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Abstract

In computer graphics, the standard semi-Lagrangian advection as in the work of Stam [35] is
a widespread unconditionally stable transport scheme used in incompressible fluid solvers.
Due to its stability, which disconnects the grid resolution from the time step required
to prevent the numerical solution from blowing up, the method provides a good artistic
control over the quality-performance trade-off. However, it is also notoriously known to
include a great amount of artificial dissipation into the solution, hence destroying fine-scale
details, and making simulated fluids appear overly viscous.

Previous research efforts to counteract this unfortunate side effect have been spent
notably on reinserting lost small-scale features, and on adapting different parts of the
method to improve its accuracy. As part of the latter group, we present an affine semi-
Lagrangian advection method, which we refer to as the ASLAM (pronounced “ay-slam”).
This novel ASLAM adapts the locally affine descriptor of velocity from the affine particle-
in-cell (APIC) method, a hybrid approach by Jiang et al. [27], to the particle-free context
of the Eulerian framework. We analyse the ASLAM’s behaviour on a selection of testing
scenarios, and evaluate it both qualitatively and quantitatively against a range of compet-
ing techniques, showing that it successfully reduces the artificial dissipation arising from
standard semi-Lagrangian advection.
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Stéphane Côté
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Chapter 1

Introduction

Fluids are ubiquitous. We are surrounded by them since around 70% of our planet’s surface
is covered in water [1], and our bodies, notably the circulatory system, are biological fluid
engines. Yet, we often forget that we live in a fluid too: the atmosphere. This mixture of
gases which contributes to making our planet a hospitable home is perhaps one fluid we
subconsciously care about the most on a daily basis. It drives the weather we experience,
from the puffy cumulus clouds to the thunderstorm’s show of fury. Evidently, we live in a
world dominated by fluids.

In scientific computing, understanding fluids is of interest in the quest to reveal the laws
governing our reality. For instance, atmospheric scientists analyse air flows, among others,
to improve weather forecasting models [1]. Studying the motion of fluids, compressible or
not, is the heart of fluid dynamics, and, in computational fluid dynamics (CFD), numerical
analysis obviously drives the investigation. One of the core pillars of CFD are the Navier-
Stokes equations, the partial differential equations (PDEs) governing the behaviour of
viscous fluids, which have to be approximated by discretization [42]. Several approaches,
such as finite differences, finite volumes, and finite element method (FEM), have been
developed to numerically solve said PDEs. In this work, we concentrate on incompressible
fluids discretized via finite differences, which are both dominant in computer graphics.

Incidentally, in graphics applications, fluids are pursued for the completeness they bring
to a scene due to their participation in many natural phenomena. Initial attempts at
computer-generated fluids focused on depicting them based on appearance or visual prop-
erties using nonphysics-based procedures, for example procedural approaches to generate
textures mapped on simple primitives. While these predominantly phenomenological tech-
niques did not bother with dynamics, before long fluid animations appeared. The first
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animations of fluids were based on simplified wave models1 [17] for liquids, and spectral-
inspired algorithms coupled with the advection-diffusion equation2 [36, 37] for gases.

Early methods subsequently evolved to account for the PDEs underlying the motion of
fluids. For example, in Kass and Miller [28], the shallow water approximation is used in
lieu of the Navier-Stokes equations, and Gamito et al. [21] propose a particle-grid model
to simulate gases based on the vorticity equation, which is derived from the Navier-Stokes
equations. The pioneering work of Foster and Metaxas [16], which presents a complete
discretization of the full tridimensional Navier-Stokes equations using finite differencing,
established that challenging fluid behaviours could be reproduced realistically and with ac-
ceptable efficiency for computer animation. Numerous methods have since been developed
to tackle a variety of phenomena, such as, but not limited to, films and foams, multi-phase
flows, and high-viscosity fluids.

One important landmark in computer graphics is standard semi-Lagrangian advection
by Stam [35], which nowadays dominates over purely Eulerian (i.e., grid-based) transport
schemes. In CFD, semi-Lagrangian schemes have a long history predating Stam [35], but
they were not especially prevalent, except perhaps in the atmospherics sciences [38]. Hence,
Stam [35] deserves credit for wide-spreading stable fluids in the graphics community. Since
it does not rely on persistent particles, the method is particularly suited to the simulation
of gases, which have no interface. The most highlighted advantageous feature of semi-
Lagrangian advection is undeniably its unconditional stability, which decouples the time
step from the spatial resolution, as opposed to explicit/direct-solving schemes from CFD
literature. This uncoupling provides a better control for balancing quality and efficiency,
an asset in artistically-driven pipelines common in graphics.

However, semi-Lagrangian advection comes with a major drawback: the introduction
of massive amounts of artificial dissipation. This numerical artefact decreases the visual
quality of the simulation by deleting small-scale features, and increasing the fluid’s apparent
viscosity. Whilst this is inappropriate for engineering applications requiring high-accuracy,
it can be compensated for, in the context of computer-generated animations, by adding
fictitious forces, like the vorticity confinement suggested by Fedkiw et al. [14]. Further, the
technique’s different components may be modified (e.g., high-order interpolation schemes,
etc.) to reduce numerical dissipation. On the other hand, Lagrangian approaches, based
on persistent particles, and hybrid methods, which leverage the particle-provided benefits
of the former, can perform advection much better (i.e., with less dissipation) than their
Eulerian counterparts, including semi-Lagrangian ones.

1They since have grown into quite sophisticated real-time techniques too as in Jeschke and Wojtan [26].
2Spectral methods also have spawn a number of neighbouring techniques, such as Cui et al. [8].
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In light of this, we develop a new technique, the affine semi-Lagrangian advection
method (ASLAM)3, to perform advection under an Eulerian setting. Our technique, which
adapts the locally affine velocity descriptor from the hybrid approach of Jiang et al. [27]
into an advection update formula, exhibits less numerical dissipation than the standard
semi-Lagrangian advection of Stam [35]. Moreover, unlike Lagrangian and hybrid methods,
it annihilates the need to track a persistent set of particles throughout the simulation.

Chapter 2 begins with a slightly more formal introduction to fluids than the above
rough sketch. In particular, fluids and their dynamics are explained along with simple
mathematical definitions. Then, we explain the foundations of numerical simulations in
the context of computer graphics applications, and survey major fluid paradigms. Sub-
sequently, in Chapter 3, we review different semi-Lagrangian advection techniques and
interpolation schemes, and discuss their limitations. This is followed by the introduction
of our proposed method, the ASLAM, in Chapter 4, where we present our dissipation-
reducing approach. Afterwards, in Chapter 5, we examine some results illustrating the
performance of our method, investigate its convergence, and show a comparative analysis
with a selected subset of existing techniques as well as ASLAM-based variations. Lastly, we
conclude by providing some orientation towards future investigation avenues in Chapter 6.

1.1 Notation

Before getting to the core of this thesis, we quickly survey some important notation-related
details. Lowercases are used for the majority of scalar quantities while bold lowercases
are exclusively saved for vectors, which are always column matrices, even if written as
x = (x, y, z) for brevity. Bold uppercases are used for matrices, and, when elements are
explicitly enumerated, they are enclosed by square brackets.

Parentheses are reserved for grouping, precedence rules, components of vector quanti-
ties, binomial coefficients, and to denote a function’s or an operator’s parameters if the
function or operator has either more than one parameter, or a parameter not correspond-
ing to a spatial position. For spatial parameters, a vertical line rather than parentheses is
used to indicate the position at which a value is taken. Therefore, q|x refers to the value
of quantity q at the position x.

Unless mentioned otherwise, subscripts correspond to positional information, and su-
perscripts correspond to temporal information. In particular, positional information lo-
cated on particles is subscripted with p while that related to the grid is assigned numerous

3Pronounced “ay-slam”.
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subscripts contextually, with i being the most common. Regarding temporal information,
n is the elected superscript, but note that regular n has other meanings described in due
time.

A list of symbols along with short descriptions is available in the preamble. Further,
they are grouped in such a way that related symbols are closer to one another, and organized
according to the number of occurrences as well as their order of appearance in the text.
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Chapter 2

Fluids

In the sections hereafter, we first outline the properties of the fluids we are interested in,
including a derivation of the equations involved along with an intuitive description, albeit
rooted in physics, of their origin. Then, we dive into the details of the particular solver
used to simulate fluids in this thesis, and review important hybrid approaches in computer
graphics.

2.1 What is a Fluid?

When asked this section’s eponymous question, one common answer is to define fluids
qualitatively as substances that flow. Moreover, while the term “fluid” most often brings
to mind liquids, like water, it encompasses gases too1. The flowing behaviour exhibited by
fluids results, in part, from differences in pressure.

Pressure is a crucial actor in defining fluids quantitatively. As a matter of fact, the
study of fluids is often divided according to whether the studied substance is compressible
or not. Despite the fact that most fluid substances are truly, in some respect, compressible,
this behaviour is only relevant to a handful of cases in computer graphics applications.
Bridson lists sonic booms and blast waves as such scenarios [4], both of which would be
better depicted artistically than physically for entertainment purposes. Indeed, artistic

1Plasma, the so-called “fourth phase” of matter, is also considered as to be a fluid [33]. However, we will
not discuss it further due to its conducting nature; plasma both affects and is affected by electro-magnetic
forces. Thus, its behaviour is not entirely described by the model presented herein.
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representations of these phenomena are more visually significant to the general public
than accurate physically-based animations.

CFD is the study of fluid flow problems using numerical methods, and at its core are
the Navier-Stokes equations, the widely-accepted fluid model in physics and mathematics,
which describes the motion of viscous fluids. In this document, we limit our fluid simula-
tions to incompressible inviscid fluids, a subset of fluid substances whose behaviours fall
under the Navier-Stokes equations. In particular, having discarded viscosity, we adopt the
incompressible Euler equations as a description of their behaviour:

∇·u = 0, (2.1)

D

Dt
u = −1

ρ
∇P + fb. (2.2)

where u is velocity, ρ is density, P is pressure, and fb combines all body forces applied
to the fluid. Along with boundary conditions, the above PDEs (i.e., Equation 2.1 and
Equation 2.2) govern the behaviour of fluids in terms of motion; hence, they are known as
the equations of motion. Equation 2.2 includes the material derivative D

Dt
, defined as

D

Dt
=

∂

∂t
+ (u · ∇) , (2.3)

where u · ∇ is the advection operation, the source of non-linearity in the equations of
motion. The material derivative provides the relationship between the rates of change of
fluid-relevant quantities under the Eulerian and Lagrangian viewpoints, which are further
explained later. Several paths can be taken to derive the governing PDEs [4, 41, 42]. We
choose to present a brief origin story of these equations using a conservative approach.

Equation 2.1 is the mass continuity equation, and represents conservation of mass.
Imagine an arbitrary fixed volume of fluid V with closed surface Ω, then the density flux J
across the boundary is

J =

∫
Ω

ρu · dΩ. (2.4)

Using the divergence theorem, the above expression can be turned into a volume integral

J =

∫
V
∇· (ρu) dV . (2.5)

The fluid flow across the boundary must be balanced out by a change in mass m. Yet,
since the volume is fixed at V , the change in mass presents itself as a change in density.
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Therefore, we have that the fluid loss is also

J = −dm
dt

= − d

dt

∫
V
ρdV = −

∫
V

∂ρ

∂t
dV . (2.6)

Thus, the density flux J can be explained either by fluid flowing across the boundary, or
by a change in density. Equating Equation 2.5 to Equation 2.6 yields∫

V
∇· (ρu) dV = −

∫
V

∂ρ

∂t
dV . (2.7)

Because the volume V is arbitrary, we have that

∇· (ρu) = −∂ρ
∂t
. (2.8)

Given that we are interested in incompressible fluids, the variation in density ρ is negli-
gible, and density is taken to be constant. As a result, Equation 2.8 is transformed into
Equation 2.1, which is often referred to as an incompressibility constraint. This equation
requires the velocity field to be divergence-free, meaning that it has neither sources nor
sinks. Hence, one can intuitively see how a divergence-free velocity field enforces conser-
vation of mass.

Equation 2.2 is the momentum equation, and represents conservation of momentum.
In physics, momentum p quantifies the amount of motion, and is defined as

p = mu. (2.9)

Thereby, Equation 2.2 is also a vector equation. Similarly as for Equation 2.1, let us
consider an arbitrary fixed volume of fluid V with closed surface Ω. The total amount of
momentum is ∫

V
ρudV . (2.10)

We can use the material derivative D
Dt

to express the variation of momentum over time.
Mimicking Newton’s second law of motion f = ma, where f is force and a is acceleration,
we have

D

Dt

∫
V
ρudV =

∫
V

fdV . (2.11)

Whereinbefore, f is the force per unit volume, but, once again, since the volume V is
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arbitrary, and density ρ is constant, we have that

D

Dt
u =

f

ρ
. (2.12)

Equation 2.12 is a general form of the momentum equation (i.e., Equation 2.2) prior to
defining relevant forces. Different forces can come into play when dealing with fluids. Here,
we focus on pressure and body forces.

The pressure gradient determines the force arising from fluid pressure. This force is a
surface stress. It acts on the surface of different regions of the fluid unlike body forces,
such as gravity, which are applied throughout its entire volume V . The pressure force on
a fluid is the integral of the pressure applied to its boundary

−
∫

Ω

PdΩ. (2.13)

With the fundamental theorem of calculus, this surface integral can be expressed as a
volume integral

−
∫
V
∇PdV . (2.14)

The above force is in the direction opposite to the pressure gradient. It works to make the
pressure distribution uniform by moving fluid from regions of high pressure to regions of
low pressure.

Regarding body forces, they most often include the gravitational force ρg, where g
is a force vector whose magnitude is equal to the gravitational acceleration and whose
orientation is downwards. In this thesis, we generalize body forces to fb, such that the
combined effects of all body forces on the fluid can be expressed as∫

V
fbdV . (2.15)

Note that there is no need to convert to a volume integral as body forces, by definition,
already apply to the fluid as a whole. With the pressure force and body forces being
defined over an arbitrary volume V (i.e., Equation 2.14 and Equation 2.15), they can be
easily substituted in Equation 2.11, transforming Equation 2.12 into Equation 2.2. If the
right-hand side (RHS) of the Equation 2.2 were zero, then we would have a steady system.

Before moving on to describing how to solve Equation 2.1 and Equation 2.2 numerically,
we briefly address boundary conditions, which are essential to fluid simulation. Not only
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are they an inherent part of the problem’s model, but they also provide users with a certain
amount of control over the simulation as thoroughly explained by Foster and Metaxas [16].
Indeed, inflow and outflow can help achieve specific effects, and solid boundaries consid-
erably influence a fluid’s behaviour. In this document, we only concern ourselves with
enforcing free-slip boundary conditions for stationary axis-aligned solid obstacles, or peri-
odic boundary conditions otherwise.

2.2 How to Simulate Fluids?

As presented in Chapter 1, animating fluids has been a long-standing research topic in
computer graphics. In light of the definitions provided in the previous section, we adopt
a physically-based approach to the simulation of fluid dynamics by trying to numerically
solve Equation 2.1 and Equation 2.2. In particular, the algorithm we concentrate on relies
on operator splitting, a popular technique in computer graphics since its introduction by
Stam [35], although much earlier instances existed in CFD.

As described by Bridson [4], splitting amounts to decomposing a complex problem into
smaller simpler components, and solving these subparts. In the present context, splitting
is applied to the equations of motion with respect to how they update velocity u in time.
The splitting of the operators specifically targets the momentum equation. Equation 2.2
can be expressed as

∂u

∂t
= −u · ∇u− 1

ρ
∇P + fb. (2.16)

Recall that the advection term u · ∇ is hidden in the material derivative D
Dt

. The terms
on the RHS of Equation 2.16 correspond to the three different subproblems issued from
operator splitting:

∂u

∂t
= fb, (2.17a)

∂u

∂t
+

1

ρ
∇P = 0 such that ∇·u = 0, (2.17b)

∂u

∂t
+ u · ∇u = 0. (2.17c)

First, the velocity field is updated according to the body forces acting on the fluid, as
described by Equation 2.17a. Most often, this is achieved using forward Euler as a time
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Algorithm 2.1 Simulation loop for one time step

Require: un

Ensure: un+1

1: Apply body forces Equation 2.17a
2: Enforce incompressibility by performing pressure projection Equation 2.17b
3: Advect velocity field and, possibly, other quantities Equation 2.17c

integration method
un+1 = un + ∆tfb|x. (2.18)

Stam [35] mentions that a first-order accurate procedure, like Equation 2.18, is sufficient
as fb is not expected to vary significantly during the time step ∆t, at least for scenarios
pertaining to graphics applications. Of course, higher-order time integration methods can
be used, should the need for it arise.

In this type of solver, incompressibility is enforced by using the pressure force as a
correction mechanism. This second subproblem is called pressure projection for reasons
that are further and better explained by Bridson [4]. In the context of this work, Equa-
tion 2.17b is transformed into a linear system, which accounts for boundary conditions,
and is solved directly via LDLT decomposition. Alternatively, it is also possible to solve
the linear system iteratively with preconditioned conjugate gradient for instance.

At last, advection is performed according to Equation 2.17c, the steady state version
of the momentum equation. We leave the discussion of the details to Chapter 3, where
several transport algorithms are surveyed. However, two points should be highlighted.
While Equation 2.17c is specific to the velocity field, the simulation may include other
advectable quantities q, such as temperature, concentrations of various substances, etc.
Transport of these quantities should also be performed during this step. More generally,
Equation 2.17c becomes

∂q

∂t
+ u · ∇q = 0, (2.19)

which is the focus of Chapter 3. Furthermore, for conservation purposes, advection should
always be performed using a divergence-free velocity field. This requirement is satisfied by
carrying out the pressure projection step immediately before the advection step.

