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Abstract 

In the drinking water industry, the transport and release of nutrients such as phosphorus (P) to the 

water column is largely overlooked in reservoir management. Phosphorus is considered the key 

limiting nutrient for algal and cyanobacterial growth, although micronutrients and other 

macronutrients like nitrogen (N) are also important  in cyanobacterial growth and toxin production. 

Thus, an understanding of P and N dynamics in freshwater systems is essential for effective, 

holistic reservoir management to ensure both source water availability and quality. The importance 

of understanding P and N form and mobility is further underscored by their association with natural 

and anthropogenic landscape disturbances. These disturbances can lead to increases in erosion, 

sediment transport, and nutrient bioavailability.  

Consequently, this thesis examined the bioavailability of P from fine sediments, and their role in 

cyanobacterial proliferation in two phases. Phase 1 evaluated geochemical composition, 

particulate P fractionation, and phosphorus mobility from fine sediments collected from two 

watersheds: the Elbow River watershed and the Crowsnest watershed. In the Elbow River 

Watershed, the Elbow River flows into the Glenmore Reservoir. Drum Creek was impacted by the 

2003 Lost Creek wildfire and is located in the Crowsnest watershed. Sediment characterization 

revealed that bioavailable P is highest in Drum Creek, Glenmore Reservoir, and Elbow River, 

respectively. Batch experiments indicated that fine sediment in the Glenmore Reservoir is a source 

of bioavailable P to the water column. Phase 2 investigated the role of sediment-associated 

nutrients to cyanobacterial proliferation. A method for microcosm experiments using amended 

natural waters and sediments was developed and implemented. Results indicated that potential 

toxin-forming M. aeruginosa proliferation can be enhanced by fine sediment, compared to samples 

with no sediment. Unexpectedly, microcosms with Glenmore Reservoir sediment had significantly 

higher cell densities than those treated with Drum Creek sediment, and N concentrations did not 

have any significant effects. 

The laboratory benchtop studies conducted herein demonstrate proof-of-concept that sediment-

associated nutrients can lead to increases of cyanobacterial proliferation. This type of experiment 

and its results can be an insightful tool to bridge gaps between understanding M. aeruginosa 

proliferation from a laboratory to natural settings. 
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 Introduction 

1.1 Background 

Algae, in particular cyanobacteria, can pose several significant threats to the provision of safe 

drinking water that meets both regulatory and aesthetic criteria for potable water (1,2). The 

biomass associated with cyanobacterial blooms can increase water turbidity, challenge 

coagulation/flocculation/clarification processes, clog filtration and membrane processes, and 

increase the chemical oxidant demand required for disinfection, thereby increasing the potential 

for disinfection by-product (DBP) formation (3–5). Both toxins (such as microcystin) and taste 

and odour compounds can be released by cyanobacterial cells prior to and during drinking water 

treatment (6,7). Their presence can challenge conventional water treatment processes (6,8–10) and 

lead to customer complaints. 

The bioavailability of key nutrients is critical to cyanobacterial bloom occurrence (11,12). 

Phosphorus (P) is the key limiting nutrient for primary productivity and proliferation of algae in 

freshwater systems (13–15). Total P (TP) concentrations of ~30 µg P/L are considered the 

threshold for eutrophication of freshwater bodies (16). Although this threshold is not predictive, 

cyanobacterial bloom occurrence is considered more likely when reservoir or lake water 

concentrations of TP are near to or exceed this level (17,18).  When TP concentrations are below 

this threshold, nutrients are still in demand to propagate primary productivity. However, there is a 

balance between algae and cyanobacteria in which no particular taxa dominates to the extent that 

a bloom occurs. Although the drivers and dynamics of cyanobacterial bloom formation are not 

well understood (19,20), reducing or managing nutrient availability in drinking water reservoirs 

reduces the probability of their occurrence (21–23).  

It is widely recognized that fine sediment is the primary vector for P transport to and within rivers 

(24–26). Sediment and associated nutrients (including P) can be transported downstream over long 

distances and subsequently deposited in reservoirs or lakes (27,28). However, in the drinking water 

industry, the fine sediment-associated contributions to nutrient release to the water column are 

largely overlooked. While P has commonly been considered the key limiting nutrient for primary 

productivity of algae in freshwater systems (29–32), nitrogen (N) also has been suggested as 
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critical to cyanobacterial bloom toxicity (33,34). Thus, an understanding of P and N dynamics is 

essential for reservoir management to ensure that source water quality is maintained.  

The majority of available studies focused on understanding the relationship between nutrient 

availability and cyanobacterial proliferation have focused on lakes and reservoirs with a known 

history of cyanobacterial blooms (19,35–38). For example, hypereutrophic Lake Taihu in China 

has had recurring annual cyanobacterial blooms from spring to fall. Studies in this lake have 

included mesocosm studies, evaluations of P desorption from sediments, and characterization of 

individual cyanobacterial cells and their colony formation (35,39,40). Similarly, Lake Erie, which 

is located on the Canada-US border, has had recurring cyanobacterial blooms since the mid-1990s 

and has also been extensively studied (36,37,41). Investigations on lower nutrient (mesotrophic 

and oligotrophic) water bodies are uncommon. Unfortunately, these high quality source waters 

may be at risk due to numerous disturbance pressures (42–45). Notably, both anthropogenic 

disturbances (e.g., development, resource extraction) and natural disturbances (e.g., floods, 

hurricanes, and wildfires; which are all exacerbated by climate change) can lead to increases in 

erosion, sediment mobility and transport, and associated nutrient bioavailability (28,46–48). As 

rivers flow into downstream source water reservoirs and lakes, the deposition of fine sediment may 

represent a source of bioavailable P to the water column. Thus, the potential contributions of fine 

sediment to cyanobacterial proliferation must be considered and reflected in reservoir management, 

source water protection, and climate change adaptation strategies, as well as drinking water safety 

plan development processes.  

1.2 Research Objectives 

The goal of this research was to investigate the effects of nutrient availability—specifically, fine 

sediment-associated P and excess concentrations of N—on the proliferation of potentially toxin-

forming cyanobacteria. The specific objectives of this investigation were to: 

(1) evaluate the geochemical composition, particulate P form, and P mobility of fine sediment 

to demonstrate its relevance to an internal bioavailable source of P in a mesotrophic-

oligotrophic watershed (Elbow River to Glenmore Reservoir), 

(2) develop a laboratory-based approach for evaluating the proliferation of cyanobacteria in 

natural waters, 
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(3) explore the role of fine sediment and associated nutrients in the proliferation of potentially 

toxin-forming cyanobacteria in drinking water reservoirs, 

(4) investigate the contributions of elevated N concentrations in the proliferation of potentially 

toxin-forming cyanobacteria in drinking water reservoirs, and 

(5) compare land disturbance (i.e. some urbanization and wildfire) on fine sediment 

contributions to the proliferation of potentially toxin-forming cyanobacteria. 

1.3 Research Approach 

To address the objectives described in Section 1.2, the overall research was conducted in two 

phases. Phase 1 consisted of fine sediment characterization and P adsorption/desorption (i.e. 

sorption) experiments to address Objectives #1 and #3.  Phase 2 consisted of developing a protocol 

for conducting microcosm studies and conducting associated investigations of cyanobacterial 

proliferation in natural waters using potentially toxin-forming M. aeruginosa cultures to address 

Objectives #2, #4, and #5.  

 Phase 1 

In Phase 1, key fine sediment characteristics such as the grain size distribution, geochemical 

composition, and particulate P speciation were evaluated. Phosphorus adsorption/desorption was 

evaluated to quantify the mobility of soluble reactive P from sediment to the water column. These 

analyses were conducted using sediments collected from mesotrophic-oligotrophic systems 

(Elbow River and Glenmore Reservoir). Additional sediment samples from a neighbouring 

watershed impacted by wildfire that had occurred approximately 8 years prior to sediment 

collection also were investigated (Drum Creek).  

 Phase 2 

To assess the contributions of sediment-associated  nutrient availability and elevated N on 

cyanobacterial proliferation, batch growth experiments (i.e., microcosm investigations) were 

conducted using reservoir water and fine sediment. Specifically, a factorial design microcosm 

investigation of the effects of sediment type (collected from a wildfire impacted river [Drum Creek] 
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and a mesotrophic-oligotrophic drinking water reservoir [Glenmore Reservoir]) and N 

concentrations was conducted.  

1.4 Thesis Organization 

Chapter 2 consists of a literature review on environmental P and sediments, drivers for 

cyanobacterial blooms, and implications of cyanobacterial blooms to drinking water supply and 

treatment.  Chapter 3 details the research approach taken and includes the experimental procedures, 

materials and methods used, and the means for data analysis. Chapter 4 contains experimental 

results for the two phases of research and discussion.  Chapter 5 contains the conclusions drawn 

from this investigation.  Chapter 6 contains the implications of this research for the drinking water 

industry.   
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 Literature Review 

A brief review of scientific literature related to sediment-associated P and its potential relationship 

to the proliferation of cyanobacteria in drinking water reservoirs and lakes follows. It focuses on: 

1) P forms, transport, and bioavailability in the natural environment; 2) implications of 

cyanobacterial proliferation to reservoir management and the drinking water industry; 3) nutrient 

drivers of cyanobacterial bloom formation and toxicity; and 4) an overview of the current state of 

the science with respect to the relationship between fine sediment and proliferation of 

cyanobacteria.  Research gaps in the literature are also identified and the relevance of the proposed 

research for the drinking water industry is highlighted. 

2.1 Phosphorus and Sediment 

 Phosphorus Forms in Aquatic Systems 

In aquatic systems, P occurs in both dissolved and particulate forms. The fraction that passes 

through a 0.45 µm nominal porosity filter is operationally defined as dissolved P (or soluble P), 

whereas the retained and larger fractions are considered particulate P (49). In aquatic environments, 

P forms can be further classified as organic or inorganic. Organic P is associated with organic 

matter (i.e., animal tissue, decaying matter), whereas inorganic P is typically of geologic origin. 

Both organic and inorganic P forms are either dissolved or particulate (50). 

Forms of P can be further classified according to the type of analytical technique used to quantify 

them. These definitions include: reactive, acid hydrolysable, and organic fractions (49). Reactive 

P includes phosphates that respond to colorimetric tests without preliminary hydrolysis or 

oxidative digestion (49). This research will be primarily focused on soluble reactive P (SRP) - the 

portion of reactive P which is less than 45 µm. Soluble reactive P is largely a measure of 

orthophosphate which is considered bioavailable. Condensed (inorganic) phosphates are P 

compounds that contain salts and/or metals (e.g., sodium, potassium, calcium) and also are 

typically present as precipitates, although a small fraction is often hydrolysable, though this 

process is slow, making it a relatively small pool of bioavailable P (49,51). Orthophosphate is 

readily available to aquatic biota and is considered the primary limiting nutrient for algal and 

cyanobacterial growth in freshwater systems (14,52).  
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While most watershed assessments may involve evaluation of total P to some extent, particulate P 

is rarely characterized in the water supply and treatment industry, even though some particulate P 

forms are readily bioavailable and represent risk factors for cyanobacterial activity. Particulate P 

is fractionated using sequential extraction techniques to quantify non-apatite inorganic P (NAIP), 

apatite P (AP), and organic P (OP) (53,54). Phosphates adsorbed to non-calcium, metal hydroxide 

surfaces are known as NAIP and comprise the most bioavailable form of particulate P (55) —

therefore, it most enables cyanobacterial and algal proliferation (56). Critically, its bioavailability 

largely depends on other system attributes related to the sediment and surrounding water matrix. 

These parameters include: ionic strength (including presence of competitor ions), temperature, 

redox conditions, and pH (57). Fractions of NAIP are extracted by NH4Cl-RP (1.0M), BD-RP 

(0.11M, 40°C), and NaOH-RP (1.0M). Apatite P is extracted by HCL-RP and is considered to be 

geochemically stable; thus, it is less bioavailable. Lastly, OP is the fraction sometimes referred to 

as Refractory-P; it is extracted by NaOH (1.0M, 85°C). This fraction is potentially bioavailable as 

it can be mineralized or released with hydrolysis (58). Thus, the NAIP and OP fractions of 

particulate P are the most relevant to potential proliferation of cyanobacteria and eutrophication 

more broadly. 

The geochemical fractions present in sediment can influence the solid phase concentrations of 

NAIP. In particular, dissolved P can bind strongly to sediment with geochemical fractions 

containing: Manganese (Mn), Aluminum (Al), and Iron (Fe) (30,59,60). When dissolved P binds 

with these fractions, they can create Fe and Al oxides and oxyhydroxides, while Mn can also form 

hydroxides (27,30,53,54,61). As previously discussed, the NAIP fraction is found from the sum of 

extracts NH4Cl-RP (1.0M), BD-RP (0.11M, 40°C), and NaOH-RP (1.0M). In particular, extract 

NaOH-extractable P includes P bound to Al and metals (including Mn and Fe) in humic acids  (59). 

Therefore, fractions of Mn, Al, and Fe may be critical to understanding how much bioavailable 

NAIP is present in sediment.  

 Phosphorus Mobility 

External loading from rivers to receiving waters (i.e., lakes, reservoirs) has long been recognized 

as the primary source of bioavailable P, which is a primary driver of eutrophication (62–64). While 

internal loading of P in lakes from sediment to the water column has been widely examined, the 
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analogous expectation of internal loading of P from sediment to the water column in drinking water 

reservoirs has not been extensively investigated (30,65). Internal loading generally describes the 

release of P from bottom sediments to the water column (61). More specifically, it refers to all of 

the physical, chemical, and biological processes by which P is mobilized and translocated from 

the benthic layer to the water column (66). Partial or delayed recovery of water bodies in response 

to reductions in external loading of nutrients can be attributed to internal P loading (48,66–68) —

these are often described as “legacy effects” (66).  

The mechanisms by which contaminants and nutrients adsorb and desorb onto sediments are 

complex. Several factors contribute to internal loading processes, such as: oxygen concentration, 

iron speciation, pH, water hardness, phosphate concentration, and competitor ions in solution 

(24,26,66,69). Within the sediment, factors such as the depth of sediment, composition of the 

benthic biota community, grain size distribution, and geochemical composition can also affect 

internal P loading (31,70). Sediment geochemistry and physical characteristics such as grain size 

also can affect pore water sorption kinetics and overall P fluxes (25,71,72). 

Fine sediments (<63 µm in size) are the primary vector for P delivery to and transport within 

aquatic systems (24,25,46). Thus, landscape disturbances that result in increased erosion and 

sediment transport are frequently proportional with elevated P concentrations in impacted aquatic 

systems (48). Wildfires represent a particularly extreme example of landscape disturbances that 

can result in increased delivery of sediment to receiving streams and changes to P mobility 

(28,46,73). This is because wildfire-associated decreases in vegetation cover on soil can cause 

reductions in rainfall storage, resulting in increased overland flows and erosion (74). Wildfires 

also can alter the density and porosity of fine sediments, and the size of flocs/aggregates that 

naturally form in the water column (28,71,75). Other landscape disturbances such as deforestation 

or agricultural development can also change the distribution and form of organic P sediment 

processes (76). Regardless of whether they are natural or anthropogenic, all landscape disturbances 

that result in increased erosion have the potential to impact both internal and external P loading to 

aquatic systems.  

Releases of P from fine sediments to the water column may enable the proliferation of algae and 

cyanobacteria, which can pose potentially critical consequences for aquatic systems, especially 

those that serve as drinking water supplies. The primary mechanisms that control P entering the 
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water column include: desorption from particulate P (particularly through resuspension and 

increased interaction with the water column), algal and cyanobacterial biomass settling and 

subsequent decay, and other chemical reactions within the sediment crystalline structure 

(24,66,77,78). In general, the release and uptake of P onto sediment is a two-step process. When 

P uptake by sediment occurs: rapid surface adsorption occurs first, followed by a slower “solid-

state diffusion”; the reverse occurs in P release (24). Increases in primary productivity as a result 

of P desorption from fine sediments have been widely documented (31,34,48,79). For example, 

Orihel et al. (2015) demonstrated that sediments (specifically those low in iron) can “pump” 

internal P, stimulating cyanobacterial blooms (31). Since a key goal of reservoir management is to 

provide a stable supply of source water, it follows that the potential contributions of fine sediment 

to the proliferation of algae and cyanobacteria must be better characterized and understood so that 

management strategies can be developed to mitigate the risks from such events.    

Adsorption/desorption of P from fine sediment can be characterized by various isotherms, such as 

the Langmuir and Freundlich, as well as by determination of the equilibrium phosphate 

concentration (EPC0). The EPC0 is a measure of the potential of sediments to release or take up 

SRP depending on surrounding ambient SRP concentrations. Specifically, it is the value of the 

liquid-phase P concentration at which adsorption and desorption processes are in equilibrium. 

Adsorption of P to sediment is favoured when EPC0<ambient SRP concentration; in the opposite 

case, P desorption is favoured. (24,28). Thus, EPC0 informs P mobility in the water column. 

Experimental determination of EPC0 is discussed in Section 3.6 and Appendix 2: EPC0 Quality 

Assurance & Quality Control. 

To reduce the potentially adverse impacts of P loading to downstream environments, several best 

management practices (BMPs) have been proposed. They include various erosion control 

measures, establishment of riparian buffers, construction of wetlands, and reductions in fertilizer 

application (64,80–83). Notably, these BMPs have achieved variable success and are undergoing 

continual improvement. It should be further underscored that while such BMPs are predominantly 

focused on reducing P transport and delivery to receiving streams, relatively fewer strategies are 

available for limiting P mobility within the water column. 
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2.2 Cyanobacteria & Cyanotoxins 

Although cyanobacteria have existed and adapted through many of the earth’s climates for the last 

3.5 billion years (84), their proliferation and metabolic functions are not well understood (85–87). 

Functionally, cyanobacteria are algae as their attributes (such as their photosynthetic capabilities) 

are similar to eukaryotic algae. Taxonomically however, cyanobacteria constitute of one of the  

major eubacteria. Cyanobacteria have many physiological and cellular structures similar to 

bacteria, such as an absence of organelles and binary fission as a means of reproduction (84). The 

debate on whether or not these organisms should be called algae or bacteria dates back to the 1970s 

and still is not completely resolved (88,89). Regardless, the accumulation of these cells, can lead 

to adverse consequences often referred to as a bloom. Although definitions of cyanobacterial 

blooms are inconsistent across the literature (1,90–92), some common descriptions of 

cyanobacterial blooms are provided in Table 1. 

Among cyanobacteria, Microcystis aeruginosa (M. aeruginosa) is one of the most ubiquitous 

species of Microcystis spp. (93,94). Microcystis aeruginosa cells have the ability to control the 

density of their gas vesicles and inflate them, allowing for vertical movement within the water 

column (91,95). This adaption gives them a competitive advantage to access light in shallow 

waters, and relatively nutrient rich waters close to sediment (95). Moreover, Microcystis spp. are 

preferentially not consumed by invasive zebra mussels (Dreissena polymorpha), which have 

successfully established communities in Great Britain (1824), the Netherlands (1827), the Czech 

Republic (1893), Sweden (1920), Italy (1973), the Great Lakes in the USA (1988), California 

(2008), and have also been found throughout the Great Lakes in Canada (96,97). Consequently, 

zebra mussel settlement also may contribute to the proliferation and potential dominance of 

Microcystis spp. in natural waters (38). Microcystis aeruginosa cyanobacteria are especially 

relevant to the drinking water industry because they are commonly present in toxic cyanobacterial 

blooms (98,99).  
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Table 1- Various definitions of algal and cyanobacterial blooms.  

Algal/Cyanobacterial bloom definition Source 

Visible accumulation of algal biomass that mass occurs 

when chlorophyll concentrations reach approximately 

20 µg/L (16). 

 

Reynolds & Walsby (1975)  

Visible accumulation of phytoplankton dominated by a 

single (or a few species) it is an algal or cyanobacterial 

bloom.  

 

Chorus & Bartram (1999)  

Accumulation of cyanobacterial cells and toxins present to 

be waterborne hazards to health, with toxin effects ranging 

from mild to fatal . 

 

Codd  et al. (2000) 

More than 50% dominance of cyanobacteria of 

phytoplankton biomass, regardless of visible biomass. 

 

Molot et al. (2014) 

When cyanobacterial cell densities exceed one million per 

litre. 

 

 

Sulis et al. (2014) 

 

Cyanobacteria (such as M. aeruginosa) can produce toxins, most commonly referred to as 

cyanotoxins. Exposure to cyanotoxins by water users can pose health threats (1,100,101), thus, 

their removal/destruction is required during drinking water treatment when they are present. 

Cyanotoxins may exist within cyanobacterial cells, and are referred to as intracellular cyanotoxins, 

or outside of the cell and in the water matrix, as extracellular toxins (2). In addition to cyanotoxins, 

cyanobacteria may also produce taste and odour compounds such as geosmin and 2-

methyisoborneol (MIB). Although not harmful, these compounds produce foul odours and can be 

detected at concentrations as low as nanograms per litre (10). Similar to cyanotoxins, taste and 

odour compounds may be released from the intracellular to extracellular form if cells are lysed 

(102). Cyanotoxins include hepatotoxins (affecting the liver) , neurotoxins (affecting the nervous 

system), and dermatoxins (affecting skin) (1,11,100), which can have adverse health effects in 

humans and animals after both acute and long-term exposure (100,103). Symptoms of cyanotoxin 

exposure include gastroenteritis, liver disease, and even death in some cases, depending on dose 

and body weight (100,103–105). Different species of cyanobacteria may produce different types 

of toxins depending on their genetic composition. Toxin production by various genera of 

cyanobacteria is summarized in Table 2. 
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Table 2- Cyanotoxin production by various genera of cyanobacteria. Adapted from Paerl et al. 

(2014). 

Toxin Cyanobacteria genera 

Aeruginosin Microcystis, Planktothrix 

Anatoxin-a/ 

homoanatoxin-a 

Anabaena/Dolichospermum, Aphanizomenon, Cylindrospermopsis, 

Lyngbya, Oscillatoria, Phormidium, Planktothrix, Raphidiopsis, 

Woronichinia 

Anatoxin-a(S) Anabaena/Dolichospermum 

Aplysiatoxins Lyngbya, Oscillatoria, Schizothrix 

beta-Methylamino-L-

alanine (BMAA) 

Anabaena/Dolichospermum, Aphanizomenon, Calothrix, 

Cylindrospermopsis, Lyngbya, Microcystis, Nostoc, Nodularia, 

Planktothrix, Phormidium, Prochlorococcus, Scytonema, 

Synechococcus, Trichodesmium 

Cyanopeptolin Anabaena/Dolichospermum, Microcystis, Planktothrix 

Cylindrospermopsin Anabaena/Dolichospermum, Aphanizomenon, Cylindrospermopsis, 

Oscillatoria 

Jamaicamides Lyngbya 

Microcystin Anabaena/Dolichospermum, Anabaenopsis, Aphanizomenon, 

Cylindrospermopsis, Gloeotrichia, Hapalosiphon, Microcystis, Nostoc, 

Oscillatoria, Phormidium, Planktothrix, Pseudanabaena, 

Synechococcus, Woronichinia  

Nodularin Nodularia 

Saxitoxin Anabaena/Dolichospermum, Aphanizomenon, Cylindrospermopsis, 

Lyngbya, Oscillatoria, Planktothrix 

 

The cyanotoxin microcystin is widely regulated and of global concern because of its toxicity and 

frequent occurrence (106). Microcystin can be produced by various cyanobacteria including: 

Anabaena/ Dolichospermum, Cylindrospermopsis, Microcystis, Nostoc, and Oscillatoria (Table 2) 

(35). Microcystin-LR it is the most frequently occurring and toxic of at least 80 variants of 

microcystin (93,107). Although the molecular basis of microcystin production is known, its role 

is still unknown. The evolutionary advantages of toxin production are generally considered as 

either competitive advantages or as secondary metabolites from physiological aids. Competitive 

advantages may include cyanotoxin production in response to grazing pressure and/or resource 

competition, while physiological functions may include contributions to improved cellular 

physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth 
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rates (20,85–87). For example, Jang et al. (2003) found the exposure of Microcystis to zooplankton 

resulted in microcystin concentrations up to five times greater compared to controls, suggesting 

that M. aeruginosa toxin production is an induced defense mechanism (85). Other work has 

suggested that microcystin production is a biological function most likely tied to mitigating stress 

within the bacterial cell (86,87). Presumably, a better understanding of the broader ecological role 

of cyanotoxins may inform strategies for the management of toxic blooms. 

