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Abstract

The study of the class of dyadic matroids, the matroids representable over both GF (3)
and GF (5), is a natural step to finding the excluded minors for GF (5)-representability.
In this thesis we characterize the ternary matroids M that are excluded minors for dyadic
matroids and contains a 3-separation. We will show that one side of the separation has size
at most four, and that M is obtained by adding at most four elements to another excluded
minor M ′. This reduces the problem of finding the excluded minors for dyadic matroids
to the problem of finding the vertically 4-connected excluded minors for dyadic matroids.
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Chapter 1

Introduction

The main result in this thesis reduces the problem of finding the excluded minors for the
class of dyadic matroids to the problem of finding the vertically 4-connected excluded
minors.

1.1 Background

In his introductory paper on matroids, Whitney [23] posed the problem of characterizing
representable matroids. The class M of matroids that are representable over a field F is
closed under taking minors, so it is natural to characterizeM by its set of excluded minors;
these are the minor minimal-matroids not in M. When F is infinite, the excluded minors
were shown to be as least as wild as the class itself; see Mayhew, Newman, and Whittle
[12]. However, there are very natural questions to be considered for finite fields. For every
finite field F, is this set of excluded minors finite? And if so, what are they? The former
question is known as Rota’s Conjecture, which was one of the major unsolved problems in
matroid theory until a proof was announced in 2014 by Geelen, Gerards, and Whittle [8].
For the latter question, the cases for GF (2), GF (3), GF (4) have been solved over the past
60 years.

In 1958, Tutte proved that a matroid M is binary if and only if M contains no minor
isomorphic to U2,4, the 4-point line [20]. This gives a strikingly simple connection between
the algebraic property of being representable over GF (2), and the combinatorial property
of containing a certain minor. Then in 1979, Bixby [1] and Seymour [18] indepedently
proved that the excluded minors for ternary matroids are U2,5, U3,5, F7, and F ∗7 . Bixby
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attributes this characterization to unpublished work of Reid. These proofs relied on the
fact that matroids in these two classes are uniquely representable over their respective field,
a technique that would be used in the proofs for larger fields. In 1988, Kahn showed that
a quarternary matroid is uniquely representable if and only if it is not the 2-sum of two
non-binary matroids [11]. Twelve years later, this was followed by a proof for the excluded
minors of GF (4)-representable matroids, published by Geelen, Gerards, and Kapoor [6]
in 2000, using the result of Kahn. They showed that there are seven excluded minors for
GF (4)-respresentability, and they are U2,6, U4,6, P6, F

−
7 , (F

−
7 )∗, P8, and P ′′8 .

Logically, the next goal is to study GF (5), which is the field that we are interested
in for this thesis. It is known that there are at least 564 excluded minors for GF (5)-
representabilty, found via a database of all matroids with up to nine elements that was
compiled computationally by Mayhew and Royle [13]. A first step to understanding the
excluded minors for GF (5)-representability is to study the class of dyadic matroids, which
are the ones representable over both GF (5) and GF (3). The motivation for this stems
backs to the problem of limiting the number of inequivalent representations, which proved
fruitful for GF (2), GF (3), and GF (4). While quinary matroids, those that are GF (5)-
representable, may have up to six inequivalent GF (5)-representations, the story is different
if the matroid is also ternary. Whittle proved that dyadic matroids have at most three
inequivalent representations over GF (5) [24]. A strengthening of this result was proved
by Pendavingh and van Zwam in [17], where they prove that a ternary matroid may have
exactly zero, one, or three inequivalent GF (5)-representations, and describe the conditions
for each case to occur. In particular, if a dyadic matroid has three inequivalent GF (5)-
representations, then M is near-regular but not regular. This is useful since the list of
excluded for regular matroids (Tutte [20]) and near-regular matroids (Hall, Mayhew, and
van Zwam [10]) are known.

Most of the difficulties of the proof of the excluded minors for GF (4)-representability
disappear when considering 6-connected excluded minors. These difficulties gradually re-
turn as we consider the 5-connected, 4-connected, and, finally the 3-connected cases. Here
we are proposing an alternative approach of applying connectivity reductions to determine
the excluded minors with low connectivity.

Our contribution for this thesis is a characterization of the case when an excluded minor
for dyadic matroids is has an exact 3-separation. Our theorem would imply that, given a
list of all vertically 4-connected excluded minors for dyadic matroids, one can generate the
full list of dyadic excluded minors after some case analysis.
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1.2 Main Theorem

Observe that any excluded minor for dyadic matroids that is not ternary contains one of
U2,5, U3,5, F7, or F ∗7 as a minor. Hence we look at the excluded minors for dyadic matroids
that are ternary, and they are precisely the ternary matroids that are excluded minors for
GF (5)-representability, as all of their proper minors are dyadic.

Let M be a ternary matroid with an exact 3-separation (X, Y ). We construct a ternary
matroid M+

X,Y by extending M by a set L of four elements added into the span of both
X and Y such that L is independent. As ternary matroids are uniquely representable
(Brylawski 1976: [2]), this is well-defined. We call L the boundary line of (X, Y ). Note that,
since M+

X,Y need not be simple, technically L may not be a line of M+
X,Y , however we will

call it as such for convenience. We then let MX = M+
X,Y |(X ∪L) and MY = M+

X,Y |(Y ∪L).

Our main theorem is the following:

Theorem 1.2.1. Let M be a ternary excluded minor for GF (5)-representability with an
exact 3-separation (X, Y ) such that |X|, |Y | ≥ 4. Then either:

• M is isomorphic to T8,

• |X| = 4 and for each e ∈ Y , both MY \e and MY /e are GF (5)-representable, or

• |Y | = 4 and for each e ∈ X, both MX\e and MX/e are GF (5)-representable.

The matroid T8 is a well-known excluded minor for dyadic matroids (see page 649 of
[16]). From the diagram of a geometric representation of T8 in Figure 1.1 it is clear that
the two planes drawn induce an exact 3-separation of T8.

It follows from Theorem 1.2.1 that an excluded minor containing an exact 3-separation
must be a minor of a matroid with at most four extra elements added to a previously-known
excluded minor. So we can deduce the list of ternary excluded minors for dyadic matroids
from the setM of vertically 4-connected ternary excluded minors for dyadic matroids: For
M ∈ M, consider the set of matroids obtained by a sequence of four ternary extensions
or coextensions of M , check if each of them contain an excluded minor, adding any new
excluded minors to M, and repeating this procedure until all excluded minors have been
found. There is no inherent reason that this procedure does not run forever; its termination
is a consequence of Rota’s Conjecture.

Note that the result that we prove in Chapter 3 also characterizes the specific matroids
MX ,MY that correspond to the side of size four.

An informal outline of our proof strategy will be given in the next section.
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Figure 1.1: The matroid T8

1.3 Proof Outline

Preliminary results and definitions can be found in Chapter 2 and the text of Oxley [16].
The proof of our main result follows in Chapter 3.

The main strategy that we will use is to decompose the excluded minor M along the
separation (X, Y ), analyze each side, then find the minimal obstructions that prevent
us from reassembling the two sides into a quinary matroid. We start off in Section 3.1
by constructing the two matroids corresponding to each side, MX = M+

X,Y |(X ∪ L) and

MY = M+
X,Y |(Y ∪ L).

Now we need to consider the relationship between the non-GF (5)-represtability M+
X,Y

with MX and MY , and between M+
X,Y and M . For the former question, the tool that we will

use is the generalized parallel connection introduced by Brylawski [4]. Generalized parallel
connections gives us a way to glue two matroids together along a common flat if that flat
is modular on at least one side, and we begin by showing that M+

X,Y can be constructed by
a generalized parallel connection of MX and MY . This is important for representablility
since if a matroid N is a generalized parallel connection of two F-representable matroids
N1 and N2, and they have representations that agree on E(N1)∩E(N2), then the N itself
is F-repersentable; see Lemma 2.6.2.
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Since M is an excluded minor for quinary matroids, M+
X,Y must be non-quinary, and

so it must not be the case that MX and MY are quinary and have a representation that
match along L. Over GF (5), a 4-point line L can have three inequivalent representations,

which are given by the matrices of the form

[
1 0 1 1
0 1 1 x

]
for x ∈ {2, 3, 4}. The value x is

the cross-ratio of the representation of L with respect to that ordering of its elements.

Now that we have constructed M+
X,Y , we want to find the conditions for when adding

the elements of L to M does not change the representability. While adding elements on
a line is well-defined for ternary matroids, this isn’t the case for quinary matroids. The
classic example is a pair of representations of U3,6 with respect to a given line (Figure 1.2).

Figure 1.2: Two representations of the matroid U3,6

However, in Section 3.2 we show that this is well-defined if both MX and MY “distin-
guish” the element. Let N be a subset of the groundset of a matroid M , if there is a set
S ⊆ E(M) \ {e} that spans e but not N , we call S a strand for N . If M |N is a line, we
say that e ∈ N is distinguished. An element e in a boundary line L is pinned if both MX

and MY distinguish e.

Lemma 1.3.1 (Lemma 3.2.1). Let M be a ternary matroid with an exact 3-separation
(X, Y ). Let M ′ be a ternary matroid obtained from M via an extension by a non-loop
element e such that e ∈ cl(X) ∩ cl(Y ). If there exists strands SX ⊆ X for Y and SY ⊆ Y
for X such that e ∈ cl(SX) ∩ cl(SY ), then M is F-representable if and only if M ′ is F-
representable.

So we want to show that all four elements of L are pinned in M+
X,Y ; our next lemma

shows what would happen if this were not the case:

Lemma 1.3.2 (Lemma 3.2.3). Let M be a 3-connected ternary matroid whose proper
minors are all quinary and let (X, Y ) be an exact 3-separation of M with |X| ≥ 4. If MX

does not distinguish all four elements in the boundary line, then M is quinary.
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The proof strategy is as follows: If e ∈ L is not distinguished, then MX\e has a modular
3-point line and MY \e is a minor of M so it is quinary. A theorem of Seymour [19] implies
that MX\e is binary. Since matroids that are both binary and ternary are in fact regular,
MX\e is quinary. It is then easy to glue the MX\e and MY \e together, since we can use
row operations to find representations that agree along the modular 3-point line of MX\e.
Then applying Lemma 2.6.2 implies that M is quinary.

Our excluded minor M is not quinary, thus all four elements of L are pinned if X and
Y have size at least four.

Lemma 1.3.3 (Lemma 3.2.4). Let M be a ternary excluded minor for GF (5)-representability
and let (X, Y ) be an exact 3-separation of M . If |X|, |Y | ≥ 4, then M+

X,Y pins all elements
of the boundary line.

So we have established that a ternary matroid M is quinary if and only if M+
X,Y is,

which in turn is quinary if and only if there exists quinary representations of MX and MY

that match along L. Next we consider whether MX and MY are quinary, first dealing with
the case that we have MY non-quinary. In Section 3.4, we prove the following lemma:

Lemma 1.3.4 (Lemma 3.4.1). Let M be a ternary excluded minor for GF (5)-representability
with an exact 3-separation (X, Y ). If MY is non-quinary, then there is no proper minor of
M ′

X of MX such that M |L = M ′|L and all four elements of L are distinguished in M ′
X .

The proof of this lemma relies on a simple observation: if a minor M ′
X of MX keeps L

and keeps all four elements of L distinguished, then the generalized parallel connection of
M ′

X and MY results in a non-quinary matroid that is a minor of M+
X,Y , which we can then

use to construct a non-quinary minor of M .

So then our goal is to characterize such minor-minimal matroids. Our next lemma will
show that they must have at most four elements apart from the line. As a result, if one
side of the separation is non-quinary, then the other side has size at most four.

Lemma 1.3.5 (Lemma 3.4.2). Let L be a modular set in a ternary matroid M such that
M |L is isomorphic to U2,4. If all four elements of L are distinguished, then M contains an
8-element minor N such that M |L = N |L and all elements of L are distinguished in N .

By Lemma 3.4.2, if MY is not quinary, then |X| = 4. By case analysis, MX is either
the unique matroid with a modular 4-point line L and an independent coline, or one of the
four matroids in Figure 1.3.
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Figure 1.3: Four of the matroids that satisfy the conditions of Lemma 3.4.2

In the remaining case we have that both MX and MY are quinary, so we want to know
whether they have representations that match along the boundary line L. In Section 3.5,
we focus on the next question: how many GF (5)-representations do MX and MY have? A
result from Whittle [24] states that U2,4 is a stabilizer for ternary matroids. In other words,
if a 3-connected ternary matroid N has a U2,4-minor, then every GF (q)-representation of
N is uniquely determined by the GF (q)-representation of that U2,4-minor. Since MX

contains the U2,4-restriction L, the number of quinary representations of L that extend to
a representation of MX is equal to the number of quinary representations of MX itself, and
similary for MY .

