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Abstract

The Takagi class is a class of fractal functions on the unit interval generalizing the cel-
ebrated Takagi function. In this thesis, we study the extrema of these functions. This
is a problem that goes back to J.-P. Kahane in [12]. In this thesis, we state and prove
the following new and original results on this long-standing problem. We characterize the
set of all extrema of a given function in the Takagi class by means of a step condition on
their binary expansions. This step condition allows us to compute the extrema and their
locations for a large class of explicit examples and to deduce a number of qualitative prop-
erties of the sets of extreme points. Particularly strong results are obtained for functions
in the so-called exponential Takagi class. We show that the exponential Takagi function
with parameter v € (0, 1) has exactly two maximizers if 2v is not the root of a Littlewood
polynomial. On the other hand, we show that there exist Littlewood polynomials such
that, if 2v is a corresponding root in (0, 1), the set of maximizers is a Cantor-type set with
Hausdorff dimension 1/n, where n is the degree of the polynomial. Furthermore, if v is
in (—1,-0,5), the location of the maximum is a nontrivial step function with countably
many jumps. Finally, we showed that, if v is in (—1, —0.8), the minima will only attain at
t=02and t=0.8. If visin (—0.8,1), the only minimizer is at ¢t = 0.5.
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Chapter 1
Introduction

Recent research in finance and probability requires pathwise integration theorems for in-
tegrators of various degrees of 'roughness’, see e.g. [0, 7, 10]. As observed in [15], a class

of generalized Takagi functions can serve this propose.

1.1 Early History

The Takagi function z(t) was first introduced in 1903 by Takagi [19]. His goal was to
provide an example of a continuous but nowhere differentiable function on the unit interval
[0, 1]. The Takagi function has been discovered many times. Overviews can be found in the
surveys by Allaart and Kawamura [!] and Lagarias [I1]. In modern mathematical notation,

the Takagi function is defined as follows:

Definition 1.1.1. The Takagi function x : [0,1] — R is defined as

=1
=> 5 0(2"), (1.1)
n=0

where ¢(t) = Hli%l |t — z| is the distance from ¢ € R to its nearest integer.
zE
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Figure 1.1: Plot of the classic Takagi function

Later, Hata and Yamaguti [1 1] gave a generalization of the Takagi function by replacing
the coefficient 5 in (1.1) with a general constant ¢,,. Such a collection of functions is often
referred as the Takagi class €. Similar class were also introduced by Kahane [12]. A formal

definition for the Takagi class can be given as follows:

Definition 1.1.2. The Takagi class € is the collection of functions x : [0,1] — R that

can be represented as:
o]

2(t) =Y cad(2't), (1.2)

n=0
where C = {¢, }72, is a sequence of real numbers for which x is well-defined and continuous.
In order to specify the Takagi function associated with the sequence C, we denote this

function with zc(t).

One may notice that the domain of functions in form of (1.2) can be extended from
[0,1] to R. However, it is sufficient to study the restriction of the function z¢ to the unit
interval [0, 1], because z¢(t + 1) = z¢(t) for all t € R.



In order to give a sufficient condition for the convergence of the series defined in (1.2),

we introduce following definitions and theorem.

Definition 1.1.3. Let us denote the &' order truncated Takagi function over an infinite

sequence C = {¢;}22, € RN by zc(t), which is written as

rer(t) =Y ap(2mt), te(0,1]. (1.3)

Theorem 1.1.4. The series zc(t) =Y ., c,(2"t) over the sequence C is well-defined if

[e.9]

i, > leel =0
k=n
Proof. We now write || - || for the usual sup norm on C|0, 1]. First of all, let us prove the

series {z¢,} is a Cauchy sequence in C10, 1]. Now, let us consider

m
|lzcn — zemll = sup |zon(t) — zom(t) = sup | Y ci(2't)]
t€[0,1] t€[0,1] Pt
< Zﬁn—i-l |ci < Z?inﬂ i

- 2 - 2

As lim Y77 |cx] = 0, hence for any € > 0, there exists N € N such that for all m > n > N,
n—roo

m (o0
D el <D el <€
k=n k=n

Therefore, {zc,} is a Cauchy sequence in C[0,1]. Hence, ¢, converges uniformly on
[0, 1] to the function zc. O

Furthermore, Kono [13] characterized the differentiability of the Takagi class as follows:

Theorem 1.1.5. Let x¢ be defined as (1.2), and let a,, = 2"¢,.



1. If {a,} € £?, then z¢ is absolutely continuous and hence differentiable almost every-

where.

2. If {a,} ¢ ¢* but lim,, ,,, a, = 0, then z¢ is non-differentiable at almost every point
of [0,1], but z¢ is differentiable on an uncountably large set, and the range of the

derivative x is R.

3. If limsup,,_, |an| > 0, then z¢ is nowhere differentiable.

An important sub-class in the Takagi class is obtained by taking ¢, = v™ for some

v € (—1,1). Following Galkin and Galkina [9], we call this the exponential Takagi class.

Definition 1.1.6. The exponential Takagi class B is the sub-collection of real-valued

functions z, : [0,1] — R in the Takagi class €, where x, can be written as
n(t) =) v"¢(2"). (1.4)
n=0
The function x, is called the exponential Takagi function with parameter v.

Moreover, Galkin and Galkina [9] gave results on the differentiability of the exponential

Takagi class.

Theorem 1.1.7. Let z, be defined as (1.4), then

1. If |v| < 1, then the series defined in (1.4) converges uniformly in ¢ € R, therefore x,

1

is continuous and |z, | < SR

2. If |v| > 1, the series defined in (1.4) converges if and only if ¢ € T. Furthermore, the

function z, is discontinuous on set T.

Proof. See Galkin and Galkina [9]. O



One may notice that Theorem 1.1.7 gives us a reason to only study the extrema of
exponential Takagi function with a nature restriction for v in (—1,1). For the following
chapters, the author may directly apply this restriction on parameter v without further
notice. Furthermore, readers may see that if the parameter v = %, z,(t) is the classic

Takagi function x(t).

1.2 Previous Results

One of many important aspects of the Takagi function is the collection of extreme points

for the Takagi function. Kahane [12] pioneered this research with the following theorem:

Theorem 1.2.1. The maximum value of the classical Takagi function x is % Then set of

maximizers is a perfect set of Hausdorff dimension %, and consists of all the points ¢t with

binary expansion t = 0.6ge165 - - - satisfying e, + €9,41 = 1 for each n.

Schied [17] and Galkin & Galkina |

the exponential Takagi function for v =

independently characterized the maximizers of

[ NS [ —

Theorem 1.2.2. For v = %, the maximum value of the exponential Takagi function T1 is

attained at t; = % and t9 = % with maximum value %

Later, Mishura & Schied

[15] extended this result into a larger collection in the expo-
nential Takagi class for v € [1,1).

Theorem 1.2.3. For v € [%, 1) the maximum value of the exponential Takagi function x,

1 2 with maximum value

is attained at { = 3 and t, = 3 ﬁ

For the case v € [—1, 1], Galkin and Galkina [9] gave a conclusion as follows:

Theorem 1.2.4. The maximum value of the Exponential Takagi function z,, v € [—%, %]

1

5 with maximum value of %

is attained at t =



In view of Theorem 1.2.1, 1.2.3, 1.2.4., it remains to analyze the maxima of x, for
v € (3,2)U(=1,—-1). Tabor & Tabor [15] gave an approximation solution for the maximal
value of the exponential Takagi function for certain numbers v. Furthermore, Baba [2]
characterized the maxima for generalized Takagi functions x that replace ¢(2"t) by ¢(b"t)
for some b € Z. Besides, Fujita & Saito [3] studied an even broader class whose ¢ function
could be any periodic and continuous function. From Figure 1.2, we may see that the
aforementioned theorems are only able to characterize the maxima of those functions in
the exponential Takagi class for which the maximum location is flat as a function of . On

the other hand, we can specially observe that for v € (-1, —%), the location of maximum
11
102
associated with v is even more difficult to characterize and it has a fractal-like structure.

is a nontrivial step function of v. Furthermore, for v € (7, 5), the change of maximizers
Most of theorems introduced in those earlier papers are based on an induction argument
for the truncated exponential Takagi functions. However, this method cannot be applied
for the functions in the Takagi class, as the nature of arbitrary coefficients is not feasible
for induction. Last but not least, as far as the author is aware of, only little focus has been

put on the minima of the functions in the Takagi Class so far.
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Chapter 2

Preliminaries

2.1 Facts and Fundamentals

In this section, we will introduce and partially prove some theorems and lemmas that will
be applied in the proofs in Chapter 3 and Chapter 4. Those theorems are very introductory,
and the author believes those mathematical statements have appeared in many references.
Some proofs are given here for the sake of completeness and rigorousness of this thesis.

The author does not own any credit to these result.

Theorem 2.1.1. Let {K,} be a collection of compact sets. If the intersection of every

finite sub-collection of { K} is non-empty, then [ K, is non-empty.

Proof. We will prove this theorem by contradiction. Let us now assume that () K, = 0.
(0%

Therefore, we must have

Ky N () Ko) = 0.
a#l

Furthermore, as K is an open set, we have

K c | J K.
a#l

9



Therefore {K¢}ax1 is an open cover for K;. Therefore, there exists a finite sub-cover
{KS K, ... K, } covers K. Therefore, we must have

o1

KiNKy,NK,,N ... NK,, =0 (2.1)

Hence, (2.1) results in a contradiction here. Therefore, we have
(1%
«

]

Lemma 2.1.2. If {K,} is a sequence of nonempty compact sets such that K, .3 C K,
then ()", K, is non-empty.

Proof. This Lemma directly comes as a corollary of Theorem 2.1.1. O

Definition 2.1.3. A polynomial f(z) = > """ ,a;z" with a; € {—1,1} and n € N is called a
Littlewood polynomial. We denote F, as the set of all Littlewood polynomials with order

n:

Fn = {fn(z) = iaizﬂai e {—1, 1}}

Moreover, let F be the set containing all Littlewood polynomials,

F=JF.
Moreover, let us denote D¢ as all the complex roots for Littlewood polynomials.
Dc={z€C|an e N, f,(z) =0, for some f, € F,}. (2.2)
And let Dy be the set of all real roots for Littlewood polynomials, i.e.

Dg = Dc NR. (2.3)

10



Lemma 2.1.4. The set Dg is contained in the annulus 1 < |z| < 2.

Proof. Please see [3]. O

Theorem 2.1.5 (Gaufl Theorem). If a non-constant polynomial p(z) € Z[z] is irreducible

over Z, then it is also irreducible over Q.

Lemma 2.1.6. DcNQ =D NQ = {—-1,1}.

Proof. Let r € Q be a root for p(x), then we have the monic polynomial x — r|p(z). By
applying Gaul Theorem, we have x — r € Z[z]. Hence we have r € Z. Then, by applying
Lemma 2.1.4, we have r € {—1,1}. O

Lemma 2.1.7. Let C be the Cantor set, and let Q = {w;}%2, € {0, 1,2}" be the ternary
expansion of y € [0, 1]:
Yy = Zwi?)_(”l) = O.WIWQ LN
=0
Then y € C if and only if there exists €2, such that w; € {0,2} for all i € N, and y =
>opwid” Y.

Definition 2.1.8. A binary expansion of a point y € [0, 1] is denoted by

And we define y,, as the n*" order dyadic approximation for 3, where

n

8‘
Yn = E 2—1 = O.€0518253....€n.
=0

It is well-known that the binary expansion is not unique for any real number y € T. For
example, 0.1 = 0.0111---. Here, we do not require the uniqueness of the binary expansion.

Furthermore, in order to well distinguish the two binary expansions, we would formally

11



define mappings S; : [0,1] — {0,1} and S, : [0,1] — {0, 1} First of all, let us define
a mapping sy : [0, 1] — [0, 1] as:

2y if ye[0,5],
sy(y) = . ? . (2.4)
2y—1 if ye(51].

Similarly, we define s, : [0,1] — [0,1] as:

2y if yel0,3),
s (y) = , ’ (2.5)
2u—1 if yel3,1].

Furthermore, the mapping d; : [0, 1] — {0, 1} is defined as:

d =40 L vl 2:6)
L if yels1]

DN |—

And the mapping d, : [0,1] — {0,1} is defined as:

0 if yel0s],
=4 U (27)
1 if y e (57 1]

Then the mapping Sy is defined as:

e =dy(si(y)),  Si(y) ={ei},

where sé = 54084 --- 0 s4. Similarly, the mapping 5, is defined as:
—_———

e =d(s5(y)),  S(y)={=}

For simplicity, we refer to S,(y) as the lower dyadic expansion for y and to Sy(y) as the

upper dyadic expansion for .

12



2.2 Frequently Used Notation

In this section we will collect some notations that we will frequently used throughout the

thesis.

Definition 2.2.1. The dyadic partition T, in [0, 1] is defined as
T, ={k2"neNk=0,1,...,2"}, for neN.

Let T be the set of all dyadic rationals in [0, 1]. Then we have

T = D T,.
n=0

Lemma 2.2.2. For y ¢ T, we have

Si(y) = Sy(y).

Remark 2.2.3. For any real number that is not in the dyadic partition T, the binary

expansion is unique.

Definition 2.2.4. Let S = {—1,1}, then let SN be the collection of all infinite sequence

space over S, such a set can be represented as
S" = {(ci)Zci € S}

Furthermore, we may mimic some notations from abstract algebra. Let us denote S[z| as
the collection of all polynomials p(x) whose the coefficients are in S. Similarly, we denote

S[[x]] as the collection of all power series whose coefficients are in S.

Definition 2.2.5. Let us denote the set of all maximizers for the Takagi function z¢ as
M and the minimizer locations for the Takagi function xz¢ as Me. In a more formal
way, we have
Mc = argmaxzc(t) and Mg = argminzc(t).
te[0,1] t€f0,1]

13



Moreover, let us also denote the set of extreme location of the truncated Takagi functions
as follows.

My = argmaxzcg(t) and ./\;lq;C = argminzc(t).
t€[0,1] t€[0,1]

Similar notations will also be applied to the exponential Takagi function x, which is ob-

tained by taking C = {v*}i—g12....

Definition 2.2.6. If s € T,,, we then denote s* € T,,(s) if and only if |s — s*| = 27™.
And such a s* is called an adjoining point of s in the dyadic partition T,,. Furthermore,
we define T,,(s) = T,,(s) U {s} as the adjoining neighborhood of point s in the dyadic

partition T,,.

14



Chapter 3

Takagi Class

3.1 Global Extrema for Takagi Class

First of all, we will prove that the m!" order truncated extrema must be on the dyadic

partition T,, 1. The following lemma gives reasons why this must hold.

Lemma 3.1.1. Let z¢ € €. Then for every m € N
Mcm C Ty and /\;lqm C Thg1. (3.1)

Proof. First of all, we have zc,, is linear within intervals [t,¢ + 2= ™*D] for all t € T,,.;.

Therefore, for each y € [0, 1], there exists some ¢ € T,,;1 and t* € T,,1(t), such that
yeAt VL.
Then due to linearity, we have

rem(y) = 2"t — ylrem () + 2 — ylzgm (1)

15



Hence, we have

miﬂ{xc,m(t*), xC,m(t)} S xC,m(y) S max{l’c,m(t*)u xC,m(t)}
Therefore, we have
Mcm C Tyt and Mem C T

[]

Lemma 3.1.2. Let ¢ € €. For every m, let t,, € M, be a maximum point of the
truncated Takagi function xc,,. Furthermore, let ¢ be a point at which attains the

maximum on ¢ € Ty, (f,,). Hence, we have

tr, € argmax Tcm(t). (3.2)
tETm-Q—l(im)

Now, let s € T, 41, and s* € T,,11(s). Then, we have

xC,m(iﬂ) + xC,m(t:n) 2 xC,m(S) + xC,m(S*)7 (33)
for all s € T,,41.

Proof. We are going to prove this Lemma using induction on m. First of all, let us consider

the case when m = 0. Hence we have

1
.I'C70(t) = Cot, for te [0

; 5]- (3.4)

Then if ¢y < 0, then we have ¢, = % and t; = 0, otherwise, we have to = 0 and iy = %

Also, we notice 0 and % are the only choice for s € Ty and s* € Ty(s).

Co

vallo) + weolfs) = eo(s) + woo(s?) = roal0) +rea(z) = 2. (35)

We can notice that whatever the choice for s and s*, equation (??) must holds. Due to
(3.5), we have proved that the hypothesis holds for m = 0. Now let us assume that (3.2)

16



holds for all m < n — 1, and we proceed to prove the case for m = n.

Now we will then prove the statement case by case. First of all, let us consider if
ty = tn_ 1. According to Lemma 3.1.1, 7 _, is an adjoining point to tn—1 € T, on the

dyadic partition T,,. Therefore, we have

|En—1 — bl = |(2t~n—1 —tn1) — En—1| =27,
as well as, 3 3
> tnfl + t*_l g 3tn71 - t*_l —
tn . n =, — n —9 (n+1).
f — e, S e

3£n— 1 715;71

5 and

Therefore, 2t, 1 — t%_, is the other adjoining point to #,_;. Moreover,
in—1+t:171
2

linearity and inequality in (3.2), we have

are the two adjoining points of Z, on the dyadic partition T,;. Then due to the

tnfl + t;—l) - l'C,n(tnfl) + I’C,n(t:;_l) C_n
2 B 2 2
> xC,TL(ETL*l) + xc,n(%n,l — t;fl) n C_n
- 2 2
3yt — 5,
2

Q7C,n(

).