Unfortunately, the factors governing the formation and distribution of cyanobacterial blooms and 

their toxin production is complex (108–110). In addition to nutrient bioavailability (Refer to 

Section 2.3), several environmental factors are postulated to contribute to cyanobacterial bloom 

formation and toxicity. These factors include temperature, precipitation patterns, salinity, water 

column mixing patterns, and wind speed and direction (35,110,111). Although cyanobacterial 

blooms occur naturally, they can be significantly affected by environmental shifts associated with 

anthropogenic activities and climate change. For example, elevated levels of atmospheric CO2 that 

are associated with climate change also can increase the flux of carbonate into water columns, 

which may be used in blooms (44). Further, changes in precipitation patterns can affect water 

levels and introduce high loads of nutrients to streams, rivers, and lakes through surface runoff, 

thereby promoting bloom formation, especially in oligotrophic systems (44,45). Changes in land 

use and the introduction of invasive species can affect cyanobacterial bloom formation. In 

particular, urbanization, agriculture (e.g., cattle grazing, dairy operations), and industrial activities 

can increase nutrient loadings of N and P to receiving waters and exacerbate cyanobacterial growth 

(1,43,64,112). The mechanisms behind the cyanobacterial toxicity are also poorly understood 

(108–110). For example, even when cyanobacteria with toxin-producing genes are present they 

may not always produce cyanotoxins (2). In other words, the production of cyanotoxins can be 

transitory and complex (113). When cyanotoxin concentrations are high and unexpected, 

implementing the required processes for toxin treatment may be difficult and cost prohibitive in 

some cases (114,115). 

 Implications of Cyanobacteria to Drinking Water Supply and Treatment 

There are many undesirable consequences associated with the formation of cyanobacterial blooms. 

In addition to cyanotoxin production, these include aesthetics, limitations to recreational use, as 
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well as implications to drinking water supply and treatment (64,116). When high concentrations 

of cyanobacteria enter drinking water treatment plants, conventional treatment processes may also 

be adversely impacted (3,117). Taste and odour compounds (geosmin and MIB) can be produced 

by bacterial groups including cyanobacteria (118,119). Further complications due to temporal 

variation (i.e. changes in retention time due to reservoir drawdown) can affect reservoir 

management and responses to algal and cyanobacterial growth (120). Arguably, an understanding 

in the production of cyanotoxins in source waters is among the most important challenges facing 

the drinking water industry for the prevention of direct and indirect adverse health consequences 

to consumers. Fortunately, well-operated conventional and advanced treatment processes are able 

to breakdown/remove both cyanotoxins and taste and odour compounds to some extent; however, 

their implementation and operation can be costly and non-ideal in some operational circumstances. 

The following section addresses the treatment and supply challenges, as well as regulations and 

guidelines associated with cyanobacterial blooms.  

  Removal of Cyanobacteria and their Toxins 

The removal of intact cyanobacterial cells during drinking water treatment (typically during 

coagulation/flocculation/clarification) is commonly recognized as the preferred approach for 

treating source waters contaminated with cyanobacteria (1,2). This preferred approach is utilized 

to prevent cell lysis and release of intracellular toxins to the water matrix, which can occur using 

methods focused on killing cyanobacterial cells or vigorously disrupting them (e.g., sonication, 

copper sulfate application, etc.) (121). Cyanobacterial cell and toxin removal by common drinking 

water treatment processes such as oxidation, coagulation, flocculation, filtration, and other 

methods have been extensively investigated and are discussed below.  

Conventional drinking water treatment processes comprised of coagulation, flocculation, 

clarification and filtration can be effective at removing intact cyanobacteria cells, although the 

extent of removal depends on several factors, including the species present and operational 

conditions affecting settling (2,113,122). In general, conventional water treatment processes 

become decreasingly effective with increasing cell densities, especially those more consistent with 

bloom conditions. The passage of cyanobacterial cells through the treatment process can lead to 

filter clogging and/or breakthrough (4). Dissolved air floatation (DAF) in lieu of gravity-based 

clarification can be especially effective at removing cyanobacteria in some cases (2). Although the 
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removal of cyanobacterial cells during drinking water treatment ensures that cyanotoxins are less 

likely to reach consumers, cyanobacteria can remain and proliferate within treatment plants. 

Specifically, cyanobacteria and their associated toxins can accumulate in scums and sludge within 

drinking water treatment plants. In one case, cell densities of 4.7×106 cells/mL and total 

microcystin concentrations of up to 10 mg/L were found in one clarifier; in that plant, total 

microcystin concentrations of 2.47 µg/L were found in the final, chlorinated drinking water (113). 

Therefore, because final total microcystin concentrations observed may be high enough to 

implicate risks to end drinking water users, drinking water utilities should take  care and monitor 

cell densities and operations within drinking water treatment plants.  

Several drinking water treatment processes are able to remove or destroy microcystin. They 

include: oxidation, activated carbon (AC), and membrane filtration: 

1. Oxidation processes in drinking water treatment plants commonly use chlorine, ozone, 

hydroxyl radical, chloramines, potassium permanganate, and chlorine dioxide (2). 

Oxidation can destroy extracellular cyanotoxins (123), although the effectiveness of the 

oxidants depends on the type of oxidant (107,124), cyanotoxin (102,125), contact time 

(126,127), DOC concentration (106,128), and pH (107,129). For example, applied 

oxidation using ozone,  permanganate, and advanced oxidation processes can successfully 

remove the cyanotoxin anatoxin-A, at most typical operating conditions, whereas other 

oxidants like chlorine are ineffective (124). The efficacy of oxidation in destroying 

cyanotoxins is also related to pH. For example, chlorine has a pKa of 7.6, and previous 

research has indicated that at a pH lower than 8, chlorination can effectively destroy 

microcystin-LR (2,9,128). Although oxidation can effectively inactivate extracellular 

cyanotoxins, it (especially chlorination) is not commonly practiced for this purpose 

because excess biomass also can increase natural organic matter concentrations, which can 

lead to regulated DBP formation (87,127). Further, oxidation also may lyse cyanobacterial 

cells, releasing intracellular toxins to the water matrix.  

2. Activated carbon filtration can effectively remove some cyanotoxins, including 

microcystin, cylindrospermopsin and saxitoxin (2,130,131). The effectiveness of 

cyanotoxin removal by granular activated carbon (GAC) may depend on the type of 

cyanotoxin, as well as the type of activated carbon used. For example, a study conducted 
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by Liu (2017) found that at equilibrium, wood based carbon had the highest 

cylindrospermopsin removal capacity, coal based carbon had the highest microcystin-LR 

capacity, and coconut based carbon had the highest anatoxin-A capacity (132).  

3. Membrane filtration processes including osmosis, nanofiltration, ultrafiltration eliminate 

various compounds including cyanotoxins based on their physical size and charge, as well 

as membrane characteristics (133). For example, ultrafiltration research conducted by Lee 

& Walker (2008) demonstrated that hydrophilic (cellulose acetate) membranes were 

ineffective and adsorbed little to no microcystin whereas hydrophobic membranes were 

able to remove ~91% of microcystin (134). In other literature, both ultrafiltration and 

nanofiltration were effective in removing 90% to 96%  of the cyanotoxins 

cylindrospermopsin and microcystin (133–135).  

Therefore, literature indicates that treatment processes are available for cyanotoxin removal, but 

challenges primarily lie in financial limitations and determining when to implement these 

processes when cyanotoxin concentrations are unexpectedly high.  

  Supply Challenges: Reservoirs and Cyanobacterial Blooms 

Fluctuations in water levels and reservoir drawdown can influence the occurrence of 

cyanobacterial blooms. Typically, drawdown occurs in summer months, which can lead to longer 

retention times (due to reduced flow rates), changes to temperature stratification, and increased 

water matrix concentrations of nutrients may occur during this time (120,136). During this time, 

algal and cyanobacterial communities may be affected (136,137). Stratification of water bodies is 

typically common in lakes and reservoirs deeper than 7 metres, while lakes and reservoirs 5 to 7 

metres may develop unpredictable vertical stratification depending on wind mixing or precipitation 

patterns (138). In general, increased light penetration may also allow surface waters to heat up 

more quickly, intensifying vertical stratification. This has been shown to extend the periodicity 

and range of cyanobacterial species (139). Intensified vertical stratification also can support the 

formation of blooms as waters cool. Some cyanobacterial species can control the density of gas 

vesicles within the cell, controlling vertical migration in the water column.  This allows for them 

to benefit from the light rich waters by the surface, and nutrient rich waters in deeper waters 

(91,95,140). Reservoir management strategies such as vertical mixing to disrupt stratification can 

be effective in controlling cyanobacterial bloom formation within lakes (141). However, it should 



16 

 

be noted that vertical mixing is not always successful. Mixing larger volumes of water such as 

coastal areas or oceans are difficult to sufficiently mix (139). It appears that  both reservoir 

drawdown and increasing water levels could promote cyanobacterial and algal growth. These 

seemingly contradictory findings can be attributed to the fact that there are many parameters for 

cyanobacterial bloom formation, and the success of management strategies depends highly on 

ecosystem properties such as sediment type, retention time, the quality of the inlet water, 

abundance of fish, and climate (120).  

 Regulations & Guidelines 

Currently, only the cyanotoxin microcystin-LR is regulated in Ontario where the Drinking Water 

Quality Standard is 1.5 µg/L (142). The World Health Organization (WHO) has issued a 1.0 µg/L 

guideline for microcystin-LR (143). The United States Environmental Protection Agency (US 

EPA) does not regulate any cyanotoxins under the Drinking Water Protection Act, although there 

are 3 cyanotoxins on the candidate contaminant list and existing health advisories for microcystins 

and cylindrospermopsin are respectively 1.6 µg/L and 3 µg/L for adults (144).  Several U.S. states 

have their own guidelines for cyanotoxin exposure. 

In addition to cyanotoxin concentrations, cell densities are often considered. The WHO and Global 

Water Research Coalition (GWRC) have different warning levels (Low, Moderate, High, Very 

High) for guidance values of cyanobacterial cell densities for recreational and source waters, 

respectively (Table 3). These warning cell densities are considerably different for these water uses. 

The WHO’s warning levels for recreational water are higher than those for drinking water. The 

GWRC on the other hand, has warning levels based on cyanobacterial cell densities likely to 

produce harmful concentrations of microcystin (138).  
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Table 3- WHO and GWRC guidance values on cyanobacterial cell densities for recreational and 

drinking water sources. 

WHO (Recreational Waters) GWRC (Sources of drinking water) 

Relative 

Probability of 

Acute Health 

Effects 

Cyanobacteria 

(cells/mL) 
Definition given alert level 

Cyanobacteria  

(cells/mL) 

Low < 20,000  
500- 2,000 

 

Moderate 20,000- 100,000 

Potential for toxin concentration  

to reach 1/2 to 1/3 of drinking 

water guideline for microcystins  

 

2000- 6,500 

High 
100,000- 

10,000,000 

Potential for toxin concentration to 

reach drinking water guideline for 

microcystins 

 

≥6,500 

Very High >10,000,000 

Potential for toxin concentration to 

be 10× greater than drinking water 

guideline for microcystins 

≥65,000 

 

One of the most memorable drinking water crises associated with elevated cyanotoxin 

concentrations occurred on the western basin of Lake Erie. Although Lake Erie has long endured 

cyanobacterial blooms, in August 2014 a dramatic closure was required when elevated cyanotoxins 

were insufficiently removed by a drinking water treatment plant serving the City of Toledo. There, 

concentrations of Microcystin-LR were found to be as high as 100 µg/L (145). Over 400,000 

residents of the City of Toledo were faced with a “do not drink” advisory for several days, while 

stores ran out of bottled water and residents fled the city (16,95).  

Technologies that can effectively treat cyanotoxins during drinking water treatment have been 

widely investigated and are generally available. Processes typically found in a treatment plant such 

as filtration and oxidation can remove cyanotoxins to some extent; however, extensive treatment 

can be challenging, and unwanted by-products may form (2,41,129,146,147) (Refer to Section 

2.2.1.1). Moreover, the unpredictable and sporadic nature of cyanobacterial blooms makes it 

difficult to rationalize expensive infrastructure investment in response to uncertain threats that are 

generally relatively short-lived; of course, those potential risks must be weighed against potential 

health risks and service disruptions.  
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2.3 Phosphorus & Nitrogen: Drivers for Cyanobacterial Blooms 

The contributions of macronutrients N and P to cyanobacterial bloom formation have been 

extensively investigated (23,69,148–150). Despite this, the role of N and P in cyanobacterial bloom 

formation, toxin production, and their relative availability is not well understood. 

Microcystis aeruginosa is non-diazotrophic (i.e., unable to fix N from the atmosphere) (23,151). 

While ongoing source water protection and watershed management plans have widely included 

reduced P inputs to aquatic systems, N discharges have received considerably less attention. It has 

been recently suggested that N availability resulting from anthropogenic sources such as municipal 

wastewater discharges may promote the proliferation of non-diazotrophic M. aeruginosa (151). 

Both P and N are key nutrients to primary productivity (22,110,151), however, the dynamics of 

their mobility in aquatic systems differ. While they can both adsorb/desorb from fine sediment 

(31,58,152,153), sorption processes are key mechanisms only for P mobility, whereas N mobility 

is predominantly controlled by other factors such as microbial activity (24,154–156). The effects 

of P, N, and the dual nutrient regime on cyanobacterial proliferation and toxin formation are 

outlined in this section.  

  Phosphorus 

The availability of P is considered a key factor in limiting cyanobacterial growth in freshwater 

environments (29).  The chemical form of P is crucial to bioavailability. Soluble reactive P, usually 

in the form of orthophosphates (PO4
3-, HPO4

2-, H2PO4
-) is considered the most bioavailable 

dissolved P form (49,50). Notably, dissolved P forms are approximately five times more 

bioavailable than particulate forms (51,55). Reductions in P discharges to freshwaters have 

contributed to significant reductions in eutrophication and the occurrence of cyanobacterial blooms 

(29,64,157). For example, in the 1970s, Lake Erie suffered from excessive nutrient enrichment, 

causing severe eutrophication and cyanobacterial blooms. Once watershed management strategies 

were implemented (especially limits on wastewater effluent discharges) to reduce P inputs to the 

lake, it began to recover in the mid-1980s and served as a globally renowned case of successful 

restoration (64). However, since the 1990s, the health of Lake Erie has deteriorated again. The 

cause of this deterioration is not known; however, it has been suggested that a dual nutrient regime 

between N and P may be a contributing factor—this is further discussed in Section 2.3.1.3 

(23,36,150,151).   
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  Nitrogen  

Historically, the impacts of N loading on cyanobacterial proliferation were largely ignored because 

many cyanobacteria are diazotrophic (i.e., capable of fixing N). Nonetheless, external inputs of N 

have been shown to enhance cyanobacterial growth (21,95,150,158). More recently, it has been 

demonstrated that a lack of N availability contributes to conditions that favor M. aeruginosa 

proliferation and increased toxin production (23,151,159). The form of nitrogen, similarly to P, is 

linked to bioavailability. For example, M. aeruginosa is a strong competitor for inorganic, reduced 

forms of N such as ammonium (110,140), which can be derived from municipal wastewater 

discharges; it also can desorb from sediment (58,110,160), although excess ammonium also can 

suppress cyanobacterial growth in some cases (161,162). Urea is a reduced N form associated with 

municipal wastewater discharges (23,163). A few recent investigations have shown that it can 

enhance cyanobacterial growth (21,150,161) and higher pigment concentrations within cells 

relative to other N forms (160).    

  Dual Nutrient Regime: Phosphorus & Nitrogen 

The effect of P and N on the composition and toxicity of cyanobacteria have been extensively 

studied. It has been demonstrated that M. aeruginosa depends on P for growth, and the 

functionality of cells and toxin production are coupled more strongly with N limitation and 

environmental stressors (110). Cyanobacteria typically dominate phytoplankton communities in 

which N is a limiting nutrient. This appears to be the case with both diazotrophic (N fixing, such 

as Anabaena/Dolichospermum) and non-diazotrophic (non N-fixing, such as Microcystis) 

cyanobacteria, as diazotrophic cyanobacteria can utilize atmospheric N if required. Non-

diazotrophic cyanobacteria are typically strong competitors for N (140). In particular, low N:P 

ratios (<30) enable cyanobacteria to dominate over phytoplankton communities (78,148,157). 

Smith (1983) reported that cyanobacterial dominance occurs at total nitrogen (TN):TP ratios less 

than 29:1 by weight, whereas Orihel et al. (2012) reported that a TN:TP ratio of 18:9 in Lake Taihu 

resulted in maximum growth of cyanobacteria (69,148). As mentioned in Section 2.3.1.2, N limited 

conditions have been associated with increased production of cyanotoxins such as microcystin-LR 

(23,151,159). Although the impacts of N:P ratios have been widely emphasized, they are not 

predictive of cyanobacterial proliferation or dominance. Downing et al. (2001) analyzed data from 

99 lakes and concluded that N:P ratios are not strongly correlated with cyanobacterial dominance; 

rather, they suggested that it is more influenced by the total P, total N, or standing algae biomass 
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(164). Of course, several environmental factors are associated with bloom formation and toxicity, 

including temperature, precipitation patterns, salinity, water column mixing patterns, and wind 

characteristics (35,110,111). Thus, while the roles of both P and N in cyanobacterial proliferation 

are still being delineated, it is clear that the implications of P and N availability on cyanobacterial 

growth and the dual nutrient regime must be better understood to develop mitigation and reservoir 

management strategies.  

2.4 Sediment Contributions to Cyanobacterial Proliferation 

Although potential contributions of sediment-associated nutrients to cyanobacterial proliferation 

have been suggested, these linkages have not been incontrovertibly demonstrated or extensively 

investigated. The contribution of sediment-associated P to primary productivity has been widely 

investigated within freshwater lacustrine environments (31,34). Lehman (2011) observed that the 

release of SRP from sediment coupled with a decline in N coincided with an increase of 

diazotrophic cyanobacteria, Aphanizomenon, populations in an urbanized impoundment (34). 

Other studies have suggested that low N:P ratios in eutrophic lakes contribute to cyanobacterial 

bloom occurrence (31). Xie et al. (2003) used 12 mesocosms (six with, and six without sediment) 

to examine the effect of sediment and associated P on cyanobacterial growth in a hyper-eutrophic 

lake. They reported that while all of the enclosures exhibited cyanobacterial growth, increased TP 

and SRP levels were found in mesocosms with sediment (165). These studies suggest a link 

between sediment-associated P and cyanobacterial blooms. However, no studies have been 

conducted in natural waters using bench top mesocosms to directly  measure the role of sediment 

in cyanobacterial proliferation.  

The vast majority of previous laboratory batch experiments of cyanobacterial growth have not 

been conducted with natural waters (33,82). Hao et al. (2016) conducted laboratory batch 

experiments using a modified, P-free BG11 growth medium and concluded that sediments 

collected from eutrophic ponds enhanced algal growth (82). Work completed by Huang et al. (2015) 

utilized deionized water and sediment in batch experiments; however, these investigations only 

explored relative P desorption from sediment given hydrodynamic disturbances (33). While most 

experiments utilize nutrient-rich growth media, Huang et al. (2015) used deionized water and 

sediment from a highly eutrophic system and reported M. aeruginosa growth (33). However, the 
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authors did not discuss the potential implications of culturing the cyanobacteria in such a low 

nutrient environment (33), which would stress the organisms and even possibly lead to cell lysis. 

At the time of this research, the only reported batch experiments that involved high quality (in this 

case mesotrophic) natural waters, sediment, and potentially toxin-forming cyanobacteria were 

conducted by Crumb (2016). In that work, fine sediments and water collected from an engineered 

drinking water reservoir resulted in M. aeruginosa proliferation (166). This type of analysis may 

contribute to the development of mitigation strategies focused on managing risks of cyanobacterial 

bloom occurrence.  

Notably, most previously reported work related to sediment contributions to algal or 

cyanobacterial proliferation has focused on systems already experiencing eutrophication or 

cyanobacterial blooms. To the author’s knowledge, the potential contributions of sediment to the 

proliferation of cyanobacteria (such as those proposed herein) have not been reported in 

mesotrophic-oligotrophic systems in literature to date. 
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 Materials and Methods 

3.1 General Research Approach 

To address the objectives detailed in Section 1.2, two phases of research were conducted. Phase 1 

consisted of fine sediment characterization and P adsorption/desorption (i.e., sorption) 

experiments in which the geochemical composition, particulate P form (NAIP, AP, OP) and 

mobility (EPC0) of fine sediment along a downstream gradient from the forested headwater source 

regions. Sediments were collected from the Elbow River watershed, which is located in Alberta, 

Canada. In particular, suspended sediments from the Elbow River and deposited sediments from 

the Glenmore Reservoir were investigated.  Phase 2 consisted of developing a protocol for 

conducting microcosm studies and associated investigations of cyanobacterial proliferation in 

natural waters. Specifically, bottom sediment samples from the Glenmore Reservoir and 

suspended solids from a wildfire impacted river (Drum Creek) were used in the microcosm 

experiments to investigate the potential contributions of sediment-associated nutrient (P) releases 

on the proliferation of potentially toxin-forming M. aeruginosa cultures. The potential 

contributions from elevated nitrate availability were also examined.   

3.2 Site Description 

The Elbow River watershed is a forested, snow melt-dominated source water region located on the 

eastern slopes of the Rocky Mountains of Alberta (Figure 1, copyright permissions given in 

Appendix 5: Copyright Letter for Figure Permissions). Water from this river is used for a variety 

of municipal, agricultural, and recreational purposes. This river also provides a critical habitat for 

fish, and local wildlife in the river and related floodplains environments (167). It flows through 

the City of Calgary, into the Glenmore Reservoir (GMR) and through the associated dam. The 

Glenmore Reservoir is a manmade impoundment that is irregularly shaped and has a total capacity 

of 28.4×106 m3 (168–170). It is classified as mesotrophic-oligotrophic and has measured total P 

concentrations ranging from 2 µg/L to 4 µg/L. Outside of the city limits above the Glenmore 

Reservoir, the healthy forested source watershed provides high-quality source water for the City 

of Calgary. 
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 (a)  (b)  

(c)  

Figure 1- Location of the Elbow River Watershed (a) The Elbow River & Glenmore Reservoir are  

in Alberta, Canada, and (b) The Glenmore Reservoir is mesotrophic-oligotrophic drinking water 

reservoir. This photo was taken in July 2017. (c) The Elbow River originates in the eastern slopes 

of the Rocky Mountains and flows to the Glenmore Reservoir [Image courtesy of City of Calgary 

(167)],  Copyright © The City of Calgary. All rights reserved. Reprinted with permission. 

 

Alberta 

Canada 
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In 2015, suspended sediment samples were collected for approximately nine weeks (from July 3 

to August 18) using Phillips Samplers (171) deployed at four sample stations in the Elbow River 

spanning a distance of ~103 km (Figure 1). The most upstream location is Cobble Flats (ER-CF). 

It is located closest to the Rocky Mountains, close to the confluence of the Little Elbow River 

tributary. Site ER-CF is considered to be in a forested region that is relatively unimpacted by 

landscape disturbances, and the land use is primarily recreational (167). The next site is 76 km 

downstream at Highway 22 (ER-HWY22). The surrounding area is predominantly undeveloped, 

however, the river does receive municipal wastewater effluent and runoff from Bragg Creek as 

well as agricultural land (167). The Twin Bridges site (ER-TB) is located another 19 km 

downstream of ER-HWY22 and land use between these two sites is primarily agricultural and 

residential with some cluster-type developments (167). The Weasel Head Footbridge site (ER-

WFB) is located 8 km downstream of ER-TB and immediately above the inflow to Glenmore 

Reservoir. Thus, it receives urban runoff from stormwater outfalls serving the City of Calgary and 

discharging to the river (167). 

The Glenmore Reservoir is divided into four distinct areas, namely Weasel Head (WH), Heritage 

Cove (HC), Mid Lake (ML), and Head Pond (HP) (Figure 2). Weasel Head is the sampling location 

closest to the Elbow River influent on the west end of the reservoir and is located near the center 

of the compartment. HC is in the south eastern portion of the Glenmore Reservoir. ML is the most 

centered location in the Glenmore Reservoir and is close to the golf club and local hospital. Lastly, 

HP is in the northernmost location of the Glenmore Reservoir, closest to the Glenmore dam and 

drinking water intake.  

The reservoir acts as a sink for fine particulate matter from the Elbow River inflow. Due to 

landscape change and other urban impacts in the watershed, water quality has deteriorated over 

time due to increases in nutrients and suspended sediment (170). Consequently, reservoir 

classification has changed over time from oligotrophic (170), to now considered mesotrophic-

oligotrophic (169). The critical forested headwater source regions of the Elbow River have not 

been impacted by wildfire for the past 90 years. Given the impacts of climate change on forests 

and the increased potential for wildfire in these regions, there is a potential threat to water quality 

in the reservoir from increased river inputs of sediment-associated P that would be expected as a 

result of severe wildfire(s) in the watershed area (28).  
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To evaluate the potential contributions of post-fire sediment-associated nutrients (especially P) to 

the growth of potentially toxin-forming cyanobacteria, additional sediment samples were collected 

in Drum Creek, approximately 8 years after the Lost Creek wildfire. The location, land use, hydro-

climatology and impacts of the Lost Creek wildfire on Drum Creek have been described elsewhere 

(73). In brief, Drum Creek is located in the Castle-Crowsnest watershed, also in southwest Alberta. 

There, 90% of the area upstream of the sampling location burned (1064 of 1179 hectares) burned 

during the 2003 Lost Creek Wildfire. Increased capacity for P desorption by fine sediments within 

the creek has been reported (27). The insights provided by archived sediment characteristics can 

offer perspective and additional information for interpreting potential differences in the batch 

experiments.  

3.3 Sample Collection 

In July 2017 sediment and water samples were collected from WH, HC, ML, and HP locations in 

the Glenmore Reservoir (Figure 2) with a Ponar sampler (Hoskin Scientific, Burlington, Ontario). 

