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ABSTRACT 

Metal supported-solid oxide fuel cells (MS-SOFC) are third generation solid oxide fuel cells 

(SOFC). In these cells the primary support is a porous metal upon which the active cell layers 

(anode, electrolyte, and cathode) are deposited. MS-SOFCs are known for their better 

mechanical stability, tolerance to redox cycles, and are also cheaper than all-ceramic cells since 

the conventional support material (one of the active components) is almost entirely replaced by 

a cheaper metal. Several MS-SOFC fabrication methods have been reported in the literature, 

including thermal spray deposition on pre-fabricated porous metal support, and tape casting and 

co-sintering of half-cell layers (metal support and electrolyte). In this thesis a study is done on 

MS-SOFC’s fabrication using tape casting and high temperature co-sintering in non-oxidizing 

atmosphere to protect the metal support. The MS-SOFCs studied had SS-430L as metal support, 

and samarium doped ceria (SDC) or yittrium stabilized zirconia (YSZ) as electrolyte. 

To use SDC as electrolyte, the co-sintering temperature should be lowered to mitigate the 

reduction of cerium (IV) to cerium (III) in ceria when exposed to reducing atmosphere at high 

temperatures. To lower the sintering temperature varying amounts of copper (0 - 5.0 mol%) were 

used as sintering aid with SDC. X-ray diffraction (XRD), scanning electron microscopy (SEM), 

energy dispersive x-ray (EDX), and electrochemical impedance spectroscopy (EIS) were used 

to characterize SDC with and without copper.  

Upon doping, copper goes in the SDC crystal structure and starts forming an additional copper 

oxide phase for copper content above 0.1 mol%. The SDC crystal lattice constant decreased from 

0.5446 to 0.5427 nm when the copper content was increased from 0 to 5.0 mol%. SEM of 

sintered samples showed similar grain size (1-2 microns) and shape, and minimum visible 

surface porosity for samples containing 0.5 mol% and more copper. Even though as copper 

content is increased, the sintering temperature decreases, the ionic conductivity also decreases. 

0.5 mol% copper shows the best compromise, with sintering temperature lowered to 1180℃ 

compared to 1350℃ for plain SDC, and total conductivity of 0.065 S.cm-1 compared to 0.077 

S.cm-1 for plain SDC at 800℃.  The amount of additional copper oxide phase is lowest for 0.5 

mol% copper co-doped SDC, limiting the effect on SDC’s grain boundary conduction.   



v 

 

To use tape casting and co-sintering for MS-SOFC half-cell fabrication, shrinkage analysis of 

cell components (metal support and electrolyte) were carried out using dilatometry. The 

shrinkage analysis includes the effect of sintering profile (temperature profile, and sintering 

atmosphere) on the shrinkage dynamics of cell components. YSZ shows similar shrinkage 

behavior in inert and reducing atmospheres, however increasing the ramping rate between 

1000℃ and 1350℃ shifts the maximum shrinkage rate peak to a higher temperature. 

Dilatometry analysis showed that reducing atmosphere is more suitable for co-sintering than 

inert atmosphere, as co-sintering in inert atmosphere leads to formation of silica and alumina in 

the metal support. In addition to being non-conductive, silica and alumina act as sintering aids 

that enhance the shrinkage of SS-430L. Hence, upon reaching the co-sintering temperature 

(1350℃) in inert atmosphere, SS-430L is close to its final shrinkage (⁓ 1% shrinkage left) and 

is rigid. However, upon reaching the co-sintering temperature in inert atmosphere, YSZ is not as 

close to its maximum shrinkage (⁓3-5% shrinkage left). Therefore, continued shrinkage of thin 

YSZ layer on rigid SS-430L surface will lead to cracks and delamination.  

