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Abstract

We generalize the concept of intrinsic location functionals to accommodate n = 2
random locations, which we combine together in either sets or vectors. For the set-valued
case of ‘intrinsic multiple-location functionals’ we show that for any stationary process and
compact interval, the distribution of any intrinsic multiple-location functionals is absolutely
continuous on the interior of the interval, the density exists everywhere, is càdlàg, bounded
at each point of the interior and satisfies certain total variation constraints. We also
characterize the class of possible distributions, showing that it is a weakly closed compact
set, and we find its extreme points. Moreover, we show that for almost every measure m
in this class of distributions one can construct a pair comprising a stationary process and
intrinsic multiple-location functional which has m as its distribution. For the vector-valued
case of ‘intrinsic location vectors’, we identify subclasses based on the joint behaviour of the
two random locations and derive results for each subclass. Some of the results connect the
intrinsic location vectors back to the ‘single-location case’ of intrinsic location functionals.
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Chapter 1

Introduction

In this work, we look to extend the results derived by Samorodnitsky and Shen in the
theory of random locations. In particular, we wish to extend the framework of intrinsic
location functionals to the case of multiple locations. Examples of this case of multiple
random locations include the first and second hitting times of a level k, the first two
locations of the path suprema, and many others. These types of locations are clearly of
interest to those working in extreme value theory, mathematical finance, quantitative risk
management and so on.

In Samorodnitsky and Shen (2013a), the authors examine the probabilistic structure of the
location of the supremum for stationary processes, rather than the value of the supremum.
In particular, they find that the stationarity of the process has a significant effect on the
distribution of the location of the path supremum. This paper was the intuitive ‘base case’
for the current work, as we began by considering the locations of the two path suprema.

Samorodnitsky and Shen (2013b) introduce intrinsic location functionals, which can be
thought of as the generalization of path supremum locations. They are defined as measur-
able functionals from a space of functions closed under shifts, and the compact intervals in
R. The definition uses the assumed stationarity of the underlying processes to its advan-
tage in a clever way, leading to the result that the stationarity of a process can actually be
characterized by a sufficiently rich class of intrinsic location functionals. They also show
that the possible distributions of the intrinsic location functionals over an interval form a
weakly closed convex set and describe the extreme points of this set. Some simple examples
of intrinsic location functionals are the location of the path infimum, the leftmost location
of the largest jump, and the rightmost location of the largest slope.

The goal of this work is to expand on these results in order to accommodate both random
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sets and random vectors of multiple random locations. These random locations do not
necessarily have to be intrinsic location functionals on their own, hence the construction is
more complex than simply combining two intrinsic location functionals into a set or vector.

This generalization is a natural extension of the past theory, and now allows us to consider
joint behaviours which could not be accounted for in the single location case, such as the
locations of the path supremum and infimum, the two leftmost locations of the largest
jumps, etc. From these two examples alone, it is clear that there are many subclasses of
paired random locations to consider, which will each have different properties.

The paper is structured in the following way:

• The main results from Samorodnitsky and Shen (2013b) which we will generalize to
the case of n = 2 locations are listed in Chapter 2.

• In Chapter 3, we introduce the set-valued intrinsic multiple-location functionals.
In particular, because these functionals are set-valued, we are not distinguishing
between the two locations. Hence we are concerned with the probability that one of
the locations (or both) is in a Borel subset of the interval on which the functional is
defined.

• In Chapter 4, we prove similar results to the ‘single-location case’ such as the absolute
continuity of the distribution over the interior of any compact interval, the existence
and boundedness of a density, the fact that the density is càdlàg everywhere, and
that the density satisfies certain total variation constraints.

– In Section 4.3, we examine the class of all measures A2
T representing the distri-

butions of the intrinsic multiple-location functionals, and show that this class is
a weakly closed convex subset of the class of all measures taking values in [0, 2].

– We then identify the extreme points of the set A2
T in Section 4.4, and show

that for a certain subset D2
T of A2

T , we have that for any m ∈ D2
T one can

construct a stationary process and instrinsic multiple-location functional which
has distribution m on the interval [0, T ].

• In Chapter 5, we introduce the intrinsic location vectors, and discuss the connection
with intrinsic multiple-location functionals from Chapters 3 and 4. We identify some
subclasses of intrinsic location vectors, and derive some results for these subclasses.

• In Chapter 6, we give a brief overview of how the intrinsic multiple-location func-
tionals could be extended to n > 2 locations.

• Lastly, in Chapter 7 we discuss some potential directions for further research.
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Chapter 2

Instrinsic Location Functionals

2.1 Definitions and Examples

Let H be a set of functions on R, closed under shifts. Meaning that for all f ∈ H, c ∈ R,
the function θcf = f(x + c), x ∈ R also belongs to H. We equip H with its cylindrical
σ-field:

Cyl(H) = σ
(
{f | f(t1) ∈ A1, f(t2) ∈ A2, . . . , f(tn) ∈ An} ,

n ∈ N, t1, . . . , tn ∈ R, A1, . . . , An ∈ B(R)
)
,

where B(R) is the Borel σ-Algebra of R. Let I be the collection of all non-degenerate
compact intervals in R: I = {[a, b] ⊆ R | a < b}.

These definitions of H and I will be used throughout the entire paper. Note that we
endow the set ([0, T ] ∪ {∞}) with the topology obtained by treating the infinite point as
an isolated point of the set.

In what we will refer to as the “single-location case”, an intrinsic location functional is
defined as follows:

Definition 2.1: A mapping L : H×I → R∪{∞} is called an intrinsic location functional
if it satisfies all of the following conditions:

(1) For every I ∈ I the map L(·, I) : H → R ∪ {∞} is measurable.
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(2) For every f ∈ H and I ∈ I, L(f, I) ∈ (I ∪ {∞}).

(3) (Shift compatibility) For every f ∈ H, I ∈ I, c ∈ R,

L(f, I) = L(θcf, I − c) + c,

where (I − c) = {x− c | x ∈ I}, and ∞± c =∞.

(4) (Stability under restrictions) For every f ∈ H, and I1, I2 ∈ I such that I2 ⊆ I1,

if L(f, I1) ∈ I2 then L(f, I2) = L(f, I1).

(5) (Consistency of existence) For every f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1,

if L(f, I2) 6=∞ then L(f, I1) 6=∞.

Note that in defining the intrinsic location functional, we have allowed for L(f, I) to take
infinite value. This is to be interpreted as the random location not being found in the
interval, or not well-defined. An example is the case of a hitting time of level k, where it
is possible that this location is never achieved over a compact interval I ∈ I. This case is
explained in more detail in Example 2.3.

Example 2.2: Let H be the space of upper semi-continuous functions, meaning that
f ∈ H has the following property for every t ∈ R:

lim sup
s→t

f(s) = lim
ε↓0

(sup {f(s) | s ∈ B(t, ε) \ {t}}) ≤ f(t),

where B(t, ε) is the open ball of radius ε with center t.

Then the leftmost location of the path supremum over the interval [a, b] ∈ I defined as

τf,[a,b] := inf

{
t ∈ [a, b] | f(t) = sup

s∈[a,b]

f(s)

}
(2.1)

is an intrinsic location functional. This functional was studied in detail in Samorodnitsky
and Shen (2012, 2013a). It is one of the intrinsic location functionals which cannot take
on an infinite value, since it always exists inside of the interval.
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Some other similar intrinsic location functionals are the rightmost location of the path
supremum, and the leftmost location of the path infimum:

τ r
f,[a,b] := sup

{
t ∈ [a, b] | f(t) = sup

s∈[a,b]

f(s)

}
,

αf,[a,b] := inf

{
t ∈ [a, b] | f(t) = inf

s∈[a,b]
f(s)

}
.

Example 2.3 Let H be the space of continuous functions C(R). Then the first hitting
time of a level k over the interval [a, b] defined as

τ kf,[a,b] := inf {t ∈ [a, b] | f(t) = k}

is an intrinsic location functional. Of course we could also use sup rather than inf, which
would give us the last hitting time of the level k, which is also an intrinsic location func-
tional.

These are intrinsic location functionals which can take on infinite value, because it is
possible that f never hits the level k on [a, b].

Example 2.4 Let H be the space of càlàg functions. Then the leftmost location of the
largest jump in the path over the interval [a, b] defined as

τf,[a,b] := inf

{
t ∈ [a, b] |

∣∣f(t)− f(t−)
∣∣ = sup

s∈[a,b]

∣∣f(s)− f(s−)
∣∣}

where f(t−) = lim
s↑t

f(s),

is an intrinsic location functional.

Many other examples can be thought of, such as the leftmost/rightmost location of the
largest/smallest slope with H = C1(R) (the space of continuously differentiable functions),
or the leftmost/rightmost location of the jump whose size is closest to a given real number
for càdlàg functions.

Example 2.5: There are some functionals similar to these that we might mistakenly
assume are intrinsic location functionals, but are not, such as the following:
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(i) Define the first hitting time of a level k after a given time t over the interval [a, b] as
follows:

T kt,f,[a,b] := inf {s ∈ [a, b], s ≥ t | f(s) = k} .

It is easy to see that this functional satisfies stability under restrictions and consis-
tency of existence, but it does not satisfy shift compatibility. Indeed,

T kt,f,[a,b] 6= T kt,θ2(b−a)f,[a−2(b−a),b−2(b−a)] + 2(b− a)

since the right hand side will always be ∞ if t ∈ [a, b].

(ii) The first hitting time of a level k within a fixed distance d to the right endpoint of
the interval [a, b], denoted T k,df,[a,b] is defined as:

T k,df,[a,b] := inf {s ∈ [a, b], s ≥ b− d | f(s) = k} .

This functional satisfies shift compatibility and stability under restrictions, but it
does not satisfy consistency of existence. The hitting time may exist on a smaller
interval, but once we move to a larger interval, it is less likely that we satisfy the
requirement that s ≥ b− d, since the right-endpoint could now be much larger.

(iii) The second hitting time of a level k, defined as

T k,2f,[a,b] := inf
{
t ∈
(

[a, b] \ T k,1f,[a,b]

)
| f(t) = k

}
,

where T k,1f,[a,b] := inf {t ∈ [a, b] | f(t) = k}

is not an intrinsic location functional, because it does not satisfy consistency of ex-
istence. If we have intervals I2 ⊆ I1 such that T k,1f,I1

∈ (I1 \ I2) and T k,2f,I2
∈ I2, then

T k,1f,I2
= T k,2f,I1

, and we could have T k,2f,I2
=∞, a contradiction.

2.2 Previous Results

It is necessary to define some notation for the rest of this section. We denote the underlying
stationary process X = {Xt}t∈R, defined on some probability space (Ω,F ,P), which has
sample paths in H.
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For a compact interval [a, b] ∈ I, we let L(X, [a, b]) denote the value of the instrinsic
location functional L evaluated on the process X over the interval [a, b].

Note that by Definition 2.1, L(X, [a, b]) is a well-defined random variable taking values in
([a, b] ∪ {∞}).

It is important to note that stationarity of the process X and the shift compatibility of L
clearly imply that the distribution of L on an interval depends only on the length of the
interval. So we will simply consider intervals of the type [0, b] and for notational simplicity
denote this case as L(X, b).

We denote by FX,[a,b] the law of L(X, [a, b]); a probability measure with support ([a, b] ∪ {∞}).
For the interval [0, b] we write FX,b.

Finally, FX,[a,b](t) behaves as one would expect a cumulative distribution function to behave,
i.e. FX,[a,b](t) is the value FX,[a,b] assigns to the interval [a, t] for every a ≤ t ≤ b, where
again for the interval [0, b], we use the notation FX,b(t).

The following theorem is the main result of [1] which describes the laws of the intrinsic
location functionals and their properties, as well as the total variation constraints and
bound on their densities.

Theorem 2.6: Let L be an intrinsic location functional and X = {Xt}t∈R be a stationary
process. Then the restriction of the law FX,T to the interior (0, T ) of the interval is
absolutely continuous. The density, denoted by fX,T , can be taken as the right-derivative
of FX,T , which exists at every point in the interval (0, T ). The density is right-continuous,
has left limits, and has the following properties:

(a) The following limits exist:

fX,T (0+) = lim
t↓0

fX,T (t) and fX,T (T−) = lim
t↑T

fX,T (t).

(b) The density has a universal upper bound given by

fX,T (t) ≤ max

(
1

t
,

1

T − t

)
for every 0 < t < T.

(c) The density has bounded variation away from the endpoints of the interval. Further-
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more, for every 0 < t1 < t2 < T ,

TV(t1,t2)(fX,T ) ≤ min(fX,T (t1), fX,T (t−1 )) + min(fX,T (t2), fX,T (t−2 )),

where TV(t1,t2)(fX,T ) = sup
n−1∑
i=1

|fX,T (si+1)− fX,T (si)|

is the total variation of fX,T on the interval (t1, t2), and the supremum is taken over
all choices of t1 < s1 < · · · < sn < t2 with finite n.

(d) The density has bounded positive variation at the left endpoint and a bounded negative
variation at the right endpoint. Furthermore, for every 0 < ε < T ,

TV+
(0,ε)(fX,T ) ≤ min(fX,T (ε), fX,T (ε−)),

and TV −(T−ε,T )(fX,T ) ≤ min(fX,T (T − ε), fX,T ((T − ε)−)),

where TV ±(a,b)(fX,T ) = sup
n−1∑
i=1

(fX,T (si+1)− fX,T (si))±

is the positive(negative) variation of fX,T on the interval (a, b),where the supremum
is taken over all choices of a < s1 < · · · < sn < b with finite n, and (x)+ =
max(x, 0), (x)− = max(−x, 0).

(e) The limit fX,T (0+) <∞ if and only if TV(0,ε)(fX,T ) <∞ for some (equivalently, any)
0 < ε < T , in which case

TV(0,ε)(fX,T ) ≤ fX,T (0+) + min(fX,T (ε), fX,T (ε−)).

Similarly, fX,T (T−) < ∞ if and only if TV(T−ε,T )(fX,T ) < ∞ for some (equivalently,
any) 0 < ε < T , in which case

TV(T−ε,T )(fX,T ) ≤ min(fX,T (T − ε), fX,T ((T − ε)−)) + fX,T (T−).

The proof of this theorem is nearly identical to the one of Theorem 3.1 in [3], with the
difference that intrinsic location functionals have the possibility of an infinite value, whereas
the leftmost path supremum in [3] could not. The details of this proof are found in [1].

The following are some other important results from [1] which will be expanded upon in
this work.

Definition 2.7: Denote by AT the class of probability measures F on ([0, T ] ∪ {∞}) with
the following properties:
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(1) The restriction of F to the interior (0, T ) of the interval is absolutely continuous.

(2) A version of the density is given by the right derivative of the cdf F ([0, t]) , 0 < t < T ,
which exists at every point in the interval (0, T ).

(3) This density f is right continuous, has left limits, and satisfies the total variation
constraints of Theorem 2.6.

