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Abstract 

Since the 1980s and after the aerospace industries faced several periods of economic difficulty, the 

companies that produced fibre-reinforced polymers (FRPs) started to introduce them as new 

materials for construction purposes. In one such application, FRPs were proposed for use instead 

of steel reinforcement in concrete due their mechanical properties including corrosion-resistance, 

high tensile strength, and light weight. On the other hand, FRPs have a lower modulus of elasticity 

compared to the steel reinforcement, which can lead to excessive deflection of the reinforced 

concrete member. Prestressing of the FRP reinforcement was a solution to overcome this 

serviceability concern. Previous research has been conducted to study the mechanical properties 

of carbon and aramid fibre reinforced polymers as prestressed reinforcement. Less attention has 

been given to glass fibre reinforced polymers as prestressing reinforcement because of its high 

relaxation and creep rupture. Only limited data on the behaviour of the prestressed GFRP under 

fatigue loading is available. Also, no design guidelines are provided in CAN/CSA-S806-12 or ACI 

440.4R-04 for using prestressed GFRP bars in concrete members.  

In order to address this knowledge gap, the current study included testing of forty-six GFRP 

reinforced concrete beams to investigate the bond mechanisms between the GFRP bar and concrete 

under monotonic and fatigue loading. Each beam was reinforced on the tension side with a single 

GFRP bar. This study was divided into two phases: a first phase (preliminary study) and a second 

phase (main study).  The main objectives of the preliminary study were to investigate the effect of 

different variables on the bond mechanism between the GFRP bar and the concrete and choose the 

most important variables that affect the bond strength between the GFRP bar and the concrete for 

the main study. Sixteen reinforced concrete beams were cast and tested under monotonic loading.  

The test variables included in the preliminary study were bar diameter, bar surface type, concrete 

cover, and prestressing level. The beam geometry was 150 mm wide by 225 or 250 mm high by 

2400 mm long with concrete cover equal to 25 mm. For the main study, thirty reinforced concrete 

beams were cast and tested under monotonic and fatigue loading. The beams dimension was 200 

mm in width and 2000 in length. The beams depth and height were varied depends on the clear 

concrete cover. For the beams with concrete cover of 25 mm the beams height and depth to the 

flexural reinforcing were 265 mm and 235 mm, respectively. For the beams with concrete cover 

of 45 mm the beams height and depth were 295 mm and 240 mm, respectively. The test variables 
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included in the main study were bar surface type, concrete cover, and prestressing level. For the 

beams tested under fatigue loading, the minimum applied load was 10 % of the static failure load. 

The peak load was varied to study the effect of load range on fatigue life. The test frequency for 

all cyclic test was 1.0 Hz. 

All of the beams that were tested under monotonic loading failed in bond between the GFRP bar 

and the concrete. Increasing the concrete cover increased the ultimate beam capacity by almost 

20%. For all of the beams tested under monotonic loading, there was no noticeable difference in 

ultimate load between the beams reinforced with a sand coated GFRP bar and beams reinforced 

with a ribbed GFRP bar.  

For the beams tested under fatigue loading, two failure modes were observed, bond failure between 

the GFRP bar and the concrete and rupture of the GFRP bar. For the beams that failed in bond, the 

slope of the load and stress versus fatigue life curves is shallow and consequently a small change 

in load range will result in a large change in the fatigue life. Increasing the concrete cover thickness 

increased the fatigue strength. Comparing the load range (kN) versus life curve for the non-

prestressed and prestressed beams that failed in bond, shows that the prestressed beams had longer 

lives than the non-prestressed beams.  

A crack growth model based on the one developed by Wahab et al., 2015 was used to calculate 

fatigue lives and to predict the crack length versus the number of cycles. The calculated number 

of cycles was in good agreement with the data for the beams with different concrete thicknesses. 

The model captured the general trends in the test data (e.g. shape of the crack length versus number 

of cycle curves) and gave good representations of the initial crack length. 
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Chapter 1: Introduction 

1.1 General 

The service life of reinforced concrete structures depends on the durability of the reinforced 

concrete and the severity of environmental exposure. Lack of durability and/or exposure to severe 

environmental conditions leads to concrete deterioration. Reinforcing bar (rebar) corrosion is the 

most common deterioration mechanism that decreases the service life of reinforced concrete 

structures. Many structures in severe environments have experienced an unacceptable loss in 

serviceability earlier than anticipated due to corrosion of their steel reinforcement.  

In order to increase the service life of concrete structures, fibre reinforced polymers (FRP) rebar 

is being used to replace conventional reinforcing steel, thus resolving the corrosion problem. FRP 

bars have many advantages over steel bar, namely non-corrosiveness, light weight, high tensile 

strength, and nonmagnetic and electrical insulation properties (ACI 440.4R-04 2004). Currently, 

FRP is used as a primary reinforcement in a variety of concrete structures subjected to severe 

environments such as bridges, sea walls, chemical and wastewater treatment plants, and other 

marine and underwater structures (Saadatmanesh and Ehsani, 1998; Benmokrane and Rahman, 

1998). 

The performance of a reinforced concrete member depends mainly on  forces transfer  between the 

concrete and the reinforcement bar, which, in turn, depends on the bond between the two materials. 

The strength of a reinforced concrete member under flexure and shear forces depends on the force 

developed in the reinforcement rebar. Therefore, the development of an adequate bond is always 

a critical aspect of structural design, regardless of the type of reinforcement (Benmokrane et al., 

1996; Tighiouart et al., 1998). As a result, extensive experimental research has been done to 

understand the bond behaviour of FRP rebar in concrete structures. In spite of several experimental 

investigations, the bond behaviour between FRP rebar and concrete is not yet fully understood. 

This lack of understanding is attributed to the complexity of the parameters affecting the bond 

behaviour (concrete compressive strength, concrete cover, bar diameter, type of FRP rebar, and 

type of FRP surface) and the different types and properties of the currently commercially available 

FRP rebar (Okelo and Yuan, 2005). Equations have been developed for designing FRP reinforced 

concrete structures based on the available experimental data up to 2007. Since then, considerable 
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research has been conducted, which has shed new light on the effects of the various parameters on 

the behaviour of the concrete – FRP rebar bond. For this reason, it has become essential to assess 

and understand the bond mechanisms between the FRP bar and the surrounding concrete, to update 

and improve the guidelines that are used to design FRP reinforced concrete structures. 

1.2 Research Significance 

Comprehensive research studies have been conducted to understand the bond mechanisms between 

the FRP bar and surrounding concrete for non-prestressed structural members. Since 1990, many 

researchers have invested their time in conducting extensive research on the use of FRP tendons 

as a prestressed reinforcement. The focus has been on carbon fibre (CFRP) and aramid fibre 

(AFRP) reinforcing bar as prestressed reinforcement, because of their mechanical and physical 

properties. Only a few studies have focused on glass fibre (GFRP) reinforcing bars as prestressed 

reinforcement. Due to its perceived susceptibility to creep rupture in comparison to CFRP and 

AFRP, the use of GFRP rebar as prestressed reinforcement has been limited to date.  

Improved GFRP bars have been manufactured in the past five years, which are reported to have 

the ability to be used as a prestressed reinforcement. Given the lack of knowledge and potential 

improvements in the available products, this research investigates the bond behaviour of non-

prestressed and prestressed GFRP bar under monotonic and static loading.  

1.3 Research Contributions 

The bond behaviour of concrete beams reinforced with non-prestressed and prestressed glass fibre 

reinforced polymer (GFRP) bars under different type of loading will be investigated in this thesis. 

The main advantages of GFRP bars are their low cost and high strength/self-weight ratio. On the 

other hand, the Young’s modulus of the GFRP bar is low compared to steel reinforcement, which 

can lead to excessive deflections. Pre-tension the GFRP bar is very useful to eliminate high 

deflections and fully utilize the high tensile strength of GFRP bars. 

FRP reinforcement is fairly  new material and it has the potential to be applied in concrete 

structures where corrosion resistance materials are needed. Only a few studies can be found in the 

literature investigating (experimentally or analytically) the static and fatigue behaviour of concrete 

beams reinforced with prestressed GRFP reinforcing bars.  
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1.4 Objectives 

The specific objectives of the study described in the current thesis are: 

• to investigate the bond behaviour of concrete beams reinforced with non-prestressed and 

prestressed high modulus GFRP bars under monotonic and fatigue loading, 

• to investigate the effect of increasing the prestressing level of the GFRP bars beyond the 

25% prestressing limit set by CAN/CSA-S6-06 on the bond behaviour between the GFRP 

bar and concrete, 

• to investigate the effect of using different concrete on the bond stress between the GFRP 

bar and the concrete, 

• to study the effect of bar surface type on the bond between the GFRP bar and concrete,    

• to assess the feasibility of using high modulus GFRP bars as the main prestressed 

reinforcement in the concrete structure for building and bridge applications, 

• to develop a model that describes the process of failure including the deterioration under 

cyclic loading and the internal forces at failure in the shear span, and 

• to develop a model to predict the rate of splitting crack propagation under fatigue loading.   

 

1.5 Thesis Organization  

The current thesis is divided into five chapters, as follows: 

Chapter 1: This chapter (the current chapter) briefly introduces the main topic and objectives of 

the research and lays out the organization of the contents of the thesis that follows.  

Chapter 2: This chapter presents a literature review on the bond behaviour between FRP rebar and 

concrete. Following this, a summary of key findings from the literature is presented.    

Chapter 3: This chapter describes the experimental program, including the test matrix, fabrication 

of the test specimens, the instrumentation, and the test setup.  

Chapter 4: This chapter presents the experimental results, including static and fatigue test results, 

for the tested non-prestressed glass fibre (GFRP) reinforced concrete beams. 

Chapter 5: This chapter presents the experimental results, including static and fatigue test results, 

for the tested prestressed GFRP reinforced concrete beams. 
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Chapter 6: This chapter presents the description and verification of an empirical model that can 

be used to describe the bond mechanism between the GFRP bar and concrete. 

Chapter 7: This chapter presents the main conclusions and recommendations from this study. 
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Chapter 2: Background and Literature Review 

2.1 Fibre Reinforced Polymers 

Fibre reinforced polymers (FRP) are composite materials manufactured of high strength fibres 

embedded in a resin. The combination of more than one constituent produces a synergistic effect 

with the composite’s properties being superior to those of its components (Badawi, 2003). Most 

of the applied forces or loads are carried by the fibre. Fibers generally provide stiffness and 

strength to the composite. The resin matrix transfers the stress between the fibres, provides some 

ductility to the composite system, and protects the fibres from damage due to impact or scratches. 

2.1.1 Resin 

Different kind of resin including adhesives, primers, and putty fillers are used in fiber reinforced 

polymers (FRP) products. Polyesters, epoxies, and vinyl esters are commonly used resin. The main 

purpose of the resin is to protect, separate the fibres. The currently used resin have been invented 

to optimize their structural behaviour in different environmental conditions and for easy 

application by a professional installer. The FRP resin is characterized by the following properties 

(ACI committee 440): 

• low density (high strength to weight ratio), 

• resistance to environmental effects (temperature extreme, salt water, moisture, and other 

chemicals), 

• filing ability, 

• compatibility and bond strength to the substrate, and 

• compatibility and adhesion to the reinforcing fibre.  

2.1.2 Fibres  

The most common continues fibers that used for civil engineering applications are carbon, glass, 

and aramid (Soudki, 1997). The fibres can be bi-directional, unidirectional, and pseudo-isotropic, 

as illustrated in Figure 2.1. The fibres (carbon, glass, and aramid) assumed to have linear stress-

strain relation up to failure, as shown in Figure 2.2 
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Figure 2.1 Various fibre orientations of FRP laminates (ACI 440, 2002) 

 

Figure 2.2 Stress-strain behaviour of FRP (ACI 440, 2007) 

Glass Fibre Reinforced Polymer (GFRP): There are different types of glass fibre reinforced 

polymers (GFRP) used in civil engineering applications. E-glass type is commonly used. GFRP 

has many advantages including high strength, corrosion resistance,  low cost, and heat resistance. 

Due to the low Young’s modulus, the stiffness of  the GFRP is low which leads to serviceability 

issue. 

Carbon Fibre Reinforced Polymers (CFRP): Carbon fibre reinforced polymers Is the best fiber 

type used for civil engineering purpose because of its excellent properties including high strength, 

excellent fatigue behaviour, high stiffness, and light weight. The main disadvantages of the CFRP 

are low shear strength, low ductility, and expensive to produce    
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Aramid Fibre Reinforced Polymer (AFRP): Aramid is generic name for aromatic polyamide. In 

contrast with GFRP and CFRP, which are made from ceramic fibres, aramid is a polymer. Aramid 

fibres are stiffer than glass fibres and cheaper than carbon fibres. They possess relatively low 

density, high strength, and high fatigue and corrosion resistance. 

2.1.3 FRP in Concrete Structures 

In the past decades, composite materials have improved in terms of their suitability for use as a 

construction material for bridges and buildings. FRP is now used in structural engineering in a 

number of ways, including several involving reinforced concrete construction and strengthening. 

In a new concrete structure, FRP can be used as non-pretensioned main reinforcement or pre-

tensioned tendons. The surface of the FRP bars are either plain bar (smooth), sand coated, ribbed 

bar, or spirally wound. Figure 2.3 shows samples of FRP bars/tendons that can be used as main 

reinforcement (pretensioned or non-pretensioned) in concrete structures.  

 

Figure 2.3 Different types of FRP bar/tendon (Quayyum, 2010) 

FRP tendons were used as prestressed reinforcement in Europe in 1980s for the first time to avoid 

corrosion problems. In the past, the use of FRP prestressing was hindered by the fact that the 

conventional steel anchor could not be used due to the low transverse strength of the FRP tendon 

(Erki and Rizkallak, 1993; Nanni et al., 1995; Soudki, 1998). In the past decade, prestressed 

anchors were successfully invented and produced for FRP prestressing applications (Al-Mayah 
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and Soudki, 2004).  The high cost of the FRP material is the main factor that limits the use of FRP 

materials in reinforced concrete structure (ACI 440R- 07). CFRP bars/tendons are expensive and 

the most common FRP type used in prestressed applications because of its high modulus of 

elasticity and strength. Also, CFRP bars are not susceptible to relaxation or creep rupture. The 

GFRP bar cost is lower than that of the CFRP bar, but its use in prestressed application is limited 

because of its high relaxation and susceptibility to creep rupture. The new generation of the GFRP 

bar has a higher strength and stiffness (40 to 45% comparing with the previous generation). This 

FRP bar could survive without creep rupture even if it’s loaded with sustained load up to 50% of 

its ultimate capacity in normal conditions (Schoeck, 2009, Zawam, 2015). However, the GFRP 

bar subjected to a severe environmental condition under sustained loading will have decreased 

bond between the GFRP bar and the concrete, which will affect total structural performance 

(Fergani, 2018). The new GFRP bar strength ranges between 1100 MPa and 1450 MPa, with 

modulus of elasticity higher than 60,000 MPa.  The stress-strain behaviour of the new generation 

of GFRP bar is shown in Figure 2.4 

 

Figure 2.4: Stress-strain relation for new GFRP bar (Schoeck, 2009) 

 

2.1.4 Transfer Length of Prestressed FRP Bars  

Transfer length is the length that is required to transfer the prestressing force to the concrete after 

the release of a prestressing tendon (ACI 440R-07). (ISIS Canada-08) defines the transfer length 

8 mm 

12 mm 

16 mm 

25 mm 32 mm 
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in prestressed members as the length starting from the point of zero stress at the end of the 

prestressed member to the point where the prestress at maximum effective. Measuring the transfer 

length is important to check the stress limit at the service limit state, calculate the actual bond 

stress at the end of prestressed member, and check the shear design.  

The transfer length of prestressed FRP tendons/bars depends on bar diameter, surface type, 

concrete cover, prestress level, and concrete compressive strength (Hwan Oh. et al, 2001). The 

transfer length in pretensioned concrete members decreases with an increase of concrete cover and 

concrete strength. Furthermore, the transfer length increases with increasing of bar diameter 

(Hwan Oh. et al, 2001). One of the most important factors that affects the transfer length is the 

Hoyer effect.  Due to the radial expansion of the prestressed bar after release, the normal stresses 

acting on the surface of the prestressed bar increase (Mahmoud et al. 1999).  

2.1.5 Previous Research on Transfer Length  

Issa et al. (1993) reported on an experimental study designed to determine the transfer length of 

FRP bar in normal strength concrete. The ultimate strength of 9.5 mm S-glass wire strand that was 

used in this study ranged between 1736 and 2212 MPa. The Young’s modulus ranged between 

38,000 and 50,000 MPa. The concrete strength at 28 days ranged between 38 and 50 MPa. The 

transfer length for the 45% prestress level ranged between 20·db and 28·db (254 mm and 279 mm) 

(db = bar diameter). The transfer length increases with time with increasing rate double than the 

steel tendon.  

Soudki et al (1997) designed an experimental study to determine the transfer length for 8.0 mm 

CFRP rod at three different stress levels (50, 60, and 70 percent of ultimate strength). They cast 

five large full-scale reinforced concrete T-beams with pre-tensioned CFRP rod. They found that 

as the prestress level increases, the transfer length increases. For the prestress levels of 50 and 70 

percent, the transfer length was 650 mm (80·db) and 725 mm (90·db), respectively. The beam cross 

section shape did not affect the transfer length. The instantaneous transfer length measured at the 

time of release is equal to the long-term transfer length. Strain gauge results obtained by DEMEC 

gauges or electric strain gauges were found to be similar.  

Lu et al. (2000) carried out an experimental study to investigate the transfer length of three types 

of FRP tendon (Carbon Strawman, Aramid Technora, and Carbon Leadline) in prestressed full-
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scale concrete beams. 30 beams were reinforced with pre-tensioned FRP tendon. 12 beams were 

reinforced with steel strand. The authors conclude that the transfer length of different FRP types 

were virtually identical. It was found that the transfer length of the FRP tendon should be assumed 

to be at least 50 times the bar diameter.  

Badawi and Wahab (2010) presented an experimental study to estimate the transfer length of 

prestressed NSM Carbon FRP (CFRP) rod in concrete beams. Two types of CFRP rod (sand coated 

and spirally wound) were used to strengthen 22 reinforced concrete specimens. Four prestressing 

levels were used: 60%, 50%, 45%, and 40% of the ultimate tensile strength of the CFRP rod. 

Electric strain gauges mounted on the CFRP rod were used to measure the CFRP strain at release. 

The test results showed that the transfer length of CFRP equal 35·db. The transfer length data curve 

fitting was found to follow an exponential distribution.  

Zawam and Soudki (2015) investigated of the transfer length of HM (high modulus) of GFRP bar 

in prestressed concrete beams. Eight full-scale prestressed reinforced concrete beams were used in 

this study. DEMEC points were used to measure the transfer length. The test variables were 

concrete compressive strength (30 MPa and 70 MPa), nominal bar diameter (12 mm and 16 mm), 

and prestressing level (25% and 40% of the ultimate strength). For the normal concrete strength 

(30 MPa), the transfer length of 16M diameter was 17·db for the 40% prestressing level and 14·db 

for the 25% prestressing level. The transfer length decreases with decreasing prestressing level 

and decreased with an increase in the concrete strength.  

2.2 Bond Mechanisms  

Bond defined as an interaction between two different materials, for an example reinforcement 

(steel/fibre) and concrete. Bond is an important factor that maintains the integrity in the composite 

material known as reinforced concrete. The applied load is usually carried by all elements in the 

reinforced concrete structures including steel reinforcement and concrete. the external load/force 

transfer from the concrete to the internal reinforcement by shear stress along the internal 

reinforcement interface. Due to the perfect bond between the internal reinforcement and the 

concrete, it is assumed that the strains value in the steel/fibre reinforcement and the concrete are 

equal in the analysis of any reinforced concrete structure (Strain compatibility). The bond stresses 

transfer by: 
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1) chemical adhesion between the internal reinforcement and the concrete, 

2) friction between the outer surface of the bar and the concrete, and 

3) mechanical interlock between the ribs of the reinforcement and the concrete. 

Figure 2.5 shows the bond mechanisms for steel reinforcement embedded in concrete. For 

plain reinforcement, the bond between the bar and the concrete depends mainly on the friction 

and chemical adhesion. For the deformed reinforcement (rebar), the bond depends on the 

mechanical interlock between the bar ribs and the concrete. The steel reinforcement must have 

sufficient embedment length or enough level of confinement (shear reinforcement or clear 

concrete cover) to avoid bond failure and achieved the ultimate tensile capacity of the bar. If 

the bar has enough confinement and embedment length, the radial stress that developed along 

the rebar will be less than the tensile capacity of the surrounding concrete and the beam will 

fail by different failure mode. Less confinement level and shorter bond length lead to bond 

failure.    

  

  

Figure 2.5 Bond mechanisms between steel rebar and concrete 
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2.2.1 Bond Failure  

Bond failure can occur through splitting or pullout failure. A splitting failure occurs when the 

relative movement between the reinforcing bar and the concrete becomes high enough that the 

deformations on the bar begin to act as wedges, putting the surrounding concrete in transverse 

tension and causing the formation of splitting cracks parallel to the bar. Splitting cracks typically 

radiate outward from the bar and tend to form first where there is the least amount of concrete 

cover. If the bottom concrete cover is greater than the side concrete cover, a horizontal split 

develops at the level of the bars and the subsequent failure is termed a “side-splitting failure”. With 

the side clear cover greater than the clear bottom concrete cover, longitudinal cracks develop 

through the bottom cover followed by splitting along the plan of the rebar. Figure 2.6 shows these 

splitting type bond failures. With continued loading, splitting cracks grow in width and radiate 

outward to the face of the specimen or between adjacent bars or splices. As they continue along 

the development length of the bar, the cracks can cause the delamination of a concrete layer, unless 

confining transverse reinforcement is provided. Pullout failure occurs when the concrete between 

the deformations on the bar fails in shear or compression. A pullout   failure tends to occur only 

when the concrete cover is high or when the bar is confined by transverse reinforcement that limits 

the propagation of splitting cracks 

 

Figure 2.4: Splitting type bond failure (El Maddawy, 2004) 

 

Figure 2.6: Side view of a reinforced concrete member showing shear cracking / local concrete 

crushing due to bar pullout  
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2.2.2 Bond Test Specimens 

several  test specimens have been used to investigate the bond mechanism between the rebars and 

concrete. The four  common specimen configurations are a splice specimen,  pullout test specimen, 

beam anchorage specimen, and beam end specimen (ACI Committee 408, 2003). 

Pullout Specimen   

Pullout tests are the simplest test specimens to investigate the bond behaviour between the 

reinforcing bar and the concrete and are outlined in the (ASTM C900-15) standard. The pullout 

test consists of a single bar embedded at the center of a concrete block or concrete cylinder. A 

typical pullout test specimen is shown in Figure 2.7a. The reinforcing bar usually subjected to 

tension forces while the concrete restrained in the opposite direction. Many researchers used the 

pullout test to investigate the bond between rebar and concrete and they argued about the 

accuracies of the test results, and the pullout test does not represent a realistic bond situation. 

Ferguson (1965), conclude that the pullout test places the concrete in compression with no other 

outside forces acting on the members. The tension crack that occurs around the rebar will not be 

developed because the concrete is under compression around the specimen. Also, the compression 

stresses in concrete increase the confinement level around the rebar, resulting in higher bond 

stresses compared with the one generated in a beam test. In a beam test, the bond region is 

subjected to stresses due to moment, shear and the confinement by shear reinforcement. Also, in a 

realistic situation, the concrete in the bond region is under tension stresses. The pullout tests are 

still used by many researchers because they are simple to set-up, inexpensive, and give a quick 

estimate of the bond test results.    

Beam-End Specimen 

The procedure for beam-end tests is specified in the (ASTM A944-15) standard. The beam-end 

test is a simplification of the RILEM test, essentially only using half of the specimen (Figure 2.7b). 

The test frame applies a tension force directly to the reinforcing bar to generate bond forces. The 

advantage of this test over the pullout test is in the way the specimens are mounted in the test 

frame. Bearing points on the sample are placed in a similar fashion to the reaction forces at the end 

of a beam, thus inducing tension in the concrete around the bar and moment and shear forces into 

the member and creating a loading condition that is closer to the real one. 
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Beam Anchorage Specimen 

The simplest method to incorporate the effects of tension in the concrete, shear, and transverse 

reinforcement into a bond test, is by testing beams. In the case of standard beams, a reinforcing 

bar may be extended beyond the ends of the beam to monitor free end slip. A modification to the 

standard beam test is to incorporate pockets (voids with beam) to allow for internal slip 

measurements on the reinforcing steel. The pockets should be located outside the bond region and 

are useful for monitoring the loaded end slip and the tensile stresses in the steel bar (Figure 2.7c). 

