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Abstract

The work presented in this thesis deals with the problem of enhancing the performance
of dynamically-typed programming languages by integrating features from statically-typed
programming languages. Statically-typed languages focus on security and performance, but
dynamically-typed languages focus on flexibility and automation. Optional type-systems
and gradual type-systems realize some of the security benefits offered in statically-typed
languages by adding a static type-system to a dynamically-typed language. However,
these approaches generally do not provide the performance advantages of statically-typed
languages.

In this thesis, a programming language named Poseidon Lua is proposed. It extends
Typed Lua, an optionally-typed programming language, with language features that are
only available from statically-typed languages. A Poseidon Lua program is able to use
manual memory management to bypass the performance costs related to automatic garbage
collection. A Poseidon Lua program is also able to use direct memory programming using
its C pointers to avoid the performance overhead of using Lua tables. Note that Lua does
not allow a program to directly manipulate raw memory. This thesis presents an extension
of the compiler and virtual machine of Lua, named Modified Lua, that does allow the direct
manipulation of raw memory. All Poseidon Lua programs are translated to Modified Lua
programs before execution. In addition, for calling external C functions, a Modified LuaFFI
library is provided for Poseidon Lua. The Modified LuaFFI library is an extension of the
luaffifb library that avoids the performance overhead of the extra dynamic typechecking
that is carried out by the cdata values. Poseidon Lua, Modifed Lua, and the Modified
LuaFFI library are implemented by modifying the compiler of Typed Lua, the compiler
and the virtual machine of Lua, and the luaffifb library, respectively.

Poseidon Lua is tested using a benchmark suite and a feature test suite. In the bench-
mark suite, Poseidon Lua programs achieve a speedup of 0.98X with respect to corre-
sponding Lua programs and a speedup of 6.82X with respect to corresponding luaffifb
programs, which is a Lua program that uses the luaffifb library. One Poseidon Lua
program of the suite is able to achieve a maximum speedup of 10.76X with respect to the
corresponding luaffifb program. In the feature test suite, relative to a Lua program,
a Poseidon Lua program is able to achieve a speedup of 4.18X and 1.31X due to man-
ual memory management and direct memory programming, respectively. A Poseidon Lua
program that uses the Modified LuaFFI library is able to achieve a speedup of 10.32X
over a luaffifb program. Poseidon Lua along with its components achieves significant
performance advantages over the dynamically-typed language Lua using features from the
statically-typed programming language C.
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Chapter 1

Introduction

1.1 Background

Most modern programming languages come with a type system. A type system is a tech-
nology from lightweight formal methods [22]. A type represents a set of values that is
defined by a programming language. The type system of a programming language consists
of a set of types as well as a set of type derivation rules. The type derivation rules can be
used to derive a type for an expression of the programming language.

Typechecking is the act of enforcing the derived type for each expression of the program-
ming language. Static typechecking refers to typechecking that is performed at compile-
time and dynamic typechecking refers to typechecking that is performed at run-time.

A statically-typed programming language performs all typechecking at compile-time.
Usually, such a programming language requires the programmer to supply static type-
annotations for this purpose. This static typechecking restricts the run-time behavior of
an expression of the language to guarantee that the expression always evaluates to a value
that belongs to its derived type at run-time. As a result, a statically-typed programming
language is able to provide strong security and maintainability assurances to the program-
mer.

A dynamically-typed programming language performs all typechecking at run-time.
This dynamic typechecking guarantees that an expression of the language always evaluates
to a value that belongs to its derived type at run-time. There are no restrictions placed
on the expression at compile-time. The programmer is not required to provide any static
type-annotations and all dynamic typechecking is automatically performed. As a result, a
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dynamically-typed programming language is able to provide a great deal of flexibility to
the programmer.

At the initial stage of a software project, the flexibility and automation of a dynamically-
typed programming language is of high value to the programmer and enhances productiv-
ity greatly. However, as a software project matures, security and maintainability become
more desirable qualities in a programming language. These qualities are already available
in statically-typed languages. They can also be provided for a dynamically-typed pro-
gramming language by attaching a static type system on top of it. This approach allows
some static typechecking to take place for an otherwise dynamically typechecked program.
Two popular methods for achieving this capability are optional type-systems and gradual
type-systems.

An optional type-system adds a static type-system on top of a dynamically-typed pro-
gramming language. The programmer supplies as much type annotations as they wish.
These type annotations are used to perform as much static type checking as possible. The
key characteristic of an optional type system is that it is not allowed to modify the run-
time semantics of the underlying dynamically-typed program [3]. Thus, an optional type
system cannot guarantee type soundness because at run-time, it cannot stop a statically-
typed variable from being assigned a value that has a different type than the static type
of the variable.

A gradual type-system also places a static type-system on top of a dynamically-typed
programming language. It allows the programmer to provide as much type annotations
as desired for the purpose of static typechecking. It is able to guarantee type soundness
by inserting run-time checks between statically-typed code and dynamically-typed code
to enforce static types at run-time [24]. Thus, a gradual type system is able to overcome
the shortcomings of an optional type system. However, the extra run-time checks that are
inserted by a gradual type system incurs a significant performance cost [25]. It is ultimately
for the programmer to decide if the type soundness guarantee provided by a gradual type
sytem is worth the extra cost in performance.

1.2 Motivation

Dynamically-typed programming languages have gained a great deal of popularity among
software developers over the recent years. This popularity is principally due to the flexible
programming style and extensive automation that is offered by these languages. However,
as discussed earlier, security and maintainability become more of a concern than flexibility
and automation when a software project matures and its codebase stabilizes.
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Security and maintainability guarantees can be obtained through the addition of an
optional type-system or a gradual type-system to a dynamically-typed programming lan-
guage. Both optional and gradual type systems generate a program in the underlying
dynamically-typed programming language as a final product. This means that their per-
formance can only be as good as the performance of their underlying dynamically-typed
language.

Research in this area has primarily focused on the security and maintainability bene-
fits that could be gained through the use of increased static typechecking. However, the
addition of a static type system on top of a dynamically-typed programming language also
creates a new opportunity to improve performance as well.

Statically-typed programming languages tend to run faster than dynamically-typed
programming languages [27]. This benefit is mainly due to the fact that statically-typed
languages provide a variety of language features that help to cut down on performance
costs. Dynamically-typed languages generally do not offer these features because they
would undermine the flexibility of use and automation that is provided by these languages.

The work presented in this thesis investigates the integration of some of the features that
are traditionally provided by statically-typed languages into an optionally-typed language.
This investigation is done for the purpose of circumventing the performance limit that is
imposed upon the optionally-typed language by its underlying dynamically-typed language.

This thesis explores the performance impact of integrating two such language features
into an optionally-typed programming language: manual memory management and di-
rect memory programming. Manual memory management gives the programmer control
over garbage collection activities. Direct memory programming allows the programmer to
directly manipulate data that is stored in memory. Both of these language features are
available in the statically-typed programming language named C [12].

These language features are integrated into the optionally-typed programming language
named Typed Lua that provides an optional type system for an underlying dynamically-
typed programming language named Lua. Typed Lua allows the programmer to add
static type annotations to an underlying Lua program, which are used to perform static
typechecking. Typed Lua outputs the underlying Lua program as the final product.

Most of the dynamically-typed languages, including Lua, provide an automatic garbage
collector to deallocate blocks of memory that are no longer used by a program at run-
time. The automatic garbage collector performs its tasks without the involvement of
the programmer. Therefore, it is able to avoid any memory errors that could have been
introduced by the programmer. It keeps track of the blocks of memory that are in use by
the program and the blocks of memory that are not in use by the program. Thus, it runs

3



periodically to update the status of the blocks of memory and to decide when to deallocate
the unused blocks of memory. As a result, it incurs a performance overhead.

In contrast, manual memory management allows the programmer to decide when to
deallocate blocks of memory. Manual memory management is implemented in the C pro-
gramming language through two critical functions named malloc() and free(). The pro-
grammer is able to use the malloc() function to allocate a block of memory. The program-
mer is able to use the free() function to deallocate a block of memory.

Although there is a chance that the programmer may introduce memory errors, the
performance overhead related to automatic garbage collection can be avoided. Manual
memory management for Typed Lua is implemented using a similar mechanism to that
used in C.

In this thesis, the term “direct memory programming” is used to refer to the ability of a
programmer to directly manipulate memory without the need to go through an intermedi-
ate mechanism. One such intermediate mechanism is provided by Typed Lua in the form
of the Lua table. It is the main data structure provided by the Lua programming language
and it is implemented as a hash table by the Lua virtual machine (VM); consequently,
a member access into a Lua table requires a hash table lookup [11]. As all the memory
elements have to be accessed through Lua tables indirectly, it imposes extra performance
overhead.

In contrast, the C programming language allows its programmer to directly manipulate
the data that is stored at an arbitrary memory location without having to go through the
interface of an intervening mechanism. This language feature is implemented through a
special data type called a pointer. A pointer refers to a particular location in memory.
A pointer can be dereferenced to access the data that is stored at the memory location
that is referred to by the pointer. A pointer can also be used to store data at the memory
location referred to by the pointer. In this way, a C programmer is able to use pointers to
directly manipulate memory without having to go through an intervening mechanism. We
intend to integrate a pointer mechanism along with other types from C into Typed Lua
to implement direct memory programming in order to avoid the performance overhead of
using Lua tables for memory manipulation.

When the new pointer mechanism and other types from C are integrated into Typed
Lua, it also provides an opportunity to reduce the performance overhead related to dynamic
typechecking of values returned from an external C function call done through a Lua foreign
function interface (FFI) library.

4



1.3 Statement of Problem

We propose a programming language named Poseidon Lua that extends Typed Lua with
manual memory management and direct memory programming features.

We implement manual memory management for Poseidon Lua in a similar manner to
the way it is implemented in the C programming language. We add a malloc operator
to Poseidon Lua, which can be used by the programmer to allocate a block of memory.
We also add a free operator to Poseidon Lua, which can be used by the programmer to
deallocate a block of memory. In this way, a Poseidon Lua programmer is able to make
use of manual memory management when it is necessary.

We attempt to offer a more efficient alternative to Lua tables for memory manipulation.
We do this through the implementation of direct memory programming for Poseidon Lua.
This alternative is achieved by extending the static type system of Typed Lua with a subset
of the type system of the C programming language including pointers. This modification
allows a Poseidon Lua programmer to use C pointers to manipulate memory directly with-
out having to go through an intermediate mechanism such as a Lua table. Therefore, our
solution avoids the performance overhead related to the use of Lua tables.

A Typed Lua program is statically typechecked and then translated into a correspond-
ing Lua program. Similarly, a Poseidon Lua program is statically typechecked and then
translated into a corresponding Modified Lua program. Modified Lua is our extension
of the Lua compiler and virtual machine. Modified Lua augments Lua with special C
Semantics (CS) operators that allow C values to be handled from within a Lua program.

Note that a program that is written in a dynamically-typed programming language such
as Lua is ultimately incapable of matching the performance of a program that is written in
a statically-typed programming language such as C. This restriction is due to the various
automated features that are provided by the dynamically-typed language and the way in
which the implementation of the language is built around these features. For this reason,
these languages generally find libraries that are written purely in C to be indispensable from
a performance standpoint. As a result, these languages tend to provide a Foreign Function
Interface (FFI) library that can be used by the programmer to call external C functions
from within the dynamically-typed programming language. The luaffifb library is one
such FFI library for Lua.

The main problem with the approach taken by the luaffifb library is in the way that
it treats the value that is returned by the external C function. If the returned C value is
of a primitive C type, luaffifb typechecks the returned value and converts it to a Lua
value at run-time. Otherwise, if the returned C value is of a composite type such as a
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C struct or a C pointer, luaffifb stores the returned C value within a cdata value. At
each use-site of the returned C value, the cdata value performs dynamic typechecking to
ensure the correct usage of the underlying C value, which incurs a recurring performance
overhead. This is necessary because Lua is a dynamically-typed programming language
and, as a consequence, does not accept static type annotations from the programmer.

Poseidon Lua does accept static type annotations for its C types. Thus, it can ensure
that the value that is returned by an external C function always behaves in accordance
with its C type by performing static typechecking only. Thus, it can avoid the recurring
performance overhead at each use-site of the returned C value. In this way, Poseidon Lua
is able to reduce the performance cost of using an FFI library.

Poseidon Lua comes equipped with the Modified LuaFFI library, which enables a C
pointer that is returned from an external C function to be used within Poseidon Lua code
without incurring any further performance costs from extra dynamic typechecking.

In this thesis, we explore the performance impact of integrating two language features,
manual memory management and direct memory programming, which are normally only
found in statically-typed programming languages such as C, into our proposed optionally-
typed programming language named Poseidon Lua. Furthermore, we study the perfor-
mance impact of using the C types of Poseidon Lua in conjunction with an FFI library.

The novel approach proposed in this thesis allows programmers of dynamically-typed
languages to enjoy some of the performance benefits as offered by statically-typed lan-
guages.

1.4 Organization of the Thesis

The rest of the thesis is structured as follows.

Chapter 2 provides a review of the research work that is relevant to the work presented
in this thesis. The language features of dynamically-typed programming languages and
optionally-typed programming languages are covered. Next, we discuss the concept of
type soundness. Then, the language features of gradually-typed programming languages
are described. In addition, the language features of the dynamically-typed programming
language Lua is given along with the language features of the optionally-typed program-
ming language Typed Lua.

Chapter 3 provides an overview of our proposed programming language named Poseidon
Lua. Poseidon Lua introduces 3 new operators: sizeof, malloc, and free. Poseidon
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Lua introduces 4 primitive C types: char, int, double, and bool. Poseidon Lua also
introduces 3 composite C types: C pointer type, C struct type, and C array type. In
addition, Poseidon Lua includes a modification of the assignment operator of Typed Lua
in order to work properly with the C types that are provided by Poseidon Lua.

In Chapter 4, we introduce Modified Lua, which is our extension of the Lua compiler
and virtual machine. Modified Lua provides special operators to allow the manipulation
of C values from within Lua.

In Chapter 5, we introduce the Modified LuaFFI library of Poseidon Lua. This library
allows a Poseidon Lua program to call an external C function through an underlying FFI
library and use the C pointer that is returned by the C function.

In Chapter 6, we show the performance impact of Poseidon Lua programs relative to
Lua programs that use Lua tables and Lua programs that use a FFI library.

In Chapter 7, we provide the contributions of this thesis and possible directions for
future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter establishes the background context from which our work draws influence. We
begin with a description of dynamically-typed programming languages. The overarching
goal of these languages is to offer the programmer the maximum amount of flexibility and
automation that is possible. They achieve this by automatically carrying out a lot of the
tasks that would normally require the involvement of the programmer in statically-typed
programming languages.

For example, two prominent features of dynamically-typed languages are dynamic type-
checking and automatic garbage collection [27]. In general, statically-typed languages re-
quire the programmer to supply static type annotations for the purpose of performing
static typechecking at compile-time. Some statically-typed programming languages do not
require any static type annotations because they perform type inferencing. However, any
type error that is reported by these languages may be time consuming for the programmer
to track down and resolve due to the lack of explicit type annotations and the non-trivial
nature of the type inferencing algorithm that is used. On the other hand, dynamically-
typed languages avoid all of these issues altogether by forgoing static typechecking in favor
of dynamic typechecking.

Some statically-typed languages, such as the C programming language [12], require
the programmer to manually deallocate the memory blocks that are no longer used by
the program. Dynamically-typed languages remove the involvement of the programmer
from memory management matters by providing a garbage collector that automatically
deallocates memory blocks that are no longer needed by the program at run-time.
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It is common knowledge that the flexibility and automation provided by dynamically-
typed languages is advantageous for programmers in the early stages of software devel-
opment when the requirements are constantly changing and fast prototyping is desirable.
However, in the later stages of software development, the requirements and the correspond-
ing software become more stable. This makes maintainability and security very attractive
qualities in a programming language. These qualities are more prevalent in statically-
typed languages. Therefore, several techniques have been developed to provide static type
systems for dynamically-typed languages. However, these techniques tend to emphasize se-
curity and maintainability. In contrast, our research focuses on improving the performance
of dynamically-typed languages by integrating features from statically-typed languages.

For convenience of discussion, we have organized the contents of the chapter according
to the following topics: Dynamic typing, Optional typing, Type soundness, Gradual typing,
Lua, and Typed Lua.

2.2 Dynamic Typing

Dynamically-typed languages offer a different set of language features than those offered
by statically-typed languages. Each of these language features comes with benefits as well
as shortcomings when compared to its counterpart in statically-typed languages. Some of
these language features facilitate a way of programming that is currently not possible in a
statically-typed language.

Laurence Tratt [27] identifies the major defining features of dynamically-typed lan-
guages and traces the history of dynamically-typed languages. The author recognizes Lisp
and Smalltalk as the earliest incarnations of dynamically-typed languages. Tratt states that
Lisp, a functional programming language, is succeeded by Scheme, which has seen wide
adoption in the research community. The author notes that Smalltalk, an object-oriented
programming language, is succeeded in modern times by Python and Ruby. The author
also notes that the class-based object model of Smalltalk has motivated the development
of the prototype-based object model of the Self programming language. Tratt states that
outside of Lisp and Smalltalk, the biggest influence on the development of dynamically-
typed languages comes from the text processing languages. According to the author, Sed,
an early text processing language, is succeeded by AWK and AWK is in turn succeeded by
Perl. The author observes that these languages continue to enjoy much popularity due to
their specialization for a particular application domain.

Moreover, Tratt identifies the advantages and disadvantages of dynamically-typed lan-
guages compared to statically-typed languages. The author states that dynamically-typed
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languages generally provide highly optimized built-in data types such as lists and dictionar-
ies. Tratt observes that statically-typed languages tend to require these to be implemented
separately in libraries. The author notes that dynamically-typed languages provide auto-
matic garbage collection. The author acknowledges that statically-typed languages are
also starting to adopt this technology. The author states that dynamically-typed lan-
guages provide facilities for meta-programming. Tratt states that Lisp allows compile-time
meta-programming via its macro definition feature. Tratt also states that Smalltalk allows
run-time meta-programming through reflection-based programming. The author points
out that statically-typed languages do not provide run-time meta-programming facilities
of equivalent power. The author states that dynamically-typed languages offer a special
feature named eval that allows a program to execute a string as a code fragment at
run-time. The author notes that statically-typed languages generally do not provide this
feature. Tratt observes that an important disadvantage for dynamically-typed languages
in comparison to their statically-typed counterparts is slower performance.

Tratt also identifies the similarities and dissimilarities within different dynamically-
typed languages. According to the author, one source of dissimilarities is object-orientation.
Tratt observes that some dynamically-typed languages can be classified as Object-Oriented
and others can be classified as Non-Object-Oriented. However, Tratt acknowledges that
there also exists languages such as Python that started off as Non-Object-Oriented but
added in Object-Oriented features over time. The author states that another source of
dissimilarities is optional typing. Tratt observes that some dynamically-typed languages
include an optional type system that is able to perform some compile-time typecheck-
ing depending on the amount of static type annotations provided by the programmer.
Tratt states that optional type systems differ according to how much type annotation they
consider to be mandatory. The author notes that aside from these differences, dynamically-
typed languages tend to be very similar in terms of the general facilities that they provide.

Tratt notes that several features such as JIT-compilation, automatic garbage collection,
and meta-programming were first pioneered in dynamically-typed languages and a lot of
these features were later absorbed by statically-typed languages. The author also notes
that it is reasonable to expect that many of the features that are unique to dynamically-
typed languages today may be integrated into statically-typed languages at some point in
the future.

A distinguishing feature of a programming language is its object model. There are two
well-known object models: class-based object model and prototype-based object model.
Class-based object models are generally found in statically-typed languages and prototype-
based object models are generally found in dynamically-typed languages. Usually, the
prototype-based object model is more flexible.
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Ungar and Smith [28] identify the advantages of prototype-based object-oriented pro-
gramming over class-based object-oriented programming. The authors present the design
of the Self programming language. They state that Self uses the concept of prototypes for
inheritance and object creation instead of classes. They note that Self also uses named
slots in place of variables and procedures. They observe that Self removes the distinc-
tion between closures, procedures, and objects by allowing prototypes to model activation
records.

Ungar et al. observe that objects are created in Self by copying a prototype instead
of instantiating a class because Self does not have classes and the subclass relationship
between classes. The authors note that this simplifies the relationship between objects.
They state that Self can express object-oriented idioms as well as one-of-a-kind objects.
They observe that Self also has facilities for inline objects as well as active values.

Ungar et al. claim that Self provides a fresh understanding of the object-oriented
programming paradigm due to its expressive and simple language features.

Many dynamically-typed programming languages provide the facilities to inter-operate
with statically-typed languages for performance reasons. Usually, the statically-typed lan-
guage of choice is the C programming language and the inter-operation happens over a
C API. However, care must be taken in order to avoid unintended errors during inter-
operation.