Approximately 20 L of water from each sample station in the Glenmore Reservoir was collected 

for use in the growth experiments described below.  Each sediment sample was sectioned (top [0-

2 cm], middle [2-4 cm] and bottom [13-15 cm]) and analyzed to evaluate any changes in particulate 

P forms as a function of depth. Thus, a total of 12 sediment samples and 4 water samples were 

collected.  At the time of sampling, there was no visual algal growth in Glenmore Reservoir.   
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Figure 2- Sediment sampling locations in the Glenmore Reservoir in Calgary, Alberta, Canada. 

The four compartments from the inlet to the dam are: (a) Weasel Head, (b) Heritage Cove, (c) 

Mid Lake, and (d) Head Pond. 

 

Previously collected sediment samples also were used in this investigation. In 2015, sediment 

samples were collected at the ER-CF, ER-HWY22, ER-TB, and ER-WFB locations using the 

methods described above. Philips samplers were deployed for approximately nine weeks to collect 

suspended sediment samples, from July 2015 to August 2015. To investigate the potential impacts 

of wildfire on nutrient (especially P) releases to the water column, sediments collected from Drum 

Creek from late May 2011 to September 2011 were used during the microcosm studies. Because 

the volume of archived sediment used during those experiments was insufficient for conducting 

additional sediment characterization analyses, the median grain size (D50), specific surface area 

(SSA), geochemical composition, P speciation, and EPC0 analyses conducted using sediment 
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collected in 2009 and 2010 were utilized—sediment composition and characteristics would not be 

expected to vary greatly between these sampling occasions. 

3.4 Water Quality  

Raw water collected from the Glenmore Reservoir was shipped to the University of Waterloo and 

stored at 4°C until use. The SRP concentration of all water samples was analyzed using a 

TechniconTM
 Autoanalyzer II (Seal Analytical, Mequon, WI, USA), following the ammonium 

molybdate/stannous chloride method (172). These same methods were used in analysis of SRP 

during the adsorption/desorption experiments described in Section 3.6.  

Total organic carbon (TOC) and total inorganic carbon (TIC) concentrations were measured using 

a total carbon analyzer Model Sievers M9 TOC analyzer, from GE Analytical instruments, 

Colorado, USA according to Standard Method 5310 C, which is the EPA persulfate-ultraviolet 

method (173).  Prior to use, filters were pre-washed to ensure no leaching occurred. Samples were 

filtered through 0.45 µm nylon Whatman filters before analyses to obtain results on the dissolved 

fractions of carbon.  

3.5 Sediment Characterization 

Physical characteristics and geochemical composition of Elbow River, Glenmore Reservoir, and 

Drum Creek sediments were analyzed at an accredited commercial laboratory (Activation 

Laboratories Ltd., Burlington, ON, Canada) according to standard methods. Analyses included 

grain size distribution, specific surface area, major elemental composition, and particulate P 

speciation. The grain size distribution, specific surface area, and the median diameter (D50) were 

determined with a Malvern Mastersizer 2000. X-Ray fluorometry (XRF) fusion technique 

established by Norrish and Hutton (1969) was used to measure major element composition 

including: SiO2, Al2O3, CaO, MgO, Na2O, K2O, Fe2O3, MnO, and P2O5 (174). Results were 

reported as a percent of the total dry weight.  

Particulate P forms were fractionated into three operationally defined fractions (NAIP, AP, OP) 

using the speciation technique described by Pettersson et al. (1988). The non-apatite inorganic P 

(NAIP) fraction is determined as the sum of three reactive phosphate fractions extracted by 1.0 M 

NH4Cl-P, 0.11 M NaHCO3-Na2S2O4, and 1.0 M NaOH. Apatite P (AP) is the particulate P fraction 
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extracted by 0.5 HCl and organic P (OP) is the particulate P form extracted by hot 1 M  NaOH. 

Fractionation of particulate P forms can be used as a proxy to estimate the bioavailability of 

particulate P and its contributions to cyanobacterial growth in aquatic systems. 

3.6 Phosphorus Sorption Experiments: Determination of EPC0 

The equilibrium phosphate concentration (EPC0) is a measure of sediment potential to adsorb or 

desorb sediment-associated P to/from the water column (175,176). The EPC0 is a measure of the 

ability of sediment to buffer dissolved P concentrations in the water column (Froelich, 1988). 

Batch experiments were conducted to determine: 1) the EPC0 of the 12 sediment samples collected 

from Glenmore Reservoir and the four sediment samples collected from the Elbow River, and 2) 

the potential release of SRP from the sediment to the water column. Freeze dried sediment (0.25 

g) was mixed with the various SRP concentrations (0, 10, 25, 50, 100 µg/L KH2PO4) in autoclaved 

Glenmore Reservoir water (25 mL) in 50-mL polypropylene centrifuge tubes. These samples were 

completed in three replicates. Ambient SRP concentrations in the water collected from Glenmore 

Reservoir were determined by analyzing the filtrate passed through 0.45 µm nylon Whatman filters 

to remove particulate P.  

The centrifuge tubes were gently mixed for 18 hours at room temperature on a shaker table, 

centrifuged at 4000 g for 5 minutes, and then filtered using a 0.45-µm nylon syringe filter. The 

filtrate (15mL) was placed in a scintillation vial and SRP was analyzed again to evaluate the 

desorption potential of the sediment. Concentrations of SRP throughout the experiment were 

analyzed using a Technicon TM Autoanalyzer II (Seal Analytical, Mequon, WI, USA), according 

to the ammonium molybdate/ stannous chloride method (172), as discussed in Section 3.4. QA/QC 

data are presented in Appendix 2: EPC0 Quality Assurance & Quality Control.  

3.7 Microcystis aeruginosa 

Microcystis aeruginosa is one of the most ubiquitous species of Microcystis (93,94). This genus 

is one of the most prevalent cyanobacteria associated with blooms, particularly in North America 

(16,93,94). Microcystis is also often focused on, as several species within this genus are capable 

of producing the cyanotoxin microcystin (93,177). Microcystis aeruginosa was used in these 

studies because of: its potential capability to produce microcystin, its buoyancy characteristics 
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allowing for pipetting in the water column without drawing sediments, and its availability at the 

Canadian Phycological Culture Centre at the University of Waterloo.  

 Culture Conditions 

Cultures of non-axenic cyanobacteria Microcystis aeruginosa (CPCC 300) were obtained from the 

Canadian Phycological Culture Centre at the University of Waterloo. They were maintained in 

BG11 culture medium in 500-mL glass Erlenmeyer flasks and re-cultured every month at a 1:3 

ratio (i.e., 40-mL of older culture transferred into 120-mL of BG11 medium). All transfers (for re-

culturing or inoculation of samples) of M. aeruginosa were conducted using aseptic technique 

inside a Class II A2 Biological Safety Cabinet (BSC) (Microzone, Canada) to reduce risk of 

contamination. All M. aeruginosa cultures and microcosms were maintained and grown in a Model 

E-36HO Percival growth cabinet lux (Percival Scientific Inc/ John’s Scientific Inc, IA, United 

States), with three (3) white fluorescent bulbs with temperatures ranging between 19°C to 21°C, 

on a 12:12 hour light/dark cycle. A cheesecloth was placed on the top shelf to decrease light 

intensity, and flasks were placed on the bottom level of the growth cabinet where light was 

measured to be approximately 1776 lux. A modified culture grown in a 1:1 ratio of BG11 medium 

and autoclaved Glenmore Reservoir water collected from the HP site was maintained to 

acclimatize M. aeruginosa for growth experiments in media containing lower nutrient 

concentrations, such as the microcosm studies that used ambient reservoir water with some 

modifications (Section 4.2.3.2).  

 Experimental Conditions for M. aeruginosa Microcosm Experiments 

All growth/microcosm experiments were conducted with sediments and ambient water collected 

from natural environments. Prior to use, all Glenmore Reservoir sediment and water was 

autoclaved, as the goal of these proof-of-concept experiments was to investigate the potential for 

M. aeruginosa growth only, and without any interaction effects of competition from other 

organisms.  

Sediment moisture content was determined using Standard Test Method for Laboratory 

Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D 2216-98). The 

desired dry weight was approximated from the moisture content. In treatments with sediment, cell 
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enumeration could be a challenge because some of the fine sediment was similar in size to 

M. aeruginosa cells and care had to be taken to ensure differentiation. Moreover, because the 

microcosm experiments were conducted using ambient reservoir water, cell production of 

sufficient concentrations of pigment for enumeration with fluorescence was initially uncertain. 

Cyanobacterial blooms usually occur in late summer to early fall, when low flow conditions would 

be expected. During periods of low flow, as rivers flow into downstream reservoirs and lakes, 

flows may be less turbulent (178). Thus, it is hypothesized that in the Elbow River low flow periods 

in the summer result in Glenmore Reservoir flows to be relatively quiescent. Consequently, the 

microcosm investigation conducted herein involved careful mixing at approximately 40 rpm, 1 cm 

above the sediment in flask microcosms. Mixing was completed with a pipette tip before sample 

extraction to: limit the unintentional burial of cyanobacterial cells (i.e., removing cells from the 

water column and causing them to become trapped in the sediment), and to collect a representative 

cell density within the water column.  

 Cell Quantification 

Subsamples collected from the sediment-reservoir water-M. aeruginosa microcosms were serially 

diluted in sterile phosphate buffered saline (PBS) solution (pH of 7.4) to desired concentrations 

(approximately 2,000 cells/ mL to 10,000 cells/ mL per sample) to facilitate enumeration. Diluted 

cultures were stored in 1.5-mL sterile tubes (DNA LoBind Tubes, Eppendorf North America Inc., 

Hamburg, Germany). Subsample volumes of 10 µL were placed on each side chamber of a Hausser 

Scientific Bright-Line Hemacytometer (VWR International, Mississauga, Canada) and covered 

with a cover slip. Cells were manually enumerated using a Zeiss Axioskop 2 microscope (Carl 

Zeiss Canada, Toronto, Canada) at 200× and 400× magnification, under white light and excitation 

wavelength of BP 546, and emission wavelength of 590 nm fluorescence. For this particular 

hemacytometer with 0.1 mm depth, each 1mm×1mm square has a volume of 10-4 mL. A method 

detection limit (MDL) was established at 10,000 cells/mL, assuming that 1 square (dimensions of 

1mm×1mm) should have at least 1 cell. This method detection limit was calculated using the 

following equation: 

𝑀𝐷𝐿 =
1 𝑐𝑒𝑙𝑙

10−4𝑚𝐿
= 10,000 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿  
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Given that 5 squares  were enumerated in this work, concentrations below 2,000 cells/mL are likely 

to lead to non-detects (10,000 cells/mL divided by 5). The gridlines of the hemacytometer and 5 

squares counted are shown in Figure 3. 

 

Figure 3- Hemacytometer gridlines: The five squares highlighted in blue were used to enumerate 

M. aeruginosa cells in all microcosm experiments.  

 

3.8 Preliminary Experiments 

Preliminary experiments were conducted to determine under which conditions cyanobacterial 

growth may occur in Glenmore Reservoir water. To the author’s knowledge, because this type of 

experiment has not previously been conducted, it was uncertain whether cyanobacterial cells were 

capable of establishing populations and proliferate in natural waters. Various concentrations of 

inoculum, and macronutrients of phosphate, nitrate, and carbonate were utilized as a result.  
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 Flask Microcosm Experiments 

Flask microcosm experiments were conducted to investigate the proliferation of M. aeruginosa 

cells in suspensions containing sediment and various levels nutrients. Inocula of M. aeruginosa 

culture grown in BG11 medium were transferred to Erlenmeyer flasks containing 200 mL of 

autoclaved Glenmore Reservoir water collected from the HP site to yield an approximate cell 

density of 5×104 cells/mL. Initially, because it is difficult to culture M. aeruginosa in natural 

waters, nitrate, phosphate, and carbonate were added at one of three concentrations, based on the 

BG11 growth medium (as opposed to environmentally relevant levels). A single flask containing 

Glenmore Reservoir sediment and a low level of P addition was also prepared. The various 

treatment microcosm scenarios are summarized in Table 4. 

Table 4- Preliminary flask microcosm experiments and nutrient amendments. 

 Mass of 

sediment (g) 
Stock type 

Volume of 

Stock Added 

(ml) 

Flask 

concentration 

(g/L) 

BG11 

concentration 

(g/L) 

CO 0     

BG1 0 BG11 25   

BG2 0 BG11 50   

BG3 0 BG11 100   

N1 0 NaNO3 2.5 1.875 1.5 

N2 0 NaNO3 5 3.75 1.5 

N3 0 NaNO3 10 7.5 1.5 

C1 0 Na2CO3 0.25 0.025 0.02 

C2 0 Na2CO3 0.5 0.05 0.02 

C3 0 Na2CO3 1 0.1 0.02 

P1 0 K2HPO4 0.25 0.05 0.03 

P2 0 K2HPO4 0.5 0.1 0.03 

P3 0 K2HPO4 1 0.2 0.03 

P1-SED 23.17 K2HPO4 0.25 0.05 0.03 

 

Cell densities were enumerated every 1 to 2 days, for 60 days. Each reported cell density was based 

on the average count obtained from two replicates. Based on previous investigations of 

M. aeruginosa growth rates (102,179), it was assumed that approximately 40 days would be 

enough time for populations to acclimatize to their environment and reach exponential growth. 

This acclimatization period had been observed in past studies in response to changes in nutrient 
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concentrations (86,180). Thus, if non-control flasks had cell densities less than those in the initial 

inoculation by day 41 (5× 104 cells/mL), the experiments were discontinued.  Although inoculum 

concentrations of around 104 cells/mL are commonly used for M. aeruginosa growth in nutrient-

rich growth media and highly eutrophic natural waters (33,86,181), their proliferation in 

mesotrophic-oligotrophic reservoir water was initially uncertain.  

 Test Tube Microcosm Experiments 

These microcosm experiments were conducted in test tubes to investigate if the presence of 

sediment, or singular doses of nutrients may contribute to cyanobacterial proliferation. Inocula of 

M. aeruginosa culture grown in BG11 medium were transferred to test tubes filled with 50 mL of 

autoclaved Glenmore Reservoir water collected from HP and inoculated with the M. aeruginosa 

culture to yield cell densities of approximately 5.0 ×105 cells/mL. This cell density was higher 

than that used in the flask microcosm experiments in the hope of reducing the lag time in growth. 

Similar to those experiments, three concentrations of nitrate, phosphate, and carbonate, as well as 

three amounts of sediment were investigated. When used, the nutrient amendments were based on 

the BG11 growth medium and decreased progressively by 50%. For example, the N3 treatment 

contained the same concentration of nitrate that would be found in BG11 growth medium (1.5 g/L), 

the N2 treatment contained half of that concentration (0.75 g/L), and the N1 treatment contained 

half of the N2 concentration (0.375 g/L). The various treatment scenarios are detailed in Table 5. 

In this experiment, cell densities were not measured. Photographs were taken approximately every 

week to evaluate if noticeable visual growth occurred between treatments, over a period of 4 weeks. 
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Table 5- Composition of test tube microcosm growth media. Microcosms contained Glenmore 

Reservoir water dosed with nitrate (N1, N2, N3), phosphate (P1, P2, P3), carbonate (C1, C2, 

C3), and sediment (A1, A2, A3). Control samples included: negative reference (CO) of only 

Glenmore Reservoir water, and positive control (BG11) of only BG11 growth medium. 

Sample NaNO3 K2HPO4 Na2CO3 Dry mass of sediment added 

 (mg/L) (mg/L) (mg/L) (mg) 

BG11 1500 30 20 0 

CO    0 

N1 375   0 

N2 750   0 

N3 1500   0 

P1  7.5  0 

P2  15  0 

P3  30  0 

C1   5 0 

C2   10 0 

C3   20 0 

A1    3 

A2    6 

A3    9 

 

3.9 Factorial Design Microcosm Experiments 

The impacts of sediment source, and nitrate amendment on M. aeruginosa proliferation were 

investigated using a factorial design experiment. Sediments were collected from two watersheds 

and were also impacted by different surrounding land uses. Drum Creek (DC) sediments were 

collected from a wildfire impacted region in the Crowsnest watershed, and Head Pond sediment 

(HP) were collected from a relatively urban reservoir compared to upstream waters in the Elbow 

River watershed. Nitrate amendments were also investigated in these experiments. Both pigment 

production and cell densities were evaluated in response to nitrate amendments and source of 

sediment. 
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Nitrate amendment was investigated for two reasons. First, the preliminary flask microcosm 

experiments presented in Section 4.2.1 suggested that N might be a limiting nutrient. This result 

was also supported by the dual nutrient regime of N and P that have been emphasized in  recent 

literature (23,151,182). Second, in most cases it has been suggested that M. aeruginosa 

outcompete other organisms like green algae when adequate, but not necessarily when excess N is 

available (110,140). To explore this potential relationship, nitrate amendments based on the BG11 

growth medium (commonly used for propagating M. aeruginosa) were used (183). It should be 

noted that concentrations of NO3
- in Canadian lakes and rivers rarely exceed 4 mg/L (184), whereas 

N concentrations in this work ranged from 750 mg/L to 1500 mg/L. Therefore, concentrations in 

these experiments were much higher than those that would be observed in natural environments 

and represented excess nitrogen at levels commensurate with growth media. The experimental 

treatment details are provided in Table 6. A series of control and reference samples were conducted 

alongside the factorial design. Control/reference samples consisted of BG11, CO, P, N, HP, and 

DC. The BG11 microcosm was used as a positive reference as BG11 is commonly used to culture 

cyanobacteria. The CO (control) reference was used as a negative sample, as mesotrophic-

oligotrophic waters alone were not expected to support M. aeruginosa growth. Reference samples 

of P and N were completed to determine if singular nutrient treatments of phosphorus or nitrogen 

alone, respectively, could support proliferation. Lastly, reference samples of HP and DC were 

conducted to determine if the presence of sediment alone with natural mesotrophic-oligotrophic 

waters could result in M. aeruginosa growth. Experimental reference samples, or controls are 

detailed in Table 7. 

Table 6- Sediment types and concentrations of nutrient amendments used in the factorial design 

microcosm experiments. 

Parameter Levels 

Sediment type Drum Creek (DC)- approximately 8 years post-fire impacted 

Head Pond (HP)- reservoir sediment 

Nitrate 

Amendment 

N1- 750 mg/L of NO3 

N2- 1500 mg/L of NO3 
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Table 7- Experimental controls/ references were conducted along with the factorial design 

experiment for comparison. Microcosm CO and BG11 are considered to be a negative and 

positive reference, respectively. Microcosms P and N were conducted to determine if a dose 

of P or N along could proliferate M. aeruginosa. Lastly, reference microcosms HP and DC 

contained reservoir water and sediments from Head Pond (Glenmore Reservoir) and Drum 

Creek, alone to observe growth.  

Sample NaNO3 K2HPO4 Dry mass of sediment added 
 (mg/L) (mg/L) (g) 

CO    

BG11 1500 31  

P  31  

N 1500   

HP   6 

DC   6 

 

 Pigment Analyses 

Pigment analyses were conducted at the end of the 60-day factorial design microcosm experiments 

following the approach of Thomas et al. (2013) (185).  Each sample was filtered onto Whatman 

microfiber glass filters (0.7-µm) and frozen until analysis. Pigments were extracted for 24 hours 

at -20°C in a solution of acetone, methanol and water (80:15:5 by volume). After the extraction, 

the solution was filtered again, through a 0.22-µm polytetrafluorethylene (PTFE) syringe filter to 

remove large particles and other impurities. Samples were than dried under inert gas (N2), and re-

eluted in 500 µL of injection solution of acetone, ion pairing reagent, and methanol (70:25:5 by 

volume). This final solution was analyzed in a Waters HPLC reverse-phase system with a 

Symmetry C18 column (3.5 µm), following methods modified from Leavitt et al. (1989). Prior to 

analyses, algal pigment standards (DHI Lab Products, Horsholm, Denmark) were used for HPLC 

calibration. A gradient delivery of two mobile phases was used to separate the pigment compounds: 

A and B, comprised of methanol and iron (90: 10 by volume), and methanol: acetone (73:27 by 

volume), respectively. The ion pairing reagent was comprised of 0.75 g of tetrabutylammonium 

acetate and 7.7 g of ammonium acetate. Geranium samples and Dye Sudan II were positioned for 

analyses around the first and last batch of samples processed. Sudan II was used as a standard to 

account for dilution and injection errors, and geranium to account for shifts in retention time of 

pigments during run time (185). Pigments were identified using Watters 2998 PDA detector and a 
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Waters 2475 Multi lambda Fluorescence detector, and by using the chromatographic mobility (186) 

and spectral characteristics, following information provided by Jeffrey et al. (1997).  

  Statistical Analyses: Factorial ANOVA 

An ANOVA factorial analysis of the pigment concentrations on Day 60 was conducted. One of 

the assumptions of factorial ANOVA analysis is that the data are generally consistent with the 

normal distribution. Due to the relatively small sample size (n=12), it was assumed that this 

criterion was met. All statistical analyses were completed using R software (R Foundation for 

Statistical Computing, Vienna, Austria). 

 Response of Cell Density from Time and Type of Sediment  

Cell densities were measured every 2 to 3 days, for a total of 21 occasions over the course of 60 

days. Each reported cell density was based on the average count obtained from three replicates. 

Given the repeated measures approach and factorial experimental design (discussed in Section 3.9), 

the results were analyzed using a Mixed Factorial ANOVA.  

  Statistical Analysis: Mixed Factorial ANOVA 

This experimental design involved three control variables (N concentration, type of sediment, and 

time) with an output variable of cell density (cells per millilitre). The sampling times were chosen 

as days 21, 39, and 60 because they are approximately equally spaced and would likely capture 

phases of the prokaryote growth curve (i.e., times at: end of the lag phase, growth phase, and 

stationary phase).  

With 2 levels of nitrate concentration, 2 levels of type of sediment, and 3 levels with time, there 

were 12 distinct treatment options in this 2×2×3 mixed factorial design. Each treatment of excess 

nitrate amendment and sediment was replicated in 3 flasks, for a total of 12 replicate microcosms. 

The microcosms included Glenmore Reservoir water initially inoculated with a target density of 

5×106 cells/mL of M. aeruginosa on day 1. Analyses of cell densities considered three occasions 

(T1, T2, and T3) as described above. Thus, a total of 36 observations were used (Figure 4). All 

statistical analyses were conducted using R software (R Foundation for Statistical Computing, 

Vienna, Austria).  
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Figure 4-  Conceptual diagram of mixed ANOVA experimental design. Two treatments of nitrate 

(N2: 1.5 g/L, N1: 0.75 g/L) and two sources of sediments (DC: wildfire impacted sediment), 

HP (reservoir sediment) were used in the design. 
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 Results and Discussion 

4.1 Phase 1: Characterizing Particulate P Form and Mobility in the Elbow 

River, Glenmore Reservoir, and Drum Creek 

The first phase of this research involved fine sediment characterization and P sorption experiments. 

Several items were evaluated in the following sections: the sediment grain size distribution and 

geochemical composition (Section 4.1.1), particulate P speciation (Section 4.1.2), and sorption 

properties (Section 4.1.3) of fine sediments collected from numerous locations in the Elbow River 

Watershed (Elbow River and Glenmore Reservoir) and Drum Creek.  

 Grain Size Distribution and Geochemical Composition  

The study of fine sediment is critical as it is considered the primary vector for P transport in aquatic 

systems (26,156). The grain size distributions and geochemical composition of sediment collected 

in the Elbow River, Glenmore Reservoir, and Drum Creek were analyzed. The D50 and major 

element composition of the sediment in the Elbow River Watershed (upstream to downstream), as 

well as Drum Creek are presented in Table 8.  

