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Abstract

The introduction of matrix analytic methods in risk theory has marked a significant

progress in computations in risk theory. Matrix analytic methods have proven to be pow-

erful computational tools for numerically analyzing complex risk models that traditional

methods often had difficulty with. This is particularly noteworthy in the modern age of

advanced computing and big data. Moving away from the traditional view of collective

risk theory, we can now consider risk models that comprise of many stochastic processes of

which data are abundant. These models may fall under the existing class of risk models;

however, these more realistic risk models involve a large number of variables which increases

the computational complexity significantly. Matrix analytic methods can provide reliable

computing algorithms for risk models of such computational complexity, which have not

been numerically feasible to analyze with the traditional computational tools in risk theory.

This thesis is dedicated to improving the accessibility of the matrix analytic method-

ology in risk theory and developing further generalizations of the existing matrix analytic

methods in risk theory in the attempt to promote its computational use. Although the

literature of matrix analytic methods in risk theory is in its early stage, it is believed that

the advancement in computations in risk theory brought by the matrix analytic methods

will broaden the spectrum of problems in the risk theory literature in the direction of more

realistic and practical risk models and computational analyses of these models. This will

make risk theory as a whole more appealing to practitioners and those who are looking for

more advanced actuarial risk management tools.
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Notation and definitions

The list given here is not comprehensive. The intention in providing this list is to guide

the readers through the thesis by highlighting some of the notation and important defini-

tions pertaining to each chapter/section, as there are many stochastic processes introduced

and many matrices defined in this document.

Mathematical notation:

N: the set of natural numbers.

Z: the set of integers.

Z+: the set of positive integers.

Z−: the set of negative integers.

C: the set of complex numbers.

R: the set of real numbers.

R+: the set of nonnegative real numbers.

<(s): the real part of the complex number s.

|ν|: the modulus of ν.

Pr: the probability function.

E: the expectation function.

I[A]: the indicator function of event A.

bxc: the nearest integer less than or equal to x.

Aᵀ: the transpose of the matrix A.

xiii



A−1: the inverse of the matrix A.

⊗: the Kronecker product operator.

vec: the vectorization operator for a matrix.

Sp(A): the spectral radius of the matrix A.

‖A‖max: the max norm of the matrix A.

Stochastic processes in Chapter 2:

Ut: the surplus process of the G/M/1-type discrete-time risk model.

Rt: the external process of Ut.

Xt: the level process of the dual G/M/1-type chain of (Ut,Rt).

J t: the phase process of the dual G/M/1-type chain of (Ut,Rt).

τ : the time of ruin defined as inf{t ∈ Z+ : Ut < 0}.

τ−i : inf{t ∈ Z+ : Xt < i}.

τi: inf{t ∈ Z+ : Xt = i}.

U
(b)
t : the surplus process of the MAP risk model with a dividend barrier b.

Jt: the phase process of the associated MAP of the MAP risk model with a dividend

barrier b.

X
(b)
t : the level process of the dual G/M/1-type chain of (U

(b)
t , Jt).

(V
(b)
t , Jt): the bivariate phase process of the dual G/M/1-type chain of (U

(b)
t , Jt), where

V
(b)
t = bU

(b)
t

c
c.

Dt: the dividend amount paid at time t.

xiv



DTot
T (ν): the total discounted dividends paid up to time T .

τ−SB : the first return time of the dual G/M/1-type chain of the MAP risk model without

a dividend barrier to levels {0, 1, . . . , B}.

Matrices in Chapter 2:

In: an identity matrix of size n× n (we drop the subscript n when it is obvious).

ej : a row vector whose j-th entry is 1 and all the others are 0.

PA
c

: a block component of the TPM of (Xt,J t) pertaining to levels in N.

PA : a block component of the TPM of (Xt,J t) pertaining to levels in Z−.

Ai,l: a block component of the TPM of (Xt,J t) corresponding to levels i and l in the

general case.

Ai: a block component of the TPM of (Xt,J t) when (Xt,J t) is level-independent.

Hν i,l: a block component of the discounted fundamental matrix Hν which records the

time discounted pre-τ occupation measure of (Xt,J t) to level l given that the chain

starts in level i.

{ Rν i,l}∞i=0,l≥i: the set of discounted rate matrices which record the time discounted pre-

τ−i+1 occupation measure of (Xt,J t) to level l given that the chain starts in level

i.

{ Gν i,l}i,l≥0: the set of discounted fundamental period matrices which record the time

discounted first passage time probabilities of (Xt,J t) to level l given that the chain

starts in level i.

Rν : denotes Rν i,i+1 when (Xt,J t) is level-independent.

{ Qν i,z}∞i=0,z≤i: the set of discounted ladder height distribution matrices which record the

time discounted ladder height distributions of (Xt,J t) to level z given that the chain

starts in level i.
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{ Qν l}∞l=0: the set of discounted ladder height distribution matrices which record the time

discounted ladder height distributions of (Xt,J t) to level z given that the chain starts

in level i when the chain is level-independent and i− z = l.

PA
c

b : a block component of the TPM of (X
(b)
t , V

(b)
t , Jt) pertaining to levels in {0, 1, . . . , B}.

PAb : a block component of the TPM of (X
(b)
t , V

(b)
t , Jt) pertaining to levels in Z−.

{ Hb,ν
i,l}Bi,l=0, { Rb,ν

i,l}Bi=0,l≥i, { Gb,ν
i,l}Bi,l=0, and { Qb,ν

i,l}Bi=0,l≤i: the set of discounted funda-

mental, rate, fundamental period, and ladder height distribution matrices of (X
(b)
t , V

(b)
t , Jt)

corresponding to levels i and l.

PSB : a block component of the TPM of the dual G/M/1-type chain of the MAP risk

model without a dividend barrier pertaining to levels {0, 1, . . . , B}.

PSB+ : a block component of the TPM of the dual G/M/1-type chain of the MAP risk

model without a dividend barrier pertaining to levels {B + 1, B + 2, . . .}.

PSB :SB+ : a block component of the TPM of the dual G/M/1-type chain of the MAP risk

model without a dividend barrier pertaining to transitions from levels {0, 1, . . . , B}

to levels {B + 1, B + 2, . . .}.

PSB+ :SB : a block component of the TPM of the dual G/M/1-type chain of the MAP risk

model without a dividend barrier pertaining to transitions from levels {B + 1, B +

2, . . .} to levels {0, 1, . . . , B}.

RνB,B+ : a matrix which records the time discounted pre-τ−SB occupation measure of the

dual G/M/1-type chain of the MAP risk model without a dividend barrier to levels

{B + 1, B + 2, . . .} given that the chain starts in levels {0, 1, . . . , B}.

QνB,B+ : a matrix which records the time discounted first return time probabilities of the

dual G/M/1-type chain of the MAP risk model without a dividend barrier to levels

{0, 1, . . . , B} given that the chain starts in levels {0, 1, . . . , B}.
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HνB,B , HνB,B+ , HνB+,B , and HνB,B+ : block components of the discounted fundamental

matrix of the dual G/M/1-type chain of the MAP risk model without a dividend

barrier partitioned according to the levels {0, 1, . . . , B} and {B + 1, B + 2, . . .}.

Stochastic processes in Chapter 3:

Ut: the surplus process of the MAP risk model with phase-dependent premium rates and

phase-type claim size distributions.

Jt: the phase process of the associated MAP of Ut.

Xt: the level process of the dual pre-QBD process of (Ut, Jt).

Wt: the phase process of the dual pre-QBD process of (Ut, Jt).

Lt: the level process of the dual QBD process of (Ut, Jt).

(Vt,Wt): the bivariate phase process of the dual QBD process (Ut, Jt), where Vt = b Xt
cmax
c.

τ : the time of ruin defined as inf{t ∈ Z+ : Ut < 0}.

κ: inf{t ∈ Z+ : Xt < 0} = inf{t ∈ Z+ : Lt < 0}.

s1([h, k]): denotes the total number of times Wt is in S1 in the time interval [h, k], h, k ∈ N,

where s1([h, k]) = 0 when k < h (h and k may be nonnegative integer-valued random

variables as well).

η(v): inf{t ∈ N : Lt = v}.

κ−v : inf{t ∈ Z+ : Lt < v}.

Matrices in Chapter 3:

1: a row vector of ones.

Q: the TPM of (Xt,Wt).
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{Ai}cmaxi=0 : block components of Q corresponding to transitions with the increase of i units

in Xt.

B: a block component of Q corresponding to transitions with the decrease of 1 unit in

Xt.

Q′: the TPM of (Lt, Vt,Wt).

D0, D1, and D2: block components of Q′ corresponding to transitions with the change

of 1, 0, and -1 units in Lt, respectively.

Gν : a matrix which records the time discounted (discounted by the time (Lt, Vt,Wt)

spends in S1) first passage time probabilities of (Lt, Vt,Wt) to level i− 1 given that

(Lt, Vt,Wt) starts in level i for all i ∈ Z+.

Rν : a matrix which records the time discounted (discounted by the time (Lt, Vt,Wt)

spends in S1) pre-κ−i+1 occupation measure of (Lt, Vt,Wt) to level i + 1 given that

(Lt, Vt,Wt) starts in level i for all i ∈ N.

Ξν z: a matrix which records the time discounted (discounted by the time (Lt, Vt,Wt)

spends in S1) pre-κ occupation measure of (Lt, Vt,Wt) to level z given that (Lt, Vt,Wt)

starts in level z for all z ∈ N.

Stochastic processes in Section 4.5:

Nt: the number of active contracts at time t.

At: the age process.

N : the maximum number of active contracts the insurance firm can hold at any given

time.

K: the maximum age of the age process.

N+
t : the CTMC describing N t = (Nt, At) when the surplus process is above level 0.
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N−t : the CTMC describing N t = (Nt, At) when the surplus process is below level 0.

(L+
t ,N

+
t ): the claims arrival MAP when the surplus process is above level 0.

(L−t ,N
−
t ): the claims arrival MAP when the surplus process is below level 0.

Ut: the surplus process of the dynamic individual risk model.

τ : the time of ruin defined as inf{t > 0 : Ut < 0 and N t = 0}.

(F+
t ,J

+
t ): a fluid flow process whose sample paths can be connected to those of the

surplus process when it is above level 0.

(F−t ,J
−
t ): a fluid flow process whose sample paths can be connected to those of the

surplus process when it is below level 0.

(Ft,J t): a level-independent fluid flow process with the dynamics of (F+
t ,J

+
t ) when it is

above level 0 and with the dynamics of (F−t ,J
−
t ) when it is below level 0.

κ: inf{t > 0 : Ft < 0 and J t ∈ W−0 }.

Ot: the shift process which keeps track of the time (Ft,J t) spends in W+
0 ∪W+

1 ∪W−1 .

σ: the last epoch the surplus level falls below 0 prior to the time of ruin.

η: the time at which the last descent of Ft into the negative real line prior to κ ends.

κ(y): inf{t > 0 : Ft = y}.

Ũt: the time-reversed version of Ut.

Ñ t: the time-reversed version of N t.

(Rt,Et): a fluid flow process whose sample paths can be linked to those of (Ũt, Ñ t)

reflected on the time axis.

Ht: a shift process which keeps track of the time Et spends in W−1 .
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θ(y): inf{t > 0 : Rt = y}.

Matrices in Section 4.5:

T+: the infinitesimal rate matrix of J+
t .

T+
11, T

+
12, T

+
22, T

+
21, T

+
00, T

+
10, T

+
01, T

+
20, and T+

02: block components of T+ partitioned

according to W+
0 , W+

1 , and W+
2 .

T−: the infinitesimal rate matrix of J−t .

T−11, T
−
12, T

−
22, T

−
21, T

−
00, T

−
10, T

−
01, T

−
20, and T−02: block components of T− partitioned

according to W−0 , W−1 , and W−2 .

Ψ̂
+

(s): a matrix which records the LST of Ot during the journey of (Ft,J t) from level 0

to level 0 given that J t starts in W+
1 .

Ĝ
+

(s, y): a matrix which records the LST of Ot during the journey of (Ft,J t) from level

y > 0 to level 0 given that J t starts in W+
2 .

Ψ̂
−

(s): a matrix which records the LST of Ot during the journey of (Ft,J t) from level 0

to level 0 given that J t starts in W−2 .

Ĝ
−

(s, y): a matrix which records the LST of Ot during the journey of (Ft,J t) from level

y < 0 to level 0 given that J t starts in W−1 .

K̂
−

(s, dy|x): a matrix which records the pre-κ(0) and pre-κ occupation measure with

respect to Ot of (Ft,J t) to (dy,W−1 ) given that (Ft,J t) starts in (x,W−1 ), x, y < 0.

Υ̂
−

(s, dx): a matrix which records the pre-κ(0) and pre-κ occupation measure with respect

to Ot of (Ft,J t) to (dx,W−1 ) given that (Ft,J t) starts in (0,W−2 ), x < 0.

B: the infinitesimal rate matrix of Et.

B11, B22, B12, and B21: block components of B partitioned according to W−1 and W−2 .
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Θ̂(s): a matrix which records the LST of Ht during the journey of (Rt,Et) from level 0

to level 0 given that Et starts in W−1 .

Q̂(s, y): a matrix which records the LST of Ht during the journey of (Rt,Et) from level

y > 0 to level 0 given that Et starts in W−2 .
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Chapter 1

Introduction and preliminaries

1.1 Introduction

The general form of an insurance risk reserve process (i.e., risk process) {(Ut,Rt), t ∈ T},

for an arbitrary index set T (i.e., continuous or discrete), is given by

Ut = u+ Ct − Lt, t ∈ T,

and some external (possibly multi-dimensional) process {Rt, t ∈ T}, where u ≥ 0 is the

initial surplus level, Lt is the total claims amount up to time t, and Ct is the total premiums

received up to time t. Characterizations of stochastic processes {Rt, t ∈ T}, {Lt, t ∈ T},

and {Ct, t ∈ T}, including their dependence structure, are the determinants of the dynam-

ics of {Ut, t ∈ T}. Herein, we write Rt for Rt whenever Rt is univariate.

Of many problems actuarial researchers have studied in relation to the risk process

defined above is the time of ruin τ = inf{t ∈ T : Ut < 0}. Hitting time random variables

such as the time of ruin have long been the subjects of interest in applied probability, many

times purely motivated by the mathematical complexity inherent in them. The time of

ruin analysis in actuarial science is no exception. Its complexity and probabilistic nature
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have intrigued many researchers from various areas of applied probability.

On the other hand, ruin-related problems are also of practical importance for the time-

dependent analysis of the risk process it enables. By taking into account the dynamic

nature of the cash flow affecting the risk process, the time of ruin analysis measures the

impact of the timing of claims on the risk process and hence provides a more refined picture

of the financial stability of an insurance entity.

Since the problem was first mathematically formulated by Lundberg (1903), the analy-

sis of the time of ruin has been considered to be a difficult problem. Only in a few simple

models are the explicit formulas for the infinite-time ruin probabilities available, and in

the case of the finite-time ruin probabilities, explicit formulas are even rarer. Nonetheless,

actuarial researchers have ventured into numerous different paths at analyzing the time

of ruin from various numerical methods such as the transform inversion method, matrix

analytic methods, and differential and integral equation methods to approximations and

simulations. As a result, the literature has now matured enough to include a discussion of

vast scope on more realistic and sophisticated risk models than the earlier simple risk mod-

els such as the Cramér-Lundberg model (see e.g., Lundberg (1903, 1926), Cramér (1930),

Seal (1969, 1972), and Prabhu (1961) for earlier works in risk theory, and Albrecher and

Asmussen (2010) for a recent survey on the literature).

While much of the earlier works in risk theory focused on the time of ruin distribution,

Gerber and Shiu (1998) introduced a functional that would become known as the Gerber-

Shiu function. The Gerber-Shiu function collectively analyzes the time of ruin, surplus

prior to ruin, and deficit at ruin, where the surplus prior to ruin and deficit at ruin random

variables are defined as Uτ− and |Uτ |, respectively. The introduction of the Gerber-Shiu

function initiated substantial advances in risk theory. Actuarial researchers began to ana-

lyze other ruin-related quantities than just the time of ruin, and the mathematical analysis
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in risk theory also took a great leap forward.

Since the introduction of the Gerber-Shiu function, Gerber-Shiu functions in more com-

plex risk models other than the compound Poisson risk model have been studied and even

some generalizations of the Gerber-Shiu function have also been introduced where ruin-

related quantities other than the surplus prior to ruin and deficit at ruin are considered

(see e.g., Albrecher and Asmussen (2010), Cheung et al. (2010), and Woo (2012)). This

aggregate effort of researchers in risk theory has resulted in forming a strong literature on

the mathematical analysis of the stochastic evolution of insurance risk processes today.

In comparison to the maturity of analytical solutions in risk theory however, the compu-

tational aspect in risk theory seems to have room for more discussion. For continuous-time

risk models, the most prevalent method of choice is the integro differential equation (IDE)

method. This method is used for computing the Laplace-Stieltjes transform (LST) of some

risk process related functionals with respect to the time variable. One can then numer-

ically invert the computed transform values to evaluate the functionals of interest. The

method involves the derivation of an IDE, and in solving this IDE, finding the roots of

what is known as the generalized Lundberg fundamental equation (or generalized Lundberg

equation, for short) plays a key role, as the computable expressions of the transforms under

consideration are expressed in terms of the roots of the generalized Lundberg equation.

However, this root finding process can be numerically unstable for some complex models,

thus hindering the computational tractability of the IDE method.

For discrete-time risk models, there are several computational methods that have been

widely implemented in the literature. The first is the difference equation method which

is the discrete-time counterpart of the IDE method for the continuous-time risk models.

As it is the case in the continuous-time risk models, this difference equation method also

involves solving for the roots of the generalized Lundberg equation, leading to the same
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numerical issues the IDE method has (see e.g., Willmot (1993) and Landriault (2008a,b)).

For evaluating some transient solutions (e.g., finite-time ruin probabilities), a well-known

method is the recursive method introduced by De Vylder and Goovaerts (1988), which is

obtained essentially by conditioning on the one-step transition of the risk process. It is a

simple yet a powerful computational algorithm for computing the transient distributions

of the discrete-time risk processes. The core idea of conditioning on the one-step transition

behind this recursive method have since then been widely adopted by many researchers for

the numerical analyses of more complex risk models and used for producing meaningful

numerical results (see e.g., Dickson and Waters (1991, 1992), Dickson et al. (1995), Cos-

sette et al. (2004a,b), Drekic and Mera (2011), and Kim and Drekic (2016)). In addition,

Alfa and Drekic (2007) introduced a discrete-time Markov chain (DTMC) representation

of a discrete-time risk process (a Sparre Andersen risk model to be specific) and derived

a matrix representation for the joint probability mass function (pmf) of the time of ruin,

surplus prior to ruin and deficit at ruin (see e.g., Alfa and Drekic (2007) and Drekic and

Mera (2011) for more details).

Despite their simple computational implementations however, the computational times

of both the recursive method and the DTMC method by Alfa and Drekic (2007) grow

nearly quadratically in the time unit of interest, and the memory consumption rates of

both methods grow linearly in the time unit of interest. Therefore, these methods may not

be suitable for large scale problems where large time units are of interest.

Meanwhile, in other areas of applied probability, matrix analytic methods have been

extensively employed in evaluating the transforms (with respect to the time variable) of

functionals that are similar in their probabilistic interpretations to the transforms of some

transient distributions of risk processes. In contrast to the IDE and difference equation

methods, matrix analytic methods do not rely on the roots of the generalized Lundberg

equation, and instead, involves numerically more stable matrix equation solving problems.
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Recently in risk theory, a series of papers have applied matrix analytic methods in the

computation of the transforms of some risk process related functionals with respect to the

time variable (see e.g., Badescu et al. (2005a,b), Ramaswami (2006), Ahn and Badescu

(2007), and Kim et al. (2008)). In the continuous-time case, the enhanced numerical sta-

bility of the matrix analytic methods compared to the traditional IDE method have made

the computational analysis of more complex risk models more feasible. In the discrete-time

case, the difference between the algorithmic procedures of the matrix analytic approach

compared to the recursive method and DTMC method by Alfa and Drekic (2007), offers us

hope in achieving superior computational times and memory consumption rates. Further-

more, the probabilistic interpretations of underlying matrix analytic methods have opened

up the doors to different perspectives than the more analytic approaches taken in the IDE

method at approaching problems in risk process analyses.

The introduction of matrix analytic methods in risk theory has marked a significant

progress in computations in risk theory. Matrix analytic methods have proven to be pow-

erful computational tools for numerically analyzing complex risk models that traditional

methods often had difficulty with. This is particularly noteworthy in the modern age of

advanced computing and big data. Moving away from the traditional view of collective

risk theory, we can now consider risk models that comprise of many stochastic processes of

which data are abundant. These models may fall under the existing class of risk models;

however, these more realistic risk models involve a large number of variables which increases

the computational complexity significantly. Matrix analytic methods can provide reliable

computing algorithms for risk models of such computational complexity, which have not

been numerically feasible to analyze with the traditional computational tools in risk theory.

This thesis is dedicated to improving the accessibility of the matrix analytic method-

ology in risk theory and developing further generalizations of the existing matrix analytic
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methods in the attempt to promote its computational use in risk theory. Although the

literature of matrix analytic methods in risk theory is in its early stage, it is believed that

the advancement in computations in risk theory brought by the matrix analytic methods

will broaden the spectrum of problems in the risk theory literature in the direction of more

realistic and practical risk models and computational analyses of these models. This will

make risk theory as a whole more appealing to practitioners and those who are looking for

more advanced actuarial risk management tools.

1.2 Mathematical preliminaries

In this section, we give a brief discussion on the basic mathematical tools to be used

throughout the thesis.

1.2.1 DTMC

Let {Jk, k ∈ N} be a discrete-time stochastic process defined on the countable state space

S. {Jk, k ∈ N} is said to be a (homogeneous) DTMC if

Pr{Jk = ik|Jk−1 = ik−1, Jk−2 = ik−2, . . . , J0 = i0} = Pr{Jk = ik|Jk−1 = ik−1}

and

Pr{Jk = ik|Jk−1 = ik−1} = qik−1,ik ∀ k ∈ Z+, ik−1, ik ∈ S.

Let α be the initial probability row vector of {Jk, k ∈ N} (i.e., the i-th entry of α is equal

to Pr{J0 = i}, i ∈ S). Assuming S is expressable as S = {0, 1, 2, . . .}, the transition
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probability matrix (TPM) of {Jk, k ∈ N} is given by

P =

0 1 2 · · ·


0 q0,0 q0,1 q0,2 · · ·

1 q1,0 q1,1 q1,2 · · ·

2 q2,0 q2,1 q2,2 · · ·
...

...
. . .

. . .
. . .

.

Due to the Markov and homegeneity properties of DTMCs, the quantity Pr{Jk = j|J0 = i},

k ∈ N, is given by the (i, j)-th entry of P k.

The state space S can be decomposed into disjoint communicating classes, of which

there are two types: open and closed. An open class consists of a set of states the proba-

bility of returning to which, once left, is zero. A closed class consists of a set of states in

which the probability of leaving, given that the chain starts in that class, is zero. If the

chain has both open and closed classes, we sometimes refer to the open classes as transient

classes and the closed classes as absorbing (or recurrent) classes. If the chain consists of

one class, it is said to be irreducible.

Another important quantity is the stationary vector. A stationary (row) vector θ is a

vector that satisfies the equation θP = θ. If θ is a probability vector (i.e., the entries of θ

are nonnegative and sum to 1), we refer to θ as the stationary probability vector. Further

details on Markov chains can be found in various stochastic processes reference texts (see

e.g., Resnick (2002)).
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1.2.2 G/M/1-type Markov chain

Let {(Xk,Jk), k ∈ N} be a multivariate DTMC on the state space S = Z × G for some

finite set G, where Xk ∈ Z denotes the level of the process and Jk ∈ G the phase of the

process. We will write Jk for Jk whenever Jk is univariate. Suppose that the TPM of

{(Xk,Jk), k ∈ N} is expressable as

P =

· · · −1 0 1 2 · · ·



...
. . .

. . .

−1 · · · A−1,−1 A−1,0

0 · · · A0,−1 A0,0 A0,1

1 · · · A1,−1 A1,0 A1,1 A1,2

...
. . .

. . .
. . .

. . .
. . .

. . .

,

where the empty blocks are zero-block matrices and {Ai,j} are block matrices of appropri-

ate size corresponding to the number of phases at levels i and j of the chain. Markov chains

having TPMs with the same structure as that of P are known as the G/M/1-type Markov

chains (usually defined on levels in N, but for our purposes, the above representation is

more suitable).

1.2.3 Discrete QBD process

Let {(Xk,Jk), k ∈ N} be a multivariate DTMC on the state space S = Z × G for some

finite set G, where Xk ∈ Z denotes the level of the process and Jk ∈ G the phase of the

process. Again, we will write Jk for Jk whenever Jk is univariate. Suppose that the TPM
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of {(Xk,Jk), k ∈ N} is expressable as

P =

· · · −2 −1 0 1 2 · · ·



...
. . .

. . .
. . .

−1 A−1,−2 A−1,−1 A−1,0

0 A0,−1 A0,0 A0,1

1 A1,0 A1,1 A1,2

...
. . .

. . .
. . .

,

where the empty blocks are zero-block matrices and {Ai,j} are block matrices of appro-

priate size corresponding to the number of phases at levels i and j of the chain. Then, we

call {(Xk,Jk), k ∈ N} a discrete QBD process.

In the literature, the definition of the discrete QBD process is usually restricted to the

level-independent QBD process with its levels defined on the natural number set. However,

in this work, we consider the above more general definition as it is more suitable for the

context of risk theory.

1.2.4 Discrete phase-type distribution

A random variable X is said to follow a discrete phase-type distribution of order m if and

only if its pmf takes the form

f(x) =

αU
x−1γᵀ, x ∈ Z+,

α0, x = 0,

where α0 ≥ 0, α = (α1, α2, . . . , αm) is a row vector of size m with αi ≥ 0, i = 1, 2, . . . ,m,

and α0 +
∑m

i=1 αi = 1, U = (ui,j)i,j∈{1,2,...,m} is an m × m substochastic matrix, and
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γᵀ = (γ1, γ2, . . . , γm)ᵀ = 1ᵀ − U1ᵀ. Here, ᵀ denotes the transpose operator and 1ᵀ is an

m× 1 column vector of ones.

Another interpretation of X is to consider X as the time until absorption of a DTMC

defined on the state space S = {0, 1, 2, . . . ,m} with state 0 being the absorbing state of

the chain and the rest being transient states. The initial probability vector of the chain is

given by (α0,α) and the portion of the TPM governing the transient states of the chain is

given by U .

We note that the class of phase-type distributions is large and includes many different

families of discrete distributions defined on the natural number set.

1.2.5 Discrete-time MAP

Let {(Nk, Jk), k ∈ N} be a bivariate DTMC on the state space S = N×{0, 1, 2, . . . ,m−1}

where m ∈ Z+. Here, Nk represents the number of arrivals up to and including time k and

Jk represents the so-called phase of the process at time t. Let

p0;i,j = Pr{(Nk+1, Jk+1) = (n, j)|(Nk, Jk) = (n, i)}

and

p1;i,j = Pr{(Nk+1, Jk+1) = (n+ 1, j)|(Nk, Jk) = (n, i)}

denote the one-step transition probabilities without arrivals and with arrivals, respectively.

Furthermore, let P 0 be an m ×m matrix whose (i, j)-th entry is p0;i,j and P 1 an m ×m

matrix whose (i, j)-th entry is p1;i,j. As a result, the TPM associated with {(Nk, Jk), k ∈ N}
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is given by

P =

0 1 2 3 4 · · ·



0 P 0 P 1

1 P 0 P 1

2 P 0 P 1

3 P 0 P 1

...
. . .

. . .

,

where the empty spots in P are m × m zero matrices. Whenever Nk increases, we say

there is an arrival.

The counting process {(Nk, Jk), t ∈ N} is called the discrete-time Markovian arrival

process (MAP). As can be seen from the phase-dependent structure, a MAP can be used

to model non identical and independently distributed (i.i.d.) inter-arrival times. Although

the dependence structure that can be incorporated is restricted to the underlying Markov

chain {Jk, k ∈ N}, a risk model operating under a MAP is undoubtedly a step forward

from a Sparre Andersen risk process in modelling for correlation. For further details on

MAPs, we refer the reader to He (2014).

1.2.6 CTMC

Let {Jt, t ∈ R+} be a continuous-time stochastic process defined on the countable state

space J , and let λi, i ∈ J , be a strictly positive real number which we refer to as the rate

parameter. Furthermore, let {ξk, k ∈ N} with ξ0 = 0 be the jump epochs of {Jt, t ∈ R+}

and let {σk, k ∈ Z+} be the inter-arrival times of {ξk, k ∈ N} (i.e., σk = ξk − ξk−1 ∀

k ∈ Z+) which is exponentially distributed with rate λJξk−1
. Now, let the embedded

discrete-time stochastic process {Jξk , k ∈ N} form a DTMC, where for i 6= j ∈ J , we

let qi,j = Pr{Jξk = j|Jξk−1
= i} ∀ k ∈ Z+ such that

∑
j 6=i,j∈J qi,j = 1 ∀ i ∈ J . Lastly,
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set Jt = Jξk−1
for t ∈ [ξk−1, ξk) and J0 is determined by the initial probability vector

α = (αi)i∈J . Then, {Jt, t ∈ R+} is a continuous-time Markov chain (CTMC).

If J is expressable as J = {0, 1, 2, . . .}, then the so-called infinitesimal rate matrix of

{Jt, t ∈ R+} is given by

R = (ri,j)i,j∈J =

0 1 2 · · ·


0 −λ0 λ0q0,1 λ0q0,2 · · ·

1 λ1q1,0 −λ1 λ1q1,2 · · ·

2 λ2q2,0 λ2q2,1 −λ2 · · ·
...

...
. . .

. . .
. . .

.

Decomposition of the state space for DTMCs applies to CTMCs as well, and thus, we

do not discuss it further here. However, analyses of some other aspects of CTMCs are

different from those of DTMCs. In particular, Pr{Jt = j|J0 = i}, t ≥ 0, is given by the

(i, j)-th entry of the matrix exponential E(t), where

E(t) = eRt =
∞∑
n=0

(Rt)n

n!
.

Moreover, the stationary probability (row) vector θ = (θi)i∈J now satisfies the equation

θR = 0 (subject to the entries of θ being nonnegative and summing to 1), where 0 denotes

a row vector of zeros.

1.2.7 Time-reversed CTMC

If the CTMC {Jt, t ∈ R+} is initialized with α = θ, we can consider its time-reversed

version. In what follows, we denote the stationary version of {Jt, t ∈ R+} by {J∗t , t ∈ R+}

and the time-reversed version of {J∗t , t ∈ R+} by {J̃∗t , t ∈ R+}.

12



The time-reversed version of {J∗s , s ∈ [0, t]} is defined as {J̃∗s , s ∈ [0, t]} = {J∗t−s, s ∈

[0, t]}. Then, {J̃∗t , t ∈ R+} is also a CTMC defined on the same state space J as that of

{J∗t , t ∈ R+} with infinitesimal rate matrix given by

R̃ = (r̃i,j)i,j∈J =

0 1 2 · · ·


0 −λ0 λ0q̃0,1 λ0q̃0,2 · · ·

1 λ1q̃1,0 −λ1 λ1q̃1,2 · · ·

2 λ2q̃2,0 λ2q̃2,1 −λ2 · · ·
...