Theorem 2.8: Let PT be the collection of all probability measures on ([0, T ] ∪ {∞}).
Then AT is a weakly closed convex subset of PT . Moreover, for any 0 < ε < T

2
, the

restrictions of the laws in AT to the interval (ε, T − ε) form a compact in total variation
family of finite measures.

Theorem 2.9: The extreme points of the set AT are:

(1) the measures µt, t ∈ (0, T ), concentrated on (0, T ) which are absolutely continuous
with respect to the Lebesgue measure on (0, T ), with density functions

fµt =
1

t
I(0,t), 0 < t < T ;

(2) the measures νt, t ∈ (0, T ), concentrated on (0, T ) which are absolutely continuous
with respect to the Lebesgue measure on (0, T ), with density functions

fνt =
1

T − t
I(t,T ), 0 < t < T ;

(3) the point masses/singular measures δ0, δT and δ∞.

Note that the functions I(a,b)(t) are indicator functions defined as

I(a,b)(t) :=

{
1 if t ∈ (a, b)

0 otherwise

9



Chapter 3

Intrinsic Multiple-Location
Functionals

We want to expand the results for intrinsic location functionals to a framework which can
describe n = 2 or more random locations. Properties such as shift compatibility from the
single-location case can be preserved, but other properties will have to be generalized. In
particular, stability under restrictions and consistency of existence have to be completely
re-worked to fit into this new framework.

It is important to keep in mind several key intuitions for this generalization:

(1) While it is possible to simply consider two intrinsic location functionals together, this
is not the only thing we want to do. Many of the locations we will work with will
not be intrinsic location functionals if they were to be considered on their own in the
single-case framework.

(2) The two locations can be related in several ways. They can be as dependent as the
first and second hitting times of a level k, or they can be almost completely unrelated
such as the first hitting time of a level k and the location of the largest slope.

(3) We can view multiple random locations as an ordered pair (vector), or as a random set
where we do not distinguish between the locations. In the latter case, which we will
begin with, the probabilistic question we are concerned with is whether one or more
of the locations are found in a given Borel subset of the real line.
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The space which our paired locations will occupy must first be defined. We are not going
to concern ourselves with the ordering of the locations (until Chapter 5) so they will be
described by sets in Γ2

I for I ∈ I, which is defined as:

Γ2
I := { sets of cardinality at most 2, with elements taken from I} .

We remark that the empty set ∅ ∈ Γ2
I as well. We interpret this construction to mean that

if a random location is not found in the interval I, it will simply be excluded from the set,
rather than identifying it as an infinite value as in the previous work on intrinsic location
functionals by Samorodnitsky and Shen [1].

Observe that each ξ ∈ Γ2
I can be described as a point measure (as defined in [4], pg.

123-124):

mξ =
∑
x∈ ξ

Ix,

where Ix(A) =

{
1 if x ∈ A
0 if x /∈ A

.

Hence we can equip Γ2
I with the point measure σ-algebra, denoted M2, described in [4],

pg. 124. More precisely, we let Mp(Γ
2
I) denote the space of all point measures defined by

Γ2
I , then M2 is defined as the smallest σ-algebra which contains all sets of the form{

m ∈Mp(Γ
2
I) | m(A) ∈ B

}
for A ∈ B(I), B ∈ B([0, 2]),

where B(·) denotes the Borel σ-algebra. This M2 is the σ-Algebra we will use to assure
the measurability of our generalized functionals. We keep the same H and I as previously
defined.

Definition 3.1: A mapping L2 : H × I → Γ2
R is called an intrinsic multiple-location

functional of degree 2 if it satisfies all of the following conditions:

(1) For every I ∈ I, L2(·, I) : H → Γ2
I is Cyl(H)/M2-measurable.

(2) (Shift compatibility) For every f ∈ H, I ∈ I, c ∈ R,

L2(f, I) = L2(θcf, I − c) + c,

where ξ ± c = {x± c | x ∈ ξ}.

11



(3) (Inclusion under restriction) For every f ∈ H, and I1, I2 ∈ I such that I2 ⊆ I1,

L2(f, I1) ∩ I2 ⊆ L2(f, I2).

(4) (Consistency of existence) For every f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1,∣∣L2(f, I1)
∣∣ ≥ ∣∣L2(f, I2)

∣∣ ,
where |·| represents the number of elements in the set.

A few things should be kept in mind about this definition for intuition:

(i) Inclusion under restriction says that when |L2(f, I1)| = 2, the elements xi ∈ L2(f, I1)
which are in I2 will ‘stay there’, but it may be that (xi ∈ L2(f, I1)) = xj ∈ L2(f, I2)
for i 6= j ∈ {1, 2}. This is merely for intuition, though, as we do not actually impose
an order on the random locations explicitly until Chapter 5. Example 3.2 shows a
case where {x1, x2} are defined in a way that this can happen.

(ii) Also due to inclusion under restriction,

L2(f, I1) = L2(f, I2) if
∣∣L2(f, I1) ∩ I2

∣∣ =
∣∣L2(f, I1)

∣∣.
(iii) Consistency of existence can be understood in a very similar manner to the single-

location case, but a key difference here is that we no longer use infinity to represent
undefined locations. That is, if

∣∣L2(f, I)
∣∣ < 2, then one of the locations was not

well-defined on I for the function f . Since I2 ⊆ I1, the locations are more likely to
be well-defined on I1.

Note that we will not always keep repeating ‘of degree 2’ for the intrinsic multiple-location
functionals, since we will always be working with n = 2 until Chapter 6.

Example 3.2: The most obvious example of an intrinsic multiple-location functional of
degree 2 following from the previous work of Samorodnitsky and Shen ([1],[2],[3]) describes
the locations of the two largest path suprema, or locations of the first two occurences of
the path supremum if it is not uniquely attained.

We let H be the space of upper semi-continuous functions, and let I be defined as before.
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For any f ∈ H and I = [a, b] ∈ I, we define L2(f, I) by

L2(f, I) =
{
τ 1
f,I , τ

2
f,I

}
where

τ 1
f,I = inf

{
t ∈M | f(t) = sup

s∈M
f(s)

}
,

and τ 2
f,I = inf

t ∈M \ {τ 1
f,I

}
| f(t) = sup

s∈M\{τ1f,I}
f(s)

 ,

for M = {a, b} ∪ {t ∈ I | t is a local maximum of X}.

We alluded to the possibility earlier of xi(f, I1) = xj(f, I2) for I2 ⊆ I1, i 6= j. This can
happen in this case; if τ 2

f,I1
∈ I2 and τ 1

f,I1
∈ (I1 \ I2), then τ 2

f,I1
= τ 1

f,I2
. For an illustration

of this scenario, see Figure 3.1 on page 14.

Example 3.3: We let H be the space of continuously differentiable functions: H = C1(R).

Then we define the first and second locations of the largest value of the derivative in
the same way as the locations of the first two path supremum, but with the continuous
derivative f ′ in place of f .

Example 3.4: Let H be the space of càdlàg functions on R, and consider the two locations
of the largest jumps of each path, or the locations of the first two occurrences of the largest
jump if the magnitude of the largest jump is not uniquely attained. Then L2(f, [0, T ]) on
the path f and interval [0, T ] is defined as

L2(f, [0, T ]) =
{
J1
f,[0,T ], J

2
f,[0,T ]

}
where

J1
f,[0,T ] = inf

{
t ∈ [0, T ]

∣∣∣ ∣∣f(t)− f(t−)
∣∣ = sup

s∈[0,T ]

∣∣f(s)− f(s−)
∣∣} ,

and J2
f,[0,T ] = inf

t ∈ [0, T ] \
{
J1
f,[0,T ]

} ∣∣∣ ∣∣f(t)− f(t−)
∣∣ = sup

s∈[0,T ]\
{
J1
f,[0,T ]

} ∣∣f(s)− f(s−)
∣∣ ,

is an intrinsic multiple-location functional.

It is simple to show that the functionals defined in Examples 3.2-3.4 are intrinsic multiple-
location functionals by checking the four conditions of Definition 3.1.
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Figure 3.1: A possible behaviour of path suprema locations under restriction.
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Chapter 4

Distributions of Intrinsic
Multiple-Location Functionals on
Stationary Processes

Now that we have defined the intrinsic multiple-location functionals of degree n = 2, we
proceed to characterising their distributions.

In order to discuss these intrinsic multiple-location functionals in a probability setting,
we consider the capacity functional FX,I(A) = P (L2(X, I) ∩ A 6= ∅) (as described in [6],
Section 1.2.2), which can be written as follows:

FX,I(A) = P
(
L2(X, I) ∩ A 6= ∅

)
=

2∑
j=0

P
(
L2(X, I) ∩ A 6= ∅ |

∣∣L2(X, I)
∣∣ = j

)
P
(∣∣L2(X, I)

∣∣ = j
)

= 0 + P
(
L2(X, I) ∈ A

)
P
(∣∣L2(X, I)

∣∣ = 1
)

+ P ({x1, x2} ∩ A 6= ∅)P
(∣∣L2(X, I)

∣∣ = 2
)

=
2∑

k=1

[
P
(
xk ∈ A,

∣∣L2(X, I) = 2
∣∣)+ P

(
xk ∈ A,

∣∣L2(X, I)
∣∣ = 1

)]
− P (x1, x2 ∈ A)

= P (x1 ∈ A) + P (x2 ∈ A)− P (x1, x2 ∈ A) , (4.1)

where without loss of generality, we take x1 = minL2(X, I) and x2 = maxL2(X, I).
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We are interested in the existence and properties of a version of the “density” of FX,I ,
taken as the right-derivative, i.e.

fX,I(t) = lim
ε↓0

1

ε
P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅

)
. (4.2)

Intuitively, this ‘density’ represents the limiting probability of having at least one of the
locations of L2(·, ·) in a small neighborhood (t, t + ε] of t ∈ (0, T ), scaled by 1

ε
. However,

FX,I is not actually a measure, hence it does not have a density in the usual sense.

Therefore, rather than working directly with FX,I , we will work with a measure F ?
X,I , which

is defined as:

F ?
X,I(A) = E

[∣∣L2(X, I) ∩ A
∣∣]. (4.3)

Intuitively, we can think of F ?
X,I(A) as the expected number of random locations of L2(X, I)

in A. In particular, when |L2(X, I)| = 2, we drop the term P (x1, x2 ∈ A) from (4.1) to get
F ?
X,I . It will be shown later (in Section 4.2) that the right-derivative of F ?

X,I is equal to the
‘density’ defined in (4.2) for FX,I .

For notational simplicity, when I = [0, T ] we write F ?
X,T .

Lemma 4.1:

(i) For any ∆ ∈ R,

F ?
X,[∆,T+∆](A) = F ?

X,T (A−∆) for all A ∈ B ([∆, T + ∆]) .

(ii) For intervals [c, d] ⊆ [a, b],

F ?
X,[a,b](B) ≤ F ?

X,[c,d](B) for all B ∈ B ([c, d]) .

(iii) For intervals [c, d] ⊆ [a, b],

F ?
X,[a,b]([a, b]) ≥ F ?

X,[c,d]([c, d]).

16



Proof:

(i)

F ?
X,[∆,T+∆](A) = E

[∣∣L2(X, [∆, T + ∆]) ∩ A
∣∣]

= E
[∣∣(L2(θ∆X, [0, T ]) + ∆) ∩ A

∣∣]
= E

[∣∣L2(θ∆X, [0, T ]) ∩ (A−∆)
∣∣]

= E
[∣∣L2(X, [0, T ]) ∩ (A−∆)

∣∣] = F ?
X,T (A−∆)

by shift compatibility, and since {Xt}t∈R is stationary, we have θ∆X
d
= X.

(ii)

F ?
X,[a,b](B) = E

[∣∣L2(X, [a, b]) ∩B
∣∣]

≤ E
[∣∣L2(X, [c, d]) ∩B

∣∣] = F ?
X,[c,d](B)

since L2(f, [a, b])∩ [c, d] ⊆ L2(f, [c, d]) for every f ∈ H by inclusion under restriction,
and therefore L2(f, [a, b]) ∩B ⊆ L2(f, [c, d]) ∩B since B ⊆ [c, d].

(iii)

F ?
X,[a,b] ([a, b]) = E

[∣∣L2(X, [a, b]) ∩ [a, b]
∣∣]

= E
[∣∣L2(X, [a, b])

∣∣]
≥ E

[∣∣L2(X, [c, d])
∣∣] = E

[∣∣L2(X, [c, d]) ∩ [c, d]
∣∣]

since |L2(f, [a, b])| ≥ |L2(f, [c, d])| for every f ∈ H by consistency of existence. �
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4.1 Existence of the density and total variation con-

straints

Before we begin the proof that the density of F ?
X,T exists, we must make an assumption that

assures the random locations of the intrinsic multiple-location functional are almost surely
distinct locations. Under our framework, we would have L2(f, I) = {x} if the locations are
both {x}, however this is supposed to mean that one of the locations was not well-defined
on the interval I. This ambiguity could cause many problems.

Assumption A: The stochastic process {Xt}t∈R and intrinsic multiple-location functional
L2(·, ·) are chosen such that the locations of L2(·, ·) are almost surely distinct whenever
they are both defined.

Theorem 4.2: Let L2 be an intrinsic multiple-location functional on the space of functions
H, and X = {Xt}t∈R be a stationary process with paths in H. Then the restriction of F ?

X,T

to the interior of [0, T ] is absolutely continuous. The density, denoted fX,T , can be taken
as the right derivative of F ?

X,T , which exists at every point in the interval (0, T ). Moreover,
fX,T is right-continuous, has left limits and has the following properties:

(a) The limits

fX,T (0+) = lim
t↓0

fX,T (t) and fX,T (T−) = lim
t↑T

fX,T (t) exist. (4.4)

(b) The density has a universal upper bound given by

fX,T (t) ≤ max

(
2

t
,

2

T − t

)
for every 0 < t < T. (4.5)

(c) The density has bounded variation away from the endpoints of the interval. Further-
more, for every 0 < t1 < t2 < T ,

TV(t1,t2)(fX,T ) ≤ min(fX,T (t1), fX,T (t−1 )) + min(fX,T (t2), fX,T (t−2 )), (4.6)

where TV(t1,t2)(fX,T ) = sup
n−1∑
i=1

|fX,T (si+1)− fX,T (si)|

is the total variation of fX,T on the interval (t1, t2), and the supremum is taken over
all choices of t1 < s1 < · · · < sn < t2 with finite n.
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(d) The density has bounded positive variation at the left endpoint and bounded negative
variation at the right endpoint. Furthermore, for every 0 < ε < T ,

TV+
(0,ε)(fX,T ) ≤ min(fX,T (ε), fX,T (ε−)), (4.7)

and TV−(T−ε,T )(fX,T ) ≤ min(fX,T (T − ε), fX,T ((T − ε)−)) (4.8)

where TV ±(a,b)(fX,T ) = sup
n−1∑
i=1

(fX,T (si+1)− fX,T (si))±

is the positive(negative) variation of fX,T on the interval (a, b), the supremum is taken
over all choices of a < s1 < · · · < sn < b with finite n, and (x)+ = max(x, 0), (x)− =
max(−x, 0).