Spatially, the D50 in the Elbow River sediments decreased with distance downstream. Elbow River 

D50 ranged from 100 to 243 µm in the upper reaches (ER-CF and ER-HWY21, respectively), to 33 

to 46 µm in the lower reaches (ER-TB and ER-WFB, respectively) (Table 8). This general trend 

of decreasing sediment grain size observed in the Elbow River and Glenmore Reservoir is 

consistent with previous observations. Specifically, as rivers flow downstream, most natural river 

bed sediments progressively become finer grained (187,188). This phenomenon is referred to as 

downstream fining, a fluvial process by which finer particles are preferentially transported and 

deposited downstream (187–189). Two main mechanisms are typically attributed to downstream 

fining: abrasion, where larger particles break into smaller ones, and selective deposition, which 

describes hydraulically driven sediment fractionation as detailed elsewhere (187–189). Larger 

particles generally deposit upstream, while smaller ones (i.e., fine grained sediments, typically <63 

µm) travel further downstream. Thus, these data demonstrate that downstream fining in which 

suspended solids settle according  to size and density (selective sorting) is occurring.  
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Table 8- D50 and major element composition (% dry weight) of Elbow River, Glenmore Reservoir, and Drum Creek sediments 

Sediment Site D50 

(µm) 

SiO2 Al2O3 Fe2O3

(T) 

MnO MgO CaO Na2O K2O TiO2 P2O5 Cr2O3 V2O5 LOI 

Elbow River  ER-CF 243 25.73 3.57 1.42 0.028 6.84 29.56 0.22 0.8 0.18 0.09 < 0.01 0.007 31.67 

ER-

HWY22 

100 49.76 7.15 2.52 0.037 4.4 14.22 0.68 1.19 0.34 0.12 0.01 0.011 17.72 

ER-TB 46 49.16 6.61 2.33 0.037 4.92 15.03 0.61 1.12 0.34 0.13 < 0.01 0.009 15.09 

ER-WFB 33 51.11 6.74 2.34 0.043 4.68 14.3 0.57 1.28 0.37 0.15 < 0.01 0.009 13.42                

Glenmore 

Reservoir 

4 WH 7.23 40.03 9.28 3.51 0.05 4.03 17.33 0.44 1.69 0.46 0.15 0.01 0.02 22.97 

3 HC 3.16 40.29 11.51 4.01 0.06 3.58 16.15 0.37 2.17 0.49 0.15 0.01 0.02 21.21 

2 ML 4.04 40.49 10.62 3.78 0.06 3.82 16.76 0.38 2.00 0.48 0.15 0.01 0.02 21.69 

1 HP 4.86 42.80 11.26 4.12 0.06 3.44 14.28 0.37 1.99 0.49 0.18 0.01 0.02 20.49  
              

Drum Creek DC 2009 77.01 54.19 10.89 4.04 0.091 1.58 3.11 0.91 1.69 0.52 0.25 0.01 0 23.13 

DC 2010 4.63 47.82 10.42 4.32 0.091 1.29 2.97 0.72 1.6 0.46 0.24 0.01 0 28.81 
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The D50 for sediments deposited in the Glenmore Reservoir (3.16 µm to 7.23 µm) were observed 

to be finer than those in the Elbow River (33 µm to 243 µm). From the Elbow River inlet to the 

Glenmore dam, the D50 for WH, HC, ML, and HP sediments were observed to be 7.23 µm, 3.16 

µm, 4.04 µm, and 4.86 µm, respectively (Table 8). Thus, sediment fining in Glenmore Reservoir 

was not perfectly observed. This could be attributed to the varied modes of sample collection and 

characteristics of Glenmore Reservoir. Sample collection with Ponar and Philips samplers 

collected sediment samples over different time frames, which allowed for temporal variation. 

Further, Glenmore Reservoir is an impounded reservoir,an anthropogenically formed reservoir by 

building a dam on a river (111), that is irregular in shape. In general, as rivers flow into lakes and 

reservoirs, velocity decreases and the ability to carry larger sediments also decreases (190). This 

trend is clear as the D50 values observed in the Glenmore reservoir (3.16 µm to 7.23 µm) are all 

smaller than those in Elbow River (33 µm to 243 µm). These results are supported by observations 

made by Owens et al. (2005), who observed that sediments deposited in lakes and reservoirs are 

predominantly fine grained (191). Thus, even though sediment fining was not perfectly observed 

in the Glenmore Reservoir, they were finer than those in Elbow River, as expected. 

Generally, the geochemical composition of sediment collected from the Elbow River did not vary 

greatly, with the exception of the upper-most sampling location on the river, ER-CF. In all sample 

locations from the Elbow River, with the exception of ER-CF, the highest percent of element 

composition in the Elbow River was found to be SiO2 (49.16% to 51.11%), LOI (13.42% to 

17.72%), CaO (14.22% to 15.03%), and Al2O3 (6.61% to 7.15%) (Table 8). Excluding ER-CF (the 

most upstream sampling site), analyzed fractions were within a range of 5% of total dry weight 

analyzed. ER-CF had geochemical composition of sediment that was different from other sampling 

locations in the Elbow River. ER-CF had the highest levels of MgO, CaO, and LOI, as well as 

lowest levels of Al2O3, Fe2O3, MnO, Na2O, K2O, TiO2, P2O5, and V2O5. The geochemical 

composition of sediment at the uppermost study site in the Elbow River watershed was likely 

influenced by the bedrock geology and glacially deposited overburden. These trends have 

previously been discussed in literature, where it has been shown that the source and nature of 

geological materials strongly influence the geochemical composition of riverine sediment (192). 

The surficial  materials at ER-CF consisted of colluvial deposits and may account for the observed 

increased concentrations of Ca and Mg compared to those of bottom sediments in the Glenmore 

Reservoir.  
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The major element composition of river sediment varied in a downstream gradient from the 

headwaters of the Elbow river to the Glenmore reservoir (Table 8). Other geochemical fractions 

not presented in Table 8 are available in Appendix 1.2: Geochemical Speciation. Glenmore 

Reservoir sediments were primarily composed of the same geochemical elements as Elbow River 

of: SiO2 (40.03% to 42.80%), LOI (20.49% to 22.97%), CaO (14.28% to 17.33%), and Al2O3 

(9.28% to 11.51%). Fractions of SiO2, Al2O3 , MgO, CaO, and Loss on Ignition (LOI) were 

generally at levels greater than 3% followed by Fe2O3, K2O (1 to 3%), and then MnO, Na2O, TiO2, 

P2O5, and V2O5 (<1%). Levels of Al2O3 , Fe2O3, MnO, TiO2, and P2O5 were generally observed to 

have increased with distance downstream from the uppermost site in the Elbow river to the 

Glenmore Reservoir. This observed increase in Al, Fe, and Mn is typical of downstream increases 

of clay mineral content that is attributed to selective sorting of sediment in rivers (58,70). In 

contrast, levels of Na2O decreased with distance downstream. The higher fractions of Al2O3, Fe2O3, 

and MnO may be of importance, as dissolved P can bind strongly to Fe and Al oxides and 

oxyhydroxides, while Mn can also form hydroxide coated surfaces, potentially indicating 

increased bioavailability of P in the reservoir compared to upstream locations (27,30,53,54,61). 

Notably, LOI is not a geochemical fraction, and is frequently used as an estimate of organic matter 

in sediments (193).  

Between 2009 and 2010, D50 values from Drum Creek sediments differed. The D50 values of 

sediment collected from Drum Creek were 77.01 µm and 4.63 µm for 2009 and 2010, respectively. 

Drum Creek sediment D50 may have varied due to temporal variation and time of sampling in the 

year. Drum Creek sediments collected by Philips samplers in 2009 occurred in the spring, when 

discharge was higher due to the spring freshet, relative to discharge in other seasons. Consequently, 

suspended sediment increased during spring melt and sediment availability from bank erosion and 

surface runoff was elevated. In contrast, the 2010 Drum Creek suspended sediment samples were 

collected during summer and fall. Thus, the particle size of suspended solids during that period 

were much finer due to lower flow velocities (171).  

The highest geochemical fractions in Drum Creek were found to be: SiO2 (47.82% to 54.19%), 

LOI (23.13% to 28.81%),  Al2O3 (10.42% to 10.89%), and Fe2O3 (4.04% to 4.32%) of the total dry 
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weight. While these were dominant fractions, the percent composition of MnO were greater than 

those in Elbow River watershed. Similar to sediments from Elbow River watershed previously 

discussed, sediments with high fractions of Al2O3 and Fe2O3 as dissolved P can bind strongly to Fe 

and Al oxides and oxyhydroxides and can be released from sediment into the water column (30,79). 

Therefore, these geochemical composition results would indicate that Drum Creek sediments 

could potentially release more bioavailable P.  

Overall, fine sediment characterization indicated that bioavailable P may be released from 

sediment into the water column. In Elbow River watershed, as D50 gradually decreasing 

downstream, fractions of Al2O3, Fe2O3, and MnO were gradually increasing (Table 8). The finest 

sediments deposited in the reservoir and had the highest Al2O3, Fe, and MnO in the Elbow River 

watershed. Higher concentrations of metal oxides Fe2O3 and MnO in Drum Creek sediments might 

suggest more available sites for P binding in Drum Creek sediments (27,30,53,54,61). The release 

and bioavailability of P to the water column at such levels may indicate challenges to reservoir 

managers as increased P in downstream reservoirs can promote primary productivity (31,194).  

 Total Particulate P Speciation 

The particulate P speciation for sediment samples collected from the Elbow River Watershed 

(Elbow River to Glenmore Reservoir), as well as sediment samples from Drum Creek is presented 

in Figure 5 and Table 9.  
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Figure 5- Phosphorus speciation of fine sediments from upstream to downstream in the Elbow 

River Watershed (Elbow River to Glenmore Reservoir),  and the Crowsnest Watershed (Drum 

Creek) (µg/g). 

 

The observed Elbow River and Glenmore Reservoir Total Particulate Phosphorus (TPP) 

concentrations and spatial trends were as expected—TPP concentrations generally increased 

downstream with decreasing grain size (as reported in Section 4.1.1). Globally, TPP concentrations 

may range from <300 µg/g to >6000 µg/g depending on surrounding land use, grain size, and other 

parameters (195–197). The TPP of sediment collected from the Elbow River and Glenmore 

Reservoir ranged from 247.81 µg/g to 304.9 µg/g in the upper reaches (ER-CF and ER-HWY21, 

respectively), to 368.5 µg/g to 418.1 µg/g in the lower reaches (ER-TB and ER-WFB, respectively), 

and 579.7 µg/g to 765.1 µg/g in the Glenmore Reservoir. These results are consistent with 

previously reported investigations that have demonstrated that finer particle size fractions have 

higher concentrations of TPP (198,199). Previous work conducted by Allin (2015) in a 

neighbouring watershed, also reported these trends. In that study, river sediments (519.2 µg/g to 
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548.4 µg/g ) had lower TPP relative to the downstream reservoir sediments (639.0 µg/g to 744.2 

µg/g) (27).   

Table 9- Solid phase concentrations of TPP, and fractions NAIP, AP, OP. Equilibrium Phosphate 

Concentrations (EPC0) of sediments in the Elbow River Watershed (Elbow River to Glenmore 

Reservoir) and Crowsnest Reservoir (Drum Creek) and ambient SRP concentrations are also 

presented. Ambient SRP concentrations in the reservoir were less than EPC0 concentrations, 

indicating that sediment is likely desorbing SRP to the water column. 

Location Sample Site 
NAIP 

(µg/g) 

AP 

(µg/g) 

OP 

(µg/g) 

TPP 

(µg/g) 

EPC 

(µg/L) 

Ambient 

SRP 

(µg/L) 

Elbow 

River  

ER-CF 23.6 209.0 15.2 247.81 34.7   

ER-

HWY22 
21.3 266.0 17.6 304.9 19.4   

ER-TB 25.4 319.0 24.1 368.5 14.0   

ER-WFB 26.6 370.0 21.5 418.1 12.4   

Glenmore 

Reservoir 

4 WH 67.5 420.0 92.2 579.7 8.8 2.7 

3 HC 78.4 457.7 97.7 633.8 11.6 3.4 

2 ML 67.4 438.3 93.1 598.9 10.5 3.6 

1 HP 146.4 489.3 129.3 765.1 23.7 3.1 

Drum 

Creek 

DC 2009 358.6 274.4 200.6 833.6 175.6   

DC 2010 353.7 181.9 132.1 667.7 158.0   

 

Sediment NAIP concentrations also varied spatially in the Elbow River watershed. Concentrations 

of NAIP ranged from 21.6 µg/g to 21.3 µg/g in the upper reaches of the Elbow River (ER-CF and 

ER-HWY21, respectively), to 25.4 µg/g to 26.6 µg/g in the lower reaches (ER-TB and ER-WFB, 

respectively), and 67.4 µg/g to 146.4 µg/g in the Glenmore Reservoir (Table 9). Consistent with 

TPP, sediment NAIP concentrations generally increased with distance downstream. Noticeably, 

both TPP and NAIP were highest in the Head Pond of the reservoir and were associated with 

smaller particle size fractions that are typically enriched with NAIP (25). Concentrations fractions 

of Al2O3 , Fe2O3, and MnO increased progressively downstream and these metal oxide fractions 

are important for the release of SRP from sediments (30,54,200). The concentration of NAIP is 

calculated as the sum of  three extracts, namely;  NH4Cl-RP (1.0M), BD-RP (0.11M, 40°C) and 

NaOH-RP (1.0M) (Refer to Section 2.1). The NaOH-extractable P includes P bound to aluminum 



46 

 

 

 

and metals in humic acids (59). In research conducted by Smith et al. (2011), lake sediments with 

reactive iron highly correlated with SRP, which can subsequently cause cyanobacterial blooms 

(30). Therefore, the presence of these metal oxy-hydroxides in sediments could have led to 

progressively increasing availability of NAIP from the upper reaches of the Elbow River to the 

Glenmore Reservoir. 

In general, Drum Creek sediments were more enriched in NAIP and OP than Elbow River 

watershed sediments. The  concentration of  NAIP in Drum Creek was noticeably greater than in 

the Elbow River watershed. The NAIP concentration of Drum Creek sediment was 358.6 µg/g to 

353.7 µg/g for sediments collected in 2009 and 2010, respectively). In contrast, NAIP ranged from 

21.3 µg/g to 146.4 µg/g in the Elbow River. Elevated levels of NAIP in sediment indicate that 

there is an increasing potential for the sediment associated P to be bioavailable which may be a 

factor in the growth of cyanobacteria (28,57,58). In Drum Creek OP levels were 200.6 µg/g  and 

132.1 µg/g in 2009 and 2010, respectively in 2009 and 2010 which is an order of magnitude greater 

that in the Elbow River (15.2 µg/g to 21.5 µg/g) and Glenmore Reservoir (92.2 µg/g to 129.3 µg/g). 

OP is considered potentially available for algal growth as it is hydrolysable and can be converted 

to inorganic P through chemical and/or biological reactions (58,201,202).  

Several factors may partially explain the observed differences in the particulate P forms in Drum 

Creek compared to Elbow River and Glenmore Reservoir sediments. Elevated levels of NAIP for 

Drum Creek can potentially be attributed to the impact of wildfire on Drum Creek samples. 

Previous studies investigating impacts of wildfire on P bioavailability have found that it is likely 

that wildfires increase P availability for algal and cyanobacterial growth (28,46). Higher 

temperatures associated with burnt soil have been positively correlated with bioavailable P (46). 

Another study conducted by Allin (2015) found particulate P forms in burned and unburned 

sediment in the Crowsnest Pass (which includes Drum Creek) and reported a significant increase 

in NAIP levels in burned compared to unburned sediment (28). In  this work, the TPP in sediments 

from the wildfire impacted region ranged from 660.6 µg/g to 717.7 µg/g (27,28), whereas Drum 

Creek sediments from this study ranged from 667.7 µg/g to 833.6 µg/g. Thus, the TPP 
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fractionations observed herein were within an expected range, although they were slightly higher 

than those previously observed.  

 P Sorption Characteristics  

The EPC0 values observed for sediment collected in Glenmore Reservoir did not differ greatly and 

were consistent with the literature. The EPC0 for sediment collected from HC, WH, and ML 

sampling locations in the Glenmore Reservoir ranged from 8 µg/L to 12 µg/L (Table 9). Globally, 

the EPC0 reported for lakes and reservoirs ranges from <1 to 270 µg/L (Table 10). In particular, 

the EPC0 for sediments collected from mesotrophic-oligotrophic water bodies range from 0.2 µg/L 

to 102 µg/L. Therefore, EPC0 values reported herein are comparable to previous studies. 

Interestingly, the EPC0 in HP was greatest. In general, locations closest to the dam (Head Pond) 

had higher EPC0 values (23.7 µg/L) compared to other sample locations closer to the Elbow River 

inlet which is likely attributed to the decrease in grain size (25,70). 

Table 10- EPC0 (μg/L) ranges for lake and reservoir bed sediments with varying trophic status  

Site Trophic Status EPC0 (µg/L) Source 

Lake Opeongo Mesotrophic-

oligotrophic 

0.2 to 5 Cyr et al. (2009) 

Oldman Reservoir Mesotrophic-

oligotrophic 

64.3 to 102 Allin (2015) 

Lake Taihu Eutrophic 1 to 67 Yu et al. (2017) 

Loch Leven  Eutrophic 180 to 270 Spears et al. (2007) 

 

The EPC0 of sediment collected from the Elbow River and Glenmore Reservoir ranged from 34.7 

µg/L to 19.4 µg/L in the upper reaches (ER-CF and ER-HWY21, respectively), and 14 µg/L to 

12.4 µg/L in the lower reaches (ER-TB and ER-WFB, respectively). The EPC0 appeared to 

decrease with distance downstream in the Elbow River. This was the opposite of the trend observed 

in the Glenmore Reservoir, in which values of EPC0 increased approaching the dam where finer 

particles settled. These differences may be due to the presence of larger soil aggregates and flocs 

that form in the water column of the Elbow River where sediment is more loosely bound. It is 

possible that during P mobility experiments, the shaking process may have caused the breakup of 
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larger particles thus producing a larger than expected EPC0. In the Crowsnest watershed a similar 

phenomenon was observed where larger EPC0 values were occurring in the upstream river 

sediments compared to downstream reservoir sediments (27). These trends were attributed to 

differences grain size and particle morphology as well as sampling methodology (Philips vs Ponar 

sampling) (27).  

Observed differences in the EPC0 of Drum Creek and Glenmore Reservoir sediment were 

determined using batch experiments (Table 9, Figure 6). Based on long term water quality 

monitoring data for the Glenmore Reservoir, SRP concentrations in the water column of the 

reservoir typically range between 2 µg/L and 4 µg/L. Based on the batch experiment data shown 

in Figure 6, bottom sediment in the Glenmore Reservoir represents an internal source of P to the 

water column. According to P sorption data obtained in the benchtop batch experiment, Glenmore 

Reservoir sediment in Head Pond can release from 2 µg P/g sediment to 4 µg P/g sediment. Other 

EPC0  isotherms in other locations of the reservoir are presented in Appendix 1.4: Equilibrium 

Phosphate Concentration (EPC0). It is important to note that EPC0 values are likely lower than 

those in the reservoir.  This is because P desorption from bottom sediment to the water column 

will increase in zones of anoxia which were observed at several sites in the Glenmore Reservoir 

(22,29,181).  
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Figure 6- The sorption batch experiments results can determine the EPC0 for various sediments. 

In the Head Pond, sediments collected at three different depths resulted in EPC0 

concentrations indicating a release of SRP from the sediment to the water column. 

 

4.2 Phase 2: M. aeruginosa Batch Experiments 

Phase 2 of this research involved developing a protocol and conducting microcosm studies to 

examine cyanobacterial proliferation in high quality natural waters using potentially toxin forming 

M. aeruginosa cultures. Growth experiments using various sediment types and modified reservoir 

water in the microcosm were completed. Results of the microcosm experiments are presented and 

discussed in the following sections. 

 Flask Microcosm Experiments 

The cell densities observed in the experiment of samples dosed with BG11 growth medium and 

CO reservoir water were as expected for several reasons. M. aeruginosa grown in microcosms 
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dosed with BG11 growth medium (BG1, BG2, BG3) had cell densities ranging from 8.2×106 

cells/mL to 3.0 ×107 cells/mL on day 59 (Figure 7). It was not a surprise that microcosms 

containing BG11 grew better compared to all other samples, as BG11 is a nutrient rich growth 

medium commonly used to cultivate M. aeruginosa under optimal laboratory conditions. Growth 

trends for BG1, BG2, and BG3, most closely resembled a prokaryote growth curve (203); with a 

lag phase occurring days 1 to 22, an exponential growth phase occurring days 25 to 53, and a 

stationary phase beginning from days 55 to the end of the experiment on day 59. The experiments 

did not run long enough for samples to exhibit the death phase. Other experiments utilizing BG11 

growth medium have reported similar growth trends (166,204,205). The CO treatment was 

conducted with mesotrophic-oligotrophic water collected from Glenmore Reservoir and no 

nutrient amendments. In the literature, concentrations of P with 30 µg/L have been shown to 

promote primary productivity (16). Concentrations in Glenmore Reservoir water ranged from 2 

µg/L to 4 µg/L. In this case, nutrient levels essential for growth were too low in the water matrix. 

Therefore, the growth trends of treatments with BG11 and CO can be easily explained by nutrient 

availability.  

Microcosms dosed with carbonate (C1, C2, C3) did not grow well throughout the experiment 

(Figure 7). Cell densities continually decreased in microcosms dosed with carbonate (C1, C2, C3) 

and were discontinued at day 41 as they were below the 5×104 cells/mL threshold (described in 

Section 3.8.1). Little work has been conducted on carbonate amendments to cyanobacterial 

proliferation. Most previous research has focused on changes to atmospheric CO2 (with a focus on 

climate change impacts) (44). The impacts of elevated carbon concentrations are unclear. Previous 

work has suggested that increased atmospheric CO2 concentrations can improve cyanobacterial 

growth (44,206), whereas other studies have indicated that elevated carbon concentrations can 

inhibit photosynthesis (207). The experiments suggest that carbonate is not a limiting nutrient for 

M. aeruginosa growth in Glenmore Reservoir waters.   
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Figure 7- Cell densities of flask microcosm experiments of M. aeruginosa with various treatments 

of BG11 (BG1, BG2, BG3), carbonate (C1, C2, C3), nitrate (N1, N2, N3), phosphate (P1, P2, 

P3) and two controls (CO and P1-SED) measured for 60 days. 

 

Microcosms amended with phosphate did not grow well compared to BG11 treatments (Figure 7). 

In flask microcosms dosed with phosphate (P1, P2, P3), cell densities progressively decreased and 

the experiments were subsequently discontinued at day 41 when cell densities were below the 

5×104 cells/mL threshold (described in Section 3.8.1). The results from these microcosm 

experiments were unexpected because P is typically considered to be the primary limiting nutrient 

in freshwater bodies (12,29,78,157) and P concentrations > 30 µg/L are understood to generally 

increase primary productivity (16). While SRP concentrations in Glenmore Reservoir water range 
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from 2 µg/L to 4 µg/L, nutrient doses for P1, P2, and P3 were 0.05 g/L, 0.1 g/L, and 0.2 g/L, 

respectively and were well above the 30 µg/L threshold for eutrophication (16).  

The microcosm with sediment from Glenmore Reservoir and phosphate amendments supported  

cyanobacterial cell densities that ranged from 2×103 cells/mL to 3.2×104 cells/mL from days 41 to 

59 and show that fine sediment can enhance cell growth relative to microcosms with phosphate 

amendment, with no sediment. Previous literature has indicated that singular nutrient amendments 

may not be sufficient for proliferation, whereas the synergistic contributions of P and N together 

can lead to growth (208). Work by Guildford & Hecky (2000) also suggests that both P and N 

(with specific N:P ratios), likely have a role to play in primary productivity (209). Some studies 

show that sediments are capable of desorbing both N (often in the form of inorganic ammonium, 

which is bioavailable) and P (58,110). Given that microcosms amended with only phosphate did 

not grow well, the data from this experiment seem to suggest that cyanobacterial growth in 

microcosms with sediment may have resulted from the desorption of  N and P together. No analysis 

of dissolved species in the post experiment was conducted and future studies should determine 

what other factors may have contributed to growth.  

In general, all singular nutrient treatments did not promote cyanobacterial growth. Previous 

literature has indicated that singular nutrient amendments may not be sufficient for proliferation, 

whereas concentrations of P and N together, or other micronutrients such as iron can lead to growth 

(21,23,208,210). Following the work of Guildford & Hecky (2000), Ma et al. (2015) suggest that 

N:P ratios have a key role in propagating cyanobacterial growth, and that limiting nutrients may 

change depending on the ratios of N and P (21). Singular nutrient amendments dosed at 

concentrations well above those commonly found in natural water systems may suppress growth  

(161,162), although literature regarding high doses of nutrients adversely affecting cyanobacterial 

growth is limited. For example, excess concentrations of ammonium have been observed to 

potentially suppress growth  (161,162). It is possible that because the water was collected from a 

mesotrophic-oligotrophic reservoir, insufficient nutrient concentrations or mixtures essential for 

growth were not optimal in the water matrix. Therefore, the range of nutrients required for 
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cyanobacterial growth or specific nutrient ratios, were insufficient to support cyanobacterial 

proliferation (21,23,95,211).  

Relative to other amendments with P and carbonate, cyanobacteria grew better in microcosms 

dosed with N. Cell densities increased in two of the microcosms with nitrate amendment; final cell 

densities on day 59 of the experiment for N1 and N2 were 7.9 ×105 cells/mL and 1.21×105 cells/mL, 

respectively (Figure 7). Clearly, N3 did not grow as well as N1 and N2 microcosms and N3 was 

discontinued after day 41. Previous studies have indicated that increased N can affect biomass of 

cyanobacteria (21,150,212). For example, Chaffin (2013) found that increased N in Lake Erie from 

2002 to 2011 resulted in a linear relationship for increasing biovolume of Microcystis (150). It 

appears from these results that nitrate contributions may promote M. aeruginosa cell proliferation 

in mesotrophic-oligotrophic waters like those in the Glenmore Reservoir.  

In addition to nutrient availability, the lack of replication in the experiments conducted herein 

could have affected the results and interpretation of the data. None of the flask microcosms were 

replicated and the degree of variability within and between the treatments is unknown (further 

elaborated on in Section 4.2.3.2). Given the results from these experiments, it appears that 

microcosm samples of BG1, BG2, BG3, and N1 treatments were the only treatments sufficient for 

cyanobacterial proliferation. Therefore, despite the lack of replicates in this experiment, the results 

seem to suggest that N is important for cyanobacterial growth in the Glenmore Reservoir water.   