The reinforcing bar maybe de-bonded by using plastic sleeves around the bar to control the bond 

length. The set-up is simple since it uses a standard simply-supported beam test. 

Splice Beam Specimen  

The splice beam specimen represents a larger-scale beam and is designed to measure the bond in 

lap-spliced bars (Figure 2.7d). A splice beam specimen is normally fabricated with the lap splice 

in constant moment region. It is easier to fabricate and produces similar bond strengths to those 

obtained with beam anchorage specimens. The splice specimens simulate a member with flexural 

cracks and known bonded length. Both beam anchorage specimen and splice beam specimen 

provide more realistic measures of the bond strength in actual structures.    

 

 

             

             

             

             

             

             

             

             

             

            

 Figure 2.7: Schematic of bond test specimens. 

a) Pullout test 

specimen 

b) Beam-end 

specimen 

specimen 

c) Beam anchorage specimens 

specimen specimen 

d) Splice beam specimen 

specimen specimen 
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2.3 Bond Behaviour of Steel Reinforcement  

The steel rebar is  isotropic, homogeneous, and elasto-plastic material. It has been concluded that 

there are differences in bond mechanisms between the plain steel reinforcement and ribbed steel 

reinforcement. The bond of the deformed steel bar mainly depends on the mechanical interlock 

and secondarily on friction and chemical adhesion. The bond of the plain steel bar primarily 

depends on the friction and chemical adhesion. Due to a small indention on the bar surface, there 

is some mechanical interlock. The bearing of the rebar ribs against the concrete is the primary 

bond mechanism restraining the slip between the reinforcement steel bar and the surrounding 

concrete. 

2.4 Bond Behaviour of FRP Reinforcement  

There are many differences in the bond behaviour between the fibre reinforcement polymers (FRP) 

bar and concrete and between the steel bar and concrete. These differences exist because of the 

differences in failure mechanism between the steel and FRP rebar and in force transfer. The steel 

bar is an elasto-plastic,  homogeneous, and isotropic material while the FRP bar linear elastic, non-

homogenous, and anisotropic material. In the FRP bar, the shear and transverse properties are 

dependent on the type of fibre and the resin. Unlike the steel rebar, the surface roughness type of 

the FRP bar is different from one manufacturer to another and created by a mix of epoxy and fibre 

or sand coated which reduces the bond performance. Also, the material properties used to produce 

the FRP bar is different from one manufacturer to another. The bond mechanism between the FRP 

bar and the concrete mainly depends on friction and chemical adhesion and secondary on the 

mechanical interlock    

2.5 Factor Affecting Bond Behaviour of FRP Rebar in Concrete    

An extensive research has been conducted to investigate the bond mechanisms between the FRP 

bar and concrete. several test specimens were used to investigate the bond between the FRP bar 

and concrete including full scale beam, beam end, and pullout specimens (Baena et al., 2009; Aly 

et al., 2005, 2006, 2007; Rafi et al., 2007; Okelo, 2007; Defreese and Wollmann, 2002; Pecce et 

al., 2001; Mosley, 2000; Shield et al., 1999; Tighiouart et al., 1998, 1999). It was concluded that 

bond strength between the FRP bara and concrete is affected by concrete compressive strength, 
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the clear concrete cover, the bar diameter, development length, type of FRP, surface type, and 

shear reinforcement.      

2.5.1 Concrete Compressive Strength 

Splitting and pullout failure modes depend on the tensile concrete strength. It has been observed 

that the concrete tensile strength is proportional to the square root of the compressive strength of 

concrete (√f′c) (ACI Committee 408). Statistical analysis on different test results of specimens 

failed by bond between the FRP bar and concrete has shown a better correlation exists between 

the bond strength and square root of concrete strength (√f′c) (Mahmoud et al., 2017; Bazil et 

al.,2017; yoo et al, 2016; yan and lin, 2016; Esfahani et al , 2013; Okelo, 2007; ACI 440.1R-15 ; 

Okelo and Yuan, 2005; Ehsani et al., 1996; Faza and GangaRao, 1990; Pleimann, 1987, 1991). 

Ehsani et al. (1995)  design a case study to investigate the effect of concrete strength on the bond 

behaviour of FRP rebar in concrete. The authors conclude that as the concrete strength increased 

the bond between the FRP bars, and the concrete increased. In addition, as the concrete strength 

increased, the slip value decreased, and the initial stiffness of the bond stress-slip curve increased. 

Tighiouart et al. (1998) and Benmokrane et al. (1996) tested a full-scale beam to understand the 

effect of concrete strength on the bond of FRP bar. The authors observed that the increase of the 

bond strength is proportional to (√f′c). Yan et al. (2016) who investigated the effect of severe 

conditions on bond strength between FRP and concrete stated that freeze and thaw cycles 

decreased concrete strength and the bond between the FRP bar and the concrete. Zemour et al. 

(2018) studied the effect of different concrete types on the bond between FRP and concrete. They 

found that using self-compacted concrete will decrease the bond strength between a GFRP bar and 

concrete compared the bond to a normally vibrated concrete even if the self-compacted concrete 

compressive strength is higher.   

2.5.2 Concrete Cover 

Concrete cover has a significant effect on the bond strength between the FRP bars and concrete. 

The concrete cover increases the level of confinement which results in an increase in the bond 

strength (Aly and Benmokrane, 2005; Defreese and Wollmann, 2002; Ehsani et al., 1993; 

Kanakubo et al., 1993). The thickness of the clear concrete cover changes the bond failure 

mechanism. ACI 440.1R-15 indicated that splitting failure will occur if the concrete beam does 
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not have enough concrete cover. If the reinforced concrete beam has an adequate concrete cover, 

pullout failure will occur by shearing along a bar surface at the top of the ribs around the bars. The 

bond failure mode depends mainly on the concrete cover and the level of confinement. Ehsani et 

al. (1996) reported on an experimental study to investigate the effect of the concrete cover on the 

bond strength of GFRP bar. Forty-eight reinforced concrete beams were cast and tested. The 

authors conclude that splitting failure will occur when the clear concrete cover equal times bar 

diameter (c = 1∙db). When the clear concrete cover is larger than two time the bar diameter (c > 

2∙db), pullout failure will occur. Aly et al. (2006) designed an experimental study to investigate 

the effect of concrete cover on bond strength. Six full-scale lap-spliced concrete beams were cast 

and tested. The concrete cover ranged between one and four times bar diameter. The authors 

observed that the relationship between the concrete cover and the bond of the bar was not linear. 

Also, the bond strength increased by 27% if the concrete cover is higher than four times the bar 

diameter. Veljkovic et al., (2017) investigated the effect of different concrete cover thicknesses on 

the bond between a GFRP bar and concrete. Three concrete cover thicknesses where used in this 

study. The authors concluded that increasing the concrete cover from 10 mm to 20 mm increased 

the bond strength by 20%. Both specimens (with concrete covers equal 10 mm and 20 mm) failed 

by a splitting mode of failure. Kotynia et al., 2017 studied the effect of increasing the concrete 

cover thickness on the bond strength between GFRP and concrete. This study was comprised of 

twelve hinge beams. The authors found that decreasing the concrete cover decreased the shear 

(bond) stress for all of the bar diameters used in this study. 

2.5.3 Bar Diameter 

Many researchers investigated the effect of bar diameter on the bond strength of FRP bar 

embedded in concrete (Baena et al, 2009; Okelo, 2007; Aly et al., 2006; Defreese and Wollmann, 

2002;  Tighiouart et al., 1998; Benmokrane et al., 1996; Nanni et al., 1995). The authors reported 

that the effect of bar diameter on the bond strength between of FRP bar and concrete is similar to 

the effect of bar diameter on the bond strength between of steel bar and concrete. As the bar 

diameter increases the bond strength decreases. The larger bar diameter loses the adhesive bond 

mechanism earlier (Achillides and Pilakoutas, 2004). It has been reported that as the bar diameter 

increases the water bleeding underneath the bar will increases which increases the voids around 

the bar and reduces the bond strength between the bar and the FRP bar. Benmokrane et al., (2016) 



18 
 

carried out a comprehensive experimental program to evaluate the mechanical and physical 

properties of a headed GFRP bar and to determine the pullout behaviour of the headed GFRP bar 

in concrete. A total of 57 pullout specimen were cast and tested. The authors found that the 

reduction of the bond stress between the 16 mm and 19 mm diameters ranged between 14 and 

16%. They suggested that this reduction was due the lower bearing area of the headed 19 mm 

GFRP bar. Lee et al (2017) investigated the effect of bar diameter on the bond behaviour of a 

GFRP bar in a high strength concrete. Two bar diameters were used in this study (19 mm and 25 

mm) and their behavior was compared with that of steel reinforcement bars.  The authors found 

that bond strength decreased linearly with increasing GFRP bar diameter. For the steel 

reinforcement, the bond strength decreased linearly as the bar diameter increased up to 19 mm. 

Then the bond strength remained constant. Also, the author stated that when the concrete 

compressive strength was increased bond failure occurred between the outer layer and the core of 

the GFRP bar. Larger bar diameter also led to this mode of failure. Hossain et al studied the bond 

strength of GFRP bars using RILEM beam tests. One hundred forty-four specimens were cast and 

tested. The main variables where bar diameter, the young’s modulus of the GFRP bar and three 

different embedment lengths. the authors found that regardless of the concrete compressive 

strength, the bond strength decreased with an increase of the bar diameter with maximum bond 

strength reductions of 42% and 12% for HM and LM GFRP bars, respectively. Rolland et al (2018) 

investigated the effect of FRP bar type and diameter on the bond strength between the bar and 

concrete. Pull-out tests were performed on aramid, carbon and glass FRP bars and the results were 

compared with the results of tests on steel reinforcement. The authors found that the bond strength 

of the small bar diameter FRP bars was slightly higher than that of the steel. Unlike the trend that 

is usually reported in the literature, the authors found that as bar diameter increased the bond 

strength increased for a given bonded length.            

2.5.4 Type of FRP Bar 

Tighiouart et al. (1998) investigated the bond strength of GFRP bar with two different surface 

types and compared with steel rebar. The authors found that GFRP bar had lower bond strength 

compared to steel reinforcement. Benmokrane et al. (1996) reported that the bond strength of the 

GFRP bar was varied from 60-90% of that of the steel bars. (Larralde and Silva-Rodriguez, 1993) 

Also compared the bond strength of the GFRP bar with the bond strength of the steel bar. The 
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authors conclude that the bond strengths of GFRP bars were 73-96% of that of the steel bar. Okelo 

(2007) and Rafi et al. (2007) made a comparison between the bond strength of CFRP bar and steel 

bar. The authors conclude that the bond strength of CFRP bars was 85% of that of the deformed 

steel bars. Wambeke and Shield (2006) did an extensive analysis of bond test results data up to 

2002. The authors found that the type of FRP bar does not have any effect on the bond strength 

between the bar and the concrete. CSA S806-02 stated that there is no difference between the bond 

strength of the GFRP and CFRP bar, but AFRP has lower bond strength than that of CFRP and 

GFRP bar. Baena et al., 2009 conducted a study to investigate the bond between different types of 

FRP reinforcement and concrete. Eighty-eight pullout specimens were cast and tested according 

to ACI 440.3R-04 and CSA S806-02. Two FRP bar types were used (GFRP and CFRP). The 

authors stated that the amount of slip for the GFRP bar was greater than for the CFRP bar. El-

Refai et al., 2014 investigated the bond between two different FRPs (Basalt and Glass) and 

concrete. Thirty-six-cylindrical specimens were reinforced with BFRP bar and twelve-cylindrical 

specimens were reinforced with GFRP bar. All BFRP specimens failed by shearing of the outer 

layer of the bar from the bar core while all the GFRP specimens failed in bond between the bar 

and the concrete. The average bond strength of the BFRP bars was less than the average bond 

strength of the GFRP bars bar by 25%. The BFRP bars had higher residual stresses than the GFRP 

bars. Altalmas et al., 2015 studied the effect of FRP bar type on bond strength under severe 

conditions. Sixty-two pullout specimens were cast and tested. The authors concluded that the 

BFRP bars had a better bond strength than the ribbed GFRP bars regardless of the environmental 

condition. Park et al,.2016 studied the bond performance of various FRP rebar  types in different 

casting positions. A total of sixty-three pullout specimens were cast and tested. The authors found 

that all specimens of the different FRP bar types failed in bond. Also, the authors found that the 

FRP bar surface had a more significant effect on bond strength than the FRP bar type. Yang and 

Xu. 2018 discussed the bond behaviour between concrete and different types of FRP bar. Two 

FRP bar types were used in this study (GFRP and CFRP). The authors concluded that FRP type 

has only a small effect on the bond strength.       
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2.5.5 Type of FRP Rebar Surface 

FRP bars are manufactured with different surface type including ribbed bar, spiral wrapped, and 

sand coated. It has reported that the ribbed FRP bar shows the better bond in comparison with 

other FRP with surface type. Also, the bond strength of the modified surface FRP bar has a better 

bond in contrast with the plain FRP bar (Cosenza et al., 1997; Al-Zahrani, 1995; Alunno et al., 

1995; Nanni et al., 1995;). Mosley et al. (2008) design an experimental study to investigate the 

effect of bar surface type of the AFRP and GFRP on the bond strength. The authors conclude that 

the bar surface did not have any impact on the bond strength. Also, Wambeke and Shield (2006), 

had the same conclusion as Mosley found after the cast and tested 269 concrete beams. Baena et 

al. (2009) cast and tested 88 pullout specimens to investigate the effect of the bar surface type on 

the bond strength between the FRP bar and the concrete. The Authors found that the surface type 

had a significant effect on the bond strength. Lin and Zhang, (2013) studied the effect of FRP 

surface on the bond strength between FRP bars and concrete. Full-scale beam test specimens were 

cast and tested in four-point bending to study bond-slip behaviour. Three types of the FRP 

reinforcement (Glass, Carbon and Basalt) with different surface conditions (wrapped, grain 

covered and ribbed) where used. The authors concluded that the bond strength of grain-covered 

FRP bar was much better than that of the warped and Ribbed FRP bar. Baena et al., (2016) 

investigated the behaviour of the bond between recycled aggregate concrete and GFRP bar for 

different surface conditions (spirally wounded and ribbed). Forty-eight pull-out tests specimens 

were cast and tested. The authors found that the behaviour of the bond failure was same for both 

concrete types. Also, they found that the bond strength of the ribbed FRP bar was much better than 

that of the spirally wounded bar. El-Nemr et al., 2016 designed a test to evaluate the bond-

dependent coefficient of carbon and glass FRP bar in high and normal concrete strength. Sixteen 

full-scale beams where cast and tested under static loading. The test variables were FRP bar type, 

bar diameter, concrete strength and the FRP bar surface type. The authors concluded that the sand 

coated GFRP bars showed smaller bond-dependent coefficient values than those of the ribbed bars. 

Veljkovic et al., (2017) assessed the effect of the concrete cover on the bond between GFRP bars 

and the surrounding concrete. The parameters examined were the GFRP bar external surface, the 

concrete mechanical properties and the concrete cover. Both spirally wrapped and sand coated 

GFRP bars demonstrated brittle bond behaviour, but they showed a gradual debonding process. 

Also, the ribbed GFRP bar showed an excellent bond strength close to that of the steel 
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reinforcement but a different de-bonding mechanism. Pan and Xu, (2017) reported on an 

experimental study designed to investigate the effect of the external GFRP bar surface on the bond 

strength between the bar and the concrete. Two GFRP bar types were used (a plain smooth bar and 

a ribbed bar). Four full scale beams were cast and tested. The authors found that the bond strength 

of the smooth GFRP bar was much lower than that of the ribbed GFRP bar. Ruiz Emparanza et 

al., 2018 studied the effect of different external GFRP bar surfaces on bond strength. Pull-out tests 

were performed according to ASTM D7913. Three types of bar surfaces were used (helically 

grooved, sand coated and with surface lugs). The authors concluded that the ribbed rebar had the 

highest bond strength (22.5 MPa), followed by sand coated bar (18 MPa), and the bar with surface 

lugs fibre (12.5 MPa). According to the literature, there is no definite answer if the bar surface 

type has an effect or not on the bond strength of the FRP bar                        

2.6 Development Length and Bond Strength in Design Codes 

The development length of rebar is the embedment length required to transfer the stress to the 

concrete due to loading without any failure between the bar and the concrete. Design codes usually 

specify a conservative value of the development length to avoid bond failure, which is a relatively 

brittle failure mode. Chang et al., (2010) built a case study to model the pullout of FRP bar from 

the surrounding concrete. The test variables were FRP bar embedment length and bar diameter. 

The concluded that the debonding started from the loading point and propagated toward the end 

of the specimen as the load increased. Also, the bond stress decreased gradually (non-linear) from 

the load point to the end of the specimens. Finally, the ultimate pullout load increased as the 

embedment length increased. Xue et al., (2014) investigated the bond behaviour of sand coated 

GFRP bar in concrete. A total of 84 specimens, including 48 pullout specimens, thirty beam 

specimens, and six RILEM specimens were cast and tested under monotonic loading. Two modes 

of failure were observed splitting failure and pullout failure. The authors found that splitting failure 

occurred when the bonded length was bigger than 5 times the bar diameter and pullout failure 

occurred when bonded length was less than 5 times the bar diameter. Also, the author observed 

that when the embedment length increased the bond stress decreased similarly to other results 

reported in the literature (Firas et al., 2011; Vilanova et al., 2015; Yoo and Yoon, 2017; Ashrafi et 

al., 2017; Li et al., 2018). Tekle et al., (2017) investigated the bond behaviour between the 15 mm 

sand coated GFRP bar and Geopolymer Cement in beam-end specimen tests. Two embedment 
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lengths were used (six times the bar diameter and nine times the bar diameter). Strain gauges were 

installed along the GFRP bar to investigate the strain distributions during a test. The authors found 

that the bond stress distribution along the bonded length was nonlinear. Also, the authors 

concluded that the bond stress increases at the free-end for a short embedment length. Available 

design code equations that can be used to calculate development length are discussed in the 

following sections. 

2.6.1 Canadian Highway Bridge Design Code (CSA S6-14) 

Based on the Canadian Highway Bridge Design Code (CSA S6-14), development length can be 

calculated by Equation 2.1: 

𝑙𝑑 = 0.45 
𝑘 1𝑘4

[𝑑𝑐𝑠+𝐾𝑡𝑟 ∙
𝐸𝐹𝑅𝑃

𝐸𝑠
]
 [

𝑓𝐹

𝑓𝑐𝑟
] 𝐴𝑓,𝑏𝑎𝑟                                                                       Equation 2.1 

where: 

Ld = development length (mm) 

K1 and K4 = modification factor 

dcs = smallest concrete cover (mm) 

Ktr = transverse reinforcement index (mm) 

Ffrp = tensile strength of FRP bar (MPa) 

Efrp = Young’s modulus of FRP bar (MPa) 

Es = Young’s modulus of steel bar (MPa) 

Af.bar = cross sectional area of FRP bar (mm2) 

2.6.2 Design and Construction of Building Structures with Fibre-Reinforced Polymers 

(CSA S806-12) 

Based on the Canadian Building Design Code (CSA S806-12) the development length could be 

calculated by Equation 2.2. This equation does not include the effect of confinement due to 

transvers reinforcement. 

1 2 3 4 51.15
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where:  

  ld = development length (mm) 

fbarA = cross sectional area of FRP bar (mm2)  

'cf  = concrete compressive strength (MPa) 

1 2 3 4 5k k k k k = modification factors 

Frpf = tensile strength of FRP bar (MPa) 

csd = smallest of the distance from the closest concrete surface to the centre of the bar being    

developed or two-thirds the c-c spacing of the bars being developed (mm) dcr < 2.5·db. 

 

2.6.3 ACI 440.1R-15 

American concrete institute published a design guideline in 2015 for FRP reinforced concrete 

structure (ACI 440.1R-15). They found a new way to calculate the development length of FRP 

bar in concrete. Their way based on the equilibrium principles for bars embedded in concrete and 

formula derived for normalized average bond stress.  

d b frp frpL d u A f  =                                                                                                   Equation 2.3 

 4.0 0.3 100
0.083 '

b

b dc

du c

d lf
= + +                                                                 Equation 2.4 

Based on beams reinforced with GFRP bar tested by Wambeke and Shield (2006), a new formula 

derived by using Equation 2.3 and Equation 2.4 to calculate the stress in the FRP bar at given 

development length, Equation 2.5.  
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By rearranging Equation 2.5, the development length can be calculated using Equation 2.6. 
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where: 

dl = the embedment length, mm;  

bd = the reinforcement bar diameter, mm;  

u = the average bond stress, MPa;  

frpA = the cross-sectional area of the FRP reinforcement bar, mm2;  

frpf = the tensile stress developed in the FRP bar at the end of the embedment length, MPa;  

'cf = the concrete compressive strength, MPa; and  

c = the lesser of the cover to the centre of the bar or one-half of the centre-to-centre spacing of the 

bars being developed, mm. 

frpuf = the rupture tensile stress of the FRP bar 

2.7 Fatigue 

The fatigue behaviour of concrete structures subjected to cyclic loading is an important limit state 

that must be considered by designers (Demers 1998). A Class A highway bridge experiences an 

average daily truck traffic of over 4000 trucks/day over a  design life (CSA, 2010). Bridge deck 

slabs directly carry these repeated loads and are therefore subjected to fatigue damage (El-Ragaby 

et al., 2007). The fatigue strength and fatigue life of reinforced concrete elements (non-prestressed 

and prestressed) are influenced by many factors including material properties of the reinforcement 

and concrete, reinforcement ratio, minimum and maximum values of repeated loading, and the 

range and rate of loading (El-Ragaby et al., 2007). The response of a structural member subjected 

to fatigue (cyclic) loading is affected by the interaction between the reinforcement and the concrete 

and the material strength. The applied load or the induced stress range in each component is the 
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most important factor influencing fatigue behaviour (ACI 215R-74 1997). Figure 2.8 illustrated 

by Badawi, 2007 shows a stress versus time chart for any fatigue test with definitions of some 

important terms used in the fatigue data analysis. 

 

Figure 2.8 Terms used in fatigue analysis (Badawi, 2007) 

2.7.1 Fatigue of FRP Materials 

The fatigue behaviour of composite materials has been studied for many decades and has focused 

on aerospace, transportation, and marine applications. A limited number of studies were interested 

in the fatigue behaviour of the FRP reinforcement in concrete structures.   

The fatigue behaviour of FRP reinforcement depends on many parameters including the type of 

fibre, the resin type, and the configuration of the test specimens (Konur and Mathews, 1989). FRP 

composites are varied and their fatigue failure mechanisms are different than those observed in 

steel. The fatigue failure for homogenous metals usually starts in a single crack and then this crack 

propagates in a single mode, while FRP materials can display a variety of failure modes including 

fibre-matrix de-bonding, matrix cracking, and FRP rupture (Adimi, 2000; El-Ragaby et al., 2007; 

Alves et al., 2011; Ju and Oh, 2015; Ahmed et al., 2018; Kim and lee, 2018). Fatigue in metals is 

generally predictable using fracture mechanics theory and demonstrates a stable crack growth rate 

until a critical crack length is reached, leading to unstable crack growth and then fracture. For FRP 
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materials, fatigue failures are usually the result of damage accumulation rather than damage 

propagation (Reifsnider, 1991). Typical FRP fatigue life curves (S-N curves) plot the peak strain 

in the first cycle in a constant-amplitude load-controlled test versus number of cycles to failure in 

a log-log scale. The diagram can be divided into three stages as shown in Figure 2.9 (Talreja, 

1981a, Brondsted et al., 1997). In the first region, the S-N curve is almost horizontal in log-log 

scale diagram and the life to failure depends on the individual fibre strength. At high strain levels, 

failure occurred by breaking the individual fibres randomly. By breaking the fibres, the amount of 

fibre will decrease, and the stress will eventually be high enough to break the remaining fibres. 

