
User-Controlled Computations in
Untrusted Computing Environments

by

Dhinakaran Vinayagamurthy

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science (Quantum Information)

Waterloo, Ontario, Canada, 2019

c© Dhinakaran Vinayagamurthy 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Prof. David Evans
Professor, Department of Computer Science, University of Virginia.

Supervisor(s): Prof. Sergey Gorbunov
Assistant Professor, David R. Cheriton School of Computer Science.
Prof. David Jao
Associate Professor, Department of Combinatorics and Optimization.

Internal Members: Prof. Florian Kerschbaum
Associate Professor, David R. Cheriton School of Computer Science.
Prof. Michele Mosca
Professor, Department of Combinatorics and Optimization.

Internal-External Member: Prof. Douglas Stebila
Associate Professor, Department of Combinatorics and Optimization.

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Computing infrastructures are challenging and expensive to maintain. This led to the
growth of cloud computing with users renting computing resources from centralized cloud
providers. There is also a recent promise in providing decentralized computing resources
from many participating users across the world. The compute on your own server model
hence is no longer prominent. But, traditional computer architectures, which were designed
to give a complete power to the owner of the computing infrastructure, continue to be used
in deploying these new paradigms. This forces users to completely trust the infrastructure
provider on all their data. The cryptography and security community research two different
ways to tackle this problem. The first line of research involves developing powerful
cryptographic constructs with formal security guarantees. The primitive of functional
encryption (FE) formalizes the solutions where the clients do not interact with the sever
during the computation. FE enables a user to provide computation-specific secret keys
which the server can use to perform the user specified computations (and only those) on her
encrypted data. The second line of research involves designing new hardware architectures
which remove the infrastructure owner from the trust base. The solutions here tend to
have better performance but their security guarantees are not well understood. This thesis
provides contributions along both lines of research. In particular,

• We develop a (single-key) functional encryption construction where the size of secret
keys do not grow with the size of descriptions of the computations, while also
providing a tighter security reduction to the underlying computational assumption.
This construction supports the computation class of branching programs. Previous
works for this computation class achieved either short keys or tighter security
reductions but not both.

• We formally model the primitive of trusted hardware inspired by Intel’s Software
Guard eXtensions (SGX). We then construct an FE scheme in a strong security
model using this trusted hardware primitive. We implement this construction in our
system Iron and evaluate its performance. Previously, the constructions in this model
relied on heavy cryptographic tools and were not practical.

• We design an encrypted database system StealthDB that provides complete SQL
support. StealthDB is built on top of Intel SGX and designed with the usability
and security limitations of SGX in mind. The StealthDB implementation on top
of Postgres achieves practical performance (30% overhead over plaintext evaluation)
with strong leakage profile against adversaries who get snapshot access to the memory

iv

of the system. It achieves a more gradual degradation in security against persistent
adversaries than the prior designs that aimed at practical performance and complete
SQL support.

We finally survey the research on providing security against quantum adversaries to the
building blocks of SGX.

v

Acknowledgements

The years of grad school has provided me a great learning experience with some highs and
lows. A lot of people have helped me during this journey and this is an opportunity for
me to consolidate my gratitude.

The one with the greatest impact is Sergey Gorbunov. From providing advice on having
a healthy life as a graduate student during my masters years, to shaping my research
direction in PhD based on my long-term career goals. An input from him that I am happy
to have developed (I hope) is the importance of having the big picture of the research area
in mind, and with this, trying to fit whatever I read into the big picture. I had always
admired researchers with a good breadth in their expertise and hoped to be one myself.
His contempt towards saying something is “outside one’s expertise” and his insistence on
“learning as you need” has helped me take a small step in obtaining the breadth. Thanks
for everything, Sergey! I wish I were a faster learner during these years so that I could
have obtained a better depth in these topics and made more out of the interactions with
him.

The primary reason for my smooth PhD journey in Waterloo is David Jao. Despite his
research interests being quite different from what I worked on, David had been gracious
enough to completely fund my PhD and sometimes slightly bend the rules in funding to let
me follow my research interests without any restrictions. He has always been available for
any questions or concerns I had. I also thank David for all the help during my job search.
Many thanks to Michele Mosca for providing a complete research freedom while financially
supporting me, along with David, and for all the advice whenever I ask for one. I hope I
have delivered enough for the high expectations David and Mike have on me.

It is always fun to work with Alexey Gribov. Thanks Alex for the collaboration during
StealthDB and for leading the development part of it! Thanks to Ben Fisch and Dan
Boneh for bringing in their version of the FE-HW model and results, and for the great
discussions during the merge which created Iron.

Thanks to Florian Kerschbaum for his comments on StealthDB and the great advice
regarding working in industry research. Thanks to Douglas Stebila for providing a detailed
feedback on my thesis and to David Evans for reading my thesis and participating in my
defense.

The CrySP group has a great culture and every CrySPer has the opportunity to
grow towards being a complete crypto, security and privacy researcher. Thanks to Ian
Goldberg for setting up and providing a great environment for CrySPers. Thanks guys
for the reading groups and all the feedback on my research and talks. Many thanks

vi

to my officemate Sainath for all the great conversations and discussions. His curiosity in
science and technology meant that, providing a little background, I can have deep technical
discussions on my research and sometimes also get suggestions from him, despite him being
an experimental physicist. Thanks to Filip and Alex Norton for all the interesting crypto
discussions. Thanks to Goutam for making StealthDB much better to work with.

During my gradschool, I had two great internships at Microsoft Research. Thanks to
Nishanth Chandran for hosting me in Bangalore, and Kapil Vaswani in Cambridge. Thanks
to Nishanth also for all the help during job search.

Thanks to the great Charlie Rackoff for advising me during my PhD time in Toronto,
for asking me to question more before I agree on any statement, and to take more care on
the precision of definitions. Long before that, thanks to C. Pandu Rangan, Sharmila Deva
Selvi and Sree Vivek for introducing me to the field of cryptography and research, and to
Vinod Vaikuntanathan for increasing my crypto knowledge manifold.

After recovering from some tough moments towards the end of my masters, the great
group of friends at Waterloo and Toronto ensured a fun-filled PhD life. Thanks to Sharat,
Cedric and recently Abhinav (at Waterloo) and Jai, Subbu and Bharathwaj (at Toronto)
for being great housemates and for tolerating the high variance in the taste of the food
that I cook. The long discussions with Sharat on any news or topic of interest/curiosity
are always fun and informative. I owe a lot to Cedric for getting me into running and for
converting me from someone who rarely runs to a decent paced long distance runner (in 5
months). Thanks also to Jonathan, Karthik and Jimmy for all the conversations during the
long runs. Thanks to Cedric also for always being available and attentive for a practice talk
at home before any talk of mine. The weekly Friday late evening gathering with my house
mates and Hemant, Jimit, Priya, Anirudh, Retnika, Archana, Akshay, Varuna, Paolos and
Mali (sorted by frequency of attendance!) is always full of fun conversations. Many times
I felt that I had enough fun for the week during those hours that I don’t need more of the
weekend. Thanks guys! Squash is one of the things that helped me have fun even during
tough moments. The weekly few hours of squash is something I always look forward to.
Thanks Hemant, Abhinav, Jimit, Akshay and Cedric (in Waterloo), and David, Mika,
Norman, Sergey and Venkatesh (in Toronto) for enabling this. Out of context, thanks to
Hemant also for helping with some details of Postgres during StealthDB and to Anirudh
for all the discussion and ongoing collaboration that is not part of this thesis. Thanks to
Arumani for checking on me once in a while from India!

Above all, I cannot thank enough my parents Jothimani and Vinayagamurthy and my
grandparents for their incomparable love and support. Their faith in my abilities and their
endless encouragement are crucial over the years in whatever I have accomplished.

vii

Dedication

To my parents, Jothimani and Vinayagamurthy.

viii

Table of Contents

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Cryptographic solutions . 2

1.2 Trusted hardware based solutions . 4

2 Controlled computations from Lattice-based Cryptography 7

2.1 Lattice-based cryptography . 7

2.2 Attribute-based encryption . 8

2.2.1 Our Results . 9

2.2.2 Applications . 12

2.2.3 Other Related Work . 12

2.2.4 Extensions . 13

2.2.5 Organization of this chapter . 13

2.3 Preliminaries . 13

2.3.1 Lattice Preliminaries . 14

2.3.2 Attribute-Based Encryption definition 16

2.3.3 Branching Programs . 17

2.4 Our Evaluation Algorithms . 18

ix

2.4.1 Basic Homomorphic Operations . 18

2.4.2 Our Public Key Evaluation Algorithm 21

2.4.3 Our Encoding Evaluation Algorithm 22

2.4.4 Our Simulated Public Key Evaluation Algorithm 24

2.5 Our Attribute-Based Encryption . 26

2.5.1 Correctness . 29

2.5.2 Security Proof . 29

2.6 Parameter Selection . 34

2.7 Single-key Functional Encryption with short secret keys 36

2.7.1 Definitions . 36

2.7.2 Construction . 38

2.8 Conclusion and next steps . 39

3 A Formal Introduction to SGX 41

3.1 Intel SGX Background . 41

3.1.1 Isolation. 42

3.1.2 Sealing. 42

3.1.3 SGX Attestation . 42

3.1.4 SGX TCB. 43

3.1.5 SGX side-channel attacks and defenses 44

3.2 Formal Models and Definitions . 45

3.2.1 Formal HW model . 45

3.3 HW correctness and security definitions . 48

3.3.1 Local attestation unforgeability . 48

3.3.2 Remote attestation unforgeability 49

3.4 Differences between HW and Intel SGX . 51

x

4 Functional Encryption from SGX 53

4.1 The need for practical solutions for Functional Encryption 53

4.2 Our contributions . 54

4.2.1 Construction overview . 55

4.3 Related Work . 56

4.4 System Design . 57

4.4.1 Architecture overview . 57

4.4.2 FE Protocols . 60

4.5 Implementation and evaluation . 62

4.5.1 Implemented ECALLS . 63

4.5.2 Performance evaluation . 65

4.6 Formalization of Iron . 68

4.6.1 Formal definition of Functional Encryption 68

4.6.2 Crypto primitive definitions . 71

4.6.3 FE Formal construction . 74

4.7 Security . 78

4.7.1 Security proof . 79

4.8 FE construction in the stronger security model 87

4.8.1 Security overview . 90

4.9 Extensions and Future Work . 92

5 StealthDB: A Scalable Encrypted Database on SGX 94

5.1 Introduction . 94

5.1.1 Our contributions . 96

5.2 Intel SGX . 98

5.3 Platform Overview . 98

5.3.1 Usage Model. 98

5.3.2 Threat Model . 99

xi

5.4 Designing an Encrypted DB . 99

5.4.1 Design Goals . 99

5.4.2 Designing an Encrypted DB from SGX 101

5.5 Architecture . 104

5.5.1 Database creation . 104

5.5.2 DBMS Initialization . 105

5.5.3 Client authentication . 107

5.5.4 Query execution . 108

5.5.5 Encrypting indexes . 110

5.5.6 Extensions . 111

5.6 Security . 111

5.6.1 Leakage profile . 112

5.6.2 Security of K during StealthDB execution 116

5.7 Concrete leakage profiles . 118

5.8 Implementation and Performance . 119

5.8.1 Implementation details . 119

5.8.2 Performance evaluation . 120

5.9 Related Work . 121

5.10 Conclusion . 123

6 Quantum resistance of SGX 125

6.1 Introduction . 125

6.2 Cryptography used by SGX core . 126

6.3 Enhanced Privacy ID (EPID) . 126

6.3.1 Definition . 127

6.3.2 Construction based on one-way functions 129

6.3.3 Construction based on lattices . 132

6.3.4 Quantum security . 133

xii

6.4 AES and MAC . 134

6.5 Cryptography for applications in SGX . 134

6.6 Conclusion . 135

7 The path ahead 136

7.1 Cryptographic constructions . 136

7.2 FE from trusted hardware . 137

7.3 Encrypted databases using trusted hardware supporting complete SQL . . 138

References 140

xiii

List of Tables

5.1 Latency statistics of TPC-C requests, ms 121

6.1 Post-quantum EPID and EPID-like schemes. 133

xiv

List of Figures

4.1 Iron Architecture and Protocol Flow . 59

4.2 FE.Setup and FE.Keygen run time. 66

4.3 Breakdown of FE.Decrypt run times for each of our SGX-FE implementations
of IBE, ORE, and 3DNF. 66

4.4 Comparison of decryption times and ciphertext sizes for the SGX-FE
implementation of IBE, ORE, 3DNF to cryptographic implementations. . . 67

4.5 Comparison of time for decrypting 103 ciphertext tuples using the SGX-
FE implementation of IBE, ORE, 3DNF vs cryptographic implementations
from pairings and mmaps respectively. 68

4.6 QKME . 75

4.7 QDE . 77

4.8 QFE(P) . 78

4.9 QKME II . 89

4.10 QDE II . 90

5.1 High-level architecture overview of StealthDB 97

5.2 Three alternative design choices for an encrypted database with SGX. . . . 101

5.3 Initialization time comparing in memory and in enclave deserialization for
different dataset sizes. 102

5.4 Latency to execute random binary tree searches comparing different ap-
proaches. 103

5.5 StealthDB architecture. 104

xv

5.6 Definition of enc int4 . 105

5.7 Create table . 105

5.8 The authentication protocol of StealthDB 106

5.9 Operator = for enc int4. Here, enc int4 eq will call the Ops enclave to
decrypt the input, check their equality and output the result. 109

5.10 Security definition for an encrypted database system using trusted hardware. 113

5.11 Example of a new function definition in stealthdb.sql 119

5.12 Example of new defined function implementation in stealthdb.c 119

5.13 TPC-C benchmarking throughput for running under Postgres and StealthDB
with different scale factors . 121

5.14 Average latency and standard deviation for TPC-C requests under Postgres
and StealthDB. 122

7.1 Summary of designs in this thesis. 137

xvi

Chapter 1

Introduction

Traditionally, users stored and processed their data either in their personal computers
or in the computers and servers owned by the organizations they hired to manage their
data. Hence, the traditional architectures of computers were designed to give a complete
authority to the owners of the system to manage their system. A system administrator
has the full power to monitor and control the programs and the associated data with the
help of the operating system and the hypervisor. Security tools were developed to make
use of the monitoring to assist the admin in improving the security of the system.

Over the last decade, computing paradigms have shifted from owning and using personal
computers or server machines to pay-per-use remote rented computing environments. This
shift started with the success of cloud computing with the cloud providers renting out
computing resources of varying capabilities, adaptively as required, with various software
packages installed and ready-to-use. With the emergence of decentralized computing
environments a.k.a. blockchains, user’s computing can be done by any set of participating
users around the world. A shift further away from using owned computing resources. The
consequence of all these:

User data no longer remains in its owner’s computers.

Traditional computer architectures continue to be used though. Infrastructure providers
like the cloud providers are completely trusted to not (mis)use user data. In addition to
trusting providers to handle entrusted data in a secure way, there is a need for trust that
the data is protected and isolated from other potentially malicious users who are sharing

1

the provided resources. Given this scenario, protecting users’ data is an essential problem
in these potentially untrusted computing environments.

Digital data exists in one of the following three states: at-rest, in-transit and in-use.
There are different ways of defining what it means for data to be in a particular state,
depending on how much we zoom in to the computing architecture. But at a high level,
data-at-rest refers to the data that is in a storage location and not being processed, data-
in-transit refers to the data that is being transferred between two entities, and data-in-use
refers to the data that is being processed to get some useful information. The advancements
in cryptography and security have led to good solutions for securing data-in-transit (e.g.
TLS) and data-at-rest (e.g. AES). But the security of data-in-use is a more nuanced and
challenging problem. A user should be able to provide controlled access of her data to the
computing infrastructure such that even a malicious administrator of the infrastructure
cannot learn any information about her data when processing her request. And the user
can be guaranteed that the obtained result corresponds to the requested computation.
What is an ideal situation that we could strive to achieve here?

An infrastructure provider should act just as a dumb infrastructure provider
renting out resources like networking, storage, memory and computing power,
and be completely oblivious to how the user uses these resources. And this is
enforced.

There are other desirable properties for users. For example, if a user outsourced a
computation, allowing the user to be offline while the computation is executed remotely
is beneficial. There are two major lines of research that tackle this problem that are
introduced in the following sections.

1.1 Cryptographic solutions

One line of work involves designing cryptographic techniques for controlled computations
with strong formal security guarantees. The notion of functional encryption formally
studies this problem. Cryptography for securing cloud computation has also been studied
under notions like fully homomorphic encryption [95] and secure multi-party computation
[210, 100], but they typically expect the client to be online to perform or complete
the computation. A Functional Encryption (FE) scheme lets an user encrypt her data
under a master key1 and provide the encrypted data to the cloud provider. Later,

1A user can generate as many master keys as needed to encrypt different datasets.

2

whenever she wants the cloud provider to perform a computation on her data she can
derive computation-specific secret keys which when provided enable the cloud provider to
perform those computations. The computation secret keys are independent of the data
and can be used to compute on any data encrypted with a specific master key using
which the computation secret keys are derived. The security of functional encryption
ensures that the cloud provider learns no information about the user’s data other than
the result of the computations requested by the user. There exist reasonably efficient
solutions (upto an order of magnitude overhead over unencrypted computations) for very
specific computations like inner-products [3, 8]. But extremely high performance overheads
are incurred when the solution is general and not restricted to these specific class of
computations [147]. Previous works also have large sizes for the computation-specific
secret key. In particular, their size grew either polynomially with the size of the circuit
[107] or rely on stronger security assumptions [42].

Single-key functional encryption for branching programs

The first result in this thesis works on reducing the key size while relying on weaker
security assumptions for the computation class of polynomial length branching programs
[30]. The construction is based on the Learning With Errors (LWE) assumption [95] whose
average-case hardness is based on the worst-case hardness of well-studied computational
problems in lattices. These problems are also believed to be hard for quantum computers
to solve. The modulus of the group or the ring used in the construction determine the
approximation factors for the underlying lattice problems during the security reduction of
the LWE assumption to those lattice problems. Hence, the modulus influences the security
of the construction. We obtain a (single-key) functional encryption scheme with short keys
and small modulus (and hence polynomial approximation factors).

Theorem 1.1.1. (informal) There exists a single-key secure functional encryption scheme
for a family of length-L branching programs P with small secret keys based on the security
of the Learning With Errors assumption with polynomial approximation factors for the
lattice problems. We have |skP | = |P | + poly(λ, logL) and the modulus q = poly(λ, L),
where λ is the security parameter.

The single-key condition means that secret key for only one program can be provided per
colluding set of adversaries. But this secret key can be used to compute on any number
of datasets encrypted with the same master key. The computation class of polynomial
length branching programs is equivalent to the computation class NC1 which includes the

3

computations that can represented as boolean circuits of depth logarithmic in the input
size [30]. Prior work based on standard cryptographic assumptions either required keys
proportional to the size of the program or have super-polynomial approximation factors.

The core of our result is an attribute-based encryption (ABE) scheme [189, 113] for
the same family of length-L branching programs P with short secret keys and polynomial
approximation factors. Previous works for this computation class either had |skP | = |P | ·
poly(λ) [106, 107] or q = poly(λ, LlogL) [42]. In addition to security, a smaller modulus also
leads directly to efficiency improvements. ABE is interesting on its own with applications
to fine-grained access control [13, 150, 176]. ABE is also used for constructing the powerful
primitive of reusable garbled circuits [104]. This work is presented in Chapter 2.

1.2 Trusted hardware based solutions

The other line of research involves designing secure computing architectures that minimize
the trust assumptions on the owner and the administrator of the computing infrastructure
through enforced isolation along with (basic) encryption and integrity protection. This
line of research over the last decade has resulted in solutions from both academia
[152, 199, 200, 65, 88, 156, 76] and industry [15, 115, 128, 158] with varying trust
assumptions and security guarantees. The recent academic proposals [76] achieve strong
security guarantees. And there has been an ongoing effort on developing an open-source
full stack implementation building on [76]. Currently, Intel’s Software Guard eXtensions
(SGX) [158] is the only industry solution that has been aimed at providing a strong isolation
against the administrator of the computer, and that has been extensively studied. In SGX,
the processor is trusted and the memory regions used by different programs are encrypted
with different keys derived from a master key that resides in the processor embedded during
the manufacturing phase. This way, the hypervisor and the operating systems in the cloud
computer need not be trusted by a remote user using the computer when she trusts the
hardware manufacturer and the correctness of the trusted hardware design.

Iron: Functional encryption from trusted hardware

The second contribution of this thesis is a formal modeling of the trusted hardware
primitives like SGX and a provably secure construction of functional encryption from our
primitive of trusted hardware. Our construction of FE satisfies a simulation-based security
model which is a strong version of security for FE. Previous works on the construction of

4

FE utilizing trusted hardware used simulatable hardware “tokens” which do not model a
practical trusted hardware architecture [72].2

Theorem 1.2.1. (informal) There exists a simulation-secure functional encryption scheme
assuming a trusted hardware scheme, secure signature scheme and a secure public key
encryption scheme.

We build our FE system Iron and evaluate its performance instantiating the trusted
hardware primitive with SGX. This work is presented in Chapters 3 and 4 with Chapter
3 explaining the modeling of trusted hardware and Chapter 4 presenting our construction
of FE.

Our construction in Iron though assumes an ideal behavior of the trusted hardware
that a program running inside the trusted region does not leak any information. In practice,
SGX has been found to incur some security and usability limitations. There are many
side-channels [75, 208, 207, 56] found in the SGX implementation which reveal significant
information about the data being processed when care is not taken. Also, there is a sharp
degradation in performance [174] as the size of the trusted memory region used grows
above 128 MB. A significant portion of this performance bottleneck is due to Merkle-tree
management for providing integrity and this seems to be inherent in SGX-style trusted
hardware architectures.

StealthDB: A scalable and complete encrypted database system

The next result in this thesis designs an encrypted transactional database system StealthDB
built on top of SGX that scales to large datasets. The design of StealthDB is aimed at
providing practical performance and minimal changes to the database system to which
security properties are augmented. StealthDB provides a strong leakage profile against
semi-honest attackers who get a snapshot access to memory and a graceful degradation of
security against attackers with a persistent access. The evaluation of our design built on
Postgres shows that:

StealthDB can process transactional (OLTP) queries with a 30% reduction in
throughput and ≈ 1 ms overhead in latency over an unencrypted DBMS with
> 10M total rows (or 2 GB plaintext) of a standard benchmarking (TPC-C
warehouse) database for scale factor W = 16.

StealthDB is presented in Chapter 5.

2In [72], hardware tokens need to be transmitted as the computation secret keys to the computing
infrastructure. More details in Chapter 4.

5

Quantum resistance of SGX

Cryptographic primitives like symmetric-key encryption, hash functions and a variant of
group signatures [54] assume key roles in the security of SGX. The advent of quantum
computers requires strengthening of these cryptographic primitives. The group signature
scheme [54] relies on Diffie-Hellman like assumptions which can be broken easily by
quantum algorithms [196]. The current designs of block ciphers and hash functions
admit no special structure to be heavily exploited by quantum computers better than
the quadratic speedup of [116]. But the symmetric primitives built on top of them do
need careful analysis for quantum security and sometimes require stronger assumptions
and modifications for quantum security. Chapter 6 of this thesis surveys the work on the
quantum resistance of the cryptography used in SGX and presents some open research
questions to be solved in this space pertaining to the applications in trusted hardware.

6

Chapter 2

Controlled computations from
Lattice-based Cryptography

2.1 Lattice-based cryptography

Lattice-based cryptography has its origins in the seminal work of Ajtai [9] who constructed
one-way functions based on the Short Integer Solutions (SIS) problem and proved that
solving the SIS problem “on average” i.e. for a randomly chosen sample is at least as hard as
finding approximate solutions to the “worst-case” instance of a well-studied computational
problem on lattices. Constant or even sub-polynomial (no(1)) approximations to these
lattice problems are NP-hard [10, 161, 143, 125]. The cryptography constructions rely on
the hardness of these problems with polynomial approximations factors. Even though these
are not proved to be NP-hard, in fact not expected to NP-hard, no efficient algorithms are
known even with sub-exponential approximation factors.

Modern lattice-based cryptography started with another seminal work by Regev [186]
who introduced the problem of Learning With Errors (LWE) and proved a similar worst-
case to average-case reduction from the lattice problems. The LWE assumption has been
shown to be extremely powerful with it forming the base for the first instantiations of
powerful cryptographic constructions like fully-homomorphic encryption [95] and reusable-
garbled circuits [107, 104]. Constructions based on variants of LWE and SIS are also one of
the leading contenders in the NIST standardization process for quantum-safe key-exchange
and public-key signature schemes [171].

This chapter explains our construction of attribute-based encryption scheme from the
LWE assumption for the computation class of branching programs. Our construction

7

provides short keys and polynomial approximation factors in the security reductions from
the underlying lattice problems. This would in turn lead to constructions for single-key
functional encryption with similar security and efficiency guarantees [104].

2.2 Attribute-based encryption

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [189] in order to
realize the vision of fine-grained access control to encrypted data. Using ABE, a user can
encrypt a message µ with respect to a public attribute-vector x to obtain a ciphertext
ctx. Anyone holding a secret key skP , associated with an access policy P , can decrypt
the message µ if P (x) = 1. Moreover, the security notion guarantees that no collusion
of adversaries holding secret keys skP1 , . . . , skPt can learn anything about the message µ
if none of the individual keys allow to decrypt it. Until recently, candidate constructions
of ABE were limited to restricted classes of access policies that test for equality (IBE),
boolean formulas and inner-products: [73, 36, 113, 205, 149, 148, 5, 61, 6, 49].

In recent breakthroughs Gorbunov, Vaikuntanathan and Wee [107] and Garg, Gentry,
Halevi, Sahai and Waters [94] constructed ABE schemes for arbitrary boolean predicates.
The GVW construction is based on the LWE problem with sub-exponential approximation
factors, whereas GGHSW relies on hardness of a (currently) stronger assumption over the
multilinear map candidates [92, 74, 96]. But in both these ABE schemes, the size of the
secret keys had a multiplicative dependence on the size of the predicate: |P | · poly(λ, d)
(where d is the depth of the circuit representation of the predicate). In a subsequent work,
Boneh et al. [42] showed how to construct ABE for arithmetic predicates with short secret
keys: |P |+poly(λ, d), also assuming hardness of LWE with sub-exponential approximation
factors. However, in [107], the authors also showed an additional construction for a family
of branching programs under a milder and quantitatively better assumption: hardness of
LWE with polynomial approximation factors. Basing the security on LWE with polynomial
approximation factors results in two main advantages. First, the security of the resulting
construction relies on the hardness of a much milder LWE assumption. But moreover, the
resulting instantiation has better parameters – with a small modulus q – leading directly
to practical efficiency improvements.

In this work, we focus on constructing an ABE scheme under milder security
assumptions and better performance guarantees. We concentrate on ABE for a family
of branching programs which is sufficient for most existing applications such as medical
and multimedia data sharing [13, 150, 176].

8

First, we summarize the two most efficient results from learning with errors problem
translated to the setting of branching programs (via standard Barrington’s theorem [30]).
Let L be the length of a branching program P and let λ denote the security parameter.
Then,

• [107]: There exists an ABE scheme for length L branching programs with large
secret keys based on the security of LWE with polynomial approximation factors. In
particular, in the instantiation |skP | = |L| × poly(λ, logL) and q = poly(L, λ).

• [42]: There exists an ABE scheme for length L branching programs with small secret
keys based on the security of LWE with quasi-polynomial approximation factors. In
particular, |skP | = |L|+ poly(λ, logL), q = poly(λ)logL.

To advance the state of the art for both theoretical and practical reasons, the natural
question that arises is whether we can obtain the best of both worlds and:

Construct an ABE for branching programs with small secret keys based on
the security of LWE with polynomial approximation factors?

2.2.1 Our Results

We present a new efficient construction of ABE for branching programs from a mild LWE
assumption. Our result can be summarized in the following theorem.

Theorem 2.2.1 (informal). There exists a selectively-secure Attribute-Based Encryption
for a family of length-L branching programs with small secret keys based on the security
of LWE with polynomial approximation factors. More formally, the size of the secret key
skP is L+ poly(λ, logL) and modulo q = poly(L, λ), where λ is the security parameter.

Furthermore, we can extend our construction to support arbitrary length branching
programs by setting q to some small super-polynomial.

As an additional contribution, our techniques lead to a new efficient constructing of ho-
momorphic signatures for branching programs. In particular, Gorbunov et al. [109] showed
how to construct homomorphic signatures for circuits based on the simulation techniques of
Boneh et al. [42] in the context of ABE. Their resulting construction is secure based on the
short integer solution (SIS) problem with sub-exponential approximation factors (or quasi-
polynomial in the setting of branching programs). Analogously, our simulation algorithm
presented in Section 2.4.4 can be used directly to construct homomorphic signatures for
branching programs based on SIS with polynomial approximation factors.

9

Theorem 2.2.2 (informal). There exists a homomorphic signatures scheme for the family
of length-L branching programs based on the security of SIS with polynomial approximation
factors.

High Level Overview. The starting point of our ABE construction is the ABE scheme
for circuits with short secret keys by Boneh et al. [42]. At the heart of their construction
is a fully key-homomorphic encoding scheme.

It encodes a ∈ {0, 1} with respect to a public key A
$← Zn×mq in a “noisy” sample:

ψA,a = (A + a ·G)Ts + e

where s
$← Znq and G ∈ Zn×mq are fixed across all the encodings and e

$← χm (for some
noise distribution χ) is chosen independently every time. The authors show that one can
turn such a key-homomorphic encoding scheme, where homomorphism is satisfied over the
encoded values and over the public keys simultaneously, into an attribute based encryption
scheme for circuits.

Our first key observation is the asymmetric noise growth in their homomorphic
multiplication over the encodings. Consider ψ1, ψ2 to be the encodings of a1, a2 under
public keys A1,A2. To achieve multiplicative homomorphism, their first step is to achieve
homomorphism over a1 and a2 by computing

a1 · ψ2 = (a1 ·A2 + (a1a2) ·G)T s + a1e2 (2.1)

Now, since homomorphism over the public key matrices must also be satisfied in the
resulting encoding independently of a1, a2 we must replace a1 · A2 in Equation 2.1 with
operations over A1,A2 only. To do this, we can use the first encoding ψ1 = (A1 + a1 ·G)T+

e1 and replace a1 ·G with a1 · A2 as follows. First, compute Ã2 ∈ {0, 1}m×m such that

G · Ã2 = A2. (Finding such Ã2 is possible since the “trapdoor” of G is known publicly).
Then compute

(Ã2)T · ψ1 = ÃT

2 · ((A1 + a1 ·G)Ts + e1)

=
(
A1Ã2 + a1 ·GÃ2

)T

s + Ã2e1

=
(
A1Ã2 + a1 ·A2

)T

s + e′1 (2.2)

Subtracting Equation 2.2 from Equation 2.1, we get
(
−A1Ã2 + (a1a2) ·G

)T

s + e′ which

is an encoding of a1a2 under the public key A× := −A1Ã2. Thus,

ψA×,a× := a1 · ψ2 − ÃT

2 · ψ1

10

where a× := a1a2. Here, e′ remains small enough because Ã2 has small (binary) entries.

We observe that the new noise e′ = a1e2−Ã2e1 grows asymmetrically. That is, the poly(n)
multiplicative increase always occurs with respect to the first noise e1. Näıvely evaluating
k levels of multiplicative homomorphism results in a noise of magnitude poly(n)k. Can we
manage the noise growth by some careful design of the order of homomorphic operations?

To achieve this, comes our second idea: design evaluation algorithms for a “sequential”
representation of a matrix branching program to carefully manage the noise growth
following the Brakerski-Vaikuntanathan paradigm in the context of fully-homomorphic
encryption [51].

First, to generate a ciphertext with respect to an attribute vector x = (x1, . . . , x`) we
publish encodings of its individual bits:

ψi ≈ (Ai + xi ·G)T s

We also publish encoding of an initial start state 0:1

ψv0 ≈ (Av
0 + v0 ·G)T s

The message µ is encrypted under encoding uTs + e (where u is treated as the public key)
and during decryption the user should obtain a value ≈ uTs from {ψi}i∈[`], ψ

v
0 iff P (x) = 1.

Now, suppose the user wants to evaluate a branching program P on the attribute vector
x. Informally, the evaluation of a branching program proceeds in steps updating a special
state vector. The next state is determined by the current state and one of the input bits
(pertaining to this step). Viewing the sequential representation of the branching program
allows us to update the state using only a single multiplication and a few additions. Suppose
vt represents the state of the program P at step t and the user holds its corresponding
encoding ψvt (under some public key). To obtain ψvt+1 the user needs to use ψi (for some i
determined by the program). Leveraging on the asymmetry, the state can be updated by

multiplying ψi with the matrix Ãv
t corresponding to the encoding ψvt (and then following

a few simple addition steps). Since ψi always contains a “fresh” noise (which is never
increased as we progress evaluating the program), the noise in ψvt+1 increases from the
noise in ψvt only by a constant additive factor! As a result, after k steps in the evaluation
procedure the noise will be bounded by k · poly(n). Eventually, if P (x) = 1, the user will
learn ≈ uTs and be able to recover µ (we refer the reader to the main construction for
details).

1Technically, we need to publish encodings of 5 states, but we simplify the notation in the introduction
for conceptual clarify.

11

The main challenge in “riding on asymmetry” for attribute-based encryption is the
requirement for satisfying parallel homomorphic properties: we must design separate
homomorphic algorithms for operating over the public key matrices and over the encodings
that allow for correct decryption. First, we define and design an algorithm for public key
homomorphic operations that works specially for branching programs. Second, we design a
homomorphic algorithm that works over the encodings that preserves the homomorphism
over public key matrices and the bits2 and carefully manages the noise growth as illustrated
above. To prove the security, we need to argue that no collusion of users is able to
learn anything about the message given many secret keys for programs that do not allow
for decryption individually. We design a separate public-key simulation algorithm to
accomplish this.

2.2.2 Applications

We summarize some of the known applications of attribute-based encryption. Parno,
Raykova and Vaikuntanathan [178] showed how to use ABE to design (publicly) verifiable
two-message delegation delegation scheme with a pre-processing phase. Also as we
mentioned, Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [104] showed how to
use ABE as a critical building block to construct succinct one-query functional encryption,
reusable garbled circuits, token-based obfuscation and homomorphic encryption for Turing
machines. Our efficiency improvements for branching programs can be carried into all
these applications.

2.2.3 Other Related Work

A number of works optimized attribute-based encryption for boolean formulas: Attra-
padung et al. [22] and Emura et al. [84] designed ABE schemes with constant size
ciphertext from bilinear assumptions. For arbitrary circuits, Boneh et al. [42] also
showed an ABE with constant size ciphertext from multilinear assumptions. ABE can
also be viewed as a special case of functional encryptions [37]. Gorbunov et al. [106]
showed functional encryption for arbitrary functions in a bounded collusion model from
standard public-key encryption scheme. Garg et al. [93] presented a functional encryption
for unbounded collusions for arbitrary functions under a weaker security model from
multilinear assumptions. More recently, Gorbunov et al. exploited the asymmetry in

2These bits represent the bits of the attribute vector in the ABE scheme

12

the noise growth in [42] in a different context of design of a predicate encryption scheme
based on standard LWE [108].

2.2.4 Extensions

We note a few possible extensions on our basic construction that lead to further efficiency
improvements. First, we can support arbitrary width branching programs by appropriately
increasing the dimension of the state vector in the encryption. Second, we can switch to
an arithmetic setting, similarly as it was done in [42].

