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Abstract

Part I

We apply the Unruh-DeWitt model for a qubit interacting with a quantum field to a
superconducting qubit. We use the flexibility of this model, as compared to the spin-boson
model used widely in the literature, to investigate the effect of an ultraviolet cutoff in the
field and the finite size of a qubit on the dynamics of a qubit. In studying these features in
the setup of a qubit coupled to an infinite transmission line, we find that both the shape
and scale of the ultraviolet cutoff have a significant effect on the qubit’s dynamics. For
experimentally reasonable parameters, we estimate that using an inaccurate model for the
ultraviolet cutoff present in the line could introduce errors in calculation of probability of
spontaneous emission of the qubit of around 10%. This is particularly interesting in light of
the fact that superconducting lines have natural ultraviolet cutoffs due to the breakdown
of superconductivity for high frequency electromagnetic waves.

Part II

We investigate a unitary protocol to create correlations in a bipartite quantum me-
chanical system. The protocol was initially motivated by its optimal average work cost.
We calculate the fluctuations in the work cost and show that for maximal generation of
correlations, the fluctuations in the work cost are of the order of the average work cost,
making the protocol energetically rather unreliable. We additionally explore some of the
nuances of the discussion around work in quantum systems with discussion of the current
literature as well as some philosophical motivations of the most widely used definitions of
work.

Throughout the thesis, we comment on the motivations for this research and its effect
on our world. In doing so, we find multiple ways that supporting the project of developing
quantum technology supports injustice. We also model a methodology for engaging with
societal and ethical implications of work in theoretical physics.
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Ûcorr correlating unitary, section 4.2

W(Imax) work cost of producing the maximum mutual information possible
Z the partition function, Z = Tr[e−βH ]
ω energy gap of each qubit
σW the standard deviation of the two-time measurement scheme work

probability distribution
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Prologue
Steps Towards a Just Physics

This thesis explores two projects in quantum theory. One concerns using tools developed
by quantum field theorists for a simplified setup in superconducting circuits. The other
is about the probabilistic work cost of creating correlations between two qubits. Both sit
in the literature under the large umbrellas of quantum information, quantum theory, and
quantum technology (QTech).

For most of my degree, I did not want to support the development of QTech (for reasons
elaborated on below), and held that my research was mostly useless anyway. I have since
found that no research has zero impact on the world. Nothing we do is without effect.
Consequences of this include the importance of incremental work in science and the fact
that the work of my master’s degree contributes somehow to the project of QTech.

Instead of ignoring this connection, in this prologue, I analyse it. I will explore what
the motivations are for the large scale project of QTech and critique both the realism and
political intents of those motivations. I look briefly at existing efforts towards development
of QTech which is responsible to society, and provide an example of how this technological
project participates in unjust political projects. Finally, I argue for the regular inclusion
of critical analysis of our motivations for our research and its effect on the world around
us, and begin to demonstrate one method for doing so, which continues throughout the
thesis.

The reasons we are developing quantum technology

The motivation given for developing QTech varies to some extent. Popular writers seem
keen to dramatize its potential utility [4]. Many scientists discuss in some detail the po-
tential applications in cryptography and simulation, but don’t seem to want to discuss the
many practical limitations to these proposals [5]. Quantum cryptography is said to lead
to communication channels which are resistant to attacks from quantum hackers (though
post-quantum cryptography is a promising field, aiming to develop classical cryptography
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which is similarly resistant, and will require far less infrastructure to implement). Simulat-
ing quantum systems is touted to be able to lead to better understanding and development
of drugs, fertilizers, and materials.

There are few publications which make criticisms or are cautionary about the potential
of QTech. Some ethical questions are raised by de Wolf in [6], suggestions for a responsible
development of technology are made in [7], and Aaronson discusses a few limits of compu-
tation in [8]. Major criticisms of the technology itself of course include that the number of
algorithms which provide significant speedup over classical computation are few. Simula-
tions of large molecules may even be limited to gate resources which scale like N6, where N
is the number of atoms [9]. Doubts can also be cast on the physical infrastructure needed
for a single quantum computer (let alone any kind of network of them)—many millions of
physical qubits may be needed to build a computer which can implement Shor’s algorithm
[10], and weak speedups like those provided by Grover’s search algorithm may be made
weaker by the physical implementation. This is not to say that the implementations are
not possible, but rather to suggest that the endeavour may continue to be very resource
intensive and may yield less benefit than is usually discussed (given, of course, that the
usual discussion is of the best-case scenario).

de Wolf raises the point that the benefits of QTech are unlikely to be equally distributed
across populations [6]. Already, research is concentrated in a few very wealthy areas, and
funded primarily by large corporations like Google and IBM and by states like the USA and
China. Thus one might expect that any fruits of the technology will primarily benefit the
state and those who are able to pay for access to the technology (which includes academics).
Beyond this argument, one might wonder whether these benefits of the technology really
justify spending our resources on it, whether or not they are distributed equally. If classical
computers are capable of implementing quantum-safe cryptography, then why continue to
research very expensive and completely new technology which will be difficult to distribute
equitably? If fertilizers are already contributing to destructive algal blooms, then why not
pursue methods of sustainable food production [11–13]? Our answers needn’t always be
found in the shiniest new technology.

Exploring new potentially bioactive molecules or properties of known molecules with
quantum simulation is a well-discussed reason to develop quantum computers. It’s also a
rich area for ethical exploration. Undoubtedly, new drugs can be seriously beneficial to
many people. But pharmaceutical companies run one of the most profitable and extortion-
ist industries on the planet. Perhaps one of the benefits of quantum computing is that it
will increase profit margins of Big Pharma.

Despite these and more general criticisms (expense, resource-intensivity, narrow appli-
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cability), support for QTech and computation is prolific.1 It is an incredibly well-funded
area of science and engineering, with at least an informal reputation of being the place to
go in order to receive grants. There is minimal popular or funding-agency-level discussion
about pitfalls of this huge pursuit. Almost all the press that the field gets is completely
positive2 and optimistic about its utility and impacts.

One piece of the narrative around QTech is that it will be revolutionary in society.
In quantum thermodynamics in particular, this narrative is motivated by a strong anal-
ogy to classical thermodynamics. Because classical thermodynamics was crucial to the
Industrial Revolution, it is argued, quantum thermodynamics will similarly contribute to
a substantial revolution in technology and thus society. Arguably, part of the recent ex-
pansion of the field is due to this grandiose motivation. Though it is clear that there are
genuinely new thermodynamic phenomena and relations to explore in quantum systems,
an analogical ‘quantum revolution’ does not immediately follow. We make a serious induc-
tive jump to assume that the enormity of technological prowess enabled through quantum
thermodynamics will be even close to that significant.

A larger analogy is made between computation and quantum computation. Computa-
tion changed our society, ergo computation using quantum systems will do the same (but
in unfathomable ways)! Incorporating the additional issue of low comprehension of this
research by the public and the state, it seems that the attractive, uncritical story that
is told about QTech plays a significant role in its receiving so much attention and funds.
Both the overhyped narrative and the low public comprehension (among other structural
issues) mean that the public have little ability to genuinely contribute to decision-making
processes around resource allocation or research focuses.

Existing efforts towards responsible quantum technology

Coenen and Grunwald argue for the development of a strong responsible research and inno-
vation approach to the development of quantum technologies, with the goal of technology
that genuinely meets the needs of society and that is embedded into society [7]. Crucial
elements of the strategy that they begin to sketch out include not overstating the potential

1For instance, the Canada First Research Excellence Fund, which is designed to support large-scale
research initiative with “strategic relevance to Canada,” has supported all three Canadian QTech research
institutes with large grants in 2015 and 2016, totalling $176 million—14% of the total $1.2 billion awarded
[14, 15]. This is a comparable amount to funds awarded to research in green energy and more efficient oil
sands extraction combined. Note of course that this is a cursory study and does not cover even close to
all scientific funding provided by the Canadian state in those years.

2Evidence on it being trace preserving unknown.
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impact of a field nor its cross-disciplinary utility. This assists in everyone involved having
realistic, sustainable expectations which will be more difficult to disappoint.3

As analysed by Coenen and Grunwald, many of the extant strategies for the devel-
opment of quantum technologies do not prioritize responsible research. For instance, the
‘Quantum Manifesto’ of the European Union addresses public engagement only in terms of
educating the general public about quantum technologies [16]. They do not discuss how to
engage the public in decision-making or impact-assessment (a critical element of a frame-
work known as ‘responsible research and innovation’). The drivers of quantum technology
are identified in this manifesto as primarily industry stakeholders.

The most well-developed attempts at creating public involvement in research decisions
come from a German report on the nascent applications in the field [17]. The few specific
strategies for consultation include considering non-expert, qualitative opinions as impor-
tant in making policy decisions about technology, as opposed to only valuing the opinions
of scientists expert in the physical phenomena and tools used.

The critical analysis in [7] already presents a dramatically different method for technol-
ogy development than is currently employed. Around us, we can observe the proliferation
of dramatized narratives about the impact of quantum technology on our lives; we involve
the public only by attempting to disseminate simplified information about our fields of
expertise; and the primary role of policy-makers in quantum technology research appears
to be the allocation of funds to high-potential areas like quantum cryptography.

In fact, Coenen and Grunwald don’t touch on an important part of the role of policy
makers in research and innovation. Politicians can and do make decisions about support-
ing sensationalized narratives and particular technologies for their own political gains. It
can benefit a state to be seen nationally and internationally as participating in a field of
cutting-edge research—the state may gain a reputation as being technologically advanced,
which is invaluable for political and business purposes. This is particular useful when the
research relates to state interests like security, and it is clear that much of the narrative
around quantum technology is currently about cryptography. Thus, pursuit of security
projects like satellite systems of quantum key distribution not only have the effect of fur-
thering development of a (potentially) useful technology for security (with all the inherent
consequences of security technology), but also draws on the hyped narratives of quantum
technology to lend authority to the state. In this way, sensationalized stories about the
potential of QTech serve political purposes. Let’s investigate with a case study.

3As opposed to sensationalized expectations leading to misapplication of funds and subsequently to
dramatic drops in funds when the research does not deliver.
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Arctic sovereignty and entangled photons

The Arctic has a long history of being desired by various nation states for its potential
business applications. The Northwest Passage has long been desired for more efficient travel
around the Americas. Mining has been active in Arctic territories for decades, including
for diamonds in Nunavut and gold in Alaska. This desire continues ever stronger today: oil
reserves previously under ice are in apparently high demand by the USA, Canada, Russia,
and other Arctic nations [18, 19].

Even now, claims to borders and waters are under dispute, with a significant dispute
around the Northwest Passage. Canada claims that these waters belong to the state;
many other nations consider them international waters [20]. The Canadian state has been
implementing strategies to lay definitive claim to this and other Arctic territory for many
years, with political intent to expand these strategies [21, 22]. Populations of military
personnel and researchers are maintained in Alert, Nunavut, located at the northern tip of
Ellesmere Island, making it the northernmost permanently inhabited location in the world
[23]. Autonomous submarines have been deployed to make more accurate maps [24], with
the explicit goal of continuing the project of Arctic exploration to accurately define the
limits of the continental shelf to “obtain international recognition for those limits” [25].

In 1953, 87 Inuit were forcibly relocated from Inukjuak, a community on the northeast-
ern side of Hudson Bay, to new communities named Grise Fiord and Resolute in the High
Arctic [26, 27], about 2000 km away. The families were separated en route without prior
warning, not provided with enough appropriate supplies for a harsher environment, and
were initially told they would be able to choose to move back to their communities, but
were never actually offered the opportunity. Various efforts were made by the relocated
individuals and their descendents to obtain compensation and an apology. A $10 million
fund was created in 1996, with an intentional absence of apology [26]. An apology was
officially offered in 2010, 57 years after the relocation and 16 years after the Royal Com-
mission on Aboriginal Peoples recommended an apology which acknowledged that the goal
of the relocation included establishing an Arctic presence for the benefit of the Canadian
government [28]. The Canadian government continues to cite Inuit presence as a legitimiz-
ing factor in its efforts to make land and water claims [22, 29]. This was undoubtedly a
project of Arctic sovereignty.

In 2018, the Department of National Defence awarded a $2.7 million contract to a
research group at the Institute for Quantum Computing for contributions to the develop-
ment of a quantum radar system to be deployed in the Arctic [30]. The government media
release identifies the project as one which supports Arctic sovereignty: “Surveillance so-
lutions support the Government of Canada’s ability to exercise sovereignty in the North,
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and provide a greater awareness of safety and security issues, as well as transportation and
commercial activity in Canada’s Arctic” [30].

The research itself is primarily concerned right now with the development of a source
of entangled photons. One could make conservative judgements about whether adver-
tised technological goals are genuinely achievable; certainly, the implementation of a long-
distance radar system using sensitive photonic devices in harsh conditions seems tricky.
Even if the research funded by this grant does not lead to a technology which directly
supports the state’s land and water claims, participating in the grant program adds cre-
dence to the sovereignty effort in at least two ways. First, internationally reported tech
and geopolitical news stories share information about the grant, contributing to Canada’s
reputation as a technologically proficient nation with the ability to fund cutting-edge mili-
tary projects [31]. Second, this reputation is additionally built by researchers sharing their
extant authority in quantum technology, which has an already established reputation of
scientific and technical interest. Thus, even if the advertised technological goal fails, the
efforts of these researchers are supporting the interests of the Canadian state.

If the development of a quantum radar eventually succeeds, then local researchers
will have assisted in the advancement of Canada’s military capabilities, and in particular
made substantive contributions to the military’s ability to detect stealth aircraft in the
internationally desired and geopolitically contentious High Arctic.

These two narratives about forcible relocation and quantum technology are tied by their
role in Canadian Arctic sovereignty. The analysis presented about the political motivations
surrounding the quantum radar project does not rely on the High Arctic Relocation for
validity. But the project does implicitly and additionally support the appropriation of
Indigenous land claims by the Canadian government. Indigenous land claims have not
been internationally acknowledged as important in sovereignty claims until really quite
recently [21], and the Canadian government has treated Inuit and Indigenous people in
seriously harmful ways for a long time. It is now part of their policy that the historical
presence of Inuit people in the Arctic justifies Canada’s land and water claims (rather
than claims by the Inuit nations themselves). Uncritical acceptance of grant funds and
participation in a narrowly defined military project supports Canada’s claims to Arctic
sovereignty, supports their methodology in doing so, and supports the end goals of further
exploitation of northern resources.

Enacting just physics

What does it matter if the research of quantum physicists and nanoscale engineers con-
tributes to a specific political interest, whether it is resource extraction, political repute, or
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displacement of Indigenous people? In the usual story we tell as physicists, our research is
well-justified if it addresses a theoretical question deemed interesting by our peers, or if it
contributes to technological development deemed worthwhile by grant-awarding agencies.
Why do our stories end there? We don’t actively consider which specific political interests
are beneficial or harmful to support. Our reluctance to engage in critical analysis of the
impacts of our work on the world around us is enacted through the limits we set on our
formal discussion. These limits cyclically discourage folks to engage in critical analysis.
Often, these limits are justified by arguing that societal effects from research projects are
not the responsibility of researchers, or arguing that those effects are not in the domain of
the research itself, and that therefore they are irrelevant to the objects of study.4

I’m arguing for the inclusion of critical analysis in our practice of our science. We
can expand our stories to regularly involve analysis of the effects of our science, and why
we’re doing it in the first place.5 We can then make ethical judgements about the impact
of our work. Why wouldn’t we? As humans, we can all take responsibility for actions
that might affect other humans and our planet. We know there are pressing issues on our
planet—among them significant inequities between white folks and people of colour, West-
ern and non-Western folks, and men and women, as well as dramatic misuse of resources
leading to global climate crisis. When the impact of uncritical development of QTech could
include support of inappropriate management of mining resources, complicity in conflict
surrounding those metals, support of Arctic sovereignty explicitly for the purposes of re-
source extraction, and more, why would we want to stay uncritical? Why would we pretend
to be neutral, when continuing the way we are clearly supports these non-neutral stances
and activities?

Steps can be made towards honesty in our daily practice. We can start with communi-
cation within particular academic circles, especially with folks better versed in these issues,
like academics in science and technology studies and philosophy of science. We can use
methodologies like responsible research and innovation frameworks to spread the power
of decision-making in science [7]. We can be self-critical and honest about outcomes at
conference presentations. We can brainstorm ways to support folks who have already been
trying this methodology and been penalized by grant-awarding agencies. We can develop
goals which have the potential to address issues of inequity, or at least minimal potential

4The most widely-used argument supporting this point is that science ought to be value-neutral and
therefore separate from political analysis (even as it clearly contributes to political projects) [32]. Oth-
erwise, one could argue that physicists should probably not be the folks responsible for studying the
impacts of their work as they do not have the relevant expertise—this is a problem that should probably
be addressed through education of physicists and collaboration with folks appropriately trained [33].

5For instance, grants are more available in one area than another, or they require certain technological
spins on research to be awarded. And then—why are those the goals of the grant awarding agencies?
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to continue or worsen inequity. We can allow our goals of equity and justice to influence
choices that we make in science, without the concern that they will lessen the accuracy of
the science itself [34]. We can make a project of justice and physics [35].

A step towards responsibility: the effects of my own contributions

Here’s a step towards a more just physics: we can be very realistic about the motivation for
and results of our work in our writing. Usually, introductions give context and motivation
to a problem; they construct the space in the literature that the work is aiming to fill. This
gives the sense that the primary and perhaps only effect of doing the work is filling the
hole that the introduction excavates. As might be expected of folks who must advertise
and advocate for the validity of their own work, the effect of the work is also generally
presented as exclusively positive and constructive. Criticisms of the work are constrained
to notes about future work that must be done, or are made by folks who did not author
the paper. The impression we get just from the way that we write is that our work is all
reasonably significant and that its region of influence is limited to physics and possibly
technological advances, which are further implicitly presented as definitely positive.

Instead, we can try to not just construct one compelling motivation to consider the
problem, but to identify all the relevant motivations for why one would care about it.
What technological projects are being supported by the relevant body of literature? Are
there potentially negative effects of those projects? What effects will the work likely have
on its immediate fields? What goals did the physicists themselves have for the project,
including career-motivated goals? In this way, we can begin to build a clearer picture of
the place physics has in our world.

Being more honest and accurate about the effects of our work has a bonus effect of
addressing the disparity between the way physics is done and the way people think that
it is done. Most physicists, at least on some level, believe that much of physics is done by
singular pieces of work with dramatic effect. Certainly our field still acts like this, when a
paper published in a journal like Nature adds so much credence to a job application. In
reality, many advances in physics cannot be readily traced back to a single contributor.
Growth of knowledge often comes over long periods of time, in the midst of a community
of researchers, with many inaccurate claims made along the way. Many incremental pieces
of work construct knowledge about a field [36, 37]. Work which ends up being untrue or
unhelpful for a particular problem can actually be very useful; it’s great to know which
avenues of solution won’t be productive. Our writing process erases these contributions to
scientific knowledge, as publishing is generally reserved for so-called positive results. Some
folks are more affected by this discrepancy between appearances and reality than others.
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Women of colour, for instance, are at much higher risk of receiving disproportionately
less professional acknowledgement than their white or male colleagues. The appearance
is that these scientists are worse at science, when in reality, parts of the publishing and
citing processes are structurally discriminating against their contributions. These scientists
may, then, be more likely to believe that they are worse at science, especially if they have
negative results. This has a real effect of women of colour leaving science.

In this thesis, I will try to enact these steps towards the physics I would like to see. We
will start with some general comments about the effects of the two studies of this thesis.
In the introductory and concluding chapters of each part, more analysis will be conducted
dealing with the specifics of each study.

A general and honest assessment of my works is that they make incremental contri-
butions to their respective fields. The details of these contributions can be found in the
concluding chapters of Parts I and II.

There are effects of these studies beyond the immediate and direct impacts on the fields
that they are contributing to. Here are a few. First, by studying quantum physics with
the advertised intent of contributing to the development of quantum technology, I and
my collaborators are endorsing the project of QTech in a substantive way. We are being
complicit in the advertised narrative around QTech, discussed above—that it is important,
that it will be useful, that it is a worthwhile expenditure of resources. This effect will be
elaborated on below.

Second, we are personally benefitting from participating in this narrative. I benefitted
from advertising my quantum thermodynamics project as useful for QTech by way of having
won an NSERC CGS-M grant, which allowed me to continue my studies for the past eight
months without having to work as a teaching assistant. QTech is heavily and positively
advertised at the Institute for Quantum Computing, where I and my collaborators work.
The IQC is well-funded, which translates into nicer office space and more and fancier work
parties than the majority of other graduate students at the University of Waterloo.

Finally, like any physics project that participates in the usual process of applying for
grant money and reporting one’s findings in a sufficiently acceptable journal, we also sup-
port the standard methodology for physics. We accepted grant money from the Canadian
state to contribute to a project which they have particular political interest in. We pub-
lished our work in Physical Review, and reported positively on it at conferences. We did
not attempt to make substantive changes to a system which some of us have made critiques
of over the course of my time working on these projects.

This project of identifying context and making societally relevant critiques of my own
work is the first step in a project to amend the methodology of physics by doing it differ-
ently. It continues in Parts I and II.
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Part I

Finite sizes and smooth cutoffs in
superconducting circuits
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Chapter 1

Introduction

There are a couple of ways that we can motivate the problem of this part of the thesis.
One way is from a big picture, starting with physical situations as basic as the interaction
of light and matter, motivated by some wonder and awe, and making some claims about
the generality and power of our models. Then, we carve out a particular space, a set of
parameters and methods that haven’t been addressed in the literature before, and in the
context of this powerful model that we’ve already introduced, we construct an interesting
problem. There’s utility in this usual way of introduction, so we’ll do that first. Another
way to motivate the problem is telling the story of how I came upon the problem and how
it was motivated to me. We’ll do that motivation next. Finally, we can look back and
update the motivation of the study once we have its results—we can comment on what it
ended up being for after all. We’ll address this motivation in chapter 5, after we have the
results of the study.

We can begin with the motivation from a big picture: we are interested in the interaction
of light and matter. It’s super ubiquitous. It’s very cool. It’s literally a part of you,
reading this thesis, right now: your eyes seeing the light coming from the screen (or the
WiFi communicating with your screenreader), your skin feeling the warmth of the sun,
your energy from plants powered by light. Those are classical interactions, at least for the
most part, but the light-matter interaction (LMI) doesn’t lose its importance in quantum
regimes. We only collect information about light via its interaction with pieces of the world
we have “direct” control over, that is, pieces of matter. Even in quantum regimes, we like
light—it illuminates the world, it’s how we communicate, and it carries information about
our universe and its history.

We have a wonderful theory to describe light. We quantize the classical electromagnetic
field to give quantum electrodynamics, a quantum field theory. In this formulation, we
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consider light existing across a free domain to be made up of infinitely many continuous
harmonic oscillators, one for every frequency.

To be able to interact with this everpresent field, we as fundamentally limited beings
must use matter. In our theory of light, we can couple a simple matter system to the
modes of the field. Often, we use the simplest matter systems possible—two-level quantum
systems, also known as qubits. The interaction of light with matter changes properties of
the matter in ways that we can directly observe. Most commonly, we look for changes in
the state of our qubit. Its transition between its two energy levels (ground and excited) can
be observed through recorded signals such as clicks. Recording in this way the transition
probability (or, more likely, calculating it) gives us some information about the field.

Now, we (as in, my supervisor, myself, and other theorists in our field) often explore
“fundamental” scenarios of the LMI in this way. We do things like set up a qubit or two in
an infinite vacuum and let them interact with the electromagnetic field for a second, or send
them accelerating in the infinite universe forever [38, 39]. Well. We do the math we believe
corresponds to these scenarios, at least. We employ the Unruh-DeWitt (UDW) model, a
flexible and powerful model that utlizes the first principles of the LMI [40]. Incorporated
into the model are tools to define the ultraviolet cutoff of the frequencies involved in the
interaction, the spatial extent of the interaction, and how the interaction is turned on and
off.

We were motivated to explore an application of the UDW model grounded, perhaps,
in a slightly more accessible portion of reality—the lab. In superconducting circuits, we
have all of these features of the UDW model: the LMI, with a finite spatial extent, an
ultraviolet cutoff, and an interaction which is switched on and off. Further, superconduct-
ing qubits (originally, and still, sometimes, called artificial atoms) provide a unique kind
of playground for those of us interested in the LMI. These qubits can interact with the
electromagnetic field contained in wires at strengths far exceeding that of a natural atom
to the electromagnetic field, called ultra-strong coupling (USC) [41–44]. This can provide
unprecedented ability to study features of the LMI, especially since we can turn the in-
teraction on and off in a controlled way, allowing for the exploration of non-adiabatic and
short interaction times [42].