Pendavingh and van Zwam proved that that 3-connected dyadic matroids have either
one or three inequivalent representations over GF (5) [17], and characterized exactly when
each case happens:

Theorem 1.3.6. For a 3-connected dyadic matroid M , either

(i) M is regular, and M is uniquely representable over GF (5).

(ii) M is near-regular but not regular, and M has exactly three representations over
GF (5).

(iii) M is dyadic but not near-regular, and M is uniquely representable over GF (5).

We will use this theorem to show that neither MX nor MY can be near-regular.

Lemma 1.3.7 (Corollary 3.5.3). Let M be a ternary excluded minor for GF (5)-representability
with an exact 3-separation (X, Y ). If both MX and MY are quinary, then neither MX nor
MY are near-regular.
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Suppose, towards a contradiction, that MX is near-regular. Note that MX is not
binary as it contains a U2,4-restriction, so MX is near-regular but not regular. Since MX is
ternary, it does not contain U2,5 or U3,5 as a minor, so we can apply Theorem 1.3.6 to MX .
It follows that MX has three inequivalent representations over GF (5), and in particular all
three possible GF (5)-representations of L extend to a representation of MX . Now given
any quinary representation of MY , we can take its representation of L and find a GF (5)-
representaton of MX that extends this. We thus have quinary representations of MX and
MY that match along L, and we can apply Lemma 2.6.2 to obtain a contradiction.

Since we have proven that MX and MY are not near-regular, the final part of the proof
is concerned with finding the minor-minimal dyadic matroids that have a U2,4-restriction
and are not near-regular. If a matroid is both dyadic and not near-regular, it is not GF (4)-
representable. Then we can use the characterization of quarternary matroids of Geelen et
al. in [7].

Theorem 1.3.8. If M is a 3-connected non-GF (4) representable matroid, then either

(i) M has a U2,6-, U4,6-, P6-, F
−
7 -, or (F−7 )∗-minor,

(ii) M is isomorphic to P ′′8 , or

(iii) M is isomoprhic to a minor of S(5, 6, 12) with rank and corank at least 4.

By eliminating the cases of Theorem 1.3.8 that are not compatible with a matroid that
is dyadic but not near-regular, we deduce that MX and MY has an F−7 - or (F−7 )∗-minor,
whose elements we will call F . We further prove that they have no elements other than
the ones in F ∪L and by case analysis we will show that they are in fact isomorphic to the
matroid that we will refer to as O8 (see Figure 1.4).

e1 e2 e3 e4

Figure 1.4: The matroid O8

It is a single element extension of the matroid O7 and is the unique matroid with a
modular 4-point line along with a 4-element circuit-cocircuit, a set that is both a circuit

8



and a cocircuit. Observe that T8 can be obtained by a generalized parallel connection (see
Section 2.6) of two copies of O8 along their respective 4-point lines where (e1, e2, e3, e4) is
matched with (e1, e2, e4, e3).

Lemma 1.3.9 (Lemma 3.6.1). Let L be a U2,4-restriction in a 3-connected matroid M that
is dyadic but not near-regular. Then M has a minor N isomorphic to O8 such that L is a
U2,4-restriction of N .

Thus, the only excluded minors of this form are constructed from taking of these non-
Fano extensions and gluing them along their 4-point line in a way that the cross ratios do
not match up. We will show that the only such matroid that arises this way is T8.
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Chapter 2

Preliminaries

We will assume the reader has familiarity with the definitions of a matroid, its rank func-
tion, flats, uniform matroids, parallel elements, simplication, cosimplicaton, representabil-
ity, duality, minors, connectivity, 3-connectivity, k-separation, extensions, and coexten-
sions; see Oxley’s textbook [16].

2.1 Representable Matroids/Projective Geometries

A matroid M is uniquely representable over F if all F-representations of M are equivalent
under row operations, column scaling, and automorphisms of F. A matroid is binary,
ternary, quaternary, or quinary if it is GF (2)-, GF (3)-, GF (4)-, or GF (5)-representable,
respectively. Additionally, a matroid is regular if it is representable over all fields, dyadic
if it is representable over GF (3) and GF (5), and near-regular if it is representable over
GF (3), GF (4), and GF (5).

To prove that a matroid M is regular, it suffices to show that M is both binary and
ternary (Theorem 6.6.3 of [16]). This was proved by Tutte in [21].

Theorem 2.1.1. The following statements are equivalent for a matroid M .

• M is regular.

• M is representable over GF (2) and GF (3).
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Let GF (q) be the finite field of order q. Consider the maximum number of elements in
a simple GF (q)-representable matroid with rank n. Observe that there are qn−1 non-zero
vectors in GF (q)n, and qn−1

q−1 subspaces of rank one. Taking a representative vector from

each rank one subspace, the associated vector matroid has qn−1
q−1 elements, and we denote

this simple rank-n GF (q)-representable matroid by PG(n− 1, q).

By convention, for a matrix representation A of a matroid M we may also label the
row i of A by an element b of M if b labels the elementary vector ei.

2.2 Duality

The following proposition (Proposition 2.1.6 of [16]) characterizes some elementary prop-
erties of the dual matroid:

Proposition 2.2.1. Let M be a matroid and let X ⊆ E(M). Then

• X is independent in M∗ if and only if E(M) \X is spanning in M , and

• X is a hyperplane in M if and only if E(M) \X is a circuit in M∗.

For an F-representable matroid M , the following proposition gives a F-representation
of its dual.

Proposition 2.2.2. Let M be a matroid M with n elements and rank r such that M =
M [A] where A is the matrix [Ir|B]. Let A∗ = [In−r| −BT ]. Then M∗ = M [A∗].

A directly corollary is that a matroid M is F-representable if and only if M∗ is F-
representable.

A cyclic flat F of a matroid M is a flat that is the union of circuits. It is routine to
show that F is a cyclic flat of M if and only if E(M) \ F is a cyclic flat of M∗.

2.3 Minors

For minors of matroids representable over a field F, observe that deleting an element in
a matroid clearly corresponds to deleting the column representing that element. Since
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contraction is defined as M/e = ((M∗)\e)∗, and both deletion and duality preserve F-
representability, so contraction also preserves F-representability. Thus the class of F-
representable matroids is minor-closed.

Let N be a minor of M . Since the deletion and contraction operations commute with
each other, it is often useful to consider N as obtained from M by contracting a set of
elements C then deleting a set of elements of D. The Scum Theorem (Theorem 3.3.1 of
[16]) from Crapo and Rota [5] says that we may assume that C is indepedent and D is
coindependent.

Theorem 2.3.1 (Scum Theorem). Let N be a minor of M . Then there exists an indepen-
dent set C and a coindependent set D such that N = M/C\D.

2.4 Connectivity

The connectivity function of a matroidM is defined as λM(X) = r(X)+r(E(M)\X)−r(M)
for X ⊆ E(M). A subset X of the groundset of a matroid M is k-separating if λM(X) < k.
A k-separation (X, Y ) is exact if neither X nor Y are k − 1-separating.

We say that two separations (X, Y ) and (X ′, Y ′) cross if X 6⊆ X ′, X 6⊆ Y ′, X ′ 6⊆ X, and
X ′ 6⊆ Y . When k-separations in a k-connected matroid cross, we will often want X ∩X ′
to be a separation, and the following lemma from Oxley, Semple, and Whittle [15] proves
that this is the case, provided that each side has sufficiently many elements. The proof of
this lemma, referred to as the Uncrossing Lemma, relies only on the submodularity of the
connectivity function.

Lemma 2.4.1 (Uncrossing Lemma). Let X and X ′ be k-separating sets of a k-connected
matroid M .

(i) If |X ∩X ′| ≥ k − 1, then X ∪X ′ is k-separating.

(ii) If |E(M)− (X ∪X ′)| ≥ k − 1, then X ∩X ′ is k-separating.

An element e is in the guts of (X, Y ) if e ∈ clM(X \ e) and e ∈ clM(Y \ e). Dually e is
in the coguts of (X, Y ) if e ∈ cl∗M(X \ e) and e ∈ cl∗M(Y \ e).

Local connectivity is a related notion that captures the connectivity between two subsets
in a matroid. For X, Y ⊆ E(M), the local connectivity uM(X, Y ) is defined as
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uM(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).

For a subset N of E(M), we can consider how the rest of the matroid connects to it.
We call a set S ⊆ E(M) \N a strand for N if it is a minimal set such that u(S,N) = 1.
We say that a strand S distinguishes an element e in N if e ∈ cl(S), and a matroid M
distinguishes e if E(M) \N contains a strand that distinguishes e. Note that if M |N is a
simple line, then e is distinguished if and only if it is a fixed element of M , since we can
extend freely on the line if and only if e is not distinguished.

Another related function, κM describes the connectivity between two sets in the context
of the matroid as a whole. For disjoint subsets X, Y ⊆ E(M), we define:

κM(X, Y ) = min{λM(S) : X ⊆ S ⊆ E(M) \ Y }.

Tutte [22] proved the following matroid analogue of Menger’s theorem:

Theorem 2.4.2 (Tutte’s Linking Theorem). Let X, Y be disjoint subsets of elements in
a matroid M . Then κM(X, Y ) is the maximum of κN(X, Y ) for all minors N of M with
groundset X ∪ Y .

Tutte’s Linking Theorem can be strengthened to finding a minor N that preserves not
only κM(X, Y ), but the structure of M |X and M |Y as well (Theorem 8.5.7 of [16]).

Theorem 2.4.3. Let X, Y be disjoint subsets of elements in a matroid M . Then there
exists a minor N of M such that E(N) = X ∪ Y , κN(X, Y ) = κM(X, Y ), N |X = M |X,
and N |Y = M |Y .

When we delete or contract an element from a 3-connected matroid, we often need to
consider the case when this results in a matroid M that is not 3-connected. Let (X, Y ) be
a 2-separation of M . Consider the matroid M+

X by contracting an independent set S ⊆ Y
of rank r(Y )− 1 such that uM(S,X) = 0 and simplifying Y to an element p. It is routine
to show that M+

X does not depend on the choice of S, so it is well-defined. Let M+
Y be

the analguous matroid obtained by contracting from X. Then M is the 2-sum of MX

and MY with basepoint p. For the 2-separating set Y , we call M+
X the matroid obtained

by contracting Y down to its basepoint. We first show that this operation preserves 3-
connected minors that have at most one element in Y .

Proposition 2.4.4. Let X, Y be an exact 2-separation of a matroid M . If N is a 3-
connected minor with |E(N) ∩X| ≥ |E(N)− 1|, then M+

X contains an N minor.
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Proof. Let E(N) ∩ Y = {e}. By the Scum Theorem, there exists an independent set C
and coindependent set D such that N = M/C\D. First, C ∩ (cl(X)∩ cl(Y )) is non-empty,
otherwise N is disconnected with {e} as a component. We claim that |C ∩ Y | = r(Y )− 1.
Clearly |C ∩ Y | < r(Y ) as e is not a loop in N . Suppose |C ∩ Y | < r(Y ) − 1. Then
si((M |Y )/(C ∩Y ) is a 2-separating set in N , a contradiction. Thus M/(C ∩Y ) = M+

X and
so M+

X contains an N -minor.

Contracting Y down to its basepoint also preserves strands for sets of X.

Proposition 2.4.5. Let (X, Y ) be an exact 2-separation (X, Y ) in a matroid M , and let
N ⊆ X. If an element e ∈ N is distinguished in M , then e is distinguished in M+

X .

Proof. Let S be a strand for N in M that distinguishes e. If S ⊆ X then we are done, so
assume that SY = S ∩ Y is non-empty and that SY 6⊆ cl(X) (otherwise SY ∈ cl(p), where
p is the basepoint of the 2-separation). Suppose |SY | = 1, then (S \ SY ) ∪ {e} is a subset
of X that spans SY , contradicting that SY 6⊆ cl(X). So |SY | > 1, and |S \ SY | ≥ 1 since
e 6∈ cl(p). However, this implies that S ∪{e} is a circuit and SY is 2-separating in S ∪{e},
contradicting that a circuit is 3-connected.

By applying Proposition 2.4.4, we can determine the structure of 2-separations in a
matroid M relative to a 3-connected minor N .