The second region represents classical fatigue behaviour where the curve can be described by a 

power function. The progressive failure in this region begins with matrix breaking and debonding 

occur between the fibre and resin. In this region, the rate of damage accumulation is strain 

dependent, while the damage accumulation is cycle dependent. In the third region, the stress is too 

low to initiate cracks or break the fibres under fatigue loading. 

    

 

Figure 2.9 Fatigue life diagram for unidirectional composites (Talreja 1981a) 

Fatigue of Glass Fibre Reinforced Polymers (GFRP)  

GFRP is sensitive to fatigue loading due to its lower stiffness. For the same maximum stress, GFRP 

shows a lower fatigue life than CFRP (Demers, 1998a). The results of GFRP tests under fatigue 

loading show a steeper slope than the CFRP when plotted on an S-N curve (Konur & Matthews, 
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1989). ACI 440 (2015) limits the stress in FRP reinforcement subjected to fatigue loading to 55% 

and 20% of the ultimate tensile strength for CFRP and GFRP, respectively. 

The fatigue behaviour of GFRP is affected by several factors other than the stress limit. the fibre 

glass itself loses almost 10% of its static strength when embedded into resin to form FRP 

composite. Also, environmental factors change the fatigue behaviour of GFRP due to its 

susceptibility to alkaline solutions, acidic solutions, and moisture (ACI 440, 2015). E-glass GFRP 

reinforcement is most commonly used due to its low cost, good physical properties, and weathering 

ability. The old generation of E-glass GFRP suffered from a loss of strength with time under 

loading (Mandell, 1982). However, the new HM E-glass GFRP reinforcements maintain their 

strength under sustained loading with time (Zawam, 2015). Martin and Soudki, (2014) investigated 

the behaviour of low modulus GFRP bar in air and embedded in concrete under fatigue loading. 

The authors found that the GFRP bar tested under fatigue loading in air lasted longer than the same 

GFRP bar embedded in concrete. Also, GFRP bars embedded in concrete tested under fatigue 

loading with stress ranges above 300 MPa did not last more than twenty thousand cycles.   

2.7.2 Fatigue of Reinforced Concrete Structure  

Cyclic loading significantly decreases the ability of reinforced concrete structures to resist applied 

loads, which eventually lead to excessive deflections and crack opening. Fatigue loading must be 

considered in the design of concrete structures as it can lead to reduced flexure and shear capacity, 

bond degradation, and reduced structure life. Concrete failure under fatigue loading is not 

common. However, the concrete might soften due to repeated load, which can lead to an increase 

in the tensile stress in the main reinforcement (Heffernan & Erki, 2004). The flexural capacity of 

a cracked structure under fatigue loading is affected by the type and the ability of the main 

reinforcement to resist the cyclic loading (Braimah et al., 2006). Testing the FRP bar/rod 

embedded in the concrete is more realistic comparing to the FRP bar tested in the bare air. The 

flexure test of the reinforced concrete beam under cyclic loading shows the effect of the interaction 

between the concrete and the FRP bar. Cyclic loading has a harmful effect on the bond between 

the reinforcing bar and the surrounding concrete. The crushing of the concrete in front of the 

reinforcement lugs is the main mechanism governing bond failure in reinforced concrete members 

(ACI 408.2R-12). Several factors affecting the bond strength between the concrete and the main 
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reinforcement include: concrete cover, bar size, bar surface condition, reinforcement properties, 

concrete strength, level of confinement, and stress range (ACI 408.2R-12).  

2.7.3 Fatigue Behaviour of FRP Reinforced Concrete Structures 

For the past years, many studies reported that the HM CFRP reinforcement shows a better fatigue 

performance than steel reinforcement in the form of bare bars or bars embedded in concrete as 

tensile reinforcement (Saadatmanesh and Tannous, 1999; Braimah, 2000; El-Ragaby et al., 2007a). 

The fatigue behaviour of FRP reinforcement is affected by the concrete surrounding it in two ways: 

1) due to the harsh alkaline environment, and 2) due to the friction between the concrete and the 

FRP bar resulting surface abrasion of the bar (Rahman et al., 1996; El-Ragaby et al., 2007). Failure 

of the FRP reinforcement begins when the first surface crack occurred due to fritting. Fretting of 

the FRP reinforcement surface can take place close to the flexural cracks, where the bond stresses 

are high enough to cause slip between the bar and the concrete (CEB-FIP, 2000).  

Balaz (1991) investigated the effect of cyclic loading on bond strength between FRP reinforcement 

and concrete. Forty-six reinforced concrete pullout specimens were fabricated and cast with a 

single reinforcement bar placed centrally in the concrete specimens. The test variables were bar 

diameter, bonded length, and fatigue load level. Balaz concluded that the amplitude of cyclic 

loading is an important factor in considering the slip development. Higher load cycle amplitude 

generally leads to higher values of slip. However, amplitudes less than 30% of the ultimate static 

strength did not show big differences in slip.   

Bakis et al. (1998) cast reinforced concrete beams with three different GFRP bars to investigate 

the effect of the GFRP bar surface on the bond behaviour between the bar and the concrete under 

cyclic loading. They concluded that the GFRP bar that has grooved surface had better bond 

strength. Also, there is not much difference in bond strength between are the sand coated and 

helical GFRP bar.    

Katz (1998) reported that the surface treatment of GFRP bars through means such as helical wraps 

to enhance the bond between the concrete and the bar has a negative impact on the fatigue 

performance. Local stress concentrations occur due to the surface enhancement such as ribs and 

wraps, which lead to a decrease in the fatigue life of the structure.  
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Katz (2000) performed a test study to understand the bond mechanism for five different types of 

FRP bar embedded in the concrete under fatigue loading. Katz concludes that helical wrapping of 

the FRP bar reduces the bar resistance by 20–30% of the ultimate strength under cyclic loading. 

The bond strength between FRP bar and concrete was affected by the physical and mechanical of 

the bar surface type. The sand coated FRP bars showed better bond performance than the other 

types. Delamination of the outer GFRP layer that made of resin only and does not have fibre in it 

reduces the bond strength.  

Alves (2010) investigated the durability of the bond between the GFRP and sound concrete under 

different loading types and environmental conditions. Thirty-six specimens were constructed and 

tested. The test variables included the bar diameter, the concrete cover, and the environmental 

condition. Alves concludes that the bond strength increases with increasing concrete cover and 

decreasing bar diameter.  

Abdel Wahab, 2011 cast and tested 40 reinforced concrete beams strengthened with near surface 

mounted (NSM) CFRP bars to examine bond strength. The beams were 150 mm wide × 250 mm 

deep × 2200 mm long. Grooves were cut by saw into the beams. Each beam was strengthened with 

one NSM CFRP bar. The CFRP bar (9 mm) was either sand coated or spirally wound. All of the 

beams were tested in four-point bending test under static and fatigue loading. All of the 

strengthened beams failed in bond between the bar and the surrounding epoxy. Abdel Wahab 

concludes that bond failure started as de-bonding between the CFRP bar and the epoxy at the 

loading point. As the number of cycles increased, the de-bonding spread toward the supports until 

the CFRP bar slipped from the epoxy. The mechanics of bond failure were the same for beams 

tested under static or fatigue loads. Beams strengthened with sand coated bars showed better 

fatigue performance than those with spirally wound bars. Ju and Oh, 2015 designed a study to 

investigate the bond between a customized GFRP bar and concrete under repeated loading. The 

specimens were comprised of two rectangular concrete blocks joined by a steel ball at the top. A 

single 10 mm GFRP bar was used as main reinforcement. Three different bonded lengths were 

tested 45 mm, 90 mm and 135 mm.  The authors concluded that all specimens failed in bond by 

crushing the concrete in front of the GFRP bar lugs. The bond strength between the GFRP and the 

concrete tested under fatigue loading decreased by almost 40 % compared to the value found under 

monotonic loading. 
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Mohamed et al. (2017) presented a new test setup to assess the bond performance of FRP bars in 

concrete under cyclic loading. The test setup was designed to determine the bond between the bar 

and concrete depending on the actual case and to avoid premature bar failure from direct pullout 

loading as in the case of a pullout test. Two bars diameters (9 mm and 12 mm) were used as the 

main reinforcement. The authors found that under monotonic loading, the reduction of the bond 

stress between a GFRP bar and concrete after reaching the maximum bond stress was about 5% 

while the reduction of the bond stress for the beams tested under fatigue loading was almost 32%.  

Ahmed et al., 2018 designed a case study to examine the effect of cyclic loading on the bond 

between the basalt FRP bar and concrete. Pullout test specimens reinforced with a single basalt 

bar were used. The test variables were concrete compressive strength, bar surface type (Sand-

coated, wounded, wrapped and smooth). Most of the specimens failed in bond but one specimen 

failed by bar rupture. The authors concluded that cyclic loading decreased the bond strength 

between the BFRP and concrete. The amount of reduction depended on the bar surface type, the 

concrete compressive strength and the cyclic loading characteristics.    

2.8 Summary and Conclusions 

From the literature presented, it is evident that gaps remain in the current state of knowledge on 

the bond behaviour of FRP rebar in concrete. Specifically: 

• There is a need to re-evaluate the effect of certain parameters (i.e. surface type, bar 

diameter, and concrete cover) on the bond behaviour FRP rebar in concrete. There are still 

unresolved questions related to the effects of these parameters and a lack of experimental 

data for non-prestressed high modulus GFRP rebar.  

• Currently, there is no experimental data characterizing the bond behaviour of prestressed 

high modulus GFRP rebar in concrete. Such data is needed to understand this bond 

behaviour under both monotonic (static) and fatigue loading. 

• A general bond stress-slip law as needed for splitting and pullout modes of failure. This 

relationship should take into consideration different types of GFRP rebar with different 

surface type/texture. Moreover, the proposed relationship should consider all the variables 

that affect the bond performance of FRP bar, i.e.: type of fibre, rebar surface, concrete 
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strength, bar diameter, concrete cover, and concrete confinement. It should also consider 

the effects of prestressing and monotonic vs. cyclic loading. 

• The use of GFRP in prestressed applications is not allowed by CAN/CSA-S806-12, while 

CAN/CSA-S6-14 allows prestressing of GFRP bars to not more than 25% of the ultimate 

tensile strength as an initial prestressing level. Further assessment is needed to determine 

if these limits are reasonable or overly restrictive. 
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 Chapter 3: Experimental Program 

3.1 Introduction  

The study aimed to investigate the bond behaviour of concrete beams reinforced with non-

prestressed and prestressed GFRP bars under monotonic (static) and fatigue loading. The 

experimental program included bending tests to failure of forty-eight reinforced concrete beams 

with glass fibre reinforced polymer (GFRP) reinforcing bars. 

This chapter describes the experimental program including test specimen information, beam 

configuration, the materials used and the fabrication of the beams, the prestressing procedure, and 

the test setup and loading procedure. 

3.2 Test Program 

Forty-nine GFRP reinforced concrete beams were cast and tested summarized in Figure 3.1. 

Sixteen reinforced concrete beams were fabricated as an exploration study and tested under Static 

(monotonic) loading. These beams where divided into two series based on their concrete cover to 

bar diameter (c/d) ratios of 1.5 and 3.0. In each series, four beams were reinforced with sand coated 

GFRP bars while the other four beams were reinforced with ribbed GFRP bars. Two different bar 

diameters were used in each series; four beams were reinforced with M12 and M16 sand coated 

GFRP bars, and four beams reinforced with M12 and M16 ribbed GFRP bars. Also, four beams 

were non-prestressed, and four beams were prestressed to 40% of the ultimate bar strength. After 

tested the sixteen beams. Three non-prestressed beams were fabricated and tested to see the effect 

of transverse reinforcement on bond strength. These beams were reinforced with M16 sand coated 

GFRP with clear concrete cover equal 1.5 times the bar diameter. For the main study, thirty beams 

were fabricated and cast in six groups. 

Group 1: six reinforced concrete beams with non-prestressed M16 Sand Coated GFRP bar with 

clear concrete cover equal 1.5 times the bar. 

Group 2: six reinforced concrete beams with prestressed M16 Sand Coated GFRP bar with clear 

concrete cover equal 1.5 times the bar. 

Group 3: six reinforced concrete beams with prestressed M16 ribbed GFRP bar with clear 

concrete cover equal 1.5 times the bar. 
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Group 4: six reinforced concrete beams with non-prestressed M16 sand coated GFRP bar with 

clear concrete cover equal 3.0 times the bar. 

Group 5: six reinforced concrete beams with prestressed M16 sand coated GFRP bar with clear 

concrete cover equal 3.0 times the bar. 

 In each group, one beam was tested under static (monotonic) loading and the other beams were 

tested under different fatigue load levels. The maximum load level was varied from one beam to 

another as a percentage of the ultimate static loading while the minimum load was kept constant 

at 10% of the ultimate static test for all beams.  

 

 

 

 

 

 

 

 

 

 

a)  Pilot Study 
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b) Main Study 

Figure 3.1 Test matrix 
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The beam notation used the following five part form: AA-BB-CC-DD-EE. The first part represents 

the surface type of GFRP bar (SC: Sand Coated, R: ribbed), the second part represents the bar 

diameter, the third part represents the clear concrete cover to bar diameter ratio (c/d), the fourth 

part represents the prestress level (0% and 40%), and the last part represents the static load or 

fatigue load range (kN) (fatigue load range is the difference between the minimum and the 

maximum load) as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Beam notation 

3.3 Description of the Test Specimens  

3.3.1 Initial Phase 

The beam geometry and reinforcement details are shown in Figure 3.3. The overall geometry for 

all of the beams was the same. The beam cross-section was 150 mm wide × 195 mm deep. The 

beam depth (from the soffit to centre of reinforcing bar) was kept constant at 195 mm for all of the 

beams to make sure that the tensile force in the reinforcing bar was the same for a given load. The 

Prestressed or 
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total beam height was varied based on the clear concrete cover to bar diameter (c/d) ratio. The total 

beam length was maintained constant at 2400 mm for all beams, while the shear span length was 

varied based on the concrete cover to bar diameter (c/d) ratio. For the group of beams that had a 

clear concrete cover equal to one and half times the bar diameter (1.5·db), the shear span length 

was 500 mm. For the group of beams that had a clear concrete cover equal to three times the bar 

diameter (3.0·db), the shear span length was 350 mm. For the beams with a (c/d) ratio of 1.5·db, 

the shear span length was less than the desired bonded length to make sure that the beam would 

fail in bond and more than 2.5 to ensure slender beam behaviour (no deep beam effect). For the 

beams with a (c/d) ratio of 3.0·db, the shear span length was less than the desired bonded length to 

make sure the beam would fail in bond. 

All non-prestressed and prestressed beams were reinforced only with a single GFRP bar in the 

tension zone. Two bar diameters (M16 and M12) were used as the main tensile reinforcement for 

both the non-prestressed and prestressed beams. Due to the absence of steel reinforcement in the 

tension zone, an 8 mm (almost zero resistance) acrylic smooth bar was placed at the mid-height of 

the concrete beam to help in caging. The acrylic bar was placed at the mid-height of the beam to 

avoid any structural effect on the bond behaviour between concrete and GFRP bar. All concrete 

beams (non-prestressed and prestressed) were reinforced with closed steel M10 stirrups (11.3 mm 

diameter) equally spaced at 80 mm (centreline to centreline) throughout the beam length. The use 

of uniform shear reinforcement provides a constant confinement along the beam length. Two 10M 

deformed steel bars were used as a compression steel reinforcement (placed near the top) to 

increase the compression strength of the beams 

  

Figure 3.3: Beam configuration and reinforcement details 

Compression Reinforcement 

Stirrup

s 
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3.3.2 Main Phase 

The beam geometry and reinforcement details are shown in Figure 3.4. The overall geometry for 

all of the beams was the same. The beam cross-section was 200 mm wide × 235 deep for all beams 

with concrete cover equal to 25 mm and 200 mm wide × 240 mm for beams with concrete cover 

equal to 45 mm. The beam depth (from the soffit to centre of reinforcing bar) was kept similar for 

all the beams to make sure that the tensile force in the reinforcing bar was about equal for a given 

load . There was a small difference in the beam depth for the beams with 25 mm concrete cover 

and the beams with 45 mm concrete cover to decrease the difference in bar eccentricity (the 

distance between the center of the bar to y’). The total beam height was varied based on the clear 

concrete cover to bar diameter (c/d) ratio. The total beam length was maintained constant at 2000 

mm for all beams, while the shear span length was 500 mm for all beams with different concrete 

cover. The shear span length was less than the desired bonded length to make sure that the beam 

would fail in bond and more than 2.0 to ensure slender beam behaviour (no deep beam effect). All 

non-prestressed and prestressed beams were reinforced only with a single GFRP bar in the tension 

zone. M16 bar diameters was used as the main tensile reinforcement for both the non-prestressed 

and prestressed beams. Due to the absence of steel reinforcement in the tension zone, a 4 mm 

(almost zero resistance) acrylic smooth bar was placed at the mid-height of the concrete beam to 

help in caging. The acrylic bar was placed at the mid-height of the beam to avoid any structural 

effect on the bond behaviour between concrete and GFRP bar. All concrete beams (non-prestressed 

and prestressed) were reinforced with closed steel M10 stirrups (11.3 mm diameter) equally spaced 

at 120 mm (centreline to centreline) throughout the beam length. The spacing between the shear 

reinforcement was increased to decrease the level of confinement and prompt bond failure between 

the GFRP bar and the concrete.  The use of uniform shear reinforcement provides a constant 

confinement along the beam length. Two 10M deformed steel bars were used as a compression 

steel reinforcement (placed near the top) to increase the compression strength of the beams. 
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Figure 3.4: Beam configuration and reinforcement details for main Study 

3.4 Material Properties 

 3.4.1 Concrete 

The concrete beam specimens were cast in two different concrete pours (batches) for the pilot 

study and three different concrete pours (batches). The maximum aggregate size for both pours 

ranged between 10 and 13 mm. In order to measure the ultimate concrete strength, fifteen 

cylinders, 100 mm diameter × 200 mm long, were cast from each pour. Table 3.1 shows the 

compressive strength at 28 days for different concrete pours. The third column shows the 

specimens fabricated from each batch. The concrete strength was decreased in the main study in 

order to prompt a bond failure between the GFRP bar and the concrete. 
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Table 3.1 The concrete compressive strength for different pours 

Study 
Mix 

# 

Compressive 

Strength (MPa) Specimens 

Pilot Study 
1 65.6 ± 4 MPa All beams reinforced with sand coated GFRP bars. 

2 58.4 ± 2 MPa All beams reinforced with ribbed GFRP bars. 

Main Study 

3 46.3 ± 1 MPa All beams reinforced with sand coated GFRP bars. 

Concrete cover equal to 1.5·db. 

4 47.2 ± 1.2 MPa 
All beams reinforced with ribbed GFRP bars. 

Concrete cover equal to 1.5·db. 

5 47.8 ± 1.6 MPa All beams reinforced with Sand Coated GFRP bars. 

Concrete cover equal to 3.0·db. 

 

3.4.2 GFRP Bars 

The mechanical properties for the GFRP bars were provided by the manufacturer. Two types of 

commercially used GFRP bar were used as primary tensile reinforcement: sand coated, and ribbed 

bar as shown in Figure 3.5. The sand coated bars were manufactured by Pultrall Inc., Quebec, 

Canada and the ribbed epoxy coated bar was supplied by Schöck ComBAR, Kitchener, Canada. 

The nominal mechanical properties for both types of bar are shown in Table 3. 

 

Table 3.2: Properties of GFRP bars 

Specifications 
Sand Coated Ribbed 

#4 #5 #4 #5 

Nominal diameter (mm) 12 16 12 16 

Tensile strength (MPa) 1434 >1180 1350 >1100 

Modulus of elasticity (GPa) 55.3 61.2 55 60 

Ultimate strain (%) 2.85 2.60 2.45 2.18 

Area (mm2) 138 196 113 201 
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Figure 3.5 GFRP bar used in this study 

 

3.4.3 Steel Reinforcement  

Deformed steel bars were used as the compression reinforcement and shear reinforcement for all 

the concrete beams. Their nominal yield stress was 400 MPa.  

3.5 Instrumentation  

Instrumentation used for the test specimens included: I) strain gauges mounted on the GFRP 

reinforcing bar and on the concrete surface, ii) Linear Variable Differential Transformers 

(LVDT’s) and iii) a load cell placed between the actuator and the specimen.  

Five mm long strain gauges were mounted on the GFRP bar. Sixty (60) mm long gauges were used 

for the concrete. Thirteen strain gauges were mounted on the GFRP bar. Six located 50 mm, 200 

mm, 350 mm, 500 mm, 650 mm, and 850 mm from the centreline of the support in addition to one 

gauge at the mid-span, as shown in Figure 3.6. For the sand coated and ribbed epoxy coated bars, 

the coating was removed over a distance just long enough to glue on the strain gauge. After placing 

the strain gauge on the GFRP bar, the strain gauge was coated with M-coating to protect the strain 

gauge. This local protection was used to minimize the disturbance to the bond (between the 

reinforcement and the concrete) by the strain gauges as much as possible. One strain gauge was 

mounted on the soffit of concrete beam at mid-span. Two LVDTs were connected to the GFRP 

Sand Coated  

Ribbed 



41 
 

bar at each end of the beam to measure the slip between the bar end and the concrete as shown in 

Figure 3.6. The vertical deflection of the beam was measured using an external LVDT mounted at 

mid-span as shown in Figure 3.6. 

 

Figure 3.6: Schematic showing strain gauge and LVDT locations 

3.6 Specimen Fabrication 

3.6.1 Form Work and Steel Caging 

Twelve steel and wood forms were assembled to cast twelve reinforced concrete beams (6 non-

prestressed reinforced concrete beams and 6 prestressed concrete beams). The six prestressed 

beams were placed inside the prestressing bed to be ready for prestressed application (will be 

explained in section 3.7). The formwork made of one steel C channel (250 mm x 65 mm) on the 

bottom and two re-usable coated ply wood (2200 mm x 350 mm x 20 mm) on both sides. One 

solid foam (2000 mm x 50 mm) was used to decrease the C channel width to the desire width 

(200 mm). all plywood sheets were coated oil before casting to ease the beams removal process. 

Figure 3.7 shows the steel cage inside the form place on the prestressing bed.         
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Figure 3.7 Steel cage inside the form placed on the prestressing bed 

3.6.2 Concrete Placement and Curing 

Three cubic meters of ready-mix normal strength concrete was supplied from plant. A conveyer 

belt was used to cast the concrete inside the forms. Two hand-held concrete vibrators were used to 

avoid honeycombing problem. After the all forms filled with concrete, a trowel was used to finish 

the surface and make it ready for flexural test. Figure 3.8 shows the formwork filled with concrete.  

 

Figure 3.8 Formwork filled with concrete 
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3.7 Prestressing Operation 

A special self-reacting steel frame was designed and fabricated to be used as a bed for prestressing 

operations. Figures 3.10 and 3.11 show prestressing bed photo and the schematic layout of this 

frame. The serviceability requirement (small deformations under axial prestressing force) was the 

main factor that governed the design of this frame. The frame consisted of two side beams of 

W10×39 and double channels (two-C12×20.7) at both ends. The two channels were centred at 

mid-height of the frame and had a gap of 37.5 mm to allow for free passage of the prestressed FRP 

bars. All connections were similar and made using eight-1” diameter bolts, so the frame could be 

easily assembled and disassembled for storage. The frame provided a clear working space 1360 

mm wide and 5780 mm long. It has adjustable levelling bolts to allow for precise control of the 

concrete cover thickness under the prestressed bar. The system allows mechanical locking of the 

prestressing force, adjustment of the prestress level and gradual release of the load. These 

advantages make this frame appropriate for a wide range of prestressing applications.  

Wedge type anchors were used to grip the prestressing GFRP bars (Figure 3.9a). The patented 

anchor system was developed previously at the University of Waterloo by Prof. Al-Mayah and 

Prof. Soudki (2007).  The sand coating and the ribbed epoxy coating on the GFRP bars along the 

length of the anchorage system was removed to allow for uniform gripping (Figure 3.9b). At the 

live end, each anchorage barrel was fastened to a steel coupler, which has an extended threaded 

steel bar passing through the steel frame and a 30 Ton single-acting-hydraulic jack (Figure 3.10b). 