Typically, some variant of the spin-boson model is employed to analyse these setups
[44–46]. Often, this model is simplified with assumptions known as the rotating wave ap-
proximation (RWA) and single- or few-mode approximations. In these simplified cases,
systems can be solved exactly. This is, for instance, where our description of Rabi oscilla-
tions comes from [47]. In the USC regime, however, the RWA is no longer valid [43, 48, 49].
Further, stronger coupling necessarily makes contributions from higher frequency modes
more relevant, encouraging the re-evaluation of the use of single-mode approximations [50].
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The UDW model makes a good candidate for avoiding making these approximations, as it
incorporates from the start all frequencies of the field and avoids making the RWA.

Beyond investigating these approximations, there are natural features of superconduct-
ing qubit and transmission line (i.e. a wire) warranting exploration. Though the spin-boson
model already requires some form of an ultraviolet cutoff, there has been little consideration
afforded to the presence of a natural ultraviolet cutoff originating in the superconducting
medium [46]. Superconducting wires are not able to transmit very high frequency modes,
but it is not known exactly how this decay behaves. In regimes where high frequency modes
play a more significant role in interactions with a qubit, such as short-time and strongly
coupled regimes, it seems plausible that the form of the ultraviolet cutoff may actually
effect dynamics. In this case, it is important to understand exactly what this impact could
be.

Additionally, though superconducting qubits have finite spatial extent, their shapes
have been neglected almost completely in analysis of superconducting circuits. Similarly
to the ultraviolet cutoff, it would be highly nontrivial to attempt to derive the form of
this spatial extent from first principles. Given the well-developed tools to deal with spatial
extents of detectors in the UDW model, and indeed the significant interest in how shapes
do actually affect dynamics of qubits [51, 52], it seems fitting that we explore how the finite
shape of a superconducting qubit may affect its dynamics.

The above set of motivations is mostly technical, and outlines what about the problem
is interesting to study given already that the LMI is interesting, or that superconducting
qubits are worthwhile technology to develop. We thus justified why we should study this
problem in terms of societal interests and goals; there is a substantial number of people
who are interested in the development of quantum technology, and thus our pursuing this
problem which is useful for that goal is a good thing. Another group of motivations to
pursue this problem has to do with personal interest. We as researchers may feel personally
and individually motivated to ask questions about qubits and the LMI. In some deep,
subtle, and potentially subconscious ways, though, societal interests also shape what folks
find personally interesting. There are at least two ways this is relevant here. First, widely-
discussed and well-advertised fields tend to attract researchers. The content of these fields
may personally interest most (if not all) of those attracted researchers, but undoubtedly
positive and excited discussion about the content plays an important role in cultivating
interest. Second, a field being popular makes it easier to publish in it. Researchers must
publish to continue to be researchers, so it makes sense that ability to publish would
influence on some level the research decisions of academics.

In the case of this particular study, personal motivations which may have influenced
the decision to pursue this particular problem include that it would be the closest to
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experiment that our group had ever researched in, which my supervisor communicated as
being appealing to him. Superconducting qubits are quite popular right now, which may
have encouraged our engaging with the field, both because the ideas and researchers were
accessible and because it seemed that other folks were interested in details of these systems.
It might be nice also for the community of relativistic quantum information, a fairly new
and growing niche field, to have UDW model to be used in a wider variety of situations
and get exposure from a community that it is not usually exposed to.

Finally, my supervisor suggested that I study this problem in 2016. I accepted his
suggestion, partially because it sounded more feasible than the other project he suggested,
partially because it sounded interesting, and partially because I trusted his judgement on
the value of the problem.

Having outlined to the best of our ability our motivations, let us continue with the
details of the study. In this part of the thesis, we will investigate the effect of ultraviolet
(UV) cutoffs, spatial extents, and their respective scales on the dynamics of a supercon-
ducting qubit interacting with a 1+1D open transmission line. Since the exact forms of
these features are unknown, we will compare a selection of plausible forms to develop an
understanding of the importance of using an accurate description of the feature. We will
focus in the short-time and non-adiabatic interaction regimes, based on the intuition that
both features will become more important in these regimes, and with the knowledge that
short-time interactions are relevant in experimental settings for those who wish to create
low photon number states [45, 53–55].

The study described here proceeds as follows: we use the UDW model to study a
qubit interacting with an open (i.e. infinite) transmission line, where the qubit takes on
one of several nontrivial shapes and sizes, and the transmission line has one of several
UV cutoffs and cutoff scales. This study in the ultrastrong coupling regime will calculate
the probability of vacuum excitation of the qubit and spontaneous emission into the line,
investigating the effect of the size of the qubit, the shape model, the cutoff scale, the cutoff
model, and adiabaticity and length of the interaction on these probabilities. We will show
that in the adiabatic and especially in the adiabatic and short-time regime, neglecting to
use the correct cutoff model can introduce inaccuracies in a model’s predictions of the order
of 10%.

This part of the thesis is organized as follows. In chapter 2, we contextualize our study
in the extant tools and literature of the spin-boson model. We discuss the spin-boson
Hamiltonian, how ultraviolet cutoffs are employed in the model, coupling constants, the
RWA, and currently employed methods of solution. We also discuss how the physical
systems making up a particular type of superconducting qubits may be approximated as
two-level systems. In chapter 3, we introduce the model we utilize for the study, the UDW
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model. We give a brief review of quantum field theory, history and applications of the
model, and how spatial smearings and ultraviolet cutoffs have been utilized in the model.
We also provide a thorough relationship between the UDW model and the spin-boson
model, including a relationship between their coupling constants. In chapter 4, we detail
our specific scenario and results. We give the relevant physically-inspired parameters and
provide reasonable forms for the qubit’s spatial extent and the line’s ultraviolet cutoff. We
calculate the time evolution of the qubit, and give the results in terms of sensitivity of
the qubit’s dynamics to the shape and cutoff models, the size and cutoff scale, and to the
cutoff models as a function of adiabaticity and interaction duration. Finally, in chapter 5,
we discuss some conclusions and limitations of the study, and revisit what it was all for in
the first place.
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Chapter 2

The Spin-Boson Model and
Superconducting Qubits

Artificial atoms have adjustable coupling strengths which can be orders of magnitude larger
than the coupling between a hydrogen atom and the electromagnetic field (see, e.g. [43]).
As such, they are of interest to those who study the light-matter interaction (LMI). We
can use these systems to study particular features of the LMI that might be too small to
detect in a natural atom-field interaction.

Superconducting qubits are among the most popular artificial atoms right now, used in
applications from generating single- and few-photon states (i.e. states with low expectation
values of the number operator) to exploring quantum heat engines [56, 57]. They also
feature at least two characteristics which can have nontrivial impact on the LMI—a natural
ultraviolet cutoff and a non-trivial spatial distribution. Further, these features are not
simple to describe. In simple atoms, at least, we can write down the electronic shape of the
atom, or its spatial crosssection of interaction. In artificial atoms, where there are billions
of atoms, we just don’t have that. We’re not able to derive the electromagnetic spatial
distribution of the qubit from first principles. Are there signatures in the LMI of this spatial
cross-section that give us an idea of the shape without needing the detailed knowledge of
the electronic structure? We can ask the same question of the ultraviolet cutoff, which
depends in superconducting materials in a highly nontrivial way on the breakdown of
Cooper pairs at high frequencies. Thus, the superconducting qubit interacting with light
provides us not only with a place to study features of the LMI, but is in fact provides new
features for us to study.

We have powerful tools to study the interaction of an atom with a field, incorporating
features like ultraviolet cutoffs and spatial distributions, in the Unruh-DeWitt (UDW)
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model. There are already plenty of tools to study the way that a superconducting qubit
interacts with a transmission line, though, so it behooves us to justify the use of the UDW
model. To do this, we first need to be familiar with the tools already used, and see how
they do or do not already address the features that we’re interested in.

Variants of the spin-boson model are generally employed to study qubits interacting
with light [58], including the rotating wave approximation Jaynes-Cummings model [45, 59,
60]. Often, hard cutoffs (including single-mode approximations) are used [45, 61]. When a
qubit couples to a continuum of modes, ultraviolet cutoffs are already employed in the spin-
boson model [46, 50]. These cutoffs are not necessarily motivated by the high-frequency
decay of mode amplitude cause by the breakdown of superconductivity, but from requiring
that certain quantities are not UV divergent.

In this chapter, we give an overview of the spin-boson model in section 2.1. We discuss
ultraviolet cutoffs used in the model in subsection 2.1.1; we will see that an exponential
cutoff is commonly used, and that it has a physical impact which is quite well documented
[44]. We’ll discuss coupling constants and regimes in section 2.1.2, use of the rotating wave
approximation in section 2.1.3, and methods of solution for the model in section 2.1.4. To
ensure our use of the spin-boson model as a tool to study superconducting qubits, we also
require justification that the circuits, as anharmonic oscillators, are well-approximated by
a two-level system. We thus give a derivation of the equation of motion of a flux qubit and
approximate it as a two-level system in section 2.2.

2.1 The spin-boson Hamiltonian

As a general framework, the spin-boson model is widely employed to describe two-level sys-
tems interacting with a bosonic environment. In particular, the full and modified Hamil-
tonians have been used extensively to describe on-chip qubits interacting with finite and
open transmission lines. Here, we detail the basics of the model, including the Hamilto-
nian, spectral density functions, and coupling regimes. We use as primary references for
this section [46, 58].

We consider a two-level system coupled to a bath of harmonic oscillators. The full
Hamiltonian for this system may be written as

ĤSB = Ωσ̂z +
∑
k

ωkâ
†
kâk + σ̂x

∑
k

gk(â
†
k + âk), (2.1.1)

where σ̂x and σ̂z are the Pauli x and z operators, Ω is the transition frequency of the qubit,
the â†k and âk are the creation and annihilation operators of the bath with mode frequency
ωk, and the gk are the mode-dependent coupling constants of the interaction.
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2.1.1 Ultraviolet cutoffs in the spin-boson model

Information about how the bath couples to the spin system is encoded in the coupling
constants gk, and is usually expressed by writing a spectral density function J(ω). This
function relates the mode coupling strength to the frequency of the mode. Commonly, the
bath is considered to be Ohmic, that is, to have a linear spectral density function

J(ω) =
2π

~2

∑
k

g2
kδωωk

= πωαSB, (2.1.2)

as in the Supplementary Information of [44], where ωk = ck is the frequency of mode k, with
c the speed of light, δωωk

is a Kronecker delta, and αSB a coupling constant, to be discussed
in detail below. This is an appropriate spectral density function for low frequencies—for
high frequencies, we require that the coupling strength go to zero. This ultraviolet cutoff
is introduced not from considerations of what frequencies the environment can sustain (as
we do in this work), but rather from requiring that certain physical quantities remain UV-
convergent. A number of different analytic forms of cutoff are employed for convenience,
including Gaussian, sharp, exponential, and Lorentzian decay [46]. Though a Lorentzian
decay is inspired by the Drude model of conductivity [62], in practice these cutoffs are
explicitly not engaging with the microscopic origins of the mode-dependence of the cou-
pling; this is well-justified for Markovian setups, i.e., when the relevant scales of interaction
are much longer than scales of the bath [63]. In other words, only when the timescale of
the interaction is comparable to the inverse cutoff frequency will the particular functional
form of the cutoff matter. In particular, we see that in experiments that make single mode
and few mode approximations, a cutoff is not used at all, with little to no detriment to
theoretical predictions [45, 60, 61, 64].

As will be shown in chapter 4, the ultraviolet cutoff and the Fourier transform of the
spatial smearing of an interaction function in the same way—they both decide what modes
of the field are a part of the interaction. It makes sense, then, to ask what shape is taken
for the qubit in the spin-boson model. In fact, a shape is generally not explicitly assumed.
Rather, there is implicitly an assumption of a pointlike smearing of the qubit, as shown in
detail in section 3.3.

2.1.2 Coupling constants and regimes

Once we consider coupling to a continuum of modes, the way in which we cut off high
frequencies begins to matter, and in a nontrivial way. Coupling to an environment of har-
monic oscillators renormalizes the qubit frequency—it shifts the peak frequency of emission
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of the qubit into its environment [50]. This is a physical signature of the coupling which
is readily measured. Ultrastrong experiments have found very good agreement with the
predicted value of this renormalized frequency using an exponential cutoff (see figure 4b in
[44]). Still, there is an absence of first principle justification for using an exponential cutoff
and investigations into how cutoffs additionally affect short-time dynamics of qubit-line
interactions. It is in this niche that we will settle our project, with more details on how
this work fits into the literature in chapter 4.

We wish to establish a particular form for the modal coupling constants. Looking again
at equation (2.1.2) with the goal of isolating gk, we have∑

k

g2
kδωωk

=
~2

2
ωαSB. (2.1.3)

To find the value of each gk, we can split the sum over modes up, making the reasonable
assumption that the frequency ω on the left hand side is constituted of a weighted sum of
frequencies, ω =

∑
k ωk∆ωk where ∆ωk = ωk+1 − ωk, the difference in frequency between

neighbouring modes, serves as a weighting function. This gives

g2
k =

~2

2
ωk∆ωkαSB, (2.1.4)

for the contribution of each gk. Thus the modal coupling strength is given by

gk = ~
√
αSBωk∆ωk

2
. (2.1.5)

The coupling constant αSB indicates both the strength of the field-qubit coupling and
the effective phase of the field—that is, in different regimes of the coupling, the nature
of the interaction changes significantly. Phase transitions are observed at αSB = 1/2 and
1 [44, 58]. More concretely, in the discrete mode spin-boson model, αSB is a measure of
the coupling strength Γ/Ω, where Γ is the rate of spontaneous decay of the qubit into
the field and Ω is the transition frequency of the qubit. The exact relationship of αSB

and Γ/Ω depends on the regime of coupling strength. For instance, under the rotating
wave and Born-Markov approximations, the exact relationship Γ/Ω = παSB holds. This
is very accurate when Γ/Ω . 0.1. For larger such ratios, this becomes a lower bound:
Γ/Ω > παSB. An exact relationship between Γ/Ω and αSB has been derived using non-
perturbative methods in [65].

We can identify two extreme coupling regimes. One regime is Γ/Ω � 1, so that
αSB � 1; this is the regime in which the rotating wave approximation is valid. We will
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discuss this approximation and some issues with it briefly below. The ultrastrong coupling
regime, on the other hand, is where Γ ∼ Ω, in particular, Γ/Ω & 0.1 [42, 44, 65]. This is the
regime of particular interest for us. Note the use of the word “ultrastrong” here indicates
an interaction much stronger than the naturally present interactions between light and
matter, i.e. that between an atom and light. In [44], the ratio Γ/Ω reaches values well over
1; the coupling constant αSB exceeds 1/2.

2.1.3 Rotating wave approximation

It is not infrequent for researchers to make use of the rotating wave approximation (RWA).
This is an approximation made on the interaction Hamiltonian of a two-level system in-
teracting with a single harmonic oscillator,

Ĥint = gσ̂x(â
† + â) = g(σ̂+ + σ̂−)(â† + â), (2.1.6)

where σ̂+ = |g〉 〈e| and σ̂− = |e〉 〈g|, wherein so-called counter-rotating terms σ̂+â
† and

σ̂−â are ignored. This results in the commonly used (e.g. [45, 66]) RWA Jaynes-Cummings
Hamiltonian,

Ĥint = g(σ̂+â+ σ̂−â
†). (2.1.7)

The approximation is incredibly useful—it allows one to exactly solve the single-mode
spin-boson system [47]. It’s only applicable in certain regimes, however.

Let us review justification for making this approximation. We can write the interaction
Hamiltonian (2.1.6) in the interaction picture,

Ĥint = g(eiΩσ̂+ + e−iΩσ̂−)(eiωâ† + e−iωâ) (2.1.8)

= g(ei(ω+Ω)σ̂+â
† + e−i(ω−Ω)σ̂+â+ ei(ω−Ω)σ̂−â

† + e−i(ω+Ω)σ̂−â).

When the frequency of the qubit Ω is very close to the frequency of the harmonic oscillator
ω, then the terms e−i(ω−Ω)σ̂+â and ei(ω−Ω)σ̂−â

† will be oscillating with a very small frequency
in comparison to the other two terms, |ω−Ω| � ω+ Ω. This justifies neglecting the terms
ei(ω+Ω)σ̂+â† and e−i(ω+Ω)σ̂−â as their rapid oscillations will quickly be averaged over in any
interactions longer than those of the order of (ω − Ω)−1.

Under what regimes does the approximation fail? Notice the presence of the single-
mode approximation here, and in particular the assumption that Ω ∼ ω. In the process of
spontaneous emission, where the two-level system begins in the excited state, this approx-
imation can be justified by noting that quanta are emitted from the qubit at the qubit’s
frequency Ω. In the process of vacuum excitation, where the two-level system begins in
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the ground state, there is no such dominant frequency, making this crucial assumption in
the RWA unjustifiable and the approximation inaccurate.

We have also assumed that the coupling is Ohmic, as in equation (2.1.2), which is a very
good approximation for weak coupling of the two-level system to the harmonic oscillator.
For stronger coupling, with αSB & 0.1, the frequency dependence of the interaction changes,
as discussed in 2.1.2. In fact, the Ohmic spectral density becomes super-Ohmic, rendering
the RWA unjustifiable. As discussed in section 2.1.1, the assumption of an Ohmic spectral
density only applies for low frequencies—at high frequencies, the coupling must decay.
This means the RWA cannot hold there either. Further, using the RWA even introduces
issues with casuality [51].

2.1.4 Methods of solution

When we make the rotating wave approximation, we can exactly solve the spin-boson
model. The existence of an exact solution for low-strength couplings is one of the reasons
that the spin-boson model is so ubiquitous. However, for strong couplings, neither the RWA
nor perturbation methods work. In order to make accurate predictions for these regimes,
which are only becoming more common experimentally, we need to employ other methods
of solution. At least two methods have been used to good effect: matrix product states
[50] and the dynamical polaron ansatz [65]. The results of [65] have been corroborated by
the experiments in the ultrastrong coupling regime of [44].

2.2 Flux qubits: approximate two-level systems

In the previous section, we considered a two-level system coupled to an open transmission
line. Here we provide more detail on what actually makes up the two-level system. Super-
conducting qubits are generally, in fact, anharmonic oscillators which, in certain regimes,
can be approximated well as a two-level system. We will look at a canonical example of
such an approximation: the flux qubit, diagrammatically shown in figure 2.1. We study
this particular qubit (as opposed to a charge or phase qubit) because of its ability to fa-
cilitate stronger couplings [42, 46]. The basic flux qubit consists of a Josephson junction
interrupting a ring of superconducting material, through which is threaded a magnetic
flux. More common implementations of flux qubits utilize three or four junctions in a
single loop; the two-level approximation made in these cases is similar [67, 68]. Again, we
employ [46] as a primary reference in this section.

To see how we consider this circuit to be a two-level system, we will set up the equation
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of motion and potential of the electron wave function phase ψ̂ the junction. The Josephson
junction is a nonlinear inductor which will be shown to act as an anharmonic oscillator,
with a much larger gap between the second and third energy levels than between the first
and second. We will thus see how the potential can be well-approximated by a double-well
potential, and thus in certain regimes can be further approximated by a two-level system.

To do this, we first need Josephson’s two relations. The first relates the magnetic flux
threading the ring, Φ̂, to the phase difference of the electron (Cooper pair) wave function
across the junction, ψ̂,

ψ̂ = 2π

(
n− Φ̂

Φ0

)
, (2.2.1)

where 2πn is the phase change of the wave function around the entire ring and Φ0 is the flux
quantum, Φ0 = h/2e, with e the charge of the electron. We can additionally break up the
flux through the ring into two parts: the externally applied flux Φ̂ext and the flux created
by the super-current Î present in the ring, given by LÎ where L is the self-inductance of
the ring,

Φ̂ = Φ̂ext + LÎ. (2.2.2)

The super-current is produced by Cooper pairs sliding around the superconducting ring
(seeing as how it is a zero-friction environment) and is related to the phase across the
junction by

Î = Ic sin ψ̂, (2.2.3)

where Ic is a parameter describing the critical super-current, determined by properties of
the junction. It is related to the Josephson energy EJ (the potential across the junction)
and the flux quantum by

EJ =
IcΦ0

2π
. (2.2.4)

In practice, Josephson junctions are not inserted into a superconducting loop alone.
Instead, they are shunted, that is, inserted in parallel with, other circuit elements. Resis-
tively shunted junctions are those which are shunted by a capacitor and a resistor, as in
figure 2.1. This splits the supercurrent, i.e. the total current around the ring, into three
parts:

Î = Ic sin ψ̂ +
Û

R
+ C

˙̂
U, (2.2.5)

where Û is the voltage drop across the junction (and thus also across the shunting elements),
R is the resistance of the resistor, and C is the capacitance of the capacitor.
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a) b)

Figure 2.1: Schematic diagrams of single-junction flux qubits. a) A Josephson junction,
marked by an “X”, in a superconducting loop. b) A resistively shunted Josephson junction.
The junction is placed in a loop in parallel with a capacitor and a resistor.

Josephson’s second relation is

˙̂
ψ = 2e

Û

~
, (2.2.6)

relating the voltage drop across the junction Û to the rate of change of the phase change
across the junction ψ̂. Combining Josephson’s two relations and substituting in to the
current equation 2.2.5 to find an equation of motion for the flux Φ̂, we arrive at

C
¨̂
Φ +

˙̂
Φ

R
+
∂V (Φ̂)

∂Φ̂
= 0, (2.2.7)

with the potential V defined as

V (Φ̂) =
1

2L
(Φ̂− Φ̂ext)

2 − EJ cos

(
2πΦ̂

Φ0

)
. (2.2.8)

We now wish to see how this potential lends itself to a two-level approximation. To this
end, we enforce that 2Φ̂ext/Φ0 = 1. When this is the case, the potential V (Φ̂) is symmetric
about ζ̂ = 2πΦ̂/Φ0 − π, and can be rewritten as

V (ζ̂) =

(
ζ̂2

2βL
+ cos ζ̂

)
EJ , (2.2.9)

where

βL =
2πLIc

Φ0

=
4π2LEJ

Φ2
0

(2.2.10)
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ζ- ζ+

Vb

ω0

Figure 2.2: The double well potential Vquart of a superconducting qubit.

is a dimensionless parameter. We can take ζ̂ to be small and expand V (ζ̂) in a power series
up to the fourth power:

Vquart(ζ̂) =

(
1− 1

2

(
1− 1

βL
ζ̂2 +

ζ̂4

24

))
. (2.2.11)

If the parameter βL > 1, then this potential is a symmetric double well, with degenerate
minima at

ζ̂ = ζ̂± = ±
√

6(1− β−1
L ) (2.2.12)

and barrier height

Vb =
3

2

(
1− β−1

L

)2
EJ . (2.2.13)

This symmetric double well potential is shown in figure 2.2. The two wells correspond to
the current running clockwise and counterclockwise in the ring.

We can find the energy gap between the approximate ground and excited states using
the instanton method, explained in some detail in [46]. The energy gap Ω0 of the qubit (in
a symmetric double-well potential) can be expressed in terms of the barrier height as

Ω0 = 8

√
2Vbω0

π~
exp

(
−16Vb
3~ω0

)
, (2.2.14)

where ω0 is the frequency of small oscillations in each well. For a superconducting qubit
which is not interacting with a transmission line or other environment, then, we can write
the Hamiltonian approximating the qubit as a two-level system as follows:

Ĥq = −1

2
~Ω (|L〉 〈R|+ |R〉 〈L|), (2.2.15)
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where we’ve written the renormalized qubit frequency Ω and are using the basis { |L〉 , |R〉 }
corresponding to being in the left and right wells. This renormalization arises from coupling
the qubit to an environment, which modifies the transition probability 〈L|R〉. For a non-
interacting qubit, there is only one such transition frequency. When we consider the qubit
interacting with a bath of harmonic oscillators, we must consider the joint state of the
system. We use the spin-boson Hamiltonian

Ĥ = Ω~σ̂x +
∑
k

~ωkâ†kâk + σ̂z
∑
k

gk(â
†
k + âk), (2.2.16)

We write our states as |L〉
∏

k |nk〉 ≡
∏

k |nL,k〉, including the state of the qubit and the
state of the harmonic oscillator for all modes k. In fact, we can divide the oscillator
part of the Hamiltonian into parts associated with the two-state system being the left or
right states. Then, the oscillator has two ground states, |0L,k〉 and |0R,k〉. These are not
orthogonal. Assuming that we are in the vacuum state |0k〉 for each mode, the transition
amplitude between the two ground states must be calculated as

Ω = Ω0

∏
k

〈0R,k|0L,k〉 . (2.2.17)

Coupling to a bath of harmonic oscillators thus changes the way that the two-state system
can transition. The amplitude is modified by what is called the Franck-Condon factor,

Ω = Ω0 exp

(
−1

2

∑
k

g2
k

ω2
k

)
. (2.2.18)

When we couple to a continuum of modes, we can write this renormalized transition
amplitude as

Ω = Ω0 exp

(
−1

2

∫ ∞
0

dω
J(ω)

ω2

)
, (2.2.19)

with J(ω) the spectral density as in 2.1.2. This integral can be tricky; it is IR divergent
when J(ω) ∝ ωs with s ≤ 1. This is physically due to assuming that the coupling is
adiabatic, in the sense that the bath immediately responds to any change in the qubit. It
is managed by using this relation to lessen the contribution of low-frequency modes:

Ωr = Ω0 exp

(
−1

2
p.v.

