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Abstract

A singular system model is mathematically formulated as a set of coupled differential

and algebraic equations. Singular systems, also referred to as descriptor or differential

algebraic systems, have extensive applications in power, economic, and biological systems.

The main purpose of this thesis is to address the problems of stability and stabilization for

singular hybrid systems with or without time delay.

First, some sufficient conditions on the exponential stability property of both continuous

and discrete impulsive switched singular systems with time delay (ISSSD) are proposed.

We address this problem for the continuous system in three cases: all subsystems are

stable, the system consists of both stable and unstable subsystems,and all subsystems are

unstable. For the discrete system, we focus on when all subsystems are stable, and the

system consists of both stable and unstable subsystems. The stability results for both the

continuous and the discrete system are investigated by first using the multiple Lyapunov

functions along with the average-dwell time (ADT) switching signal to organize the jumps

among the system modes and then resorting the Halanay Lemma.

Second, an optimal feedback control only for continuous ISSSD is designed to guarantee

the exponential stability of the closed-loop system. Moreover, a Luenberger-type observer

is designed to estimate the system states such that the corresponding closed-loop error

system is exponentially stable. Similarly, we have used the multiple Lyapunov functions

approach with the ADT switching signal and the Halanay Lemma.

Third, the problem of designing a sliding mode control (SMC) for singular systems

subject to impulsive effects is addressed in continuous and discrete contexts. The main

objective is to design an SMC law such that the closed-loop system achieves stability.

Designing a sliding surface, analyzing a reaching condition and designing an SMC law are

iv



investigated throughly. In addition, the discrete SMC law is slightly modified to eliminate

chattering.

Last, mean square admissibility for singular switched systems with stochastic noise in

continuous and discrete cases is investigated. Sufficient conditions that guarantee mean

square admissibility are developed by using linear matrix inequalities (LMIs).

v



Acknowledgements

First and foremost, I would like to thank my supervisor Professor Xinzhi Liu for the

guidance and support throughout my PhD at the University of Waterloo. I would also like

to extend my appreciation to my examining committee, Professor Edward R. Vrscay, Asso-

ciate Professor Jun Liu, Professor Pei Yu and Professor Sherman Shen for their suggestions

and corrections that improved the quality of this thesis.

I owe thanks to Dr. Mohamad S. Alwan for many reasons. He has been a great source

of assistance, cooperation and motivation over the years. I have learned a lot from him

and am sincerely grateful for his invaluable guidance and support.

Thank are also due to former and current members of my research group, especially

Dr. Kexue Zhang, Dr. Cong Wu, Yinan Li, Yuan Shen, and Kevin Church for their help

and suggestions.

My deepest gratitude and love go to my family for their support and prayers including

my wonderful siblings, Erdem, Selim and Ayse. I continue to be thankful to my beloved

husband, Mehmet Yilmaz, for his emotional support, understanding and love.

Finally, I am grateful to my God, Allah (c.c). Without Allah (c.c), I could not have

achieved all the things that I have today in my life.

vi



Dedication

This is dedicated to my dearest parents, and beloved husband.

vii



Table of Contents

List of Figures xii

List of Notations xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Mathematical Background 10

2.1 Switched Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Stability of Switched Systems . . . . . . . . . . . . . . . . . . . . . 13

2.2 Impulsive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Stability of Impulsive Systems . . . . . . . . . . . . . . . . . . . . . 20

2.3 Delay Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Stability of Delay Systems . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Stochastic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Stability of Stochastic Systems . . . . . . . . . . . . . . . . . . . . 30

2.5 Singular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Continuous Singular Systems . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Stability Definitions and Theorems For Continuous Case . . . . . . 35

2.5.3 Discrete Singular Systems . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.4 Stability Definitions and Theorems For Discrete Case . . . . . . . . 38

3 Stability of Impulsive Switched Singular Systems with Time-Delay: Con-

tinuous and Discrete 40

3.1 Impulsive Switched Singular Systems with Time-Delay: Continuous . . . . 41

3.1.1 Systems with Stable Subsystems . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Systems with Stable and Unstable Subsystems . . . . . . . . . . . . 51

3.1.3 Systems with Unstable Subsystems . . . . . . . . . . . . . . . . . . 61

3.2 Impulsive Switched Singular Systems with Time-Delay: Discrete . . . . . . 78

3.2.1 Systems with Stable Subsystems . . . . . . . . . . . . . . . . . . . . 81

3.2.2 Systems with Stable and Unstable Subsystems . . . . . . . . . . . . 89

ix



4 Optimal Control and State Estimation for ISSSD 104

4.1 Preliminaries on Controllability and Observability . . . . . . . . . . . . . . 105

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Optimal Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Sliding Mode Control for Impulsive Singular Systems:

Continuous and Discrete 124

5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Continuous Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Sliding Mode Control Design . . . . . . . . . . . . . . . . . . . . . . 126

5.2.2 Reaching Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Discrete Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Quasi-Sliding Mode Control Design . . . . . . . . . . . . . . . . . . 140

5.3.2 Reaching Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.3 Boundary Layer Type Bs . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.4 Chattering Elimination . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Stochastic Switched Singular Systems: Continuous and Discrete 156

6.1 Stochastic Switched Singular Systems: Continuous . . . . . . . . . . . . . . 156

6.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2 Stability Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

x



6.2 Stochastic Switched Singular Systems: Discrete . . . . . . . . . . . . . . . 167

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2.2 Stability Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Conclusions and Future Research 178

7.1 Lyapunov-Razumikhin Technique . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 Invariance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3 Comparison Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References 182

xi



List of Figures

1.1 A single-loop circuit network . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Time-dependent switching [1] . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 State-dependent switching [1] . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Switching between stable subsystems [2] . . . . . . . . . . . . . . . . . . . 13

2.4 Switching between unstable subsystems [2] . . . . . . . . . . . . . . . . . . 14

2.5 Phase portraits for subsystems in Example 2.1.1 [2] . . . . . . . . . . . . . 15

2.6 Phase-portrait for the switched system in Example 2.1.1 [2] . . . . . . . . 16

3.1 ISSSD with stable subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 ISSSD with stable and unstable subsystems . . . . . . . . . . . . . . . . . 62

3.3 ISSSD with unstable subsystems in unstable convex combination case . . . 73

3.4 ISSSD with unstable subsystems in stable convex combination case . . . . 79

3.5 State responses of the discrete ISSSD . . . . . . . . . . . . . . . . . . . . . 90

3.6 State responses of the discrete ISSSD . . . . . . . . . . . . . . . . . . . . . 103

xii



4.1 State response of the corresponding closed-loop system . . . . . . . . . . . 117

4.2 Upper: estimation error of slow sub-state. Lower: estimation error of fast

sub-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Impulsive switched singular system sub-states. . . . . . . . . . . . . . . . . 136

5.2 Control input u = [u1 u2]T . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Sliding function S(x(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Boundary layer (left) and switching region (right) . . . . . . . . . . . . . 139

5.5 System sub-states in control law with sign function . . . . . . . . . . . . . 151

5.6 System sub-states in control law with saturation function . . . . . . . . . . 152

5.7 Control input u = [u1 u2]T with sign function . . . . . . . . . . . . . . . . 153

5.8 Control input u = [u1 u2]T with saturation function . . . . . . . . . . . . 154

6.1 Mean of ‖x(t)‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Mean of ‖x(t)‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii



List of Notations

N the set of natural numbers.

Z the set of all integers.

Z+ the set of all nonnegative integers.

R real number set.

R+ the set of all nonnegative real numbers.

Rn n-dimensional Euclidean space.

Rn×m the space of n×m real matrices.

C(A,B) the set of all continuous functions mapping A into B.

C1(A,B) the set of all continuously differentiable functions mapping A into B.

Cd set of all continuous functions defined from [−d, 0] to Rn

xT transpose of a vector x.

‖x‖ norm of a vector of x.

xiv



sup supremum, the least upper bound.

inf infimum, the greatest lower bound.

‖A‖ norm of a matrix A.

AT transpose of a matrix A.

A−1 inverse of a matrix A.

λmax(A) maximum eigenvalue of a matrix A.

λmin(A) minimum eigenvalue of a matrix A.

A > 0 A is a symmetric positive definite matrix.

A ≥ 0 A is a symmetric positive semi definite matrix.

A < 0 A is a symmetric negative definite matrix.

A ≤ 0 A is a symmetric positive semi definite matrix.

E mathematical expectation or mean

(Ω,F ,P) a complete probability space.

W (t) a standard Wiener process defined on (Ω,F ,P).

Lad(Ω;Lp[a, b]) the family of Rn-valued Ft-adapted process f(t) such that
∫ b
a
‖f(t)‖pdt <

∞ for all t ∈ [a, b]

C1,2(R+ × Rn;R+) the set of all functions from R+ × Rn to R+ that are continuously

differentiable in the first variable and twice continuously differentiable

in the second variable.

xv



Chapter 1

Introduction

The thesis is concerned with singular systems which are encountered in many applications.

For instance, a singular system has the form

Eẋ(t) = Ax(t) + g(t, x(t)) (1.1)

where x(t) ∈ Rn is the state vector, E ∈ Rn×n is a singular matrix with rank (E) = r < n,

and g(t, x(t)) : R+ × Rn → Rn is the vector-valued differentiable function.

In the remainder of this chapter, we shall present some motivations for the study of

singular systems, and provide the scope of this thesis.

1.1 Motivation

Singular systems, also referred to as descriptor systems or differential algebraic systems,

consist of differential equations, which describe dynamics of subsystems, and the algebraic
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Figure 1.1: A single-loop circuit network

equations, which characterize coupling by constraints such as joints ([3],[4]). Many different

real world or man-made systems such as economic systems, power systems, control systems,

chemical processes, etc., can be modeled by singular systems ([5]-[6],[7]). See the following

motivating examples for illustrations.

Example 1.1.1. (Electrical Networks ) [8]-[9] Electrical networks can be composed by

subsystems of network elements (such as resistor, capacitors, inductors) and by coupling

due to Kirchoff’s laws. Let consider a simple circuit network as shown in Figure 1.1. Using

basic circuit theory and Kirchoff’s law, the following equations, which describe the system,

are obtained as

Lİ(t) = VL(t),

V̇C(t) =
1

C0

I(t),

RI(t) = VR(t),

VL(t) + VC(t) + VR(t) = VS(t)

where R,L, and C0 stand for resistor, inductor, and capacitor, respectively, VR(t), VL(t),

and VC(t) are their voltages, respectively. VS(t) is the voltage source which is taken as the
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control input. If we choose the state x(t), control input u(t) and output y(t) as

x(t) =


I(t)

VL(t)

VC(t)

VR(t)

 , u(t) = VS(t), y(t) = VC(t)

the above equations can be written in the following singular linear system form:

Eẋ = Ax+Bu,

y = Cx

with

E =


L 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 , A =


0 1 0 0
1

C0

0 0 0

−R 0 0 1

0 1 1 1

 , B =


0

0

0

−1

 , C =
[
0 0 1 0

]
.

Example 1.1.2. (Chemical Processes) [6] Models of chemical processes typically con-

sist of differential equations describing the dynamic balances of mass and energy while

additionally algebraic equations account for thermodynamic equilibrium relations, steady-

state assumptions, empirical correlations, and so on.

Three main difficulties are observed in singular systems, compared with that of nonsin-

gular systems:

1. Satisfying the existence and uniqueness of solutions

Existence and uniqueness of solutions are determined by regularity in both linear and

nonlinear singular systems ([10]). Moreover, constraints on nonlinear perturbation

term are required for solutions to nonlinear singular systems.
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2. Calculating of derivatives of the Lyapunov functions

Lyapunov direct method has been the most popular and efficient approach for stabil-

ity analysis of singular systems. However, for singular systems, because of the mixed

differential-algebraic nature, the selection of Lyapunov function and calculation of

its derivative along the motions of the systems are more difficult ([11]).

3. Occurring impulses and jumps in the state of the system

Inconsistent initial condition of singular systems may lead to finite instantaneous

jump ([12]). When such jumps reach a certain extent, they could be physically

destructive to the system. In addition to inconsistent initial condition, index of a

given singular system causes impulses in the state.

Many practical systems involve a mixture continuous dynamics which consist of contin-

uous differential equations representing the evolution of the system, and discrete dynamics

which include difference equations representing jumps or impulsive actions in the system

states. Systems in which these two kinds of dynamics coexist and interact are usually

called hybrid systems. For example, impulsive systems can be naturally viewed as a class

of hybrid systems whereas switching (switched) systems is considered as a class of hy-

brid systems. Moreover, impulsive switched systems in which impulses arise as a result of

switching is another class of hybrid system. In this theses, we focused on these three types

of hybrid systems.

The dynamics of an impulsive system are usually given by a pair of equations. That is,

an impulsive system consists of a differential equation that describes a continuous evolu-

tionary process, and a difference equation that governs the discrete impulsive actions ([13],

[14],[15]). The main characteristic of an impulsive system is that the system is subjected to

abrupt changes at certain moments between the intervals of the continuous evolutions. The
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durations of these changes sufficiently small when compared to the total duration of the

process. These changes can be reasonably well-approximated by instantaneous changes

of the state. Impulsive phenomena are ubiquitous in the real world or man-made sys-

tems, such as mass-spring systems, biological systems, epidemic disease models, and so

forth. Theoretically, impulsive systems have richer properties than the corresponding non-

impulsive ones. However, stability is the most important property of impulsive systems.

The reasons are twofold ([15]). Firstly, when stable system undergo impulses, the system

may not conserve its stability due to up or down jump discontinuities. Secondly, the im-

pulses may play as a stabilizing factor in an unstable system if they are well-timed in the

sense that they are logically formalized.

A switched system is composed of a family of continuous-time subsystems and a rule

that controls the switching between them ([1], [16]). Therefore, the dynamics of the system

is determined by both the subsystems and the switching signal (law). It is clear that while

the continuous dynamics of the switched systems consist of continuous subsystems, the

discrete dynamics include the switching signal which illustrates as abrupt change of mode

of the continuous dynamics. For instance, in applications, the discrete dynamics can be

the abrupt change of climates or environment; a thermostat turning the heat on and off.

There has been reasonable progress in the study of stability of switched systems. Most

of the work has been made on designing an appropriate switching rule to stabilize the

system ([1],[16],[17]). In some studies, it was shown that if the switched system has stable

subsystems, then the entire system is stable provided that the dwell time, the time between

any two consecutive switchings, is sufficiently large. Later, it was showed that a similar

result holds when the average interval between the consecutive switchings is no less than

dwell time, leading to the average dwell time concept. This approach was also used to

prove the stability of switched systems consist of stable and unstable subsystems.

5



The stability of switched systems has been also studied using either common Lyapunov

function method or multiple Lyapunov function method. Since different subsystems of a

switched system may have very different structures, the differential inequalities imposed by

a common Lyapunov function for all subsystems can become a very restrictive. Therefore,

the method of multiple Lyapunov functions provides a more powerful tool for stability of

switched systems ([18]).

Another class of hybrid systems are impulsive switched systems which consist of switches

of states and abrupt changes at the switching instants ([19],[20],[21]). From control point

of view, switching and impulsive control is an effective method in the sense that it allows

stabilization of a complex system by using only small control impulses in different modes.

When the singular and impulsive switching phenomena are simultaneously encountered,

the impulsive switched singular systems are naturally arisen. That is, when subsystems

are singular systems, the impulsive switched system becomes a class of impulsive switched

singular systems ([22],[23],[24]). Because of switches among multiple singular subsystems,

it is inevitably difficult to analyze such systems. Besides regularity and impulse nature,

the problem of consistent initial condition is also important to analyze these systems. It

is well recognized that the singular system may exhibit finite instantaneous jumps due

to inconsistent initial conditions. In impulsive switched singular systems, it cannot be

guaranteed that the states at switching points satisfy the consistent initial condition of the

next activated subsystem under arbitrary switching. On the other hand, instantaneously

state jumps are unavoidable in impulsive switched singular systems even if all subsystems

are regular and impulse-free. It should be noted that the accumulation of jumps can be

destructive even though every jump strength is small, especially when the switching is very

fast. Thus, in a switched singular systems the following questions arise as ([25],[26],[27]):
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Q1. How to describe the state jumps in impulsive switched singular systems?

Q2. How state jump affect the stability of the entire system?

Q3. How to choose a switching law such that the entire system is stable?

To best of our knowledge, there are limited results dealing with the above questions

in the literature. Thus, it is crucially needed to study the impulsive switched singular

systems.

Time delay is unavoidable in many physical systems whose future state depends not only

on the present state but also on the past state. Therefore, physical systems can be modeled

more realistically by including some of the historical values of the system states; this leads

to systems with delay differential equations. However, the study of systems with time

delay is usually more challenging than that of ordinary systems since the delay may cause

oscillations or chaotic behaviors in the system. Moreover, time delays may be the main

cause of instability of dynamical systems. Thus, many important and interesting results

have been reported on the stability analysis and control problems of delayed dynamical

singular and nonsingular systems.

In many mathematical models, systems are driven by some inherent noise having a

stochastic structure. Therefore, this stochasticity in the design of these systems leads

to stochastic systems (SSs). The theory of SSs is more sophisticated compared to the

deterministic systems. As a result, many tools utilized in analyzing deterministic problems

cannot be carried over to handle the corresponding stochastic problems. For instance,

stochastic integrals may not be in the sense of the classical Leibniz-Newton calculus, but

in the sense of Itô calculus. Also, while solution of a deterministic system is represented

by a single sample path, in a stochastic system solution consists of an infinite sequence of

7



the sample paths because of the randomness. Thus, the qualitative notions are redefined

in the SSs. Stability, among these notions, has received incredible attention ([28]-[29]).

Considering random noise in a switched system leads to a stochastic switched system.

People have mostly worked SSs with Markovian switching in which the switching is a

Markovian chain ([30]-[31]). Singular systems with Markovian switching have also got-

ten attention ([31]-[32]). On the other hand, singular subsystems of a switched system

perturbed by a Wiener process are also considered as a stochastic switched singular sys-

tem. Stability analysis of this kind of system have been obtained in terms of linear matrix

inequalities (LMIs).

1.2 Thesis Organization

This thesis is organized as follows: In Chapter 2, the required mathematical background

including some definitions and theorems are given. Chapter 3 addresses the exponential

stability problem for continuous and discrete impulsive switched singular systems with

time-delay, respectively. In Chapter 4, an optimal feedback control for impulsive switched

singular systems with time-delay has been designed to guarantee the exponential stability of

the closed-loop system. In addition, a Luenberger-type observer is designed to estimate the

system states such that the corresponding closed-loop error system is exponentially stable.

Firstly, some sufficient conditions on the exponential stability property of the continuous

impulsive switched systems have been proposed in Chapter 5. To obtain this objective, a

sliding surface is designed on which the sliding motion of the system state happens, then

a sliding mode control law is designed to force the system state to reach, stay and slide

on the sliding surface. Secondly, a similar sliding surface and control design are adopted

to discrete impulsive switched singular systems to obtain some sufficient conditions for the

8



exponential stability of the full order system. Chapter 6 provides sufficient conditions for

mean square admissibility in terms of LMIs for continuous and discrete switched singular

systems perturbed by a Wiener process, respectively.
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Chapter 2

Mathematical Background

This chapter provides necessary background about impulsive systems, switched systems,

delay systems, singular systems and stochastic systems.

2.1 Switched Systems

2.1.1 Preliminaries

A switched system, which is a type of hybrid system, consists of mode-dependent contin-

uous/discrete dynamics and a logic-based switching rule which triggers abrupt transitions

between modes. Switched systems arise in two contexts: (i) a system which exhibits sud-

den changes in its dynamics; (ii) when switching control is used to stabilize a continuous

system.

A switched system with switching signal σ can be described by

ẋ = fσ(t,x(t))(t, x(t)), (2.1)

10



Figure 2.1: Time-dependent switching [1]

where x ∈ R is the system state, the switching signal (switching law or switching rule)

σ(t, x) : R+ × Rn → Ξ is a function taking values in an index set Ξ = {1, 2, . . . , N} for

some N ∈ N. fσ(t,x(t)) is a family of functions defined on R+ × Rn and indexed by Ξ as

{fi, i ∈ Ξ}.

There are two specific types of switching signal:

• time-dependent switching: switching signal σ is a function of time t. That is,

each instant t specifies a subsystem ẋ = fσ(t)(t, x). For an illustration of a simple

time-dependent switching signal, see Figure 2.1.

• state-dependent switching: σ is a function of the state x. The space is divided

into finite (or infinite) number of regions by a family of switching surfaces. A single

subsystem is activated in each of these regions, and the system changes mode when

crossing a switching surface.

In Figure 2.2, the thick curves denote the switching surfaces, the thin curves with ar-
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Figure 2.2: State-dependent switching [1]

rows denote the continuous portions of the trajectory, and the dashed lines symbolize

the jumps.

Note that it is difficult to make a distinction between state-dependent and time dependent

switching because every possible trajectory of system with state-dependent switching is

also a solution of the system with time-dependent switching for suitably defined switching

signal. In view of this, a nonlinear switched system is given by ẋ = fσ(t)(t, x), t ≥ t0,

x(t0) = x0,
(2.2)

where the switching signal σ(t) : [t0,∞) → Ξ is assumed to be right-continuous constant

function taking values in a finite compact set Ξ = {1, 2, . . . , N} for some N ∈ N.

The existence and uniqueness of solution to system (2.2) guarantees by continuity in t

and Lipschitz in x for each fi(t, x), i ∈ Ξ. The solution of (2.2) is parameterized by both

the initial condition and the switching signal σ. To show this dependency, solution denotes

as x(t) = x(t;x0, σ).
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Figure 2.3: Switching between stable subsystems [2]

2.1.2 Stability of Switched Systems

The investigation for sufficient conditions guaranteeing stability is an important problems

in switching systems. Because of the switching signal, a switched system can be unstable

even if all subsystems are stable ([33]). This case is well illustrated in Figure 2.3, where

a system switching between two stable subsystems, i.e. Ξ = 1, 2. Similarly, the switched

system can be stable depending on a switching signal even though all subsystems are

unstable. Figure 2.4 illustrates the case when two subsystems are unstable. Based on these

cases, the main problems in stability of switched systems are divided into the following

three categories:

1. Find sufficient conditions that guarantee stability of a switched system under arbi-

trary switching ([17]-[34]).

13



Figure 2.4: Switching between unstable subsystems [2]

2. Identify the switching signals such that a switched system is stable ([35],[36]).

3. Design a particular switching signal to stabilize a switched system ([18],[37]).

Some details about each of these categories are given below.

First Category: Stability under arbitrary switching

A challenge to analyze the stability of switched systems is that even if the all subsystems

are stable, the switched system might be unstable, illustrated in the following example.

Example 2.1.1. Consider the following switched system

ẋ = Aσ(t)x(t) (2.3)

with Ξ = {1, 2} and

A1 =

−0.1 1

−10 −0.1

 , A2 =

−0.1 10

−1 −0.1

 .
14



Figure 2.5: Phase portraits for subsystems in Example 2.1.1 [2]

Both A1 and A2 are Hurwitz matrices since they have eigenvalues with negative real parts.

Therefore, both subsystems are stable (see Figure 2.5 for an illustration). Consider the fol-

lowing state-dependent switching rule when x1x2 < 0, then subsystem 1 is active, otherwise

subsystem 2 is active. Under this switching rule, the switched system is unstable, as shown

in Figure 2.6.

For stability under arbitrary switching to be possible, a necessary condition is that

subsystems must be stable. However, it is not a sufficient condition for stability.

Theorem 2.1.1. [1] Let V ∈ C1(Rn,R+) be a positive definite and radially unbounded

function and W ∈ C(Rn,R+) be positive definite function. If

OV (x) · fi(x) ≤ −W (x) (2.4)

for all x ∈ Rn and for all i ∈ Ξ then the switched system ẋ = fσ(t)(x), t ≥ t0,

x(t0) = x0,
(2.5)

is globally asymptotically stable for arbitrary switching.
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Figure 2.6: Phase-portrait for the switched system in Example 2.1.1 [2]

Second Category: Stability under slow switching

Again consider a switched system composed entirely of stable subsystems. The switched

system might be unstable. The remedy to this situation is that the switched system dwells

in each of its stable subsystems as long as possible. That is, a switching signal is designed

such that the running time of each single mode is sufficiently large. Thus, the switching

effect diminishes and this ensures that the switched system maintains the same stability

property. This type of switching is called slow switching. To characterize the slow switching

suppose that the switched system (2.2) switches at fixed time tk for k ∈ N. Then, the

running time between any two switching moments is called dwell time and is denoted by

TD. This type of switching signals can be represented by

Ξinf(TD) = {TD | inf {tk − tk−1} ≥ TD, ∀k ∈ N} (2.6)

for some TD > 0.

In brief, if all subsystems are stable and dwell time TD sufficiently large, then stability
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of the switched system is preserved.

Determining a dwell time may be too restrictive since the (exponential) stability is an

asymptotic property. Instead, the average dwell time , Ta can be taken sufficiently large

as the concept in [37]. This type of switching signals satisfies

Nσ(t, t0) ≤ N0 +
t− t0
Ta

, ∀t ≥ t0 (2.7)

where Nσ(t, t0) is the number of switches between t0 and t, and N0 is the chatter bound.

Theorem 2.1.2. [37] Consider system (2.2). Assume there exist Lyapunov functions

Vi ∈ C1(R+ × Rn,R), i ∈ Ξ, positive constants c1, c2, λ and p such that

c1‖x‖p ≤ Vi(t, x) ≤ c2‖x‖p,

and

V̇i(t, x) ≤ −λ‖x‖p, Vi(t, x) ≤ µVj(t, x)

for all i, j ∈ Ξ. Then system (2.2) is exponentially stable for every switching signal with

average dwell time Ta satisfying

Ta >
c1 lnµ

λ
.

Thirth Category: Stability under designed switching

This category can be viewed as a control problem where switching control is used to

stabilize an unstable continuous system. In [35], Wicks et al. first constructed a stabilizing

time-dependent switching rule for a linear switched system which is in the form

ẋ = Aσ(t)(x(t)) (2.8)

with σ(t) ∈ Ξ = {1, 2} and Aσ(t) for all σ(t) ∈ Ξ is not Hurwitz. If there exists a scalar

0 < α < 1 such that the convex combination

αA1 + (1− α)A2
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is Hurwitz, then there is a stabilizing state-dependent switching rule for the system (2.8).

The state-dependent switching rule is expendable to a linear switched system with m

subsystems if there exist constants αi > 0 satisfying
∑m

i=1 αi = 1 such that the convex

combination matrix
∑m

i=1 αiAi is Hurwitz.

2.2 Impulsive Systems

2.2.1 Preliminaries

To construct a system of impulsive differential equations, the Dirac delta function is used

([38],[15]). The Dirac delta function is often defined, in a nonrigorous way, as follows,

δ(t) = lim
ε→0

Iε(t)

where

Iε(t) =


1

ε
, 0 ≤ t ≤ ε,

0, t > ε.

The Dirac delta function is also defined more rigorously in terms of integration as follows,∫ ∞
−∞

f(t)δ(t− a)dt = f(a),

where f is a continuous function. Now, consider the following control system

ẋ(t) = f(t, x(t)) + u(t), (2.9)

x(t0) = x0,

where u ∈ Rn is the system input of the form

u(t) =
∞∑
k=1

Ik(x(t))δ(t− tk), (2.10)
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with Ik being control gain matrix with appropriate dimensions and δ(·) being the Dirac

delta function, and tk being a strictly increasing sequence {tk}∞k=1 with limk→∞ tk =∞.

Integrating (2.9) over [tk, tk + h] gives

x(tk + h)− x(tk) =

∫ tk+h

tk

[
f(s, x(s)) +

∞∑
k=1

Ik(x(s))δ(s− tk)
]
ds,

where h is sufficiently small. As h→ 0+, we obtain

∆x(tk) = x(t+k )− x(tk) = Ik(x(tk)),

where x(t+k ) = limh→0+ x(tk + h), and x(tk) = x(t−k ). Apparently, the control acts as an

impulsive force at time instant tk. As a result, system (2.9) can be rewritten as:
ẋ(t) = f(t, x(t)), t 6= tk

∆x(t) = Ik(x(t)), t = tk

x(t+0 ) = x0,

(2.11)

where x(t) ∈ Rn is system state, f(t, x) : R+ × Rn → Rn, Ik(x(t)) ∈ Rn is the impulse

amount at time tk, {tk}∞k=1 are the fixed impulsive times that form an increasing sequence

satisfying tk−1 < tk and limk→∞ tk = ∞. ∆x = x(t+) − x(t−) where x(t−) (and x(t+)) is

the state just before (and just after) the impulsive action with x(t+) = lims→t+ x(s). The

solution x is assumed to be left-continuous, i.e., x(t−k ) = x(tk). This system is called an

impulsive system.

Next, existence and uniqueness of system (2.11) is established by the following theorem:

Theorem 2.2.1. (Existence and Uniqueness) [14] Assume f ∈ C1(R× Rn,Rn) and

x + Ik(x) ∈ Rn for each k ∈ N and x ∈ Rn. Then, for each (t0, x0) ∈ R × Rn there exists

a unique solution of (2.11).
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If φ(t) = φ(t, t0, x0) on the interval (α, β) containing t0 is a solution of system (2.11),

then it satisfies the following [14]:

(i) (t, φ(t)) ∈ R+ × Rn for t ∈ (α, β) and φ(t+0 ) = x0 where x0 ∈ Rn.

(ii) For t ∈ (α, β), t 6= tk, φ̇(t) = f(t, φ(t)).

(iii) φ(t) is continuous from the left in (α, β), and if t = tk, then φ(t+k ) = φ(tk)+Ik(φ(tk)).

The solution of system (2.11) evolves as follows: the system states starts when t 6= t0.

Then, whenever t 6= tk, the system process in governed by the ordinary differential equation

ẋ(t) = f(t, x(t)) until t = t1. At this moment, the process is subject to an impulse and

instantly changes by some amount Ikx(t), given by the difference equation in (2.11), causing

a jump discontinuity in the system state. For t > t1, if t 6= t2 holds, the process continues

according to the differential equation ẋ(t) = f(t, x(t)) until an impulsive action occurs

again. This continues in the same manner as long as the solution exists.

2.2.2 Stability of Impulsive Systems

In applications, the most significant property of impulsive systems is stability. When a

stable system is subject to impulses, the system may lose or maintain its stability due to

impulses. On the other hand, under some conditions impulses stabilize some system even

when the underlying systems are unstable ([39], [40], [41]).

Definition 2.2.1. Let x(t) = x(t, t0, x0) be a given solution of (2.11) existing for t ≥ t0.

Then, the trivial solution of (2.11) is said to be stable if for any ε > 0 and t0 ∈ R+, there

exists a δ = δ(t0, ε) such that

‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ t0.
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The following theorem represents the sufficient conditions that guarantee exponential

stability of a simple impulsive system given by ẋ(t) = Ax(t), t 6= tk

∆x(t) = Bkx(t), t = tk
(2.12)

where x ∈ Rn is the system state variable, and A ∈ Rnxn is a system coefficient matrix,

and Bk ∈ Rnxn is constant matrices.

Theorem 2.2.2. [39] Assume that the eigenvalues of A have negative real parts. Then the

trivial solution of system (2.12) is globally exponentially stable if the following inequality

holds:

lnαk − ν(tk − tk−1) ≤ 0, k = 1, 2, . . . (2.13)

where αk =
λmax([I+Bk]TP [I+Bk])

λmin(P )
with P being a positive definite matrix satisfying

ATP + PA = −Q

for any positive definite matrix Q, 0 < ν < ξ, and ξ = λmin(Q)
λmin(P )

.