 Test Tube Microcosm Experiments  

The results from test tube microcosms dosed with (nitrate, phosphate, and carbonate)  were 

generally expected given results from the flask microcosm experiments. Photos documenting 

M. aeruginosa cell proliferation in the test tube microcosms are presented in Appendix 3: 

M. aeruginosa Test Tube Microcosm Experiment Photographs. A photo of the microcosms taken 

on day 27 is presented in Figure 8. Test tube microcosms with nitrate (N1, N2, N3), phosphate (P1, 

P2, P3), or carbonate (C1, C2, C3) amendment exhibited little growth over the 27 day duration of 

the experiment. In the flask microcosm experiments previously discussed in Section 4.2.1, 

amendments with phosphate and carbonate grew poorly compared to nitrate amended samples 
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(with the exception of N3). Previous studies have indicated that singular nutrient amendments may 

not be sufficient for cyanobacterial proliferation (23,95,208). Therefore, the results from these 

experiments regarding phosphate, nitrate, and carbonate doses in growth were not surprising.  

 

Figure 8- Day 27 of test tube microcosm experiments. Samples containing Glenmore Reservoir 

sediment exhibited noticeably enhanced M. aeruginosa proliferation. 

 

The presence of fine sediment in the microcosms (A1, A2, A3) clearly enhanced M. aeruginosa 

cell proliferation (Figure 8). The photograph suggests that the sediment provided a sufficient 

mixture of macronutrients and micronutrients to support cyanobacterial growth. Within a benchtop 

setting, the presence of sediment proliferating cyanobacterial growth was previously been 

investigated by Crumb (2016). In that study, microcosms were dosed with a target cell density of 

3.59×106 cells/mL and after 14 days of growth, cyanobacteria grew better in sediments compared 

to flasks only with filtered reservoir water (166). As previously discussed in Section 4.2.1, the 

synergistic contributions of P and N together can lead to growth (208). Guildford & Hecky (2000), 

along with work by Dolman et al. (2012) found that ratios of N and P can greatly affect growth 

(209,212). As sediments are capable of desorbing both N (often in the form of inorganic 

ammonium, which is bioavailable) and P, microcosms with sediment could have allowed 

proliferation of growth by desorption of N and P together (58,110). However, it is not possible to 
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confirm that growth occurred due to desorption of nutrients such as P from sediment, as 

concentrations of nutrients or any other dissolved constituents were not monitored throughout the 

experiments. Regardless, microcosms containing sediment (A1, A2, A3) were the only treatments 

that promoted noticeable growth and cell densities similar to those discussed in Section 4.2.1.  

The cell densities observed on day 27 of this experiment were consistent with literature. Mean cell 

densities on day 27 of the experiment are presented in Figure 9. The mean cell density in the 

sediment amended microcosms was 2.16×106 cells/mL compared to 1.43×106 cells/mL, 9.38×105 

cells/mL, and 8.42×105 cells/mL in the nitrate amended (N1, N2, N3), phosphate amended (P1, P2, 

P3), and carbonate amended (C1, C2, C3) treatments, respectively. The presence of sediment 

proliferating cyanobacterial growth was previously been investigated by Crumb (2016). In that 

study, microcosms were dosed with a target cell density of 3.59×106 cells/mL. Final cell densities 

on day 28 of those experiments had final cell densities ranging from 107 to 108 cells/mL in 

microcosms with sediment, and 106.5 cells/mL to 107 cells/mL with microcosms without sediment 

(166). Cell densities reported by Crumb (2016) are much higher than those observed in the present 

research. The higher cell densities may be attributed to a few factors. First of all, inoculation 

concentrations were much greater in the Crumb (2016) experiments. Second, reservoir water used 

in the Crumb (2016) experiments were from a mesotrophic water source, which means the nutrient 

concentrations were likely higher than in the Glenmore Reservoir water (mesotrophic-

oligotrophic). The reservoir ambient SRP concentration in Crumb (2016) was 32 µg/L (166), while 

in contrast, Glenmore Reservoir ambient SRP concentrations ranged from 2 to 4 µg/L. The 

sediments used in Crumb (2016) also had higher EPC0 of 82 µg/L, indicating a P release of ~5 µg 

P/ g of sediment (166), which is much higher than the EPC0 reported in the sediments used in these 

experiments, corresponding to a release of approximately ~2 µg P/ g of sediment in Head Pond 

(Section 4.1.3). Thus, the cell densities observed here demonstrate that growth in these 

experiments were comparable.  
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Figure 9- Cell densities of M. aeruginosa in test tube microcosms on day 27. Samples dosed with 

sediment (A1, A2, A3) had higher cell densities than other singular nutrient doses.  

 

Differences between the various amendments may not be statistically significant because of the 

amendment concentrations (or in this case, mass of sediment) varied between the microcosms. 

Thus, replication would be required for more rigorous comparison. Increased replication was 

beyond the scope of this experiment. These experiments were designed to provide a simple 

indication of the type of amendment(s) that would enhance M. aeruginosa proliferation in 

modified mesotrophic-oligotrophic waters. 

 Factorial Design Microcosm Experiment: Investigating the Effects of 

Sediment Source and Nitrate Concentration 

Following the test tube microcosm experiment, a factorial design microcosm experiment was 

designed to investigate the effects of nitrate concentration and sediment type (wildfire and 

anthropogenically-impacted) on M. aeruginosa proliferation. Pigments and cell densities in 

response to these parameters were evaluated. Consequently, the results from using mesotrophic-

oligotrophic waters and sediment in cyanobacterial proliferation are discussed in following 
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Sections 4.2.3.1 and 4.2.3.2. Notably, previous benchtop experiments using cyanobacteria have 

never used mesotrophic-oligotrophic waters. A summary of previous works is presented in Table 

11. To the author’s knowledge, no other microcosm experiments that investigated nitrate 

amendments and sediment source had previously been conducted. Because this work is original in 

utilizing natural mesotrophic-oligotrophic waters, the most relevant work will be referenced in 

subsequent sections. 

Table 11- Summary of previous benchtop microcosm experiments using cyanobacteria.  

Cyanobacteria Cultured Growth Medium Objective Source 

M. aeruginosa Deionized water Determine impacts of 

hydrodynamic 

disturbance on P 

release 

Huang et al. 

(2015) 

 

M. aeruginosa Eutrophic-

mesotrophic reservoir 

water 

Investigate role of iron 

in P sequestration 

Crumb 

(2016) 

 

M. aeruginosa P free BG11 growth 

medium 

Evaluate P release 

from sediment 

induced by 

cyanobacterial blooms 

Hao et al. 

(2016) 

 

Spriulina platensis Modified Schölsser 

(1982) medium (with 

nitrate instead of 

ammonium) 

Explore differences in 

N sources to S. 

platensis proliferation 

Soletto et al. 

(2005) 

 

M. aeruginosa Modified BG11 (use 

of nitrate, urea, and 

ammonium for N) 

Photosynthetic 

response from various 

N sources and P 

Peng et al. 

(2016) 

 

M. aeruginosa and  

M. flos-aquae 

Modified BG11 with 

10× more carbon, and 

1/50 amount of N 

Explore colony 

formation mechanism 

of Microcystis cells 

Liu et al. 

(2016) 

 

Cyanobium sp., 

Aphanocapsa muscicola, 

Pleurocapsa minor, 

Pseudanabaena catenata, 

Leptolyngbya boryana, 

Leptolyngbya nostocorum, 

Phormi- dium sp., Nostoc 

carneum, and Tolypothrix 

tenuis. 

Modified CHU10 

medium, 

BG11, and  

Allen & Arnon 

medium 

Investigate changes in  

cyanobacterial 

community 

composition to 

various nutrient 

enrichment  

Loza et al. 

(2014) 
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  M. aeruginosa Pigment Analyses   

There were no obvious trends in effects of nitrate concentrations or sediment source in total 

pigment concentrations between the microcosms. Total pigment concentrations for samples varied 

from 0.77 µmol /L to 7.77 µmol/L. The highest concentrations of detected pigment analyses are 

summarized in Figure 10. Chlorophyll a was the dominant pigment in all microcosms, which is 

expected given that chlorophyll a is related to photochemical activity of oxygen-evolving 

organisms, including cyanobacteria (213). The only exception to this observation was N2HP-R1, 

in which a fucoxanthin-like pigment was dominant. The total pigment concentration in that 

microcosm was more than double that in any other microcosm. Thus, it was excluded from the 

results because it was considered to be outside the range of natural variability and can be found in 

Appendix 4: M. aeruginosa Factorial Experiments- Supplementary Data. Overall, no clear trends 

in pigment production or concentration were observed. 
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Figure 10- Dominant pigment concentrations (µmol/L) observed on Day 60 of the factorial design 

experiments. There were no obvious trends of pigment concentrations given various N 

amendments and sources of sediments. Most samples were primarily composed of 

chlorophyll a. Other pigment concentrations are available in Appendix 4.  

 

Cyanobacteria absorb light energy through photosynthesis (1,84). Photosynthetic processes occur 

in the thylakoid through the use of pigments: chlorophyll a, chlorophyll b, together with carotenes 

or phycobilins (84,214,215). Chlorophyll a can be absorbed at peak wavelengths of approximately 

470 nm and 680 nm. Chlorophyll a typically acts as the main photosynthetic pigment used to 

capture light energy within a certain range.  Chlorophyll b, carotenoids, and phycobilins are 

accessory pigments that can extend the range of wavelengths that cyanobacteria utilize (Figure 11) 
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(84,216). Chlorophyll b has absorption peaks at approximately 450 nm and 650 nm. Carotenoids 

and phycobilins have peak absorbances of 460 nm and 500 nm, and 500 nm to 570 nm, respectively. 

The absorption spectra for chlorophyll a, chlorophyll b, carotenoids, and phycobilins are illustrated 

in Figure 11.  

 

Figure 11- Absorption spectra for chlorophyll a, chlorophyll b, carotenoids, and phycobilins. 

Adapted from Graham & Wilcox (2000) (84) and Hemholtz Centre for Ocean Research Kiel 

(217). 

 

Elevated neoxanthin and myxoxanthophyll pigment concentrations were significantly greater in 

microcosms containing Head Pond sediment compared to those with Drum Creek sediment. 

Samples treated with Head Pond sediment had significantly more neoxanthin (p=0.023) and 

myxoxanthophyll (p=0.005) pigments compared to microcosms with Drum Creek sediment. Both 

neoxanthin and myxoxanthophyll are carotenoids and can be produced in response to 
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photooxidative stress (84,215,216). These results were unexpected, as there were no changes in 

light variability for different treatments of sediment. The production of the neoxanthin could be 

due to thylakoid organization and stress (215), while myxoxanthophyll has been reported to 

contribute to cell wall structure and thylakoid organization of the cyanobacterium Synechocystis 

sp. (214). Assuming that the function of myxoxanthophyll is similar in M. aeruginosa, the presence 

of this pigment could further confirm that thylakoids within the cells of microcosms with Head 

Pond sediment were not experiencing the same environmental pressures as microcosms with Drum 

Creek sediment.  At the time of pigment analyses, cells in the Head Pond microcosms were already 

in the stationary phase of growth and had higher cell densities compared to Drum Creek 

microcosms. Thus, it is possible that nutrient depletion was occurring in the microcosms 

containing Head Pond sediment. Other works  have indicated that nutrient enrichment and 

deficiency can result in pigment and colour changes amongst phytoplankton and cyanobacteria 

(218,219). For example, research conducted by Collier & Grossman (1992) found that deprivation 

of sulfur and N, resulted in visual bleaching differences of cyanobacterium Synechococcus sp. 

cells. In this work, only concentrations of chlorophyll a decreased after sulfur and N deprivation 

(219). This is consistent with work completed by Bonilla (2005), who reported that chlorophyll a 

concentrations increased strongly in response to enrichment (218). Although there is limited 

literature on how other carotenoid pigments may be affected by nutrient deprivation, these works 

confirm that pigment chlorophyll a can be affected by changes in nutrient availability. Therefore, 

the significantly higher carotenoid pigments in Head Pond sediment than in Drum Creek sediments 

may be attributed to nutrient and/or thylakoid stresses. 

Chlorophyll b concentrations in microcosms containing Drum Creek sediment were significantly 

higher than microcosms containing Head Pond sediment. These results were in contrast with 

carotenoid pigments, and microcosms with Drum Creek sediment contained significantly more 

chlorophyll b (p=0.039). While most microcosms with Drum Creek sediment contained 

chlorophyll b, no detectable concentrations of chlorophyll b were found in any of the microcosms 

with Head Pond sediment. Previous research has indicated that chlorophyll b can functionally act 

to substitute chlorophyll a in cyanobacteria (220,221). Thus, the presence of chlorophyll b pigment 
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in the Drum Creek sediment could indicate the need of cyanobacteria to access additional light 

spectra. In research conducted by Tandeau de Marsac (1977), growing cyanobacteria with various 

light sources [green (peak at approximately 525 nm), red (peak at approximately 650 nm) and 

white] resulted in changes to pigment production by cells (222). Although yellow light 

[wavelength of  approximately 580 nm (223)] or effects of coloured medium were not explored by 

Tandeau de Marsac (1977), a yellow hue was visually observed within the Drum Creek treated 

sediment flasks (Figure 12) and this may have potentially interfered with accessibility to 

wavelengths of light. The yellow hue is also associated with the substantially higher levels of 

dissolved organic carbon (DOC) (224). Elevated concentrations of DOC have been documented 

to correlate with coloured dissolved organic matter- which can absorb substantial fractions of 

wavelengths adversely affecting the photosynthetic functions of algae (further discussed in Section 

4.2.3.2) (207). Consequently, the elevated chlorophyll b concentration observed in Drum Creek 

may be attributed to higher DOC concentrations.  

Light variability within the growth cabinet could have potentially affected the health of 

cyanobacterial cells. Flasks within the growth cabinet were not arranged in any order, but they 

were also not intentionally randomized. Thus, it is possible some flasks faced higher light 

intensities than others over the experimental period. With increased light intensity, concentrations 

of chlorophyll a may decrease (225). Danesi et al. (2004) found that compared to lower light 

intensities (2 klux), higher light intensities (5 klux) led to lesser production of chlorophyll a 

(225,226). The light intensity measured in the growth cabinet for this research was 1776 lux, or 

1.78 klux, suggesting that light intensities in the growth cabinet would be sufficient for growth. 

Literature documenting effects of light on carotenoids have been inconsistent. While work 

conducted by Danesi et al. (2004) found that carotenoid concentrations may not be affected (225), 

research conducted by Dall’Osto et al. (2007) and  Goodwin (1980), found that neoxanthin and 

myxoxanthophyll may be produced in response to photooxidative stress  (215,216), respectively. 

In this work, while there were no significant differences in chlorophyll a [N concentrations 

(p=0.742), sediment type (p= 0.800), and interaction between N concentrations and sediment type 

(p=0.651)], significant differences were observed in carotenoid pigments (neoxanthin and 
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myxoxanthophyll) and chlorophyll b. Differences in carotenoid pigments and chlorophyll b may 

be explained by nutrient stresses due to high cell densities and DOC concentrations, respectively. 

Therefore, light variability may not have played a key role in causing significant differences 

observed in the pigment analyses herein.  

Overall, the pigment data suggest that different environmental conditions exist in the microcosms 

due to differences in sediment as a function of sediment source. This would be expected, as 

sediments were collected from a relatively nutrient poor reservoir and a wildfire-impacted river 

still recovering from disturbance. While some potential explanations for the observed differences 

were presented above, a more in depth investigation of those ecosystem characteristics and 

dynamics is warranted but beyond the scope of the present study.   

  M. aeruginosa Cell Densities 

All samples exhibited growth phases typically seen with prokaryotic organisms observed in batch 

cultures. Cell densities were significantly different  between days 21, 39, and 60 (p=0.02). These 

results were expected because cell densities in batch cultures typically have the following growth 

phases: a lag phase, exponential growth phase, and stationary phase (203). The microcosm 

experiments were discontinued before the death phase could occur. The lag phase occurred from 

days 1 to 21, during which cell densities of all microcosms varied from 2.2×105 cells/mL to 

2.3×106 cells/mL. Samples were inoculated from a culture which contained half BG11 solution 

and half reservoir water collected from the Head Pond region of the Glenmore Reservoir (details 

presented in Section 3.7.1). It is possible that the observed lag time was due to the cyanobacterial 

cells adapting to conditions of a lower nutrient environment (86,180). From days 24 to 42, a 

noticeable increase in growth rate (the exponential phase) was observed with all microcosm cell 

densities ranging from 7.3×106 cells/mL to 1.6×108 cells/mL. A stationary phase from days 44 to 

60 (end of the experiment) was observed. The stationary phase could have occurred likely due to 

high density of cyanobacterial cells in the medium and/or an exhaustion of nutrients within the 

batch experiment as nutrients were not added after the initial inoculation. Cell densities within this 

time varied from 8.2×106 cells/mL to 9.3×108 cells/mL. It should be noted that cell densities 

counted on day 54 are likely relatively low because of a confirmed enumeration error. Previous 
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benchtop work conducted by Crumb (2016) inoculated samples of sediment and reservoir water 

with 3.59×106 cells/mL. In this same study, cell densities in the stationary phase ranged from 107 

cells/mL to 108 cells/mL, which are within the range of cell densities in this research. Huang et al. 

(2015) inoculated treatments with deionized water and sediment, with an initial target density of 

8×105 cells/mL, and growth was monitored over 21 days by measuring chlorophyll a (33). 

Although these experiments measured chlorophyll a, they were similar to growth patterns observed 

in this experiment. Both exhibited exponential and stationary phases of growth. Some variability 

was observed within the individual microcosms, but it is likely within the range of natural 

variability. Given that all treatments of the factorial experiment grew following the typical 

prokaryote growth curve, there is compelling evidence to support that sediment or dosed nitrate 

contributed to cyanobacterial proliferation. Therefore, growth phases observed in these 

experiments are consistent with literature.  
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Figure 12- Photographs of factorial design microcosms illustrating cell densities (a) All cell 

densities of M. aeruginosa microcosms increased as expected over the course of 60 days (b) 

Sequential photos of various treatments on days 4, 21, 33, and 54 visually confirm that cell 

densities increased. Samples treated with DC sediment appeared to have a yellow hue 

compared to microcosms treated with HP sediment.  

 

(a) 

 

(b) 

 Day 4 Day 21 Day 33 Day 54 

N1DC 

    

N1HP 

    

N2DC 

    

N2HP 

    

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0 10 20 30 40 50 60

C
el

ls
/m

L

Days of Growth

N1DC

N1HP

N2DC

N2HP

CO

BG11



66 

 

 

 

Unexpectedly, cell densities in microcosms with Head Pond sediment were significantly greater 

(p=0.002) than those grown with Drum Creek sediment. Previous studies of wildfire on primary 

productivity have generally agreed that post wildfire conditions lead to increases in algal and 

cyanobacterial biomass. Robinson et al. (1994) found that phytoplankton communities 

experienced the greatest changes in extensively burned catchments (227). Spencer et al. (2003) 

observed short term impacts of dense algal growth the first spring after a wildfire (228). In addition 

to potential short term impacts, algal productivity may increase in long term scenarios (five years 

post wildfire), as observed by Silins et al. (2014) (48). These increases in primary productivity are 

often attributed to increased availability of nutrients post wildfire (42,229,230). The results of 

Phase 1 experiments demonstrate that Drum Creek sediment desorbs more bioavailable P than 

Glenmore Reservoir sediment (27,28) which is contrary to what might be expected based on 

previous work on algal proliferation and potential nutrient availability (48). Although results from 

the statistical analyses were unexpected, there are several potential explanations as to why 

microcosms with sediment from Glenmore Reservoir had significantly higher cell densities 

compared to microcosms with wildfire impacted sediment from Drum Creek.   

1. It is possible that P is not the driver required for cyanobacterial growth and other nutrients 

or environmental conditions may be limiting factors. Other nutrients such as N could 

potentially limit growth (160,182,210) but changes in N species were not analyzed in this 

experiment. In addition to N and P, other micronutrients such as iron have been 

documented to increase cyanobacterial and algal proliferation and play a key role in 

photosynthesis (210,231). Moreover, some forms of N that could potentially desorb from 

sediment are more bioavailable to cyanobacteria (58,110). Ammonium is the most common 

form of N to desorb from sediment and is considered to be more bioavailable than nitrate 

for cyanobacteria (160).  

2. Compounds in the Drum Creek sediment may have inhibited growth. The desorption of 

heavy metals from sediment, which is known to increase post wildfire, could inhibit 

cyanobacterial growth (232–234). Previous work conducted by Burnet et al. (2009) found 

that treatments with copper and lead can lead to reductions in total filamentous 
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cyanobacteria (232). Previous studies conducted by Lu et al. (2000) and Singh & Singh 

(1992) also reported that mercury hindered growth of cyanobacteria Streptomyces platensis 

and Nostoc calcicola, respectively (233,234). Therefore, it is possible that desorption of 

heavy metals from wildfire impacted sediment hindered M. aeruginosa growth in 

microcosms with Drum Creek sediment.  

3. The conceptual discrepancy of higher cell densities observed in microcosms with Head 

Pond sediment compared to microcosms with Drum Creek growth could also be attributed 

to elevated DOC concentrations inhibiting cyanobacterial growth (Table 12). DOC can 

impact cyanobacteria depending on its chemical nature and the availability of other 

nutrients within the system (44,207,235). Elevated concentrations of carbon could have 

different effects on cyanobacteria depending on their chemical nature and limiting nutrients 

within the system (44,207,235). In this case, it is likely that elevated concentrations of 

allochthonous DOC (i.e. terrestrial in origin), could have led to relatively higher light 

attenuation, thus, reducing photosynthetic activity and primary productivity (207).  

4. Increased cell densities of cyanobacteria can potentially increase the pH (57). This increase 

of pH can affect the P mobility from sediment to the water column, depending on the type 

of sediment (57,58). Thus, it is possible that the effects of cyanobacterial growth were 

further perpetuating initial growth trends leading to this significant difference.  

Higher levels of cyanobacterial cell densities were expected in microcosms containing post-

fire sediments from Drum Creek. Accordingly, further detailed exploration is required to 

delineate the factors that contributed to the observed differences, but this is beyond the scope 

of the present investigation. This result is notable nonetheless and merits follow up to further 

inform wildfire-associated legacy impacts and threats to the provision of safe drinking water.  
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Table 12- Total Organic Carbon (TOC), Dissolved Inorganic Carbon (DIC) and Total Dissolved 

Carbon (TDC) at day 1 and day 60 of microcosm factorial design experiments 

 Day 1 Day 60  
DOC 

(µg/L) 

DIC 

(µg/L) 

TDC 

(µg/L) 

DOC 

(µg/L) 

DIC 

(µg/L) 

TDC 

(µg/L) 

N1HPR1 1.77 0.17 1.93 24.50 0.08 24.60 

N1HPR2 1.77 0.17 1.93 17.63 0.10 17.73 

N1HPR3 1.77 0.17 1.93 16.53 0.10 16.63        

N1DCR1 1.77 0.17 1.93 42.60 0.19 42.80 

N1DCR2 1.77 0.17 1.93 46.80 0.14 46.90 

N1DCR3 1.77 0.17 1.93 43.83 0.13 43.93        

N2HPR1 1.77 0.17 1.93 21.67 0.10 21.77 

N2HPR2 1.77 0.17 1.93 17.17 0.11 17.27 

N2HPR3 1.77 0.17 1.93 16.73 0.10 16.83        

N2DCR1 1.77 0.17 1.93 50.67 0.42 51.07 

N2DCR2 1.77 0.17 1.93 45.87 0.18 46.07 

N2DCR3 1.77 0.17 1.93 51.13 0.19 51.33 

 

Lastly, no significant differences were found between microcosms containing the various nitrate 

amendments or their interactions with other experimental factors. This result was unexpected as 

higher concentrations of N have been found to correlate sometimes with higher biovolume of 

cyanobacteria. Chaffin (2013) postulated that there was no linear relationship with increases of 

total P with Microcystis biovolume in Lake Erie, whereas an increase of N caused significant linear 

relationships with annual biovolume (150). Similarly, Ma et al. (2015) observed that N only 

additions induced growth, but P additions alone did not (21). The differences from those 

experiments may be attributed to the presence of M. aeruginosa, and the entire phytoplankton 

community (212,236), as these works investigated the potential proliferation of M. aeruginosa 

alone. There are a couple of reasons this inconsistency may have occurred. First, it is possible that 

ratios of nutrients between N and P were not ideal for growth, as some work indicates that the 

limiting nutrient depends on a certain threshold concentration (212). Further, differences may be 

attributed to benchtop works and growth within a growth cabinet, as it is considered within ideal 
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conditions. Thus, the inconsistencies between N contributions to M. aeruginosa and biomass are 

compelling, and further work to delineate reasons for these discrepancies is recommended.  

Other studies have been conducted in mesocosms within the natural environment to investigate 

the effects of natural waters, sediment, and nitrate on cyanobacterial growth. Axler & Reuter (1996) 

examined the effects of nitrate amendments in mesocosms in Castle Lake, a mesotrophic-

oligotrophic lake in California (237). Mesocosms with sediment in the lake were dosed with NO3-

N and NH4-N. However, these experiments investigated and compared the preferential uptake of 

N form and not the biomass within the mesocosms. Therefore, results from this experiment 

unfortunately are not comparable. Research conducted by Xie et al. (2003) investigated the 

presence of sediment on proliferating cyanobacterial growth in eutrophic in-lake mesocosms. 

Results from Xie et al. (2003) suggested that mesocosms with and without sediment could both 

promote growth, but the presence of sediments could further accelerate the release of P from 

sediment due to changes in pH that were affected by photosynthetic activity (165). In contrast to 

the results of Xie et al. (2003), the benchtop microcosms in the present work did not exhibit much 

growth in the absence of sediment. This could potentially be attributed to the low nutrient waters 

(mesotrophic-oligotrophic) used compared to high nutrient hyper eutrophic waters used by Xie et 

al. (2003). Additionally, autoclaved sediment and water used in this research would also 

potentially impact growth. The direct impacts of autoclaving sediment and water are unclear. 

However, it is possible that growth of M. aeruginosa could potentially be supported through 

community dynamics, or populations of M. aeruginosa would decrease due to competition for 

resources. Consequently, similar research investigating natural waters, sediment, and nitrate have 

taken place within the environment but are not comparable.   

To the author’s knowledge, experiments relating the direct effects of sediment presence to natural 

mesotrophic-oligotrophic waters have not been conducted previously. The factorial design 

microcosm results presented herein are not entirely consistent with the literature. Although there 

are similarities in experimental design, the implementation of experiments and objectives of 

previous work were not the same. Investigative work for understanding cyanobacterial growth in 

laboratories has typically been conducted at benchtop scale in controlled environments utilizing 
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specific growth media (159,182,238,239). There are certainly limitations associated with these 

experiments because experimental conditions are not representative of natural systems. For 

example, autoclaved sediment and water do not allow for any microbial or phytoplankton 

competition in the community. Further, ideal growth conditions in growth cabinet and modified 

reservoir water could have allowed for unrealistic and ideal conditions which would not likely 

occur in nature. Despite these limitations, this type of microcosm approach using modified natural 

waters and sediment in a controlled laboratory environment can be a tool for better understanding 

the impacts of source water quality change on cyanobacterial proliferation in drinking water 

reservoirs. This type of analysis may be very useful in informing reservoir management, source 

water protection planning, and climate change adaptation and mitigation strategies. Overall, results 

from this research suggest that the main drivers of M. aeruginosa proliferation and the differences 

observed between the microcosms containing the various sediment types were driven by the 

sediment.  

 Control/ Reference Microcosms 

Control/reference microcosm treatments were conducted to provide perspective on the factorial 

design. All treatment flasks described in Section 4.2.3, contained N and sediment amendments but 

control/reference microcosms were also examined. The growth curves over 60 days of  

M. aeruginosa obtained for these treatments are presented in Figure 13. These flask microcosms 

allowed for interpretation of the effects of singular nutrients, sediment type, or positive (BG11) 

and negative (CO) references.  
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Figure 13- M. aeruginosa growth curves for control/reference microcosms during the factorial 

design microcosm experiment. These included: BG11 (BG11, positive reference), reservoir 

water only (CO, negative reference), Drum Creek sediment with reservoir water (DC),  Head 

Pond sediment with reservoir water (HP), phosphate amendment (P), and nitrate amendment 

(N). As expected, BG11 reference microcosm had highest cell densities and CO reference 

microcosm had lowest cell densities amongst all other control/reference samples.  

 

The growth for both positive reference (BG11) and negative reference (CO) were as expected. Cell 

densities in the BG11 control microcosm had cell densities that ranged from 1.53×107 cells/mL to 

1.03×109 cells/mL from days 30 to 60. These results were not surprising as BG11 is widely used 

to culture M. aeruginosa (82,166,205,240). In contrast, CO microcosm cell densities were the 

lowest observed and ranged from 2.07×106 cells/mL to 1.45×107 cells/mL between days 30 to 60. 

CO containing Glenmore Reservoir water was relatively nutrient poor with no nutrient 

amendments. The effects of growing in nutrient rich medium compared to nutrient low medium 

have been previously discussed in Sections 4.2.1, 4.2.2, and 4.2.3. In conclusion, BG11 and CO 

treatments exhibited expected growth and assumed to be reliable reference samples.  
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The growth for treatments with N and P yielded interesting results. N and P exhibited similar 

growth trends to CO, with cell densities during the stationary phase that were approximately one 

order of magnitude higher than those in the CO microcosm. Cell densities in N and P varied from 

1.13 ×107 cells/mL to 3.57 ×108 cells/mL and 1.13 ×107 cells/mL to 1.01 ×108 cells/mL from days 

30 to 60, respectively. Although control samples were conducted with no replication, these 

microcosm results suggest that the contributions of N and P alone supported some growth, but not 

to the extent that BG11 could. These results are consistent with visual observations in Section 

4.2.2. Therefore, N and P as singular nutrients can support some growth- but multiple nutrients (or 

a dual nutrient regime, as discussed in Sections 4.2.1 and 4.2.2 (21,23,95,212)) is likely what 

supports greatest growth in these mesotrophic-oligotrophic waters.  

Microcosms of HP and DC, containing Glenmore Reservoir water and fine sediment from Head 

Pond and Drum Creek, respectively, were the best growing samples following BG11. Cell 

densities in HP and DC from days 30 to 60 were 1.6×107 cells/mL to 1.9×109 cells/mL and 8×106 

cells/mL to 1.9×108 cells/mL, respectively. Notably, the cell densities are within the range of those 

observed in factorial experiment microcosms (discussed in 4.2.3.2). The factorial experiment 

microcosms also contained excess concentrations of nitrate amendment. This observation 

demonstrates that the M. aeruginosa proliferation observed in the factorial experiment microcosms 

containing fine sediment was predominantly driven by sediment addition rather than nitrate 

amendment. This conclusion is further supported by the factorial experiment microcosm data that 

demonstrate similar levels of M. aeruginosa cell proliferation irrespective of the level of nitrate 

amendment implemented. Additionally, these results were also consistent with visual evidence 

exhibited during the test tube microcosm experiments discussed in Section 4.2.2. Thus, the 

proliferation of samples HP and DC with sediment and natural waters alone, demonstrated that 

fine sediment enhances M. aeruginosa proliferation.  
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 Conclusions 

It is widely recognized that fine sediment is the primary vector for P transport to and within rivers.  

When sediment is transported and subsequently deposited in downstream drinking water reservoirs, 

the associated contributions to nutrient (especially P) release to the water column are often 

overlooked. While P has commonly been considered the key limiting nutrient for primary 

productivity in freshwater bodies, the effects of N have been emphasized as key contributors for 

cyanobacterial bloom toxicity and formation. Thus, P and N dynamics are essential for reservoir 

management as critical drivers for cyanobacterial bloom formation and toxicity. The importance 

of these water quality parameters in source water protection and reservoir management strategies 

is further underscored by their association with landscape disturbances (e.g., floods, hurricanes, 

and wildfires) that are exacerbated by climate change, as well as anthropogenic disturbances (e.g., 

development and resource extraction), which can all lead to increases in erosion, sediment mobility 

and transport, and associated nutrient bioavailability.  

This investigation demonstrated the direct connectivity between fine sediment and 1) nutrient 

releases to the water column and 2) associated potential for the proliferation of cyanobacteria. In 

general, this work showed that fine sediment can significantly contribute to the proliferation of 

toxin-forming cyanobacteria, regardless of the availability of excess nitrate. Key conclusions from 

this work are detailed below. 

1. As rivers flow into reservoirs, changes in flow velocity cause downstream fining in which 

suspended solids settle according to size and density (selective sorting), such that larger 

particles generally deposit upstream, while smaller ones (i.e., fine grained sediments, 

typically <63 µm) travel further downstream and are preferentially deposited in reservoirs. 

In the City of Calgary’s Glenmore Reservoir, the median grain size diameter (D50) of 

deposited sediment was <10 µm (averages ranging from 3.16 µm to 7.23 µm,) whereas 

suspended solids ranged from 243 µm to 33µm in the Elbow River, at progressively 

downstream locations prior to entering the reservoir.  
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2. Fine-grained sediments that preferentially deposit in reservoirs contain relatively higher 

levels of P compared to the larger materials that settle upstream. In the reservoir, TPP 

concentrations ranged from 579.7 µg P/g to 765.1 µg P/g sediment, with the highest 

concentrations occurring at the farthest distance from the reservoir inlet. In contrast, they 

ranged from 247.8 µg P/g to 418.1 µg P/g suspended solids in the Elbow River, at 

progressively downstream locations prior to entering the reservoir. 

3. Reservoir sediments are generally enriched with the most bioavailable particulate P form 

(NAIP) relative to upstream suspended solids. This is consistent with the relatively greater 

fractions of Al2O3, Fe2O3, and MnO which are associated with NAIP fractions. Here, the 

NAIP fraction gradually increased with downstream distance within the Elbow River and 

Glenmore Reservoir. These results reaffirm that smaller grain sizes (D50) generally have 

higher fractions of NAIP, as the highest NAIP concentrations were associated with fine 

sediments located at the farthest distance from the reservoir inlet. The NAIP concentrations 

ranged from 67.5 µg NAIP/g to 146.4 µg NAIP/g sediment in the reservoir and 21.3 µg 

NAIP/g to 26.6 µg NAIP/g suspended solids in the river.  

4. Fine-grained sediments can release P to the water column when aqueous P concentrations 

are below the EPC0—those that preferentially deposit in reservoirs are likely to release P. 

Trends regarding the D50 and EPC0 were not clear throughout Elbow River, and this may 

be attributed to differences in sampling methodology. In the reservoir, the average EPC0 at 

each site ranged from 8.8 µg P/L to 23.7 µg P/L, with the highest concentrations occurring 

at the farthest distance from the reservoir inlet. In contrast, they ranged from 34.7 µg P/L 

to 12.4 µg P/L for suspended solids in the Elbow River, at progressively downstream 

locations prior to entering the reservoir. 

5. While the conclusions above regarding P form and mobility as related to the grain size of 

riverine suspended solids and reservoir sediments are generally consistent with previously 

reported investigations, the specific contributions of fine sediment to potentially toxin-

forming cyanobacterial growth have been suggested, but not demonstrated incontrovertibly. 

The laboratory benchtop studies reported herein validate that reservoir sediments can 

promote the proliferation of potentially toxin-forming M. aeruginosa cyanobacteria, even 
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in low nutrient, mesotrophic-oligotrophic waters—this is a first of its kind, proof-of-

concept demonstration of this relationship. Further work is needed to rigorously determine 

the exact specific nutrient contributions from the sediment that contribute to this 

proliferation. Also, it should be noted that genes for toxin formation are not always 

expressed—an investigation of key drivers of toxin-formation gene expression was beyond 

the scope of this investigation. 

6. The proliferation of potentially toxin-forming M. aeruginosa cyanobacteria was enhanced 

by fine sediments obtained from both a nutrient poor, mesotrophic-oligotrophic source 

water reservoir and a relatively nutrient rich, wildfire-impacted river. Although it has been 

previously reported that wildfire-derived sediments are enriched with bioavailable NAIP 

with relatively higher EPC0 that contributes to greater primary productivity in impacted 

rivers relative to unimpacted ones, significantly higher cyanobacterial proliferation 

occurred in treatments containing reservoir sediment—this result was unexpected. This 

difference may be attributable the delivery, or lack of other key nutrients or contaminants 

that can affect cyanobacterial growth. Wildfire-impacted sediment may release other 

materials, such as heavy metals, which can inhibit cyanobacterial growth. Further 

explanations include: the contributions of higher DOC concentrations in microcosms 

containing wildfire-impacted sediment, which are known to reduce photosynthetic active 

irradiance (i.e., light availability needed for photosynthesis), or the impacts of other 

limiting nutrients or ratios of nutrients unavailable in the microcosms. Finally, it should be 

underscored that the wildfire-impacted sediment was collected approximately 8 years post-

fire; thus, it is indicative of the legacy effects of wildfire on potential nutrient releases and 

cyanobacterial (and broader algal) proliferation after wildfire as opposed to immediate 

post-disturbance impacts (which likely would be even greater). Further investigation is 

needed to elucidate additional impacts of fine sediment on cyanobacterial proliferation. 

7. Unexpectedly, amendments of nitrate concentrations did not significantly affect the 

pigment composition or cell densities of potential toxin-forming cyanobacteria,  

M. aeruginosa. In all statistical analyses, N concentrations did not contribute significantly 

to results. These results are inconsistent with those in literature, and may be attributed to 
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the quenched system of elevated N concentrations, or potentially by the unnaturally high 

concentrations used within this work.  

8. Benchtop microcosm investigations can be conducted to investigate the proliferation of 

potentially toxin-forming cyanobacteria (here M. aeruginosa) in modified natural waters 

with the addition of natural reservoir (or other) sediments to investigate reservoir 

management, natural disturbance, and other water quality and environmental impacts on 

the potential proliferation of cyanobacteria. To the author’s knowledge, this investigation 

is the first to develop and report these microcosm approaches. It should be underscored 

that this approach was developed in the University of Waterloo’s Water Science, 

Technology & Policy Group’s laboratories in conjunction with another individual’s 

master’s work, completed by Crumb (2016) (166). While the microcosm investigations 

detailed herein are by no means predictive, they are easy and inexpensive to conduct 

relative to other approaches (such as the use of limno-corrals). Moreover, they offer a 

relatively rapid means for providing insights and direction for further investigation and 

consideration of landscape disturbance and reservoir management impacts on source water 

quality and drinking water treatability.  
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 Implications and Recommendations 

The proof-of-concept investigation presented herein demonstrates that reservoir sediment can 

significantly promote M. aeruginosa proliferation in low nutrient, mesotrophic-oligotrophic 

waters. This work emphasizes the need to evaluate and better understand the contributions of 

various fine sediment sources during drinking water reservoir risk management. Notably, drinking 

water reservoirs are typically managed to ensure water availability. When reservoirs are used as 

equalization basins for dampening rapid changes in water quality, the contributions of the 

relatively small amounts of fine sediment present within them—and the associated potential for 

that sediment to serve as an internal source of bioavailable P—are not typically considered. This 

work suggests fine sediment and its potential contributions to the proliferation of cyanobacteria 

and algae should be considered as part of regular reservoir management and source water 

protection planning in the drinking water industry. 

It should also be highlighted that both anthropogenic (e.g., development, agriculture, and resource 

extraction) and natural (e.g., wildfire and flooding) landscape disturbances can significantly 

increase fine sediment availability and transport to downstream receiving waters, including 

drinking water reservoirs. Thus, these results have significant implications for both climate change 

adaptation and the management of drinking water reservoirs, especially in systems that receive 

high quality source water. High quality source waters are more likely to be sensitive to relatively 

small shifts in sediment-associated nutrient availability. Moreover, it is critical to underscore that 

reservoirs such as the one investigated herein may already contain sediments that can significantly 

enhance cyanobacterial proliferation if the system conditions (e.g., turbulence, light levels, etc.) 

favour their growth. Thus, an improved understanding of ecosystem dynamics is still needed. 

Regardless of whether or not such shifts occur due to landscape disturbance or reservoir 

management, the potential for fine sediment-associated proliferation of cyanobacteria should be a 

critical component of drinking water treatment risk management. Cyanobacterial blooms can 

challenge treatment infrastructure and lead to service disruptions that threaten public health.  



78 

 

 

 

As fine sediment characterization is not a typical component of most source water protection 

programs, this type of watershed characterization and associated water quality analysis may be 

useful for drinking water utilities in identifying both current threats to water supply and treatment 

and future threats associated with potential or anticipated watershed disturbances. 
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Appendix 1.1: Grain Size Distribution 
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Appendix 1.2: Geochemical Speciation 
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Geochemical Composition of Glenmore Reservoir Sediments at Various Depths 

 

Site 

Analyte 
Symbol 

Co3O4 CuO NiO SiO2 Al2O3 
Fe2O3 
(T) 

MnO MgO CaO Na2O K2O TiO2 P2O5 Cr2O3 V2O5 LOI Total 

Unit 
Symbol 

% % % % % % % % % % % % % % % % % 

Lower 
Limit 

0.005 0.005 0.003 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003  0.01 

HeritageCoveA  < 0.005 0.007 < 0.003 41.36 11.6 4.18 0.06 3.48 15.24 0.36 2.11 0.5 0.16 0.01 0.024 20.73 99.8 

HeritageCoveB  < 0.005 0.007 < 0.003 41.23 11.9 4.07 0.057 3.57 15.9 0.4 2.21 0.5 0.15 0.01 0.026 20.8 100.8 

HeritageCoveC  < 0.005 0.006 < 0.003 38.27 11.02 3.79 0.054 3.68 17.32 0.34 2.19 0.48 0.15 0.01 0.024 22.09 99.42 

WeaselHeadA  < 0.005 0.007 < 0.003 39.93 9.35 3.76 0.053 3.57 17.66 0.41 1.67 0.45 0.15 < 0.01 0.018 23.18 100.2 

WeaselHeadB  < 0.005 0.006 < 0.003 40.76 9.77 3.54 0.049 3.92 17.16 0.42 1.76 0.47 0.15 0.01 0.024 22.14 100.2 

WeaselHeadC  < 0.005 0.008 < 0.003 39.4 8.72 3.23 0.053 4.6 17.17 0.48 1.64 0.45 0.14 0.01 0.019 23.58 99.49 

MidLakeA  < 0.005 0.007 < 0.003 41.78 10.88 3.98 0.07 3.54 15.63 0.39 1.95 0.48 0.16 < 0.01 0.025 21.04 99.93 

MidLakeB  < 0.005 0.007 < 0.003 41.52 10.93 3.79 0.055 3.76 16.41 0.4 1.98 0.49 0.15 0.01 0.024 21.04 100.6 

MidLakeC  < 0.005 0.005 < 0.003 38.17 10.06 3.57 0.057 4.15 18.25 0.36 2.07 0.47 0.15 0.01 0.022 22.99 100.3 

HeadPondA  < 0.005 0.007 < 0.003 43.9 11.85 4.41 0.068 3.3 13.22 0.36 2.09 0.51 0.2 0.01 0.026 19.84 99.78 

HeadPondB  < 0.005 0.007 < 0.003 42.55 11.15 4.01 0.056 3.53 14.94 0.37 2 0.49 0.18 0.01 0.025 20.31 99.63 

HeadPondC   < 0.005 0.007 < 0.003 41.94 10.78 3.95 0.052 3.5 14.67 0.39 1.89 0.47 0.17 0.01 0.023 21.31 99.18 
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Particulate Phosphorus Fraction of Glenmore Reservoir Sediments at Various Depths 

 

Analyte Symbol P P P P P 

Unit Symbol µg/g µg/g µg/g µg/g µg/g 

Lower Limit 0.02 0.02 0.02 0.02 0.02 

Method Code HCL- BD-RP NH4CL- NaOH- Refract 

 RP  RP RP ory-P 

HeritageCoveA 468 34.1 < 10 51.7 100 

HeritageCoveB 467 27.0 < 10 44.7 93.1 

HeritageCoveC 438 19.5 < 10 43.2 100 

WeaselHeadA 409 21.4 < 10 61.6 125 

WeaselHeadB 445 10.5 < 10 31.1 79.6 

WeaselHeadC 406 18.5 < 10 44.5 72.0 

MidLakeA 434 14.3 < 10 47.2 116 

MidLakeB 450 13.7 < 10 32.4 90.5 

MidLakeC 431 30.1 < 10 49.5 72.9 

HeadPondA 469 29.0 < 10 174 176 

HeadPondB 514 34.4 < 10 70.0 105 

HeadPondC 485 32.8 < 10 84.1 107 
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Appendix 1.4: Equilibrium Phosphate Concentration (EPC0) 
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Glenmore Reservoir EPC0 Data 

Legend 

DEPTH  

A 0 to 2 cm from top  

B 2 to 4 cm from top 

C 0 to 2 cm from bottom 

REPLICATION  

R1 Replicate 1 

R2 Replicate 2 

R3 Replicate 3 

 

Location Depth Conc SedMass StdVol ActConc P_ug_L P_abs 

P abs (Calc)/ 

Qe 

HC A 3.4 0.25 25.044 3.400 9.372 -0.598 -0.597 

HC A 3.4 0.249 25.012 3.400 13.334 -0.998 -0.997 

HC A 3.4 0.249 25.012 3.400 5.929 -0.254 -0.254 

HC A 3.4 0.249 25.012 3.400 8.891 -0.552 -0.551 

HC A 3.4 0.25 25.002 3.400 10.062 -0.666 -0.666 

HC A 25 0.25 25.026 25.185 11.980 1.322 1.321 

HC A 25 0.25 25.015 25.185 14.064 1.113 1.112 

HC A 25 0.249 25.012 25.185 9.631 1.562 1.562 

HC A 50 0.251 25.015 50.098 15.139 3.484 3.482 

HC A 50 0.251 25.021 50.098 16.885 3.311 3.308 

HC A 50 0.249 25.005 50.098 16.158 3.408 3.408 

HC A 100 0.25 25.013 100.024 12.775 8.729 8.725 

HC A 100 0.249 25.025 100.024 10.752 8.972 8.963 

HC A 100 0.251 25.010 100.024 8.471 9.122 9.119 

HC A 200 0.25 25.015 200.116 19.084 18.114 18.103 

HC A 200 0.249 25.002 200.116 19.335 18.152 18.151 

HC A 200 0.25 25.011 200.116 17.687 18.251 18.243 

HC B 3.4 0.25 25.052 3.400 13.611 -1.023 -1.021 

HC B 3.4 0.25 25.052 3.400 7.786 -0.440 -0.439 

HC B 3.4 0.25 25.052 3.400 9.713 -0.633 -0.631 

HC B 3.4 0.249 25.009 3.400 7.980 -0.460 -0.460 

HC B 3.4 0.25 25.002 3.400 13.193 -0.979 -0.979 

HC B 3.4 0.25 25.002 3.400 6.835 -0.344 -0.344 

HC B 3.4 0.25 25.002 3.400 9.575 -0.618 -0.618 

HC B 25 0.249 24.996 25.185 13.786 1.144 1.144 



144 

 

HC B 25 0.249 25.007 25.185 11.154 1.409 1.409 

HC B 25 0.251 25.040 25.185 17.066 0.810 0.809 

HC B 50 0.249 25.010 50.098 17.080 3.316 3.315 

HC B 50 0.249 25.010 50.098 20.146 3.008 3.007 

HC B 50 0.249 25.010 50.098 19.712 3.052 3.051 

HC B 50 0.25 24.991 50.098 15.823 3.426 3.428 

HC B 50 0.25 25.111 50.098 20.516 2.971 2.958 

HC B 100 0.249 25.020 100.024 11.222 8.923 8.916 

HC B 100 0.25 25.030 100.024 10.177 8.996 8.985 

HC B 100 0.25 25.071 100.024 10.942 8.934 8.908 

HC B 200 0.251 25.025 200.116 22.811 17.678 17.660 

HC B 200 0.25 25.023 200.116 17.781 18.250 18.234 

HC B 200 0.25 25.107 200.116 21.751 17.913 17.837 

HC C 3.4 0.25 25.005 3.400 14.491 -1.109 -1.109 

HC C 3.4 0.25 25.005 3.400 11.029 -0.763 -0.763 

HC C 3.4 0.25 25.005 3.400 8.757 -0.536 -0.536 

HC C 3.4 0.249 25.016 3.400 5.672 -0.228 -0.228 

HC C 3.4 0.251 25.069 3.400 8.519 -0.511 -0.510 

HC C 25 0.251 25.018 25.185 12.351 1.279 1.278 

HC C 25 0.25 25.009 25.185 15.302 0.989 0.988 

HC C 25 0.25 25.026 25.185 13.685 1.151 1.150 

HC C 50 0.25 25.003 50.098 14.095 3.601 3.600 

HC C 50 0.25 25.010 50.098 20.087 3.002 3.001 

HC C 50 0.251 25.010 50.098 15.346 3.463 3.461 

HC C 100 0.25 25.043 100.024 9.362 9.082 9.066 

HC C 100 0.249 25.013 100.024 10.857 8.957 8.953 

HC C 100 0.25 24.953 100.024 10.087 8.977 8.994 

HC C 200 0.25 25.003 200.116 24.457 17.568 17.566 

HC C 200 0.25 25.003 200.116 24.023 17.611 17.609 

HC C 200 0.25 25.003 200.116 15.599 18.454 18.452 

HC C 200 0.249 24.998 200.116 19.591 18.124 18.125 

HC C 200 0.25 25.023 200.116 17.596 18.269 18.252 

WH A 2.7 0.25 24.997 2.700 7.416 -0.472 -0.472 

WH A 2.7 0.25 24.997 2.700 7.450 -0.475 -0.475 

WH A 2.7 0.25 24.997 2.700 9.603 -0.690 -0.690 

WH A 2.7 0.25 24.999 2.700 5.069 -0.237 -0.237 

WH A 2.7 0.249 25.000 2.700 7.239 -0.456 -0.456 

WH A 25 0.25 25.017 25.048 10.290 1.477 1.476 

WH A 25 0.249 25.002 25.048 5.954 1.917 1.917 

WH A 25 0.25 25.009 25.048 9.793 1.526 1.525 

WH A 50 0.251 25.009 49.954 12.357 3.746 3.745 

WH A 50 0.25 25.017 49.954 7.575 4.241 4.238 

WH A 50 0.25 25.012 49.954 12.729 3.724 3.723 

WH A 100 0.25 25.019 99.957 6.208 9.382 9.375 
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WH A 100 0.251 25.063 99.957 6.753 9.307 9.283 