2.2.5 Organization of this chapter

In Section 2.3 we present the lattice preliminaries, definitions for ABE and branching
programs. In Section 2.4 we present our main evaluation algorithms and build our ABE
scheme in Section 2.5. We present a concrete instantiation of the parameters in Section
2.6.

2.3 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let
Zq denote the ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We
let Zn×mq denote the set of n×m matrices with entries in Zq. We use bold capital letters
(e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors. The notation
AT denotes the transpose of the matrix A. If A1 is an n×m matrix and A2 is an n×m′
matrix, then [A1‖A2] denotes the n × (m + m′) matrix formed by concatenating A1 and
A2. A similar notation applies to vectors. When doing matrix-vector multiplication we
always view vectors as column vectors. Also, [n] denotes the set of numbers 1, . . . , n.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to
denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0,
and we use poly(n) to denote a polynomial function of n. We say an event occurs with
overwhelming probability if its probability is 1 − negl(n). The function log x is the base 2
logarithm of x. The notation bxe denotes the nearest integer to x, rounding towards 0 for
half-integers.

13

2.3.1 Lattice Preliminaries

Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [186], who showed that solving it on the
average is as hard as (quantumly) solving several standard lattice problems in the worst
case.

Definition 2.3.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n)
over Zq, the learning with errors problem dLWEn,m,q,χ is to distinguish between the following
pairs of distributions:

{A,ATs + x} and {A,u}

where A
$← Zn×mq , s

$← Znq ,x
$← χm,u

$← Zmq .

Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is
called B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [186] and classical [180] reductions between dLWEn,m,q,χ and
approximating short vector problems in lattices in the worst case, where χ is a B-bounded
(truncated) discretized Gaussian for some appropriate B. The state-of-the-art algorithms
for these lattice problems run in time nearly exponential in the dimension n [12, 163];

more generally, we can get a 2k-approximation in time 2Õ(n/k). Throughout this paper, the
parameter m = poly(n), in which case we will shorten the notation slightly to LWEn,q,χ.

Trapdoors for Lattices and LWE

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution
over Zm with parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm
exceeds

√
m · σ. Note that DZm,σ is

√
m · σ-bounded.

Lemma 2.3.1 (Lattice Trapdoors [11, 97, 162]). There is an efficient randomized algorithm
TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m =
Ω(n log q), outputs a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix TA ∈ Zm×m
such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability
over all random choices, does the following: For any u ∈ Znq , and large enough s =

14

Ω(
√
n log q), the randomized algorithm SampleD(A,TA,u, s) outputs a vector r ∈ Zm with

norm ||r||∞ ≤ ||r||2 ≤ s
√
n (with probability 1). Furthermore, the following distributions

of the tuple (A,TA,U,R) are within negl(n) statistical distance of each other for any
polynomial k ∈ N:

• (A,TA)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,TA,U, s).

• (A,TA)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices. Looking
ahead, the algorithm SampleLeft [5, 61] will be used to sample keys in the real system, while
the algorithm SampleRight [5] will be used to sample keys in the simulation.

Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA

of Λ⊥q (A), a matrix B in Zn×m1
q , a vector u ∈ Znq , and a

Gaussian parameter α.
(2.3)

Output: Let F := (A ‖ B). The algorithm outputs a vector
e ∈ Zm+m1 in the coset ΛF+u.

(2.4)

Theorem 2.3.2 ([5, Theorem 17], [61, Lemma 3.2]). Let q > 2, m > n and α > ‖TA‖GS ·
ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in Equation 2.3
outputs a vector e ∈ Zm+m1 distributed statistically close to DΛF+u,α, where F := (A ‖ B).

where ‖T‖GS refers to the norm of Gram-Schmidt orthogonalisation of T. We refer the
readers to [5] for more details.

Algorithm SampleRight(A,G,R,TG,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank
matrix G in Zn×mq , a “short” basis TG of Λ⊥q (G), a vector
u ∈ Znq , and a Gaussian parameter α.

(2.5)

Output: Let F := (A ‖ AR + G). The algorithm outputs
a vector e ∈ Zm+k in the coset ΛF+u.

(2.6)

15

Often the matrix R given to the algorithm as input will be a random matrix in
{1,−1}m×m. Let Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖
:= supx∈Sm−1 ‖R · x‖.

Theorem 2.3.3 ([5, Theorem 19]). Let q > 2,m > n and α > ‖TG‖GS · sR · ω(
√

logm).
Then SampleRight(A,G,R,TG,u, α) taking inputs as in Equation 2.5 outputs a vector
e ∈ Zm+k distributed statistically close to DΛF+u,α, where F := (A ‖ AR + G).

Primitive matrix

We use the primitive matrix G ∈ Zn×mq defined in [162]. This matrix has a trapdoor TG

such that ‖TG‖∞ = 2.

We also define an algorithm invG : Zn×mq → Zm×mq which deterministically derives a

pre-image Ã satisfying G · Ã = A. From [162], there exists a way to get Ã such that

Ã ∈ {0, 1}m×m.

2.3.2 Attribute-Based Encryption definition

An attribute-based encryption scheme ABE [113] for a class of predicates3 P with ` bit in-
puts and message spaceM consists of a tuple of p.p.t. algorithms (Params, Setup,Enc,KeyGen,Dec):

Params(1λ)→ pp : The parameter generation algorithm takes the security parameter 1λ

and outputs a public parameter pp which is implicitly given to all the other algorithms
of the scheme.

Setup(1`)→ (mpk,msk) : The setup algorithm gets as input the length ` of the input
index, and outputs the master public key mpk, and the master key msk.

Enc(mpk, x, µ)→ ctx : The encryption algorithm gets as input mpk, an index x ∈ {0, 1}`
and a message µ ∈M. It outputs a ciphertext ctx.

KeyGen(msk, P)→ skP : The key generation algorithm gets as input msk and a predicate
specified by P ∈ P . It outputs a secret key skP .

Dec(ctx, skP)→ µ : The decryption algorithm gets as input ctx and skP , and outputs
either ⊥ or a message µ ∈M.

3Here, a predicate is any program or circuit that outputs a single bit.

16

Definition 2.3.2 (Correctness). We require that for all (x, P) such that P (x) = 1 and for
all µ ∈M, we have Pr[ctx ← Enc(mpk,x, µ);Dec(ctx, skP) = µ)] = 1 where the probability
is taken over pp← Params(1λ), (mpk,msk)← Setup(1`) and the coins of all the algorithms
in the expression above.

Definition 2.3.3 (Security). For a stateful adversary A, we define the advantage function
AdvabeA (λ) to be

Pr


b = b′ :

x∗ ← A(1λ, 1`);
pp← Params(1λ);
(mpk,msk)← Setup(1`,x∗);
(µ0, µ1)← AKeygen(msk,·)(mpk), |µ0| = |µ1|;
b

$← {0, 1};
ctx ← Enc(mpk,x, µb);
b′ ← AKeygen(msk,·)(ctx)


− 1

2

with the restriction that all queries y that A makes to Keygen(msk, ·) satisfies P (x∗) = 0
(that is, skP does not decrypt ctx). An attribute-based encryption scheme is selectively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible function in λ.

2.3.3 Branching Programs

We define branching programs similar to [51]. A width-w branching program BP of length
L with input space {0, 1}` and s states (represented by [s]) is a sequence of L tuples of the
form (var(t), σt,0, σt,1) where

• σt,0 and σt,1 are injective functions from [s] to itself.

• var : [L]→ [`] is a function that associates the t-th tuple σt,0, σt,1 with the input bit
xvar(t).

The branching program BP on input x = (x1, . . . , x`) computes its output as follows.
At step t, we denote the state of the computation by ηt ∈ [s]. The initial state is η0 = 1.
In general, ηt can be computed recursively as

ηt = σt,xvar(t)(ηt−1)

Finally, after L steps, the output of the computation BP(x) = 1 if ηL = 1 and 0 otherwise.

17

As done in [51], we represent states with bits rather than numbers to bound the noise
growth. In particular, we represent the state ηt ∈ [s] by a unit vector vt ∈ {0, 1}s. The
idea is that vt[i] = 1 if and only if σt,xvar(t)(ηt−1) = i. Note that we can also write the above
expression as vt[i] = 1 if and only if either:

• vt−1

[
σ−1
t,0 (i)

]
= 1 and xvar(t) = 0

• vt−1

[
σ−1
t,1 (i)

]
= 1 and xvar(t) = 1

This latter form will be useful for us since it can be captured by the following formula. For
t ∈ [L] and i ∈ [s],

vt[i] := vt−1

[
σ−1
t,0 (i)

]
· (1− xvar(t)) + vt−1

[
σ−1
t,1 (i)

]
· xvar(t)

= vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

where γt,i,0 := σ−1
t,0 (i) and γt,i,1 = σ−1

t,1 (i) can be publicly computed from the description of

the branching program. Hence,
{
var(t), {γt,i,0, γt,i,1}i∈[s]

}
t∈[L]

is also valid representation of

a branching program BP.

For clarity of presentation, we will deal with width-5 permutation branching programs,
which is shown to be equivalent to the circuit class NC1 [30]. Hence, we have s = w = 5
and the functions σ0, σ1 are permutations on [5].

2.4 Our Evaluation Algorithms

In this section we describe the key evaluation and encoding (ciphertext) evaluation
algorithms that will be used in our ABE construction. The algorithms are carefully
designed to manage the noise growth in the LWE encodings and to preserve parallel
homomorphism over the public keys and the encoded values.

2.4.1 Basic Homomorphic Operations

We first describe basic homomorphic addition and multiplication algorithms over the public
keys and encodings (ciphertexts) based on the techniques developed by Boneh et al. [42].

18

Definition 2.4.1 (LWE Encoding). For any matrix A
$← Zn×mq , we define an LWE

encoding of a bit a ∈ {0, 1} with respect to a (public) key A and randomness s
$← Znq

as
ψA,s,a = (A + a ·G)Ts + e ∈ Zmq

for error vector e
$← χm and an (extended) primitive matrix G ∈ Zn×mq .

In our construction, however, all encodings will be under the same LWE secret s, hence
for simplicity we will simply refer to such an encoding as ψA,a.

Definition 2.4.2 (Noise Function). For every A ∈ Zn×mq , s ∈ Znq and encoding ψA,a ∈ Zmq
of a bit a ∈ {0, 1} we define a noise function as

Noises(ψA,a) := ||ψA,a − (A + a ·G)Ts mod q||∞

Looking ahead, in Lemma 2.5.1 we show that if the noise obtained after applying
homomorphic evaluation is ≤ q/4, then our ABE scheme will decrypt the message correctly.
Now we define the basic additive and multiplicative operations on the encodings of this
form, as per [42]. In their context, they refer to a matrix A as the “public key” and ψA,a

as a ciphertext.

Homomorphic addition

This algorithm takes as input two encodings ψA,a, ψA′,a′ and outputs the sum of them. Let
A+ = A + A′ and a+ = a+ a′.

Adden(ψA,a, ψA′,a′) : Output ψA+,a+ := ψA,a + ψA′,a′ mod q

Lemma 2.4.1 (Noise Growth in Adden). For any two valid encodings ψA,a, ψA′,a′ ∈ Zmq ,
let A+ = A + A′ and a+ = a+ a′ and ψA+,a+ = Adden(ψA,a, ψA′,a′), then we have

NoiseA+,a+(ψA+,a+) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

Proof. Given two encodings we have,

ψA+,a+ = ψA,a + ψA′,a′

= ((A + a ·G)Ts + e) + ((A′ + a′ ·G)Ts + e′)

= ((A + A′) + (a+ a′) ·G)
T
s + (e + e′)

= (A+ + a+ ·G)Ts + (e + e′)

19

Thus, from the definition of the noise function, it follows that

NoiseA+,a+(ψA,a + ψA′,a′) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

Homomorphic multiplication

This algorithm takes in two encodings ψA,a = (A + a ·G)Ts + e1 and ψA′,a′ = (A′ + a′ ·
G)Ts + e2 and outputs an encoding ψA×,a× where A× = −AÃ′ and a× = aa′ as follows:

Multiplyen(ψA,a, ψA′,a′) : Output ψA×,a× := −Ã′
T

· ψ + a · ψ′.

Note that this process requires the knowledge of the attribute a in clear.

Lemma 2.4.2 (Noise Growth in Multiplyen). For any two valid encodings ψA,a, ψA′,a′ ∈ Zmq ,

let A× = −AÃ′ and a× = aa′ and ψA×,a× = Multiplyen(ψA,a, ψA′,a′) then we have

NoiseA×,a×(ψA×,a×) ≤ m · NoiseA,a(ψA,a) + a · NoiseA′,a′(ψA′,a′)

Proof. Given two valid encodings, we have

ψA×,a× = −Ã′
T

· ψ + a · ψ′

= −Ã′
T(

(A + a ·G)Ts + e
)

+ a ·
(
(A′ + a′ ·G)Ts + e′

)
=

(
(−AÃ′ − a ·A′)Ts− Ã′

T

e

)
+

(
(a ·A′ + aa′ ·G)Ts + a · e′

)
=

(
(−AÃ2︸ ︷︷ ︸

A×

) + aa′︸︷︷︸
a×

·G
)T

s +
(
−Ã′

T

e + a · e′︸ ︷︷ ︸
e×

)
Thus, from the definition of the noise function, we must bound the noise e×. Hence,∥∥e×∥∥∞ ≤ ∥∥∥Ã′Te∥∥∥∞ + a · ‖e′‖∞ ≤ m · ‖e‖∞ + a · ‖e′‖∞

where the last inequality holds since Ã′ ∈ {0, 1}m×m.

20

Note: This type of homomorphism is different from a standard fully homomorphic
encryption (FHE) mainly for the following two reasons.

• To perform multiplicative homomorphism, here we need one of the input values in
clear but the FHE homomorphic operations are performed without the knowledge of
the input values.

• The other big difference is that, here we require the output public key matrices
A+,A× to be independent of the input values a1, a2. More generally, when given an
arbitrary circuit with AND and OR gates along with the matrices corresponding to its
input wires, one should be able to determine the matrix corresponding to the output
wire without the knowledge of the values of the input wires. But, this property is
not present in any of the existing FHE schemes.

2.4.2 Our Public Key Evaluation Algorithm

We define a (public) key evaluation algorithm Evalpk. The algorithm takes as input a
description of the branching program BP, a collection of public keys {Ai}i∈[`] (one for
each attribute bit xi), a collection of public keys V0,i for initial state vector and an
auxiliary matrix Ac. The algorithm outputs an “evaluated” public key corresponding
to the branching program:

Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)→ VBP

The auxiliary matrix Ac can be thought of as the public key we use to encode a constant
1. We also define A′i := Ac − Ai, as a public key that will encode 1 − xi. The output
VBP ∈ Zn×mq is the homomorphically defined public key VL,1 at position 1 of the state
vector at the Lth step of the branching program evaluation.

The algorithm proceeds as follows. Recall the description of the branching program
BP represented by tuples

(
var(t), {γt,i,0, γt,i,1}i∈[5]

)
for t ∈ [L]. The initial state vector is

always taken to be v0 := [1, 0, 0, 0, 0]. And for t ∈ [L],

vt[i] = vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

Our algorithm calculates VBP inductively as follows. Assume at time t− 1 ∈ [L], the state
public keys {Vt−1,i}i∈[5] are already assigned. We assign state public keys {Vt,i}i∈[5] at
time t as follows.

21

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

2. Let Vt,i = −A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1 .

It is important to note that the public key defined at each step of the state vector is
independent of any input attribute vector. Now, let VL,1 be the public key assigned at
position 1 at step L of the branching program. We simply output VBP := VL,1.

2.4.3 Our Encoding Evaluation Algorithm

We also define an encoding evaluation algorithm Evalen which we will use in the decryption
algorithm of our ABE scheme. The algorithm takes as input the description of a
branching program BP, an attribute vector x, a set of encodings for the attribute (with
corresponding public keys) {Ai, ψi := ψAi,xi}i∈[`], encodings of the initial state vector
{V0,i, ψ0,i := ψV0,i,v0[i]}i∈[5] and an encoding of a constant “1” ψc := ψAc,1. (From now
on, we will use the simplified notations ψi, ψ0,i, ψ

c for the encodings). Evalen outputs an
encoding of the result y := BP(x) with respect to a homomorphically derived public key
VBP := VL,1.

Evalen
(
BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5],A

c, ψc
)
→ ψBP

Recall that for t ∈ [L], we have for all i ∈ [5]:

vt[i] = vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the state vector for
each step of the branching program. The key idea to obtain the desired noise growth is that
we only multiply the fresh encodings of the attribute bits with the binary decomposition
of the public keys. The result is then added to update the encoding of the state vector.
Hence, at each step of the computation the noise in the encodings of the state will only
grow by some fixed additive factor.

The algorithm proceeds as follows. We define ψ′i := ψA′i,(1−xi) = (A′i+(1−xi) ·G)Ts+e′i
to denote the encoding of 1−xi with respect to A′i = Ac−Ai. Note that it can be computed
using Adden(ψAc,1,−ψAi,xi). Assume at time t − 1 ∈ [L] we hold encodings of the state
vector {ψVt−1,i,vt[i]}i∈[5]. Now, we compute the encodings of the new state values:

ψt,i = Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
22

where γ0 := γt,i,0 and γ1 := γt,i,1. As we show below (in Lemma 2.4.3), this new encoding

has the form
(
Vt,i + vt[i] ·G

)T
s + et,i (for a small enough noise term et,i).

Finally, let ψL,1 be the encoding obtained at the Lth step corresponding to state value at
position “1” by this process. As we show in Lemma 2.4.4, noise term eBP has “low” infinity
norm enabling correct decryption (Lemma 2.5.1). The algorithm outputs ψBP := ψL,1.

Correctness and Analysis

Lemma 2.4.3. For any valid set of encodings ψvar(t), ψ
′
var(t) for the bits xvar(t), (1− xvar(t))

and {ψt−1,i}i∈[5] for the state vector vt−1 at step t− 1, the output of the function

Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
→ ψt,i

where ψt,i =
(
Vt,i + vt[i] ·G

)T
s + et,i, for some noise term et,i.

Proof. Given valid encodings ψvar(t), ψ
′
var(t) and {ψt−1,i}i∈[5], we have:

ψt,i = Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
= Adden

([
(−A′var(t)Ṽt−1,γ0 + (vt[γ0] · (1− xvar(t))) ·G)Ts + e1)

]
,[

(−Avar(t)Ṽt−1,γ1 + (vt[γ1] · xvar(t)) ·G)Ts + e2)
])

=
[(
−A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1

)
︸ ︷︷ ︸

Vt,i

+
(
vt[γ0] · (1− xvar(t)) + vt[γ1] · xvar(t)

)︸ ︷︷ ︸
vt[i]

·G
]T

s + et,i

where the first step follows from the correctness of Multiplyen algorithm and last step from

that of Adden with et,i = e1 + e2 where e1 = −
(
Ṽt−1,γ0

)T

e′var(t) − (1− xvar(t)) · et−1,γ0 and

e2 = −
(
Ṽt−1,γ1

)T

evar(t) − xvar(t) · et−1,γ1 .

Lemma 2.4.4. Let Evalen
(
BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5],A

c, ψc
)
→ ψBP such that all

the noise terms,
{
NoiseAi,xi(ψi)

}
i∈[`]

,NoiseAc,1(ψc),
{
NoiseV0,i,v0[i](ψ0,i)

}
i∈[5]

are bounded by

B, then
NoiseVBP,y(ψBP) ≤ 3m · L ·B +B

23

Proof. We will prove this lemma by induction. That is, we will prove that at any step t,

NoiseVt,i,vt[i](ψt,i) ≤ 3m · t ·B +B

for i ∈ [5]. For the base case, t = 0, we operate on fresh encodings for the initial state
vector v0. Hence, we have that, NoiseV0,i,v0[i](ψ0,i) ≤ B, for all i ∈ [5]. Let {ψt−1,i}i∈[5] be
the encodings of the state vector vt−1 at step t− 1 such that

NoiseVt−1,i,vt−1[i](ψt−1,i) ≤ 3m · (t− 1) ·B +B

for i ∈ [5]. We know that ψt,i = Adden
(
Multiplyen(ψ

′
var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
.

Hence, from Lemma 2.4.1 and Lemma 2.4.2, we get:

NoiseVt,i,vt[i](ψt,i) ≤
(
m · NoiseA′

var(t)
,(1−xvar(t))(ψ

′
var(t)) + (1− xvar(t)) · NoiseVt−1,γ0 ,vt−1[γ0]

)
+
(
m · NoiseAvar(t),xvar(t)(ψvar(t)) + xvar(t) · NoiseVt−1,γ1 ,vt−1[γ1]

)
=

(
m · 2B + (1− xvar(t)) · (3m(t− 1)B +B)

)
+
(
m ·B + xvar(t) · (3m(t− 1)B +B)

)
= 3m · t ·B +B

where

NoiseA′
var(t)

,(1−xvar(t))(ψ
′
var(t)) ≤ NoiseAc,1(ψc) + Noise−Avar(t),−xvar(t)(−ψvar(t)) ≤ B +B = 2B

by Lemma 2.4.1. With ψBP being an encoding at step L, we have NoiseVBP,y(ψBP) ≤
3m · L ·B +B. Thus, NoiseVBP,y(ψBP) = O(m · L ·B).

2.4.4 Our Simulated Public Key Evaluation Algorithm

Looking ahead, during simulation, we will use a different procedure for assigning public
keys to each wire of the input and the state vector. In particular, Ai = A ·Ri − xi ·G for
some shared public key A and some low norm matrix Ri. Similarly, the state public keys
Vt,i = A·Rt,i−vt[i]·G. The algorithm thus takes as input the description of the branching
program BP, the attribute vector x, two collection of low norm matrices {Ri}, {R0,i}
corresponding to the input public keys and initial state vector, a low norm matrix Rc for
the public key of constant 1 and a shared matrix A. It outputs a homomorphically derived
low norm matrix RBP.

EvalSIM(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)→ RBP

24

The algorithm will ensure that the output RBP satisfies A ·RBP−BP(x) ·G = VBP, where
VBP is the homomorphically derived public key.

The algorithm proceeds inductively as follows. Assume at time t − 1 ∈ [L], we hold a
collection of low norm matrices Rt−1,i and public keys Vt−1,i = A · Rt−1,i − vt[i] ·G for
i ∈ [5] corresponding to the state vector. Let R′i = Rc −Ri for all i ∈ [`]. We show how
to derive the low norm matrices Rt,i for all i ∈ [5]:

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

2. Compute

Rt,i =
(
−R′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·Rt−1,γ0

)
+
(
−Rvar(t)Ṽt−1,γ1 + xvar(t) ·Rt−1,γ1)

)
Finally, let RL,1 be the matrix obtained at the Lth step corresponding to state value

“1” by the above algorithm. Output RBP := RL,1. Below, we show that the norm of RBP

remains small and that homomorphically computed public key VBP using Evalpk satisfies
that VBP = A ·RBP − BP(x) ·G.

Lemma 2.4.5 (Correctness of EvalSIM). For any set of valid inputs to EvalSIM, we have

EvalSIM(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)→ RBP

where VBP = ARBP − BP(x) ·G.

Proof. We will prove this lemma by induction. That is, we will prove that at any step t,

Vt,i = ARt,i − vt[i] ·G
for any i ∈ [5]. For the base case t = 0, since the inputs are valid, we have that V0,i =
AR0,i − v0[i] ·G, for all i ∈ [5]. Let Vt−1,i = ARt−1,i − vt−1[i] ·G for i ∈ [5]. Hence, we
get:

ARt,i =
(
−AR′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·ARt−1,γ0

)
+
(
−ARvar(t)Ṽt−1,γ1 + xvar(t) ·ARt−1,γ1)

)
=

(
−
(
A′var(t) + (1− xvar(t)) ·G

)
Ṽt−1,γ0 + (1− xvar(t)) ·

(
Vt−1,γ0 + vt−1[γ0] ·G

))
+
(
−
(
Avar(t) + xvar(t) ·G

)
Ṽt−1,γ1 + xvar(t) ·

(
Vt−1,γ1 + vt−1[γ1] ·G

))
=

(
−A′var(t)Ṽt−1,γ0 − (1− xvar(t)) ·Vt−1,γ0 + (1− xvar(t)) ·Vt−1,γ0 +

(
(1− xvar(t))vt−1[γ0]

)
·G
)

+
(
−Avar(t)Ṽt−1,γ1 − xvar(t) ·Vt−1,γ1 + xvar(t) ·Vt−1,γ1 +

(
xvar(t)vt−1[γ1]

)
·G
)

=
(
−A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1︸ ︷︷ ︸

Vt,i

)
+
(

(1− xvar(t))vt−1[γ0] +
(
xvar(t)vt−1[γ1]︸ ︷︷ ︸

vt[i]

)
·G

25

Hence, we have Vt,i = ARt,i − vt[i] ·G. Thus, at the Lth step, we have by induction that

VBP = VL,1 = ARL,1−vt[i]·G = ARBP − vt[i] ·G

Lemma 2.4.6. Let EvalSIM
(
BP,x, {Ri}i∈[`], {R0,i}i∈[5],R

c,A) → RBP such that all the
“R” matrices are sampled from {−1, 1}m×m, then

‖RBP‖∞ ≤ 3m · L+ 1

Proof. This proof is very similar to that of Lemma 2.4.4. We will prove this lemma also
by induction. That is, we will prove that at any step t,

‖Rt,i‖∞ ≤ 3m · t+ 1

for i ∈ [5]. For the base case, t = 0, the input R0,is are such that, ‖Rt,0‖∞ = 1, for all
i ∈ [5]. Let ‖Rt−1,i‖∞ ≤ 3m · (t− 1) + 1 for i ∈ [5]. We know that

Rt,i =
(
−R′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·Rt−1,γ0

)
+
(
−Rvar(t)Ṽt−1,γ1 + xvar(t) ·Rt−1,γ1)

)
Hence, we have:

‖Rt,i‖∞ ≤
(
m ·
∥∥∥Ṽt−1,γ0

∥∥∥
∞
·
∥∥R′var(t)∥∥∞ + (1− xvar(t)) · ‖Rt−1,γ0‖∞

)
+
(
m ·
∥∥∥Ṽt−1,γ0

∥∥∥
∞
·
∥∥Rvar(t)

∥∥
∞ + xvar(t) · ‖Rt−1,γ1‖∞

)
=

(
m · 1 · 2 + (1− xvar(t)) · 3m · (t− 1)

)
+
(
m · 1 · 1 + xvar(t) · 3m · (t− 1)

)
= 3m · t+ 1

where ‖R′i‖∞ ≤ ‖Rc + Ri‖∞ ≤ ‖Rc‖∞ + ‖Ri‖∞ ≤ 1 + 1 = 2. With RBP being at step L,
we have ‖RBP‖∞ ≤ 3m · L+ 1. Thus, ‖RBP‖∞ = O(m · L).

2.5 Our Attribute-Based Encryption

In this section we describe our attribute-based encryption scheme for branching programs.
We present the scheme for a bounded length branching programs, but note that we can
trivially support unbounded length by setting modulo q to a small superpolynomial. For
a family of branching programs of length bounded by L and input space {0, 1}`, we define
the ABE algorithms (Params, Setup,KeyGen,Enc,Dec) as follows.

26

• Params(1λ, 1L): For a security parameter λ and length bound L, let the LWE
dimension be n = n(λ) and let the LWE modulus be q = q(n, L). Let χ be an error
distribution over Z and let B = B(n) be an error bound. We additionally choose
two Gaussian parameters: a “small” Gaussian parameter s = s(n) and a “large”
Gaussian parameter α = α(n). Both these parameters are polynomially bounded (in
λ, L). The public parameters pp = (λ, L, n, q,m, χ,B, s, α) are implicitly given as
input to all the algorithms below.

• Setup(1`): The setup algorithm takes as input the length of the attribute vector `.

1. Sample a matrix with a trapdoor: (A,TA)← TrapSamp(1n, 1m, q).

2. Let G ∈ Zn×mq be the primitive matrix with the public trapdoor basis TG.

3. Choose ` + 6 matrices {Ai}i∈[`], {V0,i}i∈[5],A
c at random from Zn×mq . First, `

matrices form the LWE “public keys” for the bits of attribute vector, next 5
form the “public keys” for the initial configuration of the state vector, and the
last matrix as a “public key” for a constant 1.

4. Choose a vector u ∈ Znq at random.

5. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[`], {V0,i}i∈[5],G,u

)
and the master secret key msk := (TA,mpk).

• Enc(mpk,x, µ): The encryption algorithm takes as input the master public key mpk,
the attribute vector x ∈ {0, 1}` and a message µ.

1. Choose an LWE secret vector s ∈ Znq at random.

2. Choose noise vector e
$← χm and compute ψ0 = ATs + e.

3. Choose a random matrix Rc ← {−1, 1}m×m and let ec = (Rc)Te. Now, compute
an encoding of a constant 1:

ψc = (Ac + G)T s + ec

4. Encode each bit i ∈ [`] of the attribute vector:

(a) Choose random matrices Ri ← {−1, 1}m×m and let ei = RT
i e.

(b) Compute ψi = (Ai + xi ·G)Ts + ei.

5. Encode the initial state configuration vector v0 = [1, 0, 0, 0, 0]: for all i ∈ [5],

27

(a) Choose a random matrix R0,i ← {−1, 1}m×m and let e0,i = RT
0,ie.

(b) Compute ψ0,i = (V0,i + v0[i] ·G)Ts + e0,i.

6. Encrypt the message µ as τ = uTs + e+ bq/2eµ, where e← χ.

7. Output the ciphertext

ctx =
(
x, ψ0, ψ

c, {ψi}i∈[`], {ψ0,i}i∈[5], τ
)

• KeyGen(msk,BP): The key-generation algorithm takes as input the master secret key
msk and a description of a branching program:

BP :=
(
v0,
{
var(t), {γt,i,0, γt,i,1}i∈[5]

}
t∈[L]

)
The secret key skBP is computed as follows.

1. Homomorphically compute a “public key” matrix associated with the branching
program:

VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

2. Let F = [A||(VBP + G)] ∈ Zn×2m
q . Compute routput ← SampleLeft(A, (VBP +

G),TA,u, α) such that F · routput = u.

3. Output the secret key for the branching program as

skBP := (BP, routput)

• Dec(skBP, ctx): The decryption algorithm takes as input the secret key for a branching
program skBP and a ciphertext ctx. If BP(x) = 0, output ⊥. Otherwise,

1. Homomorphically compute the encoding of the result BP(x) associated with the
public key of the branching program:

ψBP ← Evalen(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], (A
c, ψc))

2. Finally, compute φ = rT
output · [ψ||ψBP]. As we show in Lemma 2.5.1, φ = uTs +

bq/2eµ+ eφ (mod q), for a short eφ.

3. Output µ = 0 if |τ − φ| < q/4 and µ = 1 otherwise.

28

2.5.1 Correctness

Lemma 2.5.1. Let BP be a family of width-5 permutation branching programs with their
length bounded by L and let ABE = (Params, Setup,KeyGen,Enc,Dec) be our attribute-
based encryption scheme. For a LWE dimension n = n(λ), the parameters for ABE are
instantiated as follows (according to Section 2.6):

χ = DZ,
√
n B = O(n) m = O(n log q)

q = Õ(n7 · L2) α = Õ(n log q)2 · L

then the scheme ABE is correct, according to the definition in Section 2.3.2.

Proof. We have to show that the decryption algorithm outputs the correct message µ,
given a valid set of a secret key and a ciphertext.

From Lemma 2.4.3, we have that ψBP = (VBP + G)Ts + eBP since BP(x) = 1. Also,
from Lemma 2.4.4, we know that ‖eBP‖∞ = O(m · L · (m · B)) = O(m2 · L · B) since our
input encodings have noise terms bounded by m ·B. Thus, the noise term in φ is bounded
by:

‖eφ‖∞ = m ·
(
NoiseA,0(ψ) + NoiseVBP,1(ψBP)

)
· ‖routput‖∞

= m · (B +O(m2 · L ·B)) · Õ(n log q)2 · L
√
m

= O
(
(n log q)6 · L2 ·B

)
where m = O(n log q) and ‖routput‖∞ ≤ α

√
m = Õ(n log q)2 · L

√
m according to Section

2.6. Hence, we have

|τ − φ| ≤ ‖e‖∞ + ‖eφ‖∞ = O
(
(n log q)6 · L2 ·B

)
≤ q/4

Clearly, the last inequality is satisfied when q = Õ(n7 ·L2). Hence, the decryption proceeds
correctly outputting the correct µ.

2.5.2 Security Proof

Theorem 2.5.2. For any ` and any length bound L, ABE scheme defined above satisfies
selective security game from Definition 2.3.3 for any family of branching programs BP
of length L with `-bit inputs, assuming hardness of dLWEn,q,χ for sufficiently large n =
poly(λ), q = Õ(n7 ·L2) and poly(n) bounded error distribution χ. Moreover, the size of the
secret keys grows polynomially with L (and independent of the width of BP).

29

Proof. We define a series of hybrid games, where the first and the last games correspond
to the real experiments encrypting messages µ0, µ1 respectively. We show that these games
are indistinguishable except with negligible probability. Recall that in a selective security
game, the challenge attribute vector x∗ is declared before the Setup algorithm and all the
secret key queries that adversary makes must satisfy BP(x∗) = 0. First, we define auxiliary
simulated ABE∗ algorithms.

• Setup∗(1λ, 1`, 1L,x∗): The simulated setup algorithm takes as input the security
parameter λ, the challenge attribute vector x∗, its length ` and the maximum length
of the branching program L.

1. Choose a random matrix A← Zn×mq and a vector u at random.

2. Let G ∈ Zn×mq be the primitive matrix with the public trapdoor basis TG.

3. Choose `+ 6 random matrices {Ri}i∈[`], {R0,i}i∈[5],R
c from {−1, 1}m×m and set

(a) Ai = A ·Ri − x∗G for i ∈ [`],

(b) V0,i = A ·R0,i − v0[i] ·G for i ∈ [5] where v0 = [1, 0, 0, 0, 0],

(c) Ac = A ·Rc −G.

4. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[`], {V0,i}i∈[5],G,u

)
and the secret key

msk :=
(
x∗,A,Rc, {Ri}i∈[`], {R0,i}i∈[5]

)
• Enc∗(mpk,x∗, µ): The simulated encryption algorithm takes as input mpk,x∗ and

the message µ. It computes the ciphertext using the knowledge of short matrices
{Ri}, {R0,i},Rc as follows.

1. Choose a vector s ∈ Znq at random.

2. Choose noise vector e
$← χm and compute ψ0 = ATs + e.

3. Compute an encoding of an identity as ψc = (Ac)T s + (Rc)Te.

4. For all bits of the attribute vector i ∈ [`] compute

ψi = (Ai + xi ·G)Ts + RT

i e

30

5. For all i ∈ [5], encode the bits of the initial state configuration vector v0 =
[1, 0, 0, 0, 0]

ψ0,i = (V0,i + v0[i] ·G)Ts + RT

0,ie

6. Encrypt the message µ as τ = uTs + e+ bq/2eµ, where e← χ.

7. Output the ciphertext

ct =
(
x, ψ0, {ψi}i∈[`], ψ

c, {ψ0,i}i∈[5], τ
)

• KeyGen∗(msk,BP): The simulated key-generation algorithm takes as input the master
secret key msk and the description of the branching program BP. It computes the
secret key skBP as follows.

1. Obtain a short homomorphically derived matrix associated with the output
public key of the branching program:

RBP ← EvalSIM
(
BP,x∗, {Ri}i∈[`], {R0,i}i∈[5],R

c,A
)

2. By the correctness of EvalSIM, we have VBP = ARBP − BP(x∗) · G. Let F =
[A||(VBP + G)] ∈ Zn×2m

q . Compute routput ← SampleRight(A,G,RBP,TG,u, α)
such that F · routput = u (this step relies on the fact that BP(x∗) = 0).

