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Abstract 

This research emphasizes the needed integration for the empirical field of pedestrian modeling 

and the practical field of public works services. This is illustrated by focusing on the winter 

sidewalk maintenance delivery standards in Canadian municipalities, which often suffers from a 

mismatch with the spatial distribution of pedestrian activity. As a response, the first objective of 

this research is to predict the spatial distribution of pedestrian activity. This is done by reviewing 

five approaches to pedestrian modeling and demonstrating an understanding of the built 

environment and non-built environment variables that influence pedestrian demand. Based on 

common shortcomings to each approach, an analytical approach is proposed and used to 

construct a Pedestrian Activity Model (P.A.M.) predicting daily walking trip count per 

neighbourhood, with the City of Waterloo as the case study area.  

Building on this, an analysis of the highest classes of the constructed P.A.M. is utilized to 

suggest a Pedestrian Priority Zone. This addresses the second research objective, which is to 

identify high foot traffic areas to construct a priority zone for delivering enhanced and efficient 

winter sidewalk maintenance.  

Between the two tested regression types, the Spatial Error Regression (SER) is a better fit in 

capturing daily walking trips. Of the seven explanatory variables considered, only Transit 

Activity, Metric Reach (sidewalk connectivity), and Elementary and Secondary School Student 

Enrollment variables are significant under the SER model. As a result, the Pedestrian Activity 

Model is founded on the SER model and the 3 significant variables. The highest pedestrian 

activity class is found along University Avenue between University of Waterloo and Wilfrid 

Laurier University, while the second highest is found around the Uptown. A single Pedestrian 

Priority Zone is suggested based on amalgamating the three highest P.A.M. classes.  

While the results are context-specific, the methodology is transferable. The process of 

constructing the predictive model can be used to validate other existing pedestrian models. Also, 

constructing a Pedestrian Activity Model could be an essential piece to decision making not just 

for enhancing public works services, but also for recommending new infrastructure connections, 

prioritizing streetscape enhancement projects, encouraging commercial and retail development, 

and boosting Real Estate market. 
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Chapter 1: Introduction 

1.1. Research Justification 

Pedestrianism is not fully considered in infrastructure investment in North American cities. 

Following the Second World War, population growth in these cities diverged away from city 

centers towards its outskirts. This marked the era of suburbanization and car-dependence that 

still persists till today. With car-dependence, pedestrian activity is discouraged by street design 

(Blomberg et. al., 2000), and built form. Many New Urbanism and ‘Winter’ City scholars and 

practitioners have spoken to the disconnect between the public realm (e.g., pedestrian 

environment) and private realm (e.g., building and site design, services’ accessibility, and land 

use patterns) as one of the leading causes of low walking trips in urban and suburban 

communities (Trudeau, 2013; Coleman, 2010; Parolek et. al., 2008; Pressman, 1996; Hough 

Stansbury Woodland Ltd., 1990; Manty & Pressman, 1988).  

In recent decades, there has been a growing interest in active transportation, especially in public 

health and transportation fields. While active transportation is an inclusive term, referring to 

walking, bicycling, skating, and other forms of non-motorized mobility, in this thesis active 

transportation solely refers to walking. In the public health field, researchers are concerned for 

the epidemic of obesity, Type II diabetes, and chronic heart diseases among urban populations 

due, in part, to an overall lack of physical activity (Public Health, City of Toronto, 2012; 

Sundquist et. al., 2011; Frank et. al., 2010; Lee and Moudon, 2004; Moudon and Lee, 2003). 

Walking has been proven to provide both a mean of transportation and a physical activity (Lee 

and Moudon, 2004). Many related public health studies try to better understand and measure the 

correlation between physical activity and walkability (City of Toronto, 2012; Sundquist et. al., 
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2011; Frank et. al., 2010; Lee and Moudon, 2004; Moudon and Lee, 2003). Walkability is a 

measurement of walking potential based on the easiness of walking between places (City of 

Thunder Bay, 2017; Tsiompras and Photis, 2016; Region of Waterloo, 2014; Frank et. al., 2010).   

From the perspective of urban planning, planning for active transportation has been and still is a 

big part of the growing effort to battle urban sprawl. These efforts could be classified into two 

approaches: bigger and beautified pedestrian scape, and improved integration with land use 

planning. These efforts are linked with contemporary planning movements, such as Smart 

Growth, Complete Streets, and New Urbanism (Hui et. al., 2018; Hong, 2016; Tracz, 2015; 

Trudeau, 2013; Knaap and Talen, 2005; Lund, 2003). Smart Growth focuses on integration with 

land use planning as it is known for infill and mixed-use development approach (Hong, 2016; 

Knaap and Talen, 2005). On the other hand, Complete Streets focus mainly on the pedestrian 

scape, emphasizing active transportation planning by re-designing the right of way (ROW) to 

accommodate all street users. A key signature for Complete Streets is often a very wide ROW to 

accommodate a space for each user – cars, buses, bicycles, and pedestrians (Hui et. al., 2018; 

Tracz, 2015). New Urbanism is somewhat of a hybrid of Smart Growth and Complete Streets as 

it advises both development design and the public realm (e.g., streetscape, and public space)  to 

enhance pedestrian activity, creating livable neighbourhoods and cities (Hong, 2016; Trudeau, 

2013; Knaap and Talen, 2005). As is true for many planning issues, there is no single solution 

nor perfect solution. It is our duty as community members to build on older solutions and 

approaches to improve or suggest new solutions improving our quality of life. As the world 

evolves, newer and improved solutions are needed, which is the case for active transportation 

planning too. 
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In the quest to enhance pedestrian activity, we must also consider the influence of climate on 

walking; whether heat, cold, rain, wind, or snow, people respond differently to different climate 

conditions. A study by Vanky et. al. (2017) based in the City of Boston, found a negative 

correlation between walking activity and various climate conditions and seasons, such as 

precipitation during spring and humidity during both Autumn and Spring. A Canadian case study 

found a negative correlation between snow and walking trips (Miranda-Moreno and Lahti, 2013). 

Similar findings on the effect of various weather elements and conditions on walking are 

documented in various studies around the globe (Hong, 2016; Shaaban and Muley, 2016; Böcker 

et. al., 2013).  

This thesis is concerned with pedestrian activity and safety during the winter months. Issues such 

as snow accumulation, uneven snow clearing practices, pedestrian network disconnections, 

safety hazards, and greater trip durations often discourage or create barriers to winter walking 

activity (TriTag Transport Action Group, 2018; Vanky et. al., 2017; City of Toronto, 2016; 

Miranda-Moreno and Lahti, 2013; Li et. al., 2013). A recent study by the TriTag group based on 

the streets of Kitchener, found that 50% of people within a 50m-walk are likely to encounter an 

uncleared snow-packed patch of sidewalk during the winter months (Thompson, 2018; TriTag 

Transport Action Group, 2018). Some of these concerns can be traced back to inadequate and/or 

inconsistent winter sidewalk maintenance practices (e.g., snow shoveling, and salt application) 

(TriTag Transport Action Group, 2018; Li et. al.,2013). While city occupants and landlords are 

required under Ontario’s Occupiers’ Liability Act and Residential Tenancies Act to maintain 

hazard-free premises, which includes snow clearing (Preszler Injury Lawyers, n.d.), some 

municipalities have taken responsibility for snow clearing duties to improve pedestrian 
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accessibility and safety (Preszler Injury Lawyers, n.d.; City of Toronto, 2016). However, snow 

clearing practices vary across municipalities (see Table 1.2.1) and individual properties.  

How could a municipality fund growing needs for a sidewalk snow clearing program?, Should 

all sidewalks be cleared or be prioritized? How would sidewalks be selected or prioritized for 

clearing, e.g., along bus routes, along only arterial roads, around malls, around hospitals, around 

co-op and social housing, around elementary schools, or based on mixed criteria? As discussed 

below and in the literature review, current snow clearing practices for sidewalk specific segments 

usually have simple justification. They rely on common-sense-based assumptions like downtown 

cores or all bus-routes and arterial roads all have similar pedestrian activity. This research 

challenges that status-quo approach by recommending sidewalk snow clearing prioritization in 

identified high foot traffic areas. From a planning and feasibility perspectives, it is important to 

invest where the most outcome is anticipated. In the thesis, this will be achieved by estimating 

walking trips, through the case study area, by testing, and using walking-associated explanatory 

variables (e.g., elementary school enrollment, land use mix, and sidewalk network). This is 

proof-of-concept research that links the field of active transportation planning (i.e., pedestrian 

activity modeling) and the field for delivering efficient public services (i.e., winter sidewalk 

maintenance) to improve public safety and improve winter-based walking activity convenience. 
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1.2. Winter Sidewalk Maintenance background 

It was only recently that winter sidewalk maintenance was included in Ontario’s minimum 

maintenance standards regulations (Ontario, 2018a; City of Toronto, 2014; Ontario, 2013). 

Initially, some cities might have looked into the Accessibility for Ontarians with Disabilities Act 

(AODA) to verify any requirements for providing winter sidewalk maintenance, such as level of 

service, or minimum clearance width required, but the AODA also remains silent on the matter 

(Ontario, 2016; City of Toronto, 2014). The recent update to Ontario’s Minimum Maintenance 

Standards was adopted in May 2018, and it updates the standards around the level of service and 

minimum clearance width for sidewalk snow clearing (Ontario, 2018a). Despite the newly added 

section 2.1, the newly announced standards are not mandatory but rather a set of guiding 

principles that is available to municipalities (Ontario, 2018b). In addition, subsection 44 (9) of 

the Municipal Act excuses municipalities from any liability due to personal injuries caused by 

snow or ice on sidewalks except in gross negligence scenarios (Ontario, 2018c). In addition, the 

newly adopted standards do not address prioritizing specific sidewalk segments by foot traffic 

volume unlike road snow clearing prioritization schemes that are based on road speed and 

vehicular traffic volume (Ontario, 2018a). 

Prior to the latest version of Ontario’s Minimum Maintenance Standards, local municipalities 

developed their own set of practices/guidelines for winter sidewalk maintenance. Most Canadian 

municipalities have a by-law addressing winter sidewalk maintenance, reducing liability due to 

related-personal injuries (e.g., slips and falls).  

The case study location for this research is the City of Waterloo; therefore, it is important to 

understand the city’s current practices and those of the adjacent municipality, the City of 

Kitchener. Both cities have assigned business and property owners the duty of clearing their 
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fronting sidewalks, while both municipalities will clear sidewalks adjacent to their public 

facilities and where no property owner is adjacent to the sidewalk (City of Kitchener, 2016; City 

of Waterloo, 2009). Also, both municipalities identified 24 hours after a snow event as the 

window for city residents, business owners, and its public works department to complete snow 

clearing activities (City of Kitchener, 2016; City of Waterloo, 2009). Following the updated 

standards’ regulation, the City of Kitchener council approved 2 of 5 recommendations presented 

to the Community and Infrastructure Services Committee (Nielson, 2018; Pickel, 2018). The two 

approved proposals include proactive enforcement of the by-law to ensure timely response to 

storm events and snow accumulation, and funding for partnership programs to assist those in 

need (Nielson, 2018; Pickel, 2018). 

Other municipalities have stepped up their winter sidewalk maintenance efforts by providing 

prioritized and customized services. Table 1.2.1 provides a summary of sidewalk snow clearing 

standards in major Canadian municipalities. These municipalities make decisions about their 

winter sidewalk maintenance practices (e.g. snow clearing, and ice prevention) using four 

considerations. The first consideration is the desired sidewalk surface condition, such as 

achieving bare pavement. The second and third are the triggering snow accumulation level for 

maintenance practices deployment and the period it takes to complete the first round of clean up 

after the end of each storm (see Table 1.2.1). The fourth consideration is prioritizing certain 

sidewalk networks for which there is earlier deployment of services and shorter completion time. 

According to the table below, all cities of Toronto, Ottawa, and Edmonton have a prioritized 

sidewalk system. However, they do not have a unified scheme for prioritizing specific sidewalk 

routes. Some prioritize sidewalks along arterial roads, in downtown areas, near transit stops 

and/or near school areas (City of Halifax, n.d.; City of Ottawa, n.d.). The common prioritization 
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regime often favours high car traffic areas, which may not align with the spatial distribution of 

pedestrian demand, especially in outer city edges. Only the City of Toronto identifies that it uses 

pedestrian volumes as an indicator of where sidewalks are prioritized (City of Toronto, 2013), 

but there is no record of the method or the data used. This is where the research in this thesis fits 

in, establishing a method to identify high pedestrian activity neighbourhoods as the basis to 

prioritize sidewalk snow clearing and other public works services. 

Table 1.2.1: Sidewalk Snow Clearing Standards in Major Canadian Municipalities 

Source: City of Toronto. (2014). Staff Report – Confirmation of Levels of Service for Winter 

Maintenance of Bikeways, Windrow Opening, Sidewalk and AODA Compliance. 
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1.3. Research Goal and Objectives 

The goal of this thesis is to develop an analytical approach to prioritize winter maintenance of 

sidewalks. The motivation is to enhance pedestrian winter mobility and mitigate associated 

safety hazards. The study is based on a case study methodology and deploys quantitative 

methods to achieve the research goal. The case study area is the City of Waterloo, which is 

located west of the Greater Toronto Area. The main form of quantitative analysis utilized is 

geospatial analysis using secondary data. 

The first objective of this study is to predict the spatial distribution of pedestrian demand. 

Although we do not know the extent to which pedestrian activity is reduced in the case study 

area during winter, we assert that there very likely is a decline, based on findings for other 

locations (Vanky et. al., 2017; Miranda-Moreno and Lahti, 2013). While estimating pedestrian 

demand was initially inspired by walkability indices, the focus is instead on predicting actual trip 

counts spatially. This approach is dependent on available secondary data sources, their quality, 

and their correlation to the response variable (i.e., daily walking trips).  

The second objective of this study is to suggest a Pedestrian Priority Zone. Based on the spatial 

distribution of predicted walking trips, neighbourhoods are categorized/classified according to 

their associated pedestrian activity level. An analysis of the highest pedestrian activity 

neighbourhood classes is used to suggest a configuration for a priority zone. The priority zone is 

the founding step to re-direct, focus, and prioritize sidewalk snow clearing.   
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1.4. Anticipated Research Contribution 

The anticipated key contribution of this thesis is to provide a proof-of-concept approach for 

linking the field of active transportation planning, especially foot-traffic studies, and the field of 

winter sidewalk maintenance. The established link could potentially improve pedestrian mobility 

and safety through improved sidewalk snow clearance. This analysis does not include analysis of 

the temporal seasonality effects on pedestrian activity; rather the approach taken is to predict 

daily walking trips, which would then be used to prioritize sidewalk snow clearing routes. The 

research will highlight various data sources that are available to capture both actual pedestrian 

activity and its potential application at the street-level. 
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1.5. Thesis Outline 

This thesis is divided into five chapter: Introduction, Literature Review, Methods, Findings and 

Discussion, and Conclusion. The Introduction Chapter introduces the research background, goal, 

and objectives.  

Following the introduction, Chapter 2: Literature Review synthesizes academic and grey 

literature around the basics of active transportation planning, and the history for winter road and 

sidewalk maintenance. In addition, it explores five approaches for estimating or predicting 

pedestrian activity, which feeds into the Methods Chapter and the construction of the Pedestrian 

Activity Model. Each of the five approaches is examined in terms of commonality, construct, 

and pros and cons. 

Chapter 3: The Methods chapter starts off with an outline of the approach plus an overview of 

the case study location. For the case study area, transportation statistics are shared to demonstrate 

the share of walking mode versus other modes. The research design comes in later with a focus 

on the components and the detailed approach for constructing the Pedestrian Activity Model. 

Prior to that is the presentation of the study’s geographical unit of analysis. This chapter also 

outlines the regression analysis process, along with the shortcomings of using TTS reported 

walking trips as the response variable. Lastly, there is a brief description of an approach for 

identifying a Pedestrian Priority Zone. 