(e) The limit fX,T (0+) <∞ if and only if TV(0,ε)(fX,T ) <∞ for some (equivalently, any)
0 < ε < T , in which case

TV(0,ε)(fX,T ) ≤ fX,T (0+) + min(fX,T (ε), fX,T (ε−)). (4.9)

Similarly, fX,T (T−) < ∞ if and only if TV(T−ε,T )(fX,T ) < ∞ for some (equivalently,
any) 0 < ε < T , in which case

TV(T−ε,T )(fX,T ) ≤ min(fX,T (T − ε), fX,T ((T − ε)−)) + fX,T (T−). (4.10)

Once we have shown these properties for the density fX,T of F ?
X,T , we will argue in Section

4.2 that the same properties apply to the ‘density’ of FX,T as defined in (4.2).

Lemma 4.3: F ?
X,T is absolutely continuous on (0, T ), and there exists a version of its

density which satisfies the bound in (4.5).

Proof: We claim that for any fixed 0 < δ < T
2
, and any δ ≤ t ≤ T − δ, ρ ∈

(
0, 1

2

)
,

0 < ε < ρ
1+ρ

δ,

F ?
X,T ((t, t+ ε]) ≤ ε

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
. (4.11)

Once (4.11) is shown, we take δ ↓ 0 to show that F ?
X,T is absolutely continuous on (0, T ).

Towards a contradiction, assume (4.11) does not hold for some

δ ≤ t ≤ T − δ, ρ ∈
(

0,
1

2

)
, 0 < ε <

ρ

1 + ρ
δ.
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Then choose a, b ∈ (0, T ) such that:

(i) (t, t+ ε] ⊆ [a, b] ⊆ (0, T ).

(ii) for some fixed ε < θ < ρ
1+ρ

δ,

min(t, T − t)− θ <
∣∣b− a∣∣ < min(t, T − t)− ε. (4.12)

Consider

F ?
X,[a,b] ((t− iε, t− (i− 1)ε]) = E

[∣∣L2(X, [a, b]) ∩ (t− iε, t− (i− 1)ε]
∣∣],

for i = −
(⌊

b−t
ε

⌋
− 1
)
, . . . ,

⌊
t−a
ε

⌋
.

Then note that

b t−aε c∑
i=−(b b−tε c−1)

F ?
X,[a,b] ((t− iε, t− (i− 1)ε]) (4.13)

=

b t−aε c∑
i=−(b b−tε c−1)

E
[∣∣L2(X, [a, b]) ∩ (t− iε, t− (i− 1)ε]

∣∣]

= E
[ b t−aε c∑
i=−(b b−tε c−1)

∣∣L2(X, [a, b]) ∩ (t− iε, t− (i− 1)ε]
∣∣] ≤ 2

since (t − iε, t − (i − 1)ε] ⊆ [a, b], L2(f, [a, b]) ⊆ [a, b], and the total summed expectation
must be less or equal to the total number of possible points over [a, b], which is 2.

By Lemma 4.1(i):

F ?
X,[a,b] ((t− iε, t− (i− 1)ε]) = F ?

X,[a+iε,b+iε] ((t, t+ ε]) . (4.14)

And by Lemma 4.1(ii), since (t, t+ε] ⊆ [a+iε, b+iε] ⊆ [0, T ] for all i = −
(⌊

b−t
ε

⌋
− 1
)
, . . . ,

⌊
t−a
ε

⌋
,

by construction

F ?
X,[a+iε,b+iε] ((t, t+ ε]) ≥ F ?

X,T ((t, t+ ε]) . (4.15)
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Putting (4.13), (4.14), and (4.15) together we get that

2 ≥
b t−aε c∑

i=−(b b−tε c−1)

F ?
X,[a,b] ((t− iε, t− (i− 1)ε])

=

b t−aε c∑
i=−(b b−tε c−1)

F ?
X,[a+iε,b+iε] ((t, t+ ε])

≥
b t−aε c∑

i=−(b b−tε c−1)

F ?
X,T ((t, t+ ε])

>

(⌊
t− a
ε

⌋
−
(
−
(⌊

b− t
ε

⌋
− 1

))
+ 1

)
ε

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
≥
(⌊

t− a
ε

+
b− t
ε

⌋
− 1

)
ε

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
=

(⌊
b− a
ε

⌋
− 1

)
ε

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
≥
(
b− a
ε
− 2

)
ε

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
= (b− a− 2ε)

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
> (min(t, T − t)− θ − 2ε)

(
1 + ρ

1− 2ρ

)
max

(
2

t
,

2

T − t

)
=

(
2− 2

θ + 2ε

min(t, T − t)

)(
1 + ρ

1− 2ρ

)
>

(
2− 2

3θ

min(t, T − t)

)(
1 + ρ

1− 2ρ

)
> 2

(
1− 3δ

min(t, T − t)
ρ

1 + ρ

)(
1 + ρ

1− 2ρ

)
> 2

(
1− 3ρ

1 + ρ

)(
1 + ρ

1− 2ρ

)
= 2

(
1− 2ρ

1 + ρ

)(
1 + ρ

1− 2ρ

)
= 2.

A contradiction, which finishes the proof of (4.11), and hence F ?
X,T is absolutely continuous

on (0, T ). �

This result (4.11) also tells us that there exists a version of the density of F ?
X,T which
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satisfies the bound in (4.5), given as

fX,T (t) = lim sup
ε↓0

1

ε
F ?
X,T ((t, t+ ε]) ≤ max

(
2

t
,

2

T − t

)
, 0 < t < T.

Before finishing the rest of the proof of Theorem 4.2, we first need to prove the following
useful lemma.

Lemma 4.4: Let 0 ≤ ∆ ≤ T . Then for any 0 ≤ δ ≤ ∆,

fX,T−∆(t) ≥ fX,T (t+ δ) for almost every t ∈ (0, T −∆), (4.16)

where f on either side of this inequality is taken as any version of the density, which exists
since we have just shown that F ?

X,T is absolutely continuous.

Moreover, for every such δ and ε1, ε2 ≥ 0 such that ε1 + ε2 < T −∆,∫ T−∆−ε2

ε1

(fX,T−∆(t)− fX,T (t+ δ)) dt (4.17)

≤
∫ ε1+δ

ε1

fX,T (t) dt+

∫ T−ε2

T−∆−ε2+δ

fX,T (t) dt.

Proof: By Lemma 4.1, for every Borel set B ⊆ (0, T −∆),∫
B

fX,T−∆(t) dt = F ?
X,T−∆(B) ≥ F ?

X,[−δ,T−δ](B) = F ?
X,T (B + δ)

=

∫
B+δ

fX,T (t) dt =

∫
B

fX,T (t+ δ) dt.

Since this holds for arbitrary an Borel set B ⊆ (0, T −∆), this proves (4.16).

Before we prove (4.17), observe that for any I ∈ I, F ?
X,I is a measure, hence for any

A ∈ B (I)

F ?
X,I(A) = F ?

X,I(I)− F ?
X,I(A

c), (4.18)
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where Ac is understood to be the complement of A in I, i.e. Ac = I \ A. Then∫ T−∆−ε2

ε1

(fX,T−∆(t)− fX,T (t+ δ)) dt

= F ?
X,T−∆ ((ε1, T −∆− ε2))− F ?

X,T ((ε1 + δ, T −∆− ε2 + δ))

= E
[∣∣L2(X, [0, T −∆]) ∩ (ε1, T −∆− ε2)

∣∣]− E
[∣∣L2(X, [0, T ]) ∩ (ε1 + δ, T −∆− ε2 + δ)

∣∣]
= E

[∣∣L2(X, [0, T ]) ∩ (ε1 + δ, T −∆− ε2 + δ)c
∣∣]− E

[∣∣L2(X, [0, T −∆]) ∩ (ε1, T −∆− ε2)c
∣∣]

+
[
F ?
X,T−∆([0, T −∆])− F ?

X,T ([0, T ])
]

≤ F ?
X,T ([0, ε1 + δ]) + F ?

X,T ([T −∆− ε2 + δ, T ])− F ?
X,T−∆([0, ε1])

− F ?
X,T−∆([T −∆− ε2, T −∆])

= F ?
X,T ((ε1, ε1 + δ]) +

[
F ?
X,T ([0, ε1])− F ?

X,T−∆([0, ε1])
]

+ F ?
X,T ([T −∆− ε2 + δ, T − ε2))

+
[
F ?
X,T ([T − ε2, T ])− F ?

X,[∆,T ]([T − ε2, T ])
]

≤ F ?
X,T ([ε1, ε1 + δ)) + F ?

X,T ([T −∆− ε2 + δ, T − ε2])

=

∫ ε1+δ

ε1

fX,T dt+

∫ T−ε2

T−∆−ε2+δ

fX,T (t) dt,

because every term in square brackets [·] is non-positive by Lemma 4.1(ii) with [0, T−∆] ⊆
[0, T ], [∆, T ] ⊆ [0, T ], and

[
F ?
X,T−∆([0, T −∆])− F ?

X,T ([0, T ])
]
≤ 0 by Lemma 4.1(iii). �

With this lemma in hand, we proceed to proving that F ?
X,T is right-differentiable at every

point in (0, T ) in order to work with the density fX,T as the right-derivative.

We know that F ?
X,T is right-differentiable for almost every t ∈ (0, T ) since F ?

X,T is absolutely
continuous on (0, T ), i.e. the set

A =
{
t ∈ (0, T ) | F ?

X,T is not right-differentiable at t
}

(4.19)

has Lebesgue measure zero. We also define

B = {t ∈ Ac | fX,T restricted to Ac does not have right limit at t} . (4.20)
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Proposition 4.5: The set B as defined in (4.20) is at most countable.

Proof: In order to show this, we define for every t ∈ Ac

L(t) = lim sup
s↓t,s∈Ac

fX,T (s), `(t) = lim inf
s↓t,s∈Ac

fX,T (s).

The claim that B is at most countable will follow if we prove that for any 0 < ε < T
2

and
θ > 0, the following set is finite:

Bε,θ = {t ∈ Ac ∩ (ε, T − ε) | L(t)− `(t) > θ}

since B can be written as a countable union of these Bε,θ.

It can actually be shown that the cardinality of Bε,θ cannot be larger than 8
εθ

. Towards a
contradiction, assume that

∣∣Bε,θ

∣∣ > 8
εθ

for some 0 < ε < T
2

and θ > 0. Then let N > 8
εθ

and take points ε < t1 < t2 < . . . < tN < T − ε in Bε,θ. Next, choose δ > 0 small enough
that δ < ε

2
and

δ <
1

2
min (t1 − ε, t2 − t1, . . . , tN − tN−1, T − ε− tN) . (4.21)

Now for i = 1, . . . , N choose a sequence {sn}∞n=1 ↓ ti, sn ∈ Ac such that fX,T (sn) −→
n→∞

L(ti).

Take n so large that sn − ti < δ
3

and let j > 0 be an integer such that

j ≥ 1

δ − (sn − ti)
.

Note that
bj(δ−(sn−ti))c−1⋃

k=0

(
ti −

k + 1

j
, ti −

k

j

)
⊆ (ti − δ, ti) ,

with
(
ti − k+1

j
, ti − k

j

)
disjoint for all k, so we have that

F ?
X,T−δ ((ti − δ, ti)) ≥

bj(δ−(sn−ti))c−1∑
k=0

F ?
X,T−δ

((
ti −

k + 1

j
, ti −

k

j

))
. (4.22)

For each k in the sum, define

hk := sn − ti +
k + 1

j
∈ (0, δ],
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where it is clear why hk > 0, and hk ≤ δ since

hk ≤ hk0 for k0 = bj(δ − (sn − ti))c − 1

= sn − ti +
bj(δ − (sn − ti))c − 1 + 1

j

≤ sn − ti +
j(δ − (sn − ti))

j
= δ.

Next, by Lemma 4.1(i),

bj(δ−(sn−ti))c−1∑
k=0

F ?
X,T−δ

((
ti −

k + 1

j
, ti −

k

j

))

=

bj(δ−(sn−ti))c−1∑
k=0

F ?
X,[hk,T−δ+hk]

((
ti −

k + 1

j
+ hk, ti −

k

j
+ hk

))
. (4.23)

We note that
(
ti − k+1

j
+ hk, ti − k

j
+ hk

)
⊆ [0, T − δ + hk] ⊆ [0, T ] for every k by choice

of δ, and hence we can apply Lemma 4.1(ii) to (4.22), (4.23):

F ?
X,T−δ ((ti − δ, ti)) ≥

bj(δ−(sn−ti))c−1∑
k=0

F ?
X,[hk,T−δ+hk]

((
ti −

k + 1

j
+ hk, ti −

k

j
+ hk

))

≥
bj(δ−(sn−ti))c−1∑

k=0

F ?
X,T

((
ti −

k + 1

j
+ hk, ti −

k

j
+ hk

))

=

bj(δ−(sn−ti))c−1∑
k=0

F ?
X,T

((
sn, sn +

1

j

))
= bj(δ − (sn − ti))cF ?

X,T

((
sn, sn +

1

j

))
−→
j→∞

(δ − (sn − ti)) fX,T (sn).

Letting n→∞, we can conclude that

F ?
X,T−δ ((ti − δ, ti)) ≥ δL(ti) for every i = 1, . . . , N. (4.24)

Similarly for i = 1, . . . , N we choose a sequence {wn}∞n=1 ↓ ti, wn ∈ Ac such that
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fX,T (wn)→ `(ti). For large n such that wn − ti < δ
3

and integer j ≥ 1
δ−(wn−ti) we have

F ?
X,T+δ ((ti, ti + δ)) ≤ F ?

X,T+δ ((ti, wn)) + F ?
X,T+δ ((wn, wn + δ))

≤ F ?
X,T+δ ((ti, wn)) +

dδje−1∑
k=0

F ?
X,T+δ

((
wn +

k

j
, wn +

k + 1

j

))
(4.25)

since (wn, wn + δ) ⊆
dδje−1⋃
k=0

((
wn +

k

j
, wn +

k + 1

j

))
.

Now define

hk =
k

j
∈ [0, δ],

then because hk ≤ δ, by Lemma 4.1 (i) and (4.25),

F ?
X,T+δ ((ti, ti + δ)) ≤ F ?

X,T+δ ((ti, wn)) (4.26)

+

dδje−1∑
k=0

F ?
X,[−hk,T+δ−hk]

((
wn +

k

j
− hk, wn +

k + 1

j
− hk

))
.

Now by Lemma 4.1(ii) with [0, T ] ⊆ [−hk, T + δ − hk], applied to (4.26):

F ?
X,T+δ ((ti, ti + δ)) ≤ F ?

X,T+δ ((ti, wn)) +

dδje−1∑
k=0

F ?
X,T

((
wn +

k

j
− hk, wn +

k + 1

j
− hk

))

= F ?
X,T+δ ((ti, wn)) +

dδje−1∑
k=0

F ?
X,T

((
wn, wn +

1

j

))
= F ?