3. Output the secret key for the branching program

skBP := (BP, routput)

Game Sequence. We now define a series of games and then prove that all games Game
i and Game i+1 are either statistically or computationally indistinguishable.

• Game 0: The challenger runs the real ABE algorithms and encrypts message µ0 for
the challenge index x∗.

• Game 1: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,Enc∗

and encrypts message µ0 for the challenge index x∗.

• Game 2: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗, but
chooses a uniformly random element of the ciphertext space for the challenge index
x∗.

• Game 3: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,Enc∗

and encrypts message µ1 for the challenge index x∗.

31

• Game 4: The challenger runs the real ABE algorithms and encrypts message µ1 for
the challenge index x∗.

Lemma 2.5.3. The view of an adversary in Game 0 is statistically indistinguishable from
Game 1. Similarly, the view of an adversary in Game 4 is statistically indistinguishable
from Game 3.

Proof. We prove for the case of Game 0 and Game 1, as the other case is identical. First,
note the differences between the games:

• In Game 0, matrix A is sampled using TrapSamp algorithm and matrices Ai,A
c,V0,j ∈

Zn×mq are randomly chosen for i ∈ [`], j ∈ [5]. In Game 1, matrix A ∈ Zn×mp is
chosen uniformly at random and matrices Ai = ARi − x∗i · G, Ac = ARc − G,
V0,j = AR0,j − v0[j] ·G for randomly chosen Ri,R

c,R0,j ∈ {−1, 1}m×m.

• In Game 0, each ciphertext component is computed as:

ψi = (Ai + x∗i ·G)Ts + ei = (Ai + x∗i ·G)Ts + RT

i e

ψc = (Ac + G)Ts + e1 = (Ac + G)Ts + (Rc)Te

ψ0,j = (V0,j + v0[j] ·G)Ts + ei = (V0,j + v0[j] ·G)Ts + RT

0,je

On the other hand, in Game 1 each ciphertext component is computed as:

ψi = (Ai + x∗i ·G)Ts + RT

i e = (ARi)
Ts + RT

i e = RT

i

(
ATs + e

)
Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT

0,j(As + e).

• Finally, in Game 0 the vector routput is sampled using SampleLeft, whereas in Game
1 it is sampled using SampleRight algorithm.

For sufficiently large α (See Section-2.6), the distributions produced in two games are
statistically indistinguishable. This follows readily from [6, Lemma 4.3], Theorem-2.3.2
and Theorem-2.3.3. We will provide the proof here for completeness.

We would like to prove that the tuple A, {Ai, ψi}i∈[`],A
c, ψc, {V0,j, ψ0,j}j∈[5] in Game 0

is statistically indistinguishable from the set from Game 1. The generalisation of left-over

hash lemma [80, 5] states that, for two matrices Ri
$← {−1, 1}m×m,A,Ai

$← Zn×mq and any
vector e ∈ Zmq , the following is true, when q is square-free (q does not have a square of a

32

prime number as its factor): (A,ARi,R
T
i e,) ≈s (A,Ai,R

T
i e). With the matrices Ri,R0,j

independently chosen from {−1, 1}m×m we can extend this to have:(
A, (ARi,R

T

i e) , (ARc, (Rc)Te) ,
(
AR0,j,R

T

0,je
))

≈s
(
A, (Ai,R

T

i e) , (Ac, (Rc)Te) ,
(
V0,j,R

T

0,je
))

Hence, for every fixed matrix G ∈ Zn×mq and every bit x∗i ,v0[j] ∈ {0, 1},(
A, (ARi − x∗i ·G,RT

i e) , (ARc −G, (Rc)Te) ,
(
AR0,j − v0[j],RT

0,je
))

≈s
(
A, (Ai,R

T

i e) , (Ac, (Rc)Te) ,
(
V0,j,R

T

0,je
))

Now, we can extend this statistical indistinguishability to the joint distribution of these
tuples for all i ∈ [`], j ∈ [5], since the matrices Ri,R0,j are independently chosen from
{−1, 1}m×m,∀i ∈ [`], j ∈ [5]. Thus,(

A,
(
{ARi − x∗i ·G,RT

i e}i∈[`]

)
, (ARc −G, (Rc)Te) ,

(
{AR0,j − v0[j],RT

0,je}j∈[5]

))
≈s
(
A,
(
{Ai,R

T

i e}l∈[`]

)
, (Ac, (Rc)Te) ,

(
{V0,j,R

T

0,je}j∈[5]

))
Also, due to the fact that applying any function to two statistically indistinguishable
entities results in entities which are atleast as statistically indistinguishable as the original
pair, we eventually get:(

A,As + e,
(
{ARi − x∗i ·G, (ARi)

T s + RT

i e}i∈[`]

)
,
(
ARc −G, (ARc)T + (Rc)Te

)
,(

{AR0,j − v0[j], (AR0,j)
T + RT

0,je}j∈[5]

))
≈s
(
A,As + e, (Ai, (Ai + xi ·G)Ts + RT

i e) ,
(
{Ac, (Ac + G)Ts + (Rc)Te}i∈[`]

)
,(

{V0,j, (V0,j + v0[j] ·G)Ts + RT

0,je}j∈[5]

))
Thus, we can conclude that the public parameters in Game 0 are statistically

indistinguishable from those in Game 1, and that the output of Enc is statistically
indistinguishable from that of Enc∗. When the “large” Gaussian parameter α is chosen
appropriately (as discussed in 2.6), the output of the KeyGen and KeyGen∗ algorithms
are also statistically indistinguishable. Thus, the view of an adversary in Game 0 is
statistically indistinguishable from the view in Game 1.

Lemma 2.5.4. If the decisional LWE assumption holds, then the view of an adversary in
Game 1 is computationally indistinguishable from Game 2. Similarly, if the decisional
LWE assumption holds, then the view of an adversary in Game 3 is computationally
indistinguishable from Game 2.

33

Proof. Assume there exist an adversary Adv that distinguishes between Game 1 and
Game 2. We show how to break LWE problem given a challenge {(ai, yi)}i∈[m+1] where
each yi is either a random sample in Zq or aT

i · s + ei (for a fixed, random s ∈ Znq and a
noise term sampled from the error distribution ei ← χ). Let A = [a1, a2, . . . , am] ∈ Zn×mq

and u = am+1. Let ψ∗0 = [y1, y2, . . . , ym] and τ = ym+1 + µ bq/2c.
Now, run the simulated Setup∗ algorithm where A,u are as defined above. Run the

simulated KeyGen∗ algorithm. Finally, to simulate the challenge ciphertext set ψ∗0, τ as
defined above and compute

ψi = RT

i · ψ∗0 = RT

i

(
ATs + e

)
for i ∈ [`]. Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT

0,j(A
Ts + e), for j ∈ [5]. Note that

if yi’s are LWE samples, then this corresponds exactly to the Game 1. Otherwise, the
ciphertext corresponds to an independent random sample as in Game 2 by the left-over
hash lemma. Thus, an adversary which distinguishes between Game 1 and Game 2 can
also be used to break the decisional LWE assumption with almost the same advantage.
The computational indistinguishability of Game 3 and Game 2 follows from the same
argument.

Thus, Game 0 and Game 4 are computationally indistinguishable by the standard
hybrid argument and hence no adversary can distinguish between encryptions of µ0 and µ1

with non-negligible advantage establishing the selective security of our ABE scheme.

2.6 Parameter Selection

This section provides a detailed description on the selection of parameters for our scheme,
so that both correctness (see Lemma 2.5.1) and security (see Theorem 2.5.2) of our scheme
are satisfied.

For a family of width-5 permutation branching programs BP of bounded length L, with
the LWE dimension n, the parameters can be chosen as follows:

• The error distribution χ = DZ,
√
n with parameter σ =

√
n. And, the error bound

B = O(σ
√
n) = O(n).

From now, we will consider the LWE modulus parameter q = q(n, L), without instantiating
it, to calculate the other parameters m, s, α. Later, we will instantiate q with a value which
would make m, s, α satisfy the correctness and security properties.

34

• The parameter m = O(n log q).

• The “small” Gaussian parameter s is chosen to be O(
√
n log q).

• Now, let us calculate the value of the “large” Gaussian parameter α = α(n, L).
We should choose α such that the output of the SampleLeft and the SampleRight
algorithms are statistically indistinguishable from each other, when provided with
the same set of inputs F and u.

The SampleRight algorithm (Algorithm 2.5) requires

α > ‖TG‖GS · ‖RBP‖ · ω(
√

logm) (2.7)

where ‖TG‖GS refers to the norm of Gram-Schmidt orthogonalisation of TG. Hence,
we proceed as follows:

1. From Lemma 2.4.6, we have that ‖RBP‖∞ = O(m · L).

2. We then get ‖RBP‖ as follows:

‖RBP‖ := sup
x∈Sm−1

‖RBP · x‖ ≤ m · ‖RBP‖∞ ≤ O(m2 · L)

3. Finally, we substitute this value in Equation 2.7 to get the value of α required
for the SampleRight algorithm.

α ≥ O(m2 · L) · ω(
√

logm) (2.8)

with ‖TG‖GS being a constant.

The value of the parameter α required for the SampleLeft algorithm (Algorithm 2.3)
is

α ≥ ‖TA‖GS · ω(
√

log 2m) ≥ O(
√
n log q) · ω(

√
log 2m) (2.9)

Thus, to satisfy both Equation 2.8 and Equation 2.9, we set the parameter

α ≥ O(m2 · L) · ω(
√

logm) = Õ(n log q)2 · L

Thus, the outputs of the SampleLeft and the SampleRight algorithms will be
statistically indistinguishable from each other, when provided with the same set of
inputs F and u.

35

When our scheme is instantiated with these parameters, the correctness (see Lemma 2.5.1)
of the scheme is satisfied when

O((n log q)6 · L2 ·B) < q/4

Clearly, this condition is satisfied when q = Õ(n7L2). Also, this value of q = poly(n) (for
any L = poly(n)), enables both the quantum reduction [186] and the classical reduction
[180] from dLWEn,q,χ to approximating lattice problems in the worst case, when n, χ chosen
as described above. To conclude this section, for a given max length L and an LWE
dimension n = n(λ), we set the parameters for our scheme to satisfy both the correctness
and security, as follows:

χ = DZ,
√
n

B = O(n)

q = Õ(n7L2)

m = O(n log q)

s = O(n log q)

α = Õ(n log q)2 · L

2.7 Single-key Functional Encryption with short se-

cret keys

Now, we use our ABE scheme to construct a single-key secure FE scheme (SKFE) with
short secret keys. We will use the transformation provided by Goldwasser et al. [104] who
used ABE and fully-homomorphic encryption to construct single-key functional encryption
and reusable garbled circuits.

2.7.1 Definitions

We recall the functional encryption definition from the literature [141, 44, 106] with some
notational changes.

A functional encryption scheme FE for a class of predicates with an n-bit input P =
{Pn}n∈N is a tuple of four p.p.t. algorithms (FE.Setup, FE.Keygen, FE.Enc, FE.Dec) such
that:

36

FE.Setup(1λ)→ (mpk,msk) : The setup algorithm takes as input the security parameter
1λ and outputs a master public key mpk and a master secret key msk.

FE.Keygen(msk, P)→ skP : The key generation algorithm takes as input the master secret
key msk and a predicate P ∈ P and outputs a key skP .

FE.Enc(mpk, x)→ ctx : The encryption algorithm takes as input the master public key
mpk and an input x ∈ {0, 1}∗ and outputs a ciphertext ctx.

FE.Dec(skP , ctx) : The decryption algorithm takes as input a key skP and a ciphertext ctx
and outputs a value y.

Definition 2.7.1 (Correctness). For any polynomial n(·), for every sufficiently large
security parameter λ, for n = n(λ), for all P ∈ Pn, and all x ∈ {0, 1}n,

Pr[(mpk,msk)← FE.Setup(1λ); skP ← FE.Keygen(msk, P); ctx ← FE.Enc(mpk, x) :

FE.Dec(skP , ctx) = P (x)] = 1− negl(λ).

Security of Single Key Functional Encryption

Intuitively, the security of SKFE requires that an adversary should not learn anything
about the input x other than the computation result P (x), for some predicate P for which
a key was issued (the adversary can learn the predicate description P). Two notions of
security have been used in the previous works: full and selective security, with the same
meaning as for ABE. We present both definitions because we achieve them with different
parameters of the gapSVP assumption. Our definitions are simulation-based: the security
definition states that whatever information an adversary is able to learn from the ciphertext
and the function keys can be simulated given only the function keys and the output of the
function on the inputs.

Definition 2.7.2 (FULL-SIM- FE Security). Let FE be a functional encryption scheme for
the family of predicates P = {Pn}n∈N. For every p.p.t. adversary A = (A1, A2) and p.p.t.
simulator S, consider the following two experiments:

37

expreal
FE,A(1λ): expideal

FE,A,S(1λ):

1: (mpk,msk)← FE.Setup(1λ)
2: (P, stateA)← A1(mpk)
3: skP ← FE.Keygen(msk, P)
4: (x, state′A)← A2(stateA, skP)

5: ctx ← FE.Enc(mpk, x)
6: Output (state′A, ctx)

5: c̃tx ← S(mpk, skP , P, P (x), 1|x|)
6: Output (state′A, c̃tx)

The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator
S such that for all pairs of p.p.t. adversaries (A1, A2), the outcomes of the two experiments
are computationally indistinguishable:{

expreal
FE,A(1λ)

}
λ∈N

c
≈
{

expideal
FE,A,S(1λ)

}
λ∈N

We now define selective security, which is a weakening of full security, by requiring
the adversary to provide the challenge input x before seeing the public key or any other
information besides the security parameter. We simply specify the difference from full
security.

Definition 2.7.3 (SEL-SIM-FE Security). The same as Def. 2.7.2, but modify the game
so that the first step consists of A specifying the challenge input x given only the security
parameter.

2.7.2 Construction

In this section we show the gain in efficiency in the size of the secret key for the SKFE
scheme that we obtain by using our ABE schemes.

From [104], we know how to obtain a single-key functional encryption scheme for a
class of predicates P from:

1. Fully-homomorphic encryption for P

2. Attribute-based encryption supporting a predicate class that includes FHE evaluation
algorithms for P

38

3. One-time garbled circuits (Eg. Yao’s garbled circuits [210])

Theorem 2.7.1 ([104]). There is a (fully/selectively secure) single-key functional encryp-
tion scheme FE for any class of predicates P that take ` bits of input and produce a
one-bit output, assuming the existence of (1) P-homomorphic encryption scheme, (2) a
(fully/selectively) secure ABE scheme for a related class of predicates and (3) Garbling
Scheme, where:

1. The size of the secret key is 2 ·α ·abe.keysize, where abe.keysize is the size of the ABE
key for circuit performing homomorphic evaluation of C and outputting a bit of the
resulting ciphertext.

2. The size of the ciphertext is 2 · α · abe.ctsize(` · α + γ) + poly(λ, α, β)

where (α, β, γ) denote the sizes of the FHE (ciphertext, secret key, public key), respectively.
abe.keysize, abe.ctsize(k) are the size of ABE secret key, ciphertext on k-bit attribute vector
and λ is the security parameter.

We use the same transformation by replacing the ABE scheme of [107] with our ABE
scheme. The FHE of [51] can also be instantiated assuming the polynomial hardness of
LWE.

Corollary 2.7.2. Combining our ABE construction (Lemma 2.5.2 and Section 2.5) with
Theorem-2.7.1 and assuming a NC1 representation of the evaluation algorithm of [51] when
evaluating NC1 predicates, we obtain a single-key functional encryption scheme for a family
of length-L = poly(λ) branching programs based on the polynomial hardness of LWE with
the size of the secret keys being L+ poly(λ, logL), where λ is the security parameter.

2.8 Conclusion and next steps

This chapter provided an attribute-based encryption scheme and a single-key functional
encryption scheme supporting the computation class of branching programs. The
asymptotic parameters for the instantiation of our ABE scheme were provided.

Good news for ABE Over the last few years, there has been an extensive work
in the implementation of lattice-based cryptographic algorithms. The primitive lattice-
based algorithms like key-exchange and signatures are interesting for their security against

39

quantum adversaries and the NIST competition [171]. The advanced lattice-based
algorithms like fully-homomorphic encryption are interesting for their potential application
in outsourced computations. The progress made here is not limited to these applications.
The tools developed also help in the implementation of other lattice-based cryptographic
primitives like ABE. There are real-world applications like key management in Huawei
devices that use ABE with a simple class of functionalities. Some properties like short
secret keys are currently available only in lattice-based ABE constructions. Hence, there
is huge potential for lattice-based ABE constructions to find real-world applications once
the core lattice algorithms become practical.

But for FE... The lattice-based construction for functional encryption though requires
more optimizations than the ABE scheme to achieve practical performance. As we will
discuss in later chapters, the FE constructions like ours that are based on standard
cryptographic assumptions have their parameters grow with the number of computation
secret keys supported [106], even if we were to waive the need for short secret keys. The
performance overhead worsens when supporting more expressive functionalities required
for real world applications. This motivates the need for new perspectives for designing
FE.

40

Chapter 3

A Formal Introduction to SGX

3.1 Intel SGX Background

Intel Software Guard Extensions (SGX) [158] is a set of processor extensions to Intel’s
x86 design that allow for the creation of isolated execution environments called enclaves.
These isolated execution environments are designed to run software and handle secrets
in a trustworthy manner, even on a host where all the system software (including OS,
hypervisor, etc) and system memory are untrusted. The isolation of enclave resident
applications from all other processes is enforced by hardware access controls. The SGX
specifications are detailed and complex [129, 158].

There are three main functionalities that enclaves achieve:

• Isolation–code and data inside the enclave protected memory cannot be read/modified
by any process external to the enclave.

• Sealing–data passed to the host environment is encrypted and authenticated with a
hardware-resident key.

• Attestation–a special signing key and instructions are used to provide an unforgeable
report attesting to code, static data, and (hardware-specific) metadata of an enclave,
as well as outputs of computations performed inside the enclave.

Let us explain these three functionalities in more detail.

41

3.1.1 Isolation.

Enclaves reside in a hardware guarded area of memory called the Enclave Page Cache
(EPC). The EPC is currently limited to 128 MB, consisting of 4KB page chunks, and
applications can use approximately 90 MB. When an enclave program is loaded, its code
and static data are copied from untrusted memory to pages inside the EPC. A measurement
of the contents of these pages called MRENCLAVE (essentially a SHA256 hash of the
page contents) is also stored inside the EPC in a structure that is linked to the enclave.
Entry into the enclave is not permitted throughout this process until the measurement
has been finalized. The creation process establishes an enclave identity, which is used as
a handle to transfer program control to the enclave. The hardware enforces that only the
executable code pages associated with a particular enclave identity can access the other
pages associated with that identity.

3.1.2 Sealing.

Every SGX processor has a key called the Root Seal Key that is embedded during the
manufacturing process. An enclave can use the EGETKEY instruction to derive a key called
Seal Key from the Root Seal Key that is specific to the enclave identity, which can be
used to encrypt/authenticate data and store it in untrusted memory. Sealed data can be
recovered by the same enclave even after enclave is destroyed and restarted on the same
platform. But the Seal key cannot be derived by a different enclave on the same platform
or any enclave on a different platform.

3.1.3 SGX Attestation

Local attestation Local attestation is between two enclaves on the same platform. The
program in the enclave generating the attestation specifies a target enclave that will verify
the attestation and invokes the EREPORT instruction. EREPORT first generates a report
containing the MRENCLAVE and metadata of the calling enclave, fetching this information
directly from protected memory and registers. The report may also include additional data
provided by the calling enclave. Second, EREPORT uses the target enclave specification
(measurements and metatada) to derive the target enclave’s Report Key from the Root
Seal Key. It then uses this Report Key to compute a MAC over the report. Any enclave

42

can use the EGETKEY instruction to fetch its own Report Key, derived from the Root Seal
Key and measurements/metadata linked to the enclave. Thus, the target enclave, which
resides on the same platform as the attesting enclave and shares the same Root Seal Key,
will be able to derive the Report Key it needs to verify the MAC on report.

Remote attestation Local attestation is leveraged in remote attestation, which
generates enclave reports that can be verified by remote parties. Roughly, a special
enclave called the Quoting Enclave will process local attestations from other enclaves and
convert these into remote attestations called quotes. More specifically, the Quoting Enclave
possesses a private member key for an anonymous group signature scheme called Intel
Enhanced Privacy ID (EPID) [135] that is uses to sign reports received from other locally
attesting enclaves. In EPID, an issuer (in this case Intel) generates a group public key
gpk, and registers members of the group by issuing member private keys. Member keys are
issued through a blind join protocol and are unknown to the issuer. Signatures generated
from private member keys can be publicly verified using gpk, but cannot be linked to any
particular member key.1

EPID key provisioning The Quoting Enclave obtains the EPID private key through
an involved process with the Intel Provisioning Server. Every SGX CPU has another
embedded key called the Root Provisioning Key. Unlike the Root Seal Key, the Root
Provisioning Key is also given to the Intel Provisioning Server. Another special enclave
called the Provisioning Enclave calls EGETKEY to derive a Provisioning Key from the Root
Provisioning Key incorporating specific information about the trusted computing base
(TCB), enclave measurements, and metadata. Since the Intel Provisioning Server can
derive the same key, the Provisioning Enclave symmetrically authenticates to the Intel
Provisioning Server, demonstrating that it is a valid Provisioning Enclave running on
a genuine Intel SGX CPU at a specific TCB. Finally, an EPID private member key is
delivered to the Provisioning Enclave through the EPID blind join protocol, and this key
is passed to the Quoting Enclave.

3.1.4 SGX TCB.

SGX stands out in that its TCB consists only of the CPU microcode and privileged con-
tainers, however it also requires the user to trust in Intel’s key management infrastructure

1Currently, EPID signatures need to be verified by contacting the Intel Attestation Server.

43

for signing microcode and various service enclaves. In particular, we must trust that the
root seal keys embedded into devices are not leaked from the manufacturing facility, and
that the Intel Provisioning Server safely manages root provisioning keys as well as EPID
master secret keys.

3.1.5 SGX side-channel attacks and defenses

Cache-timing attacks [75] cause cache misses and thus may observe enclave memory access
patterns at cache-line granularity. Similarly, page-fault attacks [208] can cause enclave page
lookups to result in page-faults and thus may observe enclave memory access patterns
at 4KB page granularity. Next, branch shadowing may directly infer control flow (i.e
branches) in an enclave process. Branch shadowing exploits the fact that SGX does not
erase branch history, which is used by the CPU for branch prediction, and is important
for performance of the instruction pipeline. The attack infers from timing differences in
branch prediction whether a target branch is stored in the branch history. And, finally
synchronization bugs in the multi-threaded code running in SGX could potentially lead
to even circumventing the Intel licensing procedure in creating SGX production enclaves
[207]. These bugs are relatively easier to exploit in SGX than outside because the attacker
model allows an untrusted OS which can control the thread scheduling of enclaves.

One defense against all the above software attacks is to ensure that enclave programs
are data-oblivious, i.e. do not have memory access patterns or control flow branches that
depend on the values of sensitive data. Ohrimenko et. al. [173] take this approach in their
design of privacy-preserving multi-party machine learning using SGX. T-SGX [194] also
provides countermeasures against controlled-channel attacks. A more general approach
is to use ORAM techniques, as in [185, 155], though this can result in a considerable
performance overhead. Several countermeasures to the branch shadowing attack, both
hardware and software based, were proposed in [146]. Hardware countermeasures would
require changes to SGX architecture. Defense mechanisms against different kinds of
synchronization bugs already exist as listed by [207]. SGX-Shield [193] enables ASLR
for SGX, which helps defend against these attacks in general. More recently, SGX has also
been shown to be vulnerable to the “microarchitectural implementation bugs” [154] in the
x86 architecture [56]. As [56] explains, this is due to the tight coupling of SGX with x86
and not due to the architectural design of SGX.

Sanctum [76] is an academic SGX-like system that is resilient to both cache-timing
and page-fault attacks, demonstrating that these attacks are not inherent in SGX-like

44

systems. SGX is an evolving technology, and so we can expect that even hardware based
countermeasures could be incorporated into future SGX versions (see changes already in
SGX2 [132]).

3.2 Formal Models and Definitions

In this section, we will formally define a model for trusted hardware inspired by SGX.

3.2.1 Formal HW model

We describe a black-box program HW that captures the trusted hardware’s functionality
and its interface exposed to the user.

Definition 3.2.1. The functionality HW for a class of (probabilistic polynomial time)
programs Q consists of HW.Setup, HW.Load, HW.Run, HW.Run&Report, HW.Run&Quote,
HW.ReportVerify, HW.QuoteVerify. HW has an internal state state that consists of two
variables HW.skquote and HW.skreport and a table T consisting of enclave state tuples indexed
by enclave handles.

• HW.Setup(1λ): This takes in a security parameter λ and generates the secret keys skquote,
skreport, and stores these in HW.skquote,HW.skreport respectively. Finally, it generates and
outputs public parameters params.

• HW.Load(params, Q): This loads a stateful program into an enclave. HW.Load takes as
input a program Q ∈ Q and some global parameters params. It first creates an enclave
and loads Q and generates a handle hdl that will be used to identify the enclave running
Q. It initializes the entry T [hdl] = ∅ and outputs hdl.

• HW.Run(hdl, input): This runs an enclave program. It takes in a handle hdl corresponding
to an enclave running the stateful program Q and an input input. It runs Q at state
T [hdl] with input input and records the output output. It sets T [hdl] to be the updated
state of Q and outputs output.

• HW.Run&Reportskreport(hdl, input): This executes a program in an enclave and also
generates an attestation of its output that can be verified by an enclave program
on the same HW platform. It takes as inputs a handle hdl for an enclave running
a program Q and an input input for Q. The algorithm first executes Q on input

45

to get output, and updates T [hdl] accordingly. HW.Run&Report outputs the tuple
report :=

(
mdhdl, tagQ, input, output,mac

)
, where mdhdl is the metadata associated with

the enclave, tagQ is a program tag that can be used to identify the program running
inside the enclave (it can be a cryptographic hash of the program code Q) and mac is a
cryptographic MAC produced using skreport on (mdhdl, tagQ, input, output).

• HW.Run&QuoteskHW(hdl, input): This executes a program in an enclave and also generates
an attestation of its output that can be publicly verified, e.g. by a remote party.
This takes as inputs a handle hdl corresponding to an enclave running a program Q
and an input input for Q. This algorithm has restricted access to the key skHW for
using it to sign messages. The algorithm first executes Q on input to get output,
and updates T [hdl] accordingly. HW.Run&Quote then outputs the tuple quote :=(
mdhdl, tagQ, input, output, σ

)
, where mdhdl is the metadata associated with the enclave,

tagQ is a program tag for Q and σ is a signature on (mdhdl, tagQ, input, output).

• HW.ReportVerifyskreport(hdl
′, report): This is the report verification algorithm. It takes as

inputs, a handle hdl′ for an enclave and a report =
(
mdhdl, tagQ, input, output,mac

)
. It

uses skreport to verify the MAC. If mac is valid, it outputs 1 and adds a tuple (report, 1)
to T [hdl′]. Otherwise it outputs 0 and adds (report, 0) to T [hdl′].

• HW.QuoteVerify(params, quote): This is the quote verification algorithm. This takes
params and quote =

(
mdhdl, tagQ, input, output, σ

)
as input. It outputs 1 if the signature

verification of σ succeeds. It outputs 0 otherwise.

• HW.Sealsk′HW(AAD,msg): This is the sealing algorithm which is an authenticated
encryption algorithm. This takes a message and an additional data AAD as inputs
and outputs the ciphertext seal ct.2 Here, AAD is the additional authentication data
which is included as a part of the MAC step to provide integrity but not encrypted
along with msg. We will ignore the AAD argument when there is none.

• HW.Unsealsk′HW(AAD, seal ct): This is the unsealing algorithm which is the decryption
for the authenticated encryption. This takes the ciphertext seal ct and the additional
data AAD as inputs and outputs msg or ⊥.

In Section 3.3, we formally define the correctness of HW as well as the security
properties of HW.Run&Report, HW.Run&Quote, HW.ReportVerify, and HW.QuoteVerify
as local attestation unforgeability (LocAttUnf) and remote attestation unforgeability
(RemAttUnf).

2SGX uses AES-GCM to encrypt msg using the Seal key of the enclave calling the function.

46

Oracles and handles HW models a single SGX chip. When a system involves multiple
HW platforms, each is modeled by a separate HW instance. When a particular process
needs to interact with multiple platforms, the remote interactions are modeled through
oracle calls, which in the real world corresponds to communicating with a process running
on the relevant remote machine. The handles in the model generated by HW.Load do not
need to secret or unpredictable. They are only relevant to the interfaces described in HW,
which by definition can only be accessed by the HW instance itself. More concretely, in the
real world SGX instantiation, these enclave handles are used only by processes running on
the same machine as the enclave(s).

Modeling assumptions One way of viewing this definition of HW is that it describes
the ideal functionality or oracle that models the real (physical) world assumptions about
the hardware security properties of Intel SGX), and that an adversary shouldn’t be able to
distinguish between interacting with the real world hardware and the ideal functionality.
This allows us to simulate the adversary’s interaction with HW in a proof of security, but
it is a very strong assumption on the trusted hardware being used, particularly since the
adversary has access to the physical hardware and can closely monitor its behavior. A
weaker assumption, stated informally, is simply that the adversary gains no more “useful”
information from querying the real hardware on some input beyond the outputs specified
by HW, without requiring that an adversary’s physical interactions with HW cannot be
simulated. We explore both models in our construction of functional encryption from
HW, though it turns out that we cannot achieve the standard non-interactive notion of
functional encryption in the stronger security model.

Related models Barbosa et. al. [29] define a similar interface/ideal functionality to
represent systems like SGX that perform attested computation. Compared to their model,
our model sacrifices some generality for a simpler syntax that more closely models SGX.
Their security model uses a game-based definition of attested computation, similar to the
second security model we discuss in Definition 4.6.2.

Pass, Shi, and Tramer [179] also define an ideal functionality for attested computation
in the Universal Composability framework [59]. The goal of their model is to explore
composable security for protocols using secure processors performing attested computation.
Similar to [29] their syntax is more abstract that ours, e.g. does not distinguish between
local and remote attestation. However, their hardware security model is more similar
in that it allows the hardware functionality to be simulated. A key difference is that
their simulator does not possess the hardware’s secret signing key(s) used to generate

47

attestations. Our simulator will be given the hardware’s secret keys, similar to trapdoor
information in CRS-model proofs.

Bahmani et al [25] adapts the SGX model of [29] to deal with sequences of
SGX computations that may be stateful, asynchronous, and interleaved with other
computations. Their model is called labelled attested computation, which refers to labels
being appended to every enclave input/output in order to track state. This capability is
implicitly captured in our model as well.

3.3 HW correctness and security definitions

Correctness A HW scheme is correct if the following things hold (using the syntax from
Definition 3.2.1): For all Q ∈ Q, all input in the input domain of Q and all handles hdl′ ∈ H,

• Correctness of Run: output = Q(input) if Q is deterministic. More generally, ∃
random coins r (sampled in run time and used by Q) such that output = Q(input).

• Correctness of Report and ReportVerify:

Pr
[
HW.ReportVerifyskreport(hdl

′, report) = 0
]

= negl(λ)

• Correctness of Quote and QuoteVerify:

Pr
[
HW.QuoteVerify(params, quote) = 0

]
= negl(λ)

We now define the security properties of the HW primitive.

3.3.1 Local attestation unforgeability

The local attestation unforgeability (LocAttUnf) security is defined similarly to the
unforgeability security of a MAC scheme. Informally, it says that no adversary can produce
a report =

(
md′hdl, tagQ, input, output,mac

)
that verifies correctly for any hdl′ ∈ H and

output = Q(input), without querying the inputs (hdl, input).

This is formally defined by the following security game.

Definition 3.3.1. (LocAttUnf-HW). Consider the following game between a challenger C
and an adversary A.

48

1. C runs the HW.Setup(1λ) algorithm to obtain the public parameters params, secret
keys (skHW, skreport) and an initialization string state. It gives params to A, and keeps
(skHW, skreport) and state secret in the trusted hardware.

2. C initializes a list query = {}.

3. A can run HW.Load on any input (params, Q) of its choice and get back hdl.

4. A can run HW.Run&Reportskreport on input (hdl, input) of its choice and get report :=(
mdhdl, tagQ, input, output,mac

)
. For every run, C adds the tuple (mdhdl, tagQ, input, output)

to the list query.

5. A can also run HW.ReportVerify on input (hdl′, report) of its choice and gets back the
result.

We say the adversary wins the above experiment if:

1. HW.ReportVerifyskreport(hdl
′∗, report∗) = 1, where report∗ = (md∗hdl, tag

∗
Q, input

∗, output∗,mac∗)
and

2. (md∗hdl, tag
∗
Q, input

∗, output∗,mac∗) was not added to query before A queried HW.ReportVerify
on (hdl′∗, report∗).

The HW scheme is LocAttUnf-HW secure if no adversary can win the above game with
non-negligible probability.

3.3.2 Remote attestation unforgeability

The remote attestation unforgeability (RemAttUnf) security is defined similarly to the
unforgeability security of a signature scheme. Informally, it says that no adversary can
produce a quote =

(
hdl, tagQ, input, output, π

)
that verifies correctly and output = Q(input),

without querying the inputs (hdl, input).

This is formally defined by the following security game.

Definition 3.3.2. (RemAttUnf-HW). Consider the following game between a challenger
C and an adversary A.

1. C runs the HW.Setup(1λ) algorithm to obtain the public parameters params, secret
keys (skHW, skreport) and an initialization string state. It gives params to A, and keeps
(skHW, skreport) and state secret in the trusted hardware.

49

2. C initializes a list query = {}.

3. A can run HW.Load on any input (params, Q) of its choice and get back hdl.

4. Also, A can run HW.Run&Quote on input (hdl, input) of its choice and get quote :=(
mdhdl, tagQ, input, output, π

)
. For every run, C adds the tuple (mdhdl, tagQ, input, output)

to the list query.

5. Finally, the adversary outputs quote∗ = (md∗hdl, tag
∗
Q, input

∗, output∗, π∗).

We say the adversary wins the above experiment if:

1. HW.QuoteVerify(params, quote∗) = 1,

2. (md∗hdl, tag
∗
Q, input

∗, output∗) /∈ query

The HW scheme is RemAttUnf-HW secure if no adversary can win the above game with
non-negligible probability.

Note that the scheme is secure even if A can produce a quote∗ different from the
query outputs for some (md∗hdl, tag

∗
Q, input

∗, output∗) ∈ query. But quote∗ cannot be a
proof for a different program or input or output. This definition resembles the existential
unforgeability like notions.

The security of the sealing procedure using Seal and Unseal is the same as the security
of an authenticated encryption scheme [188, 34].

We also point out some other important properties of the trusted hardware that we
impose in our model.

• Any user only has black box access to these algorithms and hence hidden from the
internal secret key skHW, initial state state or intermediary states of the programs
running inside secure containers.

• The output of the HW.Run&QuoteskHW
algorithm is succinct: it does not include the

full program description, for instance.

50

3.4 Differences between HW and Intel SGX

Here we list and justify the simplifications we made to SGX in order to formally model its
functionality and reason about the security of our system.

• In our model, HW is a black-box program that loads and manages enclaves, which
includes updating their state in HW.ReportVerify. This internal management is
entirely hidden from the user, which only sees the interface, inputs, and outputs.
In real Intel SGX, only operations internal to a program running in an enclave (i.e.
instructions that operate on registers/memory in the EPC) are entirely hidden from
the user, and the enclave program’s state cannot be modified by an external entity.
Programs running in enclaves can directly run instructions to generate and verify
reports.