A 240 kN load cell was installed at the dead (restrained) end of each beam. The load from the 

anchorage barrel at the dead end was transferred to the steel frame. Then the anchorage system at 

the dead end was seated and placed against the load cell with a spacer plate in between the load 

cell and the anchorage barrel (Figure 3.10c). The prestressing force was applied gradually using 

an electrical hydraulic pump. When the target load was achieved, a locking nut on the steel bar 

was fastened to the steel frame to maintain the load mechanically. 
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Figure 3.9 Prestressed GFRP bar anchorage device  

 

Figure 3.10 Prestressing frame parts 

 

 

 

 

 

a) Prestressed anchor parts b) Assembled prestressed anchor  
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Figure 3.11 A sketch of the prestressing bed (plan view) 
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3.8 Test Setup and Procedure 

Monotonic flexural tests until failure were carried out to determine the failure bond stress for each 

type of FRP reinforcing bar in this study and to establish the bond stress profile. All prestressed 

and non-prestressed beams were tested under a four-point static bending regime using a hydraulic 

500 kN Uniroyal testing frame. The flexural tests were completed under displacement control at a 

displacement rate of 1.0 mm/minute. The shear span was 500 mm for all beams. The beam had 

roller support at one end and a hinge support at the other. Two steel plates (120 mm x 50 mm) 

were located between the support and the beam. The importance of these plates is to minimize the 

compression forces produced at the support location at the bottom face of the beam. These 

compression forces might increase the frictional forces on the GFRP bar, which lead to increase 

the bond stress between the concrete and the GFRP reinforcement. Figure 3.12 shows the support 

with extra steel plates. The beam was levelled in the loading frame and centred over the support 

centrelines. Measurements of load, mid-span deflection (LVDT 1), bar slip at the end of the beam 

(LVDT 2 and LVDT 3), strain in the GFRP bar, and strain in the concrete at the end of the shear 

span were collected at a 0.5 second time increments using a National Instruments Data Acquisition 

System connected to a computer. Figure 3.13 shows the test setup. 

 

Figure 3.12 Modified support with two steel plates 

 

Steel plate 
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Figure 3.13 Test setup for static and fatigue test 

All the fatigue tests were done in load controlled at a frequency of 1 Hz. All beams were loaded 

manually to the desired ultimate percentage of the static test (peak load) and then the load was 

dropped to the mean value. Then, the controller was used automatically to apply cyclic loading 

between the minimum and maximum loading using sine wave curve as shown in Figure 2.8. The 

minimum loading was kept at 10% of the ultimate monotonic (static) test. 
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Chapter 4: Experimental Results for Non-Prestressed Beams 

4.1 General 

This chapter presents and discusses the experimental test results for the beams reinforced with 

non-prestressed GFRP bar tested under Static and fatigue loading. Twenty-two reinforced concrete 

beams were cast and tested under monotonic and fatigue loading. These tests were divided into 

two phases. The first phase was a preliminary study that included ten concrete beams reinforced 

with GFRP bar. Six concrete beams were reinforced with Sand coated GFRP bars and four beams 

were reinforced with ribbed GFRP bars. The testing variables were bar diameter (12 mm and 

16 mm), GFRP bar surface type (Sand Coated and Ribbed), and concrete cover (1.5·db and 3.0·db). 

The second phase was the main study and included twelve reinforced concrete beams. All these 

beams were reinforced with 16 mm sand coated GFRP bars. The testing variables were concrete 

cover (1.5·db and 3.0·db) and type of loading (monotonic and fatigue). For each beam set, one 

beam was tested under monotonic loading and five beams were tested under fatigue loading.   

The objective of this study was to investigate the effect of different loading types (monotonic and 

fatigue) on the bond strength between the non-prestressed GFRP bar and the surrounding concrete. 

The first part of this chapter will discuss the test results of phase one (preliminary study). The load 

deflection curve and the end slip for different beams configuration will be discussed first followed 

by the typical cracking behaviour and typical strain profile during loading until a beam failed. The 

second part will present and discuss the phase two (main study) in this study. The same as the first 

part, the results of the beams that were tested under monotonic (static) loading will be discussed 

first followed by the beams tested under fatigue loading. Load/life versus mid-span deflection, the 

cracking behaviour and the strain profile will be presented.  

4.2 Test Results for Beams Tested Under Monotonic Loading 

4.2.1 Beams Reinforced with Sand Coated GFRP Bar (Preliminary Study) 

4.2.1.1 General 

Four beams in this phase were tested under monotonic loading until failure. All the beams 

reinforced with sand coated GFRP bar failed by splitting bond failure between the bar and 

surrounding concrete. A horizontal splitting debonding cracked started at the loading point and 
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propagated toward the support.  The ultimate capacities are summarized in Table 4.1. Figure 4.1 

shows a typical bond failure for the beam reinforced with a sand coated GFRP bar.   

Table 4.1: Ultimate capacity and failure mode for sand coated reinforced beams (Pilot) 

Specimen notation Maximum load (kN) Failure mode 

SC-16-1.5-0% 116 splitting bond failure 

SC-16-3.0-0% 131 splitting bond failure 

SC-12-1.5-0% 96 splitting bond failure 

SC-12-3.0-0% 124 splitting bond failure 

 

 

 

Figure 4.1: Beam SC-16-1.5-0% after failure  

 

4.2.1.2 Beams Reinforced with 16 mm Sand Coated GFRP Bar 

Load vs. mid-span deflection curve 

Figure 4.2 shows the Load vs deflection curves for beams reinforced with 16 mm bar diameters 

and concrete covers equal 1.5·db and 3.0·db. As the load increases, the mid-span deflection 

increases until the concrete reaches its ultimate tensile strength and cracks appear at mid-span (~18 

kN for 1.5·db and ~ 25 kN for 3.0·db). After concrete cracking at mid-span, the load vs. deflection 
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slope decreases and the mid-span deflection continues to increase with increasing load until the 

ultimate load is reached.  

 

   Figure 4.2: Load vs. deflection curve for beams reinforced with 16 mm GFRP bar 

The maximum deflection for the beam with a 3.0·db concrete cover was almost 32 mm and the 

maximum deflection for the beam with a 1.5·db concrete cover was almost 45 mm. The differences 

in deflection between the two beams can be attributed to the concrete cover and the shear span 

length. The shear span for the beam with a concrete cover equal to 3.0 times the bar diameter was 

390 mm while the shear span for the beam with the concrete cover equal to 1.5 times the bar 

diameter was 450 mm. 

Cracking behaviour 

Figures 4.3a and 4.3b show the load vs. GFRP strain gauge readings and the load versus end slip 

between the GFRP bar and the surrounding concrete for the beam with a concrete cover equal to 

1.5 times the bar diameter, respectively. The GFRP strain readings increase at a low rate with 

increasing load until the concrete at mid-span cracks at ~20 kN. Then, the readings of the strain 

gauges located at mid-span increased abruptly as tensile force was suddenly from the concrete 

transferred to the GFRP bar. As the load increased, cracks appeared in the shear span near the 

loading point and progressed toward the support. At 80 mm from the loading point, the first crack 
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appeared when the applied load reached 25 kN. As the test progressed, another crack appeared at 

220 mm when the applied load was equal 50 kN. As each crack occurred, the reading of the strain 

gauge located nearest to the crack increased suddenly as tensile forces were transferred from the 

concrete to the GFRP bar. The third crack appeared at 390 mm from the loading point at a load 

level equal 98 kN. As the test proceeded, the crack at 390 mm from the loading point became 

noticeably wider than any other crack and propagated through the depth of the beam. At the 

ultimate load, de-bonding occurred between the GFRP bar and the surrounding concrete isolating 

a prism of concrete. At the same time, a longitudinal crack occurred in the concrete in the shear 

span starting at 390 mm from the loading point and progressed towards the support. At failure the 

end slip between the GFRP bar and the beam increased suddenly to 8 mm and coincident with an 

abrupt drop in load. The cracking behaviour for the reinforced concrete beam with 16 mm sand 

coated GFRP bar and a concrete cover equal to 3.0 times the bar diameter was similar to that of 

the beam reinforced with a 16 mm sand coated GFRP bar and a concrete cover equal to 1.5 times 

the bar diameter. For both beams the crack started at the loading point and moved toward the 

support as the load increased. Figure 4.4a and 4.4b show the load vs. GFRP strain gauge readings 

and the load versus end slip between the GFRP bar and the surrounding concrete for the reinforced 

beam with a concrete cover equal to 3.0 times the bar diameter, respectively 
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b- Load vs. end slip between the GFRP bar and the concrete 
 

Figure 4.3: Test results for beam SC-16-1.5-0% 
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b- Load vs. end slip between the GFRP bar and the concrete 
 

Figure 4.4: Test results for beam SC-16-3.0-0% 

 

Strain profile along the GFRP bar  

Typical measured strain distributions along the GFRP bar in the shear span at different load levels 

are  shown in Figure 4.5. At a load level of 15 kN, the strain gauge measurements at all locations 

was low (between 10 με and 20 με). As the load increased to 20 kN, the first concrete crack 

appeared at mid-span and the strain gauge reading at mid-span increased. The strain gauge reading 

at 550 mm increased and was almost equal to the reading at mid-span indicating partial de-bonding 

between these two locations. At a load of 60 kN, the reading at 400 mm jumped to 4293 με and 

was almost equal to the strain gauge reading at 550 mm. this change in the strain reading indicates 

that the GFRP bar is partially de-bonded from the concrete in this region and that the stress raiser 

along the bar is moving towards the support. As the load increased further, the strain gauge 

readings at 400 mm, 550 mm, and mid-span increased and remained almost equal and at the same 

time the readings at 150 mm and 250 mm increased until the peak load of 116 kN was reached. At 

the peak load, the strain gauge reading at 150 mm was equal to 4942 με. 
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Figure 4.5: Strain distribution along the GFRP bar for beam SC-16-1.5-0% 

4.2.1.3 Beams Reinforced with 12.7 mm Sand Coated GFRP Bar 

Load vs. mid-span deflection curve 

Figure 4.6 shows the load vs deflection curve for beams reinforced with 12 mm bar diameter and 

a concrete cover equal 1.5·db and 3.0·db.  The load vs deflection curve was divided into two 

segments for both beams. Before the concrete at mid span reached its tensile strength and the first 

crack appeared, the slope was very steep.   As the load increased and the first crack appeared, (~18 

kN for 1.5·db and ~ 38 kN for 3.0·db). The load vs. deflection slope decreased and the mid-span 

deflection continued to increase with the load until the ultimate load was reached. The ultimate 

mid-span deflection was 48 mm for the beam with a concrete cover equal 1.5 times the bar diameter 

and 54 mm for the beams with a concrete cover equal 3.0 times the bar diameter.   
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Figure 4.6: Load vs. deflection curve for beams reinforced with 12 mm GFRP bar 

Cracking behaviour  
 

Beam SC-12-1.5-0% was reinforced with a 12 mm sand coated GFRP bar. Figure 4.7a shows the 

load vs. GFRP strain gauge readings and Figure 4.7b shows the load vs. end-slip between the 

GFRP bar and the concrete. The strain gauge measurements located at mid-span increased as the 

concrete cracked and the tensile force in the concrete cross section was suddenly transferred to the 

GFRP bar. Like beam SC-16-1.5-0%, as the load increased, cracks were observed in the shear span 

starting near the loading point location and progressing towards the support. The first crack that 

appeared in the shear span was 8 mm from the loading point at a load of 19 kN. As the test 

proceeded, this crack was at all times noticeably wider than any of the other cracks. When the 

applied load reached 47 kN, another crack appeared at 190 mm. As each crack occurred, the 

reading of the strain gauge located nearest to the crack increased suddenly as the tensile forces 

were transferred from the concrete to the GFRP bar. As the test proceeded, a third crack appeared 

at 410 mm from the loading point when the applied load was 87 kN. As the load approached its 

peak value, the crack at 410 mm from the loading point widened and propagated through the depth 

of the beam. Then, it connected with the large vertical crack at 390 mm from the loading point, 

isolating a prism of concrete. At the peak load, de-bonding occurred between the GFRP bar and 

the concrete and an isolated prism of concrete separated from the GFRP bar and the beam. At the 
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same time, longitudinal cracks occurred closer to the support, but the concrete did not separate 

from the bar. The cracking behaviour for the reinforced concrete beam with 12 mm sand coated 

GFRP bar and concrete cover equal to 3.0 times the bar diameter was similar to that of the beam 

reinforced with 12 mm sand coated GFRP bar and a concrete cover equal 1.5 times the bar 

diameter. For both beams, the crack started at the loading point and moved toward the support as 

the load increased. Figure 4.8a and 4.8b show the load vs. GFRP strain gauge readings and the 

load versus end slip between the GFRP bar and the surrounding concrete for the reinforced beam 

with a concrete cover equal to 3.0 times the bar diameter, respectively. 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.7: Test results for beam SC-12-1.5-0% 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.8: Test results for beam SC-12-3.0-0% 

 

Strain profile along the GFRP bar  

Figure 4.9 shows the measured strain distribution along the GFRP bar for beam SC-12-1.5-0%. 

The axial strain distribution along the GFRP bar in the shear span at different load levels is shown 

on Figure 4.8. At a load level of 12 kN, the strain gauge measurements at all locations were low 

(between 10 με and 20 με). As the load increased to 19 kN, the first concrete crack appeared at 

mid-span and the strain gauge reading at mid-span increased to 2346 με. As the test proceeded and 

the load reached 48 kN, the strain gauge reading at 550 mm increased to 4254 με but it was less 

than the strain at mid-span indicating only partial de-bonding between 550 mm and mid-span. 

When the applied load reached 90 kN, the strain gauge reading at 250 mm increased significantly 

indicating that the partial de-bonding was moving toward the support. At failure (96 kN), the 

ultimate strain at 150 mm was equal to 2265 με. 
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Figure 4.9: Strain distribution along the GFRP bar for beam SC-12-1.5-0% 

 

4.2.2 Beams Reinforced with Ribbed GFRP bar (Preliminary Study) 

4.2.2.1 General 

Four beams in this phase were tested under monotonic loading until failure. Two failure modes 

were observed: bond failure between the GFRP bar and the surrounding concrete and the concrete 

crushing. The ultimate capacity summarises in Table 4.2. 

Table 4.2: Ultimate capacity and failure mode for ribbed coated reinforced beams (pilot)  

Specimen notation Max load (kN) Failure mode 

R-16-1.5-0% 123 Concrete crushing/bond 

R-16-3.0-0% 115 Splitting bond failure 

R-12-1.5-0% 83 Concrete crushing/bond  

R-12-3.0-0% 121 Concrete crushing  
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4.2.2.2 Beams Reinforced with 16 mm Ribbed Bar 

Load Vs mid-span deflection curve 

Figure 4.10 shows the Load vs deflection curve for beams reinforced with a 16 mm bar diameter 

and concrete cover equal 1.5·db and 3.0·db. As the load increases, the mid-span deflection increases 

until the concrete reaches its ultimate tensile strength and cracks appear at mid-span (~18 kN for 

1.5·db and ~ 35 kN for 3.0·db). After concrete cracking at mid-span, the load vs. deflection slope 

decreases and the mid-span deflection continues to increase with the load until the ultimate load is 

reached.  

 

Figure 4.10: Load vs. deflection curve for beams reinforced with 16 mm GFRP bar 

Cracking behaviour  

 

Beam R-16-1.5-0% was reinforced with a 16 mm Ribbed GFRP bar. Figure 4.11a shows the load 

vs. GFRP strain gauge readings and Figure 4.11b shows the load vs. end-slip between the GFRP 

bar and the concrete. The strain gauge measurements located at mid-span increased as the concrete 

cracked and the tensile force in the concrete cross section was suddenly transferred to the GFRP 

bar. As the load increased, cracks were observed in the shear span starting near the loading point 
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location and progressing towards the support. The first crack that appeared in the shear span was 

15 mm from the loading point at a load of 19 kN. As the test proceeded, this crack was at all times 

noticeably wider than any of the other cracks. When the applied load reached 35 kN, another crack 

appeared at 100 mm. As each crack occurred, the reading of the strain gauge located nearest to the 

crack increased suddenly as the tensile forces were transferred from the concrete to the GFRP bar. 

As the test proceeded, a third crack appeared at 210 mm from the loading point when the applied 

load was 62 kN. As the load approached its peak value, the crack at 210 mm from the loading point 

widened and propagated through the depth of the beam. Then, it connected with the large vertical 

crack at 310 mm from the loading point, isolating a prism of concrete. At the peak load, de-bonding 

occurred between the GFRP bar and the concrete and an isolated prism of concrete separated from 

the GFRP bar and the beam. For the beam reinforced with a 16 mm ribbed GFRP bar, the concrete 

crushed at top of the beam due to the large deflection of the beam at mid span making the area that 

resisted the compression force too small to carry more force even with the compression 

reinforcement. Figures 4.11a and 4.11b show the cracking behaviour just before the concrete 

crushed. The cracking behaviour for the reinforced concrete beam with a 16 mm Ribbed GFRP 

bar and a concrete cover equal to 3.0 times the bar diameter was similar to the beam with a concrete 

cover equal to 1.5 times the bar diameter, but the concrete did not crush, and the beam failed by 

de-bonding between the GFRP bar and the surrounding concrete. Figure 4.12a and 4.12b show the 

load vs. GFRP strain gauge readings and the load versus end slip between the GFRP bar and the 

surrounding concrete for reinforced beam with concrete cover equal 3.0 times the bar diameter, 

respectively. 

 

a- Load vs. GFRP bar strain 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.11: Test results for beam R-16-1.5-0% 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.12: Test results for beam R-16-3.0-0% 

 

4.2.2.3 Beams Reinforced with a 12 mm Ribbed Bar 

Load Vs mid-span deflection curve 

Figure 4.13 shows the Load vs mid-span deflection curves for beams reinforced with a 12 mm bar 

diameter and a concrete cover equal 1.5·db and 3.0·db. As the load increases, the mid-span 

deflection increases until the concrete reaches its ultimate tensile strength and cracks appear at 

mid-span (~18 kN for 1.5·db and ~ 38 kN for 3.0·db). After concrete cracking at mid-span, the load 

vs. deflection slope decreases and the mid-span deflection continues to increase with the load until 

the ultimate load is reached.  
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Figure 4.13: Load vs. deflection curve for beams reinforced with 12 mm GFRP bar 

Cracking behaviour  

 

Beam R-12-1.5-0% was reinforced with a 12 mm Ribbed GFRP bar. Figure 4.14a shows load vs. 

GFRP strain gauge readings and Figure 4.14b shows load vs. end-slip between the GFRP bar and 

the concrete. The strain gauge measurements located at mid-span increased as the concrete cracked 

and the tensile force in the concrete cross section was suddenly transferred to the GFRP bar. As 

the load increased, cracks were observed in the shear span starting near the loading point location 

and progressing towards the support. The first crack that appeared in the shear span was 35 mm 

from the loading point at a load of 18 kN. As the test proceeded, this crack was at all times 

noticeably wider than any of the other cracks. When the applied load reached 35 kN, another crack 

appeared at 60 mm. As each crack occurred, the reading of the strain gauge located nearest to the 

crack increased suddenly as the tensile forces were transferred from the concrete to the GFRP bar. 

As the test proceeded, a third crack appeared at 210 mm from the loading point when the applied 

load was 62 kN. As the load approached its peak value, the crack at 210 mm from the loading point 

widened and propagated through the depth of the beam. Then, it connected with the large vertical 

crack at 185 mm from the loading point, isolating a prism of concrete. At the peak load, de-bonding 

occurred between the GFRP bar and the concrete, and an isolated prism of concrete separated from 

the GFRP bar and the beam. For the beam reinforced with 12 mm Ribbed GFRP bar, the concrete 
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crushed at top of the beam due to excessive deflection of the beam at mid span and the area that 

resisted the compression force was too small to carry any extra force even with compression 

reinforcement. Figure 4.14a and 4.14b show the cracking behaviour just before the concrete 

crushed.  

 

 

a- Load vs. GFRP bar strain 

 

b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.14: Test results for beam R-12-1.5-0% 
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Strain profile along the GFRP bar  

Figure 4.15 shows the strain distribution along the GFRP bar for beam R-12-1.5-0%. The axial 

strain distribution along the GFRP bar in the shear span at different load levels is shown on Figure 

4.15. At a load level of 10 kN, the strain gauge measurements at all locations were low (between 

10 με and 20 με). As the load increased to 22 kN, the first concrete crack appeared at mid-span 

and the strain gauge reading at mid-span increased to 5346 με. As the test proceeded and the load 

reached 48 kN, the strain gauge reading at 400 mm increased to 8254 με but it was less than the 

strain at mid-span indicating only partial de-bonding between 550 mm and mid-span. When the 

applied load reached 70 kN, the strain gauge reading at 250 mm increased significantly indicating 

that the partial de-bonding was moving toward the support. At failure (83 kN), the ultimate strain 

at 150 mm was equal to 4265 με 

 

 

Figure 4.15: Strain distribution along the GFRP bar for beam R-12-1.5-0% 
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4.2.2.4 Concluding Remarks for the Preliminary Study  

The following concluding remarks are made based on the preliminary study findings: 

• The objective of this phase was to investigate the importance of studying the bond between 

the HM GFRP bar and the surrounding concrete. 

• All beams were designed to fail in bond by choosing a development length shorter than the 

desired development length for the beam to fail in concrete crushing or bar rupture.  

• The development length was chosen to be 500 mm, which was shorter than any calculated 

or suggested in any design or building code.  

• This phase was built to choose the most important variables affected the bond between the 

GFRP bar and the concrete.  

• The concrete strength for this study was higher than the designed concrete strength. 

Increasing in the concrete strength added more confinement effect on the bond between the 

bar and the concrete which prevented the beam from failing in bond with the chosen 

development length (500 mm), for example beam R-16-1.5-0%. 

• Because of the unexpectedly high concrete strength, the development length was even 

shorter than 500 mm for all tested beams with different concrete covers and bar diameters.   

• The ultimate strain in the GFRP at failure for the beam reinforced with a 12 mm bar is 

higher than the beam reinforced with a 16 mm GFRP bar. 

• The ultimate load at failure for the beams reinforced with ribbed GFRP bar was slightly 

higher than for the beams reinforced with sand coated GFRP bar for all concrete covers 

and bar diameters. The increases in strength ranged from 6 % (for beam reinforced with 16 

mm bar diameter and 25 mm concrete cover) to 11% (for beam reinforced with 12 mm bar 

diameter  25 mm concrete cover) 
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4.2.3 Beams Reinforced with Sand Coated GFRP Bar (Main Study) 

4.2.3.1 General 

For the main study, twelve beams were cast and tested under static and fatigue loading. all beams 

were reinforced with 16 mm non-prestressed sand coated GFRP bar.  Two different concrete 

covers were used in this study to investigate the effect of the concrete cover on the bond stress 

between the bar and the concrete. The first group of beams (six beams) had a concrete cover equal 

1.5 times the bar diameter (≈ 25 mm) and the second group (six beams) had a concrete cover equal 

to 3.0 time the bar diameter (≈ 45 mm). The beam geometry was different for beams that had 

concrete covers equal to 25 mm and 45 mm. The beam geometry was 267 mm high, 200 mm in 

width and 2000 mm long for the smaller concrete cover and 297 mm high, 200 mm width and 

2000 mm long for the beam with the larger concrete cover. For each group, one beam was tested 

under monotonic loading until failure while the other five beams were tested under fatigue loading 

until failure. In this section, the test results for beams tested under monotonic loading will be 

presented and discussed but the test results for beams tested under fatigue loading will be presented 

in different section. All beams were tested in four-point bending and failed in bond. In the 

following sections, load vs deflection, cracking behaviour and the strain profile will be presented. 

Table 4.3 shows the ultimate capacity for both beams. Figure 4.16 shows a typical bond failure.  

Table 4.3: Ultimate capacity and failure mode for sand coated reinforced beams (main study)  

Specimen notation Max load (kN) Failure mode 

SC-16-1.5-0% 146 splitting bond failure 

SC-16-3.0-0% 174 splitting bond failure 
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Figure 4.16: Bond failure for beams reinforced with non-prestressed sand coated GFRP bar 

 

Load vs. mid-span deflection curve 

Figure 4.17 shows the Load vs deflection curve for beams reinforced with 16 mm bar diameter 

and a concrete cover equal to 1.5·db and 3.0·db. As the load increases, the mid-span deflection 

increases until the concrete reaches its ultimate tensile strength and cracks appear at mid-span (~36 

kN for 1.5·db and ~ 43 kN for 3.0·db). After concrete cracking at mid-span, the load vs. deflection 

slope decreases and the mid-span deflection continues to increase with the load until the ultimate 

load is reached.  
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Figure 4.17: The load vs. deflection curve for beam reinforced with 16 mm GFRP and two 

different concrete cover (25 mm and 45 mm) 

Cracking behaviour  

 

Both beams were reinforced with 16 mm sand coated GFRP bars. Beam SC-16-1.5-0% was 

reinforced with a 16 mm sand coated GFRP bar and the concrete cover was 25 mm. Beam SC-16-

3.0-0% was reinforced with a 16 mm sand coated GFRP bar and the concrete cover was 45 mm. 