WH A 100 0.25 25.023 99.957 12.286 8.775 8.767 

WH A 200 0.249 24.994 200.033 16.729 18.400 18.404 

WH A 200 0.25 24.999 200.033 8.841 19.118 19.119 

WH A 200 0.25 25.028 200.033 12.946 18.730 18.709 

WH B 2.7 0.25 24.999 2.700 6.220 -0.352 -0.352 

WH B 2.7 0.25 25.006 2.700 10.344 -0.765 -0.764 

WH B 2.7 0.249 24.995 2.700 6.044 -0.336 -0.336 

WH B 25 0.249 25.007 25.048 9.000 1.612 1.611 

WH B 25 0.251 25.011 25.048 10.386 1.461 1.460 

WH B 25 0.251 25.011 25.048 10.852 1.415 1.414 

WH B 25 0.251 25.011 25.048 8.573 1.642 1.641 

WH B 25 0.25 24.949 25.048 7.257 1.775 1.779 

WH B 50 0.251 24.993 49.954 9.521 4.026 4.027 

WH B 50 0.249 25.019 49.954 15.102 3.502 3.499 

WH B 50 0.25 25.020 49.954 8.983 4.100 4.097 

WH B 100 0.25 25.019 99.957 8.256 9.177 9.170 

WH B 100 0.25 25.022 99.957 6.589 9.345 9.337 

WH B 100 0.251 25.009 99.957 7.931 9.169 9.166 

WH B 200 0.25 25.002 200.033 12.163 18.789 18.787 

WH B 200 0.251 25.011 200.033 13.816 18.556 18.548 

WH B 200 0.25 25.023 200.033 10.714 18.949 18.932 

WH C 2.7 0.249 25.051 2.700 9.094 -0.643 -0.642 

WH C 2.7 0.25 24.997 2.700 7.491 -0.479 -0.479 

WH C 2.7 0.251 25.025 2.700 9.496 -0.678 -0.677 

WH C 25 0.249 25.029 25.048 13.691 1.142 1.140 

WH C 25 0.251 25.018 25.048 10.539 1.446 1.445 

WH C 25 0.251 25.008 25.048 13.742 1.126 1.126 

WH C 50 0.25 25.010 49.954 13.544 3.643 3.641 

WH C 50 0.251 25.005 49.954 5.784 4.400 4.399 

WH C 50 0.25 25.031 49.954 15.978 3.402 3.398 

WH C 100 0.249 24.999 99.957 8.791 9.153 9.153 

WH C 100 0.251 25.001 99.957 8.629 9.097 9.096 

WH C 100 0.25 25.002 99.957 10.232 8.973 8.973 

WH C 200 0.25 25.030 200.033 17.929 18.232 18.210 

WH C 200 0.251 24.993 200.033 12.994 18.624 18.629 

WH C 200 0.25 25.169 200.033 17.642 18.362 18.239 

ML A 3.6 0.249 25.011 3.600 7.056 -0.347 -0.347 

ML A 3.6 0.25 25.004 3.600 10.420 -0.682 -0.682 

ML A 3.6 0.25 25.034 3.600 7.880 -0.429 -0.428 

ML A 25 0.25 25.020 25.025 9.686 1.535 1.534 

ML A 25 0.251 25.031 25.025 14.254 1.074 1.073 

ML A 25 0.251 25.054 25.025 9.650 1.535 1.531 

ML A 50 0.249 24.997 49.977 7.674 4.247 4.247 
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ML A 50 0.25 25.001 49.977 14.430 3.555 3.555 

ML A 50 0.25 25.004 49.977 8.743 4.124 4.123 

ML A 100 0.25 25.000 100.220 8.928 9.129 9.129 

ML A 100 0.25 25.016 100.220 9.591 9.069 9.063 

ML A 100 0.25 25.005 100.220 11.397 8.884 8.882 

ML A 200 0.249 25.028 199.988 20.379 18.053 18.033 

ML A 200 0.249 25.028 199.988 20.398 18.051 18.031 

ML A 200 0.249 25.028 199.988 18.752 18.217 18.196 

ML A 200 0.25 25.022 199.988 24.116 17.603 17.587 

ML A 200 0.25 25.022 199.988 23.545 17.660 17.644 

ML A 200 0.25 25.022 199.988 22.659 17.749 17.733 

ML A 200 0.25 25.019 199.988 17.532 18.260 18.246 

ML B 3.6 0.251 25.093 3.600 9.321 -0.572 -0.570 

ML B 3.6 0.25 25.014 3.600 6.866 -0.327 -0.327 

ML B 3.6 0.25 25.018 3.600 13.466 -0.987 -0.987 

ML B 3.6 0.25 25.018 3.600 10.796 -0.720 -0.720 

ML B 3.6 0.25 25.018 3.600 11.748 -0.815 -0.815 

ML B 25 0.25 24.991 25.025 15.479 0.954 0.955 

ML B 25 0.25 25.014 25.025 13.710 1.132 1.131 

ML B 25 0.249 25.002 25.025 17.058 0.800 0.800 

ML B 50 0.249 25.958 49.977 13.381 3.815 3.674 

ML B 50 0.251 25.002 49.977 7.697 4.211 4.211 

ML B 50 0.25 24.995 49.977 10.799 3.917 3.918 

ML B 100 0.25 24.999 100.220 11.292 8.892 8.893 

ML B 100 0.251 25.013 100.220 9.800 9.011 9.006 

ML B 100 0.25 25.002 100.220 16.566 8.366 8.365 

ML B 100 0.25 25.002 100.220 17.156 8.307 8.306 

ML B 100 0.25 25.002 100.220 12.624 8.760 8.760 

ML B 200 0.251 25.001 199.988 22.485 17.680 17.680 

ML B 200 0.25 25.003 199.988 17.812 18.220 18.218 

ML B 200 0.25 25.003 199.988 22.244 17.777 17.774 

ML C 3.6 0.25 25.006 3.600 8.619 -0.502 -0.502 

ML C 3.6 0.25 24.996 3.600 12.005 -0.840 -0.841 

ML C 3.6 0.251 25.011 3.600 14.942 -1.130 -1.130 

ML C 3.6 0.251 25.011 3.600 11.439 -0.781 -0.781 

ML C 3.6 0.251 25.011 3.600 7.615 -0.400 -0.400 

ML C 25 0.25 25.015 25.025 13.365 1.167 1.166 

ML C 25 0.249 25.019 25.025 17.045 0.802 0.801 

ML C 25 0.25 25.009 25.025 15.118 0.991 0.991 

ML C 25 0.25 25.009 25.025 18.813 0.621 0.621 

ML C 25 0.25 25.009 25.025 15.286 0.974 0.974 

ML C 50 0.251 25.015 49.977 12.677 3.717 3.715 

ML C 50 0.251 25.015 49.977 9.690 4.015 4.013 

ML C 50 0.251 25.015 49.977 13.081 3.677 3.675 
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ML C 50 0.25 25.029 49.977 15.999 3.402 3.398 

ML C 50 0.25 25.029 49.977 11.649 3.837 3.833 

ML C 50 0.25 25.029 49.977 16.636 3.338 3.334 

ML C 50 0.251 25.034 49.977 9.513 4.036 4.030 

ML C 100 0.25 25.002 100.220 11.216 8.901 8.900 

ML C 100 0.251 25.016 100.220 11.669 8.826 8.820 

ML C 100 0.25 25.020 100.220 9.981 9.031 9.024 

ML C 200 0.25 25.006 199.988 17.476 18.256 18.251 

ML C 200 0.251 25.013 199.988 21.778 17.759 17.750 

ML C 200 0.25 25.018 199.988 17.819 18.230 18.217 

HP A 3.1 0.249 25.012 3.100 21.860 -1.884 -1.884 

HP A 3.1 0.25 25.001 3.100 21.883 -1.878 -1.878 

HP A 3.1 0.25 24.994 3.100 19.885 -1.678 -1.679 

HP A 25 0.25 25.036 24.956 30.623 -0.567 -0.567 

HP A 25 0.25 25.036 24.956 31.389 -0.644 -0.643 

HP A 25 0.25 25.036 24.956 26.694 -0.174 -0.174 

HP A 25 0.25 25.025 24.956 28.018 -0.306 -0.306 

HP A 25 0.25 25.018 24.956 30.114 -0.516 -0.516 

HP A 50 0.251 24.995 50.061 24.877 2.508 2.508 

HP A 50 0.25 25.027 50.061 25.899 2.419 2.416 

HP A 50 0.25 25.001 50.061 27.425 2.264 2.264 

HP A 100 0.25 24.996 99.770 32.163 6.760 6.761 

HP A 100 0.25 25.017 99.770 30.577 6.924 6.919 

HP A 100 0.25 25.024 99.770 32.932 6.690 6.684 

HP A 200 0.249 24.995 200.098 43.825 15.687 15.690 

HP A 200 0.249 24.995 200.098 42.268 15.843 15.846 

HP A 200 0.249 24.995 200.098 43.511 15.718 15.722 

HP A 200 0.251 25.003 200.098 39.363 16.011 16.009 

HP A 200 0.25 25.022 200.098 42.707 15.753 15.739 

HP B 3.1 0.25 25.073 3.100 27.171 -2.414 -2.407 

HP B 3.1 0.249 25.007 3.100 23.935 -2.092 -2.092 

HP B 3.1 0.25 25.042 3.100 27.352 -2.429 -2.425 

HP B 25 0.251 25.015 24.956 29.223 -0.425 -0.425 

HP B 25 0.25 25.011 24.956 34.227 -0.927 -0.927 

HP B 25 0.249 25.000 24.956 29.205 -0.427 -0.427 

HP B 50 0.25 24.994 50.061 29.142 2.091 2.092 

HP B 50 0.25 24.999 50.061 30.535 1.953 1.953 

HP B 50 0.25 24.999 50.061 27.119 2.294 2.294 

HP B 100 0.25 25.005 99.770 31.249 6.853 6.852 

HP B 100 0.25 25.005 99.770 31.521 6.826 6.825 

HP B 100 0.25 25.005 99.770 30.928 6.886 6.884 

HP B 100 0.25 25.027 99.770 38.675 6.116 6.110 

HP B 100 0.25 25.027 99.770 37.794 6.204 6.198 

HP B 100 0.25 25.027 99.770 36.310 6.353 6.346 
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HP B 100 0.25 25.018 99.770 33.205 6.661 6.657 

HP B 200 0.25 25.027 200.098 39.227 16.104 16.087 

HP B 200 0.25 25.002 200.098 44.268 15.584 15.583 

HP B 200 0.25 24.994 200.098 40.110 15.995 15.999 

HP C 3.1 0.251 25.034 3.100 11.681 -0.856 -0.855 

HP C 3.1 0.25 25.013 3.100 15.291 -1.220 -1.219 

HP C 3.1 0.25 25.153 3.100 16.752 -1.374 -1.365 

HP C 3.1 0.25 25.153 3.100 11.548 -0.850 -0.845 

HP C 3.1 0.25 25.153 3.100 13.445 -1.041 -1.035 

HP C 25 0.25 25.018 24.956 20.695 0.426 0.426 

HP C 25 0.25 25.032 24.956 18.444 0.652 0.651 

HP C 25 0.25 24.990 24.956 21.139 0.382 0.382 

HP C 50 0.251 25.024 50.061 14.981 3.497 3.494 

HP C 50 0.25 24.996 50.061 18.019 3.204 3.204 

HP C 50 0.25 24.996 50.061 18.401 3.165 3.166 

HP C 50 0.25 24.996 50.061 14.840 3.522 3.522 

HP C 50 0.25 25.027 50.061 17.125 3.297 3.294 

HP C 100 0.25 25.015 99.770 19.572 8.025 8.020 

HP C 100 0.25 25.100 99.770 18.038 8.206 8.173 

HP C 100 0.25 25.001 99.770 21.409 7.836 7.836 

HP C 200 0.249 25.006 200.098 23.005 17.785 17.780 

HP C 200 0.251 25.020 200.098 17.774 18.174 18.160 

HP C 200 0.25 25.006 200.098 21.479 17.866 17.862 
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EPC0 Isotherms for Glenmore Reservoir 
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Elbow River EPC0 Data 

Sample. P_STD_conc P_abs P_STD_act P_abs_sd 

CobbleFlats 0 -1.030 0.000 0.212 

CobbleFlats 25 1.599 25.072 0.486 

CobbleFlats 50 4.317 50.143 0.109 

CobbleFlats 100 8.936 100.232 0.069 

CobbleFlats 200 18.267 200.492 0.068 

ERCF 0 -2.469 0.000 0.266 

ERCF 25 -0.516 25.072 0.657 

ERCF 50 1.316 50.143 0.247 

ERCF 100 3.958 100.232 0.245 

ERCF 200 9.714 200.492 0.015 

ERTB 0 -1.450 0.000 0.313 

ERTB 25 0.914 25.072 0.540 

ERTB 50 3.227 50.143 0.178 

ERTB 100 7.388 100.232 0.194 

ERTB 200 15.338 200.492 0.126 

ERWFB 0 -1.274 0.000 0.132 

ERWFB 25 0.917 25.072 0.678 

ERWFB 50 3.203 50.143 0.283 

ERWFB 100 7.185 100.232 0.240 

ERWFB 200 14.457 200.492 0.296 

GR31 0 -1.004 0.000 0.244 

GR31 25 1.618 25.072 0.645 

GR31 50 4.163 50.143 0.055 

GR31 100 8.950 100.232 0.274 

GR31 200 18.501 200.492 0.114 

GRS19 0 -0.924 0.000 0.299 

GRS19 25 1.582 25.072 0.558 

GRS19 50 4.114 50.143 0.166 

GRS19 100 8.834 100.232 0.087 

GRS19 200 18.054 200.492 0.203 

GRS2 0 -2.000 0.000 0.113 

GRS2 25 0.658 25.072 1.028 

GRS2 50 3.383 50.143 0.093 

GRS2 100 8.046 100.232 0.067 

GRS2 200 17.064 200.492 0.061 

GRS25 0 -1.073 0.000 0.225 

GRS25 25 1.583 25.072 0.553 

GRS25 50 4.183 50.143 0.098 

GRS25 100 9.167 100.232 0.118 
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GRS25 200 18.350 200.492 0.134 

GRS37 0 -1.034 0.000 0.220 

GRS37 25 1.722 25.072 0.695 

GRS37 50 4.229 50.143 0.123 

GRS37 100 9.100 100.232 0.303 

GRS37 200 18.790 200.492 0.114 

GRS4 0 -1.238 0.000 0.088 

GRS4 25 1.508 25.072 0.645 

GRS4 50 4.181 50.143 0.140 

GRS4 100 8.990 100.232 0.096 

GRS4 200 18.477 200.492 0.015 

GRS48ADJ 0 -0.906 0.000 0.171 

GRS48ADJ 25 1.778 25.072 0.510 

GRS48ADJ 50 4.591 50.143 0.054 

GRS48ADJ 100 9.386 100.232 0.053 

GRS48ADJ 200 19.112 200.492 0.213 

HWY22 0 -1.876 0.000 0.577 

HWY22 25 0.425 25.070 0.749 

HWY22 50 2.866 50.143 0.314 

HWY22 100 6.473 100.237 0.754 

HWY22 200 14.287 200.493 0.397 

TwinBridge 0 -1.225 0.000 0.757 

TwinBridge 25 0.927 25.072 0.558 

TwinBridge 50 3.388 50.143 0.244 

TwinBridge 100 7.414 100.232 0.624 

TwinBridge 200 16.407 200.492 0.054 

WFB 0 -1.619 0.000 0.218 

WFB 25 0.716 25.068 0.506 

WFB 50 3.248 50.142 0.223 

WFB 100 7.521 100.232 0.082 

WFB 200 13.859 200.493 3.597 
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Appendix 2: EPC0 Quality Assurance & Quality Control 
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Glenmore Reservoir samples 

Sorption samples 

Samples were freeze dried, ground and weighed out to 0.25 grams in polypropylene centrifuge 

tubes. Equilibrium experiments were performed by mixing weighed out samples with 25ml of 

ambient P in reservoir water, 25, 50, 100, 200 µg/L KH2PO4. Triplicate samples were done for 

each sample and concentration. Samples were shaken for 20 hours at room temperature of 24 ± 1 

ºC.  Then samples were centrifuged at 4000G for 5 minutes, and the supernatant was filtered with 

0.45 µm syringe filters.  

 

 The mass of inorganic P adsorbed or desorbed was determined using the following equation: 

Pads = [(Pinitial − Pfinal) ∗ 0.025L] ∗ wtsed
       −1 

 

Glenmore Reservoir 

Triplicate samples (separately weighed out samples) for Glenmore reservoir had an average 

standard deviation of 0.20 µg P/ gsed (median: 0.20 µg P/ gsed).  

 

AA Run 

The following QA/QC is for colorimeter analysis of soluble reactive phosphorus.  

 

Samples were run on two AA2 channels using a Stannous Chloride and Ammonium Molybdate 

method. 

 

Quality Cups and Drifts 

Quality control cups for P concentrations of 25 µg/L were placed evenly throughout the runs and 

in triplicate. 
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Table 13- Quality cup results by channel for Glenmore Reservoir QA QC Samples 

  Channel 1  Channel 2  

P Standard 

calculated 

(µg/L) 

N Quality cup 

average (µg/L) 

Quality cup sd Quality cup 

average 

(µg/L) 

Quality cup 

sd 

25.03 (02/11) 3 26.0 0.7 24.9 3.3 

25.07 (06/11) 3 26.7 1.3 26.9 3.5 

Null (02/11) 18 0.4 2.4 1.0 1.9 

Null (06/11) 17 1.7 1.4 2.2 2.5 

 

Drifts (200 µg/L) were placed throughout the run, for channel 1 drifts came back as 99.6 and 201.1 

µg/L with no variation for 02/11 and 06/11 respectively, while channel 2 measured the drift at 97.7 

and 199.6 µg/L with no variation for 02/11 and 06/11 respectively. The standard concentration 

that was used for drifts was calculated to be 100.1 and 201.1 µg/L (using weights of P intermediate 

solution).   

 

GRELB 

10% of Glenmore Reservoir samples were run in triplicate for both runs.  

 

The average standard deviation of samples run in triplicate for both dates was 2.14 µg/L (median: 

2.02 µg/L), therefore this is within the method detection limit of 5 µg/L.  
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Elbow River samples 

Sorption samples 

Samples were freeze dried, ground and weighed out to 0.25 grams in polypropylene centrifuge 

tubes. Equilibrium experiments were performed by mixing weighed out samples with 25ml of 0, 

25, 50, 100, 200 µg/L KH2PO4. Triplicate samples were done for each sample and concentration. 

Samples were shaken for 20 hours at room temperature of 24 ± 1 ºC.  Then samples were 

centrifuged at 4000G for 5 minutes, and the supernatant was filtered with 0.45 µm syringe filters.  

 

 The mass of inorganic P adsorbed or desorbed was determined using the following equation: 

 

Pads = [(Pinitial − Pfinal) ∗ 0.025L] ∗ wtsed
       −1 

 

Elbow River 

Triplicate samples (separately weighed out samples) for Glenmore reservoir and Elbow river had 

an average standard deviation of 0.37 µg P/ gsed (median: 0.22 µg P/ gsed).  

  

Note that for WFB at 200 µg P /L two of the triplicate values came back around 44 µg/L, other 

sample came back at 104 µg/L, this could be a human error, or it could be that there was a rock or 

something that was taking up substantial weight with limited sorption capacity.   

 

**See metadata file for data file descriptions 

 

AA Run 

The following QA/QC is for colorimeter analysis of soluble reactive phosphorus.  

 

Samples were run on two AA2 channels using a Stannous Chloride and Ammonium Molybdate 

method. 

 

Quality Cups and Drifts 

Quality control cups for P concentrations of 250, 200, and 100 µg/L were run in triplicate, while 

50 µg/L was run in duplicate. Duplicates and triplicated were evenly spaced throughout the run. 
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Table 14- Quality cup results by channel for Elbow River QA QC Samples 

  Channel 1  Channel 2  

P Standard 

calculated 

(µg/L) 

N Quality cup 

average (µg/L) 

Quality cup sd Quality cup 

average 

(µg/L) 

Quality cup 

sd 

50.25 2 49.42 2.53 50.58 0.09 

100.55 3 106.94 6.77 107.42 6.22 

201.60 3 199.59 9.15 196.07 7.01 

251.55 3 248.28 1.93 247.79 7.90 

Null 27 -0.12 3.25 3.65 10.99 

 

Drifts were placed throughout the run, for channel 1 drifts came back as 250.18 µg/L with no 

variation, while channel 2 measured the drift at 250.13 µg/L, again with no variation. The standard 

concentration that was used for drifts was calculated to be 251. 55 µg/L (using weights of P 

intermediate solution).   

 

AA sample triplicates 

Note that each sample was weighed out in triplicate for each P concentration. 

 

GRELB 

10% of GRELB samples (23 samples) were run in triplicate 

The average standard deviation of samples run in triplicate was 3.24 µg/L (median: 2.37 µg/L), 

therefore this is within the method detection limit of 5 µg/L. 
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Appendix 3: M. aeruginosa Test Tube Microcosm  

Experiment Photographs 
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MARCH 23RD: Day 1 

 

 

MARCH 31ST: Day 8 
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APRIL 11TH: Day 19 

 

 

APRIL 19TH: Day 27 

 

 

CO  N1 N2 N3 A1 A2 A3 P1 P2 P3 C1 C2 C3 
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Samples and Cell Densities on Day 27 

Sample CO P1 P2 P3 N1 N2 N3 C1 C2 C3 A1 A2 A3 

Cell Density 5.80E+05 8.93E+05 9.33E+05 9.87E+05 1.85E+06 1.38E+06 1.07E+06 1.19E+06 8.07E+05 5.33E+05 2.40E+06 2.00E+06 2.07E+06 

Average 
 

9.38E+05 1.43E+06 8.42E+05 2.16E+06 
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Appendix 4: M. aeruginosa Factorial Experiments- 

Supplementary Data 
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Appendix 4.1: Pigment Analyses  
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Pigment Concentrations of Samples from Factorial Design 

Sample Chlorophyllide-a Neoxanthin Fucoxanthin-like Myxoxanthophyll Prasinoxanthin-like Alloxanthin Zeaxanthin/Lutein 

N1DC-R1 0.00 90.36 3.04 15.24 25.38 1.61 18.78 
N1DC-R2 0.00 204.49 5.96 31.58 30.91 2.40 37.83 
N1DC-R3 0.00 292.90 5.95 42.71 26.36 5.00 53.02 
N1HP-R1 0.00 415.76 4.56 105.51 0.00 2.48 57.40 
N1HP-R2 0.00 236.24 3.32 57.93 0.00 1.96 39.14 
N1HP-R3 0.81 240.52 26.41 57.41 35.85 3.64 38.93 
N2DC-R1 0.00 67.26 9.43 16.54 76.50 0.00 26.98 
N2DC-R2 0.00 173.53 9.27 22.42 34.72 2.13 37.63 
N2DC-R3 0.00 127.71 10.88 23.80 80.15 5.04 44.73 
N2HP-R1 0.00 510.85 5877.00 90.14 0.00 5.09 54.46 
N2HP-R2 0.00 247.03 0.00 39.72 0.00 3.58 35.06 
N2HP-R3 0.00 310.57 37.22 63.92 97.87 6.27 46.36 
CO 0.00 38.82 0.00 9.55 0.00 0.48 5.21 
BG11 0.00 74.78 0.00 55.13 0.00 6.39 168.24 
[P] 0.00 56.35 3.03 15.85 0.00 0.19 8.78 
[N] 0.00 80.79 0.00 31.07 0.00 2.23 8.78 
DC 0.00 312.16 12.28 53.60 0.00 7.16 65.99 
HP 1.44 407.52 4.29 91.25 0.00 3.88 51.23 

  

 Average Values 

 Chlorophyllide-a Neoxanthin Fucoxanthin-like Myxoxanthophyll Prasinoxanthin-like Alloxanthin Zeaxanthin/Lutein 

N1DC 0.00 195.91 4.99 29.84 27.55 3.00 36.54 
N1HP 0.27 297.51 11.43 73.62 11.95 2.69 45.15 
N2DC 0.00 122.84 9.86 20.92 63.79 2.39 36.45 
N2HP 0.00 356.15 1971.41 64.59 32.62 4.98 45.29 



165 

 

Pigment Concentrations of Samples from Factorial Design (continued) 

Sample Violaxanthin Canthaxanthin Chlorophyll-b Chlorophyll-a Chlorophyll-a' Echinenone Phaeophytin-b 

