 

and aggregate GMP with the same kind of co-ordination.1,176,177 Ag+ can also assist in pairing 

of guanine homo-base strands by bridging two guanines together, with a stronger stability than 

the Watson-crick guanine-cytosine pairing.178 
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C-Ag+-G Hoogsteen-type base pair. It has been experimentally shown that Ag+ can displace 

the N3 proton of cytosine in Hoogsteen base pairing to mediate the formation of a CG.CAg+ 

base triplet in a triple helix (Figure 1.13 G).179,180 

C-Ag+-A base pairs. Interestingly, the Klenow fragment DNA polymerase is known to 

misincorporate adenine into the site opposite to cytosine in the template strand in the presence 

of Ag+. It is reasoned that this is due to the formation of the Ag+ mediated base pair C-Ag+-A. 

However, it has been demonstrated that the C-C mismatch duplex bears higher stability than 

the C-A mismatch containing base pair in the presence of Ag+.172 Based on ab initio studies of 

the C-Ag+-A base pair and the X-ray crystallography data available for the [(1-MeC)Ag(9-

MeA)(H2O)]+ complex, it is predicted that a single Ag+ forms coordinative bonds with N3 of 

cytosine and N7 of adenine (Figure 1.13 D).181,182  

C-Ag+-T base pair. Silver (I) ion is capable of deprotonating thymine in oligonucleotides and 

is known to bind the N3 atom of deprotonated thymine to form an Ag+–thymine complex which 

does not bear any charge.183 This Ag+–thymine complex has affinity towards aromatic tertiary 

nitrogen atom and is able to co-ordinate to the N3 position in cytosine in oligodeoxynucleotides 

(Figure 1.13 B). The T-Ag+-C base pair is stabilized by 1 equivalent of Ag+ ions and has 

approximately comparable thermal stability to that of C-Ag+-C base pair.184  

Ag+ interaction with non-canonical bases. Ag+ is proved to co-ordinate with some modified or 

non-natural bases. Ag+ can co-ordinate with the N7 position of base 1-deazaadenine (D) and 

the formation of Ag+ assisted Hoogsteen-type base pair between Thymine and 1-deazaadenine 

T-Ag+-D (stabilized by H-bonding as well as metal ion binding), has been experimentally 

demonstrated (Figure 1.13 H).180,183  It has been shown that in the presence of Ag+, 1, N6-

ethenoadenine (εA) forms a stable homo base pair εA-(Ag+)2-εA (Figure 1.13 F) in both parallel 
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and antiparallel stranded DNA. It can also form εA-(Ag+)2-T base pair in double helical DNA, 

as well as εA-(Ag+)-C and εA-(Ag+)2-C base pairs depending on the relative orientation of the 

oligonucleotide strands.185–187 Ag+ can co-ordinate to N3 position of 5-methylisocytosine 

(m5iC) and can thus aid the formation of m5iC-Ag+-C and m5iC-Ag+-T base pairs in 

oligonucleotides.184 Another cytosine analogue that Ag+ can co-ordinate with is pyrollo-

deoxycytosine (PdC), via its N3 position and the formation of PdC-Ag+-C base pair in duplex 

DNA has been demonstrated.145 Ag+ has been investigated to bring together two imidazole (Im) 

bases into Im-Ag+-Im base pair.188 Formation of Im-Ag+-Im base pair in B-type DNA duplex 

has been demonstrated by solution NMR structure (Figure 1.13 C).189 A single Im-Ag+-Im base 

pair is around one order of magnitude more stable than the C-Ag+-C base pair. Contiguous Im-

Ag+-Im base pairs have been found to form in a co-operative manner through ITC, UV and CD 

spectroscopy.190 Detection of complexes of Ag+ with bases Inosine as well as Caffeine have 

also been detected using electrospray ionization mass spectrometry.191 

DNA templated fluorescent silver nanoclusters. Since 2004, it is known that because of the 

high affinity between Ag+ and DNA bases, short oligonucleotide-encapsulated fluorescent Ag 

nanoclusters can form.192 Multiple reports regarding the synthesis of DNA-templated 

fluorescent silver nanoclusters (AgNCs) have been published and most commonly C-rich DNA 

can be used as a template.193–196 It has also been proposed that poly-C templated AgNCs can 

form a dimer upon addition of free Ag+ ion.197 However, instances of poly-G DNA templated 

AgNCs are also present.198  

 

1.5.3 Ag+ biosensors 
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Fluorescence based sensing. Formation of Ag+ assisted C-Ag+-C base pairs has been well 

utilized for the purpose of sensing Ag+ ions (Figure 1.14 A).199  

 

 

Figure 1.14 Schematic of fluorescence based Ag+ sensor based on the formation of (A) C-Ag+-C base pairs (figure 

adapted and modified with permission from ref 199. Copyright 2008, Royal Society of Chemistry)199 and (B) PdC-

Ag+-C base pair.145 (C) Representation of the chemical structure of Ag+ assisted base pair between pyrrolo-cytosine 

and cytosine.145 Figures (B) and (C) adapted and modified with permission from ref 145. Copyright 2012, Royal 

Society of Chemistry. 

 

Within this design, a C-rich DNA has been labelled with a quencher on one end and a 

fluorophore on the other. Upon the addition of Ag+, the sequence folds upon itself into a hairpin 

structure due to the formation of C-Ag+-C base pairs. This brings the quencher sufficiently 

proximal to the fluorophore to diminish its fluorescence via FRET. Since the decrease in 

fluorescence was [Ag+]-dependent, this method could be developed into an Ag+ sensor. Pyrrolo-

deoxycytosine (PdC), an analogue of cytosine possesses two interesting properties. Firstly, as 

mentioned above (section 1.5.2) it exhibits intrinsic fluorescence in the single stranded form 
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and upon base pairing the fluorescence reduces manifolds. Secondly, similar to cytosine, PdC 

can form Ag+ assisted base pairs with cytosine. Both these traits together have proved to be 

very beneficial in developing a highly sensitive and selective PdC based Ag+ sensor (Figure 

1.14 B and C).145 For this, PdC was incorporated in the middle of a single stranded oligomer. 

A complementary oligo was designed which placed cytosine opposite to PdC upon 

hybridization. In the absence of Ag+, PdC and cytosine are left unpaired in the duplex, leaving 

PdC fluorescent. Upon the addition of Ag+, PdC-Ag+-C base pairing takes places reducing the 

fluorescence and indicating the presence of silver. This method could detect Ag+ down to ~ 9.2 

nM. 

Label free sensing. Tb3+ luminescence has been a useful probe for DNA fold and structures. 

Tb3+ has low emission as a free molecule but when bound to nucleobases its luminescence 

strengthens significantly. It has been reported that when Ag+ coordinates to Tb3+ bound poly-

G/T DNA, it drastically enhances the Tb3+ luminescence (Figure 1.15 A). For Ag+ sensing, a 

G7 DNA has been used. An Ag+ concentration-dependent increase was found in the 

fluorescence of Tb3+ bound G7 DNA, and the limit of detection was calculated to be ~ 57 nM.200 

It has been mentioned in section 1.5.2 that Ag+ can bind to a C-rich sequence to form i-motif 

structure at neutral pH. This Ag+-i-motif structure can be disrupted using cysteine. As Ag+ has 

strong affinity to cysteine, it can be extracted away by forming a cysteine-Ag+ complex, leading 

to the deformation of i-motif. To use this as an Ag+ sensing system, the fluorescent probe 

Thiazole orange (TO) was used. TO is not fluorescent as a free unbound molecule, but when 

incorporated in the i-motif it shows strong fluorescence. Therefore, the presence or absence of 

Ag+ can be detected by probing the presence or absence of TO fluorescence respectively (Figure 

1.15 B). A detection limit of ~ 17 nM has been achieved using this method.201  
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Figure 1.15 Schematic of Ag+ sensor based on (A) Ag+ enhanced Tb3+ luminescence (figure adapted and modified 

with permission from ref 200 under the Creative Commons Attribution License),200 thiazole orange binding to Ag+ 

mediated i-motif formation (figure adapted and modified with permission from ref 201. Copyright 2016, 

Elsevier),201 and (C) Ag+ mediated disruption of G-quadruplex hemin DNAzyme activity (figure adapted and 

modified with permission from ref 202. Copyright 2010, American Chemical Society).202  

 

G-quadraplex DNAzymes have also been used to develop sensing systems for Ag+.202,203 The 

binding sites on Guanines needed to form G-quadraplexes are same as those needed to 

coordinate with Ag+. Therefore, Ag+ is capable of disrupting the secondary structure of G-

quadraplex-hemin DNAzymes and consequently diminish their peroxidase activity (Figure 1.15 
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C). The presence or absence of the activity has been correlated with the absence or presence or 

Ag+ respectively and a detection limit of 64 nM has been achieved with the same.  

Colorimetric Sensing. Formation of DNA templated silver nanoclusters (AgNCs) has been 

discussed in section 1.5.2. For making an AgNC based Ag+ sensor, a 12-mer cytosine oligo was 

used to template the formation of AgNCs which exhibited weak red fluorescence. As Ag+ was 

added to the system the fluorescence switched to strong green, due to the dimerization of Cyt12-

AgNCs mediated by Ag+ (Figure 1.16).197 Low Ag+ concentrations such as ~ 10 nM have been 

detected using this system.  

 

 

Figure 1.16 Schematic of DNA-AgNCs based colorimetric sensor for Ag+ (figure adapted and modified with 

permission from ref 197. Copyright 2015, Elsevier).197 

 

Apart from the G-quadraplex peroxidase activity dependent method, the Ag+ mediated 

disruption of G4 structures has been used for Ag+ sensing in an alternative way as well. For 

this, gold nanoparticles (AuNPs) were capped with G4 structures. In the absence of Ag+, the 

AuNPs were found to be mono-dispersed. Addition of Ag+ induced the disruption of the G4 

structures and consequent aggregation of AuNPs. This aggregation brought a change in the 
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color emitted by AuNPs and this change was used as an indicator of the presence of aqueous 

silver.204 

 
1.6 Research focus 

 

DNA-metal interaction has been a very significant topic of research. Since past two decades, 

study of DNAzymes and their metal-dependent catalysis has provided crucial insights regarding 

DNA-metal interactions. There is extensive data available about the catalytic potential of 

divalent and trivalent lanthanides with respect to DNAzymes. However, not many monovalent 

ions have been explored in this regard. Although a few Na+-specific RNA-cleaving DNAzymes 

have been recently reported, a majority of them still remain untouched. Inspired by the same, 

the research focus herein is to explore the monovalent metal ion Ag+ as a cofactor for RNA-

cleaving DNAzymes, and to get novel insights into DNA-Ag+ interactions. So far, most studied 

interaction of Ag+ with DNA is of the cytosine-Ag+ binding and the formation of C-Ag+-C 

metal assisted base pairs.44 Most of the Ag+ sensing strategies also rely on the same 

interaction.173 There are many fundamental challenges of using Ag+ to activate RNA-cleaving 

DNAzymes. First, it is a monovalent metal ion, and most DNAzymes require divalent or 

trivalent metals. Second, it is a very soft metal. Without a sulfur modification, it is challenging 

to obtain Ag+-dependent RNA cleavage. On the other hand, Ag+ can strongly bind to various 

DNA bases and this gives a platform for new and interesting Ag+-dependent mechanisms of 

DNAzyme activation. The main focus of research herein is to expand the repertoire of 

monovalent ion-dependent RNA-cleaving DNAzymes, as well as to explore novel DNA-Ag+ 

interactions. Taking Ag+ as the target metal ion, in-vitro selection experiments focused on 

discovering novel Ag+-dependent DNAzymes have been undertaken, and subsequent 
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development of a sensitive and selective DNAzyme beacon for silver sensing has been done. 

In addition, systematic biochemical characterization of a selected Ag+-specific DNAzyme has 

been performed to gain mechanistic insights. Aside from the work on Ag+, another relatively 

soft metal, Pb2+, was also studied as a cofactor for DNAzyme. To be focused for writing this 

thesis, the Pb2+ related data is presented in Appendix A and B as chapter 6 and 7 respectively.  
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2. Chapter 2 - In-vitro selection of a silver-specific DNAzymea 

 

2.1 Introduction 

 

DNAzymes are DNA-based catalysts (also known as deoxyribozymes and catalytic DNA) 

isolated using in-vitro selection.205–210 They often recruit metal ions for catalysis, and in-vitro 

selections can be intentionally performed to evolve DNAzymes that work only in the presence 

of specific metals.102,211–213 The first DNAzyme was reported in 1994 for RNA cleavage in the 

presence of Pb2+.67 Since then many DNAzymes were isolated for specific metals including 

Zn2+,112 Mg2+,111 Cu2+,78,80 UO2
2+,97 Cd2+,98 Hg2+,121 and recently, important advancements have 

been made on trivalent metals as well.122,123,214 The perception of the requirement of multivalent 

metal ions was relaxed by the recent discovery of DNAzymes that use only monovalent 

Na+.104,215,216 For example, the Lu group reported a DNAzyme with a rate of ~0.1 min-1 using 

Na+ as the sole metal.104 To reach such a high rate, however, 400 mM Na+ is needed. The same 

Na+ binding motif was also identified in another lanthanide-dependent DNAzyme.101,129,130 The 

Liu group has isolated a Na+-specific DNAzyme named EtNa, which requires high mM Na+ in 

water but low mM Na+ in ethanol.103 However, it remains unclear whether it is possible to obtain 

DNAzymes that can work with nanomolar transition metals. If existing, these DNAzymes will 

be not only be analytically useful, but can answer fundamental questions in bioinorganic DNA 

chemistry. The most studied interaction between DNA and silver is the specific binding 

between the cytosine base and Ag+.199,217 This interaction was used to develop Ag+ 

biosensors,218–220 and for making fluorescent silver nanoclusters.221,222 While DNAzymes have 

                                                           
a This chapter is the basis for a published manuscript: Saran R.; Liu, J. A Silver DNAzyme. Anal. Chem. 2016, 88, 4014-4020. 



61 
 
 

 

also been used for Ag+ detection,220 these sensors still rely on the capturing of Ag+ by cytosine 

pairs, and Ag+ does not participate in catalysis. Herein, the first Ag+-specific RNA-cleaving 

DNAzyme named Ag10c, is reported.  

 

2.2 Results and discussions 

 

2.2.1 Selection scheme 

 

As mentioned earlier, in-vitro selection refers to the sequestration of a subset of DNA sequences 

with a desired function from a large library.205 The aim here was to obtain RNA-cleaving 

DNAzymes that work specifically with Ag+. The scheme of selection is shown in Figure 2.1. 

The initial DNA library is approximated to consist of ~1014 unique DNA sequences. 

 

 

Figure 2.1 The schematic representation of the in-vitro selection experiment executed. Ag+ was used to induce 

cleavage. Two PCR steps were used to convert the cleaved sequence back to the original full length, and to 

reintroduce the fluorescent label (denoted by the green circle). The P4 primer has a polymer spacer (denoted by 

the black diamond) to stop the PCR extension, yielding two strands of unequal lengths. The shorter strand was 

harvested for the next round of selection. 
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Each sequence is constituted by 50 random nucleotides (N50) (blue region), flanked by known 

sets of sequences on both 3’ and 5’ side (pink and green region), and a single RNA linkage 

(rA, denotes for ribo-adenine). Since RNA is much more susceptible to cleavage,104 it has been 

artificially introduced as the cleavage site. The fixed or known sequences which form two short 

base paired duplexes, guide the folding of the library and thus, proximate the randomised 

nucleotides with the single RNA cleavage site. The role of metal ions in RNA cleavage has 

been extensively studied.104,129 If certain DNA sequences would utilize Ag+ for the RNA 

cleavage reaction, a fraction of the library (originally length = 119 nucleotide (nt)) would get 

cleaved at the RNA junction by Ag+, and thus become shorter by 28 nt. Therefore, the cleaved 

fragments (91 nt) were harvested using denaturing gel electrophoresis, and amplified by two 

rounds of PCR for the next round of selection. The PCR1 brings the library back to the original 

length, and PCR2 introduces the FAM fluorophore and reconstitutes the cleavage site by 

introduction of rA. 

 

2.2.2 Ag+ selection and sequence analysis 

 

In order to narrow down to an Ag+-dependent RNA-cleaving DNAzyme, the selection scheme 

explained in section 2.2.1 was used. The sequence of the library used is shown in Figure 2.2 A. 

Throughout the selection, the Ag+ concentration was maintained at 10 µM with 1 h incubation 

time. The FAM label allowed the quantification of the cleavage yield at each round, and a 

gradual increase was observed (Figure 2.2 B). However, this increase was quite slow. At round 

6, only ~8 % of the library was cleaved. This indicates that Ag+-dependent sequences did not 
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dominate the library, and non-specific cleavage was competing. The gradually increased 

cleavage however still suggested a small population that might depend on Ag+. To identify this 

population at round 6, instead of the conventional cloning method, deep sequencing was 

resorted to. A total of 54,961 sequences were obtained. Upon aligning the sequences, 874 

families were obtained. The most populated first 200 families, accounting for 88.8 % of all the 

sequences, were examined for their secondary structures using Mfold.41  Interestingly, a few 

families accounting to 1.5 % of the analyzed sequences belong to the Ce13d DNAzyme or its 

variants, which was previously selected in the Liu lab.101,124 About 91 % of the analyzed 

sequences contained a motif of TTCTCACA, which is a signature of another DNAzyme 

discovered in the Liu lab, named EtNa.103 Only 7.5 % of the analyzed sequences appeared 

novel, from which nineteen different trans-cleaving DNAzymes were engineered Figure 2.3 A. 

The enzyme strand binds the substrate using the two duplex regions, and the middle part is the 

catalytic core. 

 

 

Figure 2.2 (A) The sequence of the library used for in-vitro selection with 50 random nucleotides (N50). The 

cleavage site is at the rAG junction (3’ side of rA). (B) Progress of the selection. At each round, 10 µM Ag+ was 

used with 1 h incubation in 50 mM MES, pH 6.0, 25 mM NaNO3 (Buffer A). 
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Figure 2.3 (A) The sequences of the 19 potential Ag+-dependent trans-cleaving DNAzymes from 5 to 3 with the 

hypothetic catalytic loop regions in bold. The catalytic loops are connected to the substrate binding arms. The copy 

number of each sequence is also shown. The Ag10 sequence is in red. (B) Cleavage yield of the above sequences 

in buffer A with 10 µM Ag+ for 1 h. The secondary structures of (C) cis-Ag10 predicted by Mfold right after 

sequencing, and (D) the Ag10 trans-cleaving DNAzyme. The substrate strand is in green and the enzymes in blue/ 

black. 
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The postulated catalytic cores are in boldface, and the rest of the sequences are the substrate 

binding arms (see Table 2.1 under section 2.4.1 for complete DNA sequences). Each of these 

sequences was hybridized with the FAM-labeled substrate and individually tested for activity 

in 10 µM Ag+ (Figure 2.3 B). Significant cleavage after 1 h was observed for only two 

sequences Ag9 and Ag10. Ag10 produced the highest cleavage and was studied further. The 

secondary structure (predicted by Mfold) of the full-length cis-cleaving Ag10 DNAzyme which 

was obtained from the library, and of its designed trans-cleaving version is shown in Figure 2.3 

C and D respectively. 

 

2.2.3 Ag10c DNAzyme 

 

Based on the secondary structure of Ag10, the nucleotides in black which appear redundant 

(Figure 2.3 D) were truncated. This truncated DNAzyme is named Ag10c. The secondary 

structure of the Ag10c DNAzyme is shown in Figure 2.4 A.  Ag10c retained a similar activity 

as the original Ag10 DNAzyme (Figure 2.4 B). To identify an optimal condition for catalysis, 

preliminary characterizations on Ag10c were performed. First, the effect of pH was studied 

(Figure 2.4 C). The cleavage yields at two time points (5 and 60 min) were measured, and higher 

pH produced higher cleavage yields up to pH 8. Therefore, high pH is more favorable for the 

reaction, which might be related to the deprotonation of the 2-OH of the cleavage site RNA 

base, making it a better nucleophile.223 The solubility limit of Ag+ is about 1 mM at pH 9.224 

Therefore, the Ag+ concentration used in the above experiments, was far below this limit, and 

Ag+ precipitation was not a concern here.  



66 
 
 

 

 

Figure 2.4 (A) Secondary structure of the DNAzyme Ag10c. (B) The cleavage yields of Ag10 and Ag10c 

DNAzymes with 10 µM Ag+ at a few time points measured in 50 mM MOPS, pH 7.0, 25 mM NaNO3. The cleavage 

yield of the Ag10c DNAzyme at (A) different pH with 25 mM NaNO3, (B) pH 7.0, 50 mM MOPS and 25 mM 

NaNO3 at various Ag+ concentrations in 5 min. (C) Kinetics of Ag10c cleavage with 10 µM Ag+ at pH 7.5 with 

200 mM NaNO3, yielding a rate of 0.41 min-1.  
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Next, various concentrations of Ag+ were tested at pH 7.0 in 25 mM NaNO3 by measuring the 

cleavage yield after a short reaction time of 5 min. Initially, the yield was low below 1 µM Ag+, 

and then it rapidly increased. The most optimal concentration was 10 µM Ag+ (Figure 2.4 D). 