∫ ∞
0

dω
J(ω)

ω2 − Ω2
r

)
, (2.2.20)

where p.v. denotes taking the Cauchy principal value of the integral. For an Ohmic spectral
density with exponential cutoff

J(ω) = ωe−ω/ε, (2.2.21)
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the renormalized qubit frequency is

Ωr = Ω0

(
Ω0

ε

)αSB/(1−αSB)

. (2.2.22)

This shifted frequency is observed in experiment, as in, for instance, [44].

As a final note, this derivation uses the basis { |L〉 , |R〉 } of the wells. Switching to the
energy eigenbasis, { |g〉 , |e〉 }, and setting ~ = 1 as in the rest of this thesis, we can write
the spin-boson Hamiltonian for this system of qubit coupled to a transmission line in an
identical fashion to (2.1.1),

ĤSB = Ωσ̂z +
∑
k

ωkâ
†
kâk + σ̂x

∑
k

gk(â
†
k + âk). (2.2.23)
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Chapter 3

The Unruh-DeWitt Model

A generalization of the light-matter interaction to fields interacting with matter is found
in the Unruh-DeWitt (UDW) model, now ubiquitous in the field of relativistic quantum
information. First introduced by Unruh [39] and simplified by DeWitt [69], this model of a
two-level system interacting with a quantum field has facilitated operational investigation
of characteristics of fields. The proliferation of this model is motivated by this operational
property, in addition to the fact that it captures the essential features of the light-matter
interaction. Properties of a quantum field like light which are calculated by considering
the field to be free raise a number of questions: are these properties really observable? Are
they artifacts of the method of calculation? The UDW model circumvents these issues by
ensuring any calculated effects are in principle observable, by nature of being properties
of a two-level system. We can rest easy knowing that we are able to measure and interact
with two-level systems, and that therefore the predictions of the model are physical in an
operational sense.

In this chapter, we first review in section 3.1 quantum field theory for scalar fields in
flat spacetime. We follow this in section 3.2 with a review of the Unruh-DeWitt model,
including some history of its development and important conceptual issues (including no-
tions of particles and causality issues of detectors). We finish with a demonstration of
the equivalence of the spin-boson model and the UDW model under certain conditions in
section 3.3.
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3.1 Quantum field theory: scalar fields in flat spacetime

In this study, we will make use of the powerful framework of quantum field theory. Specif-
ically, we utilize the UDW model coupled to the conjugate momentum of a massless scalar
field in 1+1D, for two reasons. One, that qubits which couple to the current of a line do in
fact couple to the conjugate momentum of the field and two, that the conjugate momentum
is IR-safe in 1+1D, allowing for ease of computation. Here, we review the essentials needed
for this purpose. A more complete review may be found in e.g. [70–72], used as primary
references for this section. Additional brief pedagogical reviews can be found in [73–76].

A field theory, at its roots, aims to describe the dynamics of fields over space and time.
We can thus begin with the physically motivated Klein-Gordon equation—a wave equation
in space and time:

�φ(x, t) = 0, (3.1.1)

where � = ∂2
t − ∂2

x is the d’Alembertian operator. Solutions to this equation minimize the
action

S =
1

2

∫
dx

∫
dt
(
(∂tφ)2 + (∂xφ)2

)
. (3.1.2)

We can quantize the field by imposing the canonical commutation relations on the field φ
and its conjugate momentum π = ∂tφ and writing hats:

[φ̂(x, t), π̂(y, t)] = iδ(x− y),

[φ̂(x, t), φ̂(y, t)] = 0, (3.1.3)

[π̂(x, t), π̂(y, t)] = 0.

We can express a general solution to this free field equation in terms of plane waves,

φ̂(x, t) =

∫
dk
(
u∗k(x, t)â

†
k + uk(x, t)âk

)
(3.1.4)

where the â†k and âk are the creation and annihilation operators, respectively, of each mode

k. The coefficients uk(x, t) of the â†k and âk are partially determined by requiring that the
commutation relations (3.1.3) be satisfied. The commutation relations of the field operator
and its conjugate momentum require that the creation and annihilation operators satisfy

[â†k, âk′ ] = 2πδ(k − k′),
[â†k, â

†
k′ ] = 0, (3.1.5)

[âk, âk′ ] = 0,
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and that the coefficients uk are complete and orthonormal with respect to the Klein-Gordon
inner product, given by

(u, v) = i

∫
dx (u∗(∂tv)− (∂tu

∗)v) . (3.1.6)

One set of coefficients which satisfy this are the plane waves,

uk(x, t) =
1

2
√
π |k|

e−i(|k|t−kx). (3.1.7)

We can thus write the free field in a plane wave mode expansion as

φ̂(x, t) =
1

2
√
π

∫
dk

1√
|k|

(
â†ke

i(|k|t−kx) + âke
−i(|k|t−kx)

)
. (3.1.8)

In the rest of this work, we will be interested not in the field but in its conjugate
momentum π̂(x, t). We do this to avoid difficulties with the IR divergence of the field φ̂(x, t)
in 1+1D—the Wightman function of φ̂(x, t) is IR divergent, with ambiguities arising in
how to calculate the transition probability of a detector [77–79]. Coupling to the conjugate
momentum instead of the field amplitude avoids such ambiguities [78]. From this mode
expansion of the field, we can immediately write the same for its conjugate momentum by
taking the partial derivative with respect to time:

π̂(x, t) =
1

2
√
π

∫
dk
√
|k|
(

iâ†ke
i(|k|t−kx) − iâke

−i(|k|t−kx)
)
. (3.1.9)

3.2 The Unruh-DeWitt model

As discussed above, calculations about a field can seem ethereal without a connection to
a system that we can directly measure. The Unruh-DeWitt model was developed to deal
with this difficulty by investigating the behaviour of a matter system coupled to a quantum
field. In this section, we briefly review some major applications of the model, detail the
model itself, and discuss aspects and consequences of its use of spatial smearing.

3.2.1 History & applications

The first and most celebrated result that makes use of the UDW model is the Unruh effect,
initially described by Fulling, Davies, and Unruh [39, 80, 81]. The effect is this: when a
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detector coupled to a field in flat spacetime undergoes constant acceleration for all time,
it thermalizes, transitioning to the excited state as if it were interacting with a thermal
background with a temperature proportional to the acceleration.

Entanglement in quantum fields is a particularly slippery concept. The operational
approach provided by the UDW model alleviates conceptual difficulties with how to appro-
priately divide spacetime (i.e. avoids divergences associated with ultraviolet scale correla-
tions) [82]. Instead of considering entanglement between areas of spacetime, entanglement
harvesting considers entanglement which can be generated between two UDW detectors
which each interact with the same quantum field [38, 83–85]. This setup has been employed
many times; for instance, entanglement harvesting has been investigated using model of a
real atom coupled to the electromagnetic field [40]; using quadratically coupled detectors
[86]; and in coherent background states [87, 88]. A variety of backgrounds and worldlines
of detectors have additionally been investigated [89–91]. The protocol has even been ex-
tended to a sustainable repeated method called, entertainingly, entanglement farming [92].
Additional applications of the model include quantum seismology [93], assessing attacks on
randomness generated by measuring an atom [94], and investigating information transfer
in cosmology [95]. Some nice reviews of application and more on the UDW model include
[96–98].

Additional uses of this model include the interrogation of the idea of a particle in
quantum field theory—rather than a property of a free field, the particle becomes “that
which a particle detector detects” [69]. This definition is one of few in physics which makes
very explicit the role of the detector in the physical phenomenon of interest. It brings into
question to which quantum object the concept of particle belongs. Can it really belong to
a field if we require that a detector be present? It surely can’t only belong to the detector,
as the field has to be around to make the detector click. This operational approach to
an aspect of quantum field theory has significance in the ontology of quantum objects
[99–101].

3.2.2 Hamiltonian

In this model we have a very flexible and powerful framework with which to calculate,
sometimes non-perturbatively, dynamics of matter coupled to a quantum field. The model
typically couples a two-level first-quantized system, often called a detector (i.e. a qubit) to
a scalar bosonic field. The model is flexible in the specification of the spatial extent of the
detector, called the smearing, and the time-dependence of the interaction of the detector
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and the field, called the switching function. The typical UDW interaction Hamiltonian is

Ĥ = λ µ̂(t)χ(t)

∫
dxFσ(x) φ̂(x, t), (3.2.1)

where λ is a coupling constant denoting some measure of the strength of the interaction,
µ̂(t) = eiΩt |e〉 〈g|+e−iΩt |g〉 〈e| is the monopole moment of the detector (describing its single
internal degree of freedom) with energy gap Ω, χ(t) is the switching function (describing
how the interaction turns on and off), Fσ(x) is the spatial smearing function with charac-
teristic size σ, and φ̂(x, t) is the amplitude of a scalar field. In order to avoid dealing with
the IR divergence of the field in 1+1D, the UDW Hamiltonian we will make use of here
couples not to the scalar field but to its conjugate momentum, π̂(x, t), written in equation
(3.2.3),

Ĥ = λ µ̂(t)χ(t)

∫
dxFσ(x) π̂(x, t). (3.2.2)

For a variety of reasons (discussed below), one may choose to make use of an ultraviolet
cutoff in the conjugate momentum, which modulates the dependence of the amplitude of
π̂ on the mode k. We will here use the following expression for the conjugate momentum
used in the interaction Hamiltonian, which incorporates such a cutoff:

π̂(x, t) =
1

2
√
π

∫
dk Cε(k)

√
|k|
(

iâ†ke
i(|k|t−kx) − iâke

−i(|k|t−kx)
)
, (3.2.3)

where Cε(k) is the cutoff function and ε is its characteristic scale. Note the distinction
here between cutting off the field itself (which would modify the canonical commutation
relations, (3.1.3)) and having an ultraviolet cutoff in the interaction of the field with a
detector.

3.2.3 Spatial smearings and ultraviolet cutoffs

We have in our UDW Hamiltonian a spatial smearing Fσ(x) and an ultraviolet cutoff Cε(k).
In chapter 4, we study how these spatial and mode dependencies affect qubit dynamics
in a simple superconducting setup of a flux qubit coupled to a 1D wire. Here, we review
a variety of motivations for including these terms in UDW and field theory models and
interesting themes therein.

Ultraviolet cutoffs have been used for decades for the regularization of ultraviolet di-
vergences of field amplitudes and correlators (see, among many others, [71]) and, more
recently, entanglement entropy [102, 103]. This regularization is often used as a theoreti-
cal tool to get around problems with infinite energies and correlations at infinitely small
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scales; often, once an integration over momentum is done, the sharp UV cutoff is taken
to infinity. Some physicists argue that such an ultraviolet cutoff is in fact a natural scale
[104–106]. In particular, an application of quantum theory to causal structure indicates
fluctuations of causal order near the Planck scale, potentially demonstrating a need for a
universally present sharp cutoff [107, 108]. Ultraviolet cutoffs are also introduced from more
readily accessible physical motivations. For instance, atoms are effectively transparent to
very high-frequency modes, encouraging the use of few- and single-mode approximations
in quantum optics and cavity quantum electrodynamics [43, 61]. Mediums can also in-
troduce cutoffs; both optical fibres and superconducting wires have damping effects on
high-frequency modes [109].

In its initial formulation, the UDW model used a Dirac delta smearing to produce a
pointlike detector [39, 69]. Problems with this pointlike smearing were identified in [110],
namely that it produced a non-Lorentz invariant quantity for the instantaneous transition
rate of a detector. Spatially smeared fields were introduced to resolve the issue, with the
size of the smearing sometimes being taken to zero after the calculation was performed
[52, 110, 111]. There has since been wide usage of smeared detectors, motivated both by
physical reality (i.e. atoms are not pointlike [47]) and analytic simplicity of expressions
[40, 112, 113]. Note that the use of a spatial smearing is, also, covariant [114].

We have a good deal of evidence supporting the consideration of these two factors of
the Hamiltonian hand in hand. As argued in [115] and as employed in [71], the Fourier
transform of a spatial smearing function is effectively equivalent to a soft ultraviolet cutoff.
We will see this concretely in section 4.2.

Finally, we note that the inclusion of factors affecting the spatial and modal distribution
of an interaction is not trivial. Concretely, smearing a detector in space means that it is
nonlocal; anything which affects the detector will be felt simultaneously across its spatial
profile. Cutting off high-frequency modes sharply has a similar effect. Both factors can
thus introduce acausal behaviour into field theories [51, 116]. This appears as a poten-
tially frustrating fact—if smearings and cutoffs are physically justified, shouldn’t they be
causal? In [51], acausal terms are shown to be superexponentially suppressed in leading
order perturbation theory for smearing functions which are strongly concentrated, such as
Gaussians. Additionally, it is shown that hard UV cutoffs are unfixably acausal1. It is
straightforward to surmise that soft UV cutoffs have similar restrictions as smooth spatial
smearings—they need only be sufficiently widely supported to have minimal acausal effect.

1This fact may be remediated by the use of a sharp UV cutoff to avoid issues with fluctuating causal
structure, which would itself address pressing causality issues [107].
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3.3 Relating the Unruh-DeWitt and spin-boson models

In chapter 2, we introduced the spin-boson model as a widely used model for two level
systems (i.e. the spin) interacting with light (i.e. the bosons). Here, we will show how the
Unruh-DeWitt model (3.2.2) corresponds to the spin-boson model.

To begin with, we consider the interaction Hamiltonian of the spin-boson model, written
in the Schrödinger picture, as in section 2.1,

Ĥint = σ̂x
∑
k

gk(b̂k + b̂†k), (3.3.1)

where the sum is over all bosonic modes (i.e. a sum over the wavenumber k), the b̂k and b̂†k
are annihilation and creation operators for mode k, and gk is the strength of the coupling
between the qubit and mode k. We reviewed in section 2.1 the relationship between the
modal coupling strength gk and the Ohmic spectral density function

J(ω) =
2π

~2

∑
k

g2
kδωωk

= πωαSB, (3.3.2)

giving

gk = ~
√
αSBωk∆ωk

2
, (3.3.3)

where ∆ωk = ωk+1 − ωk. We will use this relationship to express the coupling constant λ
of the UDW model in terms of the coupling constant αSB of the spin-boson model.

To fully relate the UDW model, which uses a continuum model of the electromagnetic
field, to the spin-boson model, we will substitute this expression for the modal coupling
strength into the spin-boson interaction Hamiltonian (3.3.1) and take the continuum limit.
Substituting the expression for gk in terms of αSB, we have

Ĥint = σ̂x
~√
2

∑
k

√
αSBωk∆ωk(b̂k + b̂†k). (3.3.4)

In order to properly take the continuum limit, we need a factor of ∆ωk to multiply our
whole expression, rather than the

√
∆ωk that we have right now. Then, we can take

∆ωk → dωk straightforwardly. So, we take

Ĥint = σ̂x
~√
2

∑
k

∆ωk
√
αSBωk

(
b̂k√
∆ωk

+
b̂†k√
∆ωk

)
, (3.3.5)
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We can conveniently take this extra factor of
√

∆ωk in the denominator into the creation
and annihilation operators as b̂k/

√
∆ωk → âk, where the âk are the new continuum anni-

hilation operators. Taking the continuum limit ∆ωk → dωk, this gives

Ĥint = σ̂x
~√
2

∫ ∞
−∞

dωk
√
αSBωk(âk + â†k). (3.3.6)

Now, rewrite this interaction Hamiltonian in the interaction picture:

Ĥint = µ̂(t)
~√
2

∫ ∞
−∞

dωk
√
αSBωk

(
iâ†ke

i(|k|t−kx) − iâke
−i(|k|t−kx)

)
, (3.3.7)

where the qubit degree of freedom is now encapsulated by µ̂(t) = eiΩt |e〉 〈g|+ e−iΩt |g〉 〈e|.
The difference now between this Hamiltonian and that of the UDW model is the lack of
switching, spatial smearing, and UV cutoff. We can introduce these features by noting
that this is the Hamiltonian obtained if we take uniform switching, χ(t) = 1, pointlike
smearing, Fσ(x) = δ(x), and uniform cutoff, Cε(k) = 1. With these choices, the following
is equivalent to (3.3.7):

Ĥint = µ̂(t)χ(t)
~√
2

∫ ∞
−∞

dxFσ(x)

∫ ∞
−∞

dωkCε(k)
√
αSBωk

(
iâ†ke

i(|k|t−kx) − iâke
−i(|k|t−kx)

)
.

(3.3.8)
Generalizations of the switching χ(t), the smearing Fσ(x), and the cutoff Cε(k) can then
be introduced to the spin-boson model in this way. This does of course result in a different
model than the one we started with in this section in equation (3.3.1).

This is very nearly the Hamiltonian we have written for the UDW model, in equation
(3.2.2). We finally recall that ωk = ck, and that in our UDW model, we have taken
c = ~ = 1, and will continue to do so for the rest of the thesis:

Ĥint = µ̂(t)χ(t)
1√
2

∫ ∞
−∞

dxFσ(x)

∫ ∞
−∞

dk Cε(k)
√
αSB |k|

(
iâ†ke

i(|k|t−kx) − iâke
−i(|k|t−kx)

)
.

(3.3.9)
Comparing this with the UDW interaction Hamiltonian,

Ĥint =
λ

2
√
π
µ̂(t)χ(t)

∫ ∞
−∞

dxFσ(x)

∫ ∞
−∞

dk
√
|k|
(
iâ†ke

i(|k|t−kx) − iâke
−i(|k|t−kx)

)
, (3.3.10)

we can write the coupling constant λ in terms of the physical parameter αSB:

λ =
√

2παSB. (3.3.11)
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Practically speaking, we can have 0 < αSB . 1 in experiment, corresponding to 0 < λ <√
2π [44]. Taking, for instance, λ = 0.1 gives αSB = 2×10−3; taking αSB = 0.1 corresponds

to λ = 0.8.

Later in our investigation, we will take the UDW coupling constant to be λ = 0.1, as a
somewhat arbitrary choice. This in fact does not quite qualify as ultrastrong coupling—for
that, we require at least λ = 0.3. However, the results that we cite are relative differences,
which do not depend on the specific value of λ—the only requirement we make of λ is
that it is small enough for us to be able to use perturbation theory. Higher values of λ
do increase the transition probabilities we investigate. These transition probabilities scale
like λ2. Additionally, it is evident from equation (3.3.11) that existing technology allows
for much stronger couplings than λ ∼ 0.1. We do not investigate this regime, which would
require the use of non-perturbative methods. We speculate, however, that our results
only become stronger with much stronger coupling. That is, we expect that accurate
choice of ultraviolet cutoff in analysis of ultrastrong coupling of a superconducting qubit
to the continuum only becomes more important as the strength of the coupling exceeds
the perturbative regime of the UDW model.

This completes the relationship of the spin-boson and Unruh-DeWitt models.
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Chapter 4

Finite Sizes and Smooth Cutoffs in
Superconducting Circuits

Let us now particularize to a simple system of a qubit coupled to an open transmission
line. We’ll use the parameters and study of the physical system provided by the spin-boson
model and superconducting experiments in combination with the theoretical power of the
Unruh-DeWitt model to study this 1+1D system.

We are interested in a number of properties here. First, there is an ultraviolet cutoff
in the transmission line which arises from the breakdown of Cooper pairs at high frequen-
cies. This naturally present cutoff implements a mode-dependence in the strength of the
interaction between qubit and line. The prospect of deriving the functional behaviour of
this mode-dependence from first principles is foreboding, due to the complicated nature
of the phenomenon. Indeed, as of the time of this writing, little has been published on
this endeavour. Rather, an ultraviolet cutoff has always been assumed for continuum spin-
boson models. In many iterations of the model, an exponential cutoff is assumed. This is
used to derive a renormalized qubit frequency, which can be observed in experiment [44].
However, in absence of detailed knowledge of the functional behaviour of the ultraviolet
cutoff, it seems prudent to be aware of any consequences that may arise from assuming an
inaccurate cutoff model in ultrastrong coupling to the continuum.

Second, the qubit has a physical shape and size which is nontrivially related to the
spatial extent of its interaction with the transmission line. This finite size has not been
fully considered in the literature—it has, rather, been treated as negligible for observable
dynamics based on its very small spatial extent. This assumption, as we will see, is perfectly
justified, but we nonetheless conduct a thorough investigation on how the shape and size of
the qubit affect observable dynamics. We are partially motivated by the fact that the shape
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of a qubit, like the ultraviolet cutoff, has been shown to have nontrivial effects on qubit
dynamics [117]. Notably, both of these properties can affect causality of an interaction
[51].

Finally, we are particularly interested in the effects of ultraviolet cutoffs and qubit
shapes in short-lived and quickly switched interactions. As we will see, effects from these
properties are much more significant in the short and non-adiabatic regimes. These types
of interactions are interesting for a number of reasons. Practically, they are very useful
for generation of so-called single photon states (i.e. states with low expectation value
of the number operator), which have uses in quantum communication and information
processing [53, 54]. These states, being very narrowly distributed in Fock space (i.e. in
expectation value of the number operator), have wide distributions in frequency space,
leading us to expect that they are more susceptible to effects coming from high-frequency
decay of interaction strength.

We have seen in previous sections the power of the UDW model in incorporating spatial
smearings, interactions switchings, and ultraviolet cutoffs in the interaction of a qubit and
a field. We have also seen the explicit relationship between the spin-boson model and the
UDW model. In the context of the ultrastrong coupling regime, where the rotating wave
approximation is no longer valid and factors such as the ultraviolet cutoff and the qubit
shape are no longer trivially negligible, we can use the UDW model to readily incorporate
cutoffs and qubit shapes into our predictions. Specifically, we will investigate in the per-
turbative regime the impact of the shape and size of the qubit, the shape and scale of the
ultraviolet cutoff, and the duration and adiabaticity of the switching on probabilities of
spontaneous emission and vacuum excitation of the qubit.

In section 4.1, we discuss scales and plausible functional forms of the qubit shape,
transmission line UV cutoff, and time-dependence of the interaction. In section 4.2, we
set up the UDW Hamiltonian and detail our perturbative time evolution calculations. In
section 4.3, we discuss the method and results of our study, with some remarks about
consequences.

4.1 Scales and functional dependencies of the prob-

lem

We will establish five scales in this problem, summarized in table 4.1: the energy gap of the
qubit Ω, the length scale of the qubit σ0, the scale of the cutoff ε0, and scales of adiabaticity
and length of the interaction r0 and T0.
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Physicality Approx. value Scaled to Ω

Ω energy gap of qubit 10 GHz Ω
ε0 cutoff scale 50 GHz 5Ω
σ0 physical size of qubit 10 µm 10−4Ω−1

r0 adiabaticity 0.1 ns Ω−1

T0 interaction duration 0.1 ns Ω−1

Table 4.1: Scales of the problem.

Superconducting qubits typically have gaps between 1 and 20 GHz [49, 118–121]. We
will take the gap to be Ω = 10 GHz, and will use this as the reference scale of the problem.

The physical size and shape of a qubit is straightforward to measure, but the relation-
ship of the qubit’s spatial extent to the spatial extent of its interaction with the electromag-
netic field in the line is nontrivial; one could think of an oddly shaped classical capacitor
and the fringing of its fieldlines. We will take as a scale the length of the qubit, typically
around 10 µm. We will call this scale σ0. For the shape, we will investigate four symmetric
functions which decay as x→∞: Gaussian, Lorentzian, quartic, and sharp shapes.

The scale of the cutoff is again fairly straightforward to measure. This is the approxi-
mate frequency above which microwave modes do not propagate through the transmission
line. This frequency is approximately 75 GHz for aluminum, a typical material used for
superconducting transmission lines. Calculations in [44] to renormalize the transition fre-
quency of a qubit coupled to an aluminum line are additionally consistent with a cutoff
scale of 50 GHz. In this paper, we take 50 GHz as a scale for the cutoff, and call it ε0. The
functional behaviour of the cutoff, as noted, is highly nontrivial to derive from first prin-
ciples. To some degree, permittivity may be investigated using the Drude model, though
this model is built for conductors and semi-conductors as opposed to superconductors [62].

We are investigating a finite-time interaction with realistic switching, as has been previ-
ously implemented with switchable coupling [42, 44]. We are interested in the effects from
both duration of the interaction and its adiabaticity, so we employ two time parameters: a
ramp-up time r describing how quickly the interaction is switched on and off and a dura-
tion length T describing how long the interaction remains at maximum strength. Both of
these scales are tunable in practice and can, in principle, be as short as 0.01 ns. We take
r0 = T0 = 0.1 ns as our scales. We will explore around these scales in both adiabatic and
non-adiabatic regimes and short and long interaction regimes.