X,T+δ ((ti, wn)) + dδjeF ?
X,T

((
wn, wn +

1

j

))
. (4.27)

Letting j →∞ and then n→∞ in (4.27) gives

F ?
X,T+δ ((ti, ti + δ)) ≤ δ`(ti) for every i = 1, . . . , N. (4.28)

Putting together (4.24) and (4.28), recalling that for t ∈ Bε,θ, L(t)− `(t) > θ, we get that

Nδθ ≤ F ?
X,T−δ

(
N⋃
i=1

(ti − δ, ti))

)
− F ?

X,T+δ

(
N⋃
i=1

(ti, ti + δ)

)
=

∫
∪Ni=1(ti−δ,ti)

(fX,T−δ(t)− fX,T+δ(t+ δ)) dt. (4.29)
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We note that

N⋃
i=1

(ti − δ, ti) ⊆ (ε− δ, T − ε),

hence the integral in (4.29) is bounded by∫ T−ε

ε−δ
(fX,T−δ(t)− fX,T+δ(t+ δ)) dt

≤
∫ ε

ε−δ
fX,T+δ(t) dt+

∫ T−ε+2δ

T−ε+δ
fX,T+δ(t) dt, (4.30)

with (4.30) following from Lemma 4.4 since the integrand is non-negative almost every-
where.

We already proved the bound on the density (4.5), which we can apply here to get that∫ ε

ε−δ
fX,T+δ(t) dt+

∫ T−ε+2δ

T−ε+δ
fX,T+δ(t) dt

≤ 2

∫ ε

ε−δ
max

(
1

t
,

1

T + δ − t

)
dt+ 2

∫ T−ε+2δ

T−ε+δ
max

(
1

t
,

1

T + δ − t

)
dt

= 2

∫ ε

ε−δ

1

t
dt+ 2

∫ T−ε+2δ

T−ε+δ

1

T + δ − t
dt

≤ 2

∫ ε

ε−δ

1

ε− δ
dt+ 2

∫ T−ε+2δ

T−ε+δ

1

ε− δ
dt = 4

δ

ε− δ
.

This implies that

Nδθ ≤ 4
δ

ε− δ
≤ 8δ

ε
,

hence N ≤ 8
εθ

, which contradicts our assumption that N > 8
εθ

. Therefore, the set B as
defined in (4.20) is at most countable. �
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Proposition 4.6: F ?
X,T is right-differentiable at every point t ∈ (0, T ).

Proof: We first note that

fX,T (t) = lim
s↓t

1

s− t
F ?
X,T ((t, s])

= lim
s↓t

1

s− t

∫ s

t

fX,T (w) dt = lim
w↓t,w∈Ac\B

fX,T (w) (4.31)

for every t ∈ Ac \B.

We suppose to the contrary that there exists a t ∈ (0, T ) for which the right-derivative of
F ?
X,T does not exist, and therefore take real numbers a, b ∈ R such that

lim inf
ε↓0

F ?
X,T (t+ ε)− F ?

X,T (t)

ε
< a < b < lim sup

ε↓0

F ?
X,T (t+ ε)− F ?

X,T (t)

ε
,

where F ?
X,T (t) = F ?

X,T ((−∞, t]).
This means that there exists a sequence {tn}∞n=1 ↓ t, tn ∈ (Ac \B) for each n such that

fX,T (t2n−1) > b and fX,T (t2n) < a for all n = 1, 2, . . .

Without loss of generality we can choose t1 close to t such that t1 <
T+t

2
.

By (4.31), then, for every n = 1, 2, . . . there exists a δn > 0 such that

fX,T (w) > b for almost all w ∈ (t2n−1, t2n−1 + δ2n−1), (4.32)

and fX,T (w) < a for almost all w ∈ (t2n, t2n + δ2n).

Now let m ≥ 1, and consider an s > 0 so small that s < minn=1,...,2m δn and t1 <
T+t

2
− s.

We can see that∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw (4.33)

≥
∫ t+s

t

bT−t
2s c−1∑
i=0

(fX,T (w + (i+ 1)s)− fX,T (w + is))+ dw

by simple inclusion of the bounds of integration.

For every point w ∈ (t, t+s), each of the intervals (tn, tn+δn) for n = 1, 2, . . . , 2m contains
at least one of the points in the sequence (w + is), i = 0, 1, . . . ,

⌊
T−t
2s

⌋
− 1 by construction.
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Intuitively, we think of this sequence as a finer partition than the one created by the given
sequence of δn. As we can see in (4.32), for almost every w ∈ (t, t + s), the points of
the sequence (w + is) which are in the odd-numbered intervals (i.e. (t2n−1, t2n−1 + δ2n−1))
satisfy fX,T (w+ is) > b and those in the even-numbered intervals satisfy fX,T (w+ is) < a.
Therefore we conclude that

bT−t
2s c−1∑
i=0

(fX,T (w + (i+ 1)s)− fX,T (w + is))+ ≥ m(b− a). (4.34)

for almost every w ∈ (t, t+ s). And hence by (4.33) and (4.34),∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw ≥ sm(b− a). (4.35)

Recall that m ≥ 1 can be taken arbitrarily large, so we finally conclude that

lim
s↓0

1

s

∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw ≥ m(b− a) for every m ≥ 1,

therefore lim
s↓0

1

s

∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw =∞. (4.36)

However, we will show that (4.36) is impossible, leading to a contradiction, meaning that
F ?
X,T is in fact right-differentiable at every t ∈ (0, T ).

By Lemma 4.4 (namely 4.16), for s > 0 small enough,

fX,T−2s(w − s) ≥ fX,T (w + s) almost everywhere on (s, T − s) ⊇
(
t,
T + t

2

)
.

Meaning that for such s > 0, we get that∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw ≤
∫ T+t

2

t

(fX,T−2s(w − s)− fX,T (w))+ dw (4.37)

≤
∫ T+t

2
−s

t−s
(fX,T−2s(w)− fX,T (w + s)) dw,

where we drop the (·)+ since the integrand is almost everywhere non-negative from another
application of Lemma 4.4. Applying the second part of Lemma 4.4, we get that∫ T+t

2
−s

t−s
(fX,T−2s(w)− fX,T (w + s)) dw (4.38)

≤
∫ t

t−s
fX,T (w) dw +

∫ T+t
2

+s

T+t
2

fX,T (w) dw.
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However, using the inequalities in (4.37) and (4.38), then taking the limit as in (4.36) gives

lim
s↓0

1

s

∫ T+t
2

t

(fX,T (w + s)− fX,T (w))+ dw

≤ lim
s↓0

1

s

[ ∫ t

t−s
fX,T (w) dw +

∫ T+t
2

+s

T+t
2

fX,T (w) dw
]

≤ lim
s↓0

1

s

[ ∫ t

t−s
max

(
2

w
,

2

T − w

)
dw +

∫ T+t
2

+s

T+t
2

max

(
2

w
,

2

T − w

)
dw
]

≤ lim
s↓0

1

s
s · C for some C ∈ R

= C <∞,

which contradicts (4.36), so F ?
X,T is right-differentiable for every point t ∈ (0, T ). �

Now that we have shown that fX,T exists everywhere in (0, T ) as the right-derivative of
F ?
X,T in Proposition 4.6, we want to show that it is right continuous and has left limits.

Proposition 4.7: fX,T taken as the right-derivative of F ?
X,T is right continuous and has

left limits everywhere in (0, T ).

Proof: Note that F ?
X,T being right-differentiable everywhere means that A as defined in

(4.19) is empty.

Consequently, fX,T as defined in (4.31) becomes

fX,T (t) = lim
s↓t,s∈Bc

fX,T (s), (4.39)

where we note that there is no point t ∈ (0, T ) such that this limit on the right-hand side
does not exist. Indeed, suppose to the contrary that it does not exist for some t ∈ (0, T ),
then this means there is a sequence {tn}∞n=1 ↓ t, tn ∈ Bc for each n and real numbers a < b
such that

fX,T (t2n−1) > b and fX,T (t2n) < a for all n = 1, 2, . . .

as before, but we have already established that such a sequence cannot exist.

Lastly, since B was shown to be at most countable in Proposition 4.5, the restriction
to s ∈ Bc in (4.39) does not affect the right-continuity of fX,T at t ∈ (0, T ), so fX,T is
right-continuous for all t ∈ (0, T ). The proof of left limits is analogous. �
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We will now prove the total variation constraint of (4.6) on the density.

Proposition 4.8: If 0 < t1 < t2 < T , then

TV(t1,t2)(fX,T ) ≤ min
(
fX,T (t1), fX,T (t−1 )

)
+ min

(
fX,T (t2), fX,T (t−2 )

)
.

Consider a sequence {rn}∞n=1 such that rn → 0 as n → ∞ and 0 < rn < T − t2. Fix one
such n ∈ {1, 2, . . .} and then define

C+ = {t ∈ (t1, t2) | fX,T (t+ rn) ≥ fX,T (t)}
and C− = {t ∈ (t1, t2) | fX,T (t+ rn) < fX,T (t)} .

Therefore, ∫ t2

t1

|fX,T (t+ rn)− fX,T (t)| dt =

∫
C+

fX,T (t+ rn)− fX,T (t) dt

+

∫
C−

fX,T (t)− fX,T (t+ rn) dt.

By Lemma 4.4, fX,T−rn(t) ≥ fX,T (rn+t) almost everywhere on (0, T −rn) ⊇ (t1, t2). Hence∫
C+

fX,T (t+ rn)− fX,T (t) dt ≤
∫
C+

fX,T−rn(t)− fX,T (t) dt

≤
∫ t2

t1

fX,T−rn(t)− fX,T (t) dt.

Now apply Lemma 4.4 with ∆ = rn, δ = 0, ε1 = t1, T −∆− ε2 = t2:∫
C+

fX,T (t+ rn)− fX,T (t) dt ≤
∫ t2+rn

t2

fX,T (t) dt,

which gives

lim sup
n→∞

1

rn

∫
C+

fX,T (t+ rn)− fX,T (t) dt ≤ fX,T (t2) (4.40)

by the fundamental theorem of calculus, and fX,T being right-continuous.
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Similarly for the C− case, by Lemma 4.4 again, fX,T (t + rn) ≥ fX,T+rn(t + rn) almost
everywhere on (0, T − rn) ⊇ (t1, t2), and hence∫

C−

fX,T (t)− fX,T (t+ rn) dt ≤
∫
C−

fX,T (t)− fX,T+rn(t+ rn) dt

≤
∫ t2

t1

fX,T (t)− fX,T+rn(t+ rn) dt

≤
∫ t1+rn

t1

fX,T+rn(t) dt, (4.41)

by using T + rn in place of T , so that ∆ = rn, (T + rn) − ∆ = T , and δ = ∆ = rn in
Lemma 4.4.

The integral in (4.41) is bounded by both of the following:∫ t1+rn

t1

fX,T+rn(t) dt ≤
∫ t1+rn

t1

fX,T (t) dt, (a)

and

∫ t1+rn

t1

fX,T+rn(t) dt ≤
∫ t1+rn

t1

fX,T (t− rn) dt =

∫ t1

t1−rn
fX,T (t) dt. (b)

Inequality (a) follows from Lemma 4.4; fX,T−∆(t) ≥ fX,T (t+ δ) with T = T + rn, δ = 0.

Inequality (b) also follows from Lemma 4.4; fX,T (t − rn) ≥ fX,T+rn(t), with T = T + rn,
δ = ∆ = rn. Therefore

lim sup
n→∞

1

rn

∫
C−

fX,T (t)− fX,T (t+ rn) dt ≤ min
(
fX,T (t1), fX,T (t−1 )

)
. (4.42)

Finally, by combining (4.40) and (4.42), we get that

lim sup
n→∞

1

rn

∫ t2

t1

|fX,T (t+ rn)− fX,T (t)| dt ≤ min
(
fX,T (t1), fX,T (t−1 )

)
+ fX,T (t2).

What remains is to apply this result to the proof of total variation. To that end, define
the sequence {rn}∞n=1 as

rn =
|t2 − t1|
n+ 1

for all n = 1, 2, . . .

.
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Then we can use (4.42) to bound the total variation, as follows:∫ t2

t1

|fX,T (t+ rn)− fX,T (t)| dt =
n∑
i=0

∫ t1+rn

t1

|fX,T (t+ (i+ 1) rn)− fX,T (t+ irn)| dt,

and we also note that

TV(t1,t2)(fX,T ) ≤ lim
n→∞

n∑
i=0

|fX,T (t+ (i+ 1) rn)− fX,T (t+ irn)|

uniformly for t ∈ (t1, t1 +rn) since (t+(n+1)rn) = t+ |t2 − t1| /∈ (t1, t2) and TV(t1,t2)(fX,T )
is a non-decreasing function. Therefore

min
(
fX,T (t1), fX,T (t−1 )

)
+ fX,T (t2)

≥ lim sup
n→∞

1

rn

∫ t2

t1

|fX,T (t+ rn)− fX,T (t)| dt

≥ lim sup
n→∞

1

rn

∫ t1+rn

t1

n∑
i=0

|fX,T (t+ (i+ 1) rn)− fX,T (t+ rn)| dt

≥ TV(t1,t2)(fX,T ).

Moreover, we note that

TV(t1,t2)(fX,T ) = lim
ε↓0

TV(t1,t2−ε)(fX,T )

≤ min(fX,T (t1), fX,T (t−1 )) + lim
ε↓0

fX,T (t2 − ε).

Therefore

TV(t1,t2)(fX,T ) ≤ min
(
fX,T (t1), fX,T (t−1 )

)
+ min

(
fX,T (t2), fX,T (t−2 )

)
as required. �

The proofs of (4.7) and (4.8) are identical to the proof of (4.6), with each of the proofs
using one side of the two-sided argument performed for (4.6).

For (4.4), clearly the boundedness of the positive variation of the density at zero given in
(4.7) gives that the limit fX,T (0+) = limt↓0 fX,T (t) exists. Similarly, the boundedness of the
negative variation of the density at the endpoint T implies that fX,T (T−) = limt↑T fX,T (t)
exists as well.
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For (4.9), if TV(0,ε)(fX,T ) <∞ for some 0 < ε < T , then the same argument used to prove
(4.6) shows that for any 0 < ε < T ,

TV−(0,ε)(fX,T ) ≤ fX,T (0+).

Therefore with (4.7), we get that TV(0,ε)(fX,T ) < ∞ which proves (4.9). One can prove
(4.10), which is about the behaviour of the density at the right endpoint, in the same way.

This completes the proof of Theorem 4.2. �

4.2 Relating Expected Number of Random Locations

back to the Capacity Functional

As alluded to previously, once we had shown these results for F ?
X,I , we would relate them

back to FX,I , the capacity functional. We defined a ‘density’ for FX,I in (4.2) as

fX,I(t) = lim
ε↓0

1

ε
P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅

)
. (4.43)

Without loss of generality, let x1 = minL2(X, I), x2 = maxL2(X, I). Then define the
function gε(·) as:

gε(t) = P (x2 ∈ (t, t+ ε] | x1 = t) , t ∈ (0, T ).