Lemma 2.4.6. Let N be a 3-connected minor of a 2-connected matroid M such that
|E(N)| ≥ 4. Then there exists a partition B1, . . . , Bk of E(M) such that:

(i) λM(Bi) = 1 for i ∈ {1, . . . , k},

(ii) |E(N) ∩Bi| ≤ 1 for i ∈ {1, . . . , k}, and

(iii) if M ′′ is the matroid obtained by contracting all Bi down to their respective basepoints
ei, then M ′′ is 3-connected with groundset {e1, . . . , ek} with an N-minor.

Proof. Let T be the collection of 2-separating sets B of M such that |E(N)∩B| ≤ 1. We
define the following binary relation (E(M),∼): for elements e, f ∈ E(M), we let e ∼ f
if there exists a 2-separation (A,B) of M such that e, f ∈ B and B ∈ T . We claim that
(E(M),∼) is an equivalence relation. Clearly (E(M),∼) is reflexive and symmetric, so
it remains to show that it is transitive. Let e, f, g ∈ E(M) such that (A,B) and (A′, B′)
are 2-separations of E(M) such that e, f ∈ B, f, g ∈ B′, and B,B′ ∈ T . Now, by the
uncrossing lemma, B∪B′ is 2-separating. Since |E(N)| ≥ 4, there are at least two elements
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of N in A ∩ A′. So (A ∩ A′, B ∪ B′) is a 2-separation of M . Then as N is 3-connected,
B∪B′ ∈ T since there can not be at least two elements of N in both sides of a 2-separation.
Thus e ∼ g as desired.

LetB1, . . . , Bk be the partition of E(M) formed by the equivalence classes of (E(M),∼).
We want to show that this partition satisfies the properties (i), (ii), and (iii). Suppose
λM(Bi) > 1 for some i ∈ {1, . . . , k}, then |Bi| ≥ 2. Let B′i be the union of all 2-separating
sets in T that have non-empty intersection with Bi. Then Bi ( B′i since Bi is not 2-
separating but B′i is 2-separating by the uncrossing lemma. Let g ∈ B′i \ Bi. Then
(E(M) \B′i, B′i) is a 2-separation of M such that e, g ∈ B′i and B′i ∈ T , contradicting that
g 6∈ Bi. This proves (i).

To prove (ii), suppose that Bi 6∈ T , so let n, n′ ∈ E(N) ∩ Bi. Then there exists a
2-separation (A,B) of M such that n, n′ ∈ B and B ∈ T , which is a contradiction as
|E(N) ∩ B| ≥ 2. Finally, condition (iii) follows from applying Proposition 2.4.4 on each
Bi.

The following lemma describes the structure of a matroid with a chain of 2-separations
that separate two elements e, f .

Lemma 2.4.7. Let M be a 2-connected matroid with a set S of k elements and e, f ∈
E(M) \ S. If M/s has two components where e, f are in distinct components for all
s ∈ S, then there exists an ordering (s1, . . . , sk) of S and a partition (A0, . . . , Ak) of
E(M)\S \{e, f} such that, for all i ∈ {1, . . . , k}, the sets {e, s1, . . . , si−1}∪A0∪ . . .∪Ai−1
and {si+1, . . . , sk, f} ∪ Ai ∪ . . . ∪ Ak are the components of M/si.

Proof. We proceed by induction on k. This is clear for k = 1, so let k > 1 and for some
element s ∈ S, by applying the inductive hypothesis on S \ {s} there exists an ordering
(s1, . . . , sk−1) and a partition (A0, . . . , Ak−1) satisfying the connectivity properties of the
lemma. Now s is an element of some Ai. Since {e, s1, . . . , si−1} ∪ A0 ∪ . . . ∪ Ai−1 is a
component in M/si and does not contain s, it is connected in M/s and its component
contains si since it spans si in M . Similarly {si+1, si+2, . . . , sk, f} ∪ Ai+1 ∪ . . . ∪ Ak is
connected in M/s. Since M/s has 2 components, let A′i be the elements of Ai in the
component containing {e, s1, . . . , si−1} ∪ A0 ∪ . . . ∪ Ai−1 and A′′i be the elements of Ai in
the component containing {si+1, si+2, . . . , sk, f} ∪ Ai+1 ∪ . . . ∪ Ak (these components are
distinct since e, f are in different components of M/s).

Then (s1, . . . , si, s, si+1, . . . , sk) and (A0, . . . , Ai−1, A
′
i, A

′′
i , Ai+1, Ak) satisfies the desired

conditions.
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2.5 Modularity/Lines

A set X is modular if, for all flats F in M , the following equation holds:

u(X,F ) = r(F ∩X).

The proposition below (6.9.2 of [16]) gives a useful characterization of when a flat in a
matroid is modular.

Proposition 2.5.1. A flat X in a matroid M is a modular flat if and only if r(X)+r(Y ) =
r(X ∪ Y ) for all flats Y such that X ∩ Y = ∅.

In particular, if a flat F is modular, then every strand for F distinguishes an element
in F .

Seymour proved the following theorem [19], which implies that any matroid with a
modular 3-point line is binary:

Theorem 2.5.2. Let M be a 3-connected non-binary matroid. Then for any two elements
e1, e2 ∈ E(M), M contains a U2,4-minor N such that e1, e2 ∈ E(N).

Corollary 2.5.3. Let T be a 3-point line in a 3-connected matroid M . If T is modular,
then M is binary.

Proof. Suppose, for a contradiction, that M is not binary. Let e1 and e2 be elements
of T . By Theorem 2.5.2, M contains a U2,4-minor N such that e1, e2 ∈ E(N). Let
e4 ∈ E(N) \ {e1, e2, e3}. By Theorem 2.3.1, there exists an indepedent set C and a
coindepedent set D such that N = M/C\D. Let F = clM(C ∪{e4}). Then uM(F, T ) = 1,
but rM(F, T ) = 0, contradicting that T is modular.

In a 3-connected matroid M with a modular line L, if L is neither spanning nor cospan-
ning, then we can find a minor M ′ of M such that there are 3 elements in a triangle T ,
each parallel to an element of L. We will prove a short proposition to aid the proof.

Proposition 2.5.4. Let M be a 3-connected matroid on groundset S ∪ L such that S is a
circuit and L is a line. If e ∈ S \ cl(L), then M/e is 3-connected.
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Proof. Let M ′ = M/e, and S ′ = S \ {e}. Suppose, for a contradiction, that (A,B) is a
2-separation of M ′. Since e 6∈ L, L is a line in M ′ and we may assume that L ⊆ A. Since
contraction inside of a circuit preserves the circuit, S ′ is a circuit in M ′, at least |S ′| − 1
elements of S ′ are in either A or B. Since |B| ≥ 2, we have |S ′ ∩B| ≥ |S ′| − 1.

Then λM(A) = rM(A) + rM(B ∪{e})− r(M) = rM ′(A) + (rM ′(B) + 1)− (r(M ′) + 1) =
rM ′(A) + rM ′(B) − r(M ′) = 1. Since |A| ≥ 2, |B| ≥ 2, we have that (A,B ∪ {e}) is a
2-separation in M , a contradiction.

Lemma 2.5.5. Let M be a 3-connected matroid with a modular line L. If E(M)\L is non-
empty and not a coline, then there exists sets C ⊂ E(M) \ L and {x1, x2, x3} ⊆ E(M) \ L
such that

• {x1, x2, x3} is a triangle in M/C, and

• each of x1, x2, x3 is parallel to an element of L in M/C.

Proof. First, E(M) \ L contains a circuit. Supposing otherwise, then E(M) \ L is inde-
pendent so L is cospanning, which implies that E(M) \ L is a coline.

Let S be a circuit of E(M) \ L, and since M is 3-connected, we have κM(L, S) = 2.
By Theorem 2.4.3 (Tutte’s Linking Theorem) there exists a minor N of M with groundset
L ∪ S, such that κN(L, S) = 2, M |L = N |L, and M |S = N |S. By Theorem 2.3.1 (Scum
Theorem), we can write N = M/C ′\D where C ′ is independent.

Suppose S = {s1, s2, s3}. Then S is a triangle and all elements of S lie on L as
κN(L, S) = 2. Then C = C ′ satisfies the conditions. Otherwise, consider the sequence
of matroids N1, N2, . . . N|S|−2 obtained as follows: set N1 = N , then Ni = Ni−1/f where
fi is an element of S that is not on L. By Proposition 2.5.4, each Ni is 3-connected.
Such elements exist since when |S| ≥ 3, at most two elements of S lie on L. Now let
S ′ = S\{f1, . . . , f|S|−3} = {s1, s2, s3} which is a circuit (and thus a triangle) in N|S|−2, with
the three elements of S ′ on L by the 3-connectivity of N|S|−2. Since L is modular, each
element of S ′ is parallel to an element of L. Then C = C ′ ∪ {si} ∪ {f1, . . . , f|S|−3} satisfies
the conditions, as desired.

Let e1, e2, e3 be the elements of L that are parallel to x1, x2, x3 in M/C of the previous
lemma. Then C ∩ {xi, ei} is a circuit for i ∈ {1, 2, 3} in M , and so a consequence is that
M distinguishes ei for i ∈ {1, 2, 3}.

Corollary 2.5.6. Let L be a line in a 3-connected matroid M such that E(M) 6= E(L).
If L is modular, then at least 3 elements of L are distinguished.
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The following lemma describes the structure of a matroid with a line that has exactly
two elements distinguished.

Lemma 2.5.7. Let M be a matroid with a modular line L. If exactly two elements e1, e2
of L are distinguished, then there exists a partition (C,D) of E(M) \ L such that C and
D are 2-separating in M with basepoints e1 and e2, respectively.

Proof. To partition E(M) \ L, we define the following binary relation (E(M) \ L,∼): for
elements e, f ∈ E(M) \ L, we let e ∼ f if there exists a 2-separation (A,B) of M such
that e, f ∈ B and L ⊆ A. We claim that (E(M) \L,∼) is an equivalence relation. Clearly
it is reflexive and symmetric, so it remains to show that (E(M) \ L,∼) is transitive. Let
e, f, g ∈ E(M) such that (A,B) and (A′, B′) are 2-separations of E(M) such that e, f ∈ B,
f, g ∈ B′, L ⊆ A, and L ⊆ A′. Now, by the uncrossing lemma, B ∪ B′ is 2-separating. So
(A ∩A′, B ∪B′) is a 2-separation of M with e, g ∈ B ∪B′ and L ⊆ A ∩A′. Thus e ∼ g as
desired.

Let B1, . . . , Bk be the partition of E(M) \ L formed by the equivalence classes under
(E(M) \ L,∼). First we will show that Bi is 2-separating for i ∈ {1, . . . , k}. Suppose
λM(Bi) > 1, then |Bi| ≥ 2. Let B′i be the union of all 2-separating sets B such that B
has non-empty intersection with Bi and B is disjoint from L. Then Bi ( B′i since Bi is
not 2-separating but B′i is 2-separating by the uncrossing lemma. Let g ∈ B′i \ Bi. Then
(E(M)\B′i, B′i) is a 2-separation of M such that e, g ∈ B′i and L ⊆ E(M)\B′i, contradicting
that g 6∈ Bi.

Now let M ′ be the matroid obtained from M by contracting each Bi down to its base-
point bi for i ∈ {1, . . . , k}. Then M\L is simple and si(M ′) is 3-connected. If there exists
an element bi ∈ E(M ′) such that bi 6∈ cl(L), then by Corollary 2.5.6, si(M ′) distinguishes
at least three elements of L, contradicting that M distinguishes exactly two elements of L.
Hence bi ∈ cl(L) for all i ∈ {1, . . . , k}.

We claim that k = 2. Since M distinguishes only e1 and e2, each bi is parallel to
e1 or e2 as L is modular. Suppose b1, b2 are both parallel to e1. Then let e ∈ B1 and
f ∈ B2. Then (E(M) \B1 \B2, B1 ∪B2) is a 2-separation of M where e, f ∈ B1 ∪B2 and
L ⊂ E(M)\B1\B2. So e ∼ f , contradicting that e, f are in different parts of the partition.
Thus k ≤ 2, and k > 1 otherwise only one element of L is distinguished, establishing our
claim.

Finally, we may assume that {b1, e1} and {b2, e2} are parallel pairs in M ′. Then C = B1

and D = B2 satisfies the desired conditions.