...
. . .

. . .
. . .

,

where q̃i,j =
θj
θi
qj,i, i, j ∈ J .

1.2.8 Continuous phase-type distribution

A random variable X is said to follow a continuous phase-type distribution of order m if

and only if its probability density function (pdf) takes the form

f(x) =

αe
Uxγᵀ, x > 0,

α0, x = 0,

where α0 ≥ 0, α = (α1, α2, . . . , αm) is a row vector of size m with αi ≥ 0, i = 1, 2, . . . ,m,

and α0 +
∑m

i=1 αi = 1, U = (ui,j)i,j∈{1,2,...,m} is an m×m substochastic generator matrix,

and γᵀ = (γ1, γ2, . . . , γm)ᵀ = −U1ᵀ.

Another interpretation of X is to consider X as the time until absorption of a CTMC

defined on the state space S = {0, 1, 2, . . . ,m} with state 0 being the absorbing state of

the chain and the rest being transient states. The initial probability vector of the chain is
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given by (α0,α) and the portion of the generator matrix restricted to the transient states

of the chain is given by U .

Similar to its discrete counterpart, the class of continuous phase-type distributions is

large and shows versatility in modelling, including many families of continuous distribu-

tions defined on the set [0,∞) as special cases.

1.2.9 Continuous-time MAP

Let {(Nt, Jt), t ∈ R+} be a bivariate CTMC on the state space J = N×{0, 1, 2, . . . ,m−1}

where m ∈ Z+. In an analogous fashion to its discrete counterpart, Nt represents the

number of arrivals up to and including time t and Jt represents the so-called phase of the

process at time t. Let d0,i,j and d1,i,j denote the transition rates into state j from state i

without arrivals and with arrivals, respectively. Furthermore, let D0 be an m×m matrix

whose (i, j)-th entry is d0,i,j and D1 an m×m matrix whose (i, j)-th entry is d1,i,j. Then,

the infinitesimal matrix of {(Nt, Jt), t ∈ R+} is given by

D =

0 1 2 3 4 · · ·



0 D0 D1

1 D0 D1

2 D0 D1

3 D0 D1

...
. . .

. . .

,

where the empty spots in D are m×m zero matrices. The counting process {(Nt, Jt), t ∈

R+} is called the continuous-time MAP.
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1.2.10 Continuous-time MAP risk model with phase-type claim

size distributions

A continuous-time MAP risk model {Ut, t ∈ R+} is comprised of a continuous-time MAP

{(Nt, Jt), t ∈ R+} defined on N×J , J = {1, 2, . . . ,m}, m ∈ Z+, rate matrices (D0,D1) =

((d0,i,j)i,j∈J , (d1,i,j)i,j∈J ), and the conditionally i.i.d. claim amount sequence {Yk, k ∈ Z+}

(conditional on the phase process {Jt, t ∈ R+} of the MAP). In particular, Yk denotes the

amount of the k-th claim to be made and the distribution of Yk depends only on the type of

the phase transition that the claim is accompanied by. In other words, let f (i,j)(y), i, j ∈ J ,

y ≥ 0, denote the pdf of Y (i,j) = Yk|(Jξ−k = i, Jξk = j), where {ξk, k ∈ Z+} denotes the

arrival epochs of the associated MAP. We further assume that Y (i,j) follows a continuous-

time phase-type distribution of order n(i,j) ∈ Z+ with pdf f (i,j)(y) = α(i,j)e(U
(i,j))y(γ(i,j))ᵀ,

y ≥ 0, i, j ∈ J , and that the premium rate is constant at Ct = ct, c > 0. Then, we can

write

Ut = u+ ct−
Nt∑
k=1

Yk, t ∈ R+, u ∈ R+.

1.2.11 Fluid flow process

Consider a bivariate continuous-time process {(Ft,Wt), t ∈ R+}, where {Wt, t ∈ R+} is a

finite-state CTMC whose state space is given by W . Let ri ∈ R, i ∈ W , denote the flow

rates of the process {Ft, t ∈ R+} where Ft evolves at the flow rates rWt . Then, we refer to

{(Ft,Wt), t ∈ R+} as the fluid flow process and {Wt, t ∈ R+} as the phase process. Unless

otherwise specified, we assume F0 = 0.

Usually, fluid flow processes have boundaries at level 0, meaning that the processes do

not fall below level 0. However, for the contents of this thesis, we leave the definition of
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a fluid flow process to be that of the unbounded fluid flow process, where the fluid flow

process can fall below level 0.

1.3 Matrix analytic methods

In applied probability, the constitution of the definition of solutions to mathematical prob-

lems has been predominantly analytical. In spite of the mathematical beauty associated

with the analytical solutions however, often these solutions are not easily computable. In

the spirit of developing more easily computable forms of solutions, Dr. Marcel F. Neuts

initiated the building of the theory of matrix analytic methods. This movement led to

the emergence of both mathematically beautiful and computationally superior probability

theories such as the theory of matrix-geometric distributions, phase-type distributions, and

MAPs (see e.g., Neuts (1981, 1989), Latouche and Ramaswami (1999), and He (2014) for

comprehensive textbooks on matrix analytic methods). In this section, we briefly discuss

matrix analytic methods for discrete QBD processes and some of the key matrices appear-

ing therein as we will reference them in this thesis.

Consider a discrete QBD process {(Xt, Jt), t ∈ N} defined on N × {0, 1, . . . ,m − 1},

m ∈ Z+, with the TPM

P =

0 1 2 3 · · ·


0 B A0

1 A2 A1 A0

2 A2 A1 A0

...
. . .

. . .
. . .

.
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Let G and R be m×m square matrices whose (i, j)-th entries are given by

(G)i,j = Pr{η(l − 1) <∞, Jη(l−1) = j|(X0, J0) = (l, i)} ∀ l ∈ {1, 2, . . .},

and

(R)i,j =
∞∑
k=1

Pr{κ−l > k − 1, (Xk−1, Jk−1) = (l, j)|(X0, J0) = (l − 1, i)} ∀ l ∈ {1, 2, . . .},

where η(l) = inf{k ∈ N : Xk = l} and κ−l = inf{k ∈ Z+ : Xk = l − 1}. (Note that both

the definitions of G and R do not depend on the value of l due to the level independence

of P .) Furthermore, assuming that the QBD process is irreducible and positive recurrent,

let π denote the stationary probability vector of the QBD process and πl the section of π

corresponding to level l. Then,

Lemma 6.3.2, Latouche and Ramaswami (1999)

πl = b(I −R)Rl ∀ l ∈ N,

where I is an identity matrix of appropriate size and b is the unique solution of the system

b = bA, b1ᵀ = 1, with A = A0 +A1 +A2.

The matrix G and R are referred to as the fundamental period and rate matrices,

respectively. As can be seen from the above lemma, the rate matrix is of primary interest in

identifying the steady-state distribution of the QBD process under consideration. However,

often the computational algorithms for computing the matrix G are more stable, and by

exploiting the connection between G and R, one first computes the matrix G and then R

via the following relation (see Eq. (8.2) in Latouche and Ramaswami (1999)):

R = A0(I −A1 −A0G)−1.
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Of several algorithms available in the literature for computing G, one that is quadrati-

cally convergent (given the QBD process is positive recurrent) was given by Latouche and

Ramaswami (1993), namely the Logarithmic-Reduction (L-R) algorithm. First of all, let

H(0) = (I −A1)
−1A0,

L(0) = (I −A1)
−1A2,

and for k ∈ Z+, recursively define

H(k) = (I −U (k−1))−1(H(k−1))2,

L(k) = (I −U (k−1))−1(L(k−1))2,

where

U (k) = H(k)L(k) +L(k)H(k), k ∈ N. (1.3.1)

Then, we have

G =
∞∑
k=0

( k−1∏
i=0

H(i)

)
L(k), (1.3.2)

and if the QBD process is positive recurrent, the sequence {G(k) =
∑k

l=0(
∏l−1

i=0H
(i))L(l)}∞k=0

quadratically converges to G.

The proof of the L-R algorithm is purely probabilistic and quite elegant. To keep the

discussion short, we refer the reader to Latouche and Ramaswami (1999), pp. 187-197, for

a complete proof.
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On a short note, one may directly compute R by setting R(0) = 0 and

R(k + 1) = A0 +R(k)A1 + (R(k))2A2, k ∈ N.

Then, the sequence {R(k), k ∈ N} converges to R (see e.g., Eq. (3.36) in He (2014)).

1.4 Matrix analytic methods in risk theory

Most of the papers in the literature of matrix analytic methods in risk theory seem to

focus on continuous-time risk models. There is one paper by Kim et al. (2008) on matrix

analytic methods applied to a discrete-time risk model, but the development there seems

premature compared to the literature on matrix analytic methods for continuous-time risk

models, as some of the important quantities such as the surplus prior to ruin and the

transient distribution of the surplus process are not studied. Therefore, in this section, we

focus on the matrix analytic methods for continuous-time risk models.

The matrix analytic methods for continuous-time risk models stem from matrix analytic

methods for fluid flow processes. For a continuous-time MAP risk model, one can draw

a sample paths connection between the risk process and a fluid flow process. From this

sample paths connection, matrix analytic methods for fluid flow processes can be applied

to MAP risk processes. The very first paper in risk theory (to our knowledge) to exploit

such a sample paths connection and employ matrix analytic methods in analyzing a MAP

risk model was Badescu et al. (2005a), where the authors derived an elegant, computable

matrix exponential expression for the LST of the time of ruin. Following this first paper

in 2005, another paper Badescu et al. (2005b) was published, where the authors derived

a computable matrix exponential expression for the joint pdf of the surplus prior to ruin

and deficit at ruin. However, what these two papers did not include was the joint pdf of

the time of ruin, surplus prior to ruin, and deficit at ruin, and studying the three random

variables simultaneously seemed to be a nontrivial work.
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In 2004, Ahn and Ramaswami published a paper on the transient distribution of fluid

flow processes, where they derived a computable matrix exponential representation of the

LST of the transient distribution of a fluid flow process with respect to the time variable

based on the novel idea of coupled queues and stochastic limits. (The original work in

Ahn and Ramaswami (2004) is highly nontrivial, and as a result, they published another

paper in 2006 which presents the materials in their original work via a more elementary

level-crossing argument while hiding the complex mathematical ideas of coupled queues

and stochastic limits originally shown in their 2004 paper.) Ramaswami (2006) then first

applied the matrix analytic methods developed in Ahn and Ramaswami (2004) to MAP

risk processes by exploiting a sample paths connection between a MAP risk process and a

fluid flow process, where they derived a computable matrix exponential expression for the

LST of the joint pdf of the time of ruin, surplus prior to ruin, and deficit at ruin with re-

spect to the time variable. Initiated by Ramaswami (2006), fluid flow process based matrix

analytic methods have since then been applied to many other problems in risk theory (see

e.g., Ahn and Badescu (2007), Badescu et al. (2007a,b, 2009), and Badescu and Landriault

(2009)).

In what follows, we present some of the key results in Ramaswami (2006) to demon-

strate how the fluid flow based matrix analytic methods can be applied to analyzing MAP

risk models. The discussion here will focus only on the key ideas. More interested readers

are referred to Ramaswami (2006).

Consider a continuous-time MAP risk model {Ut, t ∈ R+} comprised of the MAP

{(Nt, Jt), t ∈ R+} defined on N×J , J = {1, 2, . . . ,m}, m ∈ Z+, rate matrices (D0,D1) =

((d0,i,j)i,j∈J , (d1,i,j)i,j∈J ), and the phase-type claim size distributions of order n(i,j) ∈ Z+

with pdf f (i,j)(y) = α(i,j)e(U
(i,j))y(γ(i,j))ᵀ, y ≥ 0, i, j ∈ J . Here, without loss of generality

(w.l.o.g.), we assume that the premium rate c = 1.
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Ut

τ

Figure 1.1: Sample path of {Ut, t ∈ R+}

By stretching the downward jumps of claim amounts into linear downward journeys, we

can manipulate the sample paths of the MAP risk process such that the sample paths of the

risk process resemble those of a fluid flow process. A formal mathematical construction of

such a fluid flow process is a standard exercise and well detailed in Ramaswami (2006). As

our intention in this section is to give the reader a snapshot of how the fluid flow based ma-

trix analytic methods are applied to risk models, we assume that such a fluid flow process

{(Ft,Wt), t ∈ R+} has been well defined and give a pictorial description of the connection

between the risk process {Ut, t ∈ R+} and the fluid flow process {(Ft,Wt), t ∈ R+} below.

First of all, in Figure 1.1, τ denotes the time of ruin of the risk process, and in Figure

1.2, κ denotes the time that the fluid flow process first reaches level 0, η denotes the

last descent before κ initiates, and ρ denotes the time that the last descent initiated at η

ends. Now, let σ(0, t, x, y), t, x, y > 0, denote the amount of time the fluid flow process

{(Ft,Wt), t ∈ R+} is in its upward journeys in the time interval (0, t) given that F0 = x

and Ft = y. Then, since both the upward journeys and downward journeys of the fluid
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η κ ρ

Figure 1.2: Sample path of {Ft, t ∈ R+}

flow process are at unit rates, one can easily deduce that

σ(0, t, x, y) =


t−(x−y)

2
, x ≥ y,

t−(y−x)
2

+ (y − x) = t+(y−x)
2

, y > x.

(1.4.1)

Next, consider the joint conditional pdf of (τ, Uτ− , Jτ− , |Uτ |) given that (U0, J0) = (u, i),

which is denoted by h(t, x, j, y|u, i), i, j ∈ J , t, u, x, y > 0. Then, noting that (τ, Uτ− , Jτ− , |Uτ |) =

(σ(0, η, F0, Fη−), Fη− ,Wη− , |Fρ|) with probability (w.p.) 1, one may rewrite the LST of

h(t, x, j, y|u, i) with respect to the time variable as

h(s, x, j, y|u, i) =

∫ ∞
0

e−sth(t, x, j, y|u, i)dt =

∫ ∞
0

e−sσ(0,t,u,x)g(t, x, j, y|u, i)dt

=

e
s(u−x)

2

∫∞
0
e−

s
2
tg(t, x, j, y|u, i)dt, u ≥ x,

e
−s(x−u)

2

∫∞
0
e−

s
2
tg(t, x, j, y|u, i)dt, x > u,

by (1.4.1), where g(t, x, j, y|u, i) is the joint conditional pdf of (η, Fη− ,Wη− , |Fρ|) given

(F0,W0) = (u, i), and s ∈ C, <(s) ≥ 0. Finally, the evaluation of the integral term∫∞
0
e−

s
2
tg(t, x, j, y|u, i)dt can be established by applying the matrix analytic procedure for

fluid flow processes developed in Ahn and Ramaswami (2004), and therefore, also does the
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evaluation of h(s, x, j, y|u, i).

Note that when the premium rates depend on the phase process {Jt, t ∈ R+}, the

simple sample paths relation (1.4.1) no longer exists. Hence, the matrix analytic methods

in Ahn and Ramaswami (2004) cannot be directly applied to computing h(s, x, j, y|u, i).

To remedy this, Ahn (2009) proposed matrix analytic methods for computing the first

passage time LSTs of the processes obtained by observing a fluid flow process only when

it is either increasing or staying at level, or when it is either decreasing or staying at level.

However, the resulting processes lose the skip-free sample paths of their original fluid flow

process and thus the analyses become even more complex than in the original analysis

in Ahn and Ramaswami (2004). Therefore, applying the matrix analytic methods in Ahn

(2009) to evaluate h(s, x, j, y|u, i) for the MAP risk models with phase-dependent premium

rates would require more complex probabilistic analysis. Ahn (2009) does not discuss this

problem.

1.5 Organization of the thesis

Much of the existing literature on matrix analytic methods in risk theory is based on the

extension of Ahn and Ramaswami’s matrix analytic methodology (Ahn and Ramaswami

(2004)) for fluid flow processes to continuous-time risk models. However, the mathematics

behind Ahn and Ramaswami’s methodology is highly nontrivial, and this mathematical

barrier hinders the accessibility of the methodology by practitioners and also makes it dif-

ficult to extend the methodology to problems that are not yet treated in the literature of

matrix analytic methods in risk theory. As a way to circumvent this problem, in Chapter 2,

we propose a matrix analytic methodology for a certain class of discrete-time risk models.

The exposition of the methodology in Chapter 2 is more elementary than that of Ahn and

Ramaswami’s methodology, and hence, more accessible in many respects. Moreover, the
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model class that we consider in Chapter 2 is a fairly general class of risk models. Thus, we

hope that the accessibility and the generality of the model classes that our methodology

treats together will serve well in promoting the use of matrix analytic techniques to handle

computational concerns in risk theory.

In Chapter 3, we introduce the discrete-time version of a generalization of Ahn and

Ramaswami’s methodology. The original adaptation of Ahn and Ramaswami’s method-

ology in risk theory does not allow for the analysis of risk models with phase-dependent

premium rates. Ahn (2009) later gave another matrix analytic formulation to remedy

this issue through the analysis of the fluid flow process with downward jumps, but at

the expense of losing the simple level-crossing structure of the skip-free sample paths of

the fluid flow process without jumps, which often simplifies the relevant analysis greatly.

Our methodology is the discrete-time version of a generalization of Ahn and Ramaswami’s

methodology in the sense that it is built directly on a sample paths connection between the

risk process and a QBD process without downward jumps, even with the phase-dependent

premium rates. Hence, our methodology can exploit the skip-free nature of the QBD pro-

cess even with the phase-dependent premium rates, unlike the alternative methodology

introduced by Ahn (2009) involving fluid flow processes with downward jumps.

In Chapter 4, we discuss an adaptation of the matrix analytic methodology for fluid

flow processes developed by Bean and O’Reilly (2013) in risk theory. In contrast to Ahn

and Ramaswami’s methodology, the adaptation of Bean and O’Reilly’s matrix analytic

methodology in risk theory enables the analysis of continuous-time risk models with phase-

dependent premium rates based on sample paths connections between the risk processes

and fluid flow processes without jumps. In the first part of Chapter 4, we demonstrate

how Bean and O’Reilly’s methodology can be extended to continuous-time MAP risk mod-

els with phase-dependent premium rates. In the second part of Chapter 4, we apply the

adaptation of Bean and O’Reilly’s methodology in risk theory developed in the first part
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of Chapter 4 to a new risk model which takes into account the stochastic dynamics of the

customers’ arrivals and departures. This new risk model takes a more microscopic perspec-

tive on the evolution of an insurance risk process than the view of traditional collective

risk theory. In this particular risk model, premium rates depend on certain variables and

level-crossings at level 0 must be considered. Thus, the adaptation of Bean and O’Reilly’s

procedures is a suitable choice of methodology to employ.

25



Chapter 2

A matrix analytic methodology for a

class of discrete-time risk models

2.1 Introduction

The general form of an insurance risk reserve process (i.e., risk process) {(Ut,Rt), t ∈ T},

for an arbitrary index set T (i.e., continuous or discrete), is given by

Ut = u+ Ct − Lt, t ∈ T,

and some external (possibly multi-dimensional) process {Rt, t ∈ T}, where u ≥ 0 is the

initial surplus level, Lt is the total claims amount up to time t, and Ct is the total premiums

received up to time t. Characterizations of stochastic processes {Rt, t ∈ T}, {Lt, t ∈ T},

and {Ct, t ∈ T}, including their dependence structure, are the determinants of the dynam-

ics of {Ut, t ∈ T}. Herein, we write Rt for Rt whenever Rt is univariate.

Recently in risk theory, a series of papers have applied a fluid flow process based ma-

trix analytic methodology introduced by Ahn and Ramaswami (2004) in the computation

of some transient distributions in continuous-time risk models by exploiting the duality
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between the risk processes and fluid flow processes (see, e.g., Badescu et al. (2005a,b), Ra-

maswami (2006), and Ahn and Badescu (2007)). The enhanced numerical stability of the

matrix analytic methodology compared to the traditional IDE method have made the com-

putational analysis of more complex risk models more feasible. Moreover, the probabilistic

interpretation of the matrix analytic methodology has opened up the doors to different

perspectives than the more analytic approaches taken in the IDE method at approaching

problems in risk process analyses.

Despite the advantages of the methodology however, the mathematics behind the fluid

flow process based matrix analytic methodology is highly nontrivial, and this mathematical

barrier makes it difficult to extend the methodology to problems that are not yet treated

in the literature of matrix analytic methods in risk theory. As a way to circumvent this

problem, and in the hopes of highlighting its computational effectiveness in risk theory,

we propose in this work a matrix analytic methodology for a class of discrete-time risk

models. The computational analysis of discrete-time risk models in general relies on more

elementary mathematics than that of continuous-time risk models, and discrete-time risk

models can also be used as approximations to continuous-time risk models via the process

of discretization (see, e.g., Cossette et al. (2004b)). In actual fact, the exposition of the

methodology in this work is more elementary than that of the fluid flow process based

methodology by Ahn and Ramaswami (2004) for continuous-time risk models, and hence,

more accessible. Moreover, the model class that we consider in this work is a fairly general

class of risk models. Thus, we hope that the accessibility of our methodology and the gen-

erality of the model class that our methodology treats together will serve well in promoting

its computational use in risk theory.

While much of the attention is paid to continuous-time risk models, there is only one

(to our knowledge) relevant paper on matrix analytic methods in discrete-time risk models.

Kim et al. (2008) develop a QBD process based matrix analytic methodology for comput-
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ing the infinite-time ruin probabilities and deficit at ruin distribution of a discrete-time

risk model with a randomized dividend paying strategy. However, the QBD process based

methodology developed by Kim et al. (2008) does not include the analysis of the surplus

prior to ruin. Besides the importance of the surplus prior to ruin itself, the analysis of

the surplus prior to ruin is equivalent to the analysis of what is known as the occupation

measure. The occupation measure plays an important role in the development of a ma-

trix analytic methodology for risk models in that it provides the means to analyze other

quantities of interest such as the expected total discounted dividends paid prior to ruin.

Furthermore, the QBD process based matrix analytic methodology by Kim et al. (2008)

assumes that the claim size distributions are of phase-type, which is a family of light-tailed

distributions.

In this work, we develop a matrix analytic methodology for computing the joint con-

ditional pmf of the time of ruin, surplus prior to ruin, and deficit at ruin of a risk process

belonging to a model class that we refer to as the G/M/1-type discrete-time risk model

(G/M/1 DTRM) class. As we show later in this work, the G/M/1 DTRM class is a fairly

large class of risk models and is not restricted to risk models with phase-type claim size

distributions, rendering a matrix analytic methodology for risk models with general claim

size distributions including heavy-tailed distributions. We first develop a matrix analytic

methodology for the general risk models belonging to the G/M/1 DTRM class and for cer-

tain special cases of the G/M/1 DTRM class, we will be able to substantially reduce the

computational complexity of the methodology, compared to the general case, by exploiting

the special structures in these risk models.

The rest of Section 2.1 discusses some known discrete-time risk models, and introduces

the Gerber-Shiu function and so-called discounted joint pmfs. In Section 2.2, we develop a

matrix analytic methodology for the G/M/1 DTRM class. In Section 2.3, we consider the

MAP risk model, which is a subclass of the G/M/1 DTRM class. In Section 2.4, we con-
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sider the MAP risk model with a dividend barrier, which is also a subclass of the G/M/1

DTRM class. In Section 2.5, numerical examples are provided.

2.1.1 Discrete-time risk models

In discrete-time risk models, T = N, Ut ∈ Z, and the aggregate claims amount process

{Lt, t ∈ N} can be expressed in two ways. Firstly, we can write Lt =
∑t

k=1 Yk, where

{Yk, k ∈ Z+} is a sequence of nonnegative integer-valued random variables denoting the

claim amount at time k. Secondly, Lt can be written in terms of a random sum—namely,

Lt =
∑Nt

k=1 Yk, where {Nt, t ∈ N} is a counting process corresponding to the inter-arrival

time sequence of claims {ηk, k ∈ Z+} and {Yk, k ∈ Z+} denotes the (positive) amount of

the k-th claim. Below, we give some of the examples of discrete-time risk models in the

literature.

Compound binomial risk model: One of the very first discrete-time risk models to be

introduced was the compound binomial risk model. In the compound binomial risk model,

{Rt, t ∈ N} is simply a constant (i.e., nonstochastic) process independent of {Ut, t ∈ N},

and hence, irrelevant. {Yk, k ∈ Z+} forms an i.i.d. sequence of random variables with

Pr{Yk = 0} = 1− p and Pr{Yk = l} = pf(l), l ∈ Z+, where 0 < p < 1 and f(l) is a proper

pmf on Z+. Furthermore, it is assumed that Ct = ct, t ∈ N, c ∈ Z+ (see e.g., Gerber

(1988), Shiu (1989), and Willmot (1993)).

Compound binomial model in a Markovian environment: Cossette et al. (2004b)

introduced the compound binomial risk model situated in a Markovian environment as

an extension of the above compound binomial model. Let {Rt, t ∈ N} be a DTMC on

a finite state space S. In this risk model, {Yt, t ∈ Z+} forms an i.i.d. sequence of non-
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negative integer-valued random variables, conditional on {Rt, t ∈ N}. More precisely,

Pr{Yt = 0|Rt−1 = i} = 1− αi and Pr{Yt = y|Rt−1 = i} = αifi(y) ∀ t ∈ Z+, y ∈ Z+, i ∈ S,

where 0 < αi < 1 and fi(y) is a proper pmf on Z+. It is also assumed that Ct = ct, t ∈ N,

c ∈ Z+.

Sparre Andersen risk model: Another extension to the compound binomial risk model

is to relax the distributional assumption imposed on the inter-arrival time sequence of

claims {ηk, k ∈ Z+}. In the discrete-time Sparre Andersen risk model, {ηk, k ∈ Z+} forms

an i.i.d. sequence of random variables but is assumed to follow a (general) positive integer-

valued distribution unlike the geometric distribution of the compound binomial risk model.

Here, Ct is usually assumed to take the form Ct = ct, t ∈ N, c ∈ Z+ (see e.g., Pavlova and

Willmot (2004), Li (2005a, 2005b), Wu and Li (2009), and Woo (2012)).

Some variations of these models have been proposed as well, which include, for exam-

ple, incorporating level-dependency and random premium processes (see e.g., Landriault

(2008), Drekic and Mera (2011), and Kim and Drekic (2016)). Although we cannot list all

of the discrete-time risk models in the literature here, the above models do provide a good

summary of the types of discrete-time risk models that are generally studied in the field.

2.1.2 Gerber-Shiu function and discounted pmfs

Here, we specify the definitions of the Gerber-Shiu function and the so-called discounted

pmfs. For a discrete-time risk process {(Ut,Rt), t ∈ N} defined on Z × H for some finite

set H and a nonnegative (well-behaved) function w(x, r1, y, r2), the Gerber-Shiu function
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is defined as

φ(u) = E{ντw(Uτ−1,Rτ−1, |Uτ |,Rτ )I[τ <∞]|(U0,R0) = u},

u ∈ N×H, ν ∈ C, |ν| ≤ 1, (2.1.1)

where I[A] is the indicator function of A (i.e., I[A] = 1 if A is true and I[A] = 0 if A is

false). The so-called discounted pmfs can be regarded as special cases of the Gerber-Shiu

function, and they are essentially the generating functions of the joint distributions of the

time of ruin, surplus prior to ruin, and deficit at ruin. Hence, these can be numerically

inverted to obtain transient solutions or with the time variable taking values on (0, 1], to

obtain discounted nontransient solutions on the time of ruin, surplus prior to ruin, and

deficit at ruin.

The discounted joint conditional pmf of {(Uτ−1,Rτ−1), (Uτ ,Rτ )} is defined as

hν(x,y|u) =
∞∑
n=1

νn Pr{τ = n, (Un−1,Rn−1) = x, (Un,Rn) = y|(U0,R0) = u},

u,x ∈ N×H, y ∈ Z− ×H, ν ∈ C, |ν| ≤ 1,

(2.1.2)

the discounted joint conditional pmf of (Uτ−1,Rτ−1) is defined as

hν(x|u) =
∞∑
n=1

νn Pr{τ = n, (Un−1,Rn−1) = x|(U0,R0) = u},

u,x ∈ N×H, ν ∈ C, |ν| ≤ 1, (2.1.3)
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and the discounted joint conditional pmf of (Uτ ,Rτ ) is defined as

hν(y|u) =
∞∑
n=1

νn Pr{τ = n, (Un,Rn) = y|(U0,R0) = u},

u ∈ N×H, y ∈ Z− ×H, ν ∈ C, |ν| ≤ 1. (2.1.4)

Our primary quantity of interest in this work is the functional hν(x,y|u).

2.2 G/M/1-type discrete-time risk model

2.2.1 Model class definition

Here, we introduce a model class named the G/M/1 DTRM class. A discrete-time risk

process {(Ut,Rt), t ∈ N} defined on Z ×H, for some finite set H, belongs to the G/M/1

DTRM class if {(Ut,Rt), t ∈ N} has a dual G/M/1-type chain {(Xt,J t), t ∈ N}. In par-

ticular, for a G/M/1-type Markov chain {(Xt,J t), t ∈ N} to be a dual G/M/1-type chain

of {(Ut,Rt), t ∈ N} in the G/M/1 DTRM context, {(Ut,Rt), t ∈ N} and {(Xt,J t), t ∈ N}

must possess a one-to-one relationship (i.e., there exists a one-to-one mappingW : Z×H →

S = Z × G such that {W(Ut,Rt) = (Xt,J t), t ∈ N} forms a G/M/1-type Markov chain).

Since the two processes have a one-to-one relationship, we can analyze the dual G/M/1-

type chain and subsequently convert the results in terms of {(Ut,Rt), t ∈ N}.

The model class definition of the G/M/1 DTRM class allows us to analyze the risk

models under consideration in the context of G/M/1-type Markov chains. This change in

perspective gives us an opportunity to leverage the matrix analytic methods developed for

G/M/1-type Markov chains in analyzing a fairly large class of risk models. The G/M/1

DTRM class includes all the models discussed in Section 2.1.1 and more. For example, we

describe below the G/M/1 DTRM representation of the compound binomial risk model
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introduced in Section 2.1.1.

As before, let Pr{Yk = 0} = 1− p, 0 < p < 1, and Pr{Yk = y} = pf(y), y ∈ Z+, where

f(y) is a proper pmf on Z+. Let c ∈ Z+ denote the per-period constant premium rate in

the compound binomial risk model setting. Consider the risk process {Ut, t ∈ N} given by

Ut = u+ ct−
t∑

k=1

Yk.

We remark that {Rt, t ∈ N} is an independent constant process and hence we focus on

{Ut, t ∈ N} only. Now, define W(Ut) ≡
(
bUt
c
c, Ut mod c

)
= (Xt, Jt), where bxc denotes

the nearest integer less than or equal to x. Clearly, W is a one-to-one mapping and

W−1(Xt, Jt) = cXt + Jt = Ut. Furthermore, note that Pr{Ut = j|Ut−1 = i} = pf(i + c −

j) + (1− p)I[i+ c− j = 0]. Writing the same equation in terms of Xt and Jt, we have

Pr{(Xt, Jt) =(l,m)|(Xt−1, Jt−1) = (a, b)} =

pf(ca+ b+ c− (cl +m)) + (1− p)I[ca+ b+ c− (cl +m) = 0], (2.2.1)

where ca+b = i and cl+m = j. Note that (2.2.1) gives the one-step transition probabilities

of the bivariate Markov chain {(Xt, Jt), t ∈ N}. In particular, let Aa,l be a c × c matrix

whose (b,m)-th entry is given by (2.2.1). In other words,

(
Aa,l

)
b,m

= Pr{(Xt, Jt) = (l,m)|(Xt−1, Jt−1) = (a, b)}.