Assumption M: We assume that gε(t) → 0 as ε ↓ 0, uniformly for t ∈ (0, T ). Hence
gε(t) ≤ C(ε) for every t ∈ (0, T ), for a function C(ε) such that limε↓0C(ε) = 0.

Theorem 4.9: Under Assumption M, fX,I as defined in (4.43) is equal to the right-
derivative of F ?

X,I , denoted f ?X,I .

Proof: Note that we can write fX,I(t) as follows for every t ∈ (0, T ):

fX,I(t) = lim
ε↓0

1

ε

[ 2∑
j=0

P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅ |

∣∣L2(X, I)
∣∣ = j

)
P
(∣∣L2(X, I)

∣∣ = j
) ]

= lim
ε↓0

1

ε

[
P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅ |

∣∣L2(X, I)
∣∣ = 1

)
P
(∣∣L2(X, I)

∣∣ = 1
)

+ P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅ |

∣∣L2(X, I)
∣∣ = 2

)
P
(∣∣L2(X, I)

∣∣ = 2
) ]
.
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Now consider fX,I(t)− f ?X,I(t):

fX,I(t)− f ?X,I(t) = lim
ε↓0

1

ε
P
(
L2(X, I) ∩ (t, t+ ε] 6= ∅ |

∣∣L2(X, I)
∣∣ = 2

)
P
(∣∣L2(X, I)

∣∣ = 2
)

− lim
ε↓0

1

ε

[
P
(
x1 ∈ (t, t+ ε] |

∣∣L2(X, I)
∣∣ = 2

)
+ P

(
x2 ∈ (t, t+ ε] |

∣∣L2(X, I)
∣∣ = 2

) ]
× P

(∣∣L2(X, I)
∣∣ = 2

)
= lim

ε↓0

1

ε
P
(
x1, x2 ∈ (t, t+ ε] |

∣∣L2(X, I)
∣∣ = 2

)
P
(∣∣L2(X, I)

∣∣ = 2
)
. (4.44)

Now note that

lim
ε↓0

1

ε
P (x1, x2 ∈ (t, t+ ε]) = lim

ε↓0

1

ε
P (x2 ∈ (t, t+ ε] | x1 ∈ (t, t+ ε])P (x1 ∈ (t, t+ ε])

≤ lim
ε↓0

1

ε

∫ t+ε

t

gε(y)dFy · P (x1 ∈ (t, t+ ε]) , (4.45)

where Fy(A) = P (x1 ∈ A | x1 ∈ (t, t+ ε]). Furthermore,

P (x1 ∈ (t, t+ ε]) ≤ F ?
X,I ((t, t+ ε]) . (4.46)

Hence from (4.45), (4.46) and (4.5) we get that

lim
ε↓0

1

ε
P (x1, x2 ∈ (t, t+ ε]) ≤ lim

ε↓0

(∫ t+ε

t

gε(y)dFy

)
f ?X,I(t)

≤ lim
ε↓0

(∫ t+ε

t

gε(y)dFy

)
max

(
2

t
,

2

T − t

)
≤ lim

ε↓0

(∫ t+ε

t

C(ε) dFy

)
max

(
2

t
,

2

T − t

)
= lim

ε↓0
C(ε) · Fy ((t, t+ ε]) max

(
2

t
,

2

T − t

)
= 0.

Hence the limit in (4.44) is zero and the ‘density’ of FX,I as defined in (4.43) is equal to
the right-derivative of F ?

X,I and hence shares the same properties as derived in Theorem
4.2 for f ?X,I , as required. �
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4.3 Structure of the class of measures A2
T

We showed in Theorem 4.2 that the distributions of intrinsic multiple-location functionals
L2(f, [0, T ]) satisfy very specific properties, for any stationary process {Xt}t∈R and T > 0.

We will examine the structure of the class of all such distributions, and see that it has
properties that we can work with to derive further results.

Definition 4.10: We denote by A2
T the class of measures F on [0, T ] with the following

properties:

(1) F ([0, T ]) ≤ 2.

(2) The restriction of F to the interior (0, T ) of the interval is absolutely continuous.

(3) A version of the density f as the right derivative of F , given by

f(t) = lim
ε↓0

1

ε
(F ((−∞, t+ ε])− F ((−∞, t])) , t ∈ (0, T )

exists at every point in the interval (0, T ).

(4) This density f is right continuous, has left limits and satisfies the total variation
restrictions (4.6) to (4.10).

Note that we do not include the requirement that f satisfies the bound (4.5) since it can
be derived from the total variation constraints.

Before we prove some properties about this A2
T , we need the following useful lemma (The-

orem 20, p. 298 in [5]).

Lemma 4.11: Let S = R be the real line, B = B(S) be the Borel σ-algebra, and λ be the
Lebesgue measure. Suppose 1 ≤ p <∞ then a subset K of

Lp(S,B, λ) :=

{
f |
∫
S

∣∣f(x)
∣∣p dλ <∞}

is relatively compact (meaning that it has a compact closure) if and only if it is bounded
and both of the following hold:

(i) lim
x→0

∫
S

∣∣f(x+ y)− f(y)
∣∣p dy = 0 uniformly for f ∈ K.

(ii) lim
A↑supS

(∫ supS

A

∣∣f(y)
∣∣p dy + lim

A↓inf S

∫ A

inf S

∣∣f(y)
∣∣p dy) = 0 uniformly for f ∈ K.
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Theorem 4.12: Denote by P2
T the set of all measures on [0, T ] which take values in [0, 2].

Then the set A2
T is a weakly closed convex subset of P2

T . Moreover, for any 0 < ε < T
2
,

the restrictions of the measures in A2
T to the interval (ε, T − ε) form a compact (in total

variation) family of finite measures.

Proof: The convexity of A2
T is clear by construction.

Fix 0 < ε < T
2
, and let f be a version of the density for an arbitrary F ∈ A2

T as described
in Definition 4.10.

For x > 0 small enough, we get that∫ T−ε

ε

∣∣f(x+ y)− f(y)
∣∣ dy

=

bT−2ε
x c∑
j=1

∫ ε+jx

ε+(j−1)x

∣∣f(x+ y)− f(y)
∣∣ dy +

∫ T−ε

ε+bT−2ε
x cx

∣∣f(x+ y)− f(y)
∣∣ dy

≤
∫ x

0

bT−2ε
x c∑
j=1

∣∣f(ε+ jx+ y)− f(ε+ (j − 1)x+ y)
∣∣ dy + max

(
2

ε
,

2

T − ε

)
x

≤ TV(ε,T−ε)(f)x+ max

(
2

ε
,

2

T − ε

)
x ≤ 6 max

(
1

ε
,

1

T − ε

)
x, (4.47)

by (4.5) and (4.6). Since the upper bound in (4.47) converges to 0 as x ↓ 0 uniformly over
the entire class A2

T , we conclude by Lemma 4.11 that the densities of the measures in A2
T

form a relatively compact family in L1(ε, T − ε) for each 0 < ε < T
2
, where

L1(ε, T − ε) :=

{
f
∣∣∣ ∫ T−ε

ε

∣∣f(x)
∣∣ dλ <∞} .

Note that the requirement (ii) in Lemma 4.11 is trivial here since we only require

lim
A→(T−ε)

∫ T−ε

A

∣∣f(y)
∣∣ dy + lim

A→ε

∫ A

ε

∣∣f(y)
∣∣ dy = 0 uniformly for f ∈ ∂A2

T ,

where ∂A2
T is the set of densities of measures in A2

T . Clearly this holds, since the Lebesgue
measure is absolutely continuous and the densities f over (ε, T − ε) are bounded by
supt∈(ε,T−ε) max

(
2
t
, 2
T−t

)
= 2

ε
by (4.5).

Now let {Fn}n=1,2,... be a sequence of measures in A2
T such that Fn

weak
=⇒ F for F ∈ P2

T .

We wish to show that F ∈ A2
T in order to prove A2

T is weakly closed. To do so, we will
show F satisfies the conditions of Definition 4.10.
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For every n ≥ 1, denote by fn the version of the density of Fn as defined in Definition 4.10.

Let 0 < t < T , then for any 0 < ε < min(t, T − t), since F is the weak limit of Fn, we have
that

F ((t− ε, t+ ε)) ≤ lim inf
n→∞

Fn ((t− ε, t+ ε)) ≤
∫ t+ε

t−ε
max

(
2

s
,

2

T − s

)
ds. (4.48)

Hence F is absolutely continuous in the interior of [0, T ] with a density f satisfying

f(t) ≤
(

2

t
,

2

T − t

)
for every 0 < t < T.

Since for every 0 < ε < T
2
, the sequence (fn)n=1,2,... is relatively compact in L1(ε, T − ε),

we conclude

fn → f in L1(ε, T − ε). (4.49)

From (4.49), for a fixed 0 < ε < T
2
, there exists a subsequence (fnk)k=1,2,... with nk → ∞

as k →∞ such that

fnk → f almost everywhere in (ε, T − ε). (4.50)

For simplicity in the rest of the proof, we will just denote (fnk)k=1,2,... as the whole sequence
(fn)n=1,2,..., and we will define A? as the set of t ∈ (ε, T − ε) which satisfy (4.50), whose
complement has zero measure.

We next claim that for every ε < t < T − ε,

lim
s↓t,s∈A?

f(s) exists, and lim
s↑t,s∈A?

f(s) exists. (4.51)

We will only prove the first statement since the other is done in the same way. Suppose
towards a contradiction that for some t ∈ (ε, T − ε) the limit taken from the right (s ↓ t)
does not exist. Then there exist sequences {sm}∞m=1 ↓ t, {vm}

∞
m=1 ↓ t in A? such that

b := lim
m→∞

f(sm) > a := lim
m→∞

f(vm).

Without loss of generality we can take s1 > v1 > s2 > v2 > . . . > t. Then we let
τ = b− a > 0, and take M > 0 sufficiently large so that

f(sm) > b− τ

6
, f(vm) < a+

τ

6
for all m > M. (4.52)
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Also choose K > 0 sufficiently large so that

(2K − 1)τ > 6 max

(
2

ε
,

2

T − ε

)
.

Finally, choose n > 0 sufficiently large so that∣∣fn(vm)− f(vm)
∣∣ ≤ τ

6
and

∣∣fn(sm)− f(sm)
∣∣ ≤ τ

6
, (4.53)

for each m = M + 1, . . . ,M +K, this is possible because every sm, vm is in the set A?, the
set on which fn → f point-wise. It now follows from (4.52) and (4.53) that

fn(sm) > b− τ

3
and fn(vm) < a+

τ

3
for each m = M + 1, . . . ,M +K.

Therefore,

M+K∑
m=M+1

∣∣fn(sm)− fn(vm)
∣∣+

M+K−1∑
m=M+1

∣∣fn(vm)− fn(sm+1)
∣∣

>
M+K∑
m=M+1

∣∣ (b− τ

3

)
− fn(vm)

∣∣+
M+K−1∑
m=M+1

∣∣fn(sm+1)− fn(vm)
∣∣

>
M+K∑
m=M+1

∣∣ (b− τ

3

)
− fn(vm)

∣∣+
M+K−1∑
m=M+1

∣∣ (b− τ

3

)
− fn(vm)

∣∣. (4.54)

The terms in these sums are always positive since fn(vm) < a+ τ
3
< b− τ

3
by construction,

hence

M+K∑
m=M+1

∣∣fn(sm)− fn(vm)
∣∣+

M+K−1∑
m=M+1

∣∣fn(vm)− fn(sm+1)
∣∣

>

M+K∑
m=M+1

b− τ

3
− fn(vm) +

M+K−1∑
m=M+1

b− τ

3
− fn(vm)

= (2K − 1)
(
b− τ

3
− fn(vm)

)
> (2K − 1)

(
b− τ

3
−
(
a+

τ

3

))
= (2K − 1)

(
b− a− 2τ

3

)
= (2K − 1)

τ

3
.
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We chose K such that (2K − 1)τ > 6 max
(

2
ε
, 2
T−ε

)
, hence we have

M+K∑
m=M+1

∣∣fn(sm)− fn(vm)
∣∣+

M+K−1∑
m=M+1

∣∣fn(vm)− fn(sm+1)
∣∣ > 2 max

(
2

ε
,

2

T − ε

)
.

However, by (4.5) we know that

max (fn(sM+1), fn(vM+K)) ≤ max

(
2

ε
,

2

T − ε

)
.

Hence we have a contradiction of the total variation constraint (4.6) combined with the
upper bound in (4.5), therefore the claim in (4.51) holds.

Next we show that the set

B? =

{
t ∈ A? | f(t) 6= lim

s↓t,s∈A?
f(s)

}
is at most countable. To accomplish this we show that for every θ > 0, the set

B?(θ) =

{
t ∈ A? |

∣∣f(t)− lim
s↓t,s∈A?

f(s)
∣∣ > θ

}
is finite, since B? can be written as the countable union of B?(θ) over θ ∈ Q ∩ (0,∞). We
actually claim that

∣∣B?(θ)
∣∣ ≤ 6

θ
max

(
2

ε
,

2

T − ε

)
. (4.55)

To prove this, assume towards a contradiction that there are points ε < v1 < v2 < . . . <
vK < T − ε in B?(θ) for some

K >
6

θ
max

(
2

ε
,

2

T − ε

)
.

Then for every m = 1, . . . , K, choose sm ∈ A? with vm < sm < vm+1 and vK+1 = T − ε,
such that ∣∣f(vm)− f(sm)

∣∣ > θ.
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Next choose n sufficiency large such that∣∣fn(vm)− f(vm)
∣∣ ≤ θ

3
,

∣∣fn(sm)− f(sm)
∣∣ ≤ θ

3
, for all m = 1, . . . , K.

Then for every m = 1, . . . , K,∣∣fn(vm)− fn(sm)
∣∣ =

∣∣ (f(sm)− f(vm))− (f(sm)− fn(sm))− (fn(vm)− f(vm))
∣∣

>
∣∣f(sm)− f(vm)

∣∣− ∣∣fn(sm)− f(sm)
∣∣− ∣∣fn(vm)− f(vm)

∣∣ > θ

3
.

And by our choice of K, this means

K∑
m=1

∣∣fn(sm)− fn(vm)
∣∣ > Kθ

3
> 2 max

(
2

ε
,

2

T − ε

)
.

However, this is again a contradiction of the total variation constraint (4.6) combined with
the upper bound in (4.5). Hence B? is at most countable.

Since we know there is a subsequence (fnk)k=1,2,... with nk → ∞ as k → ∞ such that
fnk(t) → f(t) for almost every t ∈ (ε, T − ε), we use a standard diagonal argument with
sequences

(
fmnk
)
k=1,2,...

to take ε = 2−m ↓ 0 and hence conclude that this holds for almost

every t ∈ (0, T ).