By increasing the ramping rate during co-sintering in reducing atmosphere the shrinkage of SS-

430L can be increased to an extent that it is similar to YSZ shrinkage upon reaching sintering 

temperature. At a ramping rate of 5.0℃/min, the shrinkage of SS-430L layer and YSZ were 

17.1% and 18.1%, respectively as opposed to 8.8% and 17.1% at 2.5℃/min ramping. Since 

increasing ramping rate shifts the maximum shrinkage rate to a higher temperature for YSZ, 

upon reaching sintering temperature YSZ is not as close to its maximum shrinkage. For 5℃/min 

ramping rate upon reaching sintering temperature YSZ has to shrink 2.4% more to get to 

maximum shrinkage whereas sample with 7.5℃/min ramping rate has to shrink 3.1% to get to 

maximum shrinkage. This means that the thin YSZ layer is softer upon reaching the sintering 

temperature at higher ramping rate and will not crack upon continued shrinking. In this study, 

7.5℃/min ramping rate gives the best co-sintered half-cells without physical defects. The anode 

catalyst (NiO/SDC) was infiltrated as a solution in the porous metal support, and the cathode 

catalyst (LSCF/GDC) was printed on YSZ. Initial cell performance testing showed open circuit 

voltage of 0.989 V at 700℃ and maximum power density of only 0.5 mW.cm-2 at 700℃.    

For MS-SOFCs with copper co-doped SDC, 0.5 mol% copper co-doped SDC was used. There 

is a difference in shrinkage set off temperature for copper co-doped SDC and SS-430L, where 
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shrinkage of copper co-doped SDC starts around 700℃ compared to 1100℃ for SS-430L. This 

means that during co-sintering, the copper co-doped SDC layer will be close to its maximum 

shrinkage when the sample reaches 1100℃, which is only when SS-430L starts shrinking. Due 

to such a difference in shrinkage behaviors, MS-SOFC with copper co-doped SDC were not 

successfully fabricated. Contrary to the initial hypothesis to lower the sintering temperature, 

because of shrinkage dynamics of SS-430L, higher co-sintering temperatures may be more 

suitable. 
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Chapter 1 Introduction and Motivation 

In the past 5 decades the world has seen an exponential increase in the demand of electrical power, 

with an increase in demand from 9,886 to 24,816 TWh between 1985 and 2016 [1]. To fulfill this 

steep rise in demand using conventional thermal power generation devices larger and larger 

amounts of fossil fuel are consumed. Conventional thermal power generation devices have low 

efficiencies, averaging 41%  worldwide[2], and also contribute substantially to the emissions of 

greenhouse gasses leading to global warming. It has been reported that 17 of the 18 warmest years 

in the last 136 years occurred after 2001 [3]. In 2017 the Earth surface temperature was reported 

to be 0.9℃ higher than the average Earth temperature between the 1951 and 1980 [3]. 

These problems have driven research in developing new renewable energy technologies, and in 

developing power generation devices with higher efficiencies and lower greenhouse gas emissions. 

Amongst many others, fuel cells (FC) have been researched extensively as a solution for the past 

50 years. FC is an electrochemical device which works by directly converting chemical energy of 

a fuel to electrical energy thereby having a higher electrical efficiency. There are several types of 

FCs, with solid oxide fuel cells (SOFCs) having the ability to operate with a variety of fuels 

including natural gas, renewable natural gas (RNG), bio-gas, hydrogen, etc. Hence, SOFC is an 

attractive technology to address current energy and environmental crisis and has been under 

development in the past 3 decades.  

1.1 Fundamental of Fuel Cells 

Fuel cells (FC) are electrochemical devices used to convert chemical energy of a fuel directly to 

electricity. The direct transformation helps attain higher efficiencies than heat engines due to lower 

energy losses during energy conversion. Since 1960s many different types of FCs have been 

developed: 

1. Polymer Electrolyte Membrane Fuel Cell (PEM-FC). 

2. Alkaline Fuel Cell (AFC). 
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3. Direct Methanol Fuel Cell (DMFC). 

4. Phosphoric Acid Fuel Cell (PAFC). 

5. Molten Carbonate Fuel Cell (MCFC).  

6. Solid Oxide Fuel Cell (SOFC).  

Essentially, all FCs are made of three primary components; anode, electrolyte, and cathode. All 

three components have specific electrochemical functions to perform. Anode is responsible for the 

electrochemical oxidation of fuel molecules, cathode is responsible for the electrochemical 

reduