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Abstract

The Takagi class is a class of fractal functions on the unit interval generalizing the cel-
ebrated Takagi function. In this thesis, we study the extrema of these functions. This
is a problem that goes back to J.-P. Kahane in [12]. In this thesis, we state and prove
the following new and original results on this long-standing problem. We characterize the
set of all extrema of a given function in the Takagi class by means of a step condition on
their binary expansions. This step condition allows us to compute the extrema and their
locations for a large class of explicit examples and to deduce a number of qualitative prop-
erties of the sets of extreme points. Particularly strong results are obtained for functions
in the so-called exponential Takagi class. We show that the exponential Takagi function
with parameter ν ∈ (0, 1) has exactly two maximizers if 2ν is not the root of a Littlewood
polynomial. On the other hand, we show that there exist Littlewood polynomials such
that, if 2ν is a corresponding root in (0, 1), the set of maximizers is a Cantor-type set with
Hausdorff dimension 1/n, where n is the degree of the polynomial. Furthermore, if ν is
in (−1,−0, 5), the location of the maximum is a nontrivial step function with countably
many jumps. Finally, we showed that, if ν is in (−1,−0.8), the minima will only attain at
t = 0.2 and t = 0.8. If ν is in (−0.8, 1), the only minimizer is at t = 0.5.
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Chapter 1

Introduction

Recent research in finance and probability requires pathwise integration theorems for in-

tegrators of various degrees of ’roughness’, see e.g. [6, 7, 10]. As observed in [15], a class

of generalized Takagi functions can serve this propose.

1.1 Early History

The Takagi function x(t) was first introduced in 1903 by Takagi [19]. His goal was to

provide an example of a continuous but nowhere differentiable function on the unit interval

[0, 1]. The Takagi function has been discovered many times. Overviews can be found in the

surveys by Allaart and Kawamura [1] and Lagarias [14]. In modern mathematical notation,

the Takagi function is defined as follows:

Definition 1.1.1. The Takagi function x : [0, 1]→ R is defined as

x(t) =
∞∑
n=0

1

2n
φ(2nt), (1.1)

where φ(t) = min
z∈Z
|t− z| is the distance from t ∈ R to its nearest integer.
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Figure 1.1: Plot of the classic Takagi function

Later, Hata and Yamaguti [11] gave a generalization of the Takagi function by replacing

the coefficient 1
2n

in (1.1) with a general constant cn. Such a collection of functions is often

referred as the Takagi class C. Similar class were also introduced by Kahane [12]. A formal

definition for the Takagi class can be given as follows:

Definition 1.1.2. The Takagi class C is the collection of functions x : [0, 1] −→ R that

can be represented as:

x(t) =
∞∑
n=0

cnφ(2nt), (1.2)

where C = {cn}∞n=0 is a sequence of real numbers for which x is well-defined and continuous.

In order to specify the Takagi function associated with the sequence C, we denote this

function with xC(t).

One may notice that the domain of functions in form of (1.2) can be extended from

[0, 1] to R. However, it is sufficient to study the restriction of the function xC to the unit

interval [0, 1], because xC(t+ 1) = xC(t) for all t ∈ R.

2



In order to give a sufficient condition for the convergence of the series defined in (1.2),

we introduce following definitions and theorem.

Definition 1.1.3. Let us denote the kth order truncated Takagi function over an infinite

sequence C = {ci}∞i=0 ∈ RN by xC,k(t), which is written as

xC,k(t) =
k∑

m=0

ciφ(2mt), t ∈ [0, 1]. (1.3)

Theorem 1.1.4. The series xC(t) =
∑∞

n=0 cnφ(2nt) over the sequence C is well-defined if

lim
n→∞

∞∑
k=n

|ck| = 0.

Proof. We now write ‖ · ‖ for the usual sup norm on C[0, 1]. First of all, let us prove the

series {xC,n} is a Cauchy sequence in C[0, 1]. Now, let us consider

‖xC,n − xC,m‖ = sup
t∈[0,1]

|xC,n(t)− xC,m(t)| = sup
t∈[0,1]

|
m∑

i=n+1

ciφ(2it)|

≤
∑m

i=n+1 |ci|
2

≤
∑∞

i=n+1 |ci|
2

As lim
n→∞

∑∞
k=n |ck| = 0, hence for any ε > 0, there exists N ∈ N such that for all m > n > N ,

m∑
k=n

|ck| ≤
∞∑
k=n

|ck| < ε

Therefore, {xC,n} is a Cauchy sequence in C[0, 1]. Hence, xC,n converges uniformly on

[0, 1] to the function xC.

Furthermore, Kono [13] characterized the differentiability of the Takagi class as follows:

Theorem 1.1.5. Let xC be defined as (1.2), and let an = 2ncn.
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1. If {an} ∈ `2, then xC is absolutely continuous and hence differentiable almost every-

where.

2. If {an} /∈ `2 but limn→∞ an = 0, then xC is non-differentiable at almost every point

of [0,1], but xC is differentiable on an uncountably large set, and the range of the

derivative x′C is R.

3. If lim supn→∞ |an| > 0, then xC is nowhere differentiable.

An important sub-class in the Takagi class is obtained by taking cn = νn for some

ν ∈ (−1, 1). Following Galkin and Galkina [9], we call this the exponential Takagi class.

Definition 1.1.6. The exponential Takagi class P is the sub-collection of real-valued

functions xν : [0, 1]→ R in the Takagi class C, where xν can be written as

xν(t) =
∞∑
n=0

νnφ(2nt). (1.4)

The function xν is called the exponential Takagi function with parameter ν.

Moreover, Galkin and Galkina [9] gave results on the differentiability of the exponential

Takagi class.

Theorem 1.1.7. Let xν be defined as (1.4), then

1. If |ν| < 1, then the series defined in (1.4) converges uniformly in t ∈ R, therefore xν

is continuous and |xν | ≤ 1
2−2|ν| .

2. If |ν| ≥ 1, the series defined in (1.4) converges if and only if t ∈ T. Furthermore, the

function xν is discontinuous on set T.

Proof. See Galkin and Galkina [9].
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One may notice that Theorem 1.1.7 gives us a reason to only study the extrema of

exponential Takagi function with a nature restriction for ν in (−1, 1). For the following

chapters, the author may directly apply this restriction on parameter ν without further

notice. Furthermore, readers may see that if the parameter ν = 1
2
, xν(t) is the classic

Takagi function x(t).

1.2 Previous Results

One of many important aspects of the Takagi function is the collection of extreme points

for the Takagi function. Kahane [12] pioneered this research with the following theorem:

Theorem 1.2.1. The maximum value of the classical Takagi function x is 2
3
. Then set of

maximizers is a perfect set of Hausdorff dimension 1
2
, and consists of all the points t with

binary expansion t = 0.ε0ε1ε2 · · · satisfying ε2n + ε2n+1 = 1 for each n.

Schied [17] and Galkin & Galkina [9] independently characterized the maximizers of

the exponential Takagi function for ν = 1
2
.

Theorem 1.2.2. For ν = 1
2
, the maximum value of the exponential Takagi function x 1

2
is

attained at t1 = 1
3

and t2 = 2
3

with maximum value 2
3
.

Later, Mishura & Schied [15] extended this result into a larger collection in the expo-

nential Takagi class for ν ∈ [1
2
, 1).

Theorem 1.2.3. For ν ∈ [1
2
, 1) the maximum value of the exponential Takagi function xν

is attained at t1 = 1
3

and t2 = 2
3

with maximum value 1
3(1−ν)

.

For the case ν ∈ [−1
2
, 1

4
], Galkin and Galkina [9] gave a conclusion as follows:

Theorem 1.2.4. The maximum value of the Exponential Takagi function xν , ν ∈ [−1
2
, 1

4
]

is attained at t = 1
2

with maximum value of 1
2
.
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In view of Theorem 1.2.1, 1.2.3, 1.2.4., it remains to analyze the maxima of xν for

ν ∈ (1
4
, 1

2
)∪ (−1,−1

2
). Tabor & Tabor [18] gave an approximation solution for the maximal

value of the exponential Takagi function for certain numbers ν. Furthermore, Baba [2]

characterized the maxima for generalized Takagi functions x that replace φ(2nt) by φ(bnt)

for some b ∈ Z. Besides, Fujita & Saito [8] studied an even broader class whose φ function

could be any periodic and continuous function. From Figure 1.2, we may see that the

aforementioned theorems are only able to characterize the maxima of those functions in

the exponential Takagi class for which the maximum location is flat as a function of ν. On

the other hand, we can specially observe that for ν ∈ (−1,−1
2
), the location of maximum

is a nontrivial step function of ν. Furthermore, for ν ∈ (1
4
, 1

2
), the change of maximizers

associated with ν is even more difficult to characterize and it has a fractal-like structure.

Most of theorems introduced in those earlier papers are based on an induction argument

for the truncated exponential Takagi functions. However, this method cannot be applied

for the functions in the Takagi class, as the nature of arbitrary coefficients is not feasible

for induction. Last but not least, as far as the author is aware of, only little focus has been

put on the minima of the functions in the Takagi Class so far.
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Chapter 2

Preliminaries

2.1 Facts and Fundamentals

In this section, we will introduce and partially prove some theorems and lemmas that will

be applied in the proofs in Chapter 3 and Chapter 4. Those theorems are very introductory,

and the author believes those mathematical statements have appeared in many references.

Some proofs are given here for the sake of completeness and rigorousness of this thesis.

The author does not own any credit to these result.

Theorem 2.1.1. Let {Kα} be a collection of compact sets. If the intersection of every

finite sub-collection of {Kα} is non-empty, then
⋂
α

Kα is non-empty.

Proof. We will prove this theorem by contradiction. Let us now assume that
⋂
α

Kα = ∅.

Therefore, we must have

K1 ∩ (
⋂
α 6=1

Kα) = ∅.

Furthermore, as Kc
α is an open set, we have

K1 ⊂
⋃
α 6=1

Kc
α.
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Therefore {Kc
α}α 6=1 is an open cover for K1. Therefore, there exists a finite sub-cover

{Kc
α1
, Kc

α2
. . . Kc

αn
} covers K1. Therefore, we must have

K1 ∩Kα1 ∩Kα2 ∩ . . . ∩Kαn = ∅. (2.1)

Hence, (2.1) results in a contradiction here. Therefore, we have⋂
α

Kα

Lemma 2.1.2. If {Kn} is a sequence of nonempty compact sets such that Kn+1 ⊂ Kn,

then
⋂∞
n=1Kn is non-empty.

Proof. This Lemma directly comes as a corollary of Theorem 2.1.1.

Definition 2.1.3. A polynomial f(z) =
∑n

i=0 aiz
i with ai ∈ {−1, 1} and n ∈ N is called a

Littlewood polynomial. We denote Fn as the set of all Littlewood polynomials with order

n:

Fn =
{
fn(z) =

n∑
i=0

aiz
i|ai ∈ {−1, 1}

}
.

Moreover, let F be the set containing all Littlewood polynomials,

F =
⋃
n

Fn.

Moreover, let us denote DC as all the complex roots for Littlewood polynomials.

DC = {z ∈ C|∃n ∈ N, fn(z) = 0, for some fn ∈ Fn}. (2.2)

And let DR be the set of all real roots for Littlewood polynomials, i.e.

DR = DC ∩ R. (2.3)

10



Lemma 2.1.4. The set DC is contained in the annulus 1
2
< |z| < 2.

Proof. Please see [3].

Theorem 2.1.5 (Gauß Theorem). If a non-constant polynomial p(x) ∈ Z[x] is irreducible

over Z, then it is also irreducible over Q.

Lemma 2.1.6. DC ∩Q = DR ∩Q = {−1, 1}.

Proof. Let r ∈ Q be a root for p(x), then we have the monic polynomial x − r|p(x). By

applying Gauß Theorem, we have x− r ∈ Z[x]. Hence we have r ∈ Z. Then, by applying

Lemma 2.1.4, we have r ∈ {−1, 1}.

Lemma 2.1.7. Let C be the Cantor set, and let Ω = {wi}∞i=0 ∈ {0, 1, 2}N be the ternary

expansion of y ∈ [0, 1]:

y =
∞∑
i=0

ωi3
−(i+1) = 0.ω1ω2 · · · .

Then y ∈ C if and only if there exists Ω, such that ωi ∈ {0, 2} for all i ∈ N, and y =∑∞
i=0 ωi3

−(i+1).

Definition 2.1.8. A binary expansion of a point y ∈ [0, 1] is denoted by

y =
∞∑
n=0

εn
2n+1

= 0.ε0ε1ε2ε3......

And we define yn as the nth order dyadic approximation for y, where

yn =
n∑
i=0

εi
2i

= 0.ε0ε1ε2ε3....εn.

It is well-known that the binary expansion is not unique for any real number y ∈ T. For

example, 0.1 = 0.0111 · · · . Here, we do not require the uniqueness of the binary expansion.

Furthermore, in order to well distinguish the two binary expansions, we would formally

11



define mappings S] : [0, 1] −→ {0, 1}N and S[ : [0, 1] −→ {0, 1}N. First of all, let us define

a mapping s] : [0, 1] −→ [0, 1] as:

s](y) =

2y if y ∈ [0, 1
2
],

2y − 1 if y ∈ (1
2
, 1].

(2.4)

Similarly, we define s[ : [0, 1] −→ [0, 1] as:

s[(y) =

2y if y ∈ [0, 1
2
),

2y − 1 if y ∈ [1
2
, 1].

(2.5)

Furthermore, the mapping d] : [0, 1] −→ {0, 1} is defined as:

d](y) =

0 if y ∈ [0, 1
2
),

1 if y ∈ [1
2
, 1].

(2.6)

And the mapping d[ : [0, 1] −→ {0, 1} is defined as:

d[(y) =

0 if y ∈ [0, 1
2
],

1 if y ∈ (1
2
, 1].

(2.7)

Then the mapping S] is defined as:

εi = d](s
i
](y)), S](y) = {εi},

where si] = s] ◦ s] · · · ◦ s]︸ ︷︷ ︸
i times

. Similarly, the mapping S[ is defined as:

εi = d[(s
i
[(y)), S[(y) = {εi}.

For simplicity, we refer to S[(y) as the lower dyadic expansion for y and to S](y) as the

upper dyadic expansion for y.

12



2.2 Frequently Used Notation

In this section we will collect some notations that we will frequently used throughout the

thesis.

Definition 2.2.1. The dyadic partition Tn in [0, 1] is defined as

Tn := {k2−n|n ∈ N, k = 0, 1, . . . , 2n}, for n ∈ N.

Let T be the set of all dyadic rationals in [0, 1]. Then we have

T =
∞⋃
n=0

Tn.

Lemma 2.2.2. For y /∈ T, we have

S](y) = S[(y).

Remark 2.2.3. For any real number that is not in the dyadic partition T, the binary

expansion is unique.

Definition 2.2.4. Let S = {−1, 1}, then let SN be the collection of all infinite sequence

space over S, such a set can be represented as

SN = {(ci)∞i=1|ci ∈ S}.

Furthermore, we may mimic some notations from abstract algebra. Let us denote S[x] as

the collection of all polynomials p(x) whose the coefficients are in S. Similarly, we denote

S[[x]] as the collection of all power series whose coefficients are in S.

Definition 2.2.5. Let us denote the set of all maximizers for the Takagi function xC as

MC and the minimizer locations for the Takagi function xC as M̃C. In a more formal

way, we have

MC = arg max
t∈[0,1]

xC(t) and M̃C = arg min
t∈[0,1]

xC(t).

13



Moreover, let us also denote the set of extreme location of the truncated Takagi functions

as follows.

MC,k = arg max
t∈[0,1]

xC,k(t) and M̃C,k = arg min
t∈[0,1]

xC,k(t).

Similar notations will also be applied to the exponential Takagi function xν which is ob-

tained by taking C = {νk}k=0,1,2.....

Definition 2.2.6. If s ∈ Tm, we then denote s∗ ∈ Tm(s) if and only if |s − s∗| = 2−m.

And such a s∗ is called an adjoining point of s in the dyadic partition Tm. Furthermore,

we define T̄m(s) = Tm(s) ∪ {s} as the adjoining neighborhood of point s in the dyadic

partition Tm.

14



Chapter 3

Takagi Class

3.1 Global Extrema for Takagi Class

First of all, we will prove that the mth order truncated extrema must be on the dyadic

partition Tm+1. The following lemma gives reasons why this must hold.

Lemma 3.1.1. Let xC ∈ C. Then for every m ∈ N

MC,m ⊂ Tm+1 and M̃C,m ⊂ Tm+1. (3.1)

Proof. First of all, we have xC,m is linear within intervals [t, t+ 2−(m+1)], for all t ∈ Tm+1.

Therefore, for each y ∈ [0, 1], there exists some t ∈ Tm+1 and t∗ ∈ Tm+1(t), such that

y ∈ [t ∧ t∗, t ∨ t∗].

Then due to linearity, we have

xC,m(y) = 2m+1|t− y|xC,m(t∗) + 2m+1|t∗ − y|xC,m(t).

15



Hence, we have

min{xC,m(t∗), xC,m(t)} ≤ xC,m(y) ≤ max{xC,m(t∗), xC,m(t)}.

Therefore, we have

MC,m ⊂ Tm+1 and M̃C,m ⊂ Tm+1.

Lemma 3.1.2. Let xC ∈ C. For every m, let t̃m ∈ MC,m be a maximum point of the

truncated Takagi function xC,m. Furthermore, let t∗m be a point at which attains the

maximum on t ∈ Tm+1(t̃m). Hence, we have

t∗m ∈ arg max
t∈Tm+1(t̃m)

xC,m(t). (3.2)

Now, let s ∈ Tm+1, and s∗ ∈ Tm+1(s). Then, we have

xC,m(t̃m) + xC,m(t∗m) ≥ xC,m(s) + xC,m(s∗), (3.3)

for all s ∈ Tm+1.

Proof. We are going to prove this Lemma using induction on m. First of all, let us consider

the case when m = 0. Hence we have

xC,0(t) = c0t, for t ∈ [0,
1

2
]. (3.4)

Then if c0 ≤ 0, then we have t̃0 = 1
2

and t∗0 = 0, otherwise, we have t̃0 = 0 and t∗0 = 1
2
.

Also, we notice 0 and 1
2

are the only choice for s ∈ T1 and s∗ ∈ T1(s).

xC,0(t̃0) + xC,0(t∗0) = xC,0(s) + xC,0(s∗) = xC,0(0) + xC,0(
1

2
) =

c0

2
. (3.5)

We can notice that whatever the choice for s and s∗, equation (??) must holds. Due to

(3.5), we have proved that the hypothesis holds for m = 0. Now let us assume that (3.2)
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holds for all m ≤ n− 1, and we proceed to prove the case for m = n.

Now we will then prove the statement case by case. First of all, let us consider if

t̃n = t̃n−1. According to Lemma 3.1.1, t∗n−1 is an adjoining point to t̃n−1 ∈ Tn on the

dyadic partition Tn. Therefore, we have

|t̃n−1 − t∗n−1| = |(2t̃n−1 − t∗n−1)− t̃n−1| = 2−n,

as well as,

|t̃n −
t̃n−1 + t∗n−1

2
| = |t̃n −

3t̃n−1 − t∗n−1

2
| = 2−(n+1).

Therefore, 2t̃n−1 − t∗n−1 is the other adjoining point to t̃n−1. Moreover,
3t̃n−1−t∗n−1

2
and

t̃n−1+t∗n−1

2
are the two adjoining points of t̃n on the dyadic partition Tn+1. Then due to the

linearity and inequality in (3.2), we have

xC,n(
t̃n−1 + t∗n−1

2
) =

xC,n(t̃n−1) + xC,n(t∗n−1)

2
+
cn
2

≥
xC,n(t̃n−1) + xC,n(2t̃n−1 − t∗n−1)

2
+
cn
2

= xC,n(
3t̃n−1 − t∗n−1

2
).

Hence we must have
t̃n−1 + t∗n−1

2
∈ arg max

t∈Tn+1(t̃n)

xC,n(t).

Now we have,

t∗n =
t̃n−1 + t∗n−1

2
. (3.6)

Now let us assume that s ∈ Tn, then we have that

xC,n(s) = xC,n−1(s) ≤ xC,n−1(t̃n−1) = xC,n(t̃n−1). (3.7)
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Furthermore, we can re-compose s∗ by s∗ = s+(2s∗−s)
2

, then we have

|(2s∗ − s)− s∗| = |s∗ − s| = 2n+1, (3.8)

as will as,

|2s∗ − s− s| = 2|s∗ − s| = 2 ∗ 2−(n+1) = 2−n. (3.9)

Equation (3.8) and (3.9) indicates that s and 2s∗ − s are adjoining points on the dyadic

partition Tn, and they are also the two different adjoining points of s∗ on the dyadic

partition Tn+1. Then applying (3.2) for n− 1, we have

xC,n−1(t̃n−1) + xC,n−1(t∗n−1) ≥ xC,n−1(s) + xC,n−1(2s∗ − s). (3.10)

By applying (3.6) - (3.10), we then have

xC,n(t̃n) + xC,n(t∗n) = xC,n−1(t̃n−1) + xC,n(
t∗n−1 + t̃n−1

2
)

= xC,n−1(t̃n−1) +
1

2
xC,n−1(t∗n−1) +

1

2
xC,n−1(t̃n−1) +

cn
2

≥ xC,n−1(s) +
1

2
xC,n−1(s) +

1

2
xC,n−1(2s∗ − s) +

cn
2

≥ xC,n(s) + xC,n(s∗).