At even higher Ag+ concentrations, inhibition was observed which might be attributable to Ag+ 

binding to DNA bases non-specifically, and inducing denaturation or misfolding of the 

DNAzyme. Under an optimal condition of pH 7.5 with 200 mM NaNO3 and 10 µM Ag+, the 

cleavage kinetics of Ag10c was measured (Figure 2.4 E). The kinetic profile was fitted to a 

first-order reaction with a rate constant of 0.41 min-1. This is a very fast rate considering Ag+ is 

a monovalent metal ion and no divalent metals were added. For comparison, the Liu lab recently 

reported Na+-specific DNAzyme, which has a rate of 0.11 min-1 with 400 mM Na+. So far, no 

DNAzymes with Na+ alone can achieve such a high rate.103,104,216  

 

2.2.4 Secondary structure analysis 

 

Ag10c has a hairpin, and two long unpaired bulges connecting this hairpin to the two substrate 

binding arms. Such a structure is typical of RNA-cleaving DNAzymes,97,101,103,104 and the 

hairpins usually play only a structural role. Its substrate strand has a single RNA linkage (rA, 

ribo-adenine) that serves as the cleavage site. The enzyme strand binds the substrate via two 

base paired regions. In the presence of Ag+, the substrate is cleaved into two pieces. To confirm 

this secondary structure, a mutation study was executed. To confirm the hairpin structure in the 

catalytic core, a series of mutations were designed which are represented as (a) to (f) in Figure 

2.5 C and their cleavage rates are shown in Figure 2.5 B. The wild-type Ag10c has a rate of 
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0.42 min-1 with 10 µM Ag+ at pH 7.5. A complete deletion of the hairpin (mutant a) drops the 

rate by over 1000-fold. On the other hand, upon changing the base sequence of the stem (mutant 

b), the size and base composition of the loop (mutant c and d), and the length of the stem (mutant 

e and f), the activity remains unchanged. Therefore, this hairpin needs to be there for the proper 

folding of the DNAzyme, but it does not directly participate in metal binding or catalysis.  

 

 

Figure 2.5 (A) Secondary structure of Ag10c with the hairpin region highlighted in brown. (B) Cleavage activity 

of the mutants with modifications to the hairpin region. The rates were determined in 50 mM MOPS, pH 7.5, 200 

mM NaNO3 and 10 µM Ag+. The ~ 1000 fold drop in the activity of the mutant (a) is color coded to be in ‘blue’. 

(C) Secondary structure of the modifications made to the hairpin. 
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2.2.5 Chloride inhibition to prove the requirement of Ag+ 

 

As this is the first case of DNAzyme catalysis using a monovalent transition metal ion, the 

following experiment was performed to confirm its Ag+ requirement. The cleavage yield of 

Ag10c was measured at pH 7.0 for 1 h in the presence of increasing concentrations of NaNO3 

or NaCl (Figure 2.6).  

 

 

Figure 2.6 The cleavage yield of Ag10c in the presence of 10 μM Ag+ and various concentrations of NaCl or 

NaNO3. All the reactions were performed in 50 mM MOPS, pH 7.0 for 1 h. 

 

With NaNO3, the cleavage reached a similar value for all the conditions (red bars), while a 

strong inhibition effect of NaCl was observed when the Cl- was greater than 50 mM (black 

bars). The cleavage went to the background level with more than 100 mM NaCl. The solubility 

product (ksp) of AgCl is 1.8  10-10. Therefore, with 100 mM Cl-, the free Ag+ concentration is 

only ~18 nM.  As will be seen later, the DNAzyme cannot detect Ag+ beyond this level. Since 
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NaNO3 did not decrease the cleavage yield, the inhibition by NaCl cannot be attributed to the 

change in ionic strength. Taken together, the inhibition effect of NaCl is attributable to complex 

formation with Ag+ or forming AgCl precipitation. This experiment provides a strong evidence 

that Ag+ is critical for the activity of the DNAzyme.  

 

2.2.6. Metal selectivity 

 

 

Figure 2.7 Cleavage yield with Ag+ as compared to 10 µM and 100 µM of 20 other metals. All the reactions were 

performed in 50 mM MOPS, pH 7.0 for 1 h. While 100 µM Pb2+ showed a modest cleavage, its rate is >3000-fold 

slower compared to the same concentration of Ag+. 

 

The in-vitro selection was carried out with Ag+ and no negative selections were performed. 

From the purview of Ag+ sensing, metal specificity is also very important. Next, Ag10c was 

tested in the presence of 10 µM and 100 µM of 20 different metal ions (Figure 2.7). Indeed, 

Ag10c is highly specific for Ag+ and it has negligible or no activity in the presence of any other 

metal. Only 100 µM Pb2+ produced a very moderate cleavage of ~8 % after 1 h. The interference 
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by Pb2+ is commonly seen in the DNAzyme field,101,113 possibly due to the close to neutral pKa 

value of the Pb2+ bound water,225 making it ideal for activating the 2-OH nucleophile. Even for 

Pb2+, the rate of cleavage (~ 0.0013 min-1 with 100 µM Pb2+) under the same metal 

concentration is still >3000-fold slower compared to that for Ag+ (0.41 min-1 with 10 µM Ag+). 

For the other metals, the selectivity of Ag10c for Ag+ is even higher, making it potentially an 

excellent probe for Ag+ sensing.  

 

2.3 Summary 

 

In this chapter, in-vitro selection of an Ag+-dependent RNA-cleaving DNAzyme Ag10c, is 

described. A number of significant observations were reported. Firstly, the very first occurrence 

of the isolation of a monovalent transition metal ion-dependent RNA-cleaving DNAzyme has 

been demonstrated. Secondly, the possibility of selecting DNAzymes for soft thiophilic metals 

using just the natural RNA dinucleotide cleavage junction was floated. So far, only a few 

modified DNAzymes have been reported for thiophilic metals, such as the Hg2+-specific 

DNAzyme from the Perrin lab involving a few modified nucleotides.121 A PS modification has 

been introduced at the scissile phosphate to obtain DNAzymes for Cd2+ and Cu2+.98,99,226 Ag10c 

is the first in-vitro selected unmodified RNA-cleaving DNAzyme that cleaves efficiently in the 

presence of a thiophilic metal. Thirdly, the novel DNAzyme Ag10c is shown to achieve a 

catalytic rate of 0.41 min-1 with just 10 µM Ag+, which is the highest reported till now in the 

category of monovalent ion-dependent RNA-cleaving DNAzymes. Fourthly, the DNAzyme 

Ag10c has been testified to exhibit remarkable selectivity for silver ions, amongst all the other 



72 
 
 

 

metal ions tested. This work expands the repertoire of RNA-cleaving DNAzymes and throws 

the much needed spotlight on the role of monovalent ions in DNAzyme catalysis. It also 

provides a strong platform for the development of DNAzyme based silver biosensor which is 

very relevant for environmental and water quality surveillance. 

 

2.4 Materials and methods 

 

2.4.1 Chemicals 

 

The DNA library for in-vitro selection, related primers, and fluorophore/quencher modified 

DNAs were purchased from Integrated DNA Technologies (IDT, Coralville, IA). The 

sequences of DNA used in this selection are listed in Table 2.1. The trans-cleaving enzyme 

strands and their mutants were from Eurofins (Huntsville, AL). Metal ions that were used for 

analysis include silver(I) nitrate, potassium(I) chloride, lithium(I) chloride, thallium(I) chloride,  

lead(II) acetate, magnesium(II) sulfate, manganese(II) chloride tetrahydrate, iron(II) chloride 

tetrahydrate, cobalt(II) chloride hexahydrate, copper(II) chloride dehydrate, zinc(II) chloride, 

calcium(II) chloride, nickel(II) chloride, strontium(II) chloride, cadmium(II) chloride, 

mercury(II) perchlorate, yttrium(III) chloride hexahydrate, gallium(III) chloride, cerium(III) 

chloride, iron(III) chloride hexahydrate. All these salts were purchased from Sigma-Aldrich 

except the iron and silver salts were purchased from Alfa Aesar. The purity of the metals used 

is 99.99 %. Their solutions were made by directly dissolving their salts in Milli-Q water. Tris 

(Hydroxymethyl) aminomethane (Tris), 2-(N-morpholino) ethanesulfonic acid (MES) free acid 
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monohydrate, 4-(2-Hydroxyethyl)piperazine-l-ethanesulfonic acid (HEPES), 3-(N-

morpholino) propanesulfonic acid (MOPS), EDTA disodium salt dehydrate, sodium chloride, 

sodium bromide, sodium iodide and ammonium acetate were purchased from Mandel Scientific 

Inc. (Guelph, Ontario, Canada). Acrylamide/bisacrylamide 40 % solution (29:1), urea, and 10 

X TBE solution were purchased from Bio Basic Inc. SsoFast EvaGreen supermix was 

purchased from Bio-Rad for real-time PCR analysis. T4-DNA ligase, deoxynucleotide (dNTP) 

solution mix, Taq DNA polymerase with ThermoPol buffer, and low molecular weight DNA 

ladder were purchased from New England Biolabs. All metal ions, buffer and gel stock 

solutions were prepared with Milli-Q water. The pH of the buffers was measured with Denver 

Instrument UltraBasic pH meter. 

 

Table 2.1 List of DNA sequences used in chapter 2. 

 

DNA Sequence (5’ – 3’) 

Lib-FAM-

N50 

GGCGAAACATCTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNTAGTGACGGTAAGCTTGGCAC -FAM 

Lib-rA AATACGAGTCACTATrAGGAAGAT 

Splint DNA AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA 

Primer P1 CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA 

Primer P2 GTGCCAAGCTTACCG 

Primer P3 FAM- AAATGATCCACTAATACGAGTCACTATrAGG 

Primer P4 AACAACAACAAC-S-GTGCCAAGCTTACCG 

Primer 

P701 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAG

ACGTGTGCTCTTCCGATCTCTGCAGAATTCTAATACGAGTCAC 

Primer 

P501 

AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTC

CCTACACGACGCTCTTCCGATCTGTGCCAAGCTTACCG 
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Substrate GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

 Ag1 TTTCGCCATCTTAACGCGCACGGCGGAACCCACTAGTGACTCGTGAC 

Ag2 TTTCGCCGGGATTTAGTGACTCGTGAC 

Ag3 TTTCGCCATCTTGGGGGGCGGAAGGGCTGCGCTAGTGACTCGTGAC 

Ag4 TTTCGCCATGCGGAACCCACCTACACGGATGGCTAGTGACTCGTGAC 

Ag5 TTTCGCCATGGAACACACCCGGGGTAGTGACTCGTGAC 

Ag6 TTTCGCGGTGGAGTGACTCGTGAC 

Ag7 CGCCATCCATAGCAGAGCGTCTAGAGATGTAAGTAAATCTTTTCTCAG

CGAGACGAAATAGTGACTC 

Ag8 TTTCGCCATCTTGGCGGACTGGGTGGCTGTGGTAGTGACTCGTGAC 

Ag9 CGCCATCTTTAGGCCTTAAACCCGTTGTAGGATTTGTAAGTCATTACT

CTGAAGACGTATAGTGACTC 

Ag10 CGCCATCTTTAGGTGATTTCCACGATAGAGAAACTATTATGCGGAAA

CAGGGCAGCGTATAGTGACTC 

Ag11 TTTCGCCATCTTGTCCGGTGACTCGTGAC 

Ag12 TTTCGCCATCTTGTCAACGACCGGGCCGGAAACTAGTGACTCGTGAC 

Ag13 TTTCGCCATCTTGAGCATGAAGGCTCCATAAGTCGCGGGATAGTGACT

CGTGAC 

Ag14 CGCCATCTTTTAGAACTTAAATTCACGTAGCGCCAAGGGGTGATATG

AGGCGACCGTGTATAGTGACTC 

Ag15 TTTCGCCATCGCGGTTAATTGAGTCGCACCGACTAGTGACTCGTGAC 

Ag16 TTTCGCACCGACTAGTGACTCGTGAC 

Ag17 TTTCGCCATCTTGCACGGGGCGACATGTGGATTAGTGACTCGTGAC 

Ag18 TTTCGCCATCTTTGGCGTCACAGGATCGCGGTTAGTGACTCGTGAC 

Ag19 TTTCGCCATCGGCGAGATGTGTAGGCCGGGATTTAGTGACTCGTGAC 

Ag10c CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAGCGT

ATAGTGACTCG 
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2.4.2 In-vitro Selection 

 

For this in-vitro selection experiment, the initial DNA library was prepared by ligating two 

pieces of DNA (Lib-FAM-N50 and Lib-rA) with a splint DNA (See Table 2.1). Lib-FAM DNA  

(200 pmol) and Lib-rA DNA (300 pmol) were mixed with splint DNA (300 pmol) first in buffer 

A (50 mM pH 7.5 Tris-HCl, pH 7.5, 10 mM MgCl2). The three strands of DNA were annealed 

at 95 °C for 1 min followed by slow cooling to room temperature. The T4 ligation protocol 

provided by New England Biolabs was followed for the ligation reaction. The ligated DNA 

product was purified with 10 % denaturing polyacrylamide gel (dPAGE) at 650 V for 80 min 

and the DNA was extracted from the gel with buffer B (1 mM EDTA, 10 mM Tris-HCl, pH 

7.0). The extracted DNA library was further concentrated via ethanol precipitation and re-

suspended in 60 μL of buffer C (50 mM MES, pH 6.0, 25 mM NaNO3), which was the selection 

buffer. This DNA was used directly as the DNA library for the first round of selection. For each 

of the subsequent round, the library was generated from PCR. For the In-vitro selection 

experiment, the random DNA pool was incubated with final concentration of 10 μM freshly 

prepared AgNO3 metal ion for 60 min. After incubation, the reaction was quenched with 8 M 

urea and was purified in 10 % dPAGE. A fraction of the selected DNA was extracted from the 

gel and further purified with a Sep-Pak C18 column (Waters). The purified selected DNA was 

then dried in an Eppendorf Vacufuge at 30 °C overnight. The dried DNA was re-suspended in 

60 μL of 5 mM HEPES buffer (pH 7.5). A small fraction of this DNA was amplified by two 

rounds of PCR (PCR1 and PCR2) using thermo-cycling conditions described in section 2.4.3. 
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2.4.3 Polymerase Chain Reaction (PCR) 

 

Throughout the in-vitro selection experiment, each round required three PCR reactions. After 

the library cleavage reaction in the presence of Ag+, the cleaved DNA that was extracted from  

the gel and a Real-Time PCR (RT-PCR) was carried out to quantify the amount of extracted 

DNA and optimize the number of cycles needed to amplify extracted DNA (through PCR1) for 

the next round. The 20 μL RT-PCR reaction mixture contains 1μL of purified DNA template, 

400 nM primer P1 and P2 (see Table 2.1), and 10 μL of SsoFast EvaGreen Supermix (Bio-

Rad). The following thermocycling steps followed: 95 °C for 30 s, 95 °C for 5 s, and 55 °C for 

5 s. During the PCR1 the full length library is regenerated. For this, a 50 μL PCR reaction 

mixture contained the following: 1 μL DNA template, 200 nM of each of P1 and P2, 200 μM 

dNTP mixture, 1× Taq buffer, and 1.25 units of Taq DNA polymerase. The reaction was carried 

out for the number of cycles optimized in RT-PCR. The DNA was amplified using the following 

cycling steps: 94 °C for 5 min; 94°C for 30 s, 55 °C for 30 s, and 72 °C 30 s. A gel/PCR DNA 

fragment extraction kit (IBI Scientific) was used to purify the PCR1 product. The purified 

product was used as template for PCR2. One-tenth of the purified 50 μL product was further 

amplified for 12 cycles using P3 and P4 as the primers (see Table 2.1). A 200 μL PCR reaction 

mixture contained 4 μL of 1:10 diluted template from PCR1, 250 nM each of P3 and P4, 200 

μM dNTP mixture, 1× Taq buffer, and 5 units of Taq DNA polymerase. The thermocycling 

steps mentioned for PCR1 were also used here. The final PCR2 product was purified using 10 

% dPAGE and the single-stranded FAM-labeled DNA was excised from the gel, ethanol 

precipitated and used as the library pool for the subsequent round of selection. 
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2.4.4 Deep Sequencing  

 

To prepare sample for deep sequencing, the round 6 library was subjected to PCR1 as explained 

above in section 2.4.3. The full-length library generated from this step was subjected to another 

PCR reaction so that the Illumina sequencing technology can be used. The forward primer 

(P701) and the reverse primer (P501), each containing a unique index sequence were used (see 

Table 2.1 for complete sequences). The PCR product was purified with 2 % agarose gel and 

extracted using a gel extraction kit (IBI Scientific). The extracted DNA was eluted in 25 µL 

Milli-Q water and the concentration was quantified using a NanoDrop spectrophotometer. The 

sequencing was performed at McMaster Genomics Facility, Mc Master University, Hamilton, 

Ontario, Canada.  

 

2.4.5 Activity assays 

 

For a typical gel-based activity assay, the DNAzyme complex were prepared by annealing the 

FAM-labeled substrate (10 µM) and enzyme (30 µM) in buffer 50 mM MES (pH 6.0, 25 mM 

NaNO3) by heating at 85 C for 1 min and then slowly cooled at room temperature until ~30 

C. The complex was then frozen at -20 C for at least 2 hours. To initiate the reaction at room 

temperature, a final of 0.05 - 200 µM Ag+ or another metal ion (as required) was incubated with 

0.4 μM DNAzyme complex in a total 10 μL reaction mixture in buffer 50 mM Na.Acetate (pH 

5.0 - 5.5) / 50 mM MES (pH 6.0 - 6.5) / 50 mM MOPS (pH 7.0 – 8.0) with salt concentration 

varying from 25 - 200 mM NaNO3, for the required time ranging from 10 s – 8 h. The samples 
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were quenched with 8 M urea at designated time points and run in 15 % dPAGE at 120 V for 

80 min. The gel images were taken with Bio-Rad ChemiDoc MP imaging system. For 

determining the rate of cleavage, the gel band intensities of the cleaved vs. uncleaved substrate 

were quantified and the data obtained were fitted (using Sigma Plot 12.0) according to the first-

order rate equation Yt = Yₒ + a(1-e-kx), where Yt and Yₒ are the cleavage fractions at a given 

reaction time ‘t’ or ‘0’ min, respectively, ‘a’ is a constant i.e. the scaling parameter and ‘k’ is 

the observed rate constant.  
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3. Chapter 3 – Biochemical characterization of the Ag10c DNAzyme for mechanistic 

insightsb

 

3.1 Introduction 

 

In the former chapter, the silver-specific DNAzyme named Ag10c has been introduced and an 

initial screening of its catalytic activity is shown. Herein, the biochemical characterization of 

Ag10c is carried out in more detail. It has been shown previously that at pH 7.5, it has a 

saturated cleavage rate of 0.41 min−1, which makes it faster than most other DNAzymes under 

the same condition. Its high efficiency is surprising because no divalent metal ions are known 

to be involved. Ag+ is a strongly thiophilic metal, and this is the first report that such thiophilic 

metals can activate a non-modified DNAzyme.98,99,121,227 For a greater understanding of its 

intriguing activity, systematic mutations were performed and studied the effect of variation in 

the ionic strength and pH. DNAzymes can be classified into two groups based on their origin 

of metal specificity. The majority of the DNAzymes belong to the first group, where a metal 

cofactor mainly interacts with the scissile phosphate, and it is difficult to extract a well-defined 

metal-binding aptamer to explain their metal specificity. The 8-17 DNAzyme is a classic 

example.228–230 In such cases, metal binding can be probed by the phosphorothioate 

                                                           
b This chapter is the basis for the published manuscripts:  

1 Saran R.; Kleinke K.; Zhou W.; Yu T.; Liu J. A Silver-Specific DNAzyme with a New Silver Aptamer and Salt-Promoted   

Activity. Biochemistry. 2017, 56, 1955−1962.  

2 Saran R.; Yao L.; Hoang P.; Liu J. Folding of the silver aptamer in a DNAzyme probed by 2-aminopurine fluorescence. Biochimie. 

2018, 145, 145-150.  
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modification.123,124,231–233 Interestingly, a few recently discovered DNAzymes contain a metal 

aptamer responsible for metal specificity and thus, are classified under a second group. For 

example, the NaA43 and Ce13d DNAzymes,101,104 both have the same Na+ binding 

aptamer.129,130,234,235 To find out how the metal is interacting in case of Ag10c, phosphorothioate 

modification was incorporated at the cleavage junction, and DMS footprinting experiments 

were carried out. Interesting insights were gained into metal binding, and a new Ag+ aptamer 

was identified as being responsible for Ag+ specificity, which is independent of the well-known 

C-Ag+- C base pair. The Ag10c is the first DNAzyme in which a transition metal aptamer could 

be isolated through DNAzyme selection. Many ribozymes require a metal-dependent 

conformational change before cleavage can occur.236,237 Similarly, metal-dependent folding of 

multiple DNAzymes has been studied.213,229,234,238–242 This folding facet is extremely interesting 

and studying such dynamics can provide insights into the mechanism of DNAzyme catalysis. 

Aptamer binding is also accompanied with a conformational change known as adaptive 

binding.134 Since the aptamer is infused in the Ag10c DNAzyme, Ag+ binding may induce 

folding of the aptamer core. Herein, 2-aminopurine (2AP) was used to probe the folding of the 

Ag10c DNAzyme, and it was observed that indeed, the DNAzyme undergoes Ag+ induced local 

folding. 

 

3.2 Results and discussion 

 

3.2.1 Catalytic activity of Ag10c is not dependent on formation of C-Ag+-C base pair 
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The best known interaction between Ag+ and DNA is the C-Ag+-C base pair.173,243 Therefore, 

it was worth testing if Ag+ functions by this mechanism in Ag10c. Ag10c has only three 

potentially important cytosines (highlighted in red in Figure 3.1 A). The remaining ones are in 

the hairpin and unimportant for activity (section 2.2.4). Each of these three cytosines (i.e. C8, 

C13 and C16) was mutated to A, T, and G. The drop in the catalytic activity of the mutants is 

color coded to be <10 (black), ~10 (orange), ~100 (green), ~1000 (blue) and ~10,000 (red) folds. 

Any mutation to the C8 drops the activity by ~600-fold (Figure 3.1 B). The C13 is slightly more 

tolerable to mutations and the rate drop ranges from 20- to 400-fold, while any change to the 

C16 drops the rate by at least 1000-fold (Figure 3.1 B).  Therefore, all these cytosines are critical 

for activity.  

 

 

Figure 3.1 The secondary structure of (A) the Ag10c DNAzyme. The cytosine bases in the loop are marked in red, 

the thymines in cyan, and the rest of the purine bases in blue. Each base in the loop is numbered from 1 to 17. 