Muhammad and Ierusalimschy [21] deal with the tradeoffs that can be made in the
design of the C API for a scripting language to make it more efficient as an embeddable
language (where the C code uses the scripting language) or as an extensible language
(where the scripting language uses the C code). The authors identify data transfer, garbage
collection, and function registration and calls as the key dimensions for tradeoffs in the
design of the C API for a scripting language and describe these dimensions. The authors
note that a scripting language represents data in a different way than C. Thus, they
emphasize that the C API of the scripting language must provide facilities to manipulate
data safely when data is transferred between the two languages. The authors note that a
scripting language likely uses automatic garbage collection whereas C uses manual memory
management. They observe that the C API of the scripting language must provide facilities
for each language to handle data in a way that avoids memory errors. Finally, they assert
that the C API of a scripting language must offer facilities to register and call functions
from one language to another, which includes facilities to send parameters properly for a
function call and receive results from function calls.

Muhammad et al. perform analysis and comparison of the design of the C APIs of
4 scripting languages: Python, Perl, Ruby, and Lua. They also consider the C API for
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Java in order to understand the impact of static typing on the design of C APIs. They
note that the C API that is provided by a scripting language must allow data to be
manipulated in an error-free way. They observe that Python, Ruby, and Perl offer direct
handles to their objects to C for manipulation. They also observe that Lua only allows
indirect manipulation of its objects through stack indices. The authors note that Java uses
the correspondence between its own static types and the static types of C to reduce the
amount of data conversions that need to take place.

Muhammad et al. recognize that it is important for a scripting language to hide the
implementation details of its garbage collection algorithm so as to prevent the C code
from inadvertently introducing memory errors. The authors find that Python and Perl
use reference counting algorithms and they are unable to adequately hide the use of their
reference increment and reference decrement operations in their C APIs. The authors
observe that Ruby uses a mark-and-sweep algorithm but it is also unable to hide this when
certain kinds of Ruby objects are created from within C. They point out that Lua uses an
incremental garbage collection algorithm and is able to hide it relatively well. They note
that Java succeeds in completely hiding the implementation details of its garbage collection
algorithm.

Muhammad et al. are of the opinion that the ease with which function calls can be
made has a direct impact on the ability of a scripting language to inter-operate with C
code. They find that Python, Perl, and Lua allow functions to be represented as objects
that can be readily called. They observe that Java and Ruby do not consider methods to
be first-class objects, and these languages provide special C types to represent methods.

Muhammad et al. implement a C library called LibScript to study and compare the C
APIs of the 4 scripting languages. They find that Python’s C API provides more functions
geared towards higher convenience whereas Lua’s C API provides less functions but is
simpler to use. They also observe that Python and Lua as well as Java provide C APIs
that define their function and C type names with prefixes in order to avoid C namespace
pollution; however, Perl and Ruby provide C APIs that define their function and C type
names in an arbitrary manner.

Muhammad et al. claim that when the C API of a scripting language aims to support
both embedding and extension, it should focus more on embedding since the needs of
extension support is covered by the needs of embedding support as well. They also note that
a variety of tools already exist to deal with issues related to extension support. Therefore,
they argue that putting more of an emphasis on embedding support should not be a
problem.

When a dynamically-typed language uses its C API, it is unable to use the static type

12



information from the C code. This information could potentially be used to detect a larger
number of type errors at compile-time than would otherwise be possible.

Klint, Roosendaal, and van Rozen [13] address the problem of ensuring high quality for
Lua scripts in the absence of proper static analysis tools. The authors note that the data
types and function signatures of the interface to a game engine can be utilized to enable
better static analysis of embedded Lua scripts. They observe that the static types of the
interface to the game engine restrict the ways in which Lua code may use the facilities
that are made available to it by the game engine. They report that the functions that
are provided by the game engine may only be called with arguments that are of certain
types and these functions are also only allowed to return results that are of certain types.
Therefore, the authors argue that the static types of these functions could be utilized by a
static analysis tool to detect errors in Lua scripts.

Klint et al. propose a new framework called Lua AiR (Analysis in Rascal) that works
alongside the Eclipse IDE to create an abstract syntax tree (AST) for a Lua script in order
to perform various types of analysis on the AST. They note that the integration of Lua
AiR into the Eclipse IDE creates an opportunity for other pre-existing tools to use the
information that is generated by Lua AiR to enhance the quality of their own services.
They also note that type inferencing could be used to expand Lua AiR’s ability to catch
errors in Lua scripts.

Klint et al. intend to use Lua AiR on existing game-related codebases on a larger scale.
They hope to provide a clearer sense of the magnitude of the impact that Lua AiR can
have on the productivity of programmers. They state that it may inspire the development
of other tools that could also make use of the static type information from the interface to
the game engines.

A crucial feature of dynamically-typed languages is that they automatically perform
dynamic typechecking at run-time without the involvement of the programmer. However,
it is necessary to insert these dynamic typechecks into the program in a systematic manner
in order to avoid introducing more dynamic typechecks than are actually needed.

Henglein [8] proposes an explicitly dynamically typed language for an implicitly dy-
namically typed language. The author presents the dynamically typed λ-calculus as an
extension of the statically typed λ-calculus. The author describes that the dynamically
typed λ-calculus includes a new type named Dyn, which represents values that have been
tagged with a type constructor, and dynamic type coercions, which represent operations to
tag and untag (after checking) a value with a type constructor. The author also presents
the concept of completions as a way to translate a term of the untyped λ-calculus to a
corresponding term of the dynamically typed λ-calculus through the insertion of dynamic
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type coercions as well as type annotations for variables where appropriate.

We now consider a different perspective on typechecking. Normally, statically-typed
languages perform all their typechecking at compile-time. However, there may be situations
where the type of a value may be unknown at compile-time. In such situations, a statically-
typed language may have to perform dynamic typechecking at run-time to avoid type
errors.

Abadi, Cardelli, Pierce, and Plotkin [1] address the problem of adding dynamically-
typed values to a statically-typed language for the purpose of providing strong typing
guarantees in an environment where the type of the values may be statically unknown.
The authors present an extension of the Simply Typed Lambda Calculus that includes
a new type named Dynamic, which represents dynamically-typed values, where a certain
value that belongs to the Dynamic type is a pair (VAL, TAG) whose first member is a value
VAL and whose second member is the type tag TAG for the type of VAL.

Abadi et al. introduce 2 new constructs in relation to the Dynamic type. They propose
a dynamic construct, which can be used to create new values of the Dynamic type. They
also propose a typecase construct, which can be used to analyse the content of a value of
the Dynamic type and select an expression to evaluate based on that content. The authors
present an operational semantics as well as a denotational semantics for the calculus. The
authors anticipate that future programming languages will include types that are similar
to the proposed Dynamic type as a standard feature.

2.3 Optional Typing

In statically-typed languages, the programmer has to resolve all reported type errors at
compile-time. This is inconvenient for the programmer, but it provides strong security
and maintainability guarantees. On the other hand, in dynamically-typed languages, the
programmer only needs to resolve the type errors that are reported at run-time because
dynamically-typed languages perform all typechecking at run-time automatically. Thus,
dynamically-typed languages are flexible and provide enhanced productivity.

In order to provide better security and maintainability guarantees in dynamically-typed
languages, static typechecking at compile-time can be added as an option on top of the
dynamic typechecking that already occurs at run-time. This arrangement is known as an
optional type system.

Gilad Bracha [3] tackles the issue of enhancing the expressibility and security of pro-
gramming languages using pluggable optional type systems instead of mandatory type
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systems. The author proposes that instead of focusing on the difference between static and
dynamic type systems, everyone should focus on the difference between mandatory and
optional type systems. The author observes that mandatory type systems are brittle and
not secure due to there being no formal proof of correctness for most of them; therefore,
these systems can pose a security problem when their assumptions fail. The author de-
scribes the problem of mandatory type systems. The author observes that statically-typed
programming languages normally use mandatory type systems. However, the author states
that if the internal logic of one of these type systems is faulty, then a security guarantee
cannot be provided by that type system. Bracha notes that without a proof of correctness,
the internal logic of any of these type systems cannot be shown to be consistent. Therefore,
according to the author, all the time and effort spent towards making a program conform
to a mandatory type system may be wasted.

Bracha proposes that programmers use multiple optional type systems that each check
for a different type system as opposed to one mandatory type system. The author describes
the characteristics of an optional type system. Bracha observes that an optional type
system allows a programmer to choose which type annotations to provide. The author
states that an important characteristic of an optional type system is that it may not
alter the dynamic semantics of the underlying dynamically-typed programming language.
Bracha explains that this requirement means that each optional type system can be plugged
on top of each other to form a pluggable type system. Therefore, according to the author,
a pluggable type system composed of multiple optional type systems can provide a richer
typechecking service than a mandatory type system.

Bracha claims that a pluggable type system is capable of supplying most of the benefits
that a programmer would expect from a mandatory type system.

An optional type system does not add any new dynamic typechecks at run-time. As a
result, there is no way to prevent a statically-typed variable from being assigned a value
that is inconsistent with its static type at run-time. Thus, an optional type system cannot
guarantee type soundness. However, such a type violation should be detected in order to
give the programmer a chance to rectify the error for the proper functioning of the program.

Lehtosalo and Greaves [14] address the problem of monitoring runtime type errors of
optional pluggable type systems. The authors propose an optional runtime type error mon-
itoring system that inserts runtime checks that log type violations but otherwise preserve
the original dynamic semantics of the program. The authors explain that the runtime
checks are implemented using wrapper objects or wrapper functions that track type vio-
lations that may occur when values cross the boundary between statically typed code and
dynamically typed code.
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Lehtosalo et al. present a formal model for an extension of Featherweight Java (FJ)
named FJ?, where their model incorporates support for a pluggable type system as well as
optional monitoring of runtime type errors.

An optional type system can be used to provide static typechecking facilities for pro-
gramming languages from any programming paradigm. Moreover, an optional type system
can integrate types from different programming paradigms.

Bonnaire-Sergeant, Davies, and Tobin-Hochstadt [2] explore the issue of providing an
optional type system for a functional programming language that has support for interop-
erability with an object-oriented language. The authors present an optional type system
for Clojure named Typed Clojure and construct a formal model for Typed Clojure. They
describe the features of Typed Clojure. The authors note that Typed Clojure includes an
adaptation of the occurrence typing feature from Typed Racket. The authors explain that
Typed Clojure also provides facilities to support the ability of Clojure to inter-operate with
Java, which is an object-oriented language. They elaborate that for the purpose of Java
interoperability, Typed Clojure provides exception-based control flow analysis to avoid
null-pointer exceptions. They point out that it also provides heterogeneous dictionary
types and multimethods.

Bonnaire-Sergeant et al. claim that Typed Clojure is already being used broadly in the
Clojure community. They conduct a case study where they analyse a software system that
is developed by a third-party using Clojure and Typed Clojure.

Bonnaire-Sergeant et al. plan to extend Typed Clojure to implement gradual typing in
the future. The authors intend to make use of language features that are already available
from Java and Clojure for this purpose.

2.4 Type Soundness

In a sound type system, a type error cannot be left uncaught. Statically-typed program-
ming languages ensure type soundness by typechecking at compile-time. On the other
hand, dynamically-typed programming languages ensure type soundness by typechecking
at run-time. The problem of type soundness arises when a static type system is imposed
on top of a dynamic type system while keeping the dynamically-typed language unaware
of the static type system because the static type system does not perform the required
dynamic typechecking related to its static types at run-time.

Mezzetti, Moller, and Strocco [20] address the problem of empirically validating the use
of unsoundness in the type system of programming languages. The authors conduct an
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experiment to investigate the unsoundness of the type system for the Dart programming
language. They identify 10 sources of unsoundness and implement corresponding sound
alternatives. First, they test whether the type system outputs a higher volume of warnings
when they switch from each source of unsoundness to its sound alternative. Next, they
perform a qualitative analysis of the warnings that are output. Finally, they test the
impact of the set of sound alternatives that are selected on the runtime errors. They find
that unsoundness in Dart is not justified in the case of bivariant function subtyping and
method overriding.

Mezzetti et al. claim that some sources of unsoundness in Dart can be justified, but not
all of them. The authors state that it may be beneficial to investigate how the productivity
of programmers can be affected by alternative design choices for the type system of Dart.
The authors also wish to evaluate different designs for the standard library of Dart to make
it more type sound.

Most of the dynamically-typed languages support higher-order functions, which are
functions that can take another function as an input argument. Since higher-order functions
can take as an input argument another higher-order function, ensuring type soundness in
languages that allow these kinds of functions can be challenging.

Findler and Felleisen [5] examine the issue of providing assertion-based contracts for
higher-order functions in programming languages. The authors present a typed lambda
calculus named λCON that includes support for assertion-based contracts for higher-order
functions. The authors prove various properties of the calculus including type soundness.
They also use examples to demonstrate their assertion monitoring system in DrScheme.

Findler et al. claim that assertions for higher-order functions allow programmers to
specify contracts that they are unable to express using existing type systems. The authors
hope that further research into assertions will lead to more practical type systems.

A sound type system has the ability to detect and locate type violations at run-time.
However, the location in the code where the type violation occurs is usually different from
the location in the code where the type violation is ultimately detected. Thus, there should
be a system to link the two locations. This is called a blame tracking system.

Wadler and Findler [31] tackle the problem of providing blame tracking for a language
with explicit casts. The authors present their blame calculus. They explain that the blame
calculus includes a dynamic type named Dyn that represents values whose type may be
unknown at compile-time. They further elaborate that it also includes subset types that
augment a base type with a refinement predicate to narrow down the set of possible values
to a subset of the set of values represented by the base type. They note that the calculus
also includes explicit casts that have blame labels attached to them. They point out that
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when a cast fails at run-time, blame is allocated to the blame label that is attached to that
cast.

Wadler et al. present the concepts of positive blame and negative blame: positive blame
occurs when a cast fails due to a violation from the term being casted, and negative blame
occurs when a cast fails due to a violation from the surrounding context. The authors also
present the concepts of a positive subtyping relation and a negative subtyping relation.
They show that casting from a positive subtype to its supertype cannot cause a positive
blame. They also show that casting from a negative subtype to its supertype cannot cause
a negative blame.

Wadler et al. utilize the positive subtyping relation and the negative subtyping relation
to show that well-typed terms of the blame calculus cannot generate blame. Therefore,
the authors observe that in the case of an interaction between a well-typed term and a
dynamically-typed term, a cast failure always results in the dynamically-typed term being
blamed.

2.5 Gradual Typing

Like an optional type system, a gradual type system also provides a static type system for
a dynamically-typed language. However, gradual type systems are introduced in order to
overcome the lack of type soundness of optional type systems. In a gradual type system,
typechecking happens both at compile-time and at run-time. The run-time portion of the
typechecking for the static types is performed at the boundary between statically-typed
code and dynamically-typed code to check for static type violations.

Siek and Taha [24] address the issue of providing a type system for a functional language
that allows the programmer to control the amount of static typechecking versus dynamic
typechecking. The authors present an extension of the simply-typed λ-calculus named
the gradually-typed λ-calculus. The authors explain that the gradually-typed λ-calculus
includes a dynamic type that is represented by the symbol “?”. The authors further elabo-
rate that the type system for the calculus includes a type-consistency relation that allows
a function application to pass static typechecking even when the type of the function or
the type of the argument is unknown. The authors state that the dynamic semantics for
the calculus is provided through a translation to an intermediate language with explicit
cast insertion.

Siek et al. prove that for a fully annotated term, the type system of the gradually-typed
λ-calculus assigns the same type as the type system of the simply-typed λ-calculus. Next,
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they prove that for a fully annotated term, the translation to the intermediate language
results in no casts being inserted. They also prove that when a program terminates, it
either generates a cast error or it generates a value that belongs to the proper type.

Siek et al. plan to integrate their gradual type system into a dynamically-typed lan-
guage. They hope to measure the magnitude of its impact on programmer productivity.

Programming languages from many different paradigms can be appended with a gradual
type system. However, each paradigm poses its own set of challenges when it comes to the
implementation of a gradual type system.

Siek and Taha [23] tackle the issue of providing a gradual type system for an object-
oriented language that allows the programmer to control the amount of static typechecking
to be performed in contrast to the amount of dynamic typechecking to be performed.
The authors present an object-oriented calculus named Ob?

<:. They state that the Ob?
<:

calculus incorporates a dynamic type, “?”, to indicate a value whose type is unknown
at compile-time. The authors explain that this calculus also includes the Consistent-
Subtyping relation that allows method invocations to pass static typechecking in the case
where the type of the method or the type of the argument may be unknown. The authors
note that the Consistent-Subtyping relation combines the Subtyping relation with the
Type-Consistency relation in a manner that avoids placing the dynamic type, “?”, at the
top of the type hierarchy. According to the authors, this approach allows the detection
of some subtle errors during static typechecking that would have originated from the up-
casting mechanism of the Subtyping relation. The authors give the dynamic semantics for
the calculus via translation to an intermediate language with explicit casts.

Siek et al. prove that no program belonging to the Ob?
<: calculus causes any type

errors at run-time. They also prove that no fully annotated program belonging to the
Ob?

<: calculus causes any type errors or any cast errors at run-time.

Siek et al. plan to explore the manner in which Hindley-Milner inference would
work in conjunction with gradual typing. They also wish to study whether the amount of
dynamic typechecks could be further decreased using static analysis.

As stated earlier, gradually-typed languages use run-time checks to enforce the static
type requirements of the programmer. The main problem is to identify how and where to
provide the run-time checks. Each choice has its own advantages and disadvantages.

Vitousek, Kent, Siek, and Baker [29] address the issues related to the semantics of
the run-time casts in gradually-typed languages. The authors introduce a gradually-typed
version of Python named Reticulated Python. They state that Reticulated Python is a
source-to-source translator that accepts type annotated Python code and performs static
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typechecking and outputs Python 3 code with run-time casts inserted for dynamic type-
checking.

Vitousek et al. implement a Python library that encapsulates the behavior of the run-
time casts. They implement 3 forms of run-time cast semantics for Reticulated Python:
the guarded semantics uses proxies and does not preserve object identity, the transient
semantics does preserve object identity but is unable to perform proper blame tracking in
case of an error, and the monotonic semantics also preserves object identity but requires
the type of an object to be monotonically locked to the most precise type that has ever
been ascribed to that object.

Vitousek et al. perform a case study where they type annotate several pieces of third-
party software and run them using Reticulated Python. They find several bugs in the
third-party software. They observe that the transient and monotonic cast semantics
show acceptable performance; however, the guarded semantics perform poorly due to its
use of proxies that do not preserve object identity. The authors claim that they would have
been able to statically type a larger proportion of Python code if they had implemented
support for generics into the type system for Reticulated Python.

The main similarity between optional and gradual type systems is that both perform
typechecking at compile-time. On the other hand, the main dissimilarity between the two
is that only gradual type systems perform run-time typechecking. Therefore, it may be
more efficient to create a gradual type system by extending a pre-existing optional type
system rather than to develop the gradual type system from scratch.

Vitousek and Siek [30] address the issue of transforming an optionally-typed language
cleanly into a gradually-typed language by adding run-time casts in an uncomplicated
manner. The authors observe that many dynamically-typed languages already have op-
tional type systems that are available for them; however, these optional type systems do
not insert the run-time casts that are necessary for the implementation of a gradual type
system. The authors discuss two different semantics for the run-time casts that could be
deployed as part of a gradual type system: the guarded semantics uses proxies to encap-
sulate run-time casts, and the transient semantics uses explicit casts instead of proxies.
The authors share the results from implementing the two casting semantics for Reticulated
Python, a framework that can be used to test gradual type systems for Python. They
observe that it is easier to implement the transient semantics for Python than to imple-
ment the guarded semantics for Python because it is difficult to add support for proxies
to Python.

Vitousek et al. note that the optional type systems for many of the dynamically-typed
languages already implement the static typechecker and other facilities that are required
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for a gradual type system. Due to this, they argue that it should be relatively easy to add
support for the actual run-time casts that use the transient semantics. They implement
CheckScript by adding run-time checks with the transient semantics to TypeScript, an
optionally-typed language that compiles to JavaScript. The authors expect that it will
be possible to transform other optionally-typed languages into gradually-typed languages
through the addition of run-time casts with transient semantics as well.

As a gradual type system for a dynamically-typed programming language ensures type
soundness through the use of run-time checks, it introduces extra performance costs. For a
gradual type system to be useful, it must keep these performance costs under an acceptable
limit.