Now, let us consider when s ∈ Tn+1 − Tn. In this case, we have

s∗ ∈ Tn+1(s) ⊆ Tn, (3.11)

as well as,

2s− s∗ ∈ Tn+1(s) ⊆ Tn, (3.12)

According to (3.9), we know that s∗ ∈ Tn and 2s−s∗ ∈ Tn. Now by applying the inductive

statement for order n− 1, we have,

xC,n−1(s∗) + xC,n−1(2s− s∗) ≤ xC,n−1(t∗n−1) + xC,n−1(t̃n−1) (3.13)
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Then by applying (3.13), we have

xC,n(t̃n) + xC,n(t∗n) = xC,n−1(t̃n−1) + xC,n(
t∗n−1 + t̃n−1

2
)

= xC,n−1(t̃n−1) +
1

2
xC,n−1(t∗n−1) +

1

2
xC,n−1(t̃n−1) +

cn
2

≥ xC,n−1(s∗) +
1

2
xC,n−1(s∗) +

1

2
xC,n−1(2s− s∗) +

cn
2

≥ xC,n(s) + xC,n(s∗),

Now, let us consider the other case when t̃n 6= t̃n−1. For any points s ∈ Tn, we have

xC,n(s) = xC,n−1(s) ≤ xC,n−1(t̃n−1) = xC,n(t̃n−1). (3.14)

For points s ∈ Tn+1−Tn, we have s−2−(n+1) ∈ Tn and s+2−(n+1) ∈ Tn. Then by applying

(3.5) with m = n− 1, we have

xC,n(
t̃n−1 + t∗n−1

2
) =

xC,n−1(t̃n−1) + xC,n−1(t∗n−1)

2
+
cn
2

≥ xC,n−1(s− 2−(n+1)) + xC,n−1(s+ 2−(n+1))

2
+
cn
2

= xC,n(s)

(3.15)

By applying (3.14) and (3.15), we get

max
t∈[0, 1

2
]
xC,n(t) = max{xC,n(t̃n−1), xC,n(

t̃n−1 + t∗n−1

2
)}. (3.16)

Since t̃n 6= t̃n−1, we have

t̃n =
t̃n−1 + t∗n−1

2
, (3.17)

as well as,

t∗n = t̃n−1. (3.18)

Hence, for all s ∈ Tn+1, we must have either s or s∗ is in the dyadic partition Tn. Without

loss of generality, let us assume that s ∈ Tn+1. Therefore, we get s∗ ∈ Tn. By applying
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(3.14), (3.15), (3.17) and (3.18), we have

xC,n(t̃n) + xC,n(t∗n) = xC,n(
t̃n−1 + t∗n−1

2
) + xC,n(t̃n−1)

≥ xC,n(s) + xC,n(s∗).

Therefore, we finish proving the case for m = n, and, hence, we prove the Lemma 3.1.2.

Corollary 3.1.3. Let xC ∈ C. For every m, let t̃m ∈MC,m. Then, we must have

T̄m+1(t̃m) ∩MC,m+1 6= ∅.

Proof. This result directly comes from (3.16) in Lemma 3.1.2.

Corollary 3.1.4. Let xC ∈ C. For every m ∈ N, let t̃m ∈MC,m, as well as,

t∗m ∈ arg max
t∈Tm+1(t̃m)

xC,m(t).

If t̃m ∈MC,m+1, then
t̃m + t∗m

2
∈ arg max

t∈Tm+2(t̃m+1)

xC,m+1(t).

Otherwise, we have

t̃m ∈ arg max
t∈Tm+2(t̃m+1)

xC,m+1(t).

Proof. This result directly comes from (3.6) and (3.18) in the proof for Lemma 3.1.2.

Corollary 3.1.5. Let xC ∈ C. For every m ∈ N, let t̃m ∈MC,m. Furthermore, we take

t∗m ∈ arg max
t∈Tm+1(t̃m)

xC,m(t).

Then there must exist some t̃m+1 ∈MC,m+1 such that

[t∗m+1 ∧ t̃m+1, t
∗
m+1 ∨ t̃m+1] ⊂ [t∗m ∧ t̃m, t∗m ∨ t̃m].
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Proof. This results directly comes from Corollary 3.1.4.

Definition 3.1.6. Let {t̃n} be a sequence such that t̃n ∈MC,n, and

[t∗m+1 ∧ t̃m+1, t
∗
m+1 ∨ t̃m+1] ⊂ [t∗m ∧ t̃m, t∗m ∨ t̃m],

for all m ∈ N. We shall call such a sequence a sequence of consecutive maximizers.

Lemma 3.1.2 gives the range of a sequence of consecutive maximizers, and the following

propositions will state the result how one characterize the exact location of the proceeding

consecutive maximizers based previous consecutive maximizers.

Proposition 3.1.7. Let xC ∈ C. For every m, let t̃m ∈MC,m be a maximum point of the

truncated exponential Takagi function xC,m. For a fixed n, we let k = min{i|t̃n−i 6= t̃n}.
Then, if t̃n−k < t̃n, we have

xC,n+1(p− 2−(n+2)) ≤ xC,n+1(t̃n − 2−(n+2)). (3.19)

for every p ∈ Tn+1.

Proof. We will prove this proposition by induction on k. Let us first consider the case

k = 1. By Lemma 3.1.1, we have that t̃n is in the dyadic partition Tn+1 and t̃n−1 is in the

dyadic partition Tn for any fixed n ∈ N. Furthermore, we have

t̃n−k = t̃n−1 < t̃n. (3.20)

Then due to (3.20), we can apply Lemma 3.1 in [17], then we have

t̃n−1 = t̃n − 2−(n+1). (3.21)

As the truncated function xC,n is linear within intervals of the form [p−2−(n+1), p], for any

p ∈ Tn+1, and the increment of the wedge has an increment of cn+1

2
, we get

xC,n+1(p− 2−(n+2)) =
xC,n(p) + xC,n(p− 2−(n+1))

2
+
cn+1

2
. (3.22)
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As t̃n ∈ Tn+1, we may take p = t̃n and by plugging (3.21) into (3.22), we have

xC,n+1(t̃n − 2−(n+2)) =
xC,n(t̃n) + xC,n(t̃n−1)

2
+
cn+1

2
. (3.23)

Since t̃n−1 ∈MC,n−1, t̃n−1 ∈ Tn, we have

xC,n(t̃n−1) = xC,n−1(t̃n−1). (3.24)

As p ∈ Tn+1, we have either p ∈ Tn or p− 2−(n+1) ∈ Tn.

min{xC,n(p), xC,n(p− 2−(n+1))} ≤ xC,n−1(t̃n−1) = xC,n(t̃n−1). (3.25)

In addition,

max{xC,n(p), xC,n(p− 2−(n+1))} ≤ xC,n(t̃n). (3.26)

Hence, according to (3.25) and (3.26), we have

xC,n(p) + xC,n(p− 2−(n+1))

2
≤ xC,n(t̃n) + xC,n(t̃n−1)

2
. (3.27)

Plugging (3.27) into (3.23) and applying (3.22), we get

xC,n+1(p− 2−(n+2)) =
xC,n(p) + xC,n(p− 2−(n+1))

2
+
cn+1

2

≤ xC,n(t̃n) + xC,n(t̃n−1)

2
+
cn+1

2
= xC,n+1(t̃n − 2−(n+2)).

(3.28)

This completes the proof for the case k = 1. For such all fixed n, we now assume the (3.19)

holds true for k ≤ m. Now we proceed to prove when k = m + 1, xC,n+1(p − 2−(n+2)) ≤
xC,n+1(t̃n − 2−(n+2)) holds for p ∈ Tn+1. As m + 1 = min{i|t̃n−i 6= t̃n}, and t̃n = t̃n−1, we

have

min{i|t̃n−1−i 6= t̃n−1} = m. (3.29)

As induction hypothesis holds for every n ∈ N and k ≤ m, by applying (3.19) for xC,n−1,
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we have

xC,(n−1)+1(p̃− 2−((n−1)+2)) ≤ xC,(n−1)+1(t̃n−1 − 2−((n−1)+2)), (3.30)

where p̃ ∈ Tn. By organizing equation (3.30), we have

xC,n(p̃− 2−(n+1)) ≤ xC,n(t̃n − 2−(n+1)). (3.31)

Then we will prove the statement case by case. We first consider the case p̃ ∈ Tn. As

t̃n ∈ Tn+1, therefore t̃n − 2−(n+1) ∈ Tn+1. Similarly, as p̃ ∈ Tn, then p̃ − 2−(n+1) ∈ Tn+1.

By applying equation (3.22), we get

xC,n+1(p̃− 2−(n+2)) =
xC,n(p̃) + xC,n(p̃− 2−(n+1))

2
+
cn+1

2
. (3.32)

Then as t̃n = t̃n−1 ∈ Tn, we can replace p̃ with t̃n in the equation (3.32), we get

xC,n+1(t̃n − 2−(n+2)) =
xC,n(t̃n) + xC,n(t̃n − 2−(n+1))

2
+
cn+1

2
. (3.33)

As t̃n = t̃n−1 ∈ Tn, and p ∈ Tn, then we have

xC,n(p̃) = xC,n−1(p̃) ≤ xC,n−1(t̃n−1) = xC,n(t̃n−1) = xC,n(t̃n). (3.34)

Then by plugging (3.34) and (3.31) into (3.32) and (3.33), we have

xC,n+1(p̃− 2−(n+2)) =
xC,n(p̃) + xC,n(p̃− 2−(n+1))

2
+
cn+1

2

≤ xC,n(t̃n) + xC,n(t̃n − 2−(n+1))

2
+
cn+1

2
= xC,n+1(t̃n − 2−(n+2)).

Now we discuss the case p̃ ∈ Tn+1 − Tn, then we have that p̃+ 2−(n+1) ∈ Tn, therefore by

applying equation (3.31) for p̃+ 2−(n+1), we have

xC,n(p̃+ 2−(n+1) − 2−(n+1)) = xC,n(p̃) ≤ xC,n(t̃n − 2−(n+1)). (3.35)
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As the function xC,n is maximized at t̃n, we have

xC,n(p̃− 2−(n+1)) ≤ xC,n(t̃n). (3.36)

By plugging equation (3.35) and equation (3.36) into equation (3.32) and equation (3.33).

We have

xC,n+1(p̃− 2−(n+2)) =
xC,n(p̃) + xC,n(p̃− 2−(n+1))

2
+
cn+1

2n+2

≤ xC,n(t̃n) + xC,n(t̃n − 2−(n+1))

2
+
cn+1

2n+2
= xC,n+1(t̃n − 2−(n+2)).

Therefore, we have proved that xC,n+1(p−2−(n+2)) ≤ xC,n+1(t̃n−2−(n+2)) for any p ∈ Tn+1.

Since both base case and the inductive hypothesis has been proved, then we prove this

proposition.

Proposition 3.1.8. Let xC ∈ C. For every m, let t̃m ∈ arg max
t∈[0,1]

xC,m(t) be a maximum

point of the truncated function xC,m. For fixed n, we let k = min{i|t̃n−i 6= t̃n}. Then, if

t̃n−k > t̃n, we have

xC,n+1(p+ 2−(n+2)) ≤ xC,n+1(t̃n + 2−(n+2)),

for every p ∈ Tn+1.

Proof. The proof is analogous to the proof of Proposition 3.1.7.

Lemma 3.1.9. Let t̃n ∈MC,n, and

t∗n ∈ arg max
t∈Tn+1(t̃n)

xC,n(t).

Then for any fixed n ≥ 1, take m = inf{i|t̃n−i 6= t̃n}. Then, t̃n−m < t̃n if and only if

t∗n < t̃n.

Proof. First of all, let us prove the only if direction. Let us assume that t̃n−m < t̃n, then

we will discuss case by case. First of all, let us consider the case when m = 1. By applying
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Corollary 3.1.3, we have t̃n−1 = t̃n − 2−(n+1) ∈ Tn. Similarly, we have t̃n + 2−(n+1) ∈ Tn.

Then we have

xC,n(t̃n − 2−(n+1)) = xC,n−1(t̃n − 2−(n+1)) ≥ xC,n−1(t̃n + 2−(n+1)) = xC,n(t̃n + 2−(n+1)).

We have t∗n = t̃n−2−(n+1), and t∗n < t̃n. Now, we consider the case when m > 1. Moreover,

we have

t̃n−1 = t̃n.

Then we may apply the Proposition 3.1.7. As t̃(n−1)−(m−1) < t̃n−1, we have

xC,n(p− 2−(n+1)) ≤ xC,n(t̃n−1 − 2−(n+1)) = xC,n(t̃n − 2−(n+1)). (3.37)

for every p ∈ Tn. Because t̃n = t̃n−1 ∈ Tn, then by plugging p = t̃n + 2−n ∈ Tn into (3.37),

we have

xC,n(t̃n + 2−n − 2−(n+1)) = xC,n(t̃n + 2−(n+1)) ≤ xC,n(t̃n − 2−(n+1)).

Hence, we have t∗n = t̃n− 2−(n+1), and t∗n < t̃n, then we finish the proof for the only if part.

Now, we aim to prove the if direction by proving its contrapositive statement through a

brief discussion on m. We can notice that the contrapositive statement for the only if

direction will be

If t̃n−m > t̃n, then t∗n > t̃n.

First of all, let us consider the case when m = 1. By applying Corollary 3.1.3 again, we

have t̃n−1 = t̃n + 2−(n+1) ∈ Tn. Therefore, we have t̃n − 2−(n+1) ∈ Tn. Then we have

xC,n(t̃n − 2−(n+1)) = xC,n−1(t̃n − 2−(n+1)) ≤ xC,n−1(t̃n + 2−(n+1)) = xC,n(t̃n + 2−(n+1)).

Furthermore, we have

xC,n(t̃n + 2−(n+1)) ≤ xC,n(t̃n).

Hence, we have t∗n = t̃n+2−(n+1), and t∗n > t̃n under the condition m = 1. Now, we consider
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the case when m > 1. Hence, we have

t̃n−1 = t̃n.

Next, we would apply Proposition 3.1.8. As t̃(n−1)−(m−1) > t̃n−1, we have

xC,n(p+ 2−(n+1)) ≤ xC,n(t̃n−1 + 2−(n+1)) = xC,n(t̃n + 2−(n+1)). (3.38)

for every p ∈ Tn. Because t̃n = t̃n−1 ∈ Tn, then by plugging p = t̃n − 2−n ∈ Tn into (3.38),

we have

xC,n(t̃n − 2−n + 2−(n+1)) = xC,n(t̃n − 2−(n+1)) ≤ xC,n(t̃n + 2−(n+1)).

Therefore, we have t∗n = t̃n + 2−(n+1), and t∗n > t̃n. Hence, we have proved the only if part

through proving its contrapositive statement.

Lemma 3.1.10. For y ∈ [0, 1], let yn be the nth order dyadic approximation for y, then

y ∈ [yn, yn + 2−n].

Furthermore, if we restrict all binary expansion is in the image S]([0, 1]), then we have

y ∈ [yn, yn + 2−n).

On the other hand, if we require all binary expansion is in the image S[([0, 1]), then we

have

y ∈ (yn, yn + 2−n].

Proof. Let the binary expansion of y be

y =
∞∑
i=0

εi
2i+1

= 0.ε0ε1ε2ε3......
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Then by rewriting the binary expansion we have

y =
∞∑
i=0

εn
2i+1

= yn +
∞∑

i=n+1

εn
2i+1

.

As for every i ∈ N, we have εi ∈ {0, 1}, then

0 ≤
∞∑

i=n+1

εn
2i+1

≤ 2−(n+1).

Hence, we have

y ∈ [yn, yn + 2−n].

However, if {εi} ∈ S]([0, 1]), then εi cannot all be 1 for i > n. Therefore, we have

0 ≤
∞∑

i=n+1

εn
2i
< 2−(n+1).

Hence, we have

y ∈ [yn, yn + 2−n).

Similarly, if if {εi} ∈ S[([0, 1]), then εi cannot all be 0 for i > n. Therefore, we have

0 <
∞∑

i=n+1

εn
2i
≤ 2−(n+1).

And this leads to

y ∈ (yn, yn + 2−n].

Hence, we proved this lemma.

Definition 3.1.11. For each n, we denote the nth order upper truncated Takagi function

over an infinite sequence C ∈ RN by xnC, which is written as

xnC(t) =
∞∑
m=n

ciφ(2mt). (3.39)
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Lemma 3.1.12. For y ∈ R, xnC(y) = xnC(y + 2−nk), for all k ∈ Z.

Proof. We have,

xnC(y + 2−nk) =
∞∑
i=n

ciφ(2i(y + 2−nk)) =
∞∑
i=n

ciφ(2iy + 2i−nk).

As i ≤ n, then 2i−nk ∈ N, hence

φ(2iy + 2i−nk) = φ(2iy),

for all i. Therefore, we have

xnC(y) = xnC(y + 2−nk).

Lemma 3.1.13. For y ∈ R, we have xnC(y) = xnC(−y).

Proof. We have,

xnC(y) =
∞∑
i=n

ciφ(2iy) =
∞∑
i=n

ciφ(−2iy) = xnC(y).

Remark 3.1.14. Lemma 3.1.12 and Lemma 3.1.13 indicate that xnC is symmetry with respect

to every points in Tn+1.

Theorem 3.1.15. Let xC ∈ C, the following statements are equivalent:

i. y ∈MC.

ii. There exists a sequence {yn}∞n=0, such that yn ∈MC,n for all n ∈ N, and

y = lim
n→∞

yn.

28



Figure 3.1: Graphical Illustration for
s = t∗n−1 and s∗ = t̃n.

Figure 3.2: Graphical Illustration for
s = t∗n−1 and s∗ = t∗n.

iii. Let Tn := {[t̃n − 2−(n+1), t̃n + 2−(n+1)]|t̃n ∈MC,n}. Furthermore, take

Pn =
⋃
A∈Tn

A.

Then,

y ∈
∞⋂
n=0

Pn.

iv. Let Kn := {[t̃n ∧ t∗n, t̃n ∨ t∗n] | t̃n ∈MC,n, t
∗
n ∈ arg max

t∈Tn+1(t̃n)

xC,n(t̃n)}. Furthermore, take

In =
⋃
A∈Kn

A.

Then,

y ∈
∞⋂
n=0

In.

Proof. Let us prove this theorem by proving following statements in order.

• i =⇒ iv
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Let us prove this statement by proving its contrapositive statement. The contrapos-

itive statement will be

If there exists n ∈ N, such that y /∈ In, then y /∈MC.

Denote N = {n ∈ N|y /∈ In}, and denote n = minN . Let us assume that y ∈ [s, s∗],

where s ∈ Tn+1 and s∗ = s+ 2−(n+1). Since n = minN , we must have that

y ∈ [t̃n−1 ∧ t∗n−1, t̃n−1 ∨ t̃∗n−1].

for some t̃n−1 ∈ MC,n−1 and t∗n−1 ∈ arg max
t∈Tnt

xC,n−1(t). By applying Corollary 3.1.3,

there exists t̃n ∈MC,n∩ [t̃n−1∧ t∗n−1, t̃n−1∨ t̃∗n−1]. Furthermore, take t̃n ∈ [t̃n−1, t
∗
n−1],

then by applying Corollary 3.1.4, we have

[
1

2
(t̃n−1 + t∗n−1) ∧ t̃n−1,

1

2
(t̃n−1 + t∗n−1) ∨ t̃n−1] = [t̃n ∧ t∗n, t̃n ∨ t̃∗n].

Since y ∈ [t̃n−1∧t∗n−1, t̃n−1∨t̃∗n−1], we have {s, s∗}
⋂
{t̃n, t∗n} 6= ∅, and {s, s∗}

⋂
{t̃n, t∗n} 6=

{t̃n, t∗n}. For instance, if t∗n−1 < t̃n−1, then we have

s = t∗n−1, and s∗ = t̃n ∧ t∗n.

As [s, s∗] /∈ Kn, therefore s = t∗n−1 /∈MC,n−1. Hence, we have

xC,n(s) < xC,n(t̃n−1) ≤ xC,n(t∗n). (3.40)

As well as

xC,n(s) ≤ xC,n(t̃n). (3.41)

Therefore, since y ∈ [s, s∗],

ỹ := 2s∗ − y ∈ [t̃n ∧ t∗n, t̃n ∨ t∗n],

for t̃n ∈MC,n. Then by applying Lemma 3.1.12 and Lemma 3.1.13, we have s ∈ Tn+1,

30



Figure 3.3: Graphical Illustration for
s = t∗n and s∗ = t∗n−1.

Figure 3.4: Graphical Illustration for
s = t̃n and s∗ = t∗n−1.

and

xn+1
C (y) = xn+1

C (ỹ). (3.42)

By applying (3.40) - (3.42), we have

xC(y) = xC,n(y) + xn+1
C (y) =

y − s
s∗ − s

xC,n(s∗) +
s∗ − y
s∗ − s

xC,n(s) + xn+1
C (y)

=
y − s
s∗ − s

xC,n(s∗) +
s∗ − y
s∗ − s

xC,n(s) + xn+1
C (ỹ)

<
y − s
s∗ − s

xC,n(t̃n) +
s∗ − y
s∗ − s

xC,n(t∗n) + xn+1
C (ỹ)

=
(2s∗ − y)− t̃n

t̃n − s∗
xC,n(t̃n) +

s∗ − (2s∗ − y)

t̃n − s∗
xC,n(t∗n) + xn+1

C (ỹ)

=
ỹ − t̃n
t̃n − s∗

xC,n(t̃n) +
s∗ − ỹ
t̃n − s∗

xC,n(t∗n) + xn+1
C (ỹ)

= xC,n(ỹ) + xn+1
C (ỹ) = xC(ỹ).

Hence, y /∈ MC. And the proof for the situation when t̃n−1 < t∗n−1 is analogous to

the previous proof.

• iv =⇒ iii

First of all, let us state this statement again.
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If y ∈
⋂∞
n=0 In, then y ∈

⋂∞
n=0Pn.

First of all, by applying Lemma 2.1.1, we have
⋂∞
n=0 In 6= ∅ and

⋂∞
n=0Pn 6= ∅. Now,

this statement is equivalent to the following inclusion, and we now aim to prove the

following inclusion.
∞⋂
n=0

In ⊂
∞⋂
n=0

Pn.

As for each fixed t̃n ∈MC,n, we have

[t̃n ∧ t∗n, t̃n ∨ t∗n] $ [t̃n − 2−(n+1), t̃n + 2−(n+1)]. (3.43)

Then (3.43) directly gives,

In =
⋃
A∈Kn

A $
⋃
A∈Tn

A = Pn,

for all n ∈ N. Therefore, we have

∞⋂
n=0

In ⊂
∞⋂
n=0

Pn.

• iii =⇒ ii

First of all, let us formally state the statement we are going to prove.

If y ∈
⋂∞
n=0Pn, then there exists a sequence yn ∈MC,n, such that

y = lim
n→∞

yn

Since y ∈
⋂∞
n=0Pn, hence, for all n ∈ N, we have

y ∈ Pn.
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Therefore, there exists some An,y ∈ Tn for all n ∈ N, and

y ∈ An,y.