Chapter 4: Findings and Discussion shares and interprets the findings from the regression 

analyses. Based on the findings, the Spatial Error regression model is used as the foundation for 

the predictive model: “Pedestrian Activity Model.” Findings from the model are divided into 

generic findings and class-specific findings. The class-specific findings explain the local context 

behind the predicted walking trips using the significant variables and other features. Lastly, the 
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chapter reveals the analysis of the highest three classes of Pedestrian Activity Model, which are 

used to suggest a Pedestrian Priority Zone.  

The Conclusion chapter re-caps the research goal, and objectives. Afterward, the chapter 

highlight the key findings of the thesis followed by the limitations for the Pedestrian Activity 

Model. Lastly, the chapter ends with suggesting potential improvements to this research, that 

were not carried out because of resource limitations, and with the next step to applying the 

Pedestrian Priority Zone to the field of winter sidewalk maintenance. 
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Chapter 2: Literature Review 

2.1. Active Transportation Planning 

As the term suggests, “active transportation” refers to a form of transportation that is also a 

physical activity. According to the Public Health Agency of Canada (2014), “Active 

transportation refers to any form of human-powered transportation.” Walking, bicycling, and 

others are the most common active transportation forms that appear in planning and public health 

literature (PHAC, 2014; Iacono, Krizek, and El-Geneidy, 2010; Lee, and Moudon, 2004; 

Cervero, and Kockelman, 1997). It was not until suburbanism revealed the full implications of a 

car-dependent culture and land use segregation, that active transportation gained grounds as a 

counter-movement in both transportation planning and public health fields. The growing interest 

has funded projects into understanding walking and biking activity as well as encouraging 

investments that improve active transportation participation and neighbourhoods’ quality of life. 

2.1.1. Common Active Transportation Modes 

Walking is the oldest mode of transportation dating back to the hunter-gatherer settlements. 

Despite walking being the oldest form of transportation, we do not have a full understanding of 

how to predict it. Unlike car drivers and cyclists, pedestrians are not confined by the edge of the 

sidewalk or by a boulevard. Pedestrians can cross middle of the road, walk over grass, or take a 

shortcut through a building or a trail through a woodlot. Pedestrian flow is more dynamic 

compared to motorized transportation; however, it is sensitive to environmental surroundings and 

affected by socio-economic status (Manaugh, and El-Geneidy, 2011). The set of variables 

contributing to a person’s decision to walk or not, is different than that to drive. Some scholars 

even found that trip purposes correspond differently to environmental variables (Manaugh, and 

El-Geneidy, 2011; Lee, 2004). 
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On the other hand, bicycles were more recently invented in the early 17th century. Most 

transportation agencies treat bicycles in a similar manner as automobiles in regard to traffic laws 

and designated infrastructure (e.g., roadways) (Ontario, 2014; California: 2011). Partly as a 

result, cyclists’ movements are more predictable than pedestrian’s and easier to model. The most 

redundant concern with cycling is safety. Municipalities are usually torn between expanding 

dedicated bicycling infrastructure (e.g., separated bike lanes) and balancing costs. From this 

point forward, the thesis will narrow focus on walking activity and how to approach pedestrian 

activity modeling. 
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2.2. Winter Maintenance 

2.2.1. Winter Road maintenance 

We have been systematically clearing snow from transportation infrastructure for nearly two 

centuries. Earliest record shows that railway companies used “horse-drawn plows to clear 

railways in 1831 and to clear city streets in 1862,” (Minsk, 1998; Sullivan, 1831). Mechanical 

plowing equipment was not developed till the late 19th century, to provide faster and more 

efficient way of clearing railways (Minsk, 1998). The first record of truck-mounted plows used 

for winter road maintenance was during the winter of 1920-21 in New York, USA (Minsk, 

1970).  

The growth of an integrated road network in the United States in the 20th century pushed further 

the development of snow removal technology (Minsk, 1998; Minsk, 1970). The second wave of 

winter maintenance advancement came in the late 20th century (Kuemmel, & National 

Cooperative Highway Research Program, 1994). National programs, like the Strategic Highway 

Research Program (SHRP), were initiated to study and report on the effectiveness and efficiency 

of various snow and ice control programs (Smithson, 2004; Kuemmel, & NCHRP, 1994). For 

example, SHRP reported on best practices such as Road Weather Information System (RWIS), 

which revolutionized winter road maintenance (Kuemmel, & NCHRP, 1994). Other research in 

the field of winter road maintenance also included examining the effectiveness of various deicing 

materials, such as salt (sodium chloride), and calcium chloride, in addition to the use of abrasive 

mixtures (e.g., a mix of sand and salt), for achieving bare pavement standards and improving 

driving conditions. Ontario, after testing the effectiveness of straight salt versus abrasive mix on 

achieving the intended bare pavement standard, expanded the use of straight salt to its winter 

maintenance practices of highways (Kuemmel, & NCHRP, 1994). Overall, the growing research 
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and the integration of technology since the late 1970s (Minsk, 1998) in the field of winter 

maintenance has advanced current practices’ efficiency.  

Winter maintenance practices can be classified into three categories: mechanical, chemical, and 

thermal (Minsk, 1998). The objective for the mechanical approach is to push, lift, or cast snow  

“sufficiently far … to reduce the necessity for rehandling it” (Minsk, 1998). Snow is usually 

overthrown onto the boulevard or the roadside or hauled to designated storage areas. 

Displacement plows are the most commonly used in winter road maintenance and are usually 

mounted to a truck’s front and sides (TAC, 2013; Minsk, 1998). The design and development of 

Displacement plows were pioneered by the railway companies, as discussed above, to remove 

snow along the tracks (Minsk, 1998). 

Unlike mechanical treatment, chemical treatments can be applied in both proactive and reactive 

scenarios. Salt has a limited effectiveness in lower temperatures, yet its low cost and its 

versatility make it the most common winter road maintenance chemical application (Nassiri et. 

al., 2015; Minsk, 1998; Kuemmel, & NCHRP, 1994). Pre-wetting is an addition to direct salt 

spreading and is used to speed the effectiveness of salt application. Pre-wetting includes 

spreading a brine (usually water and salt mixture) or a liquid freeze-point depressant along with a 

solid salt application (TAC, 2013; Minsk, 1998).  

The thermal application is the least used of the three winter maintenance practices categories. 

The use of heat to melt away snow, whether through built-in heating systems within roads and 

bridges, or hauling snow to melting stations, is too expensive, especially when considering the 

roadway dimensions (TAC, 2013; Minsk, 1998; Kuemmel, & NCHRP, 1994).  
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The degree to which each municipality uses each maintenance practices depends on different 

factors such as weather conditions, environmental restrictions, equipment availability, staff 

training, contractors and budgetary items. As a result, each municipality has a unique plan for 

battling snow and ice on its roadways. Upper-tier governments like the Province of Ontario set 

out minimum maintenance standards for municipalities to follow that include patrolling 

frequencies, snow accumulation limits, and maintenance time of completion restrictions; 

however, they do not set out the exact practice in achieving the standards (Government of 

Ontario, 2013). 

News outlets and safety-related agencies remind us annually of  dangerous winter driving 

conditions and accidents happening due to snowfall or icy roads. Road crashes have a financial 

toll of $10 billion annually on the Canadian health care system, with weather-related collisions 

accounting for about $1 billion (Andrey et. al., 2001). Several studies concluded that overall 

adverse winter weather conditions increase the risk of road accidents by poor road surface 

conditions while investing in winter road maintenance significantly reduces the risk by 

improving road surface conditions (Ye et. al., 2013; Usman et. al., 2010; Qiu and Nixon, 2008). 

Chemical application is a key player in improving safety and reducing the risk of road accidents. 

Salt application as well as sanding prevent the bond of snow to the road surface and increase the 

road friction. The deployment of chemical (e.g., salt) application is dependent on the four Rs: 

Right material, Right amount, Right place, and Right time (TAC, 2013).  

One of the technological advancements in the field, which allows for more proactive and 

responsive winter road maintenance and therefore improved safety around winter driving, is 

Road Weather Information System (RWIS). RWIS stations provide real-time local information 

about road surface temperature, level of moisture, and presence of deicing chemicals using 



 

17 
 

various sensors (Nassiri et. al., 2015; TAC, 2013; Minsk, 1998). The local live data transmitted 

by the RWIS stations help the decision makers in regard to the four Rs for chemical application 

deployment. 

Not all roads are cleared at once, nor to the same standards. Government bodies establish 

standards based on various considerations.  Road authorities usually use “Average Daily Traffic” 

(ADT) as the key indicator of the heaviest traffic in prioritizing what roads receive treatment first 

and the desired level of service (Nassiri et. al., 2015; Kuemmel, & NCHRP, 1994). In addition to 

ADT, emergency routes, school areas, and major transit routes are factored into determining 

priority snow clearing routes (Nassiri et. al., 2015; Minsk, 1998). The Province of Ontario uses a 

combined approach of ADT and posted speed as the criteria for a road classification scheme 

(Ontario, 2013). The road classification scheme is integrated with the winter road maintenance 

deployment of the road-class-based level of service as illustrated in Ontario’s minimum 

maintenance standards regulation (Ontario, 2013).  

2.2.2. Winter Sidewalk maintenance 

Research and adaptation of best practices in the field of winter sidewalk maintenance are not as 

fast and as responsive as winter road maintenance (City of Toronto, 2014). As a result, winter 

sidewalk maintenance is limited mainly to manual shoveling, traditional mechanical plowing and 

basic applications of chemical treatment. The City of Toronto staff (2014) reported that sidewalk 

plowing equipment manufactures is slow in adopting the latest technologies from winter road 

maintenance field. Businesses and property owners are usually dependent on manual shoveling 

and personal snowblowers to clear snow, while municipalities usually use heavier mechanical 

equipment (e.g., Snow Plows). Some Canadian municipalities provide basic chemical treatments 

to sidewalks such as salting and sanding (City of Markham, n.d.; City of Kitchener, 2016; City of 
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Toronto, 2014). Private property owners are free to use the salt as they see fit on sidewalks, 

which raises concerns about over-salting and its environmental impact on vegetation and 

groundwater (Hosseini et. al., 2016; Fay and Shi, 2012).  

In some rare instances, municipalities have adopted thermal application but it is usually limited 

to short sidewalk segments. Heating sidewalks to melt away snow and ice is impractical on large 

scale because of the overly large capital cost for heating system installment, while on the other 

hand, cost-effective alternatives include chemical and mechanical approach (Eugster, 2007). 

Examples of implemented thermally-heated sidewalks are reported in the Town of Nagaoka, 

Japan (Iwamoto et. al., 1998), and City of Aomori, Japan (Eugster, 2007), and is even being 

considered for Montreal, Canada (Lowrie, 2017).  
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2.3. Approaches for estimating pedestrian activity 

The literature concerned with pedestrian activity measurement is rich and ever-evolving in 

incorporating new technological advancements. To gain a grasp of the various approaches and 

how they differ, I present Raford’s and Ragland’s (2006) classification of the three streams to 

estimating pedestrian activity. Under each of the streams are a number of approaches that 

represents that stream. 

 The first stream is the “Sketch Plan Model,” which is usually adopted at the regional level to 

produce a rough estimate of pedestrian activity or its potential using simple planning guidelines 

(Raford and Ragland, 2006). The second stream is the “Network Analysis Model.” It provides 

finer estimates of pedestrian activity than the former stream and is usually adopted at the city or 

neighbourhood level. The advantage of the second stream is its simplicity compared to the third 

stream, which has greater retention of details, often at street-level, than any of the first and 

second approaches. The third stream is computation heavy. It is called Microsimulation because 

it simulates the movement of individuals. Microsimulation was developed to map out individual 

movements in confined space like: airports, and malls (Raford, Ragland, 2006). It can also be 

used for small outdoor geographical areas (e.g., a single street or a small number of streets) due 

to the associated heavy computation (Omer and Kaplan, 2017). In total there are five approaches 

discussed below, that are classified under each of the three streams (see Table below). For each 

of the approaches reviewed below, I break it down into three sub-sections: commonality, 

construct, and pros and cons. 
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Table 2.3.1: Classification of Approaches to Estimate Pedestrian Activity (source: Raford, N., & 

Ragland, D. (2006). Pedestrian Volume Modeling for Traffic Safety and Exposure Analysis: The 

Case of Boston, Massachusetts.) 

Approach Sketch Plan Model Network Analysis 

Model 

Microsimulation 

Tools and 

Measures 

Mode Choice (4SM ) Gravity Model 

Agent-based Model 

Walkability Index Space Syntax Model 

 

2.3.1. Mode Choice (4SM) 

Mode Choice is one of four stages in the travel demand forecasting model known as the Four-

Step Model (4SM), which is commonly used by regional planning and transportation 

organizations in North American Cities (Clifton et. al., 2016; Davidson et. al., 2007; McNally, 

2000). Transportation analysis has evolved tremendously in response to the post-war 

development and economic growth, during which, the 4SM (i.e., trip generation, trip distribution, 

mode split, route assignment) was developed (McNally, 2000). The 4SM is popular among large 

metropolitan cities, regional governmental bodies and state departments. In the US, 

transportation analysis and planning are conducted by Metropolitan Planning Organizations, 

Regional Planning Agencies, and States’ Department of Transportation (Davidson et. al., 2007).  

Mode Choice is usually estimated using discrete choice models or nested logit models (Davidson 

et. al., 2007; McNally, 2000). It usually comes in the third step of the 4SM. The first step 

calculates trip generation, followed by trip distribution. The first step is dependent on survey data 

about the origins and destinations of trips. The second step, “trip distribution”, utilizes the 

“Gravity Model,” which will be discussed later, to distribute trips based on surrounding 

attractions and traffic impedance. The third step and the core of this sub-section is called the 
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“Mode Split” or “Mode Choice” because it identifies each transportation mode share for the 

study area.  As mentioned above, there are two common methods to calculating the “Mode Split; 

however I will only focus on the nested logit model because it is more commonly referenced in 

the literature (Davidson et. al., 2007; Jonnalagadda et. al., 2001; McNally, 2000). The logit 

analysis estimates trade-offs among variables for the transportation modes: examples include in-

vehicle time, frequency of service, reliability, and crowdedness (Jonnalagadda et. al., 2001). 

Since these variables are car- and transit-oriented, Pedestrian Environmental Factors (PEFs) are 

incorporated to assist the model to predict pedestrian activity (Jonnalagadda et. al., 2001). PEFs 

include measures, like pedestrian network connectivity, perception of safety, urban vitality, and 

topological barriers. The required data sources are household surveys, land use database, and 

level of service (LOS) characteristics for each mode (Jonnalagadda et. al., 2001; McNally, 2000). 

Household surveys typically aim for a 5% sample target of households in the survey area (Data 

Management Group, 2014), and the level of service (LOS) is considered for all modes at every 

origin and destination (Jonnalagadda et. al., 2001). Estimating pedestrian activity levels is often 

limited to factors such as sufficient reporting of walking trips in the survey sample, and 

understanding of trip attractions for a pedestrian versus other users. 

Despite advancements in estimating mode choice, the model output still fails to fully represent 

trips by non-auto modes, especially walking (Clifton et. al., 2016). The conventional four-step 

model (4SM) was adopted to estimate future travel demand based on large-scale infrastructure 

projects (McNally, 2000). The 4SM usually considers average vehicle occupancies as total 

person trips, which emphasizes the role of the automobile and by default de-emphasizing other 

modes. The success of this 4SM has been to data availability, which fueled the growing use of 

Household Surveys (Davidson et. al., 2007; McNally, 2000). Using the Household survey data 
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has a scale-related disadvantage when assessing pedestrian activity. Data are usually aggregated 

to geographical areas, suited for motorized modes, called Traffic Analysis Zones (TAZ) (Iacono 

et. al., 2010). TAZ unit areas are too big to capture the spatial movement of pedestrians (Eash, 

1999 as cited in Iacono et. al., 2010). As a result, aggregating data into large areas (e.g., TAZ, 

Census Tracts) will most likely lead to lost travel demand sensitivity for low-share modes due to 

aggregation errors (Clifton et. al., 2016; McNally, 2000). Also, aggregated data could flatten the 

trip numbers across larger areas, which would make the activity looks low.  Therefore, the 

suitability of large geographical units of analysis is questioned.  