Takikawa, Feltey, Greenman, New, Vitek, and Felleisen [25] tackle the issue of evaluat-
ing the performance of gradually-typed languages. The authors propose a new method to
measure the performance of gradually-typed languages and describe the method in their
paper. First, they divide each benchmark program into its constituent modules. Next,
they create Typed and untyped versions of each module. Then, they form each individual
configuration by combining different typed and untyped modules. Then, they organize all
the configurations into a lattice with the fully untyped configuration at the bottom and
the fully typed configuration at the top. Finally, they calculate the performance metrics
for each configuration relative to the fully untyped configuration.

Takikawa et al. apply their new method to 12 selected Typed Racket benchmark pro-
grams. They find that their selected Typed Racket benchmark programs perform very
poorly, even under very loose restrictions. The authors claim that better performance
evaluation gained from the use of their method will result in future improvements to
gradually-typed languages.

2.6 Lua

The work presented in this thesis involves the integration of the language features of C into
Lua, a dynamically-typed programming language. Understanding the motivation behind
the development of Lua makes it easier to comprehend the design of its features.

Ierusalimschy, de Figueiredo, and Celes [10] survey the history of the development
of Lua. According to the authors, the development of Lua originated in the Computer
Graphics Technology Group (Tecgraf) at PUC-Rio. The authors report that Tecgraf had
created 2 languages, DEL and SOL, for Petrobras. They state that DEL was developed for
data-entry purposes and SOL was developed for configuration purposes. They note that
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as the need for more powerful language features became apparent, the decision was made
in 1993 to replace DEL and SOL with a new language named Lua.

Ierusalimschy et al. observe that Lua has been successful in the gaming industry.
The authors identify the main reason for this success as the ease with which Lua can be
embedded in game engines.

As stated earlier, the work presented in this thesis involves adding language features
from C to Lua that perform better than the pre-existing features of Lua. The implemen-
tation of Lua provides some indication of how this performance boost can be achieved.

Ierusalimschy, de Figueiredo, and Filho [11] survey the implementation of the main
features of Lua 5.0. The authors identify a register-based virtual machine, an algorithm
to implement tables as arrays, and the implementation of closures and coroutines as new
features in Lua 5.0 when compared to Lua 4.0.

Ierusalimschy et al. state that Lua has had a stack-based virtual machine since it
was first released. They observe that Lua has switched to a register-based virtual machine
starting with Lua 5.0 because a register-based virtual machine avoids executing extra stack
manipulation instructions that are prevalent in stack-based virtual machines, which leads
to a smaller code size. The authors claim that Lua is the first widely used language that
has adopted a register-based virtual machine.

Ierusalimschy et al. state that the implementation of Lua tables has been changed to
include an array component in addition to a hash table component in order to accommodate
consecutive Lua integer keys, if any. The authors state that this change of implementation
saves space since the array component does not store its keys and is more efficient to use
since there is no need to hash the keys for a Lua table lookup.

2.6.1 Typed Lua

Typed Lua provides an optional type system for Lua.

Maidl, Mascarenhas, and Ierusalimschy [18] address the issue of adding a static type
system to a dynamically-typed programming language. The authors present the design of
an optional type system for Lua named Typed Lua. According to the authors, Typed Lua
preserves some of the idioms that are commonly used by Lua programmers. The authors
state that Typed Lua does not insert run-time checks as most gradual type systems do.
However, the authors note that Typed Lua does contain the mechanisms to be transformed
from an optional type system to a gradual type system in the future.
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Maidl et al. describe the types provided by Typed Lua. They explain that Typed
Lua provides first-class types for normal Lua values and second-class types for expression
lists that are used in multiple assignment and function application. The authors state
that all first-class types are subtypes of the value type. They point out that there is also
an any type that represents dynamically-typed code. According to the authors, Typed
Lua includes table types to represent Lua tables. They further elaborate that Typed
Lua provides specialized syntax for indicating table types that represent maps, arrays,
and records. The authors note that Typed Lua provides the facility to declare a named
interface that represents a table type that represents a record.

Typed Lua provides types that are intuitive to use for Lua programmers.

Maidl, Mascarenhas, and Ierusalimschy [19] tackle the issue of providing an optional
type system for a dynamically-typed language, that contains types for the most commonly
used idioms of the target language. The authors perform a survey of codebases from
the LuaRocks repository to determine the idioms that are most commonly used by Lua
programmers. They collect data regarding the use of tables, the use of object-oriented
programming, the use of modules, and the use of overloaded functions. Then, they incor-
porate types corresponding to these idioms into an optional type system for Lua named
Typed Lua.

Maidl et al. present a formal description of Typed Lua. The authors state that Typed
Lua provides support for incremental construction of records and objects. They also ob-
serve that Typed Lua provides support for projection types to deal with functions that can
return multiple values. The authors claim that the features of Typed Lua can be integrated
into the type systems for other languages.

2.7 Conclusions

In this chapter, we give an overview of the methods that investigate how static typecheck-
ing can be integrated into a dynamically-typed programming language. We start with a
description of the language features that are common to dynamically-typed programming
languages and note that they differ significantly from the features that are common to
statically-typed programming languages. For example, these two categories of program-
ming languages differ in their handling of garbage collection and run-time metaprogram-
ming.

We follow two historically distinct strategies for integrating static typechecking into a
dynamically-typed language: optional type systems and gradual type systems. An optional
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type system performs static typechecking only [3]. In contrast, a gradual type system
performs static typechecking as well as dynamic typechecking to enforce static types at
run-time [24]. The goal of these type systems is to import some of the security benefits of
statically-typed languages to dynamically-typed languages.

In this thesis, we expand on this line of research with a focus towards importing some
of the performance benefits of statically-typed languages to dynamically-typed languages.

In the rest of the thesis, we discuss how some of the language features of C, a statically-
typed language, can be integrated into Typed Lua to provide some performance benefits.
Specifically, we describe how the language of Typed Lua can be extended to include support
for manual memory management. We also describe how the static type system of Typed
Lua can be extended with C types to allow direct memory programming using C pointers.
In this way, we aim to bring some of the performance benefits of C to Typed Lua, and, by
extension, to Lua as well.
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Chapter 3

Poseidon Lua

3.1 Introduction

Statically-typed programming languages make use of a variety of language features to min-
imize run-time performance overhead. One such feature is manual memory management,
which allows the programmer to deallocate memory created by the program. This feature
allows the programming language to avoid the use of an automated garbage collector and
its associated performance costs.

Another feature of note is direct memory programming. We define the term “direct
memory programming” to mean that a program is able to manipulate the memory directly
without having to go through an intermediate mechanism such as a Lua table. This feature
allows the programming language to bypass the performance costs related to the interaction
with the intermediate mechanism.

The utilization of such features confers performance benefits upon statically-typed pro-
gramming languages that are simply not available to dynamically-typed programming lan-
guages. As a result, these benefits are also not available to the optionally-typed program-
ming languages that are built on top of dynamically-typed programming languages.

In this chapter, we introduce our proposed programming language named Poseidon
Lua, and study the various language features that this language offers. Poseidon Lua ex-
tends the language of Typed Lua, an optionally-typed programming language, with several
special operators that can be used to perform manual memory management. Poseidon Lua
also augments the type system of Typed Lua with C types. Included among these C types
are C pointer types that can be used for the purpose of direct memory programming.
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Typed Lua provides an optional type system for the dynamically-typed programming lan-
guage named Lua. Thus, Poseidon Lua is an optionally-typed programming language that
allows the programmer to start programming in Lua and then gradually transition towards
programming in C.

In Section 3.2, the language features of Poseidon Lua and their implementation are
described. The grammar rules of Poseidon Lua are given in Section 3.3. From Section 3.4
to Section 3.9, we discuss the C types of Poseidon Lua. Finally, we conclude the chapter
in Section 3.10.

3.2 Poseidon Lua Language

Poseidon Lua extends Typed Lua by adding a number of language features from the C
programming language [12] that are required to enable manual memory management and
direct memory programming.

3.2.1 Language Description

The Poseidon Lua language has two distinct features: operators and C types. In addition to
those, a modification of the assignment operator, (=), of Typed Lua is included in Poseidon
Lua. The language features are listed as follows:

1. Operators: malloc, free, and sizeof

2. Primitive C types: char, int, double, and bool

3. C pointer types

4. C struct types

5. C array types

6. Inter-operation between primitive C types and Typed Lua types

7. Modified semantics for assignment operator (=)
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Poseidon Lua supports manual memory management through the malloc and free
operators. The malloc operator allocates a block of memory that is of a specified size in
bytes. The free operator deallocates a block of memory that was previously allocated by
the malloc operator. The malloc operator and the free operator of Poseidon Lua have
the same functionality as the malloc function and the free function of the C programming
language, respectively.

Poseidon Lua provides 4 primitive C types: char, int, double, and bool. However, a
variable cannot be declared to have a primitive C type directly in a Poseidon Lua program.
Only a member of a C struct, an element of a C array, or the base type of a C pointer
can be declared to have a primitive C type. Three of the primitive C types are the same
as their counterparts in the C programming language. These are: char, int, and double.
Poseidon Lua adds the bool type to make it easier to inter-operate with values of the the
boolean type from Typed Lua.

Poseidon Lua supports inter-operation between values of primitive C types and values of
Typed Lua types. At every use-site for a value that belongs to a primitive C type, Poseidon
Lua automatically converts that value to another value that belongs to a corresponding
type from Typed Lua. The primitive C types char, int, double, and bool correspond
to the string, integer, number, and boolean types from Typed Lua, respectively. Note
that Poseidon Lua does not use these Typed Lua types directly as the primitive C types
in order to allow the primitive C types to interact with each other according to their own
independent semantics which may conflict with those of the Typed Lua types.

Poseidon Lua provides C pointer types, which are conceptually the same as the pointer
types from the C programming language. A C pointer type consists of a base type and
a pointer depth. The base type for a C pointer type can be a primitive C type or a C
struct type. A C pointer type can have an arbitrary pointer depth. The set of C pointer
types includes a special C pointer type called ‘ptr void’. A variable of ‘ptr void’ type
can hold the value of any other C pointer type and vice versa. Moreover, Poseidon Lua
offers a singleton C pointer value named cs.NULL that corresponds to the NULL pointer
of the C programming language.

Poseidon Lua provides C struct types that can be used to represent composite objects.
The C struct types are conceptually the same as the struct types from the C programming
language. A member of a C struct may belong to a primitive C type, a C pointer type, or
a C array type. A C struct type can be defined such that it has a member that belongs
to a C pointer type with a base type that is the same C struct type that is being defined.
Alternatively, a C struct type can be defined such that it has a member that belongs to
a C pointer type with a base type that is some other previously defined C struct type.

27



Note that a C struct type cannot have a member with a type that is a C struct type. This
feature is not needed because a member that belongs to a C pointer type whose base type
is a C struct type can be used to achieve the same functionality instead.

Poseidon Lua provides C array types, which are conceptually the same as the array
types from the C programming language. A C array could be used to structure a set of C
values into a single-dimensional or multi-dimensional array. Note that a C array can only
be declared as a member of a C struct. A C array type has a base type and a dimension
depth. The base type indicates the type of values that a C array can store as elements.
The base type can be a primitive C type or a C pointer type. The dimension depth states
the number of dimensions in a single-dimensional or multi-dimensional C array. Each
dimension must have a fixed number of elements. A C array is physically stored as a flat
array of elements. Thus, a C array can be converted to a C pointer that points to the
beginning of the flat array and that C pointer can be assigned to a variable of a C pointer
type.

Poseidon Lua provides the sizeof operator, which can be used to determine the size,
in bytes, of any of the C types. This applies to C array types as well. The sizes of the
primitive C types are set as follows: the size of char is 1 byte, the size of int is 4 bytes,
the size of double is 8 bytes, and the size of bool is 4 bytes. For example, sizeof(char)
will return 1 byte. The size of all C pointer types are 8 bytes irrespective of the pointer
depth. For example, the size of ‘ptr int’ is 8 bytes, which will be returned by sizeof(ptr
int). The size of a C struct type is the sum of the sizes of the types of its members. Note
that Poseidon Lua does not use padding for alignment. All the members are laid out
sequentially on an array of bytes. The size of a C array type is obtained by multiplying
the size of the base type with the size of each of the dimensions.

Poseidon Lua modifies the semantics of the assignment operator, (=), that is provided
by Typed Lua. This modified semantics of the assignment operator is used whenever a
value that belongs to a type from Typed Lua is assigned to a variable that belongs to
a primitive C type. Before proceeding with the assignment, Poseidon Lua automatically
converts the value to a corresponding value that belongs to the type of the variable. There
are some subtleties involved for the case of the assignment of a value that belongs to the
string type of Typed Lua to a variable of the primitive C type char. For the assignment
from string to char, only the first character of the string value is represented in the
converted char value.

The modified semantics of the assignment operator is also used whenever a value that
belongs to the string type of Typed Lua is assigned to a variable that belongs to the ‘ptr
char’ C type and vice versa. When a string value is assigned to a ‘ptr char’ variable,
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the string value is automatically converted to a ‘ptr char’ value that contains the null-
terminated C string representation of the original string value. This null-terminated C
string value is then stored in memory at the location that is pointed to by the ‘ptr char’
variable. Similarly, when a ‘ptr char’ value is assigned to a string variable, the ‘ptr
char’ value is automatically converted to a string value. The original ‘ptr char’ value
is assumed to be a null-terminated C string. Thus, all the characters until the first null-
termination are represented in the converted string value. This converted string value
is then assigned to the string variable.

Typed Lua provides the facility to perform multiple assignments in a single statement.
However, the semantics for multiple assignments introduces subtle complexities when the
same variable appears on both the left hand side (LHS) as well as the right hand side (RHS)
of the assignment operator. For example, let us assume that we have 2 variables with the
following initial values: ‘local y = 2’, and ‘local z = 3’. Then, the multiple assignment
statement ‘y, z = z, y’ proceeds as follows. First, Typed Lua evaluates the value of each
of the expressions on the RHS of the assignment operator, (=). Thus, those expressions
have the following values: ‘z == 3’, ‘y == 2’. Next, Typed Lua performs the multiple
assignment. After the multiple assignment, the variables have the following values: ‘y ==
3’, and ‘z == 2’. We call this the Multiple Assignment (MA) semantics.

The MA semantics for multiple assignment is confusing at times as the final result dif-
fers from what a programmer would normally expect if the assignments were carried out
individually. Breaking up the multiple assignment statement would lead to the following
single assignment statements: ‘y = z’, ‘z = y’. Since ‘z == 3’, the first assignment evalu-
ates to ‘y = 3’. Since ‘y == 3’ after the first assignment, the second assignment evaluates
to ‘z = 3’. Thus, the value of each variable after the assignments is as follows: ‘y == 3’, ‘z
== 3’. We call this the Single Assignment (SA) semantics. Note that in the MA semantics,
‘z == 2’ but in the SA semantics, ‘z == 3’.

Ultimately, an assignment statement that involves values of a C type has to be imple-
mented through a translation to the invocations of the special operators of Modified Lua.
Implementing the MA semantics for such an assignment statement would have introduced
too much complexity and too much performance costs. In this situation, it is possible to
implement the SA semantics with less of a performance overhead. Thus, Poseidon Lua
executes multiple assignment statements with the SA semantics when the LHS of the as-
signment operator involves dereferencing a C pointer, accessing the member of a C struct,
or indexing into a C array. This is also the case when a value that belongs to the string
type of Typed Lua is assigned to a variable of the C type ‘ptr char’ or vice versa.

With the language features described in this section, Poseidon Lua introduces gradual C
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programming in Typed Lua programs by bringing the C programming paradigm to Typed
Lua programs. Moreover, these Poseidon Lua language features help to achieve the 2 main
objectives in this thesis: manual memory management and direct memory programming.
The implementations of the Poseidon Lua language features are considered in the next
sub-section.

3.2.2 Language Implementation

We integrate the features of Poseidon Lua into Typed Lua by modifying the compiler of
Typed Lua. The compiler of Typed Lua is written in the Lua programming language.
The source language of the modified compiler is Poseidon Lua and the target language is
Modified Lua, which is introduced in Chapter 4. The main modifications are discussed as
follows.

The lexer of Typed Lua uses the LPeg library to recognize the keywords of the language
as lexical tokens. We use the lexer to recognize the following new lexical tokens of Poseidon
Lua: char, int, double, bool, ptr, struct, malloc, and sizeof.

The parser of Typed Lua also uses the LPeg library to implement the grammar of
the language. The parser parses a program to construct an abstract syntax tree (AST)
according to the specified grammar. We modify the parser of Typed Lua to extend the
grammar of Typed Lua with new production rules to add support for the language features
of Poseidon Lua using the LPeg library as well. The actual grammar rules that are added
to the grammar of Typed Lua are presented in Section 3.3.

The new production rules enable the parsing of primitive C types, C pointer types, and
C array types as Typed Lua types. We also add new production rules to enable the parsing
of the struct definition construct, which is used to define a new C struct type.

Furthermore, we add new production rules to enable the parsing of the malloc and
sizeof operators. We need to modify the parser to be able to parse these operators
because they both take C types as inputs, whereas a function in Typed Lua is only able
to take Typed Lua values as inputs. Thus, these operators are not automatically detected
as Typed Lua functions by the parser. Since the free operator does not take C types as
input, it does not need any additional support from the parser because it is parsed as a
normal Typed Lua function.

We modify the AST implementation to include new kinds of AST nodes for the primitive
C types, C pointer types, and C array types. Furthermore, a new helper function is
implemented to process C struct type definitions. This helper function processes a C
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struct type definition and generates the AST node for Typed Lua interfaces. The total
size, in bytes, of the C struct type as well as the offset of each of its members is calculated
and stored in the AST node. New helper functions are also implemented to process the
malloc and sizeof operators. The malloc and sizeof operators are processed such that
they use the AST node for normal Typed Lua function calls.

We modify the static typechecker of Typed Lua to enable the static typechecking of
the operators and the C types that are provided by Poseidon Lua. Additionally, we use
the static typechecking process to perform a type-directed translation of a Poseidon Lua
program to a Modified Lua program. To allow a Poseidon Lua program to be properly
typechecked, we implement our own helper functions to typecheck AST nodes that rep-
resent Typed Lua function call expressions, Typed Lua table indexing expressions, and
Typed Lua assignment statements.

The helper function that we provide to typecheck Typed Lua function call expressions
proceeds as follows. It detects whether the function being called is one of the following
operators of Poseidon Lua: sizeof, malloc, or free. If so, its arguments are typechecked
and the invocation of the Poseidon Lua operator is translated to an invocation of the
appropriate C Semantics (CS) operator from Modified Lua, if necessary. Modified Lua
is introduced in Chapter 4. An invocation of the sizeof operator of Poseidon Lua is
translated to a Typed Lua integer value that represents the size, in bytes, of the C type
that is sent as the argument of the sizeof operator. An invocation of the malloc operator
of Poseidon Lua is translated to an invocation of the the CS_malloc operator of Modified
Lua. An invocation of the free operator of Poseidon Lua is translated to an invocation of
the the CS_free operator of Modified Lua.

The helper function that we provide to typecheck Typed Lua table indexing expressions
proceeds as follows. In Poseidon Lua, we reuse the same syntax as the Typed Lua table
indexing expressions for the purpose of dereferencing a C pointer, accessing the member
of a C struct, and indexing into a C array. Thus, our helper function begins by detecting
whether the expression being typechecked is indeed dereferencing a C pointer, accessing
the member of a C struct, or indexing into a C array. If so, the expression is typechecked
and translated to an invocation of the appropriate CS operator from Modified Lua.

The helper function that we provide to typecheck Typed Lua assignment statements
proceeds as follows. At first, note that in Typed Lua, the assignment statement is always
a multiple assignment statement. Our helper function begins by detecting whether any of
the expressions on the left hand side (LHS) of the assignment operator is dereferencing a C
pointer, accessing the member of a C struct, or indexing into a C array. If so, this expression
as well as its corresponding expression on the right hand side (RHS) is typechecked and
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the RHS expression is translated to an invocation of the appropriate CS operator from
Modified Lua. If the LHS expression is of type ‘ptr char’ and the RHS expression is of
type string or vice versa, both expressions are typechecked and the RHS expression is
translated to an invocation of the appropriate CS operator from Modified Lua. This step is
done to support the automatic conversion of a string value to a ‘ptr char’ value through
assignment, and vice versa. If any of the required kinds of expressions is found on the LHS
of the assignment operator, then the multiple assignment statement is broken into a series
of single assignment statements. These single assignment statements are placed inside a
do/end statement. This implements the change of semantics for the multiple assignment
statement from MA semantics to SA semantics.

The source code for Poseidon Lua is available at GitHub [15].