For each n ∈ N, we take a sequence of {yn} for all n ∈ N such that yn =MC,n∩An,y,
and then we have

|ym − y| ≤ 2−(m+1). (3.44)

Hence, lim
n→∞

yn = y.

• ii =⇒ i

First of all, let us state the statement we are about to prove.

If there exists a sequence {yn}∞n=0, such that yn ∈MC,n for all n ∈ N and lim
n→∞

yn,

then y ∈MC.

As [0, 1] is a compact space, and xC,n ∈ C[0, 1], therefore, there exists βn = max
t∈[0,1]

xC,n(t)

for all n ∈ N, as well as β = max
t∈[0,1]

xC(t). Since, xC,n → xC uniformly, therefore, for

any ε > 0, there exists some N ∈ N, such that for all n > N ,

xC(t)− ε < xC,n(t) < xC(t) + ε. (3.45)

for all t ∈ [0, 1]. Hence, we have

xC,n(t)− ε < xC(t) < xC,n(t) + ε. (3.46)

Therefore (3.45) and (3.46) give usxC,n(t) < β + ε,

xC(t)− ε < βn,
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for all t ∈ [0, 1]. By taking the supremum on the left side, we haveβn ≤ β + ε,

β − ε ≤ βn.

This leads us to

β − ε ≤ βn ≤ β + ε.

Therefore, we have lim
n→∞

βn = β. By uniformly convergence, as lim
n→∞

yn = y, therefore,

lim
n→∞

xC,n(yn) = xC(y). (3.47)

Therefore, we have y ∈MC.

Lemma 3.1.16. For all n ∈ N, let t̃n ∈MC,n and t∗n ∈ arg max
t∈Tn+1(t̃n)

xC,n(t). Then

lim
n→∞

t̃n = t,

if and only if

lim
n→∞

t̃n ∧ t∗n = t.

Proof. First of all, let us prove the only if direction. Now, assume that lim
n→∞

t̃n = t. Then,

we have for all ε > 0, there exists N ∈ N, such that for all n > N ,

|t− t̃n| <
ε

2
.

Also, we have |t̃n − t∗n| = 2−(n+1). Now taking M := max{N,− log2 ε+ 1}, then we have

|t− t∗n| < |t− t̃n|+ |t− t∗n| < ε.
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Hence,

lim
n→∞

t∗n = t. (3.48)

Therefore, we have

lim
n→∞

t∗n ∧ t̃n = t.

Now, let us prove the if direction. Notice that

t̃n ∨ t∗n − t̃n ∧ t∗n = 2−(n+1).

Then we have

lim
n→∞

t̃n ∨ t∗n = lim
n→∞

t̃n ∧ t∗n.

Furthermore, we have

t̃n ∨ t∗n ≥ t̃n ≥ t̃n ∧ t∗n.

By applying the sandwich theorem, we get

lim
n→∞

t̃n ∧ t∗n = lim
n→∞

t̃n.

Corollary 3.1.17.

MC =
⋂
n

Pn =
⋂
n

In

Proof. This corollary directly follows from Theorem 3.1.15.

Theorem 3.1.18. For y ∈ [0, 1], let y = 0.ε0ε1ε2 · · · =
∑∞

i=0 εi2
−(i+1) be the lower binary

expansion of y. Let yn = 0.ε0ε1ε2 . . . εn =
∑n

i=0 εi2
−(i+1). Then y ∈ MC, if and only if

there exists a sequence consecutive maximizers of t̃n ∈ MC,n and t∗n ∈ arg max
t∈Tn+1(t̃n)

xC,n(t),

such that

yn = t̃n ∧ t∗n,

for all n ∈ N.

35



Proof. First of all, let us prove the if part. Now let us assume that there exists a sequence

of t̃n ∈MC,n and t∗n ∈ arg max
t∈Tn+1(t̃n)

xC,n(t), such that yn = t̃n ∧ t∗n. Instantly, we have

lim
n→∞

yn = lim
n→∞

t∗n ∧ t̃n = y.

Taking such t̃n, by Lemma 3.1.16, we have

lim
n→∞

t̃n = lim
n→∞

t∗n ∧ t̃n = lim
n→∞

yn = y.

Hence, by applying Theorem 3.1.15, we have y ∈ MC. Now let us prove the only if part

by proving its contrapositive statement. Let us state the contrapositive statement first.

If for any sequence of consecutive maximizers t̃n ∈MC,n, there exists some n ∈ N, such

that yn 6= t̃n ∧ t∗n, then y /∈MC.

For any sequence {t̃n}, such that t̃n ∈ MC,n, define N = {n ∈ N|yn 6= t̃n}. Now let us

take N := minN , therefore

[t̃N−1 ∧ t∗N−1, t̃N−1 ∨ t∗N−1] = [yN−1, yN−1 + 2−N ]. (3.49)

Since {t̃n} is a sequence of consecutive maximizers, we have

[t̃N ∧ t∗N , t̃N ∨ t∗N ] $ [t̃N−1 ∧ t∗N−1, t̃N−1 ∨ t∗N−1] = [yN−1, yN−1 + 2−N ], (3.50)

as well as,

[yN , yN + 2−(N+1)] $ [t̃N−1 ∧ t∗N−1, t̃N−1 ∨ t∗N−1]. (3.51)

Since, we have yN 6= t̃N ∧ t∗N , and therefore, either yN = t̃N ∨ t∗N or yN + 2−(N+1) = t̃N ∧ t∗N .

Then by (3.49) - (3.51), we have

[t̃N ∧ t∗N , t̃N ∨ t∗N ] = [t̃N−1 ∧ t∗N−1, t̃N−1 ∨ t∗N−1].
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Then, by applying lemma 3.1.10, we have

y ∈ [yN , yN + 2−(N+1)).

Theorem 3.1.15 (i =⇒ iv) indicates

y /∈MC.

Remark 3.1.19. For the following theorems and lemmas in Section 3.1, the binary expansion

will only refer to the lower binary expansion.

Definition 3.1.20. The Rademacher mapping H : {0, 1}N → SN is defined as

{H({dj})}i = 1− 2di. (3.52)

then for y = 0.ε0ε1ε2..... Take {ξ}∞i=0 = {H({εi})}. The sequence {ξi}∞i=0 is called the

quasi-binary expansion for y.

Definition 3.1.21. Let Ξ = {ξi}∞i=0 be the quasi-binary expansion for y, and xC ∈ C.

Take ai = 2ici, and A = {ai}. Now define

Ξn(A) =
n∑
i=0

ξiai.

Then Ξn(A) will be referred as the slope series for y.

Now by using the quasi-binary expansion, we can then neatly give the most important

theorem in characterizing the maximum location for the Takagi Class. Before proving the

theorem, we need to prove the following lemma first, which plays an important on relating

the location of a point and its truncated slope. The following lemma is closely related to

Billingsley [4].

Lemma 3.1.22. Let y = 0.ε0ε1ε2 · · · =
∑n

i=0 εi2
−(i+1) be the binary expansion of y ∈ [0, 1],

and {ξi} is the quasi-binary expansion for y. Let yn = 0.ε0ε1ε2 . . . εn =
∑n

i=0 εi2
−(i+1) be
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the nth order approximation for y. Then for all n ∈ N,

xC,n(t1)− xC,n(t2)

t1 − t2
= Ξn(A), (3.53)

for any t1, t2 ∈ [yn, yn + 2−(n+1)].

Proof. Let us prove this statement by induction on n. First of all, let us consider the case

n = 0. Then we have

xC,0 = c0φ(t) = c0{t ∧ (1− t)}+.

Also, we may notice that t ∈ [0, 1
2
] if ε0 = 0,

t ∈ [1
2
, 1] if ε0 = 1.

Obviously, we have

xC,0(t1)− xC,0(t2)

t1 − t2
=


c0
t1−t2
t1−t2 = c0ξ0 = c0 if ε0 = 0,

c0
(1−t1)−(1−t2)

t1−t2 = c0ξ0 = −c0 if ε0 = 1.

(3.54)

Clearly, c0 = a0, so the statement holds for n = 0.

Now let us assume that for an arbitrary y, (3.53) holds for all k ≤ n−1, and we proceed to

prove the case for n. Now let t1 ∈ [yn, yn + 2−(n+1)] and t2 ∈ [yn, yn + 2−(n+1)]. By applying

Lemma 3.1.5, we have

t1 ∈ [yn−1, yn−1 + 2−n] and t2 ∈ [yn−1, yn−1 + 2−n].

Hence, by applying the (3.53), we have

xC,n(t1)− xC,n(t2)

t1 − t2
=
xC,n−1(t1)− xC,n−1(t2)

t1 − t2
+ cn

φ(2nt1)− φ(2nt2)

t1 − t2

= Ξn(A) + cn
φ(2nt1)− φ(2nt2)

t1 − t2

(3.55)
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Then by (3.55), we only remain to prove

cn
φ(2nt1)− φ(2nt2)

t1 − t2
= ξnan.

Since t1 ∈ [yn, yn + 2−(n+1)] and t2 ∈ [yn, yn + 2−(n+1)], we can rewrite t1 = yn−1 + 2−nτ1

and t2 = yn−1 + 2−nτ2, where τ1, τ2 ∈ [0, 1). Furthermore, we haveτi ∈ [0, 1
2
) if and only if εn = 0,

τi ∈ [1
2
, 1) if and only if εn = 1,

for i = 1, 2. Then we have

cn
φ(2nt1)− φ(2nt2)

t1 − t2
= cn

φ(2n(yn−1 + τ1))− φ(2n(yn−1 + τ2)

t1 − t2

= cn
φ(2n(

∑n−1
i=0 εi2

−(i+1) + 2−nτ1))− φ(2n(
∑n−1

i=0 εi2
−(i+1) + 2−nτ2))

t1 − t2

= cn
φ(
∑n−1

i=0 εi2
n−(i+1) + τ1)− φ(

∑n−1
i=0 εi2

n−(i+1) + τ2)

2−n(τ1 − τ2)

= an
φ(τ1)− φ(τ2)

τ1 − τ2

,

because
∑n−1

i=0 εi2
n−(i+1) ∈ Z. By applying (3.54), the case n + 1 will be proved. And

therefore, we proved the lemma.

Definition 3.1.23. Let Ξ = {ξi}∞i=0 be the quasi-binary expansion for y, and xC ∈ C.

Take ai = 2ici, and A = {ai}. Let

Ξn(A) =
n∑
i=0

ξiai. (3.56)

If Ξn(A)ξn+1 ≤ 0 for all n ∈ N, then we say that (Ξ,C) satisfies the step condition for

maxima. And if Ξn(A)ξn+1 ≥ 0 for all n ∈ N, then we call (Ξ,C) satisfies the step

condition for minima.
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Lemma 3.1.24. Let xC ∈ C, and Ξ be any quasi-binary expansion for y ∈ [0, 1]. If

Ξn(A)ξn+1 ≤ 0, (3.57)

for all n ≤ N . Let yN+1 be the N + 1th order dyadic approximation of y, then We have

yN+1 = t̃N+1 ∧ t∗N+1, (3.58)

where t̃N+1 ∈MC,N+1 and t∗N+1 = arg max
t∈TN+1(t̃N+1)

xC,N+1(t).

Proof. By applying Lemma 3.1.22, it is sufficient for us to prove the following statement.

If Ξn(A)ξn+1 ≤ 0, for all n ≤ N . We have

Ξk(A) =
xC,k(t̃k ∨ t∗k)− xC,k(t̃k ∧ t∗k)

t̃k ∨ t∗k − t̃k ∧ t∗k
(3.59)

for all k ≤ N + 1.

Let us prove this lemma by induction on n. Assuming Ξn(A)ξn+1 ≤ 0 now, let us first of

all consider the case n = 0. In this case, we have

xC,0(t) = c0 min{t, (1− t)}+.

Hence, for all c0 ∈ R, one of the following two cases must hold:t̃0 ∧ t∗0 = 0 and t̃0 ∨ t∗0 = 1
2
,

t̃0 ∧ t∗0 = 1
2

and t̃0 ∨ t∗0 = 1.
(3.60)

Furthermore, we have ξ0 = 1, if y ∈ [0, 1
2
].

ξ0 = −1, if y ∈ [1
2
, 1].
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It is obvious that y0 = 0, if and only if ξ0 = 1.

y0 = 1
2
, if and only if ξ0 = −1.

Also, we have a0 = 20c0 = c0. Those two cases will lead us to two feasible cases for the

slope:

xC,0(t̃0 ∨ t∗0)− xC,0(t̃0 ∧ t∗0)

t̃0 ∨ t∗0 − t̃0 ∧ t∗0
=


xC,0( 1

2
)−xC,0(0)
1
2
−0

= c0 = a0 = ξ0a0 = Ξ0(A).

xC,0(1)−xC,0( 1
2

)

1− 1
2

= −c0 = −a0 = ξ0a0 = Ξ0(A).

(3.61)

So we get (3.59) for k = 0 even without having to require Ξ0(A)ξ1 ≤ 0. Hence, regardless

of the choice of t̃0 and t∗0, we have

xC,0(t̃0 ∨ t∗0)− xC,0(t̃0 ∧ t∗0)

t̃0 ∨ t∗0 − t̃0 ∧ t∗0
= Ξ0(A).

Now let us assume that (3.57) implies (3.59) for all k ≤ n− 1, and we now prove the case

for k = n. By plugging k = n− 1 into (3.59), we have

Ξn−1(A) =
xC,n−1(t̃n−1 ∨ t∗n−1)− xC,n−1(t̃n−1 ∧ t∗n−1)

t̃n−1 ∨ t∗n−1 − t̃n−1 ∧ t∗n−1

(3.62)

For instance, let us assume that Ξn−1(A) > 0. Then we have

xC,n−1(t̃n−1 ∨ t∗n−1)− xC,n−1(t̃n−1 ∧ t∗n−1) = Ξn−1(A)(t̃n−1 ∨ t∗n−1 − t̃n−1 ∧ t∗n−1) > 0.

Moreover, since xC,n−1(t̃n−1 ∨ t∗n−1) > xC,n−1(t̃n−1 ∨ t∗n−1), we havet̃n−1 ∨ t∗n−1 = t̃n−1,

t̃n−1 ∧ t∗n−1 = t∗n−1.
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Also, by the step condition for maxima, we have

ξn = −1. (3.63)

As t̃n > t∗n applying Corollary 3.1.4, we have t̃n ∧ t∗n =
t̃n−1+t∗n−1

2
, and t̃n ∨ t∗n = t̃n−1.

Therefore, since t̃n−1 ∈ Tn and t∗n−1 ∈ Tn, we have 2nt̃n−1 ∈ Z as well as 2nt∗n−1 =

2n(t̃n−1 ± 2−n) ∈ Z. Hence, we have

φ(2nt∗n−1) = φ(2nt̃n−1) = 0. (3.64)

Furthermore, we have

φ(2n
t̃n−1 + t∗n−1

2
) =

1

2
. (3.65)

By plugging (3.62),(3.64) and (3.65) into (3.55), we have

xC,n(t̃n ∨ t∗n)− xC,n(t̃n ∧ t∗n)

t̃n ∨ t∗n − t̃n ∧ t∗n
= Ξn−1(A) + cn

φ(2nt̃n−1 ∨ t∗n−1)− φ(2nt̃n−1 ∧ t∗n−1)

t̃n−1 ∨ t∗n−1 − t̃n−1 ∧ t∗n−1

= Ξn−1(A) + cn
φ(2n(

t̃n−1+t∗n−1

2
))− φ(2nt̃n−1)

t̃n−1+t∗n−1

2
− t̃n−1

= Ξn−1(A)− 2ncn = Ξn−1(A) + ξnan = Ξn(A).

The last step holds because of (3.63). Hence, we have proved the case Ξn−1(A) > 0. The

case Ξn−1(A) < 0 is analogous to the case Ξn−1(A) > 0. Now let us further consider the

case when Ξn−1(A) = 0. Then we have

xC,n−1(t̃n−1 ∨ t∗n−1)− xC,n−1(t̃n−1 ∧ t∗n−1) = Ξn−1(A)(t̃n−1 ∨ t∗n−1 − t̃n−1 ∧ t∗n−1) = 0.

Then we have

xC,n−1(t) = xC,n−1(t̃n−1 ∨ t∗n−1) = xC,n−1(t̃n−1 ∧ t∗n−1). (3.66)

for all t ∈ [t̃n−1 ∧ t∗n−1, t̃n−1 ∨ t∗n−1]. Because t̃n−1 ∨ t∗n−1 ∈ Tn and t̃n−1 ∧ t∗n−1 ∈ Tn, then
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we have

φ(2n(t̃n−1 ∨ t∗n−1)) = φ(2n(t̃n−1 ∧ t∗n−1)) = 0. (3.67)

As well as,

φ(
1

2
(2n(t̃n−1 ∨ t∗n−1) + 2n(t̃n−1 ∧ t∗n−1))) =

1

2
. (3.68)

Similar to (3.60), one of two following cases must be true:t̃n ∧ t∗n = t̃n−1 ∧ t∗n−1 and t̃n ∨ t∗n = t̃n−1 ∧ t∗n−1 + 2−(n+1),

t̃n ∧ t∗n = t̃n−1 ∧ t∗n−1 + 2−(n+1) and t̃n ∨ t∗n = t̃n−1 ∨ t∗n−1.

Furthermore, by applying the inductive hypothesis and Lemma 3.1.22, we get

yn−1 = t̃n−1 ∧ t∗n−1. (3.69)

Therefore, (3.69) will directly lead us toyn = yn−1 = t̃n−1 ∧ t∗n−1 if ξn = 1.

yn = yn−1 + 2−(n+1) = t̃n−1 ∧ t∗n−1 + 2−(n+1) if ξn = −1.
(3.70)

By applying (3.66), (3.67) and (3.68). We must have one of following two cases,

xC,n−1(t̃n ∨ t∗n)− xC,n−1(t̃n ∧ t∗n)

t̃n ∨ t∗n − t̃n ∧ t∗n

=
xC,n(t̃n ∨ t∗n)− xC,n(t̃n ∧ t∗n) + φ(2nt̃n ∨ t∗n)− φ(2nt̃n ∧ t∗n)

t̃n ∨ t∗n − t̃n ∧ t∗n

=


cn

φ(2n(t̃n−1∧t∗n−1+2−(n+1)))−φ(2n(t̃n−1∧t∗n−1))

2−(n+1) = 2ncn = an = Ξn−1(A) + an = Ξn(A),

cn
φ(2n t̃n−1∨t∗n−1)−φ(2n(t̃n−1∧t∗n−1+2−(n+1)))

2−(n+1) = −2ncn = −an = Ξn−1(A)− an = Ξn(A).

(3.71)
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The last step is due to (3.70). Hence, regardless of the choice of t̃n and t∗n, we always have

Ξn(A) =
xC,n(t̃n ∨ t∗n)− xC,n(t̃n ∧ t∗n)

t̃n ∨ t∗n − t̃n ∧ t∗n
.

Therefore, we have proved the case for n, and, we proved for this lemma.

Theorem 3.1.25. For xC ∈ C, we have y ∈MC if and only if there exists a quasi-binary

Ξ expansion of y such that (Ξ,C) satisfies the step condition for maxima.

(ii). Ξn(A)ξn+1 ≤ 0,∀n ∈ N

(i) y ∈MC

(iii) yn = t̃n ∧ t∗n,∀n ∈ N

Figure 3.5: Equivalence Relation between Statements in Theorem 3.1.25

Proof. In order to prove Theorem 3.1.25, we will use Lemma 3.1.22 and Theorem 3.1.18 to

establish an equivalent statement. Readers may refer Figure 3.5 as a reference to establish

such a relation. First of all, we may formally write down the statement in Figure 3.5.

• (i) For xC ∈ C, y ∈MC.

• (ii) Let y ∈ [0, 1], and yn be the nth order approximation for y. There exists a

sequence of consecutive maximizers t̃n ∈ MC,n and t∗n ∈ arg max
t∈Tn+1(t̃n)

xC,n(t), such that

yn = t̃n ∧ t∗n for all n ∈ N.
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• (iii) Let Ξ = {ξi}∞i=0 be any quasi-binary expansion for y, and xC ∈ C. Take ai = 2ici,

and A = {ai}, we have Ξn(A)ξn+1 ≤ 0 for all n ∈ N.

Theorem 3.1.25 states the equivalence between (i) and (ii). Furthermore, Theorem 3.1.18

establishes the equivalence of (i) and (iii). Therefore, it is sufficient for us to prove the

equivalence between (ii) and (iii). Moreover, Lemma 3.1.22 indicates that

xC,n(t1)− xC,n(t2)

t1 − t2
= Ξn(A),

for any t1, t2 ∈ [yn, yn+2−(n+1)]. Now let us take t1 = yn = t̃n∧t∗n. Then t2 = yn+2−(n+1) =

t̃n ∨ t∗n for all n ∈ N. We now aim to prove the following statement.

Ξn(A)ξn+1 ≤ 0 for all n ∈ N if and only if

Ξn(A) =
xC,n(t̃n ∨ t∗n)− xC,n(t̃n ∧ t∗n)

t̃n ∨ t∗n − t̃n ∧ t∗n
, (3.72)

where {t̃n} is some sequence of consecutive maximizers.

Then the only if direction is directly proved by Lemma 3.1.24. Now let us consider proving

if part by proving its contrapositive statement. First of all, let us state the contrapositive

statement:

Let {ξi} be any quasi binary expansion for y. If there exist some n ∈ N such that

Ξn(A)ξn+1 > 0, then there exists m ∈ N, such that ym 6= t̃m ∧ t∗m, for any sequence of

consecutive maximizers {t̃n}.

Now let us take N = {n ∈ N|Ξn(A)ξn+1 > 0}, and n = minN . Then by Lemma 3.1.24,

we have

yn = t̃n ∧ t∗n.

Now let us first assume that Ξn(A) > 0. Then we also have ξn+1 = 1. Now we aim to

prove that

yn+1 6= t̃n+1 ∧ t∗n+1.
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We have

xC,n(t̃n ∨ t∗n)− xC,n(t̃n ∧ t∗n) = Ξn(A)(t̃n ∨ t∗n − t̃n ∧ t∗n) > 0,

by (3.72). Then we have t̃n = t̃n ∨ t∗n and t∗n = t̃n ∧ t∗n. By applying Corollary 3.1.4, we

have

t̃n+1 ∨ t∗n+1 = t̃n, and t̃n+1 ∧ t∗n+1 =
t̃n + t∗n

2
.