We denote by A? the set of such t ∈ (0, T ) for which this result holds, whose complement
is of zero measure. We therefore conclude that (4.51) holds for every t ∈ (0, T )∩A?. Since
B? (now over (0, T ) since A? is redefined) is at most countable, we can now define

g(t) = lim
s↓t,s∈A?

f(s), 0 < t < T. (4.56)

This function is clearly right-continuous by construction, and has left limits by (4.51).
Additionally, g concides with f on (A? \B?), so g is a version of f , hence it is a density
of the measure F on the interior of the interval [0, T ]. Since g is right-continuous as the
density of F on (0, T ), this means that F is right-differentiable at every point in (0, T ).
Lastly, g satisfies the total variation constraints (4.6) to (4.10). Therefore A2

T is weakly
closed.

It remains to prove the last statement of the theorem that for any 0 < ε < T
2
, the measures

in A2
T restricted to the interval (ε, T −ε) form a compact (in total variation) family of finite

measures.
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Let 0 < ε < T
2

and let (Fn)n=1,2,... be a sequence in A2
T . Because P2

T is weakly compact,
we can choose a subsequence (Fnk)k=1,2,... with nk →∞ as k →∞ which converges weakly

to some F in P2
T . But we have just proven that A2

T is weakly closed, hence this limiting
measure F ∈ A2

T .

Let f be a version of the density of this F on (0, T ). We showed on page 37 that the densities
(fnk)k=1,2,... of the measures (Fnk)k=1,2,... form a relatively compact family in L1(ε, T − ε).
Since f is the unique limit point of this sub-sequence, we conclude that fnk → f in
L1(ε, T − ε).

Since fnk → f in L1(ε, T − ε), and we also know fnk → f almost everywhere in (ε, T − ε),
we can conclude by Scheffe’s Theorem that

lim
k→∞

∫ T−ε

ε

∣∣fnk − f ∣∣ dλ = 0. (4.57)

This implies that the the measures (Fnk)k=1,2,... restricted to the interval (ε, T − ε) converge
in total variation to the restriction of the measure F to that same interval, since

lim
k→∞

sup
D∈B((ε,T−ε))

∣∣Fnk(D)− F (D)
∣∣ = lim

k→∞
sup

D∈B((ε,T−ε))

∣∣∣∣∫
D

(fnk − f) dλ

∣∣∣∣
≤ lim

k→∞
sup

D∈B((ε,T−ε))

∫
D

∣∣fnk − f ∣∣ dλ
≤ lim

k→∞

∫ T−ε

ε

∣∣fnk − f ∣∣ dλ = 0,

by (4.57) and since
∣∣fnk − f

∣∣ ≥ 0, hence we get the bound
∫ T−ε
ε

∣∣fnk − f
∣∣ dλ for the

supremum. �

42



4.4 Extreme points of A2
T

In this section, we look to analyse the convex structure of A2
T . In particular, we will identify

the extreme points of A2
T , and show that nearly all of these extreme points do in fact each

correspond to the distribution of a certain L2(·, ·) on a chosen stationary {Xt}t∈R. In
addition, we will show that for any m ∈ A2

T satisfying certain conditions, we can construct
a stationary process {Xt}t∈R and intrinsic multiple-location functional L2(·, ·) which has
distribution m on [0, T ]. We begin with some definitions and useful theorems.

Definition 4.13: (Definition 2, p. 414 in [5]) For a subset A of a linear space X , the
closed convex hull of A, denoted co(A), is the intersection of all closed convex sets in X
which contain A.

Theorem 4.14: (Krein-Milman - Theorem 4, p. 440 in [5]) If K is a compact subset of a
locally convex linear topological space X , and E is the set of extremal points of K, then
co(E) ⊇ K, and in particular co(E) = K if K is convex.

Theorem 4.15: (Lebesgue Decomposition of Measures - Theorem 14 p. 132 in [5]) Let
(S,Σ, µ) be a measure space. Then every finite countably-additive measure λ defined on
Σ is uniquely representable as the sum λ = α + β where α is absolutely continuous and β
is singular, both with respect to µ.

Remark 4.16: We note that the set of finite measures on [0, T ], equipped with the
topology of weak convergence, is a locally convex linear topological space. We showed in
Theorem 4.12 that A2

T is a compact and convex subset of P2
T . Hence by Theorem 4.14,

the set A2
T is equal to the closed convex hull of its extreme points. This raises an obvious

question: what are the extreme points of A2
T ?

Theorem 4.17: The extreme points of A2
T are:

(1) the measures µt, t ∈ (0, T ), concentrated on (0, T ) which are absolutely continuous
with respect to the Lebesgue measure on (0, T ), with density functions

fµt =
2

t
I(0,t), 0 < t < T ;
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(2) the measures νt, t ∈ (0, T ), concentrated on (0, T ) which are absolutely continuous
with respect to the Lebesgue measure on (0, T ), with density functions

fνt =
2

T − t
I(t,T ), 0 < t < T ;

(3) the point masses/singular measures δ0 and δT defined as

δ0(A) =

{
2 if 0 ∈ A
0 otherwise

and δT (A) =

{
2 if T ∈ A
0 otherwise

for every Borel set A ∈ B ([0, T ]).

(4) the null measure η on [0, T ], defined as η(A) = 0 for all A ∈ B ([0, T ]).

Proof: Every measure m ∈ A2
T is absolutely continuous on (0, T ) and finite, hence by

Theorem 4.13 there exists a unique decomposition m = α1δ0 + α2δT + βmAC + ζη where
α1, α2, β, ζ ≥ 0 and α1 + α2 + β + ζ = 1 where mAC is an absolutely continuous measure
on (0, T ).

We begin by focusing on what we will call the non-trivial absolutely continuous extreme
points of A2

T . That is, the measures which are non-zero on at least one set which has
positive Lebesgue measure, which in particular excludes the null measure η.

Let f be the density of a non-trivial absolutely continuous extreme point of A2
T . Note that

because we assume f is non-trivial, and an extreme point, we conclude that
∫ T

0
f(t)dt = 2.

If this were not the case, say for
∫ T

0
f(t)dt = c < 2, then we could take the convex

combination f = c
2
(g) + 2−c

2
(η′) where η′ is the density of the null measure η and g is some

density of a measure in A2
T such that

∫ T
0
g(t)dt = 2.

We start by showing that f must be monotone. To show this, define the functions

f1(t) = TV+
(0,t](f),

f2(t) = TV−(t,T )(f)

for t ∈ (0, T ). For TV+
(0,t](f), we take the supremum over 0 < s1 < . . . < sn ≤ t, because

the interval (0, t] is closed on the right. These functions are well-defined and non-negative
by (4.7) and (4.8).
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Note that f1 is a non-decreasing càdlàg function with f1(0+) = 0, and f2 is a non-increasing
càdlàg function with f2(T−) = 0. Morever, from (4.7) and (4.8), we also see that

f(t) ≥ max(f1(t), f2(t)) (4.58)

for all 0 < t < T . Therefore, if we choose 0 < t1 < T , we see that for every t1 < t < T ,

f(t) = f(t1) + TV+
(t1,t]

(f)− TV−(t1,t](f),

f1(t) = f1(t1) + TV+
(t1,t]

(f), and f2(t) = f2(t1)− TV−(t1,t](f).

Therefore,

f(t) = f1(t) + f2(t) + (f(t1)− f1(t1)− f2(t1))︸ ︷︷ ︸
:=C(t1)

= f1(t) + f2(t) + C(t1). (4.59)

From this we can see that C(t1) is independent of t, and hence it is equal to a constant C
for every t1 < t < T . We also note that C ≥ −f1(t) for any 0 < t < T by (4.58). Therefore
we can let t ↓ 0 to conclude that C ≥ 0, since f1(0+) = 0. Let f ′2 = f2 + C, and hence
f = f1 + f ′2.

Now suppose towards a contradiction that f is not monotone, then clearly
∫ T

0
f1(s) ds > 0

and
∫ T

0
f ′2(s) ds > 0. Therefore we have

f(t) =
1

2

∫ T

0

f1(s) ds · f1(t)
1
2

∫ T
0
f1(s) ds

+
1

2

∫ T

0

f ′2(s) ds · f ′2
1
2

∫ T
0
f ′2(s) ds

, 0 < t < T, (4.60)

which is a convex combination of two monotone densities since

1

2

(∫ T

0

f1(s) +

∫ T

0

f ′2(s) ds

)
=

1

2

∫ T

0

f(s) ds = 1.

We note that monotone densities are automatically densities of some measures in A2
T ,

meaning that we have a contradiction of f being the density of an extreme point, therefore
we conclude that f must be monotone.

We next show that f can take at most one non-zero value. Suppose that there are points
t1, t2 ∈ (0, T ) such that f(t1) = a1, f(t2) = a2 for some 0 < a1 < a2. Then define the
functions

f1(t) = max(f(t)− a1, 0) and f2(t) = f(t)− f1(t), 0 < t < T.

45



Since f is monotone, f1 and f2 are also monotone. As before, this allows us to represent
f as

f(t) =
1

2

∫ T

0

f1(s) ds · f1(t)
1
2

∫ T
0
f1(s) ds

+
1

2

∫ T

0

f2(s) ds · f2(t)
1
2

∫ T
0
f2(s) ds

, 0 < t < T, (4.61)

which is again a convex combination of densities of some measures in A2
T , contradicting

the fact that f is an extreme point of A2
T . Therefore, we conclude that the density f can

take at most one non-zero value. This means that f is of the following form, for some
A ∈ B ([0, T ]):

fA(t) =
2

λ(A)
IA(t), 0 < t < T.

However, since f is monotone, this restricts A to being an interval which either begins at
0 or ends at T , which corresponds to the measures µt, νt. The last case to consider is then
A = (0, T ), which can be represented as

f(0,T ) =
1

2

(
2fµT

2

)
+

1

2

(
2fνT

2

)
=

1

2

4

T
I(0,T

2 ) +
1

2

4

T
I(T2 ,T)

a.s.
=

2

T
I(0,T ),

which is a convex combination of densities corresponding to measures in A2
T , so it cannot

be an extreme point. Therefore this density f of a non-trivial extreme point of A2
T must

be of the form µt or νt for some 0 < t < T .

We must also show that these densities fµt , fνt do in fact correspond to extreme points
of A2

T to finish the proof. We present the proof for fµt , with the argument for fνt being
similar.

Suppose towards a contradiction that fµt is not an extreme point of A2
T . Then there exists

two different measures in A2
T concentrated on (0, T ) with respective densities g1 and g2

such that

fµt(s) = ρg1(s) + (1− ρ)g2(s), 0 < s < T (4.62)

for some 0 < ρ < 1. There must clearly be a point 0 < si < t such that gi(si) >
2
t

for each
i = 1, 2. We also know that since fµt(t) = 2

t
I(0,t)(t) = 0, gi(t) = 0 for each i = 1, 2.

Note that TV(0,t)(gi) ≥ gi(si), and since gi(t) = 0, the total variation requirement in (4.9)
gives us that

gi(0
+) ≥ TV(0,t)(gi) ≥ gi(si) >

2

t
, i = 1, 2,
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meaning that

ρg1(0+) + (1− ρ)g2(0+) >
2

t
.

However, this violates (4.62) in some neighborhood of the left endpoint, since fµt = 2
t
I(0,t).

Therefore µt is a non-trivial extreme point of A2
T .

It is easy to show that the measures δ0, δT , η are also extreme points since they cannot be
expressed as convex combinations of other measures in A2

T .

Therefore, the other measures m in A2
T are convex combinations of µt, νt, δ0, δT and η. �

Remark 4.18: In Theorem 4.17, we used δ0 and δT as extreme points of A2
T , where

δx(A) =

{
2 if x ∈ A
0 if x /∈ A

for both x ∈ {0, T}. However, in Assumption A (page 18) we limited our choices of
{Xt}t∈R and L2(·, ·) to exclude the possibility of having two locations which coincide,
which is precisely what happens with the measures δ0, δT . Therefore it is necessary to look
at a subset of A2

T when connecting this class of measures back to the distributions of our
intrinsic multiple-location functionals.

Theorem 4.19: Define

D2
T :=

{
m = (α1δ0 + α2δT + βmAC + ζη) ∈ A2

T

∣∣ 0 ≤ α1, α2 ≤
1

2
, 0 ≤ β, ζ ≤ 1, (4.63)

α1 + α2 + β + ζ = 1
}
.

Then for any stationary process {Xt}t∈R and intrinsic multiple-location functional L2(·, ·),
the distribution

F ?
X,T (A) = E

[∣∣L2(X, [0, T ]) ∩ A
∣∣]

is an element of D2
T .

Furthermore, for every measure m ∈ D2
T , there exists a stationary process {Xt}t∈R and

intrinsic multiple-location functional L2(·, ·) such that

m(A) = F ?
X,T (A) = E

[∣∣L2(X, [0, T ]) ∩ A
∣∣] for all A ∈ B ([0, T ]) . (4.64)
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Proof: It is clear by the construction of A2
T and Assumption A, which restricts the masses

at the boundaries {0} , {T} to be at most 1, that every F ?
X,T ∈ D2

T .

Before we show the second part of the theorem, we want to show that µt, νt, δ0, δT and η
are the distributions of a particular pair of a stochastic process and an intrinsic multiple-
location functional.

We will then create a mixture of these processes and construct a new intrinsic multiple-
location functional in a clever way to have distribution m.

(1) For the measures µt, t ∈ (0, T ), we let X(s) = sin
(

2πs
t

+ U
)
, s ∈ R, where U is a

uniform random variable on (0, 2π). Then let

L2(f, [0, T ]) =
{
τ 1
X,T , τ

2
X,T

}
where τ 1

X,T = inf

{
t ∈ [0, T ] | X(t) = sup

s∈[0,T ]

X(s)

}
,

and τ 2
X,T = inf

{
t ∈ [0, T ] | X(t) = inf

s∈[0,T ]
X(s)

}
.

Clearly τ 1
X,T and τ 2

X,T are uniformly distributed on (0, t). Therefore,

µt(A) = F ?
X,T (A) =

2∑
i=1

P
(
τ iX,T ∈ A

)
= 2U(0,t)(A)

as required.

(2) The argument for νt is analogous, where we take the location of the right-most path
supremum, and the location of the right-most path infimum on the same process.

(3) For 1
2
δ0, we let X(s) = sin

(
2πs
t

+ U
)

where U is a uniform random variable on (0, 2π)
as before. Then let

L2(f, [0, T ]) =
{
τ 1
X,T , `

k
X,T

}
where τ 1

X,T = {0} ,
and `kX,T = inf {t ∈ [0, T ] | X(t) > 2} .

Hence L2(f, [0, T ]) =
{
τ 1
X,T

}
= {0} for every path f ∈ H.