Equation 2.17 translates into the simulation loop’s core, illustrated by Algorithm 2.1.
Regardless each step’s accuracy in Algorithm 2.1, solving the PDEs via operator splitting
can only be so accurate, as any similar approximations. In particular, the above splitting is
limited to first-order accuracy in time as pointed out in [4], wherein which Bridson mentions
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the existence of other higher-order accurate splitting methods. However, a discussion on the
effectiveness and accuracy of operator splitting in comparison to other approaches, such as
the advection-reflection solver of Zehnder et al. [43], is beyond the scope of this document.
We are content in knowing that the applicability of first-order accurate splitting-based
solvers in computer graphics has been proven many times to be sufficient.

Practically, the fluid simulation outlined above can be achieved under two distinct
settings: the Eulerian or the Lagrangian framework. These viewpoints give rise to two
distinctive families, namely grid-based and particle-based methods. Monitoring weather
provides a good analogy to understand the difference between both frameworks [4, 41].

Typically, a weather forecast is presented by a few easily countable points on a map;
data from fixed local weather stations is used to forecast future atmospheric conditions.
Where there is no local weather station, information from neighbouring stations is com-
bined to produce the forecast. Similarly, in the Eulerian framework, the simulation domain
is mapped to a predetermined structure made up of a few nodes whose spatial connectivity
is known. Each node corresponds to a location where a quantity is observed. A regular
grid with cells of dimensions ∆x is a commonly used discretization. Grid-based approaches
reinforce the idea of fluids as continua by representing them as combinations of scalar and
vector fields; a scalar field for density and a vector field for velocity would be the minimal
set.

Occasionally, atmospheric scientists release weather balloons into the atmosphere to
better study certain phenomena. These balloons are carried by the winds, travel great
distances, and transmit back information regarding the state of their surroundings. They
are also equipped with some tracking device allowing the data they collect to be geolocated.
Likewise, in the Lagrangian framework, particles are used to keep track of the relevant
quantities as they are transported along the flow rather than being tethered to a fixed
grid. The fluid is represented by all the particles, each of which is individually aware of
the quantities relevant to its simulation, velocity and mass for instance. Particle-based
approaches stem from the fact that a fluid is a collection of distinctly identifiable fluid
parcels or elements.

While some methods are purely Eulerian or purely Lagrangian, both representations
are useful in understanding the behaviour of fluids as evidenced by the presence of the
material derivative D

Dt
in the governing PDEs. As introduced earlier, the material derivative

relates the rate of change of fluid-relevant quantities under both viewpoints. Imagine a
function q (x, t) which gives the value of quantity q at time t for a particle located at
position x. Investigating the rate of change of q and using the chain rule, we can easily
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retrieve the definition of the material derivative:

dq

dt
=
∂q

∂t
+∇q · dx

dt

=
∂q

∂t
+∇q · u

=
∂q

∂t
+ u · ∇q

=
D

Dt
.

(2.20)

These two families of approaches (i.e., grid-based/Eulerian and particle-based/Lagrangian)
fully cover the dichotomy between the advection step and the pressure solve.

On one hand, the former can enforce incompressibility easily at the expense of often
introducing tremendous numerical dissipation in the solution, as we further examine in
Chapter 3. As explained by Bridson [4], the solution to the advection equation with-
out viscosity (i.e., Equation 2.19) computed using semi-Lagrangian advection for instance
appears to include viscosity. This phenomenon is named “numerical dissipation”.

On the other hand, particle-based approaches can perform transport intuitively, but
struggle to achieve pressure projection effectively, since it involves vector calculus operators,
like the gradient ∇, which are less trivial to approximate on unstructured points than on
grids. Indeed, purely Lagrangian schemes are best suited for advection since they transport
data along the flow without resampling, which is a major source of artificial dissipation [4].

Hybrid methods attempt to leverage the advantages of both families by combining
grids and particles. Advection is performed on particles whereas pressure projection and
body forces are solved for on a grid. Hybrid techniques introduce additional grid-to-
particle and particle-to-grid transfer operations, on which they heavily rely. These transfer
operations allow the mapping of quantities between the two representations as shown in
Figure 2.1. Hence, the simulation loop of Algorithm 2.1 is slightly modified to account for
these additional steps as seen in Algorithm 2.2.

As will be made clear from briefly surveying popular hybrid methods in computer graph-
ics, their attempts at decreasing the numerical dissipation introduced by the advection step
are not always successful in fully eradicating said byproduct.

The particle-in-cell (PIC) method is such a hybrid approach from early CFD [23]. The
transfer operations can be as simple as trilinear interpolation, as in Zhu and Bridson [44].
In spite of being stable, PIC also produces excessive numerical dissipation due to the accu-
mulated interpolations, which generate unwanted smoothing. In particular, the mapping
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(a) (b)

Figure 2.1: Mapping between particles and grid. Particles are represented by yellow dotted
circles or purple circles according to their utility. The grid is represented by a black mesh
with black disks standing for the nodes; nodes relevant to the transfer operation have green
dashed contours. (a) Particle-to-grid transfer is achieved by weighting the contribution of
all the particles surrounding the grid node of interest. The neighbourhood of particles
relevant to a given grid node can be determined in many ways. In the above example,
we only consider particles within a given radius, depicted by a green dashed circle, of
the relevant grid node. (b) In grid-to-particle transfer, the cell containing the particle
of interest is used to identify the relevant nodes; herein, only the immediate grid nodes,
attached to the cell containing the particle, are used, but a greater ring could be considered.

of velocity between both representations causes the velocity field to lose angular momen-
tum. Indeed, a grid node is incapable of storing angular momentum; therefore, vortices are
potentially obliterated by the mapping from particles to grid. On account of the transfers
between particles and grid occurring twice per time step, PIC’s undesirable smoothing is
worse than in semi-Lagrangian advection where interpolation is only performed once, as
further explained in Chapter 3.

In an attempt to decrease PIC’s artificial dissipation, the fluid-implicit-particle (FLIP)
method was introduced by Brackbill and Ruppel [3]. Instead of overwriting the full ve-
locities during grid-to-particle transfers, FLIP only transmits a correction to the particles’
velocities. This correction successfully reduces the amount of numerical dissipation, but it
has the adverse side effect of not preserving the stability guaranteed by PIC as the correc-
tion may be non-conservative, and particle quantities may carry sub-grid scale noise. Zhu
and Bridson [44] propose to combine both techniques (i.e., PIC and FLIP) with a weighted
sum to exploit their respective advantages. Even if the combined PIC-FLIP procedure
provides some flexibility, it can still be noisy and unstable.

The search for a hybrid approach with both good stability and little additional dissipa-
tion led to the development of the affine particle-in-cell (APIC) method by Jiang et al. [27].
The idea behind APIC is that particles should carry a locally affine descriptor of velocity
rather than representing velocity as a unique constant vector value. Thus, each particle p
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Algorithm 2.2 Hybrid simulation loop for one time step

Require: A set of particles each with mn
p and unp

Ensure: A set of particles each with mn+1
p and un+1

p

1: Transfer particle quantities to grid
2: Apply body forces
3: Enforce incompressibility by performing pressure projection
4: Transfer grid quantities to particles
5: Advect velocity field and, possibly, other quantities

has position xp, mass mp, velocity up, and locally affine velocity descriptor Cp. The original
APIC [27] targeting fluids was formulated for staggered grids unlike the hereinafter formu-
lation which adopts a generalized view. The simulation loop begins with particle-to-grid
transfers (i.e., step 1 of Algorithm 2.2) performed according to

mn
i =

∑
p

mpw
n
p→i, (2.21)

mn
i uni =

∑
p

mpw
n
p→i

(
unp + Cp

n
(
xi − xnp

))
, (2.22)

where wp→i are particle-to-grid weights, and quantities subscripted with i are located on
grid nodes xi.

Recalling the definition of momentum from Equation 2.9, Equation 2.22 expresses the
mapping of momentum from particles to grid. Velocity can be retrieved by dividing by the
mass mn

i . Note that the descriptor Cp is not transferred to the grid, but rather used in
the mapping of momentum to enforce information conservation.

Equation 2.22 can further be interpreted as a first-order Taylor series approximation of
the local velocity field. In [20], Fu et al. generalize the locally affine velocity descriptor Cp

to a locally polynomial representation. The resulting polynomial particle-in-cell (PolyPIC)
method amounts to including additional terms in the series.

After steps 2 and 3 of Algorithm 2.2 are performed on the grid, the divergence-free
velocity field ũn+1 only needs to be mapped back to the particles using

un+1
p =

∑
xh∈H

ũn+1
∣∣
xh
wni→p

∣∣
xh
, (2.23)

where wi→p are grid-to-particle weights. Remember that the notation q|x indicates that
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the quantity q is evaluated at the position x. Therefore, the above equation amounts to a
weighted sum.

On the other hand, new descriptors are also assigned to each particle according to

Cp
n+1 =

∑
xh∈H

ũn+1
∣∣
xh

(
∇wni→p

∣∣
xh

)T
. (2.24)

Cp is a tensor essentially based on the gradient of the grid-to-particle weights wni→p. It
defines the gradient used in first-order term of the Taylor series in Equation 2.22.

The good properties of APIC impose several restrictions on the choice of weights wi→p∑
xh∈H

wni→p
∣∣
xh

= 1,∑
xh∈H

xhw
n
i→p
∣∣
xh

= xnp ,∑
xh∈H

(
xh − xnp

)
wni→p

∣∣
xh

= 0.

(2.25)

If all parts of Equation 2.25 are satisfied, then APIC simulations exhibit less numerical
dissipation than PIC simulations. Weights issued from multi-linear interpolation, employed
in the original formulation [27], meet Equation 2.25 for example.

Unlike FLIP, APIC prevents instabilities from arising. Additionally, Jiang et al. [27]
demonstrate, in the supplementary material, that APIC exactly conserves angular mo-
mentum when transferring from particles to grid and vice-versa, which is pertinent when
dealing with nonlinear flows.
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Chapter 3

Advection

In this chapter, we review several advection algorithms to solve

∂q

∂t
+ u · ∇q = 0, (3.1)

where q represents an advectable scalar quantity. For vector quantities, q can be interpreted
as any component of the vector. We begin with a presentation of the standard semi-
Lagrangian advection method as introduced to computer graphics by Stam [35]. Then, we
explore alternative techniques popular in computer animation, namely predictor-corrector
algorithms. In addition to inspiring our proposed technique, presented in Chapter 4, all
these methods provide a baseline against which to compare our technique’s numerical
performance, notably in terms of accuracy, as later discussed in Chapter 5.

3.1 Semi-Lagrangian Advection

In grid-based approaches prior to the unconditionally stable semi-Lagrangian advection
method of Stam [35], Equation 3.1 was solved with finite differences, drawing purely Eule-
rian methods from CFD [42]. Explicit schemes, such as upwind, Lax-Friedrichs, and Lax-
Wendroff, would be chosen according to their accuracy, efficiency, or complexity. However,
these purely Eulerian schemes all share a common caveat: guarantee of stability is achieved
by restraining the size of the time step taken ∆t to a function of the grid spacing ∆x. In
other words, smaller grid spacings require smaller time steps to ensure stability; failure to
meet time step constraints can result in important visual artefacts. For instance, when
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Figure 3.1: Method of characteristics as a foundation for semi-Lagrangian advection.
(a) Characteristics for Equation 3.2 (i.e., unidimensional linear advection) are drawn as
grayscale isocontours. Grayscale initial conditions lay on the horizontal axis, and are
evolved forward in time, according to the PDE given by Equation 3.2, along the positive
vertical t-axis. Characteristics originating from the t-axis correspond to boundary condi-
tions. It is possible to find the value at any point X at any time by walking along the
characteristics back to the initial condition at t = 0, as shown by the pink dotted path.
(b) Streamlines of a random bidimensional velocity field un are overlaid on a grayscale
representation of a scalar field q. Here the axes represent the simulation domain, while the
streamlines and background correspond to a snapshot of a scenario in two dimensions at
some arbitrary time t. In semi-Lagrangian advection, xi is back-traced following the pink
dotted path to xbi , where q is interpolated.

high-resolution or adaptive grids are used, such a poor scalability can be a prominent hin-
drance. More importantly, in the balancing act between computational cost and quality,
adjusting the time step is an intuitive and readily available trade-off from an artistic usabil-
ity standpoint. Therefore, removing the time step dependence of the solution’s stability
can be helpful in preventing unfortunate explosive errors caused by too large time steps.

The approach proposed by Stam [35] is unconditionally stable, meaning that it remains
stable for arbitrarily large time steps. Consequently, it excels at meeting the needs of com-
puter graphics applications. It is based on the method of characteristics. A characteristic
is a curve of constant quantity q, where q is the quantity being advected in the present case.
The information from the problem’s initial conditions propagate along the characteristics
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Algorithm 3.1 Standard semi-Lagrangian advection

Require: qn, un

Ensure: qn+1

1: xbi ← back trace (xi,u
n)

2: qn+1 ← interpolate
(
xbi , q

n
)

over time. Figure 3.1a shows the characteristics for the unidimensional linear advection

∂q

∂t
+
∂q

∂x
= 0. (3.2)

For any time t and any point x on the domain, the value q can be determined by travelling
along the characteristics back to time t = 0.

The semi-Lagrangian advection method proceeds almost identically, as shown in Fig-
ure 3.1b. Here, the superscript b indicates not a temporal step, but that the position is
the back-traced position corresponding to the non-superscripted variable. First, the grid
positions xbi are computed by back-tracing all positions xi through the velocity field un,
following the characteristics backwards in time. Then, the values q|xb

i
are determined by

interpolating from the grid. Semi-Lagrangian advection is summarized in Algorithm 3.1.

One important downside of semi-Lagrangian transport, as singled out by Stam [35], is
its introduction of a significant amount of artificial dissipation in the numerical solution.
In visual terms, quantities spread outwards. Even in an inviscid context, flows appear
viscous. As a result, small-scale features dampen, and, eventually, disappear. Therefore, as
noted by Stam [35], the proposed method is unsuitable for engineering applications, where
greater accuracy may be required. However, he suggests that this effect could be mitigated,
for computer graphics applications, by applying additional compensating forces. Vorticity
confinement by Fedkiw et al. [14] is such a force; it only serves to enhance the simulation by
adding small-scale features. While the physical nature of vorticity confinement is debatable,
it definitely does not correct the artificial damping produced by semi-Lagrangian advection.
In the best case, it compensates for it by introducing an additional quantity to produce
more details.

Numerical dissipation can be reduced by choosing both an appropriate approximation
of the characteristics and a good interpolation scheme. The simplest way to perform back-
tracing is to take an Euler step backwards:

back trace (xi,u
n) = Euler (xi,u

n) = xi −∆tuni . (3.3)
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Figure 3.2: Back-tracing functions. Dashed arrows represent the streamlines of a nonlinear
flow. Solid coloured arrows represent velocities as sampled from the point of the same
colour. A simple Euler step (a) (i.e., Equation 3.3) does not approximate well nonlinear
flows while the midpoint method (b) (i.e., Equation 3.4) can better capture a flow’s non-
linearity.

Equation 3.3 is first-order accurate, which is an insufficient approximation for nonlinear
flows as illustrated in Figure 3.2a. In practice, most flows are not purely linear. Thus, the
second-order Runge-Kutta method, also known as the midpoint method, is typically used:

back trace (xi,u
n) = Midpoint (xi,u

n) = xi −∆tun|xm
i
, (3.4)

where xmi is the midpoint back-traced position of grid node xi, such that

xmi = xi −
1

2
∆tuni . (3.5)

As depicted in Figure 3.2b, the midpoint method yields a more accurate approximation of
the flow than the single Euler step. Evidently, the closer the back-tracing function fits the
PDE’s characteristics the better.

However, the accuracy of standard semi-Lagrangian advection is not only determined
by the back-tracing function’s accuracy, but also by the interpolation scheme’s. Although
it does not readily apply to all interpolation schemes, interpolation can be expressed as a
weighted sum

q|x =
∑

xh∈H

w|xh
q|xh

, (3.6)

where H is the interpolation kernel, that is to say the set of grid nodes required to im-
plement a given interpolation scheme. Each grid node xh in the interpolation kernel H
contributes to the interpolated value at x according to weight w|xh

. In the nearest neigh-
bour interpolation for instance, |H| is one, as the interpolated value is equal to the value
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of the closest neighbouring grid node (i.e., w = 1).

For dimensions greater than one, if the interpolation scheme is applied sequentially
along each dimension, the weights can be viewed as a product of the weights from applying
the scheme along each dimension

w|xh
= w|xhw|yhw|zh . (3.7)

The stability of semi-Lagrangian transport is in part determined by the monotonicity of
the interpolation scheme used. Besides, discussing monotonicity is relevant as it directly
relates to the conservation of advected quantities q. A necessary condition for a monotone
interpolation scheme is

min
xe∈E

q|xe
≤ q|x ≤ max

xe∈E
q|xe

. (3.8)

In other words, a monotone scheme prohibits under/overshooting by limiting the interpo-
lated value to the range defined by the set E of its enclosing grid nodes xe.

Often, when defining interpolation schemes, a normalized position x̄ is used

x̄ = (x̄, ȳ, z̄) =
x− xi,j,k

∆x
=

(
x− xi,j,k

∆x
,
y − yi,j,k

∆y
,
z − zi,j,k

∆z

)
, (3.9)

where, for a given position x and grid origin x0 = (x0, y0, z0),

xi,j,k = ∆x

⌊
x− x0

∆x

⌋
+ x0 =

(
∆x

⌊
x− x0

∆x

⌋
+ x0,∆y

⌊
y − y0

∆y

⌋
+ y0,∆z

⌊
z − z0

∆z

⌋
+ z0

)
.

(3.10)
The normalized position simplifies the notation since x̄ ∈ [0, 1]3.