Advancements to the 4SM included further details about each mode choice, which re-states the 

model holistic approach to transit analysis rather than this research’s intention of examining just 

walking activity. Davidson et. al. (2007) speak about how the 4SM still produces reasonable 

predictions, which makes the switch to more accurate predictive models unnecessary for smaller 

regional planning organization. In terms of this research, the results obtained from the 4SM 

model could only be used as an overall validation or representation of pedestrian activity. 

However, the aggregated results would present an ecological fallacy issue when transferring the 

results to the disaggregate area (e.g., street level). 

2.3.2. Walkability Index  

Walkability refers to the ease of walking between places and is largely a function of physical 

proximity and the connectivity between origins and destinations (City of Thunder Bay, 2017; 

Tsiompras and Photis, 2016; Region of Waterloo, 2014; Frank et. al., 2010). Walkability indices, 

which are intended to score/quantify the level of walk potential of an area, are mainly developed 

and used by professionals and academics in both fields of transportation planning and public 

health. A well-known example of a walkability index is offered by Walkscore.com, a product 
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developed by a private company that provides scores for any address in the U.S., Canada, 

Australia, and New Zealand (Walkscore.com, n.d.-a). More locally, the Region of Waterloo 

offers a second example, with its own walkability index developed under the NEWPATH 

initiative in 2009 (Region of Waterloo, 2014). Walkability indices are used in various sectors: in 

the transportation planning sector to indicate levels of pedestrian activity potential (Raford and 

Ragland, 2006); in the public health sector to examine influences on healthy living and improves 

quality of life (Region of Waterloo, 2014); and by the real estate sector to highlight accessibility 

of a property in question via walking to surrounding services. 

The easiest-to-interpret formulas for walkability are those based on simple sums. Because 

different variables have different units of measurement, it is common for indices to be based on 

the sum of z-scores (Frank et. al., 2010). There is no limit on the number of variables that a 

walkability index could include. Some indices have as few as four variables (Region of 

Waterloo, 2014; Frank et. al., 2010), and some include numerous variables (Cervero and 

Kockelman, 1997). The most commonly used factors are intersection density, net residential 

density, retail floor area ratio, proximity to basic land uses and land use mix (Tsiompras, and 

Photis, 2017; Region of Waterloo, 2014; Frank et. al., 2010; Cervero and Kockelman, 1997). 

These data come from different sources but they are mainly available through open public 

sources, which makes them accessible. Other academics proposed to utilize audit and assessment 

tools to gather primary data (e.g., field observations, focus groups, travel diaries, and interviews) 

(Clifton et. al., 2007; Day et. al., 2006; Dannenberg, 2005; Moudon and Lee, 2003). In the 

context of this thesis, gathering primary data is beyond the available resources: monetary, 

training and staff, as well as requires time.  
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The most basic form of a walkability equation assumes equal influence of variables, while the 

more advanced formulas use weighted variables as argued for by Tsiompras, and Photis (2017). 

The same authors also discredited population density as a significant factor to consider in a 

walkability index and recommend it to be combined with land use mix assuming highly mixed 

land use areas are associated with high population density areas also. Tsiomprass and Photis 

(2017) adopt Manaugh’s and Kreider’s (2013) land use interaction method, which provides an 

alternative representation of land use mix rather than the conventional entropy equation (Frank 

et. al., 2010; Cervero and Kockelman, 1997).  Indeed, various approaches are taken to measuring 

or representing all of the important explanatory variables.  

The walkability index’s strength lies in its focused approach to examining potential pedestrian 

activity. However, its flexibility makes it prone to issues of multicollinearity and complexity of 

the construct. As discussed above, there is no cap on the number of variables/factors that can be 

incorporated into the walkability index. With multiple variables, there is a higher risk of 

multicollinearity, which duplicates measured influences resulting in a skewed index. Cervero and 

Kockelman (1997) used factor analysis to avoid multicollinearity between variables. On the 

other hand, Moudon and Lee (2003) warn of underestimating the power of a single variable, 

when trying to include too many variables of the same category. On the other hand, including 

just built form explanatory variables (e.g., land use mix, sidewalk availability, network 

connectivity, and retail floor area ration) would only examine the potential for pedestrian 

demand rather than actual demand. Demand representative variables include, but are not limited 

to, population density, employment density, bus boarding and alighting, and elementary school 

enrollment.  
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Another concern with using a walkability index to estimate pedestrian demand relates to the 

various geographic units associated with the various data sources. It is important to select 

compatible data sources based on their resolution and an appropriate geographical unit area for 

the study that is relevant to the spatial scale of pedestrian movement. Most of the data types 

mentioned above are typically found at a fine scale (e.g., street-level and block-level), which 

means a high-resolution analysis can be conducted to define walkability scores at the street-level 

with little to none lost information.  

The resulting walkability score does not represent a specific trip frequency, but rather a relative 

score indicating potential pedestrian activity. The walkability index is relatively easy to calculate 

and to understand, which explains its popularity in walkability studies and crossover to other 

fields (e.g., real estate).  

On the other hand, only few scholars and practitioners explore the option to validate their or 

others’ versions of walkability indices (Duncan et. al., 2011; Manaugh, and El-Geneidy, 2011; 

Frank et. al., 2010). Convergent validity is the similarity between the tool’s results and other 

tools’ results which theoretically should be similar (Web Centre for Social Research Methods, 

2006). Validity could be established for a walkability index by comparing its walkability scores 

with pedestrian count or reported pedestrian activity (assuming the validity of reporting). This 

process has two positive outcomes. Through a sensitivity analysis, validation can be used to fine 

tune the weights for the walkability score. Also, through validation, walkability scores can be 

substituted with corresponding trip counts for easier representation of pedestrian activity.   

2.3.3. Space Syntax Model 

The Space Syntax approach is the least famous of all five approaches discussed here to 

estimate/predict pedestrian activity. It predicts pedestrian flow through the analysis of network 
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connectivity. Raford (2010) does a superb job in examining why Space Syntax has not been 

adopted to the same scale as other transportation forecasting models in North American 

planning. In contrast, Space Syntax is widely adopted and common in the United Kingdom and 

other European countries as well as taught in many abroad universities (Raford, 2010).  

Raford (2010) identified a total of eight challenges, to adopt Space Syntax in North American 

planning, through interviews with experts on both sides. Two key challenges stand out that push 

Space Syntax out of North America. First, space syntax was launched in North America, a 

decade after other transportation forecasting models, such as the Four-Step Model (Raford, 

2010). The delayed exposure allowed industry standards to formulate around the older models. 

Adoption of space syntax revokes and challenges these standards. The second issue is more 

technical. Space Syntax has its own unique language and terminology as well as it requires 

advanced statistical expertise to interpret model outcomes (Raford, 2010). The added technical 

complexity of space syntax in comparison to conventional models has limited its adoption in the 

North American context, also considering incompatibility with existing industry standards.  

Space syntax measures the degree of connectivity whether at the regional level (whole) or at the 

street-level (local) (Li et. al., 2017; Penn, 2003). In other words, Space Syntax is a configuration 

analysis of the street network (Omar & Kaplan, 2017). Connectivity is evaluated based on 

integration and choice measures. Integration is a measurement of closeness of each road segment 

to all other segments, while choice is a measurement of wholeness by counting how many times 

a segment is along the shortest path between every pair of road segment (Li et. al., 2017; Omer 

& Kaplan, 2017; Hajrasouliha & Yin, 2015).  

Space syntax’s advantage lies in its strong correlations with flow (Omar & Kaplan, 2017; 

Raford, 2010). Penn (2003) found in his study area that Space syntax is about 52% representative 
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of pedestrian flow (R2=0.527). When combined with other explanatory variables such as distance 

to transit stops and tourist destinations, the  R2 jumps to be as much as 0.81 (81%) (Raford & 

Ragland, 2006). Also, the outcome can be calibrated with a sample pedestrian flow to produce an 

actual pedestrian count for the rest of the study region (Raford and Ragland, 2006). Another 

advantage is the emphasis on connectivity as the sole variable to account for most activity within 

the city or region. 

Despite its strong correlation with pedestrian activity, space syntax has disadvantages. North 

American planning experts point out technical issues such as new and unique terminology, the 

absence of commercial software packages, and perquisite advanced statistical expertise to 

interpret data as key barriers to adopting Space Syntax (Raford, 2010). Other social issues 

include late exposure to space syntax, its rejection of North American industry standards, and the 

immense efforts and hustle needed to back its adoption (Raford, 2010). In addition, from a 

pedestrian analysis perspective, the space syntax literature rarely mentioned how it accounts for 

streets with one-sided sidewalk or without any sidewalk, which has a greater impact on 

pedestrian flow in North America versus in European context (Li et. al., 2017; Omer & Kaplan, 

2017; Hajrasouliha & Yin, 2015; Raford, 2010; Raford and Ragland, 2006; Penn, 2003). Omar 

and Kaplan (2017) also point to how Space Syntax predictive powers are lower in planned urban 

areas (e.g., most North American Cities, and most suburban communities) versus in self-

organized urban growth (e.g., historical urban cores and old cities).  
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Figure 2.3.3.1: Example of Space Syntax analysis outcome (Source: Li, X., Lv, Z., Zheng, Z., 

Zhong, C., Hijazi, I., & Cheng, S. (2017). Assessment of lively street network based on 

geographic information system and space syntax.) 

 

2.3.4. Gravity Model 

The gravity-based measure is commonly used in accessibility models to determine ease of 

reaching destinations (Iacono et. al., 2010; El-Geneidy, and Levinson, 2006; Geurs and Van 

Wee, 2004; Rutherford, 1979). The gravity model is famous for being a part of the Four-Step 

Model and comes before the “Mode Split” step, as discussed previously. Gravity-based measures 

estimate trip distribution between origins and destinations based on their attractiveness and 

traffic impedances (e.g., travel time) (El-Geneidy, and Levinson, 2006; Luoma et. al., 1993; 

Rutherford, 1979). The model is based on land use and household survey data. Household data 

are usually found at the aggregate level (e.g., Census tract, or TAZ), which makes the 

conventional gravity model well suited to estimate motorized-based trips. Some researchers have 
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attempted to retrofit the model to examine pedestrian and cycling activity, but all agreed that 

there are challenges and limitations (Iacono et. al., 2010; Rutherford, 1979). 

The gravity model is constructed similarly to 

Newton’s law of gravity as it is founded on 

the same concept: the attraction between two 

bodies is directly proportional to their mass (in 

this case, amount of attractions) (Rutherford, 

1979). The gravity model trip distribution 

equation is highlighted in Figure 2.3.4.1. As 

discussed above, the model computes trip 

distribution using a friction factor, 

representation of attractions and traffic 

impedance (Rutherford, 1979). Accounting for the attractiveness to destinations is founded on 

Land-use data, which is usually coarse (Rutherford, 1979). In conventional auto-based models, 

the impedance factor is generally dependent on congestion levels and travel speed on road 

networks (Geurs and Van Wee, 2004). For non-motorized travel, the impedance factor is usually 

either travel time, distance, or cost (Iacono et. al., 2010; Rutherford, 1979).  

The gravity model is limited by its scope and data sources in measuring non-motorized travel. 

The gravity model can use similar data sources as in the four-step model but it is then raising the 

same concerns. Eash (1999) as cited in Iacono et. al. (2010) points at how the model’s 

aggregated unit areas are poorly matched to the spatial scale of non-motorized movement. In 

other words, the geographical unit areas are too big to capture pedestrian trips between zones, 

which by default misses a considerable number of intrazonal trips. Rutherford (1979) used 

Figure 2.3.4.1: Gravity Model Trip Distribution 
Equation (Rutherford, G. (1979). Use of the 
Gravity Model for Pedestrian Travel 
Distribution. Transportation Research Board. 
728. 53-59.) 
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pedestrian-specific surveys than only capture their movement. The advantage to these surveys is 

that data are collected at the disaggregate level and maintained at high-resolution to match the 

complex spatial movement of pedestrian activity. The downside of this approach is the 

dependency of the survey on available resources, such as training, surveyors, time limit, and 

monetary compensation. The alternative is publicly available aggregate data, which raises the 

issue of ecological fallacy when data are transferred to a disaggregate level. 

2.3.5. Microsimulation/Agent-based Model 

Agent-based modeling applications simulate ‘agents’ movement to replicate real-world 

pedestrian behavior to identify behavioral triggers and to asses an infrastructure’s level of service 

(e.g., sidewalk, hallway, intersection, or hall) (Chen, 2012; Torrens, 2012; Batty, 2001; Kerridge, 

Hine, & Wigan, 2001). In the literature, there different ways to refer to agent-based modeling. It 

can be referred to as a multi-agent system (MAS), an agent-based simulation (ABS), or 

individual-based modeling (IBM) (Chen, 2012). Despite the varying definitions to what an 

‘agent’ is, academics and researchers agree about two key defining properties: Autonomy, and 

Social ability (Chen, 2012). Autonomy is the agent’s ability to “carry out instructions and make 

decisions without direct interventions of others,” while social ability recognizes the community 

dynamics and how agents interact with each other in order to complete their task (Chen, 2012). 

Agent-based models (ABMs) application to the field of urban planning can help understand the 

impact of urban design on pedestrian flow, congestion, and social activity. Although ABMs can 

be applied at large scales like the city’s, its best-achieved predictions are at the local level (e.g., 

specific locations, building interiors, and intersections) (Kerridge, Hine, & Wigan, 2001).  

Various agent-based models share the same concept of simulation a group of agents’ movements 

through a set of rules (Chen, 2012; Torrens, 2012; Batty, 2001; Kerridge, Hine, & Wigan, 2001). 
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A different set of rules lead to different discourses and versions of microsimulation models. The 

earliest form of ABM’s rules were based on the fluid-flow law to guide agent movement 

(Torrens, 2012). More modern agent-based models like the PEDFLOW, divert away from fluid-

flow rules towards incorporating rules that better mimics real-world pedestrian behaviour, such 

as static awareness, personal space measure, preferred walking speed …etc. (Torrens, 2012; 

Kerridge, Hine, & Wigan, 2001). It is hard to discuss the construct of agent-based modeling as 

there are many discourses with varying contrasts so only the founding concept and area of 

differences are shared here.  

The key advantage of using ABMs is the ability to conduct fine-scale analysis at the individual 

level. Also, agent-based modeling ability to measure the infrastructure’s level of service capacity 

(Torrens, 2012).  

On the other hand, ABMs are not intended to predict or estimate actual pedestrian demand, 

which is the intended outcome for this thesis. Level of service is more like potential sidewalk 

capacity assuming maximum flow, which is like assuming that the level of service is fully 

representative of actual pedestrian presence. Also, the ABMs’ individual-analysis-level of detail 

is not necessary for this thesis as it will be discussed letter how an aggregate level detail at the 

neighbourhood level is more sufficient for this study.  

 

 



 

32 
 

Table 2.3.5: Summary of Pros and Cons for Each of the Five Approaches for Estimating 
Pedestrian Activity 

Approach for 

Estimating Pedestrian 

Activity 

Pros Cons 

Mode Choice (4SM) 
Industry standard, and easy 

to adopt and apply 

Aggregate Datasets, and Large 

geographical units of analysis 

Walkability Index 
Simple construct and easy to 

interpret 

Indicator value and lack of 

validation 

Space Syntax Model 

Focuses on connectivity, and 

strong correlation to 

pedestrian flow 

Required extensive statistical 

knowledge and unfamiliar 

technical language 

Gravity Model 
Industry standard, and can 

stand on its own 

Aggregate Datasets, and Large 

geographical units of analysis 

Microsimulation Street-level accuracy 
Complex pedestrian behaviour and 

focus on Level of Service 
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Chapter 3: Methods 

This thesis analysis bridges the fields of active transportation planning and winter maintenance 

of surface transportation systems. It focuses specifically on pedestrian presence and 

infrastructure, with the overall goal of contributing to the provision of an accessible and reliable 

sidewalk system during winter weather.  