For 1
2
δT , we have the same argument, using τ 1

X,T = {T} with the same process used
for 1

2
δ0. Hence L2(f, [0, T ]) = {T} for every path f ∈ H.
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(4) Lastly, for the null measure η we let X(s) = sin
(

2πs
t

+ U
)

where U is a uniform random
variable on (0, 2π) and define the intrinsic multiple-location functional as the first and
second occurences of hitting a level k which are never achieved:

L2(f, [0, T ]) =
{
`k,1X,T , `

k,2
X,T

}
where `k,1X,T = inf {t ∈ [0, T ] | f(t) = 3} ,

and `k,2X,T = inf
{
t ∈
(

[0, T ] \
{
`k,1X,T

})
| f(t) = 3

}
.

Then L2(f, [0, T ]) = ∅ for every path f ∈ H, as desired.

Our goal is to construct, for a given m ∈ D2
T , a stationary process {Xt}t∈R and an intrinsic

multiple-location functional L2(X, [0, T ]) with distribution m.

To this end, we decompose m ∈ D2
T into its absolutely continuous (and null) part, and

singular point masses:

m = α1δ0 + α2δT + βmAC + ζη, (4.65)

for 0 ≤ α1, α2 ≤
1

2
, 0 ≤ β, ζ ≤ 1, α1 + α2 + β + ζ = 1.

We first focus on what we will call the “middle part”, which is comprised of mAC and η.
We normalize the combination of these two measures and denote this as

m? =
β

β + ζ
mAC +

ζ

β + ζ
η. (4.66)

We know that mAC is the convex combination of measures in
{
{µt}t∈(0,T ) , {νt}t∈(0,T )

}
, and

η = 0 everywhere, hence m? can be written as

m? =

∫ T

0

µt dFµ +

∫ T

0

νt dFν ,

for measures Fµ, Fν which represent the weights of the µt, νt respectively, with

Fµ ((0, T )) + Fν ((0, T )) =
β

β + ζ
.
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For this “middle part”, we construct the following stationary processes:

Y m
µt (s) = sin

(
2πs

t
+ U

)
,

Y m
νt (s) = sin

(
2πs

t
+ U

)
+ 3,

Yη(s) = sin

(
2πs

t
+ U

)
+ 21,

for every t ∈ (0, T ). We will form a mixture of these processes (and others later) in order
to form our required stationary process. To this end, denote the measure on the path space
of continuous functions C(R) corresponding to Y m

µt as Qm
µt , and similarly for Y m

νt we take
Qm
νt , and for Yη we take Qη.

Then define the measure Smid : C(R)→ [0, 1] as

Smid =

∫ T

0

Qm
µtdFµ +

∫ T

0

Qm
νtdFν +

ζ

β + ζ
Qη,

which is invariant under shifts since it is a mixture of measures that are invariant under
shifts. That is, Smid is a measure on C(R) corresponding to a stationary process with paths
in C(R).

This is our construction for the “middle part”, and we now consider the measure m ∈ D2
T ,

which we will decompose as follows:

m = θ1

(
1

2
δ0 +

1

2
m?

)
+ θ2m

? + θ3

(
1

2
δT +

1

2
m?

)
+ θ4

(
1

2
δ0 +

1

2
δT

)
(4.67)

for θi ∈ [0, 1] for all i = 1, . . . , 4, and
4∑
i=1

θi = 1.

We note that to match the original decomposition in (4.65), this means that:

θ4 = min (2α1, 2α2) ,

θ1 = 2α1 − θ4, θ3 = 2α2 − θ4,

and θ2 = 1−max (2α1, 2α2) .

As we did for the ‘middle part’, we define the following stationary processes to represent
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the ‘θ1’ part of the decomposition in (4.67):

Y 0
µt(s) = sin

(
2πs

t
+ U

)
+ 6,

Y 0
νt(s) = sin

(
2πs

t
+ U

)
+ 9,

for every t ∈ (0, T ). We again denote the measures on the path space C(R) corresponding
to Y 0

µt as Q0
µt and Y 0

νt as Q0
νt .

Then define the measure S0 : C(R)→ [0, 1] as

S0 =

∫ T

0

Q0
µtdFµ +

∫ T

0

Q0
νtdFν .

Similarly, for the ‘θ3’ part of (4.67), we define

Y T
µt(s) = sin

(
2πs

t
+ U

)
+ 12,

Y T
νt (s) = sin

(
2πs

t
+ U

)
+ 15,

and ST =

∫ T

0

QT
µtdFµ +

∫ T

0

QT
νtdFν .

Lastly, for the ‘θ4’ term in (4.67) we define

Ye(s) = sin

(
2πs

T
+ U

)
+ 18,

and Se = Qe

Now we mix the measures S0, Smid, and ST according to the decomposition in (4.67) in
order to get the measure S : C(R)→ [0, 1]:

S = θ1S0 + θ2Smid + θ3ST + θ4Se.

This measure S on the path space C(R) will give us paths that will be used in conjunction
with a cleverly defined L2(f, I) to achieve the desired result. In particular, we will use the
fact that the path space is partitioned by S since the sinusoidal processes defined above do
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not ever cross paths. Then we define L2(f, I) on each of these disjoint subset of paths as we
did for the extreme points, on a case-by-case basis, and it will have distribution m ∈ D2

T .

For each f ∈ C(R) and [a, b] ∈ I, the L2(f, I) we want is defined as:

{
inf {t ∈ I | f(t) = sups∈I f(s)} ,

inf {t ∈ I | f(t) = infs∈I f(s)}
}

if f(x) ∈ [−1, 1] for every x ∈ R,{
sup {t ∈ I | f(t) = sups∈I f(s)} ,

sup {t ∈ I | f(t) = infs∈I f(s)}
}

if f(x) ∈ [2, 4] for every x ∈ R,{
inf {t ∈ I | f(t) = sups∈I f(s)} , a

}
if f(x) ∈ [5, 7] for every x ∈ R,{

sup {t ∈ I | f(t) = sups∈I f(s)} , a
}

if f(x) ∈ [8, 10] for every x ∈ R,{
inf {t ∈ I | f(t) = sups∈I f(s)} , b

}
if f(x) ∈ [11, 13] for every x ∈ R,{

sup {t ∈ I | f(t) = sups∈I f(s)} , b
}

if f(x) ∈ [14, 16] for every x ∈ R,{
a, b
}

if f(x) ∈ [17, 19] for every x ∈ R,{
inf {t ∈ I | f(t) = 25} ,

sup {t ∈ I | f(t) = 25}
}

if f(x) ∈ [20, 22] for every x ∈ R,
{a, b} otherwise.

Then one can check that for the stationary process {Xt}t∈R which corresponds to the
measure S on the path space and this intrinsic multiple-location functional L2(·, ·) we get
that

F ?
X,T (A) = E

[∣∣L2(X, [0, T ]) ∩ A
∣∣] = m(A)

for every Borel set A ∈ B ([0, T ]), as required. �
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Chapter 5

Intrinsic Location Vectors

The ‘vector case’ we will discuss in this section is more similar to the single-location case,
in the sense that we will once again allow infinite values when the random location is not
well defined in the given interval. However, we now identify the two random locations, so
our object of interest changes from a random set of points to a random vector.

We keep the sameH and I as previously defined, and as before, we endow the set (I ∪ {∞})
with the topology obtained by treating the infinite point as an isolated point of the set,
and take the Borel σ-algebra of this collection to obtain our measurability condition.

Definition 5.1: A mapping L2
v : H×I → (R ∪ {∞})2 is called an intrinsic location vector

of degree 2 if it satisfies all of the following conditions:

(1) For every I ∈ I the map L2
v(·, I) : H → (R ∪ {∞})2 is measurable.

(2) For every f ∈ H and I ∈ I, L2
v(f, I) ∈ (I ∪ {∞})2.

(3) (Shift compatibility) For every f ∈ H, I ∈ I, c ∈ R,

L2
v(f, I) =

[
`1
f,I

`2
f,I

]
=

[
`1
θcf,I−c
`2
θcf,I−c

]
+

[
c
c

]
= L2

v(θcf, I − c) +

[
c
c

]
where ∞± c =∞.

(4) (Inclusion under restriction) For every f ∈ H, and I1, I2 ∈ I such that I2 ⊆ I1, define
the sets Jf,I1 , Jf,I2 as

Jf,Ij =
{
`1
f,Ij
, `2
f,Ij

}
, j ∈ {1, 2} ,
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then

Jf,I1 ∩ I2 ⊆ Jf,I2 .

(5) (Consistency of existence) For every f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1, and sets
Jf,I1 , Jf,I2 as defined above, ∣∣Jf,I2 \ {∞} ∣∣ ≤ ∣∣Jf,I1 \ {∞} ∣∣.

In the following chapter, we will not keep repeating ‘of degree 2’ for the intrinsic location
vectors, since we will always be working with n = 2 until Chapter 6.

Example 5.2: In Example 3.2 on page 12 we introduced the locations of the two largest
local maxima. This is of course an intrinsic location vector of degree 2, if we simply take

the vector L2
v(f, I) =

[
τ 1
f,I

τ 2
f,I

]
rather than the set valued L2(f, I).

Example 5.3: Consider H as the space of continuous functions C(R), and define the first
and second hitting times of a level k, respectively, as

T k,1f,[a,b] := inf {s ∈ [a, b] | f(s) = k} ,

and T k,2f,[a,b] := inf
{
s ∈

(
T k,1f,[a,b], b

]
| f(s) = k

}
.

These form an intrinsic location vector of order 2:

L2
v(f, [a, b]) =

[
T k,1f,[a,b]

T k,2f,[a,b]

]
.

Theorem 5.4: For two single-location intrinsic location functionals L1(·, ·), L2(·, ·) as in

Definition 2.1, L2
v(·, ·) =

[
L1(·, ·)
L2(·, ·)

]
is an intrinsic location vector.

Proof: The fact that this L2
v(·, ·) satisfies measurability is clear.

For shift compatibility, let f ∈ H, I ∈ I, and c ∈ R, then

L2
v(f, I) =

[
L1(f, I)
L2(f, I)

]
=

[
L1(θcf, I − c) + c
L2(θcf, I − c) + c

]
= L2

v(θcf, I − c) +

[
c
c

]
,
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as required.

For inclusion under restriction, let f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1. By definition,
we know that Lj(f, I1) ∈ I2 implies Lj(f, I2) = Lj(f, I1) for each j = 1, 2. Hence

{L1(f, I1), L2(f, I1)} ∩ I2 ⊆ {L1(f, I2), L2(f, I2)} .

Lastly, to show consistency of existence, let f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1. Then
by the single-location definition we know that Lj(f, I2) 6= ∞ implies Lj(f, I1) 6= ∞ for
each j = 1, 2. Hence∣∣ {L1(f, I2), L2(f, I2)} \ {∞}

∣∣ ≤ ∣∣ {L1(f, I1), L2(f, I1)} \ {∞}
∣∣.

Therefore, L2
v(·, ·) is an intrinsic location vector. �

Remark 5.5: Clearly for L2
v(f, I) =

[
`1
f,I

`2
f,I

]
, one could simply just take L2(f, I) =

{
`1
f,I , `

2
f,I

}
and perform all of the prior analysis, but the vector case contains more structure which
we can work with. We can now distinguish the locations from one another in a non-trivial
manner, which allows us to classify the intrinsic location vectors into separate subclasses
based on the relationship between the two locations.

5.1 Subclasses of Intrinsic Location Vectors

We will classify the intrinsic location vectors into subclasses based on their behaviours
under restriction.

Definition 5.6: For any instrinsic location vector L2
v(·, ·) =

[
`1
·,·
`2
·,·

]
, we say that location `j·,·

is dominated by location `i·,· for i 6= j if the following hold:

(1) For every f ∈ H, any pair of intervals I1, I2 ∈ I, with I2 ⊆ I1,

`if,I1 ∈ (I1 \ I2) and `jf,I1 ∈ I2,

implies that `if,I2 = `jf,I1 .

(2) For every f ∈ H and I1, I2 ∈ I, with I2 ⊆ I1, if `if,I1 ∈ I2 then `if,I1 = `if,I2 .

(3) For every f ∈ H and I ∈ I, if `if,I =∞ then `jf,I =∞.
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In this case, we say that the location `i·,· dominates the location `j·,·, and for an L2
v(·, ·) which

has a location that dominates the other, we will say that it has a dominating location.

An intrinsic location vector with a dominating location can be thought of as a vector of
sequential occurences. That is, the dominating location is the first occurence of some event
on the path, restricted to a compact interval, and the dominated location is the second
occurence.

Convention V: We will take the convention that `1
·,· will always be the dominating loca-

tion, if there is one, as defined in Definition 5.6.

Example 5.7: The location of the leftmost hitting time of a level k dominates the location
of the second leftmost hitting time of that same level k. For instance, we would define the
leftmost hitting time as `1

·,· and the second leftmost hitting time as `2
·,· in order to satisfy

Convention V.

Remark 5.8: For any intrinsic location vector L2
v(·, ·) =

[
`1
·,·
`2
·,·

]
, it is not possible that `1

·,·

dominates `2
·,·, and `2

·,· dominates `1
·,· at the same time.

To see this, fix an f ∈ H and I ∈ I, then take three intervals I1, I2, I3 ∈ I such that
I3 ⊆ I2 ⊆ I1, and `1

f,I1
∈ (I1 \ I2) , `2

f,I1
∈ I3, `

2
f,I2
∈ (I2 \ I3). Then

`2
f,I1

= `1
f,I2

since `1
·,· dominates `2

·,·. However, since `2
f,I2
∈ (I2 \ I3), then

`2
f,I3

= `1
f,I2

since `2
·,· dominates `1

·,·. In conclusion, this means that `1
f,I1
∈ (I1 \ I3) , `2

f,I1
∈ I3 and

`2
f,I1

= `2
f,I3

, a contradiction that `1
·,· dominates `2

·,·. See Figure (5.1) for an illustration of
this scenario.
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Figure 5.1: Illustration of the contradiction in Remark 5.8

Remark 5.9: For any intrinsic location vector L2
v(·, ·), where we follow Convention V if

L2
v(·, ·) has a dominating location, we fix an f ∈ H. Then when we impose a restriction

from I1 to I2 with I2 ⊆ I1 we have two possible scenarios for L2
v(f, ·) =

[
`1
f,·
`2
f,·

]
, based on

the behaviour of `2
f,·.

When `1
f,I1
∈ (I1 \ I2), and `2

f,I1
∈ I2 then there are two possibilities:

(i) `2
f,I1

= `1
f,I2

, or

(ii) `2
f,I1

= `2
f,I2

.

We will distinguish our subclasses based on the these two possibilities.

Definition 5.10: The two subclasses of intrinsic location vectors we will work with are:

(1) Ranked Intrinsic Location Vectors:

All L2
v(·, ·) which have a dominating location as in Definition 5.6, which is `1

·,· in order
to follow Convention V.

(2) Free Intrinsic Location Vectors:

L2
v(·, ·) is a free intrinsic location vector if for every f ∈ H, the following hold:
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(i) For each j = 1, 2, when we have I1, I2 ∈ I with I2 ⊆ I1 which satisfy `jf,I1 ∈ I2,

we get that `jf,I1 = `jf,I2 .