= xC,n(

Hence we must have

tn—1 + 1, _
ool D nml o arg max g, (t).
2 tETn+1(t~n)
Now we have, .
= —" 3.6
= (36)
Now let us assume that s € T,,, then we have that
xC,n(S) == xC,n—l(S) S xC,n—l(gn—l) == zC,n(gn—l)- (37)

17



s+(2s*
2

Furthermore, we can re-compose s* by s* = _5), then we have

(2% — 5) — s*| = |s* — 5| = 2"F1 (3.8)

as will as,
125* — 5 — 5| = 2|s* — 5| = 2% 27 (FD — 97, (3.9)

Equation (3.8) and (3.9) indicates that s and 2s* — s are adjoining points on the dyadic
partition T,, and they are also the two different adjoining points of s* on the dyadic

partition T, ;. Then applying (3.2) for n — 1, we have

xC,n—l(tn—l) + l‘C,n—l(t:;_l) Z fL‘C,n_l(S) + $C7n_1<28* — S). (310)

By applying (3.6) - (3.10), we then have

g * g t:;— +En—l
Z'C,n(tn> + xC,n(tn) = xC,nfl(tnfl) + xC,n(lT)
= 2ot () + 3700 () + 33001 (F0) + 2
=Tcn—-1Un-1 QxC,n—l n—1 QxC,n—l n—1 9
1 1 N Cn
> xcn-1(8) + zxcn-1(s) + zxcn-1(28" —s) + —
2 2 2
> xcn(s) + xcon(s”)
Now, let us consider when s € T, ;; — T,,. In this case, we have
s* € Tyia(s) C Ty, (3.11)
as well as,
2s —s* € Tpya(s) C Ty, (3.12)

According to (3.9), we know that s* € T, and 2s—s* € T,,. Now by applying the inductive

statement for order n — 1, we have,

xC,n—1<S*> + xC,n—1<23 — 8*) S xC,n—l(tzfl) + xC,n—l(£n—1> (313)
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Then by applying (3.13), we have

£ * g t;kz— +£n—1
v0nlla) + T0a(t) = w0 1(fn1) + w0 a(MT )
- 1 . 1 B Cn
= zon-1(tn-1) + §xC,n—1(tnf1) + §xC,n—1(tn—1) + >
* 1 * 1 « Cp,
> -TC,nfl(S ) + 51‘0,”,1(5 ) + §$C,n71<25 — S ) -+ 5

> zoa(s) + xon(s),

Now, let us consider the other case when ¢, # t,_;. For any points s € T, we have

Ten(s) = ren-1(8) < Ten-1(tn1) = Ton(tn-1). (3.14)

For points s € T,,.; — T, we have s —2~("*) € T, and s +2~("*Y € T,. Then by applying

(3.5) with m = n — 1, we have

by + 15 Tem_1(tno1) + Ten 1 (t;_ Cn
Jic,n( 12 1): C, 1( 1)2 C, 1( 1)+5
zc 1(3 _ 2—(n+1)> + zc 1(8 4 2—(n+1)) c (3-15)
Z n— n— + no_ xC,n(*S)
2 2
By applying (3.14) and (3.15), we get
{{n_]_ + t’l*l—l

) (3.16)

max rc,,(t) = max{rc,(tn_1), Tca(
t€[0,1] 2

Since t,, # t,_1, we have

L, = = 3.17
; (3.17)

as well as,
tr =1, 1. (3.18)

Hence, for all s € T, 1, we must have either s or s* is in the dyadic partition T,,. Without

loss of generality, let us assume that s € T, ;1. Therefore, we get s* € T,,. By applying
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(3.14), (3.15), (3.17) and (3.18), we have

t~n—1 + tjz—l
2
Z ZBCm(S) + ch,n(s*).

ajC,n(gn) + xC,n(ﬁ%) = xC,n( ) + mC,n(fn—l)

Therefore, we finish proving the case for m = n, and, hence, we prove the Lemma 3.1.2. [

Corollary 3.1.3. Let x¢ € €. For every m, let t,, € Mc,,. Then, we must have

Tm-i—l ('Em) ﬂ MC,m—f—l 7é @

Proof. This result directly comes from (3.16) in Lemma 3.1.2. [

Corollary 3.1.4. Let 2¢ € €. For every m € N, let ¢,, € Mcm, as well as,

tr € argmax Tcm(t).
tETm+1(£m)

If ¢, € M m+1, then

tm + t
L™ e argmax Tomii(l).
2 t€Tm+2(Em+1)

Otherwise, we have

tm € argmax zcm+1(t).
tETm+2(£m+1)

Proof. This result directly comes from (3.6) and (3.18) in the proof for Lemma 3.1.2. [

Corollary 3.1.5. Let x¢ € €. For every m € N, let ¢,, € Mc,,. Furthermore, we take

tr, € argmax Tcm(t).
tETm+1(£m)

Then there must exist some me € M m+1 such that
[t:z+1 A 2?m—i-h t:n+1 \4 Em-l-l] C [t; A gmv t; \% gm]
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Proof. This results directly comes from Corollary 3.1.4. n
Definition 3.1.6. Let {f,} be a sequence such that ¢, € Mc,,, and

[t:n-&-l N Em-i—lv t;kn+1 \4 Z?m-i-l] - [t;kn N\ gm» t;kn N Em]a

for all m € N. We shall call such a sequence a sequence of consecutive mazximizers.

Lemma 3.1.2 gives the range of a sequence of consecutive maximizers, and the following
propositions will state the result how one characterize the exact location of the proceeding

consecutive maximizers based previous consecutive maximizers.

Proposition 3.1.7. Let z¢ € €. For every m, let ¢,, € M, be a maximum point of the
truncated exponential Takagi function zc,,. For a fixed n, we let k = min{i|t,_; # t,}.

Then, if t,_; < t,,, we have
wemii(p — 27") < woppa (B — 27 F). (3.19)

for every p € T,41.

Proof. We will prove this proposition by induction on k. Let us first consider the case
= 1. By Lemma 3.1.1, we have that t, is in the dyadic partition T, and t,_1 is in the

dyadic partition T,, for any fixed n € N. Furthermore, we have
fk = tn1 < fn. (3.20)
Then due to (3.20), we can apply Lemma 3.1 in [17], then we have
tyy =1, — 27 (41, (3.21)

As the truncated function rc, is linear within intervals of the form [p —2~("*1 p] for any

Cn,

+1
5, we get

p € T,+1, and the increment of the wedge has an increment of

(n+2)y T (p) + Toa(p — 27 HY) ey

; 5 (3.22)

Ten(p—27
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As t, € T,,1, we may take p = £, and by plugging (3.21) into (3.22), we have

xC,n(fn) + xC,n(tn—l) + Cn+1

n th - 27(n+2) = 3.23
- ) : : (3.23)
Since t,_1 € Mcn_1, tn_1 € T,, we have
wc’n@?n,l) = xc’nfl(fn,ﬁ. (324)
As p € T,,,1, we have either p € T,, or p — 2=+ € T,
min{wc,n(p)a xC,n(p - 27(n+1)>} S xC,nfl(fnfl) = xC,n(fnfl>~ (325>
In addition,
max{z¢.,(p), ton(p — 27"} < 2o (tn). (3.26)
Hence, according to (3.25) and (3.26), we have
_ 9—(n+1) g g
xC,n(p) + xC,n(p 2 ) S xC,n(tn> + mC,n<tn71) . (327)
2 2
Plugging (3.27) into (3.23) and applying (3.22), we get
—(n TCn +x n - 27(n+1) Cn
TCnar(p — 2 ( +2)) _ Tc, (p) 0,2 (p ) i 2+1
(3.28)

< Ten(tn) + ven(tn 1) L Can

> 9 9 = l‘c’nJrl(En — 27(n+2)).

This completes the proof for the case k = 1. For such all fixed n, we now assume the (3.19)
holds true for k < m. Now we proceed to prove when k = m + 1, g pni1(p — 27 "+2) <
TCni1(tn — 272) holds for p € T,i1. As m + 1 = min{ilt, ; # t,}, and &, = £,_1, we
have

min{i|t, 1 # th_1} = m. (3.29)

As induction hypothesis holds for every n € N and k < m, by applying (3.19) for zc 1,
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we have
v 41 (B — 270 ) g g (Eag — 277D, (3.30)

where p € T,,. By organizing equation (3.30), we have
‘Tcﬁ(ﬁ - 27(n+1)) S xC,n(ﬂL - 27(n+1)). (331)

Then we will prove the statement case by case. We first consider the case p € T,. As
t, € T,.+1, therefore t, — 2t ¢ T,11. Similarly, as p € T,,, then p — 2=+ ¢ T, 4.
By applying equation (3.22), we get

nyn(ﬁ) + xC,ﬂ(ﬁ - 27(n+1)) Cn+1

. 32
5 +2 (3.32)

Te i1 (p—270)) =

Then as t, = t,_; € T,, we can replace p with %, in the equation (3.32), we get

xC,n<£n) + wc’n(fn — 2_(n+1)) n Cni1

Temi (tn — 2~ (n+2)) — 5 5 (3.33)
Ast, =t,1 € T,, and p € T, then we have
xC,n(ﬁ) = xC,n—l(ﬁ) S xC,n—l(th—l) - xC,n(En—l) - xC,n(£n>- (334)

Then by plugging (3.34) and (3.31) into (3.32) and (3.33), we have

ey ToalB) + aca@—2Y) e
tmin (p— 2702 — TP 0,2(19 ), .

< xC,n(En) + iL'Qn(gn — 2_(”_"1)) Cna1
= 2 5

= TCntl (En — 2_(n+2)).

Now we discuss the case p € T,,41 — T, then we have that 4+ 2~(*+1) € T, therefore by
applying equation (3.31) for  + 2~V we have

Ton(p+ 27 — 270y — g0 (B) < zon(f, — 27T, (3.35)
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As the function z¢,, is maximized at t,, we have
IC,n(ﬁ - 2—(n+1)> S CUC,TL({Z‘L)' (336)

By plugging equation (3.35) and equation (3.36) into equation (3.32) and equation (3.33).
We have

D s _ 9—(n+1
TG (B — 27 ) = Ten(P) + zon(@—2""D) ¢

2 2n+2
xC,n(ﬂL) + xC,n(En - 2—(n+1)) Cn+1 ~ —(n
= 2 + on+2 LCnt1(tn — 2 (n+2)).

Therefore, we have proved that x¢ .1 (p—2""?) < ¢ i1 (£, —27"F2) for any p € T, 1.
Since both base case and the inductive hypothesis has been proved, then we prove this
proposition. ]

Proposition 3.1.8. Let z¢ € €. For every m, let t,, € argmax xc,,(t) be a maximum
tel0,1]

point of the truncated function xc,,. For fixed n, we let k = min{i|t,; # t,}. Then, if

th_k > t,, we have
mC,n—l—l(p + 2—(n+2)) S xC,n—l—l(gn + 2—(n+2))7

for every p € T41.

Proof. The proof is analogous to the proof of Proposition 3.1.7. O

Lemma 3.1.9. Let ¢, € Mc,,, and

tr € argmax xcp(t).
tETn+1(£n)

Then for any fixed n > 1, take m = inf{i|t,_; # t,}. Then, t,_,, < t, if and only if

th < t,.

Proof. First of all, let us prove the only if direction. Let us assume that t,_,, < t,, then

we will discuss case by case. First of all, let us consider the case when m = 1. By applying
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Corollary 3.1.3, we have t,_y = £, — 2-"*D ¢ T,,. Similarly, we have ¢, +2-t) e T,,.

Then we have
xC,n(En - 2*(n+1)) — xC,n—l(in _ 2*(n+1)) > xC,n—l(gn + 2*(n+1)) _ xC,n({n + 2—(n+1)).

We have t* = t, — 2-(+1) "and t* < t,. Now, we consider the case when m > 1. Moreover,

we have

tn,1 - gn

Then we may apply the Proposition 3.1.7. As f(n_l)_(m_l) < t,_1, we have
rea(p — 2~ (D) < o (tn1 — 9ty — ron(tn — 9~ (D), (3.37)

for every p € T,,. Because t, = t,_; € T,, then by plugging p = ¢, +2" € T, into (3.37),

we have
ﬂUc,n(fn ) b 2—(n+1)) = IC,n(En 4 2—(n+1)) < xc,n(fn _ 2—(n+1))'

Hence, we have t = t,, — 2-(+1) and t* < t,, then we finish the proof for the only if part.
Now, we aim to prove the if direction by proving its contrapositive statement through a
brief discussion on m. We can notice that the contrapositive statement for the only if

direction will be
If tymm > tn, then tr > L.

First of all, let us consider the case when m = 1. By applying Corollary 3.1.3 again, we
have t,_1 = t,, + 2~ ("t € T,. Therefore, we have ¢, — 2-"*1 € T,. Then we have

xC,n(fn — 2—(n+1)) — IC,n—l(En _ 2—(n+1)) < $C,n—1(£n + 2—(n+1)) _ xC,n(gn + 2_(71_,_1))'

Furthermore, we have
l‘c,n(fn + 2_(n+1)) S SBCm(??n).

Hence, we have t;, = t,+2-*D and t* > t,, under the condition m = 1. Now, we consider
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the case when m > 1. Hence, we have

th_1 =t,.
Next, we would apply Proposition 3.1.8. As t~(n71)7(m71) > t,_1, we have
Ton(p+ 27" < zep(fuoy + 270 = 1o, (E, + 27H). (3.38)

for every p € T,,. Because t, = t,_1 € T,, then by plugging p = ¢, — 27" € T, into (3.38),

we have
:L’Cm(fn —o 4 2*(n+1)) — 13C,n(gn _ 2*(n+1)) < xc’n(gn 4 2—(n+1)).

Therefore, we have t* = t, + 2~ ™Y and t* > f,. Hence, we have proved the only if part

through proving its contrapositive statement. O]
Lemma 3.1.10. For y € [0, 1], let 3, be the n'* order dyadic approximation for y, then
Y E [Ynyn +27"].

Furthermore, if we restrict all binary expansion is in the image Sy([0, 1]), then we have

Y€ [Yn,yn +27").

On the other hand, if we require all binary expansion is in the image S,([0,1]), then we

have
Y E Yn,yn +27"].

Proof. Let the binary expansion of y be

oo
Yy = E i1 0 E0E1E2E3......
=0
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Then by rewriting the binary expansion we have

o

y2221+1_yn+z H—l

=0 i=n+1

As for every i € N, we have ¢; € {0, 1}, then

Hence, we have

Y € [Yn,yn +27"].

However, if {€;} € S4([0,1]), then ¢; cannot all be 1 for ¢ > n. Therefore, we have

0< Z —<2 (n+1),

i= n+1

Hence, we have

Y E [YnsYn +277).

Similarly, if if {;} € S,([0,1]), then ¢; cannot all be 0 for ¢ > n. Therefore, we have

0< Z—<2 (n+1),

i=n-+1

And this leads to
Y€ Ynyn +27"].

Hence, we proved this lemma. O

Definition 3.1.11. For each n, we denote the n'* order upper truncated Takagi function

over an infinite sequence C € RY by xg,, which is written as

rg(t) =) cip(2mt). (3.39)



Lemma 3.1.12. For y € R, 2¢(y) = 24 (y +27"k), for all k € Z.

Proof. We have,
TEY+2TR) =Y o2 (y+27k) = Y b2y +27"k).
As i < n, then 27"k € N, hence

A2y +27"k) = ¢(2'y),

for all 7. Therefore, we have
ze(y) = vy +27"k).

O]
Lemma 3.1.13. For y € R, we have z¢(y) = 2&(—vy).
Proof. We have, N N
T(y) = Y cit(2'y) = D eid(=2'y) = 2 (y).
_ _ [

Remark 3.1.14. Lemma 3.1.12 and Lemma 3.1.13 indicate that x¢, is symmetry with respect

to every points in T, 1.

Theorem 3.1.15. Let x¢ € €, the following statements are equivalent:

i. ye Mc.

ii. There exists a sequence {y, }22, such that y, € Mc,, for all n € N, and

y = lim y,.

n—oo
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Figure 3.1: Graphical Illustration for Figure 3.2: Graphical Illustration for
s=1t*_, and s* = t,. s=1r_,and s* =1;.

iii. Let T, := {[t, — 27"V ¢, + 2=FV]|t, € Mc,,}. Furthermore, take

P.= J A

AeTn
Then,
Yy € ﬂ Ph.
n=0
iv. Let K, == {[to, A5, 6, V] | L, € Mg, t;, € argmax zc,,(1,)}. Furthermore, take
tETn-‘—l(fn)
.= |J A
Aeky
Then,
Yy e ﬂ Z,.
n=0

Proof. Let us prove this theorem by proving following statements in order.

o | — v
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Let us prove this statement by proving its contrapositive statement. The contrapos-

itive statement will be
If there exists n € N, such that y ¢ I, then y ¢ Mc.

Denote N = {n € N|y ¢ Z,,}, and denote n = min N. Let us assume that y € [s, s*],

where s € T, 11 and s* = s+ 2-(+1) Since n = min N, we must have that
Y€ lna At 1t VL]

for some t, 1 € Mc,_1 and t:_, € argmaxxzc,,_1(t). By applying Corollary 3.1.3,
teTyt

there exists t,, € Mg, N[t,_1 At:_y, 1,1 VE:_,]. Furthermore, take ¢, € [f,_1,t;_,],
then by applying Corollary 3.1.4, we have

1 . . 1 . - . I
[§(tn,1 +t ) Atn_1, i(tn,l +t ) Vita ] =[ta ANt t, V]

Since ye [En—l/\tsz 7§n—l\/ngl]? we have {87 S*} ﬂ{ETH t:;} ?é @, and {57 S*} ﬂ{gna th} 7&
{t,,t:}. For instance, if t*_, < t,_1, then we have
s=t_,, and s*=1,At".

n

As [s, s*| ¢ K, therefore s =t | ¢ Mc,,,—1. Hence, we have

ren(s) < xen(tn-1) < zcn(t)). (3.40)

As well as
2cn(8) < zoa(th). (3.41)

Therefore, since y € [s, s*],
7y =25 —y € [En /\t:“fn \/t:;]v
fort, € Mc,,. Then by applying Lemma 3.1.12 and Lemma 3.1.13, we have s € T, 11,
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Figure 3.3: Graphical Illustration for Figure 3.4: Graphical Illustration for
s=1rand s* =1’ ;. s=t, and s* =t*_,.

and
x’é“(y) = a:%“(gj). (3.42)

By applying (3.40) - (3.42), we have

_Yy—-s * s Y n+l/~

U2 s+ S e () + 57 0)

— S - * . n B

< T —acall) + T—2aca(t;) + 25 (7)

25" —y) —t, ~ §T— (28" —y N el ~
@D )+ S )+ @)

t, — s* t, — s*

?’7 - g’n s — y * ~

= P Ton(tn) + = — ron(t,) + 90?:“ (9)

Hence, y ¢ Mc. And the proof for the situation when £, ; < t*_, is analogous to

the previous proof.
® 1V =il
First of all, let us state this statement again.
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Ify e Mo Zn, theny € (o2 Pa-

First of all, by applying Lemma 2.1.1, we have (_,Z, # 0 and (,—, P # 0. Now,

this statement is equivalent to the following inclusion, and we now aim to prove the

following inclusion.
(N Z.c ()P
n=0 n=0
As for each fixed t,, € Mc,, we have
[En At tn VEE] G [E, — 270D F, + 27 (D],

Then (3.43) directly gives,

Zﬁ:: LJ A ;; LJ fl::7%w

A€k, AeTy,

for all n € N. Therefore, we have
(Z.c () Pa
n=0 n=0

First of all, let us formally state the statement we are going to prove.