Clearly, {(Xt, Jt), t ∈ N} is a G/M/1-type Markov chain with state space S = Z ×

{0, 1, . . . , c − 1}. Hence, {(Xt, Jt), t ∈ N} is a dual G/M/1-type chain of {Ut, t ∈ N} and

the compound binomial risk model belongs to the G/M/1 DTRM class.
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2.2.2 Time of ruin, surplus prior to ruin, and deficit at ruin

Alfa and Drekic (2007) first introduced a DTMC representation for the risk process of

a discrete-time Sparre Andersen risk model. Although they did not identify the G/M/1

structure in their analysis, the core idea in deriving the joint pmf of the time of ruin, sur-

plus prior to ruin, and deficit at ruin is identical to what we present here. Also, we remark

that the G/M/1 DTRM class includes the risk model considered by Alfa and Drekic (2007)

as a special case.

Consider a risk process {(Ut,Rt), t ∈ N} and its dual G/M/1-type chain {(Xt,J t), t ∈

N}. Then, the time of ruin can be defined alternatively as τ = inf{t ∈ Z+ : (Xt,J t) ∈ A}

for some A ⊂ S due to the one-to-one relationship between the risk process and its dual

G/M/1-type chain. Thus, we derive the joint distribution of {τ, (Xτ−1,J τ−1), (Xτ ,J τ )}

instead of {τ, (Uτ−1,Rτ−1), (Uτ ,Rτ )}. Usually, A = Z−×G and we will assume this is the

case unless specified otherwise. We furthermore assume that the level process {Xt, t ∈ N}

of the dual G/M/1-type chain is irreducible.

We proceed to decompose the state space S into A and Ac, where Ac = N× G. Let

PA
c

=

0 1 2 3 · · ·


0 A0,0 A0,1

1 A1,0 A1,1 A1,2

2 A2,0 A2,1 A2,2 A2,3

...
...

...
...

...
. . .
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denote the TPM corresponding to state transitions from Ac to Ac and let

PA =

· · · −3 −2 −1


0 · · · A0,−3 A0,−2 A0,−1

1 · · · A1,−3 A1,−2 A1,−1

2 · · · A2,−3 A2,−2 A2,−1
... . .

. ...
...

...

denote the TPM corresponding to state transitions from Ac to A. Furthermore, let PA
c n

i,z

be a block portion of PA
c n whose (j,x)-th entry is given by

(
PA
c n

i,z

)
j,x

= Pr{(Xn,Jn) = (z,x)|(X0,J0) = (i, j)}, n ∈ N.

Similarly, let PA n
i,l be a block portion of PA n whose (j,m)-th entry is given by

(
PA n
i,l

)
j,m

= Pr{(Xn,Jn) = (l,m)|(X0,J0) = (i, j)}, n ∈ N.

Then, using straightforward DTMC theory, we obtain

Pr
{
τ = n, (Xτ−1,J τ−1) = (z,x), (Xτ ,J τ ) = (l,m)|(X0,J0) = (i, j)

}
=(

PA
c n−1

i,z

)
j,x

(
PA z,l

)
x,m

, n ∈ Z+, (i, j), (z,x) ∈ Ac, (l,m) ∈ A. (2.2.2)

Note that our methodology does not target to compute (2.2.2) directly. Instead, our

methodology sets out computational algorithms for computing the discounted joint pmf

which can be numerically inverted to retrieve (2.2.2). For interested readers, direct com-

putation of (2.2.2) can be carried out in a similar fashion as how the joint conditional pmf

of the time of ruin, surplus prior to ruin, and deficit at ruin in Alfa and Drekic (2007) is
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computed.

2.2.3 Fundamental matrix in risk theory

In this subsection, we show that the discounted joint conditional pmf of {(Uτ−1,Rτ−1), (Uτ ,Rτ )}

can be written in terms of a matrix which we refer to as the discounted fundamental matrix.

Consider the dual G/M/1-type chain {(Xt,J t), t ∈ N} defined on Z×G, as before. Let Hν

denote the discounted fundamental matrix corresponding to the dual G/M/1-type chain

and Hν i,l a block component of Hν whose (j,m)-th entry is given by

(
Hν i,l

)
j,m

=
∞∑
n=0

νnp
(n)
(i,j),(l,m), (i, j), (l,m) ∈ Ac, (2.2.3)

where p
(n)
(i,j),(l,m) = Pr{(Xn,Jn) = (l,m)|(X0,J0) = (i, j)}. Observe that the series in

(2.2.3) converges for ν ∈ C, |ν| ≤ 1, since every state in Ac is transient.

To see how the discounted fundamental matrix appears in the discounted joint condi-

tional pmf of {(Uτ−1,Rτ−1), (Uτ ,Rτ )}, let us write the (defective) discounted joint condi-

tional pmf of {(Xτ−1,J τ−1), (Xτ ,J τ )} as

fν
(
(z,x), (l,m)|(i, j)

)
=
∞∑
n=1

νn
(
PA
c n−1

i,z

)
j,x

(
PA z,l

)
x,m

=ν
(
Hν i,z

)
j,x

(
PA z,l

)
x,m

, (i, j), (z,x) ∈ Ac, (l,m) ∈ A, ν ∈ C, |ν| ≤ 1.

(2.2.4)

Using the duality between the risk process and its dual G/M/1-type chain, we can write

hν(x,y|u) = fν
(
W(x),W(y)|W(u)

)
, u,x ∈ N×H, y ∈ Z− ×H. (2.2.5)
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Summing over all x ∈ N×H and y ∈ Z− ×H in (2.2.5), we can also obtain hν(x|u) and

hν(y|u), respectively.

2.2.4 Computational procedure for discounted fundamental ma-

trix

We next outline two computational procedures for calculating the discounted fundamental

matrix Hν .

Method I: Let τ−i = inf{t ∈ Z+ : Xt < i}. Then, we can write

(
Hν i,l

)
j,m

=
∞∑
n=0

νnp
(n)
(i,j),(l,m)

=
∞∑
n=0

νn Pr
{

(Xn,Jn) = (l,m)|(X0,J0) = (i, j)
}

=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
n=0

νn Pr
{
τ−i+1 ≤ n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
n=0

n∑
k=1

νn Pr
{
τ−i+1 = k, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
n=0

n∑
k=1

i∑
z=0

∑
x∈G

νn Pr
{
τ−i+1 = k, (Xn,Jn) = (l,m), (Xk,Jk) = (z,x)|(X0, J0) = (i, j)

}
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=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
k=1

∞∑
n=k

i∑
z=0

∑
x∈G

νn Pr
{
τ−i+1 = k, (Xn,Jn) = (l,m), (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
k=1

∞∑
n=k

i∑
z=0

∑
x∈G

νn

· Pr
{
τ−i+1 = k, (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
Pr
{

(Xn,Jn) = (l,m)|(Xk,Jk) = (z,x)
}

=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
k=1

∞∑
n=k

i∑
z=0

∑
x∈G

νn

· Pr
{
τ−i+1 = k, (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
Pr
{

(Xn−k,Jn−k) = (l,m)|(X0,J0) = (z,x)
}

=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
k=1

i∑
z=0

∑
x∈G

νk Pr
{
τ−i+1 = k, (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
·
∞∑
n=k

νn−k Pr
{

(Xn−k,Jn−k) = (l,m)|(X0,J0) = (z,x)
}

=
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
+
∞∑
k=1

i∑
z=0

∑
x∈G

νk Pr
{
τ−i+1 = k, (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
·
∞∑
n=0

νn Pr
{

(Xn,Jn) = (l,m)|(X0,J0) = (z,x)
}
, (2.2.6)
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where the seventh and eighth equalities follow from the Markov and stationarity properties,

respectively. Now, let

r
ν (l,m)

(i,j) =
∞∑
n=0

νn Pr
{
τ−i+1 > n, (Xn,Jn) = (l,m)|(X0,J0) = (i, j)

}
(2.2.7)

and

q
ν (z,x)

(i,j) =
∞∑
k=1

νk Pr
{
τ−i+1 = k, (Xk,Jk) = (z,x)|(X0,J0) = (i, j)

}
. (2.2.8)

Then, from (2.2.6), we ultimately have

(
Hν i,l

)
j,m

=

 r
ν (l,m)

(i,j) +
∑i

z=0

∑
x∈G q

ν (z,x)
(i,j)

(
Hν z,l

)
x,m

, if l ≥ i,∑i
z=0

∑
x∈G q

ν (z,x)
(i,j)

(
Hν z,l

)
x,m

, if l < i.

(2.2.9)

The computational procedure for calculating r
ν (l,m)

(i,j) essentially follows that of Ra-

maswami (1982), where similar quantities to r
ν (l,m)

(i,j) were discussed in relation to a queueing

system. Although the computational procedure for our problem and the proofs are very

much similar to those of Ramaswami (1982), the quantities discussed in Ramaswami (1982)

are not exactly the same as r
ν (l,m)

(i,j) . Therefore, we provide for the sake of completeness the

procedure for computing r
ν (l,m)

(i,j) and the proofs here.

Let

g
(k)
(i,j),(l,m) = Pr

{
τ−i+1 > k, (Xk,Jk) = (l,m)|(X0,J0) = (i, j)

}
, k ∈ N. (2.2.10)
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Then, we can write

g
(k)
(i,j),(i+1,m)

=



0, if k = 0,(
Ai,i+1

)
j,m

, if k = 1,∑∞
z=i+1

∑
x∈G Pr

{
τ−i+1 > k − 1, (Xk−1,Jk−1) = (z,x)|(X0,J0) = (i, j)

}
·Pr

{
τ−i+1 > 1, (X1,J1) = (i+ 1,m)|(X0,J0) = (z,x)

}
, if k > 1,

=


0, if k = 0,(
Ai,i+1

)
j,m

, if k = 1,∑∞
z=i+1

∑
x∈G g

(k−1)
(i,j),(z,x)

(
Az,i+1

)
x,m

, if k > 1.

(2.2.11)

Noting that r
ν (i+1,m)

(i,j) =
∑∞

k=0 ν
kg

(k)
(i,j),(i+1,m), multiplying (2.2.11) by νk, and summing over

k gives

r
ν (i+1,m)

(i,j) = ν
(
Ai,i+1

)
j,m

+
∞∑

z=i+1

∑
x∈G

∞∑
k=2

νkg
(k−1)
(i,j),(z,x)

(
Az,i+1

)
x,m

= ν
(
Ai,i+1

)
j,m

+
∞∑

z=i+1

∑
x∈G

r
ν (z,x)

(i,j) ν
(
Az,i+1

)
x,m

. (2.2.12)

Let Rν i,l be a matrix whose (j,m)-th entry is given by r
ν (l,m)

(i,j) . Then, (2.2.12) reduces to

Rν i,i+1 =
∞∑
z=i

Rν i,zνAz,i+1, (2.2.13)

where Rν i,i = I for all i ∈ N from the definition of r
ν (l,m)

(i,j) . Herein, we will refer to

{ Rν i,l}∞i=0,l≥i as the set of discounted rate matrices. Now, by conditioning on the last time

the chain visits level i + 1 without having fallen below level i + 1 and the phase at that
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instance, we can also write

g
(k)
(i,j),(i+n,m)

=
k∑
l=0

∑
x∈G

Pr
{
τ−i+1 > l, (Xl,J l) = (i+ 1,x)|(X0,J0) = (i, j)

}
· Pr

{
τ−i+2 > k − l, (Xk−l,Jk−l) = (i+ n,m)|(X0,J0) = (i+ 1,x)

}
=

k∑
l=0

∑
x∈G

g
(l)
(i,j),(i+1,x)g

(k−l)
(i+1,x),(i+n,m), n ≥ 2. (2.2.14)

Once again, multiplying (2.2.14) by νk and summing over k yields

r
ν (i+n,m)

(i,j) =
∞∑
k=0

νkg
(k)
(i,j),(i+n,m)

=
∞∑
k=0

k∑
l=0

∑
x∈G

νkg
(l)
(i,j),(i+1,x)g

(k−l)
(i+1,x),(i+n,m)

=
∑
x∈G

∞∑
l=0

∞∑
k=l

νkg
(l)
(i,j),(i+1,x)g

(k−l)
(i+1,x),(i+n,m)

=
∑
x∈G

∞∑
l=0

νlg
(l)
(i,j),(i+1,x)

∞∑
k=l

νk−lg
(k−l)
(i+1,x),(i+n,m)

=
∑
x∈G

r
ν (i+1,x)

(i,j) r
ν (i+n,m)

(i+1,x) , n ≥ 2. (2.2.15)

Writing (2.2.15) in matrix form, we obtain

Rν i,i+n = Rν i,i+1 R
ν

i+1,i+n, n ∈ Z+. (2.2.16)

Recursively expanding (2.2.16) immediately leads to

Rν i,i+n =
i+n−1∏
k=i

Rν k,k+1, n ∈ Z+. (2.2.17)
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Depending on the specific structure of the dual G/M/1-type chain, one may be able to

solve for the set of discounted rate matrices { Rν i,l}∞i=0,l≥i from (2.2.13) and (2.2.17). How-

ever, in the general case given here, (2.2.13) and (2.2.17) are not enough to solve for the

set of discounted rate matrices. Hence, we defer the discussion to the subsequent sections

which discuss specific risk models in which (2.2.13) and (2.2.17) give a way of solving for

the set of discounted rate matrices. In the remaining part of this subsection, we assume

that the set of discounted rate matrices have been computed and proceed to compute q
ν (z,x)

(i,j) .

Let

q
(k)
(i,j),(a,b) = Pr

{
τ−i+1 = k, (Xk,Jk) = (a, b)|(X0,J0) = (i, j)

}
, a ≤ i, b ∈ G.

Then,

q
(k)
(i,j),(z,x)

=



0, if k = 0(
Ai,z
)
j,x
, if k = 1∑∞

a=i+1

∑
b∈G Pr

{
τ−i+1 > k − 1, (Xk−1,Jk−1) = (a, b)|(X0,J0) = (i, j)

}
×Pr

{
τ−i+1 = 1, (X1,J1) = (z,x)|(X0,J0) = (a, b)

}
, if k > 1,

=


0, if k = 0(
Ai,z

)
j,x
, if k = 1∑∞

a=i+1

∑
b∈G g

(k−1)
(i,j),(a,b)

(
Aa,z

)
b,x
, if k > 1.

(2.2.18)
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Multiplying (2.2.18) by νk and summing over k yields

q
ν (z,x)

(i,j) =
∞∑
k=0

νkq
(k)
(i,j),(z,x)

= ν
(
Ai,z

)
j,x

+
∞∑
k=1

∞∑
a=i+1

∑
b∈G

νkg
(k−1)
(i,j),(a,b)

(
Aa,z

)
b,x

= ν
(
Ai,z

)
j,x

+
∞∑

a=i+1

∑
b∈G

∞∑
k=1

νk−1g
(k−1)
(i,j),(a,b)ν

(
Aa,z

)
b,x

=
∞∑
a=i

∑
b∈G

r
ν (a,b)

(i,j) ν
(
Aa,z

)
b,x
. (2.2.19)

Let Qν i,z be a matrix whose (j,x)-th entry is given by q
ν (z,x)

(i,j) , and let us refer to { Qν i,z}∞i=0,z≤i

as the set of discounted ladder height distribution matrices. Then, writing (2.2.19) in matrix

form yields

Qν i,z =
∞∑
a=i

Rν i,aνAa,z. (2.2.20)

Returning to the fundamental matrix Hν , from (2.2.9), we obtain

Hν i,l =

 Rν i,l +
∑i

z=0 Q
ν

i,z H
ν

z,l, if l ≥ i,∑i
z=0 Q

ν
i,z H
ν

z,l, if l < i.

(2.2.21)

Solving for Hν i,l in (2.2.21), we have

Hν i,l =


(
I − Qν i,i

)−1(
Rν i,l +

∑i−1
z=0 Q

ν
i,z H
ν

z,l

)
, if l ≥ i,(

I − Qν i,i

)−1(∑i−1
z=0 Q

ν
i,z H
ν

z,l

)
, if l < i.

(2.2.22)

Thus, by way of probabilistic reasoning, (2.2.22) affords us with a way to compute the
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discounted fundamental matrix.

Method II: To begin, we shall define a quantity which in the queueing theoretic liter-

ature is referred to as the G matrix (see e.g., He (2014)). Before we formally apply the

concept of the G matrix to our problem, we should first tailor the definition of the G

matrix to suit our problem.

Let τi = inf{t ∈ Z+ : Xt = i},

w
(k)
(i,j),(l,m) = Pr

{
τ > k, τl = k, (Xk,Jk) = (l,m)|(X0,J0) = (i, j)

}
, i, l ≥ 0, k ∈ Z+,

(2.2.23)

and

w
ν (l,m)

(i,j) =
∞∑
k=1

νkw
(k)
(i,j),(l,m), i, l ≥ 0, ν ∈ C, |ν| ≤ 1. (2.2.24)

Let Gν i,l be a matrix whose (j,m)-th entry is given by w
ν (l,m)

(i,j) . We refer to { Gν i,l}i,l≥0
as the set of discounted fundamental period matrices, and next, show how the discounted

fundamental period matrices can be used to solve for the discounted fundamental matrices.

We first make the following observation. Since the dual G/M/1-type chain can move

up at most by one level, conditioning on τi+1 and the phase at τi+1, we obtain

w
(k)
(i,j),(i+n,m) =

k∑
z=1

∑
x∈G

w
(z)
(i,j),(i+1,x)w

(k−z)
(i+1,x),(i+n,m), n ∈ Z+. (2.2.25)
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Multiplying (2.2.25) by νk and summing over k leads to

w
ν (i+n,m)

(i,j) =
∑
x∈G

w
ν (i+1,x)

(i,j) w
ν (i+n,m)

(i+1,x) , n ∈ Z+,

which, in matrix form, becomes

Gν i,i+n = Gν i,i+1 G
ν

i+1,i+n, n ∈ Z+. (2.2.26)

Proceeding inductively, we can ultimately conclude that

Gν i,i+n =
i+n−1∏
k=i

Gν k,k+1, n ∈ Z+. (2.2.27)

To solve for Gν i,i+n, n ∈ Z+, we condition on the one-step transition of the dual

G/M/1-type chain. In particular, we have

w
(k)
(i,j),(i+1,m) =


0, k = 0,(
Ai,i+1

)
j,m

, k = 1,∑i
z=0

∑
x∈G

(
Ai,z)j,xw

(k−1)
(z,x),(i+1,m), k ≥ 2.

(2.2.28)

Again, by multiplying (2.2.28) by νk and summing over k, we have

w
ν (i+1,m)

(i,j) = ν
(
Ai,i+1

)
j,m

+ ν
i∑

z=0

∑
x∈G

(
Ai,z)j,x w

ν (i+1,m)
(z,x) .
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In matrix form, this gives rise to

Gν i,i+1 = νAi,i+1 +
i∑

z=0

νAi,z G
ν

z,i+1

= νAi,i+1 +
i∑

z=0

νAi,z

i∏
k=z

Gν k,k+1, (2.2.29)

where the second equality follows from (2.2.27). Solving for Gν i,i+1 from (2.2.29) yields

Gν i,i+1 =

(
I −

i−1∑
z=0

νAi,z

i−1∏
k=z

Gν z,z+1

)−1
νAi,i+1. (2.2.30)

Hence, by initially solving for Gν 0,1, one can recursively obtain Gν i,i+1, i ∈ Z+, using

(2.2.30).

For 0 ≤ l ≤ i, by conditioning on τ−i+1 and the phase of the chain at τ−i+1, we obtain

w
(k)
(i,j),(l,m) =


0, k = 0,∑k−1

n=1

∑i
z=0
z 6=l

∑
x∈G q

(n)
(i,j),(z,x)w

(k−n)
(z,x),(l,m) + q

(k)
(i,j),(l,m), k > 0.

(2.2.31)

Multiplying (2.2.31) by νk and summing over k leads to

w
ν (l,m)

(i,j) =
i∑

z=0
z 6=l

∑
x∈G

q
ν (z,x)

(i,j) w
ν (l,m)

(z,x) + q
ν (l,m)

(i,j) ,

which in matrix form, reduces to

Gν i,l =
i∑

z=0
z 6=l

Qν i,z G
ν

z,l + Qν i,l. (2.2.32)
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Solving for Gν i,l from (2.2.32) and combining it with (2.2.27), we ultimately have

Gν i,l =



∑i−1
z=0 Q

ν
i,z G
ν

z,l + Qν i,i, if i = l,(
I − Qν i,i

)−1(∑i−1
z=0
z 6=l

Qν i,z G
ν

z,l + Qν i,l

)
, if l < i,∏l−1

k=i G
ν

k,k+1, if l > i.

(2.2.33)

Thus, we can compute { Gν i,l}i,l≥0 recursively via (2.2.33).

Returning to the discounted fundamental matrix, by conditioning on τl and the phase

of the chain at τl, we can write

Hν i,l =

I + Gν l,l H
ν

l,l, if l = i,

Gν i,l H
ν

l,l, if l 6= i.

(2.2.34)

Solving for Hν i,l in the first line of (2.2.34), we ultimately have

Hν i,l =


(
I − Gν l,l

)−1
, if l = i,

Gν i,l

(
I − Gν l,l

)−1
, if l 6= i.

(2.2.35)

Remark 2.2.1: Typically, Method I will be a more preferable choice to Method II for

computing the discounted fundamental matrix, since the computation of the discounted

fundamental period matrices is generally more computationally intense. However, note

that Method II provides a rather straightforward way to compute the discounted funda-

mental period matrices with (2.2.35) once the discounted fundamental matrix is already

available.
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Remark 2.2.2: The discounted fundamental period matrices can be used to study var-

ious hitting times of the risk process prior to ruin, and hence, are useful quantities in

analyzing the risk process.

Remark 2.2.3: Although we laid out the computational procedures for the discounted

fundamental matrices for general G/M/1 DTRMs above, the actual implementation of

these computational procedures will vary depending on the specific models that are con-

sidered.

2.3 MAP risk model

A MAP risk model is comprised of a discrete-time MAP {(Nt, Jt), t ∈ N} with m phases,

TPMs (P 0,P 1), and the conditionally i.i.d. claim amount per period sequence {Yt, t ∈ Z+}

(conditional on the phase process {Jt, t ∈ N} of the MAP). In particular, let fi,j(y), y ∈ Z+,

denote the pmf of Y (i,j) = Yt|(It = 1, Jt = j, Jt−1 = i) ∀ t ∈ Z+, where {It, t ∈ Z+} is a

sequence of Bernoulli random variables which are equal to 1 when there is an arrival at

time t in the underlying MAP. (Note that Yt|(It = 0, Jt = j, Jt−1 = i) is equal to 0 w.p.

1 ∀ i, j and t ∈ Z.) Furthermore, we assume that premiums are received at a constant

(deterministic) rate c ∈ Z+ per unit time. Then, for u ∈ N, we can express the surplus

process as

Ut = u+ ct−
t∑

k=1

Yk, t ∈ N .

We now show that {(Ut, Jt), t ∈ N} belongs to the G/M/1 DTRM class.

LetXt = bUt
c
c and Vt = Ut mod c. LettingXt be the level of the process, {(Xt, Vt, Jt), t ∈

N} is clearly a dual G/M/1-type chain on the state space S = Z × {0, 1, 2, . . . , c − 1} ×
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{0, 1, 2, . . . ,m− 1} with (one-step) transition probabilities given by

(
Ai,l

)
(j,v),(a,b)

= Pr{(X1, V1, J1) = (l, a, b)|(X0, V0, J0) = (i, j, v)}

= Pr{(U1, J1) = (cl + a, b)|(U0, J0) = (ci+ j, v)}

= Pr{(Y1, J1) = (ci+ j + c− (cl + a), b)|J0 = v}

= p0;v,bI[ci+ j + c− (cl + a) = 0]

+ p1;v,bfv,b(ci+ j + c− (cl + a)). (2.3.1)

Furthermore, observing the structure of these transition probabilities, we notice that

Ai,l is not dependent on specific values of i and l, but rather on the difference i−l. We refer

to such a model as the level-independent G/M/1 DTRM. Thus, w.l.o.g., we will henceforth

write Ai−l+1 for Ai,l.

2.3.1 Time of ruin, surplus prior to ruin, and deficit at ruin

Due to the definition of (Xt, Vt, Jt), the time of ruin can be written as τ = inf{t ∈ Z+ :

Xt < 0}. Therefore, the absorbing class is A = Z−×{0, 1, 2, . . . , c−1}×{0, 1, 2, . . . ,m−1}.

Let

PA
c

=

0 1 2 3 · · ·


0 A1 A0 · · · · · · · · ·

1 A2 A1 A0 · · · · · ·

2 A3 A2 A1 A0 · · ·
...

...
. . .

. . .
. . .

. . .
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denote the TPM of the open class of {(Xt, Vt, Jt), t ∈ N}, and let

PA =

· · · −3 −2 −1


0 · · · A4 A3 A2

1 · · · A5 A4 A3

2 · · · A6 A5 A4

... . .
. ...

...
...

denote the TPM corresponding to state transitions from Ac to A. Then, from the G/M/1

DTRM theory, the conditional joint pmf of the time of ruin, surplus prior to ruin, and

deficit at ruin is given by

Pr{τ = t, (Uτ−1, Jτ−1) = (a, v), (Uτ , Jτ ) = (l, b)|(U0, J0) = (u, j)} =

Pr
{
τ = t, (Xτ−1, Vτ−1, Jτ−1) =

(
ba
c
c, a mod c, v

)
,

(Xτ , Vτ , Jτ ) =
(
b l
c
c, l mod c, b

)∣∣(X0, V0, J0) =
(
bu
c
c, u mod c, j

)}
=(

PA
c t−1
bu
c
c,ba

c
c
)
(u mod c,j),(a mod c,v)

(
PA ba

c
c,b l

c
c

)
(a mod c,v),(l mod c,b)

. (2.3.2)

Again, note that our methodology does not target to compute (2.3.2) directly. Instead,

our methodology sets out computational algorithms for computing the discounted joint

pmf which can be numerically inverted to retrieve (2.3.2).
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2.3.2 Fundamental matrix via Method I: General claim size dis-

tribution

We first describe the procedure for computing the discounted rate matrices. Due to the

level independence of the dual G/M/1-type chain of the MAP risk model, the discounted

rate matrices do not have level dependency either. In other words, Rν i,l can be written

as Rν i−l, i ≤ l. Moreover, by (2.2.13) and (2.2.17), we can conclude that Rν i−l = Rν i−l,

where the matrix Rν is the coefficient-matrix-wise minimal nonnegative solution to

X =
∞∑
n=0

XnνAn. (2.3.3)

We omit the proof as it is very similar to the proof shown in Neuts (1981). Of many

existing algorithms for finding Rν , a method for which convergence is guaranteed comes

by setting Rν (0) = 0, and recursively computing Rν (k + 1) via the following iteration:

Rν (k + 1) =
∞∑
n=0

Rν (k)nνAn, k ∈ N. (2.3.4)

Note that ‖ Rν (k)nνAn‖max ≤ ‖ R1 nAn‖max for all k, n ∈ N, ν ∈ C, |ν| ≤ 1, where

‖A‖max = maxi,j|ai,j| denotes the max norm of a matrix A = (ai,j). Hence, the series on

the right hand side of (2.3.4) converges for all k ∈ N. In practice, one needs to truncate

the summation by truncating {Ai, i ∈ N} to {Ai, i ∈ {0, 1, . . . , N}} whereAN =
∑∞

k=N Ai.

Once we have computed Rν , the discounted ladder height distribution matrices can be

computed via (2.2.20), namely

Qν i,z =
∞∑
a=i

Rν a−iνAa−z+1. (2.3.5)

Similar to the case of the discounted rate matrices, the discounted ladder height distribution

matrices are also level-independent in the sense that we can write Qν i−z instead of Qν i,z.
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To see this from (2.3.5), we write

Qν i,z =
∞∑
a=i

Rν a−iνAa−z+1 =
∞∑
a=0

Rν aνAi−z+a+1. (2.3.6)

Clearly, Qν i,z does not depend on the specific pair of values of i and z, but rather on the

difference i− z. Hence, from (2.3.6), we can recursively compute { Qν z}∞z=0 as

Rν Qν z =
∞∑
a=0

Rν a+1νAz+a+1 =
∞∑
a=0

Rν aνAz+a − νAz = Qν z−1 − νAz,

which implies that

Qν z−1 = Rν Qν z + νAz. (2.3.7)

If one truncates {Ai, i ∈ N} to {Ai, i ∈ {0, 1, . . . , N}} as in (2.3.4), then one can set

Qν N−1 = νAN and perform the recursion given by (2.3.7).

We can also compute { Hν i,l}i,l≥0 quite efficiently with a different recursion than (2.2.22).

We first rewrite (2.2.22) with the level independence incorporated in as

Hν i,l =


(
I − Qν 0

)−1(
Rν l−i +

∑i−1
z=0 Q

ν
i−z H

ν
z,l

)
, if l ≥ i,(

I − Qν 0

)−1(∑i−1
z=0 Q

ν
i−z H

ν
z,l

)
, if l < i.

(2.3.8)

By observing (2.3.8) carefully, we find that the following relation holds:

Hν i,l = Hν i,i R
ν l−i, l ≥ i . (2.3.9)

We can prove (2.3.9) using mathematical induction. From (2.3.8), we clearly have

Hν 0,l =
(
I − Qν 0

)−1
Rν l = Hν 0,0 R

ν l, l ≥ 0,
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and (2.3.9) holds true for i = 0 and l ≥ 0. Next, assume that (2.3.9) holds true for levels

k = 0, 1, 2, . . . , i and for all l ≥ k. Then, for some n ≥ 0, we have

Hν i+1,i+1+n =

(
I − Qν 0

)−1(
Rν n +

i+1−1∑
z=0

Qν i+1−z H
ν

z,i+1+n

)

=

(
I − Qν 0

)−1(
Rν n +

i+1−1∑
z=0

Qν i+1−z H
ν

z,z R
ν i+1+n−z

)

=

(
I − Qν 0

)−1(
I +

i+1−1∑
z=0

Qi+1−z H
ν

z,z R
ν i+1−z

)
Rν n

=

(
I − Qν 0

)−1(
I +

i+1−1∑
z=0

Qν i+1−zHz,i+1

)
Rν n

= Hν i+1,i+1 R
ν n.

Thus, we have proven that (2.3.7) holds true for all i ≥ 0.