The switching function ought to be both experimentally implementable and analytically
amenable; we choose the following function which fits these requirements and has both an
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Figure 4.1: The interaction strength has time-dependent strength, called the switching
χ(t). The switching used here is cosine-ramped, with a half-period cosine of period 2r on
either side of a constant-strength interaction for duration T .

adiabaticity and duration scale,

χ(t) =


1
2

+ 1
2

cos
(
π
r

(
t+ T

2

))
t ∈
[
−T

2
− r,−T

2

)
1 t ∈

[
−T

2
, T

2

]
1
2

+ 1
2

cos
(
π
r

(
t− T

2

))
t ∈
(
T
2
, T

2
+ r
]

0 otherwise

, (4.1.1)

shown in figure 4.1. This switching function has ramping given by half-period cosine
functions. In an experimental setting, the implementation of any switching function is
accomplished through approximating it with constant voltage on discrete intervals and
then transforming it through a filter into an analog signal. It is difficult to preserve pulse
shapes through transmission from the generator to the switchable coupler between the qubit
and transmission line, due to distortion. It is thus desirable to have a switching function
which can be accurately discretized and has an achievable analog bandwidth [122, 123].
The cosine switching function (4.1.1) meets these requirements. We note that the inclusion
of scales of duration and adiabaticity means that we expect the results of this study to be
applicable to other switching shapes as well.
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4.2 Model and time evolution of the qubit

We are able to include the features of finite size, smooth cutoff, and time-dependent in-
teraction strength in our model of the qubit-line system by using the UDW model, first
detailed in chapter 3. Its equivalence to the frequently-used spin-boson model was shown
in section 3.3. The Hamiltonian is

Ĥint(t) = λχ(t)µ̂(t)

∫
dxFσ(x)π̂(x, t), (4.2.1)

with λ the coupling strength, χ(t) the time-dependent switching of the interaction, µ(t) =
eiΩt |e〉 〈g|+e−iΩt |g〉 〈e| is the qubit’s internal degree of freedom, Fσ(x) is the spatial smear-
ing function with characteristic length σ, and π̂(x, t) = ∂tφ̂(x, t) is the conjugate momentum
of a scalar field φ̂. Coupling to π̂(x, t) here is as a qubit coupling to the current of a 1D
wire. The conjugate momentum can be expanded in plane waves as

π̂(x, t) =
1

2
√
π

∫
dk Cε(k)

√
|k|
(

iâ†ke
i(|k|t−kx) + H.c.

)
, (4.2.2)

where the â†k and âk are the creation and annihilation operators for each mode k and Cε(k)
is the ultraviolet cutoff function, which weights the contribution of each mode k, with
characteristic scale ε.

We will use this model to time-evolve the system to calculate the transition probability
of the qubit in situations of spontaneous emission and vacuum excitation. We will begin
with each part initially in its free ground state,

ρ̂in = ρ̂in,π ⊗ ρ̂in,q = |0〉 〈0| ⊗ |g〉 〈g| , (4.2.3)

which will give us the transition probability of vacuum excitation, i.e. |g〉 → |e〉. The
calculation for spontaneous emission is exactly the same as what follows, but with Ω→ −Ω,
which effectively makes the state we label ground into the excited state (making this
calculation give the transition probability for |e〉 → |g〉).

The unitary describing this evolution is given by the time-ordered exponential of the
Hamiltonian,

Û = T exp

(∫ ∞
−∞

dtĤint(t)

)
= T exp

(∫ T+r

−T−r
dtĤint(t)

)
, (4.2.4)

where T is the time-ordering operator. We are able to rewrite the limits of integration given
that χ(t) has compact support on [−T−r, T+r]. We must solve this system perturbatively,
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so we expand the unitary Û in a Dyson series:

Û = 1−i

∫ ∞
−∞

dt Ĥint(t)︸ ︷︷ ︸
Û(1)

−
∫ ∞
−∞

dt

∫ t

−∞
dt′ Ĥint(t)Ĥint(t

′)︸ ︷︷ ︸
Û(2)

+O(λ3). (4.2.5)

We can thus write the evolution as

ρ̂out = Û ρ̂inÛ
† = ρ̂in + ρ̂

(1)
out + ρ̂

(2)
out +O(λ3), (4.2.6)

where

ρ̂
(1)
out = Û (1)ρ̂in + ρ̂inÛ

(1)†, (4.2.7)

ρ̂
(2)
out = Û (1)ρ̂inÛ

(1)† + Û (2)ρ̂in + ρ̂inÛ
(2)†. (4.2.8)

The state of the qubit is then given by tracing out the field on this final state:

ρ̂q,out = Trπ[ρ̂out] = ρ̂q,in + ρ̂
(1)
q,out + ρ̂

(2)
q,out +O(λ3). (4.2.9)

We will now show that ρ̂
(1)
q,out is zero for any initial state where the field is in a Fock state.

The first order state is

ρ̂
(1)
q,out = Trπ

[
Û (1)ρ̂in + H.c.

]
(4.2.10)

= Trπ

[
−iλ

∫ ∞
−∞

dtχ(t)µ̂(t)

∫
dxFσ(x)π̂(x, t)ρ̂in + H.c.

]
= −iλ

∫ ∞
−∞

dtχ(t)µ̂(t)

∫
dxFσ(x)ρ̂q,inTrπ

(
[π̂(x, t), ρ̂π,in]

)
,

where we’ve taken scalar factors and factors living only in the qubit’s Hilbert space (µ̂(t))
out of the partial trace over the field and rewritten the sum over Hermitian conjugates
as the commutator of ρ̂π,in and π̂. Now, it’s straightforward to see that the zero-point
correlation function Trπ([π̂, ρ̂π,in]) vanishes:

Trπ
(
[π̂, ρ̂π,in]

)
=
∑
n

〈n| π̂ |0〉 〈0|n〉 − 〈n|0〉 〈0| π̂ |n〉 (4.2.11)

= 〈0| π̂ |0〉 − 〈0| π̂ |0〉
= 0.

Thus the leading order contribution to the final state is of second order in λ, ρ̂
(2)
q,out.
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We will find an explicit expression for ρ̂
(2)
q,out, beginning by substituting the interaction

Hamiltonian (4.2.1) into the expression for the second order term (4.2.8), and tracing over
the modes of the field:

ρ̂
(2)
q,out = −λ2Trπ

(∫ ∞
−∞

dt

∫ ∞
−∞

dt′ χ(t)χ(t′) µ̂(t) ρ̂q,in µ̂(t′)

∫
dx

∫
dx′Fσ(x)Fσ(x′)π̂(x, t)ρ̂π,inπ̂(x′, t′)

+

∫ ∞
−∞

dt

∫ t

−∞
dt′ χ(t)χ(t′) µ̂(t) µ̂(t′) ρ̂q,in

∫
dx

∫
dx′Fσ(x)Fσ(x′)π̂(x, t)π̂(x′, t′)ρ̂π,in + H.c.

)
.

(4.2.12)

Let us introduce the smeared Wightman function1 Wσ[t, t′] in the goal of simplifying the
above expression:

Wσ[t, t′] =

∫
dx

∫
dx′Fσ(x)Fσ(x′)Trπ[π̂(x, t)ρ̂π,inπ̂(x′, t′)]. (4.2.13)

This allows us to rewrite the second order term of the state as

ρ̂
(2)
q,out = −λ2

(∫ ∞
−∞

dt

∫ ∞
−∞

dt′χ(t)χ(t′) µ̂(t) ρ̂q,in µ̂(t′)Wσ[t′, t] (4.2.14)

+

∫ ∞
−∞

dt

∫ t

−∞
dt′χ(t)χ(t′) µ̂(t) µ̂(t′) ρ̂q,inWσ[t, t′] + H.c.

)
.

Using that ρ̂q,in = |g〉 〈g| and µ̂(t) = eiΩt |e〉 〈g|+ e−iΩt |g〉 〈e|, we have

ρ̂
(2)
q,out =

∫ ∞
−∞

dt

∫ ∞
∞

dt′ χ(t)χ(t′)Wσ[t′, t]eiΩ(t−t′) |e〉 〈e| (4.2.15)

− 2

∫ ∞
−∞

∫ t

−∞
dt′ χ(t)χ(t′) Re

[
Wσ[t, t′]

]
cos
(
Ω(t− t′)

)
|g〉 〈g| .

Let us now focus on simplifying the smeared Wightman Wσ[t, t′]. The trace over
the modes of the field simplifies to an expectation value of π̂(x, t)π̂(x′, t′) on the state
ρ̂π,in = |0〉 〈0|:

Wσ[t, t′] =
1

4π

∫
dx

∫
dx′Fσ(x)Fσ(x′)

∫
dk

∫
dk′Cε(k)Cε(k

′) (4.2.16)

×
√
|k| |k′| 〈0|

(
â†ke

i(|k|t−kx) − H.c.
)(

â′†k ei(|k′|t−k′x′) − H.c.
)
|0〉 .

1Normally, the Wightman function (and smeared versions of it, that is, ones which include spatial

smearing) is the two-point correlator of the field amplitude φ̂. The smeared Wightman we use here is of
course the two-point correlator of the field’s conjugate momentum π̂, or the smeared momentum Wightman
function. We’ll just call it the smeared Wightman.
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The modes k′ coincide with k, as 〈0| âkâ′†k |0〉 = δ(k − k′), giving

Wσ[t, t′] =
1

4π

∫
dk

∫
dxFσ(x)eikx

∫
dx′ Fσ(x′)eikx′C2

ε (k) |k| e−i|k|(t−t′). (4.2.17)

Notice that we have here the Fourier transform of the spatial smearing,

F̃σ(k) =

∫
dxFσ(x)eikx, (4.2.18)

and that we use only real symmetric smearings, so that F̃σ(k) = F̃σ(−k). The smeared
Wightman becomes

Wσ[t, t′] =
1

4π

∫
dkF̃σ(k)C2

ε (k) |k| e−i|k|(t−t′). (4.2.19)

Substituting this expression for the smeared Wightman into (4.2.15) now gives the
expression for the final state of the qubit, general in choice of smearing, UV cutoff, and
switching functions:

ρ̂
(2)
q,out =

1

4π

∫
dk F̃ 2

σ (k)C2
ε (k) |k|

(∫ ∞
−∞

dt

∫ ∞
−∞

dt′χ(t)χ(t′) ei(|k|+Ω)(t−t′) |e〉 〈e| (4.2.20)

−2

∫ ∞
−∞

dt

∫ t

−∞
dt′χ(t)χ(t′) cos

(
− |k| (t− t′)

)
cos
(
Ω(t− t′)

)
|g〉 〈g|

)
.

Now, since ρ̂
(2)
q,out is a perturbation to a quantum state ρ̂q,in, as in ρ̂q,out = ρ̂q,in + ρ̂

(2)
q,out +O(λ3),

we must have that ρ̂
(2)
q,out is traceless. Thus the coefficient of |e〉 〈e| must be the same as the

negative of |g〉 〈g| in equation (4.2.20), and we can rewrite the second order perturbation
as

ρ̂
(2)
q,out = −Pe |g〉 〈g|+ Pe |e〉 〈e| , (4.2.21)

where Pe is the leading order probability of vacuum excitation of the qubit,

Pe =
1

4π

∫
dk F̃ 2

σ (k)C2
ε (k) |k|

∫ ∞
−∞

dt

∫ ∞
−∞

dt′χ(t)χ(t′) ei(|k|+Ω)(t−t′). (4.2.22)

We can particularize to our choice of smearing, given in equation (4.1.1), and express
the t and t′ integrals in closed form:

Pe =
λ2

4π

∫ ∞
−∞

dk F̃ 2
σ (k)C2

ε (k) |k|

(
−iπ4

2

e−i(k+Ω)(2r+T )/2

(k + Ω)2(π − r(k + Ω))2(π + r(k + Ω))2
(4.2.23)

×
(
1 + eir(k+Ω)

) (
−1 + ei(k+Ω)(r+T )

) [
sin

(
(k + Ω)(2r + T )

2

)
+ sin

(
T (k + Ω)

2

)])
.
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This expression contains all the information about the qubit’s dynamics that we need.
Given a particular spatial smearing of the qubit, an ultraviolet cutoff of the modes in
the line, and time scales of the switching, we can use (4.2.23) to calculate the probability
that the qubit will undergo vacuum excitation. If we replace Ω with −Ω, (4.2.23) gives the
probability of spontaneous emission. We can thus investigate the effects on qubit dynamics
of each of these properties.

In this expression for the probability of vacuum excitation, we see that although the
Fourier transform of the spatial smearing and the ultraviolet cutoff describe different physi-
cal properties of the system, they affect the qubit dynamics in the same way. This justifies
the heuristic view where the ultraviolet cutoff determines what modes of the field are
available to participate in the interaction and the Fourier transform of the spatial smear-
ing determines what modes of the field the qubit can ‘see’. We thus regard the product
F̃ 2
σ (k)C2

ε (k) as an effective form factor of the qubit, where both F̃σ(k) and Cε(k) contribute
equally to the modes of the field which participate in the interaction between qubit and
line.

4.3 Results

We now analyse the effects on qubit dynamics of particular shapes and sizes of qubit, cutoff
models and scales, time scales of the switching. We’ll focus on the impact of the effective
form factor on the probability of spontaneous emission and vacuum excitation as a function
of the ramp-up time r and the interaction duration T .

We discussed the characteristic scales of the problem (i.e. the length scale of the
qubit, the scale of the ultraviolet cutoff, and characteristic times for ramp-up and constant
interaction strength) in section 4.1. We will investigate a range around each of these
characteristic scales to analyse the importance of precise knowledge or tuning of each of
them.

There are four smearing models that we will consider: Gaussian, Lorentzian, sharp
decay, and quartic decay. The form of these models are written in table 4.2. Note that
these smearing functions are normalized, so that the qubit has an ‘area’ of one. There
are also four ultraviolet cutoff models that we will consider: Gaussian, Lorentzian, sharp
decay, and exponential decay. These are written in table 4.3. Note that the cutoff models
assume that the interaction strength is constant up to the frequency of the qubit.

We compare the effect of the each of these properties using the relative difference ∆ab

between shape or cutoff models A and B over a range of sizes, cutoff scales, ramp-up times,
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Smearing Notation Fσ(x)

Gaussian Fg,σ(x) (σ
√
π)−1e−x

2/σ2

Lorentzian Fl,σ(x)
σ

2π

1

x2 + σ2/4

Quartic decay Fq,σ(x)
σ3

4
√

2π

1

x4 +
(
σ
2

)4

Sharp decay Fs,σ(x) σ−1Θ
(
x+

σ

2
,−x+

σ

2

)
Table 4.2: Spatial distributions.

Cutoff Notation Cε(k)

Gaussian Cg,ε(k)

{
exp

(
− (|k|−Ω)2

2ε2

)
|k| > Ω

1 |k| < Ω

Lorentzian Cl,ε(k)


ε2(

|k|−Ω
)2

+ε2
|k| > Ω

1 |k| < Ω

Exponential Ce,ε(k)

{
exp

(
Ω−|k|√

2ε

)
|k| > Ω

1 |k| < Ω

Sharp decay Cs,ε(k) Θ
(
k + Ω + ε,−k + Ω + ε

)
Table 4.3: Cutoff models.
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and interaction times,

∆ab =
|Pe,a − Pe,b|

max(Pe,a, Pe,b)
, (4.3.1)

e.g. the relative difference between the exponential and sharp cutoff models is denoted
as ∆es. The relative difference estimates the error generated by analyzing data using an
incorrect model. We can judge whether the impact of a property like the shape model
is significant by looking at the relative difference in transition probabilities of the qubit
between different models.

In the following subsections, we assess the effect on vacuum excitation and spontaneous
emission of the components of the effective form factor (i.e. shape and cutoff models and
their respective scales) and of the two time scales of the interaction (ramp-up time and
duration). In section 4.3.1, we see that the particular choice of shape model in fact makes
negligible contributions to the effective form factor in comparison to the cutoff model. In
section 4.3.2, we show that within orders of magnitude, the size of the qubit is neglible,
while the effect of the cutoff scale is quite significant. Finally, in section 4.3.3, we detail
how the effect of the choice of cutoff model changes with the adiabaticity and duration of
the interaction between the qubit and line.

4.3.1 Sensitivity to shape and cutoff models

Here we compare the impact of the cutoff model Cε(k) and the qubit’s shape model Fσ(x)
on the probability of vacuum excitation and spontaneous emission over a range of cutoff
scales and sizes, for fixed interaction time scales r = r0 and T = T0. The relative difference
between probability of spontaneous emission calculated with different cutoff models is
plotted in figure 4.2, panels c and d; differences between shape models is plotted in figure
4.2, panels a and b.

The difference effected by the choice of cutoff model is at least two orders of magnitude
larger than that effected by the choice of shape for cutoff scales up to at least 20ε0, as seen
by comparing panels b and c of figure 4.2. The effect of the cutoff model dominating over
that of the shape model persists for qubit sizes within at least an order of magnitude of
σ0, as shown in panels a and d of figure 4.2.

We expect this dominance of the cutoff model from our expression for the transi-
tion probability of the qubit, equation (4.2.23). We identified the effective form factor
F̃σ(k)2Cε(k)2 as a regulator of shape (or modes) of the interaction—thus the Fourier trans-
form of the shape and the cutoff model contribute equally to the k integrand. The scale
of the cutoff is, however, about 4 orders of magnitude larger than that of the shape. We
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Figure 4.2: Relative difference of spontaneous emission probabilities when comparing a)
shape functions over a range of sizes σ, b) shape function over a range of cutoff scales ε,
c) cutoff functions over a range of cutoff scales ε, and d) cutoff functions over a range of
sizes σ. Markers are included to distinguish lines. Markers indicate which pair of shape
functions or cutoff functions are being compared, and are listed in the legends to the right
of figures b and d. The interaction times are fixed at r = r0 and T = T0. Shapes are
compared using exponential cutoff and cutoffs using Gaussian shape. Sizes are compared
while the cutoff is kept constant at ε0 and cutoff scales while the size is kept constant at
σ0. The behaviour of the vacuum excitation probabilities is similar.
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would thus anticipate that changes to the cutoff model have a much larger impact on qubit
dynamics than changes to the shape model.

Thus the effect of the shape function on the qubit dynamics is negligible as compared
with the effect of the cutoff model. Given this irrelevance of the qubit shape for the regime
studied, for the rest of this investigation, we choose the shape to be Gaussian for purely
aesthetic reasons.

4.3.2 Sensitivity to size and cutoff scale

Here, we assess the impact on qubit dynamics of the physical size of the qubit σ and
the cutoff scale ε. We again analyse the processes of spontaneous emission and vacuum
excitation with the interaction timescales fixed.

The relative difference between different cutoff models is effectively insensitive to the
size of the qubit σ, as seen in figure 4.2d. In fact, a relative difference of just 10−6 in
the probability of spontaneous emission is seen between sizes of 0.1σ0 and 10σ0. In other
words, the Fourier transform of the qubit’s shape is effectively flat for a wide range of
frequencies. Thus, as long as the size of the qubit as seen by the transmission line, σ, is
within a couple of orders of magnitude of the physical size of the qubit, σ0, the specific
value will have a negligible effect on the dynamics. In view of the fact that the effective
form factor of the qubit is largely independent of σ for a wide range of values, we will set
σ = σ0 for the rest of the investigation.

In contrast, figure 4.2c shows high sensitivity to the cutoff scale—a relative difference
of 0.7 in the transition probability is seen between cutoff scales of 0.1ε0 and 10ε0. Note
also that this relative difference between pairs of cutoffs decreases as ε increases. This
is expected; as the cutoff scale goes to infinity, all probabilities calculated with different
cutoff models converge to the cutoff-free value.

In many contexts, an exponential cutoff is a standard choice when an ultraviolet cutoff
is needed. We note that the transition probability calculated with an exponential cutoff
is slower to converge to the cutoff-free value than the other cutoff models considered here.
This can be attributed to the fast decay of the exponential cutoff, and notably its lack
of inflection, in contrast to the Gaussian and Lorentzian cutoff models. This fact should
perhaps be considered in the context of an exponential cutoff often being used by default,
for example, as an ad-hoc soft cutoff—it is possible that this choice of cutoff may lead to
inaccuracies in predictions if the physical ultraviolet cutoff does not decay so rapidly.

From this set of observations, we can conclude that for the two scales of the effective
form factor, the specific value of the size is irrelevant to qubit dynamics in comparison to
the cutoff scale.
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Combining the observations from this and the previous subsection, we conclude that
for the parameter regimes in table 4.1, the effective form factor of the qubit is dominated
by the cutoff model and cutoff scale as compared to the effects of the shape model and
size. This corroborates the current practice of treating the shape of the qubit as negligible.

4.3.3 Sensitivity to cutoff models as a function of adiabaticity
and interaction duration

We have now established that for typical superconducting qubit setups in the ultrastrong
coupling regime, the cutoff model and cutoff scale dominate the effective form factor of a
qubit interacting with a superconducting transmission line. In this subsection, we move
on to the particulars of the effect of the choice of cutoff model. As discussed above, the
exact functional form of the UV cutoff function in a realistic scenario is complex to obtain
from first principles, as it involves the complicated interplay of electrodynamics and quasi-
particle physics.

We thus ask the question of how much we should care about the particular way in
which in the transmission line loses its ability to trap higher frequency modes when we
make predictions. In other words, will the experiment be sensitive to the particular shape
of the cutoff function or just its scale? How much do the microscopics of the superconductor
impact the outcome of experiments? Does it really matter if the effective coupling strength
decays exponentially with the mode frequency or with any other shape?

In particular, we focus on the relative difference in transition probabilities calculated
using different cutoff models for different choices of ramp-up time r and constant interaction
time T (recall the switching function given in equation (4.1.1)), with fixed cutoff scale
ε = ε0. This will narrow down the regimes for which one must consider the actual form of
the mode-dependency of the interaction.

In figure 4.3, we plot the relative difference in probability of spontaneous emission
between different cutoff models for a range of ramp-up and constant interaction times; we
plot the same for vacuum excitation in figure 4.4. There are several features to be noted.
First, in the non-adiabatic (r . r0) and short time (T . T0) regime, the choice of cutoff
model has a very significant effect on both transition probabilities, with relative differences
between particular pairs of cutoff models often reaching well above 10%. Second, in the
adiabatic limit (r � r0), this effect vanishes. For adiabatic switching, all cutoffs look
the same. Finally, in the long-time regime (T � T0), we see different behaviours for
the excitation and emission probabilities. The effect of the cutoff on the probability of
spontaneous emission vanishes for long-time and non-adiabatic interactions; it does not
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Figure 4.3: Relative difference of probability of spontaneous emission comparing a) ex-
ponential and Gaussian, b) exponential and Lorentzian, c) exponential and sharp, d)
Gaussian and Lorentzian, e) Gaussian and sharp, and f) sharp and Lorentzian cutoff func-
tions across a range of ramp-up and constant interaction times r and T . Here we take the
size to be σ0, the shape to be Gaussian, and the cutoff scale to be ε0.

vanish in the same regime for the probability of vacuum excitation. That is, in long-
time and non-adiabatic interactions, the effect of a particular choice of cutoff is a relative
difference of even 10%. This persistent effect can be seen in figure 4.5.

There are small differences in the behaviour of the relative differences for vacuum exci-
tation and spontaneous emission. We find that the choice of cutoff has a more noticeable
effect on the probability of excitation as compared to emission. We can justify this by
thinking of the frequencies involved with each process. In spontaneous emission, the qubit
emits into the line at its own frequency Ω. In vacuum excitation, there is no such dom-
inant frequency—fluctuations in the field at all frequencies can contribute to the process
of exciting the qubit. Thus we would expect the strength of higher frequency modes to
be have a more significant effect on excitation than on emission. This can be seen in the
comparison of figures 4.4 and 4.3.
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Figure 4.4: Relative difference of probability of vacuum excitation comparing a) exponen-
tial and Gaussian, b) exponential and Lorentzian, c) exponential and sharp, d) Gaussian
and Lorentzian, e) Gaussian and sharp, and f) sharp and Lorentzian cutoff functions across
a range of ramp-up and constant interaction times r and T . Here we take the size to be σ0,
the shape to be Gaussian, and the cutoff scale to be ε0. Notice the slightly higher relative
differnces here as compared to probabilities of spontaneous emission in figure 4.3. This
is attributable to there not being a dominant frequency in the process of vacuum excita-
tion (where the qubit’s frequency is the dominant frequency of spontaneous emission) and
thus modifications to the strength of higher frequency modes through a cutoff being more
important.
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Figure 4.5: Relative difference of vacuum excitation probability between pairs of cutoff
functions across a range of interaction times T , for fixed size σ0, shape (Gaussian), cutoff
scale ε0, and ramp-up time r = 0.1r0. Markers are included to distinguish lines.
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Figure 4.6: Probability of spontaneous emission for different cutoff models: a) exponential,
b) Gaussian, c) Lorentzian, and d) sharp, plotted across a range of ramp-up and constant
interaction times r and T . Here we take the size to be σ0, the shape to be Gaussian, and
the cutoff scale to be ε0.