(ii) For each j = 1, 2: if we take any I1, I2 ∈ I with I2 ⊆ I1, we get that `jf,I1 = ∞
implies `jf,I2 =∞.

In particular, free intrinsic location vectors do not have a dominating location.

The reason we chose to take these two subclasses is that the ranked subclass represents all
of the ‘sequential’ instrinsic location vectors we’ve been looking at very often, such as the
first two hitting times of a level k, the two leftmost path suprema and so on. This case
would be particularly important in applications.

The free subclass represents the case where one simply combines two intrinsic location
functionals together into a vector. See Theorem 5.14 which proves this is indeed how the
free intrinsic location vectors must be constructed.

Theorem 5.11: If the intrinsic location vector L2
v(·, ·) =

[
`1
·,·
`2
·,·

]
is ranked, then `1

·,· must be

an intrinsic location functional in the sense of the ‘single-location’ case from Chapter 2.

Proof: By construction of L2
v(·, ·), `1

·,· must satisfy the measurability and shift compatibility
conditions. So we must show that it satisfies the stability under restriction and consistency
of existence conditions (see Definition 2.1 on page 3).

Suppose towards a contradiction that `1
·,· does not satisfy the stability under restriction

condition. That is, there exists f ∈ H and I1, I2 ∈ I with I2 ⊆ I1 such that `1
f,I1
∈ I2 and

`1
f,I1
6= `1

f,I2
. But this contradicts the definition of the ranked intrinsic location vector.

Now suppose towards a contradiction that `1
·,· does not satisfy the consistency of existence

condition. That is, there exists f ∈ H and I1, I2 ∈ I with I2 ⊆ I1 such that `1
f,I2
6=∞ and

`1
f,I1

=∞. Then by the consistency of existence condition on L2
v(f, ·):∣∣ {`1

f,I2
, `2
f,I2

}
\ {∞}

∣∣ ≤ ∣∣ {`1
f,I1
, `2
f,I1

}
\ {∞}

∣∣,
which is only the case if

`2
f,I2

=∞ and `2
f,I1
6=∞.

However, we assumed `1
f,I1

=∞, hence `2
f,I1

=∞ because L2
v(f, ·) is ranked. Therefore the

consistency of existence condition on L2
v(f, ·) is violated, a contradiction.
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Therefore `1
·,· is an intrinsic location functional. �

Remark 5.12: Because we have shown that the ranked intrinsic location vector L2
v(·, ·) =[

`1
·,·
`2
·,·

]
has the property that `1

·,· is an intrinsic location functional, we get that `1
·,· satisfies

all of the previously shown ‘single-location’ results.

Hence we now also now have in this case that `2
·,· satisfies some nice properties. However,

for a ranked intrinsic location vector, `2
·,· is typically not an intrinsic location functional.

An an example, consider the second hitting time of a level k, which clearly does not satisfy
stability under restriction since we can have `2

·,I1 ∈ I2, `2
·,I1 = `1

·,I2 for some I2 ⊆ I1, where
`2
·,I2 could be undefined, violating stability under restriction.

Corollary 5.13: Let {Xt}t∈R be a stationary process and let L2
v(·, ·) =

[
`1
·,·
`2
·,·

]
be a ranked

intrinsic location vector. Then for every I ∈ I, the distribution of `2
X,I , denoted

F 2
X,I(A) = P

(
`2
X,I ∈ A

)
is absolutely continuous on the interior of the interval I. Furthermore, the version of
the marginal density of `2

X,I denoted f 2
X,I , defined as the right derivative of F 2

X,I is right
continuous and has left limits.

Proof: The result follows immediately from the facts that

F ?
X,I(A) = P

(
`1
f,I ∈ A

)
+ P

(
`2
f,I ∈ A

)
,

and `1
·,· is an intrinsic location functional, since L2

v(·, ·) is ranked. �

Theorem 5.14: An intrinsic location vector L2
v(·, ·) =

[
`1
·,·
`2
·,·

]
is free if and only if both `1

·,·

and `2
·,· are intrinsic location functionals in the sense of Definition 2.1.

Proof: Part of the ‘if’ direction was done in Theorem 5.4: we showed that this is indeed
an intrinsic location vector. To show it is free, we note that because `j·,· are both intrinsic
location functionals, for both j = 1, 2 we have that for every f ∈ H, whenever we have
I1, I2 ∈ I with I2 ⊆ I1 such that `jf,I1 ∈ I2, we get that `jf,I1 = `jf,I2 . Hence L2

v(X, ·) is
clearly free.

For the ‘only if’ direction, we check the conditions required for the intrinsic location func-
tional for `1

·,·, and the proof of `2
·,· will be analogous since the definition of the free intrinsic

location vector is symmetric for the two locations.

59



It is clear that `1
·,· satisfies measurability and shift compatibility by construction, and

because L2
v(·, ·) is free, stability under restrictions is also clear.

It only remains to show that consistency of existence holds. To this end, let f ∈ H and
I1, I2 ∈ I such that I2 ⊆ I1. We need to show that `1

f,I2
6=∞ implies `1

f,I1
6=∞.

Towards a contradiction, assume `1
f,I1

= ∞. Then by definition 5.10 (2.ii) we get that
`1
f,I2

=∞, a contradiction.

Therefore `1
·,· is an intrinsic location functional in the sense of Definition 2.1. �

Remark 5.15: We note that these subclasses are not exhaustive of all possible intrinsic
location vectors. For example, we could define L2

v(f, I) on I = [a, b] as:

L2
v(f, I) :=

[
`1
f,I

`2
f,I

]
,

where `1
f,I =

{
b if |b− a| 6= 1

a if |b− a| = 1
,

and `2
f,I =

{
b if |b− a| = 1

a if |b− a| 6= 1
,

which is clearly an intrinsic location vector. To see this, note that it trivially satisfies
measurability and shift compatibility.

For inclusion under restriction, let I1, I2 ∈ I such that I2 ⊆ I1, then the only time when{
`1
f,I , `

2
f,I

}
∩ I2 6= ∅ is when for I1 = [a, b], I2 = [c, d] we have a = c or b = d. Without loss

of generality, we show the a = c case. If I1 = [a, b] and I2 = [a, d], then there are three
possibilities:

(1) If |b− a| = 1, then{
`1
f,I1
, `2
f,I1

}
∩ [a, d] = {a, b} ∩ [a, d] = {a} ∈ {d, a} =

{
`1
f,I2
, `2
f,I2

}
.

(2) If |d− a| = 1, then{
`1
f,I1
, `2
f,I1

}
∩ [a, d] = {b, a} ∩ [a, d] = {a} ∈ {a, d} =

{
`1
f,I2
, `2
f,I2

}
.

(3) If neither |b− a| = 1 or |d− a| = 1, then{
`1
f,I1
, `2
f,I1

}
∩ [a, d] = {b, a} ∩ [a, d] = {a} ∈ {d, a} =

{
`1
f,I2
, `2
f,I2

}
.
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Therefore L2
v(·, ·) satisfies inclusion under restriction.

Lastly, we must show that L2
v(·, ·) satisfies consistency of existence. However, this is trivial

since both locations always exist.

Hence L2
v(·, ·) is indeed an intrinsic location vector. However, it is neither ranked, nor free.

To show this, we give a simple counter-example where the definitions of ranked and free
intrinsic location vectors are both broken.

Let I1 = [a, b], b > a and I2 = [c, b], a < c < b, with |b− c| = 1. Therefore `1
·,I1 ∈ I2,

hence we should have that `1
·,I1 = `1

·,I2 for every f ∈ H in the definitions of ranked and free
intrinsic location vectors. But this is not the case:

L2
v(·, I1) =

[
b
a

]
, and L2

v(·, I2) =

[
c
b

]
.

See Figure (5.2).

Figure 5.2: Illustration of the counterexample in Remark 5.15.
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Chapter 6

Generalization to n > 2 locations

We have so far only considered the case of n = 2, but analysis can be generalized for the
n > 2 (non-vector) locations case only by changing the definitions slightly:

(1) We change Γ2
I to ΓnI as follows:

ΓnI = { sets of cardinality at most n, with elements taken from I} .

(2) Each ξ ∈ ΓnI can be described as a point measure:

mξ =
∑
x∈ ξ

Ix,

where Ix(A) =

{
1 if x ∈ A
0 if x /∈ A

.

We can again equip ΓnI with the σ-algebraMn defined as the smallest σ-algebra which
contains sets of the form

{m ∈Mp(Γ
n
I ) | m(A) ∈ B} for A ∈ B (I) , B ∈ B ([0, n]) ,

where Mp(Γ
n
I ) is the space of all point measures defined by ΓnI .

(3) We keep the same H and I as previously defined.

(4) A mapping Ln : H×I → ΓnR is called an intrinsic multiple-location functional of degree
n if it satisfies all of the following conditions:
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(i) For every I ∈ I the map Ln(·, I) : H → ΓnI is Cyl(H)/Mn-measurable.

(ii) (Shift Compatibility) For every f ∈ H, I ∈ I, c ∈ R,

Ln(f, I) = Ln(θc ◦ f, I − c) + c,

where ξ ± c = {x± c | x ∈ ξ}.
(iii) (Inclusion under restriction) For every f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1,

Ln(f, I1) ∩ I2 ⊆ Ln(f, I2).

(iv) (Consistency of existence) For every f ∈ H and I1, I2 ∈ I such that I2 ⊆ I1,∣∣Ln(f, I1)
∣∣ ≥ ∣∣Ln(f, I2)

∣∣,
where |·| represents the number of elements in the set.

(5) We again look only at F ?
X,I because the set-function FX,I(A) = P (Ln(f, I) ∩ A 6= ∅)

can be expanded using the inclusion-exclusion principle, where the ordering of the
xi ∈ Ln(f, I) is again the order-statistics. Without loss of generality, we present the
explanation for case where

∣∣Ln(f, I)
∣∣ = n:

FX,I(A) = P ({x1, x2, . . . , xn} ∩ A 6= ∅) (6.1)

=
n∑
i=1

P (xi ∈ A)︸ ︷︷ ︸
(?)

−
∑

1≤i1<i2≤n

P ({xi1 ∈ A} ∩ {xi2 ∈ A})

+
∑

1≤i1<i2<i3≤n

P ({xi1 ∈ A} ∩ {xi2 ∈ A} ∩ {xi3 ∈ A})

+ (−1)n
∑

1≤i1<i2<···<in−1≤n

P
(
{xi1 ∈ A} ∩ . . . ∩

{
xin−1 ∈ A

})
+ (−1)n+1P ({xi1 ∈ A} ∩ . . . ∩ {xin ∈ A}) .

We work again with F ?
X,T directly in the form

F ?
X,I(A) = E

[∣∣Ln(X, I) ∩ A
∣∣],

which again can be interpreted as the expected number of random locations in A. One
can clearly see from these new definitions that the proofs will be analogous to the
n = 2 case, with minor changes such as fnX,T (t) ≤ max

(
n
t
, n
T−t

)
which can be easily

shown.
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(6) In order to show that the right-derivative ‘density’ of the capacity functional fX,I
is again equal to the right-derivative density of F ?

X,I , denoted f ?X,I , we impose an
assumption similar to Assumption M, and argue that the sum in (6.1) can be drastically
simplified.

Assumption Mn: For every i = 1, . . . , n− 1, the functions

giε(t) = P (xi+1 ∈ (t, t+ ε] | xi = t)

converge to 0 uniformly on t ∈ (0, T ). More precisely, giε(t) ≤ Ci(ε) for every t ∈ (0, T ),
where Ci(ε) is a function for each i = 1, . . . , n− 1 such that limε↓0C

i(ε) = 0.

We note that by Bonferroni’s inequalities,

n∑
i=1

P (xi ∈ (t, t+ ε])−
∑

1≤i1<i2≤n

P ({xi1 ∈ (t, t+ ε]} ∩ {xi2 ∈ (t, t+ ε]})

≤ FX,I((t, t+ ε])

≤
n∑
i=1

P (xi ∈ (t, t+ ε]) = F ?
X,I ((t, t+ ε]) .

Hence we only need to show that

lim
ε↓0

1

ε

∑
1≤i1<i2≤n

P ({xi1 ∈ (t, t+ ε]} ∩ {xi2 ∈ (t, t+ ε]}) = 0

in order to conclude that fX,I = f ?X,I . This clearly follows from Assumption Mn by
essentially the same argument as in Section 4.2, with the additional fact that

P ({xi1 ∈ (t, t+ ε]} ∩ {xi2 ∈ (t, t+ ε]}) ≤ P ({xi1 ∈ (t, t+ ε]} ∩ {xi1+1 ∈ (t, t+ ε]}) .
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Chapter 7

Further Research

First and foremost, Assumptions M and Mn could perhaps be proven as properties which
simply follow from the definitions of intrinsic multiple-location functionals of degree n = 2
and n > 2 respectively.

The marginal density of `2
·,·, denoted f2(t), in the ranked intrinsic location vector would

also be of particular interest. One could attempt to show similar results to Theorem 4.2,
such as f2(t) ≤ c(t) for some function c(·) on the interior of (0, T ), as well as some bounds
on the total variation and positive/negative variation at the end-points of the interval.

There are multiple ways in which one could expand on the general framework found in
this work. The intrinsic location vectors of degree n ≥ 2 could be explored. Their joint
distributions would likely be of importance and interest. One could also attempt to expand
the framework to encompass not only stationary processes, but stationary fields, for both
the intrinsic multiple-location functionals and intrinsic location vectors.

An application in the field of risk management may be possible. In risk management,
we are often concerned with extreme values. In particular, in the Peaks-Over-Threshold
method (see [7]), we are concerned with losses (Lt) over a time period [a, b] which exceed
a given level u > 0. In current practice, these excess losses are used to calculate risk
measures such as Value-at-Risk and Expected Shortfall, by approximating the distribution
of (L− u | L > u) with the Generalized Pareto Distribution.

If one had closed-form and tractable results for the distributions of intrinsic multiple-
location functionals, or preferably the intrinsic location vectors, it may be possible to
make a link to this theory.

For example, with m > 0 given data points representing losses (Lt1 , . . . , Ltm), one could
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“smooth out” the data by some method such as interpolation, and fit the data with a
stationary process.

Then one could examine Lkv(f, [a, b]) for [a, b] ⊇ {t1, . . . , tm} and k = 1, . . . , n, with the
random locations of Lkv(f, [a, b]) being the k successive locations of exceedances of the level
u > 0, up to n locations. A possible choice of n could be

n '
∣∣ {i ∈ {1, . . . ,m} ∣∣ P(`if,[a,b] exists ) > ψ ∈ (0, 1)

} ∣∣,
with ψ being a “sensitivity” parameter. Then one could use the intrinsic location vectors
Lkv(f, [0, T ]), k = 1, . . . , n, to understand the structure of dependence between the times
of exceedances. If it were possible to have tractable results about the joint distribution
of the intrinsic location vectors, one could then approximate the arrival time of the next
exceedance, while also taking into account the dependency structure arising from the lo-
cations of past exceedances up to the current time.
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