Figure 4.18a shows the load vs. GFRP strain gauge readings and Figure 4.18b shows the load vs. 

end-slip between the GFRP bar and the concrete for the beam with a 25 mm concrete cover. The 

strain gauges were mounted on the GFRP bar at different locations from the support (50 mm, 200 

mm, 350 mm and 500 mm). The strain gauge measurements for the gauges located at mid-span 

increased as the concrete cracked and the tensile force in the concrete cross section was suddenly 

transferred to the GFRP bar. As the load increased, cracks were observed in the shear span starting 

near the loading point location and progressing towards the support. The first crack that appeared 

in the shear span was 20 mm from the loading point at a load of 36 kN. When the applied load 

reached 60 kN, another crack appeared at 350 mm from the support. As each crack occurred, the 

reading of the strain gauge located nearest to the crack increased suddenly as the tensile forces 
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were transferred from the concrete to the GFRP bar. As the test proceeded, a third crack appeared 

at 225 mm from the support when the applied load was 87 kN. As the load approached its peak 

value, the crack at 225 mm from the support widened and propagated through the depth of the 

beam. At the peak load, de-bonding occurred between the GFRP bar and the concrete, and an 

isolated prism of concrete separated from the GFRP bar and the beam. The ultimate strain at mid-

span for the beam with a concrete cover equal to 25 mm was almost 13000 μꜪ. The cracking 

behaviour for the beam reinforced with a 16 mm Sand coated GFRP bar and a concrete cover equal 

to 45 mm was almost the same as that for the beam with a concrete cover equal to 25 mm. Both 

beams had the same cracking behaviour that started from the loading point and moved toward the 

support. The ultimate strain gauge at mid-span was almost 15400 μꜪ.   Figure 4.19a shows the load 

vs. GFRP strain gauge readings and Figure 4.19b shows the load vs. end-slip between the GFRP 

bar and the concrete for the beam with a 45 mm concrete cover. 

 

 

a- Load vs. GFRP bar strain 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.18: Test results for beam SC-16-1.5-0% 
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b- Load vs. end slip between the GFRP bar and the concrete 

Figure 4.19: Test results for beam SC-16-3.0-0% 

 

Strain profile along the GFRP bar  

Figure 4.20 shows the measured strain distributions along the GFRP bar for beam SC-16-1.5-0%. 

The axial strain distribution along the GFRP bar in the shear span at different load levels is shown 

on Figure 4.20. At a load level of 20 kN, the strain gauge measurements at all locations were low 

(between 10 με and 90 με). As the load increased to 36 kN, the first concrete crack appeared at 

mid-span and the strain gauge reading at mid-span increased to 2682 με. As the test proceeded and 

the load reached 40 kN, the strain gauge reading at 500 mm increased to 3620 με. When the applied 

load reached 60 kN, the strain gauge reading at 350 mm increased significantly indicating that the 

partial de-bonding was moving toward the support. At failure (146 kN), the strain at 200 mm was 

equal to 7890 με and the strain at 50 mm from the support was almost 3740 με. 
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Figure 4.20: Typical strain profile for beam SC-16-1.5-0% 

 

4.4 Discussion of the Monotonic Test Results 

All beams were designed to fail in bond between the GFRP bar and the surrounding concrete. The 

shear span length was chosen to be less than the desired development length to make sure that the 

beam would fail in bond. Before the concrete cracked at mid-span, the concrete carried most of 

the tensile stress. When the concrete reached its ultimate tensile strength, the first crack appeared 

within the constant moment region or under the loading point and the tensile stress was then carried 

by the main reinforcement. A sudden jump in the strain gauge reading occurred when the concrete 

cracked, and all the tensile force was taken by the main reinforcement. The readings of a strain 

gauge are very sensitive to the crack location. If the strain gauge is close to the crack location, the 

change in the strain gauge reading will be very large. When a strain gauge is far from a crack the 

change in its strain on cracking will be much smaller. As we move away from a crack, the tensile 

stress in the concrete will increase rapidly while the stress in the main reinforcement will rapidly 

decrease to the low value. This difference in the normal stress along the main reinforcement creates 

a high local shear stress at crack locations. Figure 4.21 and Figure 4.22 show the normal and shear 

stress distributions after a beam has cracked the and the location of the of strain gauges that 

measure the normal bar forces.  
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Figure 4.21: Normal stress distribution along the bar 

 

 

 

 

Figure 4.22: Shear stress distribution after beam cracked 
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stress. The second region is between the peak shear stress and the support. Figure 4.23 shows the 

two regions along the GFRP bar. This will be discussed in detail in Chapter 6. 

   

 

`  

 

a- Normal stress distribution after the crack propagated 

 

 

 

 

 

b- Shear stress distribution after the crack propagated 

Figure 4.23: Ahead and behind the crack tip region 
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4.5 Test Results for Beams Tested Under Fatigue Loading 

4.5.1 General 

This section presents and discusses the test results for the non-prestressed beams tested under a 

fatigue loading. In total, ten non-prestressed beams were cast and tested under fatigue loading. 

These beams were divided into two groups based on the concrete cover. The first group (five 

beams) were reinforced with 16 mm sand coated GFRP bar and the concrete cover was 25 mm. 

For the second group, five beams were reinforced with 16 mm sand coated GFRP bar and the 

concrete cover was 45 mm. All beams failed in bond between the GFRP bar and the concrete 

except one beam that was reinforced with a sand coated 16 mm GFRP bar and had a concrete cover 

equal 45 mm, which failed by bar rupture. Table 4.5 summarizes the fatigue test results including 

beam type, minimum, maximum load, load range as a percentage of failure load of the beam tested 

under monotonic loading, strain range, the number of cycles to failure and the failure mode. 

 

Table 4.4 Summary of the fatigue test results  

 

  

4.5.2 Fatigue life 

The fatigue test results for all non-prestressed beams reinforced with a 16 mm sand coated GFRP 

bar are shown in Figures 4.24 and 4.25. Figure 4.24 shows the load range (kN) versus the fatigue 

life in cycles and Figure 4.25 shows the stress range versus fatigue life in cycles. All beams failed 

in bond between the GFRP bar and the concrete except one beam reinforced with a sand coated 16 

Group Beam 
Load Stress 

(MPa) 

Number 

of cycles 
Failure mode 

Min (kN) Max (kN) 

Group 1 

(25 mm 

concrete 

cover) 

SC-16-1.5-0%-82.5 15 97.5 422 1504 splitting bond 

SC-16-1.5-0%-78 15 93 397 2010 splitting bond 

SC-16-1.5-0%-66 15 81 333 40896 splitting bond 

SC-16-1.5-0%-55.5 15 70.5 287 472562 splitting bond 

Group 2 

(45 mm 

concrete 

cover) 

SC-16-3.0-0%-108.5 17.5 126 557 297 splitting bond 

SC-16-3.0-0%-98 17.5 115.5 503 1493 splitting bond 

SC-16-3.0-0%-94.5 17.5 112 485 2639 splitting bond 

SC-16-3.0-0%-89 17.5 106.5  458 11683 splitting bond 
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mm GFRP bar that had concrete cover equal to 45 mm that failed by bar rupture. The fatigue life 

of the non-prestressed beams varied linearly with the load range (kN) on log-log scales.   As the 

load range or stress range increased the fatigue life decreased. The fatigue life curve for beams 

that failed by de-bonding between the bar and concrete has a shallow slope. Because the slope of 

the curve is shallow, a small change in the load range will result a major change in beam life under 

a fatigue loading. The two curves (beams with concrete covers equal to 25 mm and 45 mm) were 

almost parallel. Due to the weakness of the GFRP bar subjected to fatigue loading, beams with a 

concrete cover equal 45 mm only failed in bond at lives below eleven thousand cycles (11000 

cycles). The stress range and load range were increased higher than the service load maximum 

stress (approximately 300 MPa) for beams that had a concrete cover equal to 45 mm to avoid bar 

rupture and to make sure that the beam would fail in bond between the GFRP bar and the concrete. 

If the best fit curve is extended for the set of beams with a concrete cover equal 45 mm as shown 

in Figure 4.24, it is clear that the beam with higher concrete cover last longer in life compared to   

the beams that had a lower concrete cover.  Most of the test data fell close to the best fit line.  

   

 

Figure 4.24: Fatigue life versus the load range (kN) for beams with concrete cover equal 25 mm 

and 45 mm  
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Figure 4.25: Fatigue life vs stress range test results for beam with concrete cover equal 25 mm 

and 45 m 

 

 

4.5.3 Failure mode 

In this section, the typical bond failure that occurred for non-prestressed beams tested under fatigue 

loading will be discussed. All beams were loaded manually to the specified maximum load before 

fatigue loading started. During the first cycle, the first crack appeared at the loading point location 

or with a few millimeters from the loading point. At the same time, a horizontal crack initiated on 

the bottom side of the beam started close to the loading point. As the load increased during the 

first cycle, the debonded crack propagated towards the support. The length of the de-bonded crack 

varied from one beam to another depending on the maximum specified load. As the maximum 

specified load increased the de-bonded crack length at the end of initial loading increased. After 

the fatigue loading started, the de-bonded crack grew towards the support until failure occurred. 

The rate of crack growth was affected by many factors including the applied load range and the 

confinement level. As the applied load range increased the crack growth rate increased.  Figure 

4.26 shows a typical bond failure for beams reinforced with non-prestressed beams with different 

concrete covers and failed under fatigue loading   
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Figure 4.26 Typical bond failure for non-prestressed beams 

 

4.5.4 Load-Deflection Behaviour  

Typical deflection versus number of cycles as a percentage of fatigue life are shown in Figures 

4.27 Figure 4.28 for beams with concrete covers equal to 25 mm and 45 mm, respectively. The 

maximum mid-span deflection at the peak load during the tests under fatigue loading was plotted 

versus the number of cycles as a fraction of fatigue life. For all the non-prestressed beams tested 

under fatigue loading, three stages were observed in the beam deflection behaviour. In the first 

stage, the beam deflection suddenly increased as the concrete cracked and the GFRP bar carried 

all the tensile force. Simultaneously, the de-bonded crack initiated and decreased the bond between 

the GFRP bar and the concrete. In the second stage, the deflection increased slowly from the first 

5% of the fatigue life until about 95% of the fatigue life of the beam. In the final stage and during 

the last 5% of the fatigue life, as the de-bonded crack approached to the support and there was not 

enough bonded length to resist the bar force, so the mid-span deflection increased suddenly and 
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the beam failed.  For both beam sets (with concrete cover equal to 25 mm and 45 mm), the mid 

span deflection increased as the applied load increased.  

 

  

 

Figure 4.27 Load vs. deflection curves for all beams with 25 mm concrete cover   

 

 

  

Figure 4.28 Load vs. deflection curves for all beams with 45 mm concrete cover 
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4.5.5 Strain Distribution Along the GFRP Bar 

Figure 4.29 shows a typical strain profile along the GFRP bar under a fatigue test for beam SC-

16-1.5-0%-66. During the first cycle, the strain gauges located at 500 mm and 350 mm from the 

support read a high value of strain and the strain while the strain gauges located at 200 mm and 50 

mm from the support read low strain values. The strain readings from the first cycle indicated a 

partial de-bond between the strain gauges located at 500 mm and 350 mm while the GFRP bar 

remained bonded to the concrete between strain gauges located at 350 mm and 50 mm from the 

support. At 10% of the fatigue life, the reading of the strain gauge located at 200 mm from the 

support suddenly increased to high value but one that is less than the strain reading at 350 mm, 

which means the de-bonded crack tip was approaching the strain gauge located at 200 mm. As the 

number of cycles increased the strain gauge readings increased all along the GFRP bar. As the 

beam reached almost 90 % of the fatigue life, the strain reading of the gauges located at 500 mm, 

350 mm and 200 mm from the support were almost equal indicating that and GFRP bar in that 

region had de-bonded from the concrete. Close to failure the ultimate strain gauge reading at 50 

mm was almost 3665 με. Similar behaviour was observed for beams reinforced with non-

prestressed GFRP bar and a concrete cover equal to 45 mm. Figure 4.30 shows a typical strain 

profile along the GFRP bar for beam SC-16-3.0-0%-94. The peak strain reading for the strain 

gauge located at 50 mm was almost 4652 με.  
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Figure 4.29: Strain distribution along GFRP bar for beam SC-16-1.5-0%-66 

 

 

Figure 4.30: Strain distribution along GFRP bar for beam SC-16-3.0-0%-94.5 
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Chapter 5: Experimental Results for Prestressed Beams 

5.1 General 

This chapter presents and discusses the experimental test results for the beams reinforced with 

prestressed GFRP bar tested under Static and fatigue loading. Twenty-four reinforced concrete 

beams were cast and tested under monotonic and fatigue loading. These beams were divided into 

two phases. The first phase was a preliminary study and includes eight reinforced concrete beams 

with prestressed GFRP bar four concrete beams reinforced with Sand coated GFRP bar and four 

beams reinforced with ribbed GFRP bar. The testing variables were bar diameter (12 mm and 16 

mm), GFRP bar surface type (Sand Coated and Ribbed), and concrete cover (1.5∙db and 3.0∙db). 

The second phase was the main study and includes eighteen reinforced concrete beams. Six beams 

were reinforced with prestressed ribbed GFRP bar and twelve beams were reinforced with 16 mm 

sand coated GFRP bar. The testing variables were concrete cover (1.5∙db and 3.0∙db) and type of 

loading (monotonic and fatigue). For each beam set, one beam was tested under monotonic loading 

and five beams were tested under fatigue loading. 

The objective of this study was to investigate the effect of different loading types (monotonic and 

fatigue) on the bond strength between the prestressed GFRP bar and the surrounding concrete. The 

first part of this chapter will discuss the test results of phase one (preliminary study). The load 

deflection curve and the end slip for different beam configurations will be discussed first followed 

by the typical cracking behaviour and the typical strain profile during loading until a beam failed. 

The second part will present and discuss phase two (main study) of this study. As in the first part, 

the results for the beams that were tested under monotonic (static) loading will be discussed first 

followed by the beams that were tested under fatigue loading. Load/life versus mid-span deflection 

and the cracking behaviour and the strain profile will be presented. Table 5.1 summarizes the 

prestress force as a percentage of the ultimate strength for each bar configuration.  
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Table 5.1: Prestress percentage of the ultimate tensile strength for each bar 

Phases Beam Bar Type Bar Diameter 

(mm) 

Concrete 

cover (mm) 

Prestress 

(%) 

P
h
as

e 
1

 

 (
P

re
li

m
in

ar
y
 s

tu
d
y
) 

SC-12-1.5-40% Sand Coated 12 25 37.40 

SC-16-1.5-40% Sand Coated 16 25 38.28 

R-12-1.5-40% Ribbed 12 25 38.5 

R-16-1.5-40% Ribbed 16 25 38.71 

SC-12-3.0-40% Sand Coated 12 45 37.25 

SC-16-3.0-40% Sand Coated 16 45 38.42 

R-12-3.0-40% Ribbed 12 45 37.55 

R-16-3.0-40% Ribbed 16 45 37.69 

P
h
as

e 
2
 

(M
ai

n
 s

tu
d
y
) SC-16-1.5-40% Sand Coated 16 25 37.21 

SC-16-3.0-40% Sand Coated 16 45 37.32 

R-16-1.5-40% Ribbed 16 25 37.19 

 

5.2 Strain Distribution  

During the testing, the stress in the prestressed GFRP bar is a combination of the stress due to 

prestressing and the stress due to applied load. 

5.2.1 Stress Distribution Due to Prestressing 

During the prestressing process, the strain in the GFRP bar was constant along the bar length and 

was equal to the prestressing strain. When the prestressing force was released, the stress and strain 

in the bar at the beam free end dropped to zero. The free end is considered be at the support 

centreline because the GFRP bar was de-bonded from the beam free end to the support centreline 

as mentioned in Chapter 3. The slip that occurred during release between the GFRP bar and the 

concrete was measured. The expected normal and bond stress (shear stress) distribution along the 

shear span are shown schematically in Figure 5.1. The bond stress between the GFRP bar and the 
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concrete is highest at the centreline of the support (at the end of the de-bonded region) and then 

decreases until it reaches zero at the end of the transfer length.  

 

 

 

 

 

 

 

Figure 5.1: Stress distribution in the GFRP due to prestressing  
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5.2.2 Stress Distribution Due to Applied Load 

The total stress in the GFRP bar is the summation of the stress due to prestressing and the stress 

due to the applied load. The peak bond stress (shear stress) due to prestressing is at the centreline 

of the support and the peak bond stress due to the applied load is uniform in the shear span (between 

support and load point). When the two stresses are superimposed, the critical cross-section along 

the span will be the one where the total stress is the greatest. 

5.3 Transfer Length 

The transfer length is the length from the end of the bonded portion of the beam (centreline of the 

support) to the point at which the normal stress in the GFRP bar is equal to the normal stress in the 

GFRP bar at mid-span of an unloaded beam Figure 5.1. The GFRP bars were prestressed to the 

chosen stress for both sand coated and ribbed bar. The prestressing force was released after the 

concrete reached its 27-day strength. During the prestressing force release, the strain gauges 

recorded the remaining strain in the GFRP bar. All the strain gauges were located within 700 mm 

of the end of the bonded length. Plots of the strain readings in the GFRP bar after its release versus 

the distance from the end of the bonded length for all beams are given in Figure 5.2. Figure 5.2 

show a typical transfer length for prestressed beams. 

 

 

a) Beam SC-12-1.5- 40%      b) Beam R-12-1.5- 40% 

 

Transfer length Transfer length 
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c) Beam SC-16-1.5-40%                                      d)  Beam SC-16-3.0-40% 

 

E) Beam R-16-1.5-40% 

Figure 5.2 Strain readings for different beams. 

 

5.4 Test Results for Beams Tested Under Static Loading 

5.4.1 Beams Reinforced with Sand Coated GFRP Bar (Preliminary Study) 

5.4.1.1 General 

Four beams in this phase were tested under monotonic loading until failure. All beams reinforced 

with Sand coated GFRP bar failed by bond failure between the bar and surrounding concrete. The 
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ultimate capacities are summarized in Table 5.2. Figure 5.3 shows a typical bond failure for the 

beam reinforced with sand coated GFRP bar.  Figure 5.3-b shows that the GFRP bar pulled out of 

the surrounding concrete during bond failure. 

Table 5.2: Ultimate capacity and failure mode for pre-stressed sand coated reinforced beams (pilot)  

Specimen notation Max load (kN) Failure mode 

SC-16-1.5-40% 143 splitting bond failure 

SC-16-3.0-40% 186 splitting bond failure 

SC-12-1.5-40% 116 splitting bond failure 

SC-12-3.0-40% 126 splitting bond failure 

 

 

 

Figure 5.3: Typical bond failure for beam SC-16-1.5-40% 

5.4.1.2 Beams Reinforced with 16 mm Sand Coated GFRP Bar 

Load vs. mid-span deflection curve 

Figure 5.4 shows a typical load versus mid-span deflection curve for a reinforced concrete beam 

with a prestressed 16 mm sand coated GFRP bar. As the load increases, the mid-span deflection 

increases until the concrete cracks at mid-span and at 700 mm from the centreline of the support 

b) Prestressed beam after failure a) Prestressed GFRP bar after failure 

Bar damaged after 

bond failure 
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(at a load of about 68 kN). After mid-span cracking, the load vs. deflection slope decreases. The 

mid-span deflection continues to increase linearly with load as the load increases until complete 

failure.  

 

Figure 5.4: Load vs. mid-span deflection for beam SC-16-1.5-40% 

Cracking behaviour 

Figure 5.5 shows the load vs. GFRP bar strain for beam SC-16-1.5-40%. As the load increases, 

the GFRP strain readings increase at all locations along the beam length until the load reaches 65 

kN at which point the beam cracked at mid-span. Then at the crack location the tensile forces were 

transferred from the concrete to the GFRP bar and there was a sudden increase in the reading of 

the strain gauge mounted near the crack on the GFRP bar. When the load reached 91 kN, another 

crack appeared within the shear span region at 520 mm from the centreline of the support. As 

the test proceeded, the crack at 520 mm from the centreline of the support was noticeably wider 

than any other cracks and propagated through the depth of the beam. As the load reached 109 kN, 

another crack appeared at 415 mm also within the shear span region. As the load approached its 

maximum value, the crack at 415 mm propagated through the beam depth. Then, it connected with 

the large vertical crack at 520 mm from the support centreline, isolating a prism of concrete. At 

failure, de-bonding occurred between the GFRP bar and the concrete with total slip at the free end 

equal to 8.34 mm as shown in Figure 5.6  
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a) GFRP strain due to loading 

 

b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.5: Load vs. GFRP strain for beam SC-16-1.5-40% 
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Figure 5.6: Load vs. end slip for beam SC-16-1.5-40% 

 

Strain distribution in the shear span 

Figure 5.7 shows the total strain profile (GFRP strain due to prestressing plus strain due to applied 

load) in the GFRP bar at various load levels for beam SC-16-1.5-40%. As shown in Figure 5.7, 

there were no significant changes in the strain gauge readings due until the applied load reached 

the cracking load of 65 kN. As the test proceeded and the load reached 105 kN, the strain gauge 

readings at 550 mm and 700 mm increased by 2815 με and 3212 με indicating that the concrete 

cracks at these locations are getting wider and deeper. When the load reached 120 kN, the strain 

reading at 550 mm increased and was almost equal to the reading at mid-span indicating partial 

de-bonding between these locations. At failure (140 kN), the strain gauge readings at 550 mm and 

700 mm and mid-span increased and remained almost equal. At the same time the readings at 400 

mm increased until the beam failed by de-bonding failure.  
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Figure 5.7: Total strain distribution along the GFRP bar at different load levels 

 

5.4.1.3 Beams Reinforced with 12.7 mm Sand Coated GFRP Bar 

Load vs. mid-span deflection curve 

Figure 5.8 shows the load vs deflection curves for beams reinforced with 12 mm diameter bar and 

a concrete cover equal to 1.5·db and 3.0·db.  The load vs deflection curves were divided into two 

segments for both beams. Before the concrete at mid span reached its tensile strength and the first 

crack appeared, the slope is very steep.   As the load increases and the first crack appeared, (~42 

kN for 1.5·db and ~ 68 kN for 3.0·db). The load vs. deflection slope decreases and the mid-span 

deflection continues to increase with the load until the failure load is reached. The ultimate mid-

span deflection was 43 mm for the beam with concrete cover equal to 1.5 times the bar diameter 

and 34 mm for the beam with a concrete cover equal to 3.0 times the bar diameter.   
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Figure 5.8: load vs. deflection curve for beams reinforced with 12 mm GFRP bar 

Cracking behaviour 

Figure 5.9 shows the load vs. GFRP bar strain for beam SC-12.3-1.5-40%. As the load increased, 

the GFRP strain readings increased at all locations along the beam length until the load reached 43 

kN at which point the beam cracked at mid-span. Then at the crack location the tensile forces were 

transferred from the concrete to the GFRP bar and there was a sudden increase in the reading of 

the strain gauge mounted near the crack on the GFRP bar. When the load reached 56 kN, another 

crack appeared within the shear span region at 550 mm from the centreline of the support. As 

the test proceeded, the crack at 550 mm from centreline of the support was noticeably wider than 

any other cracks and propagated through the depth of the beam. As the load reached 81 kN, another 

crack appeared at 400 mm also within the shear span region. As the load approached its maximum 

value, the crack at 400 mm propagated through the beam depth. Then, it was connected with the 

large vertical crack at 250 mm from the support centreline, isolating a prism of concrete. At failure, 

de-bonding occurred between the GFRP bar and the concrete with a total slip at the free end equal 

to 14 mm as shown in Figure 5.10. 
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a) GFRP strain due to loading 

 

b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.9: Load vs. GFRP strain for beam SC-12.3-1.5-40% 
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Figure 5.10: Load vs. end slip for beam SC-12.3-1.5-40% 

5.4.2 Beams Reinforced with Ribbed GFRP Bar (Preliminary Study) 

5.4.2.1 General 

Four beams in this phase were tested under monotonic loading until failure. All beams reinforced 

with Ribbed GFRP bar failed by bond failure between the bar and surrounding concrete. The 

ultimate capacity summarizes in Table 5.3.  