N1DC-R1 1.45 13.87 3.34 424.24 109.08 0.50 5.10 
N1DC-R2 6.25 29.35 17.74 896.52 193.38 1.03 13.65 
N1DC-R3 7.82 33.26 0.00 1447.95 373.89 2.84 0.00 
N1HP-R1 9.83 30.23 0.00 949.56 226.10 1.23 0.00 
N1HP-R2 8.94 22.37 0.00 669.31 208.88 1.60 5.84 
N1HP-R3 5.65 29.93 0.00 1027.91 316.76 2.73 24.28 
N2DC-R1 6.49 18.25 15.69 448.63 114.40 0.00 14.07 
N2DC-R2 10.34 25.27 5.12 932.59 240.42 1.81 42.46 
N2DC-R3 21.94 39.09 35.63 912.53 270.94 1.23 40.61 
N2HP-R1 9.17 41.40 0.00 826.74 260.96 2.24 10.08 
N2HP-R2 3.37 35.38 0.00 666.13 204.51 0.00 21.65 
N2HP-R3 13.40 41.54 0.00 1230.17 412.63 7.09 0.00 
CO 0.00 7.10 0.00 46.01 27.97 0.18 0.00 
BG11 10.69 52.72 0.00 1536.63 440.42 6.78 0.00 
[P] 0.87 5.57 0.00 96.08 49.04 0.14 0.00 
[N] 0.92 13.95 0.00 223.12 69.52 32.15 0.00 
DC 12.85 29.31 26.92 21.79 22.29 2.56 33.68 
HP 5.78 53.79 0.00 1274.46 383.04 3.27 0.00 
 

Average Values 

 Violaxanthin Canthaxanthin Chlorophyll-b Chlorophyll-a Chlorophyll-a' Echinenone Phaeophytin-b 

N1DC 5.17 25.49 7.03 922.91 225.45 1.46 6.25 
N1HP 8.14 27.51 0.00 882.26 250.58 1.85 10.04 
N2DC 12.93 27.54 18.81 764.58 208.59 1.01 32.38 
N2HP 8.64 39.44 0.00 907.68 292.70 3.11 10.58 
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Pigment Concentrations of Samples from Factorial Design 
(continued) 

 

Sample Phaeophytin-a alpha Carotene Chlorophyll-d beta Carotene 

N1DC-R1 
37.84 0.00 3.27 14.82 

N1DC-R2 
40.00 0.86 5.34 22.95 

N1DC-R3 
409.67 0.00 9.90 32.03 

N1HP-R1 
26.99 0.00 8.60 9.44 

N1HP-R2 
99.94 0.55 8.86 44.43 

N1HP-R3 
114.79 0.00 0.00 37.97 

N2DC-R1 
40.30 0.00 0.00 22.68 

N2DC-R2 
60.21 1.74 4.05 44.45 

N2DC-R3 
166.16 0.51 12.13 59.35 

N2HP-R1 
55.25 0.00 17.53 9.30 

N2HP-R2 
33.48 0.00 4.67 15.61 

N2HP-R3 
169.64 0.00 3.96 27.36 

CO 
8.36 0.00 0.42 11.87 

BG11 
35.42 0.73 0.00 37.67 

[P] 
32.12 0.61 0.00 15.52 

[N] 
5.99 1.05 0.00 21.74 

DC 
203.59 2.29 10.58 60.96 

HP 
98.74 0.00 8.49 13.77 

 

Average Values 

 
Phaeophytin-a alpha Carotene Chlorophyll-d beta Carotene 

N1DC 
162.50 0.29 6.17 23.27 

N1HP 
80.57 0.18 5.82 30.61 

N2DC 
88.89 0.75 5.40 42.16 

N2HP 
86.12 0.00 8.72 17.42 
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Appendix 4.2: Cell Densities  
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Factorial Design Samples- M. aeruginosa cells/mL 

DAY N1DC-R1 N1DC-R2 N1DC-R3 N1HP-R1 N1HP-R2 N1HP-R3 N2DC-R1 N2DC-R2 N2DC-R3 N2HP-R1 N2HP-R2 N2HP-R3 

1 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 

4 2.64E+05 3.36E+05 2.58E+05 2.10E+05 2.58E+05 2.52E+05 3.42E+05 1.96E+05 2.90E+05 2.06E+05 2.74E+05 1.80E+05 

4 2.54E+05 2.82E+05 2.38E+05 2.14E+05 1.80E+05 2.36E+05 2.60E+05 1.76E+05 2.56E+05 2.20E+05 2.00E+05 2.86E+05 

4 3.04E+05 2.90E+05 1.56E+05 1.96E+05 1.52E+05 3.00E+05 3.34E+05 2.80E+05 2.00E+05 2.16E+05 1.60E+05 2.92E+05 

7 3.86E+05 4.38E+05 3.42E+05 3.90E+05 2.96E+05 3.74E+05 3.40E+05 3.70E+05 2.80E+05 5.00E+05 3.44E+05 3.66E+05 

7 3.96E+05 3.26E+05 3.80E+05 3.72E+05 1.90E+05 3.76E+05 3.36E+05 3.34E+05 3.42E+05 3.72E+05 1.16E+05 3.48E+05 

7 3.56E+05 3.06E+05 4.38E+05 3.14E+05 2.24E+05 3.06E+05 3.38E+05 3.54E+05 3.36E+05 3.88E+05 2.60E+05 1.90E+05 

10 1.80E+05 6.00E+05 3.20E+05 3.40E+05 3.20E+05 3.80E+05 2.40E+05 2.80E+05 3.00E+05 3.40E+05 4.60E+05 4.60E+05 

10 3.80E+05 3.80E+05 5.40E+05 2.80E+05 2.00E+05 4.60E+05 2.80E+05 4.00E+05 3.60E+05 5.40E+05 5.20E+05 5.40E+05 

10 4.20E+05 6.00E+05 2.80E+05 5.40E+05 3.00E+05 4.60E+05 2.60E+05 3.00E+05 3.80E+05 4.40E+05 5.20E+05 4.80E+05 

12 4.00E+05 4.80E+05 4.40E+05 6.20E+05 3.80E+05 5.40E+05 5.60E+05 3.40E+05 4.20E+05 9.60E+05 4.00E+05 4.60E+05 

12 3.20E+05 5.20E+05 4.40E+05 4.60E+05 2.60E+05 4.40E+05 4.60E+05 4.80E+05 6.20E+05 1.12E+06 7.80E+05 4.80E+05 

12 4.20E+05 5.60E+05 5.60E+05 5.00E+05 2.80E+05 2.40E+05 4.00E+05 3.60E+05 4.60E+05 1.36E+06 8.00E+05 5.60E+05 

15 6.60E+05 8.80E+05 7.80E+05 7.80E+05 6.00E+05 5.80E+05 7.00E+05 2.60E+05 5.80E+05 1.40E+06 8.00E+05 1.20E+06 

15 3.40E+05 8.20E+05 9.40E+05 9.20E+05 5.80E+05 5.40E+05 6.00E+05 4.20E+05 6.40E+05 1.02E+06 1.04E+06 1.00E+06 

15 8.40E+05 8.20E+05 5.60E+05 9.60E+05 5.80E+05 4.20E+05 3.80E+05 7.80E+05 7.00E+05 1.46E+06 9.20E+05 1.12E+06 

18 5.40E+05 7.40E+05 9.20E+05 1.80E+06 9.20E+05 8.80E+05 4.00E+05 6.20E+05 4.40E+05 2.00E+06 1.20E+06 9.08E+06 

18 5.60E+05 8.00E+05 8.60E+05 1.20E+06 9.40E+05 1.16E+06 7.00E+05 5.60E+05 7.00E+05 1.62E+06 9.60E+05 1.00E+06 

18 5.00E+05 9.60E+05 1.10E+06 7.00E+05 1.16E+06 8.60E+05 6.60E+05 5.80E+05 9.20E+05 1.50E+06 8.20E+05 9.20E+05 

21 6.00E+05 8.20E+05 1.06E+06 1.42E+06 1.34E+06 9.00E+05 5.20E+05 7.00E+05 1.04E+06 1.46E+06 4.40E+05 1.48E+06 

21 4.20E+05 1.04E+06 9.60E+05 1.34E+06 1.32E+06 9.00E+05 5.60E+05 6.40E+05 8.60E+05 2.18E+06 5.40E+05 1.14E+06 

21 4.20E+05 7.80E+05 1.06E+06 1.46E+06 1.26E+06 5.40E+05 5.80E+05 9.20E+05 9.40E+05 1.44E+06 6.80E+05 1.34E+06 

24 1.20E+05 7.80E+05 1.18E+06 2.44E+06 1.64E+06 1.10E+06 7.00E+05 8.00E+05 1.16E+06 3.50E+06 1.48E+06 1.54E+06 

24 1.00E+05 1.04E+06 1.28E+06 2.36E+06 9.80E+05 1.08E+06 9.00E+05 1.10E+06 1.50E+06 3.64E+06 1.20E+06 1.80E+06 

24 8.00E+04 5.80E+05 1.36E+06 1.96E+06 9.40E+05 1.04E+06 1.04E+06 9.00E+05 1.18E+06 2.84E+06 1.56E+06 2.28E+06 

27 9.00E+05 4.36E+06 1.26E+07 2.30E+07 1.06E+07 8.00E+06 2.10E+06 8.20E+06 8.80E+06 2.64E+07 1.00E+07 1.32E+07 

27 9.60E+05 4.12E+06 1.28E+07 2.36E+07 9.60E+06 1.08E+07 2.48E+06 8.40E+06 5.00E+06 2.76E+07 1.12E+07 1.22E+07 

27 9.60E+05 4.24E+06 1.20E+07 2.20E+07 8.20E+06 8.60E+06 2.40E+06 6.80E+06 8.40E+06 2.74E+07 8.40E+06 1.46E+07 

30 2.00E+06 6.20E+06 8.80E+06 2.94E+07 1.32E+07 1.12E+07 2.42E+06 7.60E+06 1.04E+07 5.40E+07 3.40E+06 1.34E+07 

30 2.28E+06 7.00E+06 7.80E+06 2.80E+07 1.24E+07 1.02E+07 2.68E+06 7.80E+06 7.60E+06 6.00E+07 1.06E+07 2.34E+07 

30 2.06E+06 8.20E+06 1.20E+07 2.86E+07 1.16E+07 9.40E+06 2.82E+06 6.40E+06 7.20E+06 4.80E+07 1.14E+07 1.46E+07 

33 3.48E+06 1.02E+07 1.18E+07 3.22E+07 1.38E+07 1.78E+07 2.98E+06 1.26E+07 1.90E+07 1.18E+08 2.38E+07 1.82E+07 

33 3.44E+06 1.02E+07 1.62E+07 3.04E+07 2.10E+07 1.76E+07 3.22E+06 1.04E+07 2.06E+07 1.42E+08 1.72E+07 2.26E+07 
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33 2.68E+06 1.70E+07 2.22E+07 4.10E+07 2.04E+07 1.98E+07 2.78E+06 1.06E+07 1.56E+07 6.40E+07 1.90E+07 2.54E+07 

36 7.20E+06 1.34E+07 1.86E+07 6.60E+07 2.62E+07 1.92E+07 3.80E+06 1.02E+07 1.26E+07 9.40E+07 1.60E+07 2.82E+07 

36 8.60E+06 1.46E+07 1.72E+07 7.80E+07 1.12E+07 2.06E+07 6.40E+06 1.32E+07 1.10E+07 1.18E+08 1.48E+07 2.54E+07 

36 6.80E+06 1.42E+07 1.44E+07 8.00E+07 1.80E+07 1.36E+07 5.60E+06 1.36E+07 1.20E+07 8.20E+07 1.74E+07 2.20E+07 

39 7.40E+06 8.80E+06 1.36E+07 9.40E+07 2.34E+07 1.04E+07 7.00E+06 1.38E+07 1.10E+07 1.50E+08 8.00E+06 3.02E+07 

39 5.20E+06 9.40E+06 1.02E+07 8.80E+07 1.84E+07 1.38E+07 5.80E+06 1.40E+07 1.40E+07 1.52E+08 1.44E+07 2.02E+07 

39 5.80E+06 9.00E+06 1.38E+07 1.14E+08 2.04E+07 1.74E+07 5.60E+06 1.56E+07 1.16E+07 1.38E+08 1.54E+07 2.64E+07 

42 6.20E+06 1.62E+07 1.84E+07 1.62E+08 7.40E+07 2.76E+08 1.00E+07 1.22E+08 1.78E+07 1.50E+08 2.70E+08 5.60E+07 

42 5.40E+06 1.42E+07 1.98E+07 1.42E+08 3.80E+07 2.52E+08 6.60E+06 1.22E+08 1.54E+07 1.12E+08 2.44E+08 7.60E+07 

42 5.20E+06 1.58E+08 2.32E+07 1.12E+08 6.40E+07 2.90E+08 1.04E+07 1.16E+08 1.46E+07 1.26E+08 2.56E+08 8.20E+07 

44 6.40E+06 1.98E+08 6.40E+07 1.46E+08 4.00E+07 5.80E+07 8.80E+06 1.24E+07 6.20E+06 1.54E+08 1.24E+08 6.40E+07 

44 9.80E+06 2.20E+08 4.60E+07 1.64E+08 6.80E+07 7.40E+07 6.80E+06 1.68E+07 7.00E+06 1.44E+08 1.38E+08 3.80E+07 

44 1.00E+07 1.40E+08 4.80E+07 1.48E+08 6.00E+07 7.40E+07 1.02E+07 2.04E+07 6.00E+06 1.80E+08 1.72E+08 6.80E+07 

48 1.22E+07 3.40E+07 5.80E+07 1.34E+08 6.80E+07 8.60E+07 1.14E+07 2.74E+08 2.94E+08 1.36E+08 7.20E+07 2.26E+08 

48 1.20E+07 7.40E+07 7.00E+07 1.66E+08 9.20E+07 9.00E+07 1.20E+07 3.04E+08 2.82E+08 2.12E+08 9.60E+07 1.28E+08 

48 1.02E+07 4.00E+07 6.40E+07 1.94E+08 7.60E+07 1.04E+08 1.38E+07 2.84E+08 2.90E+08 1.82E+08 8.40E+07 1.78E+08 

51 9.00E+06 5.40E+07 9.80E+07 2.38E+09 1.04E+08 1.24E+08 1.30E+07 7.40E+07 5.00E+07 2.18E+09 1.42E+08 1.44E+08 

51 9.20E+06 1.16E+08 9.80E+07 2.36E+09 8.20E+07 1.06E+08 1.20E+07 6.00E+07 9.00E+07 2.50E+09 1.44E+08 1.44E+08 

51 6.40E+06 7.40E+07 8.20E+07 2.24E+09 9.40E+07 1.18E+08 1.22E+07 3.80E+07 8.40E+07 2.84E+09 1.20E+08 1.50E+08 

54 1.26E+07 6.60E+07 1.20E+08 7.00E+08 1.88E+08 1.76E+08 1.20E+07 1.04E+08 1.18E+08 9.80E+08 1.40E+08 1.80E+08 

54 1.44E+07 6.20E+07 1.04E+08 6.80E+08 1.70E+08 1.16E+08 1.02E+07 1.08E+08 9.80E+07 7.80E+08 1.06E+08 1.78E+08 

54 1.34E+07 8.60E+07 1.16E+08 6.80E+08 1.36E+08 1.46E+08 1.54E+07 1.00E+08 1.00E+08 7.40E+08 1.28E+08 2.14E+08 

57 8.00E+06 1.40E+07 8.00E+06 2.00E+07 1.00E+07 1.00E+07 2.00E+06 1.60E+07 4.00E+06 6.00E+07 1.20E+07 6.00E+06 

57 6.00E+06 1.00E+07 4.00E+06 1.20E+08 1.00E+07 1.40E+07 4.00E+06 1.20E+07 1.00E+07 8.00E+07 1.60E+07 1.20E+07 

57 4.00E+06 8.00E+06 1.80E+07 6.00E+07 1.20E+07 2.00E+07 2.00E+06 1.20E+07 1.20E+07 6.00E+07 0.00E+00 1.40E+07 

60 1.18E+07 8.00E+07 8.00E+07 3.20E+08 8.00E+07 8.80E+07 1.22E+07 5.20E+07 5.00E+07 2.20E+08 5.80E+07 1.38E+08 

60 1.46E+08 2.80E+07 8.20E+07 3.00E+08 4.60E+07 7.40E+07 1.34E+07 6.40E+07 4.80E+07 2.60E+08 1.12E+08 1.12E+08 

60 1.30E+08 4.80E+07 7.20E+07 3.60E+08 6.40E+07 7.20E+07 1.02E+07 4.00E+07 5.60E+07 2.00E+08 1.04E+08 1.46E+08 
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Control Samples- M. aeruginosa cells/mL 

DAY CO BG11 [P] [N] DC HP 

1 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 5.00E+05 

4 3.56E+05 2.60E+05 3.78E+05 2.70E+05 2.48E+05 1.20E+05 

4 3.18E+05 2.54E+05 2.90E+05 2.52E+05 1.78E+05 1.52E+05 

4 3.78E+05 1.98E+05 4.42E+05 3.20E+05 2.00E+05 1.16E+05 

7 3.88E+05 4.88E+05 5.18E+05 4.70E+05 1.60E+05 1.56E+05 

7 5.84E+05 2.88E+05 7.00E+05 2.40E+05 2.56E+05 1.48E+05 

7 4.12E+05 2.48E+05 5.08E+05 5.90E+05 1.76E+05 1.28E+05 

10 1.10E+06 7.80E+05 1.40E+06 1.54E+06 3.80E+05 4.20E+05 

10 1.02E+06 6.20E+05 1.70E+06 1.94E+06 7.80E+05 4.40E+05 

10 1.02E+06 6.60E+05 9.00E+05 9.40E+05 6.40E+05 3.20E+05 

12 1.26E+06 1.32E+06 1.62E+06 1.90E+06 8.40E+05 5.80E+05 

12 1.24E+06 7.80E+05 1.92E+06 1.34E+06 7.00E+05 4.20E+05 

12 1.16E+06 1.04E+06 1.78E+06 1.42E+06 4.60E+05 4.60E+05 

15 1.14E+06 1.52E+06 1.50E+06 2.18E+06 9.80E+05 6.00E+05 

15 1.10E+06 1.58E+06 1.42E+06 1.74E+06 9.80E+05 5.60E+05 

15 1.04E+06 1.50E+06 1.78E+06 2.56E+06 1.06E+06 5.20E+05 

18 1.38E+06 2.64E+06 2.14E+06 3.16E+06 9.60E+05 1.32E+06 

18 1.30E+06 3.58E+06 1.96E+06 3.42E+06 1.06E+06 1.86E+06 

18 1.78E+06 3.50E+06 2.20E+06 3.48E+06 1.30E+06 6.80E+05 

21 1.28E+06 3.54E+06 1.42E+06 3.98E+06 7.80E+05 1.08E+06 

21 1.40E+06 3.32E+06 2.40E+06 4.52E+06 8.40E+05 1.12E+06 

21 9.40E+05 2.64E+06 2.06E+06 3.38E+06 1.02E+06 1.00E+06 

24 1.40E+06 4.00E+06 2.00E+06 5.00E+06 1.50E+06 1.46E+06 

24 1.70E+06 3.20E+06 3.80E+06 5.40E+06 2.60E+06 1.82E+06 

24 2.06E+06 4.40E+06 3.40E+06 5.60E+06 1.78E+06 1.88E+06 

27 3.02E+06 3.62E+07 1.72E+07 1.64E+07 1.66E+07 1.46E+07 

27 4.24E+06 3.66E+07 1.82E+07 2.20E+07 1.54E+07 1.32E+07 

27 3.44E+06 3.60E+07 1.60E+07 1.92E+07 1.56E+07 1.66E+07 

30 7.60E+06 8.60E+07 1.22E+07 2.90E+07 2.24E+07 1.42E+07 

30 9.00E+06 1.04E+08 2.10E+07 2.62E+07 2.10E+07 1.76E+07 

30 8.20E+06 9.40E+07 2.26E+07 2.86E+07 2.18E+07 1.58E+07 
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33 1.44E+07 6.36E+08 3.48E+07 5.42E+07 2.94E+07 2.22E+07 

33 1.28E+07 8.12E+08 3.68E+07 4.44E+07 3.16E+07 2.20E+07 

33 1.62E+07 7.16E+08 3.50E+07 5.12E+07 3.20E+07 2.14E+07 

36 8.80E+06 3.80E+08 5.60E+07 3.38E+07 7.80E+07 6.80E+07 

36 8.80E+06 5.00E+08 6.40E+07 3.06E+07 7.20E+07 5.20E+07 

36 1.00E+07 4.60E+08 5.80E+07 3.40E+07 7.00E+07 6.00E+07 

39 5.40E+06 1.80E+08 4.40E+07 1.56E+07 2.60E+07 4.40E+07 

39 6.40E+06 3.00E+08 3.80E+07 1.72E+07 2.40E+07 5.40E+07 

39 9.40E+06 3.00E+08 4.00E+07 1.60E+07 2.00E+07 5.00E+07 

42 7.20E+06 3.20E+08 1.06E+08 3.60E+08 6.80E+07 8.80E+07 

42 8.80E+06 5.40E+08 8.80E+07 3.58E+08 5.20E+07 8.00E+07 

42 1.20E+07 4.60E+08 7.40E+07 3.52E+08 5.60E+07 8.40E+07 

44 9.00E+06 5.60E+08 1.02E+08 7.60E+07 1.30E+08 9.80E+07 

44 1.20E+07 8.40E+08 6.00E+07 1.04E+08 8.80E+07 1.30E+08 

44 9.40E+06 4.60E+08 1.06E+08 5.80E+07 1.18E+08 1.10E+08 

48 8.00E+06 9.20E+08 5.80E+07 7.80E+07 1.74E+08 8.00E+07 

48 8.40E+06 1.12E+09 8.80E+07 1.04E+08 1.76E+08 8.80E+07 

48 9.40E+06 1.04E+09 7.60E+07 9.40E+07 1.90E+08 1.00E+08 

51 9.20E+06 5.00E+08 8.60E+07 7.60E+07 1.16E+08 1.90E+09 

51 7.60E+06 4.80E+08 9.80E+07 1.06E+08 1.40E+08 1.82E+09 

51 1.14E+07 4.20E+08 1.20E+08 8.40E+07 1.12E+08 1.86E+09 

54 8.40E+06 6.40E+08 1.28E+08 9.00E+07 1.70E+08 4.60E+08 

54 1.12E+07 1.12E+09 5.40E+07 7.80E+07 2.22E+08 6.20E+08 

54 1.20E+07 8.60E+08 9.80E+07 1.24E+08 1.78E+08 7.20E+08 

57 2.00E+06 2.40E+07 1.20E+07 1.00E+07 8.00E+06 4.40E+07 

57 2.00E+06 6.00E+06 1.20E+07 1.20E+07 6.00E+06 4.20E+07 

57 2.20E+06 1.60E+07 1.00E+07 1.20E+07 1.00E+07 5.20E+07 

60 9.40E+06 2.00E+08 6.80E+07 7.20E+07 1.04E+08 4.80E+08 

60 5.60E+06 3.20E+08 6.00E+07 5.00E+07 8.00E+07 4.40E+08 

60 9.40E+06 6.20E+08 4.80E+07 8.40E+07 1.02E+08 7.00E+08 
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Appendix 4.3: Photographs 
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Day 4: APRIL 8TH  

Control Samples 

  

 

Factorial Experiment Samples 

  

 

  

CO  NCONTROL PCONTROL DCCONTROL HPCONTROL BG11CONTROL 

CO  N2HP-R1 N2HP-R2 N2HP-R3 



174 

 

  

 

  

 

  

  

CO  N2DC-R1 N2DC-R2 N2DC-

R3 

CO  N1HP-R1 N1HP-R2 N1HP-R3 

CO  N1DC-R1 N1DC -R2 N1DC -

R3 



175 

 

Day 12: APRIL 16  
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Day 18: APRIL 22ND 
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Day 26: APRIL 30TH  

Control Samples 

 

 

Factorial Experiment Samples 
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Day 30: MAY 4 

Control Samples 

 

 

Factorial Experiment Samples 

 

 

  

CO  NCONTROL PCONTROL DCCONTROL HPCONTROL BG11CONTROL 

N2HP-R1 N2HP-R2 N2HP-R3 



182 

 

 

 

 

 

 

 

 

  

N2DC-R1 N2DC-R2 N2DC-R3 

N1HP-R1 N1HP-R2 N1HP-R3 

N1HP-R1 N1HP-R2 N1HP-R3 



183 

 

Day 35: MAY 11TH  

Control Samples 
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Day 44: MAY 18TH  

Control Samples 

 

 

Factorial Experiment Samples 
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Day 51: MAY 25TH  

Control Samples 
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Day 57: MAY 31ST 

Control Samples 
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Day 60: JUNE 30TH  

Control Samples 
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Appendix 4.4: Factorial Design Experiment Variability Between Flasks 
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Factorial Design Experiment Variabilities in Treatments 

 

Figure 14- Factorial Design Experiment Variability Between Flasks in Treatment N1DC 

 

 

Figure 15- Factorial Design Experiment Variability Between Flasks in Treatment N1HP 
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Figure 16- Factorial Design Experiment Variability Between Flasks in Treatment N2DC 

 

Figure 17- Factorial Design Experiment Variability Between Flasks in Treatment N2HP 
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Appendix 5: Copyright Letter for Figure Permissions 
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