With (2.3.9), we can derive another recursive formula for Hν i,l, l ≤ i, which is given

by

Hν i,l = Hν i−l,0 + Hν i,l−1 R
ν . (2.3.10)

To prove (2.3.10), we first have from (2.3.8) and (2.3.9)

Hν i,i =

(
I − Qν 0

)−1(
I +

i−1∑
z=0

Qν i−z H
ν

z,i

)

=

(
I − Qν 0

)−1
+

(
I − Qν 0

)−1( i−1∑
z=0

Qν i−z H
ν

z,i−1

)
Rν

= Hν 0,0 + Hν i,i−1 R
ν , i ≥ 0. (2.3.11)

Now, suppose that for fixed l, (2.3.10) holds true for levels k = l, l+ 1, . . . , i− 1. Then, we
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have

Hν i,l =

(
I − Qν 0

)−1( i−1∑
z=0

Qν i−z H
ν

z,l

)

=

(
I − Qν 0

)−1( i−1∑
z=l

Qν i−z

(
Hν z−l,0 + Hν z,l−1 R

ν
))

+

(
I − Qν 0

)−1( l−1∑
z=0

Qν i−z H
ν

z,l−1 R
ν

)

=

(
I − Qν 0

)−1( i−1∑
z=l

Qν i−z H
ν

z−l,0

)
+

(
I − Qν 0

)−1( i−1∑
z=0

Qν i−z H
ν

z,l−1

)
Rν

=

(
I − Qν 0

)−1( i−l−1∑
z=0

Qν i−l−z H
ν

z,0

)
+

(
I − Qν 0

)−1( i−1∑
z=0

Qν i−z H
ν

z,l−1

)
Rν

= Hν i−l,0 + Hν i,l−1 R
ν , (2.3.12)

where the first equality follows from (2.3.8), and the second equality from the induction

hypothesis and (2.3.9). Therefore, with (2.3.11) and (2.3.12), we have proven that (2.3.10)

holds true for all i ≥ 0.

In most cases, we are interested in computing Hν i,l, ∀ l ≥ 0, for a given value of i ≥ 0.

To do this in a computationally more efficient way than (2.3.8), one can compute Rν ,

{ Qν z}∞z=0, and { Hν l,0}∞l=0 (with truncation), and subsequently apply (2.3.9) and (2.3.10).

This results in a greatly improved computational procedure compared to directly applying

(2.3.8) for all values of l ≥ 0.

2.3.3 Fundamental matrix via Method I: Matrix-geometric claim

size distribution

Assume that Y (i,j)|(It = 1, Jt = j, Jt−1 = i) is independent of j and let Y (i)|(It = 1, Jt−1 =

i) denote the claim size random variable at time t which follow a matrix-geometric distri-

bution. In particular, fi(y) = αiΓ
y−1
i γᵀ

i , i ∈ {0, 1, 2, . . . ,m− 1}, where αi is a 1×mi row

vector, Γi is a mi ×mi square matrix, γi is a 1×mi row vector, xᵀ denotes the transpose
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operator, and mi ∈ Z+. We remark that αiΓ
y−1
i γᵀ

i is a valid and proper pmf for y ∈ Z+.

We still leave the premium rate as general, i.e., c ∈ Z+.

Then, we have

A0 =

0 1 2 · · · c− 1



0 P 0 0 0 · · · 0

1 diag(1)P 1 P 0 0 · · · 0

2 diag(2)P 1 diag(1)P 1 P 0 · · · 0
...

...
. . .

. . .
. . .

...

c− 1 diag(c− 1)P 1 diag(c− 2)P 1 diag(c− 3)P 1 · · · P 0

,

where diag(k) denotes an m × m diagonal matrix whose (i, i)-th element is given by

αiΓ
k−1
i γᵀ

i , i ∈ {0, 1, 2, . . . ,m− 1}. Similarly,

An =

0 1 2 · · · c− 1



0 diag(cn)P 1 diag(cn− 1)P 1 diag(cn− 2)P 1 · · · diag(cn + 1− c)P 1

1 diag(cn + 1)P 1 diag(cn)P 1 diag(cn− 1)P 1 · · · diag(cn + 2− c)P 1

2 diag(cn + 2)P 1 diag(cn + 1)P 1 diag(cn)P 1 · · · diag(cn + 3− c)P 1

...
...

. . .
. . .

. . .
...

c− 1 diag(cn + c− 1)P 1 diag(cn + c− 2)P 1 diag(cn + c− 3)P 1 · · · diag(cn)P 1

, n ∈ Z+.

It is possible to rewrite An in such a way that the infinite series in (2.3.3) can be avoided.

To this end, we introduce a number of matrices. Let

A =

0 1 2 · · · m− 1



0 α1 0 0 · · · 0

1 0 α2 0 · · · 0

2 0 0 α3 · · · 0
...

...
. . .

. . .
. . .

...

m− 1 0 0 0 · · · αm−1
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and

Ξ =

0 1 2 · · · c− 1



0 ξcP 1 ξc−1P 1 ξc−2P 1 · · · ξ1P 1

1 ξc+1P 1 ξcP 1 ξc−1P 1 · · · ξ2P 1

2 ξc+2P 1 ξc+1P 1 ξcP 1 · · · ξ3P1

...
...

. . .
. . .

. . .
...

c− 1 ξ2c−1P 1 ξ2c−2P 1 ξ2c−3P 1 · · · ξcP 1

,

where

ξk =

0 1 2 · · · m− 1



0 Γk−1
1 γᵀ

1 0 0 · · · 0

1 0 Γk−1
2 γᵀ

2 0 · · · 0

2 0 0 Γk−1
3 γᵀ

3 · · · 0
...

...
. . .

. . .
. . .

...

m− 1 0 0 0 · · · Γk−1
m−1γ

ᵀ
m−1

, k ∈ Z+.

Finally, let

diag(Γ) =

0 1 2 · · · m− 1



0 Γ1 0 0 · · · 0

1 0 Γ2 0 · · · 0

2 0 0 Γ3 · · · 0
...

...
. . .

. . .
. . .

...

m− 1 0 0 0 · · · Γm−1

.

Note that the size of A is m×m∗, ξk is m∗ ×m, Ξ is cm∗ × cm, and diag(Γ) is m∗ ×m∗,

where m∗ =
∑m−1

i=0 mi. Letting Ik denote the identity matrix of size k, we can rewrite An
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as

An = (Ic ⊗A)(Ic ⊗ diag(Γ)c(n−1))Ξ, n ∈ Z+, (2.3.13)

where ⊗ denotes the well-known matrix Kronecker product operator (see e.g., Bernstein

(2005)).

Revisiting (2.3.3), we can rewrite the matrix equation as

vec(X) = vec(A0)ν +
∞∑
n=1

vec(XnAn)ν, (2.3.14)

where vec(X) denotes the vectorization operator (see e.g., Bernstein (2005)). Applying

(2.3.13) to (2.3.14) ultimately yields, following some matrix algebra:

vec(X)

= vec(A0)ν +
∞∑
n=1

vec(Xn(Ic ⊗A)(Ic ⊗ diag(Γ)c(n−1))Ξ)ν

= vec(A0)ν +
∞∑
n=1

((
(Ic ⊗ diag(Γ))c(n−1)Ξ

)ᵀ ⊗Xn−1
)
vec
(
X(Ic ⊗A)

)
ν

= vec(A0)ν +
∞∑
n=1

((
Ξᵀ(Ic ⊗ diag(Γᵀ))c(n−1)

)
⊗Xn−1

)
vec
(
X(Ic ⊗A)

)
ν

= vec(A0)ν +
∞∑
n=1

(
Ξᵀ ⊗ Icm

)(
(Ic ⊗ diag(Γᵀ))c(n−1) ⊗Xn−1)vec(X(Ic ⊗A)

)
ν

= vec(A0)ν +
(
Ξᵀ ⊗ Icm

) ∞∑
n=1

(
(Ic ⊗ diag(Γᵀ))c ⊗X

)n−1
vec
(
X(Ic ⊗A)

)
ν, (2.3.15)

where the second equality follows from a property of the vectorization operator, the third

from the transposition property of matrix products and Kronecker products, and the fourth

and fifth from the mixed-product property of Kronecker products (see e.g., Bernstein

(2005)). Therefore, as in (2.3.4), the iterative scheme to solve for the discounted rate
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matrix follows as

vec( Rν (k + 1))

= vec(A0)ν +
(
Ξᵀ ⊗ Icm

) ∞∑
n=1

(
(Ic ⊗ diag(Γᵀ))c ⊗ Rν (k)

)n−1
vec
(
Rν (k)(Ic ⊗A)

)
ν

= vec(A0)ν +
(
Ξᵀ ⊗ Icm

)(
Ic2mm∗ − (Ic ⊗ diag(Γᵀ))c ⊗ Rν (k)

)−1
vec
(
Rν (k)(Ic ⊗A)

)
ν,

(2.3.16)

where we set Rν (0) = 0. Once again, noting that ‖ Rν n(k)‖max ≤ ‖ R1 n‖max for all n, k ∈ N,

the infinite series on the first line of (2.3.16) converges for all k ∈ N, and hence, the inverse

matrix on the second line of (2.3.16) is valid.

Now, recalling (2.3.6) and proceeding similarly as in (2.3.15), we obtain

vec( Qν n)

= ν
∞∑
a=0

vec
(
Rν aAn+1+a

)
= ν

∞∑
a=0

vec
(
Rν a(Ic ⊗A)(Ic ⊗ diag(Γ)c(n+a))Ξ

)
= ν

∞∑
a=0

vec
(
Rν a(Ic ⊗A)(Ic ⊗ diag(Γ)cn)(Ic ⊗ diag(Γ)ca)Ξ

)
= ν

∞∑
a=0

((
(Ic ⊗ diag(Γ))caΞ

)ᵀ ⊗ Rν a
)
vec
(
(Ic ⊗A)(Ic ⊗ diag(Γ)cn)

)
= ν

∞∑
a=0

((
Ξᵀ(Ic ⊗ diag(Γᵀ))ca

)
⊗ Rν a

)
vec
(
(Ic ⊗A)(Ic ⊗ diag(Γ)cn)

)
= ν

(
Ξᵀ ⊗ Icm

) ∞∑
a=0

(
(Ic ⊗ diag(Γᵀ))c ⊗ Rν

)a
vec
(
(Ic ⊗A)(Ic ⊗ diag(Γ)cn)

)
= ν

(
Ξᵀ ⊗ Icm

)(
Ic2mm∗ − (Ic ⊗ diag(Γᵀ))c ⊗ Rν

)−1
vec
(
(Ic ⊗A)(Ic ⊗ diag(Γ)cn)

)
, n ∈ N.

(2.3.17)

Hence, one has explicit expressions for { Qν n}n∈N. Finally, for computing the discounted

58



fundamental matrices, one can follow the same procedure as outlined in Subection 2.3.2.

Remark 2.3.1: An explicit expression for the discounted fundamental matrix in terms

of { Qν n}n∈N and Rν is also available by recursively solving (2.3.8). However, this explicit

solution is not computationally more advantageous, but rather, it adds complexity to the

implementation of the computational procedure. Further simplification of the explicit ex-

pression for the discounted fundamental matrix is perhaps possible, but we have not found

one yet.

2.4 MAP risk model with dividend barrier

The so-called dividend problem in insurance risk theory was first introduced by de Finetti

(1957), where de Finetti introduced a barrier-based dividend payment strategy. In this

section, we study the MAP risk model with the same barrier strategy introduced by de

Finetti, and show that the MAP risk model with the constant dividend barrier belongs to

the G/M/1 DTRM class.

A MAP risk model with a constant dividend barrier b ∈ N is comprised of a discrete-time

MAP {(Nt, Jt), t ∈ N} with m phases, TPMs (P 0,P 1), and the conditionally i.i.d. claim

amount per period sequence {Yt, t ∈ Z+} (conditional on the phase process {Jt, t ∈ N} of

the MAP). In particular, let fi,j(y), y ∈ Z+, denote the pmf of Y (i,j) = Yt|(It = 1, Jt =

j, Jt−1 = i) ∀ t ∈ Z+, where {It, t ∈ Z+} is a sequence of Bernoulli random variables which

are equal to 1 when there is an arrival at time t in the underlying MAP. Furthermore,

we assume that premiums are received at a constant (deterministic) rate c ∈ Z+ per unit
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time. Then, for u ∈ {0, 1, 2, . . . , b}, we can recursively define the surplus process as

U
(b)
t = min

(
U

(b)
t−1 + c− Yt, b

)
, t ∈ Z+,

where U
(b)
0 = u.

Let X
(b)
t = bU

(b)
t

c
c and V

(b)
t = U

(b)
t mod c. Letting X

(b)
t represent the level of the chain,

{(X(b)
t , V

(b)
t , Jt), t ∈ N} is clearly a dual G/M/1-type chain of {(U (b)

t , Jt), t ∈ N} with

(one-step) transition probabilities given by

(Ai,l)(j,v),(a,x)

= Pr{(X(b)
1 , V

(b)
1 , J1) = (l, a, x)|(X(b)

0 , V
(b)
0 , J0) = (i, j, v)}I[0 ≤ ci+ j ≤ b, 0 ≤ cl + a ≤ b]

= Pr{(U (b)
1 , J1) = (cl + a, x)|(U (b)

0 , J0) = (ci+ j, v)}I[0 ≤ ci+ j ≤ b, 0 ≤ cl + a ≤ b]

= Pr{(Y1, J1) = (ci+ j + c− (cl + a), x)|J0 = v}I[0 ≤ ci+ j ≤ b, 0 ≤ cl + a < b]

+

ci+j+c−b∑
k=0

Pr{(Y1, J1) = (k, x)|J0 = v}I[0 ≤ ci+ j ≤ b, cl + a = b]

= p0;v,xI[0 ≤ ci+ j ≤ b, 0 ≤ cl + a ≤ b, ci+ j + c− (cl + a) = 0]

+ p1;v,xfv,x(ci+ j + c− (cl + a))I[0 ≤ ci+ j ≤ b, 0 ≤ cl + a < b]

+ p1;v,x

ci+j+c−b∑
k=1

fv,x(k)I[0 ≤ ci+ j ≤ b, cl + a = b]. (2.4.1)

Unlike the MAP risk model without the dividend barrier, the one-step transition prob-

abilities of the dual G/M/1-type chain of the MAP risk model with the dividend barrier

are level-independent through levels 0 up to B − 2 and becomes level-dependent at level

B − 1, where we set B = b b
c
c. More specifically, we can write Ai,j = Ai−j+1 (due to the

level independence) for i = 0, 1, 2, . . . , B and j such that |i − j| ≥ 0, Ai,i+1 = A0 for

i = 0, 1, 2, . . . , B − 2, and AB−1,B and AB,B are not necessarily the same substochastic

matrices as A0 and A1.
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2.4.1 Time of ruin, surplus prior to ruin, and deficit at ruin

As in the MAP risk model without the dividend barrier, the time of ruin can be written

as τ = inf{t ∈ Z+ : X
(b)
t < 0}. Therefore, the absorbing class is again A = Z− ×

{0, 1, 2, . . . , c− 1} × {0, 1, 2, . . . ,m− 1}. Let

PA
c

b =

0 1 2 3 · · · B



0 A1 A0 · · · · · · · · · · · ·

1 A2 A1 A0 · · · · · · · · ·

2 A3 A2 A1 A0 · · · · · ·
...

...
. . .

. . . · · ·
. . .

...

B − 1 AB AB−1 · · · · · · · · · AB−1,B

B AB+1 AB · · · · · · · · · AB,B

denote the TPM of the open class of {(X(b)
t , V

(b)
t , Jt), t ∈ N}, and let

PAb =

· · · −3 −2 −1



0 · · · A4 A3 A2

1 · · · A5 A4 A3

2 · · · A6 A5 A4

... . .
. ...

...
...

B · · · AB+4 AB+3 AB+2

denote the TPM corresponding to state transitions from Ac to A. Then, employing the

same derivation used in (2.3.2), the conditional joint pmf of the time of ruin, surplus prior
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to ruin, and deficit at ruin is given by

Pr{τ = t, (U
(b)
τ−1, Jτ−1) = (a, v), (U (b)

τ , Jτ ) = (l, j)|(U (b)
0 , J0) = (u, i)} =(

PA
c t−1
b bu

c
c,ba

c
c
)
(u mod c,j),(a mod c,v)

(
PA
b ba

c
c,b l

c
c

)
(a mod c,v),(l mod c,b)

. (2.4.2)

2.4.2 Total discounted dividends paid

One of the key quantities of interest in this subsection is the total discounted dividends

paid prior to a deterministic time point or the time of ruin. First of all, we assume that

the insurance company no longer operates once it enters into the ruined state, and hence,

no further dividend payments are made after the company is ruined.

We first consider the expected total discounted dividends paid prior to either a fixed

(finite) time point or ruin, whichever happens first, and let this fixed finite time point be

denoted by T ∈ Z+. Let

Dt = max
(
U

(b)
t−1 + c− Yt − b, 0

)
, t ∈ Z+,

and

DTot
T (ν) =

T∑
t=1

νtDtI[τ > t]

denote the total discounted dividends paid up to T for a discount factor ν ∈ (0, 1). Writing

Dt in terms of the dual G/M/1-type chain, we have

Dt = max
(
cX

(b)
t−1 + V

(b)
t−1 + c− Yt − b, 0

)
, t ∈ Z+.
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Following this, we have

E
{
DTot
T (ν)

∣∣(U (b)
0 , J0) = (u, i)

}
=

T∑
t=1

νtE
{
DtI[τ > t]

∣∣(U (b)
0 , J0) = (u, i)

}
=

T∑
t=1

νtE
{
DtI[τ > t]

∣∣(X(b)
0 , V

(b)
0 , J0) = (bu

c
c, u mod c, j)

}
.

From (2.3.1) and (2.4.1), and by also conditioning on (X
(b)
t−1, V

(b)
t−1, Jt−1), we obtain

E
{
DtI[τ > t]

∣∣(X(b)
0 , V

(b)
0 , J0) = (bu

c
c, u mod c, j)

}
=

B∑
z=B−1

c−1∑
x=0

m−1∑
v=0

c−1∑
l=0

m−1∑
w=0

max(cB + l − b, 0)
(

PA
c t−1
b bu

c
c,z

)
(u mod c,j),(x,v)

(
PA
c

b z,B

)
(x,v),(l,w)

.

(2.4.3)

Therefore, we ultimately arrive at

E
{
DTot
T (ν)

∣∣(U (b)
0 , J0) = (u, i)

}
=

T∑
t=1

νt
B∑

z=B−1

c−1∑
x=0

m−1∑
v=0

c−1∑
l=0

m−1∑
w=0

max(cB + l − b, 0)
(

PA
c t−1
b bu

c
c,z

)
(u mod c,j),(x,v)

(
PA
c

b z,B

)
(x,v),(l,w)

.

(2.4.4)

Secondly, consider

DTot(ν) =
τ−1∑
t=1

νtDtI[τ <∞] =
∞∑
t=1

νtDtI[τ > t],

which actually represents the total discounted dividends paid prior to ruin. (Note that the

event of ruin is certain (w.p. 1) to occur with the dividend barrier b in place.) By the

dominated convergence theorem (DCT) (see e.g., Resnick (2005)), we have

E
{
DTot(ν)

∣∣(U (b)
0 , J0) = (u, i)

}
=
∞∑
t=1

νtE
{
DtI[τ > t]

∣∣(U (b)
0 , J0) = (u, i)

}
.
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Then, from (2.4.3), it follows that

E
{
DTot(ν)

∣∣(U (b)
0 , J0) = (u, i)

}
=
∞∑
t=1

νt
B∑

z=B−1

c−1∑
x=0

m−1∑
v=0

c−1∑
l=0

m−1∑
w=0

max(cB + l − b, 0)
(

PA
c t−1
b bu

c
c,z

)
(u mod c,j),(x,v)

(
PA
c

b z,B

)
(x,v),(l,w)

= ν
B∑

z=B−1

c−1∑
x=0

m−1∑
v=0

c−1∑
l=0

m−1∑
w=0

max(cB + l − b, 0)
∞∑
t=0

νt
(

PA
c t
b bu

c
c,z

)
(u mod c,j),(x,v)

(
PA
c

b z,B

)
(x,v),(l,w)

= ν
B∑

z=B−1

c−1∑
x=0

m−1∑
v=0

c−1∑
l=0

m−1∑
w=0

max(cB + l − b, 0)
(

Hb,ν
bu
c
c,z

)
(u mod c,j),(x,v)

(
PA
c

b z,B

)
(x,v),(l,w)

,

(2.4.5)

where

Hb,ν
bu
c
c,z =

∞∑
t=0

νt PA
c t
b bu

c
c,z

and Hb,ν is the discounted fundamental matrix of the dual G/M/1-type chain of the MAP

risk model with the dividend barrier b.

As can be seen from (2.4.5), the discounted fundamental matrix plays, yet again, a crit-

ical role in calculating the expected total discounted dividends paid prior to ruin. Com-

puting the discounted fundamental matrix for the dual G/M/1-type chain of the MAP

risk model with the dividend barrier, however, is not as straightforward as in the MAP

risk model without the dividend barrier. As a result of level dependency in the one-step

transition probabilities of the dual G/M/1-type chain of the MAP risk model with the

dividend barrier, the discounted rate and ladder height matrices are also level dependent,

unlike the MAP risk model without the dividend barrier. This presence of level depen-

dency really adds on the computational cost. As such, Methods I and II discussed earlier

do not necessarily produce the most efficient algorithms to use. Therefore, we introduce

a computationally more superior (in most cases) algorithm later on in this section. Nev-
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ertheless, we first provide brief discussions on Methods I and II to demonstrate how the

algorithms developed for the general G/M/1-type discrete-time risk model can be applied

to the MAP risk model with a dividend barrier.

2.4.3 Fundamental matrix via Method I

Let { Rb,ν
i,l}Bi=0,l≥i, { Qb,ν

i,l}Bi=0,l≤i, and { Gb,ν
i,l}Bi,l=0 denote the discounted rate, ladder

height distribution, and fundamental period matrices of the dual G/M/1-type chain of the

MAP risk model with a constant dividend barrier b ∈ N. From Section 2.2,

Rb,ν
i,i+1 =

∞∑
n=0

Rb,ν
i,i+nνAi+n,i+1

=
B−i∑
n=0

Rb,ν
i,i+nνAi+n,i+1, 0 ≤ i ≤ B − 1. (2.4.6)

Solving for Rb,ν
i,i+1 in (2.4.6) yields

Rb,ν
i,i+1 =

νAi,i+1

(
I −

∑B−i
n=1 Rb,ν

i+1,i+nνAi+n,i+1

)−1
, 0 ≤ i ≤ B − 1,

0, i ≥ B.

Noting that Rb,ν
i,i+n =

∏i+n−1
k=i Rb,ν

k,k+1, we have

Rb,ν
i,i+1 =

νAi,i+1

(
I −

∑B−i
n=1

∏i+n−1
k=i+1 Rb,ν

k,k+1νAi+n,i+1

)−1
, 0 ≤ i ≤ B − 1,

0, i ≥ B.

(2.4.7)

Thus, we can recursively compute the discounted rate matrices by first computing Rb,ν
B−1,B.

Note that unlike the MAP risk model without the dividend barrier, we can compute the

discounted rate matrices exactly and without having to truncate the matrices {Ai,l}l≤i+1.
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Once we have computed the discounted rate matrices, we can compute the discounted

ladder height distribution matrices { Qb,ν
i,l}Bi,l=0,l≤i via

Qb,ν
i,l =

B−i∑
n=0

Rb,ν
i,i+nνAi+n,l

=
B−i∑
n=0

i+n−1∏
k=i

Rb,ν
k,k+1νAi+n,l, 0 ≤ i ≤ B − 1, (2.4.8)

and

Qb,ν
B,l = νAB,l. (2.4.9)

Once again, we exploit a recursive relationship that holds for Qb,ν
i,l. From (2.4.8), we have

Qb,ν
i,l = νAi,l + Rb,ν

i,i+1

B−i∑
n=1

i+n−1∏
k=i+1

Rb,ν
k,k+1νAi+n,l

= νAi,l + Rb,ν
i,i+1

B−i∑
n=0

i+1+n−1∏
k=i+1

Rb,ν
k,k+1νAi+1+n,l

= νAi,l + Rb,ν
i,i+1 Qb,ν

i+1,l, 0 ≤ i ≤ B − 1. (2.4.10)

As a result, one can compute Qb,ν
B,l using (2.4.9) and then apply the recursive rule of

(2.4.10) to compute the remaining discounted ladder height distribution matrices.

Finally, the block components of the discounted fundamental matrix are given by

Hb,ν
i,l =


(
I − Qb,ν

i,i

)−1(∏l−1
k=i Rb,ν

k,k+1 +
∑i−1

z=0 Qb,ν
i,z Hb,ν

z,l

)
, if l ≥ i,(

I − Qb,ν
i,i

)−1(∑i−1
z=0 Qb,ν

i,z Hb,ν
z,l

)
, if l < i.

(2.4.11)

Similarly, as in the case of the MAP risk model without the dividend barrier, we can re-

cursively compute Hb,ν
i,l from Hb,ν

i,0. Using the same mathematical inductive arguments
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employed in proving (2.3.9) and (2.3.10), we can show that

Hb,ν
i,l = Hb,ν

i,i

l−1∏
k=i

Rb,ν
k,k+1, l ≥ i, (2.4.12)

and

Hb,ν
i,l = Nb,ν

i,l + Hb,ν
i,l−1 Rb,ν

l−1,l, l ≤ i, (2.4.13)

where

Nb,ν
i,l =

(
I − Qb,ν

i,i

)−1( i−1∑
z=l

Qb,ν
i,z Nb,ν

z,l

)
, l < i, (2.4.14)

with Nb,ν
i,i = (I − Qb,ν

i,i)
−1. Once again, note that (2.4.12) and (2.4.13) yield a more

computationally efficient algorithm than (2.4.11) when computing Hb,ν
i,l for more than

one value of l.

2.4.4 Fundamental matrix via Method II

A close inspection of (2.4.5) reveals that one only needs to compute Hb,ν
bu
c
c,B−1 and

Hb,ν
bu
c
c,B to compute the expected total discounted dividends paid out prior to ruin. In

this case, Method II can deliver a more efficient algorithm in comparison to Method I.

Hence, for brevity in this subsection, we only discuss Method II for computing the ex-

pected total discounted dividends paid out prior to ruin.

First of all, from (2.2.30) and (2.2.33), we recursively compute { Gb,ν
i,i+1}B−1i=0 according

to

Gb,ν
i,i+1 =

(
I −

i−1∑
z=0

νAi,z

i−1∏
k=z

Gb,ν
k,k+1

)−1
νAi,i+1, 0 ≤ i ≤ B − 1, (2.4.15)
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and compute Gb,ν
B,B−1 via

Gb,ν
B,B−1 =

(
I − νAB,B

)−1( B−2∑
z=0

νAB,z

B−2∏
k=z

Gb,ν
k,k+1 + νAB,B−1

)
, (2.4.16)

where we note that Qb,ν
B,z = νAB,z, z = 0, 1, 2, . . . , B. We next compute Gb,ν

B−1,B−1 and

Gb,ν
B,B. For Gb,ν

B,B, from (2.2.33) and (2.4.9), we have

Gb,ν
B,B =

B−1∑
z=0

Qb,ν
B,z Gb,ν

z,B + Qb,ν
B,B

=
B−1∑
z=0

νAB,z

B−1∏
k=z

Gb,ν
k,k+1 + νAB,B. (2.4.17)

For Gb,ν
B−1,B−1, we first compute Rb,ν

B−1,B via (2.4.7), which in this particular case re-

duces to

Rb,ν
B−1,B = νAB−1,B

(
I − νAB−1,B

)−1
. (2.4.18)

Now, from (2.4.10) and (2.4.18), we can easily compute { Qb,ν
B−1,z}

B−1
z=0 using

Qb,ν
B−1,z = νAB−1,z + Rb,ν

B−1,BνAB,z, (2.4.19)

and from (2.2.33), compute Gb,ν
B−1,B−1 via

Gb,ν
B−1,B−1 =

B−2∑
z=0

Qb,ν
B−1,z Gb,ν

z,B−1 + Qb,ν
B−1,B−1. (2.4.20)

Finally, we have

Hb,ν
bu
c
c,B−1 =


(
I − Gb,ν

B−1,B−1
)−1

, if bu
c
c = B − 1,

Gb,ν
bu
c
c,B−1

(
I − Gb,ν

B−1,B−1
)−1

, if bu
c
c 6= B − 1,

(2.4.21)
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and

Hb,ν
bu
c
c,B =


(
I − Gb,ν

B,B

)−1
, if bu

c
c = B,

Gb,ν
bu
c
c,B
(
I − Gb,ν

B,B

)−1
, if bu

c
c 6= B.

(2.4.22)

With Method I, we had to compute { Rb,ν
i,i+1}B−1i=0 , which is comparable to comput-

ing { Gb,ν
i,i+1}B−1i=0 in terms of the computation time. The computational procedures for

Gb,ν
B,B−1, Gb,ν

B,B, and Gb,ν
B−1,B−1 are straightforward without involving recursions as

Method I does. Therefore, it is clear at this point that Method II is computationally su-

perior in comparison to Method I for computing the expected total discounted dividends

paid out prior to ruin.

2.4.5 Fundamental matrix via Method III

One advantage of Methods I and II for the MAP risk model with the dividend barrier is

that we are able to compute the discounted rate matrices (and hence other related matri-

ces) without resorting to an (approximating) iterative algorithm such as (2.3.4). However,

the computational time required for the discounted rate, ladder height distribution, and

fundamental period matrices when implementing Methods I and II in the case of the div-

idend barrier model can be much longer than that of the former model. If the iterative

algorithm (2.3.4) converges relatively fast with good enough accuracy (which is true in

most cases), then we can exploit a connection between these two models and write the

discounted fundamental matrix of the dual G/M/1-type chain of the MAP risk model with

the dividend barrier in terms of the discounted fundamental matrix of dual G/M/1-type

chain of the model without the dividend barrier.

Consider the dual G/M/1-type chain of the MAP risk model without the dividend
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barrier {(Xt, Vt, Jt), t ∈ N}, as defined in Section 1.3. Let us first partition the state

space of {(Xt, Vt, Jt), t ∈ N} into SB = {0, 1, . . . , B}× {0, 1, . . . , c− 1}× {0, 1, . . . ,m− 1},

SB+ = {B+1, B+2, . . .}×{0, 1, . . . , c−1}×{0, 1, . . . ,m−1}, and A = Z−×{0, 1, . . . , c−

1}×{0, 1, . . . ,m−1}. Let PSB and PSB+ be the corresponding TPM’s within SB and SB+ ,

respectively. Also, let PSB :SB+ and PSB+ :SB be the TPM’s corresponding to transitions

from SB to SB+ and from SB+ to SB, respectively.

It is possible to define the discounted rate and ladder height distribution matrices

according to the new partitioned state space. Let τ−SB = inf{t ∈ Z+ : (Xt, Vt, Jt) ∈ SB}

and

rν (i,v,j),(l,w,a) =
∞∑
k=0

νk Pr
{
τ−SB > k, (Xk, Vk, Jk) = (l, w, a)

∣∣(X0, V0, J0) = (i, v, j)
}
,

(i, v, j) ∈ SB, (l, w, a) ∈ SB+.

(2.4.23)

Let RνB,B+ be a |SB|×|SB+ |matrix whose {(i, v, j), (l, w, a)}-th entry is given by rν (i,v,j),(l,w,a).

Similarly, let

qν (i,v,j),(z,y,x) =
∞∑
k=1

νk Pr
{
τ−SB = k, (Xk, Vk, Jk) = (z, y, x)|(X0, V0, J0) = (i, v, j)

}
,

(i, v, j), (z, y, x) ∈ SB,

(2.4.24)

and let QνB,B be a |SB|×|SB|matrix whose {(i, v, j), (z, y, x)}-th entry is given by qν (i,v,j),(z,y,x).