Table 5.3: Ultimate capacity and failure mode for pre-stressed ribbed coated reinforced beams  

Specimen notation Max load (kN) Failure mode 

R-16-1.5-40% 136 splitting bond failure 

R-16-3.0-40% 208 splitting bond failure 

R-12-1.5-40% 116 splitting bond failure 

R-12-3.0-40% 164 splitting bond failure 

 

 

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

Lo
ad

 (
kN

)

Slip (mm)



97 
 

5.4.2.2 Beams Reinforced with 16 mm Ribbed Bar 

Load vs. mid-span deflection curve 

Figure 5.11 shows the Load vs deflection curve for beams reinforced with 16 mm bar diameter 

and concrete covers equal 1.5·db and 3.0·db. As the load increases, the mid-span deflection 

increases until the concrete reached its ultimate tensile strength and cracks appear at mid-span 

(~56 kN for 1.5·db and ~ 93 kN for 3.0·db). After concrete cracking at mid-span, the load vs. 

deflection slope decreases and the mid-span deflection continues to increase with the load until the 

ultimate load is reached. 

 

Figure 5.11: Load vs. deflection curve for beams reinforced with 16 mm GFRP bar 

Cracking behaviour 

Figures 5.12 shows the load vs. GFRP bar strain for beam R-16-1.5-40%. As the load increases, 
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kN at which point the beam cracked at mid-span. Then at the crack location the tensile forces were 

transferred from the concrete to the GFRP bar and there was a sudden increase in the reading of 
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the test proceeded, the crack at 400 mm from the centreline of the support was noticeably wider 

than any other cracks and propagated through the depth of the beam. As the load approached its 

maximum value, the crack at 400 mm propagated through the beam depth. Then, it connected with 

the large vertical crack at 250 mm from the support centreline, isolating a prism of concrete. At 

failure, de-bonding occurred between the GFRP bar and the concrete with total slip at the free end 

equal to 14 mm as shown in Figure 5.13  
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b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.12: Load vs. GFRP strain for beam R-16-1.5-40% 

 

 

Figure 5.13: Load vs. end slip for beam R-16-1.5-40% 
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5.4.2.3 Beams Reinforced with a 12.7 mm Ribbed GFRP Bar 

Load vs. mid-span deflection curve 

Figure 5.14 shows the load vs deflection curve for beams reinforced with 12 mm diameter bar and 

concrete covers equal to 1.5·db and 3.0·db.  The load vs deflection curves were divided into two 

segments for both beams. Before the concrete at mid span reach its tensile strength and the first 

crack appeared, the slope is very steep.   As the load increased and the first crack appeared, (~ 43 

kN for the 1.5·db beam and ~ 68 kN for 3.0·db beam) the load vs. deflection slope decreased and 

the mid-span deflection continued to increase with the load until the failure load was reached. The 

ultimate mid-span deflection was 61 mm for the beam with a concrete cover equal to 1.5 times the 

bar diameter and 45 mm for the beam with a concrete cover equal to 3.0 times the bar diameter.   

 

Figure 5.14 Load vs. deflection curve for beams reinforced with 12 mm GFRP bar 

Cracking behaviour 

Figures 5.15 shows the load vs. GFRP bar strain for beam R-12-1.5-40%. As the load increases, 

the GFRP strain readings increase at all locations along the beam length until the load reaches 82 
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the strain gauge mounted near the crack on the GFRP bar. When the load reached 91 kN, another 

crack appeared within the shear span region at 550 mm from the centreline of the support. As 

the load reached 100 kN, another crack appeared at 400 mm also within the shear span region. As 

the test proceeded, the crack at 400 mm from centreline of the support was noticeably wider than 

any other cracks and propagated through the depth of the beam. As the load approached its 

maximum value, the crack at 400 mm propagated through the beam depth. Then, it connected with 

the large vertical crack at 250 mm from the support centreline, isolating a prism of concrete. At 

failure, de-bonding occurred between the GFRP bar and the concrete with a total slip at the free 

end equal to 9 mm as shown in Figure 5.16. 

 

 

 

a) GFRP strain due to loading 
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b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.15: Load vs. GFRP strain for beam R-12-3.0-40% 

 

Figure 5.16: Load vs. end slip for beam R-12.3-3.0-40% 
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5.4.3 Beams Reinforced with Sand Coated GFRP bar (Main Study) 

5.4.3.1 General 

For the main study, twelve beams were cast and tested under static and fatigue loading. All beams 

were reinforced with 16 mm prestressed sand coated GFRP bar.  Two different concrete covers 

were used in this study to investigate the effect of the depth of the concrete cover on the strength 

of the bond between the bar and the concrete. The first group of beams (six beams) had a concrete 

cover equal to 1.5 times the bar diameter (≈ 25 mm) and the second group (six beams) had a 

concrete cover equal to 3.0 times the bar diameter (≈ 45 mm). The beam geometries were different 

for the beams that had concrete covers equal to 25 mm and 45 mm. The beam geometry was (267 

mm high, 200 mm wide and 2000 mm long) for the beam with a 25 mm concrete cover and the 

beam geometry for the beam with a 45 mm concrete cover was (297 mm high, 200 mm wide and 

2000 mm long). For each group, one beam was tested under monotonic loading until failure while 

the other five beams were tested under fatigue loading until failure. In this section, the test results 

for beams tested under monotonic loading will be presented and discussed followed by and the 

test results for beams tested under fatigue loading. All beams were tested in four-point bending 

and failed in bond. In the following sections, the load vs deflection, the cracking behaviour and 

the strain profile will be presented. Table 5.4 shows the ultimate capacity for both beams. Figure 

5.17 shows a typical bond failure. 

                   

Figure 5.17 typical bond failure 
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Table 5.4: Ultimate capacity and failure mode for pre-stressed sand coated reinforced beam (main)  

Specimen notation Max load (kN) Failure mode 

SC-16-1.5-40% 167 Splitting Bond failure 

SC-16-3.0-40% 192 Splitting Bond failure 

  

Load Vs mid-span deflection curves 

Figure 5.18 shows the load vs deflection curves for beams reinforced with 16 mm diameter bar 

and concrete covers equal to 1.5·db and 3.0·db.  The load vs deflection curves were divided into 

two segments for both beams. As the load increased, load deflection curve was steep until the 

concrete reached its tensile strength and the first crack appeared at mid-span (~ 87 kN for the 1.5·db 

beam and ~ 96 kN for the 3.0·db beam). After cracking, the slope of the load vs. deflection curve 

decreases and the mid-span deflection continues to increase for both beams with increasing load 

until the failure load is reached. The ultimate mid-span deflection was 17.8 mm for the beam with 

a concrete cover equal 1.5 times the bar diameter and 21 mm for the beam with a concrete cover 

equal 3.0 times the bar diameter.  

  

Figure 5.18: The load vs. deflection curves for beams reinforced with 16 mm GFRP bars and two 

different concrete covers (25 mm and 45 mm) 
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Cracking behaviour 

Figures 5.19 shows load vs strain curves for beams reinforced with 16 mm sand coated GFRP bar 

and a concrete cover equal to 25 mm. As the load increases, the GFRP strain readings increase at 

all locations along the beam length until the load reaches 84 kN at which point the beam cracks at 

mid-span. Then at the crack location the tensile forces were transferred from the concrete to the 

GFRP bar and there was a sudden increase in the reading of the strain gauge mounted near the 

crack on the GFRP bar. When the load reached 96 kN, another crack appeared within the shear 

span region at 350 mm from the centreline of the support. When the load reached at 140 kN, a 

vertical cracked appeared at 245 mm from the support. The crack at 245 mm from the centreline 

of the support was noticeably wider and propagated through the depth of the beam as the load 

increased. As the load approached its maximum value, the crack at 245 mm propagated through 

the beam depth. Then, it connected with another vertical crack at 200 mm from the support 

centreline, isolating a prism of concrete. At failure, de-bonding occurred between the GFRP bar 

and the concrete with total slip at the free end equal to 8.34 mm as shown in figure 5.20.  

 

a) GFRP strain due to loading 

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Lo
ad

 (
kN

)

Strain (μꜪ)

650 mm

500 mm

350 mm

200 mm

50 mm



106 
 

 

b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.19: Load vs. GFRP strain for beam SC-16-1.5-40% 

 

 

Figure 5.20: Load vs. end slip for beam SC-16-1.5-40% 
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load vs strain and load vs slip curves for beams reinforced with 16 mm sand coated GFRP bar 

having a concrete cover equal to 45 mm. 

 

a) GFRP strain due to loading 

 

b)  Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.21: Load vs. GFRP strain for beam SC-16-3.0-40% 
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Figure 5.22: Load vs. end slip for beam SC-16-3.0-40% 

 

Strain distribution in the shear span 

Figures 5.23 and 5.24 show the total strain profile (GFRP strain due to prestressing plus strain due 
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Figure 5.23: Total strain distribution along the GFRP bar at different load levels for beam  

SC-16-1.5-40% 

 

 

 

Figure 5.24: Total strain distribution along the GFRP bar at different load levels for beam  

SC-16-3.0-40% 
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5.4.4 Beams Reinforced with Ribbed GFRP Bar (Main Study) 

5.4.4.1 General 

Six beams were cast and tested under static and fatigue loading. All beams were reinforced with a 

16 mm prestressed sand coated GFRP bar and had a concrete cover equal to 25 mm. The beam 

geometry was (267 mm deep, 200 mm in width and 2000 mm long). One beam was tested under 

monotonic loading until failure while the other five beams were tested under fatigue loading until 

failure. The test results for beams tested under monotonic loading will be presented and discussed 

followed by a discussion of the test results for beams tested under fatigue loading. All beams were 

tested in four-point bending and failed in bond. In the following sections, load vs deflection results, 

cracking behaviour and the strain profile will be presented. Table 5.5 shows the ultimate capacity 

for beam R-16-1.5-40%. 

Table 5.5: Ultimate capacity and failure mode for pre-stressed ribbed reinforced beams (main) 

Specimen notation Max load (kN) Failure mode 

R-16-1.5-40% 157 splitting bond failure 

 

Load vs. mid-span deflection curve 

Figure 5.25 shows the load vs deflection curve for a beam reinforced with 16 mm Ribbed GFRP 

bar. The load vs deflection curve exhibits two segments. Initially the load deflection curve is steep 

and then the slope decreases abruptly when the concrete cracks at mid-span (~85 kN). After 

cracking, the load vs. deflection continues to increase at a nearly constant slope until the failure 

load is reached. The ultimate mid-span deflection was 14.65 mm.  
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Figure 5.25: The load vs. deflection curve for beam reinforced with 16 mm GFRP 

Cracking behaviour 

Figures 5.26 shows applied load vs strain plots for locations along the GFRP bar, for beams 

reinforced with a 16 mm Ribbed GFRP bar having a concrete cover equal to 25 mm. In part A of 

the figure the strain is given as the strain due to loading while in part B the total strain due to 

loading plus prestressing is used. As the load increased, the GFRP strain readings increased at all 

locations along the beam length until the load reached 85 kN at which point the beam cracked at 

mid-span. Then at the crack location the tensile forces were transferred from the concrete to the 

GFRP bar and there was a sudden increase in the reading of the strain gauge mounted on the GFRP 

bar near the crack. When the load reached 105 kN, another crack appeared within the shear span 

region at 350 mm from the centreline of the support. Furthermore, when the load reached at 

135 kN a vertical crack appeared at 240 mm from the support. The crack at 240 mm from the 

centreline of the support was noticeably wider than the others and propagated through the depth 

of the beam as the load increased. As the load approached its maximum value, the crack at 245 

mm propagated through the beam depth. Then, it connected with another vertical crack at 200 mm 

from the support centreline, isolating a prism of concrete. At failure, de-bonding occurred between 

the GFRP bar and the concrete with total slip at the free end equal to 8.34 mm as shown in Figure 

5.27.  
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a) GFRP strain due to loading 

 

b) Total GFRP strain (GFRP strain due to loading and prestressing) 

Figure 5.26: Load vs. GFRP strain for beam R-16-1.5-40% 
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Figure 5.27: Load vs. end slip for beam R-16-1.5-40% 

Strain distribution in the shear span 

Figure 5.28 shows the total strain profile (GFRP strain due to prestressing plus the strain due to 

the applied load) in the GFRP bar at various load levels for beam R-16-1.5-40%. As shown in 

Figure 5.28, at a low load level and before cracking, the concrete was carrying most of the tensile 

forces due to the applied load while only a small amount was taken by the GFRP bar. When the 

concrete reached its ultimate tensile strength and a crack occurred at 95 kN, the strain readings 

near the crack for the GFRP bar increased abruptly. As the test proceeded and the load reached 

105 kN, the strain gauge readings at 500 mm and 650 mm had increased by 4305 με and 4865 με 

from their unloaded values indicating that the concrete cracks at these locations are getting wider 

and deeper. By the time that the load reached 130 kN, the strain reading at 500 mm had increased 

until it was almost equal to the reading at mid-span indicating almost complete de-bonding 

between these locations. Also, at the same load level (139 kN) the strain at 350 mm jumped to 

2577 με above its unloaded value indicating that the de-bond crack had reached this point. At 

failure (167 kN), the strain gauge readings at 500 mm and 650 mm still remained almost equal. By 

this time the readings at 350 mm had increased enough that the beam failed by de-bonding of the 

remaining bonded length.  
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Figure 5.28: Total strain distribution along the GFRP bar at different load levels for beam  

R-16-1.5-40% 

5.5 Test results for beams tested under fatigue loading 

5.5.1 Beams reinforced with sand coated GFRP bars  

5.5.1.1 General 

This section presents and discusses the test results for the prestressed beams tested under a fatigue 

loading. In total, ten prestressed beams were cast and tested under fatigue loading. These beams 

were divided into groups based on the depth of their concrete cover. The first group (five beams) 

were reinforced with a 16 mm sand coated GFRP bar and the concrete cover was 25 mm. For the 

second group, five beams were reinforced with a 16 mm sand coated GFRP bar and the concrete 

cover was 45 mm.  Two modes of failure were observed, 1) bond failure between the GFRP bar 

and the concrete and, 2) rupture of the GFRP bar. Table 5.6 summarizes the fatigue test results 

including (beam type, minimum and maximum load, load range as a percentage of the failure load 

of the beam tested under monotonic loading, strain range, the number of cycles to failure and the 

failure mode).  
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Table 5.6 Summary of the fatigue test results for prestressed sand coated reinforced  beams 

 

5.5.1.2 Fatigue Life 

The fatigue test results for all prestressed beams reinforced with a 16 mm sand coated GFRP bar 

are shown in Figures 5.29 and 5.30. Figure 5.29 shows the load range (kN) versus the fatigue life 

in cycles and Figure 5.30 shows the stress range versus fatigue life in cycles. Two failure modes 

were observed, 1) bond failure between the GFRP bar and the concrete, and 2) Rupture of the 

GFRP bar. The fatigue life of the prestressed beams varied linearly with the load range (kN) on 

logarithmic scales.  

As the load range or stress range increased the fatigue life decreased. The fatigue life curve for 

beams that failed by de-bonding between the bar and concrete has a shallow slope. Because the 

Group Beam 

Load Stress 

range 

(MPa) 

Number 

of cycles 

to failure 

Failure 

mode 
Min 

(kN) 

Max 

(kN) 

Group 1  

(Sand Coated 

GFRP bar with a  

25 mm concrete 

cover) 

SC-16-1.5-40%-135.5 16.5 152 491 188 
Splitting 

Bond 

SC-16-1.5-40%-125.5 16.5 145 460 491 
Splitting 

Bond 

SC-16-1.5-40%-115.5 16.5 132 381 3156 
Splitting 

Bond 

SC-16-1.5-40%-112 16.5 128.5 361 14135 
Splitting 

Bond 

Group 2  

(Sand Coated 

GFRP bar with a 

45 mm concrete 

cover) 

SC-16-3.0-40%-157 19 176 597 87 
Splitting 

Bond 

SC-16-3.0-40%-152 19 171 566 305 
Splitting 

Bond 

SC-16-3.0-40%-136 19 155 478 7652 
Splitting 

Bond 

SC-16-3.0-40%-132 19 151 456 13889 
Splitting 

Bond 
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slope of the curve is shallow, a small change in the load range will result a major change in beam 

life under a fatigue loading. The two curves (beams with concrete covers equal to 25 mm and 45 

mm) were almost parallel. Due to the weakness of the prestressed GFRP bar when subjected to a 

fatigue loading, beams with a concrete cover equal to 25 mm only failed in bond at lives below 

fourteen thousand cycles and those with a concrete cover equal to 45 mm only failed in bond  at 

lives below fifteen thousand cycles For both beam sets, the stress range and load ranges were 

increased for all the beams tested under fatigue loading to avoid bar rupture and to make sure that 

the beams would fail in bond between the GFRP bar and the concrete. It is clear that the beams 

with thicker concrete cover lasted to longer lives than the beams that had a shallower concrete 

cover.  Most of the test data fell close to the best fit line. 

 

 

 

Figure 5.29: Fatigue life versus the load range (kN) for beams with concrete cover equal 25 mm 

and 45 mm  
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Figure 5.30: Fatigue life vs stress range test results for beam with concrete cover equal 25 mm 

and 45 m 

 

5.5.1.3 Failure Mode 
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the number of cycles increased and the horizontal crack propagated further in the transfer length. 

Another crack initiated at the support and progressed toward the loading point. As both cracks 

(from the loading point toward the support and from the support to the loading point) approached 

each other, the shear stress in the region between the cracks reached the ultimate value and the 

beam failed. The rate of crack growth was affected by many factors including the applied load 

range and the confinement level. As the applied load range increased, the crack growth rate 

increased.  Figure 5.31 shows a typical bond failure for beams reinforced with prestressed beams 

with different concrete covers tested under fatigue loading. 

 

 

Figure 5.31: Typical bond failure for beam reinforced with sand coated GFRP bar 

 

5.5.1.4 Load-Deflection Behaviour 

Typical deflection versus number of cycles as a percentage of fatigue life curves are shown in 

Figures 5.32 and 5.33 for beams with concrete covers equal to 25 mm and 45 mm, respectively. 

The maximum mid-span deflection at the peak load during the tests under fatigue loading was 

plotted versus the number of cycles as a fraction of fatigue life. For all the prestressed beams tested 

under fatigue loading, three stages were observed in the beam deflection behaviour. In the first 

stage, the beam deflection suddenly increased as the concrete cracked and the GFRP bar carried 

all the tensile force. Simultaneously, the de-bonded crack initiated and decreased the bond between 

the GFRP bar and the concrete. In the second stage, the deflection increased slowly from the first 

5% of the fatigue life until about 95% of the fatigue life of the beam. In the final stage and during 

the last 5% of the fatigue life, as the de-bonded crack approached to the support and there was not 

enough bonded length to resist the bar force, the mid-span deflection increased suddenly, and the 
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beam failed.  For both beam sets (with concrete cover equal to 25 mm and 45 mm), the mid-span 

deflection increased as the applied load increased.  

 

 

 

Figure 5.32 The load vs. deflection curves for all beams with 25 mm concrete cover  

 

Figure 5.33 The load vs. deflection curves for all beams with 45 mm concrete cover 
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5.5.1.5 Strain distribution along the GFRP bar 

Figure 5.34 shows the total strain profile (GFRP strain due to prestressing plus strain due to applied 

load) in the GFRP bar at various numbers of cycles for beam SC-16-1.5-40%-115.5. During the 

first cycle, the strain gauges located at 650 mm, 500 mm and 350 mm from the support read high 

values of strain while the strain gauges located at 200 mm and 50 mm from the support had lower 

strain values. The strain readings from the first cycle indicated that there was a partial de-bond 

between the strain gauges located at 500 mm and 350 mm while the GFRP bar remained bonded 

to the concrete between strain gauges located at 350 mm and 50 mm from the support. All the 

strain gauge readings slowly increased from the first cycle until the number of cycles reached 

almost 80% of the fatigue life. From about 85% of the fatigue life, the strain gauge readings at 350 

mm and the strain gauge at 500 mm are almost equal indicating that the GFRP bar had de-bonded 

from the concrete. As fa as the 350 mm gauge. In the meantime, the strain readings at the 250 mm 

gauge increased indicating continuing progress of the crack. As cyclic loading continued crack tip 

moved toward the support and approached crack that initiated from the support and grew toward 

the loading point. Failure occurred when the remaining uncracked region could not support the 

applied shear force. Figure 5.35 show the number of cycles as a percentage of the fatigue life 

versus the end slip.      

 

Figure 5.34: Strain distribution along the GFRP bar for beam SC-16-1.5-40%-115.5 
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Figure 5.35: Life as percentage vs. GFRP end slip  

 

5.5.2 Beams Reinforced with Ribbed GFRP Bar  

5.5.2.1 General 

This section presents and discusses the test results for beams reinforced with prestressed ribbed 

GFRP bar and tested under a fatigue loading. In total, five prestressed beams were cast and tested 

under fatigue loading. All beams were reinforced with 16 mm ribbed GFRP bar and the concrete 

cover was 25 mm. Two modes of failure were observed, 1) bond failure between the GFRP bar 

and the concrete and, 2) rupture of the GFRP bar. Table 5.7 summarizes the fatigue test results 

including (beam type, minimum, maximum load, load range as a percentage of the failure load of 

the beam tested under monotonic loading, strain range, the number of cycles to failure and the 

failure mode). 
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Table 5.7 Summary of the fatigue test results for prestressed ribbed reinforced beams 

 

5.5.2.2 Fatigue Life 

The fatigue test results for all prestressed beams reinforced with a 16 mm Ribbed GFRP bar are 

shown in Figures 5.36 and Figure 5.37. Figure 5.36 shows the load range (kN) versus the fatigue 

life in cycles and Figure 5.37 shows the stress range versus fatigue life in cycles. Two failure 

modes were observed, 1) bond failure between the GFRP bar and the concrete, and 2) Rupture of 

the GFRP bar. The fatigue life of the prestressed beams varied linearly with the load and stress 

ranges on logarithmic scales. As the load range or stress range increased the fatigue life decreased. 

The fatigue life curves for beams that failed by de-bonding between the bar and concrete have 

shallow slopes. Because the slope of the curves is shallow, a small change in the load range or 

stress range will result a major change in beam life under a fatigue loading. Due to the weakness 

of the prestressed GFRP bar when subjected to fatigue loading, beams with concrete cover equal 

25 mm only failed in bond at lives below about nine thousand cycles. The stress ranges and load 

ranges were increased for all the beams tested under fatigue loading to avoid bar rupture and to 

ensure that the beam would fail in bond between the GFRP bar and the concrete. Most of the test 

data fell close to the best fit lines.  

 

Group Beam 

Load Stress 

range 

(MPa) 

Number 

of cycles 

Failure 

mode Min (kN) 
Max 

(kN) 

 Ribbed GFRP 

bar and 25 mm 

concrete cover 

R-16-1.5-40%-134 15.8 149.5 483 98 
Splitting 

Bond 

R-16-1.5-40%-129 15.8 145 454 482 
Splitting 

Bond 

R-16-1.5-40%-124 15.8 140 427 2422 
Splitting 

Bond 

R-16-1.5-40%-117.5 15.8 133.5 388 5762 
Splitting 

Bond 
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Figure 5.36: Fatigue life versus the load range (kN)  

 

Figure 5.37: Fatigue life vs stress range 
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5.5.2.3 Failure Mode 

In this section, the typical bond failure that occurred for prestressed beams tested under fatigue 

loading will be discussed. The failure mode of the prestressed beams was similar to that for the 

non-prestressed beams for most of the fatigue life. All beams were loaded manually to the specified 

maximum load before the fatigue loading started. During the first cycle, a crack appeared at the 

loading point location or within a few millimeters of it. At the same time, a horizontal crack 

initiated on the bottom side of the beam close to the loading point. As the load increased during 

the first cycle, the de-bonding crack propagated towards the support. The length of the de-bonded 

crack varied from one beam to another increasing with increasing maximum specified load. After 

the fatigue loading started, the de-bonded crack grew towards the support. Due to the prestressing 

of the GFRP bar, the shear (bond) stress is high at the end of the beam and close to the support. 