This chapter is organized into three main sections. The first provides an overview of the 

approach taken in the thesis. The second section introduces the study area, which is the City of 

Waterloo in southern Ontario. The third section elaborates on the research design, which 

includes the geographical unit of analysis for the study, the set of variables chosen for the 

construction of the Pedestrian Activity Model, and the steps taken to construct the model, like 

conducting various regression analyses, and lastly identifying the formula for the model.  Lastly, 

the chapter explains briefly the approach taken to define a Pedestrian Priority Zone, where 

pedestrian-related public service (e.g., sidewalk snow clearing) should be prioritized, using the 

newly constructed model. 

3.1. Overview of the Approach 

Five approaches to estimating/predicting pedestrian activity were reviewed in the literature 

review chapter (i.e. Four-step Model, Walkability Index, Gravity Model, Space Syntax Model, 

and Agent-based Model). Each approach had its limitation and critique, in addition to also 

having advantages. The Four-step model (includes both the Mode Choice and the Gravity model 

approaches) is well established in traffic demand management and transportation planning; 

however, it is an aggregate model that was designed for an automobile dominant traffic. On the 
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other hand, Space Syntax model and Agent-based model are more modern and detail-oriented. 

The disadvantage to using Space Syntax modeling is its sole dependence on connectivity to 

explain pedestrian activity, while the disadvantage to using agent-based modeling is the 

complexity of replicating pedestrian behaviour and focus on measuring the infrastructure’s level 

of service capacity. This leaves us off with one model to consider: Walkability index. The 

criticism for walkability index is its over-simplified formula, measurement of potential activity 

not actual plus its usual inclusion of just primarily built environment variables, and the lack of 

validation.  

With the lack of validation in mind as well as the need for demand-representative variables, a 

new model is proposed. The new model is called “Pedestrian Activity Model” (P.A.M.). P.A.M. 

is inspired by the use of regression as a calibration and a validation tool and is also inclusive of 

both built environment variables, like that in walkability indices, and demand representative 

variables (e.g., population density, transit users). A multi-variable regression model would offer 

a better representation of reported pedestrian activity. In addition, the use of regression would 

calibrate the model to predict actual walking trips, rather than an indicator of pedestrian activity. 
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3.2. Study Location 

For this thesis, I selected the City of Waterloo for the case study location. The City of Waterloo 

is located north of the City of Kitchener and, together with the City of Cambridge and four 

townships, comprises the Region of Waterloo (see Figure 3.2.1). Despite not being part of the 

Greater Toronto Area, the City of Waterloo is part of the Greater Golden Horseshoe as indicated 

in Ontario’s Growth Plan (2017). The City is located 95 kilometers away from the City of 

Mississauga and 125 kilometers from the City of Toronto downtown core. 

According to the 2016 census, the City of Waterloo’s population is about 105,000 (Statistics 

Canada, 2017). According to the Transit Tomorrow Survey (TTS) for 2016, there are over 

65,000 jobs in the City (Data Management Group, 2018a). The 2016 census shows that 22,000 of 

the city’s residents commute to jobs within the city (Statistics Canada, 2017) and about 40,000 

workers and employees commute in from outside. One-third of those who live and work within 

Waterloo hold an occupation in educational services (Statistics Canada, 2017).  

Waterloo is home to three post-secondary institutions: University of Waterloo, Wilfrid Laurier 

University, and Conestoga College (see Figure). 32,000 full-time university students live in 

Waterloo, and another 10,000 commutes in for post-secondary education (Waterloo Town and 

Gown Committee, 2017). Another 3200 students attend classes in Conestoga College Waterloo 

Campus (Hicks, 2016). Together there are over 45,200 full-time post-secondary students, who 

roam the city from September to April of each year.  
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Figure 3.2.2: Post-secondary Institutions’ locations, City of Waterloo (Source: City of Waterloo, 

Open Data Portal) 

Figure 3.2.1: Tricity map (source: Region of Waterloo website, base maps) 
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The City of Waterloo is predominantly 

a car-dependent environment with 83% 

of daily trips by household members 

being made by automobiles (either as a 

driver or a passenger) (see Figure 

3.2.3) (Data Management Group, 

2018a). Walking trips as reported by 

the 2016 TTS make up the second 

largest share of daily trips, accounting 

for 8%, followed by 6% public transit 

trips. The remaining 3% is for cycling trips. The TTS only captures the primary mode of 

transportation for trips but, in reality, every trip includes a walking trip component. Public 

transportation users walk to and from stations and bus stops. Drivers and passengers walk to and 

from their cars whether in parking lots or on the street. Shopping trips are walking trips as 

customers walk from one store to another. Walking is common as a secondary mode of 

transportation, yet it is seldom reported. In addition to unrecognized walking trips, surveys, like 

the Transit Tomorrow Survey (TTS) and the Household Survey Census, focus on private 

households, in doing so, they under-count activity made by seniors and families living in public 

housing, and students living on-residence (Data Management Group, 2018b). The same 

document also reports under-representation for areas clustered with rental apartment buildings, 

as owners are unaware of their tenants’ activity (Data Management Group, 2018b). On-campus 

residence for the both University of Waterloo and Wilfrid Laurier University provide 

approximately 25% of beds available to students in the City of Waterloo, while the majority of 

Figure 3.2.3: Model split of daily trips, City of Waterloo 
(Source: 2016 TTS) 

82.7%
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the beds are located in multi-residential buildings (Waterloo Town and Gown Committee, 2017). 

Considering the limitations of the TTS survey and that the City of Waterloo is a university city, 

post-secondary student transportation activity is under-reported. The TTS would be better at 

explaining activity away from post-secondary student clusters. 
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3.3. Research design 

Constructing a Pedestrian Activity Model 

In the literature review chapter, five possible approaches were presented for estimating 

pedestrian activity. For this thesis, I chose a regression-based model to predict pedestrian activity 

spatially. The first sub-section is about choosing a suitable geographical unit of analysis for this 

study. The following sub-section examines walking-related built environment and demand 

representative variables examined in the regression analysis. The variables are examined in terms 

of commonality in previous studies, the data source and form, and the variable’s measure and 

descriptive statistics. These variables were identified and chosen through an extensive review of 

the literature and considerations of data availability. Third sub-section explains the process of 

using a regression analysis to calibrate the Pedestrian Activity Model. Lastly, the final model 

formula’s construct is revealed.  

3.3.1. Geographical Unit of Analysis 

Researchers and academics argue that traditional geographical units of analysis (e.g., TAZ) are 

not suitable to capture pedestrian activity because these areas were constructed to capture 

motorized forms of transportation in travel forecast models (Clifton et. al., 2016; Eash, 1999 as 

cited in Iacono et. al., 2010). An alternative, presented by Clifton et. al. (2016), was to cover the 

study area with grid cells, which had a pre-defined length such as 80m for a 1-minute walk. A 

counterpoint to using grid cells is their misalignment with the street network and constant 

overlap with buildings’ footprint. This creates a challenge in calculating some of the variables 

such as Commercial Floor Area Ratio, and sidewalk network connectivity. Another challenge 

with using small grid cells as suggested by Clifton would be the immense required computational 
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power. A simple calculation to find out the number of cells in the City of Waterloo reveals there 

will be about 10 thousand cells in the overall grid, if the grid cell is 80m x 80m.  

As a result, I re-consider conventional geographical units of analysis, for which I have 3 

alternatives as highlighted in Table 3.3.1.1. The biggest unit area option is Traffic Analysis 

Zones, which has a mean area of 62.4 hectares and consists of 104 areas within the City of 

Waterloo and contains 3 areas that overlap with surrounding municipalities. All variables 

mentioned above are available at the disaggregate level, which makes using Traffic Analysis 

Zones optimal if considering all variables in the final model. In considering TAZ suitability to 

capture pedestrian movement, average TAZ area is a key decisive factor. A 5-minute walk is 

about 400m using 80m to represent a 1-minute walk standard (Clifton et. al., 2016). A 400m grid 

cell is 16 hectares in area. The average size TAZ is about 4 times the size of a 400m grid cell, 

which raises concern for TAZ’s inability to capture intra-zonal pedestrian movement.  

The second alternative is dissemination areas (DA). According to Statistics Canada (2015), a 

dissemination area is a “small area composed of one or more neighbouring dissemination blocks, 

with a population of 400 to 700 persons.” DA is the smallest geographical area for all census 

data (Statistics Canada, 2015). With DAs, it is still possible to consider all variables, since they 

are either available at the DA level (i.e., Population and Employment densities) or at a finer scale 

(e.g., Transit Activity, Sidewalk Connectivity.). The average Dissemination area size is 42.5 

hectares (Table 3.3.1.1), which is about 2.5 times the size of a 400m grid cell (16 hectares per 

cell). The concern remains for pedestrian flow misrepresentation with using big size 

geographical unit of analysis. 
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The last geographical unit of analysis to be considered is PLUM zones (PZ). The City of 

Waterloo has 336 PLUM zones plus 1 zone that overlaps with the City of Kitchener. The pros of 

using PLUM zones are their small average size (19.4 hectares), which is similar to that of a grid 

cell representing a 5-minute walk (16 hectares). PLUM zones were created in respect to 

municipal boundaries, traffic analysis zones, census tracts, and water and sewer service areas, 

which also aligns with roads and property lines, reducing the need to disaggregate data (GIS 

Region of Waterloo, n.d.). On the hand, the disadvantage to using PLUM zones is that not all 

variables are available at that fine scale. Variables such as population and employment densities 

are available at the dissemination area level. Incorporating aggregate-level variables would 

create a modifiable areal unit problem (MAUP). As discussed in Appendix A, both population 

and employment density variables have a strong correlation with other variables, such as transit 

and land use mix, which is considered for this study. Since transit and land use mix variables are 

considered, population and employment densities were no longer incorporated, to issues 

pertaining to multicollinearity and MAUP. By default, PLUM zones are adopted as the study’s 

geographical unit of analysis. 

Table 3.3.1.1: PLUM zones (PZ) versus Dissemination Areas (DA) versus Traffic Analysis Zones 

(TAZ) comparison 

Category PLUM Zones 

(PZ) 

Dissemination Areas 

(DA) 

Traffic Analysis Zones 

(TAZ) 

Count 336 (conflict: 1)* 153 104 (conflicts= 3)* 

Min. (ha) 0.32 6.19 4 

Max. (ha) 233.33 532.17 368 

Mean (ha) 19.4 42.5 62.41 

*conflict areas where not counted and omitted due to overlap with adjacent municipalities 
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3.3.2. Built Environment and Non-built Environment Variables 

Prior to exploring each variable, there are basic standards adopted throughout the analysis 

process. First, the baseline for the data is 2016 as it was a common year for updates across most 

of all data sources (e.g., census, and TTS). Second, going into the regression analysis, variables 

in the raw format were normalized to a percentage scale (0-100) using the following formula: 

=
X

X max.
 × 100 

Land Use Mix – Entropy 

Land use mix is a measure of diversity and it is the variation of land use types within 

geographical areas. The logic here is that with adequate land use mix, people are more motivated 

to walk for their everyday needs. In this thesis, I present two different measures for land use mix. 

The first is entropy and the second is interaction lines. Entropy equations have been commonly 

used in walkability studies (Ewing and Cervero, 2010; Frank et. al., 2010; Meghelal and Capp, 

2011). Entropy measure considers both area per land use and the number of existing uses within 

each PLUM zone. A neighbourhood with just two big land use types will score less in the 

entropy equation versus a neighbourhood similar in size with five different land uses. From a 

review of previous studies, there was no standard to which land use types should be tested. In 

this study, I chose to evaluate the land use mix based on five land use types: residential, 

commercial, employment, institutional, and parks. Protected green lands and undeveloped lands 

are classified as open space and are not considered in the evaluated land use mix as suggested by 

Manaugh and Kreider (2013).  
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Land use data is available for the City of Waterloo based on their Official Plan. Data were 

retrieved from the Geospatial Centre at the University of Waterloo. Land use data is available as 

a polygon shapefile. The data attributes included polygons’ area and land use types. In case a site 

contains multiple uses, the minor uses are reclassified under the site’s primary use. Further data 

manipulation is required to isolate parks from open space zoning using parkland location and 

shapefile from the Region of Waterloo, which is also available through the Geospatial Centre. 

The entropy equation used here is the same one showcased in the study by Brown et. al. (2009) 

about the mixed land use and walkability. The equation below has been adjusted to reflect the 

number of considered land use types and geographical unit of analysis (i.e., PLUM zones) for 

this study. The entropy equation is as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  
−𝐴

ln(𝑁)
 

N – Total number of land uses considered in the analysis. In this research context, N = 5 

𝐴 = (
𝑏1

𝑎
 × ln

𝑏1

𝑎
) + (

𝑏2

𝑎
 × ln

𝑏2

𝑎
) + (

𝑏3

𝑎
 × ln

𝑏3

𝑎
) + (

𝑏4

𝑎
 × ln

𝑏4

𝑎
) + (

𝑏5

𝑎
 × ln

𝑏5

𝑎
) 

Note: The terms in equation A is dependent on the number of available land use types in 

each geographical area of analysis 

b1 – Residential Area 

b2 – Commercial Area 

b3 – Employment Area 

b4 – Institutional Area 

b5 – Parks Area 

a – Sum of areas of all available land uses within each a PLUM zone 
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The entropy equation is a two-part equation and is dependent on both land use type availability 

and size. The raw results range from 0 to 1, with 0 indicating homogeneity and 1 indicating 

heterogeneity. The entropy equation structure is too complex to write on the GIS software (i.e., 

ArcMap).  As a result, land use data were extracted then imported into Microsoft Excel for 

processing. 

Figure 3.3.2.1 shows the descriptive statistics for the entropy measure. The land use mix mean is 

0.2 and the standard deviation is 0.13. The histogram shows that the distribution of land use mix 

is skewed towards the right side of the mean. The maximum entropy score calculated was 0.67, 

while the lowest was 0 representing no presence of any of the 5 land use types. There are more 

zones with lower than average land use mix compared to above average zones. According to 

Figure 3.3.2.2, the above average zones are scattered across the city, with no clear spatial pattern. 

A common criticism of entropy is its limitation to only measuring land use diversity from the 

perspective of just land use types and their size magnitude, with no regard to how well mixed are 

they within each analysis area (Manaugh and Kreider, 2013; Tsiompras and Photis, 2016).  

  

Figure 3.3.2.1: Land Use Entropy descriptive statistics (X-axis: variable’s value and Y-axis: 

PLUM zones’ count) 
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Figure 3.3.2.2: Land Use - Entropy’s equal interval map by PLUM zones 
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Land Use – Interaction Lines 

Interaction lines is another measure to evaluate the degree of variation among land uses. This 

method was proposed by Manaugh and Kreider (2013) in their article “What is mixed use?...” 

Interaction lines measure the distribution of land use mix by measuring the shared line between 

every two varying land use types. In other words, this measure accounts for the local land use 

mix. For example, all three figures in Figure 3.3.2.3 would score identically in entropy, despite 

variation in land use distribution and therefore diversity. A person who lives in the figure to the 

most left would walk further to reach the commercial area versus someone who lives in the 

figure to the most right.  

 

Figure 3.3.2.3: All three figures will have identical entropy score, while scoring differently on 

the interaction lines measure. The most-right figure would score the highest on interaction lines 

measure.  

As discussed in the Entropy measure, land use data is a polygon feature shapefile. Land use data 

were converted to lines, using the “Polygon to Lines” tool in ArcMap. The new shapefile 

attributes include data such as land use types on the right and the left side of the interaction line. 