If y € (.2 Pn, then there exists a sequence y, € Mc,,, such that

y = lim y,
n—oo

Since y € (),—, Pn, hence, for all n € N, we have

Yy € Py.
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Therefore, there exists some A4, , € T, for all n € N, and
y €A,

For each n € N, we take a sequence of {y,,} for all n € N such that y,, = Mc,, N A,
and then we have
lym — y| < 270"FY. (3.44)

Hence, lim y, = y.
n—oo

First of all, let us state the statement we are about to prove.

If there exists a sequence {y,}5°,, such that y, € Mc,, for alln € N and lim y,,
n—oo
then y € Mc.

As [0, 1] is a compact space, and z¢,, € C|0, 1], therefore, there exists 8, = max xc,(t)

for all n € N, as well as § = 7%3)1(} zc(t). Since, xc,, — xc uniformly, théi[eof(lj]re, for
any € > 0, there exists some N € N, such that for all n > N,

rc(t) — € < xon(t) < xzc(t) +e. (3.45)
for all ¢ € [0,1]. Hence, we have

Ten(t) —e <zo(t) < zen(t) +e (3.46)

Therefore (3.45) and (3.46) give us

Tea(t) < B+e,
xc(t) —e< ﬁn,
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for all t € [0,1]. By taking the supremum on the left side, we have

B < B+e,
5_6§6’n

This leads us to
B_ € S Bn S 6—{'6

Therefore, we have lim (3, = 8. By uniformly convergence, as lim y, = y, therefore,
n—oo n—oo

im zc,(yn) = 2c(y). (3.47)

n—oo

Therefore, we have y € Mc.

]
Lemma 3.1.16. For all n € N, let ¢, € Mc,, and ¢} € argmax zc,(t). Then
tGTn+1(£n)
lim ¢, =t,
n—oo

if and only if
lim £, At: =t

n—o0

Proof. First of all, let us prove the only if direction. Now, assume that lim ¢, = ¢. Then,
n— o0

we have for all € > 0, there exists N € N, such that for all n > N,
It — 1| < &
Also, we have |£, — t*| = 2=+ Now taking M := max{N, —log, ¢ + 1}, then we have

[t—t| <t =t + ]t —t5] <e

34



Hence,
lim ¢, =t. (3.48)

n—0o0
Therefore, we have
lim t* A, =t.

n—o0

Now, let us prove the if direction. Notice that
ta Vit =t Ath =27 (D),

Then we have
lim ¢, Vt: = lim t, At

n—oo n—o0

Furthermore, we have

ta Vit >, >

[Suatl

n AT

n:

By applying the sandwich theorem, we get

lim , Ath = lim t,.
n—oo n—oo

O
Corollary 3.1.17.
Mc=(\P.=()Tn
Proof. This corollary directly follows from Theorem 3.1.15. O]
Theorem 3.1.18. For y € [0,1], let y = 0.g95162 -+ = > o0y €27 FY be the lower binary

expansion of y. Let y, = 0.cpe182...6, = > £,270+) Then y € Mg, if and only if

(2

there exists a sequence consecutive maximizers of ¢, € Mg, and t;, € argmax xc,(t),
tGTyH,l(En)
such that

Yn = fn/\t:;,

for all n € N.
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Proof. First of all, let us prove the if part. Now let us assume that there exists a sequence

of t, € M, and t! € argmax xc,(t), such that y, = t, A t. Instantly, we have
tETn+1(fn)

lim y, = nh—>nolot:; A, =1.

n—oo

Taking such %, by Lemma 3.1.16, we have

lim t, = lim t£ At, = lim y, = y.
n—oo n—oo n—00

Hence, by applying Theorem 3.1.15, we have y € M. Now let us prove the only if part

by proving its contrapositive statement. Let us state the contrapositive statement first.

If for any sequence of consecutive mazimizers t, € Mg, there exists some n € N, such
that y, # t, At5, then y ¢ Mc.

For any sequence {f,}, such that ¢, € Mg, define N' = {n € Nly, # t,}. Now let us
take N := min N, therefore

[Env—1 Aty_ps v Vi) = [yv— yv—a +277). (3.49)
Since {t,} is a sequence of consecutive maximizers, we have
[T?N N t?\;, EN vV ti;\]] ; [fN—l VAN t*Nflﬂ EN—l V t?\ffl] = [yN_l, YN-1 + 27N], (350)

as well as,
lyn, yn + 27 C ltvoa Aty y vy Vi ). (3.51)

Since, we have yy # tn Aty and therefore, either yn = in Vit or yy + 2-(N+1) — ¢ Nty
Then by (3.49) - (3.51), we have

[t At tn V] = [Evo1 Aty 1 tvo Vi 4]
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Then, by applying lemma 3.1.10, we have

y € [yn, yy + 2" D),

Theorem 3.1.15 (i = iv) indicates
y ¢ Mc.
[

Remark 3.1.19. For the following theorems and lemmas in Section 3.1, the binary expansion

will only refer to the lower binary expansion.

Definition 3.1.20. The Rademacher mapping H : {0, 1} — SN is defined as
{H{d;})}i =1 - 2d;. (3.52)

then for y = 0.c0e169..... Take {£}5°, = {H({e:})}. The sequence {&;}2, is called the

quasi-binary expansion for y.

Definition 3.1.21. Let = = {¢;}3°, be the quasi-binary expansion for y, and z¢ € €.
Take a; = 2'c;, and A = {a;}. Now define

En(A) = Zgiai-
i=0

Then =, (A) will be referred as the slope series for y.

Now by using the quasi-binary expansion, we can then neatly give the most important
theorem in characterizing the maximum location for the Takagi Class. Before proving the
theorem, we need to prove the following lemma first, which plays an important on relating
the location of a point and its truncated slope. The following lemma is closely related to
Billingsley [1].

Lemma 3.1.22. Let y = 0.50g162 - - = Y1, &2~ "V be the binary expansion of y € [0, 1],

and {&} is the quasi-binary expansion for y. Let y,, = 0.c0e162...6, = Y 1 £;27 0+ he
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the n'* order approximation for y. Then for all n € N,

wC,n@l) - xC,n(t2)

_=,(A), 3.53
— (A) (3.53)

for any ti,ty € [y, yn + 27V,

Proof. Let us prove this statement by induction on n. First of all, let us consider the case

n = 0. Then we have
Tco,o = Cogb(t) = Co{t N (1 - t)}+
Also, we may notice that
t e [O,%] if g9=0,
] if e = 1.

Obviously, we have

t1—to __ _ : _
Cg—ti_t; = Co&) = Cp if Eo = O,

= (3.54)

% 26050: —Cp if Eo = 1.

zep(t) — xco(t2)
t1 — ty

Co

Clearly, c¢g = ag, so the statement holds for n = 0.
Now let us assume that for an arbitrary y, (3.53) holds for all £ < n— 1, and we proceed to
prove the case for n. Now let t; € [y, yn +27"FV] and ty € [y, yn + 2~ "*Y]. By applying

Lemma 3.1.5, we have
t1 € [Yn-1,Yn—1+27"] and t2 € [Yn—1,Yn1+27"].

Hence, by applying the (3.53), we have

zen(ty) — zon(te) _ ren-1(t1) — xcon-1(t2) L P(27t1) — ¢(2"ts)
t, — to t, — to " t, — to
2™"t1) — o(2™t
t1 — 1o

(3.55)

38



Then by (3.55), we only remain to prove

n¢(2"t1) —9(2") _ £

t1 — ta

Since t1 € [Yn, yn + 27" V] and ty € [y, yn + 27"V, we can rewrite t; = y,_1 + 27"

and ty = y,_1 + 27"y, where 71,75 € [0,1). Furthermore, we have

7 €[0,2) if and only if &, =0,

7 €[3,1) ifand onlyif e, =1,

for i = 1,2. Then we have

P(2"t1) — p(2"ty) . P(2" (Yn-1 + 711)) — (2" (Yn—1 + 72)

n

n

1 — 1t i1 —t2
O €26 4 2m)) (2 (i 24 4 2y
" i1 — 1o
ST e ) - (3 626 4 )
" 2—n(7—1 — TQ)
. P(11) — ¢(72)

n b

T — T2

because 1 £;2"(+1) ¢ Z. By applying (3.54), the case n + 1 will be proved. And

therefore, we proved the lemma. O

Definition 3.1.23. Let = = {}2, be the quasi-binary expansion for y, and z¢ € €.
Take a; = 2'c;, and A = {a;}. Let

Ea(A) =) L. (3.56)
=0

If Z,(A)é 41 < 0 for all n € N, then we say that (=, C) satisfies the step condition for
maxima. And if Z,(A)¢,11 > 0 for all n € N, then we call (£, C) satisfies the step

condition for minima.
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Lemma 3.1.24. Let z¢ € €, and = be any quasi-binary expansion for y € [0,1]. If
En(A)&n <0, (3.57)
for all n < N. Let yn41 be the N + 1" order dyadic approximation of ¥, then We have

Ynt1 = v Ay, (3.58)

where tyy1 € Mg 41 and ty,, = arg max ren+1(t).
teTn+1(EN+1)

Proof. By applying Lemma 3.1.22, it is sufficient for us to prove the following statement.
If Z,(A)&11 <0, for alln < N. We have

. xC,k(fk V t;;) — xC,k(ﬂc A tZ)

R (3.59)
BVt — T At

forall k < N +1.

Let us prove this lemma by induction on n. Assuming =,(A)&,+1 < 0 now, let us first of

all consider the case n = 0. In this case, we have
zoo(t) = comin{t, (1 — 1)} ;.
Hence, for all ¢y € R, one of the following two cases must hold:

oAty =0 and &V =3, (3.60)

E()/\tazl and 1?0\/156:1.

2
Furthermore, we have
50 = 1, if Yy € [0

3
1]
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It is obvious that
yo =0, if and only if &, = 1.

Yo = %, if and only if & = —1.

Also, we have ay = 2%y = ¢y. Those two cases will lead us to two feasible cases for the

slope:

zc,0(3)—zco(0) o — _ — = (A
~ ~ —%_0 = ¢y = ap = §oag = uo( )
l’c}o(to V tS) — ZL’C70(t0 A\ té)

DA UARLS = (3.61)

zc,0(1)—rc ol
1_

o=

= —cy = —ag = §oag = EO(A)-

NI

So we get (3.59) for k = 0 even without having to require Z¢(A)&; < 0. Hence, regardless

of the choice of #; and ¢}, we have

1’070({0 vV tS) — {EC,O(tNO N ta) =
= " = " = :O(A)-

Now let us assume that (3.57) implies (3.59) for all £ < n — 1, and we now prove the case
for k = n. By plugging £ = n — 1 into (3.59), we have
xC,n—1<t~n—1 \ t;71> - xC,n—1<t~n—1 A t;71>

Zno1(A) = i _ 3.62
1(A) T A VI — o AL, (3.62)

For instance, let us assume that =,,_1(A) > 0. Then we have

$C7n—1<tn—1 V t:;—l) — $C7n—1<tn—1 A t:;—l) = En_l(A) (tn—l V t;;—l — tn—l N t;_l) > 0.

Moreover, since g n—1(tn—1 Vti_1) > xcn1(tn—1 Vt:_;), we have

gn—l V t:;_l = t~n—17
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Also, by the step condition for maxima, we have

& =—1. (3.63)
%, and £, V tr = L1
Therefore, since t,_; € T, and tr_, € T,, we have 2"t € Z as well as 2 =
2"(t, 1 +27") € Z. Hence, we have

As t, > t* applying Corollary 3.1.4, we have t, At =

p(2"t5 ) = ¢p(2"t,1) = 0. (3.64)

Furthermore, we have

o(2" 5 ) = 3 (3.65)

By plugging (3.62),(3.64) and (3.65) into (3.55), we have

Tty V) — 2on(tn AL H(2M, 1 V) — (2 A

= En—l(A) +cp

Y o N ta VS | —ta 1 A,
b1+t _ ;
- P2"(—")) — ¢(2"n1)
= E(A) 4o,
— 5 —ln-1

=Z,1(A) = 2", ==, 1(A) + &a, = Z,(A).

The last step holds because of (3.63). Hence, we have proved the case =, _1(A) > 0. The
case Z,-1(A) < 0 is analogous to the case =,,_1(A) > 0. Now let us further consider the

case when Z,,_1(A) = 0. Then we have
Ton1(tna Vit ) —2cn 1t At ) =20 (At VE | —t, 1 At_) =0.
Then we have
Ton1(t) =rcn1(ta 1 Vi ) =2cn1(tn1 AtE_). (3.66)

for all t € [t,.1 At:_ |, tn_1 Vt:_,]. Because t,  Vt:_, € T, and t, 1 At;_, € T,, then

n—1»
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we have

G2 (tn1 V1, 1)) = 02" (tn-1 AT, 1)) = 0. (3.67)

As well as,
1 7 * n/y * 1
B2l V to) + 2 (F0a A1) = 5 (3.65)

Similar to (3.60), one of two following cases must be true:

oAt =1,  AtE_, and t, Vit =1, 1 At +270FD)
BoAt =T At 4270 and T,V =1, V.

Furthermore, by applying the inductive hypothesis and Lemma 3.1.22, we get
Yn1 = tn_1 NS5 (3.69)

Therefore, (3.69) will directly lead us to

Yo =Yn-1 =lo1 Ati_, if & =1

. (3.70)
Ypn = UYn1 + 27D =1, At 427D i g = 1,
By applying (3.66), (3.67) and (3.68). We must have one of following two cases,
ZL‘Cm_l('LTn V t:;) — $C,n—1(£n A\ t:;)
ta Vit —t, At
C zea(ta V) —zen(ty AL) + (20, V E) — G20, A L)
B bo V t5 — Ty AtE
n(y * —(n+1)yy_ n(y *
Cn¢(2 (tn—1AE:_ 42 27(n+32 D2 (tn—1AE)_1)) _ QnCn =a, = En—l(A) +a, = En<A),
B2 =1ty 1) =d(2" (fn—1Aty_+27("FD)) n - -
Cn PEC=ay =—-2"c, = —a, =Z,1(A) —a, = Z,(A)
(3.71)
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The last step is due to (3.70). Hence, regardless of the choice of ¢, and ¢, we always have

o xC,n(En V t:) - IC,n(fn A\ t:)
ta Vit —t, At '

Therefore, we have proved the case for n, and, we proved for this lemma. n

Theorem 3.1.25. For z¢ € €, we have y € M if and only if there exists a quasi-binary

= expansion of y such that (Z, C) satisfies the step condition for maxima.

(1) y€ Mc

(ii). Zn(A)&s1 <0,Vn € N |« > (i11)  Yp =1, A5, Yn €N

Figure 3.5: Equivalence Relation between Statements in Theorem 3.1.25

Proof. In order to prove Theorem 3.1.25, we will use Lemma 3.1.22 and Theorem 3.1.18 to
establish an equivalent statement. Readers may refer Figure 3.5 as a reference to establish

such a relation. First of all, we may formally write down the statement in Figure 3.5.

e (i) Forzg e €,y € Mc.

e (ii) Let y € [0,1], and y, be the n'® order approximation for y. There exists a

sequence of consecutive maximizers ¢, € Mg, and ¢! € argmax zc,(t), such that
- t€Tn 41 (fn)
Yn =1, AN for all n € N.
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o (i17) Let = = {&1}%°, be any quasi-binary expansion for y, and z¢ € €. Take a; = 2'c;,
and A = {a;}, we have Z,,(A)&,11 <0 for all n € N.

Theorem 3.1.25 states the equivalence between (i) and (ii). Furthermore, Theorem 3.1.18
establishes the equivalence of (i) and (iii). Therefore, it is sufficient for us to prove the

equivalence between (i7) and (i7i). Moreover, Lemma 3.1.22 indicates that

xC,n<t1) - xC,n(tQ) =
1 —to

for any t1,ty € [Yn, Yn+2~"TV]. Now let us take t; = y,, = t,At:. Then ty =y, +2- ") =

t, VvVt for all n € N. We now aim to prove the following statement.
Zn(A)&1 <0 for alln € N if and only if

V) —zon(ty AL

—_ xC,n(
=n(A) = VI
TV —, At

: (3.72)

where {t,} is some sequence of consecutive mazimizers.

Then the only if direction is directly proved by Lemma 3.1.24. Now let us consider proving
if part by proving its contrapositive statement. First of all, let us state the contrapositive

statement:

Let {&;} be any quasi binary expansion for y. If there exist some n € N such that
En(A)ény1 > 0, then there exists m € N, such that yp, # tm At%,, for any sequence of

consecutive mazximizers {t,}.

Now let us take N’ = {n € N|Z,(A)&,+1 > 0}, and n = min A/. Then by Lemma 3.1.24,
we have

Yp =ty AT

n*

Now let us first assume that =,(A) > 0. Then we also have &,;1 = 1. Now we aim to

prove that
Yni1 # bns1t Aoy
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We have
Ten(ta V) —rcntn AtE) =2, (A, VL — 1, AtE) >0,

by (3.72). Then we have t,, = t, V t* and t* = t, A t:. By applying Corollary 3.1.4, we

have

. _z - .ttt
tn+1 V tn+1 = tna and tn-i—l AN tn+1 — n n‘

2

Moreover, by Corollary 3.1.5, we have
[th o Apa, by V] C [t A, th V1]
Let E = {¢;} be the binary expansion for y. Since &,,1 = 1, we have
Ens1 = H H(E)ps = 0.

Then we have

(n+2)

Yn+1 = Yn + 6n—&-12_ = Un-

Hence, obviously

£+t
5
Hence, we have finished the proof for the case =,,(A) > 0. The case =,,(A) < 0 is analogous.

Yn+1 = fn N t:l # t~n+1 A tZ—H =

Hence, we finish our proof for the statement. O

Theorem 3.1.26. For z¢ € €, y € Mc if and only if (y, C) satisfies the step condition

for minima.