18



2.6 Generalized Parallel Connection

Let M1 and M2 be matroids such that E(M1) ∩ E(M2) = T , M1|T = M2|T = N , and
si(M2|T ) is a modular flat of si(M2). Then the generalized parallel connection, PN(M1,M2),
is the matroid on groundset E(M1) ∪E(M2) with its set of flats being the subsets F such
that F ∩ E1 and F ∩ E2 are flats of M1 and M2, respectively.

The following proposition (Proposition 11.4.15 of [16]) gives us a way to decompose a
matroid along a k-separation.

Proposition 2.6.1. Let M be a simple matroid with a subset of elements T such that
M/T is the direct sum of M1 and M2. If T is a modular flat of M\E(M2), then M =
PM |T (M\E(M1),M\E(M2)).

Our next lemma will show that, if there exist quinary representations for both sides of
our ternary matroid with a k-separation, and they match along the guts, then our ternary
matroid is also quinary.

Lemma 2.6.2. Let (X, Y ) be an exact k-separation in a simple matroid M , such that
T ⊆ cl(X)∩ cl(Y ) has rank k− 1 and T is a modular flat of M |(Y ∪T ). Let BT be a basis
of T . Let AX and AY be F-representations of M |(X ∪ T ) and M |(Y ∪ T ) (respectively) of
the form:

AX =

T[ ]
BX AX′

0

BT AT

, AY =

T[ ]BT AT

AY ′BY 0
.

Then

A =

T


BX AX′
0 0

BT AT

AY ′BY 0 0

is an F-representation of M .
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Proof. First we will show that M [A] = PM |T (X ∪ T, Y ∪ T ) by showing their set of flats
are equal. To ease notation, let M ′ = PM |T (X ∪ T, Y ∪ T ), FX = F ∩ (X ∪ T ), and FY =
F ∩ (Y ∪ T ). Observe that M ′|(X ∪ T ) = M [A]|(X ∪ T ) and M ′|(Y ∪ T ) = M [A]|(Y ∪ T ).

Let F be a flat of M [A]. As taking a restriction preserves flats, FX is a flat of M [A]|(X∪
T ), and FY is a flat of M [A]|(Y ∪ T ). Then FX , FY are flats of ′|(X ∪ T ) and M ′|(Y ∪ T ),
respectively. Hence F is a flat of M ′ by the definition of generalized parallel connection.

Conversely, let F be a flat of M ′ and suppose for a contradiction that F is not a flat
of M [A]. Then there exists e ∈ clM [A](F ) such that e 6∈ F . Let C be a circuit in M [A]
such that C \ F = {e}. Observe that C ∩ (X \ T ) and C ∩ (Y \ T ) are both non-empty,
otherwise C ⊆ X ∪ T or C ⊆ X ∪ T . Then C \ {e} ⊆ FY or C \ {e} ⊆ FX . Both cases
imply that e ∈ F as FY is a flat of M [A]|(Y ∪ T ) and FX is a flat of M [A]|(X ∪ T ), a
contradiction. Let ~v1, . . . , ~vi, ~ve denote the vectors corresponding to C with ~ve the vector
labelled by e. Then ~ve can be written as the linear combination a1 ~v1 + . . .+ai~vi = ~ve where
a1, . . . , ai ∈ GF (q2) \ {0}.

• Case 1: e ∈ X ∪ T . By the above observation C ∩ (Y \ T ) 6= ∅. We may assume
that ~v1, . . . ~vj are labelled by elements of C ∩ (Y \ T ), and let ~vt = a1 ~v1 + . . .+ ai~vi.
Since ~vj+1, . . . , ~vi, ~ve all have zero entries in the rows labelled by BY , ~vt has only zero
entries in those rows. Then the only non-zero entries of ~vt are in the rows labelled
by BT . Since T is a modular flat of M |(Y ∪ T ) = M [A]|(Y ∪ T ), there exists an
element t ∈ T such that ~vt is a scalar multiple of the column corresponding to t. So
C ∩ (Y \ T ) spans t, which implies that t ∈ F . As t ∈ F and e 6∈ F , t 6= e. Then
at~vt + aj+1 ~vj+1 + . . . + ai~vi = ~ve, so (C \ (Y \ T )) ∪ {t} is a subset of X ∪ T and
contains a circuit involving e, contradicting our observation.

• Case 2: e ∈ Y \ T . Similar to above, we may assume that ~v1, . . . ~vj are labelled by
elements of C ∩ (Y \ T ). Then a1 ~v1 + . . . + aj ~vj = ~vt for some vector vt that is in
the span of the vectors of T . First suppose that there exists t ∈ T such that ~vt is a
scalar multiple of the column corresponding to t. Then C \ (X \ T )∪ {t} is a subset
of X∪T and contains a circuit involving e, a contradiction. Next, suppose that there
does not exist such an element t. Then as ae~ve − aj+1 ~vj+1 − . . .− ai~vi = ~vt, we have
a strand of Y ∪ T that does not distinguish an element of T , contradicting that T is
modular.

As T is the guts of a separation, M/T is disconnected where M/T is the direct sum of
X and Y . Applying Proposition 2.6.1 yields that M = M ′, and thus M = M [A].
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2.7 Generalized ∆-Y Exchange

The generalized ∆− Y exchange is an operation introduced by Oxley, Semple, and Verti-
gan [14] that transforms a line L in a matroid into a coline in M ′. The name is inspired
from the ∆ − Y exchange which replaces a triangle with a triad. This operation is de-
scribed as follows: fix an integer k ≥ 2 and let Θk be the unique matroid on groundset
{a1, . . . , ak, b1, . . . , bk} such that {a1, . . . , ak} is a modular line and {b1, . . . , bk} is an inde-
pendent coline, and {b1, . . . , bk}4{ai, bi} is a circuit for all i ∈ {1, . . . , k}. Now let M be
a matroid with a U2,k-restriction A = {a1, . . . , ak} such that A is coindepedent (this last
condition is imposed for duality to work). Then the generalized ∆− Y exchange on A of
size k, denoted ∆A(M), is defined to be the generalized parallel connection PA(Θk,M)\A.
To preserve the groundset of M in ∆A(M), relabel bi with ai for all i ∈ {1, . . . , k}. Geo-
metrically, the ∆ − Y exchange replaces a line in a matroid by a coline, as shown in the
following lemma (Lemma 2.5 of [14]).

Lemma 2.7.1. For all k ≥ 2, the restriction of (PA(Θk,M) \ A)∗ to B is isomorphic to
U2,k if and only if A is coindepdent in M .

This result yields a dual operation, the Y −∆ exchange. Let M be a matroid with an
independent set A such that M∗|A is isomorphic to U2,k. Then the Y − ∆ exchange on
A is defined as ∇A(M) = [PA(Θk,M

∗) \ A]∗, and Lemma 2.11 and Corollary 2.12 of [14]
proves that it is the inverse of the ∆− Y exchange.

Lemma 2.7.2. Let A be a coindependent set in a matroid M where every 3 element subset
of A is a circuit. Then ∇A(∆A(M)) is well-defined and ∇A(∆A(M)) = M .

Lemma 2.7.3. Let A be an independent set in a matroid M where every 3 element subset
of A is a cocircuit. Then ∆A(∇A(M)) is well-defined and ∆A(∇A(M)) = M .

Lemma 2.7.4. Suppose that ∇A(M) is defined. If x ∈ A and |A| ≥ 3, then ∇A\{x}(M/x)
is also defined and ∇A(M)\x = ∇A\{x}(M/x)

The ∆−Y exchange also preserves representability over any field F, as Corollary 3.7 of
[14] shows. Note that the original lemma states the result for partial fields, as every field
is a partial field.

Lemma 2.7.5. Let M be a matroid with a coindependent U2,k-restriction A. Then M is
F-representable if and only if ∆A(M) is F-representable.
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Chapter 3

Main Result

In this chapter we will prove our main theorem. Recall that O8 is the following matroid:

Figure 3.1: The matroid O8

Theorem 3.0.1 (Theorem 3.8.1). Let M be a ternary excluded minor for GF (5)-representability
with an exact 3-separation (X, Y ) such that |X|, |Y | ≥ 4. Then either:

• M is isomorphic to T8,

• MX is isomorphic to O8 and MY contains an excluded minor for GF (5)-representability
with up to two fewer elements than MY ,

• MY is isomorphic to O8 and MX contains an excluded minor for GF (5)-representability
with up to two fewer elements than MX ,

• |X| = 4, MX is not isomorphic to O8, and MY is an excluded minor for GF (5)-
representability, or

• |Y | = 4, MY is not isomorphic to O8, and MX is an excluded minor for GF (5)-
representability.
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3.1 Adding guts

Let M be a ternary matroid with an exact 3-separation (X, Y ). In order to decompose
M into two matroids corresponding to each side of the 3-separation, we will construct
an auxiliary matroid M+

X,Y where X and Y span a common 4-point line. As mentioned
previously, adding elements arbitrarily on a line of a matroid is not well-defined. However,
we can take advantage of the unique representability of ternary matroids to do this for M .

Let M have rank n and let A be a GF (3)-representation of M (by removing redundant
rows, we may assume A has n rows). We can view M as a restriction of PG(n − 1, 3) by
taking the columns of the GF (3)-representation of PG(n− 1, 3) which match the columns
of A. This is well-defined since projective geometries are uniquely representable (Funda-
mental Theorem of Projective Geometry) combined with the fact that ternary matroids
are uniquely representable [2].

Hence let G = PG(n − 1, 3) and E(M) is a spanning subset of E(G) such that M =
G|E(M). Now consider the boundary B = clG(X) ∩ clG(Y ), which has rank two. As G is
a projective geometry, G|B ∼= PG(1, 3) ∼= U2,4. Let G+

B be the matroid obtained from G
by taking four extensions {e1, e2, e3, e4} parallel to the four elements of B.

We then define the matroid M+
X,Y = G+

B|(E(M) ∪ {e1, e2, e3, e4}). We call L =

{e1, e2, e3, e4} the boundary line of (X, Y ). Note while L may not be a line in M+
X,Y if

M+
X,Y is not simple, we nevertheless refer to it as a line for convenience. We also define the

matroids corresponding to X and Y as MX = M+
X,Y |(X ∪ L) and MY = M+

X,Y |(Y ∪ L),

respectively. It is clear that M+
X,Y = PL(MX ,MY ), and that M+

X,Y \L,MX\L,MY \L are

simple. Moreover, each of si(M+
X,Y ), si(MX), si(MY ) are 3-connected.

3.2 Pinning the points

Let (X, Y ) be a 3-separation in a representable matroid, and let B be the set of guts
elements of (X, Y ). We say that an element e ∈ B is pinned with respect to B if MX

and MY distinguish e. In this section we will prove that, in our excluded minor, all four
elements of L are pinned with respect to L. The importance of this is highlighted by the
next lemma, which shows that adding a pinned element of the line implies that does not
change its representability over GF (5).

Lemma 3.2.1. Let M be a ternary matroid with an exact 3-separation (X, Y ). Let M ′

be a ternary matroid obtained from M via an extension by a non-loop element e in the
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guts of (X, Y ). If there exists strands SX ⊆ X for Y and SY ⊆ Y for X such that
e ∈ cl(SX) ∩ cl(SY ), then M is F-representable if and only if M ′ is F-representable.

Proof. The “if” direction is clear, as M is a restriction of M ′. Conversely, suppose that A
is an F-representation of M . We may assume that A is of the form

A =

[ ]
AX

0

AY0

where AX is a represenation of A|X and AY is a representation of A|Y , and there are
exactly two rows that intersect AX and AY . Let r1, r2 denote these two rows.

We have uM(SX , SY ) = 1, so the subspaces spanned by the columns of SX and SY in
A intersect at a point. Let ~v be the vector representing this point. Since both SX and SY

span ~v, its only non-zero entries are in r1 and r2. Clearly ~v must have at least one non-zero
entry.

Now let A′ be the matrix where ~v is added to A. We claim that M [A′] = M ′. Suppose,
for a contradiction, that M [A′] 6= M and let {M1,M2} = {M [A′],M ′} such that C is
a circuit in M1 and independent in M2. Since M1\e = M2\e, we have e ∈ C and let
C− = C \ {e}. Let L be the boundary line of (X, Y ) in M+

X,Y . Observe that uM(C−, L) 6=
2, otherwise C− spans e in M2, contradicting that C is independent in M2. Similarly
uM(C−, L) 6= 0, otherwise C− does not span e in M1. Hence uM(C−, L) = 1, and we
claim that either C− ∩X or C− ∩ Y is empty. Suppose otherwise, and we have that one
of uM(C− ∩X) = 0 or uM(C− ∩ Y ) = 0 as uM(C−, L) 6= 2 and C is independent in M2.
We may assume that uM(C− ∩ X) = 0 and so (C− \ X) ∪ {e} is a circuit in M1. Thus
C− ∩X = ∅ as C− ∪ {e} is a circuit in M1. So C− is a strand of X that spans e in M1, so
uM(C−, SX) = 1. Then e is in the span of C− in both M ′ and M [A′], contradicting that
C is independent in M2.