• The key skHW used to sign remote attestations in our model is generated during
HW.Setup (i.e. in the trusted manufacturing facility). In Intel SGX, this key is
not actually fused into the device. It is delivered to an special enclave QE (the
Quoting Enclave) running on the device that symmetrically authenticates to the
Intel Provisioning Server by accessing a key (the Root Provisioning Key) that is
fused into the device and also given to Intel. The QE then receives the private
key for a group signature scheme through a blind join protocol (see [135]), and uses
this key to generate quotes on behalf of other enclaves. Our model compresses the
manufacturing and provisioning processes into HW.Setup.

• Our HW.Run&Report algorithm generates a report that can be verified by any enclave
on the same HW platform. In SGX, a report is generated for a specific destination
enclave and only that enclave can verify its validity. However, this particular feature
of SGX is not relevant for our application.

• Intel SGX also has the capability of sealing data with a hardware fused Seal Key. In
particular, this allows the device to use persistent storage for keys. For simplicity, we
do not include this in our formal model, and assume the trusted HW functionality is
persistent.

• HW.Run&Quote and HW.QuoteVerify use a standard cryptographic signature scheme
to sign and verify quotes. In Intel SGX the signatures used for quotes are actually
anonymous group signatures, but this additional property is not relevant to our
application, so we omit it for simplicity. Moreover, currently Intel SGX requires
the user to contact the Intel Attestation Server (IAS) to verify group signatures.

51

Theoretically, verifying an anonymous group signature only requires the public group
key, and needn’t involve the IAS.

52

Chapter 4

Functional Encryption from SGX

4.1 The need for practical solutions for Functional

Encryption

We earlier motivated the primitive of functional encryption with a user of cloud computing
using this primitive of FE to generate the parameters and the keys for the system. She ran
all the FE.Setup, FE.Keygen and FE.Enc. This version of FE is called private-key functional
encryption.

A public-key functional encryption is more general where a trusted authority runs
FE.Setup to generate msk and mpk. The authority holding a master secret key msk can
generate special functional secret keys, where each functional key skf is associated with
a function (or program) f on plaintext data. When the key skf is used to decrypt a
ciphertext ct, which is the encryption of some message m, the result is the quantity f(m).
Nothing else about m is revealed.

Further, Multi-Input Functional Encryption (MIFE) [103] is an extension of FE, where
the functional secret key skg is associated with a function g that takes ` ≥ 1 plaintext
inputs. When invoking the decryption algorithm D on inputs D(skg, c1, . . . , c`), where
ciphertext number i is an encryption of message mi, the algorithm outputs g(m1, . . . ,m`).
Again, nothing else is revealed about the plaintext data m1, . . . ,m`. Functions can be
deterministic or randomized with respect to the input in both single and multi-input
settings [112, 103]. If FE and MIFE could be made practical, they would have numerous
real-world applications.

53

The problem is that currently there aren’t any practical constructions of FE from
standard cryptographic assumptions for anything more than simple functionalities (e.g.,
inner products). Moreover, there is evidence that constructing general-purpose FE is
as hard as constructing program obfuscation [93, 35, 19]. However, existing candidate
constructions for obfuscation are impractical [147] and rely on very new and unestablished
computational hardness assumptions, some of which have been broken [165, 70]. Previous
work proposed using trusted hardware to instantiate FE, however it relied on simulatable
hardware “tokens” which did not model real hardware [72].

4.2 Our contributions

We propose the first practical and provably secure FE system that can be instantiated today
from real commonly available hardware. We implemented our proposed system, called
Iron, using Intel’s Software Guard Extensions (SGX) and performed evaluation to show its
practical efficiency compared with alternative cryptographic algorithms. We also propose
a formal cryptographic model for analyzing the security of an SGX-based FE system and
prove that Iron satisifes our security definitions.

Intel SGX provides hardware support for isolated program execution environments
called enclaves. Enclaves are encrypted memory containers that protect against operating
system, hypervisor, physical, and malware attacks. However, designing a provably secure
application from Intel SGX is a non-trivial task. While a number of works showed how
to build cryptographic algorithms and systems from Intel SGX [190, 21, 201, 195, 211,
122, 29, 25], only a handful of works have attempted to model and prove systems security
from Intel SGX [122, 29, 25, 179]. Reminiscent to secure protocols (such as SSL/TLS),
which are easy to construct from basic cryptographic primitives, but are notoriously hard
to analyze and prove, doing so requires careful understanding of nuances and techniques.
We believe Intel SGX (and similar trusted hardware technologies) will become standard
cryptographic tools for building secure systems. Thus, it is important to understand how
to build a system with a formal model and guarantees from the beginning.

Establishing a rigorous connection between Iron and the cryptographic notion of FE is
also particularly useful since FE is a very general and powerful primitive that can be used
to directly construct many other cryptographic primitives, including fully homomorphic
encryption (FHE) [60, 16] and obfuscation [35, 19]. Thus, rather than a complete system
on its own, we view Iron as a basic framework upon which a family of more application-
specific systems can be built in the future, and automatically inherit Iron’s rigorous notion
of security.

54

The security of Iron relies on trust in Intel’s manufacturing process and the robustness
of the SGX system. While we focus on implementing Iron with Intel SGX, in principle
the system could be instantiated using other isolated execution environments that also
support remote software attestation, such as XOM [152], AEGIS [199, 200], Bastion [65],
Ascend [88] and Sanctum [76]. Each of these systems have slightly different trust
assumptions and trusted computing bases (TCBs). A detailed comparison of these systems
to Intel SGX is covered in [75]. It is important to acknowledge the limitations of basing
security on trust in any particular hardware design. For instance, several side-channel
attacks have come to light since SGX’s initial release [208, 207, 146, 52, 192]. In our
system, we ensure that the functionalities we implemented are resistant to known side-
channel attacks on SGX. Generic techniques for protection against enclave side channels
are also under study in various works [185, 155, 207, 146, 193].

4.2.1 Construction overview

The design of Iron is described in detail in Section 4.4. At a high level, the system
uses a Key Manager Enclave (KME) that plays the role of the trusted authority who
holds the master key. This authority sets up a standard public key encryption system
and signature scheme. Anyone can encrypt data using the KME’s published public key.
When a client (e.g., researcher) wishes to run a particular function f on the data, the
client requests authorization from the KME. If approved, the KME releases a functional
secret key skf that takes the form of an ECDSA signature on the code of f . Then, to
perform the decryption, the client runs a Decryption Enclave (DE) running on an Intel
SGX platform. Leveraging remote attestation, the DE can obtain over a secure channel
the secret decryption key from the KME to decrypt ciphertexts. The client then loads skf
into the DE, as well as the ciphertext to be operated on. The DE, upon receiving skf and
a ciphertext, checks the signature on f , decrypts the given ciphertext, and outputs the
function f applied to the plaintext.

We implemented Iron and report on its performance for a number of functionalities.
For complex functionalities, this implementation is (unsurprisingly) far superior to any
cryptographic implementation of FE (which does not rely on hardware assumptions). We
show in Section 4.5 that even for simple functionalities, such as comparison and small
logical circuits, our implementation outperforms the best cryptographic schemes by over a
10,000 fold improvement. Furthermore, we discuss how Iron could support more expressive
function authorization policies that are not possible with standard FE.

55

Security analysis. In this work we formalize our trust assumptions and definition of
security for hardware-assisted FE, as well as rigorously prove the security of our system in
this formal model (Section 4.6.3 and Section 4.7). While our construction of SGX-assisted
FE/MIFE is clean and simple, formally proving security turns out to be complicated and
non-trivial. For instance, we encounter a TLS-like situation where we have to show that no
information is revealed from an encryption of m whose corresponding secret decryption key
is transferred from KME to DE to the third enclave using the secure channels established
between these enclaves. With an adversary being able to tamper with the inputs and
the outputs of these enclaves, the “simulator” that we construct to prove the simulation-
security of FE requires more care. Section 4.7 has more details on this.

4.3 Related Work

A number of papers use SGX to build secure systems. Haven [32] protects unmodified
Windows applications from malicious OS by running them in SGX enclaves. Scone [21]
and Panoply [195] build secure Linux containers using SGX. VC3 [190] enables secure
MapReduce computations while keeping both the code and the data secret using SGX.
A complete security analysis of the system was also presented but the system evaluation
was performed using their own SGX performance model based on the Intel whitepapers.
Ohrimenko et al. [173] present data-oblivious algorithms for some popular machine learning
algorithms. These algorithms can be used in conjunction with our system if one wants
an FE scheme supporting machine learning functionalities. Gupta et al. [122] proposed
protocols and theoretical estimates for performing secure two-party computation using
SGX based on the SGX specifications provided in Intel whitepapers. Concurrent to our
work, Bahmani et al. [25] proposed a secure multi-party computation protocol where one
of the parties has access to SGX hardware and performs the bulk of the computation.
They evaluate their protocol for Hamming distance, Private Set Intersection and AES.
This work and [179] also attempt formal modeling of SGX like we do. We discuss the
comparison between the models in Section 3.2.1. Also concurrent to our work, Nayak et al.
[170] designed and implemented a construction for virtual black-box obfuscation (a crypto
primitive even stronger than FE) using a version of trusted hardware that they design and
prototype in an FPGA. In contrast, our work focuses on studying the provable guarantees
from a commercially available hardware.

[72] first proposed a way to bypass the impossibility results in functional encryption by
the use of “hardware tokens”. But, their work is purely theoretical and they model trusted
hardware as a single stateless deterministic token, which does not capture how SGX works

56

because their hardware token is initialized during FE.Setup (refer Definition 5 of [72]).
But in SGX, and hence in our model, the trusted hardware HW is setup and initialized
independent of FE.Setup by the trusted hardware manufacturer, Intel. After this point, an
adversary who is in possession of the hardware can monitor and tamper with all the input
coming in to the hardware and the corresponding outputs. Naveed et al. [168] propose
a related notion of FE called “controlled functional encryption”. The main motivation of
C-FE is to introduce an additional level of access control, where the authority mediates
every decryption request.

In general, various forms of trusted hardware (real ones like TPM [115] and Intel TXT
[128] and theoretical ones like tamper-proof tokens [139, 102]) have enabled applications
like one-time programs [102], a contractual anonymity system [191], secure multi-party
computation with some strong security guarantees [111] that are either not possible or not
practical otherwise.

4.4 System Design

4.4.1 Architecture overview

Platforms The Iron system consists of a single trusted authority (Authority) platform
and arbitrarily many decryption node platforms, which may be added dynamically. Both
the trusted authority and decryption node platforms are Intel SGX enabled. Just as in
a standard FE system, the Authority has the role of setting up public parameters as well
as distributing functional secret keys, or the credentials required to decrypt functions of
ciphertexts. A client application, which does not need to run on an Intel SGX enabled
platform, will interact once with the Authority in order to obtain credentials (i.e., a secret
key) for a function and will then interact with any decryption node in order to perform
functional decryptions of ciphertexts.

Protocol flow The public parameters that the Authority generates includes a public en-
cryption key for a public key cryptosystem and a public verification key for a cryptographic
signature scheme. The Authority manages the corresponding secret decryption key and
secret signing key. Through remote attestation, the Authority platform provisions the secret
decryption key to a special enclave called a decryption enclave (DE) on the decryption
node(s). Ciphertexts are encrypted using the public encryption key. To authorize a client
application to run a function on ciphertexts, the Authority signs the function code using

57

its secret signing key, and sends this signature to the client. When the client sends a
ciphertext, function code, and valid signature on the function code to the decryption node,
the DE with access to the secret key checks the signature, decrypt the ciphertext, run the
function on the plaintext, and output the result. The enclave aborts on invalid signatures.

Decryption enclaves & function enclaves Thus far in our simple description of the
protocol flow, there is a single enclave on the decryption node (the DE) that manages
the secret decryption key, checks function signatures, and performs functional decryption.
This requires the DE to receive code as input (after enclave initialization) and to both
check a signature on the code as well as execute the code. However, in the current version
of SGX, enclaves cannot dynamically allocate new code pages. All enclave memory as well
as the Read, Write, and Execute (RWX) permissions of each page must be committed
before initialization (i.e., at build time). Therefore, the only way for the DE to execute
the function it receives as native code would be to pre-allocate empty pages at build
time that are both writeable and executable, and to write the function code it receives
to these pages.1 There are several drawbacks to this approach, namely that it requires
the DE to predetermine the maximum size of any function it will support, and conflicts
with executable space protection (the function code is more vulnerable to exploits that
might overwrite code pages). A second option is to execute the function inside the DE as
interpreted code, but this could greatly impact performance for more complex functions.

The third option is to load functions in entirely separate function enclaves and take
advantage of local attestation, which already provides a way for one enclave to verify the
code running in another. This is the cleanest design and the simplest to implement. One
tradeoff, however, is that creating a new enclave for each authorized function is a relatively
expensive operation. This has little impact on applications that run a few functions on
many ciphertexts, but would impact applications that run many functions on only a few
ciphertexts. We demonstrate in our evaluation (Section 4.5) that for a simple functionality
like Identity Based Encryption (IBE) interpreting the function (i.e. identity match) in an
enclave is an order of magnitude faster.

Authorization policies The Authority has full responsibility over implementing a given
function authorization policy, which governs how it decides whether or not to provide a
given client with a signed function. The enclaves on the decryption platform do not play
any role in implementing this policy. Typically, the details of the authorization policy

1This will change in SGX2[132], which adds instructions to dynamically load new code pages into
enclaves. We can revisit the design based on this new feature when SGX2 becomes available.

58

Figure 4.1: Iron Architecture and Protocol Flow

are beyond the scope of an FE construction and are application specific (we mentioned
several examples in the introduction). It is important to note that in classical FE once
a client obtains a secret key it can use it arbitrarily. Thus authorization policies are
one-time decisions, and cannot cover key revocation, or limits on the number of times
a client may run a function, etc. In contrast, more expressive policies may be possible
in our SGX-assisted version of FE. For example, the secret key could be tagged with an
expiration time that the enclaves on the decryption platform could check before running
decryption by utilizing SGX’s trusted time service [131]. Enforcing limits on the number
of times a client can run a function would require maintaining non-volatile enclave state,
for which SGX does not immediately provide rollback protection (see [157] for a recent
system providing rollback protection using SGX’s monotonic counters [130]. Additionally,
it would require sharing state across all active decryption enclaves with assistance from
the Authority.

59

Key manager enclave The Authority uses the key manager enclave (KME) to generate
encryption and signing keys, and uses this enclave as an oracle to authorize functions.
This might seem unnecessary (in our current implementation) as the Authority can use the
KME to sign any function of its choice, however it offers several advantages. First, it serves
as a way to protect the FE master key against an attacker that does not have long term
access to the machine running the key manager enclave. Furthermore, we can imagine a
more general scenario where the authorization policy is run entirely inside a key manager
enclave, which only signs functions when provided with suitable proof of authorization
which could come from a decentralized authority like a public blockchain or rely on an
independent PKI.

4.4.2 FE Protocols

FE Setup The Authority platform runs a secure enclave called the key manager enclave
(KME) that it uses to generate a public/private key pair (pkpke, skpke) for a CCA2
secure public key cryptosystem and a verification/signing key pair (vksign, sksign) for a
cryptographic signature scheme. The keys pkpke and vksign are published while the keys skpke
and sksign are sealed with the KME’s sealing key and kept in non-volatile storage. Note that
the Authority has full access to the KME and can thus use it to authorize any function, thus
the KME is simply used for key management. The handle to the KME’s signing function
call, which produces signatures using sksign, serves as the trusted authority’s master secret
key.

FE Decrypt Setup When a new decryption node is initialized, the KME establishes
a secure channel with a decryption enclave (DE) running on the decryption node SGX-
enabled platform. The KME receives from the decryption node a remote attestation, which
demonstrates that the decryption node is running the expected DE software and that the
DE has the correct signature verification key vksign. The remote attestation also establishes
a secure channel, i.e. contains a public key generated inside the DE. After verifying the
remote attestation, the KME sends skpke to the DE over the established secure channel,
and authenticates this message by signing it with sksign.At this point, it is not at all obvious
why the KME needs to sign its message to the DE. Indeed, since skpke is encrypted, it seems
that there isn’t anything a man-in-the-middle attacker could do to harm security. If the
message from the KME to the DE is replaced, the decryption node platform would simply
fail to decrypt ciphertexts encrypted under pkpke. However, it turns out that we have to
authenticate the KME’s messages for our formal proof of security to work (see Section 5.6).

60

FE.Keygen A client application requests from the Authority the “secret key” for a
function f .The Authority decides whether the client application is authorized to run the
given function f , and if not it rejects the request. Otherwise, it produces a secret key for the
function f as follows. The function f is wrapped in a function enclave program, described
in more details below. The Authority generates an instance of this function enclave and
obtains an attestation report for the enclave including the MRENCLAVE value mrenclavef.
It then uses the KME signing handle to sign mrenclavef using sksign. The signature sigf is
returned to the client application, and serves as the “secret key” skf .

FE.Encrypt Inputs are encrypted with pkpke using a CCA2 secure public key encryption
scheme.

FE.Decrypt Decryption begins with a client application connecting to a decryption node
that has already been provisioned with the decryption key skpke. The client application
may also run locally on the decryption node. The following steps ensue:

1. If this is the client’s first request to decrypt the function f, the client sends the
function enclave binary enclavef to the decryption node, which the decryption node
then runs. Note that the binary enclavef is initialized by untrusted code running on
the decryption node, not by the DE.

2. The client initiates a key exchange with the function enclave, and receives a remote
attestation that it has successfully established a secure channel with an Intel SGX
enclave running enclavef. (Local client applications skip this step).

3. The client sends over the established secure channel a vector of ciphertexts and the
KME signature sigf that it obtained from the Authority in FE.Keygen.

4. The function enclave locally attests to the DE and passes sigf . The DE validates
this signature against vksign and the MRENCLAVE value mrenclavef, which it obtains
during local attestation. If this validation passes, the DE delivers the secret key skpke
to the function enclave. The DE authenticates its message to the function enclave
by wrapping it inside its own local attestation report.2 Finally, the function enclave
uses skpke to decrypt the ciphertexts and compute f on the plaintext values. The
output is returned to the client application over the function enclave’s secure channel
with the client application.

2Authenticating the DE’s message to the function enclave serves the same purpose as authenticating
the KME’s message to the DE in the formal proof of security.

61

4.5 Implementation and evaluation

We implemented a prototype of the Iron system with a single decryption node and a client
application running locally on the decryption node. The implementation was developed in
C++ using the Intel(R) SGX SDK 1.6 for Windows3. All enclaves link the MSR Elliptic
Curve Cryptography Library 2.0 MSR ECClib.lib4 as a trusted static library, which is used
to implement the elliptic curve ElGamal cryptosystem in a Weierstrass curve over a 256-
bit prime field, and sgx tcrypto.lib, which includes EC256-DHKE key exchange, ECDSA
signatures over the NIST P-256 elliptic curve, Rijndael AES-GCM encryption on 128-
bit key sizes, and SHA256. We implemented a CCA2-secure hybrid encryption scheme
using ElGamal, AES-GCM, and SHA256 in the standard way. We tested the prototype
implementation on a platform running an Intel Skyake i7-6700 processor at 3.40 GHz with
8 GiB of RAM and Windows Server 2012 R2 Standard operating system, compiled with
64-bit and Debug mode build configurations.

We evaluate three special cases of functional encryption: identity based encryption
(IBE), order revealing encryption (ORE), and three input DNF (3DNF). We chose these
primarily to demonstrate how our SGX assisted versions of these primitives perform in
comparison to purely cryptographic versions that have been implemented, ranging from a
widely-used and practical construction (IBE from pairings) to impractical ones (ORE and
3DNF from multilinear maps). Our evaluation confirms that the SGX-based functional
encryption examples we implemented are orders of magnitude faster than cryptographic
solutions without trusted hardware, even for IBE which is already widely used in practice.
We recognize that more complex functionalities than the ones we have implemented,
particularly functions that operate on data outside the EPC, may require additional side-
channel mitigation techniques such as ORAM, which will impact performance. However,
we would still expect these to outperform traditional functional encryption by orders of
magnitude.

Side-channel resilience The function and decryption enclave programs must be
implemented to resist the software based side-channel attacks on SGX described in
Section 3.1.5. The only enclave operations that touch secret data are decryption operations
(AES-GCM and ElGamal) and the specific client functions that are loaded into the function
enclave. Our implementation of AES-GCM uses the SGX SDK cryptographic library,

3https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-
for-Windows-OS.pdf

4https://www.microsoft.com/en-us/research/project/msr-elliptic-curve-cryptography-library

62

which calls the AES-NI instruction for AES-GCM, and hence is resilient to software-based
side-channels. Our implementation of ElGamal decryption uses the MSR Elliptic Curve
Cryptography Library 2.0, which also claims resistance to timing attacks and cache-timing
attacks. We implemented data-oblivious versions of all three client-loaded functions that
we include in our evaluation, hence these functions also do not leak information about the
secret data. This was easy to achieve by implementing data comparisons in x86 assembly
with the setg and sete conditional instructions (similar to [173]).

4.5.1 Implemented ECALLS

Systems using SGX have to be programmed following a specific framework. Enclaves
contain trusted function calls (ECALLs) that are executed in enclaves and called from the
untrusted application. Untrusted function calls (OCALLs) are defined by the application
and may be called from within an enclave. Our FE protocol is implemented using the
following set of ECALLs and OCALLs.

KeyManager.dll ECALLs

• ecdsa setup generates a public and private key for 256-bit ECDSA and seals the
private key using the SDK function sgx seal data (this retrieves the enclave’s
seal key via the EGETKEY instruction and AES encrypts the data). The public
verification key vk and sealed signing key sk are returned to the application and
written to a file. The ECDSA key generation sgx ecc256 create key pair is
implemented in sgx tcrypto.lib.

• elgamal setup generates an ElGamal public key pubkey and private key privkey.
It signs the ElGamal public key with the TA’s ECDSA private key and seals
the ElGamal private key with the SDK function sgx seal data (this wraps the
EGETKEY instruction to retrieve the Seal Key and AES-GCM encrypts the data).
The signed public key and sealed private key are returned to the application and
written to a file.

• sign function takes an input array of data (a 256 bit measurement MRENCLAVE)
and outputs a 256-bit ECDSA signature on this input using the key sk generated in
ecdsa setup.

63

• km ra proc receives as input a EC256-DHKE key share ga, an enclave quote structure
de quote. It checks that the report inside de quote has the appropriate HW
configuration, that its mr enclave field matches the expected MRENCLAVE value
of the DE, and that it also includes a 512 byte field report data containing the value
ga. The quote structure also includes an EPID signature on the report, which must
be verified with the Intel Attestation Service (see [135]). (This additional procedure
is not implemented in our prototype). If all the checks pass, the function generates
a EC256-DHKE key share gb, computes the shared EC256-DHKE key, derives from
it a 128-bit session key ss key, and encrypts both the ElGamal private key privkey

and the ECDSA verification key vk under ss key with Rijndael AES-GCM. Finally,
it returns gb and the encrypted secret.

FEDecryption.dll ECALLs

• sgx ra get msg first calls the SDK function sgx ecc256 create key pair to gener-
ate an EC256-DHKE key share ga. Next it calls the SDK function sgx init quote

(this contacts the Intel Provisioning Server if the processor has not yet been
provisioned with an EPID key). It calls the SDK function sgx get quote to obtain
the quote structure de quote (through a local attestation with the Quoting Enclave).
It outputs ga and de quote.

• proc ra response receives as input a EC256-DHKE key share gb and an encrypted
ElGamal private key privkey. It computes the shared EC256-DHKE key with the
SDK function sgx ecc256 compute shared dhkey, derives the 128-bit session key
ss key, and uses it to decrypt privkey with Rijndael AES-GCM. Finally, it seals
the decrypted key with sgx seal data and outputs the sealed key.

• proc local attest receives inputs a EC256-DHKE key share ga, a CMACed enclave
report fe report, and an ECDSA signature fe report signature. It verifies the
CMAC on fe report with sgx verify report (an SDK function that wraps the
EGETKEY instruction to retrieve the Report Key and computes the CMAC). It
then verifies (with the KME’s verification key) that fe report signature is a valid
signature on the mr enclave field of fe report. If these verifications pass, it
generates a EC256-DHKE key share gb, computes the shared EC256-DHKE key,
derives a 128-bit shared key aek and encrypts the ElGamal private key privkey

under aek with Rijndael AES-GCM. It returns gb and the encrypted privkey.

64

FEFunction.dll ECALLs

• local attest to decryption enclave generates a EC256-DHKE key share ga and
calls sgx create report (an SDK function that wraps the EREPORT instruction)
to generate fe report, a CMACed enclave report. The values ga, fe report, and
fe report signature are passed to the OCALL request local dh session ocall.
It receives back a EC256-DHKE key share gb and encrypted ElGamal private key
privkey. It computes the shared EC256-DHKE key, derives a 128-bit shared key
aek and decrypts privkey. The decrypted key is stored in a static variable.

• decrypt order takes as input a pair of ciphertexts (encrypted integers) and returns
1 if the first integer is less than the second, otherwise 0.

• decrypt ibe In IBE, plaintexts consist of tagged payloads, i.e. have the form
(tag,m), and decrypting a ciphertext requires a key specific to the value of tag (i.e.
to the corresponding function Ftag). To avoid creating a separate enclave for each
key issued by the Authority, we have a single ECALL decrypt ibe that multiplexes
over all possible tags. This takes as input a ciphertext and a signature sigtag. The
Authority will issue sigtag as part of the key for Ftag (this is in addition to the signature
on the MRENCLAVE value of FEFunction.dll). The ECALL decrypt ibe decrypts
the ciphertext to obtain (tag,m), uses the public verification key to check that sigtag
is a valid signature on tag, and if so outputs m (otherwise it returns an error).

• decrypt 3dnf takes three ciphertexts as input, which are encryptions of n-bit inputs
x = x1 · · ·xn, y = y1 · · · yn, and z = z1 · · · zn. It outputs (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧
yn ∧ zn).

4.5.2 Performance evaluation

We report on the performance of FE.Decrypt, FE.Setup, and FE.Keygen (Figures 4.2 and
4.3). FE.Encrypt in our system is standard public key encryption (our implementation uses
ElGamal), and this is done outside of SGX enclaves.5

Figure 4.2 contains a break down of the run time for FE.Setup and FE.Keygen.

5Note that all the procedures we evaluate are entirely local, which is why we do not include any network
performance metrics. We omit performance measures on decryption node setup since the setup procedure
requires contacting the Intel Attestation Server to process a remote attestation, which we were unable to
test without a license from Intel. Nonetheless, the setup is a one-time operation that is completed when a
decryption node platform is first established, and thus has little overall impact on decryption performance.

65

create enclave 57 ms
ECDSA setup 74 ms
ElGamal setup 8 ms
server setup 2 ms
sign message 11 ms
Total 141 ms

Figure 4.2: FE.Setup and FE.Keygen run time.
FE.Setup includes enclave creation and generation of public/secret keys for ECDSA and ElGamal on 256
bit EC curves. FE.Keygen corresponds to sign message, which generates an ECDSA signature on a 256-bit
input.

We evaluated the performance of FE.Decrypt for three special cases of function
encryption: identity based encryption (IBE), order revealing encryption (ORE), and three
input DNF (3DNF). We chose these functionalities primarily to demonstrate how our SGX
assisted versions of these primitives perform in comparison to their purely cryptographic
versions (IBE from pairings, DNF and 3DNF from multilinear maps). The table in
Figure 4.3 summarizes the decryption times for the three functionalities, including a
breakdown of the time spent on the three main ECALLS of the decryption process: enclave
creation, local attesting to the DE, and finally decrypting the ciphertext and evaluating
the function.

Functionality: IBE ORE 3DNF
create enclave 14.5 ms 20.7 ms 19.7 ms
local attest 1.6 ms 2.1 ms 2.1 ms
decrypt & eval 0.98 ms 0.84 ms 0.96 ms
Total 17.8 ms 23.78 ms 22.76 ms

Figure 4.3: Breakdown of FE.Decrypt run times for each of our SGX-FE implementations
of IBE, ORE, and 3DNF.
The input in IBE consisted of a 3-byte tag and a 32-bit integer payload. The input pairs in ORE were
32-bit integers, and the input triplets in 3DNF were 16-bit binary strings. (The input types were chosen
for consistency with the 5Gen experiments). The column decrypt & eval gives the cost of running a single
decryption.

Amortized decryption costs As shown in Figure 4.3, for each of the functionalities the
time spent creating the enclave dominates the time spent on decryption and evaluation by
2 orders of magnitude. Once the function enclave has been created and local attestation to
the DE is complete, the same enclave can be used to decrypt an arbitrary number of input

66

IBESGX IBE[BF01] × increase
|msg| 35 bits 35 bits NA
|c| 175 bytes 471 bytes 2.69
decrypt 17.8 ms 49 ms 2.75
decrypt∗ 0.39 ms 49 ms 125.64

ORESGX ORE5Gen × increase
|msg| 32 bits 32 bits NA
|c| 172 bytes 4.7 GB 27.3 · 106

decrypt 23.78 ms 4 m 10.1 · 103

decrypt∗ 0.32 ms 4 m 750 · 103

3DNFSGX 3DNF5Gen × increase
|msg| 16 bits 16 bits NA
|c| 170 bytes 2.5 GB 14.7 · 106

decrypt 22.76 ms 3 m 7.9 · 103

decrypt∗ 0.45 ms 3 m 400 · 103

Figure 4.4: Comparison of decryption times and ciphertext sizes for the SGX-FE
implementation of IBE, ORE, 3DNF to cryptographic implementations.
The 5Gen ORE and 3DNF implementation referenced here uses the CLT mmap with an 80-bit security
parameter. The column decrypt gives the cost of running a single decryption, and decrypt∗ gives the
amortized cost (per ciphertext tuple) of 103 decryptions.

ciphertext tuples. Thus, the amortized cost of running decryption on many ciphertexts (or
tuples of ciphertexts) is much lower than the cost of running decryption on a single input.
(This is not the case with cryptographic implementations of these functionalities). The
amortized cost of running decryption on 1000 inputs (ciphertext tuples) is included in the
next table, Figure 4.4.

Comparison to cryptographic implementations We measured decryption time
for an implementation6 of Boneh-Franklin IBE [41] on our platform. We also include
decryption time performance numbers for the 5Gen implementation7 of mmap-based
ORE and 3DNF as reported in [147]. We did not deem it necessary to measure 5Gen
implementations of ORE and 3DNF on our platform since their performance is 4 orders

6The Stanford IBE command-line utility ibe-0.7.2-win, available at
https://crypto.stanford.edu/ibe/download.html

75Gen, available https://github.com/5GenCrypto

67

Figure 4.5: Comparison of time for decrypting 103 ciphertext tuples using the SGX-FE
implementation of IBE, ORE, 3DNF vs cryptographic implementations from pairings and
mmaps respectively.

of magnitude slower than that of our SGX-based implementation. The comparison for
these multi-input functionalities simply illustrates how our SGX-FE system makes possible
primitives that are currently otherwise infeasible to build for practical use without trusted
hardware.

4.6 Formalization of Iron

4.6.1 Formal definition of Functional Encryption

We adapt the definition (Definition 2.7.1) of functional encryption to fit the computational
model of our system. Interaction with local enclaves is modeled as calls to the HW function-
ality defined in Definition 3.2.1. Communication with the remote KME is modeled with a
separate oracle KM(·). We allow for a preprocessing phase which runs the setup for all HW
instances. A functional encryption scheme FE for a family of programs P and message
space M consists of algorithms FE = (FE.Setup,FE.Keygen,FE.Enc,FE.DecSetup,FE.Dec)
defined as follows.

• FE.Setup(1λ): On input security parameter λ (in unary), output the master public
key mpk and the master secret key msk.

• FE.Keygen(msk, P): On input the master secret key msk and a program P ∈ P ,
output the secret key skP for P .

68

• FE.Enc(mpk,msg): On input the master public key mpk and an input message msg ∈
M, output a ciphertext ct.

• FE.DecSetupKM(·),HW(·)(mpk): The decryption node setup algorithm has access to the
KM oracle and the HW oracles. On input the master public key mpk, output a handle
hdl to be used by the actual decryption algorithm.

• FE.DecHW(·)(hdl, skP , ct): On input a handle hdl for an enclave, a secret key skP and
a ciphertext ct and outputs P (msg) or ⊥. This algorithm has access to the interface
for all the algorithms of the trusted hardware HW.

Correctness A functional encryption scheme FE is correct if for all P ∈ P and all
msg ∈M, the probability for FE.DecHW(·)(hdl, skP , ct) to be not equal to P (msg) is negl(λ),
where (mpk,msk)← FE.Setup(1λ), skP ← FE.Keygen(msk, P), ct← FE.Enc(mpk,msg) and
hdl ← FE.DecSetupKM(·),HW(·)(mpk) and the probability is taken over the random coins of
the probabilistic algorithms FE.Setup,FE.Keygen,FE.Enc,FE.DecSetup.

Non-interaction Non-interaction is central to the standard notion of functional en-
cryption. Our construction of hardware assisted FE requires a one-time setup operation
where the decryptor’s hardware contacts the KME to receive a secret key. However, this
interaction only occurs once in the setup of a decryption node, and thereafter decryption
is non-interactive. To capture this restriction on interaction we add to the standard FE
algorithms an additional algorithm FE.DecSetup, which is given oracle access to a Key
Manager KM(·). The decryption algorithm FE.Dec is only given access to HW.

Security definition Here, we define a strong simulation-based security of FE similar
to [37, 106, 7]. In this security model, a polynomial time adversary will try to distinguish
between the real world and a “simulated” world. In the real world, algorithms work as
defined in the construction. In the simulated world, we will have to construct a polynomial
time simulator which has to do the experiment given only the program queries P made by
the adversary and the corresponding results P (msg).

Definition 4.6.1 (SimSecurity-FE). Consider a stateful simulator S and a stateful
adversary A. Let Umsg(·) denote a universal oracle, such that Umsg(P) = P (msg).

Both games begin with a pre-processing phase executed by the environment. In the ideal
game, pre-processing is simulated by S. Now, consider the following experiments.

69

ExprealFE (1λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AFE.Keygen(msk,·)(mpk)

3. ct← FE.Enc(mpk,msg)

4. α← AFE.Keygen(msk,·),HW,KM(·)(mpk, ct)

5. Output (msg, α)

ExpidealFE (1λ) :

1. mpk← S(1λ)

2. msg← AS(·)(mpk)

3. ct← SUmsg(·)(1λ, 1|msg|)

4. α← ASUmsg(·)(·)(mpk, ct)

5. Output (msg, α)

In the above experiment, oracle calls by A to the key-generation, HW and KM oracles
are all simulated by the simulator SUmsg(·)(·). An FE scheme is simulation-secure against
adaptive adversaries if there is a stateful probabilistic polynomial time simulator S that on
each FE.Keygen query P queries its oracle Umsg(·) only on the same P (and hence learn
just P (msg)), such that for every probabilistic polynomial time adversary A the following
distributions are computationally indistinguishable.

ExprealFE (1λ)
c
≈ ExpidealFE (1λ)

Note that the above definition handles one message only. This can be extended to a
definition of security for many messages by allowing the adversary to adaptively output
many messages while providing him the ciphertext for a message whenever he outputs one.
Here, the simulator will have an oracle Umsgi(·) for every msgi output by the adversary.