3.3 Grammar

1 <C_Type> : := <C_BaseType>
2 | <PtrType>
3 | <C_ArrayType>
4

5 <C_BaseType> : := " char "
6 | " i n t "
7 | " double "
8 | " bool "
9

10 <C_VoidType> : := "void "
11

12 <PtrType> : := " ptr " { " ptr " }
13 ( <C_VoidType> | <C_BaseType> | <VariableType> )
14

15 <C_ArrayType> : := " [" Number " ]" { " [" Number " ]" }
16 ( <C_BaseType> | <PtrType> )
17

18 <VariableType> : := Name

Figure 3.1: Grammar for the C types of Poseidon Lua
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1 <Struct> : := " s t r u c t " <Struct_TypeDec>
2

3 <Struct_TypeDec> : := Name <Struct_IdDecList> "end"
4

5 <Struct_IdDecList> : := <Struct_IdDec> { <Struct_IdDec> }
6

7 <Struct_IdDec> : := <IdLi s t> " :" <C_Type>

Figure 3.2: Grammar for the struct definition construct

1 <MallocExp> : := "mal loc " "(" ( <PtrType> " ," <Expr>
2 | <PtrType>
3 | <Expr> ) ")"
4

5 <SizeofExp> : := " s i z e o f " "(" ( <C_Type> | <VariableType> ) ")"

Figure 3.3: Grammar for the malloc and sizeof operator expressions

Poseidon Lua extends the grammar of Typed Lua to include support for C types, the
struct definition construct, and the malloc and sizeof operator expressions. In Figures
3.1 - 3.3, we use curly braces ‘{}’ to represent a repetition of 0 or more times of the elements
inside and parenthesis ‘()’ to represent a grouping of the elements inside.

Figure 3.1 shows the grammar for the C types of Poseidon Lua. Note that Number and
Name are classes of tokens that are defined in the lexer of Typed Lua. Number represents
any valid numerical literal and Name represents any valid identifier for variables, functions,
and so on. <VariableType> is a pre-existing non-terminal symbol from the grammar of
Typed Lua that is recycled by Poseidon Lua to represent the name of a C struct type in
the context of <PtrType>. The rest is self-explanatory.

Figure 3.2 shows the grammar for the struct definition construct that is used to define
a C struct type in Poseidon Lua. Note that <IdList> is a pre-existing non-terminal symbol
from the grammar of Typed Lua that represents a valid identifier or a comma separated
list of valid identifiers for variables. The rest is self-explanatory.

Figure 3.3 shows the grammar for the malloc and sizeof operator expressions of
Poseidon Lua. Note that <Expr> is a pre-existing non-terminal symbol from the grammar
of Typed Lua that represents an arbitrary expression in the language of Typed Lua. The
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rest is self-explanatory.

3.4 The C types and the sizeof operator

Poseidon Lua provides a sizeof operator that can be used to determine the size of a C
type. It takes as input a single C type and returns a value that represents the number
of bytes in memory that are used to store a value of that C type. The returned value
belongs to the type integer of Typed Lua. The sizeof operator does not take padding
into account because Poseidon Lua does not use padding for alignment. Everything is
placed sequentially in an array of bytes.

The sizeof operator of Poseidon Lua is similar to the sizeof operator that is provided
by C. The sizeof operator that is provided by the C programming language is able to
take as input either a type or an object of the C programming language, which can be an
array, a structure, or a variable [12]. However, the sizeof operator that is provided by
Poseidon Lua is able to take as input only a C type, including a C array type.

Next, we introduce the C types that are provided by Poseidon Lua. We also demonstrate
the use of the sizeof operator to calculate the size of each of these C types. The C types
that are introduced in this section are covered in more detail in later sections.

3.4.1 The primitive C types

Poseidon Lua provides char, int, and double as primitive C types. These correspond
to the char, int, and double types that are provided by C. In addition, Poseidon Lua
provides bool as a primitive C type for boolean values. We choose to include a special
type for boolean values to make it easier to interact with values of the boolean type of
Typed Lua.

We fix the size of each of the primitive C types. We set char to 1 byte in size, int
to 4 bytes in size, double to 8 bytes in size, and bool to 4 bytes in size. Therefore,
sizeof(char) evaluates to 1, sizeof(int) evaluates to 4, sizeof(double) evaluates to
8, and sizeof(bool) evaluates to 4.

3.4.2 The C pointer type

Poseidon Lua provides a C pointer type. A C pointer represents a reference to a location
in memory and can be dereferenced, using the index operator ‘[]’, to yield the value that
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is stored in that location in memory. In Poseidon Lua, a variable named ‘b’ of a C pointer
type can be declared as follows: ‘local b : ptr ptr ptr int’. This is equivalent to the
declaration ‘int ***b;’ in C. Note that the number of instances of ‘*’ in the C declaration
matches the number of instances of ‘ptr’ in the Poseidon Lua declaration.

Each C pointer type consists of a pointer depth and a base type. For the variable ‘b’,
the pointer depth is 3 as indicated by the 3 instances of the ‘ptr’ keyword in the ‘ptr ptr
ptr’ part of the declaration. If a C pointer is dereferenced the same number of times as its
pointer depth, then the result is a value that belongs to the base type of the C pointer. If
the base type of the C pointer is a primitive C type, then the original value is automatically
converted to a value that belongs to a corresponding type from Typed Lua.

For the variable ‘b’, the base type of the C pointer is int. Therefore, dereferencing the
variable ‘b’ three times, as in ‘b[0][0][0]’, yields a final value of type int. Since int is
a primitive C type, the original value is automatically converted to a value that belongs
to the integer type of Typed Lua. This conversion is performed because the primitive C
type int corresponds to the integer type of Typed Lua.

The base type of a C pointer type can be one of the following: a primitive C type (char,
int, double, bool), void, or a C struct type. The base type cannot be a Typed Lua type
such as integer.

We choose to fix the size of a C pointer type to 8 bytes. Thus, sizeof(ptr int),
sizeof(ptr ptr int), and sizeof(ptr ptr ptr int) all evaluate to 8.

3.4.3 The C struct type

Poseidon Lua provides a C struct type. A C struct encapsulates members of different
types into a single object. Poseidon Lua also provides a struct definition construct that
can be used to define a C struct type. A C struct type named ‘Pen’ can be defined using
the struct definition construct as follows: ‘struct Pen length : int width : int
end’. This is equivalent to the declaration ‘struct Pen { int length; int width; };’
in C.

In Poseidon Lua, a C struct can only be used through a C pointer to that C struct.
This restriction is necessary because Poseidon Lua always stores C struct values on the
heap, leaving the stack untouched. As a result, only a C pointer to the location of the
C struct value on the heap is ever made available for manipulation to the Poseidon Lua
program. Thus, a variable of type ‘ptr Pen’ must be used to manipulate a C struct of
type Pen. Such a variable named ‘b’ can be declared as follows: ‘local b : ptr Pen’.
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The members of ‘b’ can be accessed only using the member-access (.) operator. Thus,
the ‘length’ member can be accessed as follows: ‘b.length’. The ‘width’ member can be
accessed as follows: ‘b.width’.

A member of a C struct can belong to any of the following primitive C types: char,
int, double, bool. A member can also belong to a C pointer type, such as ‘ptr int’.
Moreover, a member can also belong to a C type that is a C pointer to a C struct such as
‘ptr Pen’. A member can also belong to a C array type, such as ‘[5][2] int’.

We calculate the size of a C struct type by adding up the size of the type of each of its
members. Note that Poseidon Lua does not use any padding for alignment. Everything is
laid out sequentially on an array of bytes. Since the C struct type Pen has 2 members of
type int, the size of the C struct type Pen is 4 + 4 = 8 bytes. Therefore, sizeof(Pen)
evaluates to 8.

3.4.4 The C array type

Poseidon Lua provides a C array type. A C array can have multiple dimensions with a
fixed number of elements for each dimension. A C array can only be declared as a member
of a C struct. This restriction is necessary because Poseidon Lua always stores C arrays
on the heap, leaving the stack untouched. As a result, a C pointer to the location of the
C array on the heap would have to be made available for manipulation to the Poseidon
Lua program. However, allowing a C pointer to point to a C array would add too much
complexity to the type system of Poseidon Lua. In order to avoid this extra complexity,
all C arrays are required to be placed inside a C struct. Thus, a C pointer to the C struct
containing the C array is made available for manipulation to the Poseidon Lua program.

In Poseidon Lua, a member named ‘b’ of a C struct that is of a C array type can be
declared as follows: ‘b : [2][2][2] int’. This is equivalent to the following declaration
in C: ‘int b[2][2][2];’.

Each C array type consists of a dimension depth and a base type. For ‘b’, the dimension
depth is 3 as indicated by the 3 dimension sizes that are specified in the ‘[2][2][2]’ part
of the declaration. In this case, each dimension has 2 elements. If a C array is indexed,
the same number of times as its dimension depth, then the result is a value that belongs
to the base type of the C array. If the base type of the C array is a primitive C type, then
the value is automatically converted to a value that belongs to a corresponding type from
Typed Lua.

For ‘b’, the base type of the C array is int. Therefore, indexing the variable ‘b’ three
times, as in ‘b[0][0][0]’, yields a value of type int. Since int is a primitive C type, the
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original value is automatically converted to a value that belongs to the integer type of
Typed Lua. This conversion is performed because the primitive C type int corresponds
to the integer type of Typed Lua.

The base type of a C array type can be any of the following primitive C types: char,
int, double, bool. The base type can also be a C pointer type.

The size of a C array type is calculated by multiplying the size of the base type with
each of the dimension sizes. Therefore, for ‘b’, the size of its type would be calculated as
4 * 2 * 2 * 2 = 32 bytes. Therefore, sizeof([2][2][2] int) evaluates to 32.

3.5 The malloc and free operators

Poseidon Lua provides a malloc operator that can be used to allocate a block of memory
for use by the program. It takes as input the number of bytes to allocate and returns a C
pointer to the allocated block of memory. Poseidon Lua also provides a free operator that
can be used to deallocate a block of memory that is no longer needed by the program. It
takes as input a C pointer to a block of memory that was previously allocated using the
malloc operator and proceeds to deallocate that block of memory. The malloc operator
and the free operator allow the programmer to perform manual memory management.

The malloc operator of Poseidon Lua is inspired by the malloc function that is provided
by C. Similarly, the free operator of Poseidon Lua is inspired by the free function that is
provided by C. The main difference between the operators that are provided by Poseidon
Lua and the functions that are provided by C is that Poseidon Lua allows the malloc
operator to be used in a variety of different configurations to make programming easier.

In this section, we demonstrate the proper use of the malloc operator and the free
operator in Poseidon Lua. We show how these operators can be used to allocate and
deallocate memory blocks.

In Figure 3.4, lines 1 - 5 define the C struct type named FruitBasket. Note that
FruitBasket has 3 members and each member is of type int. The primitive C type int
is 4 bytes in size. Thus, the total size of the C struct type FruitBasket is 4 + 4 + 4 =
12 bytes. The rest of this section makes use of the C struct type defined in Figure 3.4.

3.5.1 The number of bytes as input

In one configuration, the malloc operator takes as input the number of bytes to allocate.
The malloc operator allocates a block of memory of the required number of bytes and
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1 s t r u c t FruitBasket
2 num_oranges : i n t
3 num_grapes : i n t
4 num_strawberries : i n t
5 end −−end FruitBasket

Figure 3.4: malloc.tl, Part 1 of 7

returns a C pointer to that block of memory. We choose to include this configuration to
allow the programmer to easily allocate a block of memory of any arbitrary size by simply
specifying the required size in terms of the number of bytes in the memory block.

1 −−[[ Malloc : bytes ] ]
2 local basket_1 : ptr FruitBasket = mal loc ( 12 )
3

4 basket_1.num_oranges = 101
5 basket_1.num_grapes = 102
6 basket_1.num_strawberries = 103

Figure 3.5: malloc.tl, Part 2 of 7

In Figure 3.5, line 2 invokes the malloc operator with an input of 12. For this particular
configuration, the input value has to be of the integer type of Typed Lua. The malloc
operator allocates a block of memory that is 12 bytes in size. Note that the size of the
allocated block is large enough to hold a C struct of type FruitBasket. The malloc
operator returns a C pointer to the allocated block of memory. This returned value is of
type ‘ptr void’. The returned value is assigned to a local variable named basket_1 of
type ‘ptr FruitBasket’. The type of the returned value is automatically converted from
‘ptr void’ to ‘ptr FruitBasket’ in the process. The ultimate effect of this statement is
similar to that of the C statement: ‘struct FruitBasket *basket_1 = malloc( 12 );’.

In Figure 3.5, lines 4 - 6 assign values to the members of basket_1.
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3.5.2 The result of the sizeof operator as input

In this section, we explore an interesting consequence of the use of the configuration of
the malloc operator that has been already discussed in Section 3.5.1. Since the malloc
operator expects an input of type integer of Typed Lua, the programmer is able to use
the result of applying the sizeof operator to a particular C type as input to the malloc
operator instead of supplying the number of bytes directly. We know from Section 3.4 that
the sizeof operator does indeed return a value of type integer of Typed Lua.

1 −−[[ Malloc : s i z e o f ] ]
2 local basket_2 : ptr FruitBasket = mal loc ( s i z e o f ( FruitBasket ) )

Figure 3.6: malloc.tl, Part 3 of 7

In Figure 3.6, line 2 invokes the malloc operator with sizeof( FruitBasket ) as an
input. The ultimate effect of this statement is similar to that of the C statement: ‘struct
FruitBasket *basket_2 = malloc( sizeof( struct FruitBasket ) );’.

3.5.3 The C pointer type as input

In one configuration, the malloc operator takes as input a C pointer type and returns
a value of the same C pointer type. The malloc operator automatically calculates what
would be the result of applying the sizeof operator to the C type that is pointed to by the
input C pointer type and allocates a block of memory of that size. The malloc operator
returns a C pointer to the allocated block of memory. The type of the returned C pointer
is the same as the input C pointer type. For example, ‘malloc( ptr int )’ has the same
effect as ‘malloc( sizeof( int ) )’, but the type of the returned value would be ‘ptr
int’ and not ‘ptr void’. We choose to include this configuration to allow the programmer
to easily allocate a block of memory without having to perform complex calculations to
determine its size and without having to use the sizeof operator directly.

1 −−[[ Malloc : sho r t cut ] ]
2 local basket_3 : ptr FruitBasket = mal loc ( ptr FruitBasket )

Figure 3.7: malloc.tl, Part 4 of 7
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In Figure 3.7, line 2 invokes the malloc operator with an input of ‘ptr FruitBasket’.
The malloc operator determines that the result of ‘sizeof( FruitBasket )’ would be
12 because the size of a C struct of type FruitBasket is 12 bytes. Thus, the malloc
operator allocates a block of memory that is 12 bytes in size. The malloc operator re-
turns a C pointer to the allocated block of memory. This returned value is of type ‘ptr
FruitBasket’, the same type that was the input to the malloc operator. The returned
value is assigned to a local variable named basket_3 of type ‘ptr FruitBasket’. The ul-
timate effect of this statement is similar to that of the C statement: ‘struct FruitBasket
*basket_3 = malloc( sizeof( struct FruitBasket ) );’.

An interesting aspect of this particular configuration for the malloc operator is that
it allows the programmer to set the type of the C pointer that is returned by the malloc
operator. The return type is always the type that is used as the input to the malloc
operator. This is a valuable feature in situations where the C pointer that is returned by
the malloc operator has to be assigned to a variable that cannot be given a static type
annotation. One such situation is when the members of a Lua table have to be assigned
initial values inside a Lua table constructor expression. We now give an example of this
situation.

1 −−[[ Malloc : t a b l e s ] ]
2 local table_2 = { basket = mal loc ( ptr FruitBasket ) }

Figure 3.8: malloc.tl, Part 5 of 7

In Figure 3.8, line 2 creates a Lua table and assigns it to a local variable named table_2.
A Lua table constructor expression is used to initialize the basket member of table_2. In
the Lua table constructor expression, basket is assigned the C pointer that is returned by
the malloc operator. Since the input to the malloc operator is ‘ptr FruitBasket’, the
type of the C pointer that is returned by the malloc operator is also ‘ptr FruitBasket’.
Thus, the type of table_2.basket is automatically inferred to be ‘ptr FruitBasket’.

3.5.4 The C pointer type and the number of bytes as inputs

In one configuration, the malloc operator takes as its first input a C pointer type and as
its second input the number of bytes to allocate. The malloc operator allocates a block of
memory. The size of the block of memory is specified by the second input to the malloc
operator. The malloc operator returns a C pointer to the allocated block of memory. The
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C pointer that is returned has the same type as the C pointer type that is the first input
to the malloc operator. We choose to include this configuration to allow the programmer
to easily allocate a block of memory and to set the type for the C pointer that is returned
at the same time.

We also choose to include this configuration to allow the programmer to implement func-
tionality that is similar to that of polymorphism. For example, let us assume that we have
defined a C struct type named FruitBasket_2 that has the same members as FruitBasket
as well as an additional member named num_blueberries that belongs to the type int. In
Poseidon Lua, there is no way to indicate that the C struct type FruitBasket_2 is a spe-
cialized version of the C struct type FruitBasket. However, it is possible to use ‘malloc(
ptr FruitBasket, sizeof( FruitBasket_2 ) )’ to allocate a block of memory that is
large enough to hold all the members of FruitBasket_2 as well as to get back a C pointer
to that block of memory that has the type ‘ptr FruitBasket’. The returned C pointer
can then be used anywhere that expects a C pointer of type ‘ptr FruitBasket’.

An interesting aspect of this particular configuration for the malloc operator is that
it also allows the programmer to set the type of the C pointer that is returned by the
malloc operator. This behavior is similar to the configuration discussed in Section 3.5.3.
The return type is always the type that is used as the first input to the malloc operator.
This is a valuable feature in situations where the C pointer that is returned by the malloc
operator has to be assigned to a variable that cannot be given a static type annotation.
One such situation is when the members of a Lua table have to be assigned initial values
inside a Lua table constructor expression. We now give an example of this situation.

In Figure 3.9, lines 1 - 9 define a C struct type named FruitBasket_2. Lines 12
- 13 create a Lua table and assign it to a local variable named table_3. A Lua table
constructor expression is used to initialize the basket member of table_3. In the Lua
table constructor expression, basket is assigned the C pointer that is returned by the
malloc operator. Since the first input to the malloc operator is ‘ptr FruitBasket’, the
type of the C pointer that is returned by the malloc operator is also ‘ptr FruitBasket’.
Thus, the type of table_3.basket is automatically inferred to be ‘ptr FruitBasket’.
The second input to the malloc operator is sizeof( FruitBasket_2 ), which evaluates
to ‘4 + 4 + 4 + 4 = 16’ bytes. Thus, the malloc operator allocates a memory block that
is 16 bytes in size.
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1 s t r u c t FruitBasket_2
2

3 num_oranges : i n t
4 num_grapes : i n t
5 num_strawberries : i n t
6

7 num_blueberries : i n t
8

9 end −−end FruitBasket_2
10

11

12 local table_3 = { basket = mal loc ( ptr FruitBasket ,
13 s i z e o f ( FruitBasket_2 ) ) }

Figure 3.9: malloc.tl, Part 6 of 7

3.5.5 The free operator

The free operator can be used to deallocate a block of memory. The free operator takes
as its first input a C pointer that points to a block of memory that was previously allocated
using the malloc operator. The free operator proceeds to deallocate the block of memory
that is pointed to by the input C pointer.

1 −−[[ Malloc : bytes ] ]
2 local basket_1 : ptr FruitBasket = mal loc ( 12 )
3

4 f r e e ( basket_1 )

Figure 3.10: malloc.tl, Part 7 of 7

In Figure 3.10, line 4 applies the free operator to basket_1, which holds a C pointer
to a block of memory that was previously allocated using the malloc operator in line 2.
Note that the ultimate effect of this statement is similar to that of the C statement: ‘free(
basket_1 );’.
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3.6 The assignment operator

Poseidon Lua modifies the semantics of the assignment operator (=) according to the C
types of the expressions that are encountered within the containing assignment statement.
In Typed Lua, it is possible to use the assignment operator to perform a multiple assignment
where multiple variables are assigned values at the same time. The semantics of multiple
assignment in Typed Lua is such that the expressions on the right hand side (RHS) of the
assignment operator, (=), are evaluated first and then all the values are assigned to the
corresponding variables on the left hand side (LHS) of the assignment operator, (=). We
refer to this assignment semantics as the multiple assignment (MA) semantics.

Note that a value of a Typed Lua type can be assigned to a variable of a C type.
Similarly, a value of a C type can also be assigned to a variable of a Typed Lua type.

When the LHS of the assignment operator, (=), consists of a dereferencing of a C pointer,
a member access on a C pointer to a C struct, or an indexing of a C array, Poseidon Lua
switches the semantics of a multiple assignment statement from the MA semantics to
the single assignment (SA) semantics. Poseidon Lua also uses the SA semantics if the
multiple assignment statement contains an assignment from the Typed Lua type string
to the C type ‘ptr char’ or vice versa. In these situations, the switch to SA semantics is
needed because enforcing the original MA semantics would have required too much complex
maneuvering with a corresponding increase in performance cost.