By applying Lemma 3.2.1 to each element of L in M+
X,Y , we get that M is quinary if

and only if M+
X,Y is quinary.

Corollary 3.2.2. Let M be a ternary matroid with an exact 3-separation (X, Y ). Let
L be the boundary line of (X, Y ) in M+

X,Y . If all elements of L are pinned, then M is

GF (q)-representable if and only if M+
X,Y is GF (q)-representable.
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Proof. Let e ∈ L. Since e is pinned, MX and MY distinguish X. Then X contains a strand
SX for L in M+

X,Y that distinguishes e, which is also a strand for Y . Similarly Y contains a
strand SY for X that distinguishes e. Then applying Lemma 3.2.1 to M and e yields that
M is GF (q)-representable if and only if M+

X,Y \(L \ {e}) is GF (q)-representable. Applying
this argument (along with Lemma 3.2.1) three more times for the other three elements of
L yields the result.

So we want to see whether all the elements of L are pinned in M+
X,Y . If this is not the

case, and if neither X, Y is a line nor a coline, our main result of this section shows that
M is in fact quinary.

Lemma 3.2.3. Let M be a 3-connected ternary matroid whose proper minors are all
quinary and let (X, Y ) be an exact 3-separation of M with |X| ≥ 4. If MX does not
distinguish all four elements in the boundary line, then M is quinary.

Proof. Suppose that L = {e1, e2, e3, e4} is the boundary line where e4 is not distinguished
in MX . Let M ′

X = MX\e4 and M ′
Y = MY \e4.

Observe that {e1, e2, e3} is a modular line in si(M ′
X). By applying Corollary 2.5.3, we

get that si(M ′
X) is binary. Then M ′

X is binary and ternary, so by Theorem 2.1.1 we have
that M ′

X is regular. Thus M ′
X is quinary, and we want to show that MY is quinary.

Since |X| ≥ 4 and MX does not distinguish all elements of L, X is not a coline. Further,
si(M ′

X) is 3-connected with the modular line {e1, e2, e3}, so we can apply Lemma 2.5.5 to
obtain the sets C ⊆ X and {x1, x2, x3} ⊆ X such that in M ′

X/C we have that {x1, x2, x3}
is a triangle where xi is parallel to ei for i ∈ {1, 2, 3}. Observe that M/C is quinary since
it is a minor of M , and si(M/C) = si((M+

X,Y \e4)/C) = si(M ′
Y ) so M ′

Y is quinary.

So both M ′
X and M ′

Y are quinary, and by applying row operations there exists GF (5)
matrices AX and AY where e1, e2 label the last two rows of AX and the first two rows of
AY . Further by column scaling we may assume that the column representing e3 has entry
1 in the rows corresponding to e1, e2 and zeroes elsewhere.

AX =

e1 e2 e3
*

0

1 0 1
0 1 1

, AY =

e1 e2 e3


1 0 1

*
0 1 1

0
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Then AX , AY match along the set T = {e1, e2, e3} which is a modular flat in X. Ap-
plying Lemma 2.6.2 yields a GF (5)-representation of PT (M ′

X ,M
′
Y ), which has M as a

restriction by deleting {e1, e2, e3}, thus M is quinary as desired.

It immediately follows that M+
X,Y must pin all four elements of its boundary line.

Corollary 3.2.4. Let M be a ternary excluded minor for GF (5)-representability and let
(X, Y ) be an exact 3-separation of M . If |X|, |Y | ≥ 4, then M+

X,Y pins all elements of the
boundary line.

3.3 Duality with Generalized ∆− Y Exchange

Since duality preserves representability and connectivity, if M is a ternary excluded minor
for GF (5)-representability with an exact 3-separation (X, Y ), then so is M∗. We will
establish the relationship between MX and M∗

X in this section, using the Generalized
∆− Y Exchange in Section 2.7.

Lemma 3.3.1. Let M be a 3-connected ternary matroid with an exact 3-separation (X, Y ),
and let L label the boundary lines of M+

X,Y and (M∗)+X,Y . Then (M∗)X = ∇L((MX)∗).

Proof. Observe that both matroids have the groundset X ∪ L. Clearly L is isomorphic to
U2,4 in both matroids. Hence, to establish the equality of the two matroids, we must show
first that they agree on the rank of every subset A of X, then show the equality of local
connnectivity from A to L, and finally show that if u(A,L) = 1 then A spans e ∈ L in
(M∗)X if and only if A spans e in ∇L((MX)∗).

Let A ⊆ X and E = E(M). Since neither deleting outside A nor extensions change
the rank of A,

r(M∗)X (A) = r(M∗)|X(A) = rM∗(A)

By the dual rank function, we have

r(M∗)X (A) = rM(E \ A) + |A| − r(M).
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Since Y ⊆ E \A and Y spans L (as M is 3-connected), rM(E \A) = rM+
X,Y

(E ∪L \A) and

r(M) = r(M+
X,Y ). Clearly |A| is not changed, which implies

r(M∗)X (A) = rM+
X,Y

((E ∪ L) \ A) + |A| − r(M+
X,Y ) = r(M+

X,Y )∗(A).

Observe that we obtain MX from M+
X,Y by contracting elements in Y and then simplifying.

Both operations keep rM+
X,Y

(E(L) \ A)− r(M+
X,Y ) invariant, so

r(M∗)X (A) = r(MX)∗(A).

It is clear that performing a Y − ∆ exchange does not change the rank of a set disjoint
from L, thus

r(M∗)X (A) = r∇L(MX)∗)(A)

as desired.

Next we show that u(M∗)X (A,L) = u(MX)∗(A,L). Since deleting outside of A ∪ L does
not change the local connectivity, we have

u(M∗)X (A,L) = u(M∗)+X,Y
(A,L)

= uM∗(A, Y ).

Now by applying the definition of local connectivity,

u(M∗)X (A,L) = rM∗(A)− rM∗/Y (A)

= rM∗(A)− r((M+
X,Y )∗/L)/Y (A)

= rM∗(A)− r(M+
X,Y )∗/Y/L(A).

Since MX = M+
X,Y \ Y , (MX)∗ = (M+

X,Y )∗/Y and so

u(M∗)X (A,L) = rM∗(A)− r(MX)∗/L(A).
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We proved above that rM∗(A) = r(MX)∗(A), thus

u(M∗)X (A,L) = r(MX)∗(A)− r(MX)∗/L(A)

= u(MX)∗(A,L).

It remains to show that for all A such that u(A,L) = 1 we have that A spans e ∈ L
in (M∗)X if and only if A spans e in ∇L((MX)∗). Observe that we may assume that
the elements {e1, e2, e3, e4} of L are labelled such that if there exists a set A such that
u(A,L) = 1 and u(MX)∗(A,L \ {ei}) = 1 then A distinguishes ei in (M∗)X . Then equality
follows by the construction of ∇L((MX)∗).

So this lemma allows us to dualize and construct the matroids for the two sides of
the dual. We want the properties for MX to also hold for ∇L((M∗)X), specificially that
this perserves representability and distinguishing the points of L. That representability is
preserved follows directly from the previous lemma and Lemma 2.7.5.

Lemma 3.3.2. Let (X, Y ) be an exact 3-separation in a 3-connected ternary matroid M .
For any field F, (M∗)X is F-representable if and only if MX is F-representable.

Proof. Let L be the boundary line of (X, Y ). As duality preserves representability, MX

is F-representable if and only if (MX)∗ is F-representable. Now L is an independent co-
line in co((MX)∗) since it is a coindepdent line in si(MX). Then by the dual of Lemma
2.7.5, co((MX)∗) is F-representable if and only if co(∇L((MX)∗)) is F-representable. Since
cosimplication preserves representability, applying Lemma 3.3.1 gives the result.

Lemma 3.3.3. Let (X, Y ) be an exact 3-separation in a 3-connected ternary matroid M .
Then all four elements of the boundary line is pinned in M+

X,Y if and only if all four

elements of the boundary line is pinned in (M∗)+X,Y .

Proof. Let L = {a1, a2, a3, a4}, L′ be the boundary lines of M+
X,Y and (M∗)+X,Y , respectively.

Suppose that all four elements of L are pinned in M+
X,Y . We want to show that if MX

distinguishes ai then (M∗)X distinguishes ai for i ∈ {1, . . . , 4}.

Recall that {a1, a2, a3, a4} is a 4-point line in Θ4 and considerM+
X = P{a1,a2,a3,a4}(Θ4,MX),

and observe that ∆L(MX) = M+
X\L. Since MX distinguishes a1, there exists a circuit C

with cl(C)∩cl(L) = {a1}. Then cl(C) is a cyclic flat of MX , and let F = cl(C)∪{b2, b3, b4}.
F is also a cyclic flat of M+

X since {a1, b2, b3, b4} is a circuit of MX and adding {b2, b3, b4}
to cl(C) does not introduce any of b1, a2, a3, a4 into its span. Now since C ∪ {b2, b3, b4} is
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a circuit, F \ {a1} is a cyclic flat of M+
X\a1. Since deleting outside a cyclic flat preserves

the cyclic flat, F \ {a1} is a cyclic flat of M+
X\a1, a2, a3, a4. Observe that by relabelling bi

to ai for i ∈ {1, . . . , 4} in M+
X\a1, a2, a3, a4, we have M+

X\a1, a2, a3, a4 = ∆L(MX).

Now F ∗ = ∆L(MX)\F is a cyclic flat in (∆L(MX))∗ and observe that F ∗ intersects the
4-point line {a1, a2, a3, a4} at exactly {a1}. Hence there exists a circuit C∗ in (∆L(MX))∗

that intersects {a1, a2, a3, a4} at exactly {a1}, so a1 is distinguished in (∆L(MX))∗. Now
(∆L(MX))∗ = ∇L((MX)∗), and∇L((MX)∗) = (M∗)X by Lemma 3.3.1 as desired. Applying
the same argument for a2, a3, a4 yields the result.

So whenever we dualize, we may assume that (M∗)X distinguishes all points of L∗, and
(M∗)X is representable over the same fields that MX is.

3.4 Non-quinary side

In this section, we will show that, in an excluded minor, if MY is not quinary, then |X| ≤ 4.
We begin by showing that if one side is not quinary, then the other side must have size at
most 4.

Lemma 3.4.1. Let M be a ternary excluded minor for GF (5)-representability with an
exact 3-separation (X, Y ). If MY is non-quinary, then there is no proper minor of M ′

X of
MX such that M |L = M ′|L and all four elements of L are distinguished in M ′

X .

Proof. Suppose there exists a proper minor M ′
X of MX such that L is a 4-point line with

all elements distinguished in M ′
X . Let N+ = PL(M ′

X ,MY ). Then N+ is not quinary since
it contains MY is a restriction. Since M ′

X distinguishes all four elements of L in N+, by
Lemma 3.2.1 we have that N+\L is not quinary. However, N+\L is a proper minor of M ,
so this contradicts that M is an excluded minor.

Hence our problem becomes characterizing the 3-connected matroids M with a 4-point
line L where all elements of L are distinguished, but every proper minor that keeps L does
not distinguish L. Moreover, by dualizing with the Generalized Delta-Y, ∇L(M∗) has the
same properties, so we may switch between M and ∇L(M∗).

Lemma 3.4.2. Let L be a modular set in a ternary matroid M such that M |L is isomorphic
to U2,4. If all four elements of L are distinguished, then M contains an 8-element minor
N such that M |L = N |L and all elements of L are distinguished in N .
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Proof. Suppose that M is a minor-minimal counterexample. Then |E(M)| ≥ 9. We prove
the result via a series of claims.

(1) M is 3-connected.

First we show that M\L is simple. Suppose {e, e′} is a parallel pair in M\L. So if S is
a strand that contains e and distinguishes e1 ∈ L, then S4{e, e′} is a strand distinguishing
e1. Hence M\e distinguishes all four elements of L, contradicting minimality of M .