Using “Selection by Attributes”, the shared lines between every two varying land use types were 

selected and isolated. All shared lines are considered to have the same weight, without any 

preference for land use combinations. Since analysis areas vary in size from big around city 

skirts to small about the city core, a ratio of interaction lines to the area size is calculated. The 
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area is not based on the total PLUM zone size but is rather based on the sum of areas for all 

present five land uses (e.g., residential, commercial, employment, institutional, and parks). The 

interaction lines ratio is representative of the local land use mix per each PLUM zone. 

The histogram below is heavily skewed towards the right with over 150 zones equal to zero. The 

maximum length on interaction lines per hectare is 270 m. High mixed-used distribution is 

predominately found in small PLUM zones as shown in Figure 3.3.2.5. Smaller PLUM zones 

tend to have a higher ratio due to its size. On the other hand, the shortest interaction line is 0 m. 

This can be explained by either single land use occupant of the zone or absence of any of the five 

land use types from the zone. Overall, there seem to be more zones with greater local land use 

mix distribution in the eastern half of the City (see Figure 3.3.2.5). Theoretically, Interaction 

lines along with Entropy should provide a balanced look at the impact of land use mix on 

walking activity. 

 

Figure 3.3.2.4: Land Use – Interaction Lines descriptive statistics (X-axis: variable’s value and 

Y-axis: PLUM zones’ count) 
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Figure 3.3.2.5: Land Use – Interaction lines natural breaks map by PLUM zones 
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Net Commercial Floor Area Ratio (FAR) 

This measure is a modified edition of the conventional retail floor area ratio. Many academics 

and researchers found a correlation between walking and retail floor area ratio and incorporated 

it into walkability indices (Sundquist et. al., 2011; Frank et. al., 2010; Region of Waterloo, 2009; 

Leslie et. al., 2007). The floor area ratio (FAR) is structured to compute how much of a parcel is 

covered by the designated commercial/retail building. A pedestrian-oriented community will 

have a high floor area ratio indicating less space for cars and more space for walking activity. On 

the other hand, a car-oriented community will have a low floor area ratio due to large surface 

parking spaces. 

For the City of Waterloo, the closest to retail-representative data is commercial zoning data, 

which includes but not limited to retail, and services (e.g., dry cleaners, and mechanics) (City of 

Waterloo, 2016). Data is available as polygon features for the City of Waterloo, representing 

zoning as in the Official Plan (OP), with attributes such as land use type and shape area size. 

Building footprints were available for the Region of Waterloo also as polygon features. Building 

footprint data did not have an attribute indicating its commercial use or not; therefore, building 

footprints overlapping OP’s identified commercial zones were classified as commercial. The 

assumption used here is OP commercially designated lands capture all on-ground commercial 

uses. 

The floor area ratio equation is a universal equation. It is the ratio of a building footprint to its 

parcel. The heaviest burden of computing the commercial floor area ratio is the data quality for 

property parcels. Another data quality challenge was when PLUM zone boundaries split big 

parcels into smaller portions as well as building footprints. Each overlapping case was visually 
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inspected and the building’s area was allocated to the zone where the biggest portion of the 

building stands. In the case of a PLUM zone contained multiple commercial parcels, the mean 

was adopted as the final FAR value. Since PLUM zones have varying sizes, Floor Area Ratios 

(FAR) were weighted by the commercial area percentage of the total PLUM zone size. The 

outcome is classified as “net Commercial Floor Area Ratio.” 

According to Figure 3.3.2.6, the distribution of net Commercial Floor Area Ratio is extremely 

skewed to the right. The FAR mean is 0.03, which is less than a tenth of the scale’s maximum 

(0.33). This indicates the domination of car-oriented commercial space in the City of Waterloo. 

From Figure 3.3.2.7, I observe a spatial concentration of pedestrian-oriented commercial space 

(medium-high FAR) along the southern half of King St. by the city’s core.  

 

Figure 3.3.2.6: Net Commercial Floor Area Ratio descriptive statistics (X-axis: variable’s value 

and Y-axis: PLUM zones’ count) 
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Figure 3.3.2.7: Net Commercial Floor Area Ratio equal interval map by PLUM zones 
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Connectivity – Metric Reach 

Metric reach is an alternative to using intersection density for measuring network connectivity 

and coverage (see Appendix A for the Intersection Density measure). A recent study by Ellis et. 

al. (2016) looked at various measures for connectivity and found a significant correlation 

between walking and both intersection density and metric reach measures. Metric reach is the 

sum of sidewalk length in every direction if a person walked from the zone’s centroid on the 

sidewalk in any direction for a set distance. The set distance in this study is 800 meters, while the 

industry’s standard for a 10-minute walk is 800 m - 1000 m (Ellis et. al., 2016; Tsiompras and 

Photis, 2016; Frank et. al., 2010; Lee and Moudon, 2006). A 200-meter search tolerance was 

used to find the closest point to the zone’s centroid along the sidewalk network. When adding the 

200m search tolerance to the 800m maximum walking cut-off distance, the total does not exceed 

the 1 km threshold, which remains within the 10-minute walkable distance standard. 

The active transportation infrastructure data is available through the Region of Waterloo and its 

municipalities’ open data portal. The infrastructure data is a line feature making up a network of 

sidewalks, trails and pedestrian crossings. Trails were included as they often improve 

connectivity in neighbourhoods and not just provide recreational space. Despite data availability, 

there were multiple data layers and none contained the full network for the City of Waterloo. 

When trying the spatial join tool to merge all incomplete network layers, there were multiple 

cases of duplicate segments. The overlapping segments were not evenly spread nor consistent, 

which made it inapplicable to identify and eliminate. The remaining solution was to manually 

edit and trace missing links from other data sources into a single network layer. In addition, 

aerial photos and google maps were used to validate the various network links presence. Another 

challenge was deciding on road crossings locations particularly involving grass footpaths. Visual 
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clues, such as painted crossings, corner street’s concert pad orientation, and beaten crossings 

through grass boulevards, were used to determine road crossing locations. On the other hand, 

when it came to longer beaten pathways and trails through grass, they were not included as they 

are not official pedestrian infrastructure and are not subject to snow plowing. Also, despite how 

recent aerial photos are (two years old), grass and nature can reclaim unpaved pathways if 

unused. 

According to the descriptive statistics below and measure’s histogram (Figure 3.3.2.8), there are 

over 30 PLUM zones that have a metric reach score of zero. Otherwise, the distribution of 

PLUM zones by metric reach is slightly skewed to the right towards the mean (15.18 km). The 

standard deviation is about 9.37 km. According to Figure 3.3.2.9, those zones with moderate-

high metric reach score (23-39km) are clustered around Waterloo’s Uptown, especially along 

King St. and Erb St. In addition, there are some moderate Metric Reach zones scattered around 

the city peripheries, which can grow with further land development and network integration.  

  

Figure 3.3.2.8: Connectivity – Metric Reach descriptive statistics (X-axis: variable’s value and 

Y-axis: PLUM zones’ count) 
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Figure 3.3.2.9: Connectivity – Metric Reach equal interval map by PLUM zones 
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Transit Activity 

It was stressed that both population and employment density correlate to transit activity, which 

as well correlates to walking (see Appendix A) (Liu and Griswold, 2009; Ewing and Cervero, 

2010; Tsiompras and Photis, 2016). Tsiompras and Photis (2016) found that proximity to transit 

would account for up to 20% of walkability’s weight because of its multicollinearity with 

simulating pedestrian activity destinations, and population and employment density. In addition, 

according to the 2016 TTS, 50% of annual transit trips by the City of Waterloo permanent 

residents were accessed by walking. This further stress the importance of proximity to transit in 

the context of evaluating pedestrian activity.  

Transit data were requested from the Region of Waterloo because the detailed 2016 data were 

not publicly available on the open data portal. The data acquired included point data for transit 

stops and attributes such as boarding and alighting activity per stop. Transit stops/stations are 

treated here as destinations and activity per stop was based on the sum of alighting and boarding 

to represent transit users passing through each stop. To account for accessibility to bus stops, 

buffer areas with a 400 m radius were built around each PLUM zone. Since all public transit in 

the City of Waterloo is yet serviced by buses only, 400 m buffer is the industry standard for 

typical walking distance to bus stops or stations (Oliver, 2014). Later, all activity within a PLUM 

zone and its 400m buffer zone were accounted towards that zone. Including the buffer zones 

ensure that intra-zonal walking trips to bus stops are captured.  

According to Figure 3.3.2.10 below, over 100 out of 336 PLUM zones have almost zero transit 

activity. The Transit Activity histogram is extremely skewed towards the right. The highest 

activity per PLUM zone is about 23 thousand daily trips, while the average is 3.85 thousand 
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transit users. The standard deviation is approximately 4.5 thousand users. Figure 3.3.2.11 shows 

that post-secondary institutions are the key driver of transit activity as zones of moderate-high 

activity are found along University St. between the three institutions. There is a lighter activity 

presence extending along King St. south towards Uptown as well as by Conestoga Mall, which 

both serves as transit hubs.  

  

Figure 3.3.2.10: Transit Activity descriptive statistics(X-axis: variable’s value and Y-axis: 

PLUM zones’ count) 
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Figure 3.3.2.11: Transit Activity equal interval map by PLUM zones 
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Elementary and Secondary Schools’ Student Enrollment 

Unlike built environment variables that estimate pedestrian activity potential, enrollment data 

tend to shed light on actual pedestrian demand. Many school boards encourage walking to school 

and run multiple programs encouraging active transportation participation among kids to reduce 

the risk of chronical health complications (Student Transportation Services of York Region, 

2018; Metrolinx, n.d.). In addition, academic authors, researchers, and municipalities have used 

some type of education-related variables to understand the spatial distribution of walking activity 

(Millward, Spinney, and Scott, 2013).  

The data on school enrollment is available through an agreement with the University of Waterloo 

and the City of Waterloo. Otherwise, the enrollment data is not available through public open 

GIS portal. The data is available as a point feature layer, which includes attributes such as the 

school name, school board association, school class (i.e., elementary, and secondary), school 

addresses, and total student enrollment per school. Two elementary schools’ enrollment data 

were missing; therefore, phone calls were made to the two schools’ principal office to acquire an 

enrollment estimate for 2016/2017 school year.  

Schools’ catchment areas do not match the boundaries for PLUM zones. In addition, elementary 

schools and secondary schools each have their own set of catchment areas, which represented an 

issue trying to merge their data. In effort to resolve the spatial mismatch between the different 

boundaries, catchment areas were neglected and the enrollment data was assigned to the hosting 

PLUM zone. In case, where two schools lay in the same PLUM zone, the sum of both schools’ 

enrollment data was passed down.  
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There are 34 schools, a total of both elementary and secondary schools, in the City of Waterloo. 

Together, they occupy 30 PLUM zones and provide education to almost 18,000 students. From 

Figure 3.3.2.13 below, all highest student enrollment is located on the city outskirts. According 

to Figure 3.3.2.12, the histogram is skewed to the right due to only a few PLUM zones that 

contain schools. There is a maximum of about 2 thousand students who arrive at the same PLUM 

zone daily. The average school enrollment is about 50 students and the standard deviation is 

about 200 (see Figure 3.3.2.12). 

 

Figure 3.3.2.12: Elementary and Secondary Schools’ Student Enrollment Descriptive Statistics 

(X-axis: variable’s value and Y-axis: PLUM zones’ count) 
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Figure 3.3.2.13: Elementary and Secondary Schools’ Student Enrollment equal interval map by 

PLUM zones 
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Post-Secondary Institutional presence 

Despite the potential multicollinearity between post-secondary institutions and transit activity, 

post-secondary institutional presence is included as a separate variable. Post-secondary 

institutions are not just educational hubs. They also attract land use diversity and employment. 

An optimal option is to use student registration data to measure the magnitude of activity on 

campus; however, such data is unavailable and would be hard to interpret since post-secondary 

students move across campus(es), which also intersects multiple PLUM zones. 

With these difficulties mentioned above in mind, the intent is to use building permit data, which 

is accessible through the Geospatial Lab as a points feature class, to classify and isolate post-

secondary institutional buildings that are used for educational purposes, then create a binary 

index (i.e., 0 or 1) representing post-secondary presence. Review of the data revealed that every 

building on post-secondary campuses does not necessary has an available building permit data 

point. As long there is one building permit point in the analysis area, that PLUM zone is assigned 

a value of 1. This overcomes the issue of incomplete building permits point data, while still 

representing post-secondary institutional presence.  

In total, there are 10 PLUM zones, which include post-secondary institutional buildings. These 

zones represent the University of Waterloo campus, the Wilfrid Laurie University campus, and 

the Conestoga College campus. According to Figure 3.3.2.15 below, post-secondary institutions 

are located along University Street, with the University of Waterloo having the biggest campus 

of all three. When comparing Figure 3.3.2.15 with Figure 3.3.2.11, there is an association 

between transit activity and post-secondary institutional presence, which confirms the concern 

for multicollinearity.  
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Figure 3.3.2.14: Post-Secondary Institutional Presence variable descriptive statistics (X-axis: 

variable’s value and Y-axis: PLUM zones’ count) 

 

Figure 3.3.2.15: Post-Secondary Institutional Presence quantile map by PLUM zones 
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3.3.3. Regression Analysis 

Regression analysis is used here to identify significant relationships between the explanatory 

variables and walking and to calibrate the model for accurate prediction. Since the first objective 

of this thesis is about predicting pedestrian activity, actual pedestrian trips are used to calibrate 

the model. Pedestrian data is available through the Transit Tomorrow Survey (TTS), which 

contain daily walking trips data based on reported trip activities and primary mode used (Data 

Management Group, 2018b).  

Before explaining the process of conducting a regression analysis, it is important to understand 

the limitations of the TTS data pertaining to walking trip activity. According to the 2016 TTS: 

Data Expansion and Validation report, there are multiple concerns in regard to using TTS data, 

especially in university cities and for pedestrian representation (Data Management Group, 

2018b). The first concern is that the TTS survey is based on mailing the survey to private 

households and depending on a single household member to remember and report trip activities 

for each other household member. This raises two alarms. The first is the exclusion of public 

housing residents and also students living in residence. Secondly, large households housing 

multiple students or being rented out are under-represented as landlords tend not to remember 

other members’ trip activities or could care less for a transportation survey about the tenants’ 

transit activities. These two alarms question the suitability of using TTS data in a university city 

like Waterloo. The second concern about the suitability of the TTS to capture pedestrian activity. 

In addition to previous concerns, the TTS survey only records primary trips’ transit modes, 

which means the exclusion of secondary walking trips from cars to shopping strips, from store to 

store, from work to grocery stores to cars, and from schools to community centres to transit 
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stops. As a result, by default walking activity is under-represented through the TTS survey 

design.  

Despite all the negatives mentioned, TTS is the only publicly available data source for consistent 

transportation activity records across multiple regions, cities, and towns in Ontario. Other data 

sources are available at the aggregate level, which are not suitable for the calibration process. 

The optimal solution is to gather primary data through surveys or pedestrian count, but due to the 

study’s limited resources, TTS pedestrian data are used, despite its limitations. Given that the 

study’s contribution is primarily in developing the method as a proof of concept, data accuracy is 

less of a concern.   

Daily walking trip count is available for TAZ in form of trip origins and destinations. It is 

recognized that not all trips originated from a TAZ will end up in the same TAZ and at the same 

time not all trips will end up in a different TAZ. To strike a balance, the maximum of either 

walking trips by origin or destination was used. Using the maximum captures the highest 

demand regardless of the trips’ direction. The critique for using the maximum is the unknown 

traffic flow; however, it is not of concern for this study goal. 

 Figure 3.3.3.16 shows the spatial distribution of TTS reported walking trips. High foot traffic is 

located along King St. and along University Ave between the University of Waterloo and Wilfrid 

Laurier University. In addition, there is are a couple of isolated zones of high pedestrian activity 

located on the city peripheries. Review of the walking trips’ histogram (Figure 3.3.3.17) reveals 

that the data is heavily skewed towards the right. More than 80% of the TAZs in the city have a 

reported maximum walking activity of 325 or less, which makes up about 10% of the maximum 
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recorded activity of 3248. On average 8% of the household daily trips are made by walking, 

while driving makes up 80% of the daily household trips (Data Management Group, 2018a). 

 

Figure 3.3.3.16: 2016 TTS Reported Walking Trips Distribution per TAZ Map 

 



 

66 
 

 

Figure 3.3.3.17: 2016 TTS Reported Walking Trips Histogram 

 

TTS data is available for Traffic Analysis 

Zones (TAZ), while the study’s geographical 

unit of analysis is PLUM zones (PZ). To 

proceed with the regression analysis, there 

should be a unified geographical unit of 

analysis to avoid a Modifiable Areal Unit 

Problem (MAUP). Data at a coarse level, 

require disaggregation, which assumes that data 

is evenly distributed across an area. This 

assumption is often criticized for losing 

sensitivity, as discussed in the literature review. Figure 3.3.3.18: TAZ_PZ sub-area illustration 

PZ 

PZ 
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A simplification to data disaggregation is to conduct the analysis at the in-between scale, which 

in this study is identified as “TAZ_PZ sub-area” or “sub-area.” The assumption for evenly 

distributed data is retained to weight the land values based on the percentage of land making up 

the sub-area. For example, if a TAZ has 100 walking trips but only 25% of the TAZ make up the 

sub-area, then there are 25 walking trips in that sub-area. In total, there are 499 sub-area in the 

City of Waterloo, when intersecting TAZ and PZ layers.  

Not all sub-areas are used for the regression analysis due to inconsistent data availability. Also, 

some sub-areas were too small to include as the TAZ and the PZ layers do not perfectly align. 

TTS walking trips data was not available for all TAZ in the City of Waterloo, which made it not 

available in all sub-areas. Other variables like net commercial floor area ratio, and Elementary 

and Secondary School Student Enrollment are not available per each sub_area. The criteria for 

choosing sample areas is based on specific data availability and area size. Sample areas were 

picked for being at least 16 hectares in size, which is the same size as a 400m grid cell 

representing 5-minute walk. Also, sample areas must have an associated TTS walking trip data, 

land use entropy, metric reach, and transit activity more than 0. In total, there are 69 sub-areas 

that match the sampling criteria (see Figure 3.3.3.19).  
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Figure 3.3.3.19: Map of sample TAZ_PZ sub-areas used in the regression analysis 

 

The process for the regression analysis was inspired by Raford and Ragland (2006) when they 

used multiple linear regression to calibrate the Space Syntax model with a sample of pedestrian 

counts. In addition, other researchers in the field of walkability indices have used some sort of a 

correlation test to validate their walkability indices (Duncan et. al., 2011; Manaugh, and El-

Geneidy, 2011; Frank et. al., 2010). Following similar steps, I employ two types of regression to 

reach optimal calibration of the Pedestrian Activity Model.  

The first step taken was to test whether a raw data version or a transformed data version is better 

in explaining the correlation between the variables and walking trips. Transformation is usually 

used to adjust data distribution towards normality. Variables’ data were first normalized to the 
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same scale using a percentage of the maximum, then transformed using natural log. Any zero 

value after the normalization process was replaced with a value of 1 because it is inapplicable to 

use natural log on zero values. Two sets of linear regression were conducted on each set of data 

versions. Overall, raw data had a better correlation than transformed data. Therefore, raw data 

was used in the next step of the regression analysis.  

This step includes carrying both a multiple variable linear regression and a spatial error 

regression to find the best-fit regression model to represent the correlation between the 

considered explanatory variables and walking trips. The reason for considering a spatial error 

regression is for the typical spatial autocorrelation for foot traffic, meaning that the relationships 

between the considered variables and the response variable usually have an underlying spatial 

pattern. The regression tests were conducted using GeoDa, which can run both types of 

regression. Raw data were normalized for easier interpretation of variables’ influence in relation 

to each other. All seven variables mentioned above were tested then the significant variables 

(>90%) were re-tested to finalize the Pedestrian Activity Model. 
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3.3.4. Pedestrian Activity Model Formula 

As discussed in the literature review, some of the approaches to estimating pedestrian activity 

lacked calibration and validation to predict actual trip counts. Conventional walkability index 

formula is based on summing the variables per area. Advanced formulas included weighting 

these variables. Initially inspired by walkability indices, but with the ability to calibrate a 

predictive model using regression, a walkability index is no longer considered to capture 

pedestrian behaviour. The final Pedestrian Activity Model is based on the regression analysis 

results, which are revealed in the next chapter. The role of the regression analysis was not just to 

objectively find the optimal set of weights to maximize correlation to walking trips but to also 

identify significant variables. Below is the general formula for spatial error regression formula 

that the model is based on. 

𝑦𝑖 = ŷ𝑖 +  𝑢 

𝑦𝑖 =  oberserved value for area 𝑖  

ŷ𝑖 =  predicted value for area 𝑖 

𝑢 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙s 

𝑦𝑖 = 𝛼 + (𝛽 × 𝑥𝑖)𝑛 + 𝑢 

𝑢 = 𝜆𝑊𝜖 + 𝜖𝑖 

𝛼 = Y − intercept 

(𝛽 × 𝑥𝑖)𝑛 = explanatory variable term 

𝛽 = regression coefficient 

𝑥𝑖 = explanatory variable value for the area i 

 𝑛 =  number of explanatory variables (n= 1, …, 5) 

𝑢 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙s/error term 
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𝜆𝑊𝜖 = spatial error = (lambda × average of adjacent areas′𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ) 

𝜖𝑖 =  unexplained error 

Since the model is about predicting pedestrian activity for the rest of the study area, the error 

term was removed from the final formula. The new modal’s final formula is: 

ŷ𝑖 = 𝛼 + (𝛽 × 𝑥𝑖)𝑛 

ŷ𝑖 =  predicted value for area 𝑖 

𝛼 = Y − intercept 

(𝛽 × 𝑥𝑖)𝑛 = explanatory variable term 

𝛽 = regression coefficient 

𝑥𝑖 = explanatory variable value for the area i 

 𝑛 =  number of explanatory variables (n= 1, …, 5) 

 

Pedestrian Priority Zone 

The purpose of this section is to illustrate briefly the process of determining Pedestrian Priority 

zones based on high foot traffic clustering. In ArcMap, from the symbology tab of the Pedestrian 

Activity Model layer properties, data were classified by Natural Breaks into 10 classes. Natural 

Breaks is useful in highlighting change according to the natural flow/distribution of the data. A 

statistical analysis of the gradual accumulation of the highest Natural Break classes is conducted 

to suggest a priority zone. The analysis looks at the pedestrian activity (predicted trips count), 

associated pedestrian infrastructure (length), and area coverage (area). The suggested number of 

priority zones is subject to change depending on the type of public investment, operation 

restrictions, and resource limitations.  
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Chapter 4: Findings and Discussion 

Previous chapters established the conceptual framework and methods to predict pedestrian 

activity and to define the Pedestrian Priority Zone. This chapter’s goal and structure are focused 

on sharing the findings for: 

• The initial regression models (i.e., single variable linear regression, multiple linear 

regression, and spatial error regression), 

• the Pedestrian Activity Model (includes a breakdown for some classes), and  

• the Pedestrian Priority Zone configuration  

4.1. Regression Models 

Single Variable Linear Regressions 

As illustrated in the Methods Chapter, all seven explanatory variables are not normally 

distributed; therefore, data transformation to restore normality was considered. Single variable 

linear regressions were carried out twice for each variable: once with raw data format, and again 

with data transformed using Natural Log. The reason is to find which data representation 

produces a higher correlation with the dependent variable (i.e., TTS walking trips). Figures 4.1.1 

to 4.1.6 are scatterplots showing the linear regression best fit line and the model’s R-square value 

for selected variables.  The rest of the scatterplots are in Appendix B.  

A major finding pertaining to some of the variables and their correlation to walking was their 

unexpected negative direction. According to the literature review, each of the variables 

considered in this study should have a positive correlation to walking trips. The variables with 

negative correlations were Land Use – Entropy (see Figure 4.1.1 and Figure 4.1.2 below), Land 

Use – Interaction Lines, and Net Commercial Floor Area Ratio (see Appendix B). One possible 

explanation behind the negative correlation is data quality issues (e.g., using OP land uses), as 
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discussed in the previous chapter and reinstated as a limitation of the model in the Conclusion 

Chapter.  

In determining which data form is better, two additional linear regressions were carried out after 

summing all variables with respect to their correlation direction as revealed in the single variable 

linear regressions. Variables in the raw data format had varying data scales. Therefore, raw data 

were normalized to a percentage scale (0-100) based on the maximum value per each variable, 

then summed with respect to their associated correlation direction as found in the single variable 

regressions (Figure 4.1.5). In comparing Figure 4.1.5 and Figure 4.1.6, it can be seen that there is 

a stronger correlation between the normalized explanatory variables and walking activity (R2 = 

0.406) versus the transformed data (R2 = 0.255). As of yet, these findings at their best (Figure 

4.1.5) can only explain 40% of the variation in walking happening by zones in the City of 

Waterloo. It can be concluded that the normalized data, which substitute for the raw format, are 

better at explaining walking activity. However, these findings did not yet take into account 

weighting variables individually to maximize the correlation as well as eliminating insignificant 

variables, which is the next step in constructing the Pedestrian Activity Model. 
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Figure 4.1.1: Land Use – Entropy (Raw Data version) Linear Regression  

 

Figure 4.1.2: Land Use – Entropy (Natural Log version) Linear Regression 
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Figure 4.1.3: Transit Activity (Raw Data version) Linear Regression 

 

Figure 4.1.4: Transit Activity (Natural Log version) Linear Regression 
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Figure 4.1.5: All Variables’ Sum of Correlations (Raw Data version) Linear Regression 

 

 

Figure 4.1.6: All Variables’ Sum of Correlations (Natural Log version) Linear Regression 
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Ordinary Least Square Regression (OLSR) 

The regression models referred to above were limited to a single variable for exploratory 

purposes. In considering multiple variable regression models, the work is completed using 

“GeoDa”. GeoDa is a Geographic Information System (GIS) analysis software that is used to run 

both a multiple variables linear regression as well as a spatial error regression.  

The advantage of running a multiple variable Least Squares regression is the automated 

calibration of the coefficient for each variable as well as finding which of the variables is 

significant to the case study context. Another advantage to running a multiple variables linear 

regression is the freedom to use the explanatory variables in either raw form or normalized form; 

however, using normalized data has another advantage, which is the ability to interpret variables’ 

influence easily in relation to other variables with the same scale. 

While there are different versions of multiple variable linear regression, Ordinary Least Square 

Regression (OLSR) is used due to (1) its availability on “GeoDa”, which can also run spatial-

based regressions, and (2) the researcher’s familiarity with running and interpreting OLSR 

models.  

Figure 4.1.7 shares the Ordinary Least Square Regression’s results, which is based on 

normalized data. The first thing to note is the R square value, which explains to what degree the 

model statistically explains variation in the the dependent variable (i.e., walking activity). The 

adjusted R square value is 0.48, which means the regression model using all variables explains 

48% of the variability in pedestrian trips. This model has a confidence level of more than 95%. 

Another number to remember and keep in mind when comparing with other regression models is 

the Akaike Info Criterion (AiC), which also indicates how well the model represents the 
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dependent variable in comparison to other models. For this OLSR, the AiC number is 954.85. 

The rule of thumb is the lower the AiC value the better representative is the model. In this case, 

the AiC value is ambiguous until compared to another model’s AiC. 

Besides the overall fit of the model, it is important to understand the significant components 

making up the regression model, their correlation direction, and their coefficients. As mentioned 

before, the variables considered in this study were expected to have a positive correlation with 

walking by various studies (Liu and Griswold, 2009; Region of Waterloo, 2009; Ewing and 

Cervero, 2010; Frank et. al., 2010; Meghelal and Capp, 2011; Sundquist et. al., 2011; Manaugh 

and Kreider, 2013; Millward, Spinney, and Scott, 2013; Ellis et. al., 2016; Tsiompras and Photis, 

2016). According to the figure below, there are two variables - Post-Secondary School Presence, 

and Net Commercial Floor Area Ratio - that have negative correlations with walking. Despite 

having a relatively similar coefficients as other variables, these negatively correlated variables 

are insignificant (below the 90% confidence level).   

Another major finding is that, of all the variables included in the model, Transit Activity has the 

most influence on pedestrian trip activity with a coefficient value of 14.44. The second most 

influential positively correlated variable is Metric Reach with a coefficient value of 4.95. In other 

words, with an increase of one unit in the explanatory variable Transit Activity increases walking 

trips three times that of Metric Reach. Both variables are significant at the 90% confidence level, 

while the remaining five variables are insignificant. 

While linear regressions are common in active transportation studies, it comes up short in 

explaining the spatial component of the data. The correlations between the considered variables 

and pedestrian activity usually have an underlying spatial pattern. Also, linear regression 
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assumes that data is normally distributed, which is violated as per the Jarque-Bera test (p-value < 

0.05) (see Figure 4.1.7). For these reasons, a spatial-based regression is tested.  

 

Figure 4.1.7: OLSR results report – including all considered variables 
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Spatial Error Regression (SER) 

For the spatial-based regression, a Spatial Error Regression (SER) is used because of its 

availability through “GeoDa” and also because of the researcher’s familiarity in running and 

interpreting SER models. Using “GeoDa” again ensures consistency in the result report format 

and easier interpretation. Evaluating whether the SER model or the OLSR model is better is 

dependent on the best-fit indicators (e.g., R2, and AiC). A better fit model would have a higher R 

square value while also scoring a lower Akaike info Criterion (AiC) value. Now, according to 

Figure 4.1.8 below, the SER model’s associated R2 value is 0.57, and the AiC value is 951.76. 

On the other hand, the OLSR model’s associated R2 is 0.53 and the AiC is 954.85. The numbers 

cited above indicate that the SER model is better at explaining the variation between the reported 

daily walking trips and the predicted values by about 4%.   

Despite the fit differences between the two models, both models share similar results in terms of 

negatively correlated variables (i.e., Post-Secondary School Presence, and Net Commercial Floor 

Area Ratio), which are also insignificant variables. Also, Transit Activity and Metric Reach 

variables have the greatest pull among the remaining variables on pedestrian activity, with 

Transit Activity in the lead.  

In considering the confidence level at 90% rather than the conventional 95% (see Figure 4.1.8), a 

third significant variable stands out, that is Elementary and Secondary School Student 

Enrollment. The Student Enrollment variable has a coefficient of 2.66, while the Metric Reach 

variable has a coefficient of 4.25 and Transit Activity’s coefficient is 11.53 (see Figure 4.1.8). In 

other words, one unit increase in Transit Activity equals four times increase in walking trips 

versus one unit increase in Student Enrollment and two times increase in walking trips versus 

one unit increase in Metric Reach. 
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For reasons like higher R squared value, and lower AiC value, the SER model is a better fit at 

representing the correlation between the explanatory variables and the pedestrian data. In 

addition, the SER model is the preferred option because it contains an additional significant 

variable bringing the model a step closer to understanding variables influencing walking in the 

City of Waterloo. Moving forward, the SER model is used to construct the Pedestrian Activity 

Model.  

However, prior to constructing the Pedestrian Activity Model, the Spatial Error Regression 

(SER) model was re-run with only the three identified significant variables (i.e., Transit Activity, 

Metric Reach, and Elementary and Secondary School Student Enrollment). This process 

configures the coefficient values to maximizes the correlation between the explanatory variables 

and the dependent variable.  

The result of the new SER model is shown below in Figure 4.1.9, while Figure 4.1.11 shows the 

spatial distribution of the predicted values. The new SER model run has a slightly lower R 

square value (0.55) than the previous 0.57 R square value, but it eliminates insignificant 

variables. The new AiC value is smaller (946.34) compared to 951.29 for the former SER model 

(see Figure 4.1.9, and Figure 4.1.8).  