In semi-Lagrangian advection methods, linear interpolation is a popular choice. It is
monotone, simple to implement, and can be easily generalized to two and three dimensions
(i.e., respectively bilinear and trilinear interpolation). For bilinear interpolation, |H| = 2d

as illustrated in Figure 3.3a. In higher dimensions, linear interpolation is performed along
each dimension sequentially. Therefore, in two dimensions, each grid node contributes to
the interpolated value according to the following weights:

wi,j = (1− x̄) (1− ȳ) ,

wi+1,j = (x̄) (1− ȳ) ,

wi,j+1 = (1− x̄) (ȳ) ,

wi+1,j+1 = (x̄) (ȳ) .

(3.11)
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Figure 3.3: Linear and cubic interpolation mechanisms in 2d. Grid nodes represented
by black disks form the set H for (a) linear interpolation and for (b) cubic interpolation.
Interpolation is performed at point x̄ identified by a yellow disk. The two possible orderings
of dimensions are illustrated: along x first in solid red and along y first in dotted blue.
Accordingly, interpolating along x/y first as shown by solid red/dotted blue lines gives the
values located at the temporary intermediate points represented by empty solid red/dotted
blue circles. These are then interpolated along the y/x dimension to give the value at x̄.
In (a), the weights are proportional to the area opposite to their location. In (b), the
weights (not shown) for each grid node depend on the interpolation scheme used.
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(a) (b) (c)

Figure 3.4: Impact of higher-order accurate interpolation scheme on semi-Lagrangian ad-
vection in 2d. An annulus positioned at the bottom-left corner of the grid is advected to
n = 1200 with ∆t = 1

60
by a constant linear flow u = (1, 1, 0). (a) shows the analytical

solution while both (b) and (c) show the numerical solution resulting from using semi-
Lagrangian advection with respectively bilinear interpolation and the monotone cubic in-
terpolation of Fritsch and Carlson [19]. The result from using higher-order interpolation
(c) exhibits less numerical dissipation than its bilinear counterpart (b) as can be seen from
the clearer empty region and better-preserved darker colour.

As obvious from Equation 3.11, the interpolation result is independent of the order in which
the unidimensional interpolations are performed along each dimension. Since multiplication
is commutative, w|xh , the x-part of the weights (i.e., the first operand in parentheses), can
be switched with w|yh , the y-part of the weights (i.e., the second operand in parentheses).

Higher-order interpolation is a way to improve the accuracy of semi-Lagrangian trans-
port with relatively little effort. Higher-order schemes increase the interpolated value’s
accuracy, as shown in Figure 3.4. For a cubic interpolation scheme, in two dimensions,
|H| = 4d as illustrated in Figure 3.3b. In one dimension, recall (or see Appendix A for a
detailed reminder) that the general form for piecewise cubic polynomial interpolation is
given by

q|x = (δi∆x+ δi+1∆x− 2Di) x̄
3 + (3Di − 2δi∆x− δi+1∆x) x̄2 + (δi∆x) x̄+ q|xi , (3.12)

where
Di = q|xi+1

− q|xi , (3.13)

and δi is the derivative at grid node xi, likewise for δi+1. For cubic Hermite interpolation,
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δi, likewise for δi+1, is computed using central finite differences

δi =
q|xi+1

− q|xi−1

2∆x
. (3.14)

Together, Equation 3.12, Equation 3.13, and Equation 3.14 define the cubic Catmull-Rom
interpolating spline [4].

Unless they are monotone, higher-order interpolation schemes should be applied with
caution as they may generate new extrema. In such cases, clamping can be used to maintain
the interpolated value within the range of acceptable values. Most often, said range is
given by the values at xe ∈ E , as expressed in Equation 3.8. Although clamping corrects
under/overshooting, if need be, it breaks the continuity of the interpolating polynomial’s
derivatives, a sacrifice with consequences yet to be thoroughly investigated.

In computer graphics, one predominant cubic interpolation scheme, which is based on
cubic Hermite spline interpolation, is that of Fedkiw et al. [14]. The authors highlight the
necessary conditions for a monotone piecewise cubic polynomial interpolation scheme{

sign (δi) = sign (δi+1) = sign (Di) Di 6= 0,

δi = δi+1 = 0 Di = 0.
(3.15)

According to Fedkiw et al. [14], enforcing Equation 3.15 produces a monotone version of
the Catmull-Rom spline interpolation, but this is insufficient. Despite being widely used
within the computer graphics community, our experiments uncovered situations in which
the modified Catmull-Rom scheme of Fedkiw et al. [14] yielded non-monotonic results.
This notably occurs when the magnitudes of the derivatives δi and δi+1 are dispropor-
tionate with respect to the magnitude of Di. Indeed, we can design several examples, as
shown in Figure 3.5, to illustrate the approach’s non-monotonicity. We subsequently found
confirmation of this observation in the graphics literature, in work by Ihm et al. [25].

Using the following non-negative parameters to simplify their monotonicity investiga-
tion,

αi =
δi
Di

, (3.16)

and

βi =
δi+1

Di

, (3.17)

Fritsch and Carlson [19] prove that enforcing Equation 3.15 to ensure monotonicity is only
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Figure 3.5: Comparison between interpolation schemes in 1d. Two different sets of data
points, represented by empty red circles, are interpolated using linear interpolation (lin
in solid orange with circular markers), modified Catmull-Rom interpolation as presented
by Fedkiw et al. [14] (mcr in solid yellow), Bridson’s cubic interpolation from the second
edition of [4] (b in dashed purple), cubic B-spline interpolation as used in Stomakhin
et al. [40] (cbs in dotted blue), and the monotone cubic interpolation of Fritsch and
Carlson [19] (fc in dot-dashed green). Data sets are taken respectively from (a) the
first example presented by Akima [2] and from (b) the second example of Fritsch and
Carlson [19], but the points are evenly spaced as in uniform-grid simulations. For each
subfigure, the inset plot shows a zoomed-in version of the region shaded in gray. In (a),
monotonicity is violated by mcr on the interval x ∈ [6, 7] as evidenced by the slight
trough. b also does not respect the extrema given by the interval’s endpoints on x ∈ [6, 7]
as undershooting may be observed. Similarly, in (b), mcr and b overshoot on the interval
x ∈ [5, 6]. In both cases, fc does not overshoot, and does preserve monotonicity while
remaining interpolating whereas cbs is approximating rather than interpolating.
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αi
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Equation 3.19b

Equation 3.19c

Equation 3.18

Equation 3.20

Figure 3.6: Monotonicity region based on derivatives for cubic interpolation. With the
non-negative parameters αi and βi, a region of monotonicity can be defined in αβ-space.
The monotonicity region represents the (αi, βi) pairs which yield a monotone interpolant;
it is the union of different sufficient conditions. Fritsch and Carlson [19] choose to restraint
αi and βi to a subset M of the monotonicity region corresponding to the inside of an
origin-centred circle of radius 3, depicted by an orange dashed contour line.

valid if
αi + βi − 2 ≤ 0, (3.18)

when the necessary conditions given by Equation 3.15 are also sufficient. Consequently,
the modified Catmull-Rom interpolation of Fedkiw et al. [14] is not monotone when Equa-
tion 3.18 is not satisfied (i.e., when αi +βi− 2 > 0) even though Equation 3.15 is satisfied.
For cases when Equation 3.18 is not met, Fritsch and Carlson [19] derive other sufficient
conditions:

2αi + βi − 3 ≤ 0, (3.19a)

αi + 2βi − 3 ≤ 0, or (3.19b)

αi −
(2αi + βi − 3)2

3 (αi + βi − 2)
≥ 0. (3.19c)

Having sufficient conditions for all possible cases, as illustrated in Figure 3.6, allowed
Fritsch and Carlson [19] to design an algorithm to produce monotone piecewise cubic
interpolants. In this thesis, we follow their approach, which we outline thereafter.
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First, the derivatives δi and δi+1 are initialized according to Equation 3.14. Then,
sufficient conditions are enforced; Equation 3.15 is satisfied in accordance with Fedkiw
et al. [14] while Equation 3.19 is met by restricting αi and βi to a specific monotone
region of αβ-space. In particular, as favoured by Fritsch and Carlson [19] and depicted in
Figure 3.6, we choose the monotonicity subregion M to be defined as the origin-centred
circle of radius 3, yielding the constraint hereafter:

M := αi
2 + βi

2 ≤ 9. (3.20)

If αi and βi do not satisfy Equation 3.20, they are mapped to the monotonicity sub-
region M by finding the closest point to the boundary of M. Given our choice of M
(i.e., Equation 3.20), this corresponds to finding the intersection between the line joining
the origin and the non-monotonic (αi, βi) pair. This can be achieved with a multiplicative
corrective factor

τi =
3√

αi2 + βi2
, (3.21)

which is applied such that

αi
corrected = αiτi, (3.22a)

βi
corrected = βiτi. (3.22b)

The correction τi can be propagated to δi and δi+1 back into Equation 3.12 yielding

q|x = (τiδi∆x+ τiδi+1∆x− 2Di) x̄
3 + (3Di − 2τiδi∆x− τiδi+1∆x) x̄2 + τi (δi∆x) x̄+ q|xi .

(3.23)

We note three drawbacks1 in using the monotone cubic interpolation scheme of Fritsch
and Carlson [19]. First, due to the nonlinear corrective factor defined in Equation 3.21, the
scheme cannot be expressed in the form of Equation 3.6 (i.e., as a simple weighted sum).
Secondly, it exhibits dimension ordering dependence, meaning that the result depends on
the order in which interpolation is performed along each dimension in multidimensional
problems. This can be at least partially caused by the algorithm’s dependence on the grid’s
values, as further explained in Appendix A. We arbitrarily choose to perform interpola-
tion along x first and then along y. Finally, given the apparent notoriety of clamping in
computer graphics (e.g., Bridson’s cubic scheme and the modified Catmull-Rom scheme
from Fedkiw et al. [14], to name a few), one may question whether using Fritsch and
Carlson’s algorithm (or any similar attempt at built-in monotonicity) is worth the (slight)

1These are distinct from the three flaws identified by Fritsch and Butland [18].
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computational overhead.

In summary, semi-Lagrangian advection is an unconditionally stable highly dissipative
transport method, whose accuracy depends on the back-tracing function and the interpo-
lation chosen. To facilitate future notation, we define an operator A combining the steps
of Algorithm 3.1, such that we can succinctly write

qn+1 = A (qn) . (3.24)

The velocity field is implicitly taken to be un. Operator A both approximates the char-
acteristics, and applies the interpolation scheme to retrieve the values qn at corresponding
back-traced positions xbi .

3.2 Predictor-Corrector Algorithms

Prior to the introduction of unconditionally stable semi-Lagrangian advection in computer
graphics, purely Eulerian methods from CFD were used to solve PDEs. Among grid-
based methods tackling Equation 3.1, are multi-step advection techniques accounting for
their own error; we concentrate specifically on predictor-corrector algorithms, like that of
Dupont and Liu [10]. The procedure proposed by Dupont and Liu [10] accounts for the
transport scheme’s built-in error while solving for the next time step. It leverages the fact
that reversible differential equations can be evolved in both time directions using the same
numerical scheme.

Imagine solving for q̂n+1 by moving qn forwards in time with a scheme F . Similarly,
solving for q̂n by moving q̂n+1 backwards in time with the same scheme F would give back
exactly qn if scheme F had no numerical error. In practice however, q̂n is not equal to
qn. Since scheme F is employed both for the forward and backward steps, the difference
between q̂n and qn is about twice the error of F , assuming that both steps, forward and
backward, incur identical numerical errors. In the algorithm of Dupont and Liu [10], this
error is utilized to correct the original qn. The corrected quantity q̃n is then moved forwards
in time using F to produce the updated qn+1.

This method requires three steps in time: one step forward, like the standard semi-
Lagrangian advection, then one step backward to compute the error, and finally another
step forward to advect the corrected quantity. Hence, it is named the back and forth error
correction and compensation (BFECC) method. Figure 3.7a illustrates the scheme’s steps.
BFECC has been shown to be second-order accurate when using a first-order accurate
scheme F . The increased accuracy comes only at thrice the computational cost of using
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Figure 3.7: Semi-Lagrangian multi-step advection methods. (a) and (b) illustrate the
BFECC and MacCormack advection schemes respectively. The steps from Algorithm 3.2
for (a) and from Algorithm 3.3 for (b) are numbered in colour. Arrows of different colours
represent different time steps. The advection schemes are identical until step 3, inclusively,
where the advection error is computed. They diverge afterwards in the way they incorpo-
rate said error. The MacCormack advection requires one step in time less than the BFECC
advection.

Algorithm 3.2 Back and forth error compensation and correction method

Require: qn, un

Ensure: qn+1

1: q̂n+1 ← A (qn)
2: q̂n ← Ar

(
q̂n+1

)
3: 2e← q̂n − qn
4: q̃n ← qn − e
5: qn+1 ← A (q̃n)

solely the original scheme F (i.e., three steps in time against one). More importantly,
in a subsequent paper, Dupont and Liu [11] show the validity of the results when using
semi-Lagrangian advection as scheme F (i.e., F = A), yielding the procedure described in
Algorithm 3.2. Note that the resulting transport scheme is not monotone; consequently,
it may produce new extrema, which can be eliminated using clamping. Another way to
address the issues arising from non-monotonicity is to revert to a first-order technique when
under/overshooting is detected as suggested by Selle et al. [34], who stressed the advantage
of such an approach, notably in region near solid boundaries.

Selle et al. [34] also suggest a performance improvement to the BFECC algorithm.
First, they assume that the operator A is (nearly) linear, allowing step 5 of Algorithm 3.2
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Algorithm 3.3 MacCormack advection

Require: qn, un

Ensure: qn+1

1: q̂n+1 ← A (qn)
2: q̂n ← Ar

(
q̂n+1

)
3: 2e← q̂n − qn
4: qn+1 ← q̂n+1 − e

to be written as

qn+1 ← A (qn − e) = A (qn)−A (e) = q̂n+1 −A (e) . (3.25)

Then, they stress that there is no compelling evidence that the advection error is time-
dependent, yielding

qn+1 ← q̂n+1 − e. (3.26)

Accounting for those assumptions, the BFECC’s handling of the built-in advection error is
modified into a “weaker” form, named by Selle et al. [34] the semi-Lagrangian MacCormack
scheme, drawing parallels with the two steps in time of the Eulerian MacCormack method.
For succinctness, we abandon the “semi-Lagrangian” qualifier, and refer to the method as
MacCormack advection, implying that it is performed in a semi-Lagrangian fashion, except
if explicitly mentioned otherwise.

The MacCormack advection begins identically to BFECC, initially solving for q̂n+1 by
moving qn forwards in time with A. Then, solving for q̂n by moving q̂n+1 backwards in
time with Ar allows for the computation of the advection error. Diverging from BFECC,
instead of using the error to correct the original qn, it is utilized to correct the advected
quantity q̂n+1, resulting in the updated qn+1. The MacCormack advection procedure is
described in Algorithm 3.3.

Its computational cost is decreased by a third compared to BFECC, and is only twice
that of solely using standard semi-Lagrangian advection. Figure 3.7b illustrates the steps of
the MacCormack advection. Akin to BFECC, it is also shown to be second-order accurate
when using a first-order accurate operator A. Hence, it exhibits similar reduced dissipation
and comparable improved accuracy to BFECC, at only twice the cost of standard semi-
Lagrangian advection. Unfortunately, it also shares BFECC’s non-monotonicity, which
can, nevertheless, be handled similarly.

Furthermore, Selle et al. [34] generalize the MacCormack results to multidimensional
advection. The corresponding theorem [34] states that if the technique employed to perform
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(a) (b) (c)

Figure 3.8: Comparison between semi-Lagrangian advection methods in 2d. An annulus
positioned at the bottom-left corner of the grid is advected to n = 1200 with ∆t = 1

60

by a constant linear flow u = (1, 1, 0). (a) shows the analytical solution while both (b)
and (c) show the numerical solutions respectively resulting from using (b) standard semi-
Lagrangian advection and (c) MacCormack advection with semi-Lagrangian steps. In both
cases, the midpoint method and linear interpolation are used. The result from MacCor-
mack advection (c) exhibits less numerical dissipation than the result from standard semi-
Lagrangian advection (b) as can be seen from the clearer empty region and better-preserved
darker colour.

the time stepping is accurate to an order n, where n is a positive odd integer, then the
MacCormack scheme’s order of accuracy is n + 1. While first-order Eulerian schemes,
like upwind, can be used as stepping methods, the authors emphasize that using semi-
Lagrangian stepping does not impact the method’s desirable properties. Hence, the overall
procedure can be easily made unconditionally stable by using standard semi-Lagrangian as
a stepping scheme. Figure 3.8 illustrates the improvement gained by using MacCormack
advection with semi-Lagrangian steps on simply using standard semi-Lagrangian transport
with the midpoint method and linear interpolation.
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Chapter 4

An Affine Semi-Lagrangian
Advection Method

We propose a method to reduce the numerical dissipation introduced by performing semi-
Lagrangian advection. In Chapter 2, we discussed the advantages of hybrid approaches
pertaining to advection. Broadly speaking, particles were the source of the improved trans-
port exhibited by hybrid techniques compared to purely Eulerian algorithms. However,
they are also the origin of some of their shortcomings1.

Indeed, in gaseous simulation, where semi-Lagrangian advection is still commonly used
(see examples in Zehnder et al. [43] for instance), there is no surface and, therefore, no
need for particles tracking the interface between the fluid and the non-fluid regions of
the simulation domain. In this context, the particles’ only usefulness is merely to facilitate
transport, and one can argue that the resources they require outweigh their utility. Another
challenge stemming from the use of particles is the resampling needed to ensure they are
well distributed, or else suffer from ensuing artefacts. Although the particle count can be
restricted as in narrow-band FLIP [15] where particles are used solely near the interface, the
treatment of the interior, which can correspond to a significant portion of the simulation
domain, could still benefit from a less dissipative transport scheme.

Therefore, our main contribution is a method aiming both to reduce dissipation arising
from semi-Lagrangian advection and to remove the need for particles, indirectly disposing of
their associated flaws. Our method adapts the ideas of APIC, more specifically the locally
affine velocity descriptor Cp defined by Equation 2.24, to semi-Lagrangian advection under

1The drawbacks of hybrid methods arising from the use of particles are evidently shared by Lagrangian
approaches as well.
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Figure 4.1: Schematic diagram of the ASLAM. A cell-centred grid has nodes depicted by
black disks. Empty yellow circles represent the positions of fictitious particles xs associated
with grid node xi. These fictitious particles are back-traced through the velocity field (not
shown) following the purple dotted arrows to the positions xbs corresponding to the empty
dotted purple circles. The update’s result is clamped against the values at xbe depicted by
empty dashed green circles.

an Eulerian setting. Recall the two steps in the semi-Lagrangian advection method: back-
tracing and interpolation, both outlined in Algorithm 3.1. At the back-traced position xbi ,
in addition to interpolating the value of the advected quantity q, we interpolate a locally
affine velocity descriptor c. Furthermore, instead of back-tracing a single sample xi per grid
node, we back-trace several temporary samples xs per grid node as shown in Figure 4.1. The
combined use of the descriptor c with the additional samples xs yields a more accurate
reconstruction of the updated field qn+1. Our method, summarized in Algorithm 4.1,
is hence named the affine semi-Lagrangian advection method (ASLAM) as it basically
transforms APIC into a particle-free method.

In a purely Eulerian framework, like the ASLAM, since there are no persistent particles,
transfer operations, fundamental in hybrid approaches, are undefined. To address this
issue, we define S to be a set of fictitious particles xs in the vicinity of xi, as illustrated
in Figure 4.1. To adapt APIC to the advection step, we modify Equation 2.22, converting
the transfer from particles to grid into an update (i.e., step 6 of Algorithm 4.1) for a scalar
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Algorithm 4.1 Affine semi-Lagrangian advection

Require: qn, un, S
Ensure: qn+1

1: for all xi do
2: for all xs ∈ S do
3: xbs ← back trace (xs,u

n)
4: qn|xb

s
, cn|xb

s
← interpolate

(
xbs, q

n
)

5: end for
6: qn+1|xi

← update
(
qn|xb

s∀xs∈S , c
n|xb

s∀xs∈S

)
7: end for

quantity q located at grid node xi

qn+1
∣∣
xi

=
1∑

xs∈S
wp→i|xs

∑
xs∈S

(
qn|xb

s
+ cn|xb

s
(xi − xs)

)
wp→i|xs

. (4.1)

Equation 4.1 is a weighted average of Taylor series expansions from data of the fictitious
particles positioned at xs to the grid node of interest xi. Here we use a first-order approx-
imations as in APIC [27] although it could be possible to use higher-order approximation
as in PolyPIC [20]. The locally affine velocity descriptor c as well as the quantity q are
both defined in the same manner as in APIC. The former is computed using the gradient
of the weights used to interpolate from grid to particles

cn|xb
s

=
∑

xh∈H

qn|xh
∇
(
wni→p

∣∣
xh

)T
. (4.2)

The latter is simply interpolated from the grid values

qn|xb
s

=
∑

xh∈H

qn|xh
wni→p

∣∣
xh
. (4.3)

In both Equation 4.2 and Equation 4.3, the weights from linear interpolation (e.g., Equa-
tion 3.11 in two dimensions) are used as grid-to-particle weights wi→p.

Similar to the predictor-corrector algorithms presented in Chapter 3, the update of
Equation 4.1 can also produce new extrema. To eliminate those, we clamp with respect to
the set of enclosing nodes xbe at the back-traced position xbi , as shown in Figure 4.1. In the
ASLAM, the number of additional advection steps, compared to standard semi-Lagrangian
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advection, depends on the total number of fictitious particles for all grid nodes xi, which,
as demonstrated later, is not necessarily equivalent to |S| · N , where N is the number of
grid nodes xi.

Although Equation 4.1, Equation 4.2, and Equation 4.3 target scalar quantities q, they
are valid for vector quantities as well since q can be taken as a vector quantity’s component.
In such cases, note that the descriptor c is a tensor rather than a vector. While the
closeness of our formulation to the original APIC formulation [27] should preserve the
scheme’s good stability and its reduced artificial dissipation, our formulation differs from
the original APIC [27] in one key aspect.

In hybrid methods, including APIC, advection is performed on the particles using the
velocity field provided by the grid. The transport mechanism, whether Runge-Kutta or an-
other forward integration method, is unaffected by the transfer operations defined between
grid and particle representations. Particles only passively carry their descriptors Cp, which
are not used to execute the transport. APIC’s transfer operations improve the accuracy
of the velocity field by minimizing the error inherent to mapping between representations;
their positive effect on the advection results is indirect. Indeed, the decreased numerical
dissipation in the advection is caused by the improved velocity field, not by an improvement
of the particle transport mechanism itself as it is unaltered (i.e., particles’ trajectories are
defined in the same manner). In the ASLAM, this indirection is removed. The transport
mechanism is modified to integrate the locally affine descriptor c and additional samples xs

into a single update equation (i.e., Equation 4.1).

Besides, APIC’s conservative properties, conservation of linear and angular momenta
for instance, are only guaranteed for the mapping between representations, which occurs
within a single time step, rather than from one time step to another. In proposing to
transform APIC into an advection formula, we hope these properties can be carried over
several time steps.

In the following sections, we discuss in depth two important features of the ASLAM.
First, we investigate some challenges related to S, the set of fictitious particles. Then, we
present different options for the weights wp→i from fictitious particles to grid node.

4.1 Fictitious Particle Set

Fictitious particles are the core of Equation 4.1, and hence the core of the ASLAM. One
crucial question hidden in the formulation of Equation 4.1 is whether all grid nodes should
have identically distributed fictitious particles. Although it would be possible to handle
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grid nodes differently based on their material, velocity gradient, or other local properties,
we treat all grid nodes identically, for simplicity.

Given that all grid nodes are assigned the same local distribution of fictitious parti-
cles xs, we refer to S as a stencil and its members xs as stencil particles. The same stencil
is used for all grid nodes, which allows us to focus on a single cell with grid node xi. Two
important issues arise in trying to define a good stencil:

1. How large should S be?

2. Where should the stencil particles xs be located with respect to the grid node of
interest xi?

While we tackle these challenges conjointly, we examine the distribution of fictitious par-
ticles first, and explain why this choice is tightly integrated with the overall size of the
stencil.

First of all, we determine that a stencil should not cover more space than the grid
spacing ∆x. Indeed, for a regular grid, the control volume associated to each grid node
extends exactly half ∆x in each direction. So, all stencil particles should be located at
most half ∆x in each direction from the grid node xi they are associated with in order to
fully sample its control volume.

In addition, it is reasonable to assume that the distribution of stencil particles changes
according to the number of said particles, especially since we want to enforce a good
coverage of the grid cell. The distribution thus depends on the number of dimensions d
and a parametric size ζ ∈ N0. Note that when ζ is zero, then the stencil’s size |S| should be
one, and the only fictitious particle should be collocated with the grid node, yielding back
the standard semi-Lagrangian advection method. In such a case, when ∃!xs ∈ S : xs = xi,
we refer to such a stencil particle as x∗s.

As a starting point for the construction of stencil S, we design three different possible
distribution types: chessboard, manhattan, and subsampling. The chessboard and
manhattan distribution types originate from the chessboard and Manhattan distances
respectively. The subsampling distribution is inspired from the super-sampling in ray-
tracing algorithms. All these stencil distribution types are illustrated in Figure 4.2, for
d = 2 and parametric sizes ζ = 1, 2. Table 4.1 shows how the number of dimensions d and
the parametric size ζ are related to the stencil’s size |S| for the three distribution types.
Note that the parametric size ζ has a different meaning for each distribution type.

For the chessboard distribution type, ζ is the maximum chessboard distance between
xi and any xs. Since the corresponding Euclidean distance is half the grid spacing, ζ can be
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(a) (b) (c)

Figure 4.2: Stencil distribution types. Empty yellow circles represent the positions of stencil
particles associated with a stencil of parametric size ζ = 1 for the left grid node while empty
dotted purple circles represent the positions of stencil particles associated with a stencil
of parametric size ζ = 2 for the right grid node for (a) chessboard, (b) manhattan,
and (c) subsampling distribution types respectively. For (a) and (b), neighbouring grid
nodes share stencil particles for all values of ζ, but this is never the case in (c).

Distribution Type Number of Stencil Particles |S|
chessboard (2ζ + 1)d

manhattan Delannoy Number (d, ζ) =
min(d,ζ)∑
k=0

(
d+ζ−k
d

)(
d
k

)
subsampling (ζ + 1)d

Table 4.1: Number of stencil particles according to stencil distribution type. The number
of stencil particles depends on the number of dimensions d, the parametric size ζ, and the
stencil distribution type. Notice that the number of stencil particles is strictly increasing
as a function of the parametric size ζ.
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thought of as the halfsize of the stencil along each dimension. Likewise for the manhattan
distribution type, ζ is the maximum Manhattan distance between xi and any xs, whose
Euclidean counterpart is also half the grid spacing. For both these distribution types,
the grid node of interest xi is always included as a stencil particle. However, for the
subsampling distribution type, where ζ is the number of subdivisions per dimension, the
grid node of interest is only included if ζ is even. According to the ASLAM’s update
formula, Equation 4.1, for x∗s, the Taylor expansion reduces to the first term only. There
is no contribution from the descriptor c at the grid node’s position.

Typically, in hybrid methods, the set of particles relevant to a grid node xi changes at
every time step as Lagrangian particles are relentlessly transported around. As a direct
consequence, their contributions to different grid nodes, as depicted in Figure 2.1a, change
too. By contrast, the computational cost of these operations is amortized in the ASLAM
since the stencil particles are given fixed starting positions. As opposed to traditional
particles, there is no need to track stencil particles on the long term, or to identify those
relevant to a given grid node. The relationship between stencil particles and grid nodes
is unchanging, and is set up at the beginning of the simulation. The weights are also
unchanging, and can be pre-computed, which is computationally advantageous.

To conclude this section, many distributions other than the three aforementioned are
possible. For instance, if we discard our initial assumption to treat all grid nodes identically
and independently, it would be possible to define a single stencil particle distribution for
an entire domain instead of using a cell-sized stencil. Alternatively, stencil particles could
be distributed more densely in regions of interest while reverting back to semi-Lagrangian
in regions of lesser importance. Such explorations are left for future endeavours.

4.2 Particle-to-Grid Weights

Each stencil particle contributes to the update according to Equation 4.1. The magnitude
of the contribution is determined by the weights wp→i. We propose three different weighting
techniques: uniform, sph, and gaussian. These are depicted in Figure 4.3, and further
described below.

The first technique consists of having equal contributions from all stencil particles, such
that

wp→i|xs
=

1

|S|
∀xs. (4.4)

This amounts to averaging all the data from the stencil particles, which, in practice, pre-
sumably smooths any existing extrema. However, it is not computationally demanding,
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Figure 4.3: Weighting techniques. Different weighting techniques for determining particle-
to-grid weights, uniform weighting in solid yellow, sph weighting in dashed green, and
gaussian weighting in dotted purple, are compared. Here the weights wp→i were normal-
ized such that

∑
xs∈S

wp→i|xs
= 1, where xs are positions of stencil particles.

and may be sufficient for our purposes. We name this technique the uniform weighting,
due to its similarity with the discrete uniform distribution from probability theory and
statistics.

On the other hand, one can argue that the approximation at x∗s, which is collocated with
grid node xi, should not be too “bad”. Indeed, existing techniques use this approximation,
and still manage to produce good results. This means that the other stencil particles, the
ones not collocated with the grid node, should only have a supporting role. Their weights
should be inferior to that of x∗s.

As a second weighting technique, we suggest using the main smoothing kernel in smooth
particle hydrodynamics (SPH) designed by Müller et al. [32]

wp→i|xs
=

315

64π∆9

{(
∆2 − (xs − xi)

2)3
0 ≤ (xs − xi) ≤ ∆,

0 otherwise.
(4.5)

where ∆ = κ∆r, with κ = 1.5 in this document. This technique is named sph weighting
as a reference to the origin of Equation 4.5.

Originally, in Müller et al. [32], the smoothing kernels are designed have a zero value at
the boundary. In this context, we absolutely want to avoid this because the stencil particles
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on a cell’s boundary should contribute to the approximation at xi. Otherwise, they would
be a complete waste of computational resources since they would still be back-traced, but
their contribution would never be used.

By using ∆r, the cell’s circumscribed circle’s radius, we extend the kernel’s effective
region to the cell’s corners as opposed to using

max (∆x,∆y,∆z) , (4.6)

which would discard them. By setting κ > 1, we secure all stencil particles’ contributions to
the approximation. Moreover, by choosing κ = 1.5, we guarantee that the smallest weight
corresponds to at least 10% of the largest weight. Knowing that the maximum value is
located at the stencil’s centre and that the minimum value is located at the boundary, we
can use Equation 4.5 to derive a condition on κ(

1− 1

κ2

)3

≥ 10%. (4.7)

According to Equation 4.7, different κ values result in different ratios between the smallest
and largest possible weights. While we could investigate the effect of varying κ, we adapt
the Gaussian kernel, popular in digital signal processing [22].

This is our last proposed weighting technique, which we name gaussian weighting.
Using N , the normal (Gaussian) distribution probability density function

N (x, µ, σ) =
exp

(
− (x−µ)2

2σ2

)
σ
√

2π
, (4.8)

we define the weights as

wp→i|xs
= N

(
xs − x∗s

∆r

, 0, σ

)
, (4.9)

where σ is Gaussian standard deviation, taken to be 0.75. This value was chosen to make
the gaussian weighting technique approximatively halfway between uniform and sph
weighting techniques, as illustrated in Figure 4.3.
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Chapter 5

Results

This chapter reports on the evaluation of our proposed ASLAM. First, we describe the
testing scenarios as well as the metrics employed to analyse an exploration of different
parameter combinations, and to assess which combination yields overall results superior to
the others. These testing scenarios and metrics are then used to compare our method to
existing transport techniques. Afterwards, we repeat the comparison with results from a
practical application scenario, and discuss the ASLAM’s qualitative performance against
the other techniques’. Finally, we recount the outcome of two minor connected investiga-
tions.

5.1 Testing Scenarios and Performance Metrics

The testing scenarios introduced hereinafter evaluate the advection of scalar quantities.
Consequently, neither pressure projection nor external forces are applied in the corre-
sponding simulations. In particular, unless explicitly mentioned otherwise, all results are
produced using ∆t = 1

60
, and 1200 time steps are computed. Moreover, the simulation do-

main covers (x, y) ∈ [0, 40]2, using a cell-centred grid with ∆x = ∆y = 1 and 40 grid nodes
per dimension. Note that we adopt periodic boundaries for all testing scenarios. Thus,
all flows are taken to be periodic in space and time. To further explicit the results being
presented, we juxtapose icons to the figures, following the descriptions given in Table 5.1.

Our first testing scenario is a simple unidimensional example using the steady linear
flow u = (1, 0, 0). The initial shape matches the radial cross-section of an annulus of inner
radius 4 and outer radius 8, centred at x = 10. Figure 5.1 shows animation frames of the
expected behaviour. Note that the flow preserves the initial condition’s profile.
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Icon Description

T 1d-translation test
T 2d-translation test
R 2d-rotation test
A Analytical solution
Z n ∈ [1, 60], Z stands for “zoom”
F n ∈ [1, 1200], F stands for “full”

Table 5.1: Description of testing icons. To emphasize which test results are displayed, we
use the icons depicted herein. Note that Z and F are only used to qualify performance
charts. Moreover, since charts with icon F also includes interval n ∈ [1, 60], said interval
is shaded in gray to highlight the fact that it was shown in greater details at some point.
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Figure 5.1: Analytical solution to the 1d-translation test. The initial shape, correspond-
ing to the radial cross-section of an annulus of inner radius 4 and outer radius 8, centred
at x = 10, is advected by a constant flow u = (1, 0, 0). The analytical solution moves the
initial condition in the positive x-axis direction, without deformation, as shown for (from
left to right) n = 0, 300, 600, 900, 1200.

T

Figure 5.2: Analytical solution to the 2d-translation test. The initial shape, an annulus
of inner radius 4 and outer radius 8, positioned at the bottom left corner of the grid, is
advected by a constant flow u = (1, 1, 0). The analytical solution moves the initial condition
from the bottom left corner to the top right corner of the grid, without deformation, as
shown for (from left to right) n = 0, 300, 600, 900, 1200.
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Figure 5.3: Nonlinear flow used for the 2d-rotation test. The vortex-in-a-box flow of
Enright et al. [13], as defined by Equation 5.1 with N = 600, is shown for (from left to
right) n = 150, 450, 750, 1050. First, the initial conditions are rotated counter-clockwise
with respect to centre of the simulation domain. Then, they are brought back to their
original location with an inverse clockwise rotation with respect to the centre of the sim-
ulation domain. They are further rotated clockwise with respect to the centre of the
simulation domain before being brought back once more to their original location by a
counter-clockwise rotation with respect to centre of the simulation domain. Note that the
vortex-in-a-box flow does not preserve the shape of the initial conditions (i.e., it is not a
rigid body rotation).

In two dimensions, the first testing scenario is the bidimensional equivalent of the 1d-
translation test. The initial shape is an annulus of inner radius 4 and outer radius 8,
whose centre is positioned at the bottom left corner of the grid. It is transported by linear
flow u = (1, 1, 0), as illustrated in Figure 5.2. Similar to the unidimensional scenario, the
translational flow preserves the shape of the annulus.