2.3 Delay Systems

2.3.1 Preliminaries

The main difference between ordinary and delay differential equations is initial data. In

ordinary differential equations, the initial condition is given at a specific time while a

continuous function defined on a finite interval is the initial data for delay differential

conditions.
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We use the following notations: let Cd with d > 0 being a time delay be the set of

all continuous functions defined from [−d, 0] to Rn. Then, function xt : [−d, 0] → Rn is

defined by xt(s) = x(t+ s) for all s ∈ [−d, 0]. Moreover, d-norm of this function is defined

by ‖xt‖d = supt−d≤θ≤t ‖x(θ)‖ where ‖.‖ is the Euclidean norm on Rn.

The initial value problem of a delay system is described by ẋ(t) = f(t, xt)

xt0(s) = φ(s), s ∈ [−d, 0]
(2.14)

where f : R+ × Ω→ Rn for Ω ⊂ Cd.

Theorem 2.3.1. (Existence) If f : R+ × Ω → Rn is continuous where Ω ⊂ Cd is an

open set, then for any (t0, φ) ∈ R+ × Ω there exists a solution of system (2.14).

Definition 2.3.1. A function f(t, ψ) defined on R+ × Ω is said to be Lipschitz in ψ if

there exists a constant L > 0 such that for any (t, ψ1), (t, ψ2) ∈ R+ × Ω,

‖f(t, ψ1)− f(t, ψ2)‖ ≤ L ‖ψ1 − ψ2‖ .

Theorem 2.3.2. (Uniqueness) If f(t, x) is continuous in t and Lipschitx in x, then for

any (t0, φ) ∈ R+ × Ω, there exists a unique solution of (2.14).

2.3.2 Stability of Delay Systems

We require the following definition in order to state the stability notions of delay systems.

Definition 2.3.2. Suppose that f(t, 0) = 0 for all t ∈ R+, which guarantees that system

(2.14) possesses a trivial solution x(t) = 0. The trivial solution of system (2.14) is said to

be

22



(i) stable if for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that

‖φ‖d < δ implies ‖x(t)‖ < ε for any t ≥ t0 − d;

(ii) unstable if (i) does not hold;

(iii) uniformly stable if (i) holds for δ = δ(ε);

(iv) asymptotically stable if it is stable and there exists a positive constant δ = δ(t0)

such that

‖φ‖d < δ implies lim
t→∞

x(t) = 0;

(v) exponentially stable if there exist positive constants k, α, and λ such that

‖x(t)‖ ≤ α ‖φ‖d e
−λ(t−t0) for all ‖φ‖d < k and t ≥ t0.

The Lyapunov method is an efficient method for stability of delay systems. There

are two Lyapunov methods commonly used for delay systems: the Lyapunov-Krasovskii

functional method and the Razumikhin technique. To guarantee asymptotic stability of a

time-delay system by the Lyapunov-Krasovskii method a positive definite functional with

a negative definite time derivative along the trajectory of the system has to be found.

On the other hand, a positive definite function whose time-derivative is negative definite

under the Razumikhin condition guarantees the asymptotic stability of the system by the

Razumikhin technique. By utilizing the Razumikhin technique, the following lemma was

established by Halanay [42].

Lemma 2.3.1. [42] Assume that u is a continuous nonnegative function defined on [t0 −

d, b) and satisfies

u̇(t) ≤ −αu(t) + β sup
σ∈[t−d,t]

u(σ), t ∈ [t0, b)
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where α and β are positive constants satisfying α > β > 0. Then, there exists a positive

constant ξ such that

u(t) ≤ sup
σ∈[t0−d,t0]

u(σ)e−ξ(t−t0), t ∈ [t0, b)

where ξ is a unique positive solution of

ξ = α− βeξd.

In the following theorem, using the Halanay lemma sufficient conditions are obtained

for exponential stability of linear delay system

ẋ(t) = Ax(t) +Bx(t− d), (2.15)

where A, B are constant matrices with appropriate dimensions.

Theorem 2.3.3. [43] The origin of system (2.15) is exponentially stable if matrix A is

Hurwitz and the following inequality is satisfied

−λmin(Q)− β∗

λmax(P )
+

β∗

λmin(P )
< 0

where P and Q are positive definite matrices satisfying the Lyapunov equation

ATP + P TA = −Q

and β∗ = ‖PB‖.

2.4 Stochastic Systems

In this section, we firstly introduce some notations and definitions.
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2.4.1 Preliminaries

Probability theory is used to analyze random experiments which are called elementary

events and usually denoted by w. These elementary events are grouped in a sample space

Ω. F denotes the family of all interesting events of Ω. For further purposes, F is required

to be σ-algebra as defined below.

Definition 2.4.1. F is said to be a σ-algebra on Ω if the following conditions hold:

1. the empty set ∅ ∈ F ;

2. if A ∈ F , then AC ∈ F where AC is the complement of A;

3. if {Ai}i≥1 ∈ F , ∪i≥1Ai ∈ F .

Definition 2.4.2. A real valued function X : Ω → R is said to be a random variable or

F-measurable if {w| X(w) ≤ x} ∈ F for all x ∈ R.

If (Ω,F) is a measure space, then the elements of F are called F -measurable sets.

Definition 2.4.3. A function P : F → [0, 1] is said to be a probability measure on the

measurable space (Ω,F) if

1. P(∅) = 0 and P(Ω) = 1;

2. for {Ai}i≥1 ⊂ F where Ai ∩ Aj = ∅ for all i 6= j,

P (∪i≥1Ai) =
∞∑
i=1

P(Ai).

Furthermore, the triplet (Ω,F ,P) is called a probability space. If the σ-algebra is complete;

that is, F = FC where FC is the complement of F , then the probability space is said to be

complete.
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Let X1(w), X2(w), . . . , a sequence of random variables, and X(w) be defined on the

probability space (Ω,F ,P).

Definition 2.4.4. The sequence {Xk(w)}k≥1 is said to converge to X(w) with probability

one (w.p.1) or almost surely (a.s.) if

P
{
w| lim

k→∞
Xk(w) = X(w)

}
= 1.

Definition 2.4.5. Let (Ω,F ,P) be a complete probability space. A sequence of increasing

sub-σ-algebra {Ft}t≥0 of F is said to be a filtration.

Definition 2.4.6. A stochastic process X(t) is a family of random variables

{
Xt(w)| t ∈ I ⊂ R+, w ∈ Ω

}
.

Moreover, X(t) is a continuous stochastic process if for all w ∈ Ω, Xt(w) is continuous for

all t ∈ R.

Definition 2.4.7. The probabilistic behavior of a random variable is described by its dis-

tribution function F (x) defined by

F (x) = P {w| X(w) ≤ x} for all x ∈ R.

Assume that X is a continuous random variable, then there exists a non-negative and

integrable function f(x) such that

F (x) =

∫ x

−∞
f(s)ds,

which implies that f(x) =
dF (x)

dx
which is called the probability density function (p.d.f.)

of X.
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Definition 2.4.8. The mathematical expectation (or mean or the first moment) of a con-

tinuous stochastic process X(t) is defined by

m(t) = E [X(t)] =

∫ ∞
−∞

xf(x, t)dx,

where f(x, t) is the p.d.f. of x = X(t);

the mean square (or the second moment) of the stochastic process X(t) is defined by

m2(t) = E
[
X2(t)

]
=

∫ ∞
−∞

x2f(x, t)dx;

the variance of the stochastic process X(t) is

V ar [X(t)] = E
[
(X(t)−m(t))2] = m2(t)−m2(t).

Definition 2.4.9. Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0.

An continuous (a.s.) stochastic process W (t) for all t ∈ R+ is said to be Wiener (or

Brownian motion) process if

1. P {w| W (0) = 0} = 1;

2. for any 0 ≤ s < t <∞, the increment W (t)−W (s) is independent of Fs;

3. for any t ∈ R+ and h > 0, the increment W (t+h)−W (t) is Gaussian (or normally)

distributed with

E [W (t+ h)−W (t)] = µh;

E
[
(W (t+ h)−W (t))2] = σ2h,

where the mean µ ∈ R and the variance σ2 is a positive constant. The stochastic

process W (t) defines a standard Wiener process if the mean µ = 0 and the variance

σ2 = 1.
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A typical n-dimensional nonlinear stochastic system is defined by

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), t ∈ [t0, T ], (2.16)

x(t0) = x0,

for any t0, T ∈ R+ with T > t0, where x(t) is Rn-valued stochastic process, W (t) =

(W1(t),W2(t), · · · ,Wm(t))T is an m-dimensional Wiener process, f : R+ × Rn → Rn is

the deterministic drift coefficient of the process x, g : R+ × Rn → Rn×m is the diffusion

coefficient of the process x, and x0 is an Ft0-measurable Rn-valued random variable such

that E
[
‖x0‖2] <∞.

The stochastic integral equation corresponding to initial value problem (2.16) is

x(t) = x0 +

∫ t

t0

f(s, x(s))ds+

∫ t

t0

g(s, x(s))dW (s), (2.17)

where the first integral is a Riemann integral (a.s.) and the second one is an Itô integral

satisfying the following properties:

1. E
[∫ t

t0
g(s, x(s))dW (s)

]
= 0;

2. E
∥∥∥∫ tt0 g(s, x(s))dW (s)

∥∥∥2

=
∫ t
t0
E ‖g(s, x(s))‖2 dW (s).

In the following part, we will present the solution of (2.16).

Definition 2.4.10. Let (Ω,F ,Ftt≥0,P) be a complete probability space. For any w ∈ Ω,

a, b ∈ R+ with a < b, and p ≥ 1, a random process f(t, w) is belongs to class Lad(Ω, Lp[a, b])

if it is Ft-adapted and almost all its sample paths are pth integrable in the Riemann sense.

Definition 2.4.11. For any t0, T ∈ R+, the Rn-valued stochastic process x(t) = x(t, t0, x0)

is said to be a solution of the initial value problem in (2.16) if the following properties hold:
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1. x(t) is continuous and Ft-adapted;

2. the Rn-valued f ∈ Lad(Ω;L1[a, b]) and the Rn×m-valued g ∈ Lad(Ω;L2[a, b]);

3. for any t ∈ [t0, T ], x(t) satisfies the stochastic differential equation in (2.16) w.p.1;

4. at t = t0, x satisfies the initial condition in (2.16) w.p.1.

Moreover, a solution x(t) is said to be unique if

P {x(t) = y(t), ∀t ∈ [t0, T ]} = 1,

where y(t) is any other solution.

In stochastic differential equations, we use the stochastic version of the chain rule, which

is called Itô formula.

Definition 2.4.12. (Itô Formula) For any t0 ∈ R+ and t ≥ t0, let x(t) be an Rn-

dimensional Itô process, i.e., Rn-valued continuous adapted process satisfying

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (a.s.)

where f ∈ Lad(Ω;L1[a, b]) and g ∈ Lad(Ω;L2[a, b]). Let V ∈ C1,2(R+ × Rn;R). Then, for

any t ≥ t0, V is a real-valued Itô process satisfying

dV (t, x) = LV (t, x)dt+ Vx(t, x)g(t, x)dW (t), (a.s.)

where

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
tr
[
gT (t, x)Vxx(t, x)g(t, x)

]
.
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If V ∈ C1,2(R+ × Rn;R), then

Vt(t, x) =
∂V

∂t
, Vx(t, x) =

[
∂V

∂x1

,
∂V

∂x2

, . . . ,
∂V

∂xn

]
,

Vxx(t, x) =

[
∂2V

∂x∂xj

]
n×n

=


∂2V

∂x1∂x1

∂2V

∂x1∂x2

. . .
∂2V

∂x1∂xn
...

...
...

...

∂2V

∂xn∂x1

∂2V

∂xn∂x2

. . .
∂2V

∂xn∂xn

 .

The operator L is called the averaged derivative or infinitesimal diffusion operator at a

point (t, x) and can be generally defined as

LV (t, x) = lim
h→0+

1

h

[
E
[
V (t+ h, x(t+ h))

]
− V (t, x)

]
.

2.4.2 Stability of Stochastic Systems

Now we will present the definition of some stability properties of the trivial solution of

system (2.16).

Definition 2.4.13. For any t ≥ t0 with t0 ∈ R+, let x(t) = x(t, t0, x0) be a solution of

system (2.16). The trivial solution of (2.16) is said to be

• almost surely stable (or stable w.p.1) if for any ε, ε∗ > 0, and t0 ∈ R+, there

exists δ = δ(ε, ε∗, t0) such that

‖x0‖ < δ implies P{w| sup
t≥t0
‖x(t)‖ > ε∗} < ε;

• pth moment stable if for any ε > 0 and t0 ∈ R+, there exists δ = δ(ε, t0) such that

for p > 0

‖x0‖p < δ implies E[sup
t≥t0
‖x(t)‖p] < ε;
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• asymptotically stable if for any ε ∈ (0, 1), there exists δ = δ(ε, t0) such that

‖x0‖ < δ implies P{w| lim
t→∞

sup ‖x(t)‖ = 0} < 1− ε;

• almost surely asymptotically stable if it is almost surely stable and

P{w| lim
t→∞

sup ‖x(t)‖ = 0} = 1;

• pth moment asymptotically stable if if it is stable in the pth moment and

lim
t→∞

E[sup
t≥t0
‖x(t)‖p = 0;

• pth moment exponentially stable if there exist positive constants p, α, and β

such that, for any t0 ∈ R+,

‖x0‖p < δ implies E[‖x(t)‖p] ≤ α ‖x0‖p e−β(t−t0).

2.5 Singular Systems

This section is devoted to singular systems in both the continuous and discrete cases,

respectively. Some basic definitions for singular systems are given. Then, we focus on

stability of singular systems in both cases.

2.5.1 Continuous Singular Systems

State space variable method is used to obtain state space models of singular systems using

physical variables such as speed, weight, or temperature, which are sufficient to characterize
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the system. A set of equations can be established by the physical relationships among the

variables. This set of equations can be arranged in the following form

Eẋ(t) = f(t, x(t)) (2.18)

where x(t) ∈ Rn is the state vector, E ∈ Rn×n is a singular matrix with rank (E) = r < n,

and f(t, x(t)) : R+ × Rn → Rn is the vector-valued differentiable function. The system

(2.18) is called a general nonlinear singular system.

When f(t, x(t)) is equal to Ax(t) + g(t, x(t)) where A ∈ Rn×n is the coefficient matrix,

g(t, x(t)) : R+×Rn → Rn is the vector-valued nonlinear perturbation, the general nonlinear

singular system (2.18) reduces to the following form:

Eẋ(t) = Ax(t) + g(t, x(t)). (2.19)

Equation (2.19) describes a nonlinear singular system.

Definition 2.5.1. System (2.19) (or matrix pair (E,A)) is regular if there exists a constant

scalar γ ∈ C such that

det(γE − A) 6= 0.

Moreover, the matrix pair (E,A) is said to be impulse free if deg(det(γE−A)) = rank(E).

Theorem 2.5.1. [44] System (2.19) is regular if and only if there exist two nonsingular

matrices Q̃, P̃ such that Q̃ =

Q̃1

Q̃2

 and P̃ =
[
P̃ 1 P̃ 2

]
where Q̃1 ∈ Rn1×n, Q̃2 ∈ Rn2×n,

P̃ 1 ∈ Rn×n1, P̃ 2 ∈ Rn×n2 and the following standard decomposition holds:

Q̃EP̃ = diag (In1 , N) , Q̃AP̃ = diag (A1, In2) , Q̃g(t, x) =

g1(t, x1, x2)

g2(t, x1, x2)

 , (2.20)

where n1 + n2 = n, A1 ∈ Rn1×n1, N ∈ Rn2×n2 is a nilpotent matrix with nilpotent index h,

g1 ∈ Rn1 and g2 ∈ Rn2.
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Corollary 2.5.1. [44] Let (E,A) be regular and n1 be the dimension of the decomposition

(2.20), then

deg(det(γE − A)) = n1.

Corollary 2.5.2. [44] If the matrix pair (E,A) is impulse free, then

deg(det(γE − A)) = r

where r = rank(E).

Let x1

x2

 = P−1x, x1 ∈ Rn1 , x2 ∈ Rn2 ,

and system (2.19) be regular. By the above theorem, system (2.19) is a restricted system

equivalent to

ẋ1 = A1x1 + g1(t, x1, x2), (2.21)

Nẋ2 = x2 + g2(t, x1, x2). (2.22)

Subsystems (2.21) and (2.22) are called the slow subsystem and the fast subsystem, respec-

tively. x1 and x2 are called the slow substate and fast substate, respectively ([10]).

The nilpotent matrix N causes impulse terms in the solution of subsystem (2.22). This

reason implies the following result.

Corollary 2.5.3. [8] System (2.19) is impulse free if and only if N = 0.

In the literature, there are two kinds of solution to the singular systems: distributional

and classical solutions ([10], [45],[46]). We consider only classical solutions expressed by

classical functions, which are continuously differentiable. A classical solution to a singular
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system requires consistent initial values ([10]). Necessary conditions for consistent initial

conditions have been proposed by [12] and [47]. The characterization of the set of consistent

initial conditions H0 is given as follows.

Corollary 2.5.4. Let the function g2(t, x1, x2) be (h− 1) times continuously differentiable

when given system (2.19) is regular. Then, the set of consistent initial conditions is given

by

H0 =
{
η | [0 In1 ]P

−1η = −
h−1∑
j=0

N jg
(j)
2 (t0)

}
where In1 ∈ Rn1×n1 is an identity matrix, and P is defined in decomposition form.

The following theorem is the existence and uniqueness theorem for solutions of (2.19).

Theorem 2.5.2. [47],[48] Given the regular nonlinear singular system (2.19) is of index

h and a consistent initial condition x0 for the system at t0. If the following conditions

(a) and (b) are satisfied in the closed domain D : ‖y − y0‖≤ K, t0 ≤ t ≤ t0 + R where

y = P−1x and y0 = P−1x0 :

(a) the function g2(x1, x2, t) is h times differentiable with respect to x1, x2, and t in the

domain G ⊃ D;

(b) the function g1(x1, x2, t) and
∑h−1

i=0 N
ig

(i+1)
2 (x1, x2, t) are continuous and satisfy the

Lipschitz condition in D.

Then, the regular nonlinear singular system has a unique solution satisfying x(t0) = x0

and defined on the interval [t0, t0 + α], where α = min (R,K/M) and

M = max

{
sup
D
‖A1x1 + g1(x1, x2, t)‖, sup

D

∥∥∥∥∥
h−1∑
i=0

N ig
(i+1)
2 (x1, x2, t)

∥∥∥∥∥
}
.
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Before finishing this subsection, it is necessary to stress the importance of the condition

underlying the existence and uniqueness of solution to nonlinear singular systems. For

a nonlinear singular system (2.19) to have a unique solution, the function g2(x1, x2, t)

appearing in the decomposition of the nonlinear perturbation g(t, x(t)) needs to be h times

piecewise continuously differentiable.

2.5.2 Stability Definitions and Theorems For Continuous Case

Consider the following singular system

Eẋ(t) = f(t, x(t)) (2.23)

x(t0) = x0

where f(t, x(t)) : R×Rn → Rn is piecewise continuous function which guarantee existence

and uniqueness of solution to (2.23) and assume that f(t, 0) ≡ 0 for all t so that the system

has a trivial solution.

Definition 2.5.2. The trivial solution of system (2.23) is said to be stable if for every ε > 0

and any t0 ∈ R+ there exists a δ = δ(t0, ε) > 0 such that ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε

for all t ≥ t0.

Definition 2.5.3. The trivial solution of system (2.23) is said to be uniformly stable if

for every ε > 0 and any t0 ∈ R+ there exists a δ = δ(ε) > 0 such that ‖x0‖ < δ implies

‖x(t; t0, x0)‖ < ε for all t ≥ t0.

Definition 2.5.4. The trivial solution of system (2.23) is said to be asymptotically stable

if it is stable and there exists a η = η(t0) > 0 such that

lim
t→∞

x(t; t0, x0) = 0
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whenever ‖x0‖ < η.

Definition 2.5.5. The trivial solution of system (2.23) is said to be uniformly asymp-

totically stable if it is uniformly stable and for every ε > 0 there exists a δ > 0 and

T = T (ε) > 0 such that for all t0 ∈ R+, ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε for all

t ≥ t0 + T .

Now consider system (2.23) in a special form described by

Eẋ(t) = Ax(t) + g(t, x(t)) (2.24)

x(t0) = x0

with index h and x0 being a consistent initial condition. Assume that system (2.24) is

regular, and satisfies the conditions in Theorem 2.5.2. Also, to ensure that system has a

trivial solution, assume that g(t, 0) ≡ 0.

Definition 2.5.6. Regular system (2.24) is said to be exponentially stable if there exist

α, β > 0 such that its state x(t) satisfies

‖x(t)‖ ≤ α‖Ex0‖e−β(t−t0), t ≥ t0.

Definition 2.5.7. System (2.24) is said to be E-exponentially stable if there exist constants

α, β > 0 such that

‖Ex(t)‖ ≤ α‖Ex0‖e−β(t−t0), t ≥ t0.

E-exponential stability means stability of the slow variable x1.

The following lemma characterizes the relationship between the exponential stability

and the E-exponential stability for system (2.24).
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Lemma 2.5.1. [44],[49] For system (2.24) with g(t, x) = 0, the E-exponential stability is

equivalent to the exponential stability.

The following theorem gives a criteria for the stability of regular nonlinear singular

systems.

Theorem 2.5.3. [10] The singular system (2.24) is stable if and only if

σ (E,A) ⊂ C− = {s ∈ C| Re(s) < 0} ;

where σ (E,A) = {s ∈ C| det(sE − A) = 0} and all perturbations satisfy

‖g(t, x)‖ ≤ γ‖x‖

with sufficiently small γ.

The above theorem indicates that the stability of the singular system is determined by

eigenvalues of the matrix pair and the perturbation which is bounded by a linear growth

bound.

Definition 2.5.8. System (2.24) is called admissible if it is stable and impulse-free.

Theorem 2.5.4. [50],[51],[52] If system (2.24) with g(t, x) = 0 is admissible, then for

each Y > 0 there exists X > 0 satisfying

ETXA+ ATXE = −ETY E.

2.5.3 Discrete Singular Systems

Consider discrete time singular system

Ex(n+ 1) = Ax(n) + g(n, x(n)), (2.25)
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where x ∈ RN , E,A ∈ RN×N are system coefficient matrices where E being singular with

rank(E) = r < N , and g(n, x(n)) : Z+ × RN → RN .

Definition 2.5.9. System (2.25) is regular if there exists a constant scalar γ ∈ C such

that

det(γE − A) 6= 0.

Moreover, the matrix pair (E,A) is said to be casual if deg(det(γE − A)) = rank(E).

Remark 2.5.1. Impulse freeness in continuous time singular systems is called as casual

in discrete time singular systems.

Theorem 2.5.1, Corollary 2.5.1, Corollary 2.5.2, and Corollary 2.5.3 in continuous sin-

gular systems are valid for the discrete singular system in (2.25).

2.5.4 Stability Definitions and Theorems For Discrete Case

Consider the following singular system

Ex(n+ 1) = f(n, x(n)) (2.26)

x(n0) = x0

where f(n, x(n)) : Z+×RN → RN is piecewise continuous function and assume that there

exists a unique solution to (2.26).

Definition 2.5.10. The trivial solution of system (2.26) is said to be stable if for every

ε > 0 and any n0 ∈ Z+ there exists a δ = δ(n0, ε) > 0 such that ‖x0‖ < δ implies

‖x(n;n0, x0)‖ < ε for all n ≥ n0. It is uniformly stable if δ may be chosen independent of

n0. If it is not stable, it is said to be unstable.

38



Definition 2.5.11. The solution of system (2.26) is said to be exponentially stable if for

the initial condition x(n0) = x0 there exist constants 0 < ε < 1 and M ≥ 1 such that

‖x(n)‖ ≤M‖Ex0‖εn−n0 for any n ≥ n0.

Definition 2.5.12. System (2.26) is said to be E-exponentially stable if there exist con-

stants 0 < ε < 1 and M ≥ 1 such that ‖Ex(n)‖ ≤M‖Ex0‖εn−n0 for any n ≥ n0.

Let us consider f(n, x(n)) in (2.26) in a special form described by f(n, x(n)) = Ax(n)+

g(n, x(n)). In this case, the system in (2.26) is defined as

Ex(n+ 1) = Ax(n) + g(n, x(n)) (2.27)

x(n0) = x0

Definition 2.5.13. System (2.27) is said to be stable if system (2.26) is regular and all

eigenvalues of the system are within the unit circle centered at the origin.

Theorem 2.5.5. [53],[54] Suppose that g(n, x(n)) = 0 and matrix A is invertible, then

linear singular system (2.27) is asymptotically stable if and only if there exists X > 0

satisfying

ATXA− ETXE = −Y,

where Y > 0.
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Chapter 3

Stability of Impulsive Switched

Singular Systems with Time-Delay:

Continuous and Discrete

In this chapter, exponential stability of impulsive switched singular systems with time-

delay (ISSSD) is studied. The stability results for both continuous and discrete ISSSD

have been investigated by using the multiple Lyapunov functions along with the average-

dwell time (ADT) switching signal to organize the jumps among the system modes and by

resorting the Halanay lemma. Numerical examples with simulations are also represented

to further clarify the proposed methodology.
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3.1 Impulsive Switched Singular Systems with Time-

Delay: Continuous

Consider the following impulsive switched singular systems with time-delay

Eσ(t)ẋ(t) = Aσ(t)x(t) + fσ(t)(t, x(t− d)), t 6= tk

4x(t) = Bkx(t−), t = tk

xt−0 (s) = φ(s), s ∈ [−d, 0],

(3.1)

where x ∈ Rn is the system state variable, and Aσ(t), Bk, Eσ(t) ∈ Rn×n are system coefficient

matrices where Eσ(t) being singular with rank(Eσ(t)) = r < n, the matrix pairs (Eσ(t), Aσ(t))

being regular, and Bk being constant matrices. The switching signal σ(t) : [t0,∞)→ Ξ is

a piecewise constant function taking values in a finite compact set Ξ = {1, 2, . . . , N} for

some N ∈ N. {tk}∞k=1 are the impulsive times that form an increasing sequence satisfying

tk−1 < tk and limk→∞ tk = ∞. ∆x = x(t+) − x(t−) where x(t−) (and x(t+)) is the state

just before (and just after) the impulsive action with x(t+) = lims→t+ x(s). The solution

x is assumed to be right-continuous, i.e., x(t+k ) = x(tk). For all t ≥ t0, the delayed state

vector is defined by xt = x(t + s), where s ∈ [−d, 0] with d being a positive constant

representing the time delay. fσ(t)(t, x(t − d)) : R+ × Rn → Rn are piecewise continuous

vector-valued functions ensuring the existence and uniqueness of solutions for system (3.1)

with fσ(t)(t, 0) ≡ 0, t ∈ R+ and and there exist constant matrices Fσ(t) such that

‖fσ(t)(t, x)− fσ(t)(t, x
∗)‖ ≤ ‖Fσ(t)Eσ(t)(x− x∗)‖ (3.2)

for all (t, x), (t, x∗) ∈ D = {(t, x) : t ∈ R+, ‖Eσ(t)x‖ < ρ}.
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3.1.1 Systems with Stable Subsystems

Consider the system in (3.1) with stable subsystems. Before stating sufficient conditions

that guarantee exponential stability of this system, we first present the following lemmas

that are needed in the proof of main theorems.

Lemma 3.1.1 ([42]). Assume that u is a continuous nonnegative function defined on

[t0 − d, b) and satisfies

u̇(t) ≤ −αu(t) + β sup
σ∈[t−d,t]

u(σ), t ∈ [t0, b)

where α and β are positive constants satisfying α > β > 0. Then, there exists a positive

constant ξ such that

u(t) ≤ sup
σ∈[t0−d,t0]

u(σ)e−ξ(t−t0), t ∈ [t0, b)

where ξ is a unique positive solution of

ξ = α− βeξd.

Lemma 3.1.2. For any vectors x, y ∈ Rn and a scalar ε > 0, the following inequality

holds:

2xTy ≤ 1

ε
xTx+ εyTy. (3.3)

In the following theorem, some sufficient conditions are established to guarantee the expo-

nential stability of system (3.1).

Theorem 3.1.1. For any i ∈ Ξ, assume that each subsystem of (3.1) is admissible. Then,

the trivial solution of (3.1) is exponentially stable if the following assumptions hold:
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(i) For any i, j ∈ Ξ there exists γk > 1 such that

(I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi, (3.4)

where Xi and Xj are defined in the proof.

(ii) For any t0, the switching law satisfies

N(t, t0) ≤ N0 +
t− t0
Ta

where N(t, t0) represents the number of switchings in (t, t0), and N0 and Ta are the

chatter bound and average dwell time to be defined, respectively.

Proof. Let x (t) = x(t, t0, x0) be the solution of the system (3.1). For t ∈ [tk−1, tk), define

υi(t) = Vi(x(t)) = xT (t)ET
i XiEix(t), t 6= tk, i = σ(t)

as a Lyapunov function candidate for ith subsystem. Then, derivative of υi along the

trajectory of (3.1) is given by

υ̇i(t) = ẋT (t)ET
i XiEix(t) + xT (t)ET

i XiEiẋ(t)

= xT (t)
(
ATi XiEi + ET

i XiAi
)
x(t) + fTi (t, x(t− d))XiEix(t) + xT (t)ET

i Xifi(t, x(t− d))

= −xT (t)ET
i YiEix(t) + 2fTi (t, x(t− d))XiEix(t) (3.5)

where −ET
i YiEi = ATi XiEi + ET

i XiAi for any Yi > 0.

Using Lemma 3.1.2 and inequality (3.2), we can obtain that

2fTi (t, x(t− d))XiEix(t) ≤ 1

εi
fTi (t, x(t− d))fi(t, x(t− d)) + εix

TET
i (t)XT

i XiEix(t)

≤ 1

εi
‖fi(t, x(t− d))‖2 + εi‖Eix(t)‖2λmax(X2

i )

≤ 1

εi
‖FiEix(t− d)‖2 + ε‖Eix(t)‖2λmax(X2

i ) (3.6)
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Substituting (3.6) into (3.5), we obtain

υ̇i(t) ≤ −xT (t)ET
i YiEix(t) +

1

εi
‖FiEix(t− d)‖2 + εi‖Eix(t)‖2λmax(X2

i )

≤ −λmin(Yi)‖Eix(t)‖2 +
1

εi
‖Fi‖2‖Eix(t− d)‖2 + εi‖Eix(t)‖2λmax(X2

i )

=
(
− λmin(Yi) + εiλmax(X2

i )
)
‖Eix(t)‖2 +

1

εi
‖Fi‖2‖Eix(t− d)‖2

≤ −αiυi(t) + βi sup
σ∈[t−d,t]

υi(σ) (3.7)

where αi =
λmin(Yi)− εiλmax(X2

i )

λmax(Xi)
, βi =

‖Fi‖2

εiλmin(Xi)
.

Applying Lemma 3.1.1 to (3.7), we obtain the solution of differential inequality (3.7) for

t ∈ [tk−1, tk)

υi(t) ≤ sup
σ∈[tk−1−d,tk−1]

υi(σ)e−ξi(t−tk−1), (3.8)

where ξi is a unique positive solution of

ξi = αi − βieξid.