Cleavage activity of the mutants with modifications to (B) the cytosines in the loop, and (C) the other nucleotides. 

The rates were determined in 50 mM MOPS, pH 7.5, 200 mM NaNO3 and 10 µM Ag+. The drop in the activity of 

the mutants is color coded to be <10 (black), ~10 (orange), ~100 (green), ~1000 (blue) and ~10,000 (red) folds. 

 

While this mutation study confirms the crucial role of these cytosines, it argues against C-Ag+-

C base pairing. If C-Ag+-C were required for activity, mutating one of the C to G should 
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maintain the base pair and thus activity. However, all the C-to-G mutations inhibit the activity. 

Furthermore, C can also bind Ag+ together with T.244 There are two thymines in the enzyme 

loop (highlighted in cyan in Figure 3.1 A). For the same reason mentioned above, it is unlikely 

that C-Ag+-T base pairs are formed, since otherwise the C-to-A mutation should be able to 

maintain the activity (Figure 3.1 B). Altogether, this indicates that the role of Ag+ is more 

sophisticated than simple mismatch stabilization.126 It was recently reported that Ag+ can also 

be inserted between two guanines, and such binding does not disrupt the G-C Watson−Crick 

base pairing.178 It has been reviewed in detail in section 1.5.2 that Ag+ is capable of coordinating 

to all the natural bases. The exact way of Ag+ binding in Ag10c remains unclear, only the 

formation of most well-known C-Ag+-C(T) base pairs is ruled out by this point.  

 

3.2.2 Critical residues for the catalytic activity 

 

From the cytosine mutation studies, it is apparent that all three C residues present in the Ag10c 

loop are critical for its activity (section 3.2.1). To decipher which of the other loop nucleotides 

play an important role, A-to-G, G-to-A, and T-to-C mutations were tested for each of them 

(Figure 3.1 C). The ability to tolerate purine-to-purine or pyrimidine-to-pyrimidine mutations 

indicates the possibility of a structural role of the bases. It was found that the mutations to the 

T1, G6, A7 and A14 do not affect the activity of the DNAzyme as they show less than 10-fold 

decrease in the rate min-1. Further deletion experiments indicated that the presence of T1 is 

critical, with its deletion conferring a decrease of ~ 1000 fold in the activity. Deleting G6A7 

together decreases the activity only by 10-fold and deleting A14 does not affect the activity. 
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Apart from these four nucleotides, mutations to the rest of the loop nucleotides were more 

detrimental. The T5C, G10A and G15A mutation showed ~ 10 fold diminished activity. The 

activity was lowered by about ~ 100 fold by A9G mutation. The G11A and G12A brought the 

activity down by ~ 1000 fold while the A2G, G3A, G4A and G17A reduced the activity by ~ 

10,000 fold. Overall, Ag10c is a well-defined enzyme and most of the nucleotides cannot be 

randomly changed.  

 

3.2.3 The Ag10c binds two Ag+ ions cooperatively 

 

After confirming the critical nucleotides in the enzyme loop, the effect of Ag+ was studied. 

Ag10c’s cleavage kinetics was measured at various Ag+ concentrations. It was found that all 

the samples followed a first order kinetics (Figure 3.2 A) and the cleavage rate for each 

concentration was calculated. Below 1 µM Ag+, the activity is very low. With increase in [Ag+], 

the DNAzyme quickly activates, reaching saturation as [Ag+] approaches >5 µM (Figure 3.2 

B). Upon plotting the rate (min-1) of Ag10c versus the respective Ag+ concentrations, a 

sigmoidal curve was obtained (Figure 3.2 B). This sigmoidal curve suggests multiple Ag+ ions 

binding cooperatively to the DNAzyme. To calculate the number of Ag+, a double log plot was 

made with  <5 µM Ag+ (Figure 3.2 C), which exhibited a slope of 1.9, suggesting that the 

DNAzyme binds two Ag+ ions. The Ag+ concentration was limited at 5 µM because the 

cleavage activity approaches saturation beyond this concentration. With a few exceptions of 

lanthanide ions,123,125 most DNAzymes only use one metal for catalysis. In most DNAzymes, 

the metal interacts with the scissile phosphate as probed by phosphorothioate 
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modification.98,99,124,245 However, Ag+ is a highly thiophilic metal and its affinity with the 

normal DNA backbone phosphate is likely to be very low. Therefore, as discussed in detail in 

the further sections, Ag+ might exert a completely different function in the Ag10c DNAzyme. 

 

 

Figure 3.2 (A) Kinetics of the Ag10c DNAzyme in presence of various concentrations of Ag+. The data is fit using 

the first-order kinetics model. (B) Cleavage rate of the Ag10c as a function of Ag+ concentration, exhibiting a 

sigmoidal curve. (C) The double log plot for the same data in (B) at low Ag+ concentrations. A slope of 1.9 suggests 

binding of two Ag+ ions. The buffer contained 50 mM MOPS, pH 7.5, and 200 mM NaNO3. Color code of Ag+ 

concentration (µM): 0.1 (green), 0.5 (cyan), 1 (purple), 2 (red), 3.5 (orange), 5 (pink), 7.5 (grey) and 10 (blue).  

 

3.2.4 Salt promotes Ag10c activity 

 

Since DNA is a polyanion, salt concentration might have a strong influence on its interaction 

with Ag+. So to further understand this DNAzyme, the buffer conditions were changed. The 

Ag+ concentration was fixed to be 10 µM, and the rate was measured as a function of NaNO3 

concentration (Figure 3.3 A). Interestingly, NaNO3 significantly promotes the Ag10c activity 

by ~10-fold. On plotting the rate (min-1) versus Na+ concentration, an apparent Kd of 87.6 mM 

Na+ was obtained. A double log plot was made (Figure 3.3 B), yielding a slope of 1.26. 
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Therefore, one Na+ interacts with the enzyme to promote its cleavage activity. To test whether 

this salt-accelerated activity is unique, the cleavage % of a few other RNA-cleaving DNAzymes 

was measured, including the 17E with Pb2+,111 Lu12 with Ce3+,122 and Tm7 with Tm3+.123  

 

 

Figure 3.3 (A) The activity of the Ag10c DNAzyme with increasing concentration of NaNO3 in the presence of 

50 mM MOPS and 10 µM Ag+ at pH 7.0. (B) The log of rate of Ag10c rises linearly with increasing log of [Na+] 

up to around 300 mM [Na+]. Inset: the low Na+ concentration data fit to a straight line with a slope of 1.01. (C) 

Cleavage % of the Lu12, 17E and Tm7 DNAzymes with 1 µM Ce3+, 1 µM Pb2+ and 10 µM Tm3+ respectively in 

30 min in the presence of various concentrations of NaNO3 and 50 mM MOPS pH 6.0. Activity of Ag10c in 

increasing concentrations of (D) NaNO3, LiNO3, KNO3, and (E) MgSO4 in the presence of 50 mM MOPS, pH 7.5 

and 10 µM Ag+. 

 

However, they were all inhibited by salt (Figure 3.3 C). Salt has a number of effects on 

DNAzyme catalysis. First, at very low salt concentrations, salt is often required to stabilize the 
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DNAzyme complex to ensure that its melting temperature is above room temperature. 

Approximately 20 mM Na+ is often sufficient for this purpose. Second, salt can screen the 

electrostatic interaction between metal ions and DNA, which can explain its inhibition effect in 

Figure 3.3 C. When the stability of the DNAzyme complex is no longer a limiting factor for 

activity, the charge screening effect may take over. Finally, at even higher salt concentrations 

(e.g., ∼1 M), salt ions may influence the structure of water and the solubility of biopolymers.246 

The slightly reduced activity of Ag10c in Figure 3.3 A at >500 mM Na+ might be related to 

this. This salt dependent study also suggests that the mechanism of Ag10c is indeed different 

from those of most previously reported DNAzymes. This finding has also led us to question 

whether Na+ is a specific requirement for the activity of Ag10c. For example, a previously 

reported lanthanide-dependent DNAzyme named Ce13d actually requires both a lanthanide and 

Na+.101,129 A few recently reported DNAzymes work with Na+ alone but not with other group 

1A metals.103,104 To study whether the Ag10c is also specific for Na+, its activity was measured 

in Li+ or K+ with 10 µM Ag+ (Figure 3.3 D). The Ag10c is active in all these salts. Therefore, 

these group 1A metals do not appear to play a specific chemical role (unlike in the case of 

Ce13d). They only act as a general salt to raise the ionic strength. At the same metal 

concentration, Li+ promoted the highest cleavage rate among these three group 1A metals. This 

might be attributable to its highest charge density to allow the strongest electrostatic interaction 

with DNA. In RNA cleavage, metal ions might play the following roles. First, the metal bound 

water after deprotonation might act as a general base to help deprotonate the 2-OH nucleophile. 

The second role is to interact with the scissile phosphate and stabilize the transition state 

phosphorane, which is highly negatively charged. This makes it worth suspecting that the role 
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of Na+ (or Li+, K+, or Mg2+) here is the latter since it is unlikely for the thiophilic Ag+ to play 

such a role. Ag+ is a very soft metal and has low affinity with the phosphate. The fact that Li+ 

works the best also supports this hypothesis. Monovalent Na+ does not bind to phosphate 

tightly, and it needs a few hundred mM to achieve the optimal activity. For comparison, most 

divalent metal ions such as Mg2+ work optimally at a concentration ~10 mM,247–250 while 

trivalent lanthanides work optimally even at nM concentrations due to a very strong phosphate 

binding.123,125 To further support the hypothesis of phosphate binding, Mg2+ was used in 

addition to 10 μM Ag+ (Figure 3.3 E). Indeed, ∼5 mM Mg2+ could accelerate the Ag10c activity 

to the same extent as that seen with 200 mM Li+. Therefore, group 1A metals are not absolutely 

required, and their charge screening role can be played by a group 2A metal, as well. Taken 

together, it was concluded that Ag+ does not interact with the scissile phosphate of Ag10c (as 

discussed in section 3.2.7, it interacts with some nucleobases of a more covalent nature). 

Instead, the phosphate is activated by the buffer salt and thus, salt does not compete with Ag+ 

for its binding to the DNAzyme. Most other DNAzymes rely on the metal cofactor binding to 

the scissile phosphate via electrostatic interaction, and therefore, salt can compete and inhibit 

the reaction in their case.  

 

3.2.5 Effect of pH on Ag10c activity 

 

After studying the effect of salt, the mechanism was further probed by measuring the rate of 

Ag10c with varying pH. Below pH 5.5, the rate is <0.01 min−1, and thus, pH of <5.5 was not 

measured. The cleavage rate increases with pH and starts to reach saturation as the pH 
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approaches 8 (Figure 3.4 A). The rise in log (rate min-1) increases linearly with pH between 6.0 

and 7.0 with a slope of ∼1 (Figure 3.4 B).  

 

 

Figure 3.4 Log of the rate of Ag10c is plotted against (A) a wide pH rage and (B) a narrow linearly rising pH 

range. The pH- log (rate) slope is calculated to be 1.15.  The rates are calculated in presence of 50 mM MOPS/MES, 

200mM NaNO3 and 10 µM Ag+. 

 

This suggests a single deprotonation step in the cleavage. This trend has been seen typically in 

most RNA-cleaving DNAzymes. The first pKa of Ag+ is around 10.0, and thus in the pH range 

tested Ag+ is a fully hydrated ion, and the rate change is unlikely to be related to the hydrolysis 

of Ag+. A critical step in the RNA cleavage reaction is the nucleophilic attack of the scissile 

phosphate by the 2'-OH nucleophile. The pH profile probed here is likely due to a nucleobase 

with a shifted pKa (e.g., by interacting with Ag+) acting as a general base and helping in the 

deprotonation of the 2'-OH to make it a stronger nucleophile, which has been commonly seen 

in ribozymes.102 
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3.2.6 Phosphorothioate (PS) modification to probe metal binding in Ag10c 

 

 

Figure 3.5 (A) Structure of the cleavage site dinucleotide junction in PO, Rp, and Sp substrates. The kinetics of 

Ag10c cleavage of (B) the PO and PS (mixture of Rp and Sp) substrates and (C) separated Rp and Sp substrates. (D) 

Gel image showing that, upon incubation of the PS substrate with 10 μM Ag+ for 1 h, only 2 % of the PS substrate 

was cleaved. (E) After various periods (0, 2, 10, 30, and 60 min) of incubation of the PS substrate with Ag+, the 

sample was treated with β-mercaptoethanol. Then the product was hybridized with the Tm7 DNAzyme. The 

cleavage yield after 1 h with 10 μM Er3+ is plotted here [buffer consisting of 50 mM MOPS (pH 7.5) and 50 mM 

NaNO3]. 

 

Further, the metal binding was probed by introducing a phosphorothioate (PS) modification at 

the scissile phosphate. PS refers to replacing one of the non-bridging oxygen atoms in the 

phosphate by sulfur. Once a PS is introduced, the phosphorus becomes a chiral center with two 

stereoisomers (called Rp and Sp).The schematic of the cleavage site dinucleotide junction in 
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normal phosphodiester (PO), Rp and Sp substrate is shown in Figure 3.5 A. With 10 µM Ag+ 

and 200 mM NaNO3, the PS substrate has only approximately half of the cleavage yield of the 

normal PO substrate (Figure 3.5 B), while the cleavage rate (0.37 ± 0.02 min-1) was quite 

similar to the PO substrate (0.42  0.01 min-1). This lower cleavage yield of the PS substrate 

suggests that only one of the isomers is cleavable, which is quite typical for cleavage of RNA 

by ribozymes and DNAzymes.124,231–233 Then, the two isomers were separated, following 

previously established protocols,98 and their cleavage yield was separately measured (Figure 

3.5 C). The cleavage yield was significantly higher with the Sp substrate than with the Rp 

substrate, which again is consistent with all previous reports.124,231–233 Their average yield also 

agrees with that of their mixture (Figure 3.5 B, green trace). A careful examination of the kinetic 

profile indicates that the Rp substrate has an initial fast cleavage (but only up to ~15 % yield) 

followed by a much slower rise, while the Sp substrate has a more normal kinetic profile. 

Therefore, the cleavage of the Rp substrate was fitted with a two-rate model (R2 = 0.99), yielding 

a faster rate of 1.17  0.22 min-1 and a slower rate of 0.037  0.03 min-1. Note that this faster 

rate may be an overestimation because of its very low cleavage yield. The Sp substrate was 

fitted with a normal single-rate of 0.37  0.01 min-1 (R2 = 0.94). Typically, for such PS-modified 

experiments, a thiophilic metal such as Cd2+ or Mn2+ is used to rescue the activity of the inactive 

isomer (e.g., the Rp substrate). However, this system requires Ag+, which has a thiophilicity that 

is much stronger than that of Cd2+ or Mn2+. In this sense, this system is already under the rescued 

condition, and the thiophilicity of Ag+ can cause complication in data analysis.The initial fast 

phase of the Rp substrate can be rationalized as follows. Due to the extremely strong 

thiophilicity of Ag+, the following reactions can take place: 1) direct cleavage of the PS 
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substrate, 2) desulfurization of the substrate from PS to PO, which is then cleaved by the 

DNAzyme, and 3) direct cleavage by the DNAzyme.251–254 Note that factors 1 and 2 are 

impossible for Cd2+ or Mn2+ under ambient conditions but take place with Hg2+, Tl3+, and Ag+. 

To measure the amount of Ag+-induced direct cleavage, 0.4 μM PS substrate was incubated 

with 10 μM Ag+ for 1 h, where only 2 % direct cleavage was observed (Figure 3.5 D). Next, to 

measure the amount of Ag+-induced desulfurization, PS substrate was again incubated with 

Ag+, but for various time periods of ≤60 min. At each time point, an aliquot was taken out and 

the reaction was stopped by chelating Ag+ with 1 mM β-mercaptoethanol. Then, the reaction 

mixture was annealed with the Tm7 DNAzyme followed by the addition of 10 μM Er3+. The 

purpose was to examine the kinetics of desulfurization by Ag+. The amount of cleavage by Tm7 

after 1 h was measured (Figure 3.5 E). As the Tm7 cleaves only the 3′−5′ PO substrate but not 

the PS substrate,123 the measured cleavage suggests that Ag+ desulfurizes the PS substrate into 

the cleavable PO substrate mainly within the first 2 min, but there is a slow yet noticeable rise 

in the level of desulfurization, taking place at least until 1 h. Therefore, the slower phase in 

Figure 3.5 C (red dots between 10 min and 4 h) can be attributed to the slow phase of 

desulfurization followed by Ag10c DNAzyme cleavage. The data indicates that at least 35 % 

of the PS was desulfurized to the 3′−5′ PO substrate in 1 h, and a similar amount should 

isomerized to the non-cleavable 2′−5′ PO substrate.252 Considering that the cleavage yield by 

the Tm7 is not 100 % in 1 h, it can be reasoned that most of the PS substrate was desulfurized 

by Ag+. Note that during desulfurization, the concentration of Ag+ is also decreased, and this 

also reduces the cleavage rate. At the same time, Ag+ can act as a rescue metal to bind to the 

sulfur, and this can also contribute to the cleavage. These overlapping factors make quantitative 
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dissection of cleavage contributions nearly impossible. These mechanisms can also act upon 

the Sp substrate. The fact that its cleavage yield is much higher than that of the Rp substrate 

indicates that the Sp substrate can be cleaved with a mechanism similar to that of the normal PO 

substrate. It has reached only 60 % cleavage yield likely also because of the desulfurization and 

isomerization to the inactive 2′−5′ substrate. While quantitative discussion is obscured by the 

strong thiophilicity of Ag+, the higher yield of the Sp substrate can still allow to assign the metal 

binding site because it is known that only one metal is involved in phosphate binding here. 

Because the binding of Ag+ to the scissile phosphate is already ruled out, it can be reasoned that 

Na+ is used by the DNAzyme for this purpose. This is also consistent with the study mentioned 

above that used Li+, K+, and Mg2+ based on their charge density. These metals interact with the 

pro-Rp oxygen in the phosphate. The effect of monovalent metals in the HDV ribozyme was 

recently studied, where the cation charge density was also articulated.232 

 

3.2.7 A silver aptamer embedded in Ag10c 

 

All the above experiments described above indicate that Na+ interacts with the scissile 

phosphate. As such, the role of Ag+ still remains elusive. Therefore, it was hypothesized that 

the DNAzyme loop might be a silver aptamer. To confirm this, DMS foot printing was carried 

out. For this purpose, the DNAzyme complex in Figure 3.6 A was used, and the enzyme strand 

was fluorophore labeled instead of the substrate. DMS methylates the N7 position of guanine, 

conferring instability. This results in opening of the purine ring that is vulnerable to 

displacement and β-elimination by a base such as piperidine.255 If a guanine is protected by 
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folding into a particular structure (i.e., N7 inaccessible to DMS), it might be protected from 

methylation and thus cleavage. This does not mean that the guanine has to directly participate 

in metal coordination. As long as the structure is folded and the N7 position is inaccessible, a 

protection should be observed. If a treated DNA is analyzed using PAGE, each exposed guanine 

in the DNA would produce a band in the gel. Upon titration with an increasing concentration 

of Ag+, G3, G4, G6, G10−G12, and G15 were found to be more and more protected, while the 

two guanines in the hairpin stem (GS1 and GS2) and G17 remain unaffected (Figure 3.6 C). 

Strong participation of G3, G4, G11, and G12 in the binding pocket of Ag+ also corresponds 

well with the >1000-fold decrease in activity upon their mutation and also indicates that they 

may be directly involved in Ag+ binding. It is interesting to note that G17 was not protected 

from DMS but is critical for the catalytic activity of Ag10c (>1000-fold decrease in rate upon 

mutation), suggesting it might have a direct role in catalysis but might not be part of the aptamer. 

When other metal ions were used, no such protection was observed, further supporting the 

specific binding to Ag+ (Figure 3.6 D). This experiment not only indicates the existence of a 

highly specific Ag+ aptamer but also supports the idea that it is the role of Na+ rather than Ag+ 

to interact with the scissile phosphate. The protection of the guanines was quantitatively 

measured as a function of silver concentration (Figure 3.6 B). The measured Kd values range 

from 45 to 65 μM Ag+ for the G residues involved in the binding pocket. This Kd is higher than 

that measured from its cleavage activity of ∼4 μM Ag+ in Figure 3.2 B. This can be attributed 

to the different DNAzyme concentrations used for these assays. Only 400 nM Ag10c complex 

was used in the gel-based activity assay, while 4 μM Ag10c was used here in the foot printing 
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experiment. The 4 μM DNAzyme would require at least 8 μM Ag+ to bind, thus leading to a 

much higher apparent Kd.  

 

 

Figure 3.6 (A) The Ag10c DNAzyme complex used for DMS foot printing with a FAM labeled in the enzyme 

strand. (B) The relative cleavage of the G residues shown to be involved in the binding pocket of Ag+ by the DMS 

experiment plotted on the y-axis against the increasing Ag+ concentration on the x-axis. The band intensity for 

each G residue at 0 Ag+ concentration is taken as 1 and as the [Ag+] increases the reducing band intensity is 

respectively normalised. Gel images of the Ag10c DNAzyme in presence of (C) increasing concentration of Ag+ 

and (D) 165 µM of different metals in the DMS foot-printing experiment.  The above experiments were done in 

the presence of 200 mM NaNO3. 
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Also, an apparent Kd of ∼200 nM Ag+ was measured from an Ag10c-based fluorescent 

biosensor (Figure 4.2 B).256 In that case, the signal was generated from substrate cleavage 

followed by release of the cleaved fragment, and the Ag10c concentration was only 50 nM. 

These differences could have led to a much lower Kd for the sensor. 

 

3.2.8 Ag10c DNAzyme undergoes Ag+ induced local folding 

 

The Ag10c contains a well-defined Ag+ binding aptamer as indicated by DMS foot printing. 

Since this aptamer is infused with the Ag10c DNAzyme, Ag+ binding may induce folding 

within the whole DNAzyme. Herein, 2-aminopurine (2AP) was used to probe its local folding 

in the presence of Ag+.  