Moreover, by Corollary 3.1.5, we have

[t∗n+1 ∧ t̃n+1, t
∗
n+1 ∨ t̃n+1] ⊂ [t∗n ∧ t̃n, t∗n ∨ t̃n].

Let E = {εj} be the binary expansion for y. Since ξn+1 = 1, we have

εn+1 = H−1(Ξ)n+1 = 0.

Then we have

yn+1 = yn + εn+12−(n+2) = yn.

Hence, obviously

yn+1 = t̃n ∧ t∗n 6= t̃n+1 ∧ t∗n+1 =
t̃n + t∗n

2
.

Hence, we have finished the proof for the case Ξn(A) > 0. The case Ξn(A) < 0 is analogous.

Hence, we finish our proof for the statement.

Theorem 3.1.26. For xC ∈ C, y ∈ M̃C if and only if (y,C) satisfies the step condition

for minima.

Proof. Take D = −C, then we have

min
t∈[0,1]

xC = − max
t∈[0,1]

xD. (3.73)

Then we have,

M̃C =MD. (3.74)
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By Theorem 3.1.25, we have for all n ∈ N,

Ξn(−A)ξn+1 = −Ξn(A)ξn+1 ≤ 0.

Therefore, we have

Ξn(A)ξn+1 ≥ 0.

Corollary 3.1.27. Recall that ai = 2ici, then xC(t) will be non-negative if
∑n

i=0 ai > 0

for all n ∈ N.

Proof. xC(t) is non-negative if and only if

xC(t) ≥ 0, for all t ∈ [0, 1].

Hence we have

0 ∈ arg min
t∈[0, 1

2
]

xC(t). (3.75)

This leads to ξn = 1 for all n ∈ N. Therefore, by applying the step condition for minima,

we have
n∑
i=0

ai > 0.

In order to have a better representation for following theorems concerning Hausdorff

dimension and uniqueness of the extremum location, we will introduce following definitions

and propositions.

Definition 3.1.28. Let xC ∈ C. Take A = {2ici}. Let us define a mapping L] : RN −→ SN,

where L](C) = {ξn}∞n=0, and for i ≥ 1,

ξi+1 =

−1 if Ξi(A) > 0,

1 if Ξi(A) ≤ 0,
(3.76)
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with ξ0 = 1, and Ξn(A) =
∑n

i=0 ξiai.

Definition 3.1.29. Let xC ∈ C. Take A = {2ici}. Let us define a mapping L[ : RN −→ SN,

where L[(C) = {ξn}∞n=0, and for i ≥ 1,

ξi+1 =

−1 if Ξi(A) ≥ 0,

1 if Ξi(A) < 0,
(3.77)

with ξ0 = 1, and Ξn(A) =
∑n

i=0 ξiai.

Definition 3.1.30. Let xC ∈ C. Take A = {2ici}. Let us define a mapping J] : RN −→ SN,

where J](C) = {ξn}∞n=0, and for i ≥ 1,

ξi+1 =

1 if Ξi(A) > 0,

−1 if Ξi(A) ≤ 0,
(3.78)

with ξ0 = 1, and Ξn(A) =
∑n

i=0 ξiai.

Definition 3.1.31. Let xC ∈ C. Take A = {2ici}. Let us define a mapping J[ : RN −→ SN,

where J[(C) = {ξn}∞n=0, and for i ≥ 1,

ξi+1 =

1 if Ξi(A) ≥ 0,

−1 if Ξi(A) < 0,
(3.79)

with ξ0 = 1, and Ξn(A) =
∑n

i=0 ξiai.

Definition 3.1.32. Let T : {0, 1}N −→ [0, 1], such that

T ({εj}) =
∞∑
i=0

εi2
−(i+1). (3.80)

Actually, T is a mapping that transforms the binary expansion back to a number in unit

interval.
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Definition 3.1.33. Let F] : RN −→ [0, 1
2
] be the mapping:

F] = T ◦ H−1 ◦ L].

We will say that F] is the mapping for upper maximizer of Takagi Class on the lower half.

Definition 3.1.34. Let F[ : RN −→ [0, 1
2
] be the mapping:

F[ = T ◦ H−1 ◦ L[.

We will say that F[ is the mapping for lower maximizer of Takagi Class on the lower half.

Definition 3.1.35. Let G] : RN −→ [0, 1
2
] be the mapping:

G] = T ◦ H−1 ◦ J].

We will say that G] is the mapping for upper minimizer of Takagi Class on the lower half.

Definition 3.1.36. Let G[ : RN −→ [0, 1
2
] be the mapping:

G[ = T ◦ H−1 ◦ J[.

We will say that G[ is the mapping for lower minimizer of Takagi Class on the lower half.

Theorem 3.1.37. For any xC, we have F](C) ∈MC ∩ [0, 1
2
] and F[(C) ∈MC ∩ [0, 1

2
].

Proof. For simplicity, let us take A = {2ici}, and Ξ = L](C). By applying (3.76), we have

Ξn(A)ξi+1 ≤ 0, for every n ∈ N.

Hence, (Ξ,A) satisfies the step condition for maxima. Let y be a point whose quasi-binary

expansion is Ξ = L](C). Therefore, by applying Theorem 3.1.25, we have

(T ◦ H−1) ◦ L](ν) = F](C) = y ∈MC.
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Furthermore, since ξ0 = 1, we have

H−1(Ξ)0 = 0.

Therefore, by Lemma 3.1.10, we have

T ◦ H−1(Ξ) ∈ [0,
1

2
].

Hence,

(T ◦ H−1) ◦ L](C) = F](C) ∈MC ∩ [0,
1

2
].

The proof for F[(C) ∈MC ∩ [0, 1
2
] is analogous to this proof.

Theorem 3.1.38. For any xC, we have G](C) ∈ M̃C ∩ [0, 1
2
] and G[(C) ∈ M̃C ∩ [0, 1

2
].

Proof. The proof is analogous to Theorem 3.1.37.

Proposition 3.1.39. Let Γ = {γi}∞i=0 ∈ {0, 1}N and Λ = {λi}∞i=0 ∈ {0, 1}N. Denote

N = {n ∈ N|γn 6= λn}, and n = minN . Then T (Γ) ≥ T (Λ) if and only if γn = 1, and the

equality holds if

γk = 0 and λk = 1,

for all k ≥ n+ 1.

Proof. Now let us first of all prove the if part, according to (3.80), we have

T (Γ)− T (Λ) =
∞∑
i=0

(γi − λi)(
1

2
)i = (

1

2
)n+1 +

∞∑
i=n+2

(γi − λi)(
1

2
)i. (3.81)

As γi − λi ∈ {−1, 0, 1} for all i ∈ N, then we have

inf
Γ,Λ∈{0,1}N

∞∑
i=n+2

(γi − λi)(
1

2
)i = −

∞∑
i=n+2

(
1

2
)i = −(

1

2
)n+1. (3.82)
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By applying (3.82) into (3.81), we have

L(Γ)− L(Λ) ≥ 0,

By symmetry of the algebraic structure, we can directly obtain the only if part. Now

(3.82) indicates equality holds if and only if
∑∞

i=n+2(γi−λi)(1
2
)i = −(1

2
)n+1. This condition

satisfies if and only if γk = 0 and λk = 1, for all k ≥ n+ 2. Hence, we finish the proof.

Theorem 3.1.40. For any xC ∈ C, we have

F](C) = supMC ∩ [0,
1

2
], and F[(C) = infMC ∩ [0,

1

2
].

Proof. Take A = {2ici}. Now let us consider any sequence Γ ∈ SN such that (Γ,A)

satisfies the step condition. For simplicity, let us denote Ξ] = L](A) and Ξ[ = L[(A).

Denote N = {n ∈ N|ξ]n 6= γn}, and K = {n ∈ N|ξ[n 6= γn}. Now take n = minN and

k = minK. Since we have ξ]n 6= γn, and both (Ξ],A) and (Γ,A) satisfies the step condition,

we have Γn−1(A) = Ξ]
n−1(A) = 0, therefore, by applying (3.76), we have ξ]n = −1, and

γn = 1. Therefore, by applying (3.52), we have H−1(Ξ])n = 1 and H−1(Γ)n = 0. Therefore,

by applying Proposition 3.1.39, we have

F](ν) ≥ t̃,

for every t̃ ∈ Mν . Now let us consider the lower bound for the set of maxima. Since we

have ξ[k 6= γk, and both (Ξ[,A) and (Γ,A) satisfies the step condition, we have Γk−1(A) =

Ξ[
k−1(A) = 0, therefore, by applying (4.2), we have ξ[k = 1, and γk = −1. Therefore,

by applying (3.52), we have H−1(Ξ[)k = 0 and H−1(Γ)k = 1. Therefore, by applying

Proposition 3.1.39, we have

F[(ν) ≤ t̃,

for all t̃ ∈Mν .

Theorem 3.1.41. For any xC ∈ C, we have

G](C) = supM̃C ∩ [0,
1

2
], and G[(C) = inf M̃C ∩ [0,

1

2
].
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Lemma 3.1.42. Denote Ξ = L](C). For a fixed C ∈ RN, if Ξn(A) 6= 0 for all n ∈ N, then

F](C) = F[(C).

Proof. Since Ξn(A) 6= 0 for all n ∈ N, then by applying (4.3) and (4.2), we have

L](C) = L[(C).

Therefore, we have

F](C) = (T ◦ H−1)(L](C)) = (T ◦ H−1)(L[(C)) = F[(C).

Corollary 3.1.43. Denote Ξ = L](C), and A = {2ici}∞i=0. For a fixed C, if Ξn(A) 6= 0

for all n ∈ N, then

|MC ∩ [0,
1

2
]| = 1.

Remark 3.1.44. Corollary 3.1.43 indicates that if Ξn(A) 6= 0, then the maximizer on [0, 1
2
]

is unique.

Proof. This directly comes as a corollary from Corollary 3.1.43.

Lemma 3.1.45. Let xC ∈ C, and take A = {2ici}∞i=0. Take N = {n ∈ N|Ξn(A) = 0}.
Suppose that |N | <∞ and MC ∩ T = ∅, then |MC ∩ [0, 1

2
]| = 2|N |.

Proof. We will prove this theorem by induction on |N |. First of all, let us consider the

case when |N | = 0. As we have for all n ∈ N that Ξn(A) 6= 0. Then by applying Corollary

3.1.43, we have

F](A) = F[(A).

Therefore, |MC ∩ [0, 1
2
]| = 20 = 1, and we have proved the assumption for |N | = 0. Now

let us assume that the induction hypothesis holds for |N | = k, and then we proceed to

prove the case for |N | = k+ 1. Take p = minN , Nk = {n > k|Ξn(A) = 0}. Therefore, we

52



have Ξp(A) = 0, and |Np| = k . Furthermore, let us denote y = T ◦H−1(Ξ), and yn be the

nth order binary approximation of y. Then we have that

Ξ(A) =
∞∑
i=0

ξiai =

p∑
i=0

ξiai +
∞∑

i=p+1

ξiai = Ξp(A) +
∞∑

i=p+1

ξiai

=
∞∑
i=0

ξi+p+1ai+p+1 =: Ξp+1(A).

(3.83)

Furthermore, let us take τ(t) = 2p+1(t − yp). When t ∈ [yp, yp + 2−(p+1)], then we have

τ ∈ [0, 1]. Moreover, let us denote Γ = {γi}, where γi = ξi+p+1 and D = {di}, where

di = ci+p+1, and B = {2idi}. Since

Ξp(A) = 0,

we have for t ∈ [yp, yp + 2−(p+1)]

xC,p(t) = xC,p(yp) = xC,p(yp + 2−(p+1)). (3.84)

Furthermore, for t ∈ [yp, yp + 2−(p+1)], we have

MC,p ⊂ [yp, yp + 2−(p+1)],

and

xC(t) =
∞∑
i=0

ciφ(2it) = xC,p(yp) +
∞∑

n=p+1

ciφ(2it)

= xC,p(yp) +
∞∑
i=0

ciφ(2p+1+it)

= xC,p(yp) +
∞∑
i=0

ci+p+1φ(2p+1+i(t− yp)) (2p+1yp ∈ Z)

= xC,p(yp) +
∞∑
i=0

diφ(2iτ)

= xC,p(yp) + xD(τ).

(3.85)
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C {0, 2}N
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V

W

Figure 3.6: Isomophism between Cantor set C and MC

We can do the last step due to τ ∈ [0, 1]. Furthermore, we have

Ξp+1(A) =
∞∑
i=0

ξi+p+1ai+p+1 =
∞∑
i=0

2p+i+1ξi+p+1ci+p+1

= 2p+1

∞∑
i=0

γibi = 2p+1Γ(B).

(3.86)

Since (Ξ,A) satisfies the step condition for maxima, then we can apply induction hypothesis

and Lemma 3.1.10 here. As Ξp(A) = 0, then both ξp+1 = γ0 ∈ {−1, 1}. Now for γ0 = 1,

then xD(τ) will have 2k maximum points in [0, 1
2
], hence then xC(t) will have 2k maximum

points in (yn, yn + 2−(n+2)). The interval is open due toMC ∩T = ∅. Similar, for γ0 = −1,

then xD(τ) will have 2k maximum points in [1
2
, 1], hence then xC(t) will have 2k maximum

points in (yn + 2−(n+2), yn + 2−(n+1)). Hence, for xC, there will be 2k+1 maximum points.

Therefore, we prove the statement for N = k + 1, and hence, we finish proving Lemma

3.1.45.

Lemma 3.1.46. Let xC ∈ C, and take A = {2ici}∞i=0, Ξ = L](A). Take N = {n ∈
N|Ξn(A) = 0}, and Nk = {n ≤ k|Ξn(A) = 0}. Suppose that |N | =∞, then |MC| = 2ℵ0 .
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Proof. Denote C as the Cantor set. A well-known fact is that |C| = 2ℵ0 . Furthermore,

let us numerate the set N = {p0, p1, · · · , pn, · · · }, where {pi}∞i=0 is an strictly increas-

ing sequence. For simplicity, we set p0 = −1. Now let us denote the SC = {Ξ ∈
SN|(Ξ,C) satisfies step condition for maixma}. According to Theorem 3.1.25, X = T ◦H−1

is a bijective mapping for SC → MC. Now, in order to prove that |MC| = |C| = 2N, we

now prove they are isomorphic. Let us denote the mapping from a ternary expansion

Ω ∈ {0, 2}N to y ∈ C as V . By Lemma 2.1.7, this mapping is bijective. Now we will prove

that there exist a mapping bijective mapping Y : SN → SC. Define Y : SN → SC, where

Y(Υ) = Ξ by:

ξi+1 =


υj if Ξi(A) = 0 and i = pj

1 if i /∈ N and Ξi(A) < 0

−1 if i /∈ N and Ξi(A) > 0

(3.87)

where j = maxNi. Then, obviously, such a mapping is well-defined, as (Ξ,C) by definition

satisfies the step condition for maxima. Now let us prove that this mapping is bijective.

First of all, let us prove that this mapping is injective. Let us assume that Υ 6= Γ. Then

we must have for some j, that υj 6= γj. Then by definition, we have Y(Υ)pj+1 = υj 6=
γj = Y(Γ)pj+1. Now let us prove that this mapping is surjective. Let Ξ be any sequence

in SC, then take Υ = {υj}, where υj = ξpj+1. Hence, by definition Y(Υ) = Ξ. Therefore,

the mapping Y is bijective. Now let us define a bijective mapping U : SN → {0, 2}N. Let

Υ ∈ SN and Θ ∈ {0, 2}N. Then U(Υ) = Θ is defined as follows:

θi = 1− υi, (3.88)

for all i ∈ N. Obviously, the mapping U is a bijective mapping. Therefore, let us define

W = Y−1 ◦ U is a bijective mapping from SC to {0, 2}N. Therefore, C ∼= MC. Hence,

|C| = |MC|.
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3.2 Local Extrema for Takagi Class

In this section, we will analyze the behavior for the local extrema. The nature of local

extrema can be regarded as a global extrema under a Takagi function adding a linear

function. One may compare the following lemmas, corollaries and theorems with Section

3.1 in order to have better understanding.

Definition 3.2.1. For t1, t2 ∈ [0, 1], denote

MC([t1, t2]) = arg max
t∈[t1,t2]

xC(t).

Furthermore, we have

MC,n([t1, t2]) = arg max
t∈[t1,t2]

xC,n(t)

The following lemmas and corollaries can be regarded as a local extension of the lemmas

in the previous section.

Lemma 3.2.2. Let xC ∈ C. For every m > n, let τm ∈MC,m([z, z+ 2−n]) be a maximum

point of the truncated Takagi function xC,m in the interval [z, z + 2−n] for z ∈ Tn. Next

let τ ∗m be the larger point(s) among the two adjoining points in Tm+1 of τm in the interval

[z, z + 2−n]. Hence, we have

τ ∗m ∈ arg max
t∈Tm+1(τm)∩[z,z+2−n]

xC,m(t). (3.89)

Now, let s ∈ Tm+1 ∩ [z, z + 2−n], and s∗ ∈ Tm+1(s)∩ [z, z + 2−n]. Then, if m > n, we have

xC,m(τm) + xC,m(τ ∗m) ≥ xC,m(s) + xC,m(s∗), (3.90)

for all s ∈ Tm+1 ∩ [z, z + 2−n].

Proof. We are going to prove this Lemma using induction on m. First of all, let us consider
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the case when m = n. By applying Lemma 3.1.22,

xC,n(t) = Ξn(A)t, for t ∈ [zn, zn + 2−n]. (3.91)

Then if Ξn(A) ≤ 0, then we have τn = z + 2−n and τ ∗n = z, otherwise, we have τn = z and

t∗0 = τ ∗n = z+2−n. Also, we notice z and z+2−n are the only choice for s ∈ Tk∩[zn, zn+2−n]

and s∗.

xC,n(τn) + xC,n(τ ∗n) = xC,n(s) + xC,n(s∗) = xC,n(0) + xC,n(
1

2
). (3.92)

Due to (3.92), we have proved that the hypothesis holds for m = n. Now let us assume

that the induction hypothesis holds for all m ≤ k − 1, and we proceed to prove the case

for m = k.

Now we will then prove the statement case by case. First of all, consider if τk = τk−1.

According to Lemma 3.1.1, τ ∗k−1 is an adjoining point to τk−1 on the dyadic partition Tk
with in [z, z + 2−n]. Therefore, we have

|τk−1 − τ ∗k−1| = |(2τk−1 − τ ∗k−1)− τk−1| = 2−k.

As well as,

|τk −
τk−1 + τ ∗k−1

2
| = |τk −

3τk−1 − τ ∗k−1

2
| = 2−(k+1).

Therefore, 2τk−1 − τ ∗k−1 is the other adjoining point to τk−1. Moreover,
3τk−1−τ∗k−1

2
and

τk−1+τk−1

2
are the two adjoining points of τk on the dyadic partition Tk+1. Then due to the

linearity and inequality in (3.89), we have

xC,k(
τk−1 + τ ∗k−1

2
) =

xC,k(τk−1) + xC,k(τ
∗
k−1)

2
+
ck
2

≥
xC,k(τk−1) + xC,k(2τk−1 − τ ∗k−1)

2
+
ck
2

= xC,k(
3τk−1 − τ ∗k−1

2
).
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Hence we must have
τk−1 + τ ∗k−1

2
∈ arg max

t∈Tk+1(τk)∩[z,z+2−n]

xC,k(t).

Now we have,

τ ∗k =
τk−1 + τ ∗k−1

2
. (3.93)

Now let us assume that s ∈ Tk, then we have that

xC,k(s) = xC,k−1(s) ≤ xC,k−1(τk−1) = xC,k(τk−1), (3.94)

and we can re-compose s∗ by s∗ = s+(2s∗−s)
2

. Since

|(2s∗ − s)− s∗| = |s∗ − s| = 2k+1, (3.95)

as will as,

|2s∗ − s− s| = 2|s∗ − s| = 2 · 2−(k+1) = 2−n. (3.96)

Equation (3.95) and (3.96) indicates that s and 2s∗− s are adjoining points on the dyadic

partition Tk, and they are also the two different adjoining points of s∗ on the dyadic

partition Tk+1. Then applying the hypothesis for k − 1, we have

xC,k−1(τk−1) + xC,k−1(τ ∗k−1) ≥ xC,k−1(s) + xC,k−1(2s∗ − s). (3.97)

By applying (3.93) - (3.97), we then have

xC,k(t̃k) + xC,k(τ
∗
k ) = xC,k−1(τk−1) + xC,k(

τ ∗k−1 + τk−1

2
)

= xC,k−1(τk−1) +
1

2
xC,k−1(τ ∗k−1) +

1

2
xC,k−1(τk−1) +

ck
2

≥ xC,k−1(s) +
1

2
xC,k−1(s) +

1

2
xC,k−1(2s∗ − s) +

ck
2

≥ xC,n(s) + xC,n(s∗).
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Now, let us consider when s ∈ Tk+1 − Tk. In this case, we have

s∗ ∈ Tk+1(s) ⊆ Tk, (3.98)

as well as,

2s− s∗ ∈ Tk+1(s) ⊆ Tk, (3.99)

According to (3.9), we know that s∗ ∈ Tk and 2s−s∗ ∈ Tk. Now by applying the inductive

statement for order k − 1, we have,

xC,k−1(s∗) + xC,k−1(2s− s∗) ≤ xC,k−1(τ ∗k−1) + xC,k−1(τk−1) (3.100)

Then by applying (3.100), we have

xC,k(τk) + xC,k(τ
∗
k ) = xC,k−1(τk−1) + xC,k(

τ ∗k−1 + τk−1

2
)

= xC,k−1(τk−1) +
1

2
xC,k−1(τ ∗k−1) +

1

2
xC,k−1(τk−1) +

ck
2

≥ xC,k−1(s∗) +
1

2
xC,k−1(s∗) +

1

2
xC,k−1(2s− s∗) +

ck
2

≥ xC,k(s) + xC,k(s
∗),

Now, let us consider the other case when τk 6= τk−1. For any points s ∈ Tk, we have

xC,k(s) = xC,k−1(s) ≤ xC,k−1(τk−1) = xC,k(τk−1). (3.101)

And for points s ∈ Tk+1 − Tk, we have s − 2−(k+1) ∈ Tk and s + 2−(k+1) ∈ Tk. Then by

applying (3.5) with m = k − 1, we have

xC,n(
τk−1 + τ ∗k−1

2
) =

xC,n−1(τk−1) + xC,n−1(τ ∗k−1)

2
+
cn
2

≥ xC,n−1(s− 2−(n+1)) + xC,n−1(s+ 2−(n+1))

2
+
cn
2

= xC,n(s)

(3.102)
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By applying (3.101) and (3.102), we then have

max
t∈[z,z+2−n]

xC,k(t) = max{xC,n(τk−1), xC,n(
τk−1 + τ ∗k−1

2
)}. (3.103)

And as τk 6= τk−1, then we have

τk =
τk−1 + τ ∗k−1

2
. (3.104)

as well as,

τ ∗k = τk−1. (3.105)

Then for all s ∈ Tk+1, we must have either s or s∗ is in the dyadic partition Tk. Without

loss of generality, let us assume that s ∈ Tk+1, therefore, s∗ ∈ Tk. Then by applying

(3.101), (3.102), (3.104) and (3.105),

xC,k(t̃k) + xC,k(τ
∗
k ) = xC,k(

τk−1 + τ ∗k−1

2
) + xC,k(τk−1)

≥ xC,k(s) + xC,k(s
∗).

Therefore, we finish proving the case for m = k, and, hence, we prove the Lemma 3.2.2.

Corollary 3.2.3. Let xC ∈ C. For every m > n, let τm ∈ MC,m([t1, t2]), where t1, t2 ∈
Tn+1. Furthermore, let us denote

τ ∗m = arg max
t∈Tm+1(τm)∩[t1,t2]

xC,m(t).

If τm ∈MC,m+1([t1, t2]), then

τm + τ ∗m
2

∈ arg max
t∈Tm+2(τm+1)∩[t1,t2]

xC,m+1(t).

Otherwise, we have

τm ∈ arg max
t∈Tm+2(τm+1)∩[t1,t2]

xC,m+1(t).

Proof. This result directly comes from (3.96) and (3.105) in the proof for Lemma 3.2.2.
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Corollary 3.2.4. Let xC ∈ C. For every m > n, let τm ∈ MC,m([t1, t2]), where t1, t2 ∈
Tn+1. Furthermore, let us denote

τ ∗m = arg max
t∈Tm+1(τm)∩[t1,t2]

xC,m(t).

Then there must exist some τm+1 ∈MC,m+1([t1, t2]), such that

[τm+1 ∧ τ ∗m+1] ( [τm ∧ τ ∗m].

We would follow Definition 3.1.6, and refer such a sequence {τm} as a sequence of consec-

utive local maximizers in [t1, t2].

Remark 3.2.5. If {τm} is a sequence of consecutive local maximizers in [0, 1], then {τm} is

also a sequence of consecutive maximizers.

Corollary 3.2.6. Let xC ∈ C. For every m < n, let τm ∈ MC,m([t1, t2]). Then, we must

have

T̄m+1(τm) ∈MC,m+1([t1, t2]) 6= ∅.

Proof. This result directly comes from Corollary 3.2.4.

Proposition 3.2.7. Let xC ∈ C. For every m > n, let τm ∈MC,m([t1, t2]) be a maximum

point of the truncated exponential Takagi function xC,m on the interval [t1, t2] for t1, t2 ∈
Tm+1 Furthermore, we require |t1 − t2| = 2−(n+1). For a fixed m > n, we let k = min{i >
m− n|τm−i 6= τm}. Then, if τm−k < τm and τm − 2−(m+2) ∈ [t1, t2], we have

xC,n+1(p− 2−(m+2)) ≤ xC,n+1(τm − 2−(m+2)). (3.106)

for every p ∈ Tm+1 ∩ [t1, t2] and p ∈ Tm+1 − 2−(m+2) ∩ [t1, t2].

Proof. Let us first consider the case k = 1. Since τm is in the dyadic partition Tm+1 and

τm−1 is in the dyadic partition Tm for any fixed m ∈ N, and we have

τm−k = τm−1 < τm. (3.107)
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Then due to (3.107), we can apply Lemma 3.1 in [17], then we have

τm−1 = τm − 2−(m+1). (3.108)

As the truncated function xC,m is linear within intervals of the form [p−2−(m+1), p] ⊂ [t1, t2],

for any p ∈ Tm+1 ∈ [t1, t2]. Furthermore, the increment of the wedge has an increment of
cm+1

2
, we get

xC,m+1(p− 2−(m+2)) =
xC,m(p) + xC,m(p− 2−(m+1))

2
+
cm+1

2
. (3.109)

As τm ∈ Tm+1, we may take p = τm and by plugging (3.108) into (3.109), we have

xC,m+1(τm − 2−(m+2)) =
xC,m(τm) + xC,m(τm−1)

2
+
cm+1

2
. (3.110)

Since τm−1 ∈MC,m−1([t1, t2]), τm−1 ∈ Tm, then we have

xC,m(τm−1) = xC,m−1(τm−1). (3.111)

As p ∈ Tm+1 ∩ [t1, t2], then either p ∈ Tm ∩ [t1, t2] or p− 2−(m+1) ∈ Tm ∩ [t1, t2].

min{xC,m(p), xC,m(p− 2−(m+1))} ≤ xC,m−1(τm−1) = xC,m(τm−1). (3.112)

In addition,

max{xC,m(p), xC,m(p− 2−(m+1))} ≤ xC,m(τm). (3.113)

Hence, according to (3.112) and (3.113), we have

xC,m(p) + xC,m(p− 2−(m+1))

2
≤ xC,m(τm) + xC,m(τm−1)

2
. (3.114)
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Plugging (3.114) into (3.110) and applying (3.109), we get

xC,m+1(p− 2−(m+2)) =
xC,m(p) + xC,m(p− 2−(n+1))

2
+
cm+1

2

≤ xC,m(τm) + xC,m(τm−1)

2
+
cm+1

2
= xC,m+1(τm − 2−(m+2)).

(3.115)

This completes the proof for the case k = 1. For the case k > 1, we proceed the induction

on k. For such all fixed n, we assume the inductive hypothesis holds true for k ≤ m. Now

we proceed to prove when k = m + 1, xC,m+1(p − 2−(n+2)) ≤ xC,m+1(τm − 2−(n+2)) holds

for p ∈ Tm+1 ∩ [t1, t2]. As we know that m + 1 = min{i|τm−i 6= τm}, and τm = τm−1, then

we have

min{i|τm−1−i 6= τm−1} = m. (3.116)

As induction hypothesis holds for every n ∈ N and k ≤ m, then by applying (3.106) for

xC,m−1, we have

xC,(m−1)+1(p̃− 2−((m−1)+2)) ≤ xC,(m−1)+1(τm−1 − 2−((m−1)+2)), (3.117)

where p̃ ∈ Tm ∩ [t1, t2]. By organizing equation (3.117), we have

xC,m(p̃− 2−(m+1)) ≤ xC,m(τm − 2−(m+1)). (3.118)

Then we will prove the statement case by case. We first consider the case p̃ ∈ Tm. As

τm ∈ Tm+1, therefore τm−2−(m+1) ∈ Tm+1. Similarly, as p̃ ∈ Tm, then p̃−2−(m+1) ∈ Tm+1.

By applying equation (3.109), we get

xC,m+1(p̃− 2−(m+2)) =
xC,m(p̃) + xC,m(p̃− 2−(m+1))

2
+
cm+1

2
. (3.119)

Then as τm = τm−1 ∈ Tm, we can replace p̃ with τm in the equation (3.119), we get

xC,m+1(τm − 2−(m+2)) =
xC,m(τm) + xC,m(τm − 2−(m+1))

2
+
cm+1

2
. (3.120)
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As τm = τm−1 ∈ Tm, and p ∈ Tm, then we have

xC,m(p̃) = xC,m−1(p̃) ≤ xC,m−1(τm−1) = xC,m(τm−1) = xC,m(τm). (3.121)

Then by plugging (3.121) and (3.118) into (3.119) and (3.120), we have

xC,m+1(p̃− 2−(m+2)) =
xC,m(p̃) + xC,m(p̃− 2−(m+1))

2
+
cm+1

2

≤ xC,m(τm) + xC,m(τm − 2−(m+1))

2
+
cm+1

2
= xC,m+1(τm − 2−(m+2)).

Now we discuss the case p̃ ∈ Tm+1 − Tm, then we have that p̃ + 2−(m+1) ∈ Tm, therefore

by applying equation (3.118) for p̃+ 2−(m+1), we have

xC,m(p̃+ 2−(m+1) − 2−(m+1)) = xC,m(p̃) ≤ xC,m(τm − 2−(m+1)). (3.122)

As the function xC,m is maximized at τm, we have

xC,m(p̃− 2−(m+1)) ≤ xC,m(τm). (3.123)

By plugging equation (3.122) and equation (3.123) into equation (3.119) and equation

(3.120). We have

xC,m+1(p̃− 2−(m+2)) =
xC,m(p̃) + xC,m(p̃− 2−(m+1))

2
+
cm+1

2

≤ xC,m(τm) + xC,m(τm − 2−(m+1))

2
+
cm+1

2
= xC,m+1(τm − 2−(m+2)).

Therefore, we have proved that xC,m+1(p − 2−(m+2)) ≤ xC,m+1(τm − 2−(m+2)) for any p ∈
Tm+1 ∩ [t1, t2]. Since both base case and the inductive hypothesis has been proved, then

we prove this proposition.

Proposition 3.2.8. Let xC ∈ C. For every m > n, let τm ∈MC,m([t1, t2]) be a maximum

point of the truncated exponential Takagi function xC,m on the interval [t1, t2] for t1, t2 ∈
Tm+1 Furthermore, we require |t1 − t2| = 2−(n+1). For a fixed m > n, we let k = min{i >
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m− n|τm−i 6= τm}. Then, if τm−k > τm and τm + 2−(m+2) ∈ [t1, t2], we have

xC,m+1(p+ 2−(m+2)) ≤ xC,m+1(τm + 2−(m+2)). (3.124)

for every p ∈ Tm+1 ∩ [t1, t2] and p+ 2−(m+2) ∈ [t1, t2].

Proof. The proof is analogous to proof for Proposition 3.2.7.

Lemma 3.2.9. Let t1, t2 ∈ Tk and |t1 − t2| = 2k+1. Then let τn ∈ MC,n([t1, t2]) for all

n > k, and

τ ∗n ∈ arg max
t∈Tn+1(τn)∩[t1,t2]

xC,n(t).

Then for any fixed n ≥ 1, let m = inf{i|τn−i 6= τn}. Then, τn−m < τn if and only if τ ∗n < τn

for every m < n− k..

Proof. First of all, let us prove the if direction. Let us assume that τn−m < τn, then we

will discuss case by case. First of all, let us consider the case when m = 1. By applying

Corollary 3.1.3, we have τn−1 = τn − 2−(n+1) ∈ Tn. Similarly, we have τn + 2−(n+1) ∈ Tn.

Then we have

xC,n(τn − 2−(n+1)) = xC,n−1(τn − 2−(n+1)) ≥ xC,n−1(τn + 2−(n+1)) = xC,n(τn + 2−(n+1)).

Hence, we have τ ∗n = τn − 2−(n+1), and τ ∗n < τn. Now, we consider the case when m > 1,

then we have

τn−1 = τn.

Then we can apply the Proposition 3.1.7, as τ(n−1)−(m−1) < τn−1, then we have

xC,n(p− 2−(n+1)) ≤ xC,n(τn−1 − 2−(n+1)) = xC,n(τn−1 − 2−(n+1)). (3.125)

for every p ∈ Tn. Because τn = τn−1 ∈ Tn, then by plugging p = τn + 2−n ∈ Tn into

(3.125), we have

xC,n(τn + 2−n − 2−(n+1)) = xC,n(τn + 2−(n+1)) ≤ xC,n(τn − 2−(n+1)).
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Then we have τ ∗n = τn − 2−(n+1), and τ ∗n < τn. Hence, we finish the proof for the if part.

Now, we aim to prove the only if direction by proving its contrapositive statement through

induction. We can notice that the contrapositive statement for the only if direction will be

If τn−m > τn, then τ ∗n > τn.

Then, we will prove the contrapositive statement in a similar way as we prove the if

direction. Since by assumption, we have τn−m > τn, then we will also discuss case by case.

Now, let us consider the case when m = 1. By applying Corollary 3.1.3 again, we have

τn−1 = τn + 2−(n+1) ∈ Tn. Similarly, we have τn − 2−(n+1) ∈ Tn. Then we have

xC,n(τn − 2−(n+1)) = xC,n−1(τn − 2−(n+1)) ≤ xC,n−1(τn + 2−(n+1)) = xC,n(τn + 2−(n+1)).

Hence, we have τ ∗n = τn + 2−(n+1), and τ ∗n > τn. Now, we consider the case when m > 1,

then we have

τn−1 = τn.

Then we can apply the Proposition 3.1.8, as τ(n−1)−(m−1) > τn−1, then we have

xC,n(p+ 2−(n+1)) ≤ xC,n(τn−1 + 2−(n+1)) = xC,n(τn−1 + 2−(n+1)). (3.126)

for every p ∈ Tn. Because τn = τn−1 ∈ Tn, then by plugging p = τn − 2−n ∈ Tn into

(3.126), we have

xC,n(τn − 2−n + 2−(n+1)) = xC,n(τn − 2−(n+1)) ≤ xC,n(τn + 2−(n+1)).

Then we have τ ∗n = τn + 2−(n+1), and τ ∗n > τn. Hence, we finish the proof for the only if

part through proving its contrapositive statement.

Lemma 3.2.10. Let t1, t2 ∈ Tk and |t1 − t2| = 2k+1. Then let τn ∈ MC,n([t1, t2]) for all

n > k, and

τ ∗n ∈ arg max
t∈Tn+1(τn)∩[t1,t2]

xC,n(t).
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Then for any fixed n ≥ 1, let m = inf{i|τn−i 6= τn}. Then, τn−m > τn if and only if τ ∗n > τn

for every m < n− k..

Proof. This is the contrapositive statement for 3.2.9.

Theorem 3.2.11. For t1, t2 ∈ Tn and |t1 − t2| = 2−(m+1) for some m ∈ N. Let xC ∈ C,

the following statements are equivalent:

i. y ∈MC([t1, t2]).

ii. There exists a sequence {yn}∞n=0, such that yn ∈MC,n([t1, t2]) for all n > m, and

y = lim
n→∞

yn.

iii. Let Tn := {[τn − 2−(n+1), τn + 2−(n+1)]|τn ∈MC,n([t1, t2])}. Furthermore, take

Pn =
⋃
A∈Tn

A.

Then,

y ∈
∞⋂
n=0

Pn.

iv. Let Kn := {[τn∧τ ∗n, τn∨τ ∗n] | τn ∈MC,n([t1, t2]), τ ∗n ∈ arg max
t∈Tn+1(τn)∩[t1,t2]

xC,n(τn)}. Further

more, take

In =
⋃
A∈Kn

A.

Then,

y ∈
∞⋂
n=0

In.

Proof. Let us prove this theorem by proving following statements in order.
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• i =⇒ iv

Let us try this statement by proving its contrapositive statement. The contrapositive

statement will be

If there exists n > m, such that y /∈ In, then y /∈MC([t1, t2]).

Denote N = {k > m|y /∈ Ik}, and denote n = minN . Let us assume that y ∈
[s, s∗] $ [t1, t2], where s ∈ Tn+1 and s∗ = s + 2−(n+1). Since n = minN , we must

have that

y ∈ [τn−1 ∧ τ ∗n−1, τn−1 ∨ τ ∗n−1].

for some τn−1 ∈MC,n−1([t1, t2]) and τ ∗n−1 ∈ arg max
t∈Tn(t)∩[t1,t2]

xC,n−1(t). By applying Corol-

lary 3.1.3, there exist τn ∈ MC,n ∩ [τn−1 ∧ τ ∗n−1, τn−1 ∨ τ ∗n−1]. Hence, by applying

Corollary 3.1.4, we have

[
1

2
(τn−1 + τ ∗n−1) ∧ τn−1,

1

2
(τn−1 + τ ∗n−1) ∨ τn−1] = [τn ∧ τ ∗n, τn ∨ τ ∗n].

Therefore, we have {s, s∗}
⋂
{τn, τ ∗n} 6= ∅, and {s, s∗}

⋂
{τn, τ ∗n} 6= {τn, τ ∗n}. For

instance, if τ ∗n−1 < τn−1, then we have

s = τ ∗n−1, and s∗ = τn ∧ τ ∗n,

As [s, s∗] /∈ Kn, therefore s = τ ∗n−1 /∈MC,n−1([t1, t2]). Hence, we have

xC,n(s) < xC,n(τn−1) ≤ xC,n(τ ∗n). (3.127)

As well as

xC,n(s) ≤ xC,n(τn). (3.128)

Therefore, since y ∈ [s, s∗],

ỹ := 2s∗ − y ∈ [τn ∧ τ ∗n, τn ∨ τ ∗n],

for τn ∈ MC,n([t1, t2]). Then by applying Lemma 3.1.12 and Lemma 3.1.13, as
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s ∈ Tn+1,

xn+1
C (y) = xn+1

C (ỹ). (3.129)

By applying (3.127) - (3.129), we have

xC(y) = xC,n(y) + xn+1
C (y) =

y − s
s∗ − s

xC,n(s∗) +
s∗ − y
s∗ − s

xC,n(s) + xn+1
C (y)

=
y − s
s∗ − s

xC,n(s∗) +
s∗ − y
s∗ − s

xC,n(s) + xn+1
C (ỹ)

<
y − s
s∗ − s

xC,n(τn) +
s∗ − y
s∗ − s

xC,n(τ ∗n) + xn+1
C (ỹ)

=
(2s∗ − y)− τn

τn − s∗
xC,n(τn) +

s∗ − (2s∗ − y)

τn − s∗
xC,n(τ ∗n) + xn+1

C (ỹ)

=
ỹ − τn
τn − s∗

xC,n(τn) +
s∗ − ỹ
τn − s∗

xC,n(τ ∗n) + xn+1
C (ỹ)

= xC,n(ỹ) + xn+1
C (ỹ) = xC(ỹ).

Hence, y /∈ MC([t1, t2]). And the proof for the situation when τn−1 < τ ∗n−1 is analo-

gous to the previous proof.

• iv =⇒ iii

First of all, let us state this statement again.

If y ∈
⋂∞
n=0 In, then y ∈

⋂∞
n=0Pn.

This statement is equivalent to the following inclusion, and we now aim to prove the

following inclusion.
∞⋂
n=0

In ⊂
∞⋂
n=0

Pn.

As for each fixed τn ∈MC,n([t1, t2]), we have

[τn ∧ τ ∗n, τn ∨ τ ∗n] $ [τn − 2−(n+1), τn + 2−(n+1)]. (3.130)
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Then (3.130) directly gives,

In =
⋃
A∈Kn

A $
⋃
A∈Tn

A = Pn,

for all n ∈ N. Therefore, we have

∞⋂
n=0

In ⊂
∞⋂
n=0

Pn.

• iii =⇒ ii

First of all, let us formally state the statement we are going to prove.

If y ∈
⋂∞
n=0Pn, then there exists a sequence yn ∈MC,n([t1, t2]), such that

y = lim
n→∞

yn

Since y ∈
⋂∞
n=0Pn, hence, for all n ∈ N, we have

y ∈ Pn.

Therefore, there exists some An,y ∈ Tn for all n ∈ N, and

y ∈ An,y.

For each n ∈ N, we take some yn =MC,n ∩ An,y, and then we have

|ym − y| ≤ 2−(m+1). (3.131)

Hence, lim
n→∞

yn = y.

• ii =⇒ i

First of all, let us state the statement we are about to prove.
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If there exists a sequence {yn}∞n=0, such that yn ∈MC,n for all n ∈ N and lim
n→∞

yn,

then y ∈MC.

As [t1, t2] is a compact space, and xC,n ∈ C[t1, t2], therefore, there exists βn =

max
t∈[t1,t2]

xC,n(t) for all n > m, as well as β = max
t∈[t1,t2]

xC(t). Since, xC,n → xC uniformly,

for any ε > 0, there exists some N ∈ N, such that for all n > N ,

xC(t)− ε < xC,n(t) < xC(t) + ε. (3.132)

for all t ∈ [t1, t2]. Hence, we have

xC,n(t)− ε < xC(t) < xC,n(t) + ε. (3.133)

Hence, (3.132) and (3.133) give usxC,n(t) < β + ε,

xC(t)− ε < βn,

for all t ∈ [t1, t2]. By taking the supremum on the left side, we haveβn ≤ β + ε,

β − ε ≤ βn.

Hence, we have

β − ε ≤ βn ≤ β + ε.

Therefore, we have lim
n→∞

βn = β. By uniformly convergence, as lim
n→∞

yn = y, therefore,

lim
n→∞

xC,n(yn) = xC(y). (3.134)

Therefore, y ∈MC([t1, t2]).
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Theorem 3.2.12. For y ∈ [0, 1], let y = 0.ε0ε1ε2 · · · =
∑∞

i=0 εi2
−(i+1) be the binary

expansion of y. Let yn = 0.ε0ε1ε2 . . . εn =
∑n

i=0 εi2
−(i+1). Then y ∈MC[ym, ym + 2−(m+1)],

if and only if there exist a sequence consecutive maximizers of τn ∈MC,n([ym, ym+2−(m+1)])

and τ ∗n ∈ arg max
t∈Tn+1(τn)∩[ym,ym+2−(m+1)]

xC,n(t), such that

yn = τn ∧ τ ∗n,

for all n > m.

Proof. First of all, let us prove the if part. Now let us assume that there exists a sequence

of τn ∈MC,n([ym, ym + 2−(m+1)]) and

τ ∗n ∈ arg max
t∈Tn+1(τn)∩[ym,ym+2−(m+1)]

xC,n(t),

such that yn = τn ∧ τ ∗n. Instantly, we have

lim
n→∞

yn = lim
n→∞

τ ∗n ∧ τn = y.

Then by taking such τn, by Lemma 3.1.16, then we have

lim
n→∞

τn = lim
n→∞

τ ∗n ∧ τn = lim
n→∞

yn = y.