On the other hand, for t = tk, k = 1, 2, 3, . . ., suppose σ(tk) = j, it follows from (3.1) and

(3.4) that

υj(tk) = xT (tk)E
T
j XjEjx(tk)

= xT (t−k )(I +Bk)
TET

j XjEj(I +Bk)x(t−k )

≤ γkx
T (t−k )ET

i XiEix(t−k )

= γkυi(t
−
k ). (3.9)

Using (3.8) and (3.9) successively on each subinterval leads to the following results. For

t ∈ [t0, t1), we have

υi1(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t−t0), (3.10)
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For t ∈ [t1, t2), we have

υi2(t) ≤ sup
σ∈[t1−d,t1]

υi2(σ)e−ξi2 (t−t1). (3.11)

From (3.9), we can result in the following inequality

sup
σ∈[t1−d,t1]

υi2(σ) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)

sup
σ∈[t1−d,t1]

υi2(σ)e−ξi2 (t−t1) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)e−ξi2 (t−t1). (3.12)

By (3.10) and (3.12), we have

υi2(t) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)e−ξi2 (t−t1). (3.13)

Suppose that tk − d ∈ [tk−1, tk), by (3.10), we can find supσ∈[t1−d,t1] υi1(σ
−) as

sup
σ∈[t1−d,t1]

υi1(σ
−) = sup

σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0). (3.14)

Thus, if we rewrite (3.13), we obtain for t ∈ [t1, t2)

υi2(t) ≤ γ1 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t−t1). (3.15)

Similarly, for t ∈ [t2, t3) we can write the following inequality using (3.8)

υi3(t) ≤ sup
σ∈[t2−d,t2]

υi3(σ)e−ξi3 (t−t2). (3.16)

Also, from (3.9) we have

sup
σ∈[t2−d,t2]

υi3(σ) ≤ γ2 sup
σ∈[t2−d,t2]

υi2(σ
−)

sup
σ∈[t2−d,t2]

υi3(σ)e−ξi3 (t−t2) ≤ γ2 sup
σ∈[t2−d,t2]

υi2(σ
−)e−ξi3 (t−t2). (3.17)
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By (3.16) and (3.17), we have

υi3(t) ≤ γ2 sup
σ∈[t2−d,t2]

υi2(σ
−)e−ξi3 (t−t2). (3.18)

Using (3.14), we can find supσ∈[t2−d,t2] υi2(σ
−) in (3.18) as

sup
σ∈[t2−d,t2]

υi2(σ
−) = γ1 sup

σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1) (3.19)

Therefore, we obtain for t ∈ [t2, t3)

υi3(t) ≤ γ1γ2 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1)e−ξi3 (t−t2). (3.20)

In general, for t ∈ [tk−1, tk)

υik(t) ≤ γ1γ2 . . . γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1) . . . e−ξik (t−tk−1). (3.21)

Let ξ = min{ξij ; i ∈ Ξ and j = 1, 2, . . . , k}, so inequality (3.21) becomes

υik(t) ≤ γ1e
ξi1dγ2e

ξi2d . . . γk−1e
ξik−1

d sup
σ∈[t0−d,t0]

υi1(σ)e−ξ(t−t0). (3.22)

Let γ = max{γl; l = 1, 2, . . . , k− 1} and ξ∗ = max{ξil ; i ∈ Ξ, l = 1, 2, . . . , k− 1}. Then,

inequality (3.22) is written as

υik(t) ≤ γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e(i−1)ξ∗de−ξ(t−t0)

Applying assumption (ii) with N0 = η
ln γ+ξ∗d

, where η is an arbitrary constant, and Ta =

ln γ+ξ∗d
ξ−ξ∗∗ , (ξ > ξ∗∗) leads to

υik(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)eη−ξ
∗∗(t−t0),

which implies that

‖Eix(t)‖ ≤ µ‖Eix(t0 − d)‖e(η−ξ∗∗(t−t0))/2, t ≥ t0, (3.23)
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where µ =
√
λM/λm defined for λM = max{λmax(Xi); i ∈ Ξ} and λm = min{λmin(Xi); i ∈

Ξ}. Thus, the trivial solution of the system (3.1) is E-exponentially stable.

Let

P̃−1
i x(t) =

x1(t)

x2(t)

 (3.24)

then it follows from the standard decomposition form that system (3.1) is equivalent to

ẋ1(t) = A1ix1(t) + Q̃1
i fi(t, x(t− d)) (3.25)

0 = x2(t) + Q̃2
i fi(t, xt) (3.26)

where i = 1, 2, . . . , N , x1 ∈ Rr, x2 ∈ Rn−r, Q̃i =

Q̃1
i

Q̃2
i

, Q̃1
i ∈ Rr×n, Q̃2

i ∈ R(n−r)×n,

P̃i =
[
P̃ 1
i P̃ 2

i

]
, P̃ 1

i ∈ Rn×r, and P̃ 2
i ∈ Rn×(n−r).

By (3.24), we can write

x(t) = P̃i

x1(t)

x2(t)


then

Q̃iEix(t) = Q̃iEiP̃i

x1(t)

x2(t)


=

Ir 0

0 0

x1(t)

x2(t)


=

x1(t)

0

 . (3.27)
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From (3.27) and (3.23), we have

sup
t−d≤θ≤t

‖x1(θ)‖ = sup
t−d≤θ≤t

‖Q̃iEix(θ)‖

≤ ‖Q̃i‖ sup
t−d≤θ≤t

‖Eix(θ)‖

= µ‖Q̃i‖‖Eix(t0 − d)‖e(η−ξ∗∗(t−d−t0))/2 (3.28)

which implies that x1 is exponentially stable.

We need to show that x2 is also exponentially stable. It follows from (3.26) and (3.2) that

sup
t−d≤θ≤t

‖x2(θ)‖ ≤ ‖Q̃2
i ‖ sup

t−d≤θ≤t
‖FiEix(θ)‖

= ‖Q̃2
i ‖ sup

t−d≤θ≤t
‖FiEiP̃ 1

i x1(θ) + FiEiP̃
2
i x2(θ)‖

≤ ‖Q̃2
i ‖ ‖FiEiP̃ 1

i ‖ sup
t−d≤θ≤t

‖x1(θ)‖+ ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖ sup
t−d≤θ≤t

‖x2(θ)‖(
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖
)

sup
t−d≤θ≤t

‖x2(θ)‖ ≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖ sup
t−d≤θ≤t

‖x1(θ)‖

sup
t−d≤θ≤t

‖x2(θ)‖ ≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖

sup
t−d≤θ≤t

‖x1(θ)‖

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖
µ‖Q̃i‖‖Eix(t0 − d)‖e(η−ξ∗∗(t−d−t0))/2

(3.29)

where 1 > ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖. This shows that x2 is exponentially stable. Thus, the trivial

solution of system (3.1) is exponentially stable.

Example 3.1.1. Consider the impulsive switched singular system with time-delay given

by (3.1) where x =

x1(t)

x2(t)

, σ(t) ∈ Ξ = {1, 2}, E1 = E2 =

4 0

2 0

 with rank(Ei) = 1,
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Bk = 0.2I, d = 0.3339 and

A1 =

−2 1

1 −2

 , f1(t, x(t− d)) =
[

1
15

tanh(x1(t− d)) 1
15

tanh(x2(t− d))
]T
,

A2 =

−4 1

1 −4

 , f2(t, x(t− d)) =
[

1
2

tanh(x1(t− d)) 1
2

tanh(x2(t− d))
]T
.

Also, initial function is φ(t) = [2 1.6]T . The Lipschitz conditions (3.2) are satisfied with

F1 =

0.0333 −0.0333

0 0

 and F2 =

0.25 −0.25

0 0

. From the Jordan canonical form of

(γE − A)−1E for γ ∈ C, we find that

Q1 =

 1
5

1
10

−2
5

4
5

 , P1 =

1 0

4
5
−1

2

 , Q2 =

 4
9

1
9

− 1
12

1
6

 , P2 =

1
2

0

1
3
−4

3

 ,
such that Q1E1P1 = Q2E2P2 =

1 0

0 0

 , Q1A1P1 =

− 3
10

0

0 1

 , Q2A2P2 =

−5
6

0

0 1

 .
From the decomposition form it is clear that the systems are impulse free. Moreover, the

eigenvalues of (E1, A1) and (E2, A2) are negative.

X1 =

1.6667 0

0 1.6667

 > 0 satisfies AT1X1E1 +ET
1 X1A1 = −ET

1 Y1E1 for any Y1 = I > 0.

Similarly, X2 =

0.6667 0

0 0.3333

 > 0 satisfying AT2X2E2 + ET
2 X2A2 = −ET

2 Y2E2 for

any Y2 = I > 0. Hence, α1 = 0.0167, β1 = 0.0038, α2 = 0.5001, and β2 = 0.25.

The mode decay rates are ξ1 = 0.01 and ξ2 = 0.0014. Thus, ξ = min{ξ1, ξ2} = 0.0014.

γk = 1.44 so that the inequality (I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi is satisfied. Thus,

γ = max{γk} = 1.44. Then, the average dwell time Ta = 0.4452. Figure 3.1 shows that

the solution of the singular system vanishes exponentially after running mode 1 and 2 on

the first and second interval, respectively.
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Figure 3.1: ISSSD with stable subsystems
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3.1.2 Systems with Stable and Unstable Subsystems

Consider again the system in (3.1) with Ξ = Ξu ∪ Ξs where Ξu and Ξs represent the

index sets of unstable and stable subsystems, respectively. Lemma 3.1.1 and the following

lemmas are important in proving the main theorem.

Lemma 3.1.3. [43] For a ∈ R, with a > 0, and t0 ∈ R+, let u : [t0, t0 + a) → R+ satisfy

the following delay differential inequality

u̇(t) ≤ αu(t) + β sup
σ∈[t−d,t]

u(σ), t ∈ [t0, t0 + a).

Assume that α + β > 0. Then, there exist positive constants ξ and k such that

u(t) ≤ keξ(t−t0), t ∈ [t0, t0 + a)

where ξ = α + β and k = supσ∈[t0−d,t0] u(σ).

Theorem 3.1.2. For any i ∈ Ξ, assume that each subsystem of (3.1) is impulse free.

Then, the trivial solution of (3.1) is exponentially stable if the following assumptions hold:

(A1) For any i, j ∈ Ξ there exists γk < 1 such that

(I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi. (3.30)

(A2) for any t0, the switching law guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥ λ+ + λ∗

λ− − λ∗
(3.31)

where λ∗ ∈ (0, λ−); furthermore, there exists 0 < ν < λ∗ such that

(i) for i ∈ Ξu

ln γk − ν(tk − tk−1) ≤ 0, k = 1, 2, . . . , l (3.32)
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(ii) for i ∈ Ξs

ln γk − ν(tk − tk−1) + ξmkd ≤ 0, k = l + 1, l + 2, . . . ,m− 1. (3.33)

where ξmk is a unique positive solution of

ξmk = αmk − βmkeξmkd,

where αmk =
λmin(Ym)− εm‖Xm‖2

λmax(Xm)
and βmk =

‖Fm‖2

εmλmin(Xm)
.

Proof. Let x (t) = x(t, t0, x0) be the solution of the system (3.1). For any i ∈ Ξ and

t ∈ [tk−1, tk), define

υi(t) = Vi(x(t)) = xT (t)ET
i XiEix(t), t 6= tk, i = σ(t)

as a Lyapunov function candidate for ith subsystem. Then, derivative of υi along the

trajectory of (3.1) is given by

υ̇i(t) = ẋT (t)ET
i XiEix(t) + xT (t)ET

i XiEiẋ(t)

= xT (t)
(
ATi XiEi + ET

i XiAi
)
x(t) + 2fTi (t, xt)XiEix(t). (3.34)

For i ∈ Ξs, we have

υ̇i(t) = −xT (t)ET
i YiEix(t) + 2fTi (t, xt)XiEix(t) (3.35)

where −ET
i YiEi = ATi XiEi + ET

i XiAi for any Yi > 0. Thus, using the Lipschitz condition

(3.2) we obtain

υ̇i(t) ≤ −αiυi(t) + βi sup
σ∈[t−d,t]

υi(σ) (3.36)

where αi =
λmin(Yi)− εiλmax(X2

i )

λmax(Xi)
, and βi =

‖Fi‖2

εiλmin(Xi)
.
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By Lemma (3.1.1), we obtain the solution of differential inequality (3.36) for t ∈ [tk−1, tk)

υi(t) ≤ sup
σ∈[tk−1−d,tk−1]

υi(σ)e−ξi(t−tk−1), (3.37)

where ξi is a unique positive solution of

ξi = αi − βieξid.

Let δi (i ∈ Ξu) be a positive constant such that the matrix pairs (Ei, Ai − δiEi) has

eigenvalues with negative real parts. Then, for each Yi > 0 there exists Xi > 0 satisfying

(Ai − δiEi)TXiEi + ET
i Xi(Ai − δiEi) = −ET

i YiEi. (3.38)

Thus, we have

υ̇i(t) = xT (t)(−ET
i YiEi + 2δiE

T
i XiEi)x(t) + 2fTi (t, xt)XiEix(t). (3.39)

By Lipschitz condition (3.2), we obtain

υ̇i(t) ≤ α∗i υi(t) + β∗i sup
σ∈[t−d,t]

υi(σ) (3.40)

where α∗i =
−λmin(Yi) + 2δiλmax(Xi) + εiλmax(X2

i )

λmin(Xi)
and β∗i =

‖Fi‖2

εiλmin(Xi)
.

By Lemma 3.1.3, the solution of (3.40) is obtained for t ∈ [tk−1, tk)

υi(t) ≤ sup
σ∈[tk−1−d,tk−1]

υi(σ)eζi(t−tk−1), (3.41)

where ζi = α∗i + β∗i > 0.

On the other hand, for t = tk, k = 1, 2, 3, . . ., suppose σ(tk) = j, it follows from (3.1) and

(3.30) that

υj(tk) = xT (tk)E
T
j XjEjx(tk)

= xT (t−k )(I +Bk)
TET

j XjEj(I +Bk)x(t−k )

≤ γkx
T (t−k )ET

i XiEix(t−k )

= γkυi(t
−
k ). (3.42)
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Using (3.37) and (3.42) successively on each subinterval leads to the following results. For

t ∈ [t0, t1), we have

υi1(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t−t0), (3.43)

For t ∈ [t1, t2), we have

υi2(t) ≤ sup
σ∈[t1−d,t1]

υi2(σ)e−ξi2 (t−t1). (3.44)

From (3.42), we can result in the following inequality

sup
σ∈[t1−d,t1]

υi2(σ) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)

sup
σ∈[t1−d,t1]

υi2(σ)e−ξi2 (t−t1) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)e−ξi2 (t−t1). (3.45)

By (3.44) and (3.45), we have

υi2(t) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)e−ξi2 (t−t1). (3.46)

Suppose that tk − d ∈ [tk−1, tk), by (3.43), we can find supσ∈[t1−d,t1] υi1(σ
−) as

sup
σ∈[t1−d,t1]

υi1(σ
−) = sup

σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0). (3.47)

Thus, if we rewrite (3.46), we obtain for t ∈ [t1, t2)

υi2(t) ≤ γ1 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t−t1). (3.48)

Similarly, for t ∈ [t2, t3) we obtain

υi3(t) ≤ γ1γ2 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1)e−ξi3 (t−t2). (3.49)

In general, for t ∈ [tk−1, tk)

υik(t) ≤ γ1γ2 . . . γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1) . . . e−ξik (t−tk−1). (3.50)
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Now, use (3.41) and (3.42) successively on each subinterval. For t ∈ [t0, t1), we have

υi1(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)eζi1 (t−t0), (3.51)

For t ∈ [t1, t2), we have

υi2(t) ≤ sup
σ∈[t1−d,t1]

υi2(σ)eζi2 (t−t1). (3.52)

From (3.42), we get the following inequality

sup
σ∈[t1−d,t1]

υi2(σ) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)

sup
σ∈[t1−d,t1]

υi2(σ)eζi2 (t−t1) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)eζi2 (t−t1). (3.53)

By (3.52) and (3.53), we have

υi2(t) ≤ γ1 sup
σ∈[t1−d,t1]

υi1(σ
−)eζi2 (t−t1). (3.54)

By (3.51), we can find supσ∈[t1−d,t1] υi1(σ
−) as

sup
σ∈[t1−d,t1]

υi1(σ
−) = sup

σ∈[t0−d,t0]

υi1(σ)eζi1 (t1−t0). (3.55)

Thus, if we substitute (3.55) into (3.54), we obtain for t ∈ [t1, t2)

υi2(t) ≤ γ1 sup
σ∈[t0−d,t0]

υi1(σ)eζi1 (t1−t0)eζi2 (t−t1). (3.56)

Similarly, for t ∈ [t2, t3) we can obtain

υi3(t) ≤ γ1γ2 sup
σ∈[t0−d,t0]

υi1(σ)eζi1 (t1−t0)eζi2 (t2−t1)eζi3 (t−t2). (3.57)

In general, for t ∈ [tk−1, tk)

υik(t) ≤ γ1γ2 . . . γk−1 sup
σ∈[t0−d,t0]

υi1(σ)eζi1 (t1−t0)eζi2 (t2−t1) . . . eζik (t−tk−1). (3.58)
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To obtain a general estimate, let us run l unstable modes and switch l times from an

unstable mode, and run m− l stable modes and switch m− l−1 times from a stable mode.

Then, for t ∈ [tk−1, tk)

υmk(t) ≤
l∏

j=1

γje
ζmj (tj−tj−1) ×

m−1∏
s=l+1

γse
ξmsde−ξms (ts−ts−1) × sup

σ∈[t0−d,t0]

υm1(σ)e−ξmk (t−tm−1).

(3.59)

Let

λ+ = max{ζmj : j = 1, 2, . . . , l}

λ− = min{ξms : s = l + 1, l + 2, . . . , k}

and denote by T+(t0, t) and T−(t0, t) the total activation time of unstable and stable modes,

respectively. Then, for t ∈ [tk−1, tk), we have

υmk(t) ≤
l∏

j=1

γje
λ+T+ ×

m−1∏
s=l+1

γse
ξmsde−λ

−T− × sup
σ∈[t0−d,t0]

υm1(σ). (3.60)

Choose λ∗ ∈ (0, λ−), and assume that the switching law satisfies (3.31) where this condition

implies that for any t ≥ t0

(λ+ + λ∗)T+ ≤ (λ− − λ∗)T−

−λ−T− + λ+T+ ≤ −λ∗T− − λ∗T+

= −λ∗(T− + T+)

= −λ∗(t− t0)

Thus, by condition (3.31), we obtain

υmk(t) ≤
l∏

j=1

γj ×
m−1∏
s=l+1

γse
ξmsd × sup

σ∈[t0−d,t0]

υm1(σ)e−λ
∗(t−t0). (3.61)
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Then, for ν < λ∗ positive scalar, we have the following inequality

υmk(t) ≤
l∏

j=1

γj ×
m−1∏
s=l+1

γse
ξmsd × sup

σ∈[t0−d,t0]

υm1(σ)e−ν(t−t0)e−(λ∗−ν)(t−t0)

= sup
σ∈[t0−d,t0]

υm1(σ)γ1e
−ν(t1−t0)γ2e

−ν(t2−t1) . . . γle
−ν(tl−tl+1)

× γl+1e
−ν(tl+1−tl)+ξm(l+1)

d
γl+2e

−ν(tl+2−tl+1)+ξm(l+2)
d

. . . γm−1e
−ν(tm−1−tm−2)+ξm(m−1)

d
e−ν(t−tm−1)e−(λ∗−ν)(t−t0).

By (3.32) and (3.33), we obtain

υmk(t) ≤ sup
σ∈[t0−d,t0]

υm1(σ)e−(λ∗−ν)(t−t0) (3.62)

which implies that

‖Emx(t)‖ ≤ µ‖Emxt0‖de−(λ∗−ν)(t−t0)/2, t ≥ t0 (3.63)

where µ =
√
λM/λm defined for λM = max{λmax(Xi); i ∈ Ξ} and λm = min{λmin(Xi); i ∈

Ξ}. Thus, the trivial solution of the system (3.1) is E-exponentially stable.

Let

P̃−1
i x(t) =

x1(t)

x2(t)

 (3.64)

then it follows from the standard decomposition form that system (3.1) is equivalent to

ẋ1(t) = A1ix1(t) + Q̃1
i fi(t, x(t− d)) (3.65)

0 = x2(t) + Q̃2
i fi(t, x(t− d)) (3.66)

where i = 1, 2, . . . , N , x1 ∈ Rr, x2 ∈ Rn−r, Q̃i =

Q̃1
i

Q̃2
i

, Q̃1
i ∈ Rr×n, Q̃2

i ∈ R(n−r)×n,

P̃i =
[
P̃ 1
i P̃ 2

i

]
, P̃ 1

i ∈ Rn×r, and P̃ 2
i ∈ Rn×(n−r).
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By (3.64), we can write

x(t) = P̃i

x1(t)

x2(t)


then

Q̃iEix(t) = Q̃iEiP̃i

x1(t)

x2(t)


=

Ir 0

0 0

x1(t)

x2(t)


=

x1(t)

0

 . (3.67)

From (3.63) and (3.67), we have

‖x1t‖d = ‖Q̃iEixt‖d

≤ ‖Q̃i‖‖Eixt‖d

= ‖Q̃i‖ sup
t−d≤θ≤t

‖Eix(θ)‖

= µ‖Q̃i‖‖Eixt0‖de−(λ∗−ν)(t−d−t0)/2 (3.68)

which implies that x1 is exponentially stable.

We need to show that x2 is also exponentially stable. It follows from (3.66) and (3.2) that

‖x2t‖d ≤ ‖Q̃2
i ‖‖FiEixt‖d

= ‖Q̃2
i ‖‖FiEiP̃ 1

i x1t + FiEiP̃
2
i x2t‖d

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖‖x1t‖d + ‖Q2‖‖FiEiP̃ 2
i ‖‖x2t‖d
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(
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖
)
‖x2t‖d ≤ ‖Q̃2

i ‖‖FiEiP̃ 1
i ‖‖x1t‖d

‖x2t‖d ≤
‖Q̃2

i ‖‖FiEiP̃ 1
i ‖

1− ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖
‖x1t‖d

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖
µ‖Q̃i‖‖Eixt0‖de−(λ∗−ν)(t−d−t0)/2 (3.69)

where 1 > ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖. This shows that x2 is exponentially stable. Thus, the trivial

solution of system (3.1) is exponentially stable.

In fact one can use the average dwell time to achieve a similar result. To do so, from

(3.61) we have

υmk(t) ≤
m−1∏
j=1

γje
ξmj d × sup

σ∈[t0−d,t0]

υm1(σ)e−λ
∗(t−t0)

≤
m−1∏
j=1

γeξ
∗d × sup

σ∈[t0−d,t0]

υm1(σ)e−λ
∗(t−t0)

= sup
σ∈[t0−d,t0]

υm1(σ)e(m−1) ln %−λ∗(t−t0)

where γ = max{γj; j = 1, 2, . . . ,m−1}, ξ∗ = max{ξmj ; j = 1, 2, . . . ,m−1}, and % = γeξ
∗d.

Applying average dwell time with N0 = η
ln %

, where η is an arbitrary constant, and Ta =

ln %
λ∗−λ , leads to

υmk(t) ≤ sup
σ∈[t0−d,t0]

υm1(σ)eη−λ(t−t0)

which implies that

‖Emx(t)‖ ≤ µ‖Emxt0‖de(η−λ(t−t0))/2, t ≥ t0

where µ =
√
λM/λm defined for λM = max{λmax(Xi); i ∈ Ξ} and λm = min{λmin(Xi); i ∈

Ξ}. Thus, the trivial solution of the system (3.1) is E-exponentially stable.
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By the same manner used in (A2); (i) and (ii), we obtain that

‖x1t‖d ≤ µ‖Q̃i‖‖Eixt0‖de(η−λ(t−d−t0))/2,

‖x2t‖d ≤
‖Q̃2

i ‖‖FiEiP̃ 1
i ‖

1− ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖
µ‖Q̃i‖‖Eixt0‖de(η−λ(t−d−t0))/2.

Thus, the trivial solution of (3.1) is exponentially stable.

Example 3.1.2. Consider the impulsive switched singular system with time-delay given

by (3.1) where x =

x1(t)

x2(t)

, σ(t) ∈ Ξ = {1, 2}, E1 = E2 =

4 0

2 0

 with rank(Ei) = 1 for

i = 1, 2, Bk = −0.2I, d = 0.2202 and

A1 =

−2 1

1 −2

 , f1(t, x(t− d)) =
[

1
15

tanh(x1(t− d)) 1
15

tanh(x2(t− d))
]T
,

A2 =

4 1

1 4

 , f2(t, x(t− d)) =
[

1
15

tanh(x1(t− d)) 1
15

tanh(x2(t− d))
]T
.

Also, initial function is φ(t) = [0.5 − t2 0.4 + t]T . The Lipschitz conditions are satisfied

with F1 = F2 =

0.0333 −0.0333

0 0

. From the Jordan canonical form of (γE −A)−1E for

γ ∈ C, we find that

Q̃1 =

 0.2 0.1

−0.4 0.8

 , P1 =

 1 0

0.8 −0.5

 , Q2 =

 0.0816 −0.0204

−0.1429 0.2857

 , P2 =

3.5 0

1 1

 ,

such that Q1E1P1 = Q2E2P2 =

1 0

0 0

 , Q1A1P1 =

−0.3 0

0 1

 , Q2A2P2 =

1.0714 0

0 1

 .
From the decomposition form it is clear that the systems are impulse free. Moreover, while

the eigenvalues of (E1, A1) are negative, the eigenvalues of (E2, A2) are positive.
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X1 =

1.6667 0

0 1.6667

 > 0 satisfies AT1X1E1 + ET
1 X1A1 = −ET

1 Y1E1 for Y1 = I > 0.

Similarly, X2 =

 1.1154 −0.6923

−0.6923 1

 > 0 satisfying (A2 − δ2E2)TX2E2 + ET
2 X2(A2 −

δ2E2) = −ET
2 Y2E2 for Y2 = I > 0 and δ2 = 2. Hence, α1s = 0.0167, β1s = 0.0038,

α∗2j = 2.7818, and β∗2j = 0.0069 where s = 1, 3, 5, . . . and j = 2, 4, 6, . . .. The mode decay

rate is ξ1s = 0.01 and the growth rate is ζ2j = 2.7887. Thus, ξ∗ = max{ξ1s} = 0.01.

γk = 0.64 so that the inequality (I + Bk)
TET

j XjEj(I + Bk) ≤ γkE
T
i XiEi is satisfied.

Thus, γ = max{γk} = 0.64. λ∗ ∈ (0, λ−) where λ− = min{ξ1s}. Then, from the average

dwell time assumption Ta = 0.4401. Figure 3.2 shows that the solution of the singular

system vanishes exponentially after running mode 1 and 2 on the first and second interval,

respectively.

3.1.3 Systems with Unstable Subsystems

This section is an extension of the study in [55] to the singular system in (3.1) with Ξ = Ξu

where Ξu represents the index sets of unstable subsystems. Also, we consider the system

in (3.1) in case the fact that singular matrices Eσ(t) are the same for each subsystem. First

of all, we describe the problem, and give the necessary definitions and lemmas.

Definition 3.1.1. The ith (i ∈ Ξ = {1, 2, . . . , N}) mode of (3.1) is the subsystem running

during the time interval [tk−1, tk] described by

Eẋ(t) = Aix(t) + fi(t, x(t− d)), t ∈ [tk−1, tk),

4x(t) = Bkx(t), t = tk.

Assume that there exists a linear convex combination which is either stable or unstable.
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Figure 3.2: ISSSD with stable and unstable subsystems
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Next, we will design switching rules and corresponding switching regions for the both cases.

Case 1: There exists an unstable convex combination of subsystems. That is, there exists

a linear convex combination
N∑
i=1

αiAi,

where αi ∈ (0, 1) with
∑N

i=1 αi = 1 such that all the eigenvalues of matrix pair (E,
∑N

i=1 αiAi)

have positive real parts. Therefore, for any symmetric positive definite matrix Y ∈ Rn×n,

there exists a positive definite matrix X ∈ Rn×n such that(
N∑
i=1

αiAi

)T

XE + ETX

(
N∑
i=1

αiAi

)
= ETY E

⇒
N∑
i=1

αi
(
ATi XE + ETXAi

)
= ETY E (3.70)

Moreover, the switching region Ωi is constructed as

Ωi =
{
x ∈ Rn| xT

(
ATi XE + ETXAi

)
x ≤ ξxTETY Ex

}
, i = 1, 2, . . . , N, (3.71)

where ξ ≥ 1 is some constant which can be adjusted in order to allow the switching regions

overlapping each other.

Case 2: There exists a stable convex combination of subsystems. Suppose that there

exists a linear convex combination
N∑
i=1

αiAi,

where αi ∈ (0, 1) with
∑N

i=1 αi = 1 such that all the eigenvalues of matrix pair (E,
∑N

i=1 αiAi)

have negative real parts. Therefore, for any symmetric positive definite matrix Y ∈ Rn×n,
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there exists a positive definite matrix X ∈ Rn×n such that(
N∑
i=1

αiAi

)T

XE + ETX

(
N∑
i=1

αiAi

)
= −ETY E

⇒
N∑
i=1

αi
(
ATi XE + ETXAi

)
= −ETY E (3.72)

Similarly, the switching region Ω∗i is constructed as

Ω∗i =

{
x ∈ Rn| xT

(
ATi XE + ETXAi

)
x ≤ − 1

ξ∗
xTETY Ex

}
, i = 1, 2, . . . , N, (3.73)

where ξ∗ ≥ 1 is some constant. ξ∗ can be adjusted, so the switching regions overlap each

other.

Definition 3.1.2 (Minimum rule). At each switching we decide the next mode by the

minimum rule defined as

i(x) = arg min
[
xT
(
ATi XE + ETXAi

)
x
]
.

To obtain the stability of the system in (3.1) we proposed the switching rule (SR)

given by

(1) Choose the initial mode by minimum rule applied to x(t0).

(2) Stay in the ith mode as long as the state in the switching region Ωi (Case 1) or Ω∗i

(Case 2).

(3) If the state hits the boundary of Ωi or Ω∗i , determine the jth mode using the minimum

rule and switch to the jth mode.
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In both cases we can obtain the stability results using common Lyapunov function method.

Thus,for any t ≥ t0 the common Lyapunov function is defined by

V (x(t)) = xT (t)ETXEx(t), (3.74)

where X is defined in (3.70) and (3.72).

Definition 3.1.3. Let us define the following class of function for later use:

K1 = {g ∈ C(R+,R+)| g(0) = 0 and g(s) > 0},

K3 = {g ∈ C(R+,R+)| g(0) = 0, g(s) > 0, and g is nondcreasing in s}.

S(ρ) = {x ∈ Rn| ‖x‖ ≤ ρ for ρ ≥ 0} .

Let J ⊂ R+ be an interval of the form [a, b) where 0 ≤ a < b <∞ and D ⊂ Rn be an

open set. Now, consider the impulsive system given by

ẋ = f(t, xt), t 6= tk,

∆x(t) = I(t, xt−), t = tk, (3.75)

where x ∈ PC(R+,Rn), functionals f, I : J×PC([−d, 0], D)→ Rn, and ∆x = x(t)−x(t−).

{tk}∞k=1 are the impulsive times that form an increasing sequence satisfying tk−1 < tk and

limk→∞ tk =∞.

Definition 3.1.4. Given a function V : J ×D → R+, the upper right-hand derivative of

V with respect to system (3.75) is defined by

D+V(3.75)(t, ψ(0)) = lim sup
h→0+

1

h
[V (t+ h, ψ(0)) + hf(t, ψ)− V (t, ψ(0))] , (3.76)
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for (t, ψ) ∈ J × PC([−d, 0], D).