 

The Ag10c DNAzyme and 2AP labeling. 2-aminopurine (2AP) is a fluorescent adenine analog 

and its emission is strongly affected by the local base stacking environment.257 2AP has been 

extensively used to study the folding of ribozymes and DNAzymes,234,257–260 as well as 

aptamers.261–263 While adenine is essentially non-fluorescent, free 2AP bases are strongly 

fluorescent. When embedded in a DNA sequence, its fluorescence is strongly quenched and the 

extent of quenching is affected by its local base stacking environment.257 The structures of the 

bases adenine and 2-aminopurine are shown in Figure 3.7 B and C respectively. The Ag+-

specific Ag10c DNAzyme complex contains a substrate strand and an enzyme strand.256 The 

typical substrate contains a single adenine RNA linkage (rA, Fig. 3.1 A) serving as the cleavage 

site. The enzyme strand has a hairpin flanked by two loops forming a pocket. In the presence 
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of Ag+, the substrate is cleaved into two pieces. Based on the prior cleavage activity assays, the 

Ag10c binds two Ag+ ions cooperatively via an aptamer pocket for the cleavage reaction.171 

The metal binding property is usually unaffected by deleting a single oxygen atom. To probe 

its folding, the Ag10c was labeled with 2AP at three different positions (in the substrate strand 

and in the enzyme strand) one at a time (Figure 3.7 A). For all the 2AP experiments, the RNA 

bearing substrate was replaced by its uncleavable full-DNA analog. This was to avoid cleavage 

during metal titration, and this method has been commonly used for studying the folding and 

structure of other DNAzymes.238,264  

 

 

Figure 3.7 (A) The secondary structure of the Ag10c DNAzyme highlighting a hairpin and two loops in the 

enzyme strand. Three adenines are highlighted, each of which was replaced by a 2AP base (one at a time). The 

structures of the bases (B) adenine and (C) 2AP. 

 

Labeling a 2AP at the cleavage site. Before carrying out any 2AP related studies in the Ag10c 

DNAzyme, the effect of Ag+ on the emission of the free 2AP base was monitored (Figure 3.8 

A). A progressive decrease in the 2AP fluorescence was observed by titrating Ag+, reaching 80 

% quenching with 100 M Ag+.46 Thiophilic Hg2+ and Tl+ were also studied. Hg2+ quenched 
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the 2AP fluorescence like Ag+, while little quenching occurred with Tl+. After studying the free 

2AP base, 2AP was labeled in the Ag10c DNAzyme. An obvious position to probe for Ag+-

induced folding was the cleavage junction, as based on previous 2AP studies for another 

DNAzyme.234 Therefore, the cleavage site adenine was replaced with a 2AP base (Figure 3.7 

A), and Ag+ was titrated into the complex. As shown in Figure 6.8 B, Ag+ increased the 

emission of the 2AP in a concentration dependent manner. Since free 2AP bases are quenched 

by Ag+ in this concentration range, this increase is attributable to DNAzyme folding (e.g. 

relaxing of the local base stacking of the 2AP). By plotting the 370 nm emission peak intensity 

against Ag+ concentration, 80 % fluorescence enhancement was observed (Figure 6.8 C). It is 

interesting to note that the titration curve appears sigmoidal, indicative of cooperative binding 

of multiple Ag+ ions. The binding curve was fitted to the Hill equation, and a Hill coefficient 

of 3.64 was obtained. This Hill co-efficient is larger than 2, which was determined from 

activity-based assays.171 This might be related to the quenching effect (e.g. observed in Figure 

6.8 A), overlapping with the enhancement leading to this difference. It is noticeable that the 

apparent dissociation constant, or Kd, measured by the 2AP was ~50 M Ag+, which was higher 

than that from the cleavage activity assay (~4 M). The DNAzyme sequences in these assays 

were very similar and the use of non-cleavable 2AP labeled substrate is unlikely to significantly 

affect metal binding based on another DNAzyme study done in the Liu lab.234 This difference 

in Kd was attributed to the different DNA concentrations used for each assay. The 2AP assay 

here used 1 M DNAzyme due to its relatively weak fluorescence, while a 400 nM DNAzyme 

was used in the activity assays. The apparent Kd was even lower (e.g. ~200 nM Ag+) when a 
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fluorescent sensor was used at only 50 nM. However still, it cannot be ruled out that labeling 

the 2AP has affected Ag+ binding at this moment.  

 

 

Figure 3.8 (A) The relative fluorescence of free 2AP base (1 µM) at 370 nm against the increasing concentration 

of Ag+, Tl+ or Hg2+. (B) The fluorescence emission spectra of the Ag10c DNAzyme complex with a 2AP labeled 

at the substrate cleavage site. The rise in the relative fluorescence at 370 nm of DNAzyme complexes with the 

2AP-labeled substrate hybridized to (C) the wild-type Ag10c, (D) the A2G, and (E) the G4A mutants with 

increasing [Ag+] in buffer (50 mM MES, pH 6.0 with 50 mM NaNO3). 

 

Previous biochemical assays indicated that most nucleotides in the enzyme loops are critical for 

cleavage activity, and mutating them into other nucleotides negated the activity (Figure 3.1 

C).171 To test if folding and activity are related, two inactive mutants were tested as controls: 

A2G and G4A (see Figure 3.7 A for their positions). Interestingly, compared to the 80 % 

fluorescence rise for the wild-type, both mutants raised fluorescence only by ~20 % (Figure 3.8 
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D and E), indicating that the cleavage junction was still in a much more confined and stacked 

state after adding Ag+. This further suggests that the folding at the cleavage site was indeed 

affected by such mutations, which might be a reason for their loss of cleavage activity. At the 

same time, these controls also indicated that the observed folding in the wild-type Ag10c was 

specific to Ag+ binding.  

 

Modulating local base stacking environment. Based on the data in Figure 3.8 C, 80 % 

fluorescence enhancement was achieved with 80 µM Ag+. Next, it was tested if the fluorescence 

signal could be increased further by modulating the local environment around the 2AP label.  

 

 

Figure 3.9 (A) The kinetics of substrate cleaved by the wild-type Ag10c DNAzyme and the three mutants (T18A, 

T18G, and T18C) in 50 mM MOPS, pH 7.5, 200 mM NaNO3. (B) The fluorescence emission spectra of the 2AP 

modified substrate alone and in complex with T18A, T18G, T18C and Ag10c enzyme strands, in the absence of 

Ag+. (C) The relative rise in fluorescence of the 2AP emission at 370 nm for these mutants upon adding increasing 

[Ag+] in buffer (50 mM MES, pH 6.0 with 50 mM NaNO3). 

 

Based on Mfold predictions,265 the cleavage site adenine (or 2AP in the current system) might 

base pair with the T18 residue of the enzyme strand (Figure 3.7 A). Note that both 2AP and 

adenine can pair with thymine.257 This base pairing may confer a restriction on the accessibility 
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as well as flexibility of the 2AP. To test the importance of this putative base pair, the T18 

residue in the enzyme strand was mutated to A, G or C, respectively. Before 2AP fluorescence 

was measured, the cleavage activity of each mutant was tested (Figure 3.9 A). In this case, the 

normal cleavable substrate was used. All the mutants remained active and the activity followed 

the order of the wild-type (~0.4 min-1) > T18G (0.092 min-1) > T18A (0.04 min-1) > T18C (0.02 

min-1). Although the activity dropped slightly with the mutants (e.g. maximal dropping only 

20-fold), they could still bind silver and thus the subsequent 2AP studies were biochemically 

relevant. Next, each mutant was respectively hybridized to the 2AP-modified substrate. 

Compared to the free substrate, all the DNAzyme complexes had lower initial fluorescence 

before adding Ag+. This indicates that the 2AP was more confined upon by hybridization, 

suggesting successful formation of DNAzyme complexes. Among the four DNAzyme 

complexes, the T18G mutant gave the highest initial fluorescence in the absence of Ag+, 

suggesting that its 2AP was in the most relaxed state (least stacking). For the other three, their 

initial fluorescence intensities were similar to one another (Figure 3.9 B). It is interesting to 

note that the initial fluorescence of the T18A mutant was similar to that of the wild-type Ag10c 

rather than that of T18G. This does not comply with the 2AP base pairing affinity ranking i.e. 

‘T > C > A ≈ G’.266,267 Therefore, the predicted Watson-Crick base pairing of T18 and the 2AP 

was doubtful. The T18 nucleotide might have other roles rather than forming a base pair with 

cleavage site adenine. Upon titrating the mutant complexes with Ag+ (Figure 3.9 C), the T18A 

and T18G mutants saturated at around 30 μM Ag+, with a maximum increase of 68 % and 37 

%, respectively. On the other hand, the T18C exhibited a 25 % decrease in fluorescence. It is 

quite striking that none of these mutants exhibited a common sigmoidal trend, typical of 
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multiple Ag+ binding in the wild-type. It is interesting to note that the data for the T18G mutant 

(Fig. 3.9 C, green dots) had a breaking point near 40 mM Ag+, which might be attributable to 

misfolding at high Ag+ concentrations. Therefore, only the initial rising part of the data was 

fitted for it. It appears that any mutation made to T18 had an adverse effect on the activity and 

completely changed the pattern of Ag+ binding and folding. This data reinforced the reasoning 

for the incompliance of the initial fluorescence of T mutants with the 2AP base pairing affinity, 

and that the T18 remains unpaired in the absence of Ag+. It suggests that the role of T18 is 

stabilization of the interaction between Ag+ and its aptamer, rather than base pairing with a 

cleavage site adenine. Addition of Ag+ facilitates T18’s involvement in the aptamer binding 

pocket, and relaxes base stacking at the cleavage site. On the other hand, mutations to T18 

disrupted the typical aptamer pocket formation, and Ag+ bound the mutated DNAzymes 

differently. Overall, the best fluorescence enhancement in the wild-type Ag10c. This is quite 

different from the Ce13d DNAzyme recently studied, where mutations to the same thymine has 

suggested its base pairing is with the 2AP.234 Also in Ce13d, the mutations to this thymine 

position has improved the amount the fluorescence increased, from 34 % for the wild-type to 

130 % in the best mutant upon adding Na+.229 

 

Probing local folding by labeling the enzyme strand. In all the above studies, the 2AP label 

was placed at the substrate cleavage site. However, it was intriguing to study the folding of the 

enzyme loop too. The previous biochemical mutation assays indicated that the A2G mutation 

decreased the activity by ~10,000-fold, and the A9G mutation decreased the activity by ~100-
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fold.171 Since these two positions are important for activity, each of these adenines was replaced 

with 2AP, one at a time (Figure 3.7 A).  

 

 

Figure 3.10 (A) The kinetics of the Ag10c DNAzyme and its mutants bearing A2P modifications at the A2 or A9 

positions at pH 7.5 in the presence of 200 mM NaNO3 and 10 µM Ag+. The fluorescence emission spectra the (B) 

A2 modified and (C) A9 modified Ag10c complex in the presence of 0, 10, 20 and 50 µM Ag+. The relative 

increase in the fluorescence at 370 nm against the increasing concentration of (D) Ag+, and (E) Cd2+, Pb2+, Zn2+, 

Tl+, Hg2+ and Cu2+ with the A9-d2AP-Ag10c DNAzyme complex in 50 mM MES, pH 6.0, 50 mM NaNO3.   

 

First, the activity of the 2AP-modified enzymes were tested using the normal RNA containing 

substrate. The A2-to-2AP mutant had negligible activity, while the A9-to-2AP mutant was very 

active with a rate of ~ 0.22 min-1, which is comparable to that of the wild-type (~0.4 min-1, 

Figure 3.10 A). This indicates that the A2 site might directly participate in catalysis or Ag+ 

binding, while the A9 site does less so. Then, DNAzyme complexes of the modified Ag10c 
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strands with the unlabeled full-DNA substrate were prepared. Upon addition of Ag+ to the A2-

to-2AP complex, little change in fluorescence occurred (Figure 3.10 B). This result corresponds 

well with the ~10,000-fold decrease in cleavage kinetics of this mutant and could thus be 

attributed to the loss of Ag+ binding to the DNAzyme, due to the 2AP modification. The A9-

to-2AP sample showed a noticeable fluorescence rise upon Ag+ titration (Figure 3.10 C). 

Therefore, labeling 2AP at this position did not affect its folding or activity. This motivated us 

to perform a more careful titration with this sample. A progressive increase in fluorescence was 

observed, with a final increase of ~ 140 % saturating at around ~ 40 µM Ag+ (Figure 3.10 D). 

This suggests that addition of Ag+ induces relaxation of the base stacking near the A9 position. 

It is quite interesting that fluorescence rise was observed here, since normally one would expect 

aptamer binding to induce a more compact structure and thus, decrease fluorescence. Indeed, 

decreased fluorescence was observed for the Ce13d DNAzyme for Na+ binding in a 2AP 

modified enzyme loop.234 In this case, it appears that the loop already had some structure and 

the A9 position was released from such a structure upon forming the aptamer binding pocket. 

Upon plotting the rise in relative fluorescence at 370 nm on the y-axis against Ag+ 

concentration, the data could be fitted well into the Hill equation with a Hill coefficient of 2.17 

(R2 = 0.99, Figure 3.10 D). This was consistent with the binding of 2 Ag+ ions and it matched 

well with the number of Ag+ ions estimated through the activity assays.171  The Kd of the Ag+ 

binding was calculated to be ~ 18 µM, which was also in better agreement with the Kd observed 

from the previous activity assay. It was then confirmed if the rise in fluorescence was specific 

to Ag+ or not. Therefore, increasing concentrations of Cd2+, Zn2+, Cu2+, Pb2+, Hg2+ or Tl+, were 

titrated with the A9-to-2AP DNAzyme complex (Figure 3.10 E). These metals were chosen 
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since they are also thiophilic similar to Ag+. It was found that no other metals except Cd2+ 

demonstrated a significant rise in the fluorescence. Unlike Ag+, the rise exhibited a linear trend 

with Cd2+, indicating a non-specific interaction of Cd2+. None of these above mentioned metal 

ions promoted any cleavage activity.256 This suggested that the observed rise in fluorescence in 

the presence of Ag+ was due to specific aptamer folding of the DNAzyme complex. 

 

3.3 Summary 

 

In this study, biochemical characterization of the Ag10c DNAzyme was performed. Many 

interesting observations were made. Firstly, through systematic mutation studies, it was 

concluded that Ag10c has a well-defined secondary structure and most of the nucleotides in its 

catalytic loop are important for activity and cannot be randomly changed. Secondly, 

fundamental mechanistic insights were gained into Ag10c catalysis. Through Ag+-dependent 

activity assays, the role of Ag+ was rationalized.  It was established that this Ag10c DNAzyme 

uses two metals for catalysis: one Na+ (or other group 1A metals or Mg2+) binds to the pro-Rp 

oxygen of the scissile phosphate; and two Ag+ ions bind cooperatively to Ag10c aptamer loop. 

This is the second such example. The first was the Ce13d DNAzyme, which uses Ce3+ (or other 

lanthanides) to bind to the phosphate, and it also has an aptamer loop for Na+.129 It was also 

confirmed that Ag10c undergoes a single deprotonation step during catalysis. Through this 

study, a new theme of DNAzyme catalysis has emerged that may be used by soft metals to 

escape interaction with the scissile phosphate and yet confer effective catalysis. Such a 

fundamental understanding, has opened up the platform to explore and select novel soft metal-
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dependent DNAzymes. Thirdly, using DMS footprinting, a well-defined silver aptamer was 

confirmed, which can fold into a compact structure by binding Ag+. This work has provided a 

new aptamer for Ag+ and this aptamer is completely different from the well-known C-Ag+-C 

structure.243 The mutation studies strongly argue against the formation of any C-Ag+-C base 

pair. As mentioned above, this is the second example of an aptamer embedded in a DNAzyme 

obtained via in-vitro selection, and is different from those intentional aptazymes selected 

starting with an existing enzyme scaffold.128,268 For a given metal, there are many solutions for 

producing aptamer sequences. Such a complex binding structure is reminiscent of metal binding 

aptamers in riboswitches,269 where the aptamers are coupled with functions related to regulation 

of gene expression. This study will prove to be of help for intentionally adjusting DNAzyme 

selection conditions to obtain more such metal aptamers (for e.g. high salt concentration to 

promote the formation of aptamers). Now, such more complex sequences can be created in-

vitro, which will give us more insights into the metal binding ability of nucleic acids. Lastly, 

2AP fluorescence was used to study the folding of the Ag+-specific RNA-cleaving DNAzyme 

Ag10c. This DNAzyme is unique since it contains an aptamer for Ag+. Local folding was 

observed by increased 2AP fluorescence at the dinucleotide junction of Ag10c, while none of 

the inactive mutants exhibited such a response at the same 2AP position. In addition, Ag+ also 

induced a rise in 2AP fluorescence when labeled in the enzyme loop (the A9 position), while 

other metals did not give such a fluorescence increase. The control experiments with the 

mutated DNAzyme and inactive metals confirmed specific aptamer binding. It was concluded 

that the substrate cleavage site remains unpaired in the absence of Ag+. Upon addition of Ag+, 

T18 gets involved in the Ag+ binding pocket leading to increased 2AP fluorescence at the 
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cleavage site. Therefore, the cleavage site and the A9 position, both undergo a conformational 

change from stacked to less stacked, upon Ag+ binding. As previously studied, this aptamer is 

not related to the typical C-Ag+-C base pairing, and is a new way of binding Ag+. Silver is an 

important analyte, and this aptamer will likely be useful for developing silver sensors. The 

binding of two metals produces a sigmoidal response curve, and such a response might also be 

analytically useful. The study here suggests the possibility of designing folding-based 

biosensors for Ag+ using this DNAzyme. 

 

3.4 Materials and Methods 

 

3.4.1 Chemicals 

 

All of the fluorescently labeled DNA samples were purchased from Integrated DNA 

Technologies (Coralville, IA), and the rest DNA samples including the 2AP labelled DNA 

sequences were from Eurofins (Huntsville, AL). The sequences and modifications are listed in 

Table 3.1. Metal ions that were used for analysis include silver(I) nitrate, potassium(I) chloride, 

lithium(I) chloride, thallium(I) chloride, lead(II) acetate, magnesium(II) sulfate, manganese(II) 

chloride tetrahydrate, iron(II) chloride tetrahydrate, cobalt(II) chloride hexahydrate, copper(II) 

chloride dehydrate, zinc(II) chloride, calcium(II) chloride, nickel(II) chloride, strontium(II) 

chloride, cadmium(II) chloride, mercury(II) perchlorate, yttrium(III) chloride hexahydrate, 

gallium(III) chloride, cerium(III) chloride, iron(III) chloride hexahydrate. All these salts were 

purchased from Sigma-Aldrich except the iron and silver salts were purchased from Alfa Aesar. 

The purity of the metals used is 99.99 %. Tris (Hydroxymethyl) aminomethane (Tris), 2-(N-
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morpholino) ethanesulfonic acid, (MES) free acid monohydrate, 3-(N-morpholino) 

propanesulfonic acid (MOPS), sodium chloride, sodium nitrate and sodium iodide were from 

Mandel Scientific (Guelph, ON, Canada). Acrylamide/bisacrylamide 40 % solution (29:1), 

urea, and 10 X TBE solution were purchased from Bio Basic Inc. 

 

Table 3.1 List of DNA sequences used in chapter 3. 

 

* denotes the phosphorothioate (PS) modification 

DNA Sequences (5’ – 3’) 

PO-Substrate GTCACGAGTCACTATrAGGAAGATGGCGAAA/FAM/ 

PS-Substrate GTCACGAGTCACTATrA*GGAAGATGGCGAAA/FAM/ 

Rp-Substrate  GTCACGAGTCACTATrA*GGAAGATGGCGAAA/FAM/ 

Sp-Substrate GTCACGAGTCACTATrA*GGAAGATGGCGAAA/FAM/ 

Substrate-FP GTGAGGAGTGAGTATAGGAAGATGGGGAAA 

2AP Substrate GTCACGAGTCACTAT/2AP/GGAAGATGGCGAAA 

Ag10c CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10c(a) CGCCATCTTTAGGTGATACAGGGCAGCGTATAGTGACTCG 

Ag10c(b) CGCCATCTTTAGGTGAAAAGGACGATTATGCCCTTTCAGGGCAG

CGTATAGTGACTCG 

Ag10c(c) CGCCATCTTTAGGTGATTTCCGATTAGGAAACAGGGCAGCGTAT

AGTGACTCGTGAC 

Ag10c(d) CGCCATCTTTAGGTGATTTCCTTTTGGAAACAGGGCAGCGTATA

GTGACTCG 

Ag10c(e) CGCCATCTTTAGGTGATTTCCGCAGATTATGCGGAAACAGGGCA

GCGTATAGTGACTCG 
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Ag10c(f) CGCCATCTTTAGGTGATTTCCGCATTTTTGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cT1C CGCCATCTTCAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cdelT1 CGCCATCTT.AGGTGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cA2G CGCCATCTTTGGGTGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cG3A CGCCATCTTTAAGTGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cG4A CGCCATCTTTAGATGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cT5C CGCCATCTTTAGGCGATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cG6A CGCCATCTTTAGGTAATTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cA7G CGCCATCTTTAGGTGGTTTCCACGATTATGCGGAAACAGGGCAG

CGTATAGTGACTCG 

Ag10cdel(G6A7) CGCCATCTTTAGGT..TTTCCACGATTATGCGGAAACAGGGCAGC

GTATAGTGACTCG 

Ag10cC8T CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAATAGGGCAG

CGTATAGTGACTCG 

Ag10cC8A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAAAAGGGCAG

CGTATAGTGACTCG 

Ag10cC8G CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAAGAGGGCAG

CGTATAGTGACTCG 

Ag10cA9G CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACGGGGCAG

CGTATAGTGACTCG 

Ag10cG10A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAAGGCAG

CGTATAGTGACTCG 
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Ag10cG11A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGAGCAG

CGTATAGTGACTCG 

Ag10cG12A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGACAG

CGTATAGTGACTCG 

Ag10cC13T CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGTAG

CGTATAGTGACTCG 

Ag10cC13A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGAAG

CGTATAGTGACTCG 

Ag10cC13G CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGGAG

CGTATAGTGACTCG 

Ag10cA14G CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCGG

CGTATAGTGACTCG 

Ag10cdel14A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGC.GC

GTATAGTGACTCG 

Ag10cG15A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAA

CGTATAGTGACTCG 

Ag10cC16T CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

TGTATAGTGACTCG 

Ag10cC16A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

AGTATAGTGACTCG 

Ag10cC16G CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

GGTATAGTGACTCG 

Ag10cG17A CGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGCAG

CATATAGTGACTCG 

Ag10c-FP TTTCCCCATCTTTAGGTGATTTCCTTTTGGAAACAGGGCAGCGTA

TACTCACTCCTCAC/FAM/ 

Ag10cT18A TTTCGCCATCTTTAGGTGATTTCCTTTTGGAAACAGGGCAGCGA

ATAGTGACTCGTGAC 

Ag10cT18G TTTCGCCATCTTTAGGTGATTTCCTTTTGGAAACAGGGCAGCGG

ATAGTGACTCGTGAC 
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Ag10cT18C TTTCGCCATCTTTAGGTGATTTCCTTTTGGAAACAGGGCAGCGC

ATAGTGACTCGTGAC 

A9-2AP-Ag10c TTTCGCCATCTTTAGGTGATTTCCTTTTGGAAAC/2AP/GGGCAGC

GTATAGTGACTCGTGAC 

A2-2AP-Ag10c TTTCGCCATCTTT/2AP/GGTGATTTCCTTTTGGAAACAGGGCAGC

GTATAGTGACTCGTGAC 

 

 

3.4.2 Activity assays 

 

For a typical gel-based activity assay, the DNAzyme complex were prepared by annealing the 

FAM-labeled substrate (10 µM) and enzyme (30 µM) in buffer 50 mM MES (pH 6.0, 25 mM 

NaNO3)  by heating at 85 C for 1 min and then slowly cooled at room temperature until ~30 

C. The complex was then frozen at -20 C for at least 2 hours. To initiate the reaction at room 

temperature, a final of 0.05 - 200 µM Ag+ or another metal ion (as required) was incubated with 

0.4 μM DNAzyme complex in a total 10 μL reaction mixture in buffer 50 mM Na.Acetate (pH 

5.0 - 5.5) / 50 mM MES (pH 6.0 - 6.5) / 50 mM MOPS (pH 7.0 – 8.0) with salt concentration 

varying from 25 - 200 mM NaNO3, for the required time ranging from 10 s – 8 h. The samples 

were quenched with 8 M urea at designated time points and run in 15 % dPAGE at 120 V for 

80 min. The gel images were taken with Bio-Rad ChemiDoc MP imaging system. For 

determining the rate of cleavage, the gel band intensities of the cleaved vs. uncleaved substrate 

were quantified and the data obtained were fitted (using Sigma Plot 12.0) according to the first-

order rate equation Yt = Yₒ + a(1-e-kx), where Yt and Yₒ are the cleavage fractions at a given 
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reaction time ‘t’ or ‘0’ min, respectively, ‘a’ is a constant i.e. the scaling parameter and ‘k’ is 

the observed rate constant. 

 

3.4.3 Dimethyl sulphate (DMS) footprinting 

 

DMS footprinting was performed following previously published protocols.129 Briefly, the 3-

end FAM-labeled enzyme (Ag10c-FP-FAM) and the noncleavable all-DNA substrate was used. 

The DNAzyme complex (4 μM Ag10c-FP-FAM and 20 μM Sub-dA) was formed by annealing 

in 50 mM MOPS buffer (pH 7.5) containing 0 or 200 mM NaNO3. Before footprinting, the 

DNAzyme complex (10 μL) was incubated with a final concentration of 0, 10, 40, 60, 80, 100, 

or 200 μM of a metal ion such as Ag+, Hg2+, Cd2+, Ni2+, Tl+, Zn2+, Mg2+, or Ca2+ for 15 min. To 

methylate the guanosine, 1 μL of freshly prepared 4 % DMS was added to 10 μL of the 

DNAzyme−metal complex, followed by a 15 min incubation in the dark. Then, the reaction was 

quenched by adding 200 μL of a solution containing β-mercaptoethanol (1 M) and NaOAc (600 

mM, pH 5.2), followed by ethanol precipitation and cleavage by 10 % piperidine. Finally, the 

products were separated by 15 % dPAGE for analysis. 

 

3.4.4 2AP titration 

 

For the 2AP experiments, three DNAzyme constructs were tested to identify the ideal location 

for the label, with modification in either the substrate or the enzyme strand (named as ‘2AP 

Substrate’, ‘A2-2AP-Ag10c’ and ‘A9-2AP-Ag10c’ in Table 1). To prepare the E-S complex 
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for the 2AP experiment, the unlabeled (3 µM) and the labeled (1 µM) strands were mixed in 

buffer 50 mM MES, pH 6.0, 50 mM NaNO3. The two strands were annealed by heating at 85C 

for 1 min, followed by slow cooling at room temperature until ~30 C. The complex was then 

frozen at -20 C overnight. Each E-S complex sample had a volume of 200 µL and a 

concentration of 1 µM in a micro quartz cuvette (path length = 10 mm). The sample was then 

titrated using increasing concentrations of metal ions, followed by measuring the 2AP spectra 

using a fluorimeter (Horiba FluoroMax 4) by exciting at  = 310 nm and measuring its emission 

from  = 360 - 460 nm. Every time a metal solution was titrated in the complex, the fluorescence 

reading was treated with the dilution factor to make up for any loss in fluorescence due to 

increase in volume. These corrected fluorescence values were then plotted. The binding curve 

(relative max. fluorescence vs. metal concentration) obtained through the above method was 

fitted to the Hill equation, 𝑌 = 𝑌𝑜 +  
𝐴 ∗ 𝑋𝑏

𝐶𝑏+ 𝑋𝑏. Here ‘Y’ and ‘YO’ are the relative 2AP fluorescence 

units at M+ concentration ‘X’ and ‘0’ µM respectively, ‘A’ and ‘C’ are constants and ‘b’ is the 

Hill coefficient. 
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4. Chapter 4 – Ag10c based Ag+ Biosensorc

 

4.1       Introduction 

 

Metallic silver and its alloys and compounds have been used in jewelry, solar cells, 

antimicrobial agents, dental amalgams, photography, electronic components, glass coatings, 

and catalysis, among other applications.270 Such widespread usage has led to environmental 

contamination. Silver is a heavy metal and poses a health threat as it tends to bio-accumulate, 

causing Argyria (the blue skin syndrome) and damage to the skin, eyes, liver, kidneys, and 

intestinal tracts.271 While silver can be measured by instrumentation methods such as 

inductively coupled plasma mass spectrometry (ICPMS), it is also important to develop 

biosensors for on-site detection, which may also help recover this valuable metal.272,273 Over 

the past 2 decades, DNA has emerged as a highly versatile platform for metal sensing based on 

either metal/nucleobase binding interactions or metal-assisted DNAzyme catalysis.209,274–278 A 

number of DNA based Ag+ sensors have been demonstrated till date. The use of C-rich 

sequences to form C-Ag+-C base pairs in the presence of Ag+ is the most popular one. This 

highly specific FRET based turn off sensor exhibits concentration dependent quenching.173 

Another method for sensitive and specific detection of Ag+ involves the use of the fluorescent 

analogue of cytosine, pyrrolocytosine (PdC). PdC is known to show intrinsic fluorescence in 

its unpaired form but its fluorescence is known to decrease when it base pairs with a 

complementary nucleotide.279–283 In the presence of Ag+, PdC was designed to base pair to form  

                                                           
c This chapter is the basis for a published manuscript: Saran R.; Liu, J. A Silver DNAzyme. Anal. Chem. 2016, 88, 4014-4020. 
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PdC-Ag+-C, strongly decreasing its fluorescence in a concentration dependent manner and thus 

facilitating the detection of Ag+ ions with a limit of detection (LOD) of 9.2 nM.145 C-rich DNA 

is often used as template for the synthesis of fluorescent AgNCs, and this has also been implied 

for Ag+ quantification. Ag+ triggers poly-C templated AgNCs to form dimers, consequently 

switching their fluorescence emission from red to green, and allowing specific detection of Ag+ 

down to 10 nM.197 As mentioned before (section 1.5.2), Ag+ can stabilize i-motif at 

physiological pH and once Ag+ is chelated away by cysteine, i-motif unfolds.175 Taking 

advantage of this, an i-motif DNA based label-free Ag+ sensor has been demonstrated (LOD 17 

nM) taking help of the fluorescent stain thiazole orange (TO).201 It is well known that Ag+ can 

strongly coordinate with guanine.178 Interestingly, the Ag+ binding sites in guanine are also 

important for G4 formation and thus, addition of Ag+ ions can destabilize and disrupt the G4 

structure. Based on this phenomenon, Ag+ induced abolished peroxidase activity of G-

quadruplex-hemin DNAzymes (LOD 64 nM),202 Ag+ induced dispersion of aggregated G-

quadruplex capped AuNPs (LOD 7nM),204 Ag+ induced decreased fluorescence of G-

quadruplex - N-methyl-mesoporphyrin IX (NMM) complex (LOD 400 nM)284 as well as G-

quadruplex-Triphenylmethane (TPM) complex (LOD 80 nM),285 has been harnessed for 

developing highly sensitive and selective Ag+ sensing systems. It is fascinating that weak 

fluorescence of lanthanide/nucleotide coordination polymers is strongly increased by Ag+ in 

aqueous solution. The Ag+ triggered increase in the luminescence of AMP/Tb3+ co-ordination 

polymer has been utilized for demonstrating a selective and sensitive Ag+ sensor with a LOD 

of 60 nM.286 /Ag+ Similarly, Ag+ induced enhanced luminescence of Tb3+ sensitized poly-G 

DNA has been shown to form the basis of a selective Ag+ sensor with a LOD of 57.6 nM.200 



115 
 
 

 

Although DNAzymes have been used for Ag+ sensing, these systems utilize cytosine-Ag+ as 

well as the cysteine-Ag+ coordination, but Ag+ does not play a catalytic role.287 RNA-cleaving 

DNAzymes are particularly interesting in this respect. Many DNAzymes already known have 

been used to build metal biosensors. They can achieve extremely high metal sensitivity i.e. low 

nM (parts-per-billion) and sometimes even pM (parts-per-trillion) levels, and are versatile in 

biosensor design.208,214 Herein, for the first time, a RNA-cleaving DNAzyme (Ag10c) based 

Ag+ biosensor is reported and is also demonstrated to be highly sensitive and selective.  

 

4.2 Results and discussion 

 

4.2.1 Biosensor design 

 

From the studies mentioned in previous chapters, it is clear that Ag10c is highly specific for 

Ag+ with fast catalytic rate, allowing us to build a biosensor for Ag+. Among the various 

signaling strategies known, a catalytic beacon method was employed for its high 

sensitivity.113,275 A fluorescence ‘turn-on’ strategy was adopted to develop a DNAzyme beacon 

for real-time analysis. The 3-end of the enzyme strand was labeled with a Black Hole Quencher 

(named Ag10c-Q), which upon hybridization, quenches the fluorescence of the FAM 

fluorophore labeled on the 5-end of the substrate (5-FAM-Sub). In the presence of Ag+, the 

substrate strand is expected to cleave into two pieces at the cleavage site. In comparison to the 

full-length substrate, the expected cleaved fragment has a lower melting temperature (Tm) and 
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thus lower affinity for the enzyme strand. If the Tm of the FAM modified cleaved substrate 

fragment is lower than the room temperature (RT), it would dissociate from the enzyme strand,  

and the fluorescence would thus be rescued after its release (Figure 4.1 A). 

 

 

Figure 4.1 (A) Schematic representation of the Ag+ DNAzyme beacon design. (B) The secondary structure of the 

Ag10c-Q DNAzyme beacon. 

 

The secondary structure of the Ag10c-Q DNAzyme beacon is shown in Figure 4.1 B. For 

Ag10c-Q, the sequence of the substrate binding arms of the Ag10c enzyme is modified, the 

length of the 5’ substrate binding arm is increased by 1 nucleotide while that of the 3’ substrate 

binding arm is reduced by 7 nucleotides to suit the experiment. As calculated by the software 

‘OligoAnalyzer 3.1’ from Integrated DNA Technologies (IDT),288 the Tm of the 5’ fragment of 

the cleaved substrate is predicted to be ~ 40 °C, while that of the 3’ fragment is expected to be 

~ 7 °C. Therefore, the sensor was designed with an extremely low Tm of the 3’ cleaved substrate 

fragment, to facilitate its release from the enzyme strand, so that the fluorescence rescue can be 

considered as a direct reflection of the Ag+ induced substrate cleavage. 
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4.2.2 Limit of detection 

 

This experiment was executed by monitoring the signaling kinetics of the beacon with 

increasing concentration of Ag+ in 50 mM MOPS (pH 7.5, 200 mM NaNO3). With 50 nM of 

the sensor complex, in the absence of Ag+, the background was quite stable, indicating a stable 

DNAzyme complex. The rate of fluorescence enhancement rapidly and progressively increased 

with higher Ag+ concentrations with the dynamic range reaching ~400 nM Ag+ (Figure 4.2 A). 

The initial rates of the fluorescence traces were quantified and plotted against their respective 

Ag+ concentrations in Figure 4.2 B. The low Ag+ concentration region is shown in the inset of 

Figure 4.2 B.  

 

 

Figure 4.2 (A) Sensor signaling kinetics at various concentrations of Ag+. (B) Quantification of Ag+ based on the 

initial rate of fluorescence enhancement. Inset: the low Ag+ concentration region fitted with a linear response. 

 

A limit of detection (LOD) of 24.9 nM Ag+ was calculated based on 3/slope ( is the standard 

deviation of the background signal). This LOD is 37-fold lower than the maximum permissible 
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contamination level of silver in water i.e. 0.1 mg/L or 930 nM defined by the World Health 

Organization. This represents the first instance of a sensitive RNA-cleaving DNAzyme based 

Ag+ biosensor. 

 

4.2.3 Metal specificity 

 

To test for selectivity, the sensor was then challenged with various monovalent, divalent and 

trivalent cations.  

 

 

Figure 4.3 Sensor signaling kinetics with (A) various metal ions: 1 and 100 mM K+, Li+, Rb+, Na+, Cs+; 1 and 10 

mM Ca2+, Mg2+, 1 and 100 µM Mn2+, Fe2+, Cu2+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, Sr2+, Ce3+ and Fe3+. (B) Sensor 

response to 400 nM Ag+ and 1 µM Hg2+ where the black arrows indicate the time of addition of 10 µM NaI. The 

fluorescence dropping in the Hg2+ reaction indicates its signaling was not due to cleavage. All the reactions were 

performed in 50 mM MOPS, pH 7.5 with 200 mM NaNO3. The final sensor concentration was 50 nM. 

 

The signal remained at the background level with most ions, while a few caused fluorescence 

quenching. The only one (except Ag+) with fluorescence increase was Hg2+, both at 1 µM and 
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100 µM concentrations (Figure 4.3 A). Since the gel-based assay with similar concentrations 

of Hg2+ did not produce any cleavage (Figure 2.7), it was speculated that the fluorescence 

increase was from Hg2+-induced DNA misfolding. Hg2+ has strong affinity with DNA 

pyrimidine bases, which may fold the FAM label away from the quencher, thus enhancing the 

fluorescence. If this hypothesis is true, such a rise in fluorescence should be reversible if the 

Hg2+ ions are made unavailable. To test it, the rise in fluorescence was initiated with 1 µM Hg2+ 

or 400 nM Ag+. Upon signal stabilization, 10 µM NaI was added to both reactions (Figure 4.3 

B). Indeed, in the Hg2+ reaction, the signal went back to the background level due to HgI2 

formation, while no change was seen in the Ag+ reaction upon formation of AgI, proving that 

the sensor was irreversibly cleaved by silver ions. While Pb2+ showed a slight cleavage in gel-

based assay, its rate is >3000-fold slower than Ag+, and Pb2+ is a strong fluorescence quencher 

at high concentrations. These factors may explain the lack of Pb2+ response in this rate-based 

signaling method. 

 

4.2.4 Testing in Lake Huron water 

 

Further, it was tested if this sensor works in real word water samples. For this, the sensor was 

tested in Lake Huron water with 50 mM MOPS buffer (pH 7.5, 90 % of lake water in the final 

reaction, Figure 4.4 A). The response was quite similar to that obtained in clean buffers, and a 

LOD of 21.8 nM was calculated (Figure 4.4 B). Therefore, the lake water matrix did not 

interfere with the detection. The Great Lake’s water often contains below 1 mM Cl-, and 

therefore it is understandable that the sensitivity of the sensor was not affected. 
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Figure 4.4 (A) Sensor signaling kinetics at various concentrations of Ag+ spiked Ag+ in Lake Huron water. (B) 

Quantification of Ag+ based on the initial rate of fluorescence enhancement in 50 mM MOPS buffer (pH 7.5) made 

in Lake Huron water. The DNAzyme concentration was 50 nM for all the above experiments. 

 

4.3 Summary 

 

It was demonstrated that the DNAzyme Ag10c is a useful analytical probe for silver. A FRET 

based system was used with the DNAzyme Ag10c for developing a sensing system to detect 

low concentrations of Ag+ ions. The limit of detection of the sensor was reported to be 24.9 

nM, which is far below the permissible limit of silver in water. It was also confirmed that the 

sensor is very selective for silver ions. Finally, the robustness of the sensor was proved in real 

world samples by demonstrating its selectivity and sensitivity in Lake Huron’s water. This study 

puts forth a rare example of DNAzyme beacons being used for sensing of monovalent ions. It 

highlights the possibility of using DNAzyme beacons for sensing transition metal ions upto low 

nanomolar concentrations. It further strengthens the idea of developing biosensors for on-site 

detection, which may also help in recovering valuable metals. 
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4.4 Materials and Methods 

 

4.4.1 Chemicals 

 

Sensing related DNA samples were from Integrated DNA Technologies (IDT, Coralville, IA). 

The rest of the DNAs were from Eurofins (Huntsville, AL). The sequences of DNA used are 

listed in Table 4.1. Metal ions that were used for analysis include silver(I) nitrate, potassium(I) 

chloride, lithium(I) chloride, thallium(I) chloride, lead(II) acetate, magnesium(II) sulfate, 

manganese(II) chloride tetrahydrate, iron(II) chloride tetrahydrate, cobalt(II) chloride 

hexahydrate, copper(II) chloride dehydrate, zinc(II) chloride, calcium(II) chloride, nickel(II) 

chloride, strontium(II) chloride, cadmium(II) chloride, mercury(II) perchlorate, yttrium(III) 

chloride hexahydrate, gallium(III) chloride, cerium(III) chloride, iron(III) chloride 

hexahydrate. All these salts were purchased from Sigma-Aldrich except the iron and silver salts 

were purchased from Alfa Aesar. The purity of the metals used is 99.99 %. Their solutions were 

made by directly dissolving their salts in Milli-Q water. 3-(N-morpholino) propanesulfonic acid 

(MOPS) was from Mandel Scientific Inc. (Guelph, Ontario, Canada). 

 

Table 4.1 List of DNA sequences used in chapter 4. 

 

DNA Sequence (5’-3’) 

5’-FAM-Sub FAM-CTCACTATrAGGAAGATGGCGAAGC 
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Ag10c-Q GCTTCGCCATCTTTAGGTGATTTCCACGATTATGCGGAAACAGGGC

AGCGTATAGTGAG-BHQ1 

 

 

4.4.2 Fluorescence-based Ag+ sensing 

 

Sensor signaling kinetics were measured in 96-well plates using a microplate reader 

(SpectraMax M3). The sensing complex was formed by annealing 5-FAM-Sub (10 µM) and 

the quencher-labeled enzyme (Ag10c-Q, 20 µM) in buffer (50 mM MOPS, pH 7.0 with 25 mM 

NaNO3). 100 µl of 50 nM FAM-Q DNAzyme in 50 mM MOPS (pH 7.5, 200 mM NaNO3) was 

used for each well. A 2 μL amount of target ions was added to initiate the cleavage reaction 

after 5 min of background reading. Samples were continuously monitored after addition for at 

least 30 min with 20 sec intervals. For the reaction with NaI, a final concentration of 10 µM 

NaI was used. 
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5. Chapter 5 – Summary and Future work 

 

5.1 Summary  

 

Owing to its serviceable properties such as reversible denaturation, high sequence 

programmability, amphipathic nature, and high stability, deoxyribonucleic acid (DNA) has 

been well recognized as a generic material along with being the genetic material. The catalytic 

potential embedded in DNA has been uncovered with the isolation of DNAzymes (catalytic 

DNA sequences). Among these, the RNA-cleaving DNAzymes can cleave a specific RNA bond 

in the presence of a selective cofactor. Multi and monovalent cations give rise to very interesting 

interactions with DNA, and act as excellent cofactors for DNAzyme catalysis. Within this thesis 

I explored the evolution and characterization of an Ag+-dependent RNA-cleaving DNAzyme. 

The research work presented in this thesis, begins with Chapter 2 which describes an 

Ag+-dependent in-vitro selection. This experiment resulted into the very first occurrence of a 

monovalent transition metal Ag+-dependent RNA-cleaving DNAzyme, called Ag10c. It was 

also reported that Ag10c is shown to achieve a catalytic rate of 0.41 min-1 with just 10 µM Ag+, 

which is the highest reported till now in the category of monovalent ion dependent RNA-

cleaving DNAzymes. Subsequently, the DNAzyme Ag10c was shown to exhibit remarkable 

selectivity for silver ions, amongst all the other metal ions tested.  