In SA semantics, the multiple assignment statement is split into a series of single assign-
ment statements internally by Poseidon Lua. Each single assignment statement consists of
the corresponding LHS variable and the RHS expression of the multiple assignment state-
ment in order from left to right. The expression on the RHS of the assignment operator,
(=), of the first split assignment statement is evaluated and the resulting value is assigned
to the variable on the LHS of the assignment operator, (=), before the expression on the
RHS of the assignment operator, (=) of the next split assignment statement is evaluated
and so on.

The final result of a multiple assignment statement is different depending on which
assignment semantics is used by Poseidon Lua.

3.6.1 Conversions for primitive C types

Poseidon Lua supports the automatic conversion of a value that belongs to a type from
Typed Lua to a value that belongs to a corresponding primitive C type during assignment
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to a variable that belongs to the same primitive C type. The string type from Typed Lua
corresponds to the primitive C type char. The integer type from Typed Lua corresponds
to the primitive C type int. The number type from Typed Lua corresponds to the primitive
C type double. The boolean type from Typed Lua corresponds to the primitive C type
bool.

Note that a variable of a primitive C type can only be on the LHS of the assignment
operator, (=), as a result of a dereferencing of a C pointer, a member access on a C
pointer to a C struct, or an indexing of a C array. This restriction is necessary to avoid
any confusion between primitive C types and their corresponding Typed Lua types when
dealing with variables within a program. Under these circumstances, Poseidon Lua switches
the semantics of a multiple assignment statement from the MA semantics to the single
assignment (SA) semantics. The automatic conversion of the value on the RHS that
belongs to a Typed Lua type to a value that belongs to a corresponding primitive C type
is implemented as part of the switch to SA semantics.

Conversion to char

1 −−[[ Assignment : p r im i t i v e C types ] ]
2 local producer_1 : string = "A"
3 local holder_1 : ptr char = mal loc ( ptr char )
4

5 holder_1 [ 0 ] = producer_1
6

7 print ( "producer_1 : " . . tostring ( producer_1 ) )
8 print ( "holder_1 [ 0 ] : " . . tostring ( holder_1 [ 0 ] ) )

Figure 3.11: assignment.tl

In Figure 3.11, line 2 shows that the variable producer_1 has type string from Typed
Lua and its value is set to "A". Line 3 shows that the variable holder_1 has the C type
‘ptr char’. Thus, holder_1[0] has the primitive C type char because it dereferences the
C pointer holder_1 at offset 0. Line 5 assigns the value of producer_1 to holder_1[0].
Therefore, this is an assignment of a value of type string of Typed Lua to a variable of the
primitive C type char. Thus, an assignment of the value of producer_1 to holder_1[0]
proceeds by converting the value of producer_1 from a value of type string to a value
of type char and assigning the converted value to holder_1[0]. Therefore, holder_1[0]
will have the value of ‘A’ after the assignment.
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Lines 7 - 8 print the values of these variables. Note that when the result of derefer-
encing a C pointer is a value that belongs to a primitive C type, that value will always be
automatically converted to a value of the corresponding Typed Lua type. Thus, in line 8,
the value of holder_1[0] will be automatically converted from ‘A’ to "A".

The conversions from integer to int, from number to double, and from boolean to
bool are carried out in a similar manner to the conversion from string to char.

Assignments between ptr char and string

Poseidon Lua allows automatic conversions of values between the C pointer type ‘ptr
char’ and the string type of Typed Lua. When a value of type string is assigned to a
variable of type ‘ptr char’, the value is converted to another value of type ‘ptr char’ and
then stored at the location in memory that is pointed to by the variable. When a value of
type ‘ptr char’ is assigned to a variable of type string, the value is converted to another
value of type string and then assigned to the variable. We choose to include this feature
to allow a Poseidon Lua program to interact seamlessly with both strings from Typed Lua
and null-terminated C strings.

Moreover, note that in a multiple assignment statement, if there is an assignment from
string to ‘ptr char’ or an assignment from ‘ptr char’ to string, Poseidon Lua will use
the SA semantics.

3.7 The C pointer types

Poseidon Lua provides C pointer types. A C pointer can be used to allocate an array whose
size is only known at run-time. This is in contrast to a multi-dimensional C array member
of a C struct whose size has to be known at compile-time. Allowing the size of the array to
be determined at run-time instead of at compile-time enables programs to be more flexible
and make them capable of solving a wider range of problems within the same program. A
C pointer would point to the first element of the array. An individual element of the array
can be accessed by indexing the C pointer with the offset of the required element from the
first element in the array.

The base type of a C pointer type can be any of the following primitive C types: char,
int, double, bool. The base type can be void. The base type can also be a C struct type.
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3.7.1 C pointer to void

Poseidon Lua provides a special C pointer type, ‘ptr void’, which acts as a general C
pointer type that serves a similar purpose to the ‘void *’ type in the C programming
language [12].

A value of any C pointer type can be assigned to a variable of type ‘ptr void’ and
vice versa. For example, a value of type ‘ptr ptr ptr int’ can be assigned to a variable
of type ‘ptr void’. Similarly, a value of type ‘ptr void’ can be assigned to a variable of
type ‘ptr ptr ptr int’. In both examples, the assignment is successful even though ‘ptr
ptr ptr int’ has a pointer depth of 3 and ‘ptr void’ has a pointer depth of 1.

3.7.2 C pointer to an array of C structs

Poseidon Lua provides C pointers that can point to an array of C structs. A particular
element of the array could be accessed by indexing the C pointer with the offset of the
required element relative to the first element of the array. The result is a C pointer to the
required element and the type of the result is the same as the type of the C pointer to
the original array. This is necessary because Poseidon Lua only allows a C struct to be
manipulated through a C pointer to the location of the C struct in the heap.

This is a different behavior than what occurs when the C pointer points to an array of
elements that belong to a primitive C type such as int. In that case, the result of indexing
into the C pointer is the required value itself and the type of the result is the base type of
the C pointer to the array. Since the base type of the C pointer is a primitive C type, the
accessed value is automatically converted to a value of a corresponding Typed Lua type.

Note also that in C, the result of dereferencing a pointer to a struct is a value that
belongs to the type of the struct. In Poseidon Lua, the result is a value that belongs to
the type of the C pointer to the C struct. This makes it easier to program in Poseidon
Lua because the members of a C struct can only be accessed through a C pointer to that
C struct.

3.7.3 Setting a C pointer to NULL value

In Poseidon Lua, a C pointer of any type can be assigned the value of cs.NULL to set its
value to NULL. The value of a C pointer of any type may also be checked against the value
of cs.NULL using the equality operators, (== and ∼=), to determine if its value is already
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set to NULL. Therefore, the equality operators can be used with cs.NULL in the same way
that they can be used with any other C pointer value.

3.8 The C struct types

Poseidon Lua provides C struct types as a way to encapsulate members of different types
into one type. In Poseidon Lua, a C struct type is defined using the struct definition
construct.

A C struct type can be defined to be completely stand-alone in the sense that it does
not contain a member that belongs to a C pointer type whose base type is another C struct
type. Alternatively, a C struct type can be defined such that it does contain a member
that belongs to a C pointer type whose base type is another C struct type. In addition,
a C struct type can also be defined such that it contains a member that belongs to a C
pointer type whose base type is the containing C struct type. We refer to this last kind of
C struct types as recursively defined C struct types.

Note that Poseidon Lua does not allow a C struct to be embedded inside another C
struct as a member. This feature is not needed because a member that is a C pointer to a
C struct can be used instead to achieve the same functionality. This keeps the type system
of Poseidon Lua simple.

3.8.1 The type of a member

Poseidon Lua provides C struct types that encapsulate members of different types. These
members may belong to any of the following primitive C types: char, int, double, bool.
The members may also belong to a C pointer type such as the following: ‘ptr int’. The
members may also belong to a C array type such as the following: ‘[2] int’. Therefore,
a C struct can be used to represent a wide variety of objects which may be composed of
different kinds of components.

3.9 The C array types

Poseidon Lua also provides C array types. A C array is a single-dimensional or multi-
dimensional array with a base type. For a C array, the size of each dimension must
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be determined purely at compile-time. We choose to include this feature to enable the
programmer to make use of multi-dimensional arrays. In certain circumstances, organizing
a large set of values into a multi-dimensional array will simplify code. Therefore, this
feature is beneficial for programmers when a simple structuring mechanism is required for
a large set of values.

Note that each element of a multi-dimentional C array is itself a C array. Assume x is a
C array of N dimensions where N > 1. Each element of x is a C array y of N-1 dimensions.
If N - 1 > 1, each element of y is a C array z of N-2 dimensions and so on. Each element
of a C array can be accessed by indexing the C array with the offset of the required element
from the first element of the C array. Indexing into a C array of a single dimension returns
a value of the base type.

The base type of a C array type can be one of the following primitive C types: char,
int, double, bool. The base type of a C array type can also be a C pointer type such as
‘ptr ptr int’.

3.9.1 Assignment to a C pointer type

Poseidon Lua allows the automatic conversion of a value of a C array type to a value of
a C pointer type during assignment. This is possible because a multi-dimensional C array
is physically stored as a flat one-dimensional array. All the elements of the C array are
stored in order from the first element to the last element in the flat array. If an element
of the C array is also a C array, all of its elements are also stored in order from the first
element to the last element and so on.

For example, if a C array is declared as follows: ‘a : [2][2][2] int’, then the values
of the C array are stored in the flat array in the following order: a[0][0][0], a[0][0][1],
a[0][1][0], a[0][1][1], a[1][0][0], a[1][0][1], a[1][1][0], a[1][1][1]. Since a C
pointer can point to an array of elements, it is possible for a C pointer to point to the flat
array. Thus, a value of a C array type can be assigned to a variable of an appropriate C
pointer type.

If a value is of a C array type with base type BASE_TYPE, then the value can be assigned
to a variable of a C pointer type that points to BASE_TYPE. For example, a value of type
‘[10] int’, where BASE_TYPE is ‘int’, can be assigned to a variable of type ‘ptr int’.
Similarly, a value of type ‘[10] ptr int’, where BASE_TYPE is ‘ptr int’, can be assigned
to a variable of type ‘ptr ptr int’.

Moreover, a value of any C array type can be assigned to a variable of type ‘ptr void’.
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For example, a value of type ‘[10] ptr int’ can be assigned to a variable of type ‘ptr
void’.

3.10 Conclusions

In this chapter, we give an overview of our proposed programming language named Posei-
don Lua. Poseidon Lua is designed to bring the C programming paradigm to the Typed
Lua programming language. Poseidon Lua imports the concepts of manual memory man-
agement and direct memory programming from the C programming language to Typed
Lua.

Poseidon Lua extends Typed Lua using language features inspired by the C program-
ming language. Poseidon Lua is implemented by modifying the compiler of Typed Lua.

Poseidon Lua introduces the operators malloc, free, and sizeof. These operators
serve similar purposes to their counterparts in the C programming language. malloc and
free are used for manual memory management.

Poseidon Lua also introduces C types: Primitive C types, C pointer types, C struct
types, and C array types. The primitive C types are char, int, double, and bool. Poseidon
Lua allows inter-operation between primitive C types and Typed Lua types. C pointers can
be used to perform direct memory programming. C structs can be used to create composite
objects. The members of a C struct can belong to a variety of C types. A member of a C
struct can also be a C pointer to a C struct. C arrays can be used to organize C values
into multi-dimensional arrays. C arrays can interoperate with C pointers. Poseidon Lua
performs static typechecking for the C types.

Note that an individual variable cannot be declared to have a primitive C type directly.
Only a member of a C struct, an element of a C array, or the base type of a C pointer can
be declared to have a primitive C type. In addition, a C array can only be declared as a
member of a C struct.

Poseidon Lua uses the assignment operator, (=), to automatically convert Typed Lua
values to C values. This feature is essential to the inter-operation of C values with a Typed
Lua codebase. It facilitates the gradual introduction of C programming into a program
that is otherwise written in an optionally-typed programming language.

A Poseidon Lua program is ultimately translated to a Modified Lua program. Modified
Lua is our modification of the Lua compiler and virtual machine. We explore the features
of Modified Lua in the next chapter.

49



In Chapter 5, we introduce our proposed Modified LuaFFI library that allows a Posei-
don Lua program to call an external C function.

In Chapter 6, we compare the performance of a program written in Poseidon Lua with
the performance of a program written in Lua.
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Chapter 4

Modified Lua

4.1 Introduction

In Chapter 3, we have proposed the Poseidon Lua programming language. Poseidon Lua
extends Typed Lua [18] with operators for manual memory management and C types.
Typed Lua is an optionally-typed programming language that provides a static type system
for the dynamically-typed programming language named Lua [11].

In this chapter, we propose our extension of Lua named Modified Lua. Modified Lua
augments Lua with a set of special operators that can be used to manipulate C values.

A Poseidon Lua program carries static type annotations. These static type annotations
are used to perform static typechecking on the program. Then, the Poseidon Lua program
is translated to a Modified Lua program.

Modified Lua provides the CS operators, where CS stands for C Semantics. The CS
operators allow the manipulation of C values from within the dynamically-typed program-
ming language named Lua. The CS_malloc and the CS_free operators allow manual
memory management through the allocation and deallocation of memory blocks for use by
the program.

There are individual CS load and CS store operators that enable the manipulation of
C values that belong to any of the following primitive C types: char, int, double, and
bool. The CS_loadPointer and CS_storePointer operators enable the manipulation
of C pointers. The CS_loadOffset operator enables the manipulation of C arrays. The
CS_loadString and CS_storeString operators enable the manipulation of null-terminated
C strings.
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We explore in this chapter the CS operators that are provided by Modified Lua and
how a Poseidon Lua program is translated to make use of them. In Section 4.2, the features
of Modified Lua and their implementations are described. Modified Lua is implemented
by augmenting the compiler and the virtual machine (VM) of Lua.

The rest of this chapter is structured as follows. In Section 4.3, we discuss how Modified
Lua calculates the size, in bytes, of a C struct as well as the offset, in bytes, of each mem-
ber of a C struct. In Section 4.4, we discuss the workings of the CS_malloc operator and
the CS_free operator. Next, we discuss the CS_loadChar, CS_storeChar, CS_loadInt,
CS_storeInt, CS_loadDouble, CS_storeDouble, CS_loadBool, and CS_storeBool oper-
ators in Section 4.5. Then, we discuss how the CS_loadPointer and CS_storePointer
operators enable the manipulation of C pointers in Section 4.6. In Section 4.7, we discuss
how the CS_loadOffset operator enables the manipulation of C arrays. In Section 4.8, we
discuss how the CS_loadString and CS_storeString operators enable the manipulation
of null-terminated C strings. In Section 4.9, we discuss the use of cs.NULL as the NULL
pointer. Finally, we conclude the chapter in Section 4.10.

4.2 Modified Lua Features

Poseidon Lua provides operators that allow a Poseidon Lua program to perform manual
memory management. Poseidon Lua also provides the facilities to perform assignment (=),
member-access (.), and pointer-dereference ([]) with respect to C values. The extension
of the static type system of Typed Lua with C types enables the use of C pointers for
direct memory programming. However, a Poseidon Lua program cannot be compiled to a
corresponding Lua program the same way that a Typed Lua program can be compiled to a
corresponding Lua program. This is due to the fact that Lua does not provide the language
facilities that are necessary to implement manual memory management and direct memory
programming. Therefore, a Poseidon Lua program must be compiled to a different target
programming language that does provide these facilities.

Hence, Modified Lua extends the Lua programming language with CS operators. These
CS operators allow a Modified Lua program to perform manual memory management.
Other CS operators enable the manipulation of C values. In particular, the ability to
manipulate C pointers allows a Modified Lua program to perform direct memory program-
ming. Thus, a Poseidon Lua program is always compiled to a Modified Lua program.

Note that Typed Lua only provides a static typechecker for Lua. It is not integrated
with any Lua VM. Since Poseidon Lua extends Typed Lua, it is also not integrated with
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any Lua VM. As a result, Poseidon Lua and the Modified Lua VM are necessarily two
separate and distinct components.

4.2.1 Feature Description

As stated earlier, Modified Lua provides CS operators. Modified Lua also provides the
NULL pointer. The relevant features are listed below.

1. Operators for manual memory management: CS_malloc and CS_free

2. Operators for inter-operation between primitive C types and their corresponding Lua
types:

(a) For char: CS_loadChar and CS_storeChar

(b) For int: CS_loadInt and CS_storeInt

(c) For double: CS_loadDouble and CS_storeDouble

(d) For bool: CS_loadBool and CS_storeBool

3. Operators for C pointer types: CS_loadPointer and CS_storePointer

4. Operator for C array types: CS_loadOffset

5. Operators for null-terminated C strings: CS_loadString and CS_storeString

6. NULL pointer: cs.NULL

The Lua programming language provides a light-userdata value [11]. It contains a
pointer, of type ‘void *’, to a block of memory that is not automatically garbage collected
by the Lua VM. Modified Lua uses the light-userdata value to represent a C pointer to
a block of memory that is manually allocated and deallocated by the programmer.

Modified Lua enables manual memory management through the CS_malloc and the
CS_free operators. The CS_malloc operator takes a Lua integer value as an argument.
Modified Lua uses the Lua integer value to represent the size, in bytes, of a block of
memory. The CS_malloc operator allocates a block of memory of the given size and
returns a C pointer to that block of memory.

The CS_free operator takes a C pointer as an argument and deallocates the block
of memory that is pointed to by the C pointer. This block of memory must have been
previously allocated by the CS_malloc operator.
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Modified Lua supports inter-operation between values of primitive C types and values
of Lua types. In order to achieve this, Modified Lua automatically converts a value of a
primitive C type to a value of a corresponding Lua type and vice versa. For this purpose,
primitive C types char, int, double, and bool correspond to the Lua types string,
integer, number, and boolean, respectively.

Modified Lua provides CS operators for retrieving a primitive C value from within a
block of memory. The CS operators that are used to retrieve values of the primitive C
types char, int, double, and bool from a block of memory are CS_loadChar, CS_loadInt,
CS_loadDouble, and CS_loadBool, respectively. Each of these CS operators behaves in a
similar fashion. Each of them takes 2 arguments. The first argument to the CS operator
is a Lua light-userdata value that represents a C pointer to a block of memory. The
second argument is a Lua integer value that represents the offset, in number of bytes,
from the beginning of the block of memory to the location of the primitive C value that is
to be retrieved. The CS operator retrieves the primitive C value from the block of memory
and automatically converts the value to its corresponding Lua value and returns the Lua
value as the final result.

Modified Lua also provides CS operators for storing a primitive C value within a block
of memory. The CS operators that are used to store values of the primitive C types
char, int, double, and bool within a block of memory are CS_storeChar, CS_storeInt,
CS_storeDouble, and CS_storeBool, respectively. Each of these CS operators behaves
in a similar fashion. Each of them takes 3 arguments. The first argument is a Lua
light-userdata value that represents a C pointer to a block of memory. The second
argument is a Lua integer value that represents the offset, in number of bytes, from
the beginning of the block of memory to the location where the primitive C value is to
be stored. The third argument is a Lua value that represents a primitive C value. The
CS operator automatically converts the third argument to its corresponding primitive C
value and stores the converted value to the given offset within the block of memory. Note
that in case of CS_storeChar, only the first character of the third argument, which is a
Lua string value, is converted to a char value. For each of these CS operators, the first
argument is returned as the final result.

Modified Lua provides 2 CS operators that enable the manipulation of C pointers.
These are the CS_loadPointer and the CS_storePointer operators. These CS oper-
ators behave in an analogous manner to the CS operators for the primitive C types.
However, they do not perform automatic conversions between C and Lua values. The
CS_loadPointer operator retrieves a C pointer value from within a block of memory. It
takes 2 arguments. The first argument is a Lua light-userdata value that represents a C
pointer to a block of memory. The second argument is a Lua integer value that represents
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the offset, in number of bytes, from the beginning of the block of memory to the location
of the C pointer value that is to be retrieved. The CS operator retrieves the C pointer
value from the block of memory and returns it encapsulated within a Lua light-userdata
value.

The CS_storePointer operator stores a C pointer value within a block of memory. It
takes 3 arguments. The first argument is a Lua light-userdata value that represents a C
pointer to a block of memory. The second argument is a Lua integer value that represents
the offset, in number of bytes, from the beginning of the block of memory to the location
where the C pointer value is to be stored. The third argument is a Lua light-userdata
value that represents the C pointer that is to be stored. The CS operator stores the C
pointer value that is represented by the third argument to the given offset within the block
of memory. The first argument is returned as the final result.