Let us now partition the discounted fundamental matrix Hν into

Hν =

 HνB,B HνB,B+

HνB+,B HνB+,B+

 , (2.4.25)
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where HνB,B is a |SB| × |SB| matrix and the dimensions of the other blocks of (2.4.25) are

given likewise. Then, using the same arguments employed to obtain (2.2.21), we see that

HνB,B = I + QνB,B HνB,B

=
(
I − QνB,B

)−1
. (2.4.26)

Now, by noting that Hb,ν , the discounted fundamental matrix of {(X(b)
t , V

(b)
t , Jt), t ∈ N},

is equal to
(
I − ν PA

c

b

)−1
, we can write

Hb,ν =

(
I − QνB,B −

(
ν PA

c

b − QνB,B

))−1
=
(
I − QνB,B − Kb,ν

)−1
=

((
I − Kb,ν

(
I − QνB,B

)−1)(
I − QνB,B

))−1
=

(
I − QνB,B

)−1(
I − Kb,ν

(
I − QνB,B

)−1)−1
= HνB,B

(
I − Kb,ν HνB,B

)−1
, (2.4.27)

where Kb,ν =
(
ν PA

c

b − QνB,B

)
. Since we know how to compute HνB,B from Section 2.3,

we focus our efforts in computing
(
I − Kb,ν HνB,B

)−1
.

From (2.2.20), we deduce that

QνB,B = ν PSB + ν RνB,B+ PSB+ :SB .

Recalling the original level-block representation, we also deduce that

QνB,B i,z =


νAi−z+1, 0 ≤ i, z ≤ B − 1, z ≤ i+ 1,

Qν i−z, i = B, 0 ≤ z ≤ B,

0, otherwise.

(2.4.28)
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Therefore, we have

Kb,ν
i,l =



ν(AB−1,B −A0), i = B − 1, l = B,

νAB,B − Qν 0, i, l = B,

νAB−l − Qν B−l, i = B, 0 ≤ l ≤ B − 1,

0, otherwise.

(2.4.29)

Now, letting Lb,ν = I − Kb,ν HνB,B , we have

Lb,ν
i,l =



I, i = l, 0 ≤ i, l ≤ B − 2,

I − Kb,ν
B−1,B H

ν
B,B, i = l = B − 1,

− Kb,ν
B−1,B H

ν
B,l, i = B − 1, l ∈ {0, 1, . . . , B} \ {B − 1},

I −
∑B

z=0 Kb,ν
B,z H

ν
z,l, i = l = B,

−
∑B

z=0 Kb,ν
B,z H

ν
z,l, i = B, 0 ≤ l ≤ B − 1,

0, otherwise.

(2.4.30)

As can be seen from (2.4.30), due to the rather simple structure of Lb,ν , we can find its

inverse by hand. First of all, let

 Lb,ν
B−1,B−1 Lb,ν

B−1,B

Lb,ν
B,B−1 Lb,ν

B,B

−1 =

 Ob,ν
B−1,B−1 Ob,ν

B−1,B

Ob,ν
B,B−1 Ob,ν

B,B

 .

72



Then, from the standard row reduction procedure, we obtain

Lb,ν −1
i,l =



I, i = l, 0 ≤ i, l ≤ B − 2,

Ob,ν
i,l, i, l = B − 1, B,

− Ob,ν
B−1,B−1 Lb,ν

B−1,l − Ob,ν
B−1,B Lb,ν

B,l, i = B − 1, 0 ≤ l ≤ B − 2,

− Ob,ν
B,B−1 Lb,ν

B−1,l − Ob,ν
B,B Lb,ν

B,l, i = B, 0 ≤ l ≤ B − 2,

0, otherwise.

(2.4.31)

Hence, we have for 0 ≤ i ≤ B,

Hb,ν
i,l =

 Hν i,l + Hν i,B−1 Lb,ν −1
B−1,l + Hν i,B Lb,ν −1

B,l, 0 ≤ l ≤ B − 2,

Hν i,B−1 Lb,ν −1
B−1,l + Hν i,B Lb,ν −1

B,l, l = B − 1, B.

(2.4.32)

As can be seen from (2.4.32), computing { Lb,ν
i,l}i∈{B−1,B},l∈{0,1,...,B} is the key to com-

puting the discounted fundamental matrix of the dual G/M/1-type chain of the MAP risk

model with the dividend barrier. Therefore, we develop a recursion for { Lb,ν
B,l}l∈{0,1,...,B}

to speed up the computation. From (2.3.9) and (2.3.10), we can write

B∑
z=0

Kb,ν
B,z H

ν
z,l =

l−1∑
z=0

Kb,ν
B,z H

ν
z,l−1 R

ν +
B∑
z=l

Kb,ν
B,z

(
Hν z−l,0 + Hν z,l−1 R

ν
)

=
B∑
z=0

Kb,ν
B,z H

ν
z,l−1 R

ν +
B∑
z=l

Kb,ν
B,z H

ν
z−l,0, l > 0. (2.4.33)
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Therefore, by combining (2.4.30) and (2.4.33), we have

Lb,ν
B,l =


−
∑B

z=0 Kb,ν
B,z H

ν
z,0, l = 0,

Lb,ν
B,l−1 R

ν −
∑B

z=l Kb,ν
B,z H

ν
z−l,0, 1 ≤ l ≤ B − 1,

I + Lb,ν
B,B−1 R

ν − Kb,ν
B,B H

ν
0,0, l = B.

(2.4.34)

To summarize the computational procedure for the discounted fundamental matrix of

the dual G/M/1-type chain of the MAP risk model with the dividend barrier and initial

level i, we perform the following steps:

(i) Compute { Qν z}z∈{0,1,2,...,B}, { Hν z,0}z∈{0,1,2,...,B}, and { Hν i,l}l∈{0,1,2,...,B} using the meth-

ods developed in Section 1.3.

(ii) Compute { Kb,ν
i,l}i,l∈{0,1,2,...,B} and { Lb,ν

i,l}i,l∈{0,1,2,...,B} according to (2.4.29) and (2.4.34).

(iii) Compute { Lb,ν −1
i,l }i,l∈{0,1,2,...,B} according to (2.4.31).

(iv) Compute { Hb,ν
i,l}l∈{0,1,2,...,B} according to (2.4.32).

2.5 Numerical analysis

The first two numerical examples we analyze establish that our method yields the same

results as those produced in some of the earlier works found in the literature. We selected

one example from Cossette et al. (2004a) and the other from Wu and Li (2012). In the

third example we study, we implement our algorithm for a risk model having a discretized

Pareto claim size distribution, which belongs to the class of heavy-tailed distributions.
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Example 1 Our first example is chosen directly from Cossette et al. (2004a). The risk

model in consideration belongs to the class of the discrete-time MAP risk models with

matrix-geometric claim size distributions discussed in Section 2.3.3. Hence, we can apply

the matrix analytic methodology developed in Section 2.3.3 to analyze the risk model on

hand. Let us first show how the risk model to be discussed here can be put into the matrix

analytic methodology framework introduced in Section 2.3.3.

The risk process under consideration, denoted by {Ut, t ∈ N}, is comprised of the claims

arrival MAP {(Nt, Jt), t ∈ N} with the associated TPMs

P 0 =

 (1− q) + πq 0

(1− q)− π(1− q) 0


and

P 1 =

0 q − πq

0 q + π(1− q)

 ,

where π ∈ [0, 1) and q = 0.07. Furthermore, the sequence of claim size random variables

{Yt, t ∈ Z+} form an i.i.d. sequence of random variables with a zero-truncated geometric

distribution with pmf f(y) = (1−7/8)(7/8)y−1, y ∈ Z+, independently of {(Nt, Jt), t ∈ N}.

Lastly, c = 1.

We first note that f(y) can be rewritten as f(y) = αΓy−1γᵀ, where α = (1), Γ = (7/8),

and γ = (1− 7/8). Certainly, f(y) belongs to the class of matrix-geometric distributions.

Putting the above parameters in terms of the matrix notations given in the framework of

our methodology, let A0 = P 0 and An = f(n)P 1, n ∈ Z+. Then, by (2.3.13), we have

An = f(n)P 1 = αΓn−1γᵀP 1 = (I1 ⊗A)(I1 ⊗ Γn−1)Ξ, n ∈ Z+,
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ψ(u) ψ(u) ψ(u)
π = 0 π = 0.05 π = 0.2

u M A M A M A
10 0.286394 0.2864 0.295877 0.2959 0.32644 0.3264
20 0.155674 0.1557 0.165662 0.1657 0.199863 0.1999
30 0.0846187 0.0846 0.092755 0.0928 0.122365 0.1224
40 0.0459957 0.046 0.051934 0.0519 0.0749173 0.0749
50 0.0250016 0.025 0.029078 0.0291 0.0458678 0.0459
60 0.01359 0.0136 0.016281 0.0163 0.0280823 0.0281
70 0.00738704 0.0074 0.009116 0.0091 0.0171933 0.0172
80 0.00401533 0.004 0.005104 0.0051 0.0105265 0.0105

100 0.00118638 0.0012 0.0016 0.0016 0.0039458 0.0039

Table 2.1: Infinite-time ruin probabilities

where A = α and Ξ = γᵀP 1. We can now follow the rest of the procedure given in Section

2.3.3 to compute the discounted fundamental matrix.

In Table 2.1, the infinite-time ruin probabilities, denoted by ψ(u) = Pr{τ <∞|U0 = u},

for various values of the initial surplus u and of π are computed. Under the columns labeled

M, the values computed via our method are given. Under the columns labeled A are the

values given in Cossette et al. (2004a). From the values computed, we can see that the

infinite-time ruin probabilities computed via our method match those of Cossette et al.

(2004a).

Example 2 This example is taken from Wu and Li (2012), in which we compare the

expected total discounted dividends paid prior to ruin (denoted by V (u) for initial surplus

u ∈ N) computed via our method and that of Wu and Li (2012). The risk model in con-

sideration belongs to the class of discrete-time MAP risk model with dividend barrier, and

we have three different matrix analytic methods (discussed in Section 2.4) at our disposal.

We have chosen Method III discussed in Section 2.4.5 as our tool here and will see that

the results computed via Method III match those given in Wu and Li (2012).
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In this risk model, claims are assumed to arrive following a compound binomial process

with Pr{It = 1|It−1 = j} = p = 0.35 and Pr{It = 0|It−1 = j} = 1− p = 0.65, j = 0, 1, and

Yt|(It = 1) follows a mixed geometric distribution with pmf

f(y) =


γy−2(1−(β/γ)y−1)((1−β)(1−γ)+α)

1−β/γ , if y = 2,

γy−2(1−(β/γ)y−1)((1−β)(1−γ)+α)−γy−3(1−(β/γ)y−2)α
1−β/γ , if y = 3, 4, . . . ,

where β = 0.8, γ = 0.6, and α = 0.24. The dividend barrier is set equal to b = 9 and the

premium received per unit time is equal to c = 1.

Once again, putting the above parameters in the matrix analytic methodology frame-

work, let

P 0 =
(

1− p
)

and

P 1 =
(
p
)
.

After setting Ab−1,b = P 0, Ab,b = P 0 + f(1)P 1, A0 = P 0, and An = f(n)P 1, n ∈ Z+, we

can now apply the rest of the procedure presented in Section 1.4.5 to compute the expected

total discounted dividends paid prior to ruin.

In Table 2.2, we list our results in the column labeled M and those of Wu and Li (2012)

in the column labeled A. Once again, we obtain agreement between the two methods.
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V (u)
u M A
0 0.132372 0.13237
1 0.214368 0.21437
2 0.324345 0.32435
3 0.473493 0.47349
4 0.677086 0.67709
5 0.956084 0.95608
6 1.33932 1.33932
7 1.86651 1.86651
8 2.59237 2.59237
9 3.59237 3.59237

Table 2.2: Expected total discounted dividends paid prior to ruin

Example 3 In this example, we consider the same risk model as in Example 2 with

the exception that now c = 2, there is no dividend barrier, and the claim sizes follow a

discretized Pareto distribution with pmf given by

f(y) =
(

1 +
y − 1

30

)−8
−
(

1 +
y

30

)−8
, y ∈ Z+.

The risk model described above is a discrete-time MAP risk model with a discretized

Pareto claim size distribution. Therefore, we can apply the matrix analytic methodology

developed in Section 2.3.2. To this end, let

P 0 =
(

1− p
)

and

P 1 =
(
p
)
.
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Now, let

A0 =

 P 0 0

f(1)p P 0

 ,

and

An =

 f(cn)P 1 f(cn− 1)P 1

f(cn+ 1)P 1 f(cn)P 1

 , n ∈ Z+.

Here, we truncate {An}n∈N at N = 1000. Hence, we can follow the rest of the matrix ana-

lytic methodology procedure in Section 2.3.2 with {An, n ∈ {0, 1, 2, . . . , N}} defined above.

In Table 2.3, the infinite-time ruin probabilities are computed, and in Table 2.4, the

first and second unconditional and conditional moments of the surplus prior to ruin are

computed, where ri(u) = E{U i
τ−1I[τ <∞]|U0 = u} and r̄i(u) = E{U i

τ−1|τ <∞, U0 = u},

i = 1, 2. In contrast to the nontransient results computed in Table 2.3 and 2.4, in Table

2.5, we compare the values of the joint conditional pmf of the time of ruin, surplus prior to

ruin, and deficit at ruin given the initial surplus, φ(n, x, y|u) = Pr{τ = n, Uτ−1 = x, |Uτ | =

y|U0 = u}, x, u ∈ N, n, y ∈ Z+, computed via our matrix analytic methodology and the

standard recursive method. The recursion method relies on the following recursion:

Pr{τ > t, Ut = x|U0 = u} =
u+c∑
j=1

pf(j) Pr{τ > t− 1, Ut−1 = x|U0 = u+ c− j}

+ (1− p) Pr{τ > t− 1, Ut−1 = x|U0 = u+ c}, t ∈ Z+.

The values of φ(n, x, y|u) computed via the matrix analytic methodology are numerically

inverted via the algorithm known as the Lattice-Poisson algorithm in Abate and Whitt

(1992). The error bound used for the Lattice-Poisson algorithm is 10−8.
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u ψ(u)
0 0.785963

20 0.358841
50 0.118775

100 0.0193046
150 0.0031749
200 0.000526861

Table 2.3: Infinite-time ruin probabilities

u r1(u) r̄1(u) r2(u) r̄2(u)
0 3.39801 4.32336 43.9685 55.9422

20 4.2208 11.7623 87.7342 244.493
50 1.64291 13.8321 46.1847 388.843

100 0.292654 15.1598 10.668 552.616
150 0.0514237 16.197 2.37295 747.41
200 0.00926308 17.5816 0.575782 1092.85

Table 2.4: Unconditional and conditional moments of the surplus prior to ruin

Matrix analytic methodology Recursion
n φ(n, 50, 1|50) φ(n, 50, 1|50)

10 6.03994× 10−6 6.03994× 10−6

20 3.35333× 10−6 3.35333× 10−6

30 2.15238× 10−6 2.15235× 10−6

40 1.46541× 10−6 1.46494× 10−6

50 1.02747× 10−6 1.02623× 10−6

100 2.02416× 10−7 2.00622× 10−7

Table 2.5: Joint conditional pmf of time of ruin, surplus prior to ruin, and deficit at ruin
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As can be seen from Table 2.5, the difference in the values of φ(n, x, y|u) computed via

the recursion (which are the true values) and the values computed via the matrix analytic

method are within the error bound used for the Lattice-Poisson numerical inversion algo-

rithm (i.e., 10−8), suggesting that the matrix analytic methodology used to compute the

values of φ(n, x, y|u) produce errors that are negligible up to the precision of the inversion

algorithm for the values given in Table 2.5.

To comment on the computational times and memory consumption rates of both meth-

ods, we first note that the computation time required for our matrix analytic methodology

was noticeably longer than the standard recursion method for all values computed in Table

2.5. However, noting that the bulk of the computation time of the matrix analytic method-

ology was attributable to the summation (truncated by N) involved in the computation of

Rν and Qν k, k ∈ N, we anticipate that the overall computation time for the matrix analytic

methodology can be improved greatly if the claim size distribution is of matrix-geometric

type (see Section 2.3.3 for more details). Moreover, as stated in Section 1.1, the recursion

method’s computation time increases rapidly (nearly quadratic) as n increases. On the

other hand, the computation time of our methodology for computing a single value of the

generating function of φ(n, x, y|u) has an upper bound (at ν = 1). Therefore, the computa-

tional complexity of our methodology only depends on the inversion algorithm that is used

(as per its dependency on n). Noting that the Lattice-Poisson algorithm we implemented

here is O(n), we can say that the computation time of our matrix analytic methodology

grows linearly in n. Hence, for very large values of n, the matrix analytic methodology will

outperform the standard recursion method in terms of computation time. Again, as stated

in Section 1.1, the recursion method’s computer memory consumption rate grows linearly

in n. On the other hand, by the procedural structure of our methodology, the computer

memory consumption rate of our matrix analytic methodology stays constant in n. Hence,

the recursion method is limited by the computer memory for a large value of n, whereas

the matrix analytic methodology is not.

81



For infinite-time related quantities of interest, such as the infinite-time ruin proba-

bilities, the matrix analytic methodology seems superior in most cases compared to the

standard recursion method. However, for transient results, depending on the problem at

hand, one method can outperform the other in terms of the computation time. Nonethe-

less, we note that the matrix analytic methodology provides a viable alternative to the

standard recursion method when the time horizon of interest is long (quite often the case

when the discrete-time risk model of interest is an approximation of its continuous-time

counterpart) and the computer memory is the limitation.
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Chapter 3

A matrix analytic methodology for

the discrete-time MAP risk model

with phase-dependent premium rates

and phase-type claim size

distributions

3.1 Introduction

The work here is motivated by the fluid flow process based matrix analytic methodology

developed for the analysis of the continuous-time MAP risk model with phase-type claim

size distributions by Ramaswami (2006). Ahn and Ramaswami (2004, 2005) developed

efficient matrix-based algorithms for some transient solutions of fluid flow models, and via

a sample paths connection between the MAP risk process with phase-type claim size dis-

tributions and a fluid flow process, Ramaswami (2006) later gave a comprehensive matrix

analytic methodology for computing the discounted joint pdf of the surplus prior to ruin

and deficit at ruin of the MAP risk process in terms of the relevant transient solutions
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of the fluid flow process. (The phase-type claim size distribution assumption is necessary

for this methodology, but we note that the class of phase-type distributions is dense on

the nonnegative real line and therefore can be used to approximate almost all claim size

distributions.) In fact, around the time when Ramaswami (2006) was published, a trend

of the use of fluid flow process based matrix analytic methods in risk theory was initiated

by Badescu et al. (2005a,b), and the advent of the fluid flow process based matrix ana-

lytic methodology brought forward a powerful alternative to the traditional IDE method

typically employed in risk theory.

Three notable advantages of the fluid flow process based matrix analytic methodology

over the IDE method are the probabilistic interpretation of the derivation of the algorithms

involved, the numerical stability of the algorithms even when the number of phases in the

associated MAP is large, and the exploitation of the skip-free nature of the fluid flow pro-

cess. The second point enables extensive numerical analyses of the MAP risk models with

many phases which the traditional IDE method often had difficulty with due to the numer-

ical instability arising from the sensitivity of the methodology to the accurate evaluation of

the roots of Lundberg’s fundamental equation. The first and third points together afford

an alternative perspective in the ways of solving problems in risk theory through the way

of probabilistic interpretations and the exploitation of the skip-free nature of the sample

paths of the fluid flow process. This alternative perspective is especially useful when we

consider risk models such as the multi-threshold MAP risk models due to the much simpli-

fied analysis based on the simple level-crossing structure of the skip-free sample paths of

the fluid flow process (see, e.g., Badescu et al. (2007)). Despite such advantages, however,

the methodology is not without a flaw. It does not allow for the analysis of risk models

with phase-dependent premium rates.

The fluid flow process based matrix analytic methodology by Ahn and Ramaswami

builds on a sample paths connection between the risk process of interest and a particular

84



fluid flow process. However, as noted in Ahn (2009), the sample paths connection between

the MAP risk process with phase-dependent premium rates and the fluid flow process can-

not be easily established and hence one cannot simply apply the results from the fluid

flow process to the risk process as it is the case with the MAP risk processes with phase-

independent premium rates. Due to this lack of the simple sample paths connection, Ahn

(2009) proposed an alternative matrix analytic methodology via a sample paths connection

between the MAP risk process of interest (includes MAP risk models with phase-dependent

premium rates as special cases) and a fluid flow process with downward jumps. This al-

ternative methodology, however, nullifies the exploitation of the skip-free nature of the

fluid flow process in the original methodology developed by Ahn and Ramaswami (see Ahn

(2009) and Baek and Ahn (2014) for more detailed discussion on this topic).

In this work, we introduce the discrete-time version of a generalization of Ahn and

Ramaswami’s methodology. Instead of the fluid flow process, we exploit a sample paths

connection between the discrete-time MAP risk process and a discrete-time QBD process.

Our methodology is the discrete-time version of a generalization of Ahn and Ramaswami’s

methodology in the sense that it is built directly on a sample paths connection between

the MAP risk process and a QBD process without downward jumps, even when the pre-

mium rates depend on the phase process of the associated discrete-time MAP. Hence, our

methodology can exploit the skip-free nature of the QBD process even when the premium

rates depend on the phase process, unlike the alternative methodology introduced by Ahn

(2009) involving fluid flow processes with downward jumps.

It is our hope that with the insight learned while developing the discrete-time version of

the generalization of Ahn and Ramaswami’s methodology, we can further extend our work

to the generalization of Ahn and Ramaswami’s methodology directly under the continuous-

time setting. Until then, we note that the work here, besides its original function of study-

ing the discrete-time MAP risk models, provides a powerful numerical algorithm for the

85



discrete-time approximation to the continuous-time counterpart.

We also note that there is another fluid flow process based methodology that was in-

troduced by Breuer (2008, 2010). While Breuer’s methodology includes the analysis of the

MAP risk models with phase-dependent premium rates as a special case, it differs from

the methodology developed by Ahn and Ramaswami in many ways. Although we do not

intend to compare the numerical stability or efficiency of the two methodologies here, it

appears that Ahn and Ramaswami’s methodology has a more extensive analysis on its nu-

merical stability and efficiency available. Moreover, Ahn and Ramaswami’s methodology

yields a quadratically convergent algorithm for one of the key matrices in the methodology

which has proven to be very fast (see Ahn and Ramaswami (2005) for more details). As

the derivation of our methodology follows the footsteps of that of Ahn and Ramaswami’s,

we note that the numerical analysis of their methodology naturally extends to our method-

ology in the discrete-time setting, including the aforementioned quadratic convergence.

This chapter is organized as follows. In Section 3.2, the mathematical definition of

the MAP risk model with phase-dependent premium rates and phase-type claim size dis-

tributions is given, along with a method of construction of the QBD process necessary

for the development of our methodology. In Section 3.3, we develop our matrix analytic

methodology for the discrete-time MAP risk model with phase-dependent premium rates

and phase-type claim size distributions. In Section 3.4, a numerical example is studied.
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3.2 Discrete-time MAP risk model with phase-dependent

premiums and phase-type claim size distributions

3.2.1 Model description

Consider a discrete-time MAP risk model

Ut = u+
t−1∑
k=0

c(Jk)−
t∑

k=1

Yk, t ∈ N, u ∈ N,

comprised of a discrete-time MAP {(Nt, Jt), t ∈ N} defined on N× J , J = {1, 2, . . . ,m},

m ∈ Z+, TPMs (P 0,P 1) = ((p0,i,j)i,j∈J , (p1,i,j)i,j∈J ), and the conditionally i.i.d. claim

amount per period sequence {Yt, t ∈ Z+} (conditional on the phase process {Jt, t ∈ N}

of the MAP). In particular, let {It, t ∈ Z+} be a sequence of Bernoulli random variables

which are equal to 1 when there is an arrival at time t in the underlying MAP and let

f (i,j)(y), i, j ∈ J , y ∈ Z+, denote the pmf of Y (i,j) = Yt|(It = 1, Jt = j, Jt−1 = i) ∀

t ∈ Z+. (Note that Yt|(It = 0, Jt = j, Jt−1 = i) is equal to 0 with probability 1 ∀ i, j

and t ∈ Z+.) We further assume that the premium rates depend on the phase process

{Jt, t ∈ N}, i.e., ct = c(Jt), and that Y (i,j) follows a discrete-time phase-type distribution

of order n(i,j) ∈ Z+ with pmf f (i,j)(y) = α(i,j)(U (i,j))y−1(γ(i,j))ᵀ, y ∈ Z+, i, j ∈ J .

3.2.2 Construction of dual pre-QBD process

Herein, we outline the method of construction of the QBD process to be used in the de-

velopment of the matrix analytic methodology. To this end, we first construct a DTMC

{(Xt,Wt), t ∈ N} by transforming the premiums received per unit time into linear up-

ward journeys (with slope equal to the premiums received during the time period) and the

downward jumps of claim arrivals into linear downward journeys (with slope 1). This is

analogous to how a fluid flow process of which sample paths can be connected to those of the
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risk process under consideration is constructed in continuous time (see, e.g., Ramaswami

(2006)). However, the resulting process {(Xt,Wt), t ∈ N} does not necessarily form a QBD

process since the increase rate can be greater than 1 in our problem. In such cases, we can

apply the well-known blocking technique to {(Xt,Wt), t ∈ N} to obtain a QBD process.

More specifically, if we let Lt = `1(Xt) = b Xt
cmax
c and Vt = `2(Xt) = Xt mod cmax, where

cmax = max{c(j), j ∈ J }, then {(Lt, Vt,Wt), t ∈ N} forms a QBD process. In what follows,

we refer to {(Xt,Wt), t ∈ N} as the dual pre-QBD process and {(Lt, Vt,Wt), t ∈ N} as the

dual QBD process of the risk process under consideration.

First of all, let S1 = J and S2 = ∪i,j∈JJ (i,j), where J (i,j) = {(i, j, 1), (i, j, 2), . . . , (i, j, ni,j)},

i, j ∈ J , are the transient states corresponding to the phase-type claim size distribution

resulting from claims accompanied by phase transitions from i to j. Now, let W = S1 ∪S2
be the state space of {Wt, t ∈ N}. We then set Xt+1 = Xt + c(Wt), if Wt ∈ S1, and

Xt+1 = Xt − 1, if Wt ∈ S2. Furthermore, ∀ t ∈ N, let the one-step transition probabilities

be given by

Pr{Wt+1 = j|Wt = i} =

p0,i,j, i, j ∈ S1,0, otherwise,

Pr{Wt+1 = (l, j, w)|Wt = i} =

p1,i,jα
(i,j)
w , i ∈ S1, (l, j, w) ∈ S2, i = l,

0, otherwise,

Pr{Wt+1 = (l, j, w)|Wt = (i, z, x)} =

u
(i,z)
x,w , (i, z, x), (l, j, w) ∈ S2, (i, z) = (l, j),

0, otherwise,

and

Pr{Wt+1 = j|Wt = (i, z, x)} =

γ
(i,z)
x , (i, z, x) ∈ S2, j ∈ S1, z = j,

0, otherwise.

(3.2.1)

88



t0 1 2 3 4 5

Ut

Initial surplus u = 2

Premium c0 = 1
Claim Y1 = 2

c1 = 2 Y2 = 2

c2 = 1

Y3 = 3

Figure 3.1: Sample path of {Ut, t ∈ N}

As can be seen from the above construction, the times Wt is in S1 correspond to the

“real” times and the times Wt is in S2 correspond to the “artificial” times that are created

to account for the linear discounting of the claims’ amount. Therefore, the number of times

Wt is in S1 before the dual pre-QBD process falls below 0 is equal to the time of ruin of

the corresponding risk process (see, e.g., Figures 3.1 and 3.2, where the sample paths of

the risk process and its dual pre-QBD process are depicted, and the times Wt is in S1 are

marked by the blue dots and the times Wt is in S2 are marked by the red dots). Then,

we can study the transient solutions of the original risk process simply by studying the

transient solutions of the dual pre-QBD process while only tracking the times Wt is in S1
before the dual pre-QBD process falls below 0.

89



t0 1 2 3 4 5 6 7 8 9 10

Xt

Initial surplus u = 2

Y1 = 2 Y2 = 2

Y3 = 3
c0 = 1 c1 = 2

c3 = 1

Figure 3.2: Sample path of {Xt, t ∈ N}

3.3 Discounted joint conditional pmf

First of all, let the discounted joint conditional pmf of the surplus prior to ruin and deficit

at ruin of {(Ut, Jt), t ∈ N} be given by

hν
(
(x, l), (y, j)

∣∣(u, i))
=
∞∑
k=1

νk Pr{τ = k, (Uk−1, Jk−1) = (x, l), (|Uk| , Jk) = (y, j)|(U0, J0) = (u, i)}

=
∞∑
k=1

νk Pr{τ > k − 1, (Uk−1, Jk−1) = (x, l)|(U0, J0) = (u, i)}

× Pr{τ = 1, (|U1| , J1) = (y, j)|(U0, J0) = (x, l)},

x, u ∈ N, y ∈ Z+, i, j, l ∈ J , ν ∈ C, |ν| ≤ 1,

(3.3.1)

where τ = inf{t ∈ Z+ : Ut < 0} is the random variable denoting the time of ruin of the

risk process and the second equality follows from the Markov property and stationarity.

Now, let κ = inf{t ∈ Z+ : Xt < 0} denote the time {(Xt,Wt), t ∈ N} for the first time

falls below 0 and s1([h, k]) be the random variable denoting the total number of times Wt

is in S1 in the time interval [h, k], h, k ∈ N. (We let s1([h, k]) = 0, when k < h.) Then, by

noting that κ corresponds to the time of ruin τ of the risk process, we can condition on
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the value of κ and track only the times Wt is in S1 in the interval [0, κ − 1], and rewrite

(3.3.1) as

hν
(
(x, l), (y, j)

∣∣(u, i))
=
∞∑
k=1

νE{νs1([0,k−2])I[κ > k − 1, (Xk−1,Wk−1) = (x, l)]|(X0,W0) = (u, i)}

× Pr{τ = 1, (|U1| , J1) = (y, j)|(U0, J0) = (x, l)}

= ξν
(
(x, l)

∣∣(u, i))ν Pr{τ = 1, (|U1| , J1) = (y, j)|(U0, J0) = (x, l)},

x, u ∈ N, y ∈ Z+, i, j, l ∈ S1, ν ∈ C, |ν| ≤ 1,

(3.3.2)

where

ξν
(
(x, l)

∣∣(u, i)) =
∞∑
k=1

E{νs1([0,k−2])I[κ > k − 1, (Xk−1,Wk−1) = (x, l)]|(X0,W0) = (u, i)}.

Now, it remains to evaluate ξν
(
(x, l)

∣∣(u, i)).
To compute ξν

(
(x, l)

∣∣(u, i)), it is more convenient to work with the dual QBD process

rather than the dual pre-QBD process. Then, we can compute ξν
(
(x, l)

∣∣(u, i)) via the

well-known sample paths dissection method shown in Ramaswami (2006), Breuer (2008,

2010), and references therein, and a generalization of the famous Neuts’ matrix geometric

methods (see, e.g., Neuts (1981, 1989), Latouche and Ramaswami (1999) and He (2014)).