We end this section with some discussion of the implementation and relevance of the
timescales where the choice of cutoff matters to the predictions made by our model. There
are certainly difficulties associated with attempting to implement highly non-adiabatic
switchings, namely the ramp-up and ramp-down times of a signal generator and distortions
to fine pulse shapes from various sources. The fastest arbitrary waveform generators can
output switching waveforms with ramp-up and ramp-down times of the order of 20 ps.
Other types of pulse generators have even shorter ramping time, but lack fine control of
the pulse shape. Distortion effects can come from dispersion and reflection of pulses at
interconnects between room temperature equipment and a cold tunable coupler between
the qubit and transmission line. This distortion can currently be managed to be less than
0.1 ns (see experiments in [122]). Reduction of such distortion below 0.1 ns may be possible
with significant investments in custom setups. As in table 4.1, we take r0 = T0 = 0.1 ns.
Thus, experiments exploring regimes where the ramp-up and constant interaction times
of a superconducting qubit and transmission line are of the order of 0.1 ns are currently
feasible, with some difficulty. Finally, we note that coupling elements are usually designed
to work in the adiabatic regime; specialized attention must therefore be made to optimizing
these elements for non-adiabatic pulse shapes.

The absolute value of the probability of vacuum excitation and spontaneous emission are
shown for different choices of cutoff models across ranges of ramp-up and interaction times
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Figure 4.7: Probability of vacuum excitation for different cutoff models: a) exponential,
b) Gaussian, c) Lorentzian, and d) sharp, plotted across a range of ramp-up and constant
interaction times r and T . Here we take the size to be σ0, the shape to be Gaussian, and
the cutoff scale to be ε0.

in figures 4.7 and 4.6 respectively. The probability of spontaneous emission is large enough
(∼ 1%) for short interaction and ramp-up times that making observations of differences
between cutoff models seems plausible. On the other hand, the probability of vacuum
excitation is vanishingly small—only about 0.1% chance of excitation for long interaction
times and short ramp-up times, making direct observation of the effect of the cutoff model
less likely.

The regimes where observations may be made of the dependence of transition probabil-
ities on the behaviour of the cutoff are plausibly within reach of current superconducting
qubit technology. For non-adiabatic switching especially, a poor choice of cutoff model can
introduce significant errors in the theoretical analysis of the setup.
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Chapter 5

Discussion, limitations, and
conclusions

5.1 Discussion

In this part of the thesis, we have studied a simple scenario of a superconducting qubit
coupled to an open transmission line, and asked about the importance of the finite size of
the qubit and the ultraviolet cutoff of the transmission line in specific transition probabil-
ities of the qubit. Usually, these types of setups are analysed using the spin-boson model
and variants therein, which we reviewed in chapter 2. In order to study the impact of a
spatial distribution, which are not present in the spin-boson model, we employed the UDW
model, reviewed in chapter 3.

In chapter 4, we laid out the details of the investigation. We calculated the transition
probability of a qubit beginning in the excited and ground states for a variety of shapes and
sizes, cutoff models and scales, and adiabaticities and interaction durations. The factors
of cutoff and shape were investigated in tandem due to their similar contribution to the
transition probability (4.2.23), making up an effective form factor determining the shape
of the interaction. Motivated by the difficulty of determining the functional form of the
shape and cutoff from first principles, we considered several plausible forms for each and
identified in what regimes of interaction this choice made a difference to the probabilities
of vacuum excitation and spontaneous emission. We made a similar investigation for the
scale of the shape (i.e. the size) and the cutoff scale.

We found that, in the parameter regime of table 4.1, the cutoff scale dominates signif-
icantly over the size, as may be expected from their difference in magnitude: the cutoff
scale, ε0 = 5Ω, is several orders of magnitude smaller than the size of the qubit in frequency
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space, σ0,k = 104Ω, meaning that its effect is more readily visible for frequencies of the or-
der of Ω. The cutoff scale was found significant impact on the transition probabilities. We
additionally found that the shape is negligible as compared to the cutoff model, for similar
reasons. This corroborates the practice already present in the literature of considering the
finite size effects to be negligible.

Taking the cutoff scale to be given, the cutoff model was found to have particular im-
portance in the non-adiabatic and short-time switching regimes, with this effect persisting
for non-adiabatic and long-time interactions in the case of vacuum excitation. The choice
of cutoff model may affect predictions in this regime by well over 10%. We emphasize that
this experimental regime is feasibly accessible with current switching technologies. Thus,
though the specifics of an ultraviolet cutoff present due to complex microscopic physics
and the breakdown of superconductivity are difficult to derive, there are experimentally
attainable regimes where they must nonetheless be considered.

5.2 Limitations

There are some limitations to this study. First, we use perturbation theory. In fact, our
results only hold for a certain portion of the USC regime. Other methods have been devel-
oped to accurately predict dynamics in the USC regime, like the dynamical polaron ansatz
[65]. In very strong coupling regimes, studies like this demonstrate qualitatively differ-
ent behaviour; for instance, the spontaneous emission rate decreases in the very strong
(αSB & 0.3) regime (see figure 2 of [65]). In the coupling regime where our studies over-
lap, our investigation is at least conceptually corroborated by this study. For very short
interaction times, this method finds a dependence on the cutoff of spontaneous emission
(see figure 3 of [65]). One could make this analysis nonperturbative for very short cou-
plings (those with interaction times much shorter than the time scale of the qubit, Ω−1)
by approximating the switching as a delta function. We would not, however, expect the
probability of emission or excitation to be observable in this case.

Additionally, our study is partially motivated by the inclusion of different cutoff models.
The spin-boson model in fact already includes at least some model of ultraviolet cutoff for
continuum cases, and this is observed in the renormalization of the qubit frequency, seen
in studies such as [44]. Our study brings significant flexibility in this; it is arguably easier
to study different cutoff models in the UDW model as opposed to the spin-boson model.

Finally, we were motivated to study the impact of the cutoff and shape specifically in
the context of a qubit coupled to an infinite line. In practice, qubits are more frequently
coupled to a resonator, which is then coupled to a transmission line. Among other studies,
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[50] couple a flux qubit to a cavity and get very good agreement with the spin-boson model,
which they solve using matrix product states. This suggests that there are relatively niche
areas where the application of our model is more useful than the spin-boson model, using
techniques of solution which already exist.

5.3 Conclusions

In this work, we have provided a thorough relationship between the Unruh-DeWitt and
spin-boson models, including relating their coupling constants. We applied the UDW
model to a physically-motivated setup, and were able to find that for very short and non-
adiabatic interactions, the way in which the coupling strength is cut off for high frequencies
may be detectable in experiment. We were able to corroborate the current practice of
taking the spatial extent of the qubit to be negligible, even at very short timescales.
These perturbative results are quite strong in the lower range of the ultra-strong coupling
regime, which may suggest that these effects are even more readily observable for stronger
couplings. We may say rather confidently that, at least for quickly-switched interactions
of a qubit and an open transmission line, the ultraviolet cutoff matters.

5.4 Motivations, Revisited

The results of Part I are that the dynamics of a qubit coupled to a scalar field can tell
something about the form of an ultraviolet cutoff in that field when the interaction between
the two is quite strong, is short, and is rapidly switched on and off.

We set out to investigate a very particular part of a physical scenario that we initially
motivated as fundamental and thus naturally interesting, and that is one genuine effect of
our study—we studied a niche theoretical setup. But what effect does it genuinely have to
contribute a niche theoretical study?

Our results tell quantum field theorists that the form they choose to write for an ultra-
violet cutoff (which they may use for several purposes) for a field can affect the dynamics
of a qubit interacting with that field. They also tell folks designing and working with
superconducting qubits that their models may need a little updating if this regime become
widely used (and straightforward to access). There is perhaps some applicability for similar
situations with ultraviolet cutoffs present in fiber optic cables in photonics experiments.
No substantive change in the near future is likely to arise in any of these fields—the region
of applicability of these results is small. They require strong coupling between a qubit and
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a field and very fast interactions to be relevant at all. There are applications of this regime,
though, (the most likely of which to me seems to be the creation of narrow-frequency states
in the field, e.g. [53]) so it is possible the results have a little utility.

In addition to these effects of this study, our analysis from the Prologue applies. Con-
tributing to literature which is involved with the large-scale goal of developing quantum
technology implicitly supports that goal and the trends in how it is being worked towards.
We participated in the usual publishing process, and spoke mostly about the motivation
for this study in an uncritical way. The methodology of physics is of course more than how
we write and talk about it. Contributing to the study of superconducting devices supports
the usage of resources in the field; devices make significant use of metals, which are often
mined in seriously dangerous conditions, amidst violent conflict, and have been involved in
some of the worst environmental disasters on the planet.1 Encouraging the development of
new technology not only condones the current methods for resource extraction (and min-
imal methods for resource recycling) but the expansion of such extraction and the other
industries which currently produce consumer technology. This includes venture capital
economies and tech mega-companies, which are proud to encourage the proliferation of
precarious labour in places like Canada and low-wage high-toxicity labour in places like
China [132].

We are left to conclude this part not with a nice bow on a problem for which the only
relevant scope is physics, isolated from the world. Rather, though the hole we initially
carved out in the introduction has been filled, we leave new spaces empty. How can the
people who study quantum systems, through the study itself, become more cognizant of
their effects on the world? How can we move past the small steps presented in and around
this study? How can we move to ensure we contribute more to an equitable world than
not?

1For instance, recent spills of tailing ponds in British Columbia and Brazil. The Sanmarco spill in
Minas Gerais, Brazil displaced over a thousand people and spilled well over 32 million cubic metres of
toxic waste into a river, the basin of which is home to 3.2 million people [124]. Adequate cleaning has not
been carried out [125]. Coltan mining in the Democratic Republic of the Congo is a significant source of
funds for a brutal civil war responsible for at least 5 million deaths. The mineral is used in cell phones.
There is little way for manufacturers to be sure that they have not purchased coltan from the DRC [126].
See also [127–131].
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Part II

Work cost fluctuations in correlation
creation
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Chapter 1

Introduction

Studies of quantum thermodynamics are often motivated with an analogy to classical
thermodynamics, as discussed in the Prologue. The story goes like this. We introduce
classical thermodynamics as something with serious power:

Thermodynamics is arguably the most general physical theory ever developed, with
utlity in systems as disparate as steam engines, computers, and galactic formation.
It is a framework built to identify what operations are physically allowable, and, if
they are, how much they will cost. It additionally brings together concepts rich in
interpretational issues, like entropy, probability, and how our knowledge affects how
we can interact with the world.

This story already has issues. Whenever we talk about physics as powerful, we invoke
at least two concepts. One is that the technology produced by physics is powerful and,
moreover, desirable. In a similar fashion to the criticisms raised in the Prologue of the
potential effects of quantum technology, there are also issues with the technology made
possible with thermodynamic knowledge. The steam engine may have been a factor in
bringing about the Industrial Revolution and a great many improvements to a great many
lives, but that also means that it has played a role in the casual use of electric and mechan-
ical power in our lives—in the widespread and frequently catastrophic (and ever more so)
use of fossil fuels. When we invoke the narrative that thermodynamics is technologically
powerful, we celebrate all of the effects we have assigned to it.

Another concept of power is that theories like thermodynamics are widely applicable
to a huge variety of situations, and that this is laudable. Thermodynamics is highly ab-
stracted, and while it is certainly impressive that it applies to (as far as we can tell) all
physical systems, it is also the case that valuing abstraction in physical theories means
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valuing decontextualization. This is an invaluable methodology in physics. We strip down
a system to what we believe are its indispensable parts, which makes mathematical anal-
ysis possible. Often this works fantastically well. It’s just also true that there are other
methodologies which deal in all of the context of objects of study, which acknowledge
the context as generally indispensable. To understand physics’ place in our world, for
instance, we cannot dispense with its relationship to technology and so on. It isn’t nec-
essarily a problem to have multiple methodologies which value context in different ways,
but it is a problem when the methodologies of physics are seen as somehow fundamentally
more powerful. This type of narrative is really widespread—that physicists are connected
more deeply to the secrets of the universe because we study abstracted objects like entropy.
Certainly physics has specific usages which make it special, but it is not necessarily a more
universal way of knowing because it cares so little about details [33].

The analogy of quantum to classical thermodynamics is sometimes made explicit, con-
tinuing perhaps as:

Thermodynamics in the quantum realm presents a new frontier, with rich insights
to be had in this wildly different physical theory. Like the industrial revolution
brought about by the study of engines, we can expect impactful new technologies to
be developed through understanding new phenomena.

Of course, making even an indirect analogy between the advances that may come from
quantum thermodynamics and those which are already attributed to classical thermody-
namics is a significant inductive jump. It assumes, among other things, that thermodynam-
ics in quantum systems is different enough from classical systems that dramatic insights
will be made. It also assumes that the effect of quantum technologies will be somehow
comparable to the effect of engines (perhaps something like a ‘quantum revolution’). There
is more evidence for the former assumption than the latter. The important point is this:
we cannot take for granted that the impact of thermodynamics will continue to be as
significant as we have made it out to be thus far.

Though we have painted this motivation as problematic, it is nevertheless one reason
that folks study problems in quantum thermodynamics. There are other reasons, too.
For instance, in trying to write down thermodynamic considerations for quantum systems,
many classic thermodynamic issues are brought up anew, in the wildly different context
of quantum probabilities. We can ask questions like: how can we measure the energy of a
system that is in a superposition of two energy eigenstates?

With these motivations in mind, we can give a little context to the field of quantum
thermodynamics. It is popular, and growing. It is little difficult to draw out storylines for
such a young and active field. There are so many paths of research, different desires, and
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varying interpretations of results. This introduction does not aim to be a review of quantum
thermodynamics. For this, please see the excellent and thorough reviews [133, 134] as well
as chapters of the upcoming book [135], chapters of which include a review of quantum
work [136].

A taste of some interesting questions being asked in the field right now: is von Neumann
entropy the thermodynamic entropy [137]? Are info-theoretic quantities really thermody-
namic ones [138–140]? How can we define work? Does it even make sense as a scalar
quantity [141]? What aspects of classical thermodynamics should we try to preserve?
Which ones should we let go of [142, 143]?

A very particular problem in this wide range is about correlations and their relationship
to work. To begin to ask and answer these kinds of questions, we’ll of course have to make
clear what we mean by work and correlations in quantum contexts. There has already
been much done on these fronts [144–151].

Why ask questions about work and correlations? One motivation comes from the fact
that violations of Bell inequalities (i.e., the presence of quantum correlations) are intrinsi-
cally and exclusively quantum mechanical. To understand more about these correlations,
we might be interested in their relationship, if any, to energy. Another motivation comes
from my supervisor, being that he suggested the particular problem for study out of his own
interest. Perhaps, also, the relationship of correlations and work could find applications in
the study of his other interests, like entanglement harvesting. A third motivation is that
of quantum technology. Quantum correlations are useful for a variety of information pro-
cessing tasks, and we would like to be able to design well for the work it will take to create
those correlations, as well as for any energy they will release when broken. Criticisms of
this motivation can be found in the Prologue and section 5.4 of Part I; we will elaborate
on the specific ability of this study to fulfill this and other motivations in chapter 6.

We are specifically following up on a series of investigations into the unitary production
of correlations in quantum systems. In 2012, Jevtic et al. investigated the bounds of
correlatedness attainable via unitary evolution [146, 147]. Following this, Huber et al.
developed a unitary protocol to correlate bipartite and mulitpartite systems at minimal
average work cost [149]. Follow up investigations have looked at adding a nonunitary step
to improve the correlations generated [150] and at how system interactions can be used to
do the same [151].

One crucial element of the many and varied studies of work cost in quantum systems
is appreciating its fluctuating nature. Classical work also has a distribution, of course,
but in quantum systems (and especially low-dimensional ones) we would expect that the
fluctuations would be much more readily comparable to the average work cost.

So, we would like to ask specifically about the protocol developed in [149]. Its average
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work cost is low, but what about fluctuations in that work cost? We will, in fact, show that
the fluctuations are at least of the order of the work cost. This encourages us to actively
consider the fluctuations of all quantum systems, and potentially to prioritize protocols
with lower fluctuations over an optimal average work cost.

To do this, we will first go into some detail about a couple of leading schemes for
quantum work in chapter 2, including which definitions of work fluctuations will be relevant
for our study. In chapter 3, we will follow this with discussion of what correlations are,
how to measure them, and some extant results, including their minimal work cost of
generation. In chapter 4, we review in detail the protocol of Huber et al., and study
its correlation creation and details of its work cost in chapter 5. We finish with some
conclusions, limitations of the study, and comments on its effects in chapter 6.
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Chapter 2

What is work, anyway?

Like many quantities in thermodynamics, writing an accurate definition of work that can
be applied to all systems and setups is a slippery task. Even in classical systems, we
must be careful about which objects are defined in which role. In quantum systems, there
are plentiful new issues which introduce ambiguities, all stemming from the nature of a
quantum probability distribution.

There have been a number of attempts to write a quantity with all the desired properties
of classical work in quantum systems. There appear to be issues with each definition.
The most popular, the two-time measurement scheme introduced by [143, 152], relies on
projective measurements in the energy eigenbasis, limiting the ability of this scheme to
measure effects from energy eigenbasis coherences. The work operator scheme, from [153],
attempts to write work as a usual quantum mechanical operator, but results in a quantity
which doesn’t obey fluctuation theorems. Current treatments of work in thermal resource
theories use quantum mechanical systems as batteries in which one stores the work that is
done. This newer set of tools is not analysed deeply in this thesis, but is included in this
background section for interest and completeness. For a current and analytical review of
the many proposed definitions of quantum work, see [136].

Here, we first review classical work in section 2.1. We then go into some detail in each
of the quantum work schemes mentioned above in section 2.2. Finally, we discuss some
interpretational and statistical issues with work in section 2.3.

54



2.1 Classical work as a starting point

There’s a lovely simple conception of what work is: energy transfer that isn’t heat. We
write, for macroscopic systems, that the change in energy ∆U is divided into work W and
heat Q as

∆U = W +Q. (2.1.1)

What makes energy transfer heat? One formulation of the second law (for a closed system
and a reversible process) is

∆S =
Q

T
, (2.1.2)

where S is the thermodynamic entropy and T is the temperature of the system. In an
irreversible process, the change in entropy will be bounded below by Q/T . We can say
that heat transfer is always accompanied by an increase in entropy, and use that as a
defining characteristic. Heat is energy transfer associated with an increase in entropy. So,
work is energy transfer without any increase in entropy [154].

More practically, there are several ways to write down the work. Say we have a Hamil-
tonian H controlled by some protocol parameter λ(t) and dependent on a phase space
parameter z(t). Then the work done along the path ~z(t) in phase space is, as in [155],

W (~z(t)) =

∫
dt

dλ

dt

∂H(λ(t), ~z(t))

∂λ
. (2.1.3)

Here, the change in the system is done on (or through) the Hamiltonian. We can say also
that heat is manifested through change not in the Hamiltonian but in the phase space
distribution (which, one notices, also changes the entropy).

With a phase space distribution p(~z(t)), we can write a probability distribution for the
work as

P (W ) =

∫
d~z p(~z(t)) δ(W −W (~z(t))). (2.1.4)

Work for each path through phase space (i.e., for each particle in an ensemble) is well de-
fined. The probability distribution merely incorporates the fact that there is a distribution
of particles in phase space.

Defining work for each microscopic particle does pose a small issue. The laws of ther-
modynamics were written for macroscopic systems, those with many many particles. Their
scope does not include individual particles. More accurately, quantities like the entropy
and the free energy are necessarily statistical; they don’t make sense to define for indi-
vidual particles. Violations of strict thermodynamic laws are expected, sometimes. A
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single hot particle might work its way from a cold object to a hot object, increasing the
temperature difference. A few water molecules might hold tight to each other for half
a millisecond. These occurences are statistically guaranteed with such large numbers of
atoms and molecules. To account for this, thermodynamic laws are instead written for
average values. For instance, we write

∆S ≥ 〈Q〉
T
, (2.1.5)

or
〈W 〉 ≥ ∆F (2.1.6)

for the second law, where F = U − TS is the free energy.

These forms of the second law don’t tell us much about the scale of the deviations from
average. The Jarzynski equality, which relates the work cost of non-equilibrium processes
to the free energy difference of equilibrium processes,

〈e−W/T 〉 = e−∆F/T , (2.1.7)

tells us that in classical systems, deviations from the average work cost are in fact expo-
nentially suppressed [155]. We’ll demonstrate this briefly, because it’s quite neat. The
probability that the work cost of an operation is ε less than the change in free energy of
the corresponding equilibrium process (“violating” the strict second law) is given by

P (W < ∆F − ε) =

∫ ∆F−ε

−∞
dW P (W ). (2.1.8)

Multiply the integrand by e(∆F−ε−W )/T , which is larger than one on the interval of integra-
tion, since W < ∆F − ε there. Then

P (W < ∆F − ε) ≤
∫ ∆F−ε

−∞
dW P (W )e(∆F−ε−W )/T

= e(∆F−ε)/T
∫ ∆F−ε

−∞
dW P (W )e−W/T

≤ e(∆F−ε)/T
∫ ∞
−∞

dW P (W )e−W/T︸ ︷︷ ︸
〈e−W/T 〉

= e−ε/T . (2.1.9)
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The probability of the nonequilibrium work cost being less than the free energy difference
of the corresponding equilibrium process is exponentially suppressed [156]. This is a com-
forting result to many. We can rest assured that even in wild nonequilibrium processes,
we’re very unlikely to be able to do a process for free.

The Jarzynski equality has become something of a monolith of thermodynamics. The
pursuit of a quantum Jarzynski equality is a defining feature of the search for a viable
quantum work. For some, it is a crucial property of any quantity called work [143, 157].
It will thus figure strongly in the discussion of quantum work below.

To recap: work in classical systems is a transfer of energy unaccompanied by an increase
in entropy. It is a statistical quantity, and obeys statistical second laws like (2.1.7). It has
a definite value for each particle and process. It is an important motivator of what work
should look like in quantum systems.

2.2 Several definitions of quantum work

Since we study quantum systems, we’d like to have a concept of work in them. But
the jury’s still out on what quantum work is. It’s possible, in fact, that we’ll ultimately
need several definitions to fulfill different purposes [136, 157]. We’ll start here with some
very basic groundwork, identifying one of the major problems with trying to write down
a quantum work, before explicating a few of the most popular attempts. For a thorough
review of many recent attempts, and more excellent analysis of the problems with quantum
work, see [136].

Let’s start where we started with classical work. A system has energy as defined by its
Hamiltonian, described by the quantum probability distribution (quantum state) over the
energy eigenbasis. Over the course of a process, both the distribution and the eigenbasis
may change. Consistent with above, we can call changes to the distribution heat and
changes to the eigenbasis (i.e., the Hamiltonian) work. This division is justified on a
similar basis: changes to the Hamiltonian do not produce von Neumann entropy, while
changes to the state in general do.1

Now, it’s not enough to have said that changes to the Hamiltonian constitute the work.
How might one write down a probability distribution for the work? This is a tricky question.
There are several attempts at answers, each with its own pros and cons. It’s important to
remember that, though we can draw similarities between each attempt at defining quantum

1A controversy arises already. While many take the von Neumann entropy to be the thermodynamic
entropy, there is some debate over whether it truly satisfies the necessary criteria. For a view in support
of the von Neumann entropy being the thermodynamic entropy, see [137]; for the opposite, see [158].
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work and particular definitions of classical work, the attempts at quantum work really are
different—unlike the classical definitions, which are all fundamentally the same.

Here, we briefly review just three notions of quantum work. First, the very popular
two-time measurement scheme, in section 2.2.1; then the unprojected scheme, also called
the work operator, in section 2.2.2; and finally quantum battery schemes in section 2.2.4.
The first two schemes will be employed later, in our study of work fluctuations in correla-
tion creation, in chapter 5. The third scheme is included for a bit more completeness in
background for the interested reader.

2.2.1 Two-time measurement scheme

The two-time measurement scheme has been widely used to do quantum thermodynamics
since its introduction [133, 143, 152]. The idea is to measure classical distributions in the
system’s energy spectrum before and after the application of a protocol. Using the initial
energy distribution and a distribution of final energies conditional on the initial energy, a
total work probability distribution is constructed. The motivation to have definite values
of energy appears very concretely classical; there is no room in this protocol to have
superpositions or coherences in the energy eigenbasis. As such, there are some issues with
its utility in such cases, to be discussed in more detail below.

In detail, the two-time energy measurement quantum work scheme is this: first, projec-
tively measure the system in the energy eigenbasis {|n〉}, resulting in an ensemble of pure,
single-energy states, each with eigenenergy En. Subsequently apply the protocol of inter-
est (noting that effects of the protocol on coherences will not be observed). Projectively
measure again, resulting in states with eigenenergy Em.

The initial probability of finding the system in state |n〉 is P (En), given by e−βEn/Z in
the case of the system initially being in a Gibbs state (where we’ve introduced the inverse

temperature β and the partition function Z = Tr[e−βĤ ]). The probability of transitioning
from state |n〉 to state |m〉 by a unitary protocol Û is | 〈m| Û |n〉 |2. The probability
distribution of the work, given by Em − En, is then

P (W ) =
∑
m,n

P (En)P (Em|En) δ
(
W − (Em − En)

)
=
∑
m,n

P (En)
∣∣ 〈m| Û |n〉 ∣∣2 δ(W − (Em − En)

)
.