Proof. Take D = —C, then we have

min r¢ = — max Ip. (3.73)
t€[0,1] t€(0,1]
Then we have,
Mc = Mp. (3.74)
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By Theorem 3.1.25, we have for all n € N,
En(=A) 1 = —En(A)En 0.

Therefore, we have
En(A)& > 0.
]

Corollary 3.1.27. Recall that a; = 2°¢;, then xc(t) will be non-negative if 7 ja; > 0
for all n € N.

Proof. xc(t) is non-negative if and only if
zc(t) >0, forallte|0,1].
Hence we have

0 € argminz¢(t). (3.75)

t€[0,3]

This leads to &, = 1 for all n € N. Therefore, by applying the step condition for minima,

n
Z a; > 0.
1=0

we have

]

In order to have a better representation for following theorems concerning Hausdorff
dimension and uniqueness of the extremum location, we will introduce following definitions

and propositions.

Definition 3.1.28. Let x¢ € €. Take A = {2'¢;}. Let us define a mapping L; : RY — SN,
where Ly(C) = {£,}22,, and for ¢ > 1,

n=0

—1 if Si(A) >0,
§it1 = (3.76)
1 if Z(A) <0,
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with §, =1, and =,,(A) = > &a,.

Definition 3.1.29. Let z¢ € €. Take A = {2'¢;}. Let us define a mapping L, : RN — SN,
where L,(C) = {&,}72,, and for i > 1,

1 i E(A) >0,
i1 = (3.77)

with 60 = 1, and En(A) = Z?:O fzal

Definition 3.1.30. Let x¢ € €. Take A = {2'¢;}. Let us define a mapping J; : RY — SV,
where J;(C) = {£,}72,, and for ¢ > 1,

£i+1 - (378)
—1 if Z(A) <0,

with §y =1, and =, (A) = > &a;.

Definition 3.1.31. Let z¢ € €. Take A = {2/¢;}. Let us define a mapping J, : RN — SN,
where J,(C) = {£,}52,, and for i > 1,

1 if Z(A) >0,
§iv1 = (3.79)

with §, =1, and =,,(A) = > &a;.

Definition 3.1.32. Let T : {0, 1} — [0, 1], such that

T({e;}) = i g2t (3.80)

Actually, T is a mapping that transforms the binary expansion back to a number in unit

interval.
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Definition 3.1.33. Let Fy : RY — [0, 1] be the mapping:
Fy=ToH 'oly.

We will say that F} is the mapping for upper maximizer of Takagi Class on the lower half.

Definition 3.1.34. Let F}, : RY — [0, %] be the mapping:
F,=ToH 'oL,.

We will say that Fj is the mapping for lower mazimizer of Takagi Class on the lower half.

Definition 3.1.35. Let Gy : RN — [0, 1] be the mapping:
Gy =ToH 'oJ.

We will say that Gy is the mapping for upper minimizer of Takagi Class on the lower half.

Definition 3.1.36. Let G, : RN — [0, 1] be the mapping:
G, =ToH ! o J,.

We will say that G, is the mapping for lower minimizer of Takagi Class on the lower half.

Theorem 3.1.37. For any z¢, we have F4(C) € McN[0,1] and F,(C) € Mc N0, 3].
Proof. For simplicity, let us take A = {2'¢;}, and = = Ly(C). By applying (3.76), we have
En(A)1 <0, forevery meN.

Hence, (2, A) satisfies the step condition for maxima. Let y be a point whose quasi-binary

expansion is = = Ly(C). Therefore, by applying Theorem 3.1.25, we have

(ToH ™) o Ly(v) = F(C) =y € Mc.
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Furthermore, since &, = 1, we have
H 1 (ZE) = 0.

Therefore, by Lemma 3.1.10, we have

1
ToH (=) €0, 5].
Hence,
1
(ToH ™) o L(C) = F(C) € Mc N[0, 3],

The proof for F,(C) € Mc N0, 3] is analogous to this proof.

]

Theorem 3.1.38. For any z¢, we have G4(C) € Mc N0, 1] and G,(C) € Mc N[0, 3].

Proof. The proof is analogous to Theorem 3.1.37.

]

Proposition 3.1.39. Let I' = {v;}2, € {0,1}N and A = {\;}2, € {0,1}. Denote
N ={n € N|y, # \.}, and n = min A/. Then T(T') > T'(A) if and only if v, = 1, and the

equality holds if
Y =0 and M =1,

forallk >n+1.

Proof. Now let us first of all prove the if part, according to (3.80), we have

> 1

(D)~ T(8) = 3~ M) = (" + 3 (= A (3"

=0 i=n-+2

As v, — N € {—1,0,1} for all ¢ € N, then we have

= 1, =1 1
f i_)\i_zz_ _1:__n+1.
Al 2 (=G == 3 6 = ()

20

(3.81)

(3.82)



By applying (3.82) into (3.81), we have
L(T) — L(A) > 0,

By symmetry of the algebraic structure, we can directly obtain the only if part. Now
(3.82) indicates equality holds if and only if > (v — i) (3)" = —(3)™™*. This condition
satisfies if and only if 7, = 0 and A\, = 1, for all k£ > n + 2. Hence, we finish the proof. [

Theorem 3.1.40. For any x¢ € €, we have

Fy(C) =sup Mc N0, %], and F,(C) = inf Mc N[0, %]

Proof. Take A = {2i¢;}. Now let us consider any sequence I' € SY such that (T, A)
satisfies the step condition. For simplicity, let us denote Zf = Ly(A) and = = L,(A).
Denote N = {n € N|¢} # 7.}, and K = {n € N|¢ # 7,}. Now take n = min A\ and
k = min K. Since we have & # 7, and both (=%, A) and (T, A) satisfies the step condition,
we have T',,_1(A) = Z¢_(A) = 0, therefore, by applying (3.76), we have & = —1, and
Y = 1. Therefore, by applying (3.52), we have H~1(Z*),, = 1 and H~(T"),, = 0. Therefore,
by applying Proposition 3.1.39, we have

Fy(v) > t,

for every t € M,,. Now let us consider the lower bound for the set of maxima. Since we
have & # 7y, and both (Z°, A) and (T, A) satisfies the step condition, we have I'y_;(A) =
=" _(A) = 0, therefore, by applying (4.2), we have & = 1, and = —1. Therefore,
by applying (3.52), we have H~'(Z"), = 0 and H ('), = 1. Therefore, by applying
Proposition 3.1.39, we have

F(v) <t

for all t € M,,. O
Theorem 3.1.41. For any x¢ € €, we have

~ 1 ~ 1
G¢(C) =supMc N0, 5], and G,(C) = inf Mc N0, 5]
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Lemma 3.1.42. Denote = = L;(C). For a fixed C € RV, if 5, (A) # 0 for all n € N, then
F,(C) = B(C).
Proof. Since Z,,(A) # 0 for all n € N, then by applying (4.3) and (4.2), we have
Ly(C) = Ly(C).
Therefore, we have
F(C) = (T o H)(L4(C)) = (T o H)(L,(C)) = F(C).

[]

Corollary 3.1.43. Denote = = Ly(C), and A = {2'¢;}°,. For a fixed C, if Z,(A) # 0
for all n € N, then
1

Men[o 5l =1.

Remark 3.1.44. Corollary 3.1.43 indicates that if Z,,(A) # 0, then the maximizer on [0, 1]

is unique.

Proof. This directly comes as a corollary from Corollary 3.1.43. O

Lemma 3.1.45. Let z¢ € €, and take A = {2'¢;}32,. Take N’ = {n € N|Z,(A) = 0}.
Suppose that |A| < oo and McNT = @, then [Mc N[0, ]| = 2.

Proof. We will prove this theorem by induction on |[A]. First of all, let us consider the
case when |[N| = 0. As we have for all n € N that =,(A) # 0. Then by applying Corollary
3.1.43, we have

Fy(A) = F(A).

Therefore, |[Mc N [0,1]| = 2° = 1, and we have proved the assumption for |N| = 0. Now
let us assume that the induction hypothesis holds for |[N| = k, and then we proceed to
prove the case for [N| = k+ 1. Take p = min N, N, = {n > k|=,,(A) = 0}. Therefore, we
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have =Z,(A) = 0, and |N,| = k . Furthermore, let us denote y = T o H(Z), and y, be the

n'™ order binary approximation of y. Then we have that

00 P o0 %)
Z(A) = Zfiﬁli = Zfi&i + Z &a; = Z,(A) + Z §ia;
i=0 i=0 i=p+1 i=p+1 (3.83)

o0
= Cipitispn = EPTH(A),
=0

Furthermore, let us take 7(t) = 2P*1(t — y,). When t € [y,,y, + 2-®*Y], then we have
{~}, where v; = &4py1 and D = {d,}, where

7 € [0,1]. Moreover, let us denote I' =
di = Ci4p+1, and B = {QZdZ} Since

we have for t € [y,,y, + 27V

xC,p(t) = xC,p(yp) = IC,p(yp + 2_(p+1))~ (3.84)

Furthermore, for ¢ € [y,, y, + 2~ "*Y], we have

MC,’P C [ypu Yp + 2—(p+1)]’

and
o0 oo

zolt) =) cio(2t) = zcylyy) + Y cd(2'D)

i=0 n=p+1

= wop(yp) + Y ()
i=0

= zcp(yp) + Z Coapr1d(2PT(t — ) (27Ty, € Z)
i=0

= zcp(yp) + ) did(2'7)
=0

= 2cyp(Yp) + 2p(7).

(3.85)
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Mc Sc
'
C

{0,2}%
.

Figure 3.6: Isomophism between Cantor set C and M¢

We can do the last step due to 7 € [0, 1]. Furthermore, we have

o0 o
—p+1 — . . - p+i+le. ,
EFT(A) = E §itpt1Qitpr1 = E 2P G p 1 Cigpi
i=0 i=0

oo (3.86)
= 2771 b = 27T (B).

1=0

Since (=, A) satisfies the step condition for maxima, then we can apply induction hypothesis
and Lemma 3.1.10 here. As =,(A) = 0, then both {,1; = v € {—1,1}. Now for vy = 1,
then p(7) will have 2¥ maximum points in [0, 5], hence then z¢(t) will have 2¥ maximum

points in (Y, ¥, +2-™*?). The interval is open due to M NT = ). Similar, for yo = —1,
1
29
points in (y, + 2=+ ¢, +27"+D) Hence, for zc, there will be 2¥*! maximum points.

then zp(7) will have 2 maximum points in [£, 1], hence then z¢(#) will have 28 maximum

Therefore, we prove the statement for N = k£ + 1, and hence, we finish proving Lemma
3.1.45. =

Lemma 3.1.46. Let zc € €, and take A = {2'¢;}3°,, E = Ly(A). Take N = {n €
N|Z,(A) = 0}, and N} = {n < k|=,(A) = 0}. Suppose that |[N| = co, then |[Mc| = 2%,
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Proof. Denote C as the Cantor set. A well-known fact is that |C| = 2%, Furthermore,
let us numerate the set N' = {po,p1,+* ,pn, -}, where {p;}32, is an strictly increas-
ing sequence. For simplicity, we set pp = —1. Now let us denote the S¢ = {= €
SY|(Z, C) satisfies step condition for maixma}. According to Theorem 3.1.25, X = ToH ~*
is a bijective mapping for S¢ — M. Now, in order to prove that |[Mc| = |C| = 2V, we
now prove they are isomorphic. Let us denote the mapping from a ternary expansion
Q€ {0,2}" to y € C as V. By Lemma 2.1.7, this mapping is bijective. Now we will prove
that there exist a mapping bijective mapping )V : SN — S¢. Define ) : SY — S¢, where
Y(T) =E by:
v, if Z;(A)=0 and i=p,
S§it1=4q1 if i¢N and Z;(A)<0 (3.87)
-1 if i¢ N and Z;(A)>0

where j = max ;. Then, obviously, such a mapping is well-defined, as (=, C) by definition
satisfies the step condition for maxima. Now let us prove that this mapping is bijective.
First of all, let us prove that this mapping is injective. Let us assume that T # I'. Then
we must have for some j, that v; # 7;. Then by definition, we have Y(Y), 11 = v; #
¥ = Y(I')p;+1. Now let us prove that this mapping is surjective. Let = be any sequence
in Sc, then take T = {v;}, where v; = §,. ;1. Hence, by definition Y(T) = Z. Therefore,
the mapping Y is bijective. Now let us define a bijective mapping U : SY — {0,2}N. Let
T € SY and © € {0,2}". Then U(Y) = O is defined as follows:

for all 7+ € N. Obviously, the mapping U is a bijective mapping. Therefore, let us define

W = Yl oU is a bijective mapping from Sc to {0,2}. Therefore, C = M. Hence,
C| = [Mc]. [l
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3.2 Local Extrema for Takagi Class

In this section, we will analyze the behavior for the local extrema. The nature of local
extrema can be regarded as a global extrema under a Takagi function adding a linear
function. One may compare the following lemmas, corollaries and theorems with Section

3.1 in order to have better understanding.

Definition 3.2.1. For t1,t; € [0, 1], denote

Mc([t1,ts]) = arg max xc(t).

te[t1,t2}
Furthermore, we have
Men([tr, t2]) = arg max zc ,(t)

tE[tLtz}

The following lemmas and corollaries can be regarded as a local extension of the lemmas

in the previous section.

Lemma 3.2.2. Let x¢ € €. For every m > n, let 7,,, € Mg m([z, 2+ 27"]) be a maximum
point of the truncated Takagi function z¢,, in the interval [z, z + 27" for z € T,. Next
let 7% be the larger point(s) among the two adjoining points in T, of 7,,, in the interval

[z, 2+ 27"]. Hence, we have

*

T € arg max re,m(t). (3.89)
tETm+1(Tm)N[z,2+277]

Now, let s € Typi1 N[z, 2 +27"], and s* € Ty, 41(8) N [2,2+27"]. Then, if m > n, we have

2Cm(Tm) + T0m(Th) > T0m(s) + Tem(s"), (3.90)
forall s € Tpp1 N[z, 2+ 27"

Proof. We are going to prove this Lemma using induction on m. First of all, let us consider
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the case when m = n. By applying Lemma 3.1.22,
zon(t) =E,(A), for te€ |z, 2, +27"] (3.91)

Then if Z,,(A) < 0, then we have 7,, = 2+ 27" and 7;; = 2, otherwise, we have 7,, = z and
ty =71 = z4+27". Also, we notice z and z+2" are the only choice for s € TxN[z,, 2, +27"]

and s*.

ron() + T6n(72) = 0 n(s) + 0 n(5") = en(0) + 0n(3) (3.92)

Due to (3.92), we have proved that the hypothesis holds for m = n. Now let us assume
that the induction hypothesis holds for all m < k — 1, and we proceed to prove the case

for m = k.

Now we will then prove the statement case by case. First of all, consider if 7, = 7,_1.
According to Lemma 3.1.1, 777, is an adjoining point to 7,_; on the dyadic partition T

with in [z, 2 + 27"]. Therefore, we have
ITe-1 = i | = 1271 — 7)) — T = 278

As well as,

Th—1+ Ty

3Th—1 — Thy
= BT STl T

| — 2—(k’+1) )
2

3Tp_1—Th_4
2

are the two adjoining points of 73, on the dyadic partition Ty ;. Then due to the

Therefore, 27,1 — 7;_; is the other adjoining point to 7,_;. Moreover, and

Te—11tTk—1
2

linearity and inequality in (3.89), we have

Tp-1 + T£f1> Tor(Te-1) + Tor(mia) | o

o - 2 2
S zrek(Th-1) + Top(2Th—1 — Th_y) Ck
- 2
3Th—1 — Tr_
= Icyk(%).

57



Hence we must have i
Thk—1 + 7
— k¢ arg max rok(t).
2 tGTk+1(Tk)m[Z,Z+27"}

Now we have,
*
* Tk—1 + Tp—1

= 3.93
Tk B ( )

Now let us assume that s € Ty, then we have that
ror(s) = xop-1(s) < ep—1(Tk-1) = Tck(Th-1), (3.94)

and we can re-compose s* by s* = W Since
(25" — 8) — s*| = |s* — 5| = 28T, (3.95)

as will as,

125* — 5 — 5| = 2|5 — 5| = 2. 27 *FD) = o7, (3.96)

Equation (3.95) and (3.96) indicates that s and 2s* — s are adjoining points on the dyadic
partition Ty, and they are also the two different adjoining points of s* on the dyadic

partition Ty,;. Then applying the hypothesis for £ — 1, we have
xC,k—l(Tk—l) + xC,k—l(T]:_l) > Icvk_l(s) + [Eqk_l(QS* - S). (397)

By applying (3.93) - (3.97), we then have

wcvk(tk) + xC,k(Tk) = xC,k—l(Tkﬂ) + IL’C,k(%)
* 1 Ck
= :L‘c,k;—l(Tk—l) + §ZECJ€_1(T]€_1) -+ §xC,k—1(Tk—1) + E
1 1 § c
2 xckal(s) + §xC,k71(S) + §Qicyk,1(28 — s) -+ Ek

Z xc,n(S) + $C7n<8*>.
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Now, let us consider when s € Ty.; — Ty. In this case, we have
s* € Trya(s) C Ty, (3.98)

as well as,
25 — 8" € Try1(s) C Ty, (3.99)

According to (3.9), we know that s* € Ty and 2s —s* € Tj. Now by applying the inductive

statement for order k — 1, we have,
$C,k,1(5*) + xC,k—1(23 — S*) < $c’k,1(T£_1) + xC,k—l(kal) (3100)

Then by applying (3.100), we have

. T 4 Th_1
rer(Th) + ror(m) = vop—1 (1) + xc,k(le)
. c
= 2cp-1(Tk—1) + §$c,k—1(7k_1) + §$C,k—1(7k—1) + Ek
> rop-1(8") + §Ic,k—1(8 )+ §xC,k—1<23 —s) + 5

> zoi(s) + ror(s™),

Now, let us consider the other case when 7, # 74,_1. For any points s € Ty, we have

rek(s) = vop-1(5) < vop-1(Th-1) = Tok(Tr-1)- (3.101)

And for points s € Tj,1 — Tk, we have s — 2=+ € T, and s + 2=**+D € T,. Then by
applying (3.5) with m = k — 1, we have

Th—1+ Th_y

Ten-1(Tk—1) + Tecn-1(T4_1)  cn
2 N 2

2 2

Ton1(s =2 4 oq, (s + 2+ Cn
> Teail [t renl )18~ (s

)

ZEQn(
(3.102)
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By applying (3.101) and (3.102), we then have

1+ T
max zc(t) = max{xcm(Tk_l),xC,n(M)}. (3.103)
te(z,z+27"] 2

And as 7 # T_1, then we have

ro= 2 Tt (3.104)
2
as well as,

T = Th1. (3.105)

Then for all s € Ty, we must have either s or s* is in the dyadic partition Ty. Without
loss of generality, let us assume that s € Tj.1, therefore, s* € Tx. Then by applying
(3.101), (3.102), (3.104) and (3.105),

- . Th—1 + Tj_
rex(te) + Tor(m) = CECk(T“

> $C,k(5> + mC,k<3*>-

)+ zck(Th-1)

Therefore, we finish proving the case for m = k, and, hence, we prove the Lemma 3.2.2. [

Corollary 3.2.3. Let z¢c € €. For every m > n, let 7, € M ([t1,2]), where t1,ts €

T,11. Furthermore, let us denote

*
Th o= argmax  Tcm(t).
tETm 41 (Tm )N[t1,t2]

If 7,,, € Mcm+1([t1,t2]), then

Tm + T
o m o arg max rem1(t).
2 tETm+2(Tm+1)ﬂ[t1,t2}
Otherwise, we have
Tm € arg max remi1(t).

tETm42(Tm—+1)N[t1,t2]

Proof. This result directly comes from (3.96) and (3.105) in the proof for Lemma 3.2.2. [
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Corollary 3.2.4. Let z¢c € €. For every m > n, let 7, € M ([t1,12]), where t,t5 €

T,+1. Furthermore, let us denote

*
o= argmax  ZTcm(t).
tETm+1(Tm)ﬁ[t1,t2]

Then there must exist some 7,41 € Mg mt1([t1,t2]), such that
[Tt ATl & [7m A T
We would follow Definition 3.1.6, and refer such a sequence {7,,} as a sequence of consec-

utive local maximizers in [t1, t5].