The last testing scenario, also the second test in two dimensions, uses the vortex-in-a-
box flow of Enright et al. [13], defined by

u = 2 cos
(πn
N

) (
sin2 (πx̄) sin (πȳ) cos (πȳ) ,− sin (πx̄) cos (πx̄) sin2 (πȳ) , 0

)
, (5.1)

where N is the period time, chosen to be 600 for all the examples. x̄ and ȳ are normalized
position coordinates, such that (x̄, ȳ) ∈ [0, 1]2. This nonlinear flow (i.e., Equation 5.1) is
illustrated for a few time steps in Figure 5.3.

Unlike in the 1d-translation and 2d-translation tests, the shape of the initial con-
dition is not preserved throughout the entire simulation. The initial shape corresponds to
an annulus of inner radius 4 and outer radius 8, whose centre is positioned at the top centre
of the grid. We do not know the analytical solution to this setup for all time steps. We only
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R

Figure 5.4: Pseudo-analytical solution to the 2d-rotation test. The initial shape, an annu-
lus of inner radius 4 and outer radius 8, positioned at the top centre of the grid, is advected
by the flow given by Equation 5.1 as shown for (from left to right) n = 0, 300, 600, 900, 1200.
In this context, the analytical solution is only known at n = 0, 600, 1200, when the initial
conditions are recovered. Thus, frames shown for n = 300, 900, which are taken from the
numerical solution computed using MacCormack advection with semi-Lagrangian advec-
tion as a stepping scheme, are merely illustrative. The flow first deforms the annulus by
dragging it counter-clockwise. This deformation is then reversed, hence restoring the an-
nulus to its original position and shape. Next, the flow deforms the annulus by dragging
it clockwise before once again bringing it back to its initial configuration.

have the analytical solution for time steps which are multiples of N (i.e., n = 0, 600, 1200
in this case). Figure 5.4 presents a tentative analytical solution.

In order to assess our method’s performance numerically, we use three different norm-
based metrics, namely the L1-norm, the L2-norm, and the L∞-norm, as well as a conser-
vation metric, the conservation of density %ρ. We define Q to be the analytical solution.
For all norm-based metrics, we compute each metric’s value at each time step for which
we are aware of the analytical solution. For the 1d-translation and 2d-translation
tests, we always know the analytical solution, but, for the 2d-rotation test, as mentioned
previously, this is only true at n = 600 and n = 1200. The L1-norm is∑

i

abs
(
q|xi
− Q|xi

)
. (5.2)

It expresses the total error in the grid as the sum of each grid cell’s error. The L2-norm is√∑
i

(
q|xi
− Q|xi

)2
. (5.3)

Also commonly known as the Euclidean norm, it, not unlike the L1-norm, measures the
total error in the grid using each grid cell’s error. Both the L1-norm and the L2-norm
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account for both the positional and amplitude inaccuracies. The L∞-norm is defined as

max
i

abs
(
q|xi
− Q|xi

)
. (5.4)

It corresponds to the worst error in the grid, and illustrates the general worst case scenario.
For these norm-based metrics (i.e., Equation 5.2, Equation 5.3, and Equation 5.4), lower
values clearly translate into better accuracy.

Finally, in all our testing scenarios, the quantity q corresponds to density ρ. An ideal
scheme would conserve density. At each time step, we compare the amount of density to
the initial amount ρ0, and express it as a percentage

%ρ = 100
ρ

ρ0
. (5.5)

Evidently, smaller variations in conservation of density %ρ are preferred. Even if our
scheme is not exactly conservative by design, as is the case for some schemes (e.g., Lentine
et al. [30]), a low degree of deviation is nonetheless desirable because advected quantities
should be conserved by divergence-free flows.

5.2 ASLAM Parameter Assessment

In this section, we investigate two parameters of the ASLAM, namely parametric size ζ
and particle-to-grid weights wp→i. More specifically, we limit the parametric size to
ζ = 1, 2, 3, 4, and often drop the qualifying adjective “parametric” for brevity. The weights
are computed according to the three weighting techniques described in Section 4.2. We
deliberately choose to restrict our stencil distribution to the chessboard type, as it cov-
ers the whole area of the cell, unlike the manhattan type, and it always includes the
point of interest, unlike odd-size subsampling type (refer to Figure 4.2 for a reminder).
Indeed, preliminary results (not shown in this thesis) suggest that the stencil distribution
should at least fully sample the control volume associated with the grid node, and include
a stencil particle at the location of the grid node. The chessboard type meets both these
requirements.

Before presenting the results, we would like to address a few items regarding the inter-
pretation of the subsequent performance charts (i.e., charts reporting metric measurements
as a function of time step n). Since the advection error accumulates identically at each
time step, performance charts should always be read from left to right, with more impor-
tance given to the earliest time steps. To facilitate this, the upcoming performance charts’
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Figure 5.5: Impact of parametric size by weighting type for the 1d-translation test. At
n = 1200, the analytical solution in solid red with empty circular markers is compared
to the ASLAM with parametric size ζ = 1, 2, 3, 4 respectively in solid yellow, dot-dashed
green, dashed blue, and dotted purple for (from left to right) uniform, sph, and gaus-
sian weights. For all weighting techniques, increasing ζ improves the numerical solution’s
accuracy in terms of amplitude, but shifts the numerical solution upwind the analytical’s.

n-axes are restricted to n ∈ [1, 60], although simulations are run for 1200 time steps. The
complete performance charts, showing n ∈ [1, 1200], are included in Appendix B.

We start with some results for the previously described 1d-translation test. Fig-
ure 5.5 shows that, for all weighting techniques, increasing ζ better preserves the analytical
solution’s extrema. This observation concurs with the intuition that more stencil particles
should be able to capture a better picture of the scalar field than fewer. Moreover, given
that, for each unit increment of ζ, two more particles are added to the stencil (refer to
Table 4.1 for a reminder), the improvement is more visually significant between parametric
sizes ζ = 1 and ζ = 2. However, solutions with larger ζ also exhibit greater deceleration as
evidenced by the fact that the extrema are positioned slightly to the left of their analytical
counterparts.

As depicted in Figure 5.6, the performance, as measured by the norm-based metrics, is
not significantly different across weighting types. For norm-based metrics, sizes ζ > 1 typ-
ically produce very similar curves, much harder to distinguish from one another than from
the ζ = 1 curve. In some cases, such as the L∞-norm and L2-norm for uniform weights,
the smallest size, ζ = 1, even outperforms the largest size, ζ = 4, in the earliest time steps.
Additionally, larger sizes do not always translate to better performance according to the
norm-based metrics. For instance, ζ = 2 outperforms larger sizes in L∞-norm and L2-norm
for both gaussian and sph weights. Interestingly, the smallest size is better at preserv-
ing density for all weighting types; as ζ increases, conservation of density worsens. The
complete performance charts in Figure B.1 concur with the above observations.
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Figure 5.6: Performance by weighting type for the 1d-translation test. Performance for
Figure 5.5 is measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-norm,
and density conservation %ρ for (from left to right) uniform, sph, and gaussian weights
with parametric size ζ = 1, 2, 3, 4 respectively in solid yellow, dot-dashed green, dashed
blue, and dotted purple. For all norms, ζ = 1 distinguishes itself from ζ > 1. Larger sizes
are not always more accurate, and worsen density conservation. The complete performance
charts are available in Figure B.1.
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Figure 5.7: Impact of weighting type by parametric size for the 1d-translation test. At
n = 1200, the analytical solution in solid red with empty circular markers is compared
against the ASLAM with uniform weights in solid yellow, sph weights in dashed green,
and gaussian weights in dotted purple for (from left to right) parametric size ζ = 1, 2, 3, 4.
Across all sizes, uniform weights better preserve the analytical solution’s extrema while
sph weights are the worst, but the discrepancy in accuracy decreases with increasing size.

Plotting the results by size rather than by weight, as in Figure 5.7, allows for a better
comparison of the different weighting types. For all sizes considered, the uniform weights
appear to better preserve the analytical solution’s extrema, but this advantage is reduced
as the parametric size increases. Nevertheless, sph weighting results in the more damped
numerical solution in terms of amplitude, but the less decelerated one as evidenced by
its extrema, which are more collocated with the analytical solution’s than when other
weighting techniques are employed.

Looking at the corresponding norm-based metrics in Figure 5.8, the performance is very
similar across different parametric sizes. Besides, across sizes ζ > 1, for the norm-based
metrics, all weighting techniques typically produce very similar curves, much harder to
distinguish from one another than from the ζ = 1 curve, for which uniform weighting
is best. However, in terms of density conservation, the uniform weights’ performance is
surpassed by the other two weighting techniques, sph being the best all sizes considered.
Figure B.2, showing the complete performance charts, agrees with these remarks too.

Summarizing our observations for the 1d-translation test, we conclude that, al-
though increasing the parametric size ζ increases the apparent matching of the numerical
solution with the analytical solution, the improvement is more significant between ζ = 1
and ζ = 2 according to the metrics. Therefore, since increasing the size also increases the
computational cost, and smaller sizes are positively correlated with better density conser-
vation, a size ζ = 2 is preferable. Regarding the different weighting techniques available,
sph weights outperform both uniform and gaussian weights in terms of density conser-
vation for all sizes, but they sometimes perform slightly worse in the L1-norm, for all sizes,
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Figure 5.8: Performance by parametric size for the 1d-translation test. Performance
for Figure 5.7 is measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-
norm, and density conservation %ρ for (from left to right) parametric size ζ = 1, 2, 3, 4
with uniform, sph, and gaussian weights respectively in solid yellow, dashed green, and
dotted purple. Performance is very similar across sizes, but, under the norm-based metrics,
uniform weights are better when ζ = 1. They are nevertheless the worst at conserving
density, where sph weights are best. Figure B.2 presents the complete performance charts.
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and for ζ = 1.

Now that we have a general idea of the ASLAM’s performance in one dimension, we
want to determine if our conclusions directly extend to two dimensions. Unlike in one
dimension, we can assess the method’s performance in the context of nonlinear flows,
such as the 2d-rotation test described earlier. Given that the original APIC method
was known to exactly conserve angular momentum, we expect the ASLAM to handle well
nonlinear flows.

While Figure 5.9 shows the bidimensional results for the 2d-translation test, Fig-
ure 5.10 shows the bidimensional results for the 2d-rotation test. In both cases and
identically to the unidimensional results, increasing parametric size ζ decreases dissipa-
tion, as evidenced by the better-preserved empty region in the middle of the annulus. Yet
again, the improvement appears more significant between ζ = 1 and ζ = 2, although 8s
stencil particles are added for each ζ unit increment to ζ = s. This confirms that there is a
limit after which increasing the number of stencil particles does not provide any additional
visual improvement of the numerical solution, but still costs additional computational re-
sources to perform the advection. Nonetheless, for the 2d-rotation test, we observe a
“squarification”, for lack of a better word, of the annulus (e.g., the annulus appears to have
corners and flat boundaries). This “squarification” is perceptibly worse as ζ increases. Per-
haps the reduced dissipation brings to light this other, formerly hidden, artefact, or it is a
byproduct of the stencil distribution type. In terms of weighting techniques, it is visually
rather difficult to pick a best option. Besides, neither Figure 5.9 nor Figure 5.10 is partic-
ularly suited to determine how well collocated the numerical solution is with the analytical
solution. Thus, we turn to the metrics to address both these shortfalls.

We have twice determined that increasing the parametric size reduces dissipation, and
that ζ = 2 offers the best improvement relative to the number of stencil particles added.
Therefore, we focus on comparing weighting techniques as illustrated by Figure 5.11 and
Figure 5.12, respectively for the 2d-translation test and the 2d-rotation test. Un-
der a purely translational (i.e., linear) flow, sph weighting bests both the other weighting
techniques for all metrics computed. Under a nonlinear flow, this observation holds except
for ζ = 1 and ζ = 2 according to the L∞-norm. So, we can reasonably conclude that sph
weighting probably behaves best under more generic cases. The complete performance
charts for Figure 5.11 and Figure 5.12 are displayed respectively in Figure B.3 and Fig-
ure B.4. We also include the comparison of parametric size ζ in Appendix B.

In summary, we argue that the optimal parameter combination for the ASLAM is
a parametric size ζ = 2 with sph weights. Henceforth, we shall use these settings to
first investigate the stability of our proposed method, and later to compare it to existing
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Figure 5.9: Impact of parametric size and weighting type for the 2d-translation test. At
n = 1200, the analytical solution (top) is compared to numerical solutions computed with
(from left to right) parametric size ζ = 1, 2, 3, 4 and (from top to bottom) uniform, sph,
and gaussian weights. Extrema are better preserved, and less dissipation is incurred with
increasing ζ as evidenced by the darker regions and emptier annuli’s centres. However,
results are very similar across weighting types.
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Figure 5.10: Impact of parametric size and weighting type for the 2d-rotation test. At
n = 1200, the analytical solution (top) is compared to numerical solutions computed with
(from left to right) parametric size ζ = 1, 2, 3, 4 and (from top to bottom) uniform, sph,
and gaussian weights. Increasing ζ better preserves extrema, and is less dissipative as
depicted by the darker regions and emptier annuli’s centres. Yet, it also introduces some
“squarification” of the initial shape. Otherwise, results look similar across weighting types.
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Figure 5.11: Performance by parametric size for the 2d-translation test. Performance
for Figure 5.9 is measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-
norm, and density conservation %ρ for (from left to right) parametric size ζ = 1, 2, 3, 4
with uniform, sph, and gaussian weights respectively in solid yellow, dashed green,
and dotted purple. For all metrics and all sizes, sph weights are more accurate than
both uniform and gaussian weights. The complete performance charts are available in
Figure B.3.
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Figure 5.12: Performance by parametric size for the 2d-rotation test. Performance for
Figure 5.10 is measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-
norm, and density conservation %ρ for (from left to right) parametric size ζ = 1, 2, 3, 4
with uniform, sph, and gaussian weights respectively in solid yellow, dashed green, and
dotted purple. For all metrics and all sizes, except for the L∞-norm with sizes ζ = 1, 2,
sph weights are more accurate than both uniform and gaussian weights. Figure B.4
displays the complete performance charts.
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∆x L1-norm
Convergence

L2-norm
Convergence

L∞-norm
Convergence

Rate Rate Rate

1 7.591e+01 - 4.869e+00 - 6.173e-01 -
1/2 4.109e+01 8.856e-01 3.073e+00 6.641e-01 4.228e-01 5.460e-01
1/4 1.930e+01 1.090e+00 1.618e+00 9.256e-01 2.503e-01 7.562e-01
1/8 8.838e+00 1.127e+00 7.880e-01 1.038e+00 1.234e-01 1.020e+00
1/16 3.249e+00 1.444e+00 3.004e-01 1.392e+00 5.115e-02 1.271e+00

Table 5.2: L1-norm, L2-norm, and L∞-norm error values and convergence rates under grid
refinement. The error values are measured at n = 1200 for the 2d-rotation test. For all
norms, the error decreases with decreasing grid cell size.

advection techniques. So, we study the numerical rate of convergence of our method under
grid refinement using norm-based metrics. To account for the change in grid size ∆x, we
redefine the L1-norm and L2-norm respectively as

L1-norm =
∑

i

abs
(
q|xi
− Q|xi

)
∆, (5.6)

and

L2-norm =

√∑
i

(
q|xi
− Q|xi

)2
∆, (5.7)

where ∆ is the size of a single grid cell. Since we use the previously defined 2d-rotation
test, ∆ corresponds to the area of a grid cell. The above definitions (i.e., Equation 5.6 and
Equation 5.7) ensure that we are measuring the error in an integral sense, independently
of the grid’s resolution. We compute the convergence rate under grid refinement for each
norm-based metric. The results are presented in Table 5.2, which confirms that the error
decreases as the cell size decreases, thus meeting the expected behaviour.

According to the L1-norm and L2-norm, our ASLAM appears to exhibit linear con-
vergence, perhaps even slightly more than linear as can be seen from Figure 5.13. Even
the worst case scenario, represented by the L∞-norm, shares this behaviour. However, our
proposed method is definitely not second-order accurate. While PIC is known to be at
least first-order accurate, and can be improved as in Edwards and Bridson [12], the order
of APIC itself has not been investigated, to our knowledge. In the ASLAM, as illustrated
many times, the error, for all norms considered, clearly depends on the parametric size ζ,
on the weighting technique utilized as well as on the stencil distribution type, whose anal-
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Figure 5.13: Convergence of the ASLAM at n = 1200 for the 2d-rotation test. The error
is computed by the L1-norm in solid blue with circular markers, the L2-norm in solid green
with empty circular markers, and the L∞-norm in solid pink with plus markers. Linear
convergence is plotted in dashed red; the slope of the curve is of interest, not its vertical
positioning. Under all norms, the convergence rate is slightly superior to linear. Note that
the axes are logarithmically scaled.

ysis we discarded early on. As a result, the exact convergence rate of our method may not
be known with greater certainty until further investigations are conducted.

5.3 Comparative Analysis of Advection Methods

Having assessed the ASLAM’s various parameter combinations, we now compare our pro-
posed method to two other unconditionally stable Eulerian advection techniques most
commonly used in computer animation, namely semi-Lagrangian advection (refer to Sec-
tion 3.1 for a reminder) and MacCormack advection (refer to Section 3.2 for a reminder),
both with linear and cubic interpolation. For succinctness, we abbreviate each method in
accordance with Table 5.3.