Lemma 3.1.4. [56] Let be P ∈ Rn×n a positive definite matrix, and Q ∈ Rn×n a symmetric

matrix. Then, the following inequality is valid for all x ∈ Rn

λmin(P−1Q)xTPx ≤ xTQx ≤ λmax(P−1Q)xTPx.

Lemma 3.1.5. [57] Assume that there exist functions a, b, c ∈ K1, p ∈ PC(R+,R+),

g ∈ K3, and V : [−d,∞) × S(ρ) → R+ where V is continuous on [−d,∞) × S(ρ) and

on [tk−1, tk) × S(ρ) for k = 1, 2, . . . , lim
(t,y)→(t−k ,x)

V (t, y) = V (t−k , x) exists. Moreover, V ,

restricted to R+ × S(ρ), is locally Lipschitz in x and the following conditions are satisfied:

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ [−d,∞)× S(ρ);

(ii) D+V(3.75)(t, ψ(0)) ≤ p(t)c(V (t, ψ(0))) for all t 6= tk in R+ and ψ ∈ PC([−d, 0], S(ρ))

whenever V (t, ψ(0)) ≥ g(V (t+ s, ψ(s))) for s ∈ [−d, 0];

(iii) V (tk, ψ(0) + I(tk, ψ)) ≤ g(V (t−k , ψ(0)) for all (tk, ψ) ∈ R+ × PC([−d, 0], S(ρ1)) for

which ψ(0−) = ψ(0);

(iv) τ = supk∈N {tk − tk−1} <∞, M1 = supt≥t0
∫ t+τ
t

p(s)ds <∞, and M2 = infq>0

∫ q
g(q)

ds

c(s)
>

M1.

Then, the trivial solution of (3.75) is uniformly asymptotically stable.

Lemma 3.1.6. [57] Assume that there exist functions a, b, c ∈ K1, p ∈ PC(R+,R+),

g, ĝ ∈ K3 where s ≤ ĝ(s) < g(s) for s > 0, and V : [−d,∞) × S(ρ) → R+ where V is

continuous on [−d,∞)×S(ρ) and on [tk−1, tk)×S(ρ) for k = 1, 2, . . . , lim
(t,y)→(t−k ,x)

V (t, y) =

V (t−k , x) exists. Moreover, V , restricted to R+ × S(ρ), is locally Lipschitz in x and the

following conditions are satisfied:
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(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ [−d,∞)× S(ρ);

(ii) D+V(3.75)(t, ψ(0)) ≤ −p(t)c(V (t, ψ(0))) for all t 6= tk in R+ and ψ ∈ PC([−d, 0], S(ρ))

whenever g(V (t+ s, ψ(0))) ≥ V (t, ψ(s)) for s ∈ [−d, 0];

(iii) V (tk, ψ(0) + I(tk, ψ)) ≤ ĝ(V (t−k , ψ(0)) for all (tk, ψ) ∈ R+ × PC([−d, 0], S(ρ1)) for

which ψ(0−) = ψ(0);

(iv) µ = infk∈N {tk − tk−1} <∞, M1 = inft≥t0
∫ t+µ
t

p(s)ds > M2 where M2 = supq>0

∫ g(q)
q

ds

c(s)
.

Then, the trivial solution of (3.75) is uniformly asymptotically stable.

Now, we state and prove the main theorems in the two cases described above. We

obtain the first three theorems for Case 1, and the last three ones are about Case 2.

Theorem 3.1.3. Assume that the following assumptions hold:

(i) there exists a linear convex combination

N∑
i=1

αiAi,

where αi ∈ (0, 1) with
∑N

i=1 αi = 1 such that all the eigenvalues of matrix pair

(E,
∑N

i=1 αiAi) have positive real parts;

(ii) the equation in (3.70) holds;

(iii) there exist functions a1, a2 ∈ C([t0,∞],R+) such that

max
i∈Ξ

{
2xT (t)ETXfi(t, x(t− d))

}
≤ a1(t) ‖Ex(t)‖2 + a2(t) ‖Ex(t− d)‖2 ;
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(iv) there exists some constant 0 < α < 1 with

α2 ≥ max
k∈N

{
λmax(X−1CT

k XCk)
}

(3.77)

where Ck = I + Bk, Ck and singular matrix E are commute, i.e. CkE = ECk such

that

1

λmin(X)

{
τξλmax(Y ) + sup

t≥t0

∫ t+τ

t

[
a1(s) +

a2(s)

α2

]
ds

}
+ 2 lnα < 0, (3.78)

where τ = supk∈N {tk − tk−1} <∞ and ξi ≥ 1 defined in (3.71).

Then, the trivial solution of system (3.1) with switching rule SR is uniformly asymptotically

stable.

Proof. Define the common Lyapunov function for the switched singular system in (3.1)

V (x(t)) = xT (t)ETXEx(t),

then

λmin(X) ‖Ex‖2 ≤ V (x(t)) ≤ λmax(X) ‖Ex‖2 .

Now, assume that the ith mode is active on [tk−1, tk). Then, x(t) ∈ Ωi for t ∈ [tk−1, tk)

under switching rule SR, so xT
(
ATi XE + ETXAi

)
x ≤ ξxTETY Ex where ξ ≥ 1 by (3.71)

and by condition (iii) the time derivative of the Lyapunov function is obtained as

V̇ (x(t)) = ẋT (t)ETXEx(t) + xT (t)ETXEẋ(t)

= [Aix(t) + fi(t, x(t))]T XEx(t)

+ xT (t)ETX [Aix(t) + fi(t, x(t− d))]

= xT (t)
[
ATi XE + ETXAi

]
x(t) + 2xT (t)ETXfi(t, x(t− d))

≤ ξxT (t)ETY Ex(t) + 2xT (t)ETXfi(t, x(t− d))
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≤ ξλmax(Y ) ‖Ex(t)‖2 + 2
∣∣xT (t)ETXfi(t, x(t− d))

∣∣
≤ 1

λmin(X)

{
[ξλmax(Y ) + a1(t)]V (x(t)) + a2(t) sup

σ∈[−d,0]

V (x(t+ σ))

}
. (3.79)

Choose a function g(s) = α2s where 0 < α < 1 by using Lemma 3.1.5. Whenever V (x(t)) ≥

g (V (x(t+ s))) for s ∈ [−d, 0], then from (3.79) we obtain

V̇ (x(t)) ≤ 1

λmin(X)

{
ξλmax(Y ) + a1(t) +

a2(t)

α2

}
V (x(t)),

= p(t)c(V (x(t))),

where p(t) = 1
λmin(X)

{
ξλmax(Y ) + a1(t) + a2(t)

α2

}
and c(V (x(t))) = V (x(t)).

On the other hand, by the system (3.1) at t = tk we obtain

V (x(tk)) = xT (tk)E
TXEx(tk)

= xT (t−k )(I +Bk)
TETXE(I +Bk)x(t−k )

= xT (t−k )CT
k E

TXECkx(t−k ), (3.80)

where I + Bk = Ck. Therefore, by Lemma 3.1.4 and assumption (iv), V (x(tk)) in (3.80)

becomes

V (x(tk)) = xT (t−k )ETCT
k XCkEx(t−k )

≤ λmax(X−1CT
k XCk)x

T (t−k )ETXEx(t−k )

≤ max
i∈Ξ

{
λmax(X−1CT

k XCk)
}
V (x(t−k ))

≤ α2V (x(t−k )).

Then, we have

M1 = sup
t≥t0

∫ t+τ

t

p(s)ds =
1

λmin(X)

{
τξλmax(Y ) + sup

t≥t0

∫ t+τ

t

[
a1(s) +

a2(s)

α2

]
ds

}
,
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and

M2 = inf
q>0

∫ q

g(q)

ds

c(s)
= inf

q>0

∫ q

α2q

ds

s
= −2 lnα.

By (3.78) in assumption (iv) M2 > M1. Therefore, all conditions in Lemma 3.1.5 are

satisfied. That means the trivial solution of the system in (3.1) with switching rule SR is

uniformly asymptotically stable.

The inequality in (3.77) is obtained by using Lemma 3.1.4. Instead of that lemma,

using different approach we can obtain the following theorem.

Theorem 3.1.4. Assume that all conditions in Theorem 3.1.3 hold except that the inequal-

ity in (3.77) is replaced by

α2 ≥ λmax(X)

λmin(X)
max
k∈Ξ

(‖Ck‖2).

Then the trivial solution of the system in (3.1) with switching rule SR is uniformly asymp-

totically stable.

Proof. Similarly we obtain inequality (3.79) in the previous proof. Then, at t = tk we have

V (x(tk)) = xT (tk)E
TXEx(tk)

= xT (t−k )ETCT
k XiCkEx(t−k )

≤ λmax(X)
∥∥Ex(t−k )

∥∥2 ‖Ck‖2

≤ λmax(X)

λmin(X)
V (x(t−k )) max

k∈Ξ
(‖Ck‖2)

≤ α2V (x(t−k )),

where α2 ≥ λmax(X)

λmin(X)
maxk∈Ξ(‖Ck‖2).
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In the next theorem, we use Lemma 3.1.4 to evaluate the derivative of common Lya-

punov function in Theorem 3.1.3.

Theorem 3.1.5. Assume that all conditions in Theorem 3.1.3 hold except that the inequal-

ity in (3.78) is replaced by

τξλmax(X−1Y ) +
1

λmin(X)

{
sup
t≥t0

∫ t+τ

t

[
a1(s) +

a2(s)

α2

]
ds

}
+ 2 lnα < 0. (3.81)

Then the trivial solution of the system in (3.1) with switching rule SR is uniformly asymp-

totically stable.

Proof. We will use Lemma 3.1.4 to obtain

V̇ (x(t)) ≤ p(t)c(V (x(t))),

with p(t) replaced by

p(t) = ξλmax(X−1Y ) +
1

λmin(X)

{
a1(t) +

a2(t)

α2

}
for any t ≥ t0.

Example 3.1.3. Consider the ISSSD given by (3.1) with σ(t) = {1, 2}, the same singular

matrix

E =

4 0

2 0


in each subsystem,

A1 =

 2 1

−1 1

 , C1 =

0.1 0

0 0.1

 , f1(t, x(t− 1)) =
[

1
15

tanh(x1(t− 1)) 1
15

tanh(x2(t− 1))
]T
,

A2 =

1 2

1 −2

 , C2 =

1.01 0

0 1.01

 , f2(t, x(t− 1)) =
[

1
15

tanh(x1(t− 1)) 1
15

tanh(x2(t− 1))
]T
,
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and the initial function is φ(t) =
[
0.25 + t 1− t

]T
. The Lipschitz conditions are satisfied

with F1 = F2 =

0.0333 −0.0333

0 0

.

Both singular subsystems are unstable since the matrix pairs (E,Ai) for i = 1, 2 have

eigenvalues with positive real parts. Let the convex combination

2∑
i=1

αiAi = 0.5A1 + 0.5A2,

where αi = 0.5 for i = 1, 2, then the matrix pair (E, 0.5A1 + 0.5A2) has an eigenvalue with

positive real part. Also, we have

max
i∈Ξ

{
2xT (t)ETXfi(t, x(t− d))

}
≤ a1(t) ‖Ex(t)‖2 + a2(t) ‖Ex(t− d)‖2 ;

where a1(t) = 1, a2(t) = 0.0244. Inequality (3.77) is satisfied by choosing α = 0.2, and the

inequality in (3.78) for τ = 1 implies

1

λmin(X)

{
τξλmax(Y ) + sup

t≥t0

∫ t+τ

t

[
a1(s) +

a2(s)

α2

]
ds

}
+2 lnα = {ξ+1.1220}+2 ln(0.2) < 0,

which yields 1 ≤ ξ < 2.09693. Therefore, the trivial solution of system (3.1) with switching

rule SR is uniformly asymptotically stable when ξ ∈ [1, 2.09693) as shown in the Figure

3.3.

In these three theorems a Hurwitz linear convex combination of unstable subsystems

do not required. However, in the following results it is assumed that there exists a Hurwitz

linear convex combination of unstable subsystems.

Theorem 3.1.6. Assume that the following assumptions hold:
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Figure 3.3: ISSSD with unstable subsystems in unstable convex combination case
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(i) there exists a linear convex combination

N∑
i=1

αiAi,

where αi ∈ (0, 1) with
∑N

i=1 αi = 1 such that all the eigenvalues of matrix pair

(E,
∑N

i=1 αiAi) have negative real parts;

(ii) the equation in (3.72) holds;

(iii) there exist functions a1, a2 ∈ C([t0,∞],R+) such that

max
i∈Ξ

{
2xT (t)ETXfi(t, x(t− d))

}
≤ a1(t) ‖Ex(t)‖2 + a2 ‖Ex(t− d)‖2 ;

(iv) there exists some constant α ≥ 1 with

α2 ≥ max
k∈N

{
λmax(X−1CT

k XCk)
}

(3.82)

where Ck = I + Bk, Ck and singular matrix E are commute, i.e. CkE = ECk such

that

λmin(Y )

ξ∗λmax(X)
≥ 1

λmin(X)

{
a1(t) + a2(t)β2

}
, (3.83)

and

2 ln β − µλmin(Y )

ξ∗λmax(X)
+ sup

t≥t0

∫ t+µ

t

1

λmin(X)

{
a1(s) + a2(s)β2

}
ds < 0, (3.84)

where β > α, µ = infk∈N {tk − tk−1} > 0 and ξ∗ ≥ 1 defined in (3.73).

Then the trivial solution of the system in (3.1) with switching rule SR is uniformly asymp-

totically stable.
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Proof. Let the common Lyapunov function for the switched singular system in (3.1)

V (x(t)) = xT (t)ET
i XiEix(t),

then

λmin(X) ‖Ex‖2 ≤ V (x(t)) ≤ λmax(X) ‖Ex‖2 .

Now, assume that the ith mode is active on [tk−1, tk). Then, x(t) ∈ Ω∗i for t ∈ [tk−1, tk) by

switching rule SR, so xT
(
ATi XE + ETXAi

)
x ≤ − 1

ξ∗
xTETY Ex where ξ∗ ≥ 1 by (3.73)

and by condition (iii) the time derivative of the Lyapunov function is obtained as

V̇ (x(t)) = ẋT (t)ETXEx(t) + xT (t)ETXEẋ(t)

= [Aix(t) + fi(t, x(t))]T XEx(t)

+ xT (t)ETX [Aix(t) + fi(t, x(t− d))]

= xT (t)
[
ATi XE + ETXAi

]
x(t) + 2xT (t)ETXfi(t, x(t− d))

≤ − 1

ξ∗i
xT (t)ETY Ex(t) + 2

∣∣xT (t)ETXfi(t, x(t− d))
∣∣

≤ − 1

ξ∗
λmin(Y ) ‖Ex(t)‖2 + a1(t) ‖Ex(t)‖2 + a2(t) ‖Ex(t− d)‖2

≤ − λmin(Y )

ξ∗λmax(X)
V (x(t)) +

1

λmin(X)

{
a1(t)V (x(t)) + a2(t) sup

σ∈[−d,0]

V (x(t+ σ))

}
.

(3.85)

Choose a function ĝ(s) = α2s, g(s) = β2s where β > α and α is defined in (3.82). Whenever

g (V (x(t))) ≥ V (x(t+ s)) for s ∈ [−d, 0], then from (3.85) we can obtain that

V̇ (x(t)) ≤ − λmin(Y )

ξ∗i λmax(X)
V (x(t)) +

1

λmin(X)

{
a1(t) + a2(t)β2

}
V (x(t)),

= −p(t)c(V (x(t))),
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where p(t) =
λmin(Y )

ξ∗λmax(X)
− 1

λmin(X)
{a1(t) + a2(t)β2} ≥ 0 and c(V (x(t))) = V (x(t)).

On the other hand, by the system (3.1) at t = tk we have

V (x(tk)) = xT (tk)E
TXEx(tk)

= xT (t−k )(I +Bk)
TETXE(I +Bk)x(t−k )

= xT (t−k )CT
k E

TXECkx(t−k ), (3.86)

where I + Bk = Ck. Therefore, by Lemma 3.1.4 and assumption (iv), V (x(tk)) in (3.86)

becomes

V (x(tk)) = xT (t−k )ETCT
k XCkEx(t−k )

≤ λmax(X−1CT
k XCk)x

T (t−k )ETXEx(t−k )

≤ max
k∈N

{
λmax(X−1CT

k XCk)
}
V (x(t−k ))

≤ α2V (x(t−k )).

Then, we have

M1 = inf
t≥t0

∫ t+µ

t

p(s)ds =
µλmin(Y )

ξ∗λmax(X)
− sup

t≥t0

∫ t+µ

t

1

λmin(X)

{
a1(s) + a2(s)β2

}
ds,

and

M2 = sup
q>0

∫ g(q)

q

ds

c(s)
= sup

q>0

∫ β2q

q

ds

s
= 2 ln β.

The inequality in (3.84) in assumption (iv) implies M1 > M2. Therefore, all conditions

in Lemma 3.1.6 are satisfied. That means the trivial solution of the system in (3.1) with

switching rule SR is uniformly asymptotically stable.

The following two theorems are similarly obtained as Theorem 3.1.4 and Theorem 3.1.5.

Thus, we omitted the proofs of these theorems.
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Theorem 3.1.7. Assume that conditions in Theorem 3.1.6 hold except that the inequality

in (3.82) is replaced by

α2 ≥ λmax(X)

λmin(X)
max
k∈Ξ

(‖Ck‖2).

Then the trivial solution of the system in (3.1) with switching rule SR is uniformly asymp-

totically stable.

Theorem 3.1.8. Assume that all conditions in Theorem 3.1.6 hold except that the inequal-

ities in (3.83) and (3.84) are replaced by

λmin(X−1Y )

ξ∗
≥ 1

λmin(X)

{
a1(t) + a2(t)β2

}
,

and

2 ln β − µλmin(X−1Y )

ξ∗
+ sup

t≥t0

∫ t+µ

t

1

λmin(X)

{
a1(s) + a2(s)β2

}
ds < 0,

where β > α, µ = infk∈N {tk − tk−1} > 0 and ξ∗ ≥ 1 defined in (3.73), respectively. Then

the trivial solution of the system in (3.1) with switching rule SR is uniformly asymptotically

stable.

Example 3.1.4. Consider the ISSSD given by (3.1) with σ(t) = {1, 2}, the same singular

matrix

E =

4 0

2 0


in each subsystem,

A1 =

 2 1

−1 1

 , C1 =

0.1 0

0 0.1

 , f1(t, x(t− 1)) =
[

1
15

tanh(x1(t− 1)) 1
15

tanh(x2(t− 1))
]T
,

A2 =

1 2

1 −2

 , C2 =

0.5 0

0 0.5

 , f2(t, x(t− 1)) =
[

1
15

tanh(x1(t− 1)) 1
15

tanh(x2(t− 1))
]T
,
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and the initial function is φ(t) =
[
0.25 + t 1− t

]T
. The Lipschitz conditions are satisfied

with F1 = F2 =

0.0333 −0.0333

0 0

.

Both singular subsystems are unstable since the matrix pairs (E,Ai) for i = 1, 2 have

eigenvalues with positive real parts. Let the convex combination

2∑
i=1

αiAi = 0.2A1 + 0.1A2,

where α1 = 0.2 and α2 = 0.1, then the matrix pair (E, 0.2A1 + 0.1A2) has an eigenvalue

with positive real part. Also, we have

max
i∈Ξ

{
2xT (t)ETXfi(t, x(t− d))

}
≤ a1(t) ‖Ex(t)‖2 + a2(t) ‖Ex(t− d)‖2 ;

where a1(t) = 1, a2(t) = 5.5. Inequality (3.82) is satisfied by choosing α = 3.6, and the

inequality in (3.84) for µ = 1 implies

2 ln β − µλmin(Y )

ξ∗λmax(X)
+ sup

t≥t0

∫ t+µ

t

1

λmin(X)

{
a1(s) + a2(s)β2

}
ds = 0.2994− 1

ξ∗
< 0,

which yields 1 ≤ ξ∗ < 3.34. Therefore, the trivial solution of system (3.1) with switching

rule SR is uniformly asymptotically stable when ξ∗ ∈ [1, 3.34) as shown in the Figure 3.4.

3.2 Impulsive Switched Singular Systems with Time-

Delay: Discrete

First, we will introduce some notations that we used. Let R be the real numbers, R+ the

positive real numbers, Z the integers, Z+ the positive integers, N the natural numbers, i.e.,
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Figure 3.4: ISSSD with unstable subsystems in stable convex combination case
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N = {1, 2, . . . }, and for some positive integer d, let N−d = {−d,−d + 1, . . . ,−1, 0}. Let

RN denotes the N -dimensional real space. For a given integer d, let C = {φ : N−d → RN}.

For any φ ∈ C, we define ‖φ‖d = maxθ∈N−d{φ(θ)}.

Consider the impulsive switching singular discrete system with time-delay:

Eσ(n)x(n+ 1) = Aσ(n)x(n) + fσ(n)(n, x(n− d)), n+
k−1 ≤ n < nk

4x(n) = Bkx(n), n = nk, k ∈ N

xn0 = φ,

(3.87)

where x ∈ RN , n0 ∈ Z+, fσ(n)(n, x(n − d)) : Z+ × RN → RN , φ ∈ C and xn0 ∈ C is

defined by xn0(s) = x(n0 + s) for any s ∈ N−d with d ∈ N representing the delay in

system (3.87). Aσ(n), Bk, Eσ(n) ∈ RN×N are system coefficient matrices where Eσ(n) being

singular with rank(Eσ(n)) = r < N , Aσ(n) being invertible, the matrix pairs (Eσ(n), Aσ(n))

being regular, and Bk being constant matrices. σ(n) : N → Ξ is a switching rule taking

values σ(n) = i in a finite compact set Ξ = {1, 2, . . . ,M} for some M ∈ N. {nk}∞k=0 are the

impulsive times that form an increasing sequence satisfying nk−1 < nk and limk→∞ nk =∞.

∆x(nk) = x(n+
k ) − x(nk) where x(n+

k ) is the state just after the impulsive action and

xn+
k

(s) = x(n+
k + s) for s ∈ N−d, k ∈ N. We assume fσ(n)(n, 0) ≡ 0 and for all (n, x(n−d)),

(n, x∗(n− d)) ∈ Z+ × RN

‖fσ(n)(n, x(n− d))− fσ(n)(n, x
∗(n− d))‖ ≤ ‖Fσ(n)Eσ(n)(x(n− d)− x∗(n− d))‖ (3.88)

where Fσ(n) are constant matrices with appropriate dimension so that system (3.87) admits

the unique solution. The solution of system (3.87) is denoted by x(n) = x(n;n0, φ) for any

given initial condition n0 ∈ Z+ and φ ∈ C.
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3.2.1 Systems with Stable Subsystems

Before stating the conditions to ensure exponential stability of ISSSD (3.13) with stable

subsystems, we will introduce the following lemma that we will use in the proof of main

theorem.

Lemma 3.2.1. [58] Let d > 0 be a natural number, and {xn}n≥−d be a sequence of real

numbers satisfying the inequality

4xn ≤ −axn + bmax{xn, xn−1, . . . , xn−d}, n ≥ 0, (3.89)

where 4xn = xn+1 − xn.

If 0 < b < a ≤ 1, then there exists a constant λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−d}λn0 , n ≥ 0. (3.90)

Moreover, λ0 can be chosen as the smallest root in the interval (0, 1) of the equation

λd+1 + (a− 1)λd − b = 0. (3.91)

Theorem 3.2.1. For any i ∈ Ξ, assume that each subsystem of (3.87) is admissible. Then,

the trivial solution of (3.87) is exponentially stable if the following assumptions hold:

(i) For any i, j ∈ Ξ there exists γk > 1 such that

(I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi, (3.92)

where Xi is positive definite matrix satisfying the Lyapunov equation

ATi XiAi − ET
i XiEi = −Yi

for any Yi > 0.
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(ii) For any n ≥ n0, the switching law satisfies the ADT condition

N(n0, n) ≤ N0 +
n− n0

Ta
,

where N denotes the number of switchings in (n0, n), Ta is the average dwell time

and N0 is the chatter bound.

Proof. Let x (n) = x(n;n0, φ) be the solution of the system (3.87). For n ∈ [nk−1, nk),

define

Vi(x(n)) = xT (n)ET
i XiEix(n), i = σ(n) (3.93)

as a Lyapunov function candidate for ith subsystem. The variation of Vi is defined as

4Vi(x(n)) = Vi(x(n+ 1))− Vi(x(n)).

Thus, the variation of Vi relative to system (3.87) is

4Vi(x(n)) = xT (n+ 1)ET
i XiEix(n+ 1)− xT (n)ET

i XiEix(n)

=
[
xT (n)ATi + fTi (n, x(n− d))

]
Xi

[
Aix(n) + fi(n, x(n− d))

]
− xT (n)ET

i XiEix(n)

= xT (n)ATi XiAix(n) + xT (n)ATi Xifi(n, x(n− d)) + fTi (n, x(n− d))XiAix(n)

+fTi (n, x(n− d))Xifi(n, x(n− d))− xT (n)ET
i XiEix(n)

= xT (n)
[
ATi XiAi − ET

i XiEi
]
x(n) + 2fTi (n, x(n− d))XiAix(n)

+fTi (n, x(n− d))Xifi(n, x(n− d))

= −xT (n)Yix(n) + 2fTi (n, x(n− d))XiAix(n) + fTi (n, x(n− d))Xifi(n, x(n− d))

where ATi XiAi − ET
i XiEi = −Yi for any Yi > 0.
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Using the Lipschitz condition (3.88), we obtain that

2fTi (n, x(n− d))XiAix(n) ≤ 1

εi
fTi (n, x(n− d))fi(n, x(n− d)) + εix

T (n)ATi X
2
i Aix(n)

≤ 1

εi
‖fi(n, x(n− d))‖2 + εi‖Aix(n)‖2λmax(X2

i )

≤ 1

εi
‖FiEix(n− d)‖2 + εi‖Aix(n)‖2λmax(X2

i )

≤ 1

εi
‖Fi‖2‖Eix(n− d)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2

i )

and

fTi (n, x(n− d))Xifi(n, x(n− d)) ≤ λmax(Xi)‖fi(n, x(n− d))‖2

≤ λmax(Xi)‖FiEix(n− d)‖2

≤ λmax(Xi)‖Fi‖2‖Eix(n− d)‖2.

Thus, we obtain

4Vi(x(n)) ≤ −xT (n)Yix(n) +
[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eix(n− d)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2

i )

≤
[
− λmin(Yi) + εi‖Ai‖2λmax(X2

i )
]
‖x(n)‖2 +

[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eixn‖2

d

≤ −αiVi(x(n)) + βi max
s∈N−d

Vi(x(n+ s)) (3.94)

where αi =
λmin(Yi)−εi‖Ai‖2λmax(X2

i )

λmax(ETi XiEi)
> 0, and βi = [1+εiλmax(Xi)]‖Fi‖2

εiλmin(Xi)
> 0.

By Lemma (3.2.1) we obtain the solution of (3.94) for n ∈ [n+
k−1, nk) as

Vi(x(n)) ≤ max
θ∈N−d

{Vi(x(n+
k−1 + θ))}λ(n−nk−1)

0i
(3.95)

where λ0i is the smallest root in the interval (0, 1) of the equation

λd+1 + (αi − 1)λd − βi = 0.

83



On the other hand, for n = nk, k = 1, 2, 3, . . . , suppose σ(nk) = j, it follows from (3.87)

and (3.92) that

Vj(x(n+
k )) = xT (n+

k )ET
j XjEjx(n+

k )

= xT (nk)(I +Bk)
TET

j XjEj(I +Bk)x(nk)

≤ γkx
T (nk)E

T
i XiEix(nk)

= γkVi(x(nk)). (3.96)

Using (3.95) and (3.96) successively on each subinterval leads to the following results. For

instance, for n ∈ [n+
0 , n1), we have

Vi1(x(n)) ≤ max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n−n0)

0i1
(3.97)

For n ∈ [n+
1 , n2), we have

Vi2(x(n)) ≤ max
θ∈N−d

{Vi2(x(n+
1 + θ))}λ(n−n1)

0i2
(3.98)

From (3.96), we obtain

max
θ∈N−d

{Vi2(x(n+
1 + θ))} ≤ γ1 max

θ∈N−d
{Vi1(x(n1 + θ))}

⇒ max
θ∈N−d

{Vi2(x(n+
1 + θ))}λ(n−n1)

0i2
≤ γ1 max

θ∈N−d
{Vi1(x(n1 + θ))}λ(n−n1)

0i2
(3.99)

Thus, by (3.98) and (3.99), we obtain

Vi2(x(n)) ≤ max
θ∈N−d

{Vi2(x(n+
1 + θ))}λ(n−n1)

0i2
≤ γ1 max

θ∈N−d
{Vi1(x(n1 + θ))}λ(n−n1)

0i2

⇒ Vi2(x(n)) ≤ γ1 max
θ∈N−d

{Vi1(x(n1 + θ))}λ(n−n1)
0i2

(3.100)

We suppose that nk−d ∈ [nk−1, nk). Then, we can find maxθ∈N−d{Vi1(x(n1 +θ))} by (3.97)

as

max
θ∈N−d

{Vi1(x(n1 + θ))} = max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
,
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so inequality (3.100) becomes

Vi2(x(n)) ≤ γ1 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n−n1)
0i2

n ∈ [n+
1 , n2). (3.101)

Similarly, for n ∈ [n+
2 , n3) we can obtain the following inequality using (3.95)

Vi3(x(n)) ≤ max
θ∈N−d

{Vi3(x(n+
2 + θ))}λ(n−n2)

0i3
. (3.102)

Also, from (3.96) we have

max
θ∈N−d

{Vi3(x(n+
2 + θ))} ≤ γ2 max

θ∈N−d
{Vi2(x(n2 + θ))}

⇒ max
θ∈N−d

{Vi3(x(n+
2 + θ))}λ(n−n2)

0i3
≤ γ2 max

θ∈N−d
{Vi2(x(n2 + θ))}λ(n−n2)

0i3
. (3.103)

Thus, by (3.102) and (3.103) we obtain that

Vi3(x(n)) ≤ γ2 max
θ∈N−d

{Vi2(x(n2 + θ))}λ(n−n2)
0i3

.

Inequality (3.101) gives

max
θ∈N−d

{Vi2(x(n2 + θ))} = γ1 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

.

Thus, we obtain the following inequality for n ∈ [n+
2 , n3)

⇒ Vi3(x(n)) ≤ γ1γ2 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

λ
(n−n2)
0i3

.

In general, for n ∈ [n+
k−1, nk)

Vik(x(n)) ≤ γ1γ2 . . . γk−1 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

λ
(n3−d−n2)
0i3

. . . λ
(n−nk−1)
0ik

.