Modified Lua provides the CS_loadOffset operator for the purpose of allowing the ma-
nipulation of C arrays. It takes 2 arguments. The first argument is a Lua light-userdata
value that represents a C pointer to a block of memory. The second argument is a Lua
integer value that represents the offset, in number of bytes, from the beginning of the
block of memory to the location of a C array. The CS operator returns a C pointer to the
beginning of the C array encapsulated within a Lua light-userdata value.

Note that the C pointer returned by the CS_loadOffset operator can be passed in as
the first argument to the appropriate CS load operator to retrieve an element of the C
array that belongs to a primitive C type or a C pointer type. Similarly, the C pointer can
be passed in as the first argument to the appropriate CS store operator to set the value of
an element of the C array that belongs to a primitive C type or a C pointer type.

Modified Lua provides 2 CS operators that enable the manipulation of null-terminated C
strings. These are the CS_loadString operator and the CS_storeString operator. These
CS operators behave in an analogous manner to the CS operators for the primitive C types.
The CS_loadString operator retrieves a null-terminated C string value from within a block
of memory. It takes 2 arguments. The first argument is a Lua light-userdata value that
represents a C pointer to a block of memory. The second argument is a Lua integer value
that represents the offset, in number of bytes, from the beginning of the block of memory to
the location of the null-terminated C string value that is to be retrieved. The CS operator
retrieves the null-terminated C string value from the block of memory and automatically
converts it to a corresponding Lua string value. This converted value is returned as the
final result.

The CS_storeString operator stores a null-terminated C string value within a block
of memory. It takes 3 arguments. The first argument is a Lua light-userdata value that
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represents a C pointer to a block of memory. The second argument is a Lua integer value
that represents the offset, in number of bytes, from the beginning of the block of memory to
the location where the null-terminated C string value is to be stored. The third argument
is a Lua string value. The CS operator automatically converts the third argument to its
corresponding null-terminated C string value and stores the converted value to the given
offset within the block of memory. The first argument is returned as the final result.

Modified Lua provides a NULL pointer in the form of cs.NULL. It can be assigned to
a C pointer variable to set its value to NULL. It can also be used to check if the value of
a C pointer variable is NULL.

4.2.2 Feature Implementation

We implement the features of Modified Lua by modifying the compiler and the virtual
machine (VM) of Lua. The Lua compiler is modified so that it may recognize the CS
operators provided by Modified Lua. In addition, the Lua virtual machine is modified to
integrate new CS opcode instructions in order to implement the CS operators. Note that
the Lua compiler and the Lua VM are both implemented in C.

There are 15 different CS operators in Modified Lua. Each of these CS operators is
compiled to a corresponding CS opcode instruction by the Modified Lua compiler. Thus,
there are 15 different CS opcode instructions. The correspondence between CS operators
and CS opcode instructions is given below.

1. The CS operators CS_malloc and CS_free are compiled to the CS opcode instruc-
tions OP_CS_MALLOC and OP_CS_FREE, respectively

2. The CS operators CS_loadChar and CS_storeChar are compiled to the CS opcode
instructions OP_CS_LOAD_CHAR and OP_CS_STORE_CHAR, respectively

3. The CS operators CS_loadInt and CS_storeInt are compiled to the CS opcode
instructions OP_CS_LOAD_INT and OP_CS_STORE_INT, respectively

4. The CS operators CS_loadDouble and CS_storeDouble are compiled to the CS op-
code instructions OP_CS_LOAD_DOUBLE and OP_CS_STORE_DOUBLE, respectively

5. The CS operators CS_loadBool and CS_storeBool are compiled to the CS opcode
instructions OP_CS_LOAD_BOOL and OP_CS_STORE_BOOL, respectively
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6. The CS operators CS_loadPointer and CS_storePointer are compiled to the CS
opcode instructions OP_CS_LOAD_POINTER and OP_CS_STORE_POINTER, respectively

7. The CS operator CS_loadOffset, for C array type, is compiled to the CS opcode
instruction OP_CS_LOAD_OFFSET

8. The CS operators CS_loadString and CS_storeString are compiled to the CS op-
code instructions OP_CS_LOAD_STRING and OP_CS_STORE_STRING, respectively

The Lua compiler performs lexical analysis, parsing, and code generation simultane-
ously in the same pass of the compiler instead of performing each task separately. We
modify the parser so that whenever it parses a function call expression, the name of the
function being called is checked against the names of the CS operators. If there is a match,
the function call expression is parsed as a CS operator call expression instead. First, each
expression that denotes an argument of the CS operator is parsed and the relevant opcode
instructions are generated to evaluate the expression and produce its value. Next, the CS
opcode instruction that corresponds to the CS operator being parsed is generated for the
purpose of evaluating the CS operator call expression and returning its final value.

We have implemented the code generation for a CS opcode instruction in such a way
that the modified Lua compiler treats the CS opcode instruction as if it is the Lua OP_CALL
opcode instruction that is usually generated for a function call expression. As a result, the
rest of the compilation process treats a CS operator call expression as if it is a normal
function call expression.

However, we have to deal with a subtle problem with this approach to code generation.
When a Lua return statement is parsed, the original Lua parser code checks whether the
value being returned is the result of a function call and whether that is the only value being
returned. If so, the Lua OP_CALL opcode instruction for the function call is replaced by a
Lua OP_TAILCALL opcode instruction for a tailcall to the same function. In the situation
where one function tailcalls another function, the run-time context of the function doing the
tailcalling is replaced by the run-time context of the function that is being tailcalled. In this
case, a CS opcode instruction does not work the exact same way as a Lua OP_CALL opcode
instruction. Thus, when the original Lua parser code attempts to replace a CS opcode
instruction with a Lua OP_TAILCALL opcode instruction, it introduces errors. Thus, we
have modified the Lua parser so that during the code generation for a tailcall from a CS
opcode instruction, the modified Lua parser does not replace the CS opcode instruction
with a Lua OP_TAILCALL opcode instruction.

The Lua virtual machine (VM) runs as follows. The Lua VM executes Lua opcode
instructions sequentially using a long interpreter loop and keeps the Lua values that are
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manipulated by the Lua opcode instructions on a VM stack. The interpreter loop identifies
the current Lua opcode instruction. Then, the implementation code for the current Lua
opcode instruction is executed. The implementation code manipulates the Lua values on
the VM stack. After this, the next Lua opcode instruction is fetched and the interpreter
loop is executed again. We modify the interpreter loop to include support for the CS
opcode instructions.

The input arguments for a CS opcode instruction are pushed onto the VM stack. Any
Lua value that is returned by the CS opcode instruction is also pushed onto the VM stack.

The OP_CS_MALLOC opcode instruction takes as argument a Lua integer value that
specifies the size, in bytes, of a block of memory to be allocated. This size information is
then popped from the VM stack and used with the malloc function of the C programming
language to allocate a block of memory of the required size. As an aside, note that the
Lua VM is itself implemented in the C programming language. A pointer to the allocated
block of memory is then stored inside a Lua light-userdata value that is pushed onto
the VM stack to be returned.

The OP_CS_FREE opcode instruction takes as argument a Lua light-userdata value
that contains a pointer to a block of memory. The Lua light-userdata value is popped
from the VM stack. The pointer is extracted form the Lua light-userdata value and
used with the free function of the C programming langauge to deallocate the block of
memory. A Lua light-userdata value that contains a NULL pointer is pushed onto the
VM stack to be returned. This is done to ensure that the CS operator does return a value
and behaves in a predictable manner if its return value is used elsewhere in the program.
Note that the NULL pointer in the Lua light-userdata value is set from the underlying
C programming language code that implements OP_CS_FREE.

The CS load opcode instructions for primitive C types are as follows: OP_CS_LOAD_CHAR,
OP_CS_LOAD_INT, OP_CS_LOAD_DOUBLE, and OP_CS_LOAD_BOOL. These CS load opcode in-
structions can be used to retrieve the value of a primitive C type which may be a member
of a C struct or an element of a C array. These CS load opcode instructions retrieve a
value from within a block of memory. Each of these CS opcode instructions takes 2 input
arguments. The first argument is a Lua light-userdata value that contains a pointer
to a block of memory. The second argument is a Lua integer value that represents an
offset, in number of bytes, from the beginning of the block of memory. These argument
values are popped from the VM stack and used to perform pointer arithmetic in the C
programming language to obtain a pointer to the location of the value to be retrieved
from within the block of memory. The value is retrieved and stored in a correspond-
ing Lua value and the Lua value is pushed onto the VM stack to be returned. The CS
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load opcode instructions OP_CS_LOAD_CHAR, OP_CS_LOAD_INT, OP_CS_LOAD_DOUBLE, and
OP_CS_LOAD_BOOL ultimately return a Lua string value, a Lua integer value, a Lua
number value, and a Lua boolean value, respectively.

The CS store opcode instructions for primitive C types are given as OP_CS_STORE_CHAR,
OP_CS_STORE_INT, OP_CS_STORE_DOUBLE, and OP_CS_STORE_BOOL. These CS store opcode
instructions store a value within a block of memory. Each of these CS opcode instruc-
tions takes 3 input arguments. The first argument is a Lua light-userdata value that
contains a pointer to a block of memory. The second argument is a Lua integer value
that represents an offset, in number of bytes, from the beginning of the block of memory.
The third argument is a Lua value. The CS store opcode instructions OP_CS_STORE_CHAR,
OP_CS_STORE_INT, OP_CS_STORE_DOUBLE, and OP_CS_STORE_BOOL take as the third argu-
ment a Lua string value, a Lua integer value, a Lua number value, and a Lua boolean
value, respectively. The argument values are popped from the VM stack. The first two
argument values are used to perform pointer arithmetic in the C programming language
to obtain a pointer to a location within the block of memory. The third argument value
is stored at that location within the block of memory. Then, the first argument value is
pushed onto the VM stack to be returned.

There are 2 CS opcode instructions that manipulate C pointers: OP_CS_LOAD_POINTER
and OP_CS_STORE_POINTER. The OP_CS_LOAD_POINTER opcode instruction takes 2 input
arguments. The first argument is a Lua light-userdata value that contains a pointer to
a block of memory. The second argument is a Lua integer value that represents an offset,
in number of bytes, from the beginning of the block of memory. These argument values are
popped from the VM stack and used to perform pointer arithmetic in the C programming
language to obtain a pointer to the location of the value to be retrieved from within the
block of memory. The value is retrieved and stored in a Lua light-userdata value and
the Lua value is pushed onto the VM stack to be returned.

The OP_CS_STORE_POINTER opcode instruction takes 3 input arguments. The first
argument is a Lua light-userdata value that contains a pointer to a block of memory.
The second argument is a Lua integer value that represents an offset, in number of bytes,
from the beginning of the block of memory. The third argument is a Lua light-userdata
value that contains a pointer to another block of memory. The argument values are popped
from the VM stack. The first two argument values are used to perform pointer arithmetic
in the C programming language to obtain a pointer to a location within the block of
memory that is pointed to by the first argument. The third argument value is stored at
that location. Then, the first argument value is pushed onto the VM stack to be returned.

The CS opcode instruction OP_CS_LOAD_OFFSET is provided for the manipulation of C

59



arrays. It takes 2 input arguments. The first argument is a Lua light-userdata value that
contains a pointer to a block of memory. The second argument is a Lua integer value that
represents an offset, in number of bytes, from the beginning of the block of memory. These
argument values are popped from the VM stack and used to perform pointer arithmetic in
the C programming language to obtain a pointer to a location within the block of memory.
The obtained pointer value is stored in a Lua light-userdata value and the Lua value is
pushed onto the VM stack to be returned.

There are 2 CS opcode instructions that manipulate null-terminated C strings as fol-
lows: OP_CS_LOAD_STRING and OP_CS_STORE_STRING. The CS opcode instruction for load-
ing strings OP_CS_LOAD_STRING takes 2 input arguments. The first argument is a Lua
light-userdata value that contains a pointer to a block of memory. The second ar-
gument is a Lua integer value that represents an offset, in number of bytes, from the
beginning of the block of memory. These argument values are popped from the VM stack
and used to perform pointer arithmetic in the C programming language to obtain a pointer
to the location of the null-terminated C string value to be retrieved from within the block of
memory. The null-terminated C string value is retrieved and converted into a Lua string
value and the Lua string value is pushed onto the VM stack to be returned.

The OP_CS_STORE_STRING opcode instruction takes 3 input arguments. The first argu-
ment is a Lua light-userdata value that contains a pointer to a block of memory. The
second argument is a Lua integer value that represents an offset, in number of bytes,
from the beginning of the block of memory. The third argument is a Lua string value.
The argument values are popped from the VM stack. The first two argument values are
used to perform pointer arithmetic in the C programming language to obtain a pointer
to a location within the block of memory. The third argument value is converted to a
null-terminated C string value and stored at that location within the block of memory.
Then, the first argument value is pushed onto the VM stack to be returned.

Modified Lua provides a NULL pointer in the form of cs.NULL for two purposes: 1)
to set the value of a C pointer to NULL and 2) to check whether the value of a C pointer
is NULL or not. The value of cs.NULL can be sent as the third argument to the CS
operator CS_storePointer to store a NULL pointer. Using the equality operator (==),
we can check whether a Lua light-userdata value that is returned by the CS operator
CS_loadPointer has the same value as cs.NULL.

We implement cs.NULL by modifying the part of the Lua VM that loads the Lua stan-
dard libraries before running a Lua program. Generally, these libraries contain functions
and constants that are implemented in the C programming language. However, in a Lua
program, these libraries appear as Lua tables whose members represent the functions and
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constants that are contained within the libraries. In the same manner as these pre-existing
standard libraries, we implement a new library named cs that has only one constant mem-
ber named NULL. The value of cs.NULL is set to a Lua light-userdata value that contains
the NULL pointer from the C programming language. The Lua VM is modified so that the
cs library is loaded and made accessible to a Lua program the same way that the standard
libraries are loaded and made accessible.

The source code for the Modified Lua VM is available at GitHub as a component of
Poseidon Lua [15].

4.3 Size and offset

1 s t r u c t House
2 uni t : char
3 num_rooms : i n t
4 area_feet2 : double
5 on_sale : bool
6 num_windows_in_room : ptr i n t
7 num_rooms_in_floor : [ 2 ] i n t
8 end −−end House

Figure 4.1: implementation.tl, Part 1 of 6

In Figure 4.1, lines 1 - 8 show the definition of the C struct type named House, which
is used in the rest of the examples for demonstrative purposes. The size of the C struct
type House is the sum of the sizes of all its members. Therefore, the size of House is 1 +
4 + 8 + 4 + 8 + ( 2 * 4 ) = 33 bytes.

The offset of each member of the C struct type House is the sum of the sizes of all the
previous members. Thus, the C struct members unit, num_rooms, area_feet2, on_sale,
num_windows_in_room, and num_rooms_in_floor have offsets 0, 1, 5, 13, 17, and 25 bytes,
respectively.

4.4 The CS_malloc and CS_free operators

Poseidon Lua translates an invocation of its malloc operator to an invocation of the
CS_malloc operator of Modified Lua. The CS_malloc operator of Modified Lua takes as
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its input a Lua integer value that specifies the number of bytes that should be allocated.
It allocates a block of memory of the required size and returns a Lua light-userdata
value that points to this block of memory.

Poseidon Lua translates an invocation of its free operator to an invocation of the
CS_free operator of Modified Lua. The CS_free operator of Modified Lua takes as its
input a Lua light-userdata value that points to the block of memory that is to be
deallocated. It deallocates this block of memory and returns a Lua light-userdata value
that points to NULL.

1 −−[[ s t r u c t ] ]
2 local house_1 : ptr House = mal loc ( ptr House )
3

4 f r e e ( house_1 )

Figure 4.2: implementation.tl, Part 2 of 6

1 local house_1 = CS_malloc (33)
2

3 CS_free ( house_1 )

Figure 4.3: Part of implementation.lua translated from implementation.tl Part 2 of 6

In Figure 4.2, the invocations of the malloc and free operators of Poseidon Lua are
shown. Note that ‘malloc( ptr House )’ is the same as ‘malloc( sizeof( House ) )’,
with the exception that the returned value has type ‘ptr House’ instead of ‘ptr void’.

In Figure 4.3, the invocations of the CS_malloc and CS_free operators of the translated
Modified Lua program are shown.

4.5 The primitive C types

Modified Lua provides CS load and CS store operators to manipulate C values belonging
to each of the following primitive C types: char, int, double, bool. Each of the CS load
operators can be used to retrieve a C value that is stored at a particular location in a block
of memory and convert it to a corresponding Lua value and return that Lua value. Each
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of the CS store operators can take a Lua value as its third argument and convert it to a
corresponding C value and store that C value at a particular location in a block of memory.
Note that the values of the primitive C types char, int, double, and bool correspond to
the values of the Lua types string, integer, number, and boolean, respectively.

1 −−[[ s t r u c t ] ]
2 local house_1 : ptr House = mal loc ( ptr House )
3

4 house_1.unit = "A"
5 house_1.num_rooms = 4
6 house_1.area_feet2 = 1000 .25
7 house_1.on_sale = true
8

9 local s t r = ""
10 s t r = s t r . . " house_1.unit : "
11 s t r = s t r . . tostring ( house_1.unit )
12 s t r = s t r . . "\n"
13 s t r = s t r . . "house_1.num_rooms : "
14 s t r = s t r . . tostring ( house_1.num_rooms )
15 s t r = s t r . . "\n"
16 s t r = s t r . . " house_1.area_feet2 : "
17 s t r = s t r . . tostring ( house_1.area_feet2 )
18 s t r = s t r . . "\n"
19 s t r = s t r . . " house_1.on_sale : "
20 s t r = s t r . . tostring ( house_1.on_sale )
21 print ( s t r )

Figure 4.4: implementation.tl, Part 3 of 6

In Figure 4.4, a Poseidon Lua program is shown. In this program, values are assigned
to variables of primitive C types. Then, the values of these variables are accessed.

In Figure 4.5, the translated Modified Lua program is shown. In this program, the
assignment of values to variables of primitive C types is translated to invocations of the fol-
lowing CS store operators: CS_storeChar, CS_storeInt, CS_storeDouble, CS_storeBool.
The accessing of the values of these variables is translated to the invocations of the following
CS load operators: CS_loadChar, CS_loadInt, CS_loadDouble, CS_loadBool.
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1 local house_1 = CS_malloc (33)
2 do
3 CS_storeChar ( house_1 , 0 , "A" ) end
4 do
5 CS_storeInt ( house_1 , 1 , 4 ) end
6 do
7 CS_storeDouble ( house_1 ,5 ,1000 .25 ) end
8 do
9 CS_storeBool ( house_1 , 13 , true ) end

10

11 local s t r = ""
12 s t r = s t r . . " house_1.unit : "
13 s t r = s t r . . tostring (CS_loadChar ( house_1 , 0 ) )
14 s t r = s t r . . "\n"
15 s t r = s t r . . "house_1.num_rooms : "
16 s t r = s t r . . tostring ( CS_loadInt ( house_1 , 1 ) )
17 s t r = s t r . . "\n"
18 s t r = s t r . . " house_1.area_feet2 : "
19 s t r = s t r . . tostring (CS_loadDouble ( house_1 , 5 ) )
20 s t r = s t r . . "\n"
21 s t r = s t r . . " house_1.on_sale : "
22 s t r = s t r . . tostring (CS_loadBool ( house_1 , 1 3 ) )
23 print ( s t r )

Figure 4.5: Part of implementation.lua translated from implementation.tl, Part 3 of 6

4.6 The C pointer types

Modified Lua provides 2 CS operators to manipulate C pointers: CS_loadPointer and
CS_storePointer. The CS_loadPointer operator retrieves a C pointer value that is stored
at a particular location in a block of memory. The CS_storePointer operator stores a C
pointer value at a particular location in a block of memory.

In Figure 4.6, a Poseidon Lua program is shown. In this program, a value is assigned
to house_1.num_windows_in_room, a variable of a C pointer type, in line 6. Then, this
variable is indexed at different offsets to assign values to those locations in memory.

In Figure 4.7, the translated Modified Lua program is shown. In this program, the
assignment of a value to a variable of a C pointer type is translated to an invocation of the
CS_storePointer operator. The indexing of this variable is translated to an invocation of
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1 −−[[ s t r u c t ] ]
2 local house_1 : ptr House = mal loc ( ptr House )
3

4 local num_rooms = 4
5 local pointer_1 : ptr i n t = mal loc ( num_rooms ∗ s i z e o f ( i n t ) )
6 house_1.num_windows_in_room = pointer_1
7 house_1.num_windows_in_room [ 0 ] = 1
8 house_1.num_windows_in_room [ 1 ] = 2
9 house_1.num_windows_in_room [ 2 ] = 3

10 house_1.num_windows_in_room [ 3 ] = 4

Figure 4.6: implementation.tl, Part 4 of 6

1 local house_1 = CS_malloc (33)
2

3 local num_rooms = 4
4 local pointer_1 = CS_malloc (num_rooms ∗ 4)
5 do
6 CS_storePointer ( house_1 , 17 , pointer_1 ) end
7 do
8 CS_storeInt ( CS_loadPointer ( house_1 , 17 ) , 4 ∗ 0 ,1) end
9 do

10 CS_storeInt ( CS_loadPointer ( house_1 , 17 ) , 4 ∗ 1 ,2) end
11 do
12 CS_storeInt ( CS_loadPointer ( house_1 , 17 ) , 4 ∗ 2 ,3) end
13 do
14 CS_storeInt ( CS_loadPointer ( house_1 , 17 ) , 4 ∗ 3 ,4) end

Figure 4.7: Part of implementation.lua translated from implementation.tl, Part 4 of 6

the CS_loadPointer operator.