The spatial distribution of the residuals shows positive residuals along the city outskirts plus at 

both post-secondary institutions’ main campuses (Figure 4.1.12). This indicates that the 

predictive model under-represents walking trips at city outskirts and outlier high pedestrian 

activity areas. A histogram of the residuals shows slight skewness towards the right (see Figure 

4.1.13).  
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While the new spatial error regression model at its best can only explain 55% of the variation in 

the walking activity, it is important to remember here the limitations for the TTS reported daily 

walking trips as well as the limitations associated with the sample area. The sample area 

underrepresents the downtown core, which might explain the unexpected insignificant 

correlations between some of the variables (e.g., Land Use Mix Entropy measure, Land Use Mix 

Interaction Lines measure) and walking activity.  
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Figure 4.1.8: SER results report – including all considered variables 
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Figure 4.1.9: SER results report – including only significant variables 
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Figure 4.1.10: 2016 TTS reported daily walking trips per sample TAZ_PZ sub-areas 
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Figure 4.1.11: Spatial Error Regression’s Predicted values (i.e., walking trips) map  
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Figure 4.1.12: Spatial Error Regression’s Residuals map 



 

88 

 

Figure 4.1.13: Spatial Error Regression’s Residuals Histogram 
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4.2. Pedestrian Activity Model 

A regular regression model is constructed as two parts. The first part is the predictive part of the 

model and the second part is the error term, which tells the difference between the predicted 

value and the observed value (i.e., TTS reported daily primary walking trips). Since the intent of 

the study is to predict pedestrian activity, the error term of the SER model is eliminated and the 

rest of the formula is adopted as the final formula to construct the Pedestrian Activity Model. 

The Pedestrian Activity Model formula is: 

ŷ𝑖 = (−123.325) + (8.87014 × 𝑥𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦) + (4.8325 × 𝑥𝑀𝑒𝑡𝑟𝑖𝑐 𝑅𝑒𝑎𝑐ℎ)

+ (3.01644 × 𝑥𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑎𝑛𝑑 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑆𝑐ℎ𝑜𝑜𝑙 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡) 

ŷ𝑖 =  predicted daily walking trips for area 𝑖 

Using the three significant variables’ data to plug into the formula above, primary daily walking 

trips were predicted per each of the 336 PLUM zones within the City of Waterloo’s boundary. 

The predicted trips does not include secondary walking trips as inherited from the response 

variable (i.e. TTS reported primary daily walking trips).  

Walking level and scale varies from a study to another and from location to another, which 

makes it hard to standardize its way of measurement. In respect to the local context and the 

findings of the P.A.M., natural breaks classification type is used to divide up the predicted 

walking trips’ scale into ten classes based on the natural flow of the data. Ten classes is used 

rather than five to focus on the variation between the classes and try to understand the underlying 

context to each class.  Figure 4.2.2 shows the Pedestrian Activity Model outcome map for the 

City of Waterloo, while Figure 4.2.1 shows the Natural Breaks classes distribution versus the 

model’s data distribution. The findings are structured in this sub-section to first share general 
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findings pertaining to multiple zones, then share the breakdown of six zones representing six 

classes. 

The first general observation is that some zones have negative trip counts. These zones are 

located along the city’s north-east and north-west borders (Figure 4.2.2). The reason these zones 

have a negative trip counts is that because the model’s y-intercept term is a negative value. To 

preserve the predictive model adopted from the SER model, the negative y-intercept is retained 

in the final formula as an indicator of the model’s general over-prediction. It is also a reminder of 

the model’s limitations and a chance for future improvements through better pedestrian trip data 

and expansion of the considered explanatory variables (e.g., vehicle ownership, employment 

density).  

Another general observation of trip distribution shows that low pedestrian trip activity dominates 

the outer edges of the City of Waterloo in an upside-down “U shape”. Adjacency to the City of 

Kitchener accounts for the moderate pedestrian activity along the City of Waterloo’s south 

border.  

On the other hand, the highest predicted walking trips are clustered along University Ave in 

close proximity to post-secondary institutions, while moderate-high pedestrian activity extends 

along King St. south of University Ave. towards Uptown. These findings support similar 

findings in the field around downtown cores and post-secondary institutions being key drivers 

for pedestrian movement.  
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Figure 4.2.1: Pedestrian Activity Model's Natural Breaks classes versus data distribution 
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Figure 4.2.2: Pedestrian Activity Model Predicted Daily Walking Trips map 

Pedestrian Activity Model’s predicted walking trips classification breakdown 

This sub-section makes up the breakdown of the predicted walking trips classification by 

exploring six of the ten classes in Figure 4.2.2. The six classes showcase a wide variation from 

low predicted trip counts’ zone to high trip counts’ zones, not in that particular order. The 

classification of Pedestrian Activity Model predicted trips is based on natural breaks. Each of the 

six classes is explained by the varying role of each of the three significant variables. In addition, 

previously considered variables might be used to explain pedestrian activity in the zone, as well 

as other supplementary sources (e.g., policies, local programs, and planning documents), might 

be incorporated. Some of the classes have outliers , which are also explored below.  
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Figure 4.2.3: A PLUM zone (P.A.M. = -123) as Classified in the Lowest Predicted Trips class (-

123 - -47) 

Lowest Predicted Trips Class (-123 - -47) 

If the y-intercept is removed, the zones in this class will have a minimum of zero trips. Logically, 

it is hard to say there are zero walking trips as people walk all the time as a secondary mean to 

get around or for recreational purposes. TTS reported daily walking trip counts capture only trips 

made sole by walking with no distinction between utilitarian or recreational purpose trips (Data 

Management Group, 2011). Since the model is built on the TTS daily walking trip data as the 

response variable, it inherits the same definition for predicted walking trips. 

The highlighted zone, as in Figure 4.2.3, shows Pedestrian Activity Model (P.A.M.) trip counts 

of -123, which is the lowest predicted trips for the entire city. Figure 4.2.3 shows the spatial data 

for the three variables incorporated in the P.A.M. As observed, the selected zone is far off from 

any sidewalk network, transit stops, and schools, which means zero values per each of the 

variables. As a result, this zone scored the lowest predicted pedestrian trips. In addition, the land 
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use map as per the city’s Official Plan marked these low pedestrian activity zones as rural areas, 

low-density residential, and open space (City of Waterloo, 2016). The land use findings are 

typical for an urban sprawl development, which carries association to the car-dependent 

environment. 
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Figure 4.2.4: A PLUM zone (P.A.M. = -4) as Classified in the Second Lowest Predicted Trips 

class (-46 - 34) 

Second Lowest Predicted Trips Class (-46 – 34) 

Figure 4.2.4 shows a PLUM zone part of the second lowest predicted trips class (-46 < P.A.M. < 

34). Overall, for the second lowest class, the observed trend is low sidewalk network presence 

and proximity to transit stops along one or two bus routes with an overall low activity. None of 

the second lowest class zones contain either an elementary or a secondary school. A statistical 

analysis reveals that the mean Transit activity for this class is 763 (3.28%) daily transit users, 

while a zone in the highest P.A.M. class has access as many as 23,000 (99.79%) daily transit 

users. As mentioned in the Methods Chapter, the Transit Activity variable is collinear to 

population and employment density; therefore, minimum access to transit users is a response to 

low population density and lack of employment opportunities. The average Metric Reach is 7.8 

km, which is 20% of the maximum Metric Reach per zone (39 km).  



 

96 

 

Figure 4.2.5: A PLUM zone (P.A.M. = 216) as Classified in the Moderate Predicted Trips class 

(203 - 280) 

Moderate Predicted Trips Class (203 – 280) 

While Transit Activity is the strongest of the three significant variables in influencing walking 

trips, it alone does not make an area vibrant with pedestrians. The proof is the Conestoga Mall 

zone, which, according to the map above (Figure 4.2.5), has 216 predicted daily trips and is part 

of the Moderate Predicted Trips Class (203 – 280). Conestoga Mall is considered a major 

commercial centre and a transit hub and even has its own ION station (LRT Line – not 

operational yet) (City of Waterloo, 2016; Region of Waterloo, 2011). Another finding particular 

to the Conestoga Mall is the low Metric Reach achievable (5 km) compared to the further reach 

of other lower-predicted trip class zones. Also, for a zone that is mainly commercially designated 

and strong transit presence (7,360 daily transit users), it has a low commercial floor area ratio 

(24%). This finding supports the claim the big box malls are car-oriented with low sidewalk 

presence and massive surface parking areas. 
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At this class, elementary and secondary schools start appearing in some of the zones. While the 

average student presence is about 4% (79 students); however, one of the zones contain both an 

elementary school (i.e., St. Agnes Catholic School) and a secondary school (i.e., Bluevale 

Collegiate), which combined have a high student enrollment (1648 students – 84%). Across all 

the zones within this class, Metric Reach is considered moderate with a mean of 46.96% (18.4 

km), while the maximum recorded Metric Reach in the study is 39 km. On the other hand, the 

average transit users within and in proximity to this class is considerable low (14.05% = 3,267).  
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Figure 4.2.6: A PLUM zone (P.A.M. = 1046) as Classified in the Highest Predicted Trips class 

(640 - 1091) 

Highest Predicted Trips Class (640 – 1091) 

Zones part of highest predicted trips class are concentrated along University Avenue between the 

region’s biggest post-secondary institutions (i.e., University of Waterloo and Wilfrid Laurier 

University) and have a predicted daily trip range of 640 to 1091. The key driver for pedestrian 

activity here is Transit Activity with a mean of 72% (16,739) and a maximum of 100% (23,249). 

It is important to note that the predicted daily walking trips are primary walking trips and does 

not include secondary walking trips to and from transit. P.A.M. inherits the same outcome as the 

response variable in the SER regression, which is primary daily walking trips. On the other hand, 

elementary and secondary school presence is low here but is offset by Transit Activity, which 

has slightly over two times bigger coefficient. An example is the University of Waterloo main 

campus, which does not have any elementary or secondary school institution but has access to an 

average of 23249 daily transit users and a moderate-high Metric Reach (67.8% = 26.5 km) (see 
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Figure 4.2.6). Another general finding pertaining to the class is the moderate Metric Reach 

(56.8% = 22.2 km). When the ION LRT line becomes operational, it is anticipated that some of 

the Transit Activity will shift, increasing pedestrian presence in zones along the ION’s corridor.   
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Figure 4.2.7: A PLUM zone (P.A.M. = 570) as Classified in the Second Highest Predicted Trips 

class (458 - 639) 

Second Highest Predicted Trips Class (458 - 639) 

While a few zones belonging to this class do not have a specific spatial distribution pattern, the 

remaining zones are clustered around the City of Waterloo’s Uptown. The selected zone above 

(Figure 4.2.7) is located at the heart of the Uptown. Zones located in and around the Uptown are 

different than other zones in terms of which of the variables is the key driver for predicting 

pedestrian activity. Figure 4.2.7 shows no elementary or secondary school presence in the 

Uptown and few bus stops with low-moderate activity. The selected zone has access to just 6,430 

daily transit users. The key driver to pedestrian activity in the Uptown is predominantly Metric 

Reach. The grid street design, smaller blocks, and dual-sidewalk streets allow higher 

connectivity and accessibility for pedestrians moving in, out and about the Uptown. Zones 

belonging to this class and are located around the Uptown have a mean Metric Reach of 32.49 

km and the selected zone has a Metric Reach of 36.2 km.  
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Figure 4.2.8: PLUM zones as Classified in the Third Highest Predicted Trips class (368 - 457) 

Third Highest Predicted Trips Class (368 - 457)  

Overall, there is no clear distinction for the make up of any specific zone(s) within this class. 

Metric reach appears to be moderate-high with a mean of 26.24 km (67.14%). Transit activity is 

low with an average daily access to 5,106 transit users (21.96%). Only one zone has student 

enrollment and contains both an elementary and a secondary school. 

On the other hand, this class as a whole plays two important roles in this Pedestrian Activity 

Index and identifying Pedestrian Priority Zones. The first role is completing the picture. The 

highest and second highest predicted trips classes have in-between spatial gaps and some zones 

do not align with the arterial street network. Including zones in this class allows the formation of 

one holistic area extending from the post-secondary institutions along University Avenue and 

down King St. to Uptown.  
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The second role is identifying zones with potential pedestrian activity growth. Located on the 

North East corner is a remote zone with a potential for pedestrian activity growth. This zone is 

home to both Abraham Erb Public School and Sir John A. Macdonald Secondary School. The 

combined student enrollment for that zone is 1957 students. Remote zones located on city 

peripheries tend to be car-centric; however, most students walk out of necessity. This emphasizes 

the role of schools in influencing walking activity in the neighbourhood. Pedestrian activity is 

anticipated to grow with further investment in transforming these zones to become pedestrian-

focused.   
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Table 4.2.1: Analysis of the Pedestrian Activity Model's Natural Breaks highest 4 classes 

  Natural Breaks 

Highest Classes Highest 1 

Class 

Highest 2 

Classes 

Highest 3 

Classes 

Highest 4 

Classes 

# of PLUM zones (336 

Total) 
24 53 85 105 

Area (Hectares) 249.11 494.77 699.62 992.75 

City of Waterloo Total 

PZs' areas (Hectares) 
6514.81 6514.81 6514.81 6514.81 

Area Percentage 3.82% 7.59% 10.74% 15.24% 

Covered Accumulative 

Area Percentage 
0.00% 198.62% 280.85% 398.52% 

Class's Trips Maximum 1091 

Class's Trips Minimum 640 458 368 281 

Actual Trips Minimum 676 475 371 294 

Trips Total Per Selected 

Classes 
19304 34822 47791 54422 

Total Trips 73791 

Covered Accumulative 

Trips Percentage 
26.16% 47.19% 64.77% 73.75% 

Accumulated Change (%) 0 180.39% 247.57% 281.92% 

Existing SW snow clearing 

Network (km) 
143.8 

Total associated gross SW 

Network (km) 
56.73 104.64 152.79 205.482 

Private associated 

University SW Network 

(km) 

25.35 25.35 25.46 25.94 

Total associated net SW 

Network (km)  (excluding 

UW & WL, & existing SW 

snow clearing network) 

28.58 65.54 108.39 153.28 

Total SW Network 716.674 

NET SW Network 

percentage of total 

network 

3.99% 9.15% 15.12% 21.39% 

Accumlated Change (%) 0 129.32% 279.25% 436.32% 

Total New SW clearing 

Network (km) 
172.38 209.34 252.19 297.08 

Total New SW clearing 

Network (%) 
24.053% 29.210% 35.189% 41.453% 
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4.3. Pedestrian Priority Zone Configuration 

Modeling pedestrian activity is the foundation of many applications that require an 

understanding of the spatial distribution for pedestrian demand. For municipalities especially the 

public works department, pedestrian demand could be the next key criterion to prioritize active 

transportation-related projects, such as: extending the sidewalk network or providing sidewalk 

snow clearing or improving the streetscape. As mentioned in the Introduction Chapter, the 

research gap exists in bridging the fields of pedestrian modeling and providing sidewalk snow 

clearing. To address the existing gap, I propose identifying priority zone(s) based on analysis of 

the constructed Pedestrian Activity Model.  

The existing sidewalk snow clearing network is about 143.8 kilometers spread across the City. 

As mentioned in the introduction chapter, the City of Waterloo clears snow off sidewalks 

adjacent to public properties (City of Waterloo, 2009). Suggesting a Pedestrian Priority Zone 

means expanding, not reconfiguring the existing sidewalk snow clearing network. The existing 

network still needs to be cleared by the City as it does not fall within other’s jurisdiction. 