Many interesting observations were made in chapter 3, from detailed biochemical 

characterization of the Ag10c DNAzyme. Systematic mutation studies were carried out to 

confirm that Ag10c has a well-defined secondary structure, and most of the nucleotides in its 

catalytic loop are important for activity and cannot be randomly changed. Using DMS 
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footprinting, it was confirmed that the Ag10c catalytic loop bears a well-defined silver aptamer 

that can fold into a compact structure by binding Ag+. This work has provided a new aptamer 

for Ag+ and this aptamer is completely different from the well-known C-Ag+-C structure.243 

This was confirmed by mutation studies, which strongly argue against the formation of any C-

Ag+-C base pair. Further, fundamental mechanistic studies have been reported which helped in 

gaining insights into Ag10c catalysis. Ag+-dependent activity assays were performed to 

rationalize the role of Ag+.  It was established that the Ag10c DNAzyme uses two metals for 

catalysis: one Na+ (or other group 1A metals or Mg2+) binds to the pro-Rp oxygen of the scissile 

phosphate, and two Ag+ ions bind cooperatively to Ag10c aptamer loop. It was demonstrated 

that Ag10c undergoes a single deprotonation step during catalysis. Further, 2AP fluorescence 

experiments have been described, which were undertaken to study the folding of the Ag+-

specific RNA-cleavage Ag10c DNAzyme. Local folding was observed by increased 2AP 

fluorescence at the dinucleotide junction of Ag10c, while none of the inactive mutants exhibited 

such a response at the same 2AP position. In addition, Ag+ also induced a rise in 2AP 

fluorescence when labeled at the enzyme loop (the A9 position), while other metals did not give 

such a fluorescence increase. Specific aptamer binding was confirmed with the help of control 

experiments with mutated Ag10c and inactive metals. It was concluded that the substrate 

cleavage site remains unpaired in the absence of Ag+. Upon addition of Ag+, T18 gets involved 

in the Ag+ binding pocket leading to increased 2AP fluorescence at the cleavage site. Therefore, 

the cleavage site and the A9 position, both undergo a conformational change from stacked to 

less stacked, upon Ag+ binding.  
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It was demonstrated in chapter 4, that the DNAzyme Ag10c is a useful analytical probe 

for silver. A FRET based system was used with Ag10c for sensing low concentrations of Ag+ 

ions. The limit of detection of the sensor was demonstrated to be 24.9 nM, which is far below 

the permissible limit of silver in water. It was also confirmed that the sensor is very selective 

for silver ions. The robustness of the sensor in real world samples was proved by demonstrating 

its high selectivity and sensitivity in Lake Huron’s water. This study puts forth a rare example 

of DNAzyme beacons being used for sensing of monovalent ions.  

 

5.2 Original Contributions 

 

The research work presented herein, offers various insights into DNAzyme discovery and 

catalysis, as well as DNAzyme-based metal sensing. At the same time, the outcomes of this 

study foster the development of innovative strategies for obtaining novel DNAzymes, aptamers 

and biosensors. 

Firstly, I have discovered a novel RNA-cleaving DNAzyme Ag10c, which is dependent 

on the monovalent transition metal ion Ag+, for its activity. Among the array of DNAzymes 

known previously, all the RNA cleaving DNAzymes which are dependent on thiophilic metal 

ions e.g. Hg2+,121 Cd2+, and Cu2+,98,99,226 for their activity, required non-canonical DNA 

modifications e.g. phosphorothioate (PS) bond at the scissile phosphate, modified nucleotide 

bases, etc. In spite of Ag+ being a thiophilic metal ion, no such modification was required for 

Ag10c catalysis. Therefore, with this study, the first in vitro-selected unmodified RNA-cleaving 

DNAzyme that cleaves efficiently in the presence of a thiophilic metal was reported. This study 
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leverages the possibility of selecting DNAzymes for soft thiophilic metals using the natural 

RNA dinucleotide cleavage junction. 

Secondly, my research work reports the fastest DNAzyme kinetics till now in the 

category of monovalent ion dependent RNA cleaving DNAzymes i.e. 0.4 min-1 at 10 μM Ag+. 

The previously known Na+-dependent DNAzymes have much slower rates at much higher Na+ 

concentration.104,215,216 This study dedicates a much needed attention at the role of monovalent 

ions in DNAzyme catalysis.  

Thirdly, through this research I have discovered a novel Ag+ aptamer embedded in the 

catalytic loop of Ag10c. The isolation of metal ion specific nucleic acid aptamers is difficult 

through SELEX as it is tricky to immobilize the metal ions. Therefore their occurrence is rare. 

As far as aptamers embedded in DNAzymes are concerned, there are only two examples, the 

NaA43 and Ce13d DNAzymes,101,104 both consisting of Na+ binding aptamer.129,130,234,235 No 

such aptamer bearing DNAzyme exists for thiophilic or transition metal ions, apart from Ag10c. 

This contribution not only expands the repertoire of metal ion specific aptamers, it floats an 

elegant strategy to discover novel aptamers, especially for thiophilic or transition metal ions. 

Fourthly, within this research, I have reported a novel and specific interaction of Ag+ 

with DNA, which is free from the well-known C-Ag+-C base pairing.172,173 . This fact supports 

the possibility of exploring novel metal-nucleotide interactions and furnishes the option of using 

these new interactions in application oriented research problems. 

Fifthly, I have reported a new theme of RNA-cleaving DNAzyme catalysis that may be 

used by soft metals to escape interaction with the scissile phosphate and yet confer effective 

catalysis. Interestingly mechanism of Ag10c involves a group 1A metal ion or Mg2+ interacting 
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with the scissile RNA phosphate, and two Ag+ ions binding cooperatively to Ag10c aptamer 

loop and conferring local folding of the aptamer into a more compact structure. The only 

previous example of a similar mechanism is Ce13d DNAzyme, which uses Ce3+ (or other 

lanthanides) to bind to the cleavage dinucleotide phosphate, and it also has an aptamer loop for 

Na+.129 Such a fundamental understanding, has opened up the platform to explore and select 

novel soft metal-dependent DNAzymes. 

Lastly, I have developed a new fluorescence based biosensor for Ag+ which selectively 

and sensitively detects aqueous Ag+ with a LOD of 24.9 nM. This biosensor relies on the 

specific interaction between Ag+ and its specific aptamer, while most of the previous biosensors 

depend on Ag+ mediated base pairs.173 The proof of the robustness of this biosensor in Lake 

Huron’s water, endorses the exploration of this novel interaction in more real world 

applications. 

 

5.3 Future Work 

 

The research work presented in this thesis stages multiple aspects that can be potentially 

investigated in greater detail. It also offers multiple new schemes that can be utilized to design 

and execute effective strategies in the future. 

Firstly, the presence of an Ag+ aptamer within the Ag10c loop, is a perfect opportunity 

to work towards the extraction of a standalone Ag+ aptamer. As mentioned before, the 

occurrence of metal ion specific aptamers is rare. With the background knowledge regarding 

Ag10c folding studies carried out in this research work, it will be easier to develop strategies 
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(e.g. use of fluorescent or colorimetric dyes) to confirm if the extracted sequence folds 

adequately upon Ag+ binding. Development of such an aptamer would prove to be very 

beneficial in gaining a deeper insight into the interactions between Ag+ and DNA. Alongside, 

silver is an important analyte, and such a standalone aptamer would be very useful in crafting 

folding-based Ag+ biosensors. 

Secondly, the discovery of Ag10c has fished out a template DNAzyme which can be 

used to build a reselection library for evolving new metal ion specific RNA-cleaving 

DNAzymes. Re-selection is a prudent method, in which the DNA library is designed by 

introducing variations in previously known DNAzyme sequences. Tactical variations in 

selection parameters like cofactor concentration, library-cofactor incubation time, pH, 

temperature, etc. can foster the evolution of more rapid, sensitive, selective Ag+/ other 

thiophilic/ transition metal-dependent DNAzymes. For real-world application needs like 

biomedical diagnostics or chemical sensing, this method can also be used to focus on evolving 

DNAzymes which are capable of working in more stringent/relaxed conditions of real-world 

samples e.g. blood serum, lake waters, etc. 

Thirdly, as mentioned before, this study stages a new theme of DNAzyme catalysis, 

which can be effectively used to design specific selection conditions for obtaining soft metal-

dependent DNAzymes and aptamers. In this scheme, a group 1A or Mg2+ metal ion acts at the 

scissile phosphate while the soft metal Ag+ interacts with the nucleotides in the catalytic loop. 

By intentionally setting relevant selection conditions e.g. use of high salt concentration, etc. 

soft metals can be made to escape interaction with the scissile phosphate and yet confer effective 
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catalysis. This work will open up multiple possibilities of discovering novel soft metal-

dependent DNAzymes and soft metal specific aptamers embedded in DNAzymes. 

Lastly, from the purview of fundamental science, there is still scope for a deeper 

understanding of the mechanism of cleavage conferred by Ag10c. Time-resolved techniques 

e.g. singe molecule fluorescence experiments, can be applied to decipher the detailed progress 

of the conformational changes taking place in the DNAzyme as the reaction proceeds. To know 

the exact structural changes at high resolution, Nuclear Magnetic Resonance (NMR) or X-Ray 

Diffraction (XRD) of single crystals can be pursued. Such kind of an extensive study would 

prove to be very helpful in enhancing the general understanding of RNA cleaving DNAzyme 

catalysis, and also provide a strong grasp of the interactions between Ag+ and DNA.  
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6. Appendix A: Chapter 6 - A DNAzyme version of the leadzymed 

 

6.1 Introduction 

 

Most RNA-cleaving ribozymes and DNAzymes require divalent metal ions for 

catalysis.100,102,212,289 Among the different metal ions used for RNA cleavage, Pb2+ has greatly 

fueled the growth of this field. The interaction between Pb2+ and nucleic acids was observed 

more than 50 years back. In 1959, the hydrolysis of RNA by lead hydroxide was 

demonstrated.290 A detailed investigation was published in 1968 showing that the rate of RNA 

depolymerization as well as its pH optimum, both varied with the Pb2+ concentration.291 It first 

became known that Pb2+ can bring about site-specific cleavage of tRNA in 1973.292 The 

mechanism of cleavage was proposed based on biochemical data and the crystal structure of 

the yeast tRNAPhe soaked in lead acetate.293,294 Multiple variations of this well-studied yeast 

tRNA were used to design RNA selection libraries to isolate RNAs that undergo autolytic 

cleavage in the presence of Pb2+.295 Among the sequences derived from this selection, one was 

truncated and optimized into a minimal motif known as the ‘leadzyme.’ The leadzyme is a very 

small but interesting ribozyme with only two unpaired nucleotides 5’ rGrA 3’ in the enzyme 

loop and four unpaired nucleotides in the substrate strand (Figure 6.1 B). This enzyme is highly 

specific for lead and its reaction produces a 5’-OH end along with a 2’3’ cyclic phosphate 

product.296,297 Deeper insights have been obtained about this enzyme through biochemical 

                                                           
d This chapter is the basis for a published manuscript: Saran R.; Chen Q.; Liu, J. Searching for a DNAzyme Version of the Leadzyme. 

J. Mol. Evol. 2015, 81(5-6), 235-244. 
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studies,298,299 NMR,300–302 X-ray crystallography,303,304 and other biophysical 

characterizations.305 Parallel to the ribozyme field, Pb2+ has been a very important metal ion in 

DNAzyme research as well. The first DNAzyme, GR5 (Figure 6.1 D), was obtained as a result 

of a Pb2+-dependent selection,67 and it is highly specific and active with Pb2+.306 The most 

extensively studied 8–17 DNAzyme, initially discovered from a Mg2+-dependent selection,111 

is also highly active in the presence of Pb2+. A commonly used variant of the 8–17 DNAzyme 

is named 17E (Figure 6.1 C).113,307  

 

 

Figure 6.1 The secondary structures of the (A) PbE22, (B) leadzyme, (C) 17E, and (D) GR5 DNAzymes. The 

enzyme strands are in blue and substrate in green. The cleavage junction is indicated by the arrowheads. 

 

While a few biochemical studies have been carried out on these DNAzymes, only little 

structure-related information is known.229,250,308,309 These two Pb2+-dependent DNAzymes (8–

17 and GR5) have a similar size, containing 14 or 15 nucleotides in the enzyme loop (Figure 

6.1 C and D). Since even two nucleotides can perform the catalytic function in the leadzyme, 

an interesting question is whether it is possible to achieve similar catalysis in a short DNAzyme. 



165 
 
 

 

In this work, both rational design and in-vitro selection were employed to search for very short 

DNAzymes. 

 

6.2 Results and discussion 

 

6.2.1 Rational design of DNAzymes 

 

 

Figure 6.2 (A) The secondary structures of the eight rationally designed DNAzymes. (B) The cleavage yield of 

these enzymes in the presence of 100 M Pb2+ at pH 7.0 for 2 h. 
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From the study of the 8–17 and GR5 DNAzymes, it is known that both contain a few highly 

conserved nucleotides which are important for catalysis.67,230,250,310,311 In particular, the AG and 

CG dinucleotides in their enzyme loops have been identified to be critical. The sequence of the 

leadzyme also contains the unpaired AG in the enzyme loop. Based on these, a few putative 

DNAzyme sequences were designed which can bind to the substrate (Figure 6.2 A). However, 

when these sequences were assayed in the presence of 100 μM Pb2+ at pH 7.0 for 2 h, very low 

amount of cleavage was observed (Figure 6.2 B). The fastest Pb7 has a rate of only 0.05 h-1, 

which is close to the background RNA cleavage rate by Pb2+ (vide infra) and is significantly 

slower than that of the leadzyme. Therefore, a simple combination of such nucleotides is 

insufficient for catalysis. 

 

6.2.2 In-vitro selection 

 

Since rational design failed to produce sufficiently active DNAzymes, in-vitro selection was 

carried out. The schematic of the protocol of in-vitro selection is shown in Figure 6.3 A. Since 

it is difficult to predict the optimal minimal length of the enzyme loop and the number of 

unpaired nucleotides in the substrate strand, instead of using a very short randomized region, a 

library containing 35 random nucleotides was employed. It can be reasoned that a larger size 

can offer more flexibility and sequence diversity. If shorter DNAzymes exist, they may still be 

reflected in the final library, by hiding redundant sequences as overhangs or hairpins. The 

library design is shown in Figure 6.3 B. A single RNA linkage (rA) is embedded in this DNA 

library to serve as the cleavage site. Since RNA is about 1-million-fold less stable compared to 
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DNA,312 therefore, the cleavage is most likely to take place at the RNA position. This library 

was incubated with Pb2+ and the cleaved sequences were separated from the rest using gel 

electrophoresis, and amplified by two rounds of PCR to seed for the next round of selection 

(Figure 6.3 A). A reaction condition of 60 μM Pb2+ for 1 h was pursued up to the 5th round. 

The incubation time was reduced to 5 min in round 6, which was then subjected to sequencing. 

The cleavage yield at each round is shown in Figure 6.3 C.  

 

 

 

Figure 6.3 (A) Schematic of the in-vitro selection procedure. The library contains 35 random nucleotides (N35) 

and a single RNA linkage (rA) serving as the cleavage site. Sequences cleaved by Pb2+ are amplified by two PCR 

steps to seed the next round of selection. (B) The secondary structure of the library used for in-vitro selection. (C) 

Selection progress at each round. (D) The secondary structure of the original cis-cleaving enzyme (it has been 

engineered to the trans-cleaving PbE22 enzyme shown in Figure 6.1 A). (E) Two other examples of short 

DNAzyme candidates from the selection, but they are inactive. 
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It is interesting to note that while the first DNAzyme selection was carried out using Pb2+ (which 

resulted in GR5), it has not been used as a metal cofactor in any subsequent selections. 

Therefore, this work represents a second example of such an effort. The selection condition 

used is also quite different from the previous one. While GR5 was selected using 1 mM PbOAc 

in a high salt buffer (0.5 M NaCl, 0.5 M KCl, 50 mM MgCl2 at pH 7),67 this selection used only 

60 μM Pb2+ in a low salt buffer (25 mM NaCl at pH 6.0). The selection was not pushed for very 

fast enzymes since the aim was to obtain shorter DNAzymes, which may not cleave very 

efficiently. In other words, the goal was to maximize sequence diversity in the resulting library.  

 

6.2.3 Sequence analysis 

 

Traditionally, at the end of in-vitro selection, the selected library is cloned into plasmid vectors 

and transformed into the bacterial cells which are further grown and disrupted for isolating the 

amplified plasmids. These purified plasmids are then subjected to sequencing. Although, the 

method is widespread in usage, it poses certain limitations upon the number of sequences and 

diversity of sequences that can be obtained. As a result, only a small fraction of the selected 

library and mostly the most abundant sequences can be obtained. This leads to loss of valuable 

information regarding the selection and can prove to be a great hindrance in the discovery of 

new enzymes. However, the technology of deep sequencing is bringing about a revolution in 

this area. Through this, thousands of sequences can be obtained from the selected library which 

can further be subjected to clustering based on their sequence similarities. This would help in 
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searching for very short DNAzymes, which may not be highly active and may not represent the 

major population in the library.  

 

 

Figure 6.4 (A) Sequences of 32 putative DNAzymes tested from the selected library, and their abundance. The 

nucleotides that can be aligned with the conserved nucleotides in GR5 are marked in red. (B) The cleavage fraction 

after 1 h of reaction for the 32 trans-cleaving enzymes, tested with 10 µM Pb2+ (red) and 50 mM Mg2+ (black). The 

8-17 and GR5 DNAzymes are also included for comparison.  

 

From the sequencing results of the final library (round 6), a total of 32,144 sequences were 

obtained, and an exhaustive search was carried out among all possible sequences. The 

sequenced library was aligned into different families based on their sequence similarity, and 

quite high sequence diversity was observed. Even the most abundant family of DNAzyme 
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represents only 6.79 % of the final sequences. The sequences from the first ninety families (76.4 

% of the total sequences) were individually folded using Mfold.313 Out of these, 32 of the 

resulting trans-cleaving enzymes display a reasonable fold, and their trans-cleaving sequences 

are shown in Figure 6.4 A. These sequences represent 46.3 % of the ninety families analyzed 

and 35.4 % of the total sequences. Some of them have the bases 5’–AGCG–CG–3’ conserved 

exactly as they are in GR5, while a few have nucleotide insertions, mutations, or deletions from 

these conserved ones. Each of these 32 sequences were tested with 10 μM Pb2+ and 50 mM 

Mg2+, one at a time. Their cleavage fraction after 1 h is plotted in Figure 6.4 B. Interestingly, 

like GR5, cleavage was observed only with Pb2+, while unlike the 8–17 DNAzyme, none of 

them was active with Mg2+. 

 

6.2.4 Introduction to PbE22 

 

Since the goal of this work is to identify very short DNAzymes, after the general understanding 

of the activity of all representing sequences, very short enzyme loops were focused on. Out of 

the many sequences, only one short enzyme (family C22 in Figure 6.4 A) was found to exhibit 

decent activity, achieving 50 % cleavage (Figure 6.4 B). This enzyme motif has appeared 285 

times out of the 32,144 sequences. This DNAzyme its cis-cleaving form is shown in Figure 6.3 

D, and the trans-cleaving construct is shown in Figure 6.1 A, which was re-named to be PbE22. 

PbE22 has 5 nucleotides 5’GAAGC 3’ in the catalytic loop of the enzyme and 6 unpaired 

nucleotides in the substrate strand 5’rAGGAAGA 3’ including the cleavage dinucleotide 

junction. It is interesting to note that most of these unpaired nucleotides are purines. Aside from 
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PbE22, two other sequences can also fold into a short enzyme loop structure (Figure 6.3 E). 

However, they are inactive when tested with Pb2+. Therefore, PbE22 was used for subsequent 

studies. 

 

6.2.5 Rate kinetics of PbE22 

 

To characterize this new DNAzyme, biochemical studies were performed.  

 

 

Figure 6.5 Biochemical characterization of PbE22. (A) Kinetics of PbE22 and GR5 cleavage at pH 7.0. (B) 

Cleavage rate constant of PbE22 as a function of [Pb2+] at pH 7.0. Inset = gel showing cleavage at various [Pb2+] 

after 30 min at pH 6.5. Log scale plot of the rate as a function of pH for (C) PbE22 with 20 µM Pb2+ and (D) GR5 

with 1 µM Pb2+. 
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First, the cleavage kinetics of PbE22 was measured in the presence of 100 μM Pb2+ (Figure 6.5 

A, black dots). The time-dependent cleavage yield can be fitted to first-order reaction kinetics  

with a rate constant of 1.7 h-1. Under the same condition, the free substrate was cleaved at a rate 

of 0.0082 h-1. Therefore, the rate enhancement brought by PbE22 in the presence of 100 μM 

Pb2+ at pH 7.0 is 210-fold. For comparison, the GR5 DNAzyme (Figure 6.5 A, red dots) has a 

reported rate enhancement of 105,67 while the leadzyme has a rate enhancement of 1100.297 

Therefore, PbE22 has the lowest catalytic efficiency, and GR5 has the highest. The inset of Fig. 

6.5 B is a gel image showing the cleavage yield at 30 min with increasing Pb2+ concentrations. 

Indeed, more Pb2+ induced more cleavage, confirming that PbE22 is a Pb2+-dependent 

DNAzyme. To quantitatively understand the effect of Pb2+ concentration, the enzyme kinetics 

was measured at various Pb2+ concentrations at pH 7.0 (Figure 6.5 B, black dots). An apparent 

dissociation constant (Kd) of 77 μM Pb2+ was obtained. For comparison, the leadzyme has a 

rate of 0.4-0.5 min-1 at 25 μM Pb2+ and pH 7.0. This is faster than PbE22 but less as compared 

to GR5.296 This comparison suggests that a bigger catalytic loop might be required for optimum 

activity of the enzyme.  

 

6.2.6 pH-dependency of PbE22 

 

To further characterize this enzyme, the DNAzyme rate was studied with increasing pH at 20 

μM Pb2+ concentration. Again it was compared to that of the GR5 at 1 μM Pb2+. In case of 

PbE22, the log of rate increased linearly with increasing pH in the low pH region with a slope 

of 0.74 (Figure 6.5 C). Beyond pH 7.0, the increase in rate slowed down. The slope of GR5 was 
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calculated to be 0.82 and it maintained a good linearity up to pH 7.6 (Figure 6.5 D). Beyond 

pH 7.6, the rate was not measurable since it was too fast for manual pipetting. The reason for 

the narrower linear range for PbE22 might be related to the use of higher Pb2+ concentration 

(20 μM), as Pb2+ tends to precipitate more easily at such a high concentration. Similar to PbE22, 

the leadzyme also exhibits a linear increase in log (rate) with increase in pH up to 7.0 at 25 μM 

Pb2+. Therefore, this indicates all these enzymes have a similar mechanism in terms of a single 

deprotonation at the rate-limiting step of this reaction, and this is often directly or indirectly 

linked to the deprotonation of the 2’-OH at the cleavage site.  

 

6.2.7 Metal specificity of PbE22 

 

 

Figure 6.6 Metal specificity test of the PbE22 DNAzyme in the presence of (A) 10 µM and (B) 500 µM of all the 

metals compared to 10 µM of Pb2+ at pH 6.2. 

 

Metal specificity tests were carried out on PbE22. First, the cleavage of the substrate was 

studied in the presence of an array of divalent and trivalent metal ions (10 μM each, Figure 6.6 

A) and found that like GR5, PbE22 too has a high selectivity for Pb2+. Furthermore, even with 
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500 μM of other metals still no observable activity was found (Figure 6.6 B). Therefore, PbE22 

is also highly specific for Pb2+. For comparison, GR5 has excellent selectivity for Pb2+, and an 

impressive fact is that GR5 is inactive even with 50 mM Mg2+. However, the 8–17 DNAzyme 

is quite active with such a high concentration of Mg2+ (1.6 min-1).111,250,314  It is worth 

mentioning here that up to 0.5 mM Pb2+ and 50 mM Mg2+ was tested for PbE22. Based on a 

rough estimation, at the same metal concentration, the rate of Pb2+ is 33,800-fold faster than 

that of Mg2+ for cleaving the 17E DNAzyme.250 This difference is even larger for the GR5 

DNAzyme. Since PbE22 is much slower, it would require over 1 M of Mg2+ to conclude that 

PbE22 is inactive with Mg2+, if 17E is used as the standard. PbE22 was tested with 4 M Mg2+ 

and found that it has no cleavage as well (data not shown). Therefore, PbE22 is highly specific 

for Pb2+. 

 

6.3 Summary 

 

Within this study, the aim was to obtain a very short RNA-cleaving DNAzyme. To achieve this 

goal, both rational design and in-vitro selection were performed. Multiple important outcomes 

and observations resulted from the above study. Firstly, a very short RNA-cleaving DNAzyme 

that uses Pb2+ as a cofactor named PbE22 was isolated. PbE22 contains only 5 nucleotides in 

its catalytic loop, and has a rate enhancement of ~200-fold which is lower as compared to that 

of the leadzyme or the GR5 DNAzyme. PbE22 DNAzyme gives an example for the better 

understanding of the effect of the size of the catalytic loop on the activity of DNAzyme. This 

study indicates that although site-specific and metal-specific catalysis is possible with short 
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loops, the presence of extra nucleotides is probably needed for optimal activity. It suggests the 

significance of bigger catalytic loops for better folding or scaffolding for utilizing the metal 

cofactor. For example, in the 8–17 DNAzyme, in addition to the four nucleotides identified to 

be critical for the cleavage reaction, additional nucleotides are found to have other roles to assist  

DNAzyme.311,314 In PbE22, the number of nucleotides on the enzyme strand is very limited. At 

the same time, DNA lacks the structural versatility present in RNA due to the lack of the 2’-

OH group, which may explain the faster cleavage by the leadzyme despite its even smaller size. 

Secondly, with the help of deep sequencing technology, a comprehensive understanding of the 

diversity and abundance of each sequence family was obtained, and variations within each type 

of family were also dug out and analyzed. As a result, multiple sequences that are active with 

lead are reported. Thirdly, PbE22 was demonstrated to have excellent selectivity for Pb2+ 

against 500 μM of all the divalent and trivalent metal ions tested. Also, all the catalytically 

active sequences obtained from the rest of the library too, were shown to be active with Pb2+ 

but not with Mg2+. Fourthly, by performing pH-dependent kinetic studies, it was deduced that 

PbE22 undergoes a single deprotonation at the rate-limiting step, and in this respect the 

DNAzymes PbE22, leadzyme and GR5 share a similar cleavage mechanism. This study has 

provided insights into the significance of the size of the DNAzymes, Pb2+-dependent activity, 

and metal specificity. The PbE22 DNAzyme is not a very efficient DNAzyme, but it may 

provide a scaffold for studying Pb2+ binding to DNAzyme given its much smaller size. This 

DNAzyme can be used for spectroscopic and structural analysis, as these experiments have 

been difficult to carry out with the current DNAzymes that bear relatively large catalytic loops. 
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6.4 Materials and methods 

 

6.4.1 Chemicals 

 

The DNA library for in-vitro selection, related primers, and fluorophore/quencher modified 

DNAs were purchased from Integrated DNA Technologies (IDT, Coralville, IA). The 

sequences of DNA used in this selection are listed in Table 6.1. The trans-cleaving enzyme 

strands and their mutants were from Eurofins (Huntsville, AL). Metal ions that were used for 

analysis include silver(I) nitrate, potassium(I) chloride, lithium(I) chloride, thallium(I) chloride,  

lead(II) acetate, magnesium(II) sulfate, manganese(II) chloride tetrahydrate, iron(II) chloride 

tetrahydrate, cobalt(II) chloride hexahydrate, copper(II) chloride dehydrate, zinc(II) chloride, 

calcium(II) chloride, nickel(II) chloride, strontium(II) chloride, cadmium(II) chloride, 

mercury(II) perchlorate, yttrium(III) chloride hexahydrate, gallium(III) chloride, cerium(III) 

chloride, iron(III) chloride hexahydrate. All these salts were purchased from Sigma-Aldrich 

except the iron was purchased from Alfa Aesar. The purity of the metals used is 99.99 %. Their 

solutions were made by directly dissolving their salts in water. Tris (Hydroxymethyl) 

aminomethane (Tris), 2-(N-morpholino) ethanesulfonic acid (MES) free acid monohydrate, 3-

(N-morpholino) propanesulfonic acid (MOPS), 4-(2-Hydroxyethyl)piperazine-l-

ethanesulfonic acid (HEPES), EDTA disodium salt dehydrate, sodium chloride, sodium 

bromide, sodium iodide and ammonium acetate were purchased from Mandel Scientific Inc. 

(Guelph, Ontario, Canada). Acrylamide/bisacrylamide 40 % solution (29:1), urea, and 10 X 

TBE solution were purchased from Bio Basic Inc. SsoFast EvaGreen supermix was purchased 

from Bio-Rad for real-time PCR analysis. T4-DNA ligase, deoxynucleotide (dNTP) solution 
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mix, Taq DNA polymerase with ThermoPol buffer, and low molecular weight DNA ladder 

were purchased from New England Biolabs. All metal ions, buffer and gel stock solutions were 

prepared with Milli-Q water. The pH of the buffers was measured with Denver Instrument 

UltraBasic pH meter. 

 

Table 6.1 List of DNA sequences used in Appendix A (chapter 6). 

 

DNA  Sequence (5’– 3’) 

Lib-FAM-N35 CTGCAGAATTCTAATACGAGTCACTATrAGGAAGATGGCGAAACAT

CTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTAGTCG

GTAAGCTTGGCAC 

Lib-rA AATACGAGTCACTATrAGGAAGAT 

Splint DNA AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA 

Primer P1 CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA 

Primer P2 GTGCCAAGCTTACCG 

Primer P3 FAM- AAATGATCCACTAATACGAGTCACTATrAGG 

Primer P4 AACAACAACAAC-S-GTGCCAAGCTTACCG 

Primer P701 CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTC

AGACGTGTGCTCTTCCGATCTCTGCAGAATTCTAATACGAGTCAC 

Primer P501 AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTT

CCCTACACGACGCTCTTCCGATCTGTGCCAAGCTTACCG 

Substrate GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

C14  TTTCGCCATCTTGGGAACACAGTAAACTGAGGCATAAGGATCCAT

AGTGACTCGT 

C15  TTTCGCCATCTTCGGACCAGCAGGAAAAATGAACGAATGGAGGAT

AGTGACTCGT 

C16A  TTTCGCCATCTTAGGAATAGTGACTCGT 
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C16B  TTTCGCCATCTTAGGAATGGAAAAACATAATGAACAAGGACAAAT

AGTGACTCGT 

C17A  TTTCGCCATCTTTACAAGACTCGT 

C17B  TTTCGCCATCTTTACAAGACTCAGTTCTACCTGAGTGGTTATAGTG

ACTCGT 

C18  TTTCGCCATCTTAGAGCCAAAAGGACGTCCATAGTGACTCGT 

C20  TTTCGCCATCTTAGGGAAAGAAAAAGGCGGGGAAGTAACGAGAAT

AGTGACTCGT 

C21 TTTCGCCATCTTATACCCAACAGGAACAGTGACTCGT 

C22 TTTCGCCAGAAGCATAGTGACTCGT 

C24  TTTCGCCATCTTAGTGGAGCAAAAAAGGTTCCAAAGGGATCGGAG

TGACTCGT 

C25A  TTTCGCCATCTTAAGAAAGGCCATAGGAGCCATAGTGACTCGT 

C25B  TTTCGCCATCTTAAGAAAGGCCATAGGAGCCATAGAGGGAATAAT

AGTGACTCGT 

C27  TTTCGCCATCTTAAGCATGGAAGCAAAGAAGGCACCATAGTGACT

CGT 

C28  TTTCGCCATCTTGGAACAGAGCGGGGGAGATAAACAAAGAAATAT

AGTGACTCGT 

C30  TTTCGCCATCTTGAGCACTGAAGGACTCCATAACGAGAGGAGGAT

AGTGACTCGT 

C35  TTTCGCCATCTTACCGTAGTTCGGATATAGTGACTCGT 

C36  TTTCGCCATCTTTGAGGAAAGCAAAAAATAAGGATCCATAGTGAC

TCGT 

C40  TTTCGCCATCAATTGACAAATTAAAACAAAGACAGAATGAGTGAC

TCGT 

C41  TTTCGCCATCTTACGGTAAAAGGTAGTGACTCGT 

C46  TTTCGCCATAGGAGGTGACTCGT 

C52  TTTCGCCATCTTATGAGACTCGT 
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C53  TTTCGCCATCTTAACAGACTCGT 

C56  TTTCGCGGGATAGTGACTCGT 

C57  TTTCGCCATCTTAGAGACGAAGACATAGTGACTCGT 

 

 

6.4.2 In-vitro selection 

 

For this in-vitro selection experiment, the initial DNA library was prepared by ligating two 

pieces of DNA (Lib-FAM-N35 and Lib-rA) with a splint DNA (see Table 6.1 for complete DNA 

sequences). Lib-FAM DNA (200 pmol) and Lib-rA DNA (300 pmol) were mixed with splint 

DNA (300 pmol) first in buffer A (50 mM pH 7.5 Tris-HCl, pH 7.5, 10 mM MgCl2). The three 

strands of DNA were annealed at 95 °C for 1 min followed by slow cooling to room 

temperature. The T4 ligation protocol provided by New England Biolabs was followed for the 

ligation reaction. The ligated DNA product was purified with 10 % denaturing polyacrylamide 

gel (dPAGE) at 650 V for 80 min and the DNA was extracted from the gel with buffer B (1 

mM EDTA, 10 mM Tris-HCl, pH 7.0). The extracted DNA library was further concentrated 

via ethanol precipitation and re-suspended in 60 μL of buffer C (50 mM MES, pH 6.0, 25 mM 

NaCl), which was the selection buffer. This DNA was used directly as the DNA library for the 

first round of selection. For each of the subsequent round, the library was generated from PCR. 

For the in-vitro selection experiment, the random DNA pool was incubated with final 

concentration of 10 μM freshly prepared AgNO3 metal ion for 60 min. After incubation, the 

reaction was quenched with 8 M urea and was purified in 10 % dPAGE. A fraction of the 

selected DNA was extracted from the gel and further purified with a Sep-Pak C18 column 
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(Waters). The purified selected DNA was then dried in an Eppendorf Vacufuge at 30 °C 

overnight. The dried DNA was re-suspended in 60 μL of 5 mM HEPES buffer (pH 7.5). A 

small fraction of this DNA was amplified by two rounds of PCR (PCR1 and PCR2) using 

thermo-cycling conditions described in section 2.4.3. 

 

6.4.3 Deep sequencing 

 

To prepare sample for deep sequencing, the round 6 library was subjected to PCR1 as explained 

above in section 2.4.3. The full-length library generated from this step was subjected to another 

PCR reaction so that the Illumina sequencing technology can be used. The forward primer 

(P701) and the reverse primer (P501), each containing a unique index sequence were used (see 

Table 7.1 for complete sequences). The PCR product was purified with 2 % agarose gel and 

extracted using a gel extraction kit (IBI Scientific). The extracted DNA was eluted in 25 µL 

Milli-Q water and the concentration was quantified using a NanoDrop spectrophotometer. The 

sequencing was performed at McMaster Genomics Facility, Mc Master University, Hamilton, 

Ontario, Canada.  

 

6.4.4 Activity assays 

 

For a typical gel-based activity assay, the DNAzyme complex were prepared by annealing the 

FAM-labeled substrate (10 µM) and enzyme (30 µM) in buffer 50 mM MES (pH 6.0, 25 mM 

NaCl)  by heating at 85 C for 1 min and then slowly cooled at room temperature until ~30 C. 
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The complex was then frozen at -20 C for at least 2 hours. To initiate the reaction at room 

temperature, a final of 10 - 100 µM Pb2+ or another metal ion (as required) was incubated with 

1 μM DNAzyme complex in a total 10 μl reaction mixture in buffer 50 mM MES (pH 6.0 - 6.5) 

/ 50 mM MOPS (pH 7.0 – 8.0) with salt concentration 25 mM NaCl, for the required time 

ranging from 10 s – 8 h. The samples were quenched with 8 M urea at designated time points 

and run in 15 % dPAGE at 120 V for 80 min. The gel images were taken with Bio-Rad 

ChemiDoc MP imaging system. For determining the rate of cleavage, the gel band intensities 

of the cleaved vs. uncleaved substrate were quantified and the data obtained were fitted (using 

Sigma Plot 12.0) according to the first-order rate equation Yt = Yₒ + a(1-e-kx), where Yt and Yₒ 

are the cleavage fractions at a given reaction time ‘t’ or ‘0’ min, respectively, ‘a’ is a constant 

i.e. the scaling parameter and ‘k’ is the observed rate constant. 
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7. Appendix B: Chapter 7 - A comparison of two classic Pb2+-dependent RNA-

cleaving DNAzymese 

 

7.1 Introduction 

 

DNAzymes are catalysts made of DNA. They are attractive molecules due to excellent stability, 

high catalytic efficiency, programmability, and ease of modification.207,315–318 DNAzymes have 

found a diverse range of applications in anti-viral research,111 nanotechnology,319 organic 

synthesis,320 and biosensor development.275 With limited chemical functionality and a highly 

negatively charged backbone, DNAzymes often need to recruit metal ions for catalysis and 

different metal ions may prefer different DNA sequences.102,212,289 This field has grown 

tremendously by studying the Pb2+- specific DNAzymes. The first DNAzyme (named GR5) 

was selected in the presence of Pb2+ in 1994.67 GR5 had not attracted much attention then, since 

the initial DNAzyme research was focused on RNA cleavage (e.g. anti-viral applications). GR5 

cannot cleave all-RNA substrates, it only cleaves DNA/RNA chimera.67 Three years later, the 

landmark paper by Santoro and Joyce reported two general-purpose RNA-cleaving 

DNAzymes.111 One of them is called the 8–17 DNAzyme. A variant of it, 17E, is highly active 

with Pb2+.113 Since then, 17E has been coupled to many signaling mechanisms to develop 

biosensors.113,321–324 The GR5 DNAzyme recently revived as a biosensor,308,325 since the Lu 

group reported its exceptionally high selectivity for Pb2+ (much better than 17E).306 It is also 

                                                           
e This chapter is the basis for a published manuscript: Saran R.; Liu, J. A comparison of two classic Pb2+-dependent RNA-cleaving 

DNAzyme. Inorg. Chem. Front., 2016, 3, 493-501. 
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interesting to note that Pb2+ is active with many other DNAzymes,100,101  especially at above 

neutral pH. Another intriguing observation is that 17E occurred from at least six independent 

selections,111,112,118,119,307,328,329 but GR5 was reported only once.67  GR5 and 17E form a good 

pair for comparison, since both have the highest activity with Pb2+. Both are small DNAzymes 

with only ∼15 nucleotides in the catalytic core and share the same substrate sequence. Extensive 

biochemical,111,250,310,311,326 and spectroscopic studies have been carried out on 

17E.228,229,238,264,327 In particular, many active 17E mutants have been identified.230,307,311 

However, relatively little is known regarding GR5.67,108,306,308 A closer examination of these 

two DNAzymes indicates that they contain similar conserved nucleotides. Therefore, an 

interesting question is whether they bear similar metal binding pockets or work with the same 

mechanism (e.g. they are just mutants). In this work, the aim is to answer such fundamental 

questions based on a side-by-side comparison of 17E and GR5, and to gain a deeper 

understanding of the structure-activity relationship of GR5. 

 

7.2 Results and discussion 

 

7.2.1 17E mutation studies 

 

The secondary structures of the 17E and GR5 DNAzymes are shown in Figure 7.1 A and B, 

respectively. They share the same substrate sequence (in green). The cleavage junction is 

5’rAdG 3’ (see the arrowhead). Here, rA means ribo-adenosine, which is the only RNA 

linkage in the substrate. Each enzyme binds the substrate via two base paired arms, and the 
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catalytically important nucleotides are located in the bulged loops. In the presence of Pb2+, the 

phosphodiester bond linking, the rA·G is cleaved. With extensive biochemical studies, four 

highly conserved nucleotides have been identified in 17E (A6, G7, C13, and G14, highlighted 

in blue, Figure 7.1 A). Mutation to any of them leads to over 100-fold decrease in 

activity.230,307,311  

 

 

Figure 7.1 The secondary structures of (A) the 17E and (B) the GR5 DNAzymes. The top green strands are the 

substrates and these two DNAzymes have the same substrate sequence. The arrowheads point at the cleavage 

junction. The important nucleotides are numbered. The blue nucleotides are highly conserved. The four red 

nucleotides in 17E are important with this particular rAG dinucleotide junction at the cleavage site to reach 

optimal activity. 

 

The 17E DNAzyme has the highest activity with Pb2+, but it is also active with high 

concentrations of many other metals such as Mg2+, Ca2+, Mn2+, Cd2+ and Zn2+. For 17E assays, 

Mg2+ has been the most common metal cofactor.111,310,314 However, GR5 has no activity with 

50 mM to 1 M Mg2+.108,306 For a meaningful comparison, Pb2+ was used as the common metal 

here. Pb2+ has a much higher apparent binding constant and can be used at much lower 

concentrations.250 This would confer less perturbation to the properties of DNA. Pb2+ also has 
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a well-established nucleotide coordination chemistry,3,330,331 making it easier to probe metal 

binding sites. Although very rich information is available for 17E with Mg2+, it was needed to 

first confirm whether these can be applied to Pb2+. For this purpose, a mutation study was 

performed with 17E in the presence of Mg2+ and Pb2+. Each of the four highly conserved 

nucleotides (highlighted in blue in Figure 7.1 A) was mutated, and the cleavage rate was 

measured. The wild type 17E has a rate of 0.44 min−1 with 10 mM Mg2+ at pH 7.6 and a gel 

image is shown in the inset of Figure 7.2 A. All the mutations significantly reduced activity 

(Figure 7.2 A).  

 

 

Figure 7.2 Activity of the 17E mutants in the presence of (A) 10 mM Mg2+ or (B) 10 µM Pb2+. The buffer is 50 

mM HEPES, pH 7.6 with 25 mM NaCl. The wild-type 17E activity is 0.44 min-1 with 10 mM Mg2+ and >11.9 

min-1 with 10 µM Pb2+ (not shown since the scale is very different). Inset of (A): gel image of the wild-type 17E 

DNAzyme cleavage in 10 mM Mg2+. The time points are 0, 0.25, 0.5, 1, 5, 30 and 60 min. 
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Even the most active A6C mutant, (e.g. the adenine at position 6 mutated to cytosine) has a rate 

of only 0.0012 min−1, a ∼370-fold drop compared to the wild type. Other mutants barely had 

any activity, which is consistent with the literature on Mg2+.250,307,310 The activity of the wild-

type 17E is much higher with 10 μM Pb2+, which is estimated to be greater than >11.9 min−1 at 

pH 7.6. Note that the rate is too fast to be accurately measured by manual pipetting. In the 

presence of Pb2+, two mutations A6C and C13A showed moderate activity (Figure 7.2 B). 

Again, even for the most active mutant, the rate is still >300-fold less than the wild-type. 

Therefore, the nucleotides important for Mg2+ are also important for Pb2+. It is interesting to 

note that the C13A mutant is relatively more active with Pb2+, which hints that Pb2+ might have 

better tolerance to mutations.  