Hence, by applying Theorem 3.1.15, we have y ∈MC([ym, ym+2−(m+1)]). Now let us prove

the only if part by proving its contrapositive statement. Let us state the contrapositive

statement first.

If for any sequence of consecutive maximizers τn ∈MC,n([ym, ym + 2−(m+1)]), there exists

some n > m, such that yn 6= τn ∧ τ ∗n, then y /∈MC([ym, ym + 2−(m+1)]).

For any sequence {τn}, such that τn ∈MC,n([ym, ym + 2−(m+1)]), define N = {n > m|yn 6=
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τn}. Now let us take N := minN , therefore

[τN−1 ∧ t∗N−1, τN−1 ∨ t∗N−1] = [yN−1, yN−1 + 2−N ]. (3.135)

Since {τn} is a sequence of consecutive maximizers, we have

[τN ∧ τ ∗N , τN ∨ τ ∗N ] $ [τN−1 ∧ t∗N−1, τN−1 ∨ t∗N−1] = [yN−1, yN−1 + 2−N ], (3.136)

as well as,

[yN , yN + 2−(N+1)] $ [τN−1 ∧ τN−1, τN−1 ∨ τN−1]. (3.137)

Since, we have yN 6= τN ∧τ ∗N , and therefore, either yN = τN ∨τ ∗N or yN +2−(N+1) = τN ∧τ ∗N .

Then by (3.135) - (3.137), we have

[yN , yN + 2−(N+1)) ] [τN ∧ τN , τN ∨ τN ] = [τN−1 ∧ τN−1, τN−1 ∨ τN−1].

Therefore, by applying lemma 3.1.10, we have

y ∈ [yN , yN + 2−(N+1)).

Theorem 3.1.15 (i =⇒ iv) indicates

y /∈MC([ym, ym + 2−(m+1)]).

Lemma 3.2.13. Let xC ∈ C, let Ξ be any quasi-binary expansion for y ∈ [0, 1]. If there

exists m ∈ N,

Ξn(A)ξn+1 ≤ 0, (3.138)

for all m ≤ n ≤ N . We have

yN+1 = τN+1 ∧ τ ∗N+1, (3.139)
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where τN+1 ∈MC,N+1([ym, ym + 2−(m+1)]) and

τ ∗N+1 = arg max
t∈TN+1(τN+1)∩[ym,ym+2−(m+1)]

xC,N+1(t).

Proof. By applying Lemma 3.1.22, it is sufficient for us to prove the following statement.

If there exists m ∈ N, such thatz Ξn(A)ξn+1 ≤ 0, for all m < n ≤ N . We have

Ξk(A) =
xC,k(τk ∨ τ ∗k )− xC,k(τk ∧ τ ∗k )

τk ∨ τ ∗k − τk ∧ τ ∗k
(3.140)

for all m < k ≤ N + 1.

Let us prove this lemma by induction on n. Assuming Ξn(A)ξn+1 ≤ 0 now, let us first of

all consider the case n = m. By Lemma 3.1.22, we directly have that

Ξm(A) =
xC,m(τm ∨ τ ∗m)− xC,m(τm ∧ τ ∗m)

τm ∨ τ ∗m − τm ∧ τ ∗m
.

due to {τm, τ ∗m} = {ym, ym + 2−(m+1)}. Then it holds even without requiring (3.138). Now

let us assume that (3.138) implies (3.140) for all k ≤ n− 1, and we now prove the case for

k = n. By hypothesis for n− 1, we have

Ξn−1(A) =
xC,n−1(τn−1 ∨ τ ∗n−1)− xC,n−1(τn−1 ∧ τ ∗n−1)

τn−1 ∨ τ ∗n−1 − τn−1 ∧ τ ∗n−1

(3.141)

For instance, let us assume that Ξn−1(A) > 0. Then we have

xC,n−1(τn−1 ∨ τ ∗n−1)− xC,n−1(τn−1 ∧ τ ∗n−1) = Ξn−1(A)(τn−1 ∨ τ ∗n−1 − τn−1 ∧ τ ∗n−1) > 0.

Moreover, since xC,n−1(τn−1 ∨ τ ∗n−1) > xC,n−1(τn−1 ∨ τ ∗n−1), we haveτn−1 ∨ τ ∗n−1 = τn−1,

τn−1 ∧ τ ∗n−1 = τ ∗n−1.
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Also, by the step condition, we have

ξn = −1. (3.142)

By applying Corollary 3.1.4, we have τn ∧ τ ∗n =
τn−1+τ∗n−1

2
, and τn ∨ τ ∗n = τn−1. Therefore,

since τn−1 ∈ Tn and τ ∗n−1 ∈ Tn, we have 2nτn−1 ∈ Z as well as 2nτ ∗n−1 = 2n(τn−1±2−n) ∈ Z.
Hence, we have

φ(2nτ ∗n−1) = φ(2nτn−1) = 0. (3.143)

Furthermore, we have

φ(2n
τn−1 + τ ∗n−1

2
) =

1

2
. (3.144)

By plugging (3.141),(3.143) and (3.144) into (3.55), we have

xC,n(τn ∨ τ ∗n)− xC,n(τn ∧ τ ∗n)

τn ∨ τ ∗n − τn ∧ τ ∗n
= Ξn−1(A) + cn

φ(2nτn−1 ∨ τ ∗n−1)− φ(2nτn−1 ∧ τ ∗n−1)

τn−1 ∨ τ ∗n−1 − τn−1 ∧ τ ∗n−1

= Ξn−1(A) + cn
φ(2n(

τn−1+τ∗n−1

2
))− φ(2nτn−1)

τn−1+τ∗n−1

2
− τn−1

= Ξn−1(A)− 2ncn = Ξn−1(A) + ξnan = Ξn(A).

The last step holds because of (3.142). Hence, we have proved the case for τn > τ ∗n. The

case for Ξn−1(A) < 0 is analogous to the case for Ξn−1(A) > 0. Now let us further consider

the case when Ξn−1(A) = 0. Then we have

xC,n−1(τn−1 ∨ τ ∗n−1)− xC,n−1(τn−1 ∧ τ ∗n−1) = Ξn−1(A)(τn−1 ∨ τ ∗n−1 − τn−1 ∧ τ ∗n−1) = 0.

Then we have

xC,n−1(t) = xC,n−1(τn−1 ∨ τ ∗n−1) = xC,n−1(τn−1 ∧ τ ∗n−1) (3.145)

for all t ∈ [τn−1 ∧ τ ∗n−1, τn−1 ∨ τ ∗n−1]. Because τn−1 ∨ τ ∗n−1 ∈ Tn and τn−1 ∧ τ ∗n−1 ∈ Tn, then

we have

φ(2nτn−1 ∨ τ ∗n−1) = φ(2nτn−1 ∧ τ ∗n−1) = 0. (3.146)
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As well as,

φ(
1

2
(2nτn−1 ∨ τ ∗n−1 + 2nτn−1 ∧ τ ∗n−1)) =

1

2
. (3.147)

Then, one of two following cases must be true:τn ∧ τ ∗n = τn−1 ∧ τ ∗n−1 and τn ∨ τ ∗n = τn−1 ∧ τ ∗n−1 + 2−(n+1),

τn ∧ τ ∗n = τn−1 ∧ τ ∗n−1 + 2−(n+1) and τn ∨ τ ∗n = τn−1 ∨ τ ∗n−1.

Furthermore, by applying the inductive hypothesis and Lemma ??, we get

yn−1 = τn−1 ∧ τ ∗n−1. (3.148)

Therefore, (3.148) will directly lead us toyn = yn−1 = τn−1 ∧ τ ∗n−1 if ξn = 1.

yn = yn−1 + 2−(n+1) = τn−1 ∧ τ ∗n−1 + 2−(n+1) if ξn = −1.
(3.149)

By applying (3.145), (3.146) and (3.147). Then we must have one of following two cases,

xC,n−1(τn ∨ τ ∗n)− xC,n−1(τn ∧ τ ∗n)

τn ∨ τ ∗n − τn ∧ τ ∗n

=
xC,n(τn ∨ τ ∗n)− xC,n(τn ∧ τ ∗n) + φ(2nτn ∨ τ ∗n)− φ(2nτn ∧ τ ∗n)

τn ∨ τ ∗n − τn ∧ τ ∗n

=


cn

φ(2n(τn−1∧τ∗n−1+2−(n+1)))−φ(2n(τn−1∧τ∗n−1))

2−(n+1) = 2ncn = an = Ξn−1(A) + an = Ξn(A),

cn
φ(2nτn−1∨τ∗n−1)−φ(2n(τn−1∧τ∗n−1+2−(n+1)))

2−(n+1) = −2ncn = −an = Ξn−1(A)− an = Ξn(A).

(3.150)

The last step is due to (3.149). Hence, regardless of the choice of τn and τ ∗n, we always

have

Ξn(A) =
xC,n(τn ∨ τ ∗n)− xC,n(τn ∧ τ ∗n)

τn ∨ τ ∗n − τn ∧ τ ∗n
,

Therefore, we have proved the case for n, and, we finish our proof for this lemma.
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Theorem 3.2.14. For xC ∈ C, we have y ∈ MC([ym, ym + 2−(m+1)]) if and only if for

every quasi-binary Ξ expansions of y, (Ξ,C) satisfies the step condition for maxima after

some index m ∈ N.

Proof. In order to prove Theorem 3.2.14, we will use Lemma 3.1.22 and Theorem 3.1.18 to

establish an equivalent statement. First of all, let us state all those equivalent statements

we are going to prove:

• (i) For xC ∈ C, y ∈MC([ym, ym + 2−(m+1)]).

• (ii) Let y ∈ [0, 1], and yn be the nth order approximation for y. There exists a

sequence of consecutive local maximizers τn ∈ MC,n([ym, ym + 2−(m+1)]) and τ ∗n ∈
arg max
t∈Tn+1(τn)

xC,n(t), such that yn = τn ∧ τ ∗n for all n > m.

• (iii) Let Ξ = {ξi}∞i=0 be any quasi-binary expansion for y, and xC ∈ C. Take ai = 2ici,

and A = {ai}, we have Ξn(A)ξn+1 ≤ 0 for all n ≥ m.

Theorem 3.2.14 states the equivalence (i)⇔ (ii). Furthermore, Theorem 3.1.18 establishes

the equivalence of (i) and (iii). Therefore, it is sufficient for us to prove the equivalence

between (ii) and (iii). Moreover, Lemma 3.1.22 indicates that

xC,n(t1)− xC,n(t2)

t1 − t2
= Ξn(A),

for any t1, t2 ∈ [yn, yn+2−(n+1)]. Now let us take t1 = yn = τn∧τ ∗n. Then t2 = yn+2−(n+1) =

τn ∨ τ ∗n for all n ∈ N. We now aim to prove the following statement.

Ξn(A)ξn+1 ≤ 0 for all n ∈ N if and only if

Ξn(A) =
xC,n(τn ∨ τ ∗n)− xC,n(τn ∧ τ ∗n)

τn ∨ τ ∗n − τn ∧ τ ∗n
, (3.151)

where {τn} is some sequence of consecutive maximizers.
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Then the only if direction is directly proved by Lemma 3.2.13. Now let us consider proving

if part by proving its contrapositive statement. First of all, let us state the contrapositive

statement:

Let {ξi} be any quasi binary expansion for y. If there exist some n ≥ m such that

Ξn(A)ξn+1 > 0, then there exists m ∈ N, such that yk 6= τk ∧ τ ∗k , for any sequence of

consecutive local maximizers {τn}.

Now let us take N = {n ≥ m|Ξn(A)ξn+1 > 0}, and n = minN . Then by Lemma 3.2.13,

we have

yn = τn ∧ τ ∗n.

Now let us first assume that Ξn(A) > 0. Then we also have ξn+1 = 1. Now we aim to

prove that

yn+1 6= τn+1 ∧ τ ∗n+1.

We have

xC,n(τn ∨ τ ∗n)− xC,n(τn ∧ τ ∗n) = Ξn(A)(τn ∨ τ ∗n − τn ∧ τ ∗n) > 0,

by (3.151). Then we have τn = τn ∨ τ ∗n and τ ∗n = τn ∧ τ ∗n. By applying Corollary 3.1.4, we

have

τn+1 ∨ τ ∗n+1 = τn, and τn+1 ∧ τ ∗n+1 =
τn + τ ∗n

2
.

Moreover, by Corollary 3.1.5, we have

[τ ∗n+1 ∧ τn+1, τ
∗
n+1 ∨ τn+1] ⊂ [τ ∗n ∧ τn, τ ∗n ∨ τn].

Let E = {εj} be the binary expansion for y. Since ξn+1 = 1, we have

εn+1 = H−1(Ξ)n+1 = 0.

Then we have

yn+1 = yn + εn+12−(n+2) = yn.
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Hence, obviously

yn+1 = τn ∧ τ ∗n 6= τn+1 ∧ τ ∗n+1 =
τn + τ ∗n

2
.

Hence, we have finished the proof for the case Ξn(A) > 0. The case Ξn(A) < 0 is analogous.

Hence, we finish our proof for the statement.
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Chapter 4

Exponential Takagi Class

4.1 Global Extrema for Exponential Takagi Class

Let us recall the definition of the Exponential Takagi Class in Definition 1.1.6.

Definition. The exponential Takagi class P is the sub-collection of real-valued functions

xν : [0, 1]→ R in the Takagi class C, where xν can be written as

xν(t) =
∞∑
n=0

νnφ(2nt) (4.1)

xν is called the Takagi function with parameter ν.

Now we are going to set up a mapping between the parameter ν and the extremum

location. In order to have well-defined mappings, we first of all formally give following

definitions.

Definition 4.1.1. Let us define a mapping l] : [−1, 1] −→ SN,

l](ν) = L](C), (4.2)

where C = {νi}∞i=0.
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Definition 4.1.2. Let us define a mapping L[ : [−1, 1] −→ SN, where

l[(ν) = L[(C), (4.3)

where C = {νi}∞i=0.

Definition 4.1.3. Let us define a mapping j] : [−1, 1] −→ SN,

j](ν) = J](C), (4.4)

where C = {νi}∞i=0.

Definition 4.1.4. Let us define a mapping j[ : [−1, 1] −→ SN, where

j[(ν) = J[(C), (4.5)

where C = {νi}∞i=0.

Definition 4.1.5. Let f] : [−1, 1] −→ [0, 1
2
] be the mapping:

f] = T ◦ H−1 ◦ l].

We will say that f] is the mapping for upper maximizer on the lower half.

Definition 4.1.6. Let f[ : [−1, 1] −→ [0, 1
2
] be the mapping:

f[ = T ◦ H−1 ◦ l[.

We will say that f[ is the mapping for lower maximizer on the lower half.

Definition 4.1.7. Let g] : [−1, 1] −→ [0, 1
2
] be the mapping:

g] = T ◦ H−1 ◦ j].

We will say that g] is the mapping for upper minimizer on the lower half.
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Definition 4.1.8. Let g[ : [−1, 1] −→ [0, 1
2
] be the mapping:

g[ = T ◦ H−1 ◦ j[.

We will say that g[ is the mapping for lower minimizer on the lower half.

Corollary 4.1.9. For any ν ∈ (−1, 1), we have f](ν) ∈Mν∩ [0, 1
2
] and f[(ν) ∈Mν∩ [0, 1

2
].

Proof. This Corollary 4.1.9 directly comes from Theorem 3.1.40.

Corollary 4.1.10. For any ν, we have

f](ν) = supMν ∩ [0,
1

2
], and f[(ν) = infMν ∩ [0,

1

2
].

Proof. Corollary 4.1.10 directly comes from Lemma 3.1.46.

Corollary 4.1.11. For any ν, we have

g](ν) = supM̃ν ∩ [0,
1

2
], and g[(ν) = inf M̃ν ∩ [0,

1

2
].

Proof. The proof is analogous to Corollary 4.1.10.

Lemma 4.1.12. Denote Ξ = L](ν). For a fixed ν, if Ξn(α) 6= 0 for all n ∈ N, then

f](ν) = f[(ν).

Proof. Since Ξn(α) 6= 0 for all n ∈ N, then by applying (4.3) and (4.2), we have

L](ν) = L[(ν).

Therefore, we have

f](ν) = (T ◦ H−1)(L](ν)) = (T ◦ H−1)(L[(ν)) = f[(ν).
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Corollary 4.1.13. Denote Ξ = L](ν). For a fixed ν, if Ξn(α) 6= 0 for all n ∈ N, then

|Mν ∩ [0,
1

2
]| = 1.

Proof. This directly comes as a corollary from Corollary 3.1.43.

Corollary 4.1.14. Let α = 2ν, if α ∈ DcR, then |Mν ∩ [0, 1
2
]| = 1.

Proof. Since ν /∈ DR, for every n ∈ N and fn ∈ Fn, we have fn(ν) 6= 0. Because Ξn(ν) ∈
Fn for all n ∈ N, Ξn(ν) 6= 0 for all n. Hence by applying Corollary 4.1.13, we have

|Mν ∩ [0, 1
2
]| = 1.

Corollary 4.1.15. For ν ∈ Q, we have |Mν ∩ [0, 1
2
]| = 1.

Proof. Let α = 2ν. For ν ∈ Q−{−1
2
, 1

2
}, we have α ∈ Q−{−1, 1}. By applying Corollary

4.1.14, we have |Mν ∩ [0, 1
2
] = 1. Furthermore, for α = 1, by applying Theorem 1.2.2, we

have Mν ∩ [0, 1
2
] = 1

3
. Now, for α = −1, Theorem 1.2.4 indicates that Mν ∩ [0, 1

2
] = 1

2
.

Therefore, we finish the proof.

Theorem 4.1.16. For ν ∈ [0, 1), take α = 2ν. Let Ξ ∈ SN, such that (Ξ, ν) satisfies the

step condition for maxima. Denote N = {n ∈ N|Ξn(α) = 0}, and p = minN . Then either

|Mν ∩ [0, 1
2
]| = 1, orMν will have the form of a Cantor-like set with Hausdorff dimension

1
p

.

Proof. Denote α = 2ν. For some Ξ ∈ SN, (Ξ, ν) satisfies the step condition for maxima.

Let us first of all, consider the case when Ξn(α) 6= 0 for all n ∈ N. Then by applying

Lemma 4.1.12, we have that

f](ν) = f[(ν).

Hence, there will be only one unique maximum for xν . Otherwise, for any n, such that

Ξn(α) = 0 if and only if n ∈ pN. Let t̃p ∈ Mν ∈ [0, 1
2
], then according to Proposition

(3.55), we will have
xν,k(t)− xν,k(t̃p)

t− t̃p
= Ξp(α) = 0, (4.6)
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for all t ∈ (t̃p, t̃p + 2−(p+1)]. Therefore, for t ∈ (t̃p, t̃p + 2−(p+1)], we have that

xν(t) =
∞∑
n=0

νnφ(2nt) = xν,p(t̃p) +
∞∑

n=p+1

νnφ(2nt)

= xν,p(t̃p) + νp+1

∞∑
n=0

νnφ(2p+1+nt)

(4.7)

Now, let us denote τ = 2−(1+p)(t− t̃p), then (4.7) can be re-written as

xν(t) = xν,p(t̃p) + νp+1

∞∑
n=0

νnφ(2nτ) = xν,p(t̃p) + νp+1xν(τ). (4.8)

Then νp+1xν(τ) is a re-scaled exponential Takagi function with parameter ν, therefore it

has the behaviour in regards to its maximizers. By symmetry. If t the truncated maximum

is attained at t ∈ [t̃p, t̃p + 2−(p+1)], then it also attains at t ∈ [1− t̃p− 2−(p+1), 1− t̃p]. Then

we can see that t achieves the maximum if and only if t lies the b2pt̃pc − th interval of

2p equally divided intervals or it lies in the 2p − b2pt̃pc − th interval of 2p equally divided

intervals. Thus, the set M is a Cantor-like set constructed by keeping only the t̃p
2p

and

2p − t̃p
2p

interval of every 2p equally divided intervals. By [20],

dimHM =
− log(2)

log( 1
2p

)
=

1

p
.

Lemma 4.1.17. Take Ξ = l](α1) and Γ = l](α2). If ξi = γi for all i ≤ n, then

|f](α1)− f](α2)| ≤ 2−(n+1).
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Proof. By applying Triangular inequality, we have

|f](α1)− f](α2)| = |
∞∑
i=0

(1{ξi=−1} − 1{γi=−1})2
−(i+1)| = |

∞∑
i=n+1

(1{ξi=−1} − 1{γi=−1})2
−(i+1)|

≤
∞∑

i=n+1

|1{ξi=−1} − 1{γi=−1}|2−(i+1) ≤
∞∑

i=n+1

2−(i+1) = 2−(n+1)

Theorem 4.1.18. For any ν ∈ (−1, 1), let Ξ = l](ν), if Ξn(ν) 6= 0 for all n ∈ N, then

f](u) and f[(u) are continuous at ν.

Proof. Let Ξ = l](ν) and let N = d− log2 εe for some ε > 0. For such Ξ, we can view Ξi(u)

as a polynomial. Then Ξi(u) is a continuous function for all i ∈ N. Hence, for each i ≤ N ,

there exist δi > 0, such that

|Ξi(u)− Ξi(ν)| < |Ξi(ν)|
2

. (4.9)

whenever

|u− ν| < δi.

By (4.9), we have

Ξi(ν)Ξi(u) > 0. (4.10)

for all i ≤ N . Now select δ = min
i≤N

δi. Then

Ξi(ν)Ξi(u) > 0,

for all i ≤ N if |u− ν| < δ. Now let us take Γ = l](x). Then we have ξi = γi for all i ≤ N ,

if |u− ν| < δ. By applying Lemma 4.1.17, if ξi = γi for all i ≤ N , then we have

|f](u)− f](ν)| < ε.
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Therefore, we have every ε > 0, there exists a δ > 0 such that

|f](u)− f](ν)| < ε.

for all points x which

|u− ν| < δ,

where δ = min
i≤N

δi. The proof for f[(u) is analogous.

Lemma 4.1.19. Let ν ∈ (1
4
, 1

2
). If (Ξ, ν) satisfies step condition for maxima, then for any

n ∈ N there exists N > n, such that

ΞN(α)ΞN+1(α) ≤ 0.

Proof. Let us first of all consider the case ξ0 = 1. We will prove Lemma 4.1.19 by induction

on n. First of all, let us consider n = 0, then we aim to prove that there exists N > 0,

such that

ΞN(α)ΞN+1(α) ≤ 0.