Table 4.2.1 shows the statistical analysis of various priority zones based on cumulative 

combinations of the highest 4 classes of the Pedestrian Activity Model as shown in Figure 4.3.1 

and Figure 4.3.2. The highest class of pedestrian activity is made up of 24 PLUM zones 

containing both University of Waterloo’s main campus and Wilfrid Laurier University and 

properties in between along University Avenue. While these 24 PLUM zones make up less than 

5% of the City of Waterloo’s total area, they host approximately 25% of the predicted daily 

walking trips. Associated public sidewalks and pedestrian crossing make 4% of the total city’s 

public sidewalks and pedestrian crossings. If this class is considered as a priority zone, it would 
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imply increasing the existing sidewalk snow clearing network (143.8 km) to be 172.4 km and 

ensure safer winter pedestrian travel for 25% of the predicted daily trips across the city.  

Further statistical analysis of the all 3 highest classes combined provides better accommodation 

to pedestrian demand. The associated area for the all 3 classes combined makes up only 11% of 

the City of Waterloo’s total. Although the associated trip activity is as much as 65% of total 

estimated daily walking trips for the city, this much activity takes place only on 15% of the total 

length of public sidewalks and pedestrian crossings. While the highest class of pedestrian activity 

only captures zones around post-secondary institutions, the second class extends south towards 

the Uptown but does not necessarily captures all PLUM zones in proximity to Uptown. The third 

class of pedestrian activity fills in the gaps left by the first and second classes adding to the 

captured walking trips as much as 18% (see Table 4.2.1 and Figure 4.3.1). In addition, the third 

class captured a remote neighbourhood with potential pedestrian activity growth as discussed 

above.  

When considering priority sidewalk snow clearing, it is important to allocated plows and other 

winter maintenance to zones with the most impact to justify the cost-benefit analysis case. For 

this reason, it is recommended to combine and use all 3 highest classes to form a single 

Pedestrian Priority Zone to deliver demand-based sidewalk snow clearing services. The priority 

zone can be adjusted to meet budget and operation restrictions as seen fit by the public works 

staff.  
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Figure 4.3.1: City of Waterloo's Pedestrian Activity Model's Highest 4 Natural Break Classes 
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Figure 4.3.2: City of Waterloo’s Suggested Pedestrian Priority Zone 
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4.4. Research Implication 

While the findings have lots of empirical implications, it also has theoretical implications. 

Starting with the land use mix’s entropy and interaction lines measures, which according to the 

Spatial Error Regression, are insignificant. Could that mean that land use mix is not truly 

representative of pedestrian activity and that pedestrian activity is not influenced by mixed use 

development? There are two counterpoints to this notion. The first pertains to the data quality of 

the land use data. Land use data in this study were adopted from the Official Plan, which 

aggregated minor uses under the major use of the property. As a result, the land use data is 

coarse and does not provide a detailed view of the land use mix. The second counterpoint is that 

there is the possibility that having Transit Activity in the regression is causing land use mix 

measures to be insignificant. Transit Activity is demand representative variable that is collinear 

to population and employment density (Cervero and Kockelman, 1997; Ewing and Cervero, 

2001; Liu and Griswold, 2009; Ewing and Cervero, 2010; Meghelal and Capp, 2011; Tsiompras 

and Photis, 2016). These same variables are commonly collinear with land use mix. As a result, 

Transit Activity is considered to be collinear to land use mix measures. Multicollinearity could 

be the reason for why land use mix measures were insignificant in the regression model.  

Another implication to this research pertains to the local winter cycles. Depending on the 

location of the application, micro climate might differ. Municipalities located in the southern 

parts of the Province of Ontario are prone to numerous freeze and thaw cycles during the winter 

months. As a result, these municipalities tend to suffer from ice formation rather than snow 

accumulation on sidewalks that still hinder winter mobility and increase slips and falls risk. The 

implications for these different local winter cycles is to adjust the winter sidewalk maintenance 

applications to focus more on delivering an appropriate treatment plan (e.g., chemical treatment 
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to prevent ice formation). In this research, the term sidewalk snow clearing is used because of its 

commonality and it is not just exclusive to just mechanical treatment but it is meant to represent 

all appropriate winter sidewalk maintenance treatments. It is the responsibility of the local 

municipality to determine and deploy the appropriate treatment depending on their local winter 

cycle.
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Chapter 5: Conclusion 

The goal of this research is to develop an analytical approach to prioritize winter maintenance of 

sidewalks. This is manifested through two research objectives. The first objective is to predict 

the spatial distribution of pedestrian activity. The second objective is to identify a Pedestrian 

Priority Zone to potentially re-direct and focus pedestrian-related investment and services like 

sidewalk snow clearing.  

5.1. Conclusion 

This study concludes through the development of a Pedestrian Activity Model (P.A.M.) 

predicting daily walking trips to be used as foundation for prioritizing pedestrian-related 

investment. The strength in using the P.A.M. is in its simple construct and outcome, and in 

addressing the shortcomings identified, in the Chapter 2: Literature Review, for the approaches 

for estimating pedestrian activity. The shortcomings include: 

• Mismatched geographical unit of analysis to represent pedestrian activity 

• Aggregate data to accommodate analysis for other transportation modes 

• Too many explanatory variables or just a single explanatory variable included 

• Included insignificant explanatory variables 

• Unweighted explanatory variables 

• Lack of approach validation 

• Required statistical expertise to interpret data and outcome 

The Pedestrian Activity Model addresses these shortcomings in one way or another as 

highlighted in both Chapter 3: Methods, and Chapter 4: Findings and Discussion. Based on the 
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regression analysis, the Spatial Error Regression (SER) model has a better fit than the Ordinary 

Least Squares Regression, explaining additional 3% of walking activity. Of the 7 considered 

variables, only three – Transit Activity, Metric Reach, and Elementary and Secondary School 

Student Enrollment – have significant correlation (90% confidence) to walking activity. Transit 

Activity has the most explanatory powers in all three variables. One unit increase in the 

explanatory variable Transit Activity equals two times increase in walking trips versus one unit 

increase in the explanatory variable Metric Reach or equals approximately two and a half times 

increase in walking trips versus one unit increase in the explanatory variable Student Enrollment.  

The Pedestrian Activity Model (P.A.M.) is constructed based on the SER’s predictive model. 

Predicted daily walking trips are classified using natural breaks into ten classes to showcase the 

variation and the spatial distribution of pedestrian activity. The highest predicted walking trip 

class highlights PLUM zones along University Avenue between University of Waterloo and 

Wilfrid Laurier University. The second highest predicted walking trip class encompasses 

Uptown.   

The existing sidewalk snow clearing network for the City of Waterloo is 143.8 km, which 

includes sidewalks adjacent to public properties. Using P.A.M., sidewalk snow clearing network 

should expand in high foot traffic areas. The criteria for analyzing highest predicted walking 

trips classes, is to suggest minimal sidewalk network addition for the maximum inclusion of 

daily walking trips. The highest three predicted walking trips classes make up the suggested 

Pedestrian Activity Zone. The new suggested zone encompasses approximately 110 km of 

sidewalk and pedestrian crossings and facilitates 65% of predicted daily walking trips. The new 

sidewalk snow clearing network is 250 km long.  
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Despite P.A.M.’s many advantage points, it has challenges and limitations too. The first 

challenge pertains to some of the variables initially considered. As discussed in Chapter 3: 

Methods under the Geographical Unit of Analysis sub-section, some variables – Population 

Density, and Employment Density – were not available at the lowest disaggregate level. 

Transforming these variables would cause a modifiable areal unit problem (MAUP). In addition, 

the literature review revealed that these same variables tend to be collinear to other consider 

factors like Transit Activity (see Appendix A).  

Another initially considered variable was Intersection Density, however Metric Reach provides 

the opportunity to measure both sidewalk connectivity and presence in each area. A recent study 

Ellis et. al. (2016) found that Intersection Density and Metric Reach have strong correlation to 

walking activity. As a result, in this thesis Metric Reach substitutes Intersection Density in 

measuring the pedestrian infrastructure’s (i.e. sidewalks) connectivity. 

The second challenge pertains to the response data - TTS reported daily walking trips. The TTS 

reporting on walking activity is limited on trips sole made by walking and is unavailable for 

about one third of the Traffic Analysis Zones (TAZ) in the City of Waterloo (29 out of 104). In 

addition, the TTS survey design is biased towards private low rise and low-density households 

(Data Management Group, 2018b). By default, this under-represents apartment building tenants. 

The survey also depends on a single household member or the landlord to remember and report 

trip activity for all household members, which poses a challenge in capturing trip activity by big 

family households and multiple tenant rentals. This represents a challenge especially in a 

university community, such as the City of Waterloo. 

The third challenge pertains to the sample area used in all regression models to find the best fit 

model and to configure the Pedestrian Activity Model. The size criteria used to define the sample 
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area excludes downtown PLUM zones because of their typical smaller area sizes. This 

potentially explains underrepresentation of pedestrian activity in the predictive model.  
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5.2. Further Research 

Building on the model’s limitations, this sub-section is dedicated for steps to improve the 

P.A.M.’s predictive powers. Starting with the reference data used to calibrate the model, the TTS 

data was criticized for many shortcomings through survey design and underrepresenting 

pedestrian activity as a part of other modal travel and transportation choices made by apartment 

tenants and students. The desired alternative is to gather primary data via a new survey, or 

conduct counts of passing pedestrians in sample areas and intersections, or a mix of both data 

collection methods. An improved reference data would improve P.A.M.’s predictive accuracy. 

The second technical obstacle to overcome is the land use data quality. Land use measures were 

found insignificant in the conducted regression analyses. Data quality is part of that problem. 

Regression analysis tried finding correlation between reported walking trips versus coarse land 

uses. The Official Plan groups minor land uses under each site’s primary use, which 

underrepresents the City’s true land use mix. Detailed land use data is essential not just to 

calculate land use diversity but to also measure accurately commercial/retail floor area ratio. 
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5.3. Recommendations 

The next step following suggestion of the Pedestrian Priority Zone is realizing the P.A.M.’s 

potential application in winter sidewalk maintenance. This would be manifested through 

transforming the priority zone into a priority plowing route, and differentiating the status quo 

level of service (LOS) from that associated with the priority plowing route. Under the new 

Ontario Minimum Standards regulations, the required level of service (LOS) for winter sidewalk 

maintenance are set to the minimum, which most municipalities’ status quo winter sidewalk 

maintenance LOS already adheres to. This process, for configuring a second level of service, 

includes determining an appropriate snow and ice clearing method, frequency for snow clearing 

and patrolling, service triggers, and time of completion. Each municipality has unique context 

and limitations (e.g., staff, or budget) which mean that each would adopt a priority-based winter 

sidewalk maintenance differently.
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Appendix A – Considered Variables – Not Included in Final Model 

Net Population Density 

Population density is among the most popular variables in walking and walkability studies 

(Cervero and Kockelman, 1997; Ewing and Cervero, 2001; Ewing and Cervero, 2010; Meghelal 

and Capp, 2011; Tsiompras and Photis, 2016). Walkscore.com is a widely-known walkability 

index that uses population density to indicate the pedestrian friendliness of any property 

(Walkscore.com, n.d.-b). Population density is sometimes measured as gross density (population 

divided by area) and other times as net population density (ratio of population to a residential 

area).  

The main data source in Canada for the population is the 2016 Census. The lowest disaggregate 

level, for which the population data is publicly available, is dissemination areas (DA). The data 

is in a polygon form representing dissemination areas. The land use data is available through the 

Geospatial Centre at the University of Waterloo for the City of Waterloo based on their Official 

Plan. It is also a polygon form data, with an attribute specifying the land use type (e.g., 

residential, commercial, employment, institutional,…etc.). Using residential land use area, net 

population density was calculated using the following formula: 

=
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐷𝐴

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝐴𝑟𝑒𝑎 𝑝𝑒𝑟 𝐷𝐴
 

As shown in the histogram below, the net population density is slightly skewed to the left as 

indicated by its tail. The net population density mean is 50 people/hectare. The maximum density 

is 162.97 persons per hectare, which is found at the northeast corner of King St. and University 

St. On the other hand, low residential density could be as low as 12.35 persons/hectare plus a no-
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residential area bound by King St. and Weber St. north of the city. The low mean value can be 

explained by the common housing norm in Waterloo, which is single-detached, and also the 

Census survey is a private household-based survey, which explains low residential density DAs 

containing on-campus residences and student housing.  

 

Figure A.1: Net Population Density’s descriptive statistics (X-axis: variable’s value and Y-axis: 

PLUM zones’ count) 
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Figure A.2: Net Population Density’s equal interval map by dissemination area (DA) 
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Employment Density 

Similar to net population density, net employment density is common in walkability indices 

because of its correlation with walking (Tsiompras and Photis, 2016; Ewing and Cervero, 2010; 

Liu and Griswold, 2009). Employment density is an indicator of pedestrian demand as workers 

walk to surrounding commercial and retail areas during their lunch hour or to the transit stop at 

the end of the workday.  

The 2016 Census only contains data such as how much of the labour force resides in each area 

and not actually employment location. For this type of data, the Labour Force Survey is the key 

source for employment data in Canada but publicly available data is only found at the aggregate 

level (e.g., Census Metropolitan Areas and Economic Regions) (Statistics Canada, 2018a; 

Statistics Canada, 2018b). Disaggregate level employment data is made available through the 

Transit Tomorrow Survey (TTS), which is available at the Traffic Analysis Zones (TAZ). As 

discussed in the Methods Chapter, TAZ was ruled out as an appropriate geographical unit of 

analysis, which had the implication of not including the employment density variable.  

Unlike net population density, calculating net employment density is more complex. 

Employment overlaps with various land use types (e.g., mixed-use, residential, employment, 

commercial, and industrial lands). In residential and mixed-use areas, employees could be 

working from home, which adds to the complexity of whether residential areas should be 

included in the net employment density formula. In addition to the employment data’s overlap 

across land uses and its complexity to calculate, the data is not commonly found at a suitable 

disaggregate level. 
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Connectivity – Intersection Density  

Connectivity is a design feature that describes how accessible is a neighbourhood through 

sidewalk presence or density. Intersection density is a famous measure that falls under the 

connectivity umbrella and correlates with walking (Ellis et. al., 2016; Ewing and Cervero, 2010; 

Frank et. al., 2010). Intersection density is the number of 3-leg or more intersections per square 

kilometer (Ellis et. al., 2016). Previous studies have used the street network for calculating 

intersection density, assuming pedestrians walk along every route even where sidewalks are 

absent. 

The active transportation infrastructure data is available through the Region of Waterloo and its 

municipalities’ open data portal. The infrastructure data is a line-based network of sidewalks and 

trails. Despite data availability, there were multiple data layers and none contained the full 

sidewalk and trails network in the City of Waterloo. When I choose the spatial join tool to merge 

all incomplete network layer, there were multiple cases of replica segments, which resulted in the 

over-count of intersection density. The overlapping segments were not evenly spread, which 

made it inapplicable to use a constant error coefficient.  

Descriptive statistics is not available due to the data’s bad quality. Since this measure only 

addressed connectivity, while alternative measures (i.e., Metric Reach) account for both 

connectivity and sidewalk availability, the Intersection Density measure was not considered in 

the final model. 
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Appendix B – Single Variable Regressions’ Scatterplots 

 

Figure B.1: Interaction Lines (Raw Data version) Linear Regression 

 

Figure B.2: Interaction Lines (Natural Log version) Linear Regression 
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Figure B.3: net Commercial Floor Area Ratio (Raw Data Version) Linear Regression 

 

Figure 0.4: net Commercial Floor Area Ratio (Natural Log Version) Linear Regression 
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Figure B.5: Metric Reach (Raw Data Version) Linear Regression 

 

Figure B.6: Metric Reach (Natural Log Version) Linear Regression 
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Figure B.7: Elementary and Secondary School Student Enrollment (Raw Data Version) Linear 

Regression 

 

Figure B.8: Elementary and Secondary School Student Enrollment (Natural Log Version) Linear 

Regression 
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Figure B.9: Post-Secondary Presence (Raw Data Version) Linear Regression 

 

Figure B.10: Post-Secondary Presence (Natural Log Version) Linear Regression 
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