Furthermore, we reuse the testing scenarios described in Section 5.1. However, since
different methods are assessed, their advection error may not accumulate identically. There-
fore, we analyse their performance in the scope of both the earliest time steps n ∈ [1, 60]
and the full simulation n ∈ [1, 1200]. To further emphasise the difference between both
settings, performance charts are labelled with an icon, presented in Table 5.1, indicating
which time interval is displayed.
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Abbreviation Method

sl-lin Semi-Lagrangian advection with linear interpolation
aslam The ASLAM with linear interpolation and a chessboard

stencil of size ζ = 2 as well as sph weights
mc-lin MacCormack advection with semi-Lagrangian advection as

a stepping scheme and linear interpolation
sl-fc Semi-Lagrangian advection with the monotone cubic inter-

polation of Fritsch and Carlson [19]
mc-fc MacCormack advection with semi-Lagrangian advection as

a stepping scheme and the monotone cubic interpolation of
Fritsch and Carlson [19]

Table 5.3: Abbreviations for the advection methods. The above abbreviations refer to
the advection methods being compared. Save for aslam, we use the hyphen to separate
between the advection scheme itself and the interpolation method used.
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Figure 5.14: Impact of advection method for the 1d-translation test. The analytical
solution in solid red with empty circular markers is compared to the numerical solutions
computed with sl-lin in solid yellow with circular markers, aslam in solid green, mc-lin
in dot-dashed blue, sl-fc in dashed orange, and mc-fc in dotted purple. MacCormack
advection (i.e., mc-lin and mc-fc) is less dissipative than semi-Lagrangian advection
(i.e., sl-lin and sl-fc); aslam only outperforms sl-lin. The monotone cubic interpola-
tion of Fritsch and Carlson [19] (i.e., sl-fc and mc-fc) also reduces dissipation compared
to linear interpolation (i.e., sl-lin, aslam, and mc-lin). However, less dissipative solu-
tions exhibit greater deceleration with respect to the analytical solution.
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Figure 5.15: Performance by metric for the 1d-translation test. Performance for Fig-
ure 5.14 measured by (from left to right) the L1-norm, the L2-norm, the L∞-norm, and
density conservation %ρ for sl-lin in solid yellow with circular markers, aslam in solid
green, mc-lin in dot-dashed blue, sl-fc in dashed orange, and mc-fc in dotted purple is
shown for (from top to bottom) n ∈ [1, 60] and n ∈ [1, 1200]. Note that the top row charts
are zoomed-in versions of the area shaded in gray in the bottom row charts. aslam bests
all other methods in terms of norms for the earliest time steps, but sl-lin better conserves
density.

Similar to the parameter assessment, we begin with an example in one dimension.
Figure 5.14 illustrates that the MacCormack advection (i.e., mc-lin and mc-fc) better
preserves the solution’s extrema than the other approaches (i.e., sl-lin, aslam, and sl-
fc). As expected, using a higher-order accurate interpolation scheme (i.e., the monotone
cubic interpolation of Fritsch and Carlson [19]) also reduces the numerical dissipation. We
can see that sl-fc and mc-fc both outperform their linear interpolation counterparts,
sl-lin and mc-lin. Visually, aslam bests sl-lin since the latter almost destroys the gap
between the maximum extrema. Once again, we observe that better-preserved extrema
are less collocated with the analytical solution.

This explains why, as we look at the metrics in Figure 5.15, aslam outperforms all
other methods, for all norm-based metrics, in both the earliest time steps and the full
simulation. Regarding conservation of density, however, it follows in second best place
behind sl-lin, and mc-fc is the worst. We also note that mc-lin performs better than
its cubic counterpart, mc-fc, under all the norms, probably because its extrema are more
collocated with the analytical solution’s.

57



A

T Semi-Lagrangian ASLAM MacCormack

L
in

ea
r

C
u

b
ic

The cubic interpolation of
Fritsch and Carlson [19]
cannot be currently used
in combination with the
ASLAM as the latter re-
quires the interpolation
scheme to be expressible
as a weighted sum (i.e.,
as in Equation 3.6), which
the former cannot satisfy.

Figure 5.16: Impact of advection method for the 2d-translation test. At n = 1200, the
analytical solution (top) is compared to numerical solutions computed using (from left
to right and from top to bottom) sl-lin, aslam, mc-lin, sl-fc, and mc-fc. aslam is
less dissipative than sl-lin, but more dissipative than sl-fc, as evidenced by the better-
preserved annulus’ empty centre. MacCormack advection (i.e., mc-lin and mc-fc) better
preserves extrema as shown by the darker colour, but also exhibits a trailing artefact.
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Figure 5.17: Performance by metric for the 2d-translation test. Performance for Fig-
ure 5.16 measured by (from left to right) the L1-norm, the L2-norm, the L∞-norm, and
density conservation %ρ for sl-lin in solid yellow with circular markers, aslam in solid
green, mc-lin in dot-dashed blue, sl-fc in dashed orange, and mc-fc in dotted purple
is shown for (from top to bottom) n ∈ [1, 60] and n ∈ [1, 1200]. Note that the top row
charts are zoomed-in versions of the area shaded in gray in the bottom row charts. For
norm-based metrics, MacCormack advection (i.e., mc-lin and mc-fc) appears best in the
earliest time steps, but aslam and sl-fc perform better considering the full simulation.
In terms of density conservation, no method surpasses sl-lin. Finally, the trailing artefact
previously identified for mc-lin and mc-fc is only present in the conservation of density,
where the final densities are respectively over 140% and 180% of the initial value.

In two dimensions, we first consider the 2d-translation test. aslam further reduces
dissipation compared to sl-lin as evidenced by the annulus’ better-preserved empty region
seen in Figure 5.16. However, it is not superior to the same advection method with a
higher-order accurate interpolation scheme (i.e., sl-fc). Under the 2d-translation test,
mc-lin and mc-fc introduce some trailing artefact. More notably, with the higher-order
accurate interpolation scheme, mc-fc aggravates the visual artefact. As a result, we can
reasonably claim that aslam better safeguards the integrity of the annulus’ shape although
the MacCormack advection (i.e., mc-lin and mc-fc) undeniably appears to preserve better
the maximum extrema as evidenced by the darker colour of the corresponding annuli.

As shown in Figure 5.17, while aslam outperforms sl-lin in the L1-norm and L2-
norm, it is not the case in the L∞-norm if only the earliest time steps are considered.
Moreover, aslam appears no better than the other methods (i.e., sl-fc, mc-lin, and
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mc-fc). However, if we look at the full simulation, we can see that aslam closely follows
sl-fc, and may even be second best, even in terms of density conservation. Regarding
the trailing artefact observed in Figure 5.16 for mc-lin and mc-fc, it is interestingly
not reflected in the norm-based metrics. Indeed, in the earliest time steps, MacCormack
advection (i.e., mc-lin and mc-fc) bests all other methods, except for sl-fc in the L∞-
norm. In the full simulation, variations of the error may not be sufficient to explain the
trailing artefact since other methods also exhibit comparable variations, but no artefact.
Nonetheless, the worsening of the trailing artefact is apparent in the norm-based metrics,
which indicate that, rather counter-intuitively but consistently with the observations, mc-
lin outperforms mc-fc. Yet, one could reasonably argue that the artefact is mirrored
in the density conservation metric, where the performance of the MacCormack advection
(i.e., mc-lin and mc-fc) is below that of the semi-Lagrangian advection (i.e., sl-lin and
sl-fc) and aslam.

For the 2d-rotation test, results are shown in Figure 5.18. The MacCormack advec-
tion (i.e., mc-lin and mc-fc) yields extremely good visual results, superior to aslam’s
unlike in the 2d-translation test. Both the empty region as well as the maximum values
look very similar to the analytical annulus, and no artefact is seen. Otherwise, aslam posi-
tions itself between sl-fc, which is less dissipative as seen from the annulus’ darker colour,
and sl-lin, which is more dissipative as evidenced by the disappearing empty centre of
the annulus.

In terms of norm-based metrics for the 2d-rotation test, MacCormack advection
(i.e., mc-lin and mc-fc) would be considered the best, as opposed to semi-Lagrangian
advection (i.e., sl-lin and sl-fc) and aslam, as shown in Figure 5.19. Except for the
L∞-norm where mc-lin results in a lower error, mc-fc performs better. aslam again out-
performs sl-lin in the L∞-norm and L2-norm, but not in the L1-norm. No method appears
especially good at preserving density. In the full simulation, we observe an oscillation of
the curves associated with sl-fc, mc-lin, and mc-fc around n = 600, when the annulus is
restored to its initial configuration. In light of this, sl-fc is the best at preserving density,
bringing density conservation closest to 100% at n = 600, 1200. We note that MacCormack
advection (i.e., mc-lin and mc-fc) does increase the total density significantly as in the
2d-translation test. Hence, the increase in density described in Figure 5.17 cannot be
explained solely by the presence of the artefact sighted in Figure 5.16.

To conclude this section, it is clear that aslam almost always outperforms sl-lin,
except perhaps in terms of density conservation. Otherwise, it is both visually and quan-
titatively superior. Given the restrictions regarding monotonicity when using higher-order
accurate interpolation schemes, which have yet to be thoroughly investigated, aslam can
be an interesting alternative to using a higher-order accurate interpolation with semi-
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Figure 5.18: Impact of advection method for the 2d-rotation test. At n = 1200, the ana-
lytical solution (top) is compared to numerical solutions computed using (from left to right
and from top to bottom) sl-lin, aslam, mc-lin, sl-fc, and mc-fc. The MacCormack
advection (i.e., mc-lin and mc-fc) is superior to all other methods in returning the an-
nulus to its original shape and position. aslam is still less dissipative than sl-lin, but, in
this regard, it is also outdone by sl-fc.

61



R L1-norm L2-norm L∞-norm %ρ

Z
For the 2d-rotation test, the analytical solution is only
known for n = 600, 1200.

10 20 30 40 50 60
n

99.5

100.0

100.5

101.0

101.5

102.0

102.5

103.0

103.5
sl-lin
aslam
mc-lin
sl-fc
mc-fc

F

600 1200
n

0

10

20

30

40

50

60

70
sl-lin
aslam
mc-lin
sl-fc
mc-fc

600 1200
n

0

1

2

3

4

5 sl-lin
aslam
mc-lin
sl-fc
mc-fc

600 1200
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 sl-lin
aslam
mc-lin
sl-fc
mc-fc

200 400 600 800 1000 1200
n

95

100

105

110

115

120

sl-lin
aslam
mc-lin
sl-fc
mc-fc

Figure 5.19: Performance by metric for the 2d-rotation test. Performance for Figure 5.18
is measured by (from left to right) the L1-norm, the L2-norm, the L∞-norm, and density
conservation %ρ for sl-lin in solid yellow with circular markers, aslam in solid green,
mc-lin in dot-dashed blue, sl-fc in dashed orange, and mc-fc in dotted purple. For the
conservation of density, note that the top row chart is a zoomed-in version of the area
shaded in gray in the corresponding bottom row chart. In terms of norms, MacCormack
advection (i.e., mc-lin and mc-fc) is better than semi-Lagrangian advection (i.e., sl-lin
and sl-fc) and aslam. However, in terms of density conservation, sl-fc is best, almost
preserving the total initial density at n = 600, when the annulus is brought back to its
original setting. Besides, aslam is the only method not to show oscillations in density
conservation, steadily increasing instead.
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(a) (b)

Figure 5.20: Initial conditions for a rising plume scenario. (a) shows density ρ on a
white-to-black coloured scale, mapping ρ ∈ [0, 1], while (b) shows temperature T on a
blue-to-red coloured scale, mapping T ∈ [−100, 100]. The emitter has density ρ = 0.5 and
temperature T = 50; the background temperature is T = 5. Solid boundary conditions on
all four walls of the domain are depicted in red. Velocity is taken to be zero initially on all
the simulation domain.

Lagrangian advection (i.e., sl-fc), although it does not produce as high-quality results.
On the other hand, the MacCormack advection, regardless of the interpolation scheme with
which it is coupled (i.e., mc-lin or mc-fc), is better at preserving extrema than all the
other methods considered. Since MacCormack advection’s performance has been shown to
be quite dependent on the flow, we are reserving for later a more detailed judgement on
whether it is superior or not to our method.

5.4 Practical Application Scenario

We compare the proposed ASLAM to different advection methods (i.e., the same as the ones
presented in Section 5.3, with the same abbreviations too) in a rising plume scenario. A
source is placed at the bottom of a closed box, and emits warm smoke for half the simulation
time (i.e., for 600 time steps). The initial conditions are illustrated in Figure 5.20. Note
that, given that we have an even number of grid cells (i.e., 40 per dimension), the setting
is not entirely symmetric. Both scalar quantities (i.e., density and temperature) are stored
on cell-centred grids while the velocity, the only vector quantity, is stored on a staggered
grid. In this application scenario, the smoke’s density as well as the fluid’s temperature
and velocity all are advected quantities.
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The simulation proceeds as outlined in Algorithm 2.1. External forces include gravity
and buoyancy as approximated in Fedkiw et al. [14]. The buoyancy model of Fedkiw
et al. [14] accounts for the effects due to temperature (e.g., hot air rises while cold air sinks)
and density (e.g., heavy smoke falls) without interfering with the pressure component of
the simulation. Therefore, the smoke remains incompressible.

We focus our analysis on the first half of the simulation, when the smoke source emits,
but the second half of the simulation is presented in Figure B.7. Resulting density fields
for the first half of the simulation are presented in Figure 5.21.

At the beginning of the simulation, the different methods yield smoke plumes resembling
one another, but the visual discrepancy increases as time progresses, making it harder
to compare the results. However, it is evident that, identically to the testing scenarios
discussed previously, aslam is less dissipative than sl-lin. The resulting plume is less
fuzzy, and shows more details especially as the box fills with smoke. In this regard, we can
safely claim that the MacCormack advection, regardless of the interpolation scheme used
(i.e., mc-lin or mc-fc), is less dissipative than both semi-Lagrangian advection (i.e., sl-lin
and sl-fc) and aslam. It better preserves extrema as evidenced by the darker-coloured
bow-shaped part of the plume. Additionally, the corresponding plumes (i.e., mc-lin or
mc-fc) take longer to reach the top of the box, and show more fine details. Yet, for mc-fc,
the resulting plume does not look quite natural. In the later frames (i.e., bottom rows),
we can see a rather unsmooth pattern which degenerates moving onwards (not shown in
Figure 5.21, but in Figure B.7). aslam is comparable to sl-fc. They exhibit comparable
levels of detail, but one might argue that aslam is slightly blurrier although it is not
significant.

The rising plume scenario results are consistent with the analysis of the results obtained
in the 1d-translation test, 2d-translation test, and 2d-rotation test. aslam sur-
passes sl-lin, and is in close competition with sl-fc. However, in our opinion, the mc-lin
produces the less dissipative and more detailed results. We notably prefer it to mc-fc,
which amplifies and/or generates potential unnatural-looking artefacts.

5.5 Additional Investigations

In Chapter 4, we mentioned that the ASLAM only uses a first-order Taylor series approxi-
mation in the update (refer to Equation 4.1 for a reminder). We briefly discussed including
more terms in a PolyPIC fashion [20], but one could wonder if simply using stencil particles
without the first derivative term (i.e., involving the descriptor c and, indirectly, the gra-
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sl-lin aslam mc-lin sl-fc mc-fc

Figure 5.21: Impact of advection method on a rising plume scenario. Frames at (from
top to bottom) n = 120, 240, 360, 480, 600 from a rising smoke plume in a closed box (in
solid red) are simulated using (from left to right) sl-lin, aslam, mc-lin, sl-fc, and mc-
fc. mc-lin and mc-fc show more details earlier on than the other methods, but mc-fc
develops some visual artefacts. In particular, sl-lin is the most dissipative while aslam
grows to be comparable to sl-fc. Subsequent frames are shown in Figure B.7.
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Figure 5.22: Comparison between sl-lin, aslam-0, and aslam. The numerical solutions
at n = 60 to (from top to bottom) the 2d-translation test and the 2d-rotation test
are computed using (from left to right) sl-lin, aslam-0, and aslam. For both tests
considered, aslam-0 is clearly overly dissipative, even sl-lin is best.

dients of the weights) would also yield some improvement over standard semi-Lagrangian
advection. In such a case, the update would be

qn+1
∣∣
xi

=
1∑

xs∈S
wp→i|xs

∑
xs∈S

(
qn|xb

s

)
wp→i|xs

. (5.8)

Equation 5.8 amounts to a super-sampled form of semi-Lagrangian advection, which we
nickname aslam-0. We test this hypothesis with a chessboard stencil of parametric
size ζ = 2 with sph weights, and the results are presented in Figure 5.22 for n = 60.

It is obvious that not including the first derivative term yields more dissipative results
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for both the 2d-translation test and the 2d-rotation test. This can be explained by
the fact that Equation 5.8 amounts to a simple weighted average. We know that addi-
tional averaging operations lead to increased smoothing, which is what we are observing
in Figure 5.22 after which only 60 time steps are completed. Of course, from a Tay-
lor series approximation perspective, Equation 5.8 is a less accurate approximation than
Equation 4.1, which directly translates into poorer and overly dissipative results. Further-
more, it is clear that simply adding stencil particles is not equivalent to increasing grid
resolution.

In another short experiment, we test if the ASLAM could replace standard semi-
Lagrangian advection in the MacCormack advection algorithm (refer to Algorithm 3.3
for a reminder). Since the ASLAM is also unconditionally stable due to clamping, the
corresponding MacCormack advection, which we refer to as mc-aslam, would also be
unconditionally stable. We use a chessboard stencil of parametric size ζ = 2 and sph
weights as parameters for the ASLAM as a stepping scheme. Implementation-wise, com-
bining the ASLAM with MacCormack advection requires some modifications.

Recall that we clamp the result of the update produced by Equation 4.1 to prevent
under/overshooting with respect to the enclosing grid nodes xbe (refer to Figure 4.1 for
a reminder). This clamping clearly modifies the advection error of the ASLAM. Since
the MacCormack scheme uses said error, we remove the ASLAM’s clamping to produce
a better estimate of the advection error incurred by the ASLAM. However, we keep the
clamping applied after the MacCormack advection, whose purpose is also to prevent similar
under/overshooting.