Remark 3.2.5. If {7,,} is a sequence of consecutive local maximizers in [0, 1], then {7,,} is

also a sequence of consecutive maximizers.

Corollary 3.2.6. Let ¢ € €. For every m < n, let 7,,, € Mg m([t1,t2]). Then, we must

have

Trs1(Tim) € Memer([t1,t2]) # 0.

Proof. This result directly comes from Corollary 3.2.4. m

Proposition 3.2.7. Let z¢ € €. For every m > n, let 7, € Mc.([t1,t2]) be a maximum
point of the truncated exponential Takagi function zc,, on the interval [¢y, o] for ¢1,ts €
T,n41 Furthermore, we require [t; — to| = 2=("*Y. For a fixed m > n, we let k = min{i >

m — n|Tpm_i # Tm}. Then, if 7,1 < 7, and 7,,, — 27"F2) € [t;, 5], we have
Teme1(p — 27" < 2e g (T — 27 M), (3.106)
for every p € Tyy1 N [t1, to] and p € Ty — 272 N [t 4],

Proof. Let us first consider the case k = 1. Since 7, is in the dyadic partition T,,,; and

Tm—1 18 in the dyadic partition T,, for any fixed m € N, and we have

Tm—k = Tm—1 < Tm- (3107)
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Then due to (3.107), we can apply Lemma 3.1 in [17], then we have
Tme1 = T — 27 ™), (3.108)

As the truncated function ¢, is linear within intervals of the form [p—2~("+1 p] C [t;, ),
for any p € T,,11 € [t1,t2]. Furthermore, the increment of the wedge has an increment of
Cm+1

5=, we get

xC,m(p> + xC,m(]? - 2—(m+1)) + Cm+1

mg1(p — 27 M2 = 3.109
Temi1(p ) 9 5 ( )
As 1, € T,11, we may take p = 7, and by plugging (3.108) into (3.109), we have
ZC i1 (T — 27FD) = 26m(Tm) Zxc’m(%‘l) + Cm?“. (3.110)
Since 71 € Mem-1([t1,t2]), Tm—1 € Tsn, then we have
«TC,m<7—m71) = xc’m,1<7'm,1). (3111)
As p € Typ1 N [L1, o], then either p € T, N [t1,ts] or p — 270D € T, N [ty, ).
miﬂ{xc,m(p)7 xC,m(p - 27(m+1)>} S xC,mfl(Tmfl) == xC,m(Tmfl)- (3112>
In addition,
max{zcm(p), rcm(p — 2_(m+1))} < 2em(Tm)- (3.113)
Hence, according to (3.112) and (3.113), we have
xC,m(p) + xC,m(p - 2_(m+1)) < xC,m<Tm) + xC,m(Tmfl) . (3.114)

2 - 2
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Plugging (3.114) into (3.110) and applying (3.109), we get

(m+2)) Tem(P) + xemp —2"") | cnn

Temi(p— 27 = 2 + 5
( ) n ( ) (3.115)
S 26 m\Tm Q:CC,m Tm—1 + Cm2+1 = TC,m+1 (Tm - 2_(m+2))'

This completes the proof for the case £ = 1. For the case k > 1, we proceed the induction
on k. For such all fixed n, we assume the inductive hypothesis holds true for £k < m. Now
we proceed to prove when k = m + 1, ¢ i1 (p — 27"*?) < 2 i1 (T — 272)) holds
for p € T,41 N [t1,t2]. As we know that m + 1 = min{i|r,,_; # T}, and 7,, = 7,,_1, then
we have

min{i|7,—1-; # Tm-1} = m. (3.116)

As induction hypothesis holds for every n € N and k& < m, then by applying (3.106) for

To,m—1, we have
2 m-11(p— 27D < a1y (Trg — 27 (mTDFD) (3.117)
where p € T,, N [t1,t2]. By organizing equation (3.117), we have
Tom(P—27MDY < zgm (T — 27 ), (3.118)

Then we will prove the statement case by case. We first consider the case p € T,,. As
Tm € Tyi1, therefore 7, — 2~ (m+1) ¢ T,p1. Similarly, as p € T,,, then p— 2-(m+1) ¢ Thsq.
By applying equation (3.109), we get

_ Tom(P) + 2en@ =27 | enn

3.119
5 5 (3.119)

Temar (B — 27 ")
Then as 7, = 7,,—1 € T, we can replace p with 7, in the equation (3.119), we get

m\!'m m m_2—(m+1) m
rem(T ché (7 ) ¢ o (3.120)

TC,m+1 (Tm - 27(m+2)) =
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As 7, =71,_1 €T,, and p € T,,, then we have

xC,m(ﬁ) - xC,m—l(ﬁ) S IC,m—l(Tm—l) = xC,m(Tm—l) - xC,m(Tm>- (3121)
Then by plugging (3.121) and (3.118) into (3.119) and (3.120), we have

~ —(m x ,mﬁ +x ,mﬁ_2_(m+1) Cm
o~ 2749 = EemlP) + T ), o

m\'m m m_27(m+1) m
< TCm(Tm) + ﬂfc,2 (T ) n c 2+1 = 21 (T — 2—(m+2)>'

Now we discuss the case p € T,,.1 — T,,, then we have that p + 2-(m+1) c T, therefore
by applying equation (3.118) for j + 2=+ we have

vem(p+27 0 =270 ) = 16, (5) < 2o (T — 27Y). (3.122)
As the function z¢,, is maximized at 7,,, we have
zom(P— 27" ) < 2 (7). (3.123)

By plugging equation (3.122) and equation (3.123) into equation (3.119) and equation
(3.120). We have

xC,m(ﬁ) + xC,m(ﬁ - 27(m+1)) Cm+1
2 + 2

Te,m\Tm + T m\Tm — 2—(m+1) Cm —
Sm{Tm) 0’2( ) + 2“ = Tema1 (T — 27Y).

T mi1 (P — 27(m+2)> =

<

Therefore, we have proved that xc ,41(p — 2~ (m+2)) < rem41(Tm — 2-(m+2)) for any p €
T,ne1 N [t1,t2]. Since both base case and the inductive hypothesis has been proved, then

we prove this proposition. ]

Proposition 3.2.8. Let z¢ € €. For every m > n, let 7, € Mcn([t1,t2]) be a maximum
point of the truncated exponential Takagi function zc,, on the interval [¢y, o] for ¢1,ts €

T,n41 Furthermore, we require [t; — t5| = 2= ™+Y . For a fixed m > n, we let k = min{i >
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m — n|Tpm_i # Tm}. Then, if 7,,,_s, > 7, and 7,,, + 272 € [t;, £,], we have
ch,m_;_l(p + 2_(m+2)) S ch’m_;_l(Tm + 2_(m+2)). (3124)
for every p € Tyy1 N [t1, to] and p + 27F2) € [ty t,].

Proof. The proof is analogous to proof for Proposition 3.2.7. n

Lemma 3.2.9. Let t1,ty € Ty and [t; — to| = 2871 Then let 7, € M, ([t1,12]) for all
n >k, and

TP € argmax  zon(t).
t€Tp11(Tn)N[t1,t2]

Then for any fixed n > 1, let m = inf{i|7,,_; # 7,}. Then, 7,_,,, < 7, if and only if 7 < 7,

for every m < n — k..

Proof. First of all, let us prove the if direction. Let us assume that 7,_,, < 7,, then we
will discuss case by case. First of all, let us consider the case when m = 1. By applying
Corollary 3.1.3, we have 7,,_; = 7, — 2-™*) € T,. Similarly, we have 7, + 2= ™) ¢ T,,.

Then we have
:L‘Cm(’]'n — 2—(n+1)) = xc,n—l(Tn _ 2—(n+1)) > $c,n—1(Tn + 2—(n+1)) _ !L‘c,n(Tn + 2—(n+1))'

Hence, we have 7° = 7,, — 2~("*) "and 7* < 7,,. Now, we consider the case when m > 1,
then we have

Tn—1 = Tp-

Then we can apply the Proposition 3.1.7, as 7(,—1)—(m-1) < Tn—1, then we have
zon(p— 27" <weu(rny — 27 = wg,, (1, — 27D, (3.125)

for every p € T,. Because 7, = 7,1 € T,, then by plugging p = 7, + 27" € T, into
(3.125), we have

Ton(Tn +27" =27 = 26, (1, + 27 < wg (, — 270D,
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Then we have 7 = 7, — 2~ (+1)

, and 77 < 7,. Hence, we finish the proof for the if part.
Now, we aim to prove the only if direction by proving its contrapositive statement through

induction. We can notice that the contrapositive statement for the only if direction will be
If Ty > Ty, then 770 > 7,.

Then, we will prove the contrapositive statement in a similar way as we prove the if
direction. Since by assumption, we have 7,_,, > 7,, then we will also discuss case by case.
Now, let us consider the case when m = 1. By applying Corollary 3.1.3 again, we have

Tho1 = Tp + 27+ € T, Similarly, we have 7, — 2=("*Y € T,. Then we have
xC,n(Tn — 2—(n+1)) — -TUC,nfl(Tn _ 2—(n+1)) < xC,nfl(Tn + 2—(n+l)) _ xC,n(Tn + 2—(n+1))'

Hence, we have 7* = 7, + 2=™*tD and 7* > 7,,. Now, we consider the case when m > 1
) n n Y n Y Y
then we have

Tn—1 — Tn-

Then we can apply the Proposition 3.1.8, as T(,—1)—(m—1) > Tn—1, then we have
JZC’n(p + 2—(n+1)) S $c,n(7'n—1 ‘f‘ 2—(n+1)) = xC,n<Tn—1 + 2—(n+1)>‘ (3126)

for every p € T,. Because 7, = 7,1 € T,, then by plugging p = 7, — 27" € T, into
(3.126), we have

IC,n(Tn — 27" 4 27(n+1)) — xC,n<Tn _ 2*(n+1)> < 'TC,n(Tn 4 27(n+1)>‘

(n+1)

Then we have 77 = 7, + 2~ , and 77 > 7,. Hence, we finish the proof for the only if

part through proving its contrapositive statement. O

Lemma 3.2.10. Let t,ty € Ty and [t; — to] = 2571, Then let 7, € Mg, ([t1,12]) for all
n >k, and

Th € argmax  Tca(f).
tE€Th+1(Tn)N[E1,t2]
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Then for any fixed n > 1, let m = inf{i|7,,_; # 7,}. Then, 7,_,,, > 7, if and only if 7* > 7,

for every m < n — k..

Proof. This is the contrapositive statement for 3.2.9. [

Theorem 3.2.11. For 1,1, € T,, and [t; — t5| = 27+ for some m € N. Let 2¢ € €,

the following statements are equivalent:
iy € Mc([ts, ta]).
ii. There exists a sequence {y, }>,, such that v, € Mc,([t1,%2]) for all n > m, and
y = lim y,.
n—o0
iii. Let T, := {[r, — 27D 7, + 2= V] |7 € Me.,([t1,t2])}. Furthermore, take

P.= J A

A€eT,

Then,
Yy € ﬂ Py
n=0

iv. Let IC;, := {[to AT, VT | 7o € Mcen([th,t2]), 70 € argmax  x¢,(7,)}. Further
tGTn+1(Tn)ﬂ[t1,t2]

more, take
.= |J A
Ak,
Then,
Yy € ﬂ L.
n=0

Proof. Let us prove this theorem by proving following statements in order.
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o | =1
Let us try this statement by proving its contrapositive statement. The contrapositive

statement will be
If there exists n > m, such that y ¢ I, then y ¢ Mc([t1,12]).

Denote N = {k > mly ¢ I,}, and denote n = min . Let us assume that y €
[s, 5] S [t1,t2], where s € T,qq and s* = s + 27D Since n = min N, we must
have that

YE[Tuaa ATy, T VT4

for some 7,_1 € Mg -1([t1,t2]) and 77, € argmax xzc,-1(t). By applying Corol-
tETn(t)ﬂ[tl,tg]

lary 3.1.3, there exist 7, € Mg, N [The1 A T4, Tn—1 V 7,_;]. Hence, by applying
Corollary 3.1.4, we have

[E(Tn_l + 7 ) A Thot, 5(7—”_1 + 7 )V T = [t AT, TR VT

Therefore, we have {s,s*} ({7, 7} # 0, and {s,s*} {7, 7} # {7, 7;}. For

instance, if 7;7_; < 7,,_1, then we have
s=1, 4, and s =T,AT,,
As [s, s*| ¢ K, therefore s = 7f_| ¢ Mc,—1([t1,t2]). Hence, we have
Ten(s) < en(Th-1) < xen(T)). (3.127)

As well as
Ten(s) < xen(mh). (3.128)

Therefore, since y € [s, s*],
g:=28" —yEm AT, T VT,
for 7, € Mc,([t1,t2]). Then by applying Lemma 3.1.12 and Lemma 3.1.13, as
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S € Tn+1,
G (y) = 25(). (3.129)

By applying (3.127) - (3.129), we have

n y—=s * -y n
oY) = Tonly) + 167 (Y) = —won(s) + —_ron(s) + 25" ()

_Yy—=s N 1~

o — SxC,n(S ) + 5* SI'C,n(S) + T (y)

y—s 5% — ) * n+1/~
< n\'n n\'n

L= on(m) + S Lac () + 257 (@)

28" —y) — Tn st — (28" —y . 1/~
= %wc,n(m) + ( - )xc,n(m) + x5 (D)

Tp — S Tp — S

_ g — Tn s* — g * nt+1/~
= el + o ren () + a8 (@)

= zea(§) + 25 (@) = zc(p).

Hence, y ¢ Mc([t1,t2]). And the proof for the situation when 7,1 < 7*_; is analo-

gous to the previous proof.

® 1V = il

First of all, let us state this statement again.

Ifye oy Zn, theny € (2o Pa-

This statement is equivalent to the following inclusion, and we now aim to prove the

following inclusion.
Z.c ()P
n=0 n=0
As for each fixed 7, € Mc([t1,t2]), we have

[ro ATy T VT G [ — 270 7y 4 270U (3.130)
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Then (3.130) directly gives,

.= | JAS |J A="7.

A€k, AeT,

for all n € N. Therefore, we have
(Z.C ()P
n=0 n=0

First of all, let us formally state the statement we are going to prove.
If y € (o Pu, then there exists a sequence y, € Mc,([t1,t2]), such that
y = lim y,
n—oo

Since y € (., Pn, hence, for all n € N, we have

y € Py.
Therefore, there exists some A4,,, € 7T, for all n € N, and

y €Ay
For each n € N, we take some y, = Mc, N A4,,, and then we have

lym — y| < 270V, (3.131)
Hence, lim y, = y.
n—o0

First of all, let us state the statement we are about to prove.
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If there exists a sequence {yn}o2,, such that y, € Mg, for alln € N and lim y,,
n—o0

then y € Mc.

As [t1,ts] is a compact space, and xc, € C|[t1,ts], therefore, there exists f, =

max xc,(t) for all n > m, as well as f = max xz¢(f). Since, z¢, — z¢ uniformly,

tefty,ta] tEt1,t2]
for any € > 0, there exists some N € N, such that for all n > N,

ro(t) — € < zen(t) < zc(t) + e
for all ¢ € [t1,t5]. Hence, we have
Toa(t) —e <zc(t) < zcn(t) +e

Hence, (3.132) and (3.133) give us

Tea(t) < B+,
Ll'c(t) —e< 57“

for all t € [t1,t5]. By taking the supremum on the left side, we have

Bn < B +e,
/8_€§5n

Hence, we have
ﬁ — € S ﬁn S 6 + €.

(3.132)

(3.133)

Therefore, we have lim (, = 8. By uniformly convergence, as lim y, = y, therefore,
n—00 n—o0

lim xC,n(Z/n) = xC(y)'

n—oo

Therefore, y € Mc([t1,t2]).
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Theorem 3.2.12. For y € [0,1], let y = O.gpg162-++ = Y 02~ Y be the binary
expansion of y. Let y, = 0.0g162...6, = Y 1 €2~ Then y € Mc[ym, Y + 27 (D]
if and only if there exist a sequence consecutive maximizers of 7, € Mc n([Ym, Ym+2~ "))

and 77 € arg max Tc.n(t), such that
n g )
tETn+1(Tn)m[ym,ym+27(m+1>}

Un = Tn N T,
for all n > m.