Simulating HW As previously discussed, we let the simulator intercept all the adver-
sary’s queries to HW and return simulated responses, just as in [72]. If we do not allow
simulation of HW, it is impossible to achieve Definition 4.6.1. The modified FE definition
that we provide in Definition 4.6.2 allows “minimal” interaction8 with an efficient KM
oracle during every run of FE.Dec. In Section 4.8, we give a second construction that
realizes this modified FE definition.

Definition 4.6.2 (StrongSimSecurity-FE). Consider a stateful simulator S and a stateful
adversary A. Let Umsg(·) denote a universal oracle, such that Umsg(P) = P (msg).

Both games begin with a pre-processing phase executed by the environment. In the ideal
game, pre-processing is simulated by S. Now, consider the following experiments.

8Allowing unbounded interaction would lead to trivial constructions where KM simply decrypts the
ciphertext and returns the function of the message.

70

ExprealFE (1λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AFE.Keygen(msk,·)(mpk)

3. ct← FE.Enc(mpk,msg)

4. α← AFE.Keygen(msk,·),HW,KM(·)(mpk, ct)

5. Output (msg, α)

ExpidealFE (1λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AS(msk,·)(mpk)

3. ct← SUmsg(·)(1λ, 1|msg|)

4. α← AHW,SUmsg(·)(·)(mpk, ct)

5. Output (msg, α)

In the above experiment, oracle calls by A to the key-generation and KM oracles
are simulated by the simulator SUmsg(·)(·). But the simulator does not simulate the HW
algorithms, except HW.Setup. We call a simulator admissible if on each input P , it just
queries its oracle Umsg(·) on P (and hence learns just P (msg)).

The FE scheme is said to be simulation-secure against adaptive adversaries if there
is an admissible stateful probabilistic polynomial time simulator S such that for every
probabilistic polynomial time adversary A the following distributions are computationally
indistinguishable.

ExprealFE (1λ)
c
≈ ExpidealFE (1λ)

4.6.2 Crypto primitive definitions

We recall the formal definitions of some fundamental cryptographic primitives

Secret key encryption A secret key encryption scheme E supporting a message domain
M consists of a probabilistic polynomial time key generation algorithm E.KeyGen(1λ) that
takes in a security parameter and outputs a key sk from the key space K, a probabilistic
polynomial time encryption algorithm E.Enc(sk,msg) that takes in a key sk and a message
msg ∈ M and outputs the ciphertext ct, and a deterministic polynomial time decryption
algorithm E.Dec(sk, ct) that takes in a key sk and a ciphertext ct and outputs the decryption
msg.

A secret key encryption scheme E is correct if for all λ and all msg ∈M,

Pr
[
E.Dec

(
sk,E.Enc(sk,msg)

)
6= msg

∣∣∣sk← E.KeyGen(1λ)
]

= negl(λ)

71

where the probability is taken over the random coins of the probabilistic algorithms
E.KeyGen,E.Enc.

A secret key encryption scheme E is said to have indistinguishability security under
chosen plaintext attack (IND-CPA) if there is no polynomial time adversary A which can
win the following game with probability non-negligible in λ:

Definition 4.6.3. (IND-CPA security of E). We define the following game between a
challenger C and an adversary A.

1. The challenger run the E.KeyGen algorithm to obtain a key sk from the key space K.

2. The challenger also chooses a random bit b ∈ {0, 1}.

3. Whenever the adversary provides a pair of messages (msg0,msg1) ∈M2 of its choice,
the challenger replies with E.Enc(sk,msgb).

4. The adversary finally outputs its guess b′.

The advantage of adversary in the above game is

AdvEnc(A) := Pr[b′ = b]− 1

2

A signature scheme A digital signature scheme S supporting a message domain M
consists of a probabilistic polynomial time algorithm S.KeyGen(1λ) that takes in a security
parameter and outputs the signing key sk and a verification key vk, a probabilistic
polynomial time signing algorithm S.Sign(sk,msg) that takes in a signing key sk and a
message msg ∈M and outputs the signature σ, and a deterministic verification algorithm
S.Verify(vk, σ,msg) that takes in a verification key vk, a signature σ and a message msg
and outputs 0 or 1.

A signature scheme S is correct if for all msg ∈M,

Pr
[
S.Verify

(
vk, S.Sign(sk,msg),msg

)
= 0
∣∣∣(sk, vk)← S.KeyGen(1λ)

]
= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms
S.KeyGen, S.Sign.

A signature scheme S is said to be existentially unforgeable under chosen message attack
(EUF-CMA) if there is no polynomial time adversary which can win the following game
with probability non-negligible in λ.

72

Definition 4.6.4. (EUF-CMA security of S). We define the following game between a
challenger C and an adversary A.

1. The challenger runs the S.KeyGen algorithm to obtain the key pair (sk, vk), and
provides the verification key vk to the adversary.

2. Initialize query = {}.

3. Now, whenever the adversary provides a query with a message msg, the challenger
replies with S.Sign(sk,msg). Also, query = query ∪ {msg}.

4. Finally, the adversary outputs a forged signature σ∗ corresponding to a message msg∗.

The advantage of A in the above security game is

Advsign(A) := Pr
[
S.Verify(vk, σ∗,msg∗) = 1

∣∣msg∗ /∈ query
]

Public key encryption A public key encryption (PKE) scheme supporting a message
domain M consists of a probabilistic polynomial time algorithm PKE.KeyGen(1λ) that
takes in a security parameter and outputs a key pair (pk, sk), a probabilistic encryption
algorithm PKE.Enc(pk,msg) that takes in a public key pk and a message msg ∈ M and
outputs a ciphertext ct, and a deterministic decryption algorithm PKE.Dec(sk, ct) that
takes in a secret key sk and a ciphertext ct and outputs the decryption msg or ⊥.

A PKE scheme PKE is correct if for all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk,PKE.Enc(pk,msg)

)
6= msg

∣∣∣(pk, sk)← PKE.KeyGen(1λ)
]

= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms
KeyGen,Enc.

A PKE scheme provides confidentiality to the encrypted message. Formally, a PKE
scheme PKE is said to have indistinguishability security under adaptively chosen ciphertext
attack (IND-CCA2) if there is no polynomial time adversary A which can guess b′ = b in
the following game with probability non-negligible in λ, plus half.

Definition 4.6.5. (IND-CCA2 security of PKE). We define the following game between a
challenger C and an adversary A.

73

1. C runs the PKE.KeyGen algorithm to obtain a key pair (pk, sk) and gives pk to the
adversary.

2. A provides adaptively chosen ct and gets back PKE.Dec(sk, ct).

3. A provides msg0,msg1 to C.

4. C then runs PKE.Enc(pk) to obtain ct∗ = PKE.Enc(pk,msgb) for b
$← {0, 1}. C

provides ct∗ to A.

5. A continues to provide adaptively chosen ct multiple times and gets back PKE.Dec(sk, ct),
with a restriction that ct 6= ct∗.

6. A outputs its guess b′.

The advantage of the adversary A in the above game is

Advpke(A) := Pr[b′ = b]− 1

2

A PKE scheme may also be “weakly robust” [2]. Informally, this means that a
ciphertext when decrypted with an “incorrect” secret key should output ⊥ when all the
algorithms are honestly run.

Definition 4.6.6. ((Weak) robustness property of PKE). A PKE scheme PKE has the
(weak) robustness property if for all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk′,PKE.Enc(pk,msg)

)
6=⊥
]

= negl(λ)

where (pk, sk) and (pk′, sk′) are generated by running PKE.KeyGen(1λ) twice, and the proba-
bility is taken over the random coins of the probabilistic algorithms PKE.KeyGen,PKE.Enc.

We will use this property in our construction in the stronger security model.

4.6.3 FE Formal construction

We present here the formal description of our FE system using the syntax of the HW model
from Definition 3.2.1. The trusted authority platform TA and decryption node platform
DN each have access to instances of HW. Let PKE denote an IND-CCA2 secure public key
encryption scheme (Definition 4.6.5) and let S denote an existentially unforgeable signature
scheme (Definition 4.6.4).

74

Pre-processing phase TA and DN run HW.Setup(1λ) for their HW instances and
record the output params.

FE.SetupHW(1λ) The key manager enclave program QKME is defined in Figure 4.6. The
value tagDE, the measurement of the program QDE, is hardcoded in the static data of
QKME. Let state denote an internal state variable.

Figure 4.6: QKME

• On input (“init”, 1λ):

1. Run (pkpke, skpke) ← PKE.KeyGen(1λ) and (vksign, sksign) ←
S.KeyGen(1λ)

2. Update state to (skpke, sksign, vksign) and output (pkpke, vksign)

• On input (“provision”, quote, params):

1. Parse quote =
(
mdhdl, tagQ, input, output, σ

)
, check that tagQ =

tagDE . If not, output ⊥.

2. Parse input = (“init setup”, vksign) and check if vksign matches
with the one in state. If not, output ⊥.

3. Parse output = (sid, pk) and run b ←
HW.QuoteVerify(params, quote) on quote. If b = 0 output ⊥.

4. Retrieve skpke from state and compute ctsk =
PKE.Enc(pk, skpke) and σsk = S.Sign(sksign, (sid, ctsk)) and
output (sid, ctsk, σsk).

• On input (“sign”,msg):
Compute sig← S.Sign(sksign,msg) and output sig.

1. Run hdlKME ← HW.Load(params, QKME).

2. Run (pkpke, vksign)← HW.Run(hdlKME, (“init”, 1λ)).

3. Output the master public key mpk := (pkpke, vksign) and the master secret key msk :=
hdlKME.

75

FE.KeygenHW(msk, P)

1. Parse msk = hdlKME as a handle to HW.Run.

2. Derive tagP and call sig← HW.Run(hdlKME, (“sign”, tagP)).

3. Output skp := sig.

FE.Enc(mpk,msg)

1. Parse mpk = (pk, vk).

2. Compute ct← PKE.Enc(pk,msg).

3. Output ct.

FE.DecSetupHW,KM(·)(skP , ct) The decryption enclave program QDE is defined in Figure
4.7. The security parameter λ is hardcoded into the program.

1. Run hdlDE ← HW.Load(params, QDE).

2. Parse mpk = (skpke, vksign) and call quote← HW.Run&QuoteskHW
(hdlDE, “init setup”, vksign).

3. Query KM(quote), which internally runs
(sid, ctsk, σsk)← HW.Run(hdlKME, (“provision”, quote, params)).9

4. Call HW.Run(hdlDE, (“complete setup”, sid, ctsk, σsk)).

5. Output hdlDE.

FE.DecHW(·)(hdl, skP , ct) Define a function enclave program parameterized by P as in
Figure 4.8.

1. Run hdlP ← HW.Load(params, QFE(P)).

9We could use HW.Run&Quote here instead of explicitly creating the signature σk. If we do that, the
verification step in DE would involve using the Intel Attestation Service.

76

Figure 4.7: QDE

• On input (“init setup”, vksign):

1. Run (pkra, skra)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, skra, vksign), and output (sid, pkra).

• On input (“complete setup”, sid, ctsk, σsk):

1. Look up the state to obtain the entry (sid, skra, vksign). If no
entry exists for sid, output ⊥.

2. Verify the signature b ← S.Verify(vksign, σsk, (sid, ctsk)). If b =
0, output ⊥.

3. Run m← PKE.Dec(skra, ctsk) and parse m = (skpke).

4. Add the tuple (skpke, vksign) to statea.

• On input (“provision”, report, sig):

1. Check to see that the setup has been completed, i.e. that state
contains the tuple (skpke, vksign). If not, output ⊥.

2. Check to see that the report has been verified, i.e. that state
contains the tuple (1, report). If not, output ⊥.

3. Parse report =
(
mdhdl, tagQ, input, output,mac

)
and compute

b← S.Verify(vksign, sig, tagQ). If b = 0, output ⊥.

4. Parse output as (sid, pk). If b = 1 output
(sid,PKE.Enc(pk, skpke)). Else, output ⊥.

avksign is already in state as part of the outputs of the previous “init setup”
phase, but it is useful store and use this tuple as result of a successfully completed
setup.

2. Call report← HW.Run&Reportskreport(hdlP , “init”).

3. Run HW.ReportVerifyskreport (hdlDE, report) with hdlDE = hdl .

4. Call reportsk ← HW.Run&Report(hdlDE, (“provision”, report, sig)) with sig = skP .

77

Figure 4.8: QFE(P)

• On input (“init”):

1. Run (pkla, skla)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, skla), and output (sid, pkla).

• On input (“run”, reportsk, ctmsg):

1. Check to see that the report has been verified, i.e. that state
contains the tuple (1, reportsk). If not, output ⊥.

2. Parse reportsk =
(
mdhdl, tagQ, input, output,mac

)
. Parse output

as (sid, ctkey).

3. Look up the state to obtain the entry (sid, skla). If no entry
exists for sid, output ⊥.

4. Compute skpke ← PKE.Dec(skra, ctkey) and use it to decrypt
x← PKE.Dec(skpke, ctmsg).

5. Run P on x and record the output output := P (x). Output
output.

5. Run HW.ReportVerifyskreport(hdlP , reportsk).

6. Call output← HW.Run(hdlP , “run”, reportsk, ctmsg) with ctmsg = ct.

7. Output output.

4.7 Security

We first explain the crux of our security proof here. More details will follow.

We construct a simulator S which can simulate FE.Keygen,HW,KM oracles and simulate
the challenge ciphertext for the challenge message msg∗ provided by the adversary A. The
only information that S will get about msg∗ other than its length is the access to the Umsg∗

oracle which reveals P (msg∗) for the P ’s queried by A to FE.Keygen. At a high level, the
proof idea is simple: S encrypts zeros as the the challenge ciphertext ct∗ and FE.Keygen is

78

simulated honestly. In the ideal experiment, S intercepts A’s queries to HW and provides
simulated responses. It can use its Umsg∗ oracle to get P (msg∗) and simply send this back
to A as the simulated HW output. If A queries HW on any ciphertexts that do not match
the challenge ciphertext ct∗, S can decrypt them honestly since it possesses msk. Since S
has to modify the program descriptions in enclaves, we provide S access to the HW keys
skreport and skquote to produce reports and quotes.

Despite the apparent simplicity, the following subtleties make the proof of security more
challenging than on first sight:

1. The simple proof sketch does not account for all of A’s interaction with HW between
sending ct∗ and receiving back P (msg∗). HW communicates through A as a proxy. A
might even tamper with these intermediate messages and observe how HW responds.
We need to ensure that anything A observes in the real experiment can be simulated
in the ideal experiment.

2. We use IND-CCA2 public key encryption to secure communication between enclaves
that is intercepted by A. S will need to simulate this communication. Proving that A
cannot distinguish this involves a reduction to the IND-CCA2 security game, showing
that if A can distinguish the real and simulated communication then it would break
the IND-CCA2 security. The IND-CCA2 adversary will need to simulate the entire
FE system for A without knowledge of the corresponding secret keys for the public
keys that the enclaves are using to secure their communication. In particular, it must
see if A tampers with messages in a way that would cause the system to abort). This
is what necessitates an extra layer of authentication on the communication between
enclaves

3. The final challenge is that the adversary can also load modified programs of its choice
into different enclaves and test their behavior with honest or tampered inputs. This
aspect in particular makes the security proof challenging because the FE simulator in
the ideal world has to identify whether honest attested programs are running inside
the enclaves, and produce simulated outputs only for those enclaves. This gets tricky
as there are three enclaves each with multiple entry points.

4.7.1 Security proof

Theorem 4.7.1. If S is an EUF-CMA secure signature scheme, PKE is an IND-CCA2
secure public key encryption scheme and HW is a trusted hardware scheme, then FE is a

79

secure functional encryption scheme according to Definition 4.6.1.

Proof. We will construct a simulator S for the FE security game in Definition 4.6.1. S
is given the length |msg∗| and an oracle access to Umsg∗(·) (such that Umsg∗(P) = P (msg∗))
after the adversary provides its challenge message msg∗. S can use this Umsg∗ oracle on the
programs queried by the adversary A to FE.Keygen. S has to simulate the pre-processing
phase and a ciphertext corresponding to the challenge message msg∗ along with answering
the adversary’s queries to the KeyGen, HW and the KM oracles.

Pre-processing phase: S simulates the pre-processing phase similar to the real world. S runs
HW.Setup(1λ) and records (skquote, skreport) generated during the process. S measures and
stores tagDE. S also creates empty lists K,R,N , LKM , LDE, LDE2, LFE which will be used
later.

FE.Keygen∗(msk, P) When A makes a query to the FE.Keygen oracle, S responds the
same way as in the real world except that S now stores all the tagP corresponding to the
P ’s queried in a list K.

FE.Enc∗(mpk, 1|msg∗|) S outputs ct∗ ← PKE.Enc(pk, 0|msg∗|) and stores ct∗ in the list R.

HW oracle For A’s queries to the algorithms of the HW oracle, S runs the corresponding
HW algorithms honestly and outputs their results except for the following oracle calls.

• HW.Run(hdlKME, “provision”, quote, params): When a provision query is made to KME,
S parses quote =

(
mdhdl, tagQ, input, output, σ

)
and outputs ⊥ if output /∈ LDE2. Else, it

honestly runs the HW algorithm and then replaces ctsk with PKE.Enc(pk, 0|skpke|). S also
generates and replaces σsk for the modified ctsk. Finally, S stores (sid, ctsk) in LKM .

• HW.Load(params, Q): When the load algorithm is run for a Q corresponding to that of a
DE, S runs the load algorithm honestly and outputs hdlDE. In addition, it stores hdlDE
in the list Ψ. When the load algorithm is run for a Q of the form QFE(P), S adds the
output handle hdlP to the list K as follows. S first checks if the tagP corresponding to
this has an entry in K, and if it exists S appends hdlP to its handle list. Else, S adds
the tuple (0, tagP , hdlP) to K.

80

• HW.Run(hdlDE, “init setup”, vksign): When an init setup query is made to a hdlDE ∈ Ψ,
S checks if vksign matches with the one in mpk. Else, it removes hdlDE from Ψ. Ψ will
remain as the list of handles for DEs with the correct vksign fed as input. Then, S runs
HW.Run honestly on the given input and outputs the result. It also adds (sid, pkra) to
the list LDE2.

• HW.Run(hdlDE, “complete setup”, sid, ctsk, σsk): When a complete setup query is made
to a hdlDE ∈ Ψ, S outputs ⊥ if (sid, ctsk) /∈ LKM . Else, it honestly executes HW.Run.
Similar changes are made for HW.Run&Report and HW.Run&Quote on this set of inputs.

• HW.Run(hdlDE, “provision”, report, sig): When a provision query is made to a hdlDE ∈ Ψ,
S parses report =

(
mdhdl, tagQ, input, output,mac

)
and outputs ⊥ if output /∈ LFE. Else,

it honestly executes HW.Run. At the end, S adds the output (sid, ctkey) to LDE.

• HW.Run(hdlP , “init”): When an init query is made to a hdlP ∈ K whose tuple in K has
the honest bit set, S runs HW.Run&Report honestly and outputs the result. It also adds
(sid, pkla) to the list LFE.

• HW.Run(hdlP , “run”, reportsk, ctmsg): When a run query is made to hdlP ∈ K whose tuple
in K has the honest bit set, S first parses reportsk =

(
mdhdl, tagQ, input, output,mac

)
and outputs ⊥ if output /∈ LDE. Else, it runs HW.Run on the given inputs. If the
output is ⊥, S outputs ⊥. Else, it parses output as (sid, ctkey) and retrieves skpke from
msk. If ctmsg /∈ R, S computes x ← PKE.Dec(skpke, ctmsg), runs P on x and outputs
output := P (x). If ctmsg ∈ R, S queries its Umsg∗ oracle on P and outputs the response.

• For the HW.Run&Report and HW.Run&Quote queries, similar changes are made as in
the respective HW.Runs above. But, report and quote are generated for unmodified tag’s
of the unmodified programs descriptions. (This is to prevent the adversary from being
able to distinguish the change in hybrids just by looking at the report or quote.)

KM oracle For A’s queries to the KM oracle with input quote, S uses the provision
queries to HW.Run for KME with the changes mentioned above.

Now, for this polynomial time simulator S described above, we will show that for
experiments in Definition 4.6.1,

(msg, α)real
c
≈ (msg, α)ideal (4.1)

We prove this by showing that the view of the adversary A in the real world is
computationally indistinguishable from its view in the ideal world. It can be easily checked

81

that the algorithms KeyGen∗,Enc∗ and oracle KM∗ simulated by S correspond to the ideal
world specifications of Definition 4.6.1 (because the only information that S obtains about
msg∗ is through the Umsg∗(·) oracle which it queries on the FE.Keygen queries made by A).
We will prove through a series of hybrids that A cannot distinguish between the real and
the ideal world algorithms and oracles.

Hybrid 0 ExprealFE(1λ) is run.

Hybrid 1 As in Hybrid 0, except that FE.Keygen∗ run by S is used to generate secret
keys instead of FE.Keygen. Also, the ct∗ returned by FE.Enc for the encryption of the
challenge message msg∗ is stored in the list R. Also, when HW.Load(params, Q) is run for
the Q of a DE, store the output in the list Ψ, and when HW.Run(hdlDE, “init setup”, vksign)
is run with a vksign different from that in mpk, remove hdlDE from Ψ. Also, when HW.Load
is run for a Q of the form QFE(P), the output handle hdlP is added to the list K in the tuple
corresponding to tagP . If tagP does not have an entry in K, the entire tuple (0, tagP , hdlP)
is added to K.

Here, FE.Keygen∗ and FE.Keygen are identical. And storing in lists does not affect the
view of A. Hence, Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 2 As in Hybrid 1, except that when the HW.Run&Report is queried with

(hdlDE, (“provision”, report, sig)) for hdlDE ∈ Ψ, S outputs ⊥ if tagP that is part of report
does not have an entry in K with the honest bit set.

If sig is not a valid signature of tagP , then the S.Verify step during the execution
of HW.Run&Report(hdlDE, ·) would make it output ⊥. Hence, Hybrid 2 differs from
Hybrid 1 only when a valid signature sig for tagP is part of the “provision” query to
HW.Run&Report(hdlDE, ·) with a hdlDE that has the correct vksign in its state and with a
P that A has not queried to FE.Keygen∗. But, if A does make a query of this kind to
HW.Run&Report with a valid sig, Lemma 4.7.2 shows that this can be used to break the
existential unforgeability of the signature scheme S.

Hybrid 3.0 As in Hybrid 2, except that S maintains a list LKM of all the “pro-

vision” query responses from KM i.e., the (sid, ctsk) tuples. Then, on any call to
HW.Run(hdlDE, “complete setup”, sid, ctk, σk) for hdlDE ∈ Ψ, if (sid, ctsk) /∈ LKM , S outputs

82

⊥.

The proof at a high level will be similar to the previous one. HW.Run(hdlDE, “complete setup”, ·)
already outputs ⊥ in Hybrid 2 if σsk is not a valid signature of (sid, ctsk) or if an entry for
the session ID sid is not in state. So, Hybrid 3.0 differs from Hybrid 2 only when A can
produce a valid signature σsk on a (sid, ctsk) pair for a sid which it has seen before in the
communication between KM and a DE whose handle is in Ψ. This is proved in Lemma 4.7.3.

Hybrid 3.1 As in Hybrid 3.0, except that S maintains a list LDE of all the “provision”

query responses from hdlDE ∈ Ψ i.e., the (mdhdl, tagQDE , (report, sig), (sid, ctkey)) tuples.
And, on call to HW.Run(hdlP , reportsk, ctmsg) with hdlP having an entry in K with its honest
bit set, S outputs ⊥ if reportsk =

(
mdhdl, tagQ, input, (sid, ctkey),mac

)
with tagQ = tagDE,

sid having an entry in state and (sid, ctkey) /∈ LDE.

Local attestation helps in proving the indistinguishability of the hybrids. For
honest hdlP s, HW.Run(hdlP , reportsk, ctmsg) already outputs ⊥ in Hybrid 3.0 if for
reportsk =

(
mdhdl, tagDE, (report, sig), (sid, ctkey),mac

)
, mac is not a valid MAC on

(mdhdl, tagDE, (report, sig), (sid, ctkey)), or if sid does not have an entry in state. So, the
only change in Hybrid 3.1 is that HW.Run also outputs ⊥ if mac is a valid MAC but on a
(sid, ctkey) /∈ LDE. Hence, A can distinguish between the hybrids only when it produces a
valid mac on a tuple with (sid, ctsk) not in LDE. But this happens with negligible probability
due to the security of local attestation.

Hybrid 4 As in Hybrid 3.1, except that when HW.Run is queried with (hdlP , “run”, reportsk, ctmsg)
where reportsk is a valid MAC of a tuple containing an entry in LDE and hdlP ∈ K with
the honest bit set. If ctmsg ∈ R, S uses the Umsg∗ oracle to answer the HW.Run query.
If ctmsg /∈ R, S uses the skpke from FE.Setup to decrypt ctmsg instead of the one got by

decrypting ctkey i.e.,

• On input (“run”, reportsk, ctmsg):

4. If ctmsg /∈ R, retrieve skpke from msk.
Compute x ← PKE.Dec(skpke, ctmsg). Run
P on x and record the output output :=
P (x). Output output.

5. If ctmsg ∈ R, query Umsg∗(P) and output
the response.

In Hybrid 3.1, the decryption of ctkey is used by S to decrypt ctmsg while running
HW.Run(hdlP , ·). This ctkey is a valid encryption of skpke because Hybrid 3.0 and

83

Hybrid 3.1 ensure that the encryption of skpke sent from KME to DE and then the one
from DE to FE both reach FE unmodified. Hence, the skpke got by decrypting ctmsg is
same as the one from msk. Thus, Hybrid 4 is indistinguishable from Hybrid 3.1 for
any ctmsg /∈ R. Now, let us consider the case of ctmsg ∈ R. S has the restriction that
it can use the Umsg∗ oracle only for a P for which tagP ∈ K. From Hybrid 3.1, we
know that HW.Run(hdlP , ·) does not output ⊥ only when run with a valid reportsk =
(mdhdl, tagDE, (report, sig), (sid, ctkey),mac) which is output by a DE “provision” query.
Hence, sig is a valid signature of the tagP contained in report. Also, tagP ∈ K with
the honest bit set, as ensured in Hybrid 2. So, when a HW.Run “run” query is made for
hdlP , S is allowed use its Umsg∗ oracle to output the FE.Dec result. Thus, Hybrid 4 is
indistinguishable from Hybrid 3.1 for any ctmsg.

The following set of hybrids will help S replace an encryption of skpke with an encryption
of zeros. In order to prove the indistinguishability, we will argue that all the FE algorithms
run independent of the skpke encrypted in ctsk, and that A does not get any information
about the value encrypted in ctsk.

Hybrid 5.0 As in Hybrid 4, except that S maintains a list LDE2 of all (sid, pkra) that are

part of quote = (mdhdl, tagDE, “init setup”, (sid, pkra), σ) output by HW.Run&Quote(hdlDE, “init setup”, ·)
for hdlDE ∈ Ψ. And now, when HW.Run(hdlKME, “provision”, quote, params) is called S
outputs ⊥ when (sid, pkra) /∈ LDE2.

The Remote Attestation security ensures that A can provide a fake quote on a pkra not
provided by DE only with negligible probability (Lemma 4.7.5). Thus ensures that KME
provides an encryption of skpke only under a public key pkra generated inside QDE ∈ Ψ i.e.,
when HW.Run(hdlKME, “ provision”, quote, params) is called with a valid quote output by
a valid instance of DE.

Hybrid 5.1 As in Hybrid 5.0, except that S maintains a list LFE of all (sid, pkla) that are

part of report = (mdhdl, tagP , (“init”, sid, pkla),mac) output by HW.Run&Report(hdlP , “init”, ·)
for hdlP ∈ K with the honest bit set. And when HW.Run&Report(hdlDE, “provision”, report, sig)
is called for a hdlDE ∈ Ψ, S outputs ⊥ when report contains tagP ∈ K but (sid, pkla) /∈ LFE.

This is ensured by the Local Attestation security (Lemma 4.7.6). And, this shows that
QDE only outputs skpke encrypted under some pkla that was generated by a QFE(hdlP , ·)

84

running a program P that has been queried to FE.Keygen.

Hybrid 5.2 As in Hybrid 5.1, except that when the KM oracle calls HW.Run(hdlKME, (“provision”, ·, ·)),
S replaces ctsk in the output with PKE.Enc(0|skpke|).

Lemma 4.7.5 and Lemma 4.7.6 ensure that skpke is encrypted only under pkra and pkla
generated by valid enclaves and A has no access to the corresponding secret keys. Now,
Lemma 4.7.7 will use the IND-CCA2 security gameto argue that A cannot distinguish
whether ctsk has an encryption of zeros or skpke under pkra of the DE, and whether ctkey is
an encryption of zeros or skpke under pkla of a valid FE.

Hybrid 6 As in Hybrid 5.2, except that FE.Enc∗ is used instead of FE.Enc.

We are now ready to use the IND-CCA2 security property of PKE to replace ctmsg
which was an encryption of msg) with an encryption of zeros, as shown in Lemma 4.7.8.

Security proof lemmata

Lemma 4.7.2. If the signature scheme S is existentially unforgeable as in Definition 4.6.4,
then Hybrid 2 is indistinguishable from Hybrid 1.

Proof. Let A be an adversary which distinguishes between Hybrid 1 and Hybrid 2. We
will use it to break the EUF-CMA security of S. We will get a verification key vk∗sign and
an access to S.Sign(sk∗sign, ·) oracle from the EUF-CMA challenger. S sets this vk∗sign as
part of the mpk. Whenever S has to sign a message using sk∗sign, it uses the S.Sign(sk∗sign, ·)
oracle. Also, our construction does not ever need a direct access to sk∗sign; it is used only to
sign messages for which the oracle provided by the challenger can be used. Now, if A can
distinguish between the two hybrids, as we argued earlier, it is only because A makes a
“provision” query to the HW.Run&Report(hdlDE, ·) oracle with a hdlDE ∈ Ψ that has vk∗sign
in its setupstate and with a valid signature sig on a tagP /∈ K. We will output (tagP , sig)
as our forgery to the EUF-CMA challenger.

Lemma 4.7.3. If the signature scheme S is existentially unforgeable as in Definition 4.6.4,
then Hybrid 3.0 is indistinguishable from Hybrid 2.

85

Proof. Let A be an adversary which distinguishes between Hybrid 2 and Hybrid 3.0.
We will use it to break the EUF-CMA security of S. We will get a verification key vk∗sign
and an access to S.Sign(sk∗sign, ·) oracle from the EUF-CMA challenger. S sets this vk∗sign as
part of the mpk. Whenever S has to sign a message with sk∗sign, it uses the S.Sign(sk∗sign, ·)
oracle. As mentioned in the proof of Lemma 4.7.2, S never needs a direct access to sk∗sign.
Now, if A can distinguish between the two hybrids, as we argued earlier, it is only because
A makes a “complete setup” query to the HW.Run(hdlDE, ·) oracle with a valid signature
σsk for (sid, ctsk) /∈ LKM but sid has an entry in setupstate. Also, hdlDE ∈ Ψ and hence
has vk∗sign in its setupstate. We will output ((sid, ctsk), σsk) as our forgery to the EUF-CMA
challenger.

Lemma 4.7.4. If the Local Attestation process of HW is secure as in Definition 3.3.1, then
Hybrid 3.1 is indistinguishable from Hybrid 3.0.

The proof of this lemma is similar to Lemma 4.7.3, since skreport is not used by S other
than to produce a report.

Lemma 4.7.5. If Remote Attestation is secure as in Definition 3.3.2, then Hybrid 5.0 is
indistinguishable from Hybrid 4.

The proof of this lemma is similar to Lemma 4.7.3 since skquote is not used by S except
for producing a quote.

Lemma 4.7.6. If Local Attestation is secure as in Definition 3.3.1, then Hybrid 5.1 is
indistinguishable from Hybrid 5.0.

The proof of this lemma is again similar to Lemma 4.7.3 since skreport is not used by S
except for producing a report.

Lemma 4.7.7. If PKE is an IND-CCA2 secure encryption scheme, then Hybrid 5.2 is
indistinguishable from Hybrid 5.1.

Proof. We will run two IND-CCA2 games in parallel, one for ctsk and another for ctkey.
It can be easily shown that this variant is equivalent to the regular IND-CCA2 security
game. The IND-CCA2 challenger provides two challenge public keys pk∗1 and pk∗2. S sets
pkra = pk∗1 and pkla = pk∗2. Now,

{
skpke, 0

|skpke|
}

is provided as the challenge message pair
for both the games. The challenger returns ct∗1 and ct∗2, which are encryptions of either
the left messages or the right messages from the each pair. Note that we use the same
challenge bit for both the games. S sets ctsk = ct∗1 and ctkey = ct∗2.

86

Now we argue that when the left messages are encrypted, the view of A is equivalent
to Hybrid 5.1, and when the right messages are encrypted, the view is equivalent to
Hybrid 5.2. This is because the other information that A gets do not depend on the value
encoded in ctsk or ctkey. We argue this as follows. We have already established that A
only gets ctsk encrypted with a pkra generated in DE from KME. Similarly, A only gets
ctkey encrypted with a pkla generated in a valid FE from DE. In addition to these, when
interacting with messages from a valid QDE or QFE(·), S either uses the skpke from msk or
the Umsg oracle to answer the queries and not the decryption of ctkey.

Hence, when A decides between the two hybrids we forward the corresponding answer
to the IND-CCA2 challenger. If A can distinguish between these two hybrids with non-
negligible probability, then the IND-CCA2 security of PKE can be broken with non-
negligible probability.

Lemma 4.7.8. If PKE is an IND-CCA2 secure encryption scheme, then Hybrid 6 is
indistinguishable from Hybrid 5.2.

Proof. The IND-CCA2 challenger provides the challenge public key pk∗. During FE.Setup
S sets pkpke = pk∗. Now, msg and 0|msg| are provided as the challenge messages. The
challenger returns ct∗, which is an encryption of either of those with equal probability. S
sets ctmsg = ct∗. When HW.Run(hdlP , “run”, reportsk, ctmsg) is called with a valid reportsk
to hdlP ∈ K with the honest bit set, S uses the Umsg∗ oracle for a challenge ciphertext
ctmsg ∈ R from Hybrid 4. Now, for any ctmsg /∈ R, S neither has the oracles nor
has the sk∗ corresponding to pk∗ in msk. But, the decryption oracle provided by the
IND-CCA2 challenger can be used for any ctmsg /∈ R. Hence, S can answer all the
HW.Run(hdlP , “run”, reportsk, ctmsg) queries. Thus, the view of A is identical to Hybrid 5
when msg is encrypted in ct∗ and Hybrid 6 when zeros are encrypted in ct∗. So we
can forward the answer corresponding to A’s answer to the IND-CCA2 challenger. If A
can distinguish between these two hybrids with non-negligible probability, the IND-CCA2
security of PKE can be broken with non-negligible probability.

4.8 FE construction in the stronger security model

We will now present the formal description of our second FE construction which can be
proven secure in the stronger security models of HW and FE described in Definition 4.6.2.
This definition does not let the simulator simulate the HW oracle in the ideal world.

87

The trusted authority platform TA and decryption node platform DN each have
access to instances of HW. We assume HW.Setup(1λ) has been called for each of these
instances before they are used in the protocol and the output params was recorded.
Let PKE denote an IND-CCA2 secure public key encryption scheme (Definition 4.6.5)
with the weak robustness property10, let S denote an existentially unforgeable signature
scheme (Definition 4.6.4) and E denote an IND-CPA secure secret key encryption scheme
(Definition 4.6.3).

FE.Setup(1λ) The key manager enclave program QKME is defined in Figure 4.9. Let
state denote an internal state variable.