Bidimensional results, shown in Figure 5.23, are extremely puzzling, hinting at the fact
that combining MacCormack advection with the ASLAM as a stepping scheme may not be
as trivial as it sounds. We can see that mc-aslam results in some serious problems. After
a certain number of time steps n < 60, the annulus stops moving, appearing unaffected by
the flow in both the 2d-translation test and the 2d-rotation test. Upon investigation
of this phenomenon, we note that mc-aslam ends up requiring clamping on all grid nodes.
This drives the simulation into a stationary state where the post-advection grid is identical
to the pre-advection grid. This state leads the scheme into an infinite loop with no visible
effect, regardless of the flow.

Since clamping is only used when the advection error introduces under/overshooting,
we decided to bring back the clamping in the ASLAM step in a new mc-aslam-clamped
combination, although we know that it tampers the “real” advection error. The results are
shown in Figure 5.24. Obviously, this is not a good idea as evidenced by the very disturbing
artefacts, which initially start as a mere “squarification”, and quickly overtake the simula-
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Figure 5.23: Comparison between mc-lin, mc-aslam, and aslam. The numerical solu-
tions at n = 60 to (from top to bottom) the 2d-translation test and the 2d-rotation
test are computed using (from left to right) mc-lin, mc-aslam, and aslam. After a few
time steps, the mc-aslam simulation gets trapped in a stationary state, where clamping
from the MacCormack scheme annihilates the effect of advection, preventing the annulus
from moving.
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Figure 5.24: Comparison between mc-lin, mc-aslam-clamped, and aslam. The nu-
merical solutions at n = 600 to (from top to bottom) the 2d-translation test and the
2d-rotation test are computed using (from left to right) mc-lin, mc-aslam-clamped,
and aslam. In mc-aslam-clamped, restoring clamping in the ASLAM as a stepping
scheme clearly produces some disturbing visual artefacts aggravated with time and, in this
case, by periodic boundaries.
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tion. In Figure 5.24, mc-aslam-clamped’s unnatural results are further exacerbated by
the periodicity of the boundaries.

From these simple experiments, it is evident that combining the ASLAM with the
MacCormack advection is not trivial, and, if pursued, will require a more detailed anal-
ysis of both methods. Among others, we believe that the stencil particles, due to their
fixed starting locations, may break the correlation between the error incurred during the
forward advection and the backward advection of the MacCormack scheme. This poten-
tially makes the ASLAM incompatible with predictor-corrector algorithms as described
in Section 3.2. Moreover, because the ASLAM is more computationally expensive than
semi-Lagrangian advection, regardless of the interpolation scheme used, the improvement
produced by an ASLAM-MacCormack union would have to be impressive to justify the
choice of the ASLAM as a stepping scheme instead of semi-Lagrangian advection.
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Chapter 6

Conclusion

In this thesis, we presented an affine semi-Lagrangian advection method (ASLAM), a
semi-Lagrangian particle-free advection scheme based on an adaptation of APIC to the
Eulerian framework. As illustrated for several testing scenarios and a practical application
scenario, the ASLAM is less dissipative than standard semi-Lagrangian advection with
linear interpolation, which was introduced in computer graphics by Stam [35]. Nevertheless,
it is simultaneously poorer at successfully enforcing conservation of the advected scalar
quantities. In comparison to the MacCormack advection and to semi-Lagrangian advection
with the use of higher-order interpolation schemes, our ASLAM fails to reduce numerical
dissipation as much. Yet, qualitative results on the rising plume scenario show that it
is competitive with semi-Lagrangian advection with the monotone cubic interpolation of
Fritsch and Carlson [19]. However, it is equivalently good or better than those schemes at
conserving advected scalar quantities.

Since it substitutes fixed sample points for the set of traceable particles in hybrid and
Lagrangian approaches, our ASLAM is particularly suited for the simulation of gases,
where no interface or surface needs to be reconstructed. Despite these supplementary
sample points, which are treated semi-Lagrangianly, the ASLAM offers a better alterna-
tive than super-sampled advection, which we demonstrated to be more dissipative. As a
matter of fact, the APIC-based update of Equation 4.1 using stencil S is the sole feature
distinguishing the ASLAM from standard semi-Lagrangian advection. The ASLAM is oth-
erwise composed of repeated semi-Lagrangian advections on samples xs. As such, better
conservation of advected quantities could be possibly achieved by using a fully conservative
semi-Lagrangian advection scheme, such as the one of Lentine et al. [30].

While it is possible to configure our proposed ASLAM with different parameters, our
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investigation outlined an “optimal” parameter combination, which accounts for both quali-
tative and quantitative performances. Moreover, for the chosen parameter combination, we
have shown our method’s stability as it reaches linear convergence. In light of the discus-
sion regarding said parameters, guidelines can be derived to further develop the ASLAM’s
parameter space. For instance, we are aware of the limitations related to increasing the
parametric size ζ, but this was closely tied to the stencil particle distribution analysed.

Although we briefly hinted, in Section 4.1, at several possible alternative stencil particle
distributions, this topic remains largely unexplored. Among others, we believe that a less
regular distribution than the chessboard type, like a uniformly distributed noise, may
help diminishing/eradicating the “squarification” introduced by the ASLAM. Since the
stencil particles are fixed, replacing the stencil particle distribution does not affect the
complexity of the algorithm, but may boost (or equally likely tank) the accuracy of the
ASLAM.

6.1 Future Work

An evident extension to our work would be to use the ASLAM in a tridimensional scenario.
While we expect the stencil S to naturally extend to an additional spatial dimension, as
it did from the unidimensional tests to the bidimensional tests, a parameter combination
other than the “optimal” one identified in this thesis may be best. Should the ASLAM
be used in tridimensional applications, this would have to be investigated. Moreover,
our worked focused specifically on gases, but our method can presumably substitute for
advection in a number of scenarios, including the simulation of liquids.

In presenting several interpolation schemes, we have informally tackled the idea of
monotonicity. It remains to be determined, in the context of fluid simulations for graphics
applications, whether clamping a non-monotonic interpolation scheme is preferable or not
to using a scheme with a built-in monotonicity guarantee. Clamping inevitably introduces
discontinuities in the derivatives within the clamped interpolated interval, but innately-
monotone schemes may also lead to derivative discontinuities at the boundaries between
grid cells.

Regardless, it is evident that defining a higher-order accurate monotone interpolation
scheme is not trivial. While such schemes exist as evidenced by [18, 19] in one dimension
and [5, 6] (with additional restrictions on the data) in two dimensions, an important
issue arising is whether a dimension-specific interpolation scheme should be preferred to a
unidimensional scheme applied along each dimension. This question is particularly relevant
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as the number of dimensions is increased to three. Indeed, given how non-trivial producing
a monotone bicubic patch is, one can reasonably expect the difficulty to increase for a
monotone tricubic patch, what is more without constraints on the data.

The ASLAM results shown in Chapter 5 were all produced using linear interpolation to
compute weights wi→p from grid to fictitious particles. We can assume that higher-order
interpolation schemes could be used to further decrease numerical dissipation, as long as the
weights satisfy the conditions outlined by the original APIC method (i.e., Equation 2.25).
This, however, remains to be investigated, especially in light of the challenges inherent to
using higher-order interpolation schemes. Hence, finding a unidimensional monotone cubic
interpolation scheme which does not exhibit the dimension ordering issue remains relevant.
However, the problem of ordering-dependency could be discarded if one can prove that the
ordering of the dimensions does not matter, or that it is of little significance.

Furthermore, our proposed ASLAM requires an interpolation scheme which can be
expressed as a weighted sum as in Equation 3.6. Thus, the choices of interpolation schemes
are severely limited. Currently, appropriate schemes need to be monotone (preferably
without clamping), be independent of dimension ordering or tailored to a given number
of dimensions, and fit the form given by Equation 3.6. Linear interpolation meets all
aforementioned criteria, but none of the other schemes presented in this thesis do.

Alternatively, we could investigate a way to perform the ASLAM weightlessly or, at
the very least, redefine the locally affine velocity descriptor c. Indeed, if said descriptor c
were defined without the gradient of the interpolation weights, the constraints on the
interpolation scheme would be lessened, especially regarding having to be expressed as
a weighted sum. As aforementioned, PolyPIC by Fu et al. [20] also offers an interesting
avenue to further diminish artificial dissipation, and to refine the descriptor c.

Another interesting research avenue would be to leverage, via hybridization in a narrow-
band FLIP [15] fashion, the compatible nature of the ASLAM and “true” (i.e., Lagrangian)
APIC methods, which are already hybrids. In this yet hypothetical setup, the Lagrangian
APIC is used near the liquid’s surface whilst the Eulerian ASLAM is applied on the interior
of the simulation domain. Given the conceptual closeness of both techniques, the resulting
hybrid method seems likely to simplify the transitions between Lagrangian and Eulerian
regions of the domain as the surface moves.
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[38] Andrew Staniforth and Jean Côté. Semi-lagrangian integration schemes for atmo-
spheric models – a review. Monthly Weather Review, 119(9):2206–2223, 1991.

[39] Michael Steffen, Robert M. Kirby, and Martin Berzins. Analysis and reduction of
quadrature errors in the material point method (mpm). International Journal for
Numerical Methods in Engineering, 76(6):922–948, 2008.

[40] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
A material point method for snow simulation. ACM Trans. Graph., 32(4):102:1–
102:10, July 2013.

[41] Geoffrey K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-Scale Circulation. Cambridge University Press, Cambridge, UK; New York,
2006.

[42] John F. Wendt, editor. Computational Fluid Dynamics: An Introduction. A von
Karman Institute Book. Springer, Berlin, 3rd ed. edition, 2009.

[43] Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. An advection-reflection
solver for detail-preserving fluid simulation. ACM Trans. Graph., 37(4):85:1–85:8,
July 2018.

[44] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In ACM SIGGRAPH
2005 Papers, SIGGRAPH ’05, pages 965–972, New York, NY, USA, 2005. ACM.

77



APPENDICES

78



Appendix A

Cubic Interpolation Schemes

In this appendix, we discuss several cubic interpolation schemes. Most formulations cov-
ered, except the cubic B-spline and bicubic interpolations, follow Equation 3.12, the general
model, introduced in Chapter 3, for piecewise cubic polynomials. Equation 3.12 can be
derived using divided differences as in de Boor [9]. The k-th divided difference of a func-
tion f at nodes xi, . . . , xi+k is defined to be the leading coefficient of the polynomial of
order k + 1 agreeing with f at xi, . . . , xi+k

[xi, . . . , xi+k]f =


f (k)(xi)

k!

if xi = . . . = xi+k

and f ∈ C(k),
[xi,...,xr−1,xr+1,...,xi+k]−[xi,...,xs−1,xs+1,...,xi+k]

xs−xr if xr 6= xs.

(A.1)

Often, xr is taken to be xi, and xs is taken to be xi+k yielding

[xi, . . . , xi+k]f =

{
f (k)(xi)

k!
if xi = . . . = xi+k and f ∈ C(k),

[xi+1,...,xi+k]−[xi,...,xi+k−1]

xi+k−xi
otherwise.

(A.2)

Milne-Thomson [31] presents a very useful generalized formula for the divided difference
when nodes are repeated as in x1, . . . , x1︸ ︷︷ ︸

η1

, . . . , xp, . . . , xp︸ ︷︷ ︸
ηp

[x1, . . . , x1, . . . , xp, . . . , xp] =
1

(η1 − 1)! · . . . · (ηp − 1)!

∂(η1+...+ηp−p)

∂x
(η1−1)
1 . . . ∂x

(ηp−1)
p

[x1, . . . , xp]

(A.3)
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To derive Equation 3.12, we consider a single interval [xi, xi+1] on which a cubic polyno-
mial f satisfies

f |xi = q|xi ,
f |xi+1

= q|xi+1
,

f ′|xi = δi,

f ′|xi+1
= δi+1.

(A.4)

We further define ∆x = xi+1 − xi. In de Boor [9], the Newton form is used to retrieve the
coefficients of f

f |x = f |xi + (x− xi) [xi, xi]f + (x− xi)2 [xi, xi, xi+1]f

+ (x− xi)2 (x− xi+1) [xi, xi, xi+1, xi+1]f,
(A.5)

where

[xi, xi]f = f ′|xi = δi, (A.6a)

[xi, xi, xi+1]f =
([xi, xi+1]f − [xi, xi]f)

∆x

=
1

∆x

(
[xi+1]f − [xi]f

∆x
− δi

)
=

1

∆x

(
f |xi+1

− f |xi
∆x

− δi

)

=
1

∆x

(
q|xi+1

− q|xi
∆x

− δi

)

=
1

∆x

(
Di

∆x
− δi

)
,

(A.6b)

[xi, xi, xi+1, xi+1]f =
([xi, xi+1, xi+1]f − [xi, xi, xi+1]f)

∆x

=
1

(∆x)2 ([xi+1, xi+1]f − [xi, xi+1]f − [xi, xi+1]f + [xi, xi]f)

=
1

(∆x)2

(
f ′|xi+1

− 2Di

∆x
+ f ′|xi

)
=

1

(∆x)2

(
δi+1 −

2Di

∆x
+ δi

)
.

(A.6c)
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Remember that xi+1 = xi + ∆x. By carefully substituting Equation A.6 into Equation A.5,
and rearranging the terms to express f in terms of shifted powers, we get

f |x = q|xi + (x− xi) δi +
(x− xi)2

∆x

(
Di

∆x
− δi

)
+

(x− xi)2 (x− xi+1)

(∆x)2

(
δi+1 −

2Di

∆x
+ δi

)
= q|xi + (x− xi) δi +

(x− xi)2

∆x

(
Di

∆x
− δi +

(x− xi+1)

(∆x)

(
δi+1 −

2Di

∆x
+ δi

))
= q|xi + (x− xi) δi +

(x− xi)2

∆x

(
Di

∆x
− δi +

(x− xi −∆x)

(∆x)

(
δi+1 −

2Di

∆x
+ δi

))
= q|xi + (x− xi) δi +

(x− xi)2

∆x

(
3Di

∆x
− 2δi − δi+1 +

(x− xi)
(∆x)

(
δi+1 − 2

Di

∆x
+ δi

))
= q|xi + (x− xi) δi +

(x− xi)2

∆x

(
3Di

∆x
− 2δi − δi+1

)
+

(x− xi)3

(∆x)2

(
δi+1 − 2

Di

∆x
+ δi

)
= q|xi + x̄ (δi∆x) + x̄2 (3Di − 2δi∆x− δi+1∆x) + x̄3 (−2Di + δi∆x+ δi+1∆x) ,

(A.7)
which is exactly Equation 3.12. If Di and δi are defined by Equation 3.13 and Equation 3.14
respectively, then the general form for piecewise cubic polynomial interpolation can be
rewritten in terms of weights, as in Bridson [4], to fit the form given by Equation 3.6:

wi−1 = − x̄
2

(x̄− 1)2 ,

wi = 1 +
1

2
x̄2 (3x̄− 5) ,

wi+1 = − x̄
2

(
3x̄2 − 4x̄− 1

)
,

wi+2 =
x̄2

2
(x̄− 1) .

(A.8)

Note that, depending on the choice of Di and, most importantly, of δi and δi+1, it is not
always trivial, or even possible, to express the interpolation scheme as a weighted sum.

A.1 Modified Catmull-Rom Interpolation

Although the monotonicity of the interpolation scheme proposed by Fedkiw et al. [14] has
been disproved, the scheme can still be used along with appropriate clamping. The pseudo-
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Case wi−1 wi wi+1 wi+2

C1 0 1 0 0

C2 0 (x̄− 1)2 (2x̄+ 1) x̄2 (3− 2x̄) 0

C3 0 1 + x̄2

2
(3x̄− 5) x̄2 (3− 2x̄) x̄2

2
(x̄− 1)

C4 − x̄
2

(x̄− 1)2 (x̄− 1)2 (2x̄+ 1) x̄
2

(3x̄2 − 4x̄− 1) 0

C5 Weights can be taken as in Equation A.8

Table A.1: Weights for the modified Catmull-Rom interpolation. The weights for the
different cases of the modified Catmull-Rom interpolation of Fedkiw et al. [14] result from
enforcing Equation 3.15. Clamping may be needed if Equation 3.18 is not satisfied.

code outlined by Kim [29] translates the necessary conditions, given by Equation 3.15, into
the five following cases, with accompanying weights shown in Table A.1.

C1: Di = 0
This is a constant interval since it implies that xi = xi+1; thus, we set δi = δi+1 = 0.

C2: Di 6= 0, sign (Di) 6= sign (δi), and sign (Di) 6= sign (δi+1)
Both xi and xi+1 are extrema; thus, we set δi = δi+1 = 0.

C3: Di 6= 0 and sign (Di) 6= sign (δi)
xi is an extremum; thus, we set δi = 0.

C4: Di 6= 0 and sign (Di) 6= sign (δi+1)
xi+1 is an extremum; thus, we set δi+1 = 0.

C5: Otherwise.

Inherently to these five cases, the weights now depend on the values at all xh ∈ H.
Implementation-wise, this prevents the abstraction of grid’s values when interpolating,
but, since clamping is required to preserve monotonicity, the grid’s values already need to
be known.
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A more critical repercussion of this modified version of Catmull-Rom interpolation
is the loss of commutativity of the weights for each dimension. Indeed, the ordering of
the dimensions along which interpolation is performed is now relevant, and impacts the
numerical results of the overall scheme. For the example depicted in Figure 3.3b, the
ordering of the dimensions is only irrelevant if x̄ = ȳ as evidenced by the interpolation
formulas obtained by substituting the appropriate weights in Equation 3.6:

q|x = −ȳ3 + ȳ2 + ȳ + 1 along x first, then along y,

q|x = −x̄3 + x̄2 + x̄+ 1 along y first, then along x.
(A.9)

While it is unclear whether this loss of commutativity is visually significant or not, this
dilemma only arises from modifying the Catmull-Rom interpolation scheme as in Fedkiw
et al. [14].