(3.104)

Let λ = max{λ0ij
, i ∈ N, j = 1, 2, . . . , k}, so inequality (3.104) becomes

Vik(x(n)) ≤ γ1λ
−d
0i1
γ2λ

−d
0i2
. . . γk−1λ

−d
0ik−1

max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n−n0). (3.105)
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Let γ = max{γi, i = 1, 2, . . . , k − 1} and λ̃ = min{λ0ij
, i ∈ N, j = 1, 2, . . . , k − 1}, so by

(3.105) we obtain

Vik(x(n)) ≤ γ(k−1)(λ̃−d)(k−1) max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n−n0)

=
(
γλ̃−d

)(k−1)

max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n−n0)

= µ(k−1) max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n−n0) (3.106)

where µ = γλ̃−d. Since γ > 1 and λ̃−d > 1, µ > 1. Thus, we have

Vik(x(n)) ≤ µ(k−1)λ(n−n0) max
θ∈N−d

{Vi1(x(n+
0 + θ))}

= λ(k−1) lnµ
lnλλ(n−n0) max

θ∈N−d
{Vi1(x(n+

0 + θ))}

= λ
(n−n0)

(k−1) lnµ
(n−n0) lnλλ(n−n0) max

θ∈N−d
{Vi1(x(n+

0 + θ))}

= λ
(n−n0)

[
(k−1) lnµ
(n−n0) lnλ

+1

]
max
θ∈N−d

{Vi1(x(n+
0 + θ))} (3.107)

For simplicity, choose N0 = 0 in assumption (ii). In this case, from ADT condition we

obtain

N(n0, n) ≤ n− n0

Ta
⇒ N(n0, n)

n− n0

≤ 1

Ta

where N(n0, n) = k − 1.

Thus, the inequality in (3.107) becomes

Vik(x(n)) ≤ λ
(n−n0)

[
N(n0,n) lnµ
(n−n0) lnλ

+1

]
max
θ∈N−d

{Vi1(x(n+
0 + θ))}

≤
(
λ

lnµ
Ta lnλ

+1
)(n−n0)

max
θ∈N−d

{Vi1(x(n+
0 + θ))}

= λρ(n−n0) max
θ∈N−d

{Vi1(x(n+
0 + θ))} (3.108)
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where ρ = lnµ
Ta lnλ

+ 1, λρ is a decay rate and lnµ
Ta lnλ

+ 1 > 0 which implies Ta > − lnµ
lnλ

.

Let

P̃−1
i x(n) =

x1(n)

x2(n)

 , and Q̃−Ti XiQ̃
−1
i =

X1i X2i

XT
2i X3i

 (3.109)

where x1(n) and x2(n) are called slow and fast sub-state of system (3.87), respectively.

Then, it follows from the standard decomposition form that system (3.87) is equivalent to

x1(n+ 1) = A1ix1(n) + Q̃1
i fi(n, x(n− d)) (3.110)

0 = x2(n) + Q̃2
i fi(n, x(n− d)) (3.111)

where i = 1, 2, . . . ,M , x1 ∈ Rr, x2 ∈ RN−r, Q̃i =

Q̃1
i

Q̃2
i

, Q̃1
i ∈ Rr×N , Q̃2

i ∈ R(N−r)×N ,

P̃i =
[
P̃ 1
i P̃ 2

i

]
, P̃ 1

i ∈ RN×r, and P̃ 2
i ∈ RN×(N−r).

Using the relationship (3.109), Lyapunov function candidate for ith subsystem (3.93) can

be rewritten as

Vi(x(n)) = xT (n)ET
i XiEix(n)

= xT (n)P̃−Ti P̃ T
i E

T
i Q̃

T
i Q̃
−T
i XiQ̃

−1
i Q̃iEiP̃iP̃

−1
i x(n)

= xT1 (n)X1ix1(n) > 0, ∀x1(n) 6= 0. (3.112)

Then one can obtain from (3.108) by using (3.112) that

λmin(X1ik)‖x1(n)‖2 ≤ λmax(Xi1) max
θ∈N−d

{‖Eix(n+
0 + θ)‖2}λρ(n−n0)

⇒ ‖x1(n)‖ ≤

√
λmax(Xi1)

λmin(X1ik)
max
θ∈N−d

{‖Eix(n+
0 + θ)‖}λρ(n−n0)/2, (3.113)

which implies that x1 is exponentially stable.

We need to show that x2 is also exponentially stable. It follows from the Lipschitz condition
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in (3.88) and (3.111) that

‖x2(n)‖ ≤ ‖Q̃2
i ‖‖FiEix(n− d)‖

= ‖Q̃2
i ‖‖FiEiP̃ 1

i x1(n− d) + FiEiP̃
2
i x2(n− d)‖

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖‖x1(n− d)‖+ ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖‖x2(n− d)‖

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖ max
θ∈N−d

{‖x1(n+ θ)‖}+ ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖ max
θ∈N−d

{‖x2(n+ θ)‖}.

Then taking maximum of both sides of above inequality gives

max
θ∈N−d

{‖x2(n+ θ)‖} ≤ ‖Q̃2
i ‖
(
‖FiEiP̃ 1

i ‖ max
θ∈N−d

{‖x1(n+ θ)‖}+ ‖FiEiP̃ 2
i ‖ max

θ∈N−d
{‖x2(n+ θ)‖}

)
max
θ∈N−d

{‖x2(n+ θ)‖} ≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖

max
θ∈N−d

{‖x1(n+ θ)‖}

≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖

√
λmax(Xi1)

λmin(X1ik)
max
θ∈N−d

{‖Ex(n+
0 + θ)‖}λρ(n−d−n0)/2

(3.114)

where 1 > ‖Q̃2
i ‖‖FiEiP̃ 2

i ‖. This shows that x2 is exponentially stable. Thus, the trivial

solution of system (3.87) is exponentially stable.

For efficiency of the above theoretical result, please look at the following numerical

example.

Example 3.2.1. Consider the discrete ISSSD given by (3.87) where x =
[
x1(n) x2(n) x3(n)

]T
,

σ(n) ∈ Ξ = {1, 2}, E1 = E2 =


−2 −5 3

1 1 0

0 1 −1

, Bk = 0.5I,

A1 =


−1.6 −0.5 −2.1

0 −0.1 0.1

0.2 −0.1 0.3

 , f1(n, x(n− 1)) =
1

10


tan−1(x1(n− 1))

tan−1(x2(n− 1))

tan−1(x3(n− 1))

 ,
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A2 =


4.2 5 0.2

−1 −0.8 −0.2

−0.4 −0.8 0.4

 f2(n, x(n− 1)) =
1

15


tanh(x1(n− 1))

tanh(x2(n− 1))

tanh(x3(n− 1))

 .
The initial function is given by φ(n) = [1− n − 2 + n 1 + n]T . The Lipschitz condition

in (3.88) is satisfied with F1 =


0.0333 0.1667 0

0 0 0

0 0 0

 in stable subsystem 1 and F2 =


0.0222 0.1111 0

0 0 0

0 0 0

 in stable subsystem 2. We calculated that α1 = 0.5270, β1 = 0.0018,

α2 = 0.6110 and β2 = 0.0057. By Lemma 3.2.1, λ01 = 0.4770 and λ02 = 0.4031. Also,

γk = 2.25 so that the inequality (I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi is satisfied. Thus,

the system is exponentially stable under ADT switching with Ta > 2.3229 seconds. The

simulation is shown in Figure 3.5.

3.2.2 Systems with Stable and Unstable Subsystems

Consider the system in (3.87) with Ξ = Ξu ∪ Ξs where Ξu and Ξs represent the index sets

of unstable and stable subsystems, respectively. Following lemma and Lemma 3.2.1 will

be used in the main theorem of this subsection.

Lemma 3.2.2. Let d > 0 be a natural number, and {xn}n≥−d be a sequence of positive real

numbers satisfying the inequality

4x(n) ≤ ax(n) + b max
s∈N−d

{x(n+ s)}, n ≥ n0, (3.115)

where 4x(n) = x(n+ 1)− x(n) and N−d = {−d, . . . ,−2,−1, 0}.
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Figure 3.5: State responses of the discrete ISSSD
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Assume that a > 0 and b > 0, then the solution of difference inequality (3.115) is given by

x(n) ≤ (a+ b+ 1)n−n0 max
s∈N−d

{x(n0 + s)}, n ≥ n0. (3.116)

Proof. Consider

4y(n) = ay(n) + b max
s∈N−d

{y(n+ s)}, n ≥ n0 (3.117)

with the initial condition

y(n) = x(n), n ∈ {n0 − d, . . . , n0 − 2, n0 − 1, n0}. (3.118)

Since a > 0 and b > 0 in difference delay equation (3.117), y(n) is increasing. Thus,

maxs∈N−d{y(n+ s)} = y(n) for all n ≥ n0. As a result, equation (3.117) becomes

4y(n) = (a+ b)y(n), n ≥ n0

where 4y(n) = y(n+ 1)− y(n).

Thus, the solution of above delay difference equation is

y(n) = (a+ b+ 1)n−n0 max
s∈N−d

{y(n0 + s)}, n ≥ n0

Claim that x(n) ≤ y(n) for all n ≥ n0. If it was not true, there would exist n∗ such that

x(n∗ + 1) > y(n∗ + 1) and x(n) ≤ y(n) for all n0 ≤ n ≤ n∗. Thus,

4y(n∗) = y(n∗ + 1)− y(n∗)

< x(n∗ + 1)− x(n∗)

= 4x(n∗)

≤ ax(n∗) + b max
s∈N−d

{x(n∗ + s)}

≤ ay(n∗) + b max
s∈N−d

{y(n∗ + s)}.
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That is,

4y(n∗) < ay(n∗) + b max
s∈N−d

{y(n∗ + s)}

which contradicts with equation (3.117). That means the claim x(n) ≤ y(n) for all n ≥ n0

is correct. In other words, we obtain that

x(n) ≤ (a+ b+ 1)n−n0 max
s∈N−d

{y(n0 + s)}, n ≥ n0.

By using the initial condition (3.118), we conclude the solution of delay difference equation

(3.115) as

x(n) ≤ (a+ b+ 1)n−n0 max
s∈N−d

{y(n0 + s)}

= (a+ b+ 1)n−n0 max
s∈N−d

{x(n0 + s)} for all n ≥ n0.

Theorem 3.2.2. For any i ∈ Ξ = Ξu∪Ξs, assume that each subsystem of (3.87) is impulse

free. Then, the trivial solution of (3.87) is exponentially stable if the following assumptions

hold:

(A1) For any i, j ∈ Ξ there exists γk > 1 such that

(I +Bk)
TET

j XjEj(I +Bk) ≤ γkE
T
i XiEi, (3.119)

where Xi is positive definite matrix satisfying the Lyapunov equation

ATi XiAi − ET
i XiEi = −Yi

for any Yi > 0.
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(A2) Let

λ+ = max{λ∗0ij : j = 1, 2, . . . , l}

λ− = max{λ0ip
: p = l + 1, l + 2, . . . , k}

where λ∗0ij
= α∗i + β∗i + 1 with α∗i , β

∗
i are positive numbers defined later in the proof,

and λ0ip
is the smallest root in the interval (0, 1) of the equation

λd+1 + (αi − 1)λd − βi = 0.

with αi, βi are positive numbers defined later in the proof as well. Let also T+(n0, n)

be the total activation time of unstable modes, T−(n0, n) be the total activation time

of stable modes, and for any n0, assume that the switching law guarantees that

T−(n0, n)

T+(n0, n)
>

lnλ+ − lnλ∗
lnλ∗ − lnλ−

(3.120)

where 0 < λ− < λ∗ < 1. Furthermore, for any n ≥ n0, the switching law holds the

ADT condition, which is

N(n0, n) ≤ N0 +
n− n0

Ta

where N denotes the number of switchings in (n0, n), Ta is the average dwell time

and N0 is the chatter bound.

Proof. Let x (n) = x(n;n0, φ) be the solution of the system (3.87). For any i ∈ Ξ and

n ∈ [nk−1, nk), define

Vi(x(n)) = xT (n)ET
i XiEix(n), i = σ(n) (3.121)

as a Lyapunov function candidate for ith subsystem. The variation of Vi is defined as

4Vi(x(n)) = Vi(x(n+ 1))− Vi(x(n)).
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Thus, the variation of Vi relative to system (3.87) is

4Vi(x(n)) = xT (n+ 1)ET
i XiEix(n+ 1)− xT (n)ET

i XiEix(n)

=
[
xT (n)ATi + fTi (n, x(n− d))

]
Xi

[
Aix(n) + fi(n, x(n− d))

]
− xT (n)ET

i XiEix(n)

= xT (n)ATi XiAix(n) + xT (n)ATi Xifi(n, x(n− d)) + fTi (n, x(n− d))XiAix(n)

+fTi (n, x(n− d))Xifi(n, x(n− d))− xT (n)ET
i XiEix(n)

= xT (n)
[
ATi XiAi − ET

i XiEi
]
x(n) + 2fTi (n, x(n− d))XiAix(n)

+fTi (n, x(n− d))Xifi(n, x(n− d)) (3.122)

For i ∈ ΞS, we obtain

4Vi(x(n)) ≤ −xT (n)Yix(n) + 2fTi (n, x(n− d))XiAix(n) + fTi (n, x(n− d))Xifi(n, x(n− d))

where ATi XiAi − ET
i XiEi = −Yi for any Yi > 0.

Using the Lipschitz condition in (3.88) and Lemma 3.1.2, for any εi > 0 we obtain that

2fTi (n, x(n− d))XiAix(n) ≤ 1

εi
fTi (n, x(n− d))fi(n, x(n− d)) + εix

T (n)ATi X
2
i Aix(n)

≤ 1

εi
‖fi(n, x(n− d))‖2 + εi‖Aix(n)‖2λmax(X2

i )

≤ 1

εi
‖FiEix(n− d)‖2 + εi‖Aix(n)‖2λmax(X2

i )

≤ 1

εi
‖Fi‖2‖Eix(n− d)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2

i ) (3.123)

and

fTi (n, x(n− d))Xifi(n, x(n− d)) ≤ λmax(Xi)‖fi(n, x(n− d))‖2

≤ λmax(Xi)‖FiEix(n− d)‖2

≤ λmax(Xi)‖Fi‖2‖Eix(n− d)‖2. (3.124)
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Thus, we obtain

4Vi(x(n)) ≤ −xT (n)Yix(n) +
[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eix(n− d)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2

i )

≤ −λmin(Yi)‖x(n)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2
i ) +

[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eix(n− d)‖2

=
[
− λmin(Yi) + εi‖Ai‖2λmax(X2

i )
]
‖x(n)‖2 +

[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eixn‖2

d

≤ −αiVi(x(n)) + βi max
s∈N−d

Vi(x(n+ s)) (3.125)

where αi =
λmin(Yi)−εi‖Ai‖2λmax(X2

i )

λmax(ETi XiEi)
> 0 with P > 0, and βi = [1+εiλmax(Xi)]‖Fi‖2

εiλmin(Xi)
> 0.

By Lemma 3.2.1 we obtain the solution of (3.125) for n ∈ [n+
k−1, nk) as

Vi(x(n)) ≤ max
s∈N−d

{Vi(x(n+
k−1 + s))}λ(n−nk−1)

0i
, (3.126)

where λ0i is the smallest root in the interval (0, 1) of the equation

λd+1 + (αi − 1)λd − βi = 0.

Let δi (i ∈ Ξu) be a positive constant such that all eigenvalues of the matrix pairs (Ei +

δiEi, Ai) are located in the unit circle. Then, for any Yi > 0, there exists Xi > 0 satisfying

ATi XiAi − (Ei + δiEi)
TXi(Ei + δiEi) = −Yi. (3.127)

Plugging (3.127) into (3.122) we obtain

4Vi(x(n)) ≤ xT (n)
[
−Yi + δ2

iE
T
i XiEi + 2δiE

T
i XiEi

]
x(n)

+ 2fTi (n, x(n− d))XiAix(n) + fTi (n, x(n− d))Xifi(n, x(n− d)). (3.128)
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By (3.123)-(3.124), inequality (3.128) becomes

4Vi(x(n)) ≤ xT (n)
[
−Yi + δ2

iE
T
i XiEi + 2δiE

T
i XiEi

]
x(n)

+
1

εi
‖Fi‖2‖Eix(n− d)‖2 + εi‖Ai‖2‖x(n)‖2λmax(X2

i ) + λmax(Xi)‖Fi‖2‖Eix(n− d)‖2

≤
[
− λmin(Yi) + εi‖Ai‖2λmax(X2

i )
]
‖x(n)‖2 + (δ2

i + 2δi)λmax(Xi)‖Eix(n)‖2

+
[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eixn‖2

d

≤

[
− λmin(Yi)

‖Ei‖2
+
εi‖Ai‖2λmax(X2

i )

‖Ei‖2
+ (δ2

i + 2δi)λmax(Xi)

]
‖Eix(n)‖2

+
[ 1

εi
+ λmax(Xi)

]
‖Fi‖2‖Eixn‖2

d

≤ α∗iVi(x(n)) + β∗i max
s∈N−d

Vi(x(n+ s)) (3.129)

where α∗i =
−λmin(Yi)+εi‖Ai‖2λmax(X2

i )+(δ2i+2δi)λmax(Xi)‖Ei‖2
‖Ei‖2λmin(Xi)

> 0, β∗i = [1+εiλmax(Xi)]‖Fi‖2
εiλmin(Xi)

> 0, and

εi > 0 such that −λmin(Yi) + εi‖Ai‖2λmax(X2
i ) < 0.

By Lemma 3.2.2 the solution of (3.129) is obtained for n ∈ [n+
k−1, nk) as

Vi(x(n)) ≤ max
s∈N−d

{Vi(x(n+
k−1 + s))}λ∗

(n−nk−1)

0i
, (3.130)

where λ∗0i = α∗i + β∗i + 1.

On the other hand, for n = nk, k = 1, 2, 3, . . . , suppose σ(nk) = j, it follows from (3.87)

and (3.119) that

Vj(x(n+
k )) ≤ γkVi(x(nk)). (3.131)

Using (3.126) and (3.131) successively on each subinterval leads to the following results.

For instance, for n ∈ [n+
0 , n1), we have

Vi1(x(n)) ≤ max
s∈N−d

{Vi1(x(n+
0 + s))}λ(n−n0)

0i1
(3.132)
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For n ∈ [n+
1 , n2), we have

Vi2(x(n)) ≤ max
s∈N−d

{Vi2(x(n+
1 + s))}λ(n−n1)

0i2
(3.133)

From (3.131), we obtain

max
s∈N−d

{Vi2(x(n+
1 + s))} ≤ γ1 max

s∈N−d
{Vi1(x(n1 + s))}

⇒ max
s∈N−d

{Vi2(x(n+
1 + s))}λ(n−n1)

0i2
≤ γ1 max

s∈N−d
{Vi1(x(n1 + s))}λ(n−n1)

0i2
(3.134)

Thus, by (3.133) and (3.134), we obtain

Vi2(x(n)) ≤ max
s∈N−d

{Vi2(x(n+
1 + s))}λ(n−n1)

0i2
≤ γ1 max

s∈N−d
{Vi1(x(n1 + s))}λ(n−n1)

0i2

⇒ Vi2(x(n)) ≤ γ1 max
s∈N−d

{Vi1(x(n1 + s))}λ(n−n1)
0i2

(3.135)

We suppose that nk − d ∈ [nk−1, nk). Then, we can find maxs∈N−d{Vi1(x(n1 + s))} by

(3.131) as

max
s∈N−d

{Vi1(x(n1 + s))} = max
s∈N−d

{Vi1(x(n+
0 + s))}λ(n1−d−n0)

0i1
,

so inequality (3.135) becomes

Vi2(x(n)) ≤ γ1 max
s∈N−d

{Vi1(x(n+
0 + s))}λ(n1−d−n0)

0i1
λ

(n−n1)
0i2

n ∈ [n+
1 , n2). (3.136)

Similarly, for n ∈ [n+
2 , n3) we can obtain the following inequality

Vi3(x(n)) ≤ γ1γ2 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

λ
(n−n2)
0i3

. (3.137)

In general, for n ∈ [n+
k−1, nk)

Vik(x(n)) ≤ γ1γ2 . . . γk−1 max
θ∈N−d

{Vi1(x(n+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

λ
(n3−d−n2)
0i3

. . . λ
(n−nk−1)
0ik

.

(3.138)
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Now, use (3.130) and (3.131) successively on each subinterval. For n ∈ [n+
0 , n1), we have

Vi1(x(n)) ≤ max
s∈N−d

{Vi1(x(n+
0 + s))}λ∗(n−n0)0i1

(3.139)

For n ∈ [n+
1 , n2), we have

Vi2(x(n)) ≤ max
s∈N−d

{Vi2(x(n+
1 + s))}λ∗(n−n1)0i2

(3.140)

From (3.131), we obtain

max
s∈N−d

{Vi2(x(n+
1 + s))} ≤ γ1 max

s∈N−d
{Vi1(x(n1 + s))}

⇒ max
s∈N−d

{Vi2(x(n+
1 + s))}λ∗(n−n1)0i2

≤ γ1 max
s∈N−d

{Vi1(x(n1 + s))}λ∗(n−n1)0i2
(3.141)

Thus, by (3.140) and (3.141), we obtain

Vi2(x(n)) ≤ max
s∈N−d

{Vi2(x(n+
1 + s))}λ∗(n−n1)0i2

≤ γ1 max
s∈N−d

{Vi1(x(n1 + s))}λ∗(n−n1)0i2

⇒ Vi2(x(n)) ≤ γ1 max
s∈N−d

{Vi1(x(n1 + s))}λ∗(n−n1)0i2
(3.142)

We can find maxs∈N−d{Vi1(x(n1 + s))} by (3.139) as

max
s∈N−d

{Vi1(x(n1 + s))} = max
s∈N−d

{Vi1(x(n+
0 + s))}λ∗(n1−n0)0i1

,

so inequality (3.142) becomes

Vi2(x(n)) ≤ γ1 max
s∈N−d

{Vi1(x(n+
0 + s))}λ∗(n1−n0)0i1

λ∗
(n−n1)

0i2
n ∈ [n+

1 , n2). (3.143)

Similarly, for n ∈ [n+
2 , n3) we can obtain the following inequality

Vi3(x(n)) ≤ γ1γ2 max
s∈N−d

{Vi1(x(n+
0 + s))}λ∗(n1−n0)0i1

λ∗
(n2−n1)

0i2
λ∗

(n−n2)

0i3
. (3.144)

In general, for n ∈ [n+
k−1, nk)

Vik(x(n)) ≤ γ1γ2 . . . γk−1 max
s∈N−d

{Vi1(x(n+
0 + s))}λ∗(n1−n0)0i1

λ∗
(n2−n1)

0i2
λ∗

(n3−n2)

0i3
. . . λ∗

(n−nk−1)

0ik
.

(3.145)
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To obtain a general estimate, let us run l unstable modes and switch l times from an

unstable mode, and run m− l stable modes and switch m− l−1 times from a stable mode.

Then, for n ∈ [nk−1, nk)

Vmk(n) ≤
l∏

j=1

γjλ
∗(nj−nj−1)

0mj
×

m−1∏
p=l+1

γpλ
−d
0mp

λ
(np−np−1)
0mp

× max
s∈N−d

{Vm1(x(n+
0 + s))}λ(n−nm−1)

0mk
.

(3.146)

Let

λ+ = max{λ∗0ij : j = 1, 2, . . . , l}

λ− = max{λ0ip
: p = l + 1, l + 2, . . . , k}

and denote by T+(n0, n) and T−(n0, n) the total activation time of unstable and stable

modes, respectively. Then, for n ∈ [nk−1, nk), we have

Vmk(n) ≤
l∏

j=1

γjλ
T+

+ ×
m−1∏
p=l+1

γpλ
−d
0mp

λT
−

− × max
s∈N−d

{Vm1(x(n+
0 + s))}. (3.147)

Choose λ∗ such that 0 < λ− < λ∗ < 1, and assume that the switching law satisfies (3.120)

where this condition implies that for any n ≥ n0

T+ (lnλ+ − lnλ∗) < T− (lnλ∗ − lnλ−)

T+ ln

(
λ+

λ∗

)
< T− ln

(
λ∗
λ−

)
ln

(
λ+

λ∗

)T+

< ln

(
λ∗
λ−

)T−

ln

(
λ+

λ∗

)T+

− ln

(
λ∗
λ−

)T−

< 0
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ln

(
λT

+

+ λT
−
−

λ
(T++T−)
∗

)
< 0

λT
+

+ λT
−
−

λ
(T++T−)
∗

< 1

λT
+

+ λT
−

− < λ(n−n0)
∗ .

Thus, we obtain

Vmk(n) ≤
l∏

j=1

γj ×
m−1∏
p=l+1

γpλ
−d
0mp
× max

s∈N−d
{Vm1(x(n+

0 + s))}λ(n−n0)
∗ . (3.148)

From (3.148) one can obtain

Vmk(n) ≤
m−1∏
p=1

γpλ
−d
0mp
× max

s∈N−d
{Vm1(x(n+

0 + s))}λ(n−n0)
∗

≤
m−1∏
p=1

γλ̃−d × max
s∈N−d

{Vm1(x(n+
0 + s))}λ(n−n0)

∗ (3.149)

where γ = max{γp, p = 1, 2, . . . ,m− 1} and λ̃ = min{λ0mp , m ∈ N, p = 1, 2, . . . ,m− 1},

so we obtain

Vmk(x(n)) ≤ γ(m−1)(λ̃−d)(m−1) max
θ∈N−d

{Vm1(x(n+
0 + θ))}λ(n−n0)

∗

=
(
γλ̃−d

)(m−1)

max
θ∈N−d

{Vm1(x(n+
0 + θ))}λ(n−n0)

∗

= µ(m−1) max
θ∈N−d

{Vm1(x(n+
0 + θ))}λ(n−n0)

∗ (3.150)
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where µ = γλ̃−d. Thus, we have

Vmk(x(n)) ≤ µ(m−1)λ(n−n0)
∗ max

θ∈N−d
{Vm1(x(n+

0 + θ))}

= λ
(m−1) lnµ

lnλ∗
∗ λ(n−n0)

∗ max
θ∈N−d

{Vm1(x(n+
0 + θ))}

= λ
(n−n0)

(m−1) lnµ
(n−n0) lnλ∗

∗ λ(n−n0)
∗ max

θ∈N−d
{Vm1(x(n+

0 + θ))}

= λ
(n−n0)

[
(m−1) lnµ

(n−n0) lnλ∗
+1

]
∗ max

θ∈N−d
{Vm1(x(n+

0 + θ))}. (3.151)

For simplicity, choose the chatter bound N0 = 0. In this case, we obtain

N(n0, n) ≤ n− n0

Ta
⇒ N(n0, n)

n− n0

≤ 1

Ta

where N(n0, n) = m− 1. Therefore, we can write down inequality (3.151) as

Vmk(x(n)) ≤ λ
(n−n0)

[
N(n0,n) lnµ
(n−n0) lnλ∗

+1

]
∗ max

θ∈N−d
{Vm1(x(n+

0 + θ))}

≤
(
λ

lnµ
Ta lnλ∗

+1
∗

)(n−n0)

max
θ∈N−d

{Vm1(x(n+
0 + θ))}

= λρ(n−n0)
∗ max

θ∈N−d
{Vm1(x(n+

0 + θ))} (3.152)

where ρ = lnµ
Ta lnλ∗

+ 1, λρ is a decay rate and Ta > − lnµ
lnλ∗

.

By using decomposition of the system (3.87) similar to Theorem 3.2.1, we can similarly

obtain following inequalities which show the sub-states x1 and x2 are exponentially stable

‖x1(n)‖ ≤

√
λmax(Xm1)

λmin(X1mk)
max
θ∈N−d

{‖Emx(n+
0 + θ)‖}λρ(n−n0)/2

∗ , (3.153)

‖x2(n)‖ ≤ ‖Q̃2
m‖‖FmP̃ 1

m‖
1− ‖Q̃2

m‖‖FmP̃ 2
m‖

√
λmax(Xm1)

λmin(X1mk)
max
θ∈N−d

{‖Emx(n+
0 + θ)‖}λρ(n−d−n0)/2

∗ . (3.154)

where 1 > ‖Q̃2
m‖‖FmP̃ 2

m‖. This implies that the entire system is exponentially stable.
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Example 3.2.2. Consider the discrete ISSSD given by (3.87) where x =
[
x1(n) x2(n) x3(n)

]T
,

σ(n) ∈ Ξ = {1, 2}, E1 = E2 =


−2 −5 3

1 1 0

0 1 −1

, Bk = 0.9I,

A1 =


−1.6 −0.5 −2.1

0 −0.1 0.1

0.2 −0.1 0.3

 , f1(n, x(n− 1)) =
1

10


tan−1(x1(n− 1))

tan−1(x2(n− 1))

tan−1(x3(n− 1))

 ,

A2 =


4.2 5 1.2

−1 −1.8 −0.2

−0.4 −1.5 1.4

 f2(n, x(n− 1)) =
1

15


tanh(x1(n− 1))

tanh(x2(n− 1))

tanh(x3(n− 1))

 .
The initial function is given by φ(n) = [1− n − 2 + n 1 + n]T . The Lipschitz condition

in (3.88) is satisfied with F1 =


0.0333 0.1667 0

0 0 0

0 0 0

 in stable subsystem 1 and F2 =


0.0222 0.1111 0

0 0 0

0 0 0

 in stable subsystem 2. We calculated that α1 = 0.5270, β1 = 0.0018,

α∗2 = 0.2199 and β∗2 = 2.1190. By Lemma 3.2.1 and Lemma 3.2.2, λ01 = 0.4770 and

λ∗02 = 3.3389, respectively. Also, γk = 3.61 so that the inequality (I + Bk)
TET

j XjEj(I +

Bk) ≤ γkE
T
i XiEi is satisfied. Thus, the system is exponentially stable under ADT switching

with Ta > 2.7245 seconds. The simulation of the state responses is shown in Figure 3.6.
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Figure 3.6: State responses of the discrete ISSSD
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Chapter 4

Optimal Control and State

Estimation for ISSSD

In this chapter, some sufficient conditions on the exponential stability property of the

optimal closed-loop system have been firstly proposed. Secondly, an optimal feedback

control for the system has been designed to guarantee the exponential stability of the

closed-loop system. Moreover, a Luenberger-type observer is designed to estimate the

system states such that the corresponding closed-loop error system is exponentially stable.

The stability results have been investigated by using the multiple Lyapunov functions

along with the average-dwell time (ADT) switching signal to organize the jumps among

the system modes. Also, the Halanay lemma that is already introduced in Lemma 3.1.1 is

used as a methodology. All theoretical results are illustrated with numerical results.
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4.1 Preliminaries on Controllability and Observabil-

ity

Consider the regular singular system

Eẋ(t) = Ax(t) +Bu(t) (4.1)

y(t) = Cx(t)

where x ∈ Rn, u ∈ Rp, y ∈ Rq are the system state, control input and output, respectively;

and A,E ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are system coefficient matrices where E being

singular with rank(E) = r < n.

As pointed out in the Chapter 2, two nonsingular matrices Q̃ and P̃ exist such that the

system in (4.1) is equivalent to

ẋ1(t) = A1x1(t) +B1u(t) (4.2a)

y1 = C1x1(t)

Nẋ2(t) = x2(t) +B2u(t) (4.2b)

y2 = C2x2(t)

and the original system output is given by

y(t) = C1x1(t) + C2x2(t)

where x1 ∈ Rn1 and x2 ∈ Rn2 are slow and fast sub-state, respectively; N ∈ Rn2×n2 is

nilpotent matrix with the index h.

Following two theorems state the definition of controllability and observability in singular

system (4.1), respectively.

Theorem 4.1.1. [8],[59] (Controllability)
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(1) Slow subsystem (4.2a) is controllable if and only if

rank[sE − A, B] = n, ∀s ∈ C, s finite

(2) The following statements are equivalent.

(a) Fast subsystem (4.2b) is controllable.

(b) rank[B2, NB2, N
2B2, . . . , N

h−1B2] = n2.

(c) rank[N B2] = n2.

(d) rank[E B] = n.

(3) The following statements are equivalent.

(a) System (4.1) is controllable.