Next we will show that si(M) is 3-connected. Let si(M) = M\P where P ∩L = ∅, and
let (A,B) be a 2-separation of si(M) such that L ⊆ B. We may assume that this separation
is exact, otherwise L\A contradicts minimality. Then by Proposition 2.4.5, M+

B is a minor
of si(M) and preserves strands for L. By Theorem 2.3.1, M+

B = si(M)/C\D = M/C\D\P
for some C,D ⊆ E(M) where at least one of C,D is non-empty. Then M/C D distinguishes
all four elements of L and contradicts minimality.

To prove that M is 3-connected, it remains to show that M is simple. Let e be an
element parallel to e4 ∈ L, and let L \ e4 = {e1, e2, e3}. Then by minimality of M , M\e
distinguishes e1, e2, e3 but not e4. If E(M) \ L \ e is a line or coline that distinguishes
e1, e2, e3, then the result is immediate. Since si(M\e) is 3-connected and E(M) \ cl(L)
is not a coline, by Lemma 2.5.5 we have that there is minor M ′ of si(M) such that M ′

contains a triangle {x1, x2, x3} parallel to {e1, e2, e3}. Then adding e to M ′ is a parallel
extension of M ′ at e4 which distinguishes all elements of L, contradicting minimality of M
and proving (1).

Note that by Lemma 3.3.3, ∇L(M∗) is also a minimal counterexample. Then by duality,
(1) implies that there are no elements in the coguts of (L,E(M) \ L), as ∇L(M∗) would
not be cosimple.

(2) M/L and M\L is connected.

Let C be a component of M/L. Suppose for a contradiction that C 6= M/L. Consider
M ′ = M |(C ∪ L). Since C is a component of M/L, λM(E(C)) = 2 and C spans L, so
si(M ′) is 3-connected. By Corollary 2.5.6, we may assume that M ′ distinguishes e1, e2, e3
of L. Note that by minimality of M , M ′ does not distinguish e4. Since e4 is distinguished
in M , there exists some component C ′ of M/L containing a strand S that distinguishes
e4. Then we can find a set of |S| − 1 elements of S to contract to obtain a minor of M ′′ of
M with an element e parallel to e4. Then N = M ′′|(C ∪L∪ {e}) is a parallel extension of
M ′ at e4, contradicting the minimality of M , so M/L is connected.
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Now by duality,∇L(M∗)/L is connected. Since dualizing preserves connectivity, ∆L(M)\L
is connected, which implies that M L is connected, proving (2).

(3) For every e 6∈ L, the line L has exactly three distinguished elements in M\e.

Consider M\e. Since si(M)\e is 2-connected, at least one element of L is distinguished.
First note M\e distinguishes more than one element of L, as otherwise e is in the coguts
of (L,E(M) \ L). So suppose that exactly two elements of L are distinguished in M\e.
Applying Lemma 2.5.7, there exists a partition (C,D) of E(M\e) \ L such that C and
D are 2-separating in M\e with basepoints e1 and e2. Then (M\e)/L is disconnected.
Applying the dual argument to ∇L(M∗)\e, we get that (∇L(M∗)\e)/L is disconnected.
As duality preserves connectivity, ∆L(M)\L/e is disconnected. Then M/L/e and M/L\e
are disconnected, a contradiction and establishing (3).

ConsiderM ′ = M\e. We may assume thatM ′ not distinguish some e4 ∈ L, as otherwise
we contradict the minimality of M . In particular, this implies that every set S of M such
that cl(L)∩ cl(S) = e4 must contain e. Note that e ∈ S. Let S ⊆ E(M) \L be a maximal
set whose closure contains e4 but not L. Note that S ∪ L is spanning, as any element
outside of cl(S ∪ L) can be added to S.

(4) There exist distinct elements e1, e2 ∈ L\{e4} such that for every element f ∈ (S\{e}),
there exists a partition (Cf , Df ) of E(M ′/f) \L such that Cf , Df are 2-separating in
M ′/f with basepoints e1, e2 (respectively).

Let f ∈ S \{e}. First we want to show that M ′/f distinguishes exactly two elements of
L. Suppose M ′/f distinguishes all three elements of L\{e4}. Then M/f also distinguishes
L \ {e4}, but since S \ {f} is a strand of L that distinguishes e4 in M/f , this contradicts
the minimality of M . Next, suppose that M ′/f distinguishes only one element of L \ {e4}.
Then (L,E(M) \ L) is a 2-separation of M ′/f and since L is a line in M ′, we have that
(L,E(M)\L) is a 2-separation of M ′, contradicting (3). Then applying Lemma 2.5.7 gives
us the desired partition (Cf , Df ), and it remains to show that the basepoints are invariant
over the choices of f . Let e3 be the element of L \ {e4} that is not distinguished in M ′/f .

Suppose, for a contradiction, that there exists f ′ ∈ (S \ {e}) such that M ′/f ′ distin-
guishes e3. We may assume that f ′ ∈ Cf . Then e1 ∈ clM ′(Cf ∪{f}, so M ′/f ′ distinguishes
e1. Since uM ′(L,Df ∪ {f}) = 1 and e2 ∈ clM ′(Df ∪ {f}) but e2 is not distinguished in
M ′/f ′, so uM ′/f ′(L,Df ∪ {f}) = 2. Hence f ′ ∈ clM ′(Df ∪ {f} ∪ L) = clM ′(Df ∪ {f, e1}).
Since f ′ ∈ Cf and Cf is 3-separating in M ′ with f, e1 in the guts of (Cf , E \Cf ), it follows
that f ′ is also in the guts of (Cf , E \ Cf ). So f, e1, f

′ is a triangle in M ′. However, this
contradicts that uM(S, L) = 1 since e1, e4 ∈ cl(S). This proves (4).
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(5) For every element f ∈ (S \{e}), (Cf ∪{e1}, Df ∪{e2}) is a 2-separation of M ′\e3, e4
with f in the guts.

Let f ∈ S \ {e}, and C = Cf ∪{e1}, D = Df ∪{e2}. Since Cf and Df are 2-separating
sets in M ′/f by (4), C and D are 3-separating in M ′ with {e1, f} and {e2, f} in the
respective guts. Since C is 3-separating in M ′, r(C) + r(D ∪ {e3, e4}) − r(M ′) = 2. As
e1, e2 spans both e3 and e4, r(M

′) = r(M ′\e3, e4). Since D contains e2 but spans neither
e3 nor e4, r(D) = r(D ∪ {e3, e4})− 1. Hence r(C) + r(D)− r(M ′\e3, e4) = 1, and clearly
|C|, |D| ≥ 2, proving (5).

Applying Lemma 2.4.7 to M ′\e3, e4, S \ {e} and the special elements e1 and e2, we get
an ordering (s1, . . . , sk) of S \ {e} and a partition (A0, . . . , Ak) of E(M ′) \ S \ L satisfying
the conditions of Lemma 2.4.7.

(6) |S \ {e}| = 1.

Suppose k > 1. Then M ′/s1, s2 is disconnected with A1 as a component (A1 is non-
empty, otherwise M ′ only distinguishes e1 and e2). Since S ∪ L spans M , A1 is in the
span s1, s2. Let a ∈ A1, and consider M ′′ = M/a\s2. Clearly M ′′ distinguishes e1 and e2,
and e3 is distinguished as e1, e2 are in the same component in M ′/a\e3, e4. Finally e4 is
distinguished since uM/a(S, L) = 1 as a ∈ cl(S) and s2 is parallel to s1 in M/a, so S \ {s2}
distinguishes e4. This contradicts minimality of M , proving (6).

Now let S = {e, f}, then r(M) = 3 since {e, f} ∪ L spans M . Let g be an element of
M that is in neither of the span of S nor L, and g exists since M does not only distinguish
e4. Then by modularity of L, we may assume that {e, g} is a strand for e1 and {f, g} is a
strand for e2. Since M distinguishes e3, there exists an element h that is not parallel to
e, f, g and not spanned by L.

If one of {e, h}, {f, h}, {g, h} is a strand for e3, then E(M) = {e, f, g, h} ∪ L and we
are done. First suppose that h is spanned by one of the lines {e, f}, {e, g}, {f, g}. By
symmetry we may assume that h ∈ cl({e, f}). Then {h, g} does not span e1 since {e, g}
spans e1, it does not span e2 since {f, g} spans e2, and it does not span e4 since {e, f, h}
spans e4. Hence as L is modular, {h, g} spans e3 as desired. So h is not in any of the spans
of the lines {e, f}, {e, g}, {f, g}. A similar check shows that one of {e, h}, {f, h}, or {g, h}
spans e3, as desired.

By case analysis, we can deduce all possible 8-element matroids M with a line L such
that all elements of L are distinguished. Let M1,M2,M3,M4 be the matroids in Figure 3.2
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(given by their geometric representations), where the elements of L are denoted by filled
circles, and let M5 be the unique matroid with a modular 4-point line L and an indepedent
coline.

M1 M2

M3 (isomorphic to O8) M4

Figure 3.2: Four of the matroids that satisfy the conditions of Lemma 3.4.2

Lemma 3.4.3. Let L = {e1, e2, e3, e4} be a modular U2,4-restriction in an 8-element ma-
troid M . If all elements of L are distinguished in M , then M is isomorphic to one of
M1,M2,M3,M4, or M5.

Proof. Let N = E(M) \ L = {e5, e6, e7, e8}, let n be the number of elements of N that
in the span of L. Clearly M contains neither loops nor coloops, and M |N is simple. If
n = 4, then M |N is isomorphic to U2,4, and M is isomorphic to M1. Clearly n 6= 2 and
n 6= 3, otherwise M distinguishes at most three elements of L. Suppose n = 1. Then we
may assume that {e4, e8} is a parallel pair and e5, e6, e7 distinguishes e1, e2, e3. It follows
that {e5, e6, e7} is independent and cl({e5, e6, e7}) spans L (and thus also spans M). Then
L∪{e8} is a hyperplane of M , so {e5, e6, e7} is a triad, and M is isomorphic to M2. Finally
suppose that n = 0. Then λM(L) = uM(L,N) = 2 otherwise M distinguishes at most one
element of L. It follows that N spans M . If T = {e5, e6, e7} is a triangle, then L is on
the plane spanned by N . Since L is modular, we may assume that e1 ∈ cl(T ) and the sets
{e2, e5, e8}, {e3, e6, e8}, {e4, e7, e8} are triangles. In this case, M is isomorphic to M3. If N
is a circuit, so r(N) = |N | − 1 = 3 and N is a circuit-cocircuit, and hence M is isomorphic
O8. In the case where N is not a circuit and does not contain a 3-point line, then N is
independent and spans L, so M is isomorphic to M5.
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3.5 Near-regular

Now that we have taken care of the case where one of MX and MY are non-quinary, we turn
our attention our focus to whether MX and MY have representations that match along L.
As mentioned in Chapter 1, there are three inequivalent representations of L, which are

given by

[
1 0 1 1
0 1 1 x

]
for x ∈ {2, 3, 4}. Each of these representations of L may or may not

extend to a representation of MX or MY . However we do know that any representation
of L extends to at most one representation of MX or MY , by the following theorem from
Whittle [24].

Theorem 3.5.1. Let M be a 3-connected ternary matroid with a U2,4-minor N . Then a
representation of M over a field F is uniquely determined by an F-representation of N .

So the number of inequivalent GF (5)-representations for MX is equal to the number
of inequivalent representations for L that extend to a represention of MX . Hence we
want to know the number of inequivalent GF (5)-representations MX may have. A result
from Pendavingh and van Zwam [17] shows that a dyadic matroid has either one or three
inequivalent GF (5)-representations, and characterizes exactly when each case is realized;
see Theorem 1.3.6. Since MX is not binary, case (i) of Theorem 1.3.6 does not apply. Our
next lemma shows that, in fact, case (iii) must apply to MX (and analoguously for MY ).

Lemma 3.5.2. Let (X, Y ) be an exact 3-separation in a matroid M where M is a ternary
excluded minor for GF (5)-representability. If MX and MY are both quinary. Then MX is
uniquely representable over GF (5).

Proof. Suppose that there exists three inequivalent GF (5)-representations AX,1, AX,2, AX,3

of MX . Let L be the line common to MX and MY . By performing row operations, we may
assume that the representations are of the form:

AX,r =

[ ]
*

0
1 0 1 1
0 1 1 r + 1

for r ∈ {1, 2, 3}, where L labels the last four columns of AX,r.

Now let AY be a GF (5)-representations of MY , and by row operations we may assume
it is of the form:
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AY =

[ ]1 0 1 1
*0 1 1 rY

0

for some rY ∈ {1, 2, 3}, where L labels the first four columns of AX,r.