To this end, we first give the matrix representation of the one-step transition probabilities

of the dual QBD process, and then, discuss the recurrence and transience of the dual QBD

process as its discussion is important for the development of the algorithm.
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3.3.1 TPM of dual QBD process

First, letQ denote the TPM of {(Xt,Wt), t ∈ N} and letQ′ denote the TPM of {(Lt, Vt,Wt), t ∈

N}. Let the portion of the TPM Q which governs the transition probabilities correspond-

ing to the increase of i units be denoted by Ai, i ∈ {c(j), j ∈ J }. Let c−1(i) denote the

inverse function which outputs the phases {j} such that c(j) = i, i.e., c−1(i) = {j : j ∈

J , c(j) = i}. Then, according to (3.2.1), Ai is given by the following block representation:

Ai =

Ai,1,1 Ai,1,2

0 0

 ,

where Ai,1,1 is an m×m matrix whose rows are 0 row vectors except the j-th rows given

by the j-th rows of P0, for j ∈ c−1(i), Ai,1,2 is an m×
∑m

i=1

∑m
j=1 n

(i,j) matrix whose rows

are 0 row vectors except the j-th rows given by

(0, p1,j,1α
(j,1), p1,j,2α

(j,2), . . . , p1,j,m−1α
(j,m−1), p1,j,mα

(j,m),0),

for j ∈ c−1(i), and 0 is a conformable matrix (vector) of zeros.

Now, let the
∑m

i=1

∑m
j=1 n

(i,j) ×
∑m

i=1

∑m
j=1 n

(i,j) square block diagonal matrix

B2,2 =



U (1,1)

U (1,2)

. . .

U (1,m)

U (2,1)

U (2,2)

. . .

U (m,m−1)

U (m,m)


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denote the portion of Q governing the transition probabilities within S2, and let the∑m
i=1

∑m
j=1 n

(i,j) ×m block matrix

B2,1 =



(γ(1,1))ᵀ

(γ(1,2))ᵀ

. . .

(γ(1,m))ᵀ

(γ(2,1))ᵀ

(γ(2,2))ᵀ

. . .

(γ(2,m))ᵀ

...
...

...
...

(γ(m,1))ᵀ

(γ(m,2))ᵀ

. . .

(γ(m,m))ᵀ


denote the portion of Q governing the transition probabilities from S2 to S1. Then, the

portion of Q corresponding to the decrease of 1 unit is given by

B =

 0 0

B2,1 B2,2

 .
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Finally, the TPM Q of {(Xt,Wt), t ∈ N} can be written as

Q =

· · · −1 0 1 · · · cmax cmax + 1 cmax + 2 · · ·



... ..
. ...

...
... . .

. ...
...

... . .
.

0 · · · B A0 A1 · · · Acmax 0 0 · · ·

1 · · · 0 B A0 · · · Acmax−1 Acmax 0 · · ·

2 · · · 0 0 B · · · Acmax−2 Acmax−1 Acmax · · ·
...

...
...

...
...

. . .
...

...
...

. . .

.

Then, by the definition of the dual QBD process {(Lt, Vt,Wt), t ∈ N}, its TPM Q′ can

be written as

Q′ =

· · · −1 0 1 2 3 4 · · ·



... ..
. ...

...
...

...
...

... . .
.

0 · · · D2 D1 D0 0 0 0 · · ·

1 · · · 0 D2 D1 D0 0 0 · · ·

2 · · · 0 0 D2 D1 D0 0 · · ·
...

...
...

...
...

...
...

...
. . .

,

where

D0 =

0 1 · · · cmax − 1


0 Acmax

1 Acmax−1 Acmax

...
...

. . .
. . .

cmax − 1 A0 A1 · · · Acmax

,
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D1 =

0 1 2 · · · cmax − 3 cmax − 2 cmax − 1



0 A0 A1 A2 · · · Acmax−3 Acmax−2 Acmax−1

1 B A0 A1 · · · Acmax−4 Acmax−3 Acmax−2

2 0 B A0 · · · Acmax−5 Acmax−4 Acmax−3
...

...
. . .

. . .
. . .

. . .
. . .

...

cmax − 1 0 · · · · · · · · · 0 B A0

,

and

D2 =

0 1 · · · cmax − 1


0 B

1
...

cmax − 1

.

3.3.2 Recurrence and transience of dual QBD process

In this subsection, we briefly discuss the recurrence and transience of the dual QBD process,

as it plays a key role in the computation of certain matrices to be used in calculating

the discounted joint conditional pmf. For simplicity, assume that {Wt, t ∈ N} forms an

irreducible finite-state Markov chain. Let θ denote the stationary distribution vector of

the process {Wt, t ∈ N}, where θ = (θ1, θ2, . . . , θm) is the unique positive solution to

θ

( cmax∑
i=0

Ai +B

)
= θ,

θ1ᵀ = 1.
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Then, the dual pre-QBD process is transient if and only if

θ

( cmax∑
i=1

iAi

)
1ᵀ 6= θB1ᵀ. (3.3.3)

Moreover, if

θ

( cmax∑
i=1

iAi

)
1ᵀ > θB1ᵀ, (3.3.4)

then

Pr{κ <∞} < 1.

Note that the above statements apply equally to the dual QBD process. Furthermore, by

noting that the events {τ < ∞} and {κ < ∞} are equal in probability, we can see that

the security loading condition of the original risk process {(Ut,Wt), t ∈ N} is also given by

(3.3.4).

Proofs for the above statements are available in many textbooks on the theory of Markov

chains and matrix analytic methodology (see, e.g., Latouche and Ramaswami (1999), pp.

155-158).

3.3.3 Key matrices

With the block representation of the TPM of the dual QBD process given, we now define

some key matrices used in the algorithm for computing the discounted joint conditional

pmf. First of all, let η(v) denote the random time that the dual QBD process visits level

v for the first time and κ−v denote the time the process falls below level v for the first

time after time 0. We also extend the definition of s1([h, k]) to the nonnegative integer-

valued random variables h and k. Now, for v, u, x ∈ N, v < u, x, let Gν u,v and Rν v,x be
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(|W|×cmax)×(|W|×cmax) square matrices whose
(
(r1, i1), (r2, i2)

)
-th and

(
(r2, i2), (r3, i3)

)
-

th entries are given by

( Gν u,v)(r1,i1),(r2,i2)

= E{νs1([0,η(v)−1])I[η(v) <∞, (Lη(v), Vη(v),Wη(v)) = (v, r2, i2)]|(L0, V0,W0) = (u, r1, i1)}

and

( Rν v,x)(r3,i3),(r4,i4)

=
∞∑
k=1

E{νs1([0,k−2])I[κ−v+1 > k − 1, (Lk−1, Vk−1,Wk−1) = (x, r3, i3)]|(L0, V0,W0) = (v, r2, i2)},

r1, r2, r3 ∈ {0, 1, . . . , cmax − 1}, i1, i2, i3 ∈ W , u, v, x ∈ N, v < u, x.

Also, let Ξν z, z ∈ N, be a (|W| × cmax) × (|W| × cmax) square matrix whose entries are

given by

( Ξν z)(r3,i3),(r4,i4)

=
∞∑
k=1

E{νs1([0,k−2])I[κ > k − 1, (Lk−1, Vk−1,Wk−1) = (z, r4, i4)]|(L0, V0,W0) = (z, r3, i3)},

r3, r4 ∈ {0, 1, . . . , cmax − 1}, i3, i4 ∈ W , z ∈ N.

In Section 3.3.4, it will be shown that the discounted joint conditional pmf can be written

in terms of the key matrices Gν u,v, Ξν z, and Rν v,x. Therefore, it only remains to compute

these key matrices.

First of all, the level independence and the skip-free nature of the dual QBD process

implies that Gν u,v = Gν u−v and Rν v,x = Rν x−v, where Gν = Gν i,i−1 and Rν = Rν i,i+1, ∀

i ∈ N. In fact, Gν and Rν are generalizations of the fundamental period and rate matrices

that appear in Neuts’ matrix geometric methods, and we can adopt the algorithms for com-
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puting the fundamental period and rate matrices in Neuts’ matrix geometric methodology

to our problem with a very minor alteration. Moreover, as it is the case in Neuts’ matrix

geometric methodology, Rν and Ξν 0 are completely determined by Gν , and therefore, Ξν z,

z ∈ N, as well. Hence, the computation of Gν leads us to the computation of all the other

key matrices, and ultimately, the discounted joint conditional pmf. We defer the discussion

on the algorithm for computing Gν to Section 3.3.5 as it requires separate attention. In

the remaining part of this subsection, we assume that Gν has been computed and thus

proceed to compute the remaining key matrices.

Define a (|W| × cmax)× (|W| × cmax) diagonal matrix Λν as

Λν =

S1 S2 S1 · · · S2 S1 S2



S1 diag(ν)

S2 I

S1 diag(ν)
...

. . .

S2 I

S1 diag(ν)

S2 I

,

where diag(ν) denotes a diagonal matrix of an appropriate dimension with its diagonal

entries set equal to ν. (Essentially, the diagonal elements of Λν are set equal to ν if the

diagonal entry corresponds to phases in S1 and set equal to 1 if the entry corresponds to

phases in S2.) Then, following the same line of probabilistic reasoning used for proving,

e.g., Latouche and Ramaswami (1999), Eqs. (8.2), (8.5), and (8.6), we have

Ξν 0 =
(
I − Λν (D1 +D0 G

ν )
)−1

(3.3.5)
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and

Rν = Λν D0 Ξν 0. (3.3.6)

Also, let a be the minimum level visited by the dual QBD process before κ. Then, by

conditioning on the minimum level a that the dual QBD process visits before κ, the values

of the dual QBD process at η(a), and the last time the process visits level a before κ, we

can write

( Ξν z)(r1,i1),(r4,i4)

=
∞∑
k=1

E{νs1([0,k−2])I[κ > k − 1, (Lk−1, Vk−1,Wk−1) = (z, r4, i4)]|(L0, V0,W0) = (z, r1, i4)},

=
z∑
a=0

cmax−1∑
r2=0

∑
i2∈W

cmax−1∑
r3=0

∑
i3∈W

∞∑
k=1

∞∑
l=1

× E{νs1([0,η(z)−1])I[η(a) <∞, (Lη(a), Vη(a),Wη(z)) = (a, r2, i2)]|(L0, V0,W0) = (z, r1, i1)}

× E{νs1([0,l−2])I[κ > l − 1, (Ll−1, Vl−1,Wl−1) = (0, r3, i3)]|(L0, V0,W0) = (0, r2, i2)}

× E{νs1([0,k−2])I[κ−1 > k − 1, (Lk−1, Vk−1,Wk−1) = (z − a, r4, i4)]|(L0, V0,W0) = (0, r3, i3)},

(3.3.7)

where the second and the last equalities follow from the strong Markov property and

stationarity, respectively, and the last two conditional expectations appearing in the last

equality follow from the fact that a is the minimum level the dual QBD process visits as

well as the level independence of the dual QBD process. Finally, writing (3.3.7) in matrix

equation form, we obtain

Ξν z =
z∑
a=0

Gν z−a Ξν 0 R
ν z−a, z ∈ N. (3.3.8)
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An efficient way of computing (3.3.8) was suggested by Ramaswami (2006) in the

continuous-time version of a similar problem. Based on the vectorization operator and

the identity that

vec(AXB) = (Bᵀ ⊗A)vec(X)

for conformable matrices (see, e.g., Bernstein (2005)), one can rewrite (3.3.8) as

vec( Ξν z) =
z∑
a=0

vec( Gν z−a Ξν 0 R
ν z−a)

=
z∑
a=0

(( Rν z−a)ᵀ ⊗ Gν z−a)vec( Ξν 0)

=
z∑
a=0

( Rν ᵀ ⊗ Gν )z−avec( Ξν 0)

= (I − ( Rν ᵀ ⊗ Gν ))−1(I − ( Rν ᵀ ⊗ Gν )z+1)vec( Ξν 0), (3.3.9)

where the invertibility in the last line is justified if and only if the spectral radius of

Rν ᵀ ⊗ Gν is strictly less than 1. Indeed, by Corollary 7.1.2 of Latouche and Ramaswami

(1999), if the dual QBD process is transient in the negative direction, we have that sp( R1 ),

the spectral radius of R1 , is strictly less than 1. Then, from the definition of Rν , we can

deduce that ‖ Rν k‖max ≤ ‖ R1 k‖max, for all k ∈ N, ν ∈ C, |ν| ≤ 1. Then, by Gelfand’s

formula (see, e.g., Kozyakin (2009)), we have

sp( Rν ) = lim
k→∞
‖ Rν k‖

1
k
max ≤ lim

k→∞
‖ R1 k‖

1
k
max = sp( R1 ) < 1.

If the dual QBD process is transient in the positive direction, we find that G1 is a sub-

stochastic matrix, and hence, sp( G1 ) < 1. Then, similar to the case of Rν , this implies

that for ν ∈ C, |ν| ≤ 1, sp( Gν ) ≤ sp( G1 ) < 1. Noting that sp( R1 ) ≤ 1 (see, e.g.,

Proposition 3.2.5 of He (2014)) and sp( G1 ) ≤ 1 in any case (recurrent or transient), and

that the spectral radii of Kronecker products are bounded above by the products of the
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spectral radii of the respective matrices, we indeed have the spectral radius of Rν ᵀ ⊗ Gν

is strictly less than 1 when the dual QBD process is transient. (The case where the dual

QBD process is recurrent is rare in insurance risk theory.)

3.3.4 Formulas for ξν
(
(x, l)

∣∣(u, i))
Let ej be a row vector whose j-th entry is 1 and all the others are 0. The size of ej will

be determined to be conformable where it appears. Then, once we have the key matrices

computed, we can proceed to evaluate ξν
(
(x, l)

∣∣(u, i)) by considering the following two

cases:

Case 1: `1(u) ≤ `1(x) By conditioning on the last time the dual QBD process visits

level `1(u) before κ and the value of Wt at that particular epoch, we have

ξν
(
(x, l)

∣∣(u, i)) = e(`2(u),i) Ξν `1(u)
Rν `1(x)−`1(u)eᵀ(`2(x),l). (3.3.10)

Case 2: `1(u) > `1(x) By conditioning on the time the dual QBD process reaches level

`1(x) for the first time and the value of Wt at that particular epoch, we obtain

ξν
(
(x, l)

∣∣(u, i)) = e(`2(u),i) G
ν `1(u)−`1(x) Ξν `1(x)

eᵀ(`2(x),l). (3.3.11)

3.3.5 Algorithm for Gν

The algorithm for Gν to be introduced here is a generalization of the Logarithmic-Reduction

(L-R) algorithm by Latouche and Ramaswami (1999). It is quadratically convergent when

the dual QBD process is transient. We use the same notation as in Latouche and Ra-
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maswami (1999), so that the interested readers can readily refer to the textbook for more

details.

First of all, let

Hν (0) = (I − Λν D1)
−1 Λν D0,

Lν (0) = (I − Λν D1)
−1 Λν D2,

and for k ∈ Z+, recursively define

Hν (k) = (I − Uν (k−1))−1( Hν (k−1))2,

Lν (k) = (I − Uν (k−1))−1( Lν (k−1))2,

where

Uν (k) = Hν (k) Lν (k) + Lν (k) Hν (k), k ∈ N. (3.3.12)

Then, we have

Gν =
∞∑
k=0

( k−1∏
i=0

Hν (i)

)
Lν (k), (3.3.13)

and if the dual QBD process is transient, the sequence { Gν (k) =
∑k

l=0(
∏l−1

i=0 H
ν (i)) Lν (l)}∞k=0

quadratically converges to Gν , for ν ∈ C, |ν| ≤ 1.

The proof of the quadratic convergence of the above algorithm follows the exact same

line of probabilistic reasoning used for proving that of the L-R algorithm. However, the

probabilistic interpretations of the matrices {( Hν (k), Lν (k)), k ∈ N} here and {(H(k),L(k)), k ∈

N} in Latouche and Ramaswami (1999) are slightly different.
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Recalling the definition of η(i) = inf{t ∈ N : Lt = i}, i ∈ Z, the ((r1, j1), (r2, j2))-th

entries of Hν (k) and Lν (k) are given by

( Hν (k))(r1,j1),(r2,j2)

= E{νs1[0,η(2k+1−1)−1]I[η(2k+1 − 1) < κ, (Lη(2k+1−1), Vη(2k+1−1),Wη(2k+1−1)) = (2k+1 − 1, r2, j2)]|

(L0, V0,W0) = (2k − 1, r1, j1)}

and

( Lν (k))(r1,j1),(r2,j2)

= E{νs1[0,κ−1]I[κ < η(2k+1 − 1), (Lκ, Vκ,Wκ) = (−1, r2, j2)]|(L0, V0,W0) = (2k − 1, r1, j1)}

respectively. Now, with the above definition, one can directly follow the proof presented

in Latouche and Ramaswami (1999), pp. 187-197, with Hν (k) and Lν (k) in place of H(k)

and L(k) therein.

3.4 Numerical analysis

In this example, we examine the impact of implementing phase-dependent premium rates

in a MAP risk model. The risk model we consider here is comprised of the claims arrival

MAP {(Nt, Jt), t ∈ N} with the respective TPMs without arrival and with arrival given by

P 0 =

0 1( )
0 p0,0,0 p0,0,1

1 p0,1,0 p0,1,1

=

0 1( )
0 0.4 0.2

1 0.2 0.4

103



and

P 1 =

0 1( )
0 p1,0,0 p1,0,1

1 p1,1,0 p1,1,1

=

0 1( )
0 0.24 0.16

1 0.16 0.24

.

Concerning the claim size distributions, Y (0,0) and Y (0,1) follow zero-truncated geometric

distributions with pmf f (0,0)(y) = f (0,1)(y) = (1−ρ0)y−1ρ0, and Y (1,0) and Y (1,1) follow zero-

truncated geometric distributions with pmf f (1,0)(y) = f (1,1)(y) = (1 − ρ1)y−1ρ1, y ∈ Z+,

where ρ0 = 0.6 and ρ1 = 0.2. To investigate the impact of setting premium rates different

for phases 0 and 1, we consider two different cases. In the first case, we set the premium

rates equal to c(0) = 1 and c(1) = 3, which are chosen specifically to reflect the difference

in the expected claim sizes when the phase process is in either state. In the second case, we

set the premium rates equal to c(0) = c(1) = 2, which is the average of the premium rates

in the first case. Let {(U (1)
t , Jt), t ∈ N} and {(U (2)

t , Jt), t ∈ N} denote the risk processes

of the first and second case, respectively. We next give the dual QBD representation of

{(U (1)
t , Jt), t ∈ N} and the algorithmic procedure of the matrix analytic methodology. The

dual QBD representation of {(U (2)
t , Jt), t ∈ N} can be established in a similar fashion.

Let {(Xt,Wt), t ∈ N} denote the dual pre-QBD process of the risk model. Let S1 =

{0, 1} and S2 = {3, 4}. Recalling Section 3.2.2, set Xt+1 = Xt + c(Wt), t ∈ N, when

Wt ∈ S1, and Xt+1 = Xt − 1, t ∈ N, when Wt ∈ S2. Then, following the matrix notation
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given in Section 3.3.1, we write

A3 =

0 1 3 4


0 0 0 0 0

1 0.2 0.4 0.4 0

3 0 0 0 0

4 0 0 0 0

,

A2 = 0,

A1 =

0 1 3 4


0 0.4 0.2 0 0.4

1 0 0 0 0

3 0 0 0 0

4 0 0 0 0

,

and

B =

0 1 3 4


0 0 0 0 0

1 0 0 0 0

3 (0.6)(0.6) (0.6)(0.4) 0.4 0

4 (0.2)(0.4) (0.2)(0.6) 0 0.8

,

and follow the rest of the procedure described in Section 3.3.1 to construct D0, D1, and
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D2 with the above-defined A0, A1, A3, and B. Finally, letting

Λν =

(0, 0) (0, 1) (0, 3) (0, 4) (1, 0) (1, 1) (1, 3) (1, 4) (2, 0) (2, 1) (2, 3) (2, 4)



(0, 0) ν 0 0 0 0 0 0 0 0 0 0 0

(0, 1) 0 ν 0 0 0 0 0 0 0 0 0 0

(0, 3) 0 0 1 0 0 0 0 0 0 0 0 0

(0, 4) 0 0 0 1 0 0 0 0 0 0 0 0

(1, 0) 0 0 0 0 ν 0 0 0 0 0 0 0

(1, 1) 0 0 0 0 0 ν 0 0 0 0 0 0

(1, 3) 0 0 0 0 0 0 1 0 0 0 0 0

(1, 4) 0 0 0 0 0 0 0 1 0 0 0 0

(2, 0) 0 0 0 0 0 0 0 0 ν 0 0 0

(2, 1) 0 0 0 0 0 0 0 0 0 ν 0 0

(2, 3) 0 0 0 0 0 0 0 0 0 0 1 0

(2, 4) 0 0 0 0 0 0 0 0 0 0 0 1

,

for ν ∈ C, |ν| ≤ 1, we have all the ingredients to compute the key matrices introduced in

Section 3.3.3.

In what follows next, we investigate the impact of incorporating phase-dependent pre-

mium rates in risk modeling by comparing the infinite-time ruin probabilities, finite-time

ruin probabilities, and another set of time-dependent quantities of {(U (1)
t , Jt), t ∈ N} and

{(U (2)
t , Jt), t ∈ N}. For computing the above quantities of interest, we implement the ma-

trix analytic methodology developed in this chapter.

Before we proceed to our investigation, however, we provide a table which compares

the values of the joint conditional pmf of the time of ruin, surplus prior to ruin, and
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Matrix analytic methodology Recursion
n φ(n, 50, 1|50, 0) φ(n, 50, 1|50, 1) φ(n, 50, 1|50, 0) φ(n, 50, 1|50, 1)

10 2.16995× 10−6 2.1849× 10−6 2.16995× 10−6 2.1849× 10−6

20 1.37253× 10−6 1.46487× 10−6 1.37253× 10−6 1.46487× 10−6

30 1.03762× 10−6 1.12762× 10−6 1.03762× 10−6 1.12762× 10−6

40 8.37005× 10−7 9.18475× 10−7 8.37005× 10−7 9.18475× 10−7

50 6.96102× 10−7 7.69737× 10−7 6.96102× 10−7 7.69737× 10−7

100 3.23488× 10−7 3.6867× 10−7 3.23488× 10−7 3.6867× 10−7

Table 3.1: Joint conditional pmf of time of ruin, surplus prior to ruin, and deficit at ruin

deficit at ruin, denoted by φ(n, x, y|u, i) = Pr{τ = n, Uτ−1 = x, |Uτ | = y|U0 = u, J0 = i},

x, u ∈ N, n, y ∈ Z+, i = 0, 1, computed via our matrix analytic methodology and the

standard recursive method discussed in Example 3 in Section 2.5 to check our matrix

analytic methodology’s soundness. The values of φ(n, x, y|u, i) computed via the matrix

analytic methodology are numerically inverted via the Lattice-Poisson algorithm in Abate

and Whitt (1992). The error bound used for the Lattice-Poisson algorithm is 10−8.

First of all, in Table 3.1, we see that the differences in the computed values are within

the error bound used for the inversion algorithm. Secondly, our matrix analytic method-

ology performed slower than the standard recursion method for smaller values of n in

Table 3.1, but for larger values of n in Table 3.1, our methodology started to outper-

form the recursion method. As stated in Section 1.1, the recursion method’s computation

time increases rapidly (nearly quadratic) as n increases. On the other hand, as it was

the case in Example 3 in Section 2.5, the computation time of our methodology in this

chapter for computing a single value of the generating function of φ(n, x, y|u) has an up-

per bound at ν = 1. Therefore, the computational complexity of our methodology only

depends on the inversion algorithm that is used (as per its dependency on n). Noting

that the Lattice-Poisson algorithm we implemented here is O(n), the computation time

of our matrix analytic methodology grows linearly in n. Unlike Example 3 in Section 2.5

however, here we are seeing the advantage of the lower computational complexity of our

methodology much earlier than in Example 3 in Section 2.5, due to the much simplified
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n Ψ1(n|50, 0) Ψ1(n|50, 1) Ψ2(n|50, 0) Ψ2(n|50, 1)
50 0.00116113 0.00133148 0.00179486 0.00268845

100 0.00182098 0.00199151 0.00283758 0.00396366
200 0.00203042 0.00219702 0.00319861 0.00438187
300 0.00204346 0.00220974 0.0032258 0.00441244
500 0.00204442 0.00221068 0.0032283 0.00441522

1000 0.00204443 0.00221069 0.00322833 0.00441525
limn→∞ 0.00204443 0.00221069 0.00322833 0.00441525

Table 3.2: Time of ruin distribution

algorithmic procedure arising from the simple skip-free sample paths structure of the QBD

process. Furthermore, as stated in Section 1.1, the recursion method’s computer memory

consumption rate grows linearly in n. On the other hand, by the procedural structure of

our methodology, the computer memory consumption rate of our matrix analytic method-

ology stays constant in n. Therefore, for large scale problems where larger values of n

are of interest, the matrix analytic methodology introduced in this chapter provides an

excellent alternative to the standard recursion method. Moreover, as we will see in the

following discussions, for certain quantities of interest, the matrix analytic methodology

outperforms the recursion method in terms of both speed and memory consumption by a

significant margin.

First of all, we compare the infinite-time ruin probabilities and finite-time ruin prob-

abilities of {(U (1)
t , Jt), t ∈ N} and {(U (2)

t , Jt), t ∈ N}. Let Ψ1(n|u, i) = Pr{τ1 ≤ n|U (1)
0 =

u, J0 = i} and Ψ2(n|u, i) = Pr{τ2 ≤ n|U (2)
0 = u, J0 = i} denote the finite-time ruin prob-

abilities of {(U (1)
t , Jt), t ∈ N} and {(U (2)

t , Jt), t ∈ N}, where τ1 and τ2 denote the time

of ruin of {(U (1)
t , Jt), t ∈ N} and {(U (2)

t , Jt), t ∈ N}, respectively. For the finite-time ruin

probabilities, we only need to compute Gν and evaluate Gν `1(u), for the initial surplus level

u ∈ N and for the values ν ∈ C that are required for the numerical inversion algorithm.

We note that this is significantly more computationally efficient than the recursion method.

As can be seen in Table 3.2, the ruin probabilities are higher for the risk model with
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x F1(500, x|50, 0) F1(500, x|50, 1) F2(500, x|50, 0) F2(500, x|50, 1)
60 0.997955 0.997789 0.99677 0.995583

150 0.99774 0.997578 0.996435 0.995218
300 0.90592 0.907642 0.902033 0.896299
360 0.652863 0.657865 0.659253 0.648321
420 0.283029 0.288669 0.29859 0.288677
480 0.0567086 0.0589945 0.0633911 0.0599531
600 9.54045× 10−5 0.000105992 8.86556× 10−5 7.9621× 10−5

Table 3.3: Transient distribution of surplus process

a single premium rate. Moreover, we can see that the ruin probabilities of the risk model

with phase-dependent premium rates are less sensitive to the initial phase than those of

the risk model with a single premium rate. To take a closer look at the root of such results,

we compare the transient distributions of the risk processes of both cases.

Let F1(n, x|u, i) = Pr{U (1)
n > x, τ1 > n|U (1)

0 = u, J0 = i} and F2(n, x|u, i) = Pr{U (2)
n >

x, τ2 > n|U (2)
0 = u, J0 = i} denote the transient tail distributions of {(U (1)

t , Jt), t ∈ N} and

{(U (2)
t , Jt), t ∈ N}, respectively. What these quantities will reveal is how the risk processes

of both cases behave over time. For our purposes, we choose the value of n = 500 and

compare the values of F1(500, x|50, i) and F2(500, x|50, i), i = 0, 1, over some values of

x. We compute the values of F1(500, x|50, i) and F2(500, x|50, i), i = 0, 1, by computing

ξν
(
(x, l)|(u, i)

)
as in (3.3.10) and (3.3.11), summing ξν

(
(x, l)|(u, i)

)
over the values of x of

interest and l = 0, 1, and numerically inverting the sum via the Lattice-Poisson inversion

algorithm. Once again, the error bound used for the inversion algorithm is 10−8.

From Table 3.3, we observe that the risk process is more variable when there is a

single premium rate implemented than when phase-dependent premium rates are imple-

mented. More specifically, for the time variable n = 500, the transient distribution of the

risk process of the case with a single premium rate exhibits stronger concentration on the

two extreme ends compared to that of the risk process of the case with phase-dependent

premium rates. Since only the premium rates differ between the two models, it is clear
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that the higher ruin probabilities of the risk model with a single premium rate in Table

3.2 are attributable to the higher probabilities of its risk process staying in the danger

zone (i.e., lower values of x where ruin is more likely to occur) than the risk process of

the case with phase-dependent premium rates. Hence, it seems that the implementation

of appropriate phase-dependent premium rates reduces the variability of the risk process,

and subsequently, the ruin probabilities in the context of a MAP risk model.
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Chapter 4

A matrix analytic methodology for

the continuous-time MAP risk model

with phase-dependent premium rates

and a dynamic individual risk model

4.1 Introduction

Extending the methodology developed in Chapter 2 to continuous-time MAP risk mod-

els directly through Ahn and Ramaswami’s original approach may be possible. However,

Ahn and Ramaswami’s approach involves nonelementary mathematical tools and quite

complex coupled queues, and to extend their methodology to include phase-dependent

premium rates directly through their original approach is certainly not a simple task.

Fortunately, we have recently come across a paper by Bean and O’Reilly (2013), which

introduces an efficient matrix-based algorithm for computing some quantities of interest

in multidimensional fluid flow models. As first noted in Ahn et al. (2018), Bean and

O’Reilly’s methodology naturally finds its application in risk theory. Although not specif-

ically discussed in Ahn et al. (2018), application of Bean and O’Reilly’s methodology in
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risk theory affords a fluid flow process based matrix analytic methodology applicable to

risk models with phase-dependent rates while preserving the skip-free nature of the fluid

flow process.

In this work, we first extend Ahn et al.’s application of Bean and O’Reilly’s method-

ology to the analysis of the occupation measure. This affords us a powerful fluid flow

process based matrix analytic methodology for computing the so-called discounted joint

conditional pdf of the surplus prior to ruin and deficit at ruin of the continuous-time MAP

risk model with phase-dependent premium rates and phase-type claim size distributions.

Other than the derivation of some key matrices, however, the probabilistic arguments used

to derive the matrix-based algorithm for the discounted joint conditional pdf of the MAP

risk model with phase-dependent rates and the MAP risk model with phase-independent

rates, which has already been studied by Ramaswami (2006), are identical. Therefore, we

keep the discussion brief here.

Instead, we introduce a new risk model that takes a more microscopic point of view

on the evolution of an insurance risk process than the view of traditional collective risk

theory. In this risk model, premium rates depend on certain variables that can be modelled

via a continuous-time Markov chain (CTMC). Thus, the fluid flow process based matrix

analytic methodology that we introduce in this chapter can be employed. The model does

not necessarily fall under the class of MAP risk models, and hence, will require additional

probabilistic analysis than the probabilistic analysis typically used in the literature of fluid

flow based matrix analytic methodologies in risk theory.

First, we present some of the results from Bean and O’Reilly (2013) in Section 4.2. In

Section 4.3, a procedure to evaluate the occupation measure of the risk process via the

methodology developed in Bean and O’Reilly (2013) is provided. Then, in Section 4.4,

we briefly discuss a procedure to evaluate the joint conditional pdf of the time of ruin,
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surplus prior to ruin, and deficit at ruin of a continuous-time MAP risk model with phase-

dependent premium rates. The procedure involves some results on the first passage time

LST given in Bean and O’Reilly (2013) and the methodology for the evaluation of the

occupation measure given in Section 4.3 of this thesis. Finally, in Section 4.5, we discuss

the newly introduced risk model.