For 1
2
< α < 1, we have

sup
Ξ∈S̃

∞∑
i=1

ξiα
i =

∞∑
i=1

αi =
α

1− α
> 1 = Ξ0(α). (4.11)

By rearranging (4.11), we get

Ξ0(α)−
∞∑
i=1

αi < 0.

Then there exists N ∈ N, such that

Ξ0(α)−
N∑
i=1

αi < 0, and Ξ0(α)−
m∑
i=1

αi ≥ 0, (4.12)

for all m < N . Therefore, by the step condition (3.56), we have ξj = −1, for all j ≤ N .
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Hence, we get ΞN(α) =
∑N

i=0 ξiα
i = 1−

∑N
i=1 α

i < 0.

ΞN−1(α) =
∑N−1

i=0 ξiα
i = 1−

∑N−1
i=1 αi ≥ 0.

(4.13)

Hence, we have

ΞN−1(α)ΞN(α) ≤ 0.

This completes the proof for the case n = 0. Now let us assume that for n ∈ N, there

exists N > n, such that

ΞN(α)ΞN+1(α) ≤ 0. (4.14)

Now, we will prove the case for n+ 1, there also exists an M > n+ 1, such that

ΞM(α)ΞM+1(α) ≤ 0.

We will discuss case by case. First of all, if N > n+ 1, then we can assign M = N > n+ 1,

then we have

ΞN(α)ΞN+1(α) = ΞM(α)ΞM+1(α) ≤ 0.

Now let us move on to the case when N = n+ 1, then by applying (4.14), we have

Ξn+1(α)Ξn+2(α) ≤ 0.

First of all, let us consider when Ξn+1(α) ≥ 0, then

Ξn+2(α) = Ξn+1(α)− αn+2 ≥ −αn+2 (4.15)

As in (4.11), using our assumption α ∈ (1
2
, 1), we then have

sup
Ξ∈SN

∞∑
i=n+3

ξiα
i =

∞∑
i=n+3

αi =
αn+3

1− α
> αn+2 ≥ −Ξn+2(α). (4.16)
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Rearranging (4.16), we have

Ξn+2(α) +
∞∑

i=n+3

αi > 0. (4.17)

Then there exists M > n+ 2, such that

Ξn+2(α) +
M∑

i=n+3

αi > 0. and Ξn+2(α) +
m∑

i=n+3

αi ≤ 0. (4.18)

for all N < m < M . Recalling the (3.56) and arguing as for (4.13), we have

ΞM−1(α)ΞM(α) ≤ 0.

As M > n + 2, then we have M > n + 1, hence we complete the proof for the case when

Ξn+1(α) ≥ 0. Now let us consider the case when Ξn+1(α) < 0. Then we have Ξn+2(α) ≥ 0.

Since (Ξ, α) satisfies the step condition for maxima, then we have

Ξn+2(α) = Ξn+1(α) + αn+2 ≤ αn+2. (4.19)

Then we have

sup
Ξ∈SN

∞∑
i=n+3

ξiα
i =

∞∑
i=n+3

αi =
αn+3

1− α
> αn+2 ≥ Ξn+2(α). (4.20)

By rearranging (4.20), we then can have that

Ξn+2(α)−
∞∑

i=n+3

αi < 0. (4.21)

Then there exists M > n+ 2, such that

Ξn+2(α)−
M∑

i=n+3

αi < 0. and Ξn+2(α)−
m∑

i=n+3

αi ≥ 0. (4.22)

89



for all m < M . Then we have

ΞM−1(α)ΞM(α) ≤ 0. (4.23)

Hence, we complete the proof for the case n + 1 for ξ0 = 1. The cases for ξ0 = −1 is

analogous. Therefore, we complete the proof.

Proposition 4.1.20. Suppose Ξ ∈ SN, and ν ∈ (1
4
, 1

2
). If (Ξ, ν) satisfies the step condition

for maxima, then Ξ(α) = 0.

Proof. Let a pair (Ξ, ν) satisfy the step condition for maxima. For any n ∈ N, we have

Ξn+1(α) = Ξn(α) + ξn+2α
n+1.

As (Ξ, ν) satisfies the step condition for maxima, by applying (3.56), we have

|Ξn+1(α)| = |Ξn(α) + ξn+2α
n+1| ≤ max{αn+1, |Ξn(α)|}. (4.24)

Furthermore, we have

|Ξn+1(α)| ≤ αn+1, if Ξn(α)Ξn+1(α) ≤ 0. (4.25)

By applying Lemma 4.1.19, for each n ∈ N, there exists m > n, such that Ξm(α)Ξm+1(α) ≤
0. Then according to (4.25), we have for any n ∈ N, there exists m > n, such that

|Ξm(α)| ≤ αm. (4.26)

Let us define that xn = sup
m≥n
|Ξm(α)|, as we have by (4.26)

max{αn+2, |Ξn+1(α)|} ≤ max{αn+1, |Ξn(α)|}, (4.27)

then xn ≤ max{αn, |Ξn−1(α)|}. And as xn is a bounded monotone decreasing sequence,

then there exists x = lim
n→∞

xn. According to (4.26), for each fixed N0, there exists m > N0,
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such that xm ≤ αm. Then rewrite (4.24), we then have

0 ≤ lim
n→∞

xn = x ≤ lim
m→∞

αm = 0, (4.28)

as α < 1. Because lim sup
n→∞

|Ξn(α)| = 0, therefore we can conclude

lim
n→∞

Ξn(α) = Ξ(α) = 0.

Lemma 4.1.21. For any ν ∈ (1
4
, 1

2
), and arbitrarily small δ > 0, there exists some β ∈

(ν − δ, ν + δ), such that l](β) 6= l](ν).

Proof. Denote α = 2ν. We will then prove this lemma by contradiction. Let us assume

that there are ν ∈ (1
4
, 1

2
), there and δ > 0, such that for all u ∈ (ν − δ, ν + δ), l](ν) = l](u).

For simplicity, let us denote l](ν) = Ξ. Now, let us regard Ξ(u) as a power series centered

at u0 = 0. Then since

lim sup
i→∞

n
√
|ξi+1| = lim sup

i→∞
1 = 1. (4.29)

Equation (4.29) guarantees that Ξ(u) is an analytic function of u with convergence radius

1. Since α ∈ (1
2
, 1) and (ν − δ, ν + δ) $ (−1, 1), then by Proposition 4.1.20, we have

Ξ(u) = 0 for all u ∈ (ν − δ, ν + δ).

Since (ν − δ, ν + δ) is connected in C, then Ξ(u) = 0 for all u ∈ R. However, as we have

that ξi ∈ {−1, 1}, then we must have Ξ(u) 6= 0. We have deduced a contradiction here.

Hence for any ν ∈ (1
4
.1
2
), and arbitrary small δ > 0, there exist some β ∈ (ν − δ, ν + δ),

such that l](β) 6= l](ν).

Lemma 4.1.22. For any ν ∈ (1
4
, 1

2
) and β ∈ (1

4
, 1

2
). We have l](ν) 6= l](β), if and only if

f](ν) 6= f](β).

Proof. Let us prove the only if part of this lemma by contradiction. Let us assume there

exists β such that l](ν) 6= l](β), and f](ν) = f](β). Let us denote Ξ = l](ν) and Γ = l](β).
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Then as l](ν) 6= l](β), there exists some N such that

ξN 6= γN , and ξi = γi, for i < N.

Without loss of generality, let us assume that ξN = 1, then γN = −1. Then according to

Proposition 3.1.39, we have f](ν) = f](β) if and only if ξi = −1 and γi = 1 for i > N . Now

take α = 2ν. By (4.26)

|ΞN(α)| ≤ αN .

However, as we have
∞∑

i=N+1

αi = αN
α

1− α
> αN .

Without loss of generality, let us assume that ΞN(α) > 0. Therefore,

Ξ(α) = ΞN(α)−
∞∑

i=N+1

αi 6= 0.

But since ν ∈ (1
4
, 1

2
), we must have that Ξ(α) = 0 by Proposition 4.1.20. Hence we have

proved the only if direction by contradiction. Furthermore, let us now start to prove the

if part. Let us look at the contrapositive statement:

If l](ν) = l](β), then f](ν) = f](β).

But this statement directly follows from the Definition 4.1.5.

Theorem 4.1.23. For any ν ∈ [1
4
, 1

2
], for any δ > 0, f]([ν − δ, ν + δ]) % f]({ν}) and

f[([ν − δ, ν + δ]) % f[({ν}). This means that the functions f] and f[ are nowhere flat.

Proof. Denote α = 2ν. As ν ∈ [1
4
, 1

2
], then we can have that for any δ > 0, there exists

β ∈ [α− δ, α− δ], such that

l](β) 6= l](ν).

Then, by applying Lemma 4.1.22, since ν ∈ (1
4
, 1

2
) and β ∈ (1

4
, 1

2
), we have f](ν) 6= f](α).

Hence f]([ν − δ, ν + δ]) % f]({ν}),. Furthermore, the proof for f[ is analogous.Hence, we
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have proved this theorem.

Theorem 4.1.24. For n ≥ 2, the Littlewood polynomial

Qn(z) = 1− z · · · − zn−2 − zn−1 − zn,

has a unique negative root α2n. Moreover, the sequence {α2n} is strictly increasing and

has a limit of −1.

Proof. First of all let us prove there exists a unique root α2n ∈ (−2,−1). Consider for

u < −1,

Q2n(u) = 1−
2n∑
i=1

ui = 1− u1− u2n

1− u
> 0. (4.30)

Then all negative roots must be less than or equal to −1. Moreover, by applying Lemma

2.1.4, then we have

α2n > −2.

Furthermore, we have

Q2n(u) = 1−
2n∑
i=1

ui = 1− u1− u2n

1− u

=
1− 2u+ u2n+1

1− u
.

Letting q2n(u) = 1− 2u+ u2n+1, we have

q′2n(u) = −2 + (2n+ 1)u2n > 0, (4.31)

for u ∈ (−2,−1). We have Q2n(u) = 0 if and only if q2n(u) = 0. However, since q2n is

strictly increasing, therefore, we have that this root must be unique. Furthermore, since

we have q2n(α2n) = 0, we get

q2n+2(α2n) = 1− 2α2n + α2n+3
2n = 1− 2α2n + α2n+1

2n + (α2n+3
2n − α2n+1

2n ) = α2n+3
2n − α2n+1

2n < 0.

Then by applying (4.31), we have α2n+2 > α2n. Hence the sequence {α2n} is an increasing
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sequence. Then there must exist α such that

lim
n→∞

α2n = α = sup{α2n|n ≥ 2}. (4.32)

Now let us assume by contradictory that α < −1, and because α > α2n for all n ∈ N, then

we have

q2n(α) = 1− 2α + α2n+1 > 0. (4.33)

Taking limits on both sides, then we have

lim
n→∞

q2n(α) = 1− 2α + lim
n→∞

α2n+1 = −∞.

Hence, we have contradiction, since (4.33) indicates that

lim
n→∞

q2n(α) ≥ 0.

Lemma 4.1.25. Let us denote by αk the negative real solution to Qk(z) = 0. Then for

u ∈ [α2k, α2k+2), we have

Q2k+2(u) < 0.

Proof. We have

Q2k+2(u) = 1−
2k+2∑
i=1

ui = 1− u1− u2k+2

1− u

=
1− 2u+ u2k+3

1− u
.

Then since Q2k+2(α2k+2) = 0, we have

q(α2k+2) := 1− 2α2k+2 + α2k+3
2k+2 = 0.

Furthermore, we have

q′(u) = −2 + (2k + 2)u2k+2 > 0,
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for all u ∈ [−2,−1]. Then for all u ∈ [α2k, α2k+2], we have q(u) < 0. Since 1− u > 0, then

we have Q2k+2(u) < 0.

Theorem 4.1.26. Let us denote by αk be the negative real solution for Qk(z). For

2ν ∈ [α2n, α2n+2), let us denote Ξ = l](ν), then

Ξ = {1,−1,−1, · · · ,−1,−1︸ ︷︷ ︸
2n+ 2

, 1, 1,−1,−1, 1, 1,−1,−1, · · · }

Proof. Take α = 2ν. Let us first of all prove that Ξ will have 2n+ 2 consecutive −1 in the

first 2n+ 3 items. For m ≤ n, we have

1−
2m∑
i=1

αi = 1− α1− u2m

1− α
=

1− 2α + α2m+1

1− α
. (4.34)

Since 0 > α ≥ α2m, then α− α2m ≥ 0 and |α2m+1| ≤ |α2m+1
2m |. Then we have

q(α) = q(α)− q(α2m) = 2(α− α2m) + (α2m+1 − α2m+1
m ) ≥ 0. (4.35)

Therefore, we have Ξ2m(α) = Q2m(α) ≥ 0 for all m ≤ n. Furthermore, we have

Ξ2m+1(α) = Ξ2m(α)− α2m+1 > 0,

as α2m−1 < 0. Thus we have proved that Ξ will have 2n + 2 consecutive −1 in the first

2n+ 3 items by applying step condition for maxima. Now let us prove that for all k ∈ N+,

we have 

ξ2n+4k−1 = 1,

ξ2n+4k = 1,

ξ2n+4k+1 = −1,

ξ2n+4k+2 = −1.

(4.36)

by induction on k. Now let us first of all prove the base case. By applying Lemma 4.1.25,

we have Ξ2n+2(α) = Q2n+2(α) < 0. Hence, we have ξ2n+3 = 1 by the step condition for
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maxima. Furthermore, we have

Ξ2n+3(α) = Ξ2n+2(α) + α2n+3 < 0.

Therefore, we have ξ2n+4 = 1 by the step condition for maxima. For α < −1, we have

1 + α− α2 − α3 > 0. Moreover, since Ξ2n(α) ≥ 0, we get

Ξ2n+4(α) = Ξ2n(α)− α2n+1 − α2n+2 + α2n+3 + α2n+4

= Ξ2n − α2n+1(1 + α− α2 − α3) > 0.

Therefore, we have ξ4n+5 = −1. Hence, we have

Ξ2n+5(α) = Ξ2n+4(α)− α4n+5 > 0.

Hence, we have ξ4n+6 = −1. Therefore, we complete the proof for the base case. Now let

us assume that (4.36) holds for all k ≤ m, and we further prove the case for k = m + 1.

Then we have

Ξ2n+4m+2(α) = Ξ2n+2(α) +
m−1∑
i=0

(1 + α− α2 − α3)α4i+2n+3

= Ξ2n+2(α) + α2n+3(1 + α− α2 − α3)
m−1∑
i=0

α4i

= Ξ2n+2(α) + α2n+3(1 + α− α2 − α3)
1− α4m

1− α4
< 0.

This is due to Ξ2n+2(α) < 0, 1 + α − α2 − α3 > 0, and 1−α4m

1−α4 > 0. Therefore, by the step

condition for maxima, we have ξ2n+4m+3 = 1. Furthermore, we have

Ξ2n+4m+3(α) = Ξ2n+4m+2(α) + α2n+4m+3 < 0.
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Hence, we have ξ2n+4m+4 = 1. Then we have

Ξ2n+4m+4(α) = Ξ2n+4m(α)− α2n+4m+1 − α2n+4m+2 + α2n+4m+3 + α2n+4m+4

= Ξ2n+4m(α)− α2n+4m+1(1 + α− α2 − α3) > 0.

This is due to Ξ2n+4m(α) > 0 and 1 + α − α2 − α3 > 0. Hence, we have ξ2n+4m+5 = −1.

Then, we have

Ξ2n+4m+5(α) = Ξ2n+4m+4(α)− α2n+4m+5 > 0.

Therefore, we have ξ2n+4m+6 = −1. Hence, we finish the inductive proof and the statement.

Corollary 4.1.27. For any ν ∈ [α2k

2
, α2k+2

2
), we have

f](ν) = f](
α2k

2
).

Proof. Let us denote Ξ = l](ν) and Γ = l](
α2k

2
). Then by applying Theorem 4.1.26, we

have

Ξ = Γ

Therefore, we have

f](ν) = T ◦ H−1(Ξ) = T ◦ H−1(Γ) = f](
α2k

2
).

Corollary 4.1.28. For ν ∈ [−1,−1
2
], we have f](ν) is a right-continuous function.

Proof. This corollary directly comes from Corollary 4.1.27.

Theorem 4.1.29. Let us denote αk be the negative real solution for Qk(z). For ν ∈
[α2k

2
, α2k+2

2
), let us denote Ξ = f[(ν), then

Ξ = {1,−1,−1, · · · ,−1,−1︸ ︷︷ ︸
2n+ 2

, 1, 1,−1,−1, 1, 1,−1,−1, · · · }
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Proof. Take α = 2ν. Let us first of all prove that Ξ will have 2n+ 2 consecutive −1 in the

first 2n+ 3 items. Let us consider for m ≤ n

1−
2m∑
i=1

αi = 1− α1− u2m

1− α
=

1− 2α + α2m+1

1− α
. (4.37)

Since 0 > α > α2m, then α− α2m > 0 and |α2m+1| < |α2m+1
2m |. Then we have

q(α) = q(α)− q(α2m) = 2(α− α2m) + (α2m+1 − α2m+1
m ) > 0. (4.38)

Therefore, we have Ξ2m(α) = Q2m(α) < 0 for all m ≤ n. Furthermore, we have

Ξ2m+1(α) = Ξ2m(α)− α2m+1 > 0,

as α2m−1 < 0. Then we have proved that Ξ will have 2n + 2 consecutive −1 in the first

2n+ 3 items by applying step condition for maxima. Now let us prove the for all k ∈ N+,

we have 

ξ2n+4k−1 = 1,

ξ2n+4k = 1,

ξ2n+4k+1 = −1,

ξ2n+4k+2 = −1.

(4.39)

by induction on k. Now let us first of all prove the base case. By applying Lemma 4.1.25,

we have Ξ2n+2(α) = Q2n+2(α) ≤ 0. Hence, we have ξ2n+3 = 1 by the step condition for

maxima. Furthermore, we have

Ξ2n+3(α) = Ξ2n+2(α) + α2n+3 < 0.

Therefore, we have ξ2n+4 = 1 by the step condition for maxima. For α < −1, we have
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1 + α− α2 − α3 > 0. Moreover, since Ξ2n(α) > 0, we get

Ξ2n+4(α) = Ξ2n+3(α) + α2n+4 = Ξ2n(α)− α2n+1 − α2n+2 + α2n+3 + α2n+4

= Ξ2n − α2n+1(1 + α− α2 − α3) > 0.

Therefore, we have ξ4n+5 = −1. Hence, we have

Ξ2n+5(α) = Ξ2n+4(α)− α4n+5 > 0.

Hence, we have ξ4n+6 = −1. Therefore, we complete the proof for the base case. Now let

us assume that (4.39) holds for all k ≤ m, and we further prove the case for k = m + 1.

Then we have

Ξ2n+4m+2(α) = Ξ2n+2(α) +
m−1∑
i=0

(1 + α− α2 − α3)α4i+2n+3

= Ξ2n+2(α) + α2n+3(1 + α− α2 − α3)
m−1∑
i=0

α4i

= Ξ2n+2(α) + α2n+3(1 + α− α2 − α3)
1− α4m

1− α4
< 0.

This is due to Ξ2n+2(α) < 0, 1 + α − α2 − α3 > 0, and 1−α4m

1−α4 > 0. Therefore, by the step

condition for maxima, we have ξ2n+4m+3 = 1. Furthermore, we have

Ξ2n+4m+3(α) = Ξ2n+4m+2(α) + α2n+4m+3 < 0.

Hence, we have ξ2n+4m+4 = 1. Then we have

Ξ2n+4m+4(α) = Ξ2n+4m(α)− α2n+4m+1 − α2n+4m+2 + α2n+4m+3 + α2n+4m+4

= Ξ2n+4m(α)− α2n+4m+1(1 + α− α2 − α3) > 0.

This is due to Ξ2n+4m(α) > 0 and 1 + α − α2 − α3 > 0. Hence, we have ξ2n+4m+5 = −1.
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Then, we have

Ξ2n+4m+5(α) = Ξ2n+4m+4(α)− α2n+4m+5 > 0.

Therefore, we have ξ2n+4m+6 = −1. Hence, we finish the inductive proof and the statement.

Theorem 4.1.30. For any ν ∈ (α2k

2
, α2k+2

2
], we have

f[(ν) = f[(
α2k

2
).

Proof. Let us denote Ξ = l[(ν) and Γ = l[(
α2k

2
). Then by applying Theorem 4.1.29, we

have

Ξ = Γ

Therefore, we have

f[(ν) = T ◦ H−1(Ξ) = T ◦ H−1(Γ) = f[(
α2k

2
).

Corollary 4.1.31. The f](ν) and f[(ν) are discontinuous at point α2k

2
for all k ∈ N.

Proof. This directly comes as a corollary for Theorem 4.1.30 and Theorem 4.1.27.

Corollary 4.1.32. Let us denote R as all the discontinuous points of f](ν) in [−1,−1
2
).

Then as all ν ∈ R, we have

|Mν ∩ [0,
1

2
]| = 2.

Furthermore, we have

|R| = ℵ0.

Proof. Let us first of all consider the function f]. According to Corollary 4.1.32 and

Theorem 4.1.26, we have f](ν) is discontinuous if and only if ν = α2k

2
for some k. Now, let

us denote Ξ = l](ν). Then Ξn(ν) = 0 if and only if n = 2k, then by Lemma 3.1.45,

|Mν ∩ [0,
1

2
]| = 2.
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Since we have R = {α2k}∞k=1, then we have

|R| = ℵ0.

4.2 Local Extrema for Exponential Takagi Class

Theorem 4.2.1. Let us denote Vν as the collection of points that are a local maxima for

xν . Formally, Vν is defined as follows:

Vν = {t ∈ [0, 1]|∃δ > 0,∀τ ∈ (t− δ, t+ δ), xν(t) ≥ xν(τ)}

For |ν| ≤ 1
4
, Vν = {1

2
}.

Proof. Let us first of all consider the case for |ν| ≤ 1
4
. Let Γ ∈ SN with γ0 = 1. We have

inf
Γ∈SN

Γ(α) = 1−
∞∑
i=1

|α|i = 1− |α|
1− |α|

=
1− 2|α|
1− |α|

> 0.