1. Run hdlKME ← HW.Load(params, QKME).

2. Run (pkpke, vksign)← HW.Run(hdlKME, (“init”, 1λ)).

3. Output the master public key mpk := pkpke and the master secret key msk := hdlKME.

FE.Keygen(msk, P)

1. Parse msk as a handle to HW.Run.

2. Derive tagP and call sig← HW.Run(hdlKME, (“sign”, tagP)).

3. Output skp := sig.

FE.Enc(mpk,msg)

1. Parse mpk = (pk, vk).

2. Sample an ephemeral key ek ← E.KeyGen(1λ) and use it to encrypt the message
ctm ← E.Enc(ek,msg).

3. Encrypt the ephemeral key under pk along with the hash of ctm: ctk ← PKE.Enc(pk, [ek, H(ctm)]).

4. Output ct := (ctk, ctm).

10We actually need one PKE scheme with IND-CPA security and weak robustness property and another
PKE scheme with IND-CCA2 security

88

Figure 4.9: QKME II

• On input (“init”, 1λ):

1. Run (pkpke, skpke) ← PKE.KeyGen(1λ) and (vksign, sksign) ←
S.KeyGen(1λ)

2. Update state to (skpke, sksign, vksign) and output (pkpke, vksign)

• On input (“provision”, quote, params):

1. Parse quote = (mdhdl, tagP , input, output, σ), and parse
output = (sid, pk1, pk2, skP , ctk).

2. Run b ← HW.QuoteVerify(params, quote) on quote. If b = 1,
retrieve skpke and vksign from state. If b = 0 output ⊥.

3. Run b← S.Verify(vksign, skP , tagP). If b = 0, output ⊥.

4. Run (ek, h)← PKE.Dec(skpke, ctk)

5. Compute ct1sk = PKE.Enc(pk1, ek||vksign) and ct2sk =
PKE.Enc(pk2, ek||vksign)

6. Compute σsk = S.Sign(sksign, (sid, ct
1
sk, ct

2
sk, h)) and output

(sid, ct1sk, ct
2
sk, h, σsk).

• On input (“sign”,msg):
Compute sig← S.Sign(sksign,msg) and output sig.

FE.DecHW,KM(·)(skP , ct) The decryption enclave program QDE parametrized by P is
defined in Figure 4.10. The security parameter λ is hardcoded into the program. The
QDE here can be seen as the merge of the QDE and QFE in our first construction.

1. Run hdlDE ← HW.Load(params, QDE).

2. Call quote← HW.Run&QuoteskHW
(hdlDE, “init dec”, skP , ctk).

3. Query KM(quote), which internally runs
(sid, ct1sk, ct

2
sk, h, σsk)← HW.Run(hdlKME, (“provision”, quote, params))11.

11We could again use HW.Run&Quote here instead of explicitly creating the signature σk. If we do that,
the verification step in DE would involve using the Intel Attestation Service.

89

Figure 4.10: QDE II

• On input (“init dec”, skP , ctk):

1. Run PKE.KeyGen(1λ) twice to get (pk1
ra, sk

1
ra) and (pk2

ra, sk
2
ra).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, sk1
ra, sk

2
ra), and output

(sid, pk1
ra, pk

2
ra, skP , ctk).

• On input (“complete dec”, (sid, ct1sk, ct
2
sk, h), σsk):

1. Look up the state to obtain the entry (sid, sk1
ra, sk

2
ra). If no entry

exists for sid, output ⊥.

2. Verify the signature b ← S.Verify(vksign, σk, (sid, ct
1
sk, ct

2
sk, h)).

If b = 0, output ⊥.

3. Check that h = H(ctm). If not, output ⊥.

4. Decrypt m← PKE.Dec(sk1
ra, ct

1
sk).

5. If m = ⊥, decrypt and output output← PKE.Dec(sk2
ra, ct

2
sk).

6. Parse m = (ek, vksign) and compute x← E.Dec(ek, ctm).

7. Run P on x and output output := P (x).

4. Call HW.Run(hdlDE, (“complete dec”, sid, ct1sk, ct
2
sk, h, σsk)).

5. Output its result output.

4.8.1 Security overview

Theorem 4.8.1. If E is an IND-CPA secret key encryption scheme, S is an EUF-CMA
secure signature scheme, PKE is an IND-CCA2 secure public key encryption scheme with
weak robustness property and HW is a secure hardware scheme, then FE is a secure
functional encryption scheme according to Definition 4.6.2.

We will mention here some of the challenges faced while proving the security of our
construction. The main difference from the proof of our first construction is that the HW
algorithms are not simulated but are run as in the the real world. Hence, when we use the

90

IND-CCA2 security of PKE to prove that the adversary does not learn any information
from the communication between the enclaves, the decryption enclave will not have the
correct secret key to decrypt the PKE ciphertext and hence cannot proceed to generate
the correct output. To remedy that situation, DE sends two public keys and KME sends
two ciphertexts during that step so that when the IND-CCA2 game is run for one of
ciphertexts, the other ciphertext can be decrypted by DE to satisfy the correctness of the
FE scheme. During this step, we will also use the indistinguishability of ciphertexts when
the same messages are encrypted under different public keys. Also during this step, to help
the programs decide whether the message got after decryption is correct or not, we require
the robustness property from our PKE scheme which ensures that decryption outputs ⊥
when a ciphertext is decrypted with a “wrong” key.

Discussion

• This construction can be modified to work like the first construction, where the
decryption enclave is separated from the function enclave written by the user
programmer.

• This construction allows us to achieve the stronger security notions of FE and HW.
But, one might wonder how our KM oracle compares with the notion of hardware
tokens in [72]. With an “oracle” being necessary due to the FE impossibility
results, we made the functionality of the KM oracle minimal. In our construction,
KM performs minimal crypto functionality: basic signing/encryption. (And it is
an independent enclave DE without access to msk which runs the user-specified
programs on user-specified inputs). Hence, it is relatively easier to implement the KM
functionality secure against side-channels, when compared to the powerful hardware
tokens. Also from a theoretical perspective, KM runs in time independent of the
runtime of program and the length of msg, in contrast to the hardware tokens whose
runtime depends on both the program and msg.

• The similarity of C-FE with our notion is that there is an “authority” mediating
every decryption. If mediation by KM were a concern to an application of FE, the
message sent by DE to the KME can be encrypted and anonymous communication
mechanisms like Tor can be used to communicate to KM so that KM cannot
discriminate against specific decryptor nodes (also helped by remote attestation using
blind signatures). Also, our construction could be modified to achieve C-FE when the
efficiency constraints are relaxed for the authority oracle such that they run in time
independent on the length of the input but dependent on the function description

91

length. The construction in [168] requires the authority to run in time proportional
to the length of function description and input.

4.9 Extensions and Future Work

Private Key MIFE There is a private key variant of MIFE where producing a valid
ciphertext for the ith input to a function requires a secret encryption key eki. Invoking
the decryption algorithm on inputs produced with an invalid key does not reveal any
information about the plaintext data. For some multi-input functionalities, private key
MIFE is necessary to achieve meaningful security. For example, consider the order function
ord(x, y) = 1 iff x > y. In the public key setting, given an encryption cx of x and a
functional key for ord the decryptor can produce valid ciphertexts for any arbitrary integer
y in order to learn ord(x, y), and can recover x by binary search. Iron supports private
key MIFE. In this mode, the Authority appends a signature on the appropriate index to the
public encryption key, i.e. eki = sigi||pkpke where sigi is a signature on the integer i using
sksign. To encrypt a message m with eki, the encryptor uses pkpke to produce a public key
encryption ci,m of sigi||m. When an enclave on the decryption node receives ci,m as the
ith input to a function, it uses skpke to decrypt ci,m and validates the signature appended
to the message using vksign. If this is not a valid signature on the index i then the enclave
aborts the operation, and otherwise it proceeds with m.

Function Private FE Currently, Iron supports a version of FE where the function to
be evaluated is not hidden from the decryptor, and moreover, it is not hidden from the
decryption node. Function private FE [50] could be supported by running a single enclave
on the decryption node that receives encrypted and signed function code, decrypts the
function code, checks the signature, and executes the decrypted code either through an
interpreter or by writing the code to pre-allocated WX enabled pages. However, doing this
securely would require the capability of full program obfuscation in SGX. It has not yet
been demonstrated that this is possible to achieve practically for generic programs given
the current side-channel attacks on SGX, though some effort in this direction was made in
[185] and demonstrated on SGX-like special purpose hardware in [170].

Multi-Authority FE In multi-authority FE [66], the trust is distributed among multiple
authorities instead of having a single authority manage all the credentials. Clients must
obtain secret keys from all (or a suitably large subset) of the authorities in order to be able

92

to decrypt ciphertexts. Since the secret keys in Iron are simply signatures, it would be
easy to augment Iron to support this feature by using threshold-signatures and multiple
KMEs.

93

Chapter 5

StealthDB: A Scalable Encrypted
Database on SGX

5.1 Introduction

In this chapter, we present our study on designing a secure version of a real-world system
using Intel SGX, with transactional databases.

Transactional database systems are designed to store and process enterprise data with
ACID (Atomicity, Consistency, Isolation, Durability) guarantees. A lot of enterprises now
use third party public cloud infrastructure or service providers like AWS, Microsoft Azure
and Google Cloud to maintain their databases. This places complete trust on their data
with these providers, as we discussed earlier.

To tackle this problem, research has been done to build “encryption-in-use” mechanisms
that greatly improve security by preventing the attackers and even the cloud operators from
ever seeing the data in clear. A lot of work has been done on improving the security and
performance on a subset of SQL operations as systematized in the survey by [90], but only
a handful of systems are complete and evaluated at scale. The state of art encryption-
in-use database systems which have been evaluated at scale can be divided into two main
categories:

(A) systems built using advanced encryption schemes that allow to perform operations
over the ciphertexts [182, 181, 177], and

(B) systems that leverage a trusted processing device (e.g., FPGA, IBM secure co-
processor) to perform operations [20, 26, 85].

94

A practical encrypted database design is evaluated in terms of the following four aspects:

• security: leakage profile and security assumptions. Leakage profile characterizes the
amount of data leakage introduced by the design. Security assumptions include the
mathematical assumptions for the cryptography and the trusted computing base
(TCB) and other trust assumptions for the trusted hardware.

• functionality: the SQL operations and DBMS functions supported.

• performance: throughput, latency and scalability to large datasets.

• intrusiveness level: amount of changes to the underlying DBMS.

CryptDB [182] is a seminal work in this area using property-preserving encryption schemes
to execute queries over encrypted data. But, these schemes do not offer strong security
and when used in multiple columns they are found to leak extensive information for real-
world datasets [169, 118]. Also, [182] requires extensive computations (re-encryption of
entire columns) on a trusted proxy or the client to support all the SQL queries. The
other systems using advanced encryption schemes either have a very limited functionality
[177, 63, 133] or incur heavy computational and storage overheads [181].

Cipherbase [20] offers a scalable design for transactional workloads with a strong leakage
profile and complete SQL support, by leveraging on trusted hardware. But, the system
uses FPGAs as its trusted hardware and hence has the following security implications: (i)
an initial trusted and on-premise key loading phase is required for every FPGA device
used, (ii) a huge trust is placed on the FPGA“shell” layer [17] implemented by the cloud
operators which monitors the user operations on the FPGA to ensure the safety of the
device. As such, significant research is required to use FPGAs as trusted hardware in
cloud-based applications. The other trusted hardware based systems [26, 85] offer improved
leakage profile but only at the cost of extensive DBMS changes, much larger TCB and huge
performance overheads for large transactional workloads.

In this work, we study how to build an encrypted database system from a standard
CPU leveraging the Intel Software Guard Extensions (SGX) instruction set [159]. SGX
enables the creation of a small encrypted memory container (enclave) that can be accessed
only by a predefined trusted code. The content of the enclave is protected from untrusted
applications and even the system administrators, OS and hypervisor. Also, SGX is available
in all the recent and future releases of Intel CPUs Hence, SGX offers a great direction for
protecting applications in cloud environments. But, SGX has its own set of restrictions. It
requires rewriting of applications by partitioning code into trusted and untrusted segments.

95

Also, there is a 90 MB bound on “secure” memory to run the trusted enclave code,
which is not nearly enough for even medium size database workloads.1 Additionally, SGX
is vulnerable to memory, cache and other side-channel leakages, lacks syscalls and IO
support, and incurs high overheads for switching between enclave and non-enclave modes,
which further limit the complexity and functionality of the trusted enclave code. As such,
one cannot take a DBMS system and naively try to “run it in an enclave”. But, it is
important for an encrypted database design to get around these limitations without having
to make extensive changes to the underlying DBMS, while still achieving the performance,
security and functionality goals. Also, it is not clear whether a design that works well for
another trusted hardware can be ported to SGX while preserving the end-to-end security
guarantees, since each hardware has its unique set of security and usability requirements.

5.1.1 Our contributions

Design choices with SGX We first investigate three possible design choices for an
encrypted database with SGX in Section 5.4.2 by varying the DBMS components run inside
an enclave. Through a set of benchmarking experiments, we identify a design that works
best for our design goals (Section 5.5). We develop on that to get the StealthDB design.

StealthDB The StealthDB system provides a complete SQL support, strong end to
end security guarantees and performance with very minimal changes to the underlying
DBMS. A high-level overview of our system is presented in Figure 5.1. StealthDB uses
AES-GCM, a semantically secure encryption scheme to encrypt all the data items in the
database. During query execution, client encrypts the query string and sends the ciphertext
to the server. We implement a query parser inside an enclave, which first decrypts the
ciphertext to get the query and parses the query to output a version with all the constants
encrypted. For example, when a client sends ENC(select * from item where name = ‘John’),
it is converted to select * from item where name = ‘ENC(John)’ by our enclave parser. To
support queries of this form, we define encrypted datatypes and implement the operators
over these datatypes inside an enclave. We make the operators data-oblivious [173] to
protect against SGX side-channel attacks. We also encrypt the index file pages before they
are written to disk. These changes are not intrusive and hence enable StealthDB inherit
the functionality of the underlying DBMS completely.

1Although various SGX extensions are promised by Intel in future releases with larger secure memory,
they are not available in the market yet and unclear when they will be. We also argue later that these
extensions should not affect our conclusions on the architecture of an encrypted DBMS with SGX.

96

Security StealthDB offers a stronger leakage profile compared to the prior complete
encrypted database systems. A snapshot adversary [187, 91, 55, 27, 78] learns only the
“shape” of the database which includes the dimensions of the data structures maintained by
the DBMS, along the recently collected query log information. An adversary with persistent
access to memory and disk learns the inequalities (¡, ¿, =) between the encrypted values in
the indexes which are compared during the query execution, along with the query access
pattern which includes the position of the result records in the database. In general, the
enclave code can be thought of as providing a black-box access to the DBMS to perform the
computations on encrypted data values and obtain the output (encrypted or unencrypted
depending on the specification), without leaking any other information about the input
data values. We explain our leakage profile in more detail in Section 5.6, and this profile
matches the state-of-art (the strongest version in [20]) when providing either reasonable
performance2 or intrusiveness levels for large transactional workloads. Also, our TCB just
includes the processor, the enclave code along with the SGX hardware and the attestation
procedure. Our clients use the SGX attestation procedure to attest the correctness of the
enclave code before issuing queries. This combined with the simplicity of the enclave code
reduces the trust to be placed on the enclave code.

Figure 5.1: High-level architecture overview of StealthDB

Evaluation We implement our design on top of an existing Postgres DBMS. Our new
encrypted datatypes and the corresponding primitive operations (UDFs) are added as
extensions in Postegres [183]. The only component that needs modifying the Postgres
code is to encrypt/decrypt the index files when they are stored to/accessed from disk

2From our experience talking to the industry on the possible adoption of StealthDB, 50% to 2× overhead
in performance is a reasonable penalty for the benefit of security against untrusted cloud operators.

97

and this just needs a three lines change in the Postgres codebase. None of these changes
are intrusive, or specific to Postgres. Hence, this design principle lets StealthDB benefit
directly from any performance or feature improvements to the underlying DBMS engine.
Performance-wise, StealthDB scales to large datasets with a similar complexity to an
unmodified DBMS engine working on unencrypted data, adding only a constant overhead
for each query. Our evaluation results in Section 5.8 show that the system can process
transactional (OLTP) queries with a 30% reduction in throughput and ≈ 1 ms overhead
in latency over an unencrypted DBMS with > 10M total rows (or 2 GB plaintext) of a
TPC-C warehouse database, a standard benchmark for transactional queries [1], for scale
factor W = 16.

5.2 Intel SGX

There are three main functionalities that SGX enclaves achieve: isolation, sealing and
attestation. We discussed these in detail in Chapters 3 and 4. In addition, we use key
establishment procedure built on top of the attestation procedures. We brief that here.

Key establishment during attestation. Key establishment between two enclaves or
between an enclave and a remote party can be accomplished on top of the local/remote
attestation process. An enclave can send the key shares (for eg., a Diffie-Hellman key
share ga) and include them as the additional authentication data to MAC. Thus attestation
provides authenticity and integrity to the key share from the enclave. In our system, we will
very often run the key establishment phase on top of local/remote attestation to establish
a secure channel for communication between two enclaves or between an enclave and a
remote party using the established shared secret key.

5.3 Platform Overview

5.3.1 Usage Model.

We work with the following setting. A data owner aims to store and process data securely
on a remote untrusted SQL database server. She authorizes clients by issuing them
credentials, and wants to support the authorized clients to issue queries to the server. The
server maintains a credential database for the authorized clients in an encrypted form. Each
client authenticates to the server using its credentials, which will enable the client to issue

98

its permitted queries to the database. The server in our model is equipped with a secure
processor, such as Intel SGX. Hence, the server can be identified with some “platform-
key” established by Intel SGX. The data owner and clients engage in the attestation of
SGX enclaves in the server and on successful attestations, transfer any secret or sensitive
material (master key, credentials, queries, etc.) to those enclaves via secure channels.

5.3.2 Threat Model

StealthDB provides security against passive adversaries. A passive adversary does not
inject malicious code or alter the program execution in any way. But, it can read the
contents of the memory, disk and all the communication, and hence may passively attempt
to learn additional information from the data they observe.

There are two dimensions in which we analyze the threat model for our system. The
first dimension is about the extent of access: adversaries restricted to monitoring the
disk accesses versus the adversaries monitoring both the memory and disk accesses in the
system. The second dimension is about the duration: adversaries getting snapshot accesses
to memory or disk versus the much stronger ones which get persistent access to memory
and disk. A snapshot attack might be due to a memory dump or some cold-boot attack by
a malicious cloud provider or by a co-located client running on the same cloud server as
the victim process which gets occasional access to the memory of the entire system due to
access control bugs. SQL injection attacks [83, 121, 78], VM attack leaks [187, 91, 55, 27],
disk theft and a “smash-and-grab” after a full system compromise [78] are some real-world
examples of snapshot attacks [119].

5.4 Designing an Encrypted DB

In this section, we describe a few design goals we set out to achieve for our system. Then,
we discuss and experiment with a few possible design choices possible when building an
encrypted database from SGX.

5.4.1 Design Goals

The focus of StealthDB is on building a scalable encrypted database system that can
support arbitrary query types, with a reasonable leakage. Construction of an encrypted

99

DBMS with a complete SQL support under any meaningful notion of security is an uphill
task in this world where the proposed attacks [118, 119, 142, 117] completely dismantle the
security of even the constructions with limited functionality (like searchable encryption)
which had, what was thought to be, extremely minimal leakage (reveal just the locations
of the results of each query). There has been extensive research to secure subset of SQL
operations, but they have barely made their way into a real world DBMS unless a design for
a complete system is provided. For instance, the CryptDB design was part of or inspired
many real-world systems [182, 164, 114, 105] due to an almost complete DBMS support.
In this regard, we set our design goals as follows:

• Functionality goal: complete support to the SQL functionality of the underlying
DBMS.

• Non-intrusiveness goal: minor modifications to the core DBMS operations of the
underlying DBMS, for the encrypted database to retain the DBMS properties. If the
underlying DBMS is ACID compliant, supports triggers and stored procedures, so
should the encrypted database.

• Performance goal: high throughput and low latency when scaling to large datasets.

• Security goal: We will start by stating the security goals informally:

– a snapshot adversary on both memory and disk should learn no information
about the individual data items.

– a persistent adversary on both memory and disk learns no information about
the encrypted data that are not compared when the queries are processed, other
than that they are not part of the query processing. Even for the data of the
query execution, the leakage should match or be stronger than the previous
works supporting complete SQL.

We will later study the security for each proposed design. And, the leakage profile
of the chosen StealthDB design will be detailed in Section 5.6.

There is an inherent trade-off here between security and performance which will influence
our design choices. There is a lower bound of logarithmic overhead in performance [101, 64],
just to support encrypted search without any leakage. This also translates to the trade-
off between efficiency and the information leakage during the index building and usage.
Moreover, we also aim to design secure versions of arithmetic and other operators to support
SQL completely. Hence in this work, we lean towards achieving a good performance for

100

Figure 5.2: Three alternative design choices for an encrypted database with SGX.

large transactional workloads, while trying to achieve the best security possible for that
performance.

5.4.2 Designing an Encrypted DB from SGX

We consider three design choices and evaluate them on a few micro experiments to help us
understand how to build an encrypted database system with SGX. The design choices are
summarized in Figure 5.2. We envision that in all three design choices data is encrypted
on disk using a semantically secure encryption scheme. The designs differ in how queries
are executed over the data.

The first, most obvious design would be to run the entire DBMS inside an enclave (left
figure in 5.2). The data would be read from disk, decrypted transparently and then the
DBMS would perform all necessary operations inside an enclave. However, SGX is not
well suited for this task for a few reasons that we outlined earlier. The first issue is that
SGX does not support IO or syscalls, so an additional outside shim layer would need to
be exposed to talk to the kernel level, and the application dependencies need to be loaded
inside (or outside via shim) an enclave. It is feasible to get around this issue using recent
works such as Haven [32], Scone [21] and Graphene [202, 69]. They initiate the research
in loading unmodified executables into enclaves with varying overheads. The second issue
is that SGX is currently limited to 90 MB of working memory and significant penalties
appear when going beyond that limit [174]. Future releases of SGX promise larger enclave
sizes. However, the Merkle tree integrity protection for each memory page to prevent
replay attacks does not scale well to larger enclaves. If these two issues were resolved, this
design offers no information leakage to a snapshot attacker, since the memory used by the
DBMS inside an enclave always remains encrypted. But, this design would keep a very
large TCB inside the enclave: the entire DBMS engine, any communication logic with the
“outside world” and dependencies. Since SGX is vulnerable to numerous side-channels,

101

very custom modifications to the DBMS are needed to prevent these attacks and make the
code oblivious. Hence, this design is not very promising.

The second design we consider (middle figure in 5.2) keeps most of the DBMS in the
untrusted zone. However, it places the query execution logic in the enclave. That is,
when a query needs to be executed, individual tables can be brought into the enclave to
perform selections, projections, joins, etc. The query plan, I/O and other DBMS parts
remain in the untrusted memory. In terms of scalability, this design suffers from the same
problems as the previous choice due to limited secure memory. Also, tables and indexes
need to read from disk, deserialized and then loaded into enclave. In Figure 5.3 we show
that the performance overhead for performing just this step (read and deserialize) inside
an enclave is around 3× when the dataset fits within an enclave, and goes up to 9× for
large datasets. In terms of security, the query processing logic would still need to do the
non-trivial task of addressing the SGX side-channels. Finally, partitioning a DBMS to
support this architecture is also a challenging task.

Figure 5.3: Initialization time comparing in memory and in enclave deserialization for
different dataset sizes.

In the third design, we keep most of the DBMS in the untrusted zone, and the dataset
would reside in the untrusted memory with the data items encrypted individually. At
the lowest level of the parsed query tree, each query is eventually broken down into some
primitive operators (e.g., <=, >=,+, ∗) over individual data values. To perform operations
over encrypted data in this design, we transfer individual data item(s) to an enclave,
followed by the decryption of input, the operator function and the encryption of output
inside the enclave. The advantage of this design is that the communication with the disk
and network layers would remain unchanged. Overall, minimal changes to the DBMS are
needed – one only needs to change how primitive operators on data values are performed.

102

Figure 5.4: Latency to execute random binary tree searches comparing different
approaches.

Two different implementations of the partial approach: comparison function as trusted
ecalls and the exit-less communication via a queue for transferring data to/from an
enclave.

Also, the amount of code/data inside an enclave will remain a very small constant. This
keeps the TCB very small, and it is easy to make it data-oblivious. Hence, we build on
this design idea in Section 5.5. However, this design leaks relationship between encrypted
data values during query execution in this design as discussed in Section 5.6.

In Figure 5.4, we compare performance of performing B-tree searches over database
indexes in later two design choices. As expected, one can see that performing a search when
an entire B-tree is loaded inside an enclave does not scale to larger datasets. (However, it
performs well when the tree size is very small and can be fit entirely into an enclave.)
In the third design, when the B-tree is kept encrypted in the untrusted memory but
individual comparisons are executed in an enclave, we see up to 100× overheads compared
to performing the search over unencrypted data. This can be explained by high switching
costs for ecall/ocall functions, which are used for enclave entry/exit. Using an exit-less
communication mechanism via a shared queue [174], we can reduce this overhead by 5 ×
−10×.

103

Figure 5.5: StealthDB architecture.

The life cycle of a query initiating from a client can be traced from steps 1 to 5. The lines
with shaded arrows represent encrypted communication between those entities.

5.5 Architecture

The architecture of StealthDB is presented in Figure 5.5. As discussed in our third design,
StealthDB makes extremely minimal changes to the underlying DBMS, with most of our
components augmented on top of an unmodified DBMS. We will now go through the flow
of database creation and query life-cycle, and explain each of our components in detail as
needed.

5.5.1 Database creation

When a database is created, the database owner designs a database schema to define
the structure of the database. During the schema creation, StealthDB allows the owner
to identify the columns of the tables in the database which have sensitive information
and use our encrypted datatypes for those columns. An encrypted datatype is used to
represent values which are the encrypted versions of its corresponding plaintext datatype.
For instance, encrypted integers are represented by the encrypted datatype enc int4 in

104

Figure 5.6. And, a database owner can issue the following command to create a table item

Figure 5.6: Definition of enc int4

with two columns of types encrypted integers and encrypted strings as in Figure 5.7.

Figure 5.7: Create table

StealthDB will encrypt the data values in an encrypted datatype using AES-GCM
which is an authenticated encryption scheme providing both confidentiality and integrity
of the data values. We will discuss about the key(s) used by this encryption during the
DBMS initialization.

5.5.2 DBMS Initialization

When the DBMS is started, the following additional steps are performed for StealthDB.

Enclaves creation StealthDB creates three enclaves on the database server: the
client authentication enclave Auth, the query pre-processing enclave PreProcessor and the
operation enclave Ops. These enclaves are loaded by an untrusted DBMS runtime, but our
system will later allow to attest that the correct code has been loaded into the enclaves. The
clients use the remote attestation process and the publicly available measurements (hash)
of the enclave code to ensure the correctness of the loaded programs in the enclaves. We
will defer the explanation of this step and the functionality of these enclaves to the sections
below.

To facilitate the communication between the users and the enclaves, StealthDB intro-
duces an I/O layer on the server side. Its job is to simply redirect requests between the
appropriate enclaves and the DBMS. This will also act as the wrapper program for the
enclaves helping in processing their I/O requests and system calls. Note that this layer is
untrusted and can be controlled by an adversary.

105

Figure 5.8: The authentication protocol of StealthDB

Key generation The initialization phase also involves generating a master secret key.
StealthDB performs key generation inside the Auth enclave. Auth runs the KeyGen()
function to sample a 128 bit secret key K at random for the AES encryption/decryption
operations. In the current design, this master key K will be used to encrypt all the data
values in the database. We do this for simplicity and our design can be extended to
support an integration with a key management service to enable the usage of different keys
for different clients or for different columns in the database.

Figure 5.8 outlines the key generation and transfer procedures. The master key K is then
transferred to the PreProcessor and the Ops enclaves as follows. When the PreProcessor
and Ops enclaves are created, they individually perform a local attestation with Auth
and establish a secure channel with Auth. When the attestations succeed and after the
secure channels are established, Auth’s KeyTransfer() function uses the channels to send
the master key K to PreProcessor and Ops. (On the other end, PreProcessor and Ops will
run their KeyReceive() functions to complete these steps and receive K). On obtaining K,
PreProcessor and Ops use SGX’s sealing property to encrypt and store K for future use.

106

Transfer of credentials The final task of the initialization phase involves transferring
the client credentials and access policies to Auth. A client (proxy) will authenticate to Auth.
And, from the point of view of the DBMS, Auth (and PreProcessor) will act as a client who
has complete access to the database. To facilitate this, the data owner first engages in a
remote attestation protocol with Auth along with a secure channel establishment and if
it succeeds, she sends the master credentials along with the database of client credentials
and access policies to Auth through the established channel. On obtaining these, Auth uses
the SGX seal operation to encrypt and store them.

5.5.3 Client authentication

One of the challenges we need to address is to make sure that only the authorized users
can query the encrypted database system. For this, we design an authentication method
built on top of an existing DBMS.

After the database server is started, it is now ready to accept connections from the
clients. Here, StealthDB adds an authentication mechanism for the clients to authenticate
to the Auth enclave. This works as follows.

First, the client proxy verifies that the DBMS has loaded the correct code into Auth, by
performing the remote attestation (plus secure channel establishment) protocol with Auth
as described in Section 5.2. Let sessk be the shared secret key obtained after its successful
completion. The client will then authenticate to the Auth enclave using its credentials, say
its password or its SSH key, through the established secure channel. On the server side, the
I/O layer directs the client authentication requests to the CompleteClientAuth() function
in Auth. CompleteClientAuth() unseals the client credentials database and uses it to verify
the client credentials. If the client authentication completes successfully, the shared secret
key sessk will be used as the session key for the client.

Once the client authentication is completed, the interaction with the client for query
processing will be performed by the PreProcessor enclave. To facilitate this, the I/O layer
will now invoke the TokenTransfer(ID, sessk) function in Auth to transfer the client “ID”
and sessk to PreProcessor. This transfer will use the secure channel established between
these enclaves during the master key transfer. The TokenReceive function of PreProcessor
will seal and store sessk with ID as the additional authentication data during the seal
operation.

107

5.5.4 Query execution

Now we will explain the working of query processing and execution in StealthDB for a client
which has completed its authentication successfully. The design of StealthDB permits the
use of an unmodified query driver (e.g. JDBC, ODBC, etc.).

When a client issues a query, the client proxy encrypts the entire query string using
the session key sessk with its ID included in the additional authenticated data. On the
server side, the I/O layer directs the client queries to PreProcessor. The QueryPreProcessing
function first decrypts the query ciphertext using the session key sessk for ID. Then, it
checks whether this client is permitted to run this query. Typically, a DBMS allows the
DB owners to specify access control policies for the clients. In StealthDB, we rewrite the
access control monitor inside PreProcessor. If the checks are passed, QueryPreProcessing
identifies the data values in the query which correspond to the columns in the database
using encrypted datatypes using our query parser, and AES-encrypts these data values
using the master secret key K. The output of this step, encquery, is given to the DBMS
for execution.

Note that the DBMS is oblivious to the changes made to the query. The structure
of encquery is same as that of the query issued by the client. This lets the DBMS use an
unmodified query parser to parse this query. But after the query is parsed and a query plan
is obtained, we need to augment the DBMS with functions to operate on the encrypted
datatypes. We do this as follows.

We first identify the set of primitive operators used by the underlying DBMS. Primitive
operators are those further-indivisible operators used in query plans:

• Comparators such as <,>,<=, >=, ! =, etc.

• Math operators such as +,−,%, ∗, etc.

• Hash functions that are used to build some indexes.

• Advanced math functions such as sin, cos, tan, etc.

Traditionally, DBMSs define a functionality for each input datatype tuple supported by
a primitive operator. StealthDB augments these with their functionalities when used with
the corresponding encrypted datatypes as in Figure 5.9. Our implementation on Postgres
implements primitive operator functionalities over the encrypted datatypes and include
them as extensions.

108

Figure 5.9: Operator = for enc int4. Here, enc int4 eq will call the Ops enclave to decrypt
the input, check their equality and output the result.

For every possible input datatype tuple, we define a function inside the Ops enclave.
Suppose that we are given two encrypted data values (e1, e2) and an operator ⊕, the
corresponding function inside Ops will perform:

1. decryption of the inputs e1, e2 using the master key to get plaintext values p1, p2,

2. perform the operator function to get poutput = p1 ⊕ p2,

3. encrypt the result poutput to get a ciphertext eoutput using the master key (if specified
by the design).

The number of inputs and outputs may of course vary depending on operator. Moreover,
datatype conversions are also allowed in our model. For example, an encrypted integer
may be converted to an encrypted string, and so on. Overall, we only perform a few basic
operations (decrypt, primitive operator, encrypt) during the query execution inside the
enclave.

Standard SGX ocall/ecall communication mechanism with enclaves is too slow when
many calls are needed. To solve this, we implement an exit-less mechanism [174] for
communicating with Ops. In [174], there is always one thread running inside an enclave
listening for operator jobs. The DBMS uses our I/O layer to send jobs and receive replies via
a communication queue. This method greatly improves performance by avoiding context
switch for each call to the operator between trusted and untrusted zones, as we discussed
earlier in Section 5.4.2.

There are also other inherent advantages with our design.

• When a client issues a query only involving unencrypted datatypes, the query
processing and execution proceeds in the native way and hence with no overheads.

109

• A very interesting property is that our design also allows for computations between
encrypted datatypes and unencrypted datatypes. The database owner here can also
specify that the output of such computations should be encrypted to avoid leaking
information about the encrypted inputs.

• Since our design implements only the primitive operators, it is easy for us to
implement them inside Ops using data-oblivious methods [173] with a very small
performance overhead to counter the side-channel attacks of SGX.

5.5.5 Encrypting indexes

The indexed columns, unlike the other columns in the table, need extra layers of protection.
When the column is indexed into a B-tree, for example, the structure of the tree reveals
the inequalities with respect to the values in the column even though the individual values
in the tree are encrypted. The inequalities are available even to a snapshot adversary after
index creation before any query is made to the database. We provide two modifications to
reduce this leakage. First, we re-encrypt the individual values in the column when placing
these encrypted values in an index structure. This unlinks the connection between the
values in the table and the index. This unlinking is maintained for an adversary obtaining
only a snapshot of the table and the indexes. Even for a slightly weaker persistent adversary
which does not observe the system during the index creation, the inequalities observed from
the index structure can be connected to the table values only when a query accesses the
corresponding table row as part of its result. This change does not incur a performance
overhead during the query execution in StealthDB .

The second change deals with this leakage on disk. StealthDB encrypts every page
that is written to the files on disk corresponding to the indexes. We do this by encrypting
the data right before it is written to the index files on disk, and decrypting the data read
from the index files right after it is read from disk. In our implementation for Postgres, our
changes to the codebase involve adding three lines of code to do this task. We create and run
a fourth enclave Index OP during the DBMS initialization which performs the encryption
and decryption of the index data pages. And the three new lines are for retrieving the
enclave ID, calling the encryption function inside Index OP right before a FileWrite() of
Postgres and for calling the decryption function inside Index OP right after a FileRead().
The key used for these routines is generated and stored by Index OP, and Auth attests the
correct loading of Index OP during the DBMS initialization.

110

5.5.6 Extensions

Encrypting logs Some of the log files reveal sensitive information about the queries
even for a snapshot adversary on disk [119]. We can protect against an adversary accessing
disk by encrypting the log files on disk in a way similar to our encryption of index files on
disk. Perhaps, one could ask why we do not encrypt every page written to disk, not just
indexes and logs. But the individual data items in the tables are already encrypted and we
get no concrete security improvements by encrypting the individual disk pages containing
those data items.