4.2 Fluid flow process and shift process

Consider a fluid flow process {(Ft,Wt), t ∈ R+}, where the phase process {Wt, t ∈ R+} is

a finite-state CTMC whose state space is given by W . Let ri ∈ R, i ∈ W , denote the flow

rates of the process {Ft, t ∈ R+} (Unless otherwise specified, we assume F0 = 0.) Consider

another fluid flow process {Ot, t ∈ R+} defined on the same phase process {Wt, t ∈ R+}

as {Ft, t ∈ R+}, but with a different set of flow rates, denoted by {ci, i ∈ W}. We assume

that both {Ft, t ∈ R+} and {Ot, t ∈ R+} are defined on the entire real line and that they

are conditionally independent given the phase process.

Bean and O’Reilly (2013) introduced the so-called shift process {Zt, t ∈ R+} defined

as {Zt = Ot −O0, t ∈ R+}, and derived an efficient matrix-based algorithm for computing

the LST of the shift process stopped at certain first passage times of {(Ft,Wt), t ∈ R+}.

Bean and O’Reilly’s algorithm gives a numerically efficient and stable method to compute

numerous key quantities appearing in applied probability. In this subsection, we simply

present Bean and O’Reilly’s results and in Sections 4.3 and 4.4, employ their results in

solving the problems at our hand.

Let us first partition the state space W into three disjoint sets, W1, W2, and W0, such

that ri > 0 for i ∈ W1, ri < 0 for i ∈ W2, and ri = 0 for i ∈ W0. Let the partitioned

infinitesimal rate matrix (partitioned according to W1, W2, and W0) of {Wt, t ∈ R+} be
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given by

T = (vi,j)i,j∈W =


T 11 T 12 T 10

T 21 T 22 T 20

T 01 T 02 T 00

 .

Define the diagonal matrices R1 = diag(ri)i∈W1 , R2 = diag(|ri|)i∈W2 , C1 = diag(ci)i∈W1 ,

C2 = diag(ci)i∈W2 , and C0 = diag(ci)i∈W0 . Given s ∈ C, further define a set of matrices

W 11(s) = R−11

(
(T 11 − sC1)− T 10(T 00 − sC0)

−1T 01

)
,

W 22(s) = R−12

(
(T 22 − sC2)− T 20(T 00 − sC0)

−1T 02

)
,

W 12(s) = R−11

(
T 12 − T 10(T 00 − sC0)

−1T 02

)
,

W 21(s) = R−12

(
T 21 − T 20(T 00 − sC0)

−1T 01

)
,

provided that the maximum real part of the eigenvalues of T 00 − sC0 is negative. Now,

define the first passage time random variable κ(y) = inf{t > 0 : Ft = y}, y ∈ R, and two

LST matrices Ψ̂(s) and Ĝy(s) whose (i, j)-th entries are given by

(
Ψ̂(s)

)
i,j

= E{e−sZκ(0)I[κ(0) <∞,Wκ(0) = j]|F0 = 0,W0 = i}, i ∈ W1, j ∈ W2,(
Ĝ(s, y)

)
i,j

= E{e−sZκ(0)I[κ(0) <∞,Wκ(0) = j]|F0 = y,W0 = i}, i, j ∈ W2, y > 0.

Then, the following result holds true:

Theorem 3, Bean and O’Reilly (2013) If the maximum real parts of the eigenvalues

of T 00−sC0, W 11(s), andW 22(s) are negative, then the matrix Ψ̂(s) satisfies the equation

W 12(s) + Ψ̂(s)W 21(s)Ψ̂(s) +W 11(s)Ψ̂(s) + Ψ̂(s)W 22(s) = 0, (4.2.1)

and furthermore, if s is real, Ψ̂(s) is the minimal nonnegative solution of (4.2.1). Moreover,

we have:
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Theorem 4, Bean and O’Reilly (2013)

Ĝ(s, y) = e(W 22(s)+W 21(s)Ψ̂(s))y. (4.2.2)

4.3 Occupation measure with respect to shift process

Consider the same fluid flow processes {(Ft,Wt), t ∈ R+} and {Ot, t ∈ R+}, and the shift

process {Zt, t ∈ R+}, introduced in Section 4.2. For s ∈ C and y > 0, define a matrix

N (s, dy) whose (i, j)-th entries are given by

(
N (s, dy)

)
i,j

=

∫ ∞
0

E{e−sZtI[κ(0) > t, Ft ∈ dy,Wt = j]|F0 = 0,W0 = i}dt,

for i, j ∈ W1. For now, we assume that the shift process is such that the above integral

exists. In order to compute the occupation measure matrix N (s, dy), we employ a well-

known time-reversal argument.

First of all, let θ = (θi)i∈W denote a stationary probability vector of {Wt, t ∈ R+}

(assuming that one exists) and let {W ∗
t , t ∈ R+} denote the stationary version of {Wt, t ∈

R+}, i.e., W0 distributed with θ. Let {W̃ ∗
t , t ∈ R+} denote the time-reversed version

of {W ∗
t , t ∈ R+}, and {F̃t, t ∈ R+} and {Õt, t ∈ R+} denote the time-reversed versions

of {Ft, t ∈ R+} and {Ot, t ∈ R+}. Then, the flow rates of the time-reversed fluid flow

processes are the negatives of those of the original processes, and the shift process of the

fluid flow process {Õt, t ∈ R+} is in fact equal to {Z̃t = −Zt, t ∈ R+}. Lastly, note that the

fluid flow process {Ft, t ∈ R+} and the shift process {Zt, t ∈ R+} are both time and space

invariant. Then, following the same probabilistic reasoning behind the proof of Theorem
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2.5 of Albrecher and Asmussen (2010), we have

θi(N (s, dy))i,j =

∫ ∞
0

θiE{e−sZtI[κ(0) > t, Ft ∈ dy,Wt = j]|F0 = 0,W0 = i}dt

=

∫ ∞
0

E{e−sZtI[κ(0) > t, Ft ∈ dy,W ∗
t = j,W ∗

0 = i]|F0 = 0}dt

=

∫ ∞
0

E{esZ̃tI[F̃t < F̃a ∀ a ∈ [0, t) , F̃t ∈ −dy, W̃ ∗
t = i, W̃ ∗

0 = j]|F̃0 = 0}dt

=

∫ ∞
0

θjE{esZ̃tI[F̃t < F̃a ∀ a ∈ [0, t) , F̃t ∈ −dy, W̃ ∗
t = i]|F̃0 = 0, W̃ ∗

0 = j}dt

= θjE{esZ̃κ̃(−y)I[W̃ ∗
κ̃(−y) = i]|F̃0 = 0, W̃0 = j}dy, (4.3.1)

where κ̃(y) = inf{t > 0 : F̃t = y} denotes the first passage times of {F̃t, t ∈ R+}.

Defining a matrix ̂̃G(−s, y) whose (j, i)-th entries are given by

( ̂̃G(−s, y)
)
j,i

= E{esZ̃κ̃(−y)I[W̃ ∗
κ̃(−y) = i]|F̃0 = 0, W̃ ∗

0 = j},

(4.3.1) can be written as

θi
(
N (s, dy)

)
i,j

= θj
( ̂̃G(−s, y)

)
j,i
dy. (4.3.2)

Finally, defining a diagonal matrix ∆ = diag(θi)i∈W , we can write (4.3.2) in the following

matrix equation form:

N (s, dy) = ∆−1 ̂̃G(−s, y)ᵀ∆dy. (4.3.3)

Therefore, computation of ̂̃G(−s, y), which can be done using the methods shown in Bean

and O’Reilly (2013), leads to the computation of N (s, dy).
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4.4 Continuous-time MAP risk model with phase-dependent

premium rates

4.4.1 Model description

Consider a continuous-time MAP risk model

Ut = u+

∫ t

0

c(Js)ds−
Nt∑
k=1

Yk, t ∈ R+, u ∈ R+,

comprised of a continuous-time MAP {(Nt, Jt), t ∈ R+} defined on N×J , J = {1, 2, . . . ,m},

m ∈ Z+, rate matrices (D0,D1) = ((d0,i,j)i,j∈J , (d1,i,j)i,j∈J ), and the conditionally i.i.d.

claim amount sequence {Yk, k ∈ Z+} (conditional on the phase process {Jt, t ∈ R+} of the

MAP). In particular, Yk denotes the amount of the k-th claim to be made and the distribu-

tion of Yk depends only on the type of the phase transition that the claim is accompanied by.

In other words, let f (i,j)(y), i, j ∈ J , y ≥ 0, denote the pdf of Y (i,j) = Yk|(Jξ−k = i, Jξk = j),

where {ξk, k ∈ Z+} denotes the arrival epochs of the associated MAP. We further assume

that the premium rates depend on the phase process {Jt, t ∈ R+}, i.e., ct = c(Jt), and

that Y (i,j) follows a continuous-time phase-type distribution of order n(i,j) ∈ Z+ with pdf

f (i,j)(y) = α(i,j)e(U
(i,j))y(γ(i,j))ᵀ, y ≥ 0, i, j ∈ J .

4.4.2 Discounted joint conditional pdf

Let τ = inf{t > 0 : Ut < 0} denote the time of ruin, and let h(t, x, y|u) denote the

joint conditional pdf of (τ, Uτ− , |Uτ |), given that U0 = u. Then, the so-called discounted

joint conditional pdf of (τ, Uτ− , |Uτ |) is given by hs(x, y|u) =
∫∞
0
e−sth(t, x, y|u)dt, s ∈ C,

<(s) ≥ 0.

Our objective here is to derive a matrix-based algorithm for computing the discounted
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joint conditional pdf. To this end, we first construct a fluid flow process of which sam-

ple paths can be linked to the sample paths of the risk model of interest. The method

of construction of such a fluid flow process is well detailed in many references on fluid

flow process based matrix analytic methodologies in risk theory (see, e.g., Ramaswami

(2006)). Once such a fluid flow process is constructed, as first noted in Ahn et al. (2018),

we consider a shift process which keeps track of the time the fluid flow process spends in

phases with positive flow rates. Then, one can compute Ψ̂(s), Ĝ(s, y), and N (s, dy) of

the fluid flow process and the shift process as in Sections 4.2 and 4.3 using the algorithms

given in Bean and O’Reilly (2013), and follow the same sample paths argument used in Ra-

maswami (2006) to evaluate the discounted joint conditional pdf. We omit the details here.

4.5 Dynamic individual risk model

4.5.1 Introduction

In this work, we propose a new risk model which we refer to as the dynamic individual risk

model. Unlike the traditional view of collective risk theory where claims arrive according

to a certain point process, here we take the view that the claims are generated by the

active insurance contracts (i.e., the customers) that the firm holds at a given time. To

this end, we also take into consideration the arrivals and departures of the customers by

incorporating an arrival process of the new customers and their departures at the ends

of deterministic time intervals (i.e., think of it as a calendar year of the insurance firm).

Customers are assumed to arrive to the system according to a Poisson process. At every

time point t = kT , k ∈ Z+, T > 0, one calendar year of the firm is declared finished and all

of the existing contracts leave the system. Until the year end is reached, the customers cur-

rently in the system are under contract and hence cannot leave the system at will. Claims

are generated by each customer in the system at random epochs which are assumed to be

realizations of a Poisson process. Premiums are collected continuously from each customer
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while he/she is in the system.

Since this risk model keeps track of the number of active insurance contracts in the

system, it is only natural to assume that the premium rates should depend on the current

volume of the insurance business which is represented by the number of active insurance

contracts at a given time. Moreover, we assume that there are no new customers arriving

when the surplus process is below level 0 due to the lack of confidence in the firm. Since,

even after the surplus process falls below level 0, there may still be active contracts in

the system, the insurance business continues as long as the number of active insurance

contracts stays positive (even if the surplus process is below level 0). With this view, we

define the time of ruin to be the time the event that the surplus process is below level 0

and the number of active contracts is 0 at the same time is observed for the first time.

Then, by design, the time of ruin is one of the calendar year ends of the firm.

In practice, the value of T is deterministic. However, this poses difficulty in putting the

specific risk model in a mathematically tractable framework. As such, we employ the Er-

langization technique to construct a risk model that approximates the dynamic individual

risk model with a constant calendar year T . Assume that the calendar year is randomly

distributed with an Erlang distribution. If we fix the expected value of the random calendar

year at T and increase the shape parameter, the random variable converges in distribution

to T . We note that the Erlangization technique in the same context, i.e., approximating

risk models with deterministic time intervals, has already been employed in other papers

such as Stanford et al. (2005) and Albrecher et al. (2013). For brevity, we henceforth

refer to the dynamic individual risk model with an Erlang calendar year as the dynamic

individual risk model.

The dynamic individual risk model described above can be constructed as a continuous-

time level-dependent MAP risk model with phase-dependent premium rates, since the risk
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process behaves differently when it is above or below level 0. Therefore, we can employ

the fluid flow process based matrix analytic methodology introduced in Sections 4.2, 4.3

and 4.4 to study the risk model of interest. The fluid flow process based matrix analytic

methodology is a suitable choice of methodology for studying this risk model for several

reasons. First of all, to keep track of the number of active contracts, we need a methodol-

ogy which behaves numerically stable even when the number of phases is large. Moreover,

incorporation of phase-dependent premium rates and the level-dependent structure arising

from the definition of the time of ruin given above calls for a fluid flow process based

matrix analytic methodology which can analyze MAP risk models with phase-dependent

rates and at the same time, exploit the skip-free nature of the fluid flow process. The fluid

flow based matrix analytic methodology introduced in Sections 4.2, 4.3 and 4.4 satisfies all

of the above points.

4.5.2 Mathematical model description

Let N ∈ Z+ denote the maximum number of active contracts that the insurance firm can

hold at any given time. Assume that new customers arrive to the system according to a

Poisson process with rate λ2 > 0 (independent of everything else), as long as the number

of active contracts in the system is strictly less than N and the surplus process remains

above level 0. Furthermore, assume that each active contract generates claims according

to a Poisson process with rate λ3 > 0, independent of everything else, and that the claim

sizes are i.i.d. with a phase-type distribution having pdf f(y) = αeUyγᵀ, y > 0, and

of order m ∈ Z+, where α = (α1, α2, . . . , αm), U = (ui,j)i,j∈J , J = {1, 2, . . . ,m}, and

γ = (γ1, γ2, . . . , γm). Lastly, let A ∼ E(K,λ1) be a random variable denoting the calendar

year of the insurance firm with Erlang pdf a(y) =
λK1 y

K−1e−λ1y

(K−1)! , y > 0, K ∈ Z+, λ1 > 0. We

assume that A is independent of everything else.

To put the risk model of interest in the MAP framework, we first note that A can
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be decomposed into K sequential i.i.d. random intervals with each interval exponentially

distributed with rate λ1. Then, employing the method of phases, let {At, t ∈ R+} defined

on P = {1, 2, . . . , K} denote the age process associated with A. Next, let {Nt, t ∈ R+}

denote the number of active contracts in the system at time t. We can then construct a

bivariate CTMC {N t = (Nt, At), t ∈ R+} due to the independence between the arrival

process and the age process associated with A, and their exponential sojourn times.

The CTMC {N t, t ∈ R+} has two possible types of transitions. The first is that a new

customer arrives before the age process advances to the next age (from age l to l+ 1.) The

second is that the age process advances to the next age before a new customer arrives.

Note, however, that {N t, t ∈ R+} behaves differently when the surplus process is above or

below level 0. The age process retiring the age K when the surplus process is above level

0 resets to age 1. On the other hand, the age process retiring the age K when the surplus

process is below level 0 results in the event of ruin. Furthermore, no new customers arrive

when the surplus process is below level 0. To distinguish between when the surplus process

is above and below level 0, let {N+
t = (N+

t , A
+
t ), t ∈ R+} and {N−t = (N−t , A

−
t ), t ∈ R+}

denote the CTMCs describing {N t, t ∈ R+} when the surplus process is above and below

level 0, respectively.

Now, let {(L+
t ,N

+
t ), t ∈ R+}, {N+

t , t ∈ R+} defined on N+ = {0, 1, 2, . . . , N} × P ,

denote the claims arrival MAP when the surplus process is above level 0. If a claim occurs

before any other event occurs, we say there is an arrival. Hence, adopting the notation

used in the earlier section on MAP processes, let (D+
0 ,D

+
1 ) = ((d+0,n,l)n,l∈N+ , (d+1,n,l)n,l∈N+),

n = (n1, n2), l = (l1, l2), denote the associated rate matrices without and with arrivals. By
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using the standard results from independent exponential random variables, we can write

d+0,n,l =



−(λ1 + λ2 + λ3n1), if n = l and n1 < N ,

−(λ1 + λ3n1), if n = l and n1 = N ,

λ1, if n1 = l1, l2 = n2 + 1, and n2 < K, or l1 = 0, l2 = 1, and n2 = K,

λ2, if l1 = n1 + 1, l2 = n2, and n1 < N ,

0, otherwise,

and

d+1,n,l =

λ3n1, if n = l,

0, otherwise.

Now, let {(L−t ,N−t ), t ∈ R+}, {N−t , t ∈ R+} defined on N− = ({1, 2, . . . , N} ×

P) ∪ {(0, 0)}, denote the claims arrival MAP process when the surplus process is be-

low level 0. Here, the state 0 = (0, 0) denotes an absorbing state and when state 0 is

reached, the event of ruin is declared. Again, by using the standard results from inde-

pendent exponential random variables, we have the transition rate matrices (D−0 ,D
−
1 ) =

((d−0,n,l)n,l∈N− , (d
−
1,n,l)n,l∈N−) defined as

d−0,n,l =


−(λ1 + λ3n1), if n = l and n2 ≤ K,

λ1, if n1 = l1, l2 = n2 + 1, and n2 < K, or l1 = 0, l2 = 0, n2 = K, and n1 ∈ {1, 2, . . . , N},

0, otherwise,
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and

d−1,n,l =

λ3n1, if n = l and n 6= 0,

0, otherwise.

With the MAP processes depicting the claims arrival process defined as above, we are now

ready to give the formal mathematical definition of the surplus process of the dynamic

individual risk model.

Let {Ut, t ∈ R+} denote the surplus process and {(Lt,N t), t ∈ R+} denote the MAP

process which follows the same probability law as that of {(L+
t ,N

+
t ), t ∈ R+} when the

surplus process is above level 0 and that of {(L−t ,N−t ), t ∈ R+} when the surplus process is

below level 0. Let Yk, k ∈ Z+, denote the k-th claim size arising from {(Lt,N t), t ∈ R+}.

Then,

Ut = U0 +

∫ t

0

c(Nz)dz −
Lt∑
k=1

Yk, t ∈ R+,

where the only restriction we impose on the premium rates is that c(n) > 0 for all

n ∈ {1, 2, . . . , N} and c(0) = 0.

4.5.3 Time of ruin and related quantities

The motivation behind the dynamic individual risk model is to take a more realistic view

on the dynamics of the cash flows of an insurance business rather than the view of the

more prevalent collective risk model by taking into account the number of customers that

an insurance company is liable for at any given time. Under such a model setting, however,

an insurer may have outstanding financial obligations and active sources of income even

after the surplus level falls below 0. This is in contrast to the collective risk model in which
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we generally assume that once the surplus level falls below 0, the event of ruin is declared

and the deficit at ruin is set equal to the final value of the surplus level immediately after

ruin. In the dynamic individual risk model, we do not stop observing the surplus process

when it falls below 0. Instead, we stop observing the process when it is below 0, and at

the same time, there are no active contracts in the system. Therefore, we define the time

of ruin to be τ = inf{t > 0 : Ut < 0 and N t = 0}.

The main quantity of interest here is the distribution of the time of ruin. As the time

of ruin is not a simple first passage time, we need to decompose the time of ruin into

several time points and piece them together. To this end, let us first consider the following

functional:

hs(x, l, y|u,n) =

∫ ∞
0

e−sth(t, x, l, y|u,n)dt,

u ≥ 0, x, y < 0, n ∈ N+ \ ({0} × P), l ∈ N− \ {0}, s ∈ C, <(s) ≥ 0,

where h(t, x, l, y|u,n) is the joint conditional pdf of (τ, Uσ,Nσ, Uτ ), conditional on the

event that (U0,N 0) = (0,n), with σ = sup{t > 0 : Ut > 0} denoting the last epoch that

the surplus level falls below 0 prior to the time of ruin. Then, integrating and summing

the functional hs(x, l, y|u,n) over the values of x, l, and y gives the LST of the time of

ruin, i.e.,

ψ(s|u,n) = E{e−sτI[τ < 0]|U0 = 0,N 0 = n} =
∑

l∈N−\{0}

∫ 0

−∞

∫ 0

−∞
hs(x, l, y|u,n)dxdy.

(4.5.1)

In what follows, we construct a fluid flow process which will be used to develop a matrix

analytic methodology for computing the functional hs(x, l, y|u,n).
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4.5.4 Formulation of fluid flow process

Consider a sample path of the surplus process {(Ut,N t), t ∈ R+}, which comprises of a

series of linear upward journeys and downward jumps. We first start off by implementing

the usual method of stretching the downward jumps caused by claim arrivals into linear

downward journeys. Then, the resulting sample path resembles that of a fluid flow process.

Since, however, the surplus process behaves differently when it is above and below level

0, we have to construct a fluid flow process which mimics such behaviour of the surplus

process. To this end, we construct two fluid flow processes, denoted by {(F+
t ,J

+
t ), t ∈ R+}

and {(F−t ,J−t ), t ∈ R+}, of which sample paths exhibit certain connections to the sample

paths of the surplus process when it is above and below level 0, respectively.

Let J = {1, 2, . . . ,m} be the transient states of the Markov chain associated with the

phase-type claim amount distribution f(y). Consider a finite multi-dimensional CTMC

{J+
t , t ∈ R+} defined on W+ =W+

0 ∪W+
1 ∪W+

2 , where W+
0 = {0}×P , W+

1 = N+ \W+
0 ,

andW+
2 =W+

1 ×J . We then construct a fluid flow process {F+
t , t ∈ R+} on {J+

t , t ∈ R+}

with the flow rates given by {rn,n ∈ W+}, where rn = c(n1) for n ∈ W+
1 , rn = 0 for

n ∈ W+
0 , and rn = −1 for n ∈ W+

2 . Now, let the partitioned infinitesimal rate matrix of

{J+
t , t ∈ R+} (partitioned according to W+

1 , W+
2 , and W+

0 ) be given by

T+ = (v+n,l)n,l∈W+ =


T+

11 T+
12 T+

10

T+
21 T+

22 T+
20

T+
01 T+

02 T+
00

 .

The transition rates within W+
1 and W+

0 , i.e., the elements of T+
11 and T+

00, are given by

the elements of D+
0 . Moreover, T+

10 and T+
01 can also be identified from D+

0 . For the tran-

sition rates within, to, and fromW+
2 , the core idea is that as a claim arrives, we remember

the number of active contracts and the age of {At, t ∈ R+} at the moment of the claim’s

arrival, keep track of the transitions within the transient states of the Markov chain associ-

ated with the phase-type pdf f(y), and as the exit from the transient states of the Markov
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chain associated with the phase-type pdf f(y) occurs, the process finally returns to the

number of active contracts and the age of {At, t ∈ R+} at the moment of the claim’s arrival.

Putting it altogether, we see that for n, l ∈ W+
1 ,

v+n,l =



−(λ1 + λ2 + λ3n1), if n = l and n1 < N ,

−(λ1 + λ3n1), if n = l and n1 = N ,

λ1, if n1 = l1, l2 = n2 + 1, and n2 < K,

λ2, if l1 = n1 + 1, l2 = n2, and n1 < N ,

0, otherwise.

For n, l ∈ W+
0 ,

v+n,l =


−(λ1 + λ2), if n = l,

λ1, if l2 = n2 + 1 and n2 < K, or l2 = 1 and n2 = K,

0, otherwise.

For n ∈ W+
1 and l ∈ W+

0 ,

v+n,l =

λ1, if l2 = 1 and n2 = K,

0, otherwise.

For n ∈ W+
0 and l ∈ W+

1 ,

v+n,l =

λ2, if l1 = 1 and n2 = l2,

0, otherwise.
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For n ∈ W+
1 and l ∈ W+

2 ,

v+n,l =

αl3λ3n1, if (n1, n2) = (l1, l2),

0, otherwise.

For n, l ∈ W+
2 ,

v+n,l =

un3,l3 , if (n1, n2) = (l1, l2),

0, otherwise.

For n ∈ W+
2 and l ∈ W+

1 ,

v+n,l =

γn3 , if (n1, n2) = (l1, l2),

0, otherwise.

Lastly, there are no transitions from W+
0 to W+

2 , and vice versa.

Similar to {(F+
t ,J

+
t ), t ∈ R+}, consider a finite multi-dimensional CTMC {J−t , t ∈ R+}

defined onW− =W−1 ∪W−2 ∪W−0 , whereW−1 = N−\{0},W−2 =W−1 ×J , andW−0 = {0}.

We then construct a fluid flow process {F−t , t ∈ R+} on {J−t , t ∈ R+} with the flow rates

given by {rn,n ∈ W−}, where rn = c(n1) for n ∈ W−1 , rn = 0 for n ∈ W+
0 , and rn = −1

for n ∈ W−2 . Let

T− = (v−n,l)n,l∈W− =


T−11 T−12 T−10

T−21 T−22 T−20

T−01 T−02 T−00


denote the transition rate matrix of {J−t , t ∈ R+} partitioned according to W−0 , W−1 , and

W−2 . Similar to {J+
t , t ∈ R+}, the elements of T−11 and T−10 can be identified from the

elements of D−0 . Moreover, T−12, T
−
22, T

−
21, T

−
20, and T−02 are defined in the same manner as
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T+
12, T

+
22, T

+
21, T

+
20, and T+

02. Lastly,W−0 forms a class of absorbing states (i.e., a singleton

in this case), since the event of ruin is said to occur when the surplus process is below level

0 and the state 0 is reached. Hence, we let T−00 = 0 and T−01 = 0.

Putting it altogether, the transition rates for n, l ∈ W−1 are given by

v−n,l =


−(λ1 + λ3n1), if n = l,

λ1, if n1 = l1 and l2 = n2 + 1,

0, otherwise.

For n ∈ W−1 and l ∈ W−2 ,

v−n,l =

αl3λ3n1, if (n1, n2) = (l1, l2),

0, otherwise.

For n, l ∈ W−2 ,

v−n,l =

un3,l3 , if (n1, n2) = (l1, l2),

0, otherwise.

For n ∈ W−2 and l ∈ W−1 ,

v−n,l =

γn3 , if (n1, n2) = (l1, l2),

0, otherwise.

For n ∈ W−1 and l ∈ W−0 ,

v−n,l =

λ1, if n2 = K,

0, otherwise.
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t

Ut

σ τ

Figure 4.1: Sample path of {Ut, t ∈ R+}

There are no transitions from W−2 to W−0 and vice versa, and no transitions from W−1 to

W−0 and vice versa.

Having constructed {(F+
t ,J

+
t ), t ∈ R+} and {(F−t ,J−t ), t ∈ R+}, define {(Ft,J t), t ∈

R+} to be a level-dependent fluid flow process with the dynamics of {(F+
t ,J

+
t ), t ∈ R+}

and {(F−t ,J−t ), t ∈ R+}, when it is above and below level 0, respectively. Then, let

κ = inf{t > 0 : Ft < 0 and J t ∈ W−0 }. Let {Ot, t ∈ R+}, Ot = 0 w.p. 1, be a fluid flow

process defined on {J t, t ∈ R+} with the flow rates {zn,n ∈ W+ ∪W−}, where zn = 1 for

n ∈ W+
0 ∪W+

1 ∪W−1 , and zn = 0 for n ∈ W+
2 ∪W−2 ∪W−0 . In other words, {Ot, t ∈ R+}

keeps track of the time {J t, t ∈ R+} spends inW+
0 ∪W+

1 ∪W−1 . Then, clearly, {Ot, t ∈ R+}

is a shift process of itself and Oκ = τ w.p. 1 (see Figures 4.1, 4.2, and 4.3). Therefore, the

analysis of the functional hs(x, l, y|u,n) can be replaced with the analysis of the LST of

Oκ over the appropriate region.

More specifically, let η denote the time at which the last descent of the fluid flow

process {Ft, t ∈ R+} into the negative real line prior to κ ends. Then, from Figures 4.1,

4.2, and 4.3, we see that (Oκ, Fη,Jη, Fκ) = (τ, Uσ,Nσ, Uκ) w.p. 1 and this implies that
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t

Ft

η κ

Figure 4.2: Sample path of {Ft, t ∈ R+}

t

Ot

η κ

Figure 4.3: Sample path of {Ot, t ∈ R+}
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the functional hs(x, l, y|u,n) is equal to

hs(x, l, y|u,n) = gs(x, l, y|u,n) =

∫ ∞
0

e−stg(t, x, l, y|u,n)dt, (4.5.2)

where g(t, x, l, y|u,n) is the joint conditional pdf of (Oκ, Fη,Jη, Fκ) conditional on the

event that (F0,J0) = (u,n).

In what follows, we present the probabilistic analysis for developing a fluid flow based

matrix analytic methodology for evaluating gs(x, l, y|u,n). Then, we can evaluate hs(x, l, y|u,n)

via (4.5.2).

4.5.5 Probabilistic analysis

In terms of notational consistency, let κ(y) = inf{t > 0 : Ft = y} denote the first passage

time of the fluid flow process {(Ft,J t), t ∈ R+}. Then, we define a set of matrices Ψ̂
+

(s),

Ĝ
+

(s, y), Ψ̂
−

(s), and K̂
−

(s, dy|x), where

(
Ψ̂

+
(s)
)
n,l

= E{e−sOκ(0)I[κ(0) <∞,Jκ(0) = l]|F0 = 0,J0 = n}, n ∈ W+
1 , l ∈ W+

2 ,(
Ĝ

+
(s, y)

)
n,l

= E{e−sOκ(0)I[κ(0) <∞,Jκ(0) = l]|F0 = y,J0 = n}, n, l ∈ W+
2 , y > 0,(

Ψ̂
−

(s)
)
n,l

= E{e−sOκ(0)I[κ(0) < κ <∞,Jκ(0) = l]|F0 = 0,J0 = n}, n ∈ W−2 , l ∈ W−1 ,(
K̂
−

(s, dy|x)
)
n,l

=

∫ ∞
0

E{e−sOtI[κ(0) > t, κ > t, Ft ∈ dy,J t = l]|F0 = x,J0 = n}dt,

n, l ∈ W−1 , x, y < 0.

Noting that {(Ft,J t), t ∈ R+} is level-independent within the positive and negative half

lines and conditioning on the number of times the fluid flow process {(Ft,J t), t ∈ R+}
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crosses level 0 prior to κ, we can rewrite gs(x, l, y|u,n) as

gs(x, l, y|u,n) =
∑
h∈Q

enΨ̂
+

(s)Ĝ
+

(s, u)
∞∑
n=0

(
Ψ̂
−

(s)Ψ̂
+

(s)
)n
e−T

−
22xT−21e

ᵀ
l

(
K̂
−

(s, y|x)
)
l,h

v−h,0
c(h1)

=
∑
h∈Q

enΨ̂
+

(s)Ĝ
+

(s, u)
(
I − Ψ̂

−
(s)Ψ̂

+
(s)
)−1

e−T
−
22xT−21e

ᵀ
l

(
K̂
−

(s, y|x)
)
l,h

v−h,0
c(h1)

,

(4.5.3)

where K̂
−

(s, y|x) is a matrix such that K̂
−

(s, dy|x) = K̂
−

(s, y|x)dy and Q = {h ∈ W−1 :

h2 = K}.