(b) Both its slow and fast subsystems are controllable.

(c) rank[B1, A1B1, A
2
1B1, . . . , A

r−1
1 B1] = n1 and rank[B2, NB2, N

2B2, . . . , N
h−1B2] =

n2.

(d) rank[sE − A, B] = n, ∀s ∈ C, s finite, and rank[E B] = n.

Theorem 4.1.2. [8],[59] (Observability)

(1) Slow subsystem (4.2a) is observable if and only if

rank

sE − A
C

 = n, ∀s ∈ C, s finite

(2) The following statements are equivalent.

(a) Fast subsystem (4.2b) is observable.
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(b) rank



C2

C2N

C2N
2

...

C2N
h−1


= n2.

(c) rank

N
C2

 = n2.

(d) rank

E
C

 = n.

(3) The following statements are equivalent.

(a) System (4.1) is observable.

(b) Both its slow and fast subsystems are observable.

(c) rank

sE − A
C

 = n, ∀s ∈ C, s finite, and rank

E
C

 = n.

4.2 Problem Formulation

Consider an ISSSD defined in the following form

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u+ fσ(t)(t, x(t− d)), t 6= tk

4x(t) = Ikx(t−), t = tk (4.3)

y(t) = Cσ(t)x(t)

xt−0 (s) = φ(s), s ∈ [−d, 0],
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where x ∈ Rn is the system state variable, Aσ(t), Eσ(t), Ik ∈ Rn×n, Bσ(t) ∈ Rn×p and Cσ(t) ∈

Rq×n are system coefficient matrices where Eσ(t) being singular with rank(Eσ(t)) = r < n, Ik

being constant matrices, u ∈ Rp and y ∈ Rq are a system input and output, respectively.

Kσ(t) ∈ Rp×n is control gain matrix of the form u(t) = Kσ(t)x(t). The switching signal

σ(t) : [t0,∞) → Ξ is a piecewise constant function taking values in a finite compact

set Ξ = {1, 2, . . . , N} for some N ∈ N. {tk}∞k=1 are the impulsive times that form an

increasing sequence satisfying tk−1 < tk and limk→∞ tk = ∞. ∆x = x(t+) − x(t−) where

x(t−) (and x(t+)) is the state just before (and just after) the impulsive action with x(t+) =

lims→t+ x(s). The solution x is assumed to be right-continuous, i.e., x(t+k ) = x(tk). xt0 is

defined by xt0(s) = x(t0 + s) for s ∈ [−d, 0] with d being a positive constant representing

the time delay. fσ(t)(t, x(t − d)) : R+ × Rn → Rn are piecewise continuous vector-valued

functions with fσ(t)(t, 0) ≡ 0 and there exist constant matrices Fσ(t) such that

‖fσ(t)(t, x)− fσ(t)(t, x
∗)‖ ≤ ‖Fσ(t)Eσ(t)(x− x∗)‖ (4.4)

for all (t, x), (t, x∗) ∈ D = {(t, x) : t ∈ R+, ‖Eσ(t)x‖ < ρ}. Assume that each subsystem

in (4.3) is regular, controllable and observable.

4.3 Optimal Control Design

Stability of the optimal closed-loop system for any given control matrix is analyzed in this

section. Moreover, the problem of designing an optimal controller is handled.

Assume that a linear state feedback optimal controller of the form u(t) = Kix(t) exists
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such that for any i ∈ Ξ, each subsystem in the optimal closed-loop system of system (4.3)

Eiẋ(t) = (Ai +BiKi)x(t) + fi(t, x(t− d)), t 6= tk

4x(t) = Ikx(t−), t = tk

xt−0 (s) = φ(s), s ∈ [−d, 0].

(4.5)

is asymptotically stable. This assumption implies that for any i ∈ Ξ there is a Lyapunov

function Vi(x(t)) = xT (t)ET
i XiEix(t); that means for Xi > 0 the time derivative of Vi(x(t))

along the trajectory of (4.5) is negative definite.

Theorem 4.3.1. (Stability) For any i ∈ Ξ, assume that each subsystem of (4.5) is admis-

sible. Then, the trivial solution of (4.5) is exponentially stable if the following conditions

hold:

(i) For any symmetric positive definite matrix Yi and symmetric positive definite ma-

trix Ri there exists a positive definite matrix Xi satisfying the algebraic Riccati-like

equation

ET
i XiAi + ATi XiEi + ET

i XiBiKi +KT
i B

T
i XiEi + εiE

T
i X

2
i Ei +KT

i RiKi = −ET
i YiEi,

(4.6)

where εi is positive constant.

(ii) For any i, j ∈ Ξ there exists γk > 1 such that

(I + Ik)
TET

j XjEj(I + Ik) ≤ γkE
T
i XiEi. (4.7)

(iii) For any t0, the switching law satisfies

N(t0, t) ≤ N0 +
t− t0
Ta

(4.8)

where N(t0, t) represents the number of switchings in (t0, t), and N0 and Ta are the

chatter bound and average dwell time, respectively.
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Proof. Given εi ∈ (0, ρ) choose δ < εi and φ ∈ Rn such that ‖Eiφ‖d < δ. For t0 ∈ R+, let

x (t) = x(t, t0, φ) be the solution of system (4.5) such that x(t0 +s) = φ(s) with s ∈ [−d, 0].

We claim ‖Eix(t)‖ < εi for all t ≥ t0. Suppose the claim is not true, then there exists a

t∗ > t0 such that

‖Eix(t∗)‖ = εi and ‖Eix(t)‖ < εi for all t ∈ [t0, t
∗). (4.9)

For t ∈ [tk−1, tk) ⊆ [t0, t
∗], define

υi(t) = Vi(x(t)) = xT (t)ET
i XiEix(t), i = σ(t)

as a Lyapunov function candidate for ith subsystem. Since υi is positive semi definite, υi

satisfies the following inequality

λmin(Xi)‖Eix(t)‖2 ≤ υi ≤ λmax(Xi)‖Eix(t)‖2, (4.10)

where λmin(Xi) and λmax(Xi) are minimum and maximum eigenvalue of matrix Xi, respec-

tively.

Derivative of υi along the trajectory of (4.5) is given by

υ̇i(t) = xT (t)ET
i Xi(Ai +BiKi)x(t) + xT (t)(Ai +BiKi)

TXiEix(t)

+ 2fTi (t, x(t− d))XiEix(t) (4.11)

Using inequality (4.4), we obtain that

2fTi (t, x(t− d))XiEix(t) ≤ 1

εi
‖Fi‖2‖Eix(t− d)‖2 + εix

T (t)ET
i (t)X2

i Eix(t). (4.12)

Substituting (4.12) into (4.11) gives the following inequality

υ̇i(t) ≤ xT (t)ET
i XiAix(t) + xT (t)ET

i XiBiKix(t) + xT (t)ATi XiEix(t) + xT (t)KT
i B

T
i XiEix(t)

+
1

εi
‖Fi‖2‖Eix(t− d)‖2 + εix

T (t)ET
i X

2
i Eix(t) (4.13)
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By algebraic Riccati-like equation (4.6), we obtain

υ̇i(t) ≤ −xT (t)ET
i WiEix(t) +

1

εi
‖Fi‖2‖Eix(t− d)‖2

where ET
i WiEi = KT

i RiKi + ET
i YiEi. Thus, we have

υ̇i(t) ≤ −αiυi(t) + βi sup
σ∈[t−d,t]

υi(σ) for all t ∈ [tk−1, tk) (4.14)

where αi =
λmin(Wi)

λmax(Xi)
, and βi =

‖Fi‖2

εiλmin(Xi)
.

Applying the Halanay Lemma to (4.14), we obtain the solution of differential inequality

(4.14) for t ∈ [tk−1, tk) as

υi(t) ≤ sup
σ∈[tk−1−d,tk−1]

υi(σ)e−ξi(t−tk−1), (4.15)

where ξi is a unique positive solution of

ξi = αi − βieξid.

On the other hand, let us suppose σ(tk) = j, k = 1, 2, 3, · · · . It follows from (4.5) and (4.7)

that

υj(tk) = xT (t−k )(I + Ik)
TET

j XjEj(I + Ik)x(t−k ) ≤ γkυi(t
−
k ). (4.16)

Using (4.15) and (4.16) successively on each subinterval leads to in general, for i ∈ Ξ and

t ∈ [tk−1, tk)

υik(t) ≤ γ1γ2 . . . γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e−ξi1 (t1−d−t0)e−ξi2 (t2−d−t1) . . . e−ξik (t−tk−1). (4.17)

Let ξ = min{ξij ; i ∈ Ξ and j = 1, 2, . . . , k}, γ = max{γl; l = 1, 2, . . . , k − 1} and

ξ∗ = max{ξil ; i ∈ Ξ, l = 1, 2, . . . , k − 1}. Then, inequality (4.17) becomes

υik(t) ≤ γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e(k−1)ξ∗de−ξ(t−t0).
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By ADT condition (4.8) with N0 = η
ln γ+ξ∗d

, where η is an arbitrary constant, and Ta =

ln γ+ξ∗d
ξ−ξ∗∗ , (ξ > ξ∗∗), we obtain

υik(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)eη−ξ
∗∗(t−t0) for all t ≥ t0 (4.18)

which implies the following inequality

λmin(Xik)‖Eix(t)‖2 ≤ λmax(Xi1)‖Eiφ(t)‖2
d
eη−ξ

∗∗(t−t0), t ≥ t0. (4.19)

Since e−ξ
∗∗(t−t0) ≤ 1 and ‖Eiφ(t)‖

d
< δ, we have

λmin(Xik)‖Eix(t)‖2 ≤ λmax(Xi1)‖Eiφ(t)‖2
d
eη−ξ

∗∗(t−t0) < eηλmax(Xi1)δ
2. (4.20)

Choose δ > 0 such that eηλmax(Xi1)δ
2 < λmin(Xik)ε

2
i . Thus, by inequality (4.20) we obtain

λmin(Xik)‖Eix(t)‖2 < λmax(Xi1)δ
2 < λmin(Xik)ε

2
i

⇒ ‖Eix(t)‖ < εi for all t ∈ [t0, t
∗]

which leads a contradiction at t = t∗. This shows ‖Eix(t)‖ < εi for all t ≥ t0.

By inequality (4.19), we obtain

‖Eix(t)‖ ≤ µ‖Eiφ(t)‖
d
e(η−ξ∗∗(t−t0))/2, t ≥ t0, (4.21)

where µ =
√
λM/λm with λM = max{λmax(Xi); i ∈ Ξ} and λm = min{λmin(Xi); i ∈ Ξ}.

Thus, the trivial solution of system (4.5) is E-exponentially stable.

By using decomposition form of system (4.5), one may obtain

‖x1(t)‖ ≤ µ‖Q̃i‖‖Eiφ(t)‖de(η−ξ∗∗(t−d−t0))/2, (4.22)

which implies that slow sub-state x1 is exponentially stable, and

‖x2(t)‖ ≤ ‖Q̃2
i ‖‖FiEiP̃ 1

i ‖
1− ‖Q̃2

i ‖‖FiEiP̃ 2
i ‖
µ‖Q̃i‖‖Eiφ(t)‖de(η−ξ∗∗(t−d−t0))/2. (4.23)

where ‖Q̃2
i ‖‖FiEiP 2‖ < 1. This shows that fast sub-state x2 is exponentially stable. Thus,

by (4.22) and (4.23) the trivial solution of system (4.5) is exponentially stable.
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Remark 4.3.1. The algebraic Riccati-like equation given in (4.6) guarantees that the Lya-

punov function is decreasing along the trajectory of system (4.5); that is, the continuous

system is stabilized by the feedback controller. On the other hand, impulse manners as

a destabilizing perturbation by condition (ii). The role of ADT condition in condition

(iii) is to organize the switching among the system modes which eventually guarantees the

exponential stability.

Having established the stability result, we can now design an optimal controller stabilizing

the closed-loop system (4.5).

Theorem 4.3.2. (Optimal control design) For any i ∈ Ξ, assume that each subsystem

of (4.5) is admissible. Then, system (4.5) under the feedback controllers u(t) = Kix(t)

with Ki = −R−1
i BT

i XiEi is exponentially stable if the following assumptions hold:

(i) For any symmetric positive-semi definite matrix Qi and symmetric positive definite

matrix Ri there exists a positive definite matrix Xi satisfying the algebraic algebraic

Riccati-like inequality

ET
i XiAi + ATi XiEi − ET

i XiBiR
−1
i BT

i XiEi + εiE
T
i X

2
i Ei ≤ −Qi, (4.24)

where εi is positive constant.

(ii) For any i, j ∈ Ξ there exists γk > 1 such that

(I + Ik)
TET

j XjEj(I + Ik) ≤ γkE
T
i XiEi. (4.25)

(iii) For any t0, the switching law satisfies

N(t0, t) ≤ N0 +
t− t0
Ta

(4.26)

where N(t0, t) represents the number of switchings in (t0, t), and N0 and Ta are the

chatter bound and average dwell time, respectively.
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Proof. For any i ∈ Ξ, let the cost function (or the performance index) be defined as follows

Ji(u) =

∫ tk

tk−1

(xTQix+ uTRiu)dt

where Qi = QT
i ≥ 0 and Ri = RT

i > 0. Our goal is to construct a stabilizing state feedback

controller of the form u = Kix that minimizes the cost function. Such a linear controller

is denoted by u∗. By the optimal control law, we need to find u∗ which minimizes the

following function

gi(x, u) =
dυi
dt

+ xTQix+ uTRiu

where

υi(t) = Vi(x(t)) = xT (t)ET
i XiEix(t), t ∈ [tk−1, tk), i = σ(t)

as a Lyapunov function candidate for ith subsystem with Xi = XT
i > 0. Thus, we have

gi(x, u) = 2xTET
i XiAix+ 2xTET

i XiBiu+ 2xTET
i Xifi(t, x(t− d)) + xTQix+ uTRiu

and

∂gi
∂u

= 2xTET
i XiBi + 2uTRi.

Thus, for u = u∗ = −R−1
i BT

i XiEix, the function gi(x, u) has minimum value since the

second derivative of gi(x, u) with respect to u has positive value for u∗ = −R−1
i BT

i XiEix.

By plugging u∗ into system (4.5) we obtain

Eiẋ = (Ai −BiR
−1
i BT

i XiEi)x+ fi(t, x(t− d)). (4.27)

Our optimal controller satisfies the equation

dυi
dt
|u=u∗ + xTQix+ u∗TRiu

∗ = 0

2xTET
i XiEiẋ|u=u∗ + xTQix+ xTET

i XiBiR
−1
i RiR

−1
i BT

i XiEix = 0

xTET
i XiAix+ xTATi XiEix− xTET

i XiBiR
−1
i BT

i XiEix+ 2fTi (t, x(t− d))XiEix(t) + xTQix = 0

(4.28)
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Since

2fTi (t, x(t− d))XiEix(t) ≤ L2
i

εi
‖x(t− d)‖2 + εix

T (t)ET
i X

2
i Eix(t) (4.29)

where εi is a positive constant and Li = ‖FiEi‖, we obtain

xT
[
ET
i XiAi + ATi XiEi − ET

i XiBiR
−1
i BT

i XiEi + εiE
T
i X

2
i Ei +Qi

]
x+

L2
i

εi
‖x(t− d)‖2 ≥ 0.

Thus, we obtain the algebraic Riccati-like inequality as

ET
i XiAi + ATi XiEi + εiE

T
i X

2
i Ei − ET

i XiBiR
−1
i BT

i XiEi ≤ −Qi.

The rest is done as proof of the previous Theorem 4.3.1 .

Remark 4.3.2. Optimal controller u = −R−1
i BT

i XiEix minimizing the cost function

Ji(u) =

∫ tk

tk−1

(xTQix+ uTRiu)dt

subject to system (4.3) requires solving the algebraic Riccati-like equation given by (4.24)

which guarantees the existence of the positive definite matrix Xi for all i ∈ Ξ. On the other

word, an appropriate Lyapunov function which is decreasing along the trajectory of the

closed-loop system is found by solving the algebraic Riccati-like equation given in (4.24).

Example 4.3.1. Consider the ISSSD given by (4.3) where x =

x1(t)

x2(t)

, σ(t) ∈ Ξ = {1, 2},

E1 = E2 =

4 0

2 0

 with rank(Ei) = 1, Ik = 0.8I, d = 0.5 and

A1 =

2 1

1 1

 , A2 =

1 1

0 1

 , B1 = B2 =

0

1

 ,
f1(t, x(t− d)) = f2(t, x(t− d)) =

[
1
75

tanh(x1(t− d)) 1
75

tanh(x2(t− d))
]T
.
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Initial function is φ(t) = [0.5 − t − 5.72 + t]T . Also, L1 = 0.0133 in subsystem 1 and

L2 = 0.0133 in subsystem 2 are satisfied inequality (4.29).

The control gain matrices are computed as

K1 =
[
5.72 0

]
and K2 =

[
5.8 0

]

where X1 =

 3 −3.14

−3.14 3.42

 > 0, X2 =

 3 −3.1

−3.1 3.3

 > 0, and R1 = R2 = 1. Hence,

for any Q1 = Q2 =

20 0

0 0

 ≥ 0, we obtain α1 = 0.1573, β1 = 0.1447, α2 = 0.1599, and

β2 = 0.1264. By Halanay inequality, the mode decay rates are computed as ξ1 = 0.0110 and

ξ2 = 0.0297. Also, γk = 3.24 so that the inequality (I+Bk)
TET

j XjEj(I+Bk) ≤ γkE
T
i XiEi

is satisfied. The system is simulated for 5 seconds and ADT is 1.15 seconds. Figure 4.1

depicts the slow and fast sub-states.

4.4 State Estimation

State feedback control is designed under the assumption that all state variables are ac-

cessible for measurement. In practical applications, this assumption may not hold since

it is either impossible or too expensive to measure all the state variables. In such cases,

a state observer or state estimator is needed in order to apply state feedback. Motivated

by this consideration, the state estimation technique is used to estimate the unmeasured

state variables in this section.
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Figure 4.1: State response of the corresponding closed-loop system
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For any i ∈ Ξ, the observer dynamic is considered as

Ei ˙̂x = Aix̂+Biu+ fi(t, x̂(t− d)) + L(y − Cix̂), t 6= tk (4.30)

4x̂(t) = Ikx̂(t−), t = tk

ŷ(t) = Cix̂(t)

x̂t−0 (s) = φ̂(s), s ∈ [−d, 0],

where L ∈ Rn×q is estimator or observer gain matrix.

Let us define the estimation error for system state as e(t) = x(t) − x̂(t) and the state

estimation error system is

Eiė(t) = (Ai − LCi)e(t) + fi(t, x(t− d))− fi(t, x̂(t− d)), t 6= tk (4.31)

e(t) = (I + Ik)e(t
−), t = tk

et−0 (s) = ϕ(s), s ∈ [−d, 0].

Assumption 4.4.1. Suppose that the matrix pairs (Ei, Ai − LCi) are regular.

Theorem 4.4.1. (State estimation) For any i ∈ Ξ, assume that each subsystem of

(4.31) is admissible. Then, the trivial solution of the error system (4.31) is exponentially

stable if the following assumptions hold:

(i) For any i, j ∈ Ξ there exists γk > 1 such that

(I + Ik)
TET

j XjEj(I + Ik) ≤ γkE
T
i XiEi (4.32)

where Xi is a positive definite solution of the Lyapunov equation

(Ai − LCi)TXiEi + ET
i Xi(Ai − LCi) = −ET

i YiEi for any Yi > 0. (4.33)
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(ii) For any t0, the switching law satisfies

N(t0, t) ≤ N0 +
t− t0
Ta

(4.34)

where N(t0, t) represents the number of switchings in (t0, t), and N0 and Ta are the

chatter bound and average dwell time, respectively.

Proof. Given εi ∈ (0, ρ) choose δ < εi and ϕ ∈ Rn such that ‖Eiϕ‖d < δ. For t0 ∈ R+, let

e (t) = e(t, t0, ϕ) be the solution of system (4.31) such that e(t0+s) = ϕ(s) with s ∈ [−d, 0].

We claim ‖Eie(t)‖ < εi for all t ≥ t0. Suppose the claim is not true, then there exists a

t∗ > t0 such that

‖Eie(t∗)‖ = εi and ‖Eie(t)‖ < εi for all t ∈ [t0, t
∗). (4.35)

For t ∈ [tk−1, tk), define

υi(t) = Vi(e(t)) = eT (t)ET
i XiEie(t), i = σ(t)

as a Lyapunov function candidate for ith subsystem. Then, derivative of υi along the

trajectory of (4.31) is given by

υ̇i(t) = −eT (t)ET
i YiEie(t) + 2

[
fi(t, x(t− d))− fi(t, x̂(t− d))

]T
XiEie(t). (4.36)

By the Lipschitz condition in (4.4), we have

2
[
fi(t, x(t− d))− fi(t, x̂(t− d))

]T
XiEie(t) ≤

L2
i

εi
‖Eie(t− d)‖2 + εi‖Eie(t)‖2‖Xi‖2

(4.37)

where Fσ(t) ∈ Rn×n are constant matrices and εi are positive constants.

Substituting (4.37) into (4.36), we obtain

υ̇i(t) ≤ −eT (t)ET
i YiEie(t) +

L2
i

εi
‖Ei(x(t− d)− x̂(t− d))‖2 + εi‖Eie(t)‖2‖Xi‖2

≤ −αiυi(t) + βi sup
σ∈[t−d,t]

υi(σ) (4.38)
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where αi =
λmin(Yi)− εi‖Xi‖2

λmax(Xi)
and βi =

L2
i

εiλmin(Xi)
.

By Halanay Inequality, the solution of differential inequality (4.38) for t ∈ [tk−1, tk) is

obtained as

υi(t) ≤ sup
σ∈[tk−1−d,tk−1]

υi(σ)e−ξi(t−tk−1), (4.39)

where ξi is a unique positive solution of

ξi = αi − βieξid.

On the other hand, let us suppose σ(tk) = j, k = 1, 2, 3, . . .. It follows from (4.31) and

(4.32) that

υj(tk) = eT (t−k )(I + Ik)
TET

j XjEj(I + Ik)e(t
−
k ) ≤ γkυi(t

−
k ). (4.40)

By using (4.39) and (4.40) on each subinterval, we generally obtain

υik(t) ≤ γk−1 sup
σ∈[t0−d,t0]

υi1(σ)e(k−1)ξ∗de−ξ(t−t0), t ∈ [tk−1, tk) (4.41)

where γ = max{γl; l = 1, 2, . . . , k − 1}, ξ∗ = max{ξil ; i ∈ Ξ, l = 1, 2, . . . , k − 1}, and

ξ = min{ξij ; i ∈ Ξ and j = 1, 2, . . . , k}.

Applying ADT condition (4.34) with N0 = η
ln γ+ξ∗d

, where η is an arbitrary constant, and

Ta = ln γ+ξ∗d
ξ−ξ∗∗ , (ξ > ξ∗∗) to inequality (4.41) results in

υik(t) ≤ sup
σ∈[t0−d,t0]

υi1(σ)eη−ξ
∗∗(t−t0) for all t ≥ t0. (4.42)

Thus, similar to Theorem 4.3.1 we can obtain a contradiction using inequality (4.42).

However, we skip this part for this theorem.

Because of property of positive semi definite Lyapunov function υik , we obtain the following

inequality

‖Eie(t)‖ ≤ µ‖Eiϕ(t)‖
d
e(η−ξ∗∗(t−t0))/2, t ≥ t0, (4.43)
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where µ =
√
λM/λm with λM = max{λmax(Xi); i ∈ Ξ} and λm = min{λmin(Xi); i ∈ Ξ}.

This means that trivial solution of the system (4.31) is E-exponentially stable.

Using decomposition form of system (4.31) as done in previous theorems we obtain that

‖e1(t)‖ ≤ µ‖Q̃i‖‖Eiϕ(t)‖de(η−ξ∗∗(t−d−t0))/2, (4.44)

and

‖e2(t)‖ ≤ Li‖Q̃2
i ‖‖EiP̃ 1

i ‖
1− Li‖Q̃2

i ‖‖EiP̃ 2
i ‖
µ‖Q̃i‖‖Eiϕ(t)‖de(η−ξ∗∗(t−d−t0))/2 (4.45)

where i = 1, 2, . . . , N , e1 ∈ Rr, e2 ∈ Rn−r, Q̃i =

Q̃1
i

Q̃2
i

, Q̃1
i ∈ Rr×n, Q̃2

i ∈ R(n−r)×n,

P̃i =
[
P̃ 1
i P̃ 2

i

]
, P̃ 1

i ∈ Rn×r, P̃ 2
i ∈ Rn×(n−r), and L‖Q̃2

i ‖‖EiP̃ 2
i ‖ < 1. Inequality (4.44) and

(4.45) show that e1 and e2 are exponentially stable. Thus, the trivial solution of system

(4.31) is exponentially stable. That means x̂(t)→ x(t) as t→∞.

Remark 4.4.1. Theorem 4.4.1 provides sufficient conditions to ensure exponential stability

of the state estimation error system given by (4.31). The Lyapunov equation given in (4.33)

guarantees the existence of the positive definite matrix Xi for all i ∈ Ξ. Switching among

the subsystems is organized by the ADT condition.

Example 4.4.1. Consider the ISSSD given by (4.3) where x =

x1(t)

x2(t)

, σ(t) ∈ Ξ = {1, 2},

E1 = E2 =

4 0

2 0

 with rank(Ei) = 1 for i ∈ Ξ, Ik = 0.3I, d = 0.5 and

A1 =

2 1

1 2

 , A2 =

4 1

1 4

 , B1 = B2 =

0

1

 ,
f1(t, x(t− d)) = f2(t, x(t− d)) =

[
1

150
tanh(x1(t− d)) 1

150
tanh(x2(t− d))

]T
,
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C1 = C2 =
[
1 1

]
.

Also, initial function is φ(t) = [1 − 1.4286]T .

The error-state system with time-delay is

Eiė(t) = (Ai − LCi)e(t) + fi(t, xt)− fi(t, x̂t), t 6= tk

e(t) = (I + Ik)e(t
−), t = tk

ϕ(s) =
[
1− s −1.4286 + s

]T
, s ∈ [−0.5, 0]

where the observer gain matrix L =

−2

4

. X1 =

3 4

4 7

 > 0 satisfies (A1−LC1)TX1E1 +

ET
1 X1(A1−LC1) = −ET

1 Y1E1 for any Y1 = I > 0. Similarly, X2 =

 0.3333 −0.6666

−0.6666 2.9999

 >
0 satisfying (A2−LC2)TX2E2 +ET

2 X2(A2−LC2) = −ET
2 Y2E2 for any Y2 = I > 0. Hence,

α1 = 0.0554, β1 = 0.0084, α2 = 0.3110, and β2 = 0.1404. The mode decay rates are ξ1 =

0.0466 and ξ2 = 0.1482. Thus, ξ = min{ξ1, ξ2} = 0.0466 and ξ∗ = max{ξ1, ξ2} = 0.1482.

Moreover, γk = 1.69 so that the inequality (I + Bk)
TET

j XjEj(I + Bk) ≤ γkE
T
i XiEi is

satisfied. The error system is simulated for 12 seconds, and ADT is computed as 1 second.

Figure 4.2 depicts estimation errors of the slow and fast sub-states. All errors converges

to zero which shows the effectiveness of the proposed observer.
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Figure 4.2: Upper: estimation error of slow sub-state. Lower: estimation error of fast

sub-state.
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Chapter 5

Sliding Mode Control for Impulsive

Singular Systems:

Continuous and Discrete

The main purpose of this chapter is to address the problem of stabilization for continuous

and discrete impulsive singular systems via a sliding mode control (SMC). Firstly, some

sufficient conditions on the exponential stability property of the continuous impulsive sys-

tems have been proposed. To obtain this objective, a sliding surface is designed on which

the sliding motion of the system state happens, then a sliding mode control law is de-

signed to force the system state to reach, stay and slide on the sliding surface. Secondly,

a similar sliding surface and control design are adopted to discrete impulsive switched sin-

gular systems to obtain some sufficient conditions for the exponential stability of the full

order system. Numerical examples with simulations are represented to further clarify the

theoretical results.
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5.1 Problem Formulation

The sliding mode design approach comprises two steps. The first one is to design of a

sliding surface on which the sliding motion will take place. The second step is to design of

a control law which forces the system state trajectories to reach and slide on the surface.

In SMC, the reachability condition is a necessary condition to guarantee existence of the

sliding mode. By the reachability condition, the system reaches the sliding surface from

any initial conditions in a finite time and remain on this surface after reach it. Details of

the design procedures are given in the main results.

5.2 Continuous Sliding Mode Control

Consider the impulsive singular system with nonlinear perturbation of the form

Eẋ(t) = Ax(t) +Bu(t) + f(t, x(t)), t 6= tk

4x(t) = Ikx(t), t = tk

x(t0) = x0,

(5.1)

where x(t) ∈ Rn for all t ≥ t0 with t0 ∈ R+ is the system state variable, and A, Ik, E ∈ Rn×n

and B ∈ Rn×p are system coefficient matrices where E being singular with rank(E) = r <

n, u(t) ∈ Rp is the input vector, f(x(t), t) ∈ Rn is the perturbation term and Ik ∈ Rn×n

is an n × n constant matrix for each k ∈ N. {tk}∞k=1 are the impulsive times that form

an increasing sequence satisfying tk−1 < tk and limk→∞ tk = ∞. ∆x = x(t+) − x(t−)

where x(t−) (and x(t+)) is the state just before (and just after) the impulsive action with

x(t+) = lims→t+ x(s). The solution x is assumed to be left-continuous, i.e., x(t−k ) = x(tk).

f(t, x(t)) : R+×Rn → Rn are piecewise continuous vector-valued functions with f(t, 0) ≡ 0.

Assume that the following assumptions are valid:
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(A1) System (5.1) is regular and controllable.

(A2) B has full column rank; that is, rank(B) = p where 1 ≤ p < n.

(A3) The perturbation term f(t, x(t)) is Lipschitz in x for all t ≥ t0 and satisfies the

following matching condition:

f(t, x(t)) = Bf̄(t, x(t))

where f̄(t, x(t)) ∈ Rp bounded by

‖f̄(t, x(t))‖ ≤ ε‖x(t)‖

with ε > 0 being positive constant.

Remark 5.2.1. The stability of singular systems requires regularity of the system expressed

by assumption (A1). On the other hand, the sliding motion is insensitive to the nonlinear

perturbation in the system by (A3). This assumption makes SMC an attractive one for

designing robust controllers.

Remark 5.2.2. The matching condition given in assumption (A3) means that f(x(t), t)

lies in the range space of B, i.e. R(f(x(t), t)) ⊂ R(B), so it is possible to write f(t, x(t)) =

Bf̄(t, x(, t) for some f̄(t, x(t)) ∈ Rp.

5.2.1 Sliding Mode Control Design

Consider system (5.1) with p inputs. Then, the p-dimensional vector of sliding mode

hyper-surface is defined by

S (x) = {x(t) | S(x) = 0} ,
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where switching function is

S(x) =


s1(x)

s2(x)
...

sp(x)


p×1

= GEx,

where si is a scalar-valued function for i = 1, 2, . . . , p, G ∈ Rp×n has full row rank, i.e.

rank(G) = p such that GB ∈ Rp×p is an invertible matrix, which is guaranteed because

rank(B) = p (as stated in Assumption (A2)). Then, the time derivative of S(x) along the

trajectories of (5.1) is given by

Ṡ(x) = GEẋ = GAx+GBu+GBf̄(t, x(t)).