(2.2.1)

A major benefit of this scheme is that the random variable for work obeys a quantum
Jarzynski equality [143]. In the case of states diagonal in the energy eigenbasis (i.e. when
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[Ĥ, ρ̂] = 0), the statistics of the probability distribution reproduce properties of classi-
cal work. Conceptually, it’s an attractive scheme that makes quantum work somewhat
straightforward.

Measure of fluctuations

To measure fluctuations in this conceptualization of quantum work, we can calculate the
standard deviation of the probability distribution:

σW =

√∫
dW

(
W − 〈W 〉

)2
P (W ). (2.2.2)

We call this quantity the two-time measurement work fluctuations.

Issues

When [Ĥ, ρ̂] 6= 0, an important issue arises. The average work, which may be calculated
in this scheme as

〈W 〉 =

∫
dW W P (W ), (2.2.3)

is no longer equal to the difference in energy expectation values of the final and initial
states,

〈W 〉 6= Tr[Û †ĤÛ ρ̂]− Tr[Ĥρ̂]. (2.2.4)

Having the average work equal to the difference in average energies (when there is no heat
exchange) definitely sounds like a reasonable property. The two-time scheme also has this
problem for the variance—when [Ĥ, ρ̂] 6= 0, the fluctuations are no longer equal to those
one might calculate for the “operator” Û †ĤÛ − Ĥ [153, 159]. For details, see appendix A.

Another issue is that this scheme requires one to use projective measurements. These
measurements are arguably unrealistic. Ideal projective measurements cost an infinite
amount of energy [160]. Projective measurements are unphysical in quantum field theories
(hence why models like the UDW of part I are used in quantum field theory). Even beyond
these fundamental issues with the use of projective measurements, their use here causes
real problems in the protocols that one wishes to use. There is no way to both measure the
work of a protocol which, say, makes use of energy eigenbasis coherences and to observe
the desired effect of the protocol at the same time. A practical solution to this is to run
the protocol under the work measurement scheme to build up work statistics, and then to
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run it without the work measurement scheme to observe its other effects. For some, this
is nonetheless unsatisfying.

Other schemes to use measurements other than those that project in the energy eigen-
basis are summarized in [136].

2.2.2 Unprojected scheme

The unprojected scheme for quantum work has been discussed in various forms. Originally,
it was introduced as the work operator, ∆Ĥ = Û †ĤÛ − Ĥ [153]. We conceptualize this
scheme as the difference of two correlated random variables—the final and initial energies—
rather than a random variable which is the difference of two quantities. Though this scheme
is unpopular in some circles, it is again being utilized for targeted purposes in e.g. [157, 161].

The statistics of this scheme are constructed just as one would with a quantum me-
chanical operator. The entire distribution of work is encoded in the operator and quantum
state. The average is exactly

〈W 〉 = Tr
[
(Û †ĤÛ − Ĥ)ρ̂

]
. (2.2.5)

This fits particularly well with one way of dividing change in internal energy into change
in work and heat. In this conception, the total change in internal energy is

〈∆U〉 = Tr[Ĥf ρ̂f − Ĥiρ̂i], (2.2.6)

i.e. the difference in the initial and final energies as measured by the initial and final
Hamiltonians. Both the state and the Hamiltonian can change, in general. As in [162], we
can divide contributions to the change in internal energy along these lines, as

〈∆U〉 =

∫ t

0

dt′Tr[Ĥ(t′) ˙̂ρ(t′)] +

∫ t

0

dt′Tr[
˙̂
H(t′)ρ̂(t′)]. (2.2.7)

We can associate the latter term with change in entropy (since the state is changing) and
thus with a notion of heat. The former term is associated with isoentropic change and thus
work. When a process is adiabatic (i.e. when no heat is exchanged), the work is equal to
the change in internal energy,

〈∆U〉 =

∫ t

0

dt′Tr[
˙̂
H(t′)ρ̂(t′)]. (2.2.8)

Further, when the change in the Hamiltonian can be described by the application of a
unitary, we have that the work can be represented as in (2.2.5), so that

〈∆U〉 = Tr
[
(Û †ĤÛ − Ĥ)ρ̂

]
. (2.2.9)
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A particular motivation to consider this definition of work is that it very explicitly
allows for coherent processes to contribute to the measure of work. It also avoids (at
least mathematically, if not practically) difficulties with projective measurements discussed
above in the two-time measurement scheme. Finally, the average work always coincides
with the difference in average energies of the final and initial states, unlike the two-time
measurement scheme.

Measure of fluctuations

We can measure fluctuations of unprojected work by looking at the square root of the
variance of the work operator:

ΣW =

√
Tr[∆Ĥ2ρ̂]− Tr[∆Ĥρ̂]2. (2.2.10)

We can also write this in terms of the energy variance of the initial and final states, ρ̂ and
ρ̂′ = Û †ρ̂Û , and their covariance:

ΣW =
√
σ2
Ei

+ σ2
Ef
− 2σEiEf

, (2.2.11)

where

σ2
Ei

= Tr[Ĥ2ρ̂]− Tr[Ĥρ̂]2, (2.2.12)

σ2
Ef

= Tr[Ĥ2ρ̂′]− Tr[Ĥρ̂′]2, (2.2.13)

and the covariance of the energies is given by the convex correlator

σEiEf
= 〈Ĥ(Û †ĤÛ)〉 − 〈Ĥ〉〈Û †ĤÛ〉
= Tr[ĤÛ †ĤÛ ρ̂]− Tr[Ĥρ̂]Tr[Ĥρ̂′].

(2.2.14)

Issues

The major issue with this scheme is that the unprojected work cannot be used to write a
Jarzynski equality. The importance of this feature has been hotly debated [142, 143, 153].
A thorough discussion of the competing issues and features of both this unprojected scheme
and the two-time scheme can be found in [157].

Generally, practical measurement procedures for this work are not discussed. It is
used as a theoretical conception. Other work schemes explicitly consider measurement
techniques, such as Gaussian measurement [163, 164], POVM dependent on the initial
state [165], and collective measurement schemes [157].
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2.2.3 When [Ĥ, ρ̂] = 0: fluctuations used in this thesis

As mentioned in section 2.2.1, the average work of the two-time measurement scheme
corresponds to the average work of the unprojected scheme when ρ̂ is diagonal in the
energy eigenbasis (when [Ĥ, ρ̂] = 0). The fluctuations of each scheme also coincide in this
case.

In this thesis, we will study the fluctuations in work cost of a specific unitary protocol
acting on global thermal states, which do indeed commute with the global Hamiltonian.
It thus does not matter whether we take (2.2.2) or (2.2.10) as our quantity measuring the
fluctuations.

For completeness, we show their equivalence in appendix A.

2.2.4 Quantum battery schemes

In the growing field of quantum resource theories, the resource theory of thermal operations
deals with making quantum thermodynamics very rigorous and genuinely quantum; for an
overview, see [166]. One main issue that these efforts are trying to address is that work in
quantum systems has been conceptualized using classical batteries and classical probability
distributions. A quantum battery scheme does not trouble itself with trying to write down
a probability distribution for the work, but instead aims to include quantum work as a
part of relations like a genuinely quantum second law and Jarzynski equality. Moreover, it
achieves those things!

The setup, briefly, is this. We have a system of interest, a bath, and a battery—
all quantum systems with their own Hamiltonians and Hilbert spaces [141]. We restrict
ourselves to unitary operations on the total system, and require that they commute with
the total Hamiltonian (because of conservation of energy). Additionally, it is required that
the unitary commutes with operations that translate the state of the battery (ensuring
that it cannot be used as a source of entropy). Then, the change in energy of the battery
is the work. But, we don’t necessarily care about the specific value of this work, or its
distribution. We allow the battery to have coherences in the energy eigenbasis, and don’t
trouble ourselves really about what that means for a discrete value of work. This approach
really prioritizes a conception of work as something which is transferred between quantum
systems, in quantum ways.

The results of this setup include writing the second law as an equality (without pro-
jective measurements or classical probability distributions), writing a condition on an op-
eration on the system to preserve thermality, and writing a quantum Jarzynski equality
[141].
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2.3 What’s average about average work? (and other

interpretational issues)

There are a few points of contention in what exactly one aims to measure with a measure
of work. Conceptually, what does one means when one asks for an average value of work?
And how is this tied to interpretational issues in quantum mechanics?

In classical statistical mechanics, probability distributions describe statistical ensembles—
generally many particles which, as a whole, follow a pattern of behaviour like a Maxwell-
Boltzmann distribution. The path of any individual particle is uncertain in the sense
that we don’t have detailed knowledge about its path. Hence, we might use the Maxwell-
Boltzmann distribution as a probability distribution, from which we could draw some
statistical knowledge about the work done on any individual particle. We can say that, in
classical systems, the probability distributions are completely epistemic. They represent
a lack of knowledge. In this case, we aren’t completely acquainted with each particle’s
position. We still know that they have a definite position, and a definite work value, and
so on.

In quantum mechanics, there is contention as to what a probability distribution re-
ally means. Some hold that the quantum state is also epistemic. Then, quantum objects
would, in fact, have definite properties. Superposition would be an aspect of probability,
representative of some kind of deficit in our knowledge, rather than a “real” physical phe-
nomenon. In this view, one may be motivated to consider transitions between eigenstates
as a physically accurate and encompassing view of what really happens during a protocol
on a quantum system. One could think that having an epistemic view of the quantum
state motivates the two-time measurement scheme for quantum work.

A related interpretation of quantum mechanics is the statistical one, where quantum
states represent statistical ensembles much like classical ones. This interpretation is the
exact analogue of the classical scenario which motivates the two-time measurement scheme.
In this case, the average work is the work averaged over many runs or members of the en-
semble. If we require that the work done in an individual run of the protocol is a difference
of final and initial eigenstate (or if this is what is prescribed by our interpretation), then we
have exactly the two-time measurement scheme. Even in advance of requiring a statistical
interpretation of quantum mechanics, the two-time scheme makes a quantum state into
an ensemble using projective measurements and many copies of a state to build a classical
probability distribution.

What if the quantum state is neither a statistical ensemble nor an epistemic object?
What if the state is ontic? Then any individual quantum object could in some sense really
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be in superposition. One could take this interpretation as motivation to consider that there
is some uncertainty or distribution of work even in single runs of protocols on individual
quantum objects. We would not, then, take as a given that work must be the difference of
final and initial energy eigenstates. An average value of work would be an average over a
single quantum state assigned to a single quantum object; it would consider superpositions
in the energy eigenbasis to matter even in single runs of a protocol. This, of course, would
support the unprojected work scheme.

The difference in schemes and associated interpretations is emphasized by when they
are equivalent. If the state commutes with the Hamiltonian, [Ĥ, ρ̂] = 0, then the moments
of the two-time measurement scheme and the unprojected work scheme are equivalent (see
Appendix A). It is how each scheme values coherences in the energy eigenbasis that truly
makes a difference. One might say that the two-time measurement scheme is the one
which adheres more closely to classical ideals, while the unprojected scheme appears to
incorporate some aspects of quantum probability.

The quantum battery schemes used in thermal resource theories appear very careful to
not play into interpretational issues. They take work to be a transfer of energy between
a system of interest and a battery, and allow the battery to be a quantum object. They
aren’t particularly interested in the value of the work, but in the behaviour of the systems
on the whole, and being able to describe what operations are allowed. This approach is
more operational and less restrictive than either the two-time measurement or unprojected
approaches.
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Chapter 3

Correlations in quantum
thermodynamics

In thermodynamics, we’re interested in properties of systems which are useful for tasks.
Having knowledge about a system is certainly useful; the more knowledge we have about
a probability distribution, the better a task we can make to extract something useful like
work from it. Correlations between probability distributions over different systems have
been shown to be a useful tool in tasks like quantum teleportation and various quantum
algorithms [167]. We are thus interested in the thermodynamic nature of correlations. How
much work does it cost to generate them? How much work can we extract from them?
Much has been done on these questions in quantum systems [144–146, 148–151, 168].

These questions dig perhaps at something deeper than how much work it takes to
enact certain protocols. We already have in classical thermodynamics that the entropy is
important. The Gibbs entropy, though associated with classical probability distributions, is
however not immediately associated with correlations between systems. The von Neumann
entropy, on the other hand, is a deeply information-theoretic quantity that can be employed
to measure correlations between systems. Further, it appears to show up in important
relations in quantum thermodynamics (though there is contention that it is always the
correct entropy to use [169]). This is one way to think about the apparently stronger
association between correlations and thermodynamics in the quantum literature as opposed
to the classical.

It’s also true that quantum correlations are different from classical correlations. Dif-
ference makes them interesting; many are interested specifically in the fact that quantum
correlations are stronger than classical. They can be used to perform different and often
more powerful tasks.
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In this chapter, we will review in a little detail what correlations are and how we
measure them in quantum systems in section 3.1. We will also review some specific results
about the relationship of work and correlations in section 3.2.

3.1 What are correlations, anyway?

Correlation between probability distributions indicates some level of coincidence between
the distributions. The more highly correlated, the more like each other they are. When we
speak of correlations in the context of a physical theory, we mean something more specific
than this. Classical (or quantum) correlations are those that can arise between systems
under the constraints of that physical theory. The wild thing about quantum correlations
is not just that they can be very strong, but that their strength is not permitted by the
physical interactions possible in classical mechanics. The canonical example of this is Bell’s
inequality, where in a specific physical setup, two variables are only able to be correlated to
a certain degree under the laws of classical mechanics. When quantum mechanics is allowed,
the correlations increase significantly, and the systems are called entangled [170, 171].

In practice, it’s not trivial to measure how correlated two systems are, especially when
looking for quantum correlations. There are many measures one can use, and in the case
of entanglement, the ordering of a set of states from most to least entangled can change
depending on which measure one uses [172, 173]. Here, we will try to say something
practical about how one can try to measure total, classical, and quantum correlations in
bipartite quantum systems.

Total correlations

The mutual information I is used to measure the total correlations between two quantum
systems:

I = S[ρ̂A] + S[ρ̂B]− S[ρ̂], (3.1.1)

where S[ρ̂] = −Tr[ρ̂ log ρ̂] is the von Neumann entropy, ρ̂ is the quantum state over the
whole system, and ρ̂a(b) = Trb(a)ρ̂ are the partial states. It is a measure of how much
information one can learn about system B by uncovering a bit of information about system
A.

In the later parts of this thesis, we will focus exclusively on correlations as measured
by the mutual information.
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Quantum correlations

The most famous of quantum correlations is of course entanglement. This somewhat mys-
ticized property of systems has been attributed as the reason for quantum advantages small
and large. Entanglement can be used for a variety of powerful information processing tasks
like quantum teleportation [167] and is generally thought to be a signature of behaviour
that is not simulatable in classical systems. It is neither easy to philosophize about nor to
quantify. There are many scalar measures of entanglement, none of which give the same
order (from most to least entangled) to any given set of states [174]. One such entangle-
ment measure is the entanglement entropy, which measures how entangled a pure bipartite
state is by looking at how mixed the state on the subsystem is:

SEE[ρ̂] = S[ρ̂A]. (3.1.2)

Another sometimes measure of quantum correlation is known as quantum discord [175,
176]. Its significance is somewhat contentious. It is thought by some to be a useful quantum
resource [177, 178], but its necessity in creating those quantum advantages is disputed
[179, 180]. It has been identified as a signature of more-body entanglement in certain
systems (entanglement between more parties than are a part of the discord) [181, 182]. Its
role as a measure of correlation is in fact not trivial, as it can under certain circumstances
be increased by operations acting on only one party, but it nonetheless appears to measure
something which can, in some cases, be used for computational tasks [183]. For more on
how to compute discord, see [176].

Classical correlations

In classical systems, the mutual information may be used without hesitation to measure
correlations. In quantum systems, the same is true, but it is no longer immediately clear
which of the correlations can be attributed to dynamics which are classical or those which
are uniquely quantum. One attempt at identifying the correlations which are specifically
classical in quantum systems comes from [184]. There, total correlations are divided into
two parts. Entanglement is measured with the relative entropy of entanglement, which
measures how far a state is from being separable,

E(ρ̂) = min
σ̂∈D

S[ρ̂||σ̂], (3.1.3)

where D is the set of all separable states and S[ρ̂||σ̂] = −S[ρ̂] − Tr[ρ̂ log σ̂] is the relative
entropy. Classical correlations are measured using a quantity which attempts to identify
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only those correlations still present after a measurement is performed on a subsystem. This
somewhat involved measure is as follows:

CB(ρ̂) = max
B̂†i B̂i

S[ρ̂A]−
∑
i

piS[ρ̂iA], (3.1.4)

with B̂†i B̂i a POVM (positive operator-valued measurement) on the subsystem B, ρ̂A =
TrB[B̂iρ̂B̂

†
i ]/Tr[B̂iρ̂B̂

†
i ], and

∑
i B̂iρ̂AB̂

†
i =

∑
i piρ̂

i
A. A similar definition exists for CA(ρ̂),

with equality between the two when S[ρ̂A] = S[ρ̂B].

When there is no discord, the sum of these measures of entanglement and classical
correlations are equal to the mutual information,

I(ρ̂) = E(ρ̂) + CB(ρ̂). (3.1.5)

In at least some situations where there is discord, the mutual information is larger than
the sum of these measures: I > E + CB.

3.2 Work and correlations

Some fundamental questions can be asked about the relationship between work and cor-
relations. Is there a lower bound on the work cost needed to develop a certain amount of
correlations? What about work that can be extracted from them?

In non-interacting systems, these questions have been thoroughly addressed for average
work. In [159], the extractable work of states which are locally thermal is investigated.
States which are entangled are shown to attain the maximum possible value for extractable
work, while classically correlated and separable states are fundamentally limited from doing
so. The setup of this study ensures that there are only two possible sources of work:
the correlations between systems as well as advantages from activation of a collection of
passive states. Passive states are ones from which no work can be extracted; a thermal
state is an example. When one has multiple copies of a thermal state, however, the
eigenvalues may be swapped between systems to potentially cleverly extract some energy.
This is activation. The difference in energy extraction between the entangled, classically
correlated, and separable states clearly indicates that entanglement stores work.

The work needed to generate correlations in non-interacting systems using a specific
protocol was investigated in [149]. We will delve much more deeply into the content of
this paper in the next two chapters—it suffices for now to say that a unitary protocol to
generate correlations cannot operate on the absolute minimum possible work cost. That
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requires a non-unitary cooling step, as explained in [150]. It is in this work that a minimum
bound on the work cost of generating correlations is written,

I ≤ βW, (3.2.1)

where β is the inverse temperature of the initial thermal state and W is the average work
cost of the operation.

This relation depends critically on the correlations being generated in a non-interacting
system, so that the initial thermal state is separable. If this is not the case, it is possible
to generate a value I of mutual information at average work cost less than I/β [151].

A final comment on the subject: as with all thermodynamic relations, drawing funda-
mental conclusions is perhaps not as satisfying as we’d like it to be, since the work cost is
always dependent on the Hamiltonian. There are many quantum systems with degenerate
Hamiltonians. In these cases, there is no minimum work cost to generate correlations. Ad-
ditionally, when the Hamiltonian has interaction terms, these facts can again be uprooted.
The relationship is not quite so simple as the pretty (3.2.1) might lead us to believe.
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Chapter 4

A unitary protocol to create
correlations

If we are interested in the relationship of correlations and work cost, then we must have
a protocol to develop correlations. There are many ways to do so—plenty of unitaries
are able to entangle two parties. In [149], a unitary protocol was introduced which can
maximally correlate two parties of the same dimension. In this chapter, we will review this
protocol, including its setup, general form for d-dimensional subsystems, and specific form
for two qubits.

4.1 Thermal and Gibbs states

First, we briefly define thermal and Gibbs states. The Gibbs distribution is

τ̂(β) =
e−βĤ

Tr[e−βĤ ]
, (4.1.1)

for inverse temperature β and Hamiltonian Ĥ. When a system reaches this distribution by
a thermalization process (i.e. waiting for the system to equilibrate with a bath of inverse
temperature β), we call this a thermal state. If the state has been reached by some other
process, we call it a Gibbs state. When Ĥ is the global Hamiltonian, we call the state
global; when Ĥ is local, we call it local. More specifically, we denote the local Gibbs state
on subsystem A by

τ̂a(β′) =
e−βĤa

Tr[e−βĤa ]
. (4.1.2)
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We need these somewhat nitpicky definitions to speak accurately about the function
of this protocol, which is able to achieve maximal generation of correlations. Speaking
generally, and assuming that a bipartite non-interacting system begins in a global thermal
state, then any protocol which will create maximal correlations for a given amount of work
input will produce local Gibbs states. That is, the protocol will take

ρ̂ = τ̂(β) −→ ρ̂′ (4.1.3)

such that
Tra[ρ̂′] = τ̂b(β′) Trb[ρ̂′] = τ̂a(β′). (4.1.4)

Why does a maximal correlation-generating unitary protocol need to do this? We
aim to maximize the mutual information. For a bipartite quantum system ρ̂ with partial
subsystems’ density matrices written as ρ̂A = TrB(ρ̂), ρ̂B = TrA(ρ̂), the mutual information
is given by

I(ρ̂) = S[ρ̂A] + S[ρ̂B]− S[ρ̂], (4.1.5)

where S[ρ̂] = −Tr[ρ̂ log ρ̂] is the von Neumann entropy. Under a unitary protocol, S[ρ̂] will
not change. Thus, to maximize creation of mutual information, we must maximize S[ρ̂A]
and S[ρ̂B]—which the local Gibbs state does.

4.2 A family of correlating unitaries

Huber et al. prove (in Appendix A1 of [149]; reviewed here in Appendix B) the existence
of a unitary which transforms a d2-dimensional bipartite system in a global thermal state
to a state which is locally Gibbs. The system is non-interacting, meaning that the global
thermal state will be a product state, i.e., initially there are no correlations. In the body
of their paper, they investigate the particular unitary which produces infinite temperature
local Gibbs states—that is, which produces maximally correlated global states. Here, we
will first introduce the broad class of unitaries which perform this global to local Gibbs
state function. We will call this family of unitaries Ûcorr. Then, we will particularize to a
two-qubit system, and write out the family of unitaries explicitly, re-stating some results
of [149] from a different mathematical perspective.

To see what the family of correlating unitaries Ûcorr is, we need to make use of gener-
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alized Bell states, which we now introduce. Using the ‘clock’ operators X̂ and Ẑ,

X̂ =
d−1∑
n=0

|(n+ 1) mod d〉 〈n| , (4.2.1)

Ẑ =
d−1∑
n=0

e2nπi/d |n〉 〈n| , (4.2.2)

we can write the generalized Bell states as

|φm,n〉 = Ẑm ⊗ X̂n |φ〉 , (4.2.3)

where |φ〉 = d−1/2
∑d−1

n=0 |nn〉 and d is the dimension of each subsystem (so that the dimen-
sion of the total system is d2). We can write these states alternatively as

|φm,n〉 =
d−1∑
k=0

e2kmπi/d |k〉 ⊗ |k + n〉 , (4.2.4)

which can be seen to be Bell states by noting that the label n gives the difference between
the state of the first and second system and the label m gives the spacing of the phases on
the |k〉 ⊗ |k + n〉.

Now, these unitaries Ûcorr which transform global thermal states to local Gibbs states
are those which perform rotations within the subspaces

Si = span { |φ0,i〉 , |φ1,i〉 , . . . , |φd−1,i〉 } . (4.2.5)

Again, a review of this proof from [149] may be found in Appendix B. The bases of these
subspaces are those Bell states for which the difference between the label of the energy
eigenstates of the first and second qubit is constant and equal to i, e.g. for two qubits, we
have the zero difference subspace S0 and the unit difference subspace S1

S0 = span { |00〉+ |11〉 , |00〉 − |11〉 } , (4.2.6)

S1 = span { |01〉+ |10〉 , |01〉 − |10〉 } . (4.2.7)

4.2.1 An explicit form for two qubits

We now particularize and write out the unitary explicitly for a system of two qubits. The
family of correlating unitaries Ûcorr can be represented as a tensor product of two rotations
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R̂0 and R̂1 in the bases (4.2.6) and (4.2.7) respectively:

Ûcorr = R̂0 ⊗ R̂1

=

[
cos θ −e−iδ sin θ

eiδ sin θ cos θ

]
⊗
[

cosφ −e−iγ sinφ
eiγ sinφ cosφ

]
, (4.2.8)

where θ, δ, γ, and φ are real parameters that will be investigated in detail below. In the
global energy eigenbasis { |00〉 , |01〉 , |10〉 , |11〉 }, Ûcorr takes the form

Ûcorr =


cos θ + i sin δ sin θ 0 0 cos δ sin θ

0 cosφ+ i sin γ sinφ cos γ sinφ 0
0 − cos γ sinφ cosφ− i sin γ sinφ 0

− cos δ sin θ 0 0 cos θ − i sin δ sin θ

 .
(4.2.9)

We explained above that the protocol for correlation creation acts on thermal states.
For two identical qubits, the populations of states |01〉 and |10〉 in a thermal state are
equal. This means that a rotation in the subspace S1—controlled by the parameters φ and
γ—will have no net effect on the state. For the rest of this thesis, we are thus able to
neglect φ and γ completely, as they do not figure at all into properties of process.