Computing the matrices Ψ̂
+

(s), Ĝ
+

(s, y), and Ψ̂
−

(s) is a straightforward exercise, as

we can simply apply Theorems 3 and 4 of Bean and O’Reilly (2013) and the algorithms

therein. However, computing K̂
−

(s, y|x) requires further attention. In what follows, we

first show how to compute Ψ̂
+

(s), Ĝ
+

(s, y), and Ψ̂
−

(s), followed by the discussion on the

method of evaluating K̂
−

(s, y|x).

To begin, consider {(F+
t ,J

+
t ), t ∈ R+}. Define diagonal matrices R1 = diag(rn)n∈W+

1
,

R2 = diag(|rn|)n∈W+
2

, Z1 = diag(zn)n∈W+
1

, Z2 = diag(zn)n∈W+
2

, and Z0 = diag(zn)n∈W+
0

,

as well as a set of matrices

W+
11(s) = R−11

(
(T+

11 − sZ1)− T+
10(T

+
00 − sZ0)

−1T+
01

)
,

W+
22(s) = R−12

(
(T+

22 − sZ2)− T+
20(T

+
00 − sZ0)

−1T+
02

)
,

W+
12(s) = R−11

(
T+

12 − T+
10(T

+
00 − sZ0)

−1T+
02

)
,

W+
21(s) = R−12

(
T+

21 − T+
20(T

+
00 − sZ0)

−1T+
01

)
.

Then, by Theorem 3 of Bean and O’Reilly (2013), if the maximum real parts of the eigen-
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values of T+
00 − sZ0, W

+
11(s), and W+

22(s) are all negative, Ψ̂
+

(s) is a solution to

W+
12(s) + Ψ̂

+
(s)W+

21(s)Ψ̂
+

(s) +W+
11(s)Ψ̂

+
(s) + Ψ̂

+
(s)W+

22(s) = 0, (4.5.4)

and if s is real, is the minimal nonnegative solution to (4.5.4). Furthermore, by Theorem

4 of Bean and O’Reilly (2013), we have

Ĝ
+

(s, y) = e(W
+
22(s)+W+

21(s)Ψ̂
+
(s))y. (4.5.5)

For W+
11(s), consider s ∈ R+ and

(
T+

11 − T+
10(T

+
00 − sZ0)

−1T+
01

)
.

Since s ≥ 0 and Z0 = I, we can view (T+
00− sZ0) as the rate matrix for transitions within

W+
0 with the sojourn rates of the states in W+

0 increased by s ≥ 0. Therefore, the above

matrix is the rate matrix for transitions within W+
1 of the censored phase process, censor-

ing the time spent in W+
0 with the increased sojourn rates in W+

0 . Since the claims can

arrive in any of the states in W+
1 , we can verify that the above matrix is a substochastic

matrix for all s ∈ R+. Then, together with the fact that Z1 = I, we can further conclude

that W+
11(s) is a substochastic matrix for s ∈ R+. Hence, the maximum real part of the

eigenvalues of W+
11(s) is negative. Then, by Lemma 2 of Bean and O’Reilly (2013), we

have that the maximum real part of the eigenvalues of W+
11(s) is negative for all s ∈ C,

<(s) ≥ 0. Similarly, noting that Z2 is a zero matrix and T+
22 is a substochastic matrix, we

can also verify that the maximum real part of the eigenvalues of W+
22(s) is negative for all

s ∈ C, <(s) ≥ 0. Moreover, since Z0 = I, we can again verify that the real part of the

eigenvalue of T+
00 − sZ0 is negative for all s ∈ C such that <(s) ≥ 0. Therefore, we have

verified that (4.5.4) and (4.5.5) are valid for all s ∈ C, <(s) ≥ 0.
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Next, consider {(F−t ,J−t ), t ∈ R+}, restricted to W−1 and W−2 , (i.e., the nonruined

states). Define the following matrices:

W−
11(s) = R−11 (T−11 − sZ1),

W−
22(s) = R−12 (T−22 − sZ2),

W−
12(s) = R−11 T

−
12,

W−
21(s) = R−12 T

−
21.

Now, consider the reflection of the fluid flow process {(F−t ,J−t ), t ∈ R+} on the time

axis. Then, considering the reversal of the slopes of the reflected fluid flow process in W−1
and W−2 , by Theorem 3 of Bean and O’Reilly (2013), if the maximum real parts of the

eigenvalues of W−
11(s), and W−

22(s) are negative, Ψ̂
−

(s) is a solution to

W−
21(s) + Ψ̂

−
(s)W−

12(s)Ψ̂
−

(s) +W−
22(s)Ψ̂

−
(s) + Ψ̂

−
(s)W−

11(s) = 0, (4.5.6)

and if s is real, is the minimal nonnegative solution to (4.5.6).

Similar to the case of (4.5.4) and (4.5.5), since Z1 = I and claims can occur in any

state in W−1 , W−
11(s) is a substochastic matrix for s ∈ R+. Hence, we can conclude that

the maximum real part of the eigenvalues of W−
11(s) is negative for all s ∈ C, <(s) ≥ 0.

Likewise, since Z2 is a zero matrix and T−22 is a substochastic matrix, W−
22(s) is a sub-

stochastic matrix for all s ∈ R+. Therefore, (4.5.6) is valid for all s ∈ C, <(s) ≥ 0.

Finally, we lay out the probabilistic arguments leading to an algorithm for evaluating

K̂
−

(s, y|x). Let Ĝ
−

(s, y) denote a matrix whose entries are given by

(
Ĝ
−

(s, y)
)
h,l

= E{e−sOκ(0)I[κ(0) < κ <∞,Jκ(0) = l]|F0 = y,J0 = h}, h, l ∈ W−1 , y < 0,
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and let Υ̂
−

(s, dx) denote a matrix whose entries are given by

(
Υ̂
−

(s, dx)
)
h,l

=

∫ ∞
0

E{e−sOtI[κ(0) > t, κ > t, Ft ∈ dx,J t = l]|F0 = 0,J0 = h}dt,

h ∈ W−2 , l ∈ W−1 , x < 0.

Then, by conditioning on the maximum value that {F−t , t ∈ R+} attains on the sample

paths in which it stays below 0, and exploiting the level independence of the fluid flow

process, we can write

K̂
−

(s, y|x) =

Ĝ
−

(s, x− y) + Ĝ
−

(s, x− y)
∫ 0

y
Ĝ
−

(s, y − a)R−11 T
−
12Υ̂

−
(s, y − a)da, y > x,∫ 0

x
Ĝ
−

(s, x− a)R−11 T
−
12Υ̂

−
(s, y − a)da, y < x,

(4.5.7)

where Υ̂
−

(s, a) is a matrix such that Υ̂
−

(s, da) = Υ̂
−

(s, a)da.

Note that, using the reflection arguments employed in computing Ψ̂
−

(s), we can apply

Theorem 4 of Bean and O’Reilly (2013) to compute Ĝ
−
n(s, y), i.e.,

Ĝ
−

(s, y) = e−(W
−
11(s)+W−

12(s)Ψ̂
−
(s))y, y < 0. (4.5.8)

Then, the only quantity in (4.5.7) in which an evaluation procedure is lacking is Υ̂
−

(s, a).

One may think, from the definition of Υ̂
−

(s, a), to apply the usual time-reversal argument

to evaluate Υ̂
−

(s, a). However, the resulting time-reversed process is unfortunately no

longer a fluid flow process, and hence, the matrix analytic methodology cannot be directly

applied. Therefore, unlike the usual time-reversal argument, we need to develop a time-

reversal argument for R−11 T
−
12Υ̂

−
(s, a) from the perspective of the risk process.

First of all, consider
(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

, n, l ∈ W−1 such that n1 = l1 and n2 ≤ l2.

All the other entries are 0 since no new customers arrive when the surplus level is below
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0. By the structure of T−, conditioning on the value of the claim size yields

(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

=
λ3n1

c(n1)

∫ ∞
0

f(x)
(
K̂
−

(s, a| − x)
)
n,l
dx. (4.5.9)

Now, consider the time-reversed risk process, denoted by {Ũt, t ∈ R+}, on the sample paths

associated with
(
K̂
−

(s, y| − x)
)
n,l

. The time-reversed risk process travels from level a to

−x while staying strictly below level 0 and the process {Ñ t, t ∈ R+}, the time-reversed

version of {N t, t ∈ R+}, transitions from (l1, l2) to (l1, l2 − 1) to (l1, l2 − 2) all the way

to n. Since both the age process and the claims arrival process are independent Poisson

processes, the time-reversed age process and claims arrival process are also independent

Poisson processes. Noting that Poisson processes are invariant under time-reversion and

the shift process {Ot, t ∈ R+} keeps track of the time the phase process of the fluid flow

process spends in W−1 , we have the following equality:

(
K̂
−

(s, a| − x)
)
n,l
dx =

∫ ∞
0

E{e−stI[Ũz < 0 ∀ z ∈ [0, t], Ũt ∈ −dx, Ñ t = n]|Ũ0 = a, Ñ 0 = l}dt.

(4.5.10)

Substituting (4.5.10) into (4.5.9), we obtain

(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

=

∫ ∞
0

∫ ∞
0

E{e−stI[Ũz < 0 ∀ z ∈ [0, t], Ũt ∈ −dx, Ñ t = n]|Ũ0 = a, Ñ 0 = l} λ3n1

c(n1)
f(x)dtdx.

(4.5.11)

Next, we construct a fluid flow process and a shift process for the fluid flow based matrix

analytic methodology to be employed in evaluating the right hand side of (4.5.11). Let

{(Rt,Et), t ∈ R+} denote the fluid flow process of which sample paths can be linked (as

done in Figures 4.1 and 4.2) to those of the time-reversed risk process {(Ũt, Ñ t), t ∈ R+},
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reflected on the time axis. We set the state space of the phase process {Et, t ∈ R+} equal

to W−1 ∪ W−2 . We express the TPM of {Et, t ∈ R+}, partitioned according to W−1 and

W−2 , as

B = (bn,l)n,l∈W−1 ∪W
−
2

=

B11 B12

B21 B22

 .

The transition rates for n, l ∈ W−1 are given by

bn,l =


−(λ1 + λ3n1), if n = l,

λ1, if n1 = l1 and l2 = n2 − 1,

0, otherwise.

For n ∈ W−1 and l ∈ W−2 ,

bn,l =

αl3λ3n1, if (n1, n2) = (l1, l2),

0, otherwise.

For n, l ∈ W−2 ,

bn,l =

un3,l3 , if (n1, n2) = (l1, l2),

0, otherwise.

For n ∈ W−2 and l ∈ W−1 ,

bn,l =

γn3 , if (n1, n2) = (l1, l2),

0, otherwise.

We set the flow rates {ξn = c(n1),n ∈ W−1 } and {ξn = −1,n ∈ W−2 }. Now, let

{Ht, t ∈ R+} denote a fluid flow process defined on the phase process {Et, t ∈ R+} with
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the flow rates {χn = 1,n ∈ W−1 } and {χn = 0,n ∈ W−2 }, where H0 = 0 w.p. 1. Clearly,

{Ht, t ∈ R+} is a shift process which keeps track of the time {Et, t ∈ R+} spends in W−1 .

Define the following diagonal matrices Ξ1 = diag(ξn)n∈W−1 , Ξ2 = diag(|ξn|)n∈W−2 ,X1 =

diag(χn)n∈W−1 , X2 = diag(χn)n∈W−2 , and a set of matrices

L11(s) = Ξ−11 (B11 − sX1),

L22(s) = Ξ−12 (B22 − sX2),

L12(s) = Ξ−11 B12,

L21(s) = Ξ−12 B21.

Let Θ̂(s) and Q̂(s, y) denote matrices whose entries are given by

(
Θ̂(s)

)
n,l

= E{e−sHθ(0)I[θ(0) <∞,Eθ(0) = l]|R0 = 0,E0 = n}, n ∈ W−1 , l ∈ W−2 ,

and

(
Q̂(s, y)

)
n,l

= E{e−sHθ(0)I[θ(0) <∞,Eθ(0) = l]|R0 = y,E0 = n}, y > 0, n, l ∈ W−2 ,

where θ(y) = inf{t > 0 : Rt = y} denotes the first passage time of {Rt, t ∈ R+}. Following

the same line of logic in verifying the validity of (4.5.6) for all s ∈ C, <(s) ≥ 0, we can

verify that the maximum real parts of the eigenvalues of L11(s) and L22(s) are negative

for all s ∈ C, <(s) ≥ 0. Then, by Theorem 3 of Bean and O’Reilly (2013), for all s ∈ C,

<(s) ≥ 0, Θ̂(s) is a solution to

L12(s) + Θ̂(s)L21(s)Θ̂(s) +L11(s)Θ̂(s) + Θ̂(s)L22(s) = 0, (4.5.12)

and if s is real, Θ̂(s) is the minimal nonnegative solution to (4.5.12). Also, by Theorem 4
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of Bean and O’Reilly (2013), we have that

Q̂(s, y) = e(L22(s)+L21(s)Θ̂(s))y.

Returning to (4.5.11) and noting that {Ht, t ∈ R+} is a shift process which keeps track

of the time the fluid flow process {Rt, t ∈ R+} spends inW−1 , the sample paths connection

between {Rt, t ∈ R+} and the reflected time-reversed risk process reveals that (4.5.11) can

be rewritten as

(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

=

∫ ∞
0

∫ ∞
0

E{e−stI[Ũz < 0 ∀ z ∈ [0, t], Ũt ∈ −dx, Ñ t = n]|Ũ0 = a, Ñ 0 = l} λ3n1

c(n1)
f(x)dtdx

=

∫ ∞
0

∫ ∞
0

E{e−sHtI[Rz > 0 ∀ z ∈ [0, t], Rt ∈ dx,Et = n]|R0 = −a,E0 = l} λ3n1

c(n1)
f(x)dtdx.

(4.5.13)

Since the downward journey ending in phase n of the process {(Rt,Et), t ∈ R+} must

have initiated from phase n (consider the structure of B), (4.5.13) can subsequently be

rewritten as

(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

=
(
Θ̂(s)Q̂(s,−a)B21

)
l,n

=
(
Θ̂(s)e−(L22(s)+L21(s)Θ̂(s))aB21

)
l,n
. (4.5.14)

Since for all n, l ∈ W−1 ,

(
R−11 T

−
12Υ̂

−
(s, a)

)
n,l

= 0 =⇒
(
Θ̂(s)Q̂(s,−a)B21

)
l,n

= 0,
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we ultimately have

R−11 T
−
12Υ(s, a) =

(
Θ̂(s)e−(L22(s)+L21(s)Θ̂(s))aB21

)ᵀ
. (4.5.15)

Returning to (4.5.7) and substituting (4.5.8) and (4.5.15) into (4.5.7), we have

K̂
−

(s, y|x)

=



e−(W
−
11(s)+W−

12(s)Ψ̂
−
(s))(x−y)

+e−(W
−
11(s)+W−

12(s)Ψ̂
−
(s))(x−y)

×
∫ 0

y
e−(W

−
11(s)+W−

12(s)Ψ̂
−
(s))(y−a)Bᵀ

21e
−(L22(s)+L21(s)Θ̂(s))ᵀ(y−a)Θ̂(s)ᵀda, y > x,∫ 0

x
e−(W

−
11(s)+W−

12,n(s)Ψ̂
−
n(s))(x−a)Bᵀ

21e
−(L22(s)+L21(s)Θ̂(s))ᵀ(y−a)Θ̂(s)ᵀda, y < x,

(4.5.16)

Therefore, we may now substitute (4.5.16) into (4.5.3) and evaluate hs(x, l, y|u,n) =

gs(x, l, y|u,n). Finally, we can evaluate ψ(s|u,n) from (4.5.1).

Unfortunately, we do not have a closed form solution for the integral equation (4.5.1)

for general phase-type claim size distributions. In such cases, one may still numerically

integrate (4.5.1). When the claim size distribution follows an exponential distribution (ob-

viously a special case of the phase-type family of distributions), however, we are able to

get a closed form solution for (4.5.1), as we show in the next subsection.
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4.5.6 Special case: exponential claim size distribution

Suppose that the claim size pdf is given by f(y) = λ4e
−λ4y, y > 0, λ4 > 0. Let us now

revisit the integral equation (4.5.1):

ψ(s|u,n)

=
∑

l∈N−\{0}

∫ 0

−∞

∫ 0

−∞
hs(x, l, y|u,n)dxdy,

=
∑

l∈N−\{0}

∫ 0

−∞

∫ 0

−∞

∑
h∈Q

enΨ̂
+

(s)Ĝ
+

(s, u)
(
I − Ψ̂

−
(s)Ψ̂

+
(s)
)−1

e−T
−
22xT−21e

ᵀ
l

(
K̂
−

(s, y|x)
)
l,h

×
v−h,0
c(h1)

dxdy.

Our goal in this subsection is to obtain a closed form solution for the following integral:

∫ 0

−∞

∫ 0

−∞
e−T

−
22xT−21e

ᵀ
l

(
K̂
−

(s, y|x)
)
l,h
dxdy. (4.5.17)

The exponential claim size distribution assumption implies that J = {1} and that

e−T
−
22xT 21 forms a diagonal matrix whose diagonal entries are all equal to λ4e

λ4x. This in

turn implies that the only nontrivial entry of the column vector e−T
−
22xT−21e

ᵀ
l is e(l,1)e

−T−22xT−21e
ᵀ
l .

Hence, for (4.5.17), we can simply compute

∫ 0

−∞

∫ 0

−∞
e(l,1)e

−T−22xT−21e
ᵀ
l

(
K̂
−

(s, y|x)
)
l,h
dxdy =

∫ 0

−∞

∫ 0

−∞
λ4e

λ4x
(
K̂
−

(s, y|x)
)
l,h
dxdy.

(4.5.18)
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Consider now the following quantity:

∫ 0

−∞

(
K̂
−

(s, y|x)
)
l,h

λ3l1
c(l1)

eλ4xλ4dx. (4.5.19)

As in (4.5.10), we can establish that

(
K̂
−

(s, y|x)
)
l,h
dx =

∫ ∞
0

E{e−stI[Ũt ∈ dx, Ñ t = l, Ũz < 0 ∀ z ∈ [0, t]]|Ũ0 = y, Ñ 0 = h}dt.

(4.5.20)

Substituting (4.5.20) into (4.5.19), (4.5.19) can now be expressed as

∫ 0

−∞

(
K̂
−

(s, y|x)
)
l,h

λ3l1
c(l1)

eλ4xλ4dx

=

∫ 0

−∞

∫ ∞
0

E{e−stI[Ũt ∈ dx, Ñ t = l, Ũz < 0 ∀ z ∈ [0, t]]|Ũ0 = y, Ñ 0 = h}dt λ3l1
c(l1)

eλ4xλ4dx.

(4.5.21)

Then, the same probabilistic reasoning used for (4.5.14) leads to

∫ 0

−∞

(
K̂
−

(s, y|x)
)
l,h

λ3l1
c(l1)

eλ4xλ4dx =
(
Θ̂(s)e−(L22(s)+L21(s)Θ̂(s))yB21

)
h,l
. (4.5.22)

Returning to (4.5.18), the inner integral of the right hand side of (4.5.18) then becomes

∫ 0

−∞

(
K̂
−

(s, y|x)
)
l,h
eλ4xλ4dx =

c(l1)

λ3l1

(
Θ̂(s)e−(L22(s)+L21(s)Θ̂(s))yB21

)
h,l
. (4.5.23)

Substituting (4.5.23) into (4.5.18), the double integral on the right hand side of (4.5.18)
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reduces to

∫ 0

−∞

∫ 0

−∞

(
K̂
−

(s, y|x)
)
l,h
eλ4xλ4dxdy =

∫ 0

−∞

c(l1)

λ3l1

(
Θ̂(s)e−(L22(s)+L21(s)Θ̂(s))yB21

)
h,l
dy

=
c(l1)

λ3l1

(
− Θ̂(s)

(
(L22(s) +L21(s)Θ̂(s)

)−1
B21

)
h,l
.

(4.5.24)

Substituting (4.5.24) into (4.5.1) and noting that v−h,0 = λ1, we ultimately have

ψ(s|u,n) =
∑

l∈N−\{0}

∑
h∈Q

enΨ̂
+

(s)Ĝ
+

(s, u)
(
I − Ψ̂

−
(s)Ψ̂

+
(s)
)−1
eᵀ(l,1)

× c(l1)λ1
c(h1)λ3l1

(
− Θ̂l(s)

(
(L22,l(s) +L21,l(s)Θ̂l(s)

)−1
B21

)
h,l
.

(4.5.25)

4.5.7 Numerical analysis

In this subsection, we examine how the variables in the dynamic individual risk model

interact together to affect the time of ruin distribution. More specifically, we focus on

examining how different combinations of premium rates and customer arrival rate λ2 affect

the distribution of the time of ruin while fixing the values of the claim arrival rate λ3 and

the expected value of the claim size 1/λ4 under the assumption that the claim sizes are

exponentially distributed with rate λ4. In the dynamic individual risk model, the way

in which the variables interact together is not obvious. Lower premiums in principle will

attract more customers at the cost of a slower initial increase in the surplus of the firm.

Since in the dynamic individual risk model we assume that all customers are independent

from one another, in theory, we may expect the law of large numbers to hold true for a

large number of customers in the system. On the other hand, we assume that no customers

arrive to the system if the surplus level is below 0. Hence, too low premiums may result
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in poor initial performance of the firm’s surplus process, leading to a lower number of

customers in the system than intended. As there are these complications to consider, it

would be interesting to see how different combinations of the premium rates and λ2 affect

the infinite-time ruin probabilities of the dynamic individual risk model.

For the dynamic individual risk model under consideration, assume that the calendar

year T is equal to 1 unit time and let the random calendar year variable A ∼ E(K,λ1)

where K = 3 and λ1 = 3 so that E{A} = 1 = T . The premium rate rule that we implement

here is c(n) = cn for n ∈ {0, 1, 2, . . . , N}, where we set the maximum number of customers

in the system equal to N = 50. (Note that this setup gives the number of phases equal to

150, which is an unusually large number in numerical analyses of MAP risk models in risk

theory.) The claims arrival rate is set equal to λ3 = 1 and the mean claim size is set equal to

1/λ4 = 1/2. Then, the expected value of the total claims of an individual who is in the sys-

tem for the entire calendar year is equal to λ3/λ4 = 1/2. We assume that the initial surplus

level is equal to 10 and the initial number of customers in the system at time 0 is equal to 1.

Before we consider different combinations of c and λ2, let us first consider fixing the

value of c at 0.6 and thereafter varying the value of λ2. Our expectation from the law of

large numbers is that the infinite-time ruin probabilities should decrease as λ2 increases.

Therefore, we can check whether our expectation holds true by computing the ruin prob-

abilities for different values of λ2 while fixing c at 0.6. Since we have assumed that the

claim sizes are exponentially distributed, we can compute ψ(s|10, (1, 1)) from (4.5.25). The

matrices appearing in (4.5.25) are computed following the probabilistic analysis laid out

in Section 4.5 and the algorithm used for computing Ψ̂
+

(s), Ψ̂
−

(s) and Θ̂(s) is Algo-

rithm B1 in Bean and O’Reilly (2013). For the infinite-time ruin probabilities, we can

compute ψ(0|10, (1, 1)), and for the finite-time ruin probabilities, we numerically invert

ψ(s|10, (1, 1)) to obtain the pdf of the time of ruin. The numerical inversion method we

implemented here is the Gaver-Stehfest algorithm (see, e.g., Kuznetsov (2013)).
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Figure 4.4: pdf of the time of ruin for λ2 equal to 5, 25, and 50.

In Table 4.1, the infinite-time ruin probabilities for different values of λ2, ranging from

10 to 100, are computed, and the infinite-time ruin probabilities seem to decrease as we

increase the value of λ2. In Figure 4.4, the pdfs of the time of ruin are computed for λ2

set equal to 5, 25, and 50. The pdf corresponding to λ2 = 5 is the blue curve, the pdf

corresponding to λ2 = 25 is the red curve, and the pdf corresponding to λ2 = 50 is the

yellow curve. As can be seen in Figure 4.4, higher values of λ2 do not necessarily imply

lower finite-time ruin probabilities on all time intervals. As λ2 increases, the assumption

that the premiums are collected continuously implies that earlier in a calendar year, the

surplus process of the insurance firm is more likely to fall below level 0 due to the possibly

large number of customers and lower value of the surplus process. Since no customers

arrive when the surplus process is below level 0, this then in turn may result in a lower

total number of customers arriving in that calendar year than for some smaller values of

λ2. However, as time goes on, the surplus process is likely to grow and when there is

enough initial surplus, higher values of λ2, as expected, are likely to result in a higher total

number of customers in the given calendar year and thus the lower ruin probabilities.
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λ2 ψ(0|10, (1, 1))
10 0.0204845
20 0.0174097
30 0.0155677
40 0.0144086
50 0.0136405
60 0.0131027
70 0.0127076
80 0.0124059
90 0.0121681

100 0.011976

Table 4.1: Infinite-time ruin probabilities for different values of λ2

ψ(0|10(1, 1)) = 0.025

c = 0.605 c = 0.65

Figure 4.5: Infinite-time ruin probabilities for different values of c and λ2(c)

Now, assume that the customer arrival rate λ2 has the following functional relation

with the premium rate c:

λ2(c) =
1

4(c− 0.6)
, c ∈ (0.6, 0.65].

The function λ2(c) is arbitrarily chosen to describe an inverse relation between c and λ2,

i.e., higher values of c result in lower values of λ2 and lower values of c result in higher values

of λ2. In Figure 4.5, the infinite-time ruin probabilities are computed for values of c in the

increments of 0.005 over the interval (0.6, 0.65]. For each value of c, λ2 is set equal to λ2(c).

As can be seen in Figure 4.5, the infinite-time ruin probability does not exhibit a linear

relation with the value of c when λ2 is determined by the function λ2(c). Indeed, as the
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value of c increases from 0.605 to 0.61, the value of λ2 decreases from 50 to 25. It seems

that under the given model setting, the decrease of the customer arrival rate from 50 to

25 has a more adverse impact on the solvency of the insurance firm than the positive force

of the increase of the premium rate from 0.605 to 0.61. However, as c increases, it seems

that the higher values of c result in lower values of infinite-time ruin probabilities. One

note that we make here is that since we assume that there is one customer already in

the system at time 0 and that customer is assumed to have agreed to pay whatever the

premium rate that we set in any event, λ2 approaching 0 would imply the dominance of

the one existing contract in determining the solvency of the insurance firm. In such an

extreme case, higher values of c will result in lower values of infinite-time ruin probabilities.

As we initially expected, the numerical results presented in this section show that the

interaction among the variables in the dynamic individual risk model has a nonlinear im-

pact on the solvency of an insurance firm. Therefore, when we take into account the

stochastic nature of the arrivals and departures of the customers in modelling the insur-

ance risk process, it is imperative to perform a thorough analysis on how the interactions

among the variables affect the evolution of the risk process over time.
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Chapter 5

Concluding remarks and future

research

In Chapter 2, we developed a matrix analytic methodology for a class of discrete-time risk

models which we named the G/M/1 DTRM class. In Section 2.2, we provided a matrix

analytic framework for the general risk models belonging to the G/M/1 DTRM class, and

then in Sections 2.3 and 2.4, we demonstrated how the methodology developed for the gen-

eral risk models in the G/M/1 DTRM class can be either directly applied to or simplified

first (exploiting the special structures of the respective risk models) and then applied to the

discrete-time MAP risk model with general and matrix geometric claim size distributions,

and the discrete-time MAP risk model with a dividend barrier. In Section 2.5, various

numerical examples were presented to demonstrate how the methodology can be applied

to computing various quantities of interest and how it compares to the standard recursive

method in terms of the computation time.

In Chapter 3, we developed a matrix analytic methodology for the discrete-time MAP

risk model with phase-dependent premium rates and phase-type claim size distributions,

based on a sample paths connection between the risk process and a discrete-time QBD

process. Our methodology is built directly on a sample paths connection between the risk
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process and a QBD process without downward jumps, even with the phase-dependent pre-

mium rates, allowing it to exploit the skip-free nature of the QBD process and simplify the

respective analysis greatly. In Section 3.3, we demonstrated how our methodology can be

employed in computing the discounted joint conditional pmf of the surplus prior to ruin

and deficit at ruin. In Section 3.4, a numerical example is presented to demonstrate how

the methodology can be applied to computing some quantities of interest and a discussion

on the impact of the phase-dependent premium rates on the evolution of the surplus pro-

cess over time is provided.

In Chapter 4, we discussed an adaptation of the matrix analytic methodology for fluid

flow processes developed by Bean and O’Reilly (2013) in risk theory. In Sections 4.3

and 4.4, we briefly discussed how Bean and O’Reilly’s methodology can be extended to

continuous-time MAP risk models with phase-dependent premium rates and phase-type

claim size distributions, based on a sample paths connection between the risk process and

a fluid flow process. In Section 4.5, we introduced a new type of a risk model (referred to

as the dynamic individual risk model) which takes into account the stochastic dynamics

of the customers’ arrivals and departures, and applied Bean and O’Reilly’s methodology

in analyzing the LST of the time of ruin distribution. In Section 4.5.7, numerical analyses

were performed to examine how the variables in the dynamic individual risk model inter-

acted together to affect the solvency of an insurance firm. From the numerical analyses,

we learned that it is imperative to perform a thorough analysis on how the interactions

among the variables affect the evolution of the risk process over time when we take into

account the stochastic nature of the arrivals and departures of the customers in modelling

the insurance risk process.

As can be seen in this thesis, matrix analytic methods offer a computationally powerful

set of methodologies for analyzing the stochastic evolution of insurance risk processes. The

computational advantages of matrix analytic methods enable rigorous numerical analyses
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of complicated risk models such as the dynamic individual risk model introduced and stud-

ied in Chapter 4, which traditionally was considered a computationally difficult model to

analyze. It is our belief that in the modern age of advanced computing and big data, the

computational aspect in risk theory is ever more important, and matrix analytic methods

provide powerful tools for the computations in risk theory.

For future research, there are two main directions we wish to pursue. The first is to

work on a review paper which collectively presents the various matrix analytic methods

in risk theory and their computational aspects. Such a review paper is already available

(Badescu and Landriault (2009)), but we feel that there has been many advances in ma-

trix analytic methods in risk theory since then. Moreover, the results on matrix analytic

methods in other areas of applied probability are already available (see, e.g., Latouche and

Nguyen (2018) for a most recent review), but presenting them in the context of risk theory

would serve well in promoting matrix analytic methods in the field.

The second direction is to apply matrix analytic methods to more risk models that

take more microscopic point of views on the risk processes than the traditional collective

risk models do. As demonstrated in Ahn et al. (2018) and the dynamic individual risk

model introduced in Chapter 4 of this thesis, risk models that take more microscopic point

of views on the risk processes tend to result in becoming large scale problems in terms of

the number of variables involved in the analyses. Traditionally, this has posed difficulties

on the computational aspects of the analyses. Since matrix analytic methods have been

shown to alleviate this computational difficulty, we are excited about the new types of risk

models that can possibly be analyzed via matrix analytic methods.
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