Also, Ṡ(x) = 0 when system (5.1) remains on the sliding surface, which leads to the

p-dimensional equivalent control input

ueq(t) = −(GB)−1GAx(t)− f̄(x(t), t) =: Kx(t)− f̄(t, x(t)). (5.2)

Thus, the closed-loop equivalent reduced system during the sliding motion is given by

Eẋ(t) =
(
I −B(GB)−1G

)
Ax(t) = (A+BK)x(t) =: Aeqx(t), t 6= tk

4x(t) = Ikx(t), t = tk

x(t0) = x0,

(5.3)

where the matrix pairs
(
E,Aeq

)
is regular and stable.

5.2.2 Reaching Condition

Define the Lyapunov function of the state S(x) by

V (S(x)) =
1

2
ST (x)S(x) (5.4)
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and require that the time derivative along the trajectories of the closed-loop full system

with multiple inputs

V̇ (S(x)) =
∂V

∂S(x)

dS(x)

dt
= ST (x)Ṡ(x) = ST (x)(GAx+GBu+GBf̄(t, x(t)) < 0

which is guaranteed if the control input u takes the form

u(t) = ueq(t)− (GB)−1 diag(η) Sgn(S(x(t))) (5.5)

where diag(η) is an p×p diagonal matrix with positive entries η and Sgn is the p-dimensional

signum vector function defined as follows:

Sgn(S(x(t))) =


sgn(s1(x(t)))

sgn(s2(x(t)))
...

sgn(sp(x(t)))


p×1

, where sgn(si(x(t))) =


1, if si(x(t)) > 0,

0, if si(x(t)) = 0,

−1, if si(x(t)) < 0,

(5.6)

for i = 1, 2, . . . , p.

Therefore, the full order closed-loop system with multiple inputs outside the sliding surface

is given by

Eẋ(t) = Ax(t) +Bu(t) + f(t, x(t)), t 6= tk

4x(t) = Ikx(t), t = tk

x(t0) = x0,

(5.7)

where the control law has the form in (5.5).

On the sliding surface, S(x(t)) = 0, we have Sgn(S(x(t))) = 0 which leads u(t) = ueq(t).

128



In this case, the closed-loop system with multiple inputs on the sliding surface is given by

Eẋ(t) = Ax(t) +Bueq(t) + f(t, x(t)) = (I −B(GB)−1G)Ax(t), t 6= tk

4x(t) = Ikx(t), t = tk

x(t0) = x0.

(5.8)

where ueq(t) = −(GB)−1GAx(t)− f̄(t, x(t)).

Now, by the following theorem one may check the control input in (5.5) satisfies reachability

condition. Moreover, an upper bound for reaching time can be computed by the following

theorem.

Theorem 5.2.1. Suppose that sliding surface is given by

S (x) = {x(t) | S(x) = 0} , (5.9)

where switching function is S(x) = GEx. Then the trajectory of system (5.1) can be driven

on the sliding surface in a finite time, and it subsequently remains on it if the sliding mode

controller is designed as

u(t) = ueq(t)− (GB)−1 diag(η) Sgn(S(x(t))) (5.10)

where r-dimensional equivalent control input

ueq(t) = −(GB)−1GAx(t)− f̄(t, x(t)) (5.11)

such that GB ∈ Rp×p is an invertible matrix, diag(η) is an p × p diagonal matrix with

positive diagonal elements, and Sgn is the p-dimensional signum vector function.

Proof. Define the Lyapunov function candidate by

V (S(x)) =
1

2
ST (x)S(x).
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Then, the time derivative along the trajectory of (5.1)

V̇ (S(x)) = ST (x)Ṡ(x)

= ST (x) (GEẋ)

= ST (x)
(
GAx+GBu+GBf̄(t, x(t))

)
.

Substituting the control law in (5.10) into the above equation, we have

V̇ (S(x)) = ST (x)GAx

+ ST (x) (GB)
(
−(GB)−1GAx(t)− f̄(t, x(t))− (GB)−1 diag(η) Sgn(S(x(t)))

)
+ ST (x)GBf̄(t, x(t))

= ST (x)GAx− ST (x) (GB) (GB)−1GAx(t)− ST (x)GBf̄(t, x(t))

− ST (x) (GB) (GB)−1 diag(η) Sgn(S(x(t))) + ST (x)GBf̄(t, x(t))

= −ST (x) diag(η) Sgn(S(x(t))).

Plugging in definition of each factor into the above equations gives

V̇ (S(x)) = −


s1(x)

s2(x)
...

sp(x)



T 
η1 0 · · · 0

0 η2 · · · 0
...

...
. . .

...

0 0 · · · ηp




sgn(s1(x))

sgn(s2(x))
...

sgn(sp(x))


= − [s1(x)η1 sgn(s1(x) + s2(x)η2 sgn(s2(x) + · · ·+ sp(x)ηp sgn(sp(x)]

= − [η1|s1(x)|+ η2|s2(x)|+ · · ·+ ηp|sp(x)|]

≤ − min
i=1,2,...,p

{ηi} − [|s1(x)|+ |s2(x)|+ · · ·+ |sp(x)|]

= − min
i=1,2,...,p

{ηi} ‖S(x)‖1
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≤ − min
i=1,2,...,p

{ηi}
√
p ‖S(x)‖

≤ − min
i=1,2,...,p

{ηi}
√

2pV
1
2

which implies

V̇ (S(x)) = ST (x)Ṡ(x) < 0.

Therefore, the state of system (5.1) will reach the sliding surface in finite time and subse-

quently remain on it.

We can also calculate the finite time as follows: by integrating the last inequality from tk

to t and tk−1 to tk for k = 1, 2, . . . , we have

V
1
2 (S(x(t)))− V

1
2 (S(x(tk))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (t− tk),

V
1
2 (S(x(tk)))− V

1
2 (S(x(tk−1))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (tk − tk−1),

V
1
2 (S(x(tk−1)))− V

1
2 (S(x(tk−2))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (tk−1 − tk−2),

...

V
1
2 (S(x(t1)))− V

1
2 (S(x(t0))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (t1 − t0). (5.12)

Summing both sides of (5.12) gives

V
1
2 (S(x(t)))− V

1
2 (S(x(t0))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (t− t0). (5.13)

It can be seen from (5.13) that there exists a time t∗ such that V (S(x(t∗))) = 0 and

consequently S = 0 for t ≥ t∗ which means that the system trajectories can reach to the
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sliding surface in a finite time t∗. Thus, this finite time t∗ is calculated

V
1
2 (S(x(t∗)))− V

1
2 (S(x(t0))) ≤ −

√
2p

2
min

i=1,2,...,p

{
ηij
}

(t∗ − t0),

⇒ −V
1
2 (S(x(t0))) ≤ −

√
2p

2
min

i=1,2,...,p
{ηi} (t∗ − t0)

⇒ t∗ ≤
√

2
√
pmini=1,2,...,p {ηi}

V
1
2 (S(x(t0))) + t0

Designing of the control input on the sliding surface guarantees stability of closed loop

system (5.8). However, impulse affects the stability of the entire closed loop system.

Therefore, the following theorem gives sufficient conditions to ensure exponential stability

of entire system on the sliding surface.

Theorem 5.2.2. (Stability result) Assume that the following assumptions hold:

(i) System (5.1) is admissible during the sliding motion so that for any Y > 0, there

exist X > 0, the solution of

ETX(A+BK) + (A+BK)TXE = −ETY E (5.14)

where the control gain matrix K = −(GB)−1GA.

(ii) Singular matrix E and I + Ik are commute.

(iii) The following inequality holds

ln γk − ν(tk − tk−1) ≤ 0, k = 1, 2, . . . , (5.15)

where γk =
λmax[(I+Ik)TX(I+Ik)]

λmin(X)
, 0 < ν < α and α = λmin(Y )

λmax(X)
.
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Then, the control law (5.5) guarantees that the system (5.1) be exponentially stable.

Proof. For all t ≥ t0 with t0 ∈ R+, let x (t) = x(t, t0, x0) be the solution of the system

(5.1). For t ∈ (tk−1, tk], define

υ(t) = V (x(t)) = xT (t)ETXEx(t), t 6= tk,

as the Lyapunov function candidate. Then, the time derivative of υ along the trajectory

of (5.1) during the sliding motion is given by

υ̇(t) = 2ẋT (t)ETXEx(t)

= ẋT (t)ETXEx(t) + xT (t)ETXEẋ(t)

= xT (t)
(
A+BK

)T
XEx(t) + xT (t)ETX

(
A+BK

)
x(t)

= −xT (t)ETY Ex(t)

≤ −λmin(Y )‖Ex(t)‖2

≤ −αυ(t)

where α = λmin(Y )
λmax(X)

. Therefore, we have

υ(t) ≤ υ(t+k−1)e−α(t−tk−1), t ∈ (tk−1, tk]. (5.16)

On the other hand, at t = t+k , by assumption (ii) we have

υ(t+k ) = xT (t+k )ETXEx(t+k )

= xT (tk)(I + Ik)
TETXE(I + Ik)x(tk)

≤ γkυ(tk), (5.17)

where γk =
λmax[(I+Ik)TX(I+Ik)]

λmin(X)
. Now, using (5.16) and (5.17) successively on each subin-

terval leads to the following results: for t ∈ (t0, t1], we have

υ(t) ≤ υ(t+0 )e−α(t−t0). (5.18)
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For t ∈ (t1, t2], we have

υ(t) ≤ υ(t+1 )e−α(t−t1)

≤ γ1υ(t1)e−α(t−t1)

= γ1υ(t+0 )e−α(t1−t0)e−α(t−t1)

= γ1υ(t+0 )e−α(t−t0). (5.19)

In general, for t ∈ (tk−1, tk], we obtain

υ(t) ≤ υ(t+0 )γ1γ2 . . . γk−1e
−α(t−t0)

= υ(t+0 )γ1γ2 . . . γk−1e
−ν(t−t0)e−(α−ν)(t−t0)

= υ(t+0 )γ1e
−ν(t1−t0)γ2e

−ν(t2−t1) . . . γk−1e
−ν(tk−1−tk−2)e−ν(t−tk−1)e−(α−ν)(t−t0). (5.20)

By assumption (iii), we have

υ(t) ≤ υ(t+0 )e−(α−ν)(t−t0), t ≥ t0 (5.21)

which implies that

‖Ex(t)‖ ≤ µ‖Ex(t+0 )‖e−(α−ν(t−t0))/2, t ≥ t0 (5.22)

where µ =
√

λmax(X)
λmin(X)

. Thus, the trivial solution of system (5.1) during the sliding motion

is E-exponentially stable which is equivalent to its exponential stability. This completes

the proof of stability of full order closed-loop system (5.7).

Remark 5.2.3. The algebraic Riccati equation given in (5.14) guarantees that the Lya-

punov function be decreasing along the trajectory of system (5.1); that is, the continuous

system is stable due to the control law u in (5.5).
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Example 5.2.1. Consider the ISS given by (5.1) where x =
[
x1(t) x2(t) x3(t)

]T
,

E =


1 1 0

0 1 1

0 0 0

 , A =


1 0 0

0 1 0

0 0 1

 , B =


0 0

1 0

0 1

 ,

f̄(t, x(t)) =

x2
1(t) + x2

2(t)

0

 , and Ik = 0.1I,

where I ∈ Rn×n identity matrix and k = 1, 2, · · · . The initial condition is given by x0 =[
1 −2 3

]T
. Choosing

G =

 1 1 −1

−1 2 −1

 ,
the equivalent control is

ueq = Kx(t)− f̄

where

K =

2 −1 0

3 0 −1

 ,
the corresponding equivalent system is

Eẋ(t) = Aeqx(t)

where

Aeq =


1 0 0

2 0 0

3 0 0

 ,
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Figure 5.1: Impulsive switched singular system sub-states.

which the matrix pair (E,Aeq) is stable, and the feedback control law is given by

u(t) = ueq(t)− (GB)−1 diag(η) Sgn(S(x(t)))

where

(GB)−1 =

−1 1

−2 1

 , η = [1.1 1], S(x(t)) =

 1 2 1

−1 1 2

x(t).

α = 0.6745 and γk = 7.0522 are computed. Therefore, tk − tk−1 ≥ 2.8959. Exponential

stability of the system by the designed continuous sliding mode control, the control input

and sliding surface are simulated in Figure 5.1, Figure 5.2, and Figure 5.3 respectively.

5.3 Discrete Sliding Mode Control

The finite sampling frequency in discrete sliding mode control (DSMC) makes control input

invariant between two sampling instants. This means that when system dynamics cross
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Figure 5.2: Control input u = [u1 u2]T .

Figure 5.3: Sliding function S(x(t)).
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the sliding surface between sampling instants, the control input cannot immediately take

measures to make the system remain on the sliding surface. Therefore, in DSMC, system

states cannot remain on the sliding surface, but can remain in a neighborhood of the sliding

surface in which switching function is equal to zero. This sliding-like motion in discrete

time is called a quasi-sliding mode or pseudo-sliding mode which is stated in the following

definition.

Consider the single input discrete time system given by:

x(n+ 1) = Ax(n) +Bu(n), n = 0, 1, 2, . . . (5.23)

where x ∈ RN×1, u ∈ R1, A ∈ RN×N and B ∈ RN×1 are matrices of appropriate dimensions.

Definition 5.3.1. System (5.23) is said to exhibit a pseudo-sliding mode if there exists an

integer K such that, for all n > K, whenever x(n) is contained in a neighborhood Bs of

{x(n) : s(n) = 0} where s(n) is the switching function, then x(n+ 1) is also contained in

the Bs.

In general, Bs can be defined in two ways [60]:

Bs = {x(n) : |s(n)| ≤ ε}, (5.24)

Bs = {x(n) : |s(n)| ≤ ε‖x(n)‖1} where ‖x(n)‖1 =
N∑
i=1

|x(n)|. (5.25)

The set defined in (5.24) is called a boundary layer type while the set defined in (5.25) is

called a sliding or switching region type. These two sets are illustrated in Figure 5.4.

Remark 5.3.1. For clarity, the quasi-sliding mode definition, the boundary layer in (5.24)

and the switching region in (5.25)are given for systems with single input.
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Figure 5.4: Boundary layer (left) and switching region (right)

The state trajectory of a DSMC system has the following properties [61]:

(P1) The trajectory moves monotonically toward the sliding surface by starting from any

initial state, and cross the sliding surface in finite time.

(P2) Once the trajectory has crossed the switching plane the first time, it cross the surface

again in every successive sampling period. Therefore, a zigzag motion about the

sliding surface occurs.

(P3) The size of each successive zigzagging step is non-increasing and the trajectory stays

within Bs.

Consider a discrete impulsive singular system with perturbation of the form

Ex(n+ 1) = Ax(n) +Bu(n) + f(n, x(n)), n+
k < n ≤ nk+1

4x(n) = Ikx(n), n = nk, k ∈ N

x(n0) = x0,

(5.26)

where x(n) ∈ RN is the system state at the sampling instant n for all n ≥ n0 with n0 ∈ N,

and A,E, Ik ∈ RN×N and B ∈ RN×pare system coefficient matrices where E being singular
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with rank(E) = r < N , u(n) ∈ Rp is the input vector and Ik ∈ RN×N being constant matri-

ces. {nk}∞k=0 are the impulsive times that form an increasing sequence satisfying nk−1 < nk

and limk→∞ nk = ∞. ∆x(nk) = x(n+
k ) − x(nk) where x(n+

k ) is the value of x at nk with

impulse, and x(nk) is the value of x at nk without impulse. f(n, x(n)) : Z+ × RN → RN

are piecewise continuous vector-valued functions with f(n, 0) ≡ 0.

Addition to assumption (A2), the system in (5.26) holds the following assumptions:

(A4) The system in (5.26) is regular and controllable.

(A5) System (5.26) satisfies the following matching condition:

f(n, x(n)) = Bf̄(n, x(n))

with f̄(n, x(n)) ∈ Rp bounded by

‖f̄(n, x(n))‖ ≤ ε‖x(n)‖

where ε > 0 is positive constants.

5.3.1 Quasi-Sliding Mode Control Design

Consider system (5.26) with p inputs. Then, the p-dimensional vector of quasi-sliding mode

hyper-surface is defined by

S (n) = {x(n) | S(n) = 0} ,
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where switching function is

S(n) =


s1(n)

s2(n)
...

sp(n)


p×1

= GEx(n), (5.27)

where si(n) is a scalar-valued function (i = 1, 2, . . . , p) , and G ∈ Rp×N has full row rank,

i.e. rankG = p such that GB ∈ Rp×p is an invertible matrix. The ideal quasi-sliding mode

satisfies

S(n+ 1) = S(n) = 0, n = n0, n1, n2, . . . (5.28)

From (5.28) and (5.26), one can get

GAx(n) +GBu(n) +GBf̄(n, x(n)) = S(n) = 0.

Solving this equation for u gives the equivalent control input as

ueq(n) = −(GB−1GAx(n)− f̄(n, x(n)) =: Kx(n)− f̄(n, x(n)), (5.29)

where GB ∈ Rp×p is an invertible matrix. Thus, the closed-loop equivalent system during

the ideal quasi-sliding motion is given by

Ex(n+ 1) =
(
I −B(GB)−1G

)
Ax(n) = (A+BK)x(n) =: Aeqx(n), n+

k−1 < n ≤ nk

4x(n) = Ikx(n), n = nk, k ∈ N

x(n0) = x0

(5.30)

where (E,Aeq) is regular and stable.
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5.3.2 Reaching Condition

The necessary reaching condition for the quasi-sliding mode is expressed as

4S(n)S(n) < 0

where 4S(n) = S(n + 1) − S(n). On the other hand, the sufficient reaching condition is

given by

|si(n+ 1)| < |si(n)|, i = 1, 2, . . . , p, (5.31)

which has the following equivalent form:

s2
i (n+ 1) < s2

i (n).

Remark 5.3.2. From condition (5.31), it can be seen that DSMC is designed such that

the switching function is decreased at every sampling index n.

Condition (5.31) is satisfied by the following reaching law,

S(n+ 1) = diag(q)S(n)− diag(η) Sgn(S(n)), (5.32)

where diag(q) = diag{q1, q2, . . . , qp} ∈ Rp×p, diag(η) = diag{η1, η2, . . . , ηp} ∈ Rp×p, 0 <

qi < 1, ηi > 0 and Sgn is the p-dimensional signum vector function defined as follows:

Sgn(S(n)) =


sgn(s1(n))

sgn(s2(n))
...

sgn(sp(n))


p×1

, where sgn(si(n)) =


1, if si(n) > 0,

0, if si(n) = 0,

−1, if si(n) < 0,

(5.33)

for i = 1, 2, . . . , p.

From (5.32), one may get

si(n+ 1) = qisi(n)− ηi sgn(si(n)).
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From this expression, the following is obtained

s2
i (n+ 1)− s2

i (n) = −(1− q2
i )

(
|si(n)|+ qiηi

1− q2
i

)2

+
η2
i

1− q2
i

,

where |si(n)| = si(n) sgn(si(n)). Therefore, s2
i (n + 1) < s2

i (n) if |si(n)| > ηi
1 + qi

. In other

word, the reaching law (5.32) satisfies the reaching condition (5.31) only if |si(n)| > ηi
1 + qi

.

By (5.27), the incremental change of S(n) is

S(n+ 1)− S(n) = GEx(n+ 1)−GEx(n)

= GAx(n) +GBu(n) +GBf̄(n, x(n))−GEx(n). (5.34)

On the other hand, from reaching law (5.32) we have

S(n+ 1)− S(n) = (diag(q)− I)S(n)− diag(η) Sgn(S(n)),

= (diag(q)− I)GEx(n)− diag(η) Sgn(GEx(n)) (5.35)

where I ∈ Rp×p is identity matrix. Comparing equations (5.34) and (5.35) gives

GAx(n) +GBu(n) +GBf̄(n, x(n))−GEx(n) = (diag(q)− I)GEx(n)− diag(η) Sgn(GEx(n)).

Solving for u(n) gives the control law

u(n) = ueq(n) + (GB)−1
[

diag(q)S(n)− diag(η) Sgn(S(n))
]

(5.36)

where ueq(n) = −(GB)−1GAx(n)− f̄(n, x(n)) and S(n) = GEx(n). Therefore, the closed-

loop full system with multiple inputs is given by

Ex(n+ 1) = Ax(n) +Bu(n) + f(n, x(n)), n+
k < n ≤ nk+1

4x(n) = Ikx(n), n = nk, k ∈ N

x(n0) = x0,

(5.37)
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where the control input is u(n) = ueq(n) + (GB)−1
[

diag(q)S(n)− diag(η) Sgn(S(n))
]

and

ueq(n) = −(GB)−1GAx(n)− f̄(n, x(n)).

5.3.3 Boundary Layer Type Bs

The neighborhood Bs expressed in the definition of a pseudo-sliding mode (see Definition

5.3.1) is defined as either boundary layer type by (5.24) or switching region type by (5.25).

In boundary layer type, switching occurs on the sliding surface, but control input is affected

by the distance from the current system states to the sliding surface. On the contrary, the

input u(n) is equal to the equivalent control input ueq(n) when the switching function is

in the switching region ([60]). However, we only consider the boundary layer type one in

this thesis.

First of all, we should obtain the boundary layer type neighborhoods for the system in

(5.26) with multiple inputs, represented by BS, by using (5.24). According to (5.24), we

should also determine ε in the boundary layer type Bs = {x(n) : |s(n)| ≤ ε}.

By the reaching law in (5.32), we have

si(n+ 1) = qisi(n)− ηi sgn(si(n)), i = 1, 2, . . . , p. (5.38)

The sign of the first term of the right hand side in (5.38) is the same as si(n) and the

second term of the right hand side in (5.38) is opposite to that of si(n). By the definition

of quasi-sliding mode, the sign of si(n+ 1) must be opposite to that of si(n). For instance,

if si(n) > 0, then by (5.38) we have

si(n+ 1) = qisi(n)− ηi < 0

which implies

si(n) <
ηi
qi
. (5.39)
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If si(n) < 0, then by (5.38) we have

si(n+ 1) = qisi(n) + ηi > 0

which implies

si(n) > −ηi
qi
. (5.40)

Therefore, the boundary layer type Bs is obtained and represented as

BS = {x(n) : |si(n)| < εi} ,

where εi =
ηi
qi

.

Remark 5.3.3. In DSMC, the state trajectory reach and stay within above specified bound-

ary layer which is a neighborhood of the sliding surface.

5.3.4 Chattering Elimination

The control law is already obtained as

u(n) = ueq(n) + (GB)−1
[

diag(q)S(n)− diag(η) Sgn(S(n))
]

where ueq(n) = −(GB)−1GAx(n)− f̄(x(n), n). The discontinuous signum function in the

control law causes chattering so that to reduce or eliminate chattering, the signum function

in reaching law (5.32) is replaced by a high-slope saturation function; that is, the reaching

law is taken as

S(n+ 1) = diag(q)S(n)− diag(η) Sat

(
S(n)

φ

)
, (5.41)
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where the norm of φ =
[
φ1 φ2 . . . φp

]T
is the boundary layer thickness and Sat is the

p-dimensional saturation vector function defined by

Sat

(
S(n)

φ

)
=


sat
(
s1(n)
φ1

)
sat
(
s2(n)
φ2

)
...

sat
(
sp(n)

φp

)


p×1

, where sat

(
si(n)

φi

)
=

sgn
(
si(n)
φi

)
, if |si(n)| > φi,

si(n)
φi
, if |si(n)| ≤ φi,

(5.42)

for i = 1, 2, . . . , p.

From (5.41), one may get

si(n+ 1) = qisi(n)− ηi sat

(
si(n)

φi

)
=

qisi(n)− ηi sgn
(
si(n)
φi

)
, if |si(n)| > φi,

qisi(n)− ηi si(n)
φi
, if |si(n)| ≤ φi.

In order to find a condition on boundary layer thickness φi, we consider case |si(n)| ≤ φi.

Then, we have

s2
i (n+ 1)− s2

i (n) = −(1− q2
i )s

2
i (n)− 2qiηi

s2
i (n)

φi
+ η2

i

s2
i (n)

φ2
i

.

Therefore, s2
i (n+1) < s2

i (n), which is an equivalent form of the reaching condition in (5.31)

if

∣∣∣∣qi − ηi
φi

∣∣∣∣ < 1 or equivalently φi >
ηi

qi + 1
.

Theorem 5.3.1. (Stability result) Assume that the following assumptions hold:

(i) System (5.26) is admissible during the quasi-sliding motion, so for any Y > 0, there

exists X > 0 satisfying the Riccati equation

(A+BK)TX(A+BK)− ETXE = −Y, (5.43)

where the control gain matrix K = −(GB)−1GA.
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(ii) Singular matrix E and I + Ik are commute.

(iii) The following inequality holds

ln γk + ν(tk − tk−1) ln(1− α) ≤ 0, k = 1, 2, . . . , (5.44)

where γk =
λmax[(I+Ik)TX(I+Ik)]

λmin(X)
, 0 < ν < 1 and α = λmin(Y )

λmax(X)
.

Then, the control law in (5.36) guarantees that system (5.26) is exponentially stable.

Proof. For any n ≥ n0 with n0 ∈ N, let x (n) = x(n;n0, x0) be the solution of system

(5.26). For n ∈ (nk−1, nk], define

V (x(n)) = xT (n)ETXEx(n), (5.45)

as a Lyapunov function candidate. Then, the variation of V relative to system (5.26)

during the quasi-sliding motion (i.e. S(n) is p-dimensional 0 vector) is

4V (x(n)) = xT (n+ 1)ETXEx(n+ 1)− xT (n)ETXEx(n)

= (Ax(n) +BKx(n))TX(Ax(n) +BKx(n))

− xT (n)ETXEx(n)

= x(n)T
(

(A+BK)TX(A+BK)− ETXE
)
x(n)

= −x(n)TY x(n)

≤ −λmin(Y )‖x(n)‖2

≤ −αV (x(n)) (5.46)

where α = λmin(Y )
λmax(ETXE)

. Thus, we have

V (x(n)) ≤ V (x(n+
k−1))(1− α)(n−nk−1), n ∈ (nk−1, nk]. (5.47)
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On the other hand, for n = n+
k , k = 1, 2, 3, . . . , by assumption (ii) we have

V (x(n+
k )) = xT (n+

k )ETXEx(n+
k )

= xT (nk)(I + Ik)
TETXE(I + Ik)x(nk)

≤ γkV (x(nk)) (5.48)

where γk =
λmax[(I+Ik)TX(I+Ik)]

λmin(X)
.

Using (5.47) and (5.48) successively on each subinterval leads to the following results: for

n ∈ (n0, n1], we have

V (x(n)) ≤ V (x(n+
0 ))(1− α)(n−n0). (5.49)

For t ∈ (n1, n2], we have

V (x(n)) ≤ V(n
+
1 )(1− α)(n−n1)

≤ γ1V (x(n1))(1− α)(n−n1)

= γ1V (x(n+
0 ))(1− α)(n1−n0)(1− α)(n−n1)

= γ1V (x(n+
0 ))(1− α)(n−n0). (5.50)

In general, for n ∈ (n0, nk], we obtain

V (x(n)) ≤ V (x(n+
0 ))γ1γ2 . . . γk−1(1− α)(n−n0). (5.51)

Then, for 0 < ν < 1, one may obtain

V (x(n)) ≤ γ1γ2 . . . γk−1(1− α)ν(n−n0)(1− α)(1−ν)(n−n0)V (x(n+
0 ))

= V (x(n+
0 ))γ1(1− α)ν(n1−n0)γ2(1− α)ν(n2−n1) . . .

γk−1(1− α)ν(nk−1−nk−2)(1− α)ν(n−nk−1)(1− α)(1−ν)(n−n0). (5.52)
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By assumption (iii), (5.52) becomes

V (x(n)) ≤ V (x(n+
0 ))(1− α)(1−ν)(n−n0). (5.53)

By definition of Lyapunov candidate function, (5.53) implies

‖Ex(n)‖ ≤ µ‖Ex(n+
0 )‖(1− α)ρ(n−n0)/2, n ≥ n0,

where µ =
√

λmax(X)
λmin(X)

. Thus, the trivial solution of system (5.26) during the sliding motion is

E-exponentially stable. For system (5.26) on the sliding surface, its E-exponential stability

is equivalent to its exponential stability. Thus, the trivial solution of system (5.26) is

exponentially stable.

Example 5.3.1. Consider the discrete ISS given by (5.26) where x(n) =
[
x1(n) x2(n) x3(n)

]T
,

E =


1 1 0

0 1 1

0 0 0

 , A =


2 −1 2

0 1 0

0 1 2

 , B =


0 0

1 0

0 1

 ,

f̄(n, x(n)) =

 0

x2(n)

 , and Ik = 0.1I,

where I ∈ Rn×n identity matrix and k = 1, 2, · · · . The initial condition is given by x0 =[
1.0565 1.4435 0

]T
. Choosing

G =

−1 1 0

−1 −1 −2

 ,
the equivalent control is

ueq = Kx(n)− f̄

149



where

K =

 2 −2 2

−2 0 −4

 ,
the corresponding equivalent system is

Eẋ(n) = Aeqx(n)

where

Aeq =


2 −1 2

2 −1 2

−2 1 −2

 ,
which matrix pair (E,Aeq) is stable and the feedback control law is given by

u(n) = ueq(n) + (GB)−1
[

diag(q)S(n)− diag(η) Sgn(S(n))
]

where

(GB)−1 =

 1 0

−0.5 −0.5

 , q = [0.1 0.2], η = [1.04 1.14], S(x(n)) =

−1 0 1

−1 −2 −1

x(n).

α = 0.9303 and γk = 6.7067 are obtained. Thus, tk − tk−1 ≥ 2.3816 for ν = 0.3. In

Figure 5.5, exponential stability of the system by the designed discrete sliding mode control

in equation (5.36) is illustrated. In this case, the system exhibits chattering. However, it

is clear that the control law with saturation function (5.41) successfully remove chattering

as shown in Figure 5.6. Moreover, the control input designed using signum function and

saturation function are shown in Figure 5.7 and Figure 5.8, respectively.

Remark 5.3.4. Figure 5.6 and Figure 5.8 show that the modified control law with satura-

tion function instead of sign gives better performance. The system in Example 5.3.1 exhibits
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Figure 5.5: System sub-states in control law with sign function
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Figure 5.6: System sub-states in control law with saturation function
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Figure 5.7: Control input u = [u1 u2]T with sign function
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Figure 5.8: Control input u = [u1 u2]T with saturation function
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considerable chattering in Figure 5.5 and Figure 5.7. On the contrast, it is clear from Fig-

ure 5.6 and Figure 5.8 that the modified control law with saturation function successfully

removed chattering. In addition to chattering reduction, settling time is also reduced in

control law with saturation function.
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Chapter 6

Stochastic Switched Singular

Systems: Continuous and Discrete

This chapter establishes the mean square admissibility for continuous and discrete stochas-

tic switched singular systems. Linear matrix inequalities (LMIs) and average dwell time

(ADT) are used to develop sufficient conditions that guarantee the admissibility. The

theoretical results are illustrated by numerical simulations.

6.1 Stochastic Switched Singular Systems: Continu-

ous

Consider the following stochastic linear singular system

Eσ(t)dx(t) = Aσ(t)x(t)dt+ Cσ(t)x(t)dW (t), (6.1)

x(t0) = x0
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where x(t) ∈ Rn is the system state, and Eσ(t), Aσ(t) ∈ Rn×n, and Cσ(t) ∈ Rn×n are system

coefficient matrices where Eσ(t) being singular with rank(Eσ(t)) = r < n, the switching

signal σ(t) : [t0,∞) → Ξ is a piecewise constant function taking values in a compact set

Ξ = {1, 2, . . . , N} for some N ∈ N, W (t) ∈ R is a standard Wiener process defined on the

complete probability space (Ω,F ,P).