After many cycles and close to failure, the horizontal crack that propagated from the loading point 

toward the support will reached the transfer length. As the number of cycle increased and the 

horizontal crack penetrated the transfer length, another crack initiated at the support and 

progressed toward the loading point. When the cracks (one from the loading point toward the 

support and the other from the support to the loading point) approached each other the shear stress 

between them reached the failure stress and the beam failed. The rate of crack growth was affected 

by many factors including the applied load range and the confinement level. As the applied load 

range increased the crack growth rate increased. Figure 5.38 shows a typical bond failure for beams 

reinforced with prestressed ribbed GFRP under fatigue loading 

 

 

Figure 5.38: A typical bond failure for beams reinforced with prestressed ribbed GFRP bar 
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5.5.2.4 Load-Deflection Behaviour 

Typical deflection versus number of cycles as a percentage of fatigue life curves are shown in 

Figure 5.39. The maximum mid-span deflection at the peak load during the tests under fatigue 

loading was plotted versus the number of cycles as a fraction of fatigue life. For all the prestressed 

beams that tested under fatigue loading, three stages were observed in the beam deflection 

behaviour. In the first stage, the beam deflection suddenly increased as the concrete cracked and 

the GFRP bar carried all the tensile force. Simultaneously, the de-bonded crack initiated and 

decreased the bond between the GFRP bar and the concrete. In the second stage, the deflection 

increased slowly from the first 5% of the fatigue life until about 95% of the fatigue life of the 

beam. In the final stage and during the last 5% of the fatigue life, as the de-bonded crack 

approached to the support and there was not enough bonded length to resist the bar force and the 

mid-span deflection increased suddenly, and the beam failed.  As the applied load increases, the 

mid-span deflection throughout the test increased. 

  

 

 

Figure 5.39: The load vs. deflection curves for all beams reinforced with prestressed ribbed bar 
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5.5.2.5 Strain Distribution Along the GFRP Bar 

Figure 5.40 shows the total strain profile (GFRP strain due to prestressing plus strain due to applied 

load) in the GFRP bar at various numbers of cycles for beam R-16-1.5-40%-117.5. During the first 

cycle, the strain gauges located at 500 mm and 350 mm from the support read a high value of strain 

while the strain gauges located at 200 mm and 50 mm from the support read lower strain values.   

The strain readings from the first cycle indicated a partial de-bond between the strain gauges 

located at 500 mm and 350 mm while the GFRP bar remained bonded to the concrete between 

strain gauges located at 350 mm and 50 mm from the support. All the strain gauge readings slowly 

increased from the first cycle until the fatigue life reached about 80 % of the fatigue life. From 85 

% of the fatigue life, the strain gauge readings at 350 mm and the strain gauge at 500 mm are 

almost equal to each other indicating that the GFRP bar had de-bonded from the concrete in the 

region between them. In the meantime, the strain reading at 250 mm increased indicating 

continuing progress of the crack. With continued cycling the de-bonded crack moved toward the 

support and the crack that initiated from the support toward the loading point. When the remaining 

uncracked length could not support the shear force failure occurred. Figure 5.41 shows a plot of 

the number of cycles as a percentage of the fatigue life versus the end slip.      

 

 

Figure 5.40: Strain distribution along the GFRP bar for beam R-16-1.5-40%-117.5 
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Figure 5.41: Life as percentage vs. GFRP end slip  

 

5.6 Discussion of the fatigue test results  

Table 5.8 summarizes the fatigue test results for all beams reinforced with 16 mm GFRP bars (sand 

coated and ribbed) with different concrete covers (25 mm and 45 mm) including (beam type, 

minimum, maximum load, load range as a percentage of failure load of the beam tested under 

monotonic loading, strain range, the number of cycles to failure and the failure mode). 

Table 5.8: Fatigue test results for non-prestressed and prestressed beams 
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Group Beam 

Load 
Stress 

range 

(MPa) 

Beam 

capacity 

(kN) or life 

(cycles) 

Failure 

mode 
Min 

(kN) 

Max 

(kN) 

Non-prestressed 

Sand coated 

GFRP bar and 25 

mm concrete 

cover 

SC-16-1.5-0%-S Monotonic N/A 149.5 (kN) S/Bond 

SC-16-1.5-0%-82.5 15 97.5 422 1504 S/Bond 

SC-16-1.5-0%-78 15 93 397 2010 S/Bond 

SC-16-1.5-0%-66 15 81 333 40896 S/Bond 

SC-16-1.5-0%-55.5 15 70.5 287 472562 S/Bond 
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Table 5.8: Fatigue test results for non-prestressed and prestressed beams-continued 

 

As a reinforced concrete beam is loaded monotonically, the strains resulting from the applied load 

increase. When the concrete tensile stress at the bottom of a beam due to the imposed load reaches 

the concrete cracking stress, the concrete cracks and the load-strain curve of the reinforcing bar 

shows an abrupt increase in strain as the strain increases until the reinforcement has taken up the 

Group Beam 

Load 
Stress 

range 

(MPa) 

Beam 

capacity 

(kN) or life 

(cycles) 

Failure 

mode 
Min 

(kN) 

Max 

(kN) 

Non-prestressed 

Sand coated 

GFRP bar and 45 

mm concrete 

cover 

SC-16-3.0-0%-S Monotonic N/A 176 (kN) S/Bond 

SC-16-3.0-0%-108 17.6 126 557 297 S/Bond 

SC-16-3.0-0%-98 17.6 115.5 503 1493 S/Bond 

SC-16-3.0-0%-95 17.6 112 485 2639 S/Bond 

SC-16-3.0-0%-89 17.6 106.5 458 11683 S/Bond 

prestressed Sand 

coated GFRP bar 

and 25 mm 

concrete cover 

SC-16-1.5-40%-S Monotonic N/A 167 (kN) S/Bond 

SC-16-1.5-40%-135.5 16.5 152 491 188 S/Bond 

SC-16-1.5-40%-125.5 16.5 145 460 491 S/Bond 

SC-16-1.5-40%-115.5 16.5 132 381 3156 S/Bond 

SC-16-1.5-40%-112 16.5 128.5 361 14135 S/Bond 

prestressed Sand 

coated GFRP bar 

and 45 mm 

concrete cover 

SC-16-3.0-40%-S Monotonic N/A 192 (kN) S/Bond 

SC-16-3.0-40%-157 19 176 597 89 S/Bond 

SC-16-3.0-40%-152 19 171 566 305 S/Bond 

SC-16-3.0-40%-136 19 155 478 7652 S/Bond 

SC-16-3.0-40%-132 19 151 456 13886 S/Bond 

prestressed 

Ribbed GFRP bar 

and 25 mm 

concrete cover 

R-16-1.5-40%-S Monotonic N/A 159 (kN) S/Bond 

R-16-1.5-40%-134 16 149.46 483 98 S/Bond 

R-16-1.5-40%-129 16 144.69 454 482 S/Bond 

R-16-1.5-40%-124 16 139.92 426 2422 S/Bond 

R-16-1.5-40%-117.5 16 133.56 388 5762 S/Bond 
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tensile force shed by the cracked concrete as shown in Figure 5.42. Afterwards, the load -strain 

curve continues at a lower slope since the applied tensile force in the beam is carried only by the 

rebar. However, during unloading following cracking the load strain curve will follow the dashed 

line of Figure 5.42 since the cracked concrete will no longer contribute to the tensile force. On 

subsequent load cycles the load strain curve will continue to follow the dashed line. A similar 

behaviour is seen for a prestressed beam in Figure 5.43. Again, there is an abrupt increase in the 

strain in the load-strain curve of the reinforcing bar as the concrete at the bottom of the beam 

cracks followed by a decrease in slope as further tensile forces are taken by the reinforcement. On 

unloading, the load-strain follows the dashed curve until the crack closes due to the prestressing 

force. Then it follows the original loading curve as force changes are shared by the reinforcement 

and the concrete. 

 

Figure 5.42: Load-strain relationship of non-prestressed concrete under fatigue 
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Figure 5.43: Load- strain relationship of prestressed concrete under fatigue 

All non-prestressed and prestressed beams reported failed in bond. All beams were loaded 

manually to the specified maximum load before fatigue loading started. During the first cycle, the 

first crack appeared at the loading point location or within a few millimeters of it. At the same 

time, a horizontal crack initiated on the bottom side of the beam started close to the loading point. 

As the load increased during the first cycle, the de-bonded crack propagated towards the support. 

The length of the de-bonded crack varied from one beam to another depending on the maximum 

specified load. As the maximum specified load increased the de-bonded crack length at the end of 

the initial loading increased. After the fatigue loading started, the de-bonded crack grew towards 

the support. For non-prestressed beams, the de-bonded horizontal crack moved toward the support 

until the remaining uncracked length could not resist the shear force imposed by the GFRP bar and 

failure occurred. As discussed earlier, for the prestressed beams, the same de-bonded horizontal 

crack moved toward the support and approached a crack that initiated from the support and grew 

toward the loading point until failure occurred when the remaining uncracked length could no 

longer support the shear force. Figure 5.44 shows the stress range vs. number of cycles to failure 

for all of the beams. The fatigue data for prestressed and non-prestressed beams fall into single 

curves for each concrete cover. For both non-prestressed and prestressed beams, fatigue life 

increased by the same amount with the change in thickness of the concrete cover. This indicates 
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that fatigue life is primarily governed by stress range and mean stress has little effect. The effect 

of prestress on load vs. fatigue life behaviour is due to its change in the stress range for a given 

load range. It is thought that a thicker cover requires more bar force to overcome the extra 

confinement and crack the concrete allowing the GFRP bar to de-bond. Due to the weakness of 

the GFRP bar when subjected to fatigue loading, beams with a concrete cover equal to 45 mm only 

failed in bond at fatigue lives below eleven thousand cycles (11000 cycles). The stress ranges and 

load ranges in the tests were increased for beams that had a concrete cover equal to 45 mm to avoid 

bar rupture and to ensure that the beams would fail in bond between the GFRP bar and the concrete. 

 

 

Figure 5.44: Measured stress range for non-prestressed and prestressed beams with different 

concrete covers 

Figure 5.45 shows the fatigue life for beams reinforced with prestressed sand coated and ribbed 

GFRP bar. The vertical axis (y-axis) represents the stress range and the horizontal axis represents 

the fatigue life in cycle.  Due to the weakness of the prestressed GFRP bar when subjected to a 

fatigue loading, beams reinforced with prestressed sand coated GFRP bar failed in bond at lives 

below 14,000 cycles and those reinforced with prestressed ribbed GFRP bar failed in bond at lives 
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below 9,000 cycles. At longer fatigue lives, they failed by bar rupture. For both beam sets, test 

stress ranges and load ranges were kept high, so that the beams tested under fatigue loading would 

avoid bar rupture and fail in bond between the GFRP bar and the concrete. As shown in the figure, the 

beams reinforced with Sand coated GFRP bar except longer life.  

 

Figure 5.45: Stress range for prestressed beams with different GFRP bar surface type 
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Chapter 6: Modelling of the Experimental Results 

6.1 Introduction 

This chapter presents the model that was used to describe the crack growth mechanism that has 

given rise to the experimental test results. Specifically, the shear (bond) stress distribution and the 

crack growth model proposed by Abdel Wahab and Topper (2015), which is applied to GRFP in 

the current study, will be presented. The parameters of the model will then be derived for the GFRP 

reinforced beams using the fatigue life vs. load range curve. Finally, a comparison will be made 

between the observed and predicted crack length vs. number of cycles curves.  

6.2 Debonding Behaviour 

The beam tests of interest are those in which the non-prestressed and prestressed beams failed by 

de-bonding between the GFRP bar and the surrounding concrete. Two different modes of failure 

were observed in this study. The mode of failure observed for all non-prestressed beams was de-

bonding between the GFRP bar and the surrounding concrete, which started at the loading point 

and moved toward the support. For the prestressed beams, this behaviour was followed near failure 

by de-bonding between the bar and the concrete starting from the support and moving towards the 

loading point.  

For the non-prestressed beams, de-bonding between the GFRP bar and the concrete started at the 

loading point (L) after a flexure crack appeared at a low load level during the first cycle or at a low 

percentage of the fatigue life. As the load in the first cycle increased or (if cracking did not occur 

during the first cycle) when the number of cycles increased, a longitudinal (de-bonding) crack 

appeared and propagated toward the support (S), resulting in de-bonding between the GFRP bar 

and the concrete. When the longitudinal crack tip reached the location of one of the strain gauges 

installed along the shear span, the reading of the strain gauge at the crack tip suddenly jumped to 

a value that was slightly less than the mid-span strain gauge reading. Typical GFRP strain 

distributions along the shear span at different load levels are shown in Figure 6.1 
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.                                 

Figure 6.1: Typical strain distribution along the GFRP bar 

Ahead of the crack tip, the bar force and shear stress distributions decay in a manner typical of 

stress raisers as shown in Figure 6.2. As the load in a monotonic test or the number of cycles in a 

fatigue test increases, the longitudinal crack grows toward the support. The monotonic or cyclic 

shear stress between the concrete and the GFRP bar at the crack tip is the force driving the crack 

to grow toward the support. The shear stress distribution along the bar can be divided into two 

regions. The first region (de-bonded) is characterized by the force and shear stress distributions 

behind the crack tip shown in Figure 6.2. In the second region (fully bonded) ahead of the crack 

tip in Figure 6.2 the force and shear stress decay to the value for an uncracked beam  as the distance 

from the crack tip increases.  
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Figure 6.2: Crack at the interface between the GFRP bar and the concrete 

Behind of the crack tip 

Loading Point 

Flexural crack  De-bond crack 

Crack tip De-bonding region 

Ahead of the crack tip 

Force distribution 

Shear stress distribution 

a) Partially de-bonded 

Force distribution 

Shear stress distribution 

b) Fully de-bonded 
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Behind the crack tip 

The region behind the crack tip can be either partially or fully de-bonded. If this region is fully de-

bonded, the GFRP bar is separated from the concrete behind the crack tip. If it is partially de-

bonded, there is a de-bonded shear stress (residual shear stress) in part or all of this region between 

the loading point and the crack tip. If the strain reading at the loading point is equal to the strain 

reading at the crack tip, the region is fully de-bonded, and the bond shear stress in the region is 

zero. If the strain reading at the crack tip is less than the strain reading at the loading point, then 

there is a force transfer between the concrete and the bar and the shear stress is not zero. 

Ahead of the crack tip 

The region ahead of the crack tip extends from the crack tip to the support centreline. In this region, 

it is assumed that the GFRP bar is fully bonded to the surrounding concrete. The bond stress (shear 

stress) ahead of the crack tip decreases until it reaches the shear stress for an uncracked beam. The 

main parameters that should be accounted for in a crack growth model are: 

a) the bond (shear) stress vs. slip behaviour of the GFRP bar to concrete bond, 

b) the crack tip shear stress that drives the crack, and 

c) the rate of crack propagation. 

a)  The shear stress versus slip model for the GFRP bar-concrete interface 

Two models that have been used to describe the bond stress vs. slip behaviour are shown in 

Figure 6.3. The horizontal axis represents the slip (mm) and the vertical axis represents the bond 

stress (shear stress). The bond stress (MPa) increases until it reached its peak value. Past the 

ultimate bond stress, the bond stress drops suddenly to a lower value or the bond stress drops 

abruptly to zero.  
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Figure 6.3: Different shear stress versus slip models 

• If the GFRP normal stress distribution behind the crack tip (de-bonded region) has a mild 

slope, then the bond stress in this region drops to an almost constant value from the ultimate 

shear stress.  

• If the GFRP normal stress distribution behind the crack tip is equal to the normal stress at 

mid-span, then the bond stress drops to zero from the ultimate bond stress. 

Figure 6.4 shows the bond stress verses slip between the GFRP bar and concrete. The bond stress 

increases linearly until it reaches the maximum bond stress. Then, it drops to a residual bond stress 

(partially de-bonded shear stress). After the drop, there is a descending branch in which the bond 

stress decreases as the slip increases. Since the GFRP bar is fully bonded to the concrete ahead of 

the crack tip, the total slip between the crack tip and the loading point is equal to the change in the 

length of the GFRP bar due to the change in the GFRP normal stress due to de-bonding.  

 

Figure 6.4: Bond stress vs. slip model 
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Behind the crack tip 

Once a flexural crack appears, the bond stress distribution is as shown in Figure 6.5, with the 

maximum bond stress at the crack location. When the applied load is increased, and the maximum 

bond stress is exceeded, a de-bonding crack forms between the GFRP bar and the concrete. This 

de-bonding crack gets longer and moves toward the support, and the partially de-bonded region 

increases. Under fatigue loading, longitudinal cracking (de-bonding) can occur at shear stress less 

than the maximum static shear stress. In the partially de-bonded region, the difference in normal 

force between the force at mid-span and the force at the crack tip in the GFRP bar is equal to the 

force applied to the bar by the de-bonded bond stress over the partly de-bonded region.  

 

Figure 6.5: Variation of shear stress along the GFRP bar  
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Flexural crack  De-bond crack 

Crack tip De-bonding region 
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The value of the bond stress for the de-bonded region was determined from the experimental 

results as follows: The GFRP strain distribution due to the applied load in the shear span at 

different load levels and different fatigue life percentages is plotted for a beam in Figure 6.5, which 

shows normal and shear stress distributions in the GFRP bar similar to those derived from strain 

gauge readings. The slope of the normal strain along the de-bonded region (between the loading 

point and the crack tip) is shallow, which means the bond between the GFRP bar and the concrete 

has been broken, and the rate of force transfer due to friction forces is low. Knowing the difference 

in measured strain between two points and the distance between them, the change in normal stress 

in the bar can be obtained and the shear stress can then be calculated by Equation 6.1. This 

procedure was repeated at different load levels for each beam. The average bond stress for the 

partially de-bonded region for each beam is shown in Table 6.1. 

𝐴𝑓 × ∆𝑓𝑠  = 𝑈 ×  𝜋 ×  ∆ 𝐿 

𝑓𝑓 =  𝜀 × 𝐸 

𝑈 =  
𝐴𝑓  ×  ∆𝑓𝑓

𝜋 × 𝑑 × ∆𝐿
 

where:  

Af:  is the cross-sectional area of the GFRP bar (mm2) 

Δ:    is the in normal stress or length  

ff:   is the normal stress in the GFRP bar (MPa) 

ε:    is the strain in the GFRP bar  

E:    is the young modulus of the GFRP bar (MPa) 

U:   is the bond stress (MPa) 

 L:  is the incremental length along the GFRP bar (mm) 

 

  

Eq. (6.1) 
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Table 6.1 Average bond stress for the de-bonded region behind the crack tip  

P
re

li
m

in
a
ry

 S
tu

d
y

 

GFRP Bar Type Beams U (MPa) 
Number of 

Values 

Range 

(MPa) 

Sand Coated 

SC-16-1.5 1.67 2 1.10 to 1.85 

SC-12-1.5 2.89 2 1.6 to 4.17 

SC-16-3.0 2.05 2 1.55 to2.54 

Ribbed 

R-16-1.5 0.64 2 0.37 to 0.93 

R-12-1.5 0.82 2 0.36 to 1.28 

R-16-3.0 1.25 2 0.9 to 1.65 

M
a
in

 S
tu

d
y
 

Sand Coated 
SC-16-1.5 1.26 5 1.0 to 1.68 

SC-16-3.0 1.55 5 1.46 to 2.85 

Ribbed R-16-1.5 1.33 5 1.26 to 2.21 

 

Ahead of the crack tip 

In the region ahead of the crack tip, the GFRP bar is assumed to be fully bonded to the concrete. 

Before flexural cracking at the mid-span, the normal strain distribution increases linearly with 

distance from the support and the bond stress is uniform along the GFRP bar. As the load increases 

and the first flexural crack occurs at the mid-span, the normal strain in the GFRP bar suddenly 

increases at the crack location as tensile force is transferred from the concrete to the bar. Within 

the fully bonded region, the normal stress is assumed to follow an exponential decay curve. Figures 

6.6a and 6.6b show normal and bond stress distributions along the GFRP bar before and after 

cracking.  
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a) Un-cracked beam 

 

b) Cracked section 

Figure 6.6: Normal and shear stress distributions along the GFRP bar before and after cracking 
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The stresses decrease rapidly ahead of the crack tip in the bonded region. The normal stress and 

bond stress distributions ahead of the crack tip (fully bonded region) can be approximated by the 

following exponential equation: 

( )

( )

( )

( )

C L

f f

C L

0

f L f e

U L U e

− 

− 

=

=
                                                     

where: 

ff (L):  is the normal stress in the GFRP bar at any given distance, L (MPa) 

ff :        is the normal stress at the crack tip (MPa) 

C:         is a constant that depends on the GFRP bar texture and beam configuration 

L:         is the distance from the crack tip (mm) 

U(L):   is the bond stress along the GFRP bar at any distance, L (MPa) 

U0:      is the peak bond stress at the crack tip (MPa) 

This exponential distribution ahead of the crack tip was described in previous studies that 

investigated the bond between the FRP bar/rod and the surrounding concrete (Mazzotti et al., 2005, 

Huang and Lyons, 2007, Achintha and Burgoyne, 2008, Harries et al. 2010). The constant C in 

Eq. 6.2 was obtained by fitting an exponential curve to the experimental results for each beam set 

tested under static and fatigue loading. For each beam, the normal strain distribution of the GFRP 

bar in the fully bonded region was obtained from the measured strain. The normal strain 

distribution was superimposed at each load level for each beam as shown in the following figures. 

Most of the curves show that all of the beams in each beam set have approximately the same 

exponent C. For each beam, the normal stresses for each curve were normalized by dividing each 

stress on the curve by the normal stress intercept with the Y-axis. The normalized curve will be 

presented in Figures 6.7-6.15, starting with the first the group of beams from the preliminary study 

and then followed by the results for the beams from the main study. 

 

Eq. (6.2) 
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Preliminary Study  

  

Figure 6.7: Normal strain distribution for beam SC-16-1.5-0% 

  

Figure 6.8: Normal strain distribution for beam SC-12-1.5-0% 
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Figure 6.9: Normal strain distribution for beam R-16-1.5-0% 

  

Figure 6.10: Normal strain distribution for beam R-12-1.5-0% 
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Main Study  

 

Figure 6.11: Normalized strain distribution for beam SC-16-1.5-S 

 

Figure 6.12: Normalized strain distribution for beam SC-16-1.5-F 
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Figure 6.13: Normalized strain distribution for beam SC-16-3.0 -S 

 

Figure 6.14: Normalized strain distribution for beam SC-16-3.0-F 
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Figure 6.15: Normalized strain distribution for beam R-16-1.5 -F 

Table 6.2 summarizes the C-values for all of the beam sets. The C-value depends on many factors 

including, bar surface type, concrete cover, and bar diameter dependent slip behaviour. For beams 

reinforced with sand coated GFRP bar, the normal strain distribution for the beam tested under 

monotonic loading is slightly different than the normal stress distribution for the beam tested under 

fatigue loading as shown in Figure 6.11 to 6.15. Because the value of local shear (bond) stress is 

sensitive to the C-value, both values will be taken into consideration in modelling. 

Table 6.2 Values of exponent C 

Phase GFRP bar type Beam C 

Preliminary Study 

Sand Coated 
SC-16-1.5 -0.016 

 
SC-12-1.5 -0.023 

Ribbed 
R-16-1.5 -0.017 

R-12-1.5 -0.020 

Main Study Sand Coated 
SC-16-1.5-Static -0.015 

SC-16-1.5 -Fatigue -0.007 
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Table 6.2 Values of exponent C (continued) 

Phase GFRP bar type Beam C 

Main Study 

Sand Coated 

SC-16-3.0 -Static -0.017 

SC-16-3.0 -Fatigue -0.009 

Ribbed 
R-16-1.5- Static -0.016 

R-16-1.5 -Fatigue -0.009 

 

The integral of the bond stress multiplied by the circumference of the GFRP bar between the 

centreline of the support and the crack tip is equal to the normal stress multiplied by the cross-

sectional area (normal force in the GFRP bar) as shown in Figure 6.16. Substituting Equation 6.2 

into Equation 6.1 gives Equation 6.3. Knowing the force at the crack tip, the distance ahead of the 

crack tip (L), and the constant C, the shear stress at the crack tip can be calculated by using 

Equation 6.3.  