Proof. First of all, let us prove the if part. Now let us assume that there exists a sequence
of 7, € Mceu([Ym Ym +270"H1]) and

*
T, € arg max zon(t),
teTn+1 (Tn)m[ym Ym+27 (m-’—l)}

such that vy, = 7, A 7. Instantly, we have

lim y, = lim 77 A7, = y.
n—00 n—00

Then by taking such 7,,, by Lemma 3.1.16, then we have

lim 7, = lim 7, A7, = hm Yn = Y.
n—oo n—oo

Hence, by applying Theorem 3.1.15, we have y € Mc([Um, Ym +271]). Now let us prove
the only if part by proving its contrapositive statement. Let us state the contrapositive

statement first.

If for any sequence of consecutive mazimizers T, € Mcn([Yms Ym + 2_(m+1)]), there exists
some n > m, such that y, # 7, AT*, then y & Mc([Ym, ym + 27 ™FV]).

For any sequence {7, }, such that 7, € Mg, ([Ym, Ym + 27 FV]), define N = {n > mly, #
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7, }. Now let us take N := min N/, therefore
[Tv-1 Aty Tvo1 Vi ] = [yv-1, v + 27V (3.135)
Since {7,} is a sequence of consecutive maximizers, we have
[Tn AT TN V Ta] G Irvet Aty vt V1) = [yv—1,ynv—1 + 277], (3.136)

as well as,

lyn, yn + 27N S TNai ATvo1, Tt V T (3.137)

Since, we have yy # 7y ATy, and therefore, either yy = 75 V75 or yn +2-WN+D — 7y ATR.
Then by (3.135) - (3.137), we have

lyn yn + 27NN W [y A T, Ty V 7] = [Tvet A Tvet, Tt V T,
Therefore, by applying lemma 3.1.10, we have

y € [yn, yy + 2" D),

Theorem 3.1.15 (i = iv) indicates

y ¢ Mc([Ym, Ym + 27 TI]),

O

Lemma 3.2.13. Let z¢ € €, let = be any quasi-binary expansion for y € [0, 1]. If there

exists m € N,

Zn(A)énir <0, (3.138)

for all m <n < N. We have

YN+1 = TN+1 N T]>tf+17 (3.139)
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where Ty 11 € Mc n+1([Yms Ym + 2_(m+1)]) and

*
TN = arg max ron+1(t).
t€TN 11 (TN +1)N[Ym ym 427 (MFD)]

Proof. By applying Lemma 3.1.22, it is sufficient for us to prove the following statement.
If there exists m € N, such thatz Z,(A)&,11 <0, for allm <n < N. We have

Tk\/T,:) _xC,k<7—k /\Tg)

=,(a) = "o

—k

(3.140)

TV T — Tk \NT;,
forallm< k< N+ 1.

Let us prove this lemma by induction on n. Assuming =,(A)&,+1 < 0 now, let us first of

all consider the case n = m. By Lemma 3.1.22, we directly have that

)= Tem(Tm V 15) — Tem(Tm A TE)
T VT — T AT, '

due to {7, 75} = {Ym, Y + 27"V}, Then it holds even without requiring (3.138). Now
let us assume that (3.138) implies (3.140) for all £ < n — 1, and we now prove the case for
k = n. By hypothesis for n — 1, we have

TCn—1(Tn—1 VTi_1) = Ten-1(Tn—1 AT_1)

=, 1(A) = (3.141)

* *
Tn=1V Ty 1 — Tn—1 NTp_4

For instance, let us assume that =,,_1(A) > 0. Then we have
* * = * *
TCn-1(Tna V7)) —Tcn1(Tac1 ATy_1) = Zn1(A)(Tna V Ty — Tac1t AT _q) > 0.
Moreover, since ¢ n—1(Tn—1V Ti_1) > Tcn-1(Tn—1 V 7;i_; ), we have

* I
Tn—1 V Tp_1 = Tn-1,

* %
Tn-1 NTh_1 = Th_1-
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Also, by the step condition, we have

& =—1. (3.142)

Tnfl“l’T;;_

By applying Corollary 3.1.4, we have 7, A 7; = ——"=, and 7, V 7,; = 7,_1. Therefore,
since 7,1 € T,, and 7, € T,,, we have 2"7,,_; € Z as well as 2"7_| = 2"(1,,.1£27") € Z.

Hence, we have

¢(2"7, 1) = $(2"T—1) = 0. (3.143)
Furthermore, we have
n— *_ 1
p(on it T 1;” =2, (3.144)

By plugging (3.141),(3.143) and (3.144) into (3.55), we have

Zon(Tn V1) ZTenlm AT _ 5 (a) 4
Ta VT — Ty NTH -l " Tho1 VT,

=Z,-1(A) — 2", = E,_1(A) + &ua, = Z4(A).

The last step holds because of (3.142). Hence, we have proved the case for 7,, > 7,f. The
case for Z,,_1(A) < 0 is analogous to the case for =,,_1(A) > 0. Now let us further consider

the case when =,,_1(A) = 0. Then we have
Ten-1(Ta1 VTh_1) = Ten-1(Tn1 ATh_1) = Epn1(A) (Tt VT — Tt AT_y) = 0.
Then we have
Ten-1(t) = xcn-1(Ta—1 VTh_1) = Tcn-1(Tn-1 AT)_1) (3.145)

forallt € [1,-1 AT}, Tho1 V 7_4]. Because 7,y V7, € T,y and 7,1 A7_; € T, then
we have
2" T V1) =02 "1 AT_y) = 0. (3.146)
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As well as,

1 1
¢(§(2n7'n_1 V T;—l -+ 2n7_n_1 A 7',;:_1)) = 5 (3147)

Then, one of two following cases must be true:

TaAT =Ty AT, and T,V T =T A7) | 4+ 274D

TaAT =Ty A AT 4270 and 7, VT =71,V T .
Furthermore, by applying the inductive hypothesis and Lemma 7?7, we get
Yn-1= Tn-1 N Tp_q. (3.148)

Therefore, (3.148) will directly lead us to

Y Yn—1 1 1 13 (3.149)

Yn = Yn—1 + 2—(n+1) = Tp-1 A\ 7—1)1‘(71 + 2—(n+1) if £n =—1.
By applying (3.145), (3.146) and (3.147). Then we must have one of following two cases,

Ten-1(Ta V7)) — cn-1(Tn A T))
T VT — T AT}
Ten(Ta VTl — xen(Ta AT + (2", V 1) — 0(2" T A 7))
TN Ty — Ty AT

P2 (Tn—1 AT +2~ (D))= (2" (1T ) - -
Cp - : o—(n+1) - = 2ncn = an = ‘:‘n—l(A) +a, = :‘n(A>7

A2 T AVTE_ )= (27 (Tt ATF_ +27 (1)) —_ —_
: e Tt = 2", = —a, = S,1(A) — 0, = E,(A).

(3.150)

The last step is due to (3.149). Hence, regardless of the choice of 7,, and 7,7, we always

have N X
= () Tealm V)~ rou(r A )
e T VT — T AT ’
Therefore, we have proved the case for n, and, we finish our proof for this lemma. O
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Theorem 3.2.14. For 2¢ € €, we have y € Mc([Ym, Ym + 27™F]) if and only if for
every quasi-binary = expansions of y, (=, C) satisfies the step condition for maxima after

some index m € N.

Proof. In order to prove Theorem 3.2.14, we will use Lemma 3.1.22 and Theorem 3.1.18 to
establish an equivalent statement. First of all, let us state all those equivalent statements

we are going to prove:

e (i) For z¢c € €, y € Mc([Ym, Ym + 27 ™FD]).

e (ii) Let y € [0,1], and y, be the n'™ order approximation for y. There exists a
sequence of consecutive local maximizers 7, € Mg ([Ym, Ym + 27 ™)) and 7* €

arg max xc,(t), such that y, = 7, A 7% for all n > m.
teTn-‘rl(Tn)

o (iii) Let = = {&}32, be any quasi-binary expansion for y, and z¢ € €. Take a; = 2'c;,
and A = {a;}, we have Z,,(A)&,+1 < 0 for all n > m.

Theorem 3.2.14 states the equivalence (i) < (ii). Furthermore, Theorem 3.1.18 establishes
the equivalence of (i) and (i7i). Therefore, it is sufficient for us to prove the equivalence

between (i7) and (i7i). Moreover, Lemma 3.1.22 indicates that

xC,n(tl) - xC,n(tQ) =
t1 — 1o

for any t1,ts € [yn, Yn+2~"FY]. Now let us take t; = y, = 7, AT:. Then ty =y, +2- "+ =

7, V 7 for all n € N. We now aim to prove the following statement.
Zn(A)&n1 <0 for alln € N if and only if

2o V1) — Zen(Ta ATy)
TN Ty — Ty NT)

: (3.151)

where {1,} is some sequence of consecutive mazimizers.
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Then the only if direction is directly proved by Lemma 3.2.13. Now let us consider proving
if part by proving its contrapositive statement. First of all, let us state the contrapositive

statement:

Let {&;} be any quasi binary expansion for y. If there exist some n > m such that
En(A)&n1 > 0, then there exists m € N, such that yi, # i, A 75, for any sequence of

consecutive local maximizers {7,}.

Now let us take N' = {n > m|Z,(A)&,+1 > 0}, and n = min N. Then by Lemma 3.2.13,
we have

*
Yn = Tn N T,,.

Now let us first assume that =,(A) > 0. Then we also have &,,; = 1. Now we aim to

prove that

*
Ynt1 # Tar1 A Tpoyr

We have

Ten(Ta V1) —2en(Ta AT) = Z0(A)(T, V1 — T AT,) >0,

by (3.151). Then we have 7,, = 7, V 7 and 77 = 7,, A 7. By applying Corollary 3.1.4, we

have .
Tn + T,

2

* *
Tng1l V Tpy1 = Tny  and T, AT, =

Moreover, by Corollary 3.1.5, we have
[Tt A To1s Tot VY Toga] C [T ATy T V T
Let £ = {e;} be the binary expansion for y. Since &, = 1, we have
Eni1 = H (E)p = 0.

Then we have

(n+2)

Ynt1l = Yn + €n+127 = Un-
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Hence, obviously
T + T
5

Hence, we have finished the proof for the case =,,(A) > 0. The case =,(A) < 0 is analogous.

* *
Yntl = Tn N Ty F Tnp1l N Ty =

Hence, we finish our proof for the statement. O
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Chapter 4

Exponential Takagi Class

4.1 Global Extrema for Exponential Takagi Class

Let us recall the definition of the Exponential Takagi Class in Definition 1.1.6.

Definition. The exponential Takagi class 33 is the sub-collection of real-valued functions

z, : [0,1] — R in the Takagi class €, where z, can be written as
() =) v"p(2") (4.1)
n=0

x, is called the Takagi function with parameter v.

Now we are going to set up a mapping between the parameter v and the extremum
location. In order to have well-defined mappings, we first of all formally give following

definitions.

Definition 4.1.1. Let us define a mapping Iy : [—1,1] — SV,
ly(v) = Ly(C), (4.2)
where C = {1/'}52.
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Definition 4.1.2. Let us define a mapping L, : [-1,1] — SN, where

lh(v) = L,(C), (4.3)
where C = {1/'}%2,,.
Definition 4.1.3. Let us define a mapping j; : [—1,1] — SV,

jﬁ(l/) = Jﬁ(C), (44)
where C = {1/'}2°.
Definition 4.1.4. Let us define a mapping j, : [-1,1] — SV, where

B(v) = J(C), (4.5)
where C = {1/'}32,,.
Definition 4.1.5. Let f; : [-1,1] — [0, 3] be the mapping;

fﬁ Zjﬂo?-[*1 Olﬁ.

We will say that f; is the mapping for upper maximizer on the lower half.

Definition 4.1.6. Let f, : [-1,1] — [0, %] be the mapping:
fr=ToH  ol,.

We will say that f, is the mapping for lower mazimizer on the lower half.

Definition 4.1.7. Let g; : [-1,1] — [0, 5] be the mapping:
g =ToH oj.
We will say that gy is the mapping for upper minimizer on the lower half.

82



Definition 4.1.8. Let g, : [~1,1] — [0, 1] be the mapping:
g =ToH " oj,
We will say that g, is the mapping for lower minimizer on the lower half.
Corollary 4.1.9. For any v € (—1,1), we have fy(v) € M, N[0, 3] and f,(v) € M, N[0, 3].

Proof. This Corollary 4.1.9 directly comes from Theorem 3.1.40. O

Corollary 4.1.10. For any v, we have

fi(v) =sup M, N0, %], and f,(v) = inf M, N0, %]

Proof. Corollary 4.1.10 directly comes from Lemma 3.1.46. O]

Corollary 4.1.11. For any v, we have

. 1 - 1
gi(v) =sup M, N[0, 5], and  g,(v) = inf M, N[0, 5].

Proof. The proof is analogous to Corollary 4.1.10. O

Lemma 4.1.12. Denote = = Ly(v). For a fixed v, if =,(a) # 0 for all n € N, then

fi(v) = f(v).

Proof. Since Z,(a) # 0 for all n € N, then by applying (4.3) and (4.2), we have
Ly(v) = Ly(v).

Therefore, we have

fi(v) = (T o W) (Ly(v)) = (T o 1) (Lu(v)) = fi(v).
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Corollary 4.1.13. Denote = = Ly(v). For a fixed v, if 5, («) # 0 for all n € N, then
1
|IM, N[0, §]| =1.

Proof. This directly comes as a corollary from Corollary 3.1.43. O

Corollary 4.1.14. Let o = 2v, if o € D, then |[M, N[0, 1] = 1.

Proof. Since v ¢ Dg, for every n € N and f,, € F,,, we have f,(v) # 0. Because Z,,(v) €

Fn for all n € N, Z,(v) # 0 for all n. Hence by applying Corollary 4.1.13, we have
‘Mvm[&%”:l- O

Corollary 4.1.15. For v € Q, we have |[M, N[0, 1]] = 1.

Proof. Let a =2v. Forv e Q— {—%, %}, we have « € Q — {—1, 1}. By applying Corollary
4.1.14, we have |[M, N[0, 1] = 1. Furthermore, for a = 1, by applying Theorem 1.2.2, we
have M, N[0,3] = 3. Now, for @ = —1, Theorem 1.2.4 indicates that M, N[0,3] = 3.

Therefore, we finish the proof. O

Theorem 4.1.16. For v € [0,1), take o = 2v. Let 2 € SV, such that (Z,v) satisfies the
step condition for maxima. Denote N' = {n € N|Z,(a) = 0}, and p = min . Then either
M, N0, 3]| =1, or M, will have the form of a Cantor-like set with Hausdorff dimension

1
5

Proof. Denote a = 2v. For some = € SN, (Z,v) satisfies the step condition for maxima.

Let us first of all, consider the case when =,(«) # 0 for all n € N. Then by applying
Lemma 4.1.12, we have that

fi(v) = h(v).

Hence, there will be only one unique maximum for x,. Otherwise, for any n, such that
Zn(a) = 0 if and only if n € pN. Let £, € M, € [0, 3], then according to Proposition
(3.55), we will have )
Lok (t) — Tui(tp)
t—1,

= Z,(a) =0, (4.6)
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for all t € (f,,t, + 2~ PTV]. Therefore, for t € (%,,%, + 2~ P+Y], we have that

T (t) =D V(2") = 3,,(H) + Y V6(2")
n=0 n=p+1 (4 7)
= 7,,(t,) + P Z V(2T
n=0
Now, let us denote 7 = 2-0#P)(¢ — £,), then (4.7) can be re-written as
(1) = 2up(ly) + 7D 0" G(207) = 2,y (L) + v, (7). (4.8)
n=0

Then vP*z,(7) is a re-scaled exponential Takagi function with parameter v, therefore it
has the behaviour in regards to its maximizers. By symmetry. If ¢ the truncated maximum
is attained at t € [, t, + 2~ V)] then it also attains at ¢ € [1 —#, —2~®*) 1 —7]. Then
we can see that ¢ achieves the maximum if and only if ¢ lies the [2P%,] — th interval of
2P equally divided intervals or it lies in the 2P — [2P%,| — th interval of 2P equally divided
intervals. Thus, the set M is a Cantor-like set constructed by keeping only the b and

- op
2P — ;—’; interval of every 27 equally divided intervals. By [20],

—log(2 1
dzmH./\/l = Ll() = —.
log(s) P

Lemma 4.1.17. Take = = [;(a;) and I' = ly(an). If & = ; for all ¢ < n, then

| fi(an) — fila)] < 270D,

85



Proof. By applying Triangular inequality, we have

[fa(on) = faloa)] = 1D (Lgmm1y = Lme1)2 T =] ) (Lgmmgy — Lgmmy)27 Y]

=0 i=n+1

IA

< Z |1{5i:_1} — 1{%:_1}|2—(z‘+1) Z 9—(i+1) _ 9—(n+1)

i=n+1 i=n-+1
]

Theorem 4.1.18. For any v € (—1,1), let = = l4(v), if =Z,(v) # 0 for all n € N, then

fi(u) and f,(u) are continuous at v.

Proof. Let = = ly(v) and let N = [—log, €| for some € > 0. For such =, we can view =Z;(u)
as a polynomial. Then =;(u) is a continuous function for all ¢ € N. Hence, for each i < N,
there exist 9; > 0, such that

- - =(v)]
|Zi(u) — Ei(v)| < — (4.9)
whenever
lu —v| < 6.
By (4.9), we have

for all : < N. Now select § = 121]{[1 0;. Then

for all ¢ < N if |u —v| < 6. Now let us take I' = ly(z). Then we have §; =, for all i < N,
if lu — v| < 6. By applying Lemma 4.1.17, if § = ~; for all i < N, then we have

[fe(u) = fi(v)| <e
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Therefore, we have every € > 0, there exists a ¢ > 0 such that

|[fi(u) = fi(v)] <e.
for all points  which
lu —v| <4,

where § = 121]{[1 ;. The proof for f,(u) is analogous. O

Lemma 4.1.19. Let v € (3,3). If (2, v) satisfies step condition for maxima, then for any

n € N there exists N > n, such that
EN(Oé)EN_H(Oé) S 0.

Proof. Let us first of all consider the case £, = 1. We will prove Lemma 4.1.19 by induction
on n. First of all, let us consider n = 0, then we aim to prove that there exists N > 0,
such that

EN(Oé)EN_H(CY) S 0.