6.1.1 Preliminaries

In this subsection, we recall some basic definitions and lemmas which are used in the

following subsections.

Definition 6.1.1. System (6.1) is said to be exponentially stable in the mean square if

there exist positive constant M and λ such that for any initial condition x(t0) = x0;

E
[
‖x(t)‖2

]
≤M‖x0‖2e−λ(t−t0), ∀t ≥ t0 (6.2)

Definition 6.1.2. The system in (6.1) is said to be mean square admissible if it is regular,

impulse-free and stable in the mean square.

When the regularity of system Eẋ = Ax is not known, it is always possible to choose two

nonsingular matrices Q and P such that the following dynamic decomposition form holds:

QEP =

Ir 0

0 0

 , QAP =

A1 A2

A3 A4

 .
Lemma 6.1.1. [62] System Eẋ = Ax is impulse-free if and only if A4 is nonsingular.

Lemma 6.1.2. (Schur Complement) [62] Given any real matrices P1, P2 and P3 with

P1 = P T
1 and P3 > 0. Then, we have

P1 + P2P
−1
3 P T

2 < 0,
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if and only if P1 P2

P T
2 −P3

 < 0.

Lemma 6.1.3. [62] Let

N =

P X

Y Z

 ,
where P, X ,Y and Z are any real given matrices with appropriate dimensions such that

N +N T < 0.

Then, Z is nonsingular and

P + PT −XZ−1Y − YTZ−TX T < 0.

Definition 6.1.3. For any t0 ∈ R+ and t ≥ t0, let x(t) be an Rn-dimensional Itô process,

i.e., Rn-valued continuous adapted process satisfying

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (a.s.)

where f ∈ Lad(Ω;L1[a, b]) and g ∈ Lad(Ω;L2[a, b]). Let V ∈ C1,2(R+ × Rn;R). Then, for

any t ≥ t0, V is a real-valued Itô process satisfying

dV (t, x) = LV (t, x)dt+ Vx(t, x)g(t, x)dW (t), (a.s.)

where

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
tr
[
gT (t, x)Vxx(t, x)g(t, x)

]
.
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If V ∈ C1,2(R+ × Rn;R), then

Vt(t, x) =
∂V

∂t
, Vx(t, x) =

[
∂V

∂x1

,
∂V

∂x2

, . . . ,
∂V

∂xn

]
,

Vxx(t, x) =

[
∂2V

∂x∂xj

]
n×n

=


∂2V

∂x1∂x1

∂2V

∂x1∂x2

. . .
∂2V

∂x1∂xn
...

...
...

...

∂2V

∂xn∂x1

∂2V

∂xn∂x2

. . .
∂2V

∂xn∂xn

 .

The operator L is called the averaged derivative or infinitesimal diffusion operator at a

point (t, x) and can be generally defined as

LV (t, x) = lim
h→0+

1

h

[
E
[
V (t+ h, x(t+ h))

]
− V (t, x)

]
.

6.1.2 Stability Result

In this subsection, we shall establish sufficient conditions for the mean square admissibility

for system (6.1).

Theorem 6.1.1. The stochastic singular system in (6.1) is mean square admissible if

(i) there exist matrices Xi > 0 and Ri such that

ET
i XiEi ≥ 0, (6.3)

ATi XiEi + ET
i XiAi + ATi SiRi +RT

i S
T
i Ai + CT

i XiCi < 0 (6.4)

where Si ∈ Rn×(n−r) is any matrix with full column rank and satisfies ET
i Si = 0,

(ii) condition rank(Ei, Ci) = rank(Ei) holds,
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(iii) for any t0, the switching law satisfies the ADT condition

N(t, t0) ≤ N0 +
t− t0
Ta

,

where the chatter bound N0 =
η

lnµ
such that η is an arbitrary constant and µ > 1,

and average dwell time Ta =
lnµ

λ− λ∗
such that λ > λ∗.

Proof. Suppose that there exist matrices Xi > 0 and Ri such that (6.3) and (6.4) hold and

rank(Ei, Ci) = rank(Ei). We first show that the regularity and impulse-freeness of system

(6.1). It is always possible to choose two nonsingular matrices Q̃i and P̃i such that

Q̃iEiP̃i =

I 0

0 0

 , Q̃iAiP̃i =

A1i A2i

A3i A4i

 . (6.5)

Under the condition rank(Ei, Ci) = rank(Ei),

Q̃iCiP̃i =

C1i C2i

0 0

 (6.6)

where the partitions of Q̃iAiP̃i and Q̃iCiP̃i are compatible with that of Q̃iEiP̃i.

In view of Xi > 0 and the condition rank(Ei, Ci) = rank(Ei), C
T
i XiCi ≥ 0. Therefore,

(6.4) becomes

ATi XiEi + ET
i XiAi + ATi SiRi +RT

i S
T
i Ai < 0. (6.7)

Let X̄i = XiEi + SiRi, so (6.3) and (6.7) become

ET
i X̄i = X̄T

i Ei ≥ 0, (6.8)

ATi X̄i + X̄T
i Ai < 0. (6.9)
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Let

Q̃−Ti X̄iP̃i =

X̄1i X̄2i

X̄3i X̄4i

 . (6.10)

Pre- and post-multiplying (6.8) by P̃ T
i and P̃i, respectively, givesX̄1i X̄2i

0 0

 =

 X̄T
1i 0

X̄T
2i 0

 ≥ 0,

which implies that X̄2i = 0. Moreover, it implies X̄1i = X̄T
1i ≥ 0 by Schur complement.

Noting (6.9) and

α(ATi X̄i) ≤
1

2
α(ATi X̄i + X̄T

i Ai) < 0

where α(ATi X̄i) = max{λ| det(λI−ATi X̄i)=0}Re(λ). That is, ATi X̄i is nonsingular, so is X̄i.

Since X̄1i = X̄T
1i ≥ 0, this also implies that X̄1i > 0.

Now, pre- and post-multiplying (6.9) by P̃ T
i and P̃i, respectively, one can obtainAT1iX̄1i + X̄1iA1i + AT3iX̄3i + X̄T

3iA3i AT3iX̄4i + X̄1iA2i + X̄T
3iA4i

X̄T
4iA3i + AT2iX̄1i + AT4iX̄3i AT4iX̄4i + X̄T

4iA4i

 < 0. (6.11)

By Schur complement, above matrix inequality is negative definite if and only if

AT4iX̄4i + X̄T
4iA4i < 0.

This together with

α(X̄T
4iA4i) ≤

1

2
α(AT4iX̄4i + X̄T

4iA4i) < 0

implies X̄T
4iA4i is nonsingular, so A4i is nonsingular, too. Therefore, each subsystem in

(6.1) is impulse-free by Lemma 6.1.1.
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To show regularity of each subsystem in (6.1), we need to show determinant of (sEi −Ai)

is not identically zero. Mathematically,

det(sEi − Ai) = det(sQ̃iEiP̃i − Q̃iAiP̃i)

= det

sI − A1i −A2i

−A3i −A4i


= det(−A4i) det(sI − (A1i − A2iA

−1
4i A3i)).

Since A4i is nonsingular, det(−A4i) 6= 0. We also can find an s ∈ C such that det(sI −

(A1i − A2iA
−1
4i A3i)) 6= 0. Therefore, we proved the regularity of system (6.1).

Next, we will show that system (6.1) is stochastically stable. Since A4i is nonsingular, we

can set

Q̂i =

I −A2iA
−1
4i

0 I

 Q̃i, P̂i = P̃i

 I 0

−A−1
4i A3i I

 . (6.12)

By (6.5), (6.6) and (6.10), one can obtain that

Êi = Q̂iEiP̂i =

I 0

0 0

 , (6.13)

Âi = Q̂iAiP̂i =

A1i − A2iA
−1
4i A3i 0

0 A4i

 , (6.14)

Ĉi = Q̂iCiP̂i =

C1i − C2iA
−1
4i A3i C2i

0 0

 , (6.15)

Q̂−Ti X̄iP̂i =

 X̄1i 0

A−T4i A
T
2iX̄1i + X̄3i − X̄4iA

−1
4i A3i X̄4i

 . (6.16)
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Then, system (6.1) has the following restricted equivalent form

dx1(t) = Ã1ix1(t)dt+ C̃1ix1(t)dW, (6.17)

x2(t) = 0, (6.18)

where

P̂−1
i x(t) =

x1(t)

x2(t)

 , Ã1i = A1i − A2iA
−1
4i A3i, C̃1i = C1i − C2iA

−1
4i A3i.

It follows from (6.8) and (6.9) that X̄1i > 0, so we can define the Lyapunov candidate

function for ith subsystem

Vi(x1(t)) = xT1 (t)X̄1ix1(t). (6.19)

The infinitesimal operator L of the Markov process acting on the Lyapunov candidate

function Vi(x1(t)) is given by

LVi(x1(t)) = Vit(x1(t)) + Vix1 (x1(t))Ã1ix1(t) +
1

2
tr
[
xT1 (t)C̃T

1iVix1x1 (x1(t))C̃1ix1(t)
]
.

Notice that Vit(x1(t)) = 0, Vix1 (x1(t)) = 2xT1 (t)X̄1i and Vix1x1 (x1(t)) = 2X̄1i, which implies

LVi(x1(t)) = 2xT1 (t)X̄1iÃ1ix1(t) + xT1 (t)C̃T
1iX̄1iC̃1ix1(t),

= xT1 (t)X̄1iÃ1ix1(t) + xT1 (t)ÃT1iX̄1ix1(t) + xT1 (t)C̃T
1iX̄1iC̃1ix1(t)

= xT1 (t)
[
X̄1iÃ1i + ÃT1iX̄1i + C̃T

1iX̄1iC̃1i

]
x1(t). (6.20)

Now, we can express the inequality in (6.4)

ATi X̄i + X̄T
i Ai + CT

i XCi < 0. (6.21)

Let

Q̂−Ti XiQ̂
−1
i =

X1i X2i

XT
2i X4i

 .
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Noting that ET
i X̄i = ET

i XiEi since ET
i Si = 0. Pre- and post-multiplying this by P̂ T

i and

P̂i, respectively, one can get(
P̂ T
i E

T
i Q̂

T
i

)(
Q̂−Ti X̄iP̂i

)
=
(
P̂ T
i E

T
i Q̂

T
i

)(
Q̂−Ti XiQ̂

−1
i

)(
Q̂iEiP̂i

)
,

which implies

X̄1i = X1i.

Therefore,

Q̂−Ti XiQ̂
−1
i =

X̄1i X2i

XT
2i X4i

 . (6.22)

Pre- and post-multiplying (6.21) by P̂ T
i and P̂i, respectively, we obtain(

P̂ T
i A

T
i Q̂

T
i

)(
Q̂−Ti X̄iP̂i

)
+
(
P̂ T
i X̄

T
i Q̂
−1
i

)(
Q̂iAiP̂i

)
+
(
P̂ T
i C

T
i Q̂

T
i

)(
Q̂−Ti XiQ̂

−1
i

)(
Q̂iCiP̂i

)
< 0. (6.23)

Substituting the expressions in (6.13)-(6.16) and (6.22) to (6.23) givesX̄1iÃ1i + ÃT1iX̄1i + C̃T
1iX̄1iC̃1i ∗

∗ ∗

 < 0,

where ∗ represents a matrix is not used in the following. Above linear matrix inequality

implies that

X̄1iÃ1i + ÃT1iX̄1i + C̃T
1iX̄1iC̃1i < 0.

Thus, we can say X̄1iÃ1i + ÃT1iX̄1i + C̃T
1iX̄1iC̃1i = −Yi where Yi > 0. This together with

(6.20) gives

LVi(x1(t)) = −x1(t)TYix1(t)

≤ −λmin(Yi)‖x1(t)‖2, for all t ∈ [tk−1, tk).
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Combining this with general definition of the average derivative L yields

d

dt
E
[
Vi(x1(t))

]
= E

[
LVi(x1(t))

]
≤ −λmin(Yi)E

[
‖x1(t)‖2

]
≤ − λmin(Yi)

λmax(X̄1i)
E
[
Vi(x1(t))

]
.

From the last one, we obtain

E
[
Vi(x1(t))

]
≤ E

[
Vi(x1(tk−1))

]
e−λi(t−tk−1), t ∈ [tk−1, tk) (6.24)

where λi =
λmin(Yi)

λmax(X̄1i)
.

From (6.24), for t ∈ [t0, t1), one can obtain

E
[
Vi1(x1(t))

]
≤ E

[
Vi1(x1(t0))

]
e−λi1 (t−t0), (6.25)

From (6.19), we have for any i, j ∈ Ξ

Vj(x1(t)) ≤ µVi(x1(t)), (6.26)

where µ =
max{λmax(X̄1j)}
min{λmin(X̄1j)}

.

For t ∈ [t1, t2), from (6.24) and (6.25) we have

E
[
Vi2(x1(t))

]
≤ E

[
Vi2(x1(t1))

]
e−λi2 (t−t1),

≤ µE
[
Vi1(x1(t1))

]
e−λi2 (t−t1),

≤ µE
[
Vi1(x1(t0))

]
e−λi1 (t1−t0)e−λi2 (t−t1).

Namely, we have

E
[
Vi2(x1(t))

]
≤ µE

[
Vi1(x1(t0))

]
e−λi1 (t1−t0)e−λi2 (t−t1). (6.27)

Similarly, for t ∈ [t2, t3),

E
[
Vi3(x1(t))

]
≤ E

[
Vi3(x1(t2))

]
e−λi3 (t−t2),

≤ µ2E
[
Vi1(x1(t0))

]−λi1 (t1−t0)
e−λi2 (t2−t1)e−λi3 (t−t2). (6.28)
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Therefore, generally, we have for t ∈ [tk−1, tk)

E
[
Vik(x1(t))

]
≤ µk−1E

[
Vi1(x1(t0))

]
e−λi1 (t1−t0)e−λi2 (t2−t1) . . . e−λik (t−tk−1). (6.29)

Let λ = minj=1,2,...,k{λij}, so inequality (6.29) is

E
[
Vik(x1(t))

]
≤ e(k−1) lnµe−λ(t−t0)E

[
Vi1(x1(t0))

]
. (6.30)

By ADT condition with N0 =
η

lnµ
, where η is an arbitrary constant and µ > 1, and

Ta =
lnµ

λ− λ∗
, where λ > λ∗, one may obtain

E
[
Vik(x1(t))

]
≤ eη−λ

∗(t−t0)E
[
Vi1(x1(t0))

]
, (6.31)

which implies

E
[
‖x1(t)‖2

]
≤ αeη−λ

∗(t−t0)‖x1(t0)‖2, (6.32)

where α =
max{λmax(X̄1i)}
min{λmin(X̄1i)}

for all i ∈ Ξ.

Therefore, (6.32) together with (6.18) and P̂−1
i x(t) =

x1(t)

x2(t)

 implies exponential stability

in the mean square of the system in (6.1). Since it has already been shown that system

(6.1) is regular and impulse-free, the system in (6.1) is mean square admissible. Thus, the

proof is completed.

Example 6.1.1. Consider system (6.1) where x =


x1(t)

x2(t)

x3(t)

, σ(t) ∈ Ξ = {1, 2},

E1 = E2 =


1 1 0.5

−0.5 1.5 1.75

1 1 0.5

 , A1 =


−10 5 6.5

2 −5.5 −1.25

−9 4 8.5

 ,
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A2 =


−5 8 3

−2 2 −1

−8 −5 4

 , C1 = C2 =


1 1 1

−1 1 2

1 1 1

 ,
and initial condition x(0) = [1 − 1 − 1]T .

Choose

Si =


1

0

−1


which has full column rank and satisfies ET

i Si = 0 where i = 1, 2.

By solving the linear matrix inequalities in (6.3)-(6.4), we obtain the solution as

X1 =


0.5403 0.0066 −0.5025

0.0066 0.1429 0.0066

−0.5025 0.0066 0.5403

 , R1 =
[
−0.0955 0.1108 0.5073

]

X2 =


0.7903 −0.1535 −0.5524

−0.1535 0.8490 −0.1535

−0.5524 −0.1535 0.7903

 , R2 =
[
0.2817 −0.2298 −0.2122

]

After necessary calculations for ADT, we obtained that ADT is 1.5. Therefore, the system

is illustrated in Figure 6.1.

6.2 Stochastic Switched Singular Systems: Discrete

This section studies admissibility in the mean square of discrete stochastic switched singular

systems.
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Figure 6.1: Mean of ‖x(t)‖
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Consider the following discrete-time stochastic linear singular system

Eσ(t)x(n+ 1) = Aσ(t)x(n) + Cσ(t)x(n)W (n), (6.33)

x(n0) = x0

where x(n) ∈ RN is the system state, and Eσ(t), Aσ(t) ∈ RN×N , and Cσ(t) ∈ RN×N are

system coefficient matrices where E being singular with rank(Eσ(t)) = r < N , σ(n) : N→ Ξ

is a switching rule taking values σ(n) = i in a compact set Ξ = {1, 2, . . . ,M} for some

M ∈ N, W (n) ∈ R is a standard Wiener process defined on the complete probability space

(Ω,F ,P).

6.2.1 Preliminaries

The following definitions and lemmas will be used in the proof of the main results.

Definition 6.2.1. For system

Ex(n+ 1) = Ax(n),

its generalized spectral radius is defined as

ρ(E,A) = max
λ∈{det(sE−A)=0}

|λ| .

Lemma 6.2.1. [63] If there exist nonsingular matrices Q̃i, P̃i ∈ RN×N such that one of

the following conditions is satisfied, then system (6.33) has a unique solution.

(i)

Q̃iEiP̃i =

Ir 0

0 N

 , Q̃iAiP̃i =

A1i 0

0 IN−r

 , Q̃iCiP̃i =

C1i C2i

0 0

 , (6.34)

where N ∈ R(N−r)×(N−r) is a nilpotent matrix, Ir ∈ Rr×r and IN−r ∈ R(N−r)×(N−r)

identity matrices, A1i, C1i ∈ Rr×r, and C2i ∈ Rr×(N−r).
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(ii)

Q̃iEiP̃i =

Ir 0

0 0

 , Q̃iAiP̃i =

A1i 0

0 IN−r

 , Q̃iCiP̃i =

C1i C2i

0 C3i

 , (6.35)

where Ir ∈ Rr×r and IN−r ∈ R(N−r)×(N−r) identity matrices, A1i, C1i ∈ Rr×r, C2i ∈

Rr×(N−r), and C3i ∈ R(N−r)×(N−r).

When the regularity of system Ex(n + 1) = Ax(n) is not known, it is always possible to

choose two nonsingular matrices Q̃ and P̃ such that

Q̃EP̃ =

I 0

0 0

 , Q̃AP̃ =

A1 A2

A3 A4

 .
Lemma 6.2.2. [62] The pair (E,A) is casual if and only if A4 is nonsingular.

Remark 6.2.1. In discrete singular systems, impulse freeness is called as casual.

6.2.2 Stability Result

This subsection deals with establishing the mean square admissibility of (6.33) using LMIs

together with ADT approach.

Theorem 6.2.1. The stochastic singular system in (6.33) is mean square admissible if

(i) there exists a matrix Xi = XT
i such that

ET
i XiEi ≥ 0, (6.36)

ATi XiAi − ET
i XiEi + CT

i XiCi < 0, (6.37)

(ii) condition rank(Ei, Ci) = rank(Ei) holds,
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(iii) for any n0, the switching law satisfies the ADT condition

N(t, t0) ≤ N0 +
t− t0
Ta

,

where the chatter bound N0 = 0, and average dwell time Ta > − lnµ
lnα

.

Proof. Suppose that there exists a matrix Xi = XT
i such that (6.36) and (6.37) hold.

We first show that system (6.33) is regular and causal. To do this end, we choose two

nonsingular matrices Q̃i and P̃i such that

Q̃iEiP̃i =

I 0

0 0

 , Q̃iAiP̃i =

A1i A2i

A3i A4i

 . (6.38)

Under the condition rank(Ei, Ci) = rank(Ei),

Q̃iCiP̃i =

C1i C2i

0 0

 (6.39)

where the partitions of Q̃iAiP̃i and Q̃iCiP̃i are compatible with that of Q̃iEiP̃i.

Let

Q̃−Ti XiQ̃
−1
i =

X1i X2i

XT
2i X3i

 . (6.40)

Pre- and post-multiplying (6.36) by P̃ T
i and P̃i, respectively, givesX1i 0

0 0

 ≥ 0, (6.41)

which implies X1i ≥ 0 by Schur complement.

Similarly, pre- and post-multiplying (6.37) by P̃ T
i and P̃i, respectively, we deriveW1i W2i

W T
2i W3i

 < 0, (6.42)
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where

W1i = AT1iX1iA1i + AT3iX
T
2iA1i + AT1iX2iA3i + AT3iX3iA3i −X1i + CT

1iX1iC1i,

W2i = AT1iX1iA2i + AT3iX
T
2iA2i + AT1iX2iA4i + AT3iX3iA4i + CT

1iX1iC2i,

W3i = AT2iX1iA2i + AT4iX
T
2iA2i + AT2iX2iA4i + AT4iX3iA4i + CT

2iX1iC2i.

The inequality (6.42) implies W3i < 0. Since X1i ≥ 0, we have

AT2iX1iA2i + CT
2iX1iC2i ≥ 0.

Therefore, from W3i we have

AT4iX
T
2iA2i + AT2iX2iA4i + AT4iX3iA4i < 0. (6.43)

From (6.43), it follows that A4i is nonsingular. Therefore, subsystems in (6.33) are casual

by Lemma 6.2.2.

On the other hand, to show regularity of each subsystem in (6.33), we need to show

det(sEi − Ai) 6= 0, so

det(sEi − Ai) = det(sQ̃iEiP̃i − Q̃iAiP̃i)

= det

sI − A1i −A2i

−A3i −A4i


= det(−A4i) det(sI − (A1i − A2iA

−1
4i A3i).

Since A4i is nonsingular, det(−A4i) 6= 0. We also can find an s ∈ C such that det(sI −

(A1i − A2iA
−1
4i A3i) 6= 0. Therefore, we proved the regularity of system (6.33).

Let

P̂i = P̃i

 I 0

−A−1
4i A3i A−1

4i

 , (6.44)
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so we derive

Q̃iEiP̂i =

I 0

0 0

 , (6.45)

Q̃iAiP̂i =

A1i − A2iA
−1
4i A3i A2iA

−1
4i

0 I

 , (6.46)

Q̃iCiP̂i =

C1i − C2iA
−1
4i A3i C2iA

−1
4i

0 0

 . (6.47)

It is shown that (6.45)-(6.47) satisfy Lemma 6.2.1-(ii) under assumption rank(Ei, Ci) =

rank(Ei), so system (6.33) has a unique solution under the consistent initial condition and

is casual.

Now, we need to prove that system (6.33) is mean square asymptotically stable. Let

P̂−1
i x(n) =

x1(n)

x2(n)

 ,
where x1(n) ∈ Rr, x2 ∈ Rn−r, then system (6.33) is equivalent to

x1(n+ 1) = Ã1ix1(n) + C̃1ix1(n)W (n), (6.48)

x2(n) = 0, (6.49)

with Ã1i = A1i − A2iA
−1
4i A3i, and C̃1i = C1i − C2iA

−1
4i A3i.

Substituting (6.45)-(6.47) and (6.40) into (6.37), we obtain

ÃT1iX1iÃ1i −X1i + C̃T
1iX1iC̃1i < 0, (6.50)
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which implies together with (6.41) X1i > 0.

Define Lyapunov candidate function

Vi(x(n)) = xT (n)ET
i XiEix(n) = xT1 (n)X1ix1(n) > 0. (6.51)

Therefore, one can obtain

E {Vi(x1(n+ 1))} − Vi(x1(n)) = xT1 (n)
[
ÃT1iX1iÃ1i −X1i

]
x1(n).

Since X1i > 0, by (6.50)

E {Vi(x1(n+ 1))} − Vi(x1(n)) = xT1 (n)
[
ÃT1iX1iÃ1i −X1i

]
x1(n) < 0.

Thus, there exists a positive constant δi such that

E {Vi(x1(n+ 1))} − Vi(x1(n)) < −δi ‖x1(n)‖2 . (6.52)

Also, by Lyapunov candidate function we have

λmin (X1i) ‖x1(n)‖2 ≤ Vi(x1(n)) ≤ λmax (X1i) ‖x1(n)‖2

Using this and (6.52) gives

E {Vi(x1(n+ 1))} − Vi(x1(n)) < −δi ‖x1(n)‖2 ≤ − δi
λmax (X1i)

Vi(x1(n))

⇒ E {Vi(x1(n+ 1))} ≤ αiVi(x1(n))

where αi =

(
1− δi

λmax (X1i)

)
and 0 < αi < 1.

For n ∈ [n0, n1), by iteration, one may obtain

E {Vi1(x1(n))} ≤ αn−n0
i1

Vi1(x1(n0)). (6.53)
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Similarly, for n ∈ [n1, n2)

E {Vi2(x1(n))} ≤ αn−n1
i2

Vi2(x1(n1)). (6.54)

On the other hand, from (6.51), we have for any i, j ∈ Ξ

Vj(x1(t)) ≤ µVi(x1(t)), (6.55)

where µ =
max{λmax(X1j)}
min{λmin(X1j)}

.

Therefore, inequality (6.54) becomes

E {Vi2(x1(n))} ≤ µαn−n1
i2

αn1−n0
i1

Vi1(x1(n0)). (6.56)

Generally, one may obtain for n ∈ [nk−1, nk)

E {Vik(x1(n))} ≤ µ(k−1)α
n−nk−1

ik
α
nk−1−nk−2

ik−1
. . . αn1−n0

i1
Vi1(x1(n0)). (6.57)

Let α = maxj=1,2,...,k{αij}, so

E {Vik(x1(n))} ≤ µ(k−1)αn−n0Vi1(x1(n0))

= α(k−1) lnµ
lnαα(n−n0)Vi1(x1(n0))

= α
(n−n0)

[
(k−1) lnµ
(n−n0) lnα

+1

]
Vi1(x1(n0)). (6.58)

For simplicity, choose the chatter bound N0 = 0 in ADT condition. Therefore, from

inequality (6.58), we obtain

E {Vik(x1(n))} ≤
(
α

lnµ
Ta lnα

+1
)(n−n0)

Vi1(x1(n0))

= αρ(n−n0)Vi1(x1(n0)) (6.59)
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where ρ = lnµ
Ta lnα

+ 1, and Ta > − lnµ
lnα

.

Thus,

E
{
‖x1(n)‖2} ≤ µαρ(n−n0) ‖x1(n0)‖2 (6.60)

Taking the limit on (6.60) as n→∞, we have

lim
n→∞

E
{
‖x1(n)‖2} = 0.

This together with (6.49) implies system (6.33) is asymptotically stable in the mean square.

We already proved the regularity and causality of the system (6.33). Therefore, system

(6.33) is mean square admissible.

Example 6.2.1. Consider system (6.33) with where x =

x1(t)

x2(t)

, σ(t) ∈ Ξ = {1, 2},

E1 = E2 =

1 0

0 0

 , A1 =

−0.2 0.1

0.3 0.2

 , A2 =

−0.5 0.4

0.6 0.5

 ,

C1 = C2 =

0.3 0.2

0 0

 ,
and initial condition x(0) = [−1 1.5]T .

The solution of LMIs (6.36)-(6.37) is obtained as follows:

X1 =

 1 −2

−2 −1


X2 =

 67.7778 −55.0113

−55.0113 29.7959
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Figure 6.2: Mean of ‖x(t)‖

which are symmetric matrices. Therefore, there exist positive constants δ1 = 3 and δ2 = 236

such that inequality (6.52) holds, so we calculate α1 = 0.5702, α2 = 0.4503, µ = 61.5094

and α = max{α1, α2} = 0.5702. As a result, ADT is Ta > 7.3321. The system is

illustrated in Figure 6.2.
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Chapter 7

Conclusions and Future Research

In this chapter, the possible future research directions are discussed.

7.1 Lyapunov-Razumikhin Technique

In Chapter 3, the stability problem for continuous and discrete impulsive switched sin-

gular systems with time delay has been addressed. The stability conditions have been

investigated by Halanay inequalities. However, the Lyapunov functional method and the

Lyapunov-Razumikhin technique are two commonly used approaches to establish sufficient

conditions for stability of delay systems. For many delay systems, Razumikhin technique

appears to be easier to establish sufficient conditions for stability than to construct appro-

priate Lyapunov functionals. The Lyapunov functionals are quite complicated. Especially

for large-scale systems the construction of suitable Lyapunov functionals are challeng-

ing. Lyapunov-Razumikhin technique is based on Lyapunov functions whereas suitable

Lyapunov functional candidate, which is divided into two parts: a function part and a
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functional part, are constructed in Lyapunov functional method. When dealing with im-

pulsive stabilization, the value of the function part can be effectively brought down by the

impulse while the impulse cannot change value of the functional part at each impulsive

instant. Thus, Razumikhin technique is worthwhile to investigate the stability of delay

systems. Future work can be done to study stability theory of impulse switched singular

systems with time-delay by using Razumikhin technique.

7.2 Invariance Principle

In 1960’s, the classical invariance principle was constructed to be a powerful tool for the

stability analysis of autonomous ordinary differential equations by LaSalle. Moreover,

numerous extensions of the original invariance principle were derived for various differen-

tial systems such as invariance principles for impulsive systems, invariance principles for

impulsive switched systems, and invariance principles for switched delay systems.

Invariance principles were developed for singular systems with jumps and switched

singular systems under arbitrary and dwell-time switching signals in [64] and [65], respec-

tively. Although the invariance principle is already studied for impulsive singular systems

in [66] and switched singular systems in [67], the idea of invariance principles for impulsive

switched singular with and without time-delay systems has not yet been addressed and

explored in the literature. Thus, future work can be done to fill this gap by extending

La’Salle’s invariance principles to such systems.
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7.3 Comparison Principle

In Chapter 6, we have studied the stability analysis for stochastic switched singular sys-

tems which is one of the most important research topic in stochastic systems, as well. In

our investigation, we have used LMIs to obtain the sufficient conditions for mean square

admissibility of the system. However, different from the traditional Lyapunov stability

theory, people use mostly the comparison principle to obtain some stability criteria of a

stochastic system.

In classic stability analysis, we compute an upper bound on the norm of the solution x(t)

of the equation ẋ = f(t, x) without computing the solution. The comparison principle is

one of the tools to obtain that boundary. The comparison principle compares the solution

of the differential inequality v̇ ≤ f(t, v(t)) with the solution of the differential equation

u̇ = f(t, u). The comparison lemma is given as follows in [68]:

Lemma 7.3.1. (Comparison Lemma) Consider the scalar differential equation

u̇ = f(t, u), u(t0) = u0,

where f(t, u) is continuous in t and locally Lipschitz in u for all t ≥ 0 and all u ∈ J ⊂ R.

Let [t0, T ) be a maximal interval of existence of the solution u(t), and suppose that u(t) ∈ J

for all t ∈ [t0, T ). Let v(t) be a continuous and differentiable in t whose derivative v̇ satisfies

the differential inequality

v̇ ≤ f(t, v(t)), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).

Because of comparison principles, the stability properties of a stochastic system can

be derived by the corresponding stability properties of a deterministic system. For in-
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stance, some stability results for switched singular systems in the literature can be used to

investigate the stability properties of stochastic switched singular systems.
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