 

 

Figure 6.16: typical shear stress distribution at the crack tip 
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For each beam set, the maximum shear (bond) stress and the constant C were obtained from the 

monotonic test results. By using Equation 6.3, the bond strength can be calculated. Table 6.3 shows 

the maximum bond stress for each beam of the preliminary study and for each beam set of the 

main study.  

Table 6.3: Ultimate bond stress for different GFRP bar 

Phase GFRP bar type Beam 

Ultimate Bond stress 

(MPa) 

 

Preliminary Study 

Sand Coated 
SC-16-1.5 22.95 

SC-12-1.5 40.57 

Ribbed 
R-16-1.5 25.25 

R-12-1.5 42.78 

Main Study 
Sand Coated 

SC-16-1.5 19.0 

SC-16-3.0 22.5 

Ribbed R-16-1.5 20.0 

 

 

 

Eq. (6.3) 

L 

0 
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b) The shear stress (U0) that drives the crack 

The differences in the normal stress along the GFRP bar generate the bond stress between the 

GFRP bar and the concrete. The longitudinal (de-bonding) crack is driven by the shear (bond) 

stress at the crack tip, which can be calculated using Equation 6.3.  

After the first flexural crack appears near the loading point, a longitudinal (de-bonding) crack will 

start at the point where the flexural crack appears and propagate towards the support. At first, the 

de-bonding crack will be driven by the peak shear stress in the bar due to the sudden change in bar 

force that accompanies the mid-span flexural crack. Figure 6.17-a shows a typical shear stress 

distribution and the peak shear stress that drives the initial bond crack.  

As a monotonic load advances a crack or it is advanced by fatigue cycling the shear (bond) stress 

peak that drives the longitudinal (de-bonded) crack will decrease due to the presence of a residual 

shear stress (blue color) behind the crack tip as shown in Figure 6.17-b. 

The shear stress at a distance (a) along a crack can be calculated by finding the force at distance 

(a), F(a), and substituting the value of F(a) in Equation 6.3. The force at distance (a) can be 

calculated by subtracting the change in force at a distance (a) from the bar force at mid span. 

Equation 6.4 is used to calculate the bar force at any distance from the loading point:       

  𝐹(𝑎) = 𝐹 − 𝑈𝑟  ×  𝜋 × 𝑑𝑏  × 𝑎        Eq. (6.4) 

where: 

F(a): is the bar force at distance (a), at the crack tip (kN) 

F: is the bar force at loading point (kN) 

Ur: is the residual stress along the de-bonded region (MPa) 

db: is the bar diameter (mm) 

a: is the distance between the loading point and the crack tip (mm) 

when the crack approaches the support with continued cycling, the length of the bonded region 

ahead of the crack tip (fully bonded) will decrease until the value of the shear stress at the crack 
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tip begins to increase due to the lack of a sufficient uncracked length to accommodate the shear 

force produced by the change in bar force even though the bar force continues to decrease due to 

the presence of the residual shear stress behind the crack tip. Figure 6.17-c shows the distribution 

of the shear stress from the beginning of a test until failure, including the locus of the peaks shear 

stress that drives the crack and the residual shear stress.    

 

 

Figure 6.17: Shear stress distributions at different crack lengths  

  

Figure 6.17-a: Shear stress at cracking moment 

Figure 6.17-b: Shear stress after debonding cracking  

 

Figure 6.17-c: Shear stress at failure of specimen  
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c) The rate of crack propagation 

The fatigue crack growth rate (da/dN) is defined as the increase of the crack length (da) due to the 

application of a fatigue load cycle. In these bond tests, the crack growth rate depends on the local 

shear (bond) stress at the tip of the crack between the GFRP bar and the concrete.  

The relationship between the shear stress at the tip of a de-bonded crack (U0) and the crack growth 

rate (da/dN), shown in Figure 6.18-b, can be integrated to find the number of cycles to failure at 

given load ranges to produce the load vs. number of cycles to failure curves as shown in 

Figure 6.18-a. Equation 6.5 is used to describe the relationship between the shear stress at the crack 

tip (U0) and the crack growth rate (da/dN). 

 

 

 

Figure 6.18: Load range vs. N and (da/dN) vs. Log U 
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U:  is the shear stress at the crack tip that is driving the crack (MPa)  

 

β:  is the slope of the crack growth versus shear stress curve on a log-log scale (Figure 6.18(b)) 

 

α:  is the intercept of the best fit shear stress versus da/dN  
 

Determination of  and  

The procedure followed in the current study to determine the intercept () and the slope () in the 

crack growth model is the same procedure used by Wahab et al. (2015) and Al-Yousef (2016). The 

load range versus fatigue life curves were used to calibrate the constants () and () 

In this model, the fatigue life curves are used to derive a crack growth curve for each set of beams. 

The derivation is treated as an inverse problem. The assumed power function (Equation 6.4) that 

describes the crack growth curve was used to find the constants () and () that satisfy a short and 

a long-life point on the load versus fatigue life curve. First, the value of the constants () and () 

were assumed to have values close to those found by Wahab et al. (2015) and Al-Yousef (2016). 

The fatigue life was calculated for a fatigue short life in each beam set. If the calculated fatigue 

life was less than the experimental fatigue life, the value of constant () was too high and needed 

to be decreased. If the calculated fatigue life was higher than the experimental fatigue life, the 

value of constant () was too high and needed to be increased. This step was repeated until a value 

of the constant () was found which matched the calculated fatigue life with the experimental 

fatigue life. Then the procedure was repeated for a chosen long fatigue life but this time varying 

the constant () By repeated iterations the values of () and (α) were adjusted for each set of 

beams to match calculated to the measured fatigue lives. Table 6.4 shows the resulting values of 

() and ()  for each set of beams. The constant β, which is the slope of the crack growth rate vs. 

shear stress curve, is governed by the slope of the shear stress vs. fatigue life curve. Since, as 

shown in Figure 5.44, this slope is nearly equal for all the test series, the constant β is roughly the 

same for all our tests. The constant α, which represents the intercept of the best fit shear stress vs. 

da/dN curve, is dependent on the height of the stress vs. fatigue life curve, which varies with 

concrete cover as shown in Figure 5.44. The intercept of the best fit line is different from one set 

of beams to another based on the concrete cover. 
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Table 6.4: Values of constants "" and ""                                 

Rod Type Beam Type   

Sand Coated 

Reinforced with non-prestressed 

GFRP bar with concrete cover equal 

1.5 times bar diameter 

11.15 6.43 ×  10−14 

Reinforced with prestressed GFRP 

bar with concrete cover equal 1.5 

times bar diameter 

11.05 9.42 ×  10−14 

Reinforced with non-prestressed 

GFRP bar with concrete cover equal 

3.0 times bar diameter 

12.13 7.63 ×  10−17 

Reinforced with non-prestressed 

GFRP bar with concrete cover equal 

3.0 times bar diameter 

12.76 2.21 ×  10−17 

Ribbed 

Reinforced with prestressed GFRP 

bar with concrete cover equal 1.5 

times the bar diameter 

11.57 7.51 ×  10−15 

 

6.3   The Crack Growth Calculation Procedure for Non-Prestressed Beams 

The crack length versus number of fatigue cycles for a beam can be calculated as follows 

1- The bar force at mid-span is calculated using a cracked section analysis. 

2- The shear (bond stress) at the crack tip is calculated by using Equation 6.6: 

U𝑜 =  
𝐹𝑜𝑟𝑐𝑒 ×𝐶

𝜋𝑑 (1−𝑒−𝑐×𝐿)
                                                                             Eq. (6.6)   

3- Using the Equation 6.5 for the rate of crack growth, the incremental number of cycles (dN) is 

calculated: 
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𝑑𝑎

𝑑𝑁
=  𝛼 U𝛽         ========>   𝑑𝑎 =  𝑑𝑁 ×  𝛼 𝑈𝛽    

where 𝛼 and 𝛽 have already been determined for a given beam configuration. 

4- The crack length is obtained by summing successive increments of crack growth 𝜹𝑎(N𝑖) until 

one of the following failure criteria are met: 

a) When the total crack length a > 500 mm (the shear span length) the beam has failed  

Note: if the total crack length a < 500 mm, check the next condition.  

When the calculated shear (bond) stress at the crack tip reaches the monotonic failure shear 

stress, the beam is assumed to have failed.  

6.3.1 Comparison Between the Experimental Results and Prediction Model for Non-

Prestressed Beams   

 

Fatigue life 

The actual fatigue life and the best fit curve calculated using the proposed model are shown in 

Figure 6.19 for the beams reinforced with sand coated GFRP that have concrete covers equal to 

1.5·db and 3.0·db. The calculated number of cycles was in good agreement with the actual fatigue 

data for both beams sets indicating that the model was properly calibrated.  

 

 

Figure 6.19: The actual fatigue life Vs the calculated curve for two beams reinforced with non-

prestressed GFRP 
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6.3.2 Crack Length vs. Number of Cycles 

After calibrating the model, the constants () and (β) were found based on the fatigue life for each 

set. The proposed model was then validated by calculating crack length vs. number of cycles 

curves. For each set of beams, the observed de-bonding crack length with cycles is compared with 

the predicted one. Figures 6.20 to 6.23 show the calculated crack length vs. the observed crack 

length values for different load levels beams with a concrete cover equal to 1.5 times the bar 

diameter. Figures 6.24 to Figure 6.27 show the calculated crack length versus the actual crack 

length data for beams with different load levels with a concrete cover equal to 3.0 times the bar 

diameter. For all beams that were tested under fatigue loading, three stages were observed in the 

crack length vs. number of cycles curve. In the first stage, the de-bonding crack length suddenly 

increased as the concrete cracked and the GFRP bar carried all the tensile force. Simultaneously, 

the de-bonded crack initiated and decreased the bond between the GFRP bar and the concrete. In 

the second stage, the crack length increased slowly until about 95% of the fatigue life of the beam. 

In the final stage, as the de-bonded crack approached to the support and there was not enough 

bonded length to resist the bar force, the debonding crack increased suddenly and the beam failed. 

The predicted curves give good estimates of initial cracking and the shape of the crack length 

versus cycles curves. Due to the scatter in the data points for each beam set, the data points falling 

close to the best fit line show a good agreement between the calculated and observed crack length 

at failure, and the points that fall far from the best fit line show a poorer agreement. In all cases 

the crack length versus life predictions describe correctly the trend of crack length versus cycles 

behaviour. 
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Figure 6.20: Experimental versus calculated crack length for SC-16-1.5-0%-82.5 

 

Figure 6.21: Experimental versus calculated crack length for SC-16-1.5-0%-78 
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Figure 6.22: Experimental versus calculated crack length for SC-16-1.5-0%-66 

 

 

Figure 6.23: Experimental versus calculated crack length for SC-16-1.5-0%-55.5 
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Figure 6.24: Experimental versus calculated crack length for SC-16-3.0-0%-108 

 

Figure 6.25: Experimental versus calculated crack length for SC-16-3.0-0%-98 
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Figure 6.26: Experimental versus calculated crack length for SC-16-3.0-0%-95 

 

 

 

Figure 6.27: Experimental versus calculated crack length for SC-16-3.0-0%-89 
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6.4 Final Failure by Debonding between the GFRP Bar and the Concrete  

 

This mode of failure occurred for beams reinforced with prestressed GFRP bars when a 

critical section near the support had a high shear stress. After the prestressing process, the 

force in the GFRP bar is transferred to the concrete over a certain distance called the “transfer 

length”. The initial bar prestressing force increases from zero at the end of the bonded length 

to its maximum value at the end of the transfer length. The variation in the bar force along 

the transfer length creates a shear (bond) stress between the GFRP bar and concrete. The shear 

stress within the transfer length is assumed to follow an exponential curve. Similarly, to the 

beam reinforced with a non-prestressed GFRP bar, a debonding crack forms after a flexural 

crack occurs at the loading point. The de-bonding crack travels toward the support as the load 

is increased in the monotonic load or number of cycles for a fatigue loading is increased. The 

overlapping of the cyclic shear stress (the shear stress due to loading only without the 

prestressing force) and the shear stress due to prestressing will increase the shear stress at the 

end of the beam and shift the peak shear stress toward the loading point. As the load in a 

monotonic test or the number of cycles in a fatigue test increases, the crack tip and the peak 

shear stress will move toward the loading point until failure occurs when the remaining 

bonded length can no longer support the shear force between the bar and the concrete. Figure 

6.28-a shows the shear stress due to the prestressing force along the transfer length. As the 

monotonic load advances a crack or it is advanced by fatigue cycling the shear (bond) the 

stress peak that drives the longitudinal (de-bonded) crack will decrease due to the presence 

of a residual shear stress (blue colour) behind the crack tip as shown in Figure 6.28-b. Figure 

6.28-c shows the distribution of the shear stress from the beginning of a test until failure 

including the locus of the peak shear stresses that drives the crack and the residual shear 

stress. 
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b- Normal and shear stress due to loading 
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Figure 6.28: Shear stress and force distributions in prestressed beams                                       

6.4.1 The Crack Growth Calculation Procedure for Prestressed Beams 

 

The crack growth for a given beam and its fatigue life can be calculated as follows:  

1- The total bar force at mid span is calculated and the prestressing force subtracted from it.  

2- The shear (bond stress) at the crack tip is calculated using Equation 6.7: 

U0 =  
𝐹𝑜𝑟𝑐𝑒 ×𝐶

𝜋𝑑 (1−𝑒−𝑐×𝐿)
                                                                             Eq. (6.7)    

3- Using Equation 6.5 for the rate of crack growth, the incremental number of cycles (dN) was 

calculated: 

𝑑𝑎

𝑑𝑁
=  𝛼 U𝛽         ========>   𝑑𝑎 =  𝑑𝑁 ×  𝛼 U𝛽     

where a and b are already known for a given beam configuration. 

Locus of shear stress 

Residual stress 

c- Shear Stress at the end of specimen  

Locus of shear stress 

Residual stress 
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4- The crack length is obtained by summing successive increments of crack growth 𝜹𝑎(N𝑖) until 

one of the following failure criteria are met: 

a) When the total crack length a > 500 mm (the shear span length) the beam has failed.  

Note: if the total crack length a < 500 mm, check the next condition.  

b) When the calculated shear (bond) stress at the crack tip reaches the monotonic failure 

shear stress, the beam is assumed to have failed.  

6.4.2 Comparison Between the Experimental Results and Prediction Model Results for 

Prestressed Beams   

 

Fatigue life 

The actual fatigue life and the best fit curve calculated using the proposed model are shown on 

Figure 6.30 for the beams reinforced prestressed GFRP and having a concrete covers equal to 

1.5·db and 3.0·db . The calculated number of cycles was in good agreement with the actual fatigue 

data for all beams sets indicating that the model was properly calibrated. 

 

Figure 6.29: Actual vs. calculated fatigue life curve for the beams reinforced with pre-stressed 

GFRP 
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6.4.3 Crack Growth vs. Number of Cycles 

After calibrating the mode, the constants () and (β) were found based on the fatigue life data for 

each se. The proposed model was then validated by calculating the crack length vs. number of 

cycles curves and comparing the calculated curves with the measured data. For each set of beams, 

the observed de-bonding crack length vs. number of  cycles curve was compared with the predicted 

one. Figures 6.30 to Figure 6.32 show the calculated crack length vs. the actual crack length data 

for beams reinforced with sand coated GFRP bar and concrete cover equal to 1.5 times the bar 

diameter. Figures 6.33 to 6.35 show the calculated crack lengths together with the actual crack 

length data for beams reinforced with prestressed sand coated GFRP bar and a concrete cover 

equal 3.0 times the bar diameter. Figures 6.36 to 6.38 show the calculated crack lengths together 

with the actual crack length data for beams reinforced with a ribbed GFRP bar and a concrete cover 

equal 1.5 times the bar diameter. For all beams that were tested under fatigue loading, three stages 

were observed in the crack length vs. number of cycle curve. In the first stage, the de-bonding 

crack length suddenly increased as the concrete cracked and the GFRP bar carried all the tensile 

force. Simultaneously, the de-bonded crack initiated and decreased the bond between the GFRP 

bar and the concrete. In the second stage, the crack length increased slowly until about 95% of the 

fatigue life of the beam. In the final stage, as the de-bonded crack approached to the support, there 

was not enough bonded length to resist the bar force and the debonding crack increased suddenly, 

causing the beam to fail. Again, the predictions give good estimates of initial crack length and of 

the shape of the crack length versus cycles curves. Variation in predicted fatigue lives is consistent 

with the variation in the experimental data. Due to a little scatter in the data points in each beam 

set, the data points fall close to the best fit line show a good agreement between the calculated and 

observed crack length at failure and points that fall  far from the best fit line was shown a poorer 

agreement. In all cases the crack length versus life predictions describe correctly the trend of crack 

length versus cycles behaviour 
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Figure 6.30: Experimental vs. calculated crack length for SC-16-1.5-40%-125.5  

 

Figure 6.31: Experimental vs. calculated crack length for SC-16-1.5-40%-115.5 
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Figure 6.32: Experimental vs. calculated crack length for SC-16-1.5-40%-112 

 

 

Figure 6.33: Experimental vs. calculated crack length for SC-16-3.0-40%-152 

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000 14000 16000

C
ra

ck
 L

en
gt

h
 (

m
m

)

N

Calculated

Observed

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350

C
ra

ck
 le

n
gt

h
 (

m
m

)

N

Calculated

Observed



168 
 

 

Figure 6.34: Experimental vs. calculated crack length for SC-16-3.0-40%-136 

 

 

Figure 6.35: Experimental vs. calculated crack length for SC-16-3.0-40%-132 
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Figure 6.36: Experimental vs. calculated crack length for R-16-1.5-40%-129 

 

Figure 6.37: Experimental vs. calculated crack length for R-16-1.5-40%-124 
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Figure 6.38: Experimental vs. calculated crack length for R-16-1.5-40%-117.5 

6.5 Discussion   

Figure 6.39 shows a sketch of a predicted crack length (mm) vs. number of fatigue cycles 

curve. The curve is divided into three stages. The first stage describes the de-bonding cracking 

that occurs during the first cycle. The second stage shows nearly uniform crack growth during 
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at the bottom of the beam starting close to the loading point.  
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accelerates until failure. Figure 6.41 shows typical crack growth rate vs. shear stress results 

for a test on a log-log scale. The arrows explain where the test starts and how the shear stress 

first decreases during a test and then increases close to failure. The crack growth rate is 

affected by many factors including concrete strength, concrete cover, and bar type.  

Figure 6.42 shows crack growth rate versus shear stress curves for non-prestressed and 

prestressed beams reinforced with 16 mm GFRP bar and two different concrete covers (25 

mm and 45 mm). The figure shows that the non-prestressed and prestressed results fall onto 

a single curve.  

 

Figure 6.39: Crack length vs. number of cycles 
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Figure 6.40: Crack length vs. N in log-log scale for different fatigue levels 

 

Figure 6.41: Typical crack growth rate vs. shear stress in log-log scale  
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Figure 6.42: Typical crack growth rate vs. shear stress in log-log scale for all beams 
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Chapter 7: Conclusions and Recommendations for Future Work 

7.1 Introduction 

This chapter presents the main conclusions drawn from this study and recommendations for future 

work. This study was designed to investigate the bond mechanisms between GFRP bars and their 

surrounding concrete under monotonic and fatigue loading. A total of 49 reinforced concrete 

beams with GFRP bars were cast and tested in four-point loading until failure. The main variables 

were concrete cover, bar surface type, bar diameter, and prestressing level.   

7.2 Conclusions 

7.2.1 Test Results for Beams Tested under Monotonic Loading 

The main conclusions drawn from the monotonic tests are as follows: 

• All of the beams reinforced with prestressed and non-prestressed GFRP bars (sand coated 

and ribbed) failed by de-bonding between the GFRP bar and concrete when tested under 

monotonic (static) loading. The de-bonding started at the load point and as the load 

increased, it spread towards the support until the failure load was reached. 

• Increases in the thickness of the concrete cover resulted in increases in the ultimate failure 

load. The ultimate failure loads for beams reinforced with 16 mm GFRP bar and 45 mm 

concrete cover were almost 20% than those for beams reinforced with same bar diameter 

with 25 mm concrete cover. The ultimate failure load for beams reinforced with 12 mm 

GFRP bar and 45 mm concrete cover was almost 28% greater than those reinforced with 

same bar diameter with 25 mm concrete cover.  

• For all the beams tested under monotonic loading, there was no noticeable difference in 

ultimate load between the beams reinforced with sand coated GFRP bars and beams 

reinforced with ribbed GFRP bars.  

• The GFRP bars (16 mm and 12 mm) used for reinforcing the beam were prestressed to a 

force corresponding to 40% of the ultimate strength of the bar.  
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• Based on the experimental data, the transfer length for the prestressed 16 mm GFRP bar 

ranged between 280 and 310 mm from the centreline of the support, while the transfer 

length for the prestressed 12 mm GFRP bar ranged between 260 and 290 mm. 

7.2.2 Test Results for Beams Tested under Fatigue Loading 

The main conclusions drawn from the fatigue tests are as follows: 

• Two modes of failure were observed: 1) bond failure between the GFRP bar and concrete 

that starting from the loading point and propagated towards the support, and 2) rupture of 

the GFRP bar.  

• As the horizontal crack advanced by fatigue cycling, the shear (bond) stress peak that drives 

the longitudinal (de-bonded) crack decreased due to the presence of a residual shear stress 

behind the crack tip. When the crack approached the support with continued cycling, the 

length of the bonded region ahead of the crack tip (fully bonded) decreased until the value 

of the shear stress at the crack tip began to increase due to the lack of sufficient uncracked 

length to accommodate the shear force produced by the change in bar force even though 

the bar force continues to decrease due to the presence of the residual shear stress. 

• For all beams (non-prestressed and prestressed) tested under fatigue loading, the mid-span 

deflection increased abruptly during the first cycle. The rate of the increase in deflection 

was then slow from the 5% of the fatigue life to almost 90 % of the fatigue life. Beyond 

90% of the fatigue life, the mid-span deflection increased rapidly until failure. 

• For all beams tested under fatigue loading, there was no noticeable end slip until the 

number of cycles reached almost 90% of the total fatigue life.  

• The slope of the load and stress vs. fatigue life curves is shallow and consequently a small 

change in load range will result in a large change in the fatigue life. 

• Increasing the concrete cover thickness increased the fatigue strength.  

• Comparing the load range (kN) vs. life curve for the non-prestressed and prestressed beams 

that failed in bond shows that the prestressed beams had longer lives.  
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• Due to the weakness of the prestressed GFRP bar when subjected to a fatigue loading, 

beams with a 25 mm concrete cover only failed in bond at lives below 14,000 cycles and 

those with a 45 mm concrete cover only failed in bond at lives below 15,000 cycles. At 

longer fatigue lives, they failed by bar rupture. For both beam sets, test stress ranges and 

load ranges were kept high, so that the beams tested under fatigue loading would avoid bar 

rupture and fail in bond between the GFRP bar and the concrete. 

• The strain range vs. life curves for both non-prestressed and prestressed beam sets fell onto 

a single curve. 

• A crack growth model based on the one developed by Wahab et al., 2015 was used to 

calculate fatigue lives and predict crack length vs. number of cycles curves. The calculated 

number of cycles was in good agreement with actual fatigue data for the beams with 

different concrete thicknesses. Also, the calculated crack length vs. number of cycle curves 

gave good representations of the initial crack length and the shape of the crack length vs. 

number of cycles curves. 

 7.2.3 Recommendations for Future Work 

This thesis studied the bond mechanism between non-prestressed and prestressed (sand coated and 

ribbed) GFRP bar and the concrete under monotonic and fatigue loading for two different concrete 

cover thicknesses. To increase our knowledge about the bond between GFRP reinforcing bars and 

surrounding concrete, additional work should include:  

• the use of different concrete strengths for the same bonded length and beam geometry, 

• the use of a wider range of prestressing levels,  

• the use of different shear reinforcement configurations to study the effect of confinement 

provided by shear reinforcement on the bond strength under fatigue loading, 

• changing the spacing between the shear reinforcement to investigate the effect of the shear 

reinforcement spacing on the bond confinement and bond strength, and  

• testing non-prestressed and prestressed GFRP bars under fatigue loading with different 

concrete covers and spans to investigate flexural capacity effects.  
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