Then we have xν is an strictly increasing function on [0, 1
2
]. Furthermore, due to symmetry,

we have xν is an strictly decreasing function on [1
2
, 1]. Then we haveMν = Vν = {1

2
}.

4.3 Earlier Results under Quasi-Binary Language

Now in this section, let us restate and prove theorems in Chapter 1 and some new partic-

ularly strong results. The theorems here are not as general as before, but those theorem

can be regarded as the examples on how the step condition and Quasi-Binary Language

can simplify and unify the results before.
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Example 4.3.1. Let us use our general results so as to recover Theorem 1.2.3, which

states for ν ∈ (1
2
, 1), we have f[(ν) = f](ν) = 1

3
.

Figure 4.1: Plot for exponential Takagi function x0.6, x0.65, x0.7 and x0.75.

Proof. Take Ξ = l](ν) and α = 2ν. Before proving this theorem, we first of all prove thatΞ2n(α) > 0,

Ξ2n+1(α) < 0,

for every n ∈ N by induction on n. Now let us consider the case when n = 1. As we have

Ξ0(α) = 1 for all α ∈ (1, 2), then we have ξ1 = −1 and Ξ1(α) = 1 − α < 0. Hence, we

finish the proof for the base case. Now let us assume thatΞ2k(α) > 0,

Ξ2k+1(α) < 0.
(4.40)
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for all n ≤ k, and we proceed to prove the case k + 1. As Ξ2k+1(α) < 0, then we have

ξ2k+2 = 1. By applying (4.40), we have

Ξ2k+2(α) =
2k+2∑
i=0

ξiα
i =

2k+2∑
i=0

(−1)i+1αi =
k+1∑
i=0

α2i −
k∑
i=0

α2i+1

=
1− α2k+2

1− α2
− α(1− α2k)

1− α2
=

(1− α) + (α2k+1 − α2k+2)

1− α2
> 0.

(4.41)

Then for Ξ2k+3(α), we have

Ξ2k+3(α) =
2k+3∑
i=0

ξiα
i =

2k+3∑
i=0

(−1)iαi = (1− α)
k+1∑
i=0

α2i < 0. (4.42)

Therefore, we complete the proof for the case k+ 1, and hence we finish the proof that for

every n, we have Ξ2n(α) > 0,

Ξ2n+1(α) < 0.

By applying the (3.57), we have that for every n ∈ N, ξ2n = 1 and ξ2n+1 = −1. Then

f](ν) =
∞∑
i=0

1{ξi=−1}(
1

2
)i+1 =

∞∑
i=1

(
1

2
)2i =

1
4

1− 1
4

=
1

3
. (4.43)

as well as, by applying Lemma 4.1.12, as for all n, Ξn(α) 6= 0. We then have,

f[(ν) = f](ν) =
1

3
. (4.44)

Example 4.3.2. Let us use our general results so as to recover Theorem 1.2.4, which

states for ν ∈ (0, 1
4
), we have f](ν) = f[(ν) = 1

2
.

Proof. Take Ξ = l](ν) and α = 2ν. First of all, we will prove for any n ∈ N, Ξn(α) > 0 by

induction on n. Now, let us consider the case when n = 0. It is clear that Ξ0(α) = 1 > 0.
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Figure 4.2: Plot for exponential Takagi function x0.1, x0.15, x0.2 and x0.25.

Now let us assume Ξn(α) > 0 for all n ≤ k. We then proceed to prove the case k + 1, as

Ξk(α) > 0 and ξk+1 = −1. Let us consider

Ξk+1(α) =
k+1∑
i=0

ξiα
i = 1−

k+1∑
i=0

αi = 1− 1− αk+1

1− α
> 1− α

1− α
> 0. (4.45)

Then we complete the proof for the induction. As for every n ∈ N, Ξn(α) > 0, then we

have ξn = −1 for every n ≥ 1. Then we have

f](ν) =
∞∑
i=0

ξi(
1

2
)i+1 =

∞∑
i=2

(
1

2
)i =

1

2
, (4.46)

as well as, by applying Lemma 4.1.12, we then have

f[(ν) = f](ν) =
1

2
. (4.47)
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Example 4.3.3. For ν = −1+
√

5
4

, the exponential Takagi function xν has exactly two

maximum points in [0, 1
2
] at 0.4 and 0.475.

Figure 4.3: Plot for exponential Takagi function x−
√
5+1
4

.

Proof. Let α = 2ν = −1+
√

5
2

and take Ξ = l[(ν). First of all, we will prove that for any

fixed n ≥ 0, we have 

Ξ4n+2(α) ≤ 0,

Ξ4n+3(α) ≤ 0,

Ξ4n+4(α) > 0,

Ξ4n+5(α) > 0,

(4.48)

by induction on n. Let us first consider the case for Ξ0(α), we have

Ξ0(α) = 1. (4.49)
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Then according to (3.57), we then have ξ1 = −1, and hence

Ξ1(α) = 1− α > 0. (4.50)

By applying (3.57) again, we have for our particular choice of α

Ξ2(α) = 1− α− α2 = 0. (4.51)

Then according to Definition 4.1.6, we have ξ3 = 1. Therefore, we have

Ξ3(α) = 1− α− α2 + α3 = α3 < 0. (4.52)

By applying (3.57) again, we have

Ξ4(α) = α3 + α4 = α3(1 + α) > 0, (4.53)

as well as,

Ξ5(α) = α3 + α4 − α5 = α3(1 + α− α2) > 0. (4.54)

Hence, by (4.51) - (4.54), we prove that the induction hypothesis holds for n = 0. Now

let us assume that the induction hypothesis holds for k ≤ n, then we proceed to prove the

case for k = n+ 1. Also, due to (3.57) and (4.48), we then have for all k ≤ n,

ξ4k+3 = 1,

ξ4k+4 = 1,

ξ4k+5 = −1,

ξ4k+6 = −1.

(4.55)

Hence, we have

Ξ4n+6(α) =
4n+6∑
i=0

ξiα
i = (1− α− α2) +

n∑
m=0

(α3 + α4 − α5 − α6)α4m. (4.56)
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By applying (4.51), we have

Ξ4n+6(α) =
4n+6∑
i=0

ξi+1α
i = (1− α− α2) +

n∑
m=0

(α3 + α4 − α5 − α6)α4m

=
n∑

m=0

α4m+3 = α3 1− α4n+4

1− α4
< 0.

(4.57)

Therefore, we have ξ4n+7 = 1. Hence, by applying (3.57), we have

Ξ4n+7(α) = Ξ4n+6(α) + α4n+7. (4.58)

as Ξ4n+6(α) < 0 and α4n+7 < 0, then we have Ξ4n+7(α) < 0. Hence, we have ξ4n+8 = 1,

and then

Ξ4n+8(α) = α3 1− α4n+4

1− α4
+ α4n+7 + α4n+8

=
α3 + α4n+8 − α4n+11 − α4n+12

1− α4

=
α3 + α4n+8 − α4n+10 + α4n+10 − α4n+11 − α4n+12

1− α4

=
α3 + α4n+8 − α4n+10

1− α4
=
α3 + α4n+8 + α4n+9 − α4n+9 − α4n+10

1− α4

=
α3 + α4n+9

1− α4
> 0,

(4.59)

as α3 < 0, α4n+9 < 0, as well as 1− α4 < 0. Then we can have that ξ4n+9 = −1, then we

have

Ξ4n+9(α) = Ξ4n+8(α)− α4n+9 > 0. (4.60)

107



as Ξ4n+8(α) > 0 and α4n+9 < 0. Then we can notice that

Ξ4n+6(α) = Ξ4(n+1)+2(α) ≤ 0,

Ξ4n+7(α) = Ξ4(n+1)+3(α) ≤ 0,

Ξ4n+8(α) = Ξ4(n+1)+4(α) > 0,

Ξ4n+9(α) = Ξ4(n+1)+5(α) > 0,

(4.61)

Hence, we finish prove the case when k = n + 1. Hence we finish proving the statement.

Then by applying the Lemma 3.1.10, we have

f[(ν) =
∞∑
i=1

1{ξi=−1}(
1

2
)i =

∞∑
i=0

1

24n+2
+

1

24n+3
= (

1

4
+

1

8
)

1

1− 2−4
=

2

5
. (4.62)

Furthermore, let us start to consider another maximum at 0.475. We will follow the same

strategy for 0.4. Now we will prove that for any fixed n ≥ 0, we have

Ξ4n+2(α) ≥ 0,

Ξ4n+3(α) ≥ 0,

Ξ4n+4(α) < 0,

Ξ4n+5(α) < 0,

(4.63)

by induction on n. Let us first consider the case for Ξ0(α). Now let us take Ξ = l](ν). We

have

Ξ0(α) = 1. (4.64)

Then according the step condition for maxima, we then have ξ1 = −1, and hence

Ξ1(α) = 1− α > 0. (4.65)

Then by applying the step condition again, we have

Ξ2(α) = 1− α− α2 = 0. (4.66)
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Then according to the Definition 4.1.5, we have ξ3 = −1. Therefore, we have

Ξ3(α) = 1− α− α2 − α3 = −α3 > 0. (4.67)

By applying (3.57), we have

Ξ4(α) = −α3 − α4 = −α3(1 + α) < 0, (4.68)

as α3 < 0, and 1 + α < 0, as well as,

Ξ5(α) = −α3 − α4 + α5 = −α3(1 + α− α2) < 0. (4.69)

Hence, by (4.66) - (4.69), we notice the induction hypothesis holds for n = 0. Now let us

assume that the induction hypothesis holds for k ≤ n, then we proceed to prove the case

for k = n+ 1. Also, due to (3.57) and (4.63), we then have for all k ≤ n,

ξ4k+3 = −1,

ξ4k+4 = −1,

ξ4k+5 = 1,

ξ4k+6 = 1.

(4.70)

Hence, we have

Ξ4n+6(α) =
4n+6∑
i=0

ξiα
i = (1− α− α2)−

n∑
m=0

(α3 + α4 − α5 − α6)α4m. (4.71)

By applying (4.66), we have

Ξ4n+6(α) =
4n+6∑
i=0

ξiα
i = (1− α− α2)−

n∑
m=0

(α3 + α4 − α5 − α6)α4m

= −
n∑

m=0

α4m+3 = −α3 1− α4n+4

1− α4
> 0.

(4.72)

109



Therefore, we have ξ4n+7 = −1. Hence, by applying (3.57), we have

Ξ4n+7(α) = Ξ4n+6(α)− α4n+7 (4.73)

as Ξ4n+6(α) > 0 and α4n+7 < 0, then we have Ξ4n+7(α) > 0. Hence, we have ξ4n+8 = −1,

and then

Ξ4n+8(α) = −α3 1− α4n+4

1− α4
− α4n+7 − α4n+8

=
α3 + α4n+8 − α4n+11 − α4n+12

α4 − 1

=
α3 + α4n+8 − α4n+10 + α4n+10 − α4n+11 − α4n+12

α4 − 1

=
α3 + α4n+8 − α4n+10

α4 − 1
=
α3 + α4n+8 + α4n+9 − α4n+9 − α4n+10

α4 − 1

=
α3 + α4n+9

α4 − 1
< 0.

(4.74)

Then we can have that ξ4n+9 = 1, then we have

Ξ4n+9(α) = Ξ4n+8(α) + α4n+9 < 0. (4.75)

Then we can notice that 

Ξ4n+6(α) = Ξ4(n+1)+2(α) ≥ 0,

Ξ4n+7(α) = Ξ4(n+1)+3(α) ≥ 0,

Ξ4n+8(α) = Ξ4(n+1)+4(α) < 0,

Ξ4n+9(α) = Ξ4(n+1)+5(α) < 0,

(4.76)

Hence, we finish prove the case when k = n + 1. Hence we finish proving the statement.
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Then by applying the Lemma 3.1.9, we have

f](ν) =
∞∑
i=1

1{ξi=−1}(
1

2
)i =

1

4
+

1

8
+
∞∑
i=0

{ 1

24i+4
+

1

24i+5
}

=
3

8
+
∞∑
i=0

{ 1

24i+4
+

1

24i+5
} =

3

8
+ (

1

16
+

1

32
)

1

1− 2−4
=

19

40
,

(4.77)

Since Ξn(α) = 0 if and only if n = 2, then by applying Lemma 3.1.45, there will only 2

maximum points for xν . Hence 0.4 and 0.475 are the unique maximum points for xν .

Figure 4.4: Plot for exponential Takagi function x−0.85, x−0.9 and x−0.95.

Theorem 4.3.4. For ν ∈ (−1,−1+
√

5
4

), the exponential Takagi function xν has the only

maximum point in [0, 1
2

at t = 0.4.

Proof. Let α = 2ν < −1+
√

5
2

. In order to prove this theorem, first of all, we will prove that
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for any fixed n ≥ 0, we have 

Ξ4n+2(α) < 0,

Ξ4n+3(α) < 0,

Ξ4n+4(α) > 0,

Ξ4n+5(α) > 0,

(4.78)

by induction on n. Let us first consider the case for Ξ0(α), we have

Ξ0(α) = 1. (4.79)

Then according to the step condition, we have ξ1 = −1, and hence

Ξ1(α) = 1− α > 0. (4.80)

Then by applying the step condition again, we have

Ξ2(α) = 1− α− α2 =: εα. (4.81)

As α ∈ (−2,−
√

5+1
2

), we have εα ∈ (−1, 0). Then we have Ξ2(α) < 0, and ξ3 = 1, and we

have

Ξ3(α) = εα + α3 < 0, (4.82)

then we have ξ4 = 1. Next,

Ξ4(α) = εα + α3 + α4. (4.83)

As α4 − α3 > 1, we have Ξ4(α) > 0, and hence ξ5 = −1. Then we have

Ξ5(α) = Ξ4(α)− α5 > 0. (4.84)

Now, we have proved the case when k = 1. Hence, by (4.81) - (4.84), we have proved that

the induction hypothesis holds for n = 0. Now let us assume that the induction hypothesis

holds for k ≤ n. Then we proceed to prove the case for k = n + 1. Also, due to the step
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condition for maxima and (4.48), we have for all k ≤ n,

ξ4k+3 = 1,

ξ4k+4 = 1,

ξ4k+5 = −1,

ξ4k+6 = −1.

(4.85)

By applying (4.85), we have

Ξ4n+6(α) =
4n+6∑
i=0

ξiα
i = (1− α− α2) +

n∑
m=0

(α3 + α4 − α5 − α6)α4m

=
4n+6∑
i=0

ξi+1α
i = εα +

n∑
m=0

(α3 + α4εα)α4m =
n∑

m=0

α4m+3 + εα

n+1∑
m=0

α4m

= α3 1− α4n+4

1− α4
+ εα

1− α4n+4

1− α4
= (α3 + εα)

1− α4n+4

1− α4
< 0.

(4.86)

Then we have ξn+7 = 1, and

Ξ4n+7(α) = Ξ4n+6(α) + α4n+7 < 0. (4.87)
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Later, we have

Ξ4n+8(α) = Ξ4n+6(α) + α4n+7 + α4n+8

= (α3 + εα)
1− α4n+4

1− α4
+ α4n+7 + α4n+8

=
α3 − α4n+7 + εα − εαα4n+4 + α4n+7 − α4n+11 + α4n+8 − α4n+12

1− α4

α3 + εα − εαα4n+4 + α4n+8 + α4n+10 − α4n+10 − α4n+11 − α4n+12

1− α4

=
α3 + α4n+8 + εα − α4n+4εα − α4n+10 + α4n+10εα

1− α4

=
α3 + α4n+8 + εα − α4εα + α4n+9 − α4n+9 − α4n+10 + α4n+10εα

1− α4

=
α3 + α4n+9 + εα − α4n+4εα + α4n+10εα + α4n+8εα

1− α4

=
α3 + α4n+9 + εα(1− α4n+4 + α4n+10 + α4n+8)

1− α4
.

(4.88)

And this is strictly positive as |α| > 1. Hence, we have ξn+9 = −1, and

Ξ4n+9(α) = Ξ4n+9(α)− α4n+9 > 0. (4.89)

Therefore, we have completed the inductive proof. And by applying (4.62), we have f](ν) =

0.4, and as for all n > 0, we have Ξn(α) 6= 0, then by applying Corollary 4.1.13, we have

f](ν) = f[(ν) = 0.4. (4.90)

is the unique maximum for xν .

Theorem 4.3.5. For ν ∈ (−1
2
, 1), the unique minimum of xν in [0, 1

2
] is at t = 0, i.e.

M̃ν ∩ [0,
1

2
] = {0}.

Proof. Let α = 2ν, and take Ξ = j](ν). First of all, let us prove that ξi = 1 for all i ∈ N
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Figure 4.5: Plot for exponential Takagi function x−0.1, x−0.2, x−0.3 and x−0.4.

by induction on i. Since Ξ0(α) = ξ0 = 1, we have proved the case for i = 0. Now let us

assume that ξi = 1, for all i ≤ n, and we aim to prove that ξn+1 = 1. Since ξi = 1, for all

i ≤ n, then

Ξn(α) =
n∑
i=0

ξiα
i =

n∑
i=0

αi =
1− αn+1

1− α
> 0.

Therefore, by applying (3.79), we have ξn+1 = 1. Then, we have

g](ν) =
∞∑
i=0

1{ξ=−1}2
i+1 = 0.

Furthermore, since Ξn(α) 6= 0 for all n ∈ N, we have g](ν) = g[(ν) = 0. Then 0 is the only

minimizer in [0, 1
2
].

Theorem 4.3.6. For ν = −1
2
, M̃ν will be inform of a Cantor-like set with Hausdorff

Dimension with 1
2

with xν(M̃ν) = {0}. Furthermore, we have

inf(M̃ν ∩ [0,
1

2
]) = 0 and sup(M̃ν ∩ [0,

1

2
]) = 0.25.
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Figure 4.6: Plot for exponential Takagi function x−0.5.

Proof. First of all, let us take α = 2ν, and Ξ = j[(ν). Then we will prove that ξi = 1 for

all i ∈ N. Naturally, we have ξ0 = 1, and so, we have proved the base case. Then let us

assume that ξi = 1 for all i ≤ n. Now let us prove ξn+1 = 1. If n ∈ 2Z, then

Ξn(α) =
n∑
i=0

(−1)−i = 1.

Then by the step condition for minima (3.79), we have ξn+1 = 1. If n /∈ 2Z, then

Ξn(α) =
n∑
i=0

(−1)−i = 0.

Then by applying the step condition for minima (3.79), we have ξn+1 = 1. Hence we have

g[(ν) = 0, and xν(0) = 0. Now let us take Ξ = j](ν), then let us proceed to prove that

ξi = −1 for all i ≥ 2. First of all, we have Ξ0(α) = 1 and Ξ1(α) = 1 + (−1) = 0. Then by

applying (3.78), we have ξ2 = −1. Hence, we finish proving the base case for i = 2. Now
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let us assume that ξi = −1 for all i ≤ n, and we will prove that ξn+1 = −1. Now we have

Ξn(α) = Ξ1(α)−
n∑
i=2

αi = −
n∑
i=2

αi =

−1 n ∈ 2Z,

0 n /∈ 2Z.

Therefore, by applying (3.78), we have ξn+1 = −1. Hence, we have

g](ν) =
∞∑
i=0

1{ξ=−1}2
i+1 =

∞∑
i=2

2i+1 =
1

8
· 1

1− 1
2

=
1

4
.

Take N = {n ∈ N|Ξn(α) = 0}, then we have N = 2Z − 1. Then by applying Theorem

4.1.16, we have

dimH M̃ν =
1

2
.

Theorem 4.3.7. For ν ∈ (−1,−1
2
), we have

M̃ν ∩ [0,
1

2
] = {0.2}.

Proof. Take α = 2ν, and Ξ = j](ν). Let us prove that for all n ∈ N, we have

ξ4n = 1,

ξ4n+1 = 1,

ξ4n+2 = −1,

ξ4n+3 = −1,

(4.91)

by induction on n. Now let us first of all prove the case n = 0. Since Ξ0(α) = ξ0 = 1, then

we have Ξ1(α) = 1 + α < 0. Then by the step condition for minima, we have ξ2 = −1.

Hence, we have

Ξ2(α) = Ξ1(α)− α2 < 0.
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Figure 4.7: Plot for exponential Takagi function x−0.55, x−0.6, x−0.65 and x−0.7.

Hence, we have ξ3 = −1. Therefore, we have proved that the inductive statement holds

for n = 0. Now let us assume that (4.91) holds for all n ≤ k− 1, then we try to prove that

(4.91) holds for n = k. First of all, we have

Ξ4k−1(α) =
4k−1∑
i=0

ξiα
i =

k−1∑
i=0

(1 + α− α2 − α3)α4i = (1 + α− α2 − α3)
1− α4k

1− α4
.

Since 1− α4k < 0, 1− α4 < 0 and 1 + α− α2 − α3 > 0, we have Ξ4k−1(α) > 0. Therefore,

we have ξ4k = 1 by step condition for minima. Hence, we have

Ξ4k(α) = Ξ4k−1(α) + ξ4kα
4k = Ξ4k−1(α) + α4k.

Since Ξ4k−1(α) > 0 and α4k > 0, we have Ξ4k(α) > 0. Therefore, we have ξ4k+1 = 1, then

we have

Ξ4k+1(α) =
4k+1∑
i=0

ξiα
i = 1−α−

k−1∑
i=0

(1+α−α2−α3)α4i+2 = (1−α)−α2(1+α−α2−α3)
1− α4k

1− α4
.
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Since 1−α < 0, α2(1+α−α2−α3) > 0, 1−α4k < 0 and 1−α4 < 0, we have Ξ4k+1(α) < 0

and ξ4k+2 = −1. Furthermore, we have

Ξ4k+2(α) = Ξ4k+1(α) + ξ4k+2α
4k+2 = Ξ4k+1(α)− α4k+2 < 0.

Hence, we have ξ4k+3 < 0. Hence, we have proved the case for n = k, and we proved the

induction. Moreover, we have

g](ν) =
∞∑
i=0

1{ξi=−1}2
−(i+1) =

∞∑
i=0

(
1

8
+

1

16
)2−4i =

3

16

1

1− 2−4
= 0.2.

Since Ξn(α) 6= 0 for all n ∈ N, we have g](ν) = g[(ν). Hence,

M̃ν ∩ [0,
1

2
] = {0.2}.
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