Key management In the current implementation, we use a single master key K to
encrypt all the data values. K is sealed and stored on the disk by PreProcessor or Ops
enclave when obtained from Auth. If and when the system is restarted, the enclaves are
created again and a valid PreProcessor or Ops enclave can unseal the corresponding sealed
components to obtain K. During this process, the AES-GCM encryption used in the SGX
sealing provides confidentiality and integrity for the sealed component of K against any
adversary. Also, when replicating the database across multiple machines, we can let the
Auth in one of the machines to generate K and do a remote attestation to transfer it to the
Auth enclaves in the other machines.

5.6 Security

The tradeoff between security, functionality, performance and the intrusiveness level
decided by our design results in the leakage profile that we explain in this section.

First, we will discuss the effect of the SGX side-channel attacks on StealthDB . SGX
is subject to various side-channel attacks as described in Section 5.2. The side-channel
due to the application’s page-level access pattern is a significant one and it is upto the
application developer to design data-independent memory accesses for the application
data to be secure. Our design addresses this side-channel by performing only primitive
operations inside an enclave (Sections 5.4.2 and 5.5) and by using oblivious operators
[173] for these primitive operations. We obviate the other software side-channels (except
the cache-based ones) by simplifying the code inside the enclaves; running the primitive
operations obliviously prevents these side-channels. The cache-based side channels [56, 77]
though, are inherent to the x86 architecture and requires patching from Intel. (Also, these
are instances of active attacks, which in general StealthDB does not protect against).

111

Now, let us discuss the leakage profile of StealthDB . As mentioned in our threat model
in Section 5.3.2, StealthDB protects against semi-honest or passive adversaries. It does
not provide integrity guarantees to the clients on the correctness of the query results.
Neither does it provide confidentiality guarantees against an actively malicious adversary
with side-information on the plaintext values encrypted in DB. We will first detail the
leakage profile of StealthDB for different variants of semi-honest adversaries and through
a series of security claims we will argue that StealthDB does not leak any more information
than what is part of the leakage profile. Our evaluation is with respect to the architecture
we propose, and hence independent on the specific underlying DBMS engine.

5.6.1 Leakage profile

StealthDB encrypts the individual data items, rather than an entire column or table at
once, and hence this mandates a thorough leakage profiling. We classify the admissible
adversaries as in [90] and quantify leakage profiles during the high level operations, Init and
Query, of a DBMS for those adversaries. Init involves loading the database in the untrusted
server to be ready for querying, and Query involves the client querying the database to get
the required results. Note that a query in StealthDB can involve any operator supported by
the underlying DBMS (Eg. relational, arithmetic and logical operators for a transactional
DBMS).

We analyze the security of StealthDB against passive or semi-honest adversaries.
We further classify the adversaries into snapshot and persistent adversaries. A snapshot
adversary gets a snapshot to the memory of the system whereas a persistent adversary
observes the memory of the system throughout its execution. We motivate these adversarial
types in Section 5.3.2.

Let DB denote the database that we try to securely operate. DB includes all the data
structures used by a database (for eg., tables, indexes, views, foreign tables) along with
their contents. We will now define the leakage entities formally and prove the security of
StealthDB through the simulation paradigm. To prove the security though a simulation
paradigm, we first define the set of admissible adversaries. We then construct a polynomial-
time simulator Sim which, with only the leakage entities as input, produces a view (“ideal
view”) that is indistinguishable for any admissible adversary from the view (“real view”)
obtained through a real execution of the StealthDB system. This will prove that the
upper bound on the information leaked by StealthDB to the adversary are the inputs used
by the simulator to produce the ideal view. Figure 5.10 provides the formal simulation
security definition for an encrypted database system using trusted hardware definition.

112

RealEncDB(1λ) : IdealEncDB(1λ) :

(K,EDB)← Init(1λ,DB) EDB← SimL(1λ)

encres← QueryHW(·)(EDB, encquery) encres← QuerySim
L(·)(·)(EDB, encquery)

Figure 5.10: Security definition for an encrypted database system using trusted hardware.
An EncDB construction is secure if, for all admissible adversaries, there exists an efficient

Sim such that:

|Pr[Adv(RealEncDB)→ 1]− Pr[Adv(IdealEncDB) = 1]| < negl(λ)

where Adv = (Adv1,Adv2). Adv1 runs the Real or the Ideal experiment, whereas Adv2

obtains information about the experiment from Adv1 depending on the adversarial type
being studied and produces the output 0 or 1. A snapshot Adv2 obtains a snapshot of the
system, when desired, from Adv1, whereas a persistent Adv2 completely observes the
EncDB system while Adv1 is running the experiment. Adv1 is tasked with just running
the EncDB system; a semi-honest Adv1 will run as per the specifications, and an actively
malicious Adv1 will run the system as desired to maximize the information obtained by
Adv2. The access to HW is treated as an oracle as in Iron and Sim simulates the oracle
in the Ideal experiment. The HW oracle provides interfaces to the enclaves used (in
StealthDB , they are Auth(),PreProcessor(encquery) and Ops({input}, op)). When Query
is invoked on a query, Sim will obtain the leakage Q corresponding to a query from L.

This definition is inspired by the HW definition of Iron who define simulation security for
functional encryption using trusted hardware HW.

The leakage entities of interest to StealthDB are as follows:

• Let St indicate the shape of the database at time3 t ≥ 0 which includes

– the database schema,

– the shape of the tables and (database) views i.e., the number of rows and
columns in the tables and views,

– the shape of the indexes (for eg. the shape of a B-tree index reveals the number
of keys in each internal node of the tree).

3“Time” t refers to the epoch at which the data-structure is observed or collected from the system

113

More importantly, St does not include the contents of any of the data structures in
the database. This entity varies with time depending on the queries run on DB.

• Let Q denote the leakage associated with a query execution. In StealthDB , Q is
upper bounded by the union of the plaintext outputs of the Ops enclave invocations.

• Let Mt denote the leakage associated with the logs and the miscellaneous data
structures maintained by a DBMS at time t to aid in its operations (including various
profiling activities and recovery from unexpected failures).

In StealthDB , the entities Q and M are dependent on the underlying DBMS that
StealthDB builds on. In Section 5.7, we discuss the information that can be inferred
from S, Q and M for some real-world data structures and queries.

Note that S, Q and M are leakages with respect to DB. We now define the leakage
entity q with respect to a query. In StealthDB , before the query is executed (after output
by PreProcessor), the query structure is revealed but not the constants in the query which
are encrypted with the semantically secure encryption. With Q being the leakage during
the execution of this query, the total leakage of a client query to the server is upper-bounded
by the union of q and Q for this query.

• Let q indicate the leakage about the query before the DBMS begins processing it.

Typically, q will be a subset of the DB based leakages. In a real-world DBMS, q might
just be a subset of {Mt} since the details about input queries are usually logged and
checkpointed.

We will now prove the leakage profile of StealthDB during different phases of its
execution. All the following claims rely on the fact that no information (other than its
length) about the key K used to encrypt the data is revealed to an adversary (Claim 5.6.4).
We would rely on the following security properties:

1. Remote and local attestation provided by SGX are secure according to Section 5.2.

2. The confidentiality of the intermediate values of the computation and the integrity
of the computation from SGX.

3. The confidentiality and integrity provided by the authenticated encryption of AES-
GCM.

4. The confidentiality of ElGamal encryption - used during secure channel establish-
ments.

114

Init phase StealthDB only leaks the initial shape S0 during the Init phase. This is better
than the OPE or ORE based designs [182, 175] which leak the ‘¡’ relation between all the
values in the OPE/ORE encrypted columns.

Claim 5.6.1. After the completion of Init and before any call to Query is made,
StealthDB leaks at most S0.

Proof. The proof is straight-forward and the high-level idea is as follows. Sim obtains S0

from the leakage oracle L and outputs encryption of zeros according the shape S as EDB.
An adversary Adv2 that distinguishes the simulated EDB from a real EDB will break the
semantic security of the encryption scheme.

Query phase We will first prove the leakage of StealthDB for adversaries which obtain
snapshot access to the memory. A snapshot adversary in StealthDB learns at most the
shape S and the leakage M due to the miscellaneous information maintained at the time
of the snapshot. M is further upper-bounded by the union of Q from the queries executed
recently. More formally, we have the following claim. The proofs in this section are in the
Appendix.

Claim 5.6.2. Consider a polynomial-time snapshot adversary on StealthDB obtaining the
snapshot at time t. Let t′ ≤ t be the latest time epoch before t for which the logs and
miscellaneous data structures remain in memory and not written to disk. The adversary
learns at most St′ of the DB being operated and Q of the queries executed between t′ and
t. If the log items are encrypted in memory, the adversary learns at most St.

Proof. Adv2 would query the snapshot of the system at time t. Sim sets up EDB as
encryption of zeros of arbitrary shape S0 and answers the Ops queries arbitrarily till t′. At
time t′, Sim obtains St′ from L and rewrites EDB with encryption of zeros according to
St′ . For each query run between t′ and t, Sim obtains Q from the oracle L and answers
the Ops queries accordingly. This way, the execution of the Real and Ideal experiments and
the corresponding shapes of EDB are consistent at time t assuming a deterministic order
of execution for EDB.

We will now argue that the Real and the Ideal experiments are indistinguishable. When
Adv2 obtains the snapshot of the system at time t, it obtains EDB along with the logs
and miscellaneous data structures maintained at time t. Given that the shape of EDB is
consistent between the two experiments at time t, semantic security ensures that a real
EDB is indistinguishable from the encryption of zeros. Logs, etc. for queries before time

115

t′ are encrypted and written to disk. Hence, they do not reveal any information about the
data items in DB. The logs maintained in between t′ and t are also consistent between the
two experiments and are consistent.

If the logs and the other data structures are encrypted in memory, Sim can behave
arbitrarily till t and just rewrite EDB according to St at time t. Assuming the size of logs
to not reveal sensitive information, the Real and the Ideal experiments are indistinguishable
to Adv2.

We will now prove the leakage for a persistent adversary. A persistent adversary in
StealthDB learns the plaintext outputs of the Ops enclave invocations throughout its
observance. More formally, we prove the following claim.

Claim 5.6.3. A polynomial-time semi-honest adversary that has persistent access to the
memory during the StealthDB execution on a DB learns at most the shape {St}t≥0 of DB
and the query-execution associated leakage Q for all the queries executed, where Q is the
union of the plaintext outputs of Ops invocations during the execution of the query.

Note that this theorem implies that the miscellaneous data structures M maintained
or the parts of DB accessed during query execution do not leak more information than
{St} and {Q} to a persistent adversary.

Proof. We again give the high-level idea of this simple proof here. During Init, Sim obtains
the shape S from the leakage oracle L and encrypts zeros as EDB according to S. This
EDB is indistinguishable from a real EDB by the semantic security of the encryption
scheme. Further, during the execution of Query, the values in DB are only used inside
the Ops enclave. With a deterministic execution of EDB, Sim uses Q obtained from L to
answer the plaintext outputs. For the encrypted outputs, Sim produces encryption of zeros
as Ops output and this is again indistinguishable from the encryption of the real values by
the semantic security of the encryption scheme.

5.6.2 Security of K during StealthDB execution

Outline. We will argue here that no information about the master key K is revealed;
also that only the permitted clients can make the DBMS execute queries. This will be a
precursor to the leakage profile analysis above.

Claim 5.6.4. The confidentiality and integrity of the master key K is ensured throughout
the StealthDB execution.

116

Proof. The database owner forms the root of trust as in Figure 5.8. The owner is involved
in a remote attestation protocol with Auth to check the correctness of the code and the
constants loaded into Auth against the publicly available expected measurement of Auth.
(The constants loaded into Auth include the expected measurements of PreProcessor and
Ops). The master credentials for the database is transferred to a valid Auth. And, the
security of SGX remote attestation guarantees the validity of Auth. From this point, the
trust is transferred to Auth. Auth generates the master key K.

The master K is then transferred to the other enclaves PreProcessor and Ops by Auth
through the secure channels established on top of local attestation. The security of local
attestation ensures that Auth establishes secure channels with only those PreProcessor and
Ops whose measurements match the expected hardcoded ones. Hence, K is transferred
only to the correct instances of PreProcessor and Ops. Here, the confidentiality provided
by the public key cryptography used in the secure channel establishment (on top of the
authenticity from attestation) and the confidentiality and integrity of AES-GCM ensure
that no information about K except its length is leaked to an adversary during the transfers.

Now, there are only two more operations which involve K. First, when K is used to
AES encrypt and decrypt data values, the SGX security guarantees combined with the
obliviousness of the AES-NI instructions ensure that no intermediate values about K are
leaked. Finally, K is also sealed and stored on the disk for later retrieval. Here, the SGX
sealing process provides confidentiality and integrity to K.

Claim 5.6.5. During the query execution phase, a query which reaches the DBMS for
execution satisfies the access control policies for the client requesting the query.

Proof. The security of remote attestation also ensures that the database owner transfers
the client credentials database only to a valid Auth. When a client proxy initiates a
connection with the DBMS, a valid Auth establishes a session with the client only if the
client has valid credentials. Next, Auth transfers the session key sessk (shared with the
client) only to a valid PreProcessor. This is ensured by the security of local attestation.
Now, when the client issues a query, the I/O layer relays it to PreProcessor and PreProcessor
parses the query and proceeds only if the query satisfies the access policies of this client.
Since there is no other interface for the client to issue a query to the semi-honest DBMS,
StealthDB ensures that the semi-honest DBMS only executes a query from a valid client
satisfying the access policies provided by the database owner.

117

5.7 Concrete leakage profiles

The formal discussion above provided an upper bound on the leakage in terms of abstract
leakage entities. The definition of the shape S is concrete from the definition. But, Q and
M depend on the underlying DBMS that StealthDB builds on. M is typically We will
now concretize this for the different operations performed on encrypted data.

• Arithmetic operations : Some examples of arithmetic operators include +, -, %, *
and advanced ones like sin, cos, log. For these operators, we provide the same
security as a fully-homomorphic encryption (FHE) on the computation performed
on individually encrypted data items. As in FHE, StealthDB does not reveal
any information to a semi-honest adversary about the intermediate values of an
arithmetic computation involving encrypted inputs and outputs, other than their
length (as multiples of 128 for AES). Consider a simple example query from a TPC-
C transaction: update table warehouse set w ytd = w ytd + constant where w id =
constant2. StealthDB reveals no information about the values in the column w ytd
during the execution of this query.

• String operations : String operations like substring and wildcards have no leakage,
other than the length of inputs and outputs (upto a multiple of 128), with them
being encrypted.

• Relational operations : A real-world DBMS uses indexes to perform the relational
operations like comparisons and joins efficiently. The Q for a query using an index,
say a B-tree, includes the comparison results of the parts of the B-tree explored by the
query. As the values in the index are re-encrypted versions of the values in the table,
the comparison results are useful only when the corresponding values are accessed
in the table. When a row becomes part of query results, an adversary usually can
link it to the corresponding value in the index. From this, it can use the Ops output
history to obtain the comparison results between the indexed value in this row with
the indexed values from the other accessed rows Hence, the information revealed by
Q in StealthDB is the comparison results for indexed values in the rows accessed by
the queries. In the worst case, our leakage against persistent adversaries reduces to
ORE for the parts of the indexes explored by the queries.

There is also a non-trivial information leakage to a persistent adversary that only
has access disk, and not memory. The index pages on disk that are modified during
checkpointing reveal some inequalities within the data being inserted or modified. In
Postgres, for instance, the index file stores data as 8 KB pages. When a new value is

118

inserted into the table, only the pages that need to be changed are marked as dirty
in the memory and eventually changed on disk.

For any other DBMS, the precise information revealed by Q varies based on its query
execution and log maintenance procedures.

5.8 Implementation and Performance

5.8.1 Implementation details

We implement StealthDB in C and C++ on top of Postgres 9.6 as an extension that loads
new SQL functions, encrypted data types and operators and index support methods for
the encrypted datatypes. The command CREATE EXTENSION stealthdb loads the files
stealthdb.so (the main library), enclave stealthdb.so (part of the code which is executed in
enclaves), stealthdb.control (the version control file), stealthdb.sql (definitions of new defined
functions) into the system. For instance, the function enc int4 cmp in Figure 5.11 compares
two enc int4 values and returns {-1, 0, 1}. The function enc int4 cmp in Figure 5.12 is

Figure 5.11: Example of a new function definition in stealthdb.sql

Figure 5.12: Example of new defined function implementation in stealthdb.c

executed in an enclave. We implement our query pre-parser in the PreProcessor enclave
on the server side to encrypt the data values in queries and this design helps in avoiding
changes to the client JDBC or ODBC drivers of the system. Our approach can be extended
to other SQL-like database using user-defined functions. Though database systems like
MySQL do not allow creating independent extensions like Postgres to include our changes,

119

these changes are not intrusive and completely independent of the improvements to the
core database operations. To protect against the side-channel attacks on SGX, we make
every operation inside an enclave oblivious by leveraging AES-NI and CMOV instructions.
The source code of Postgres 9.6 has about 700K lines of code while StealthDB has about
5k lines of code with 1.5k lines run in enclaves.

5.8.2 Performance evaluation

To measure StealthDB’s performance, we use an Intel Xeon E3 3.60 GHz server with
8 cores and 16 GB of RAM. In our experiments, we measure the throughput and
latency of StealthDB using the TPC-C trace and compare the results with an unmodified
Postgres 9.6 which works with unencrypted data. TPC-C [1] simulates the activity of a
wholesale supplier, which includes database transactions for entering and delivering orders,
recording payments, checking the status of orders, and monitoring the level of stock at the
warehouses. This is a benchmark for measuring the performance of the on-line transactional
processing (OLTP) systems. The results in our evaluation were obtained by averaging
multiple 1000 second runs with check-pointing turned off. We ran our experiments with
the number of clients varying from 1 to 10 and with a single-threaded enclave used by all
the client connections. The number of clients can be further increased if a multi-threaded
enclave is used. Our first set of experiments leave the IDs in the TPC-C tables (e.g.
w id, o w id, etc.) unencrypted. The tested database includes nine tables with about
10 million rows in total. This is about 2GB of unecrypted data and when encrypted for
StealthDB gives an encrypted database of size 7GB.

Throughput Figure 5.13 shows the throughput for the TPC-C benchmarking for
different scale factors. StealthDB incurs an 4.7% overhead over the unmodified Postgres
for the scale factor W = 1 and around 30% overhead for W = 16. This is sufficient for
many real-world transactional systems for the security advantages.

Latency We measure the end to end TPC-C transaction latency for StealthDB with the
scale factor W = 16. This includes the time for our query pre-parser.

Table 5.1 and Figure 5.14 compare the median and average latency for StealthDB with
the unmodified Postgres. The 90th percentile of the latency of StealthDB system is 7.2
milliseconds which results in a 22% overhead over the unmodified version.

We also test the performance of StealthDB when the IDs are encrypted with AES-GCM.
That results in about 40% storage overhead, 3x throughput decrease over StealthDB with

120

Figure 5.13: TPC-C benchmarking throughput for running under Postgres and StealthDB
with different scale factors

Median 90th percentile

PostgreSQL 1.6 5.9

StealthDB 2.8 7.2

Table 5.1: Latency statistics of TPC-C requests, ms

unencrypted IDs. And the latency is 3.6 times of that of the version with unencrypted
IDs. The IDs in the TPC-C tables are just counters, hence encrypting them do not offer
any concrete security advantages.

5.9 Related Work

This section builds on the comparisons from the introduction. The work most similar to
ours is Cipherbase [20]. But the trusted on-premise key loading phase for every FPGA
device, and cloud operator controlled “shell” monitor [17] inside an FPGA make FPGAs
unsuitable for being used as a trusted hardware in the cloud. In terms of performance, [20]
achieves about 10% better throughput than ours, but they skip two TPC-C transactions
in their evaluation. Our evaluation with the complete TPC-C benchmark finds that these
two transactions have the highest latency overheads. Similar bottlenecks are expected for
Cipherbase with FPGAs. And, as expected, we achieve much lower latency (4×) over

121

Figure 5.14: Average latency and standard deviation for TPC-C requests under Postgres
and StealthDB.

the FPGA implementation. TrustedDB [26] uses the IBM secure co-processor to perform
operations, but with large portions of the DBMS engine executed inside the trusted zone.
The IBM co-processor incurs high overheads for transactional workloads and also, this
design is not suitable for SGX for both security and performance reasons as we discussed
in Section 5.4.2.

CryptDB [182] uses a hybrid of encryption schemes to support subset of SQL
functionality. Their underlying large leakage profiles often result in data compromise [169,
118]. Performance-wise, [182] achieves a similar throughput decrease as ours, but only
when evaluated with the individual queries from the TPC-C transactions over a 20×
smaller dataset. Arx replaces OPE scheme with a special garbled-circuit based searching
method [181]. Garbled circuits however introduce large computational and storage
overheads.

A few works studied how to build versions of encrypted databases with SGX. VC3
system proposes an architecture for analytical MapReduce jobs in cloud settings [190].
Opaque studies how to leverage SGX to secure distributed analytical workloads in Spark
systems [211]. A concurrent work of ours, ObliDB [85], obtains an oblivious database
supporting both transactional and analytical workloads. But, their solution involves
extensive changes to the underlying DBMS engine, and does not scale well for transactional
workloads. Another concurrent work, EnclaveDB [184], provides strong security guarantees
against persistent and active adversaries. However, this is achieved by placing larger
components of DBMS inside enclaves assuming the existence of large enclaves, in the

122

order of GBs, which is much greater than the 128MB available today.4 They also ignore
the access pattern and other side-channel attacks. In summary, [184] focuses on a different
design space assuming how future trusted hardware designs may look., while our work
focuses on building encrypted database from standard trusted hardware available today.

HardIDX [89] investigates how to perform range queries obliviously over B+ tree indexes
inside an enclave, leaking only the parts of the database accessed per query. But, they only
consider a static database, and the client should generate the full B+ tree index locally and
store it in the server only for the querying. We can incorporate their ideas in StealthDB if
we were to only support static databases and powerful clients. Also, [89] just prototypes
index searches, whereas we architecture and build a complete encrypted database system.

A number of works study how to load unmodified applications into enclaves [32, 21,
202, 127]. These approaches work well for applications that process small data sizes, but do
not scale well to larger workloads due to SGX limitations. Also, increasing the complexity
of the codebase inside the enclaves aggravates the security risks associated with SGX [145].

OSPIR-OXT [63, 62, 86], SisoSPIR [133] and BLIND SEER [177] build encrypted
database systems from scratch with provable security guarantees for a subset of function-
ality based on different cryptography tools. There are also multitude of other works which
provide improvements over security or specific functionalities of a database, but they are not
implemented or integrable with a mature DBMS. A recent systematization work by Fuller
et al. [90] provides are great summary of the state-of-art research in encrypted database
systems. Fully homomorphic encryption [95] is another powerful cryptographic primitive
which enables an untrusted user to perform arbitrary computations on encrypted data
without learning any information about the underlying data. But the current constructs
for doing this are very far from being practical [124]. In general, while theoretical security
of systems built based on cryptographic methods can be high, the real-world security of
the system relies on the multitude of factors: correct implementations of non-trivial crypto
algorithms, meta-data contents, information in log files, etc. Hence, it is not possible to
argue their security just from the security of the crypto protocols used.

5.10 Conclusion

StealthDB offers a scalable encrypted cloud database system with full SQL query support
with a modest 30% throughput decrease and ≈ 1 ms latency increase while providing

4It is an open question to achieve larger enclaves efficiently while providing security against physical
attacks. SGX enclaves use Merkle-trees for integrity which adds logarithmic overhead to every access.

123

reasonable end-to-end security guarantees. StealthDB can be implemented in any newer
generation Intel CPUs.

Supporting analytical workloads, reducing the leakage profile and protecting against
active adversaries (i.e., providing integrity to the system) while maintaining our design prin-
ciples are interesting open questions in this space. The source code of our implementation
is also open-sourced and available at https://github.com/cryptograph/stealthdb.

124

https://github.com/cryptograph/stealthdb

Chapter 6

Quantum resistance of SGX

6.1 Introduction

This chapter reviews the existing work on the quantum resistance of the cryptography
used in SGX. The security of SGX, as we discussed in previous chapters, relies on a
multitude of factors. There has been a significant research on SGX’s hardware access
controls, key derivation and management and its micro-architectural details. This is
because these have been the current avenues of attack and need imminent improvement
for SGX to be deployed in the proposed security applications. But in the long-term with
the advent of quantum computers, there is also a need to upgrade the cryptography used
by SGX or any trusted hardware design [167]. Motivated by the advances in quantum
computing research, there is a widespread effort including the standards organizations
[171, 172, 24] to develop and transition to quantum-resistant cryptographic algorithms. The
standardization efforts right now are focused on quantum-resistant crypto algorithms for
key-exchange and digital signatures, but there has been extensive research from academia
and industry on designing candidates for quantum-resistant versions of every cryptographic
primitive. In this chapter, we first review the cryptography used by SGX and assess its
security against quantum adversaries. We then survey the (surprisingly limited) research in
the direction of designing these core cryptographic primitives based on quantum-resistant
cryptographic assumptions.

125

6.2 Cryptography used by SGX core

In this section, we will discuss the cryptography used by the Intel facilities and the SGX
hardware to provide the security properties of SGX. The following cryptographic primitives
are used:

1. an Enhanced Privacy ID (EPID) scheme [54].

2. AES in a “tweaked” CTR mode. The tweak is in the counter which includes
components related to the address of the memory block and time [120].

3. Carter-Wegman MAC algorithm [206, 120].

6.3 Enhanced Privacy ID (EPID)

The EPID scheme forms the core of the remote attestation process of SGX. Remember
that remote attestation enables a platform running SGX to prove the following two aspects
to a remote user:

• The user program is running on a genuine processor under the SGX restrictions.

• The correctness of the program run inside an SGX enclave, that it is the same program
as provided by the user.

EPID helps in achieving these properties. At a high level, an EPID construction can be
viewed as a group signature scheme [68, 33] with Intel being the group manager issuing
signing credentials to every machine that has SGX support.1

Relation to other cryptographic primitives But EPID is different from group
signatures in that the group manager cannot trace or open a signature to identify the group
member who generated that signature. On the other hand, EPID supports revocation of
group members to compensate for the lack of traceability. Intel does not want to identify

1A secret (root provisioning key) is hardcoded in the e-fuses of the SGX machines during manufacturing
which let them prove to Intel that the machine has SGX support. But once the machine has proved to Intel
and obtained the signing credentials, the machine can sign enclave measurements while being anonymous
to Intel. There are also ways to modify this to identify signatures (attestations) produced by the same
machine [57].

126

the machines based on their attestation signatures, but it is necessary to revoke the signing
capabilities of the machines which got compromised. As we will notice from the definition,
EPID is more close to the primitive of Direct Anonymous Attestation (DAA) [53]. In fact,
EPID is a DAA with additional revocation capabilities compared to a DAA. The primitive
of Blacklistable Anonymous Credentials (BLAC) [203] also follows the same definition of
EPID. But, we will use the term EPID throughout this thesis.2

In the rest of this section on EPID, we will first provide its definition and a generic
construction from one-way functions inspired by the one for group signatures proposed by
[33]. We will then discuss the quantum-resistance of the EPID scheme used in SGX and
the research on EPID and EPID-like schemes based on quantum-resistant assumptions.

6.3.1 Definition

An EPID scheme involves four types of users: an Issuer I, a revocation manager R,
platforms P and verifiers V . A revocation manager R maintains two revocation lists: a
secret key based revocation list Key-RL, and a signature based revocation list Sig-RL. A
signing key used by a platform is considered revoked either if it is in Key-RL or if it is
used to produce any of the signatures in Sig-RL. Typically, a compromised key is added
to Key-RL and a signature believed to be from a compromised platform by R is added to
Sig-RL.

An EPID scheme is made up of the following algorithms.

Setup(1λ)→ (gpk, gsk) The setup algorithm run by the issuer I takes as input a security
parameter λ and outputs a group public key gpk and a group secret key gsk.

Join〈(gpk, gsk), gpk〉 → 〈certi, (ski, certi)〉 I and Pi run the (possibly interactive) join
protocol with (gpk, gsk) and gpk as their respective inputs for Pi to join the group.
At the end of the protocol, Pi obtains its signing key ski and a certificate showing
that it is part of the group, and I obtains only the certificate.3

Sign(gpk, ski,m, Sig-RL)→ σ/⊥ The signing algorithm run by a platform Pi takes in a
group public key gpk, its signing key ski, a message m to sign and a list of revoked

2EPID was designed by researchers from Intel and was a follow-up or a concurrent work to BLAC [203].
But due to the heavy use of the term EPID in the SGX literature, we will stick with the term EPID for
this primitive.

3[54] defined the Join protocol such that I does not get any output. But some non-secret components
of ski will be available to I at the end of the protocol. This is not a concern until anonymity and the other
security properties of EPID are satisfied by the protocol.

127

signatures Sig-RL. The output is a signature σ if ski is not used to produce any
signatures in Sig-RL, else a ⊥.

Verify(gpk,m,Key-RL, Sig-RL, σ)→ 0/1 The signature verification algorithm takes in a
group public key gpk, a messagem, revocation lists Key-RL and Sig-RL and a signature
σ. It outputs 1 to accept σ and 0 to reject it.

Revokesk(gpk,Key-RL, ski)→ Key-RL The secret key revocation algorithm updates the key
revocation list Key-RL to include the input ski.

Revokesig(gpk, Sig-RL, σ,m)→ Sig-RL The signature revocation algorithm updates the
signature revocation list Sig-RL to include the input signature, message pair (σ,m).

Here, for the clarity of the definition we let a platform Pi obtain at most one secret key
ski.

The algorithms of an EPID scheme satisfy the following three properties.

Correctness The correctness of an EPID scheme guarantees that every signature
generated by a platform will be accepted by the verifier unless the platform is revoked.
The formal definition is as follows. Let Σi be the set of signatures generated by Pi. We
have that

(ski /∈ Key-RL) ∧ (Σi ∩ Sig-RL = ∅)
⇒ Verify(gpk,m,Key-RL, Sig-RL, Sign(gpk, ski,m, Sig-RL)) = 1

Anonymity An EPID scheme provides anonymity to signatures produced by the
platforms even from the group manager. At a high level, the anonymity game involves
an adversary trying to distinguish between the signatures produced by two platforms on
a challenge message m∗ and Sig-RL∗ of its choice. The adversary can run Setup before
providing the challenge (m∗, Sig-RL∗). Also, before and after the challenge phase, adversary
can run Join with the platforms of its choice, query signatures for arbitrary m and Sig-RL
from Pi of its choice and revoke Pis of its choice. We even let this adversary act maliciously
by not following the specifications of the protocol when running its algorithms. Although,
in all these steps, we have restrictions that avoid providing trivial advantages to the
adversary in the security game. A secure EPID scheme prevents any polynomial time
adversary from gaining non-negligible advantage (over guessing) in this security game. We
direct to [54, 40] for the formal definition as we will not use it here.

128

Unforgeability EPID schemes provide an unforgeability guarantee for the signatures
when all the platforms that have been corrupted during the unforgeability game are
revoked using either Revokesk or Revokesig. A strong-unforgeability (and not just existential
unforgeability) like guarantee is provided in EPID by also allowing the adversary to produce
a signature σ∗ on a particular (m∗, Sig-RL∗) as a valid forgery irrespective of it querying
Sign on the same (m∗, Sig-RL∗) for some platform, as long as σ∗ was not an output of one
of those queries on (m∗, Sig-RL∗). A formal unforgeability game is available in [54, 40].

Quantum resistance All the available versions of SGX use the EPID scheme in [54].
It is based on the q-Strong Diffie-Hellman (q-SDH) assumption [38, 71] which is at most
as hard as breaking or solving the discrete logarithm (DL) problem. The DL problem is
known to be breakable by quantum adversaries. In particular, Shor’s algorithm [196] can
be used to break this assumption in polynomial time with quantum computers. Hence, the
EPID scheme used by SGX is not quantum-resistant.

We will now survey the EPID schemes proposed in the literature whose security is based
on quantum-resistant assumptions. To the best of our knowledge, there are two classes
of quantum-resistant assumptions on which the proposed EPID or EPID-like schemes are
based: symmetric primitives (which can be obtained from arbitrary one-way functions)
and lattice-based assumptions.

6.3.2 Construction based on one-way functions

The EPID scheme in [54] follows a variant of the generic construction for group signatures
provided by [33] and instantiates the generic construction based on the BBS+ signature
scheme [38, 39, 58, 23] which relies on the q-SDH assumption. The generic construction
[33] for group signatures is built on public-key encryption scheme, non-interactive zero-
knowledge (NIZK) proofs for NP and a digital signature scheme, with the public-key
encryption used in the opening of signatures by the group manager. Boneh et al. [40]
adapted the framework of [33] to obtain a non-black box construction of an EPID scheme.4

4[40] motivate the need for a non-black box construction of EPID from one-way functions due to the
result of [4] who show that group signatures imply public-key encryption and hence cannot be based on
black-box construction using one-way functions. But as [40] hint in their paper, the construction in [4]
crucially relies on the group manager being able to open a group member’s signature. It is not clear
whether an EPID scheme which does not have this property implies public-key encryption. And hence it
is not clear whether a black-box construction is impossible.

129

EPID scheme of [40] This construction of [40] is the first explicitly stated EPID
construction based on symmetric primitives. We will overview their construction here
to provide an intuition of an EPID construction. The existing EPID construction(s) [54]
revolve around this framework but instantiated with different algebraic assumptions.

Let S = (Keygen, Sign,Verify) be an existentially unforgeable signature scheme, Π =
(P, V) be a simulation-sound extractable non-interactive zero-knowledge proof system
(NIZK), and a PRF f that also serves as a collision-resistant hash function. (Please
refer to [40] or standard cryptography texts for formal definitions of these primitives).

Setup(1λ) The issuer I runs the setup as follows:

1. Run S.Keygen to obtain the verification key and signing key pair (gpk, gsk).

Join〈(gpk, gsk), gpk〉 The join protocol between the issuer I and a platform Pi is as follows:

1. The issuer I sends a challenge ci to the platform Pi.
2. Pi samples ski ← {0, 1}λ and sends ti = f(ski, ci) to I.

3. I sends a signature on (ti, ci): σi = S.Sign(gsk, (ti, ci)).

4. Pi’s secret key is ski and let certi := (ti, ci, σi).

Sign(gpk, ski,m, Sig-RL) The signature algorithm is run by a platform Pi as follows:

1. Sample ri ← {0, 1}λ.
2. Let t = (f(ski, r), r).

3. Generate the proof π = Π.P (public instance(λ,m, gpk, t, Sig-RL,Key-RL),
private witness(ski, certi), R) for a relation R that we define below. At high
level, R checks if (1) t and t′ are produced by the same ski, (2) σi is valid and
(3) ski does not have signatures in Sig-RL.

4. Output the signature σ = (t, π).

The relation R returns true for the witness (sk′, cert′ = (t′, c′, σ′)) if

• t = (f(sk′, r), r)

• r 6= c′

• S.Verify(gpk, (t′, c′), σ′) = 1

• t′ = f(sk′, c′)

130

• ∀σj ∈ Sig-RL, tσj 6= (f(sk′, rσj), rσj)

Verify(gpk,m,Key-RL, Sig-RL, σ) A verifier V outputs 1 if all the following checks hold, else
outputs 0.

1. Verify the proof π by checking if Π.V ((λ,m, gpk, t, Sig-RL,Key-RL), π) = 1.

2. ∀skj ∈ Key-RL, check t 6= (f(skj, r), r).