To conclude this section, it would perhaps be worth spending more time investigating
the relevance of the interpolation scheme proposed by Fedkiw et al. [14], given that it is
not monotone unless clamping is used, and that we do not know the impact of dimension
ordering on the interpolation.

A.2 Bridson’s Cubic Interpolation

In the second edition of [4], Bridson presents a cubic interpolation scheme as a less dissipa-
tive alternative to the approach of Fedkiw et al. [14]. While the proposed scheme does not
exhibit the dimension ordering oddness which arose from modifying Catmull-Rom interpo-
lation, it remains non-monotonic (refer to Figure 3.5 for a reminder). Assuming ∆x = 1,
this scheme’s weights are given by:

wi−1 = − x̄
3

+
x̄2

2
− x̄3

6
,

wi = 1− x̄2 +
x̄3 − x̄

2
,

wi+1 = x̄+
x̄2 − x̄3

2
,

wi+2 =
x̄3 − x̄

6
.

(A.10)

Inspection of the weighting functions reveals that this scheme is not monotone. Indeed, like
the interpolation scheme proposed by Fedkiw et al. [14], some weights are not non-negative.
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Upon observation of this fact, Bridson [4] says:

[The interpolated signal] slightly goes below zero, although the initial data was
all non-negative. At a theoretical level, with certain nonlinear equations (with
additional terms beyond just advection), this raises a greater risk of instabilities
developing – but in practice, for the fluid solvers this book discusses, it appears
not to be an issue.

Hence, as also noted by Bridson, clamping is required to prevent under/overshooting. To
our knowledge, no one has investigated whether clamping is theoretically better than using
a monotone interpolation scheme. We know only that, in practice, clamping works. The
real question here is perhaps how to determine the correctness of an interpolated result.
Indeed, most often, we do not have the analytical solution to the transport problems of
interest. Thus, we cannot construct the appropriate polynomial to guarantee a specific
order of accuracy. In the context of smoke simulation, a vorticity-preserving interpolation
scheme yielding swirlier motion would perhaps be most useful, even if it is not accurate.

A.3 Fritsch-Carlson Interpolation

The approach proposed by Fritsch and Carlson [19] is monotone by design. In this thesis,
we mimic it in choosing the subregion of monotonicity M (i.e., Equation 3.20) based on
their assessment that it produces more “visually pleasing” results than the alternative
choices they propose. However, we would like to point out that this conclusion may have
been biased by how Fritsch and Carlson determine the modification to the derivative each
region warrants.

When required, the derivatives’ update is performed by finding the intersection between
the boundary of the monotonicity subregion and the line joining the non-monotonic (αi, βi)
pair to the origin of the αβ-space (refer to Figure 3.6 for a reminder). For the monotonicity
subregionM, described by Equation 3.20, the intersection corresponds to the closest point
on the subregion’s boundary and, hence, to the smallest possible change of the derivatives’
values. This unfairly favours the origin-centred circular region compared to the other
monotonicity subregions proposed in Fritsch and Carlson [19].

In our opinion, finding the closest point to the boundary of each monotonicity subregion
considered would have been a more objective way to compare said subregions. Intuitively,
we believe that minimizing the changes in derivatives would be preferable, not only because
derivative updates directly translate into slightly more computation, but also because each
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Node Knot Vector(s)

Internal {xi−2, xi−1, xi, xi+1, xi+2}
Left boundary {xi, xi, xi, xi+1, xi+2}+ {xi, xi, xi, xi, xi+1}

Right boundary {xi−2, xi−1, xi, xi, xi}+ {xi−1, xi, xi, xi, xi}
Left external {xi−1, xi−1, xi, xi+1, xi+2}

Right external {xi−2, xi−1, xi, xi+1, xi+1}

Table A.2: Knot vectors to generate the basis functions for the cubic B-spline interpolation.
To generate the different basis functions B (x̃), presented in Table A.3, different nodes use
different knot vectors; some even use more than one. Left external nodes are one node
away from the left boundary while right external nodes are one node away from the right
boundary. Knot vectors are given by Steffen et al. [39].

interval should be handled as similarly as possible. Hence, the monotonicity subregion
corresponding to the square [0, 3] × [0, 3] in αβ-space may be best as the update would
be simpler (i.e., restricting αi and βi to be at most 3). As mentioned in Fritsch and
Carlson [19], it is also the largest subregion satisfying the properties required to ensure
consistency between intervals. Moreover, unlike the nonlinear update described in Chap-
ter 3, this update would be linear, most likely allowing the interpolation scheme to be
expressed as in Equation 3.6 (i.e., a weighted sum). In [18], Fritsch and Butland propose a
method to construct the derivatives such that (αi, βi) ∈ [0, 3]× [0, 3]. If the corresponding
interpolation scheme can be written as a weighted sum, then we could have a cubic version
of the ASLAM.

A.4 Cubic B-Spline Interpolation

In computer graphics, cubic B-spline interpolation has been used along with the material
point method (MPM) as in Stomakhin et al. [40]. In particular, the basis functions B (x̃)
from Steffen et al. [39] can be used as weights, such that cubic B-spline interpolation
satisfies Equation 3.6. Moreover, in higher dimensions, the weights can be expressed as in
Equation 3.7 using dyadic products. In one dimension, the basis functions are splines of
degree 3 with compact support. Steffen et al. [39] provides the knot vectors, as presented
in Table A.2, to derive the basis functions for different grid nodes.

For succinctness, we refer to nodes one node away from any boundary as external
nodes, which allows us to distinguish them from both boundary nodes and internal nodes.
Furthermore, it is convenient to use a normalized position x̃ ∈ [−2, 2], and to generalize
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the notation for the knot vector. For instance, the knot vector for internal nodes can be
expressed as

{xi−2, xi−1, xi, xi+1, xi+2} = {γi, γi+1, γi+2, γi+3, γi+4}
= {−2,−1, 0, 1, 2}.

(A.11)

With this new notation, deriving the basis functions from the knot vectors is simplified.
For internal nodes, we can use the recursive formula of de Boor [9] for B-splines

Bi,k (x) =

(
x− γi

γi−1+k − γi

)
Bi,k−1 (x) +

(
γi+k − x
γi+k − γi+1

)
Bi+1,k−1 (x) , (A.12)

where k is the spline’s order (e.g., k = 4 for cubic B-splines), and the base case is

Bi,1 (x) =

{
1 x ∈ [γi, γi+1],

0 otherwise.
(A.13)

However, the recursive formula of Equation A.12 is ill-suited for knot vectors including
repeated points, due to unavoidable divisions by zero. Fortunately, de Boor [9] also provides
a B-spline definition in terms of divided differences

Bi,k (x) = (γi+k − γi) [γi, . . . , γi+k]b, (A.14)

where
b = (γj − x)k−1

+ j ∈ {i, . . . , i+ k} , (A.15)

with

(x)+ =

{
x x ≥ 0,

0 x < 0.
(A.16)

Using Equation A.12, Equation A.13, Equation A.14, Equation A.15, and Equation A.16,
where appropriate, the cubic basis functions for each node identified in Table A.2 can be
derived. We do not show the complete derivation here, but the results are presented in
Table A.3.

However, as can be observed from Figure 3.5, using these basis functions as weights
in Equation 3.6 does not yield an interpolating curve. Indeed, the resulting curve does
not pass through all the data points, and, therefore, it is only approximating. Catmull
and Rom [7] had already observed that cubic B-splines are approximating rather than in-
terpolating. In the presentation of their work at SIGGRAPH 2018 (see their slides1), Hu

1The slides are available on the first author’s GitHub page: https://github.com/yuanming-hu/
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Node x̃ ∈ [−2,−1] x̃ ∈ [−1, 0] x̃ ∈ [0, 1] x̃ ∈ [1, 2]

Internal (x̃+2)3

6

4−3x̃2(x̃+2)
6

3x̃2(x̃−2)+4
6

(2−x̃)3

6

Left boundary 0 0 3x̃2

2

(
x̃
2
− 1
)

+ 1 (2−x̃)3

4

Right boundary (x̃+2)3

4
1− 3x̃2

2

(
x̃
2

+ 1
)

0 0

Left external 0 (x̃+1)2(7−11x̃)
12

7(x̃3+1)+3x̃(1−5x̃)

12

(2−x̃)3

6

Right external (x̃+2)3

6

7(1−x̃3)−3x̃(5x̃+1)

12

(x̃−1)2(11x̃+7)
12

0

Table A.3: Basis functions for the cubic B-spline interpolation. Different nodes have
different basis functions B (x̃), generated from the corresponding knot vectors shown in
Table A.2. Under periodic boundary conditions, all nodes are taken to be internal nodes.
The basis functions for internal nodes are from Steffen et al. [39].

et al. [24] mentioned similarly and unsuccessfully attempting to use B-spline interpolation
in an APIC setting. They further add that it would not have angular momentum conser-
vation. In light of this, pursuing B-splines interpolation outside a FEM context is all but
promising.

A.5 Bicubic Interpolation

So far, the cubic interpolation schemes discussed could be applied dimension by dimension.
Bicubic interpolation entirely discards the issue of dimension ordering, at the cost of not
easily (or possibly) fitting the form given by Equation 3.6. The scheme, tailored for domains
in two dimensions, is a type of polynomial interpolation, and can be expressed as

f |x =
3∑

m=0

3∑
n=0

am,nx̄
mȳn. (A.17)

where am,n is the coefficient of the product of m-th power of x̄ with the n-th power of ȳ.

taichi_mpm.
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Given the interpolation kernel H, as shown in Figure 3.3b, we know

f |xe
= q|xe

,

∂f

∂x

∣∣∣∣
xe

=
∂q

∂x

∣∣∣∣
xe

,

∂f

∂y

∣∣∣∣
xe

=
∂q

∂y

∣∣∣∣
xe

,

∂2f

∂x∂y

∣∣∣∣
xe

=
∂2q

∂x∂y

∣∣∣∣
xe

.

(A.18)

The information in Equation A.18 allows us to express Equation A.17 as a linear system

f |x =
[
1 x̄ x̄2 x̄3

]
FTAF


1
ȳ
ȳ2

ȳ3

 , (A.19)

where

A =



q|xi,j
q|xi,j+1

∂q
∂y

∣∣∣
xi,j

∂q
∂y

∣∣∣
xi,j+1

q|xi+1,j
q|xi+1,j+1

∂q
∂y

∣∣∣
xi+1,j

∂q
∂y

∣∣∣
xi+1,j+1

∂q
∂x

∣∣
xi,j

∂q
∂x

∣∣
xi,j+1

∂2q
∂x∂y

∣∣∣
xi,j

∂2q
∂x∂y

∣∣∣
xi,j+1

∂q
∂x

∣∣
xi+1,j

∂q
∂x

∣∣
xi+1,j+1

∂2q
∂x∂y

∣∣∣
xi+1,j

∂2q
∂x∂y

∣∣∣
xi+1,j+1


, (A.20)

and

F =


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

 . (A.21)

The bicubic interpolation as described above is not monotone. Therefore, it requires clamp-
ing.

In a follow-up paper, Carlson and Fritsch [5] extend their ideas from [19] to two dimen-
sions, hence establishing necessary and sufficient conditions on the derivatives to engineer a
monotone bicubic interpolating polynomial on rectangular domains. Carlson and Fritsch [5]
explain that defining monotonicity on a bidimensional rectangular domain is not as triv-
ial as the unidimensional counterpart. In particular, they choose to ensure that all slices
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taken parallel to each coordinate axis are monotone, and further require that the data be
consistent. This consistency constraint on the data does not allow for cases where opposite
data points share the same value, but different between both diagonals.

Therefore, the resulting algorithm, which they detail in Carlson and Fritsch [6], cannot
handle some extreme cases: those with potential inflection, or saddle points in the inter-
polating polynomial among others. In addition to having to identify these cases, another
interpolation scheme would be needed to handle them, which raises a question about the
relevance of having monotonicity embedded in the interpolation scheme in the context of
our proposed method.
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Appendix B

Complementary Figures

In this appendix, we provide figures that complement those presented in Chapter 5, whose
structure, when relevant, is mirrored thereafter.

B.1 ASLAM Parameter Assessment

The full performance plots, displaying n ∈ [1, 1200] rather than n ∈ [1, 60], for the testing
scenarios in Section 5.2, are rendered with interval n ∈ [1, 60] shaded in gray.

In one dimension, observations made from Figure 5.6 remain valid in the long run as
shown in Figure B.1. Indeed, the results are consistent across weighting techniques. More-
over, parametric size ζ = 1 distinguishes itself more than parametric sizes ζ > 1. While
density increases, it also seems to stabilize itself after numerous time steps.

The same comments also apply to Figure B.2, which presents the long term results of
Figure 5.8. The results are similar across parametric sizes, with uniform weights being
better for ζ =1 under the norm-based metrics. However, in terms of density conservation,
sph weights best the other two weighting techniques, and uniform weights are the worst.

In two dimensions, we can see that sph weights’ relative improvement in terms of norm-
based metrics decreases with time. The curves for all weighting techniques nearly coincide
with one another as shown in Figure B.3. However, sph weights remain better at conserving
density for both the 2d-translation test and the 2d-rotation test. Conservation of
density for the latter is illustrated in Figure B.4.
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Figure B.1: Full performance by weighting type for the 1d-translation test. Full perfor-
mance for Figure 5.5 measured by (from top to bottom) the L1-norm, the L2-norm, the
L∞-norm, and density conservation %ρ for (from left to right) uniform, sph, and gaus-
sian weights with parametric size ζ = 1, 2, 3, 4 respectively in solid yellow, dot-dashed
green, dashed blue, and dotted purple is consistent with the earliest time steps shaded in
gray. Earliest time steps are also shown in Figure 5.6.
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Figure B.2: Full performance by parametric size for the 1d-translation test. Full per-
formance for Figure 5.7 measured by (from top to bottom) the L1-norm, the L2-norm, the
L∞-norm, and density conservation %ρ for (from left to right) parametric size ζ = 1, 2, 3, 4
with uniform, sph, and gaussian weights respectively in solid yellow, dashed green, and
dotted purple is consistent with the earliest time steps shaded in gray. Earliest time steps
are also shown in Figure 5.8.
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Figure B.3: Full performance by parametric size for the 2d-translation test. Full per-
formance for Figure 5.9 measured by (from top to bottom) the L1-norm, the L2-norm, the
L∞-norm, and density conservation %ρ for (from left to right) parametric size ζ = 1, 2, 3, 4
with uniform, sph, and gaussian weights respectively in solid yellow, dashed green, and
dotted purple is consistent with the earliest time steps shaded in gray. Earliest time steps
are also shown in Figure 5.11.
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Figure B.4: Full density conservation by parametric size for the 2d-rotation test. Full
performance for Figure 5.10 measured by density conservation %ρ for (from left to right)
parametric size ζ = 1, 2, 3, 4 with uniform, sph, and gaussian weights respectively in
solid yellow, dashed green, and dotted purple is consistent with the earliest time steps
shaded in gray. Earliest time steps are also shown in Figure 5.12.

In Section 5.2, we discarded a comparison by weighting type on account that it was
formerly discussed in the unidimensional case. We include it here for thoroughness. Fig-
ure B.5 and Figure B.6 present the performance for the 2d-translation and 2d-rotation
tests respectively. In particular, they focus on the earliest time steps n ∈ [1, 60] since they
were not previously shown. The complete interval n ∈ [1, 1200] is included as an inset with
the first steps shaded in gray, where applicable. The results are consistent across both
tests as well as across weighting techniques. In terms of norm-based metrics, increasing
the parametric size ζ leads to a reduced error. However, it has the reverse effect on density
conservation, which varies less with smaller sizes.

B.2 Practical Application Scenario

In Section 5.4, we presented the practical application scenario of a rising plume in a closed
box. Figure B.7 shows the second half of the simulation. sl-lin is clearly the most
dissipative method with an almost-uniform density distribution towards the end of the
simulation. aslam and sl-fc, which were comparable in the first half of the simulation,
start to diverge noticeably, with sl-fc keeping more details. mc-fc worsens the visual
artefacts introduced earlier in the simulation while mc-lin seems to develop a similar
artefact although to a lesser extent.
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Figure B.5: Performance by weighting type for the 2d-translation test. Performance for
Figure 5.9 measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-norm,
and density conservation %ρ for (from left to right) uniform, sph, and gaussian weights
with parametric size ζ = 1, 2, 3, 4 respectively in solid yellow, dot-dashed green, dashed
blue, and dotted purple agrees with the unidimensional case shown in Figure 5.6. Insets
show n ∈ [1, 1200] with the earliest time steps n ∈ [1, 60] shaded in gray.
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Figure B.6: Performance by weighting type for the 2d-rotation test. Performance for
Figure 5.10 measured by (from top to bottom) the L1-norm, the L2-norm, the L∞-norm,
and density conservation %ρ for (from left to right) uniform, sph, and gaussian weights
with parametric size ζ = 1, 2, 3, 4 respectively in solid yellow, dot-dashed green, dashed
blue, and dotted purple agrees with the unidimensional case shown in Figure 5.6. Insets
show n ∈ [1, 1200] with the earliest time steps n ∈ [1, 60] shaded in gray.
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Figure B.7: Impact of advection method on a rising plume scenario. Remaining frames at
(from top to bottom) n = 720, 840, 960, 1080, 1200 from a rising smoke plume in a closed
box (in solid red) are simulated using (from left to right) sl-lin, aslam, mc-lin, sl-fc,
and mc-fc. mc-fc aggravates the existing visual artefacts while mc-lin starts to develop
some. sl-lin remains the most dissipative. aslam and sl-fc start to diverge, with sl-fc
retaining more details. See Figure 5.21 for the beginning of the simulation.
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