Then applying Lemma 2.6.2 on the representations AX,rY −1, AY for MX and MY (re-
spectively) gives us that M+

X,Y is GF (5)-representable. By Lemma 3.2.4, all elements of L

are pinned in M+
X,Y . Hence applying Lemma 3.2.1 gives us that M is GF (5)-representable,

a contradiction.

Putting together the above lemma and Theorem 1.3.6, it follows that neither MX nor
MY are near-regular.

Corollary 3.5.3. Let M be a ternary excluded minor for GF (5)-representability with an
exact 3-separation (X, Y ). If both MX and MY are quinary, then neither MX nor MY are
near-regular.

3.6 Reducing to O8

In this section, we will study the structure of MX and MY given that they are quinary but
not near-regular. If M is an excluded minor, then MX and MY are minor-minimal with
respect to keeping the boundary line and being not near-regular. The main result of this
section shows that MX and MY are both isomorphic to O8.

Lemma 3.6.1. Let L be a U2,4-restriction in a 3-connected matroid M that is dyadic but
not near-regular. Then M has a minor N isomorphic to O8 such that L is a U2,4-restriction
of N .

In order to prove that our minor-minimal dyadic matroid is isomorphic to O8, we only
need to show that if it is not O8 then we can find a minor preserving the line L and a
4-element circuit-cocircuit.

Since M is dyadic but not near-regular, M is not GF (4)-representable. We will prove
that M must contain a non-Fano or its dual as a minor, using an excluded minor theorem
for 3-connected non-GF (4)-representable matroids from Theorem 1.3.8.

In our proof we will often want to dualize our matroid M . The next proposition shows
that we can take the dual of M and use a generalized ∆− Y exchange to preserve all the
desired properties.
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Proposition 3.6.2. Let M be a 3-connected, dyadic, non-near-regular matroid with a
U2,4-restriction L. Then ∇L(M∗) is also 3-connected, dyadic, non-near-regular with a
U2,4-restriction.

Proof. Since representability and connectivity are preserved by duality, M∗ is 3-connected,
dyadic, and not near-regular. Note that L is an coline in M∗ (as L is a coindepdent line in
M by 3-connectivity), so ∇L(M∗) is well-defined and L is a U2,4-restriction in ∇L(M∗).

Lemma 3.6.3. Let M be a 3-connected, dyadic, non-near-regular matroid with a U2,4-
restriction. Then M has an F−7 - or (F−7 )∗-minor.

Proof. Since M is not GF (4)-representable, M must satisfy one of the three cases of
Theorem 1.3.8. M does not satisfy case (ii) as P ′′8 is not ternary. Next, it can be easily
verified that contracting at most two elements of S(5, 6, 12) does not produce a U2,4-
restriction, hence M does not satisfy case (iii). Thus M satisfies case (i). As neither
U2,6, U4,6, nor P6 is ternary, it follows that M contains an F−7 or (F−7 )∗ as a minor.

Lemma 3.6.4. Let L be a subset of elements of a 3-connected, dyadic matroid M such
that M |L is isomorphic to U2,4 and M contains an F−7 -minor N . If all proper minors M ′

of M that satisfy M |L = M ′|L has the property that M ′ does not contain an F−7 -minor,
then E(M) = E(N) ∪ L.

Proof. Suppose M contains an element e such that e 6∈ L and e 6∈ E(N). Then either
M\e or M/e preserves both L as a U2,4-restriction and N as an F−7 -minor. Let M ′ ∈
{M\e,∇L(M∗)\e} such that N or N∗ is an F−7 -minor of M ′. Since M is minor-minimal,
M ′ is not 3-connected.

By applying Lemma 2.4.6 on M ′, we get that a partition B1, . . . , Bk of E(M ′) such
that λM(Bi) ≤ 1 and |E(N) ∩ Bi| ≤ 1 for i ∈ {1, . . . , k}, and the matroid M ′′ obtained
by contracting all Bi down to their respective basepoints ei is 3-connected with groundset
{e1, . . . , ek} with an N -minor.

Note that L is contained in some Bi, otherwise M ′′ contradicts the minimality of M .
Let BL be the side of the 2-separation (BL, E(M ′) \ BL) of M ′ that L is contained in, so
(BL∪{e}, E(M)\ (BL∪{e})) is a 3-separation of M . We may assume that we have chosen
e such that |BL| is minimal.

Our next claim is that BL contains no other elements. Suppose there exists e′ ∈ BL

such that e 6∈ L, then there exists a 3-separation (B′L ∪{e′}, E(M) \B′L) of M such that L
is contained in B′L. Now by Lemma 2.4.1 we get that BL ∩B′L is 3-separating for M , and
as e 6∈ B′L, this is strictly smaller than BL, contradicting our choice of e.
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Finally we want to show that M/e contradicts minimality. Since (L,E(M) \ L) is not
a 2-separation in M and rM(L) = rM/e(L), L is not 2-separating in M/e, so M ′ = M\e.
Now M/e is dyadic and preserves L as e 6∈ L. Further, M/e is 3-connected as . Also
we may assume that clM(L) ∩ clM(E(M) \ L) = `1, otherwise M contains a U2,5-minor,
contradicting that M is ternary. Then {e, `2, `3, `4} is a cocircuit of M . As M/`4\e contains
an F−7 -minor by claim (1), M |((E(M) \ (L ∪ e)) ∪ `1) is a hyperplane of M that does not
contain e and contains an F−7 -minor. So M/e contains an F−7 -minor, contradicting the
minimality of M .

Now that we have proved that M has no other elements apart from the line and the
non-Fano minor, we can do case analysis to show that M is in fact O8. To ease notation,
we will assign canonical labels for the elements of F−7 and (F−7 )∗, and use these labels for
the remainder of the chapter.

f5 f7 f6

f1

f4
f3

f2
f2 f3

f1

f4
f5

f7

f6

Figure 3.3: A labelling of F−7 and (F−7 )∗

First we will prove a proposition regarding the non-Fano matroid.

Proposition 3.6.5. Let M be a ternary extension of F−7 by a non-loop element e. Then
M contains an F−7 -restriction using e.

Proof. Observe that F−7 is the unique rank-3, 7-element ternary matroid such that {e1, e2, e5},
{e1, e3, e6}, {e1, e4, e7}, {e5, e6, e7} are 3-point lines but {e2, e3, e4} is not.

We may assume that e is a simple extension, otherwise the result is immediate. Let
L = {f5, f6, f7}. First suppose that e is not in the span of any 3-point lines. Then the line
spanned by {f1, e} does not contain any element of L. Let f8 be a ternary extension of M
in the spans of {f1, e} and L. Then the lines spanned by {e, fi} for i ∈ {2, 3, 4} must not
contain f8 (otherwise {f1, fi} spans both f8 and fi+3, a contradiction as f1 is not on L),
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so they must span distinct elements of L. Since {f2, f3, f4} is not a 3-point line, by our
observation above, M\f1 ∼= F−7 .

Now suppose e is in the span of a 3-point line, which we may assume to be L. Then
{f2, f3} spans e, otherwiseM/f2 contains a U2,5-restriction, contradicting thatM is ternary.
Then {f2, f3, e}, {f2, f1, f5}, {f2, f4, f7}, and {e, f5, f7} are all 3-point lines and {f1, f3, f4}
is not. By our observation, M\f6 ∼= F−7 , as desired.

We are now ready to prove Lemma 3.6.1.

Proof of Lemma 3.6.1. By Lemma 3.6.3 and Lemma 3.6.4, M contains a U2,4-restriction L
and an F−7 -minor N and no other elements. Since we obtain N by a sequence of at most
two contractions, r(M) ≤ 5. Clearly we also have r(M) ≥ 3. We then split our analysis
on the rank of M . Let L = {e1, e2, e3, e4} and N = {f1, f2, f3, f4, f5, f6, f7}, noting that ei
and fj may not be distinct.

Case 1: r(M) = 3.

In this case, N is in fact an F−7 -restriction, and N \ L is a cocircuit. Observe that
deleting any line of N preserves a 4-element circuit, hence N \ L contains a 4-element
circuit-cocircuit, so M\L contains a 4-element circuit. Then M |(L ∪ C) is isomorphic to
O8.

Case 2: r(M) = 4.

By switching labels of elements of L, we may assume that M/e1 has a F−7 -restriction,
so the projection of M from e1 onto a hyperplane H ⊆ (E(M) \ {e1}) contains a non-Fano
restriction. Since L is modular, we may assume that e4 is in the span of H. By Proposition
3.6.5, M/e1 contains an F−7 -restriction using e4, so we may assume that e4 is an element
of N . As the automorphism group of F−7 has the two orbits (f1, f4, f5, f6) and (f2, f3, f7),
we consider the two subcases where e4 is an element of a representative from each orbit:

Subcase 2.1: e4 = f5.

Then M/f6 preserves L. Since L ∪ {f6, f7} is a plane, {f1, f2, f3, f4} is a cocircuit in
M/f6. If {f1, f2, f3, f4} is a circuit in M/f6 then we have found our circuit-cocircuit. So in
M , there exists a plane P containing f6 and at least three of {f1, f2, f3, f4}. By symmetry
we may assume that f2, f4, f6 ∈ P and e1 6∈ P as there are no lines more than three elements
in F−7 . So the plane containing {e1, f2, f4, f6} meets P along a line. Hence {f2, f4, f6} is
a triangle in M . By applying the above analysis on M/f1, we get that {f1, f4, f7} is a
triangle M . As these two triangle have a common element f4, they lie on a plane P ′. Since
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M is 3-connected, f3 is not in the span of P ′. Then M/f3 contains L and {f1, f2, f6, f7}
as a circuit-cocircuit, as desired.

Subcase 2.2: e4 = f2.

In this case consider M/f3, which preserves L and has {f1, f4, f5, f6, f7} as a cocircuit.
We claim that at least one 4-element subset of {f1, f4, f5, f6, f7} is a circuit in M/f3.
Suppose otherwise, then in M every 4-element subset of {f1, f4, f5, f6, f7} lies on a plane
with e3, and hence the entire set lies on a plane with e3 in M . However, this contradicts
3-connectivity of M .

Case 3: r(M) = 5.

In this case E(N) and L are disjoint, so M has 11 elements, and we may assume that
M/e1, e2, e3, e4 ∼= F−7 . Now consider M∗, which has rank six and M∗\e1, e2, e3, e4 ∼= (F−7 )∗,
so deleting the coline L preserves the (F−7 )∗-minor. Hence applying the generalized Y −∆
exchange on L in M∗ preserves the (F−7 )∗-minor. Let M ′ = ∇L(M∗). Then M ′ contains
a 4-point line, an (F−7 )∗-minor, and si(M ′) is 3-connected. Since a Y −∆ exchange on a
4-element coline drops the rank by two, M ′ has rank four and the (F−7 )∗-minor is in fact
an (F−7 )∗-restriction.

Next we want to show that M ′ contains rank-3 minor that has L as a 4-point line along
with a 4-element circuit-cocircuit. Let e ∈ E(M ′) such that e is not in the span of L. Let
P1, . . . , Pk be the planes that contain L in M ′. We have k ≥ 3 as si(M ′) is 3-connected,
and |Pi ∩E(N)| < 5 since (F−7 )∗ has no plane with five elements. We split our analysis on
the size of cl(L)∩E(N), noting that |clM ′(L)∩E(N)| < 3 since (F−7 )∗ has no 3-point line.
Let E(N) = {n1, . . . , n7}.

Subcase 3.1: |clM ′(L) ∩ E(N)| = 0.

Then there are seven elements ofN and least three planes, we may assume |P1∩E(N)| ≤
2. Let n1 ∈ P1. Then E(N) \ P1 has size ≥ 5, so we may assume {n2, n3, n4, n5, n6} ⊆
E(N) \P1. Since {n2, n3, n4, n5, n6} is not in the span of L in M ′/n1, so it is a cocircuit in
M ′/n1. We want to show that this also contains a circuit C in M ′/n1. Suppose otherwise,
then we may assume that {n1, n2, n3, n4} is a plane in M ′. There is also a plane involving
n5, n6, otherwise C = {n3, n4, n5, n6}. Then we may assume that {n1, n4, n5, n6} is a plane
in M ′. Then C = {n2, n3, n5, n6} as desired.

Subcase 3.2: |clM ′(L) ∩ E(N)| = 1.