3. Check σ /∈ Sig-RL.

Revokesk(gpk,Key-RL, ski) A revocation manager R updates Key-RL as follows:

1. Output Key-RL = Key-RL ∪ {ski}.

Revokesig(gpk, Sig-RL, σ,m) A revocation manager R updates Sig-RL as follows:

1. Output Sig-RL = Sig-RL ∪ {σ} if Verify(gpk,m,Key-RL, Sig-RL, σ) = 1, else
output the input Sig-RL.

Optimization of [40] The above scheme is an EPID scheme satisfying the required
security guarantees. But, the resulting signatures sizes are huge in the order of 200 MB for
a group size of 230. [40] identify that the major component of their signatures size is due
to the verification circuit of a hash-based signature scheme [160] used by the issuer that is
part of the NIZK π. Hence, they propose a second construction where they shorten their
signatures using Merkle-consistency proofs [81]. But the group members have to refresh
their certs often with the I to remain anonymous. This is motivated by the need for the
platforms to interact with the revocation authority R to update their Sig-RL. Right now,
Intel performs the roles of both I and R. But, it is not clear how to make this optimization
work if these roles are separated.

[40] instantiated their construction with the ZKB++ NIZK protocol [67]. Katz et
al. [140] proposed an improved NIZK protocol which leads to a direct improvement in
the efficiency of [40]. Both [40] and [140] provide their numbers for the variant using
the Merkle proofs optimization. We identify it as an open question to come up with
a quantum-resistant signature scheme whose verification circuit admits less AND gates,
which usually is an indicator for shorter NIZKs [14]. Table 6.3.3 provides the signature
sizes and performance number for these schemes as in their papers. (Both papers do
not have their code open-sourced with [140] indicating that they are working towards
it). Though these numbers do not exactly correspond to the original EPID definition of
[54], these are the only quantum-resistant approaches which can be turned into EPID for

131

which concrete numbers are available. (As we will see later, the other constructions only
provide asymptotic parameter sizes or it is not clear to us how to get an EPID from those
constructions). Also, this line of work is based on the “MPC in the head” approach [134, 98]
which has shown tremendous progress in the last two years and any new improvement will
lead to a more efficient NIZK which in turn leads to shorter signatures and efficient signing.

6.3.3 Construction based on lattices

EPID and EPID-like primitives based on lattice-based assumptions have been studied
across the three related primitives that we discussed earlier: group signatures, DAA and
BLAC.5 Here, we provide the state-of-art constructions to the best of our knowledge from
each of these lines of work.

Lattice based group signatures Most lattice-based group signatures literature start-
ing from [110] use the traditional definition of group signatures with the group manager
being able to trace group members’ signatures. Bootle et al. [47] started the study of “fully
dynamic” group signatures where a group member can enter and leave (or be revoked from)
the group at any instant and more importantly, a separation between the group manager
and a tracing authority with the anonymity property extended to the group manager (but
not the tracing authority, of course). Ling et al. [153] achieve the best key and signature
sizes which grow logarithmically in the size of the group in this model. Very recently, del
Pino et al. [79] provide the most efficient lattice-based (or even the most efficient quantum-
resistant) group signature scheme for larger group sizes in terms of concrete parameters. It
is another interesting open question to convert their scheme to provide provable anonymity
against a malicious group manager.

Lattice-based DAA Kassem et al. [138] proposed a lattice-based DAA scheme using
Boyen’s signature scheme [48] and Baum et al’s commitment scheme [31]. Their scheme
does not provide a way to obtain signature-based revocation.6

5Unfortunately, these works do not compare with the works from the other two primitives.
6The eprint version of the paper had variables explained across different corners of the paper and

sometimes overloaded. We tried our best to provide the accurate results.

132

Table 6.1: Post-quantum EPID and EPID-like schemes.

Scheme Type Group size Signature size Signing time
[40] EPID optimized 210 1.85 MB –
[140] EPID optimized 210 418 KB 3.0 s
[140] EPID optimized 213 532 KB 3.8 s

[153] F.D. group sig 2` Õ(λ`) –
[79] group sig 280 581 KB 0.4 s
[138] DAA 2` cO(n)[k(m′ + 1) + km(2`+ 2)] 2m+m′ + 1

polynomials in Rq polynomial mults

NOTES: F.D. corresponds to fully dynamic. In [138], c is the number of rounds for the proof to be
repeated, Rq = Zq[x]/〈xn + 1〉, m = O(log q), m′ < m and k < blog qc+ 1.

Lattice-based BLAC Yang et al. [209] construct “weak PRFs”7 based on the learning
with rounding problem [28] which admit efficient Stern’s protocol [198] to prove various
zero-knowledge arguments on the lattice problem. They use this primitive to construct
various privacy-enhancing applications including a BLAC scheme. Their BLAC protocol
instantiates the generic framework that we described earlier using the signature scheme of
[151] and their weak PRF scheme instead of the regular PRF. Unfortunately, they do not
have concrete parameters or numbers for their instantiation.

6.3.4 Quantum security

Till now we discussed the construction for EPID (and EPID-like primitives) based
on quantum-resistant assumptions. All the discussed constructions are secure against
adversaries who have access to quantum computers and run the EPID algorithms with
“classical” inputs. But this does not guarantee security against adversaries who run these
algorithms with “quantum” inputs i.e. a superposition of inputs. While [40] use Unruh’s
transform [204] instead of the classical Fiat-Shamir transform [87] to prove their security in
the quantum random oracle model, it is not clear whether the overall security of the EPID
scheme will hold when an adversary has a quantum oracle to all the EPID algorithms.
The same question is also unanswered for the lattice based constructions. Boneh and
Zhandry [46] studied this for signature schemes where an adversary can issue superposition
of messages as queries in the EUF-CMA game. It is an interesting question to discuss for
more expressive signature schemes like EPID.

7Their weak PRF has the property that for (almost) every input output pair there exists at most one
secret key that can evaluate the input to the output.

133

6.4 AES and MAC

SGX uses a slightly modified AES-CTR mode for encryption and Carter-Wegman MAC
algorithm. We will now discuss the security of these primitives under the stronger quantum
security model where the adversary can make superposed queries to the cryptographic
algorithms.

For the block-cipher based primitives, Grover’s algorithm [116] provides a square-
root attack. The algorithm provides a quadratic speedup to an adversary who has
black-box access to the function of interest which allows superposed queries. Hence, the
recommendation is to double the key size. That is, one should use AES-256 to provide a
128 bit quantum security. Anand et al. [18] also proved that CTR mode is secure i.e. IND-
qCPA security [46] assuming that the underlying blockcipher is a standard secure PRF.
That is we only need AES to be a PRF secure under classical queries for the AES-CTR to
be IND-qCPA secure.

For a while, it was widely believed that Grover’s algorithm is the best attack possible for
any blockcipher based symmetric primitives (encryption, MAC, authenticated encryption).
Hence, the only recommendation to make these primitives quantum resistant was believed
to be to double the key sizes to guard against [116]. But, further research identified that
there is no general truth in this respect. [18] showed that the CBC, CFB, and XTS modes
need the underlying blockcipher to be a PRF secure against quantum queries. Worse,
Kaplan et al. [137] showed that the most widely used modes of operation for authentication
and authenticated encryption like CBC-MAC, PMAC, GMAC, GCM, and OCB can all
be broken using only O(n) quantum queries (where n is the size of a block). Fortunately,
Boneh and Zhandry [45] provide a slightly modified Wegman-Carter MAC algorithm which
is EUF-qCMA secure (EUF-CMA allowing superposed message queries).

6.5 Cryptography for applications in SGX

For an application running inside SGX enclaves to be secure against quantum adversaries,
it should also ensure that the cryptographic primitives it uses are quantum-resistant.
Standard cryptographic libraries like OpenSSL are ported to SGX and the quantum-
resistant algorithms in the library can be used by applications. Open Quantum Safe
(OQS) [197] is an ongoing effort to develop all quantum-resistant cryptographic algorithms
and integrate into widely used protocols and libraries. When these are ported to SGX,
applications can use these algorithms for the cryptography they need.

134

6.6 Conclusion

Some of the core cryptographic primitives used by SGX are not secure against quantum
adversaries. The EPID primitive which is a vital cog for remote attestation and hence
entire SGX still requires further research for a practical quantum-resistant construction to
be obtained. The changes in the implementation of these core primitives might require a
few years to be integrated since some of these constructions like the lattice-based ones are
relatively new to the hardware community. Intel would need a few years to design a fast
and side-channel resistant version of the quantum-resistant construction to be incorporated
into SGX. Hence, this research area requires more attention too.

135

Chapter 7

The path ahead

A design for enabling controlled computations over encrypted data can be evaluated in
terms of three parameters: security assumptions required, functionality supported and
performance achieved.1 The three designs proposed in this thesis target different goals in
the tradeoff between these three factors as summarized at a high level in Figure 7.1. We
will recap the current state of these designs and identify future research directions.

7.1 Cryptographic constructions

The first category consists of the designs whose security is based on standard cryptographic
assumptions.

Solution proposed in this thesis

• Security - Well-studied lattice-based assumptions.

• Functionality - Programs that can be represented as boolean circuits or branching
programs.

• Performance - Not practical now for reasonable functionalities. A secure program
evaluation involves an ABE decryption of the FHE evaluation of the program.

1There is also a fourth factor of the ease and the cost of deployment which plays an important role
in industry applications. But we will avoid that for this discussion since we believe that there are many
hidden factors that influence and justify the ease and the cost.

136

Figure 7.1: Summary of designs in this thesis.

Next steps We require faster core lattice algorithms which admit shorter parameters
(for eg. a faster trapdoor sampling which admits small trapdoor sizes). Some recent work
including [123] have made significant progress in this direction. We also need to address
some fundamental questions about supporting multiple (possibly pre-determined number
of) keys. [106] constructs multi-key FE scheme without short secret keys with all their
parameters growing with the number of keys supported. The ideas from this scheme might
help.

If the property of having short secret keys is not important for the application, the
design of [106] will be a more efficient FE design than ours. The performance bottleneck
in their construction involves garbling and evaluating universal circuits. The avenue for
future research here is to optimize garbled circuits for universal circuits.

7.2 FE from trusted hardware

This category proposes practical designs with an additional assumption of the existence of
trusted hardware.

Solution proposed in this thesis

137

• Security - Relies on the security of the trusted hardware used. In the case of
SGX, we need to trust Intel, their SGX implementation and their closed source
x86 architecture.

• Functionality - Programs that are modified to resist all the side-channel attacks that
the trusted hardware is subject to.

• Performance - Operate at native processor speeds for smaller datasets. Paging is
required for larger datasets. Also the overhead incurred in side-channel proofing.

Next steps To protect against memory side-channels without modifications to the
applications, we require faster Oblivious RAM [101] constructions. There are newer cache-
based attacks on SGX due to its tight coupling with the x86 architecture [56]. It is an
interesting research direction to find safeguards to these attacks.

Other trusted hardware designs need exploration and development. AMD introduced
Secure Encrypted Virtualization (SEV) [136], but severe attacks have been shown
[126, 166, 82]. On the other hand, the “Keystone Enclave” project [144] led by MIT
and Berkeley develops an end-to-end open source implementation of a trusted hardware
using the Sanctum design [76] based on the RISC-V architecture. Sanctum is among the
most-secure trusted hardware designs available against software attacks (see [75] for a
comparison between the trusted hardware designs). Google and Microsoft are working on
“open enclave” projects for an easier porting and interface with various hardware designs.
Designing secure applications on top of these will be an important research direction to
explore once these projects mature.

7.3 Encrypted databases using trusted hardware sup-

porting complete SQL

The third category strives for secure designs supporting a complete SQL functionality with
practical performance.

Solution proposed in this thesis

• Security - A similar reliance on the trusted hardware used. Encrypted databases are
also subjected to access pattern leakages against persistent adversaries. No protection

138

against malicious adversaries unless a bulk of the DBMS is run inside the trusted
memory region.

• Functionality - Complete SQL. (That’s the type of databases we are looking at!)

• Performance - Practical performance when operating over datasets around 5 GBs.

Next steps An interesting research direction is to study the applicability of differential
privacy like techniques to access patterns. This would help us provably reduce the
information leakage through access patterns.

The limited size of the trusted hardware memory is a hindrance to scaling. The main
bottleneck here is the maintenance of the integrity tree for the trusted memory region. A
fundamental research question here is to come up with a practical integrity (and freshness)
protection mechanism that is possibly aware of the hardware architecture.

139

References

[1] TPC-C benchmark. http://www.tpc.org/tpcc/, 1992.

[2] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC,
pages 480–497, 2010.

[3] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In PKC, pages 733–751, 2015.

[4] Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group
signature schemes. In ICICS, pages 1–13, 2004.

[5] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, pages 553–572, 2010.

[6] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In ASIACRYPT,
pages 21–40, 2011.

[7] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In CRYPTO, pages
500–518, 2013.

[8] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In CRYPTO III, pages
333–362, 2016.

[9] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
STOC, pages 99–108, 1996.

[10] Miklós Ajtai. The shortest vector problem in L2 is NP -hard for randomized
reductions (extended abstract). In STOC, pages 10–19, 1998.

140

http://www.tpc.org/tpcc/

[11] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages
1–9, 1999.

[12] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In STOC, pages 601–610, 2001.

[13] Joseph A. Akinyele, Matthew W. Pagano, Matthew D. Green, Christoph U.
Lehmann, Zachary N. J. Peterson, and Aviel D. Rubin. Securing electronic medical
records using attribute-based encryption on mobile devices. In SPSM, pages 75–86,
2011.

[14] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT I, pages 430–454,
2015.

[15] Tiago Alves and Don Felton. ARM trustzone. Information Quarterly, 3(4):18–24,
2004.

[16] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon,
Stefano Tessaro, and David A. Wilson. On the relationship between functional
encryption, obfuscation, and fully homomorphic encryption. In IMACC, pages 65–84,
2013.

[17] Amazon. AWS shell interface specification. https://github.com/aws/aws-fpga/

blob/master/hdk/docs/AWS_Shell_Interface_Specification.md, 2017. Ac-
cessed: 2017-10-01.

[18] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and
Dominique Unruh. Post-quantum security of the CBC, CFB, OFB, CTR, and XTS
modes of operation. In PQCrypto, pages 44–63, 2016.

[19] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO I, pages 308–326, 2015.

[20] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,
Ravishankar Ramamurthy, and Ramarathnam Venkatesan. Orthogonal security with
cipherbase. In CIDR, 2013.

[21] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell,
David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and Christof

141

https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md

Fetzer. SCONE: secure linux containers with Intel SGX. In OSDI, pages 689–703,
2016.

[22] Nuttapong Attrapadung, Benôıt Libert, and Elie de Panafieu. Expressive key-policy
attribute-based encryption with constant-size ciphertexts. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC, volume 6571 of LNCS,
pages 90–108. Springer, 2011.

[23] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k -TAA. In SCN, pages
111–125, 2006.

[24] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Johannes Buchmann,
Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed, Christian Rechberger, Peter
Schwabe, Nicolas Sendrier, Frederik Vercauteren, and Bo-Yin Yang. Initial
recommendations of long-term secure post-quantum systems. https://pqcrypto.

eu.org/docs/initial-recommendations.pdf, 2015.

[25] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-Reza
Sadeghi, Guillaume Scerri, and Bogdan Warinschi. Secure multiparty computation
from SGX. In FC, 2017.

[26] Sumeet Bajaj and Radu Sion. Trusteddb: A trusted hardware based database with
privacy and data confidentiality. In SIGMOD, pages 205–216, 2011.

[27] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio
Loureiro. A security analysis of amazon’s elastic compute cloud service. In SAC,
pages 1427–1434, 2012.

[28] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

[29] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX. In
EuroS&P, pages 245–260, 2016.

[30] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In Juris Hartmanis, editor, STOC, pages
1–5. ACM, 1986.

142

https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf

[31] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and Chris
Peikert. More efficient commitments from structured lattice assumptions. In SCN,
pages 368–385, 2018.

[32] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. Shielding applications from
an untrusted cloud with Haven. In OSDI, pages 267–283, 2014.

[33] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In EUROCRYPT, pages 614–629, 2003.

[34] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In ASIACRYPT,
pages 531–545, 2000.

[35] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS, pages 171–190, 2015.

[36] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

[37] D. Boneh, A. Sahai, and B. Waters. Functional encryption: a new vision for public-
key cryptography. Commun. ACM, 55(11):56–64, 2012.

[38] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
EUROCRYPT, pages 56–73, 2004.

[39] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO, pages 41–55, 2004.

[40] Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum group signatures from
symmetric primitives. IACR Cryptology ePrint Archive, 2018:261, 2018.

[41] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In CRYPTO, pages 213–229, 2001.

[42] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, pages 533–556, 2014.

143

[43] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM,
2013.

[44] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[45] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In
EUROCRYPT, pages 592–608, 2013.

[46] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in
a quantum computing world. In CRYPTO II, pages 361–379, 2013.

[47] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of fully dynamic group signatures. In ACNS, pages 117–136, 2016.

[48] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In PKC, pages 499–517, 2010.

[49] Xavier Boyen. Attribute-based functional encryption on lattices. In TCC, pages
122–142. Springer, 2013.

[50] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. In TCC II, pages 306–324, 2015.

[51] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.
In Moni Naor, editor, ITCS, pages 1–12. ACM, 2014.

[52] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks
are practical. CoRR, abs/1702.07521, 2017.

[53] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In CCS, pages 132–145, 2004.

[54] Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing for
hardware authentication and attestation. IJIPSI, 1(1):3–33, 2011.

[55] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. Amazonia: when elasticity snaps back. In CCS, pages 389–400,
2011.

144

[56] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In USENIX Security, pages 991–1008, 2018.

[57] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and
Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably secure
anonymous attestation. In IEEE SP, pages 901–920, 2017.

[58] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In CRYPTO, pages 56–72, 2004.

[59] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[60] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In TCC II, pages 468–497, 2015.

[61] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. J. Cryptology, 25(4):601–639, 2012.

[62] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-
large databases: Data structures and implementation. In NDSS, 2014.

[63] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In CRYPTO I, pages 353–373, 2013.

[64] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption.
In EUROCRYPT, pages 351–368, 2014.

[65] David Champagne and Ruby B. Lee. Scalable architectural support for trusted
software. In HPCA, pages 1–12, 2010.

[66] Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional
encryption: Decentralised and delegatable. Cryptology ePrint Archive, Report
2015/1017, 2015. http://eprint.iacr.org/2015/1017.

145

http://eprint.iacr.org/2015/1017

[67] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In CCS,
pages 1825–1842, 2017.

[68] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages
257–265, 1991.

[69] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A practical library
OS for unmodified applications on SGX. In USENIX ATC, pages 645–658, 2017.

[70] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. In EUROCRYPT, pages 278–307, 2017.

[71] Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In
EUROCRYPT, pages 1–11, 2006.

[72] Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from
(small) hardware tokens. In ASIACRYPT II, pages 120–139, 2013.

[73] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Bahram Honary, editor, IMA, volume 2260 of LNCS, pages 360–363. Springer, 2001.

[74] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO I,
volume 8042 of LNCS, pages 476–493. Springer, 2013.

[75] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint
Archive, 2016:086, 2016.

[76] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security, pages 857–874, 2016.

[77] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote: Efficiently recovering
long-term secrets of SGX EPID via cache attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):171–191, 2018.

[78] Verizon data breach incident report. https://regmedia.co.uk/2016/05/12/dbir_
2016.pdf, 2016.

146

https://regmedia.co.uk/2016/05/12/dbir_2016.pdf
https://regmedia.co.uk/2016/05/12/dbir_2016.pdf

[79] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group
signatures and zero-knowledge proofs of automorphism stability. In CCS, pages
574–591, 2018.

[80] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[81] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. Secure
logging schemes and certificate transparency. In ESORICS II, pages 140–158, 2016.

[82] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and
Jesse Fang. Secure encrypted virtualization is unsecure. CoRR, abs/1712.05090,
2017.

[83] Muhaimin Dzulfakar. Advanced mysql exploitation. Black Hat Las Vegas, 2009.

[84] Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi.
A ciphertext-policy attribute-based encryption scheme with constant ciphertext
length. In Feng Bao, Hui Li, and Guilin Wang, editors, ISPEC, volume 5451 of
LNCS, pages 13–23. Springer, 2009.

[85] Saba Eskandarian and Matei Zaharia. An oblivious general-purpose SQL database
for the cloud. CoRR, abs/1710.00458, 2017.

[86] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin Rosu,
and Michael Steiner. Rich queries on encrypted data: Beyond exact matches. In
ESORICS II, pages 123–145, 2015.

[87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, pages 186–194, 1986.

[88] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In STC, pages 3–8.
ACM, 2012.

[89] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian
Kerschbaum, and Ahmad-Reza Sadeghi. Hardidx: Practical and secure index with
SGX. In DBSec, pages 386–408, 2017.

147

[90] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Hamlin,
Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K. Cunningham.
Sok: Cryptographically protected database search. In IEEE SP, pages 172–191, 2017.

[91] Tal Garfinkel and Mendel Rosenblum. When virtual is harder than real: Security
challenges in virtual machine based computing environments. In HotOS, 2005.

[92] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT,
volume 7881 of LNCS, pages 1–17. Springer, 2013.

[93] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[94] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Ran Canetti and Juan A.
Garay, editors, CRYPTO II, volume 8043 of LNCS, pages 479–499. Springer, 2013.

[95] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[96] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC II, volume
9015 of LNCS, pages 498–527. Springer, 2015.

[97] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–
206. ACM, 2008.

[98] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security, pages 1069–1083, 2016.

[99] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of
LNCS. Springer, 2010.

[100] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, 1987.

148

[101] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[102] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, 2008.

[103] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In EUROCRYPT 2014, pages 578–602, 2014.

[104] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Boneh et al. [43], pages 555–564.

[105] Google. Encrypted BigQuery client. https://github.com/google/

encrypted-bigquery-client, 2017.

[106] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO, volume 7417 of LNCS, pages 162–179. Springer,
2012.

[107] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based
encryption for circuits. In Boneh et al. [43], pages 545–554.

[108] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO
II, volume 9216 of LNCS, pages 503–523. Springer, 2015.

[109] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, STOC, pages 469–477. ACM, 2015.

[110] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature
scheme from lattice assumptions. In ASIACRYPT, pages 395–412, 2010.

[111] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC, pages
308–326, 2010.

[112] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional
encryption for randomized functionalities. In TCC II, pages 325–351, 2015.

149

https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client

[113] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, CCS, pages 89–98. ACM,
2006.

[114] Patrick Grofig, Isabelle Hang, Martin Härterich, Florian Kerschbaum, Mathias
Kohler, Andreas Schaad, Axel Schröpfer, and Walter Tighzert. Privacy by encrypted
databases. In Annual Privacy Forum, pages 56–69. Springer, 2014.

[115] Trusted Computing Group. Trusted platform module. https://

trustedcomputinggroup.org/, 2009.

[116] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC,
pages 212–219, 1996.

[117] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Pump
up the volume: Practical database reconstruction from volume leakage on range
queries. In CCS, pages 315–331, 2018.

[118] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and
Vitaly Shmatikov. Breaking web applications built on top of encrypted data. In
ACM CCS, pages 1353–1364, 2016.

[119] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why your encrypted
database is not secure. In HotOS, pages 162–168, 2017.

[120] Shay Gueron. Memory encryption for general-purpose processors. IEEE Security &
Privacy, 14(6):54–62, 2016.

[121] Bernardo Damele Assumpcao Guimaraes. Advanced sql injection to operating system
full control. Black Hat Europe, 2009.

[122] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin R. B. Butler, and Patrick
Traynor. Using intel software guard extensions for efficient two-party secure function
evaluation. In FC Workshops, pages 302–318, 2016.

[123] Kamil Doruk Gür, Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay Savas.
Implementation and evaluation of improved gaussian sampling for lattice trapdoors.
IACR Cryptology ePrint Archive, 2017:285, 2017.

[124] Shai Halevi and Victor Shoup. Algorithms in HElib. In CRYPTO I, pages 554–571,
2014.

150

https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/

[125] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. In STOC, pages 469–477, 2007.

[126] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual machines.
In VEE, pages 129–142, 2017.

[127] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. Ryoan:
A distributed sandbox for untrusted computation on secret data. In OSDI, pages
533–549, 2016.

[128] Intel. Intel Trusted Execution Technology, 2009.

[129] Intel. Intel software guard extensions programming reference. 2016.

[130] Intel. SGX documentation: sgx create monotonic counter. https://software.

intel.com/en-us/node/696638, 2016.

[131] Intel. SGX documentation: sgx get trusted time. https://software.intel.

com/en-us/node/696636, 2016.

[132] Intel. Intel SGX version 2. http://www.intel.

com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf,
2017. Accessed: 2017-02-16.

[133] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. Private large-scale
databases with distributed searchable symmetric encryption. In CT-RSA, pages 90–
107, 2016.

[134] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152,
2009.

[135] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. Intel software guard
extensions: Epid provisioning and attestation services. 2016.

[136] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption.
Whitepaper, 2016.

[137] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In CRYPTO II,
pages 207–237, 2016.

151

https://software.intel.com/en-us/node/696638
https://software.intel.com/en-us/node/696638
https://software.intel.com/en-us/node/696636
https://software.intel.com/en-us/node/696636
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

[138] Nada E. L. Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani, Jan
Camenisch, and Patrick Hough. L-DAA: lattice-based direct anonymous attestation.
IACR Cryptology ePrint Archive, 2018:401, 2018.

[139] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In EUROCRYPT, pages 115–128, 2007.

[140] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In CCS, pages 525–537,
2018.

[141] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[142] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks
on secure outsourced databases. In CCS, pages 1329–1340, 2016.

[143] Subhash Khot. Hardness of approximating the shortest vector problem in lattices.
J. ACM, 52(5):789–808, 2005.

[144] Dayeol Lee, Sagar Karandikar, Srini Devadas, Krste Asanovic, Albert Ou, Dawn
Song, and Ilia Lebedev. Keystone: Open-source secure hardware enclave. https:

//keystone-enclave.org/, 2018. Accessed: 2018-10-31.

[145] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in
darkness: Return-oriented programming against secure enclaves. In USENIX
Security, pages 523–539, 2017.

[146] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security, 2017.

[147] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel
Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova.
5gen: A framework for prototyping applications using multilinear maps and matrix
branching programs. In CCS, pages 981–992, 2016.

[148] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In Gilbert [99], pages 62–91.

152

https://keystone-enclave.org/
https://keystone-enclave.org/

[149] Allison B. Lewko and Brent Waters. New techniques for dual system encryption
and fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC,
volume 5978 of LNCS, pages 455–479. Springer, 2010.

[150] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. Scalable and secure sharing of
personal health records in cloud computing using attribute-based encryption. IEEE
Transactions on Parallel and Distributed Systems, 24(1):131–143, 2013.

[151] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang.
Signature schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In ASIACRYPT II, pages 373–403, 2016.

[152] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John C. Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. In ASPLOS, pages 168–177, 2000.

[153] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group
signatures: Achieving full dynamicity with ease. In ACNS, pages 293–312, 2017.

[154] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading kernel memory from user space. In USENIX
Security, pages 973–990, 2018.

[155] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and
Elaine Shi. Ghostrider: A hardware-software system for memory trace oblivious
computation. In ASPLOS, pages 87–101, 2015.

[156] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: practical oblivious computation in
a secure processor. In ACM CCS, pages 311–324, 2013.

[157] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. Rote: Rollback protection for
trusted execution. Cryptology ePrint Archive, Report 2017/048, 2017. http:

//eprint.iacr.org/2017/048.

[158] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software
model for isolated execution. In HASP@ ISCA, page 10, 2013.

153

http://eprint.iacr.org/2017/048
http://eprint.iacr.org/2017/048

[159] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software
model for isolated execution. In HASP, page 10, 2013.

[160] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In CRYPTO, pages 369–378, 1987.

[161] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM Journal on Computing, 30(6):2008–2035, 2000.

[162] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[163] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.
Schulman, editor, STOC, pages 351–358. ACM, 2010.

[164] Microsoft SQL Server 2016. Always encrypted database engine. https://msdn.

microsoft.com/en-us/library/mt163865.aspx, 2017.

[165] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In CRYPTO,
2016.

[166] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. Severed:
Subverting amd’s virtual machine encryption. In EuroSec, pages 1:1–1:6, 2018.

[167] Michele Mosca. Cybersecurity in an era with quantum computers: Will we be ready?
IEEE Security & Privacy, 16(5):38–41, 2018.

[168] Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang,
Erman Ayday, Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional
encryption. In CCS, pages 1280–1291, 2014.

[169] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on
property-preserving encrypted databases. In ACM CCS, pages 644–655, 2015.

[170] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam,
Elaine Shi, and Vipul Goyal. Hop: Hardware makes obfuscation practical. In NDSS,
2017.

154

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx

[171] NIST. Post-quantum cryptography standardization. https:

//csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization, 2017.

[172] NSA. Cryptography today. https://www.nsa.gov/ia/programs/suiteb_

cryptography/, 2015.

[173] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin,
Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted
processors. In USENIX Security, pages 619–636, 2016.

[174] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: Exitless
OS services for SGX enclaves. In EuroSys, pages 238–253, 2017.

[175] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. Big data analytics over encrypted datasets with seabed. In OSDI,
pages 587–602, 2016.

[176] J. Papanis, S. Papapanagiotou, A. Mousas, G. Lioudakis, D. Kaklamani,
and I. Venieris. On the use of attribute-based encryption for multimedia
content protection over information-centric networks. Transactions on Emerging
Telecommunications Technologies, 25(4):422–435, 2014.

[177] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin,
Seung Geol Choi, Wesley George, Angelos D. Keromytis, and Steven M. Bellovin.
Blind seer: A scalable private DBMS. In IEEE SP, pages 359–374, 2014.

[178] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In TCC,
pages 422–439, 2012.

[179] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested
execution secure processors. In EUROCRYPT, 2017.

[180] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[181] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: A strongly encrypted
database system. IACR Cryptology ePrint Archive, 2016:591, 2016.

155

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

[182] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: protecting confidentiality with encrypted query processing. In SOSP, pages
85–100, 2011.

[183] PostgreSQL 9.5.10 Documentation. Extensions. https://www.postgresql.org/

docs/9.5/static/external-extensions.html, 2018. Accessed: 2018-01-29.

[184] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure database
using SGX. In IEEE SP, pages 264–278, 2018.

[185] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels
through obfuscated execution. In USENIX Security, pages 431–446, 2015.

[186] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), 2009.

[187] Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual
machine reset vulnerabilities and hedging deployed cryptography. In NDSS, 2010.

[188] Phillip Rogaway. Authenticated-encryption with associated-data. In ACM CCS,
pages 98–107, 2002.

[189] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT, volume 3494 of LNCS, pages 457–473. Springer, 2005.

[190] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data analytics in the
cloud using SGX. In IEEE SP, pages 38–54, 2015.

[191] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. Contractual
anonymity. In NDSS, 2010.

[192] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware guard extension: Using SGX to conceal cache attacks. CoRR,
abs/1702.08719, 2017.

[193] Jaebaek Seo, Byoungyoung Lee, Sungmin Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. SGX-shield: Enabling address space layout randomization
for sgx programs. In NDSS, 2017.

[194] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In NDSS, 2017.

156

https://www.postgresql.org/docs/9.5/static/external-extensions.html
https://www.postgresql.org/docs/9.5/static/external-extensions.html

[195] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. PANOPLY: Low-
TCB linux applications with SGX enclaves. In NDSS, 2017.

[196] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[197] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet
and the Open Quantum Safe project. In SAC, pages 14–37, 2016.

[198] Jacques Stern. A new paradigm for public key identification. IEEE Trans.
Information Theory, 42(6):1757–1768, 1996.

[199] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. AEGIS: architecture for tamper-evident and tamper-resistant processing.
In ICS, pages 160–171, 2003.

[200] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. Aegis: A single-chip
secure processor. IEEE Design & Test of Computers, 24(6):570–580, 2007.

[201] Chia-che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and
Donald E. Porter. Cooperation and security isolation of library oses for multi-process
applications. In EuroSys, pages 9:1–9:14, 2014.

[202] Chia-che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and
Donald E. Porter. Cooperation and security isolation of library oses for multi-process
applications. In EuroSys 2014, pages 9:1–9:14, 2014.

[203] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable
anonymous credentials: blocking misbehaving users without ttps. In CCS, pages
72–81, 2007.

[204] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In EUROCRYPT II, pages 755–784, 2015.

[205] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages
619–636. Springer, 2009.

[206] Mark N. Wegman and Larry Carter. New hash functions and their use in
authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

157

[207] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza.
Asyncshock: Exploiting synchronisation bugs in Intel SGX enclaves. In ESORICS I,
pages 440–457, 2016.

[208] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In IEEE SP, pages
640–656, 2015.

[209] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Lattice-based
techniques for accountable anonymity: Composition of abstract Stern’s protocols
and weak PRF with efficient protocols from LWR. IACR Cryptology ePrint Archive,
2017:781, 2017.

[210] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[211] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics
platform. In NSDI, pages 283–298, 2017.

158

	List of Tables
	List of Figures
	Introduction
	Cryptographic solutions
	Trusted hardware based solutions

	Controlled computations from Lattice-based Cryptography
	Lattice-based cryptography
	Attribute-based encryption
	Our Results
	Applications
	Other Related Work
	Extensions
	Organization of this chapter

	Preliminaries
	Lattice Preliminaries
	Attribute-Based Encryption definition
	Branching Programs

	Our Evaluation Algorithms
	Basic Homomorphic Operations
	Our Public Key Evaluation Algorithm
	Our Encoding Evaluation Algorithm
	Our Simulated Public Key Evaluation Algorithm

	Our Attribute-Based Encryption
	Correctness
	Security Proof

	Parameter Selection
	Single-key Functional Encryption with short secret keys
	Definitions
	Construction

	Conclusion and next steps

	A Formal Introduction to SGX
	Intel SGX Background
	Isolation.
	Sealing.
	SGX Attestation
	SGX TCB.
	SGX side-channel attacks and defenses

	Formal Models and Definitions
	Formal HW model

	HW correctness and security definitions
	Local attestation unforgeability
	Remote attestation unforgeability

	Differences between HW and Intel SGX

	Functional Encryption from SGX
	The need for practical solutions for Functional Encryption
	Our contributions
	Construction overview

	Related Work
	System Design
	Architecture overview
	FE Protocols

	Implementation and evaluation
	Implemented ECALLS
	Performance evaluation

	Formalization of Iron
	Formal definition of Functional Encryption
	Crypto primitive definitions
	FE Formal construction

	Security
	Security proof

	FE construction in the stronger security model
	Security overview

	Extensions and Future Work

	StealthDB: A Scalable Encrypted Database on SGX
	Introduction
	Our contributions

	Intel SGX
	Platform Overview
	Usage Model.
	Threat Model

	Designing an Encrypted DB
	Design Goals
	Designing an Encrypted DB from SGX

	Architecture
	Database creation
	DBMS Initialization
	Client authentication
	Query execution
	Encrypting indexes
	Extensions

	Security
	Leakage profile
	Security of K during StealthDB execution

	Concrete leakage profiles
	Implementation and Performance
	Implementation details
	Performance evaluation

	Related Work
	Conclusion

	Quantum resistance of SGX
	Introduction
	Cryptography used by SGX core
	Enhanced Privacy ID (EPID)
	Definition
	Construction based on one-way functions
	Construction based on lattices
	Quantum security

	AES and MAC
	Cryptography for applications in SGX
	Conclusion

	The path ahead
	Cryptographic constructions
	FE from trusted hardware
	Encrypted databases using trusted hardware supporting complete SQL

	References