 

7.2.2 GR5 mutation studies 

 

After confirming the important nucleotides for Pb2+ in 17E, GR5 was studied next. So far, no 

systematic mutation studies have been carried out on GR5. From its sequence alignment,67 six 

highly conserved nucleotides were identified in the original paper by Breaker and Joyce (Figure 

7.1 B, in blue). These nucleotides segregate into two groups: four (A6G7C8G9) in the middle 

and two (C14G15) towards the end. The other nucleotides appear to be less important since 

their sequence and length can vary while still retaining activity.67 Therefore, these six conserved 

nucleotides were focused on first. It is interesting to note that 17E has the conserved AG 

followed by CG. In GR5, the conserved nucleotides can be considered to be AG followed by 

CG and another CG. Therefore, it is possible that 17E and GR5 have similar Pb2+ binding 

pockets and even similar mechanisms. These six conserved nucleotides in GR5 were 



187 
 
 

 

systematically mutated (Figure 7.3 A). The wild-type GR5 has a rate greater than 10.2 min−1 at 

pH 7.6 with 10 μM Pb2+. The A6C mutant retained a high activity (∼2 min−1), but any other 

mutations to A6 abolished activity. Mutations made to G7 abolished the activity as well. This 

trend is exactly the same as that in 17E for its A6 and G7. Therefore, these two nucleotides are 

likely to play the same role in these two DNAzymes. For GR5, C8 can be mutated to A or T 

(activity almost fully retained) but not G. Any mutations made to G9 abolished the activity. 

This pattern is however different from that in 17E for its C13G14. On the other hand, the 

activities of C14G15 mutants in GR5 are comparable with that of the C13G14 in 17E, where 

only the C14A mutant retained partial activity. Their relative rates are plotted (normalized to 

the A6C mutant of both DNAzymes) in Figure 7.3 B.  

 

 

Figure 7.3 (A) Activity of GR5 wild-type and mutants. The activity buffer contained 50 mM HEPES, pH 7.6, 25 

mM NaCl and 10 µM Pb2+.  (B) Relative activity of the 17E and GR5 mutants at pH 7.6. The rate of 17E is 

normalized to its A6C mutant (bottom axis) and GR5 is also normalized to its A6C mutant (top axis).   
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Figure 7.4 Mfold predicted secondary structures from a few GR5 mutants and the wild-type GR5. All the other 

mutants fold into a structure similar to that for the wild-type GR5 and are not listed here. The cleavage site adenine  

is marked by the red circle. The substrate and enzyme strands are linked by a TTTT loop. In the wild-type GR5 

structure, two G-C base pairs are predicted in the enzyme loop. However, these nucleotides are highly conserved 

for catalysis and thus are unlikely to be confined in such a hairpin structure. Therefore, the simple loop structure 

in the original GR5 selection paper was used in this work.67 Some mutants in this figure have three base pairs in 

the loop and their misfold (i.e. deviation from the simple loop structure) might also be a reason for their inhibited 

activity.  
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Using the 17E mutants as a benchmark, it can be reasoned that A6G7 and C14G15 in GR5 serve 

similar catalytic roles to their corresponding nucleotides in 17E. It is interesting to note that the 

GR5 mutants have higher activity, as the rates of the three most active GR5 mutants are greater 

than 1 min−1, while the 17E mutants under the same conditions are less than 0.05 min−1. The 

wild-type DNAzymes were compared at pH 5.5, and GR5 is ∼4-fold more active, which 

partially accounts for the 20-fold difference in rate for their mutants. To test whether the 

mutations can change the folding of the GR5 core, all the mutants were analyzed using Mfold 

(Figure 7.4).313 Under the experimental conditions used (25 mM NaCl), the GR5 DNAzyme 

folds into a structure with a two base-pair hairpin. However, these two base pairs involve the 

highly conserved C14G15, and therefore, are unlikely to be real. For this reason, the simple 

loop GR5 secondary structure as shown in the original paper, was followed herein.67 According 

to Mfold predictions, most mutants follow the same structure as the original GR5, and the few 

that showed alternative folding are listed in Figure 7.4 None of these listed mutants are active. 

For them, misfolding cannot be ruled out as a reason for their inactivity. 

 

7.2.3 Cleavage junction mutations 

 

The above work focused only on the enzyme strands. Previous biochemical assays indicated 

that the composition of the chimeric dinucleotide junction of the substrate (e.g. rA18·G1.1) is 

also important.307,311 In addition to the four highly conserved nucleotides in 17E, the ones 

marked in red are also conserved (T2.1, T12, A15 and A15.0) to effectively cleave the 

rA18·G1.1 junction (Figure 7.1 A).  
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Figure 7.5 (A) Structure of the dinucleotide junction rAG at the cleavage site, and the mutation of the G to 2AP, 

HX, or A. Kinetics of cleavage of the junctions at pH 6 with (B) 17E, or (C) GR5. (D) The summary of the cleavage  

rate. Note the y-axis is on log scale. (E) The typical wobble GT pairing in the wild-type substrate-enzyme complex. 

2AP base pairing with (F) T, and the (G) canonical Watson-Crick base A-T pairing in the mutants. The G-HX 

pairing is not shown since it is identical to the GT wobble. 

 

With other cleavage junctions, these nucleotides may need to be changed accordingly to 

maintain optimal activity.311 Therefore, if the enzyme core sequence is fixed, changing the 
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dinucleotide junction composition may have a huge influence on enzyme activity. This might 

be useful for further comparing these two DNAzymes. While the structure of G and A are quite 

similar (both are purines), direct switching from G to A would obscure the exact chemical role 

of the functional groups of G (Figure 7.5 A). Therefore in this work, G was mutated to 

hypoxanthine (HX) and 2-aminopurine (2AP) to probe the functional groups, one at a time. HX 

differs from guanine by the 2-amino group, while 2AP differs from guanine by lacking the 6-

keto group. The assays were carried out at pH 6.0 to obtain measurable rates for the wild-type 

enzymes.308 The original rA·G junction has the highest rate for both DNAzymes (Figure 7.5 B 

and C, black traces). The rates of rA·HX were more than one order of magnitude slower 

compared to the original rA·G junction (Figure 7.5 D, red bar), and rA.2AP was even slower in 

both cases (Figure 7.5 D, green bar). Finally, the rates were the slowest with the rA·A junction 

(Figure 7.5 D, yellow bar), dropping by over 3 orders of magnitude compared to the original 

rA·G junction. Since all the modifications brought about the same trend in activity change, 

these identical patterns further suggest a similar mechanism of these two DNAzymes. Two 

reasons may explain the guanine mutation activity pattern: either disruption of metal binding 

or the enzyme structure. Pb2+ has well-defined coordination sites in the nucleobases. As far as 

guanine is concerned, the N7 and O6 positions are important for Pb2+ binding. Since adenine 

and guanine have drastically different rates (>1000-fold), this argues against the importance of 

the N7 position (both have the N7 position available). Since the HX mutant is only slightly 

more active than the 2AP mutant, it is unlikely that the O6 oxygen is involved in Pb2+ binding. 

Otherwise, a much more significant change is expected.310,332 Therefore, this guanine should 

play more of a structural role. For example, it may base pair with other nucleotides to stabilize 



192 
 
 

 

the secondary or tertiary structure for catalysis. This guanine can formally pair with the thymine 

in the 17E to form a wobble pair, which has been confirmed to be crucial for cleaving the rA·G 

junction.111,250,311 Other 17E mutants have been evolved to cleave other types of junctions, 

which lack the wobble pair.311 Therefore, this wobble is not absolutely conserved, which also 

confirms its structural role. In a typical wobble pair, the O6 and N1 positions in guanine are 

hydrogen bonded with thymine (Figure 7.5 E). By changing the guanine to HX, the wobble 

formation is maintained. The drop of rate by over 10-fold suggests that the amino group might 

be involved in additional stabilization roles. With the 2AP junction, the same hydrogen bonding 

can still be formed with the wobble face of the thymine (Figure 7.5 F), but this requires slightly 

more structural changes explaining the drop of rates by ∼100–300 fold. On the other hand, with 

adenine (which confers the cumulative effect of both the HX and 2-AP mutations), the Watson–

Crick face of the thymine has to be used (Figure 7.5 H), and the structure perturbation is more 

significant, explaining its lowest rate. It is interesting to note that GR5 has exactly the same 

trend as 17E for the junction mutations (Figure 7.5 D). Based on the above discussions, if the 

activity for different cleavage junctions is mainly related to the T2.1 in 17E, there might be a 

corresponding thymine in GR5. Interestingly, only one thymine, T5, resides in the GR5 enzyme 

loop. A careful examination of the aligned sequences resulting from the Pb2+ selection in the 

original paper, reveals that this thymine is conserved in 70 % of the sequences.67 However, T5 

in GR5 is quite far away from the cleavage junction based on the secondary structure. 

 

7.2.4 Other GR5 mutations 
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To test the function of T5 in GR5, a few more mutants were studied.  

 

 

Figure 7.6 (A) Three parts (in boxes 1-3) of  GR5 are further mutated. One or two nucleotides are inserted in box 

1, the nucleotides in box 2 are gradually deleted and T5 in box 3 is mutated to the other three nucleotides. (B) The 

rates of these mutants plotted in a log scale. 

 

In 17E almost all the nucleotides in the substrate strand are base paired with the enzyme, while 

in GR5, three free nucleotides exist on the 3′ side of rA. The importance of these unpaired 

nucleotides in GR5 was also tested. First, they were gradually paired up by extending the 

enzyme. T or TC was added in the box marked 1 in Figure 7.6 A. Both the extended GR5 

mutants still retained high activity (Figure 7.6 B), suggesting that the unpaired nucleotides 

might be useful for providing flexibility but without a specific chemical role. Then, the 

nucleotides before T5 (the nucleotides in box 2) were gradually deleted. These deletions did 

not significantly affect the activity, unless all the four nucleotides in box 2 were deleted (Figure 

7.6 B). Finally, T5 in box 3 was mutated to other nucleotides and the activity was not much 

affected by this as well (Figure 7.6 B). These experiments suggest that T5 itself is not critically 

important, thus arguing against the speculation that T5 in GR5 plays a similar role to T2.1 in 



194 
 
 

 

17E. Therefore, some other nucleotides in GR5 might interact with the cleavage site guanine in 

the substrate, and this will be a topic of further studies. 

 

7.2.5 Further discussions 

 

GR5 and 17E are two highly efficient and widely used Pb2+-dependent DNAzymes. Both have 

the highest activity with Pb2+,67,250,306 and they share the same substrate. In this work, mutation 

studies on both DNAzymes were performed. The data suggests that these two Pb2+-specific 

DNAzymes have the same catalytic mechanism in the presence of Pb2+. Pb2+ has long been 

known to be highly effective in RNA hydrolysis. Using Pb2+ for RNA-cleaving ribozymes has 

been reported since early 1990s,295–297 and the study of Pb2+ for RNA hydrolysis can be dated 

back to an even earlier time.330 314 In the well-known leadzyme (a ribozyme), the enzyme strand 

contains only two unpaired nucleotides (AG) and it is quite active with Pb2+.333 Therefore, Pb2+ 

is a highly efficient metal to assist RNA cleavage. The hydrated Pb2+ has a pKa value of 7.2–

7.8 and its deprotonated species can interact with the 2′-OH on the rA sugar ring to assist the 

nucleophilic attack reaction.3 For comparison, other metals have quite different pKa values (8.5 

for Eu3+, 9.0–9.6 for Zn2+, and 11.4 for Mg2+).225,334 This special property has rendered Pb2+ to 

be highly effective for RNA cleavage and the DNAzyme provides a scaffold to efficiently 

utilize Pb2+ for this purpose. This might be the reason for Breaker and Joyce to pick Pb2+ for 

their first DNAzyme selection,67 from which GR5 was reported. Under physiological 

conditions, the available free Pb2+ concentration is close to zero and Mg2+ is the most important 

cation. To target RNA, most subsequent selections were carried out with Mg2+ or other 
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physiologically relevant metals. Under various conditions, 17E was the main outcome (e.g. with 

Mg2+,111,119 Zn2+,112 Mg2+/Mn2+,307 Cd2+,118 or Mg2+/Mn2+/Cu2+.329). It is easy to understand that 

GR5 did not appear again, since GR5 is completely inactive with these metals. Aside from the 

similarities between 17E and GR5, the major difference is that 17E is also active with many 

other metal ions, but GR5 is active only with Pb2+. The recurrence of 17E in many selections 

indicates that only very few solutions are available for DNAzymes to catalyze RNA hydrolysis 

in the presence of these metals (e.g. 17E appears to be the main solution). Therefore, 17E is 

optimized for other metal ions. Since 17E happens to contain AG and CG conserved 

nucleotides, it affords high activity with Pb2+. On the other hand, GR5 is optimized for Pb2+ and 

has no activity with other metals. In the Pb2+-dependent in-vitro selection experiment described 

in chapter 6, many new DNAzymes were discovered.108 The ones that are active with Pb2+ are 

inactive with Mg2+. This further supports the more stringent sequence requirements for Mg2+. 

In a sense, 17E may be considered to be a special form of GR5. More experiments are needed 

to test this hypothesis and to fully elucidate their relation.  

 

7.3 Summary 

 

GR5 and 17E are two highly efficient and widely used Pb2+-dependent DNAzymes. Both have 

the highest activity with Pb2+.67,250,306 They share the same substrate sequence and have similar 

conserved nucleotides in the enzyme catalytic core. Within this study, a side-by-side 

comparison of these two Pb2+-dependent DNAzymes was made. Mutation studies on both 

DNAzymes were performed. The data suggests that these two Pb2+-specific DNAzymes have 
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the same catalytic mechanism in the presence of Pb2+. By performing mutations in the enzyme 

core, the similar role of four highly conserved nucleotides in both enzymes was identified and 

it was concluded that they share the same activity pattern. By mutating guanine at the cleavage 

junction to adenine, HX and 2AP, it was further confirmed that these two enzymes have the 

same mechanism in the presence of Pb2+. This guanine has been suggested to play a structural 

role instead of a metal binding one. In addition, Mg2+ and Pb2+ were compared for the activity 

of 17E as a function of enzyme mutants. This study indicates that the nucleotides important for 

Mg2+ catalysis are also important for the Pb2+-dependent activity. Based on this study,  the 

general activity of Pb2+ in many different DNAzymes was rationalized, a deeper understanding 

of the structure-activity relationship of GR5 is gained, and it was proposed that 17E may be 

considered to be a special form of GR5, explaining the very high activity of 17E in the presence 

of Pb2+. 

 

7.4       Materials and methods 

 

7.4.1    Chemicals 

 

The DNAs used were purchased from Integrated DNA Technologies (IDT, Coralville, IA). The 

sequences of DNA used in this selection are listed in Table 7.1. The trans-cleaving enzyme 

strands and their mutants were from Eurofins (Huntsville, AL). Metal ions that were used for 

analysis include lead(II) acetate, magnesium(II) sulfate. All these salts were purchased from 

Sigma-Aldrich. The purity of the metals used is 99.99 %. Their solutions were made by directly 
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dissolving their salts in Milli-Q water. Tris (Hydroxymethyl) aminomethane (Tris), 2-(N-

morpholino) ethanesulfonic acid (MES) free acid monohydrate, 4-(2-

Hydroxyethyl)piperazine-l-ethanesulfonic acid (HEPES), 3-(N-morpholino) propanesulfonic 

acid (MOPS), EDTA disodium salt dehydrate, sodium chloride, sodium bromide, sodium iodide 

and ammonium acetate were purchased from Mandel Scientific Inc. (Guelph, Ontario, Canada). 

Acrylamide/bisacrylamide 40 % solution (29:1), urea, and 10 X TBE solution were purchased 

from Bio Basic Inc. SsoFast EvaGreen supermix was purchased from Bio-Rad for real-time 

PCR analysis. T4-DNA ligase, deoxynucleotide (dNTP) solution mix, Taq DNA polymerase 

with ThermoPol buffer, and low molecular weight DNA ladder were purchased from New 

England Biolabs. All metal ions, buffer and gel stock solutions were prepared with Milli-Q 

water. The pH of the buffers was measured with Denver Instrument UltraBasic pH meter. 

 

Table 7.1 List of DNA sequences used in Appendix B (chapter 7). 

 

DNA Sequence (5’-3’) 

Substrate  

PO GTCACGAGTCACTATrAGGAAGATGGCGAAA 

rAA GTCACGAGTCACTATrAAGAAGATGGCGAAA 

rA2AP GTCACGAGTCACTATrA2APGAAGATGGCGAAA 

rAHX GTCACGAGTCACTATrAHXGAAGATGGCGAAA 

Enzymes  

GR5 TTTCGCCATCT--GAAGTAGCGCCGCCGTATAGTGACTCGTGAC 

A6C TTTCGCCATCT--GAAGTCGCGCCGCCGTATAGTGACTCGTGAC 

A6T TTTCGCCATCT--GAAGTTGCGCCGCCGTATAGTGACTCGTGAC 

A6G TTTCGCCATCT--GAAGTGGCGCCGCCGTATAGTGACTCGTGAC 
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G7A TTTCGCCATCT--GAAGTAACGCCGCCGTATAGTGACTCGTGAC 

G7C TTTCGCCATCT--GAAGTACCGCCGCCGTATAGTGACTCGTGAC 

G7T TTTCGCCATCT--GAAGTATCGCCGCCGTATAGTGACTCGTGAC 

C8A TTTCGCCATCT--GAAGTAGAGCCGCCGTATAGTGACTCGTGAC 

C5G TTTCGCCATCT--GAAGTAGGGCCGCCGTATAGTGACTCGTGAC 

C8T TTTCGCCATCT--GAAGTAGTGCCGCCGTATAGTGACTCGTGAC 

G9A TTTCGCCATCT--GAAGTAGCACCGCCGTATAGTGACTCGTGAC 

G9C TTTCGCCATCT--GAAGTAGCCCCGCCGTATAGTGACTCGTGAC 

G9T TTTCGCCATCT--GAAGTAGCTCCGCCGTATAGTGACTCGTGAC 

C14A TTTCGCCATCT--GAAGTAGCGCCGCAGTATAGTGACTCGTGAC 

C14G TTTCGCCATCT--GAAGTAGCGCCGCGGTATAGTGACTCGTGAC 

C14T TTTCGCCATCT--GAAGTAGCGCCGCTGTATAGTGACTCGTGAC 

G15A TTTCGCCATCT--GAAGTAGCGCCGCCATATAGTGACTCGTGAC 

G15C TTTCGCCATCT--GAAGTAGCGCCGCCCTATAGTGACTCGTGAC 

G15T TTTCGCCATCT--GAAGTAGCGCCGCCTTATAGTGACTCGTGAC 

1=T       TTTCGCCATCTT-GAAGTAGCGCCGCCGTATAGTGACTCGTGAC 

1=TC TTTCGCCATCTTCGAAGTAGCGCCGCCGTATAGTGACTCGTGAC 

2=AAG TTTCGCCATCT---AAGTAGCGCCGCCGTATAGTGACTCGTGAC 

2=AG TTTCGCCATCT----AGTAGCGCCGCCGTATAGTGACTCGTGAC 

2=G TTTCGCCATCT-----GTAGCGCCGCCGTATAGTGACTCGTGAC 

2=none TTTCGCCATCT------TAGCGCCGCCGTATAGTGACTCGTGAC 

3=A TTTCGCCATCT--GAAGAAGCGCCGCCGTATAGTGACTCGTGAC 

3=C TTTCGCCATCT--GAAGCAGCGCCGCCGTATAGTGACTCGTGAC 

3=G TTTCGCCATCT--GAAGGAGCGCCGCCGTATAGTGACTCGTGAC 

17E TTTCGCCATCTTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC 

A6C TTTCGCCATCTTTCTCCGCGCCGGTCGAAATAGTGACTCGTGAC 

A6G TTTCGCCATCTTTCTCCGGGCCGGTCGAAATAGTGACTCGTGAC 

A6T TTTCGCCATCTTTCTCCGTGCCGGTCGAAATAGTGACTCGTGAC 

G7A TTTCGCCATCTTTCTCCGAACCGGTCGAAATAGTGACTCGTGAC 
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G7C TTTCGCCATCTTTCTCCGACCCGGTCGAAATAGTGACTCGTGAC 

G7T TTTCGCCATCTTTCTCCGATCCGGTCGAAATAGTGACTCGTGAC 

C13A TTTCGCCATCTTTCTCCGAGCCGGTAGAAATAGTGACTCGTGAC 

C13G TTTCGCCATCTTTCTCCGAGCCGGTGGAAATAGTGACTCGTGAC 

C13T TTTCGCCATCTTTCTCCGAGCCGGTTGAAATAGTGACTCGTGAC 

G14A TTTCGCCATCTTTCTCCGAGCCGGTCAAAATAGTGACTCGTGAC 

G14C TTTCGCCATCTTTCTCCGAGCCGGTCCAAATAGTGACTCGTGAC 

G14T TTTCGCCATCTTTCTCCGAGCCGGTCTAAATAGTGACTCGTGAC 

 

 

7.4.2    Activity assays 

 

For a typical gel-based activity assay, the DNAzyme complex were prepared by annealing the 

FAM-labeled substrate (10 µM) and enzyme (30 µM) in buffer 50 mM MES (pH 6.0, 25 mM 

NaCl)  by heating at 85 C for 1 min and then slowly cooled at room temperature until ~30 C. 

The complex was then frozen at -20 C for at least 2 hours. To initiate the reaction at room 

temperature, a final of 10 μM Pb2+ / 10 mM Mg2+ or another metal ion (as required) was 

incubated with 10 μL of 0.7 μM DNAzyme complex in buffer 50 mM MES (pH 6.0 - 6.5) / 50 

mM MOPS (pH 7.0 – 8.0) with salt concentration 25 NaCl, for the required time ranging from 

10 s – 8 h. The samples were quenched with 8 M urea at designated time points and run in 15 

% dPAGE at 120 V for 80 min. The gel images were taken with Bio-Rad ChemiDoc MP 

imaging system. For determining the rate of cleavage, the gel band intensities of the cleaved vs. 

uncleaved substrate were quantified and the data obtained were fitted (using Sigma Plot 12.0) 

according to the first-order rate equation Yt = Yₒ + a(1-e-kx), where Yt and Yₒ are the cleavage 
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fractions at a given reaction time ‘t’ or ‘0’ min, respectively, ‘a’ is a constant i.e. the scaling 

parameter and ‘k’ is the observed rate constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