4.7 The C array types

Modified Lua provides the CS_loadOffset operator to manipulate C arrays. A C array
can only be declared as a member of a C struct. Thus, the memory space for a C array is
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always allocated as part of the memory allocation for the C struct. The CS_loadOffset
operator allows the program to refer to the location in memory of a particular element of
the C array.

1 −−[[ s t r u c t ] ]
2 local house_1 : ptr House = mal loc ( ptr House )
3

4 house_1.num_rooms_in_floor [ 0 ] = 2
5 house_1.num_rooms_in_floor [ 1 ] = 2

Figure 4.8: implementation.tl, Part 5 of 6

1 local house_1 = CS_malloc (33)
2

3 do
4 CS_storeInt ( CS_loadOffset ( house_1 , 25 ) , 4 ∗ 0 ,2) end
5 do
6 CS_storeInt ( CS_loadOffset ( house_1 , 25 ) , 4 ∗ 1 ,2) end

Figure 4.9: Part of implementation.lua translated from implementation.tl, Part 5 of 6

In Figure 4.8, a Poseidon Lua program is shown. In this program, a variable of a
C array type is indexed at different offsets in order to assign values to the appropriate
memory locations.

In Figure 4.9, the translated Modified Lua program is shown. In this program, the
indexing of a variable of a C array type is translated to an invocation of the CS_loadOffset
operator.

4.8 The C strings

Modified Lua provides 2 CS operators, CS_loadString and CS_storeString, to manip-
ulate null-terminated C strings. The CS_loadString operator retrieves a null-terminated
C string value that is stored at a particular location in a block of memory and converts it
to a Lua string value and returns the Lua string value. The CS_storeString operator
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takes a Lua string value as its third argument and converts it to a null-terminated C
string and stores that C string at a particular location in a block of memory.

1 −−[[ s t r i n g ] ]
2 local he l l o_s t r : string = " Hel lo World"
3 local s t r_s i z e : i n t e g e r = str ing. len ( h e l l o_s t r ) + 1
4 local pointer_2 : ptr char = mal loc ( s t r_s i z e ∗ s i z e o f ( char ) )
5

6 local l e f t_1 : i n t e g e r = 1
7 local r ight_1 : i n t e g e r = 3
8

9 l e f t_1 , pointer_2 , right_1 = right_1 , he l l o_st r , l e f t_1
10

11 local r e c e ived_st r : string = "None"
12

13 local l e f t_2 : i n t e g e r = 1
14 local r ight_2 : i n t e g e r = 3
15

16 l e f t_2 , rece ived_str , r ight_2 = right_2 , pointer_2 , l e f t_2

Figure 4.10: implementation.tl, Part 6 of 6

In Figure 4.10, a Poseidon Lua program is shown. In this program, a value of type
string is assigned to a variable of type ‘ptr char’ in a multiple assignment statement in
line 9. Then, a value of type ‘ptr char’ is assigned to a variable of type string in another
multiple assignment statement in line 16.

In Figure 4.11, the translated Modified Lua program is shown. In this program, the
assignment of a value of type string to a variable of type ‘ptr char’ is translated to an in-
vocation of the CS_storeString operator in line 9. The assignment of a value of type ‘ptr
char’ to a variable of type string is translated to an invocation of the CS_loadString op-
erator in line 18. Note that for both multiple assignment statements, the single assignment
(SA) semantics is used.

4.9 The cs.NULL pointer

Modified Lua provides a NULL pointer within a new standard library named cs. The
NULL pointer can be accessed as cs.NULL. Thus, we do not need any special CS operators
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1 local he l l o_s t r = " He l lo World"
2 local s t r_s i z e = str ing. len ( h e l l o_s t r ) + 1
3 local pointer_2 = CS_malloc ( s t r_s i z e ∗ 1)
4

5 local l e f t_1 = 1
6 local r ight_1 = 3
7 do
8 l e f t_1 = right_1
9 CS_storeStr ing ( pointer_2 , 0 , h e l l o_s t r )

10 r ight_1 = le f t_1 end
11

12 local r e c e ived_st r = "None"
13

14 local l e f t_2 = 1
15 local r ight_2 = 3
16 do
17 l e f t_2 = right_2
18 r e c e ived_st r = CS_loadString ( pointer_2 , 0 )
19 r ight_2 = le f t_2 end

Figure 4.11: Part of implementation.lua translated from implementation.tl, Part 6 of 6

for loading or storing this NULL pointer.

In Figure 4.12, a Poseidon Lua program is shown. In this program, a variable of a C
pointer type is set to the NULL value. Then, the value of this variable is checked using
the equality operator (==) to determine if its value has been successfully set to the NULL
value. Finally, the program prints the value of the variable ‘is_NULL’.

In Figure 4.13, the translated Modified Lua program is shown. In this program, the
value of cs.NULL is used to set the value of a variable to the NULL value and also to check
that the value of the variable has been successfully set to the NULL value.

4.10 Conclusions

In this chapter, we give an overview of the different CS operators that are provided by
Modified Lua and how a Poseidon Lua program can be translated to make use of them.
Modified Lua extends Lua with CS operators that can be used to manipulate C values.
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1 −−[[ NULL po in t e r s ] ]
2 local pointer_23 : ptr i n t = mal loc ( ptr i n t )
3 pointer_23 [ 0 ] = 400
4

5 pointer_23 = cs.NULL
6

7 local is_NULL : boolean = fa l se
8 i f pointer_23 == cs.NULL then
9 is_NULL = true

10 end −−end i f
11

12 print ( "is_NULL : " . . tostring ( is_NULL ) )

Figure 4.12: pointers.tl

1 local pointer_23 = CS_malloc (4 )
2 do
3 CS_storeInt ( pointer_23 , 4 ∗ 0 ,400) end
4

5 pointer_23 = cs.NULL
6

7 local is_NULL = fa l se
8 i f pointer_23 == cs.NULL then
9 is_NULL = true

10 end
11

12 print ( "is_NULL : " . . tostring ( is_NULL) )

Figure 4.13: pointers.lua translated from pointers.tl

Modified Lua is implemented by augmenting both the Lua compiler and the Lua virtual
machine (VM).

Modified Lua provides 2 operators for manual memory management: CS_malloc and
CS_free. Modified Lua provides 4 operators to store a value of a primitive C type to
a location in memory: CS_storeChar, CS_storeInt, CS_storeDouble, CS_storeBool.
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Modified Lua provides 4 operators to load a value of a primitive C type from a location
in memory: CS_loadChar, CS_loadInt, CS_loadDouble, CS_loadBool. Modified Lua
provides 2 operators for C pointer manipulation: CS_storePointer and CS_loadPointer.
Modified Lua provides the CS_loadOffset operator for C array manipulation. Modified
Lua provides 2 operators for null-terminated C string manipulation: CS_storeString and
CS_loadString.

Modified Lua also provides a NULL pointer in the form of cs.NULL. For this purpose,
we provide a library named cs that is loaded by the Modified Lua VM along with all the
other Lua standard libraries.

Even with the ability to manipulate C values using the CS operators that are provided
by Modified Lua, it may be impossible to match the performance advantage that is provided
by functions that are written purely in the C programming language. Thus, Poseidon Lua
provides a Modified LuaFFI library that is able to call external C functions that are written
in the C programming language. We cover the features of the Modified LuaFFI library in
the next chapter.

In Chapter 6, we compare the performance of a program written in Poseidon Lua with
the performance of a program written in Lua.
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Chapter 5

Modified LuaFFI Library

5.1 Introduction

In this chapter, we introduce our proposed foreign function interface (FFI) library called
Modified LuaFFI, which is also known as luaffi_cs. The Modified LuaFFI library repre-
sents our modification of the existing luaffifb FFI library [16][17]. The luaffifb library
enables a Lua program to call an external C function. Similarly, the Modified LuaFFI
library enables a Poseidon Lua program to call an external C function.

When a Lua program uses the luaffifb library to call an external C function, the
value that is returned to the Lua program depends on the C value that is returned by the
external C function. If the external C function returns a primitive C value, such as an int
or double, the luaffifb library converts this primitive C value to a corresponding Lua
value and returns it. However, If the external C function returns a composite C value, such
as a C struct or a C pointer, the luaffifb library returns a cdata value back to the Lua
program. The cdata value consists of a C value element and a type tag. The cdata value
is needed to facilitate the interaction between the composite C value and other Lua values
in the Lua program. When a component of the composite C value is accessed within the
Lua program, it must be converted to a corresponding Lua value before it can be used in
the Lua program. Similarly, when the content of a Lua value is to be placed inside the
composite C value, it must be converted to a corresponding C value first. Either conversion
step at a cdata use-site requires dynamic typechecking using its type tag.

The Modified LuaFFI library alters the functionality of the luaffifb library in such
a way that whenever an external C function returns a C pointer value, it returns the C
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pointer without encapsulating it inside a cdata value. It is possible to assign this value
to a variable that belongs to a C pointer type in Poseidon Lua. From this point onwards,
the static typechecking capabilities of Poseidon Lua can be harnessed to ensure the correct
usage of this value inside the Poseidon Lua program. Moreover, Poseidon Lua is able to
leverage its static typechecking capabilities to perform conversions between Lua values and
C values without incurring the performance overhead of extra dynamic typechecking.

Note that when the return value of an external C function is a non-primitive C value
other than a C pointer value such as a C struct value, our Modified LuaFFI library and
the existing luaffifb library both return a cdata value.

The rest of this chapter is structured as follows. An overview of the existing Lua FFI
library luaffifb is given in Section 5.2. In Section 5.3, the features and implementation
details of the Modified LuaFFI library are provided. In Section 5.4, we show how the
Modified LuaFFI library can be used by a Poseidon Lua program to call an external C
function in order to verify that the Modified LuaFFI library is implemented correctly.
Finally, we conclude the chapter in Section 5.5.

5.2 The Foreign Function Interface (FFI) Library

In general, an FFI library allows a program written in one programming language to make
use of a library that is written in a different programming language. In particular, the
luaffifb library enables a Lua program to call an external C function.

Note that the C programming language [12] is a statically-typed programming language.
Thus, all typechecking is performed at compile-time. As a result, C values can be efficiently
manipulated at run-time without the need for any extra run-time typechecking. Since Lua
is a dynamically-typed programming language, it performs all of its typechecking at run-
time. Thus, it may be preferable for a Lua program to call an external C function to carry
out a particular task for the purpose of avoiding the performance costs related to dynamic
typechecking. This capability is exactly the service that is provided by the luaffifb
library.

A cdata value performs dynamic typechecking for the purpose of converting a C value
to an appropriate Lua value and vice versa. However, the performance costs of these
dynamic typechecks can negate any performance benefits gained through the call to the
external C function. One possible remedy would be to use static typechecking to avoid
the performance overhead from the dynamic typechecking that is carried out as part of
the value conversions. However, the luaffifb library is unable to take advantage of
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the performance benefits that stem from the use of static typechecking because Lua is a
dynamically-typed programming language and does not require any static type annotations
from the programmer.

The performance overhead of executing these dynamic typechecks could be avoided by
utilizing the static typechecking facility for C types that is provided by Poseidon Lua.
Poseidon Lua is able to perform static typechecking at compile-time because it does have
access to static type annotations. Thus, Poseidon Lua is able to manipulate its C values
without the need to perform any extra run-time typechecking. Furthermore, Poseidon Lua
is able to use its static typechecking capabilities to perform automatic conversions between
C values and Lua values without executing any dynamic typechecks.

In fact, when a Poseidon Lua program is translated to a Modified Lua program, that
Modified Lua program uses type-specific operators to manipulate the C values. Therefore,
using variables that belong to the C pointer types of Poseidon Lua to manipulate C values
should be more efficient than using the cdata values that are provided by luaffifb to
manipulate C values.

In addition, this approach reduces memory overhead because extra memory does not
need to be allocated to hold the cdata value.

The Modified LuaFFI library facilitates the use of variables that belong to the C pointer
types of Poseidon Lua to manipulate pointers that are returned by external C function calls.

5.3 Modified LuaFFI Library

The Modified LuaFFI library provides to a program written in Poseidon Lua the ability to
call an external C function that returns a C pointer and use the returned C pointer in the
rest of the program without incurring the performance costs of extra dynamic typechecking.

5.3.1 Modified LuaFFI Library Description

The Modified LuaFFI library extends the luaffifb library to provide features that enable
the interoperation between Poseidon Lua code and external C functions. This makes it
possible to take advantage of the static typechecking for C types that is provided by
Poseidon Lua. In this way, the correct use of C values within Poseidon Lua code can be
guaranteed without the need for any extra dynamic typechecking.
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A value of a C pointer type is represented in Poseidon Lua by a Lua light-userdata
value that contains the actual C pointer to memory. Thus, a pointer that is returned by an
external C function can be placed inside a Lua light-userdata value, which can be easily
assigned to a variable that belongs to a C pointer type. Then, the static typechecking
facility of Poseidon Lua can be used to make sure that the C pointer is used correctly.

5.3.2 Modified LuaFFI Library Implementation

When an external C function returns a value, the luaffifb library checks the return type
for the external C function. If the return type is a pointer type, a cdata value is created
and pushed onto the Lua VM stack. The type tag of the cdata value is set to the return
type and the returned pointer value is placed within the cdata value. Then, the cdata
value is returned back to the Lua program.

The Modified LuaFFI library is implemented as follows. When an external C function
returns a value, the Modified LuaFFI library checks the return type for the external C
function. If the return type is a C pointer type, the lua_pushlightuserdata function of
the Lua API is called. It pushes a Lua light-userdata value onto the Lua VM stack and
places the returned pointer value within the Lua light-userdata value. Then, the Lua
light-userdata value is returned back to the Lua program.

The source code for the Modified LuaFFI library is available at GitHub as a component
of Poseidon Lua [15].

5.4 Calling an external C function

Modified LuaFFI gives a Poseidon Lua program the ability to call an external C function
and use the returned value as a C value that belongs to a C type of Poseidon Lua. Specifi-
cally, if the returned value is a C pointer to a block of memory, then a Lua light-userdata
value containing that C pointer is returned instead. Since in Poseidon Lua, C values be-
longing to a C pointer type such as ‘ptr int’ are implemented as Lua light-userdata
values containing a C pointer to a block of memory, the value that is returned by the C
function can easily be treated as a C value that belongs to a C pointer type.

In Figure 5.1, the Modified LuaFFI library is loaded using ‘require( “ffi_cs” )’.
Then, the types for the input values and output values for the external C function named
memcpy is provided to the library using ‘ffi_cs.cdef( def_str )’.
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1 local f f i_ c s = require ( " f f i_ c s " )
2

3 local def_str : string = ""
4

5 def_str = def_str . . " void ∗memcpy ( "
6 def_str = def_str . . " void ∗dest , "
7 def_str = def_str . . " const void ∗ source , "
8 def_str = def_str . . " s i ze_t num_bytes "
9 def_str = def_str . . " ) ; "

10

11 f f i _ c s . c d e f ( de f_str )

Figure 5.1: ffi.tl, Part 1 of 3

1 −−[[ f f i ] ]
2 local f ruit_serving_A = f f i_c s .n ew ( " i n t [ 2 ] " )
3 f ruit_serving_A [ 0 ] = 101
4 f ruit_serving_A [ 1 ] = 102
5

6 local sum_A : i n t e g e r = fruit_serving_A [ 0 ] + fruit_serving_A [ 1 ]

Figure 5.2: ffi.tl, Part 2 of 3

In Figure 5.2, line 2 uses ‘ffi_cs.new( “int[2]” )’ to create a cdata value that
contains an array of 2 int elements. The assignment of values in lines 3 - 4 and the
accessing of values in line 6 cause the cdata value to perform dynamic typechecking in
order to convert Lua values to C values and vice versa.

In Figure 5.3, line 1 allocates memory for an array of 2 int elements. Lines 3 - 5 call the
external C function named memcpy to copy values into the allocated array. Line 7 accesses
the values that are stored in the array without performing any dynamic typechecking.
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1 local f ruit_serving_B : ptr i n t = mal loc ( 2 ∗ s i z e o f ( i n t ) )
2

3 f ruit_serving_B = ffi_cs.C.memcpy ( fruit_serving_B ,
4 fruit_serving_A ,
5 2 ∗ s i z e o f ( i n t ) )
6

7 local sum_B : i n t e g e r = fruit_serving_B [ 0 ] + fruit_serving_B [ 1 ]

Figure 5.3: ffi.tl, Part 3 of 3

5.5 Conclusions

In this chapter, we give an overview of how Modified LuaFFI can be used by a Poseidon
Lua program to call an external C function. If the return value of the external C function
is a pointer, then Modified LuaFFI returns a C pointer value. This C pointer value can
be assigned to a variable that belongs to a C pointer type. From this point onwards, this
C pointer value can be manipulated by Poseidon Lua code. Since the use of values that
belong to a C pointer type is statically typechecked by Poseidon Lua, there is no need
to perform any run-time typechecking to enforce the static type of the C pointer value.
Therefore, a Poseidon Lua program is able to use the Modified LuaFFI component to avoid
the performance overhead that would otherwise have to be incurred by a Lua program.

In the next chapter, we compare the performance of a program written in Poseidon Lua
with the performance of a program written in Lua. We also compare the performance of a
program that uses the C pointer types of Poseidon Lua with the performance of a program
that uses the cdata values of the luaffifb library.
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Chapter 6

Performance

6.1 Introduction

In this chapter, we measure the performance advantage that can be attained by a Poseidon
Lua program with respect to a Lua program. For convenience, a Lua program that does
not use the luaffifb library is referred to as a plain Lua program and a Lua program
that does use the luaffifb library is referred to as a luaffifb program. Furthermore,
whenever a Poseidon Lua program uses the Modified LuaFFI library, it is referred to as a
Modified LuaFFI program.

In contrast to a plain Lua program and a luaffifb program, a Poseidon Lua program
should be able to use manual memory management to avoid the performance costs related
to the use of an automatic garbage collector and it should be able to use direct memory
programming to avoid the performance overhead related to the use of Lua tables.

A cdata value that is created by the luaffifb library performs dynamic typechecking
to enforce the static type of the value that it contains. These dynamic typechecks introduce
performance costs. Since Poseidon Lua is able to perform static typechecking for its C
types, a Poseidon Lua program can avoid the use of these dynamic typechecks and the
overhead associated with them with the use of the Modified LuaFFI library.

We run a benchmark suite to test the performance advantage of a Poseidon Lua program
over Lua programs. In addition, we run a feature test suite to measure the performance
benefit of the manual memory management and direct memory programming features of
Poseidon Lua as well as the performance benefit of the Modified LuaFFI library of Poseidon
Lua.
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In Section 6.2, we give an overview of the test environment within which our benchmarks
and feature test cases are run. In Section 6.3, we give a description of the individual
benchmarks in our benchmark suite, outline the methodology that we use to run our
experiment, and present the results of our experiment along with relevant explanations.
Similarly, in Section 6.4, we describe our feature test suite along with results and discussion.
In Section 6.5, we conclude the chapter.

6.2 Test Environment

In this section, we provide some information regarding the computer on which we ran
our benchmarks and feature test cases. This computer has a GenuineIntel x86_64 CPU
architecture and a total memory of 8052948 kB. This computer runs an Ubuntu 14.04.3
LTS operating system.

6.3 Benchmarks

There are four benchmarks in our benchmark suite to compare the performance of Poseidon
Lua programs and Lua programs.

6.3.1 Introduction

For our benchmark suite, we borrow 4 benchmark programs that are plain Lua programs
from The Computer Language Benchmarks Game website [6][7]. We create a version of
each of these original programs that is written in Poseidon Lua and uses its C types. We
also create a version of each of the original programs as a luaffifb program that uses the
cdata values that are provided by the luaffifb library. We describe the characteristics
of these programs and the problems that they solve as follows.

For our benchmark suite, we only use 4 of the original 10 benchmark programs that
were available from the The Computer Language Benchmarks Game website [6][7]. The
other 6 benchmark programs are unusable for a variety of reasons. Some of these programs
execute program fragments that are encoded as Lua strings. These programs are unusable
because Poseidon Lua cannot perform static typechecking for program fragments that are
encoded as Lua strings. The other unused benchmark programs utilize data structures
that are not easily representable using values that belong to the C types of Poseidon Lua.
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The 4 programs in our benchmark suite make use of data structures that are easily
representable using values that belong to the C types of Poseidon Lua.