The study of this unitary protocol in [149] focuses on the average work cost of imple-
menting it—here, with the explicit form of the unitary rather than only its action on the
diagonals in the energy eigenbasis, we can compute the relative magnitude of the work
fluctuations as compared to the average work cost.
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Chapter 5

Work cost fluctuations in correlation
creation in two qubits

In the context of the difficulty of defining work in quantum systems and the importance
of the relationship of work to correlations, discussed in chapters 2 and 3, we would like
to investigate the work cost of creating correlations. Specifically, the protocol developed
in [149] and reviewed in chapter 4 is designed to create correlations between two non-
interacting parties which are initially uncorrelated. Its average work cost is low—it plays a
crucial role in a protocol which in fact creates correlations at optimal work cost, W = I/β
[150].

As noted, however, work in quantum systems is about more than the average work cost.
How important are fluctuations in the work cost in this protocol? We seek to answer this
question by conducting an investigation of the protocol in a slightly different mode than
was done in [149]. We look explicitly at the unitary and the final state produced, rather
than only the marginals. We use this information to calculate the work fluctuations of the
protocol, as well as the mutual information and work cost as a function of properties of
the final state output.

As a result of this investigation, we show that the fluctuations in the work cost of this
particular protocol are significant—they are at least of the order of the average work cost.
This result motivates giving higher consideration to work fluctuations in practical contexts,
rather than solely prioritizing minimizing average work cost of a protocol.

In this chapter, we will first outline the setup of the study in section 5.1. We give a
detailed study of the mutual information created in the protocol, the average work cost, and
the final temperature in section 5.2. Finally, in section 5.3, we calculate the fluctuations
in work cost and the change in standard deviation of the energy from the initial to final
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state. We provide some discussion on conceptual issues of calculating fluctuations in this
particular context.

5.1 Setup

We study bipartite correlation creation in a system of two identical qubits, with free Hamil-
tonian

Ĥ =
ω

2

(
σ̂(a)
z + σ̂(b)

z

)
, (5.1.1)

where ω is the energy gap of each qubit.

To implement the unitary protocol discussed in chapter 4, the system must initially be
in a thermal state. We call the inverse temperature of the initial state βin, so the initial
state is

ρ̂ =
e−βinĤ

Tr[e−βinĤ ]
= τ̂a(βin)⊗ τ̂b(βin), (5.1.2)

where τ̂a(b)(βin) is the local Gibbs state on subsystem A (B), as in equation (4.1.2). In the
computational basis {|00〉 , |01〉 , |10〉 , |11〉}, this initial state is

ρ̂ =
1

Z


e−βinω 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eβinω

 , (5.1.3)

where Z = Tr[e−βinĤ ] = (e−βinω/2 + eβinω/2)2 is the partition function.

To create correlations in this completely separable initial state, we apply the correlating
unitary, yielding

ρ̂′ = Ûcorrρ̂Û
†
corr =

1

Z


A− 0 0 B+

0 1 0 0
0 0 1 0
B− 0 0 A+

 , (5.1.4)

where

A± = e±βinω ∓ 2 sinh[βinω] cos2 δ sin2 θ, (5.1.5)

B± = 2 sinh[βinω] cos δ sin θ(cos θ ± i sin δ sin θ). (5.1.6)

As mentioned at the end of chapter 4, the parameters φ and γ of the unitary (4.2.9)
controlling the rotation in the subspace S1 as in equation (4.2.6) have no effect on the final
state.
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The final local states of each system are found by tracing out the other:

Trb[ρ̂′] =
1

Z

[
A− + 1 0

0 A+ + 1

]
, (5.1.7)

Tra[ρ̂′] =
1

Z

[
A− + 1 0

0 A+ + 1

]
. (5.1.8)

These are in fact Gibbs states, as desired, for the local Hamiltonian Ĥa/b = 1
2
ωσ̂

(a)/(b)
z . We

can find the local temperature βout of these local Gibbs states by letting the right hand
side of the above expression for the state of the subsystem equal the usual expression for
a Gibbs state of temperature βout, as

1

Z

[
A− + 1 0

0 A+ + 1

]
=

1

Z

[
eβoutω/2 0

0 e−βoutω/2.

]
(5.1.9)

The final local temperature is then

βout =
2

ω
arctanh

[
A+ − A−

Z

]
. (5.1.10)

5.2 Work, mutual information, and other quantities

Given the initial and final states of the two qubits in terms of the parameters of the unitary,
we can calculate a great deal of information. Laying these details of the protocol out in
terms of the parameters of the unitary will allow us to make several concrete relations
between them. A summary of what we discuss is presented in figure 5.1: the maximum
mutual information is produced when the final local inverse temperature is zero; the average
work cost is bounded above by 2ω tanh[βinω/2]; the final local inverse temperature is in
the range [−βin, βin].

First, we will detail the average work cost of the protocol and discuss the sets of
unitaries which have the same average work cost. Then, we discuss the limits on the final
temperature, and finally the mutual information produced.

5.2.1 Average work cost and the family of unitaries

As discussed in chapter 2, we can write the average work cost of a unitary protocol as the
difference in expectation value of energy between the final and initial states:

W = Tr[Ĥ(ρ̂′ − ρ̂)]. (5.2.1)
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Figure 5.1: a) Mutual information created as a function of the final temperature βout. The
bounds on reachable βout are marked by vertical dashed lines. b) The average work cost of
the correlation-creating protocol as a function of the final local inverse temperature. The
horizontal dotted line marks the upper bound on the average work cost, as in equation
(5.2.3).

This is the average work cost for both the two-time measurement and unprojected work
schemes when, as in our case, [Ĥ, ρ̂] = 0.

We can express this average work cost in multiple ways. Substituting in our expressions
(5.1.3) and (5.1.3) for the initial and final states, we arrive at

W = 2ω tanh[βinω/2] cos2 δ sin2 θ, (5.2.2)

with an upper bound of
W ≤ 2ω tanh[βinω/2]. (5.2.3)

We can also write the average work cost as a function only of the initial and final local
temperatures:

W = ω (tanh[βinω/2]− tanh[βoutω/2]) . (5.2.4)

In equation (5.2.2), we see that several values of θ and δ could give the same value of
the average work cost W . If we fix the value of W , we can in fact derive a relationship
between θ and δ, which defines families of unitaries (where θ and δ vary across the family)
which cost the same amount of average work:

θ(δ) = arcsin

[√
W coth(βinω/2)

2ω
sec δ

]
. (5.2.5)

These θ-δ curves are shown in figure 5.2.
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Figure 5.2: Average work cost plotted as a function of parameters of the unitary θ and
δ. Lines shown are of constant average work cost, defined in equation (5.2.5). The plane
indicates maximum creation of correlations, where βout = 0 and the average work cost is
given by equation (5.2.9). Above this plane, the final local temperature is negative, with
βout = −βin at the top of the plot.

5.2.2 Final temperature

The final local states have local temperature given by equation (5.1.10). Expanding this
expression, we find an explicit dependence of the final temperature on the parameters θ
and δ of the unitary:

βout =
2

ω
arctanh

[
tanh

[
βinω

2

]
(1− 2 cos2 δ sin2 θ)

]
. (5.2.6)

This gives us explicit limits on the final local temperature in terms of the initial tempera-
ture: βout ∈ [−βin, βin].

This expression for βout indicates that the θ-δ curves defined by (5.2.5) not only define
curves of constant average work cost but also of constant final temperature. There is,
however, an ambiguity here, as the average work cost is symmetric in the final temperature
about βout = 0. That is, the average work cost to reach the final local temperature βout is
the same as to reach −βout.

5.2.3 Mutual information

The mutual information of the bipartite system is initially zero, as we begin in a global
thermal state of a non-interacting system, i.e., a product state. The final mutual infor-
mation is calculated explicitly from its definition (4.1.5). In terms of the initial and final
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temperatures, it is

I = log

[
eβinω tanh[βinω/2]

cosh2[βinω/2]

]
+ log

[
eβoutω tanh[βoutω/2]

cosh2[βoutω/2]

]
. (5.2.7)

The maximum correlations will be created when the final local temperature is infinite
(when βout = 0). This corresponds to a Bell state being created over the two qubits. The
maximum depends on the initial temperature as

Imax = log

[
eβinω tanh[βinω/2]

cosh2[βinω/2]

]
. (5.2.8)

The average work cost of reaching this maximum, from equation (5.2.4), is

W(Imax) = ω tanh[βinω/2]. (5.2.9)

5.3 Measures of work fluctuations

Having studied the average work cost, final temperature, and the mutual information
created in the protocol, we now wish to ask: what are the fluctuations in the work cost?
Do they matter? As discussed in earlier sections, the uncertainty in the work cost of a
protocol is not often considered in the literature. This is ultimately a practical question.
How reliable is the work cost of this protocol?

In this section, we calculate two measures of the work fluctuations of this protocol,
discussed earlier in section 2.2. We find that the measures of fluctuations are nontrivial
when the protocol creates maximal correlations in low-temperature initial states.

5.3.1 Work fluctuations

We can calculate the fluctuations in the work cost using the expression of either the two-
time measurement scheme, (2.2.2) or the unprojected scheme, (2.2.10). In terms of the
parameters of the unitary, we have

σ2
W =

ω2 cos2 δ sin2 δ

(1 + eβω)2

(
3 + 2eβω + 3eβω + (eβω − 1)2(1− 4 cos2 δ sin2 θ)

)
. (5.3.1)

In terms of the initial and final inverse temperatures, we can also write

σ2
W = ω2

(
sech2(βoutω/2)− 2 tanh(βoutω/2) csch βinω

)
. (5.3.2)
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Figure 5.3: The ratio of work fluctuations to average work cost versus the mutual infor-
mation created in the protocol. Average work cost increases along the curve from top to
bottom; βout = 0 at the point of maximum creation of mutual information. From left
to right, βin = 100ω−1, ω−1, 0.1ω−1. The ratio of fluctuations to average work cost is of
order one for the lowest temperature initial state, and increases as the initial temperature
increases.
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Figure 5.4: Work fluctuations σW versus average work cost, for ω = 1 and initial temper-
atures, from left to right, of βin = 100ω−1, ω−1, and 0.1ω−1.
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To get a sense of the importance of these fluctuations, we plot the ratio of σW to the
average work cost W as a function of the mutual information created in figure 5.3. In
these plots, the average work cost increases along the curve from top to bottom, with
W = ω tanh[βinω/2] at the point of maximal mutual information. Note that the region of
the curve below maximal I is where the final local temperature is negative, and therefore
that the point of I = 0 corresponds to βout = −βin (not to an identity process). We see
that the ratio of fluctuations to the average work cost is at least of order one for maximum
creation of correlations!

We also plot the fluctuations as a function of the average work cost in figure 5.4. They
can be seen to increase significantly in magnitude for higher initial temperatures, even as
the average work cost decreases dramatically.

Measurement issues

Though our two conceptualizations of work are identical for the purpose of calculating
fluctuations, they are not completely free of differences. We can ask: how are we actually
measuring these quantities?

In the case of the two-time measurement scheme, how can we create any mutual infor-
mation in the protocol if we are performing two projective measurements? These measure-
ments in the energy eigenbasis will certainly erase any coherences in the basis. We offer
two responses to this excellent question. The first is yes, attempting to measure the work
cost at the same time as creating correlations will fail. This certainly raises questions of
the accuracy of the measurement scheme, if it cannot measure the work when correlations
are actually created. The second is that one may consider the measurement scheme to be
applied many times outside of the actual run of the protocol to create useful correlations,
building up a probability distribution. Then statistical knowledge like the average work
and fluctuations in the work cost may be used for any given implementation of the protocol.

In the unprojected scheme, the name of course suggests that no projective measure-
ments are formed. In fact, there is nothing built into the formalism about how one would
measure the energy of the system at all, which leaves any analysis about how measurement
would impact the work value measured ambiguous.

Again, this encourages the consideration of other schemes for work statistics, especially
those which include fully developed schemes for measurement [136]. One would still gener-
ally expect that any measurement performed on the system will alter it somehow, and thus
disturb the correlations we so painstakingly created. We might, then, in many schemes
of work need to rely on a statistical knowledge of work generated in applications of the
protocol separate from those we intend to use to actually generate useful correlations.
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Figure 5.5: The ratio of change in standard deviation of energy to average work cost
versus the mutual information created in the protocol. Average work cost increases along
the curve from top to bottom; βout = 0 at the point of maximum creation of mutual
information. From left to right, βin = 100ω−1, ω−1, 0.1ω−1. Though the behaviour of this
measure is similar to that of the other measures of fluctuations at low initial temperature,
its magnitude decreases significantly as the initial temperature increases, in contrast to the
behaviour in figure 5.3. This suggests that a great deal of the uncertainty in the work cost
of the protocol comes from the uncertainty in the energy of the initial state, especially when
the initial temperature is high, as opposed to being from the application of the unitary.

5.3.2 Change in the standard deviation of energy

Finally, we provide an indication of the uncertainty in energy of the state developed by
application of the protocol (rather than a measure of the uncertainty in work cost of the
protocol). This somewhat heuristic measure is the change in the standard deviation of the
energy distribution of each state:

∆σE = σEf
− σEi

, (5.3.3)

with

σ2
Ei

= Tr[Ĥ2ρ̂]− Tr[Ĥρ̂]2, (5.3.4)

σ2
Ef

= Tr[Ĥ2ρ̂′]− Tr[Ĥρ̂′]2. (5.3.5)

We aim to literally subtract the contribution from the uncertainty in the initial state from
the uncertainty in the work cost.

The behaviour of this measure of uncertainty is very different from the other measure
of fluctuations in the work cost, as shown in figure 5.5. When the initial temperature is
low, the difference between the measures is negligible, but the change in standard deviation

82



decreases as the initial temperature increases. This indicates that a substantial amount of
the uncertainty in the work cost of the unitary protocol is due more to the temperature of
the initial state rather than to the application of the unitary itself. This doesn’t mitigate
the uncertainty in the work cost of applying the unitary. It does, however, caution us as
to the existence of a protocol which will have lower uncertainty for application to high
temperature initial states.
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Chapter 6

Discussion and conclusions

In this part of the thesis, we have presented an analysis of uncertainty in work cost of a
unitary protocol to generate correlations in a system of two non-interacting qubits. We
have provided some background on the very active field of quantum work and the study
of correlations in the context of quantum thermodynamics. We have added some detail
to what is known about the protocol of Huber et al., initially put forth in ref. [149]. In
particular, we studied the fluctuations in the work cost and analysed a little where they
originate.

Our main result is that the ratio of work fluctuations to average work cost is of order
at least one for maximal generation of correlations. This isn’t great, practically speaking.
If you have a strict energy budget with which to develop correlations, large work fluctua-
tions could easily break it. Additionally, we find that for initial thermal states with higher
temperature, this ratio increases. The small change in standard deviation of energy from
the initial to final state indicates, however, that this can be substantially attributed to the
already large energy fluctuations present in the initial state, rather than to the protocol.
As another practical note, these high temperature states have little room to develop cor-
relations anyway, as their local states are already quite close to the infinite temperature
state.

Given these results, we may thus suggest that it would be prudent to consider using
a protocol which is not optimal in its average work cost (or maximal in its correlation
creation) but which nonetheless has a more reliable work cost.

There are at least two limitations to drawing this conclusion from our work. The first
arises from looking at the problem in an even more practical light. Given that it is difficult
to correlate a highly mixed system, it is desirable to start from a state which is as pure
as possible. Before one correlates, one thus ought to cool the system, as proposed in
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[150]. Because of the increase in correlations able to be obtained, adding the cooling step
allows this adjusted protocol to in fact saturate the inequality I ≤ βW for non-interacting
systems. The work cost of cooling is high. In fact, the work cost to cool from an initial
temperature of βin = 0.1ω to β = 10ω (that is, from T = 10ω−1 to T = 0.1ω−1) is ten times
the work cost of applying the maximally correlating unitary to the resulting state. In this
more practical case, the fluctuations in the work cost quickly dwindle in their relevance to
the total work cost of the protocol.

Another limitation arises from the ongoing discussion about work in quantum systems.
It is not, after all, completely clear that the fluctuations we measure are exactly those that
would be observed in a specific experimental setup, especially if projective measurements
are not used. Given the sheer number of proposals surrounding an apt definition for
quantum work, drawing any certain conclusions about what one will see in an experiment
seems to be treading on unsteady ground.

As for future work, this particular problem could be investigated in a little more depth.
What is the dimensional dependence of the importance of fluctuations? What if the system
has a small interaction? Or begins out of equilibrium? How do these fluctuations change
for the development of multipartite correlations? And, perhaps building on [150], what is
the specific cost of developing entanglement?

The conclusion which can be drawn from this study in a slightly wider context is mostly
an encouragement to people who study quantum systems to consider the variance of the
work cost in addition to the average work cost, to get a better sense of how much energy
a protocol will cost in practice. This is arguably a trend in the field [136, 161]. Thus, the
encouragement that can be derived from the study is not a contribution which is unique to
it. The details of the study of a potentially useful unitary protocol to develop correlations
may prove useful to folks doing other detailed studies, or (perhaps a stretch) to those
interested in implementing the protocol. However, our judgement is that the study is
primarily valuable as a part of this larger trend to be more careful about what we mean
when we talk about work in quantum systems.

As in the study conducted in Part I, we have contributed to an ever larger body of
work which aims to support the exploration and exploitation of quantum systems. In
both studies, there are motivations apart from quantum technology. Studying quantum
systems is interesting! There are neat things to learn! The universe is a fascinating place,
and physics is no exception. But personal interest and appeals to universal wonder are
not the end of the story. They themselves are not even apolitical or without effect—
advertising our personal wonder attracts new folks to study physics to stoke their own
wonder, which generally means also contributing to projects like quantum technology.
Regardless of whether we intend to support projects like unethical mining, many of us are
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doing so in our pursuit of our dreams. It wouldn’t do to try and manage this effect by
dismissing or trying to do away with our own wonder and intrigue about the world. But
we can temper these dreams with reality. We can acknowledge the world that our stated
and unstated goals are helping to create. We can use that to revisit our motivations, use
some of the tools presented here to analyse their relationship to parts of society frequently
considered to be outside of physics, and discuss it openly—to ask if that’s the world you
really want.
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de Campos, Felipe Fonseca do Carmo, Guilherme Silvino, Kenedy Junio da Silva Xavier de Castro,
Mateus Leite Mauro, Nelson Uchoa Alonso Rodrigues, Marcos Paulo de Souza Miranda, and Carlos
Eduardo Ferreira Pinto. Fundão tailings dam failures: the environment tragedy of the largest
technological disaster of brazilian mining in global context. Perspectives in Ecology and Conservation,
15(3):145–151, jul 2017. doi:10.1016/j.pecon.2017.06.002. 48

[126] Christopher J. Ayres. The international trade in conflict minerals: coltan. Critical perspectives on
international business, 8(2):178–193, may 2012. doi:10.1108/17422041211230730. 48

[127] Hannes Hofmann, Martin C. Schleper, and Constantin Blome. Conflict minerals and supply chain
due diligence: An exploratory study of multi-tier supply chains. Journal of Business Ethics, 147(1):
115–141, nov 2015. doi:10.1007/s10551-015-2963-z. 48

96

https://doi.org/10.1088/0264-9381/31/7/075007
https://doi.org/10.1038/nature02831
https://doi.org/10.1038/nphys1994
https://doi.org/10.1103/physrevlett.113.123601
https://doi.org/10.1103/physrevb.93.104518
https://doi.org/10.1103/physrevlett.115.133601
https://www.policyalternatives.ca/sites/default/files/uploads/publications/BC%20Office/2018/08/CCPA-BC_TailingsDamSpills.pdf
https://www.policyalternatives.ca/sites/default/files/uploads/publications/BC%20Office/2018/08/CCPA-BC_TailingsDamSpills.pdf
https://doi.org/10.1016/j.pecon.2017.06.002
https://doi.org/10.1108/17422041211230730
https://doi.org/10.1007/s10551-015-2963-z


[128] Emily Chasan. Corporate news: Conflict-mineral audits barely scratch surface, Sep 19
2014. URL http://search.proquest.com.proxy.lib.uwaterloo.ca/docview/1562988447?

accountid=14906. Name - Intel Corp; Schulte Roth & Zabel; EY Global Services Ltd; Copyright
- (c) 2014 Dow Jones & Company, Inc. Reproduced with permission of copyright owner. Further
reproduction or distribution is prohibited without permission; Last updated - 2017-11-21.

[129] Colin Fitzpatrick, Elsa Olivetti, T. Reed Miller, Richard Roth, and Randolph Kirchain. Conflict
minerals in the compute sector: Estimating extent of tin, tantalum, tungsten, and gold use in ICT
products. Environmental Science & Technology, 49(2):974–981, dec 2014. doi:10.1021/es501193k.

[130] Iain Marlow and Omar el Akkad. Smartphones: Blood stains at our fingertips.
The Globe and Mail, 2010. URL https://www.theglobeandmail.com/technology/

smartphones-blood-stains-at-our-fingertips/article1318713/. [Online - accessed Nov
9-18].

[131] Ngombe Leon-Kabamba, Nlandu Roger Ngatu, Sakatolo Jean-Baptiste Kakoma, Christophe
Nyembo, Etongola Papy Mbelambela, Reiko Juliana Moribe, Stanislas Wembonyama, Brigitta
Danuser, and Numbi Oscar-Luboya. Respiratory health of dust-exposed congolese coltan min-
ers. International Archives of Occupational and Environmental Health, 91(7):859–864, jun 2018.
doi:10.1007/s00420-018-1329-0. 48

[132] Brian Merchant. “Life and death in Apples forbidden city” in The One De-
vice: The Secret History of the iPhone. LITTLE BROWN & CO INC, 2017.
ISBN 031654616X. URL https://www.theguardian.com/technology/2017/jun/18/

foxconn-life-death-forbidden-city-longhua-suicide-apple-iphone-brian-merchant-one-device-extract.
[content warning: suicide]. 48
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Nicolas Brunner, and Antonio Aćın. Thermodynamic cost of creating correlations. New J. Phys.,
17(6):065008, jun 2015. doi:10.1088/1367-2630/17/6/065008. 52, 68, 70, 71, 72, 73, 74, 84, 107, 113

[150] David Edward Bruschi, Mart́ı Perarnau-Llobet, Nicolai Friis, Karen V. Hovhannisyan, and Marcus
Huber. Thermodynamics of creating correlations: Limitations and optimal protocols. Phys. Rev. E,
91(3):–, mar 2015. doi:10.1103/physreve.91.032118. 52, 69, 74, 85

[151] Nicolai Friis, Marcus Huber, and Mart́ı Perarnau-Llobet. Energetics of correlations in interacting
systems. Phys. Rev. E, 93(4):–, apr 2016. doi:10.1103/physreve.93.042135. 52, 65, 69

[152] Jorge Kurchan. A quantum fluctuation theorem. 54, 58

[153] A. E. Allahverdyan and Th. M. Nieuwenhuizen. Fluctuations of work from quantum subensem-
bles: The case against quantum work-fluctuation theorems. Phys. Rev. E, 71(6):–, jun 2005.
doi:10.1103/physreve.71.066102. 54, 59, 60, 61

98

https://doi.org/10.3390/e16020699
https://doi.org/10.1103/physrevx.6.041017
https://doi.org/10.1103/physreve.90.032137
https://doi.org/10.1103/physreve.75.050102
https://doi.org/10.1103/physrevlett.89.180402
https://doi.org/10.1209/0295-5075/88/50003
https://doi.org/10.1103/physreva.85.052121
https://doi.org/10.1103/physrevlett.108.110403
https://doi.org/10.1103/physreva.88.052319
https://doi.org/10.1088/1367-2630/17/6/065008
https://doi.org/10.1103/physreve.91.032118
https://doi.org/10.1103/physreve.93.042135
https://doi.org/10.1103/physreve.71.066102


[154] Daniel V. Schroeder. An Introduction to Thermal Physics. Pearson, 1999. ISBN 0-201-38027-
7. URL https://www.amazon.com/Introduction-Thermal-Physics-Daniel-Schroeder/dp/

0201380277?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&

camp=2025&creative=165953&creativeASIN=0201380277. 55

[155] C. Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters, 78(14):
2690–2693, apr 1997. doi:10.1103/physrevlett.78.2690. 55, 56
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[187] Giuseppe Vitagliano, Claude Klöckl, Marcus Huber, and Nicolai Friis. Trade-off between work and
correlations in quantum thermodynamics, 2018. 111, 113
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Appendix A

Equivalence of two-time
measurement and unprojected
scheme work fluctuations when
[Ĥ, ρ̂] = 0

In chapter 2, we reviewed two quite different notions of work in a quantum scenario.
The two-time energy measurement and the unprojected work schemes do, however, have
identical first and second moments when the Hamiltonian commutes with the initial state
of the system. Thus, our analysis corresponds to both underlying schemes—they appear
to not have significant conceptual difference in this case. In this appendix, we will show
concretely that in this case, the expressions for the average work and the work fluctuations
in both schemes are identical.