For % < a < 1, we have

o0 o
supz&o/; = ZO/ =2 1= o). (4.11)
i=1

EeS j—q I -«

By rearranging (4.11), we get
o) — Zo/ < 0.
i=1

Then there exists N € N, such that

N m
Zo(a) — Zo/ <0, and Zy(a)-— Zo/ >0, (4.12)
i=1 =1

for all m < N. Therefore, by the step condition (3.56), we have §; = —1, for all j < N.
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Hence, we get
= N ) N i
:‘N(a) = ZZ‘:() &Oz =1- Zi:l o' < 0. (4 13)
Evaa(a) = Y Gal = 1= el >0,

Hence, we have

ENfl(CY)EN<CK) < 0.

This completes the proof for the case n = 0. Now let us assume that for n € N, there
exists NV > n, such that
EN(OI)EN_H(O{) S 0. (414)

Now, we will prove the case for n + 1, there also exists an M > n + 1, such that
EM(Oé)EM_H(Oé) S 0.

We will discuss case by case. First of all, if N > n+ 1, then we can assign M = N > n+1,

then we have

—_—

En(a)Enia(a) = Eu(@)Zn4(a) <0.
Now let us move on to the case when N = n + 1, then by applying (4.14), we have
%1 (0)Zn () < 0.
First of all, let us consider when =, 1(a) > 0, then
Enio(a) = Ep41(a) — "t > —a"? (4.15)

As in (4.11), using our assumption a € (3,1), we then have

> ) > ) a3 _
sup Y- Gal= Y al= S >am? > - u(a) (4.16)

S A — i=n+3
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Rearranging (4.16), we have

Ensa(a) + > o' > 0. (4.17)
i=n-+3
Then there exists M > n + 2, such that
M m
Ento(a) + Z a'>0. and Z, () + Z a' <0. (4.18)
i=n+3 i=n+3

for all N < m < M. Recalling the (3.56) and arguing as for (4.13), we have

As M > n+ 2, then we have M > n + 1, hence we complete the proof for the case when
Ent1(a) > 0. Now let us consider the case when =, 1(«) < 0. Then we have =, 15(a) > 0.

Since (=, «v) satisfies the step condition for maxima, then we have
Enro(@) = Zp1(@) + " < a2 (4.19)

Then we have

0 ) o0 ) n+3
sup Y Gl = Y af= S > a2 > Ep(a), (4.20)
268 i—ny3 i=n+3 I-a
By rearranging (4.20), we then can have that
Ento(a) — Z a' < 0. (4.21)
=n—+3
Then there exists M > n + 2, such that
M m
Ento(a) — Z a'<0. and Z,9(a) — Z ol > 0. (4.22)
i=n-+3 i=n-+3
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for all m < M. Then we have

Hence, we complete the proof for the case n + 1 for § = 1. The cases for § = —1 is
analogous. Therefore, we complete the proof. O

Proposition 4.1.20. Suppose = € S¥, and v € (4, 3). If (Z, v) satisfies the step condition

for maxima, then =(a) = 0.
Proof. Let a pair (=, v) satisfy the step condition for maxima. For any n € N, we have
Enti(a) = Z(a) + €n+2an+1'

As (

, V) satisfies the step condition for maxima, by applying (3.56), we have

[1]

Enr1(a)] = |Zn(a) + &np2a™ ™ < max{a"t, |2, ()]} (4.24)
Furthermore, we have
Eori(@)| <™ if E(@)Zh41(a) 0. (4.25)

By applying Lemma 4.1.19, for each n € N, there exists m > n, such that =,,(a)=Z,,11(a) <

0. Then according to (4.25), we have for any n € N, there exists m > n, such that
|2 ()] < a™. (4.26)

Let us define that x,, = sup |=,,(a)|, as we have by (4.26)

m>n

max{a""? |21 ()]} < max{a"", [Z,(a)[}, (4.27)

then z,, < max{a™, |=,_1(a¢)|}. And as z, is a bounded monotone decreasing sequence,

then there exists x = lim x,. According to (4.26), for each fixed Ny, there exists m > Ny,

n—0o0
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such that z,, < a™. Then rewrite (4.24), we then have

0< limz,=2< lim o™ =0, (4.28)

n—oo m—0o0

as o < 1. Because limsup |Z,,(«)| = 0, therefore we can conclude
n—oo

lim =, (a) = Z(«a) = 0.
n—oo

]

Lemma 4.1.21. For any v € (

11
472
(v —6,v +9), such that () # ly(v

(v)

, and arbitrarily small § > 0, there exists some [ €

Proof. Denote a = 2v. We will then prove this lemma by contradiction. Let us assume
that there are v € (5, 3), there and 6 > 0, such that for all u € (v — 6, v +4), li(v) = l;(u).
For simplicity, let us denote l;(v) = =. Now, let us regard =(u) as a power series centered

at ug = 0. Then since

limsup {/[§+1] = limsup 1 = 1. (4.29)

1— 00 1—00
Equation (4.29) guarantees that Z(u) is an analytic function of u with convergence radius
1. Since o € (3,1) and (v — 0, + 6) G (—1,1), then by Proposition 4.1.20, we have

E(u)=0 forallue (v—29v+90).

Since (v — 0, v + 9) is connected in C, then =(u) = 0 for all u € R. However, as we have
that & € {—1,1}, then we must have Z(u) # 0. We have deduced a contradiction here.

Hence for any v € (%1%>7 and arbitrary small 0 > 0, there exist some § € (v — §,v + 9),

such that l4(8) # l;(v). O

Lemma 4.1.22. For any v € (,1) and 8 € (1,1). We have l;(v) # l;(3), if and only if
faw) # f4(B).

Proof. Let us prove the only if part of this lemma by contradiction. Let us assume there
exists [ such that l;(v) # ;(B), and f;(v) = fy(5). Let us denote = = l;(v) and I' = [4(f).
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Then as l3(v) # l;(53), there exists some NN such that

Ev# vy, and & =1, for i< N.

Without loss of generality, let us assume that {5 = 1, then vy = —1. Then according to
Proposition 3.1.39, we have f;(v) = fy(f) if and only if {, = —1 and 7; = 1 for i > N. Now
take o = 2v. By (4.26)

However, as we have

> «
g o/:ole > oV,
— o
i=N+1

Without loss of generality, let us assume that Zy(a) > 0. Therefore,

[1]

o
(@) =En(a) = 37 a' £0.
i=N+1
11
102
proved the only if direction by contradiction. Furthermore, let us now start to prove the

But since v € (3, 5), we must have that Z(«) = 0 by Proposition 4.1.20. Hence we have

if part. Let us look at the contrapositive statement:

[f lﬁ(V) = lﬁ(ﬁ), then fﬁ(V) = fﬁ(ﬂ)
But this statement directly follows from the Definition 4.1.5. [

Theorem 4.1.23. For any v € [§, 3], for any 6 > 0, fi([v — 6,v +4]) 2 fi({r}) and

fi(lv = 6,v+0]) 2 fi({v}). This means that the functions f; and f, are nowhere flat.

11

Proof. Denote a = 2v. As v € [17 3

f € [ —d,a — 6], such that

|, then we can have that for any ¢ > 0, there exists

l4(8) # ly(v).
Then, by applying Lemma 4.1.22, since v € (3,3) and § € (3, 3), we have f;(v) # fi(«).

Hence fi([v — d,v + 6]) 2 f:({v}),. Furthermore, the proof for f, is analogous.Hence, we
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have proved this theorem. O

Theorem 4.1.24. For n > 2, the Littlewood polynomial
Qu(z)=1—z---—2z"2— 01—

has a unique negative root «as,. Moreover, the sequence {as,} is strictly increasing and

has a limit of —1.

Proof. First of all let us prove there exists a unique root as, € (—2,—1). Consider for
u< —1,
1 u2n

1—u

2n
Qon(u) =1- w'=1-u > 0. (4.30)
=1

Then all negative roots must be less than or equal to —1. Moreover, by applying Lemma
2.1.4, then we have

Qo > —2.
Furthermore, we have
2n . 1— u2”
an(u):l—;u =1-u T—a
1= 2u+ut!
B 1—u
Letting go,(u) = 1 — 2u + v, we have
Go (1) = =2+ (2n + Du*" > 0, (4.31)

for u € (—2,—1). We have Qa,(u) = 0 if and only if g,(u) = 0. However, since ggy, is
strictly increasing, therefore, we have that this root must be unique. Furthermore, since

we have go,(re,) = 0, we get

o 2n+3 __ 2n+1 2n+3 2n+1\ __ _2n+3 2n+1

Then by applying (4.31), we have ag,12 > ag,. Hence the sequence {az,} is an increasing
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sequence. Then there must exist « such that

lim ag, = a = sup{ag,|n > 2}. (4.32)

n—oo

Now let us assume by contradictory that a < —1, and because a > an, for all n € N, then
we have
Gon(a) = 1 —2a +a* ' > 0. (4.33)

Taking limits on both sides, then we have

lim gn(a) =1 —2a + lim o™ = —c0.
n—00 Nn—00

Hence, we have contradiction, since (4.33) indicates that

lim go, () > 0.

n—oo

]

Lemma 4.1.25. Let us denote by a4 the negative real solution to Qr(z) = 0. Then for
u € [oog, Qopqa), we have
Qorya(u) < 0.

Proof. We have

2k+2 1 — o 2k+2
Qopro(u) =1— ZZI u=1- U
1= 2u 4wt
1—u
Then since Qopia(oria) = 0, we have
q(aopya) =1 — 29119 + a%ﬁig =0.

Furthermore, we have
¢ (u) = =2 + (2k + 2)u?*2 > 0,
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for all u € [-2, —1]. Then for all u € [agy, Qox42], we have g(u) < 0. Since 1 —u > 0, then
we have Qgpio(u) < 0. O

Theorem 4.1.26. Let us denote by a; be the negative real solution for Q(z). For

2v € [agn, Qon42), let us denote = = Iy (v), then

=={1,-1,-1,---,—1,-1,1,1,-1,-1,1,1, 1, -1,--- }

Y )
J/

20+ 2
Proof. Take a = 2v. Let us first of all prove that = will have 2n + 2 consecutive —1 in the

first 2n + 3 items. For m < n, we have

2m

; 1—u? 1 —=2a+ a?t!
1—204:1—041_& = Ep— (4.34)
=1

Since 0 > a > gy, then a — gy, > 0 and |a?™ | < a3 |, Then we have

q(a) = q(a) — qlagm) = 2(a — agy) + (@2 — a2 1) > 0. (4.35)

m -

Therefore, we have Z,, () = Qam(a) > 0 for all m < n. Furthermore, we have

—_

E2m+1(a) = :2m(06) — o™il

>0,

as a®™ 1 < 0. Thus we have proved that = will have 2n + 2 consecutive —1 in the first

2n + 3 items by applying step condition for maxima. Now let us prove that for all k € N*,

we have
£2n+4k71 = 17
n = ]-7
Sam+ai (4.36)
£2n+4k+1 = —1,
\§2n+4k+2 = —1.

by induction on k. Now let us first of all prove the base case. By applying Lemma 4.1.25,

we have Zg,10() = Qouia(a) < 0. Hence, we have &,.3 = 1 by the step condition for
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maxima. Furthermore, we have
- = 2n+3
|_,2n+3(0é) = _2n+2(06) + « < 0.

Therefore, we have &,.4 = 1 by the step condition for maxima. For a < —1, we have

1+ a—a?—a® > 0. Moreover, since Zy,(a) > 0, we get

Sonsala) = ZEgp(a) — Q2L 22 o (2nB

—_

=2 — 14+ a—a*—a®) >0.
Therefore, we have &,.5 = —1. Hence, we have

= S An+5

._2n+5(04) = _42n+4(a) — > 0.

Hence, we have &,,1.6 = —1. Therefore, we complete the proof for the base case. Now let
us assume that (4.36) holds for all £ < m, and we further prove the case for k = m + 1.

Then we have

m—1
Eontami2 (@) = Eongo(a) + Y (14 a —a? — a®)a* 23
=0
m—1
= Bgny2(@) + ™ P(1+a—-a”—a’) Y o
=0
1 — a4m
= Saua(@) + (1t a - 0? — o) T <0,
—a

Oc4m

This is due to Zgpya(a) <0, 1 + o —a? — o > 0, and 1=

> (. Therefore, by the step

ot

condition for maxima, we have &3, 14,13 = 1. Furthermore, we have

a2n+4m+3

Eontam+3(Q) = Zopramo(a) + < 0.
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Hence, we have &5,,1 414 = 1. Then we have

- = 2n+4m+1 2n+4m—+2 2n+4m—+3 2n+4m—+4
Eontdamsa(@) = Eopyam(a) — « —« + +a

ontam (@) — 2T 4o — a? — o®) > 0.

[1]

This is due to Za,14m(a) > 0 and 1 + a — a? — a® > 0. Hence, we have &oiamis = —1.

Then, we have
- = 2n+4m+5
Eontam+5() = Eopiama(a) — > 0.

Therefore, we have &5, 4m16 = —1. Hence, we finish the inductive proof and the statement.

]

Corollary 4.1.27. For any v € [%2: 2222) we have

Proof. Let us denote = = ly(v) and I" = [4(“2). Then by applying Theorem 4.1.26, we

have

Therefore, we have

filv) = To M (E) = ToH™'(D) = (1),

Corollary 4.1.28. For v € [—1, —3], we have f;(v) is a right-continuous function.

Proof. This corollary directly comes from Corollary 4.1.27. [

Theorem 4.1.29. Let us denote ay be the negative real solution for Qx(z). For v €

[@26 9222) ot us denote 2 = f,(v), then

=={1,-1,-1,---,-1,-1,1,1,-1,-1,1,1, -1

=1,

Y

-~
2n + 2
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Proof. Take a = 2v. Let us first of all prove that = will have 2n + 2 consecutive —1 in the

first 2n + 3 items. Let us consider for m < n

2m

- 1—u? 1—2a+ a?t!
1 — 1 — = ) 4.
Za 041_06 o (4.37)

i=1
Since 0 > a > gy, then a — apm > 0 and [a?™ | < |a3™*!|. Then we have
q(a) = qla) — qlagm) = 2(a — agy) + (2™ — a2 1) > 0. (4.38)
Therefore, we have Zy,, () = Qo) < 0 for all m < n. Furthermore, we have
Eomt1() = Zam(a) — ™™ >0,

as o®™ 1 < 0. Then we have proved that Z will have 2n + 2 consecutive —1 in the first

2n + 3 items by applying step condition for maxima. Now let us prove the for all k € NT,

we have )
£2n+4k71 = 17
n = ]-7
Son+ak (4.39)
f2n+4k+1 = _17
\€2n+4k+2 = -1

by induction on k. Now let us first of all prove the base case. By applying Lemma 4.1.25,
we have Zg,10() = Qouia(a) < 0. Hence, we have £5,,3 = 1 by the step condition for

maxima. Furthermore, we have
o = 2n+3
'~2n+3<04) = ._2n+2(06) + o < 0.

Therefore, we have &,.4 = 1 by the step condition for maxima. For a < —1, we have
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1+ a—a?—a® > 0. Moreover, since Zy,(a) > 0, we get
= = 2n+4 _ — 2n+1 2n+2 2n+3 2n+4
Eon+a(@) = Sanpa(a) +a = Zon(@) —a -« + +

—_

=S, — 1+ a—a*—a%) >0.

Therefore, we have &,.5 = —1. Hence, we have
Egn+5(06) = 52n+4(a> — Oé4n+5 > 0.
Hence, we have &,,1.4 = —1. Therefore, we complete the proof for the base case. Now let

us assume that (4.39) holds for all £ < m, and we further prove the case for k = m + 1.
Then we have

3
L

EQn+4m+2(a) = E2n+2<a) + (1 + o — CYQ — O{3)a4i+2n+3

%

Il
o

m—1
= Zonyo(@) B (1+a —a? —a?) ot
=0
= ()_|_ 2n+3<1_|_ A2 3)ﬂ<0
= Zopt2(t (07 (0% (0% (0% 1ot .

This is due to Zy,12(a) <0, 1 +a —a? —a? > 0, and 11__0‘4Z > (0. Therefore, by the step

[e%
condition for maxima, we have &5, 14,13 = 1. Furthermore, we have

2n+4m+3 < 0.

Eontam+3(Q) = Zopramo(a) +
Hence, we have &5, 1414 = 1. Then we have

- = 2n+4m—+1 2n+4m+2 2n+4m+3 2n+4m+4
Eontam+a(®) = Eoppam (@) — e + « + a

= Sonpam(a) — (14 a — o — a®) > 0.

This is due to Zopiam(a) > 0 and 1 + a — a? — a® > 0. Hence, we have o y4mis = —1.
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Then, we have

52n+4m+5(04> = 52n+4m+4(a) _ a2n+4m+5 > 0.

Therefore, we have 5,1 4m16 = —1. Hence, we finish the inductive proof and the statement.
H

Theorem 4.1.30. For any v € (%2, ®22] we have

o

h) = H(=").
Proof. Let us denote = = [,(v) and I' = [,(%2). Then by applying Theorem 4.1.29, we
have

(1]

=TI

Therefore, we have

fr) =ToH 1 E) =ToH \T) = fi(Z2E).

2
O
Corollary 4.1.31. The fy(v) and f,(v) are discontinuous at point 2t for all £ € N.
Proof. This directly comes as a corollary for Theorem 4.1.30 and Theorem 4.1.27. O]

Corollary 4.1.32. Let us denote R as all the discontinuous points of f;(v) in [—1,—3).
Then as all v € R, we have

MO0, 3] =2

Furthermore, we have

IR| = Np.

Proof. Let us first of all consider the function f;. According to Corollary 4.1.32 and
Theorem 4.1.26, we have fi(v) is discontinuous if and only if v = %2& for some k. Now, let
us denote = = l4(v). Then =,(v) = 0 if and only if n = 2k, then by Lemma 3.1.45,

1
Mo, 5)l =2
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Since we have R = {ag}72,, then we have

IR| = Ry.

4.2 Local Extrema for Exponential Takagi Class

Theorem 4.2.1. Let us denote V, as the collection of points that are a local maxima for

x,. Formally, V, is defined as follows:
V, ={t€[0,1]|30 > 0,Vr € (t =6, t +6),x,(t) > z,(7)}
For [v| < 1, V, = {3}.