Suppose that some P1 contains only two elements of N and let n ∈ P1 \ clM ′(L). Then
E(N) \ P1 has size ≥ 5, so we can apply the analysis from Subcase 3.1 on E(N) \ P1

to obtain a 4-element circuit-cocircuit C in M ′/n. Hence each Pi contains exactly three
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elements of N and hence k = 3. Since the automorphism group is preserved by duality, the
automorphism group of (F−7 )∗ also has the two orbits (f1, f4, f5, f6) and (f2, f3, f7). Hence
we may assume that either f1 ∈ clM ′(L) (referring to Figure 3.3) or f2 ∈ clM ′(L).

Suppose f1 ∈ clM ′(L). Let f2 ∈ P1, then as |P1| = 3 we have that P1 = {f1, f2, f5},
since each of {f3, f4, f6, f7} lie on a 4-element plane with f1, f2. Then M ′/f2 preserves L
and {f3, f4, f6, f7} is a 4-element plane in M ′ that does not span f2 and is disjoint from
clM ′(L ∪ {f2}), so it is a circuit-cocircuit in M ′/f2 as desired. Now suppose f2 ∈ clM ′(L),
then let f1 ∈ P1. Then as above, P1 = {f1, f2, f5} and {f3, f4, f6, f7} is a circuit-cocircuit
in M ′/f1.

Subcase 3.3: |clM ′(L) ∩ E(N)| = 2.

Let n1, n2 ∈ clM ′(L). Observe that at least one plane contains four elements of N since
every line in (F−7 )∗ is contained in a 4-element plane, we may assume that P1 ∩ E(N) =
{n1, n2, n3, n4}. Then there are three remaining elements of E(N) \ P1 and least two
remaining planes, so we may assume that |P2 ∩ (E(N) \ L)| = 1. Let n5 ∈ (P2 \ L)
and consider M ′/n5. Then {n3, n4, n6, n7} has size four and is not in the span of L in
M ′/n5, so it is a cocircuit in M ′/n5. If it is also a circuit, then we are done, so suppose
otherwise. Hence there exists a plane P ′ of M ′ that contains f and exactly three elements of
{n3, n4, n6, n7} (it cannot contain more than three as F−7 has no plane with five elements).

Suppose both of n3, n4 are in P ′. Then we may assume that n6 6∈ P ′. Then {n3, n4, n5, n7}
is a circuit-cocircuit in M ′/n6, and we want that no element is in clM ′/n6(L). Since n6 6∈ P1

and n6 6∈ P2, the plane P ′′ spanned by L and n6 does not contain any of {n3, n4, n5}, so
n7 ∈ P ′′. Then {n1, n2, n7} is a cocircuit of (F−7 )∗ (via P ′), and {n5, n3, n4} is a cocircuit
of (F−7 )∗ (via P ′′), however this is a contradiction as F−7 contains no two disjoint 3-element
lines.

Next suppose n3 6∈ P ′ but n4 ∈ P ′. Then {n1, n2, n3} is a cocircuit of (F−7 )∗ (via
P ′), and {n5, n6, n7} is a cocircuit of (F−7 )∗ (via P1), a contradiction as above and proving
Subcase 3.3.

So in all subcases, we find a minor of M ′′ of M ′ that contains L and has a 4-element
circuit-cocircuit disjoint from L. Then ∇((M ′′)∗) is a minor of M , and as circuit-cocircuits
are obviously self-dual, M contains L and a circuit-cocircuit disjoint from L, as desired.

3.7 Matching Cross Ratios

As we have proven in the previous section that both sides of our excluded minor must be
isomorphic to O8, our final task is to determine the excluded minors themselves. To ease
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notation in this section, we will use the labelling of the elements of O8 given in Figure 3.4.

f5 f7 f6

f1

f4

f3
f2

f8

Figure 3.4: A labelling of the elements of O8

It is easy to check that there is an automorphism of O8 that swaps (f5, f6) while f7, f8
are fixed elements (and vice versa), and another that swaps both pairs (f5, f6) and (f7, f8).
However, there is no automorphism that sends either f5 or f6 to f7 or f8 (since f5 and
f6 are contained in three 3-point lines, while f7 and f8 are contained in two). Hence we
consider f5, f6 as “red” elements and f7, f8 as “blue” elements.

Lemma 3.7.1. Let M be a ternary excluded minor with an exact 3-separation (X, Y ),
such that MX and MY are both quinary. Then M is isomorphic to T8.

Proof. By Corollary 3.5.3 and Lemma 3.6.1, MX and MY are both isomorphic to O8. Let
L = {e1, e2, e3, e4} be the boundary line of (X, Y ) in M+

X,Y . We colour the elements of L
in MX and MY with red and blue as above. By relabeling, we may assume that e1 and e2
are red elements in MY , and e3, e4 are blue. Furthermore, if exactly one of e1, e2 is red in
MX , we may assume that e1 is red, by swapping the labels of e1, e2 in MY . Similarly e3 is
red in MX if one of e3, e4 is red.

Given an ordering of elements (`1, `2, `3, `4) of a U2,4-minor in a uniquely F-representable
matroid M , we denote its cross ratio by crM(`1, `2, `3, `4). Let x = crMX

(e1, e2, e3, e4), and
y = crMY

(e1, e2, e3, e4). First, we compute y. Let A be a GF (5)-representation of MY . By
row operations, we may assume that the columns of A corresponding to L have the form

e1 e2 e3 e4[ ]0 0 0 0
1 0 1 1
0 1 1 y

.
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Observe that this is row equivalent to

e1 e2 e3 e4[ ]0 0 0 0
1 0 1 1
0 1 1

y
1

.

Applying an automorphism on MY that swaps e3, e4 and fixes e1, e2, we get a represen-
tation A′ of MY where the columns corresponding to L are

e1 e2 e4 e3[ ]0 0 0 0
1 0 1 1
0 1 1 y

.

Since O8 is uniquely representable over GF (5), y = 1
y

so y = 3. Now that we have
the cross ratio for the Y side, we consider the possible orderings of L in MX , splitting our
analysis by the number of red elements in {e1, e2} in MX .

Case 1: e1, e2 are both red in MX .

Then e3, e4 are both blue. Since the elements of L match in MY and MX , clearly their
cross ratios match as well, so x = 3. Hence M+

X,Y is quinary, a contradiction.

Case 2: e1, e2 are both blue in MX .

Then e3, e4 are both red. Similarly to our argument that y = 3, we have that

e1 e2 e3 e4[ ]0 0 0 0
1 0 1 1
0 1 1 x

,

e1 e2 e3 e4[ ]0 0 0 0
1 0 1 1
0 1 1 1

x

are both GF (5)-representations of L that extend to MX , by applying an automorphism
that swaps e3, e4 while fixing e1, e2. Hence x = 3, which implies that M+

X,Y is quinary, a
contradiction.

Case 3: e1 is red, e2 is blue in MX .

Then e3 is red and e4 is blue. It is routine to check that M is isomorphic to T8, and T8
is indeed an excluded minor for dyadic matroids, see page 649 of [16].
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3.8 Main Theorem

We conclude by applying the results from the previous sections to prove our main theorem.

Theorem 3.8.1. Let M be a ternary excluded minor for GF (5)-representability with an
exact 3-separation (X, Y ) such that |X|, |Y | ≥ 4. Then either:

(i) M is isomorphic to T8,

(ii) X is a circuit-cocircuit and MY contains an excluded minor for GF (5)-representability
with up to two fewer elements than MY ,

(iii) Y is a circuit-cocircuit and MX contains an excluded minor for GF (5)-representability
with up to two fewer elements than MX ,

(iv) |X| = 4, MX is not isomorphic to O8, and MY is an excluded minor for GF (5)-
representability, or

(v) |Y | = 4, MY is not isomorphic to O8, and MX is an excluded minor for GF (5)-
representability.

Proof. Let L = {e1, e2, e3, e4} be the boundary line of (X, Y ) in M+
X,Y . Since |X|, |Y | ≥ 4,

M pins all four elements of L by Lemma 3.2.4. If both MX and MY are quinary, then by
Lemma 3.7.1, M satisfies (i). By symmetry we may assume that MY is not quinary. Then
by Lemma 3.4.1 and Lemma 3.4.2, MX has eight elements. Since MX distinguishes all four
elements of L, MX is one of the five matroids M1,M2,M3,M4,M5 given by Lemma 3.4.3.
Let x1, x2, x3, x4 label the elements of MX\L. Note that if MX is isomorphic to M5, then
MY is isomorphic to ∇X(M).

It remains to show that, if MX is not isomorphic to M3, then MY is an excluded minor
for GF (5)-representability. Since MY is not quinary, it suffices to show that every deletion
or contraction of MY results in a quinary matroid.

Let M−
Y be a minor of MY obtained by contracting e1 ∈ L. Observe that in all five

possible matroids for MX , we can contract a (possibly empty) set S such that L is a
spanning line in MX/S with e1 parallel to some e ∈ X. Then si(M−

Y /e1) is isomorphic
to si(M/S/e), and since simplification does not change representability, M−

Y is quinary.
Next let M−

Y be obtained by deleting e1 ∈ L. If MX is isomorphic to M1,M2 or M4 then
clearly we can contract a set S such that L is a spanning line in MX/S with e2, e3, e4
each parallel to some x2, x3, x4 ∈ X. Then MY \e1 is a restriction of M/S so M−

Y is
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quinary. If MX is isomorphic to M5, let {x2, x3, x4, e1} be the unique 4-element circuit of
MX containing e1. Then MX/x1 contains a triad {x2, x3, x4} with e2, e3, e4 distinguished.
Then ∇{x2,x3,x4}(M/x1) is isomorphic to MY \e1, so M−

Y is quinary.

Let M−
Y be a minor of MY obtained by deleting or contracting an element e ∈ Y . If

M−
Y = MY /e and e is parallel to an element e1 of L, then clearly this is equivalent to

contracting e1, which was proved above. So M−
Y contains L as a U2,4-restriction. Now

M ′ = PL(MX ,M
−
Y )\L is quinary as it is a minor of M , and M ′ has the 3-separation

(X, Y \ {e}), so it has a quinary representation of the form

A =

[ ]
AX

0

AY−e0

where AX and AY−e intersect at most two rows. Let AL be a GF (5)-matrix such that the
only non-zero entries are in the last two rows and [AX |AL] is a GF (5)-representation of
MX . Then

A =

[ ]
AL

0

AY−e0

is a GF (5)-representation of M−
Y since an element on L is not pinned in M ′ if and only

if M−
Y does not distinguish the element, so M satisfies (iv). Analogously, if MX is not

quinary, then M satisfies (v).

Now suppose MX is isomorphic to M3, so MX is isomorphic to O8 and X is a 4-element
circuit-cocircuit. We colour the elements of L in MX with red and blue as in Section 3.7. If
M−

Y is a minor of MY obtained by contracting e1 ∈ L, deleting e ∈ Y , or contracting e ∈ Y ,
thenM−

Y is quinary by an argument similar to above cases. IfM−
Y is a minor ofMY obtained

by deleting e1 ∈ L, then M−
Y is a minor of M if and only if e1 is a blue element in MX .

We may assume that e1, e2 are blue in MX . Then one of MY ,MY \e1,MY \e2,MY \{e1, e2}
is an excluded minor for GF (5)-representability, satisfying (ii). Analogously, if MX is not
quinary and MY isomorphic to O8, then M satisfies (iii).

From Theorem 1.2.1, if we are given the set M of vertically 4-connected ternary ex-
cluded minors for dyadic matroids, then we can deduce the list of ternary excluded minors
for dyadic matroids as follows: For M ∈ M, let L be a line of M . If |L| = 4, then
PL(M,M2), PL(M,M4), and PL(M,M5) are all excluded minors for dyadic matroids (for
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all possible orderings of L), and PL(M,M3) either is an excluded minor or contains a T8-
minor. If |L| = 3, then ∇L(M) is an excluded minor. Moreover, let M+ be the ternary
extension of M such that L spans a 4-point line L+. Then PL+(M+,M3), where L+ \ L is
matched with a blue element of M3, contains an excluded minor. Finally, if |L| = 2, let M+

be the ternary extension of M such that L spans a 4-point line L+. Then PL+(M+,M3),
where L+ \ L is matched with blue elements of M3, contains an excluded minor. Now
add any new excluded minors that were found to the setM, and repeat until all excluded
minors are found. Assuming Rota’s Conjecture, this procedure terminates. It follows from
Theorem 1.2.1 that the matroids found by this construction are the only ternary dyadic
excluded minors with a 3-separation such that one side of the separation has rank at least
three.
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