Binary-trees ( b1 )

The goal of this benchmark is to create and traverse binary trees of various depths.

N-body ( b2 )

The goal of this benchmark is to track the movements of the different planets in the solar
system.

Spectral-norm ( b3 )

The goal of this benchmark is to compute the spectral norm of a matrix.

Fannkuch-redux ( b4 )

The goal of this benchmark is to take an array of numbers and change the location of some
of the numbers until a given condition is satisfied.

6.3.2 Methodology

We perform a total of 5 runs of all the programs in our benchmark suite. Each run executes
the plain Lua programs from the benchmark suite in the following order: b1, b2, b3, b4.
Next, the same sequence of execution is repeated for the Poseidon Lua programs. Finally,
the same sequence of execution is repeated for the luaffifb programs.

6.3.3 Results

We process the result of running our benchmark suite using a program written in the R
programming language. In Table 6.1, we provide the mean run time for the plain Lua
program, Poseidon Lua program, and luaffifb program of each benchmark as well as
the corresponding standard deviations. In Table 6.2, for each benchmark, we provide the
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time saved by and the speedup achieved by the Poseidon Lua program with respect to the
plain Lua program and the luaffifb program. Then, we provide the geometric mean of
the speedup values for all the benchmarks.

In Table 6.2, for each benchmark, we provide the percentage of the run time of the
plain Lua program that is saved by the Poseidon Lua program as well as the percentage
of the run time of the luaffifb program that is saved by the Poseidon Lua program.
For each benchmark, we also provide the speedup that is achieved by the Poseidon Lua
program relative to the plain Lua program and the luaffifb program.

The ‘Time Saved from plain Lua program’ column contains the percentage of the run
time of the plain Lua program that is saved by the Poseidon Lua program as calculated
by ( ( ( ‘Mean of plain Lua program’ - ‘Mean of Poseidon Lua program’ ) / ‘Mean of
plain Lua program’ ) * 100 ) where ‘Mean of plain Lua program’ and ‘Mean of Poseidon
Lua program’ are obtained from Table 6.1.

On the other hand, the ‘Time Saved from luaffifb program’ column contains the
percentage of the run time of the luaffifb program that is saved by the Poseidon Lua
program as calculated by ( ( ( ‘Mean of luaffifb program’ - ‘Mean of Poseidon Lua
program’ ) / ‘Mean of luaffifb program’ ) * 100 ) where ‘Mean of luaffifb program’
and ‘Mean of Poseidon Lua program’ are obtained from Table 6.1.

The ‘Speedup from plain Lua program’ column contains the speedup achieved by
the Poseidon Lua program with respect to the plain Lua program as calculated by (
‘Mean of plain Lua program’ / ‘Mean of Poseidon Lua program’ ). The ‘Speedup from
luaffifb program’ column contains the speedup achieved by the Poseidon Lua program
with respect to the luaffifb program as calculated by ( ‘Mean of luaffifb program’ /
‘Mean of Poseidon Lua program’ ). In the last row, we provide the geometric mean of
the speedup data of the columns ‘Speedup from plain Lua program’ and ‘Speedup from
luaffifb program’.

From the ‘geometric mean’ row of Table 6.2, we observe that a Poseidon Lua program
can be expected to achieve a speedup of 0.98X with respect to a corresponding plain
Lua program. This means that a Poseidon Lua program and a corresponding plain Lua
program are roughly equal in terms of performance.

From the ‘geometric mean’ row of Table 6.2, we also observe that a Poseidon Lua
program can be expected to achieve a speedup of 6.82X with respect to a correspond-
ing luaffifb program. This means that a Poseidon Lua program can offer a significant
performance advantage over a corresponding luaffifb program.

We observe from the ‘Speedup from luaffifb program’ column of Table 6.2 that for
all benchmarks, Poseidon Lua programs achieve a significant speedup with respect to

80



Table 6.1: Benchmark Mean Table
Name Mean

of
plain Lua
program

(Seconds)

Standard
Deviation
of
plain Lua
program

(Seconds)

Mean
of
Poseidon Lua
program

(Seconds)

Standard
Deviation
of
Poseidon Lua
program

(Seconds)

Mean
of
luaffifb
program

(Seconds)

Standard
Deviation
of
luaffifb
program

(Seconds)
b1 22.0 0.70 18.8 0.44 202.4 2.96
b2 4.0 0.70 4.0 0 40.6 1.14
b3 105.6 0.89 108.0 0 270.8 2.58
b4 55.0 0 66.8 2.94 528.8 9.67

Table 6.2: Benchmark Speedup Table
Name Time Saved

from
plain Lua
program
(%)

Time Saved
from
luaffifb
program
(%)

Speedup
from
plain Lua
program

Speedup
from
luaffifb
program

b1 14.54 90.71 1.17 10.76
b2 0 90.14 1.00 10.15
b3 -2.27 60.11 0.97 2.50
b4 -21.45 87.36 0.82 7.91

geometric mean 0.98 6.82
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luaffifb programs. These speedups happen because the luaffifb programs use cdata
values to represent relevant data structures in the programs. As a result, luaffifb pro-
grams have to perform dynamic typechecking which Poseidon Lua programs are able to
avoid using static typechecking.

As per speedup values, Poseidon Lua programs outperform plain Lua programs in 1
out of 4 benchmarks and have the same performance in 1 out of 4 benchmarks. Poseidon
Lua programs outperform luaffifb programs in all 4 benchmarks.

6.3.4 Discussion

A Poseidon Lua program can attain performance gains over a corresponding plain Lua
program in two ways. One way is to use manual memory management to avoid the per-
formance costs of an automatic garbage collector. Another way is to use direct memory
programming to avoid the performance costs associated with using a Lua table to manip-
ulate memory.

For 3 out of our 4 benchmarks, i.e., benchmarks b2, b3, and b4, the plain Lua program
uses Lua tables with consecutive integer indices. In such situations, the Lua VM performs
an optimization where it places all the values of the Lua table into an actual array instead
of a hash table as is usually the case, which allows a plain Lua program to avoid the
performance costs of hash-indexing as the array elements can be accessed directly [11].
This effectively allows a plain Lua program to perform direct memory programming in
a similar manner to a Poseidon Lua program. This negates the ability of a Poseidon Lua
program to outperform the use of Lua tables when it comes to memory manipulation.

For each of these 3 benchmarks, the plain Lua program uses Lua tables that are not
made available for garbage collection until the end of the program. This negates the ability
of Poseidon Lua to gain any performance advantage over the automatic garbage collector
through the use of manual memory management.

Due to these features of the 3 benchmarks, we can see from Table 6.2 that Poseidon
Lua programs can only achieve a speedup of 0.98X with respect to plain Lua programs.
However, we contend that the features of these 3 benchmarks are anomalous and do not
represent the real-world conditions for plain Lua programs. It is unlikely that plain Lua
programs never produce any garbage for the automatic garbage collector to process or that
they always use Lua tables as arrays.

The 4 plain Lua programs in our benchmark suite were selected because they used
data structures that could be easily represented by values that belong to the C types of
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Poseidon Lua. On the other hand, the programs in our benchmark suite are all micro-
benchmarks. Thus, these are programs that solve a small problem within a small amount
of code. As a result, these programs are vulnerable to having anomalous behavior that
would not occur in larger real-world programs.

However, from Table 6.2 we can observe that for benchmarks b2, b3, and b4, the
Poseidon Lua programs are able to attain significant performance gains over the luaffifb
programs. Note that in these cases, Poseidon Lua programs are able to avoid dynamic
typechecking of cdata values at each use-site.

On the other hand, benchmark b1 (Binary-trees) does not exhibit the anomalous fea-
tures of benchmarks b2, b3, and b4. For this benchmark, the plain Lua program uses Lua
tables as hash tables and regularly produces garbage for the automatic garbage collector
to process. This allows the Poseidon Lua program to use manual memory management
and direct memory programming to gain a performance advantage over the plain Lua
program. Indeed, we can see from Table 6.2, that for benchmark b1, the Poseidon Lua
program is able to attain a speedup of 1.17X with respect to the plain Lua program and
a speedup of 10.76X with respect to the luaffifb program. We argue that this is a more
accurate reflection of the performance advantage that can be achieved by a Poseidon Lua
program with respect to a plain Lua program under real-world conditions.

Since 3 out of 4 benchmarks show anomalous behavior for the plain Lua programs,
we decided to carry out further testing to ascertain that the features of Poseidon Lua
have indeed performance advantages over Lua. Our new tests represent the more realistic
scenarios for which we have designed the features of Poseidon Lua.

6.4 Feature Testing

There are three test cases in our feature test suite to compare the performance of Poseidon
Lua and Lua programs.

6.4.1 Introduction

Using our feature test suite, we test the performance of the various language features of
Poseidon Lua. We test how the manual memory management feature of Poseidon Lua
performs against the automatic garbage collector of Lua. We test the performance impact
of using the direct memory programming feature of Poseidon Lua relative to the use of
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Lua tables for memory manipulation. We also test the performance benefit of using the
Modified LuaFFI, luaffi_cs, library of Poseidon Lua in place of the luaffifb library.

Manual memory management ( c1 )

The goal of this test case is to measure the performance benefits of using the manual
memory management feature of Poseidon Lua relative to using the automatic garbage
collection feature of Lua. For this purpose, each program in this test case executes 200
iterations. At the start of each iteration, 30 lists are created where each list has 1,000,000
integer elements. For each list, the elements that have even indices are populated with
values. Then, the values of all the populated elements of all the lists are added together
to obtain a sum. At the end of each iteration, the 30 lists are deleted. The plain Lua
program and the Poseidon Lua program use a Lua table and a C pointer to a block of
memory, respectively, to represent each list.

Note that the lists are created and deleted on every iteration. This emphasizes the
difference in performance of the automatic garbage collection of Lua tables in the plain
Lua program and the manual deallocation of the memory blocks in the Poseidon Lua
program. In addition, only the elements of the lists that have even indices are assigned
values so that Lua tables are implemented using hash tables and an optimization is not
performed to implement Lua tables using arrays.

Direct memory programing ( c2 )

The goal of this test case is to measure the performance benefits of using the direct memory
programming feature of Poseidon Lua relative to using the Lua table values of Lua. For
this purpose, each program in this test case creates 30 lists where each list has 1,000,000
integer elements, executes 200 iterations to traverse over the elements of the 30 lists, and
deletes the 30 lists at the end of the program. In each iteration, for each list, the elements
of the list that have even indices are populated with values. Then, the values of all the
populated elements of all the lists are added together to obtain a sum. The plain Lua
program and the Poseidon Lua program use a Lua table and a C pointer to a block of
memory, respectively, to represent each list.

Note that the behavior of c2 is different than the behavior of c1. In c2, the lists are
created and deleted only once and this is done outside the iterations. The iterations only
manipulate the elements of the lists. This emphasizes the difference in performance of
the data manipulation mechanism of Lua tables in the plain Lua program and the direct
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memory programming facility of the Poseidon Lua program. In addition, only the elements
of the lists that have even indices are assigned values so that Lua tables are implemented
using hash tables and an optimization is not performed to implement Lua tables using
arrays.

Foreign function interface ( c3 )

The goal of this test case is to measure the performance benefits of using the Modified
LuaFFI library of Poseidon Lua relative to using the luaffifb library of Lua. For this
purpose, each program in this test case executes 2000 iterations. At the start of each
iteration, 30 lists are created where each list has 10,000 integer elements. All the elements
of these lists are populated with values. Then, for each list, an external C function is called
to set the value of one of its elements. Then, the values of all the populated elements of
all the lists are added together to obtain a sum. At the end of each iteration, the 30 lists
are deleted. The luaffifb program and the Modified LuaFFI program use a cdata and a
C pointer to a block of memory, respectively, to represent each list.

The main purpose of c3 is not to measure the difference in the performance of the
two FFI libraries when they are used to call an external C function. The main difference
between the two FFI libraries is that when an external C function call returns a pointer,
the luaffifb library returns a cdata value containing the pointer, whereas the Modified
LuaFFI library returns a C pointer value that can be used directly in a Poseidon Lua
program. The goal is to measure the difference in the performance of using the cdata
value that is returned by the luaffifb library and the C pointer value that is returned by
the Modified LuaFFI library.

The lists are the data structures that are represented by the cdata values and the C
pointer values. The lists are used as the inputs and outputs of the external C function
calls. Manipulating the data stored in the lists after the call to the external C function
causes dynamic typechecking to be performed by the cdata values.

The C pointer values should be able to avoid the overhead from the dynamic type-
checking that is performed by the cdata values. The C pointer values should also be able
to avoid the overhead from the automatic garbage collection of the cdata values through
the use of manual memory management.
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Table 6.3: Feature Testing Mean Table
Name Mean

of
plain Lua
program

(Seconds)

Standard
Deviation
of
plain Lua
program

(Seconds)

Mean
of
Poseidon Lua
program

(Seconds)

Standard
Deviation
of
Poseidon Lua
program

(Seconds)
c1 378.4 4.61 90.4 0.54
c2 118.8 0.44 90.2 0.44

Name Mean
of
luaffifb
program

(Seconds)

Standard
Deviation
of
luaffifb
program

(Seconds)

Mean
of
Modified LuaFFI
program

(Seconds)

Standard
Deviation
of
Modified LuaFFI
program

(Seconds)
c3 179.6 1.67 17.4 0.54

6.4.2 Methodology

We perform a total of 5 runs of all the programs in our feature test suite. Each run begins
by executing the plain Lua program of test case c1. Then, the plain Lua program of
test case c2 is executed. Next, the luaffifb program of test case c3 is executed.

This is followed by the execution of the Poseidon Lua program of test case c1. Then,
the Poseidon Lua program of test case c2 is executed. Next, the Modified LuaFFI program
of test case c3 is executed.

6.4.3 Results

We process the result of running our feature test suite using a program written in the R
programming language. In Table 6.3, we provide the mean run time and the standard
deviation for each program of each test case. In Table 6.4, for each test case, we provide
the speedup achieved by the Poseidon Lua or Modified LuaFFI program with respect to
the plain Lua or luaffifb program, respectively.

For the test case c1, the Poseidon Lua program is able to achieve a speedup of 4.18X
with respect to the corresponding plain Lua program. For the test case c2, the Poseidon
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Table 6.4: Feature Testing Speedup Table
Name Time Saved

from
plain Lua
program
(%)

Speedup
from
plain Lua
program

c1 76.10 4.18
c2 24.07 1.31

Name Time Saved
from
luaffifb
program
(%)

Speedup
from
luaffifb
program

c3 90.31 10.32

Lua program is able to achieve a speedup of 1.31X with respect to the corresponding plain
Lua program.

For the test case c3, the Modified LuaFFI program is able to achieve a speedup of
10.32X with respect to the corresponding luaffifb program.

From the speedup values of Table 6.4, we observe that Poseidon Lua programs out-
perform plain Lua programs in the first 2 test cases (c1 and c2). The Modified LuaFFI
program outperforms the luaffifb program in the last test case (c3). Therefore, the Posei-
don Lua or Modified LuaFFI programs outperform the plain Lua or luaffifb programs
in all 3 test cases.

6.4.4 Discussion

Test case c1 involves heavy dynamic memory allocation and deallocation activities. The
plain Lua program uses automatic garbage collection to deal with the deallocation of
memory. The Poseidon Lua program uses manual memory management to handle the
deallocation of memory. For this reason, we observe from Table 6.4 that the Poseidon Lua
program is able to achieve a notable speedup of 4.18X over the plain Lua program.

Test case c2 involves mainly memory manipulation activities. The plain Lua program
uses Lua tables to deal with memory manipulation. The Poseidon Lua program uses direct
memory programming to handle memory manipulation. From the speedup value for test
case c2 in Table 6.4, we observe that the Poseidon Lua program is able to achieve a speedup
of 1.31X over the plain Lua program.
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In test case c3, both programs call an external C function which returns a C pointer. As
a result, the luaffifb program uses a cdata value to represent the C pointer and carries
out dynamic typechecking at each use-site of the return value. On the other hand, the Mod-
ified LuaFFI program uses static typechecking to avoid any extra dynamic typechecking.
Moreover, test case c3 also involves heavy dynamic memory allocation and deallocation
activities. Therefore, the Modified LuaFFI program is also able to use manual memory
management to avoid the performance overhead of the automatic garbage collection of
cdata values. For these reasons, we observe from Table 6.4 that the Modified LuaFFI
program is able to achieve a significant speedup of 10.32X over the luaffifb program.

Note that in the test case c3, the goal is to measure the total performance benefit
of using the C pointer that is returned by the Modified LuaFFI library over using the
cdata value that is returned by the luaffifb library. Thus, we are not just measuring the
performance of the FFI libraries when it comes to calling the external C function. We are
mainly measuring the performance gains from the avoidance of extra dynamic typechecking
and automatic garbage collection.

6.5 Conclusions

In this chapter, we measure the performance advantage that can be attained by a Poseidon
Lua or Modified LuaFFI program with respect to a plain Lua or a luaffifb program.
For this purpose, at first, we run a benchmark suit and find that a Poseidon Lua program
can be expected to achieve a speedup of 0.98X with respect to a corresponding plain
Lua program and a speedup of 6.82X with respect to a corresponding luaffifb program.
Thus, a Poseidon Lua program can offer a substantial improvement in performance with
respect to a corresponding luaffifb program. However, a Poseidon Lua program is evenly
matched with a corresponding plain Lua program with regard to performance.

To ascertain that the Poseidon Lua programs do indeed have a performance advantage
over Lua programs in real life programming situations, we test the features of Poseidon
Lua individually in our feature test suit which consists of 3 test cases.

A Poseidon Lua program is able to achieve a speedup of 4.18X with respect to a corre-
sponding plain Lua program when heavy dynamic memory allocation and deallocation is
involved. A Poseidon Lua program is able to achieve a speedup of 1.31X with respect to a
corresponding plain Lua program when memory manipulation is involved.

A Modified LuaFFI program is able to achieve a speedup of 10.32X with respect to
a corresponding luaffifb program when the C pointer value returned by the Modified
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LuaFFI library is used instead of the cdata value that is returned by the luaffifb library.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

The novel features that are introduced in this thesis are as follows.

In Chapter 3, we introduce our proposed programming language named Poseidon Lua.
Poseidon Lua extends Typed Lua with operators to perform manual memory management
and C types, which include C pointer types that can be used for direct memory program-
ming.

In Chapter 4, we introduce Modified Lua. Modified Lua extends Lua with special
operators that can be used to manipulate C values. These special operators can also
be used to perform manual memory management. A Poseidon Lua program is statically
typechecked and translated to a Modified Lua program for the purpose of making use of
its special operators. Modified Lua is interesting independently of Poseidon Lua because
it effectively allows a program to take advantage of facilities such as pointer manipulation
and manual memory management from within a dynamically-typed scripting language.
Traditionally, these language facilities are only available from statically-typed programming
languages such as the C programming language. These language facilities are generally not
offered by dynamically-typed scripting languages such as Lua because these languages tend
to strive for a greater degree of automation.

In Chapter 5, we introduce the Modified LuaFFI library. This library allows a Poseidon
Lua program to call an external C function that returns a C pointer. Since Poseidon Lua is
able to perform static typechecking, there is no need to perform any dynamic typechecking
to enforce the static type of the C pointer at run-time.
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7.2 Future Work

Our implementation of Poseidon Lua does not make use of a JIT compiler. A JIT compiler
would be able to use run-time information to improve the performance of a Poseidon Lua
program. There are situations where a Poseidon Lua program would need to perform
run-time computations. For example, a Poseidon Lua program may need to compute the
offset required to index a C array at run-time. A JIT compiler may be able to improve
the performance of a Poseidon Lua program in situations such as this. This is a possible
direction of future research work.

The C programming language is not a memory-safe programming language. It allows
a program to access any location of memory regardless of whether the program should
or should not access that location in memory. This poses a security concern for software
that is developed in the C programming language. Poseidon Lua also allows a program to
access any location in memory. A possible direction for future work is to develop language
features that can mitigate the security risk from unrestricted memory accesses.

When the return value of an external C function is a non-primitive value other than
a pointer value, such as a struct value, Poseidon Lua cannot efficiently handle this case
using the Modified LuaFFI library. In this situation, the Modified LuaFFI library returns
a cdata value that cannot be handled by Poseidon Lua without incurring the performance
costs of extra dynamic typechecks. A direction for future work is to handle the cases where
the return value is a non-primitive value other than a pointer with static typechecking only.

Another possible direction for future work is to investigate how to perform static type-
checking for arguments to an external C function call instead of dynamic typechecking.
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