Proof. Let us first of all consider the case for [v| < 1. Let I' € SY with 7o = 1. We have

_ = o] 1 —2|a|
fD(a)=1— =1 - > 0.
Aof T ;y“| 1—|a]  1—]qf

Then we have z, is an strictly increasing function on [0, %] Furthermore, due to symmetry,

we have z,, is an strictly decreasing function on [1,1]. Then we have M, =V, = {1}. O

4.3 Earlier Results under Quasi-Binary Language

Now in this section, let us restate and prove theorems in Chapter 1 and some new partic-
ularly strong results. The theorems here are not as general as before, but those theorem
can be regarded as the examples on how the step condition and Quasi-Binary Language

can simplify and unify the results before.
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Example 4.3.1. Let us use our general results so as to recover Theorem 1.2.3, which
states for v € (3,1), we have f,(v) = fy(v) =3

T Xo6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1: Plot for exponential Takagi function zq¢, o5, €97 and xg.7s5.

Proof. Take = = ly(v) and o = 2v. Before proving this theorem, we first of all prove that

Egn(()[) > 0,
Eont1() <0,
for every n € N by induction on n. Now let us consider the case when n = 1. As we have

Zo(a) = 1 for all @ € (1,2), then we have §; = —1 and =Z;(a) = 1 — a < 0. Hence, we

finish the proof for the base case. Now let us assume that

Egk(a) > 0,

E2k+1 (a) < 0.

(4.40)
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for all n < k, and we proceed to prove the case k + 1. As Egp11(a) < 0, then we have

&2 = 1. By applying (4.40), we have
k

2%k+2 2k+2 kel
Sl = 3 = 31 = Y- S
=0 i=0 (4.41)
1 _ o2kt2 1 — o2k 1 _ 2%+1 _  2k+2
= — o a):( )+ (a a )>0.
1—a? 1—a? 1—a?
Then for Zg513(a), we have

2%+3 2%-+3 k41

Eonas(ar Z Ga' =) (—D)'a' =(1-a)) a” <0. (4.42)

1=0 ]

Therefore, we complete the proof for the case k+ 1, and hence we finish the proof that for

every n, we have
Egn(a) >0,
Eont1(a) < 0.
= —1. Then

By applying the (3.57), we have that for every n € N, &, = 1 and &s,41

= 1., N I 1
D=ty =S o i L (4.43)
— 2 — 2 -3 3
as well as, by applying Lemma 4.1.12, as for all n, Z,(a) # 0. We then have
1
Lhv) = fi(v) = 3 (4.44)
]

Example 4.3.2. Let us use our general results so as to recover Theorem 1.2.4, which

states for v € (0, 1), we have fy(v) = f,(v) = 5
ly(v) and a = 2v. First of all, we will prove for any n € N, =,,(a) > 0 by
Zo(o) = .

Proof. Take = = ly(v
induction on n. Now, let us consider the case when n = 0. It is clear that Zy(a) =1 >0

103



s 3 i S —— 01
0.45 - // \ . N Z0.15 |

P : 02
04 s 3 20.25 |

b i N
P i3
0.35 — / # N N 8
/ & .
g W 5 R N N
by OO
03 / / SNy \ -
P // SO
/ X N
/ / N N %
0.25- 7 R J
,/'/ % N\
02 A A Ao \\ 3
,/" // !
0.1 7 .
/) 74 AN \
/ // \\
005~ /] N\
0 I L ! I I L | L I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2: Plot for exponential Takagi function g1, xg.15, T2 and xg.os5.

Now let us assume =, («) > 0 for all n < k. We then proceed to prove the case k + 1, as

Zk(a) > 0 and &1 = —1. Let us consider
k+1 . k+1 ' 1 . O{k+1 o
= = al=1-— =l >1- > 0. 4.45
k(@) Zz_;foz ;a 11—« 11—« ( )

Then we complete the proof for the induction. As for every n € N, =, (a) > 0, then we

have &, = —1 for every n > 1. Then we have
— 1 i+1 — 1y 1
) =36 =S =3, (1.46)
i=0 =2

as well as, by applying Lemma 4.1.12, we then have

1

hHv) = filv) = 7 (4.47)
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Example 4.3.3. For v = —1+4‘/5
maximum points in [0, 3] at 0.4 and 0.475.

, the exponential Takagi function z, has exactly two

08 T T T T T T T T T

:1 MMy 1

o
o
o
o
o
w
o
~
o
o
o
o
=)
=
o
©
o
©

Figure 4.3: Plot for exponential Takagi function x ..
4

Proof. Let a = 2v = —%5 and take = = [,(v). First of all, we will prove that for any

fixed n > 0, we have
.

(4.48)

Zo(a) = 1. (4.49)
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Then according to (3.57), we then have & = —1, and hence
Zi(a)=1—a>0.
By applying (3.57) again, we have for our particular choice of «
Sy(a)=1—a—a*=0.
Then according to Definition 4.1.6, we have &5 = 1. Therefore, we have
S(a)=1—a—-a*+a®>=0a’<0.
By applying (3.57) again, we have
Eya)=a’+at=a*(1+a) >0,

as well as,

Es(a) =’ +a*—a’ =a*(1+a—a?) > 0.

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

Hence, by (4.51) - (4.54), we prove that the induction hypothesis holds for n = 0. Now

let us assume that the induction hypothesis holds for £ < n, then we proceed to prove the

case for k =n + 1. Also, due to (3.57) and (4.48), we then have for all k < n,

(

§4k—|—3 - ]-7
Sakra = 1,
€4k’+5 = _17
| Cuivs = 1.

Hence, we have

An+6 n

Eingsla) = D &Ga'=(1-a-a’)+ ) (o®+a* —a”—af)a'"
i=0

m=0
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By applying (4.51), we have

An—+6 n
Eanse(a) = Z ot =(1—a—a®) + Z(a?’ +at —a® —a%)a’™
=0 s m=0 (4.57)
:Za4m+3:a3—1_& — <0.
— 11—«

Therefore, we have &, 7 = 1. Hence, by applying (3.57), we have
E4n+7(04) = E4n+6(CY) + Oé4n+7. (458)

as Eqnie(a) < 0 and o7 < 0, then we have Z4,,7(a) < 0. Hence, we have 4,48 = 1,
and then

1— a4n+4
E4n+8(04) — a3 7 4 a4n+7 4 a4n+8
03 & A8 _ qAn+ll _ jant12
N 1—at
QP oS gm0 dntl0 _ pdnell _ pdn+12 (459)
N 1—ot '
a3 + a4n+8 _ a4n+10 Oé3 + a4n+8 + a4n+9 _ a4n+9 _ a4n+10
N 1—at N 1—ot
043 + CY4n+9
ST Y
as a® < 0, o*"*? < 0, as well as 1 — a* < 0. Then we can have that 4,19 = —1, then we
have
E4n+9(a) = E4n+8<04) — O./4n+9 > 0. (460)
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as Zypis(@) > 0 and o’ < 0. Then we can notice that

(4.61)

Hence, we finish prove the case when k£ = n + 1. Hence we finish proving the statement.

Then by applying the Lemma 3.1.10, we have

> 1, ~= 1 1 11, 1 2
filv) = 2; Le=0G)' =) gmmtomm =G T 7= 5 (4.62)

=0

Furthermore, let us start to consider another maximum at 0.475. We will follow the same

strategy for 0.4. Now we will prove that for any fixed n > 0, we have

(

(4.63)

by induction on n. Let us first consider the case for Zy(«). Now let us take = = l;(v). We

have
Zo(a) = 1. (4.64)
Then according the step condition for maxima, we then have £ = —1, and hence
Ei(a)=1—a>0. (4.65)

Then by applying the step condition again, we have
Ep(a)=1—a—a’=0. (4.66)
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Then according to the Definition 4.1.5, we have &5 = —1. Therefore, we have
S(a)=1-a—-a*-a’=—-a’>0.

By applying (3.57), we have
Eyla) = —a® —a'=-a*(1+a) <0,

as a® < 0,and 1 +a < 0, as well as,

Z5(a) = —® —a*+a° = —a*(1l +a—a?) <.

(4.67)

(4.68)

(4.69)

Hence, by (4.66) - (4.69), we notice the induction hypothesis holds for n = 0. Now let us

assume that the induction hypothesis holds for k£ < n, then we proceed to prove the case

for k =mn + 1. Also, due to (3.57) and (4.63), we then have for all k£ <n,

(

€4k+3 = _17
Eaka = —1,
Ears = 1,
[ Sarvs = L.
Hence, we have
4n+-6 n
Enae(@) = Z Ga'=(1-a—-a%) - ) (&®+a'—a”—a%a’.
1=0 m=0
By applying (4.66), we have
4n+-6 n
Einse() = Z ot = (1 —a—a?) — Z(a?’ +at —a° —ab)at™
i=0 m=0
n 1— a4n+4
4m+3 3
= - *—% >0
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Therefore, we have &y, 7 = —1. Hence, by applying (3.57), we have
Eanyr(@) = Sanye(a) — a7 (4.73)

as Zynie(a) > 0 and a7 < 0, then we have Z4,,7(a) > 0. Hence, we have &,15 = —1,
and then

_ 1 _ a4n+4
:'4n+8(a) = _agl——O/l —

03 L QAnHs _ Antll o dnt12
at—1
03 L AnHS _ qAnt10 | dnd10 _ dntll o dn2

_ e (4.74)

043 + a4n+8 _ a4n+10 Oé3 + 044n+8 + a4n+9 _ a4n+9 _ a4n+10

at —1 at —1

AntT _ Ant8

Then we can have that 4,19 = 1, then we have
a9 ), (4.75)

Enro(a) = Egpys(a) +

Then we can notice that

(4.76)

\

Hence, we finish prove the case when & = n 4+ 1. Hence we finish proving the statement.
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Then by applying the Lemma 3.1.9, we have

= Z 1{&:—1}(5) = Z 3 2{2414_4 24z+5}
= 1 ; 1 1 X " (4.77)
=3 2{24”4 24z+5} §+(E+§)1—2—4 T 40

w

Since Z,(a) = 0 if and only if n = 2, then by applying Lemma 3.1.45, there will only 2

maximum points for x,. Hence 0.4 and 0.475 are the unique maximum points for z,. [

—Z095
09
T (.85

0.5

-0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.4: Plot for exponential Takagi function x_ggs5, £_g9 and x_gg5.

Theorem 4.3.4. For v € (—1, —%5), the exponential Takagi function z, has the only
maximum point in [0, % at t = 0.4.

Proof. Let a =2v < — 1“[ In order to prove this theorem, first of all, we will prove that
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for any fixed n > 0, we have

(4.78)
Zan4a(Q) > 07
Zanys(Q) > 07
by induction on n. Let us first consider the case for Zy(«), we have
Zo(a) = 1. (4.79)
Then according to the step condition, we have £, = —1, and hence
Zi(la)=1—a>0. (4.80)
Then by applying the step condition again, we have
So(a)=1—a—a’=:¢,. (4.81)

As a € (-2, —\/5;1), we have €, € (—1,0). Then we have Z3(a) < 0, and £ = 1, and we

have

Es(a) =€, +a® <0, (4.82)
then we have £ = 1. Next,
Eyla) = €4 + 0’ +at. (4.83)
As a* —a? > 1, we have Z4(a) > 0, and hence £ = —1. Then we have
E5(a) = Z4(a) —a® > 0. (4.84)

Now, we have proved the case when k = 1. Hence, by (4.81) - (4.84), we have proved that
the induction hypothesis holds for n = 0. Now let us assume that the induction hypothesis
holds for £ < n. Then we proceed to prove the case for K = n + 1. Also, due to the step
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condition for maxima and (4.48), we have for all £ < n,

(€4k+3 =1,
Sak+a = 1,
Sakys = —1,
| Sarrs = —1.
By applying (4.85), we have
An+6 n
Enae(a) = Z ol = (1 —a—a?) + Z(a3 +a* —a® — a%)a’™
417:?6 n " nt1

n
— § €i+1az = €, + E (Oé3 + Oé4€a)044m — E a4m+3 + €0 E a4m
i=0 m=0 m=0 m=0

5 1 _ &4n+4 1 _ C¥4n+4 1 _ 044”+4

_ _ 3
= 11— o + €4 1 — ot —(Oé +€a)1_—a4<0.

Then we have &,,7 = 1, and

An—+7

E4n+7<04) = E4n+6(06) +« < 0.
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Later, we have

E4n+8(a) = E4n+6(a) + 044n+7 + Ol4n+8

1— a4n+4

— <&3 + €a) + a4n+7 + Ck4n+8
1—at
aS . O[4n-i-7 +e€, — 6aa4n-&-4 + O[4n-i-7 _ a4n+11 + a4n+8 _ a4n+12
n 1—at
043 +e, — Eaa4n+4 + a4n+8 + a4n+10 _ a4n+10 _ &4n+11 _ a4n+12
1—at
0 a8 e ginthe _ Antl0 4 gAntl0. (4.88)
B 1—at
08 a8 e ale, 4 oAt _ gAnt9 _ pAnt10 | danti0,
N 1—at
0P + it 4o — intie, 4 ointi0c 4 oAnt8e
N 1—at
&3 + a4n+9 + €a<1 _ a4n+4 + a4n+10 + a4n+8)
N 1—at '
And this is strictly positive as |a| > 1. Hence, we have &,,9 = —1, and
E4n+9(a) = E4n+9(04) — O./4n+9 > 0. (489)

Therefore, we have completed the inductive proof. And by applying (4.62), we have f;(v) =
0.4, and as for all n > 0, we have =, (a) # 0, then by applying Corollary 4.1.13, we have

fiv) = fi(v) = 0.4. (4.90)

is the unique maximum for z,,. O

Theorem 4.3.5. For v € (—%, 1), the unique minimum of z, in [0, %] isat t =0, ie.

M, 1o, %] _ {0},

Proof. Let a = 2v, and take = = j;(v). First of all, let us prove that { =1 for all i € N
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Figure 4.5: Plot for exponential Takagi function x_¢1, £_g2, *_0.3 and z_g4.

by induction on i. Since Zy(a) = & = 1, we have proved the case for i = 0. Now let us
assume that & = 1, for all 1 < n, and we aim to prove that &,,; = 1. Since & = 1, for all
1 < n, then

_1-a” ntl
o = = > 0.
25 of Z ol = 5
Therefore, by applying (3.79), we have £,,1 = 1. Then, we have

= l——y2 =0
1=0

Furthermore, since Z,,(«) # 0 for all n € N, we have g;(v) = g,(v) = 0. Then 0 is the only

minimizer in [0, 5. O
Theorem 4.3.6. For v = —%, M, will be inform of a Cantor-like set with Hausdorff

Dimension with 1 with z,(M,) = {0}. Furthermore, we have

inf(M, 1[0, %]) —0 and sup(M, N 0, %]) 095,
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Figure 4.6: Plot for exponential Takagi function z_g 5.

Proof. First of all, let us take a = 2v, and = = j,(v). Then we will prove that & = 1 for
all i+ € N. Naturally, we have & = 1, and so, we have proved the base case. Then let us

assume that & = 1 for all < n. Now let us prove &,,1 = 1. If n € 2Z, then

1=0

Then by the step condition for minima (3.79), we have &, = 1. If n ¢ 27Z, then

1=0

Then by applying the step condition for minima (3.79), we have &,; = 1. Hence we have
g (v) =0, and z,(0) = 0. Now let us take = = j;(v), then let us proceed to prove that
& = —1 for all i > 2. First of all, we have Zg(a) = 1 and Z1(a) = 1+ (—1) = 0. Then by
applying (3.78), we have £ = —1. Hence, we finish proving the base case for i = 2. Now
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let us assume that & = —1 for all : < n, and we will prove that &,,; = —1. Now we have

-1 ne2z,
0 n¢?2Z.

n n
En(a) == (a) — Zai = —Zai =
i=2 i=2

Therefore, by applying (3.78), we have ,,1 = —1. Hence, we have

Gr) =D L2t =) 2 =5 =2
=0 5

=2

Take N' = {n € N|Z,(«) = 0}, then we have N’ = 2Z — 1. Then by applying Theorem
4.1.16, we have

. ~ 1
dimy M, = 3
]
Theorem 4.3.7. For v € (—1,—3), we have
. 1
M, N0, 5] = {0.2}.
Proof. Take o = 2v, and = = jy(v). Let us prove that for all n € N, we have
(
§4n = ]-a
n+l1 — 17
Sant1 (4.91)
5471-1—2 = _17
\§4n+3 - _]-7

by induction on n. Now let us first of all prove the case n = 0. Since Zg(a) = &, = 1, then
we have Zy(a) = 1 4+ a < 0. Then by the step condition for minima, we have { = —1.
Hence, we have

EQ(O[) = El(Oé) — Oé2 < 0.
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Figure 4.7: Plot for exponential Takagi function z_¢ 55, _06, T_0.65 and z_q7.

Hence, we have £&3 = —1. Therefore, we have proved that the inductive statement holds
for n = 0. Now let us assume that (4.91) holds for all n < k — 1, then we try to prove that
(4.91) holds for n = k. First of all, we have

4k—1 k—1 1 — o2k
Eg-1(a) = ;fiai = ;(14—04—042 —aat = (1+a—a*—a?) T

Since 1 —a** <0,1—-a*<0and 1 +a —a?—a® > 0, we have Z4,_;(a) > 0. Therefore,

we have & = 1 by step condition for minima. Hence, we have

E4k(04) = E4k,1(06> + £4k044k = E4k,1(06) + Oé4k.

Since Zg,_1(a) > 0 and o** > 0, we have Z4;(a) > 0. Therefore, we have £4,1 = 1, then

we have
4k+1 k—1 ak
A . l—«
E4k+1(oz) = ;_O fi@z = 1_Q_Z§_0(1_’_a_a2_a3)a4z+2 — (1—&)—0&2(14—&—&2—&3) o
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Since 1 —a < 0, ?(1+a—a?—a?) >0, 1—a** <0and 1 —a* < 0, we have 24541 (a) < 0

and &4,12 = —1. Furthermore, we have
Earp2(@) = Zgpp1 (@) + a0 = Zgp 11 (a) — o2 < 0.

Hence, we have &3 < 0. Hence, we have proved the case for n = k, and we proved the

induction. Moreover, we have

- : <1 1., 3 1
—(i+1 —45
g(v) = E Lie=—1)2 (i+1) _ E :(g + _16)2 REr= 0.2.
=0 i=0

Since =, (a) # 0 for all n € N, we have g4(v) = g,(v). Hence,

M, N[0, %] {02},
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