The two-time energy measurement scheme, described in section 2.2.1, constructs a
classical probability distribution of work, taking the random variable to be the difference in
final and initial eigenenergies of the system. The scheme relies on projective measurements
conducted before and after the application of the protocol. The probability distribution
is, for a general unitary process Û ,

P (W ) =
∑
m,n

P (En)
∣∣ 〈m| Û |n〉 ∣∣2δ(W − (Em − En)

)
. (A.0.1)
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The average work cost is

〈W 〉TT =

∫
dW W P (W ) (A.0.2)

=

∫
dW W

∑
m,n

P (En)
∣∣ 〈m| Û |n〉 ∣∣2δ(W − (Em − En)

)
(A.0.3)

=
∑
m,n

(Em − En)P (En)
∣∣ 〈m| Û |n〉 ∣∣2, (A.0.4)

where we have integrated over the delta function.

Similarly, the second moment, which is the square of what we have called the fluctua-
tions, is given by

σ2
TT =

∫
dW (W − 〈W 〉TT)2P (W ) (A.0.5)

=

∫
dW (W 2 − 2W 〈W 〉TT + 〈W 〉2TT)P (W ) (A.0.6)

=

∫
dW W 2P (W )− 2〈W 〉TT

∫
dW W P (W ) + 〈W 〉2TT (A.0.7)

=

∫
dW W 2P (W )− 〈W 〉2TT, (A.0.8)

where we have used that
∫

dW P (W ) = 1. Substituting in the probability distribution and
integrating over W , we obtain

σ2
TT =

∑
m,n

(Em − En)2P (En)
∣∣ 〈m| Û |n〉 ∣∣2 − 〈W 〉2TT. (A.0.9)

The average work cost in the unprojected work scheme is the expectation value of the
work operator ∆Ĥ = ÛĤÛ † − Ĥ:

〈W 〉UP = Tr[∆Ĥρ̂]. (A.0.10)

The second moment is the variance of this operator,

σ2
UP = Tr[∆Ĥ2ρ̂]− Tr[∆Ĥρ̂]2. (A.0.11)

Starting from these equations, we will now show the equivalence of the first and second
moments of both schemes in the case where [Ĥ, ρ̂] = 0.
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We will write the energy eigenbasis as {|n〉}, the Hamiltonian as Ĥ =
∑

nEn |n〉 〈n|,
and the initial diagonal state as ρ̂ =

∑
n ρn |n〉 〈n| (so that P (En) = ρn). Let us expand

the trace in the expectation value of the work operator,

〈W 〉UP = Tr[∆Ĥρ̂] =
∑
n

〈n| (ÛĤÛ † − Ĥ)ρ̂ |n〉 , (A.0.12)

and write the spectral decomposition of the Hamiltonian,

Tr[∆Ĥρ̂] =
∑
n,m

〈n| ÛEm |m〉 〈m| Û †ρ̂ |n〉 − 〈n|Em |m〉 〈n| ρ̂ |n〉 , (A.0.13)

and the initial state,

Tr[∆Ĥρ̂] =
∑
n,m,i

〈n| ÛEm |m〉 〈m| Û †ρi |i〉 〈i|n〉 − 〈n|Em |m〉 〈n| ρi |i〉 〈i|n〉 (A.0.14)

=
∑
n,m

〈n| ÛEm |m〉 〈m| Û †ρn |n〉 − 〈n|Em |m〉 〈m| ρn |n〉 (A.0.15)

=
∑
n,m

Emρn
∣∣ 〈m| Û |n〉 ∣∣2 −∑

n

〈n|Enρn |n〉 (A.0.16)

=
∑
n,m

Emρn
∣∣ 〈m| Û |n〉 ∣∣2 −∑

n

〈n|EnρnÛ Û † |n〉 (A.0.17)

=
∑
n,m

Emρn
∣∣ 〈m| Û |n〉 ∣∣2 − 〈n|EnρnÛ |m〉 〈m| Û † |n〉 (A.0.18)

=
∑
n,m

(Em − En)ρn
∣∣ 〈m| Û |n〉 ∣∣2 = 〈W 〉TT. (A.0.19)

In the third from last line, we used that Û Û † = 1; in the second from last line, we used
that

∑
m |m〉 〈m| = 1. Thus, the average work cost in the unprojected scheme is equal to

that of the two-time measurement scheme (A.0.4) when the initial state is diagonal in the
energy eigenbasis.

Now for the second moment. Let us again start from the definition for the unprojected
work scheme:

σUP = Tr[∆Ĥ2ρ̂]− Tr[∆Ĥρ̂]2 (A.0.20)

= Tr[∆Ĥ2ρ̂]− 〈W 〉2UP. (A.0.21)
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We already know that 〈W 〉UP = 〈W 〉TT in this case, so let’s focus on the first term. First,
expand ∆Ĥ2

Tr[∆Ĥ2ρ̂] = Tr[(ÛĤÛ † − Ĥ)2ρ̂] (A.0.22)

= Tr[(ÛĤÛ †ÛĤÛ † − ĤÛĤÛ † − ÛĤÛ †Ĥ + Ĥ2)ρ̂] (A.0.23)

= Tr[ÛĤ2Û †ρ̂]− Tr[ĤÛĤÛ †ρ̂]− Tr[ÛĤÛ †Ĥρ̂] + Tr[Ĥ2ρ̂]. (A.0.24)

The middle two terms are equal if [Ĥ, ρ̂] = 0:

Tr[∆Ĥ2ρ̂] = Tr[ÛĤ2Û †ρ̂]− 2Tr[ÛĤÛ †Ĥρ̂] + Tr[Ĥ2ρ̂]. (A.0.25)

Now, expand the trace, and substitute in the spectral decomposition of the Hamiltonian
(noting that Ĥ2 =

∑
nE

2
n |n〉 〈n|):

Tr[∆Ĥ2ρ̂] =
∑
n,m,i

〈n| ÛE2
m |m〉 〈m| Û †ρ̂ |n〉 − 2 〈n| ÛEm |m〉 〈m| Û †Ei |i〉 〈i| ρ̂ |n〉+ 〈n|E2

m |m〉 〈m| ρ̂ |n〉 .

(A.0.26)

Substituting in the spectral decomposition of the initial state, the terms simplify in much
the same way as for the average work:

Tr[∆Ĥ2ρ̂] =
∑
n,m

E2
mρn

∣∣ 〈m| Û |n〉 ∣∣2 − 2EmEnρn
∣∣ 〈m| Û |n〉 ∣∣2 + E2

nρn
∣∣ 〈m| Û |n〉 ∣∣2

(A.0.27)

=
∑
n,m

(Em − En)2ρn
∣∣ 〈m| Û |n〉 ∣∣2, (A.0.28)

so that the second moment of the unprojected scheme is

σUP =
∑
n,m

(Em − En)2ρn
∣∣ 〈m| Û |n〉 ∣∣2 − 〈W 〉2UP (A.0.29)

= σTT. (A.0.30)

This completes the demonstration that the first and second moments of work in the two-
time measurement and unprojected schemes are identical when the initial state commutes
with the Hamiltonian.
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Appendix B

Proof of the existence of the
correlating unitary Ûcorr

In this appendix, we provide a detailed restatement of the proof in Appendix A.1 of [149],
which proves that the correlating unitary we use acts as we claim. Namely, we wish to
show that, for a bipartite system of dimension d2 composed of two subsystems A and B,
of local dimension d, a unitary consisting of rotations in the subspaces spanned by the
generalized Bell states (4.2.3),

Sj = span { |φ0,j〉 , |φ1,j〉 , . . . , |φd,j〉 } , (B.0.1)

will transform a global thermal state of inverse temperature βin to a local Gibbs state of
some local inverse temperature βout. Additionally, we will show that the unitary may be
tailored to reach a specific final temperature.

Under the assumption that there is no interaction Hamiltonian between the two parts
of the system, we will work in the eigenbasis of the local Hamiltonians that we notate as
{|ij〉}.

Let us first summarize the steps of the proof. We will begin by showing that the action
of rotating the initial global thermal state in the subspaces Sj produces global coherences
in the energy eigenbasis, but no local coherences. This proves that the action of the unitary
takes global thermal states to locally diagonal states (a necessary condition for the local
final states to be Gibbs). We will deduce, then, that the action of the global unitary on the
local subsystems may be described by a particular type of transformation called circulant
doubly stochastic transformation (CDST). We use this to rewrite the global unitary action
on the subsystems in terms of a general CDST. Rewriting the general transformation in
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this way will allow for the calculation of the specific map needed to take a global thermal
state of inverse temperature βin to a local Gibbs state of inverse temperature βout.

Let us briefly review notation. We call the initial global state ρ̂. This is a global
thermal state. The global state after the application of the unitary is ρ̂′, generally not
in a global Gibbs state. The local states of subsystem A and B are denoted ρ̂A and ρ̂B,
with primes similarly denoting the local states after application of the unitary. We notate
matrix elements of ρ̂ as follows

ρ̂ =
d−1∑

i,j,k,l=0

ρ
ij,kl
|ij〉 〈kl| . (B.0.2)

Since there is some amount of index gymnastics in this appendix, when the value of an
index gets too long we use a bracket notation like ρ

(d−1)(d−1),(d−1)(d−1)
to separate the first

and second indices and the third and fourth indices. Matrix elements of the state ρ̂A are
denoted by α

i,j
. They are given by partial tracing system B from the bipartite density

matrix ρ̂:

α
i,j

=
d−1∑
k=0

ρ
ik,jk

. (B.0.3)

Now, the action of the unitary on the global state is to mix elements within each
subspace Sj. A particular rotation in a subspace Sj will, in general, act on elements of the
form

ρ
n(n+j),m(m+j)

. (B.0.4)

For example, consider rotations in the subspace S1. This is the space spanned by the
generalized Bell states

|φn,1〉 =
d−1∑
k=0

e2kπi/d |k〉 |k + 1〉 . (B.0.5)

or

|φ0,1〉 =
1√
d

(
|01〉+ |12〉+ |23〉+ · · ·

)
, (B.0.6)

|φ1,1〉 =
1√
d

(
|01〉+ e2πi/d |12〉+ e4πi/d |23〉+ · · ·

)
,

|φ2,1〉 =
1√
d

(
|01〉+ e4πi/d |12〉+ e8πi/d |23〉+ · · ·

)
,

...
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and so on. The action of rotating in S1 will only affect density matrix elements like
ρ01,01 , ρ01,23 , ρ23,12 , . . . , or, in general, matrix elements of the form ρ

n(n+1),m(m+1)
.

We wish to show that the off-diagonal elements of ρ̂′ do not contribute to the partial
trace, ensuring that the local states ρ̂′A and ρ̂′B maintain their diagonal nature, i.e., the
unitary does not create coherences in the local states. To prove this we will use the
observation made above.

Since the initial global state is thermal, it is diagonal in the Hamiltonian eigenbasis.
That implies that matrix elements of the global state which are non-zero after application
of the unitary are of the form ρ′

n(n+j),m(m+j)
, and matrix elements contributing to the local

state ρ̂′A are of the form ρ′
ik,jk

. Thus, the matrix elements of the final global state which
are both nonzero and contribute to the local state have n+ j = m+ j, i.e. n = m, that is,
diagonal elements of ρ̂′. Global diagonal matrix elements only contribute to local matrix
elements which are also diagonal. Thus, the action of the unitary on a global thermal state
does not create coherences in the local states. Hence, since the local states were initially
diagonal (because the systems are non-interacting) then the local states remain diagonal
after the application of the unitary.

To continue the proof, let us introduce the notion of doubly-stochastic transformations.
A matrix T is doubly stochastic in a given basis if and only if its matrix elements satisfy

Tij > 0 and (B.0.7)∑
i

Tij =
∑
j

Tij = 1. (B.0.8)

A stochastic transformation of a vector preserves the sum of its components: considering
x = Ty for x and y ∈ Rd, we have that

d−1∑
i=0

xi =
d−1∑
i,j=0

Tijyj (B.0.9)

=
d−1∑
j=0

yj

(
d−1∑
i=0

Tij

)

=
d−1∑
j=0

yj.

In fact, all matrices which preserve the sum of vector elements satisfy
∑

i Tij = 1 [185].
The final property,

∑
j Tij = 1, is the defining characteristic of unital matrices, that is,

matrices whose action preserves the ‘fully mixed’ vector [1, 1, . . . , 1]ᵀ [186].
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A global unitary transformation on ρ̂ preserves its trace. All unitary transformations
are also unital. This implies that the diagonals of the global state undergo a doubly
stochastic transformation, that is,

diag(ρ̂′) = T diag(ρ̂), (B.0.10)

where diag(ρ̂) = [ρ00,00 , ρ01,01 ...]
ᵀ and T is a doubly stochastic matrix. This will be useful

for the rest of the proof.

Indeed, we can further visualize the action of the unitary through the fact that the
rotations in each subspace Sj only act on diagonal matrix elements ρ

n(n+j),n(n+j)
, n =

0, . . . , d− 1. We thus have that the unitary implements doubly stochastic transformations
on each set of diagonal matrix elements belonging to different subspaces Sj:

ρ′
0j,0j

ρ′
1(1+j),1(1+j)

...
ρ′

(d−1)(d−1+j),(d−1)(d−1+j)

 = T (j)


ρ

0j,0j

ρ
1(1+j),1(1+j)

...
ρ

(d−1)(d−1+j),(d−1)(d−1+j)

 , (B.0.11)

where T (j) is a doubly stochastic matrix corresponding to the elements belonging to the
subspace Sj.

For convenience, let us write a shorthand for the above vectors:

diag(ρ̂)
Sj

=


ρ

0j,0j

ρ
1(1+j),1(1+j)

...
ρ

(d−1)(d−1+j),(d−1)(d−1+j)

 . (B.0.12)

We can actually write the partial trace by summing over these vectors, as

diag(ρ̂A) =
d−1∑
j=0

diag(ρ̂)
Sj
. (B.0.13)

To see this, compare the elements of the vectors diag(ρ̂)
Sj

with the partial trace as in

(B.0.3).

Then the action of the unitary on the local state can be finally written as

diag(ρ̂′A) =
d−1∑
j=0

T (j) diag(ρ̂)
Sj
. (B.0.14)
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The action on the second subsystem can be expressed in terms of the same doubly
stochastic matrices T (j) by making use of the permutation operator Π =

∑
k |k〉 |k〉 〈k + 1| 〈k + 1|,

which shifts coefficients ρ
ij,kl

to apply to different elements as

Πρ
ij,kl
|ij〉 〈kl|Π† = ρ

ij,kl
|(i+ i)(j + 1)〉 〈(k + 1)(l + 1)| (B.0.15)

For the rest of this paper, we will employ a shorthand notation to use with the vector
diag(ρ̂)

Sj
as,

Πj diag(ρ̂)
Sj

=


ρ

(−j)0,(−j)0

ρ
(1−j)1,(1−j)1

...
ρ

(d−1−j)(d−1),(d−1−j)(d−1)

 , (B.0.16)

where all indices are taken to be mod d, so that, for instance ρ
(−1)0,(−1)0

= ρ
(d−1)0,(d−1)0

.
Then the diagonals of subsystem B can be written as

diag(ρ̂B) =
d−1∑
j=0

Πj diag(ρ̂)
Sj
. (B.0.17)

We thus write the action of the unitary on the second subsystem as

diag(ρ̂′B) =
d−1∑
j=0

Πj(T (j) diag(ρ̂)
Sj

). (B.0.18)

If the action of the specified unitary is symmetric on both subsystems (guaranteed in
our case because the local Hamiltonians of both qubits are the same [187]), this directly
implies that the doubly stochastic matrices T (j) commute with the permutation operator
Π, i.e., the T (j) are circulant. To find a particular transformation that allows us to set the
temperature of the local states to any arbitrary 1/βout it is enough to pick all the rotations
on the different subspaces Sj to have the ‘same angle’, that is to take all the T (j) to have
the same matrix elements to one another. We can then write

diag(TrB[ρ̂′]) = T

d−1∑
j=0

diag(ρ̂)
Sj
, (B.0.19)

diag(TrA[ρ̂′]) = T
d−1∑
j=0

Πj diag(ρ̂)
Sj
. (B.0.20)
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We can write T (or any doubly stochastic matrix) in terms of a convex combination of per-
mutation matrices (Birkhoff-von Neumann decomposition [188]), the coefficients of which
can be calculated from the initial and final temperatures of the system. Concretely,

T =
d−1∑
i=0

ηiΠ
i, (B.0.21)

where the ηi satisfy ηi > 0 ∀ i and
∑

i ηi = 1. The diagonal elements of the local states
after application of the unitary will thus be given by

diag(ρ̂′A) =
d−1∑
i=0

ηiΠ
i

d−1∑
j=0

diag(ρ̂)
Sj
, (B.0.22)

diag(ρ̂′B) =
d−1∑
i=0

ηiΠ
i

d−1∑
j=0

Πj diag(ρ̂)
Sj
. (B.0.23)

Let us again focus on the state of subsystem A to determine the coefficients ηi from a given
initial and desired final temperature. We can rewrite the right hand side of (B.0.22) as

d−1∑
i=0

ηiΠ
i


α00

α11
...

α(d−1)(d−1)

 = η0


α00

α11
...

α(d−1)(d−1)

+ η1


α(d−1)(d−1)

α00
...

α(d−2)(d−2)

+ η2


α(d−2)(d−2)

α(d−1)(d−1)
...

α(d−3)(d−3)

+ · · ·

=


η0α00 + η1α11 + · · ·
η0α11 + η1α22 + · · ·
η0α22 + η1α33 + · · ·

...
η0α(d−1)(d−1) + η1α00 + · · ·

 , (B.0.24)

so that we can write each new diagonal element of the local state as

α′jj =
d−1∑
i=0

ηiα(i+j)(i+j). (B.0.25)

Recalling, again, that both the final and initial local states are Gibbs allows us to rewrite
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initial and final diagonal matrix elements of the local states as

e−βoutEj

Z ′
=

d−1∑
i=0

ηi
e−βinEi+j

Z

⇒ e−βoutEj =
Z ′

Z

d−1∑
i=0

ηie
−βinEi+j , (B.0.26)

where we have defined the partition functions Z = Tr[e−iβinĤ ] and Z ′ = Tr[e−iβoutĤ ]. This
establishes a simple linear relationship between all the ηi and the final and initial tem-
peratures that can easily be inverted to find all possible transformations ηi(βin, βout) (the
solution is not unique). Not all collections of coefficients determined by pairs of tempera-
tures βin and βout yield valid transformations (i.e., if the ηi compatible with (B.0.26) were
negative). This means that there may be some sets of initial and final temperatures for
which the unitary transformation that we desire is not possible. For Hamiltonians with
uniform energy spacings, the final temperature is limited to be in the range [−βout, βout].
For Hamiltonians with nonuniform energy spacings, this range is further constricted. There
is, then, a minimum local temperature that the application of this unitary can produce;
beginning in a global thermal state of inverse temperature βin, we must have βout < β̃ for
some β̃ < βin [187]. This is not a significant roadblock since then this transformation is
sufficient to reach any βout < β̃.

This completes the proof. In summary, we have presented here a pedagogical summary
of the result in Appendix A.1 of [149]. Repeating the steps in [149], we have shown that
the unitary which performs rotations in the subspaces (4.2.5) transforms global thermal
states to states which have local Gibbs distributions. We have shown how the protocol in
[149] gives a method to calculate the transformation acting on the local state, assuming
that the rotation in each subspace Sj is the same.

Notice that there is a relevant difference between the method used in the body of the
paper and the method from [149] that we summarized in this appendix. The latter does
not fully specify the global unitary, only the local transformations. In the body of the
paper, we use the general form for the global unitary that yields local transformations as
the ones desired in this appendix. We additionally do not assume that the rotations in each
subspace are the same, although we found that one of the rotations is indeed irrelevant.
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Appendix C

How important are the correlations
between the initial and final energies?

One can write the unprojected fluctuations as

ΣW =
√
σ2
Ei

+ σ2
Ef
− 2σEiEf

, (C.0.1)

where σ2
Ei/f

is the variance of the initial (final) energy and σEiEf
is the covariance, or

convex correlator, of the initial and final energies. This expression conceptualizes of the
initial and final energies as random variables, with their own variances and a covariance
between them.

This covariance is a bit of a nuanced quantity. It measures correlations in the energies
in time. Usually, in quantum mechanics, we measure correlations between quantities at the
same instant. We may take two approaches to calculate the covariance. The first considers
the initial and final states to not live in the same Hilbert space—then, the covariance is
trivially zero. The second considers them to live in the same Hilbert space, resulting in a
nonzero covariance.

Of course, we know that the states are physically related; we evolve ρ̂ into ρ̂′ by the
application of a unitary. It makes sense, then, to consider the correlations between them.
We might then want to calculate the unprojected work fluctuations without the inclusion
of the covariance simply to provide an estimation of how significant this factor is.

For both of these reasons, in this appendix we demonstrate the importance of consid-
ering the correlations between the initial and final energies, by calculating the unprojected
work fluctuations without them.
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Figure C.1: The ratio of unprojected work fluctuations to average work cost versus the
mutual information created in the protocol. Average work cost increases along the curve
from top to bottom; βout = 0 at the point of maximum creation of mutual information.
From left to right, βin = 100ω−1, ω−1, 0.1ω−1. Fluctuations are shown in a) without time
correlations and in b) with time correlations. At high temperatures, the ratio of fluctuations
to average work cost without considering correlations between ρ and ρ′ is much larger than
those when correlations are included. This gives an indication of the closeness of the initial
and final states when the initial temperature is high.
The uncorrelated measure of fluctuations is larger than the two-time fluctuations of figure
5.3, but shows similar key characteristics—the ratio of fluctuations to average work cost
is at least order unity for maximum creation of correlations, and increases as the initial
temperature increases.
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Figure C.2: Unprojected uncorrelated fluctuations plotted as a function of the average
work cost. From left to right, βin = 100ω−1, ω−1, 0.1ω−1. This uncorrelated measure is
dramatically different from the correlated one, shown in figure 5.4, at higher temperatures.
Notably, it is nonzero for zero work done, indicating that it is measuring the static energy
variance of a state rather than work done in a dynamical process.

If we consider the correlations between ρ̂ and ρ̂′ to be irrelevant (or mathematically
unfounded), then the independent unprojected work fluctuations are given by

Σ̃W =
√
σ2
Ei

+ σ2
Ef
, (C.0.2)

with energy variances

σ2
Ei

= Tr[Ĥ2ρ̂]− (Tr[Ĥρ̂])2, (C.0.3)

σ2
Ef

= Tr[Ĥ2ρ̂′]− (Tr[Ĥρ̂′])2. (C.0.4)

We can rewrite Σ̃W as

Σ̃W =

√
Tr[Ĥ2(ρ̂+ ρ̂′)]− (Tr[Ĥρ̂])2 − (Tr[Ĥρ̂′])2. (C.0.5)

Upon some subsitution and manipulation, we can arrive at an expression of this measure
of fluctuations in terms of the final inverse temperature,

Σ̃W = ω sech[βoutω/2], (C.0.6)

and in terms of the average work cost W and initial inverse temperature,

Σ̃W =

√
ω2 −

(
W − ω tanh

[
βinω

2

])2

. (C.0.7)
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This last expression allows us to bound the independent unprojected work fluctuations
as

ω sech[βinω/2] ≤ Σ̃W ≤ ω. (C.0.8)

Σ̃W achieves the upper bound when the protocol creates maximal correlations, as the
average work cost for Imax is ω tanh[βinω/2].

The ratio of this measure of fluctuations to the average work cost as a function of
the mutual information created by the protocol is plotted in panel a) of figure C.1. The
key characteristics noted in section 5.3.1 for the two-time measurement work fluctuations
are present here; namely that the ratio is at least of order one for maximal creation of
correlations, and that this ratio increases as the initial temperature of the state increases.
Interestingly, this measure of fluctuations is about twice as large as the two-time fluctua-
tions.

In figure C.2, we plot the uncorrelated fluctuations versus the average work cost. Here
is where we see the feature of these fluctuations which makes them unphysical, or at least
not very useful. As the initial temperature increases, the maximum of the uncorrelated
fluctuations stays the same; the minimum value increases dramatically. For high initial
temperature states, Σ̃ is nonzero even for a zero work process! This indicates that what
the quantity measures is mostly the energy variance of the individual states, and not the
variance of the difference of the random variables. This is to be expected from a quantity
which does not follow the rules of error propagation and instead abandons the clearly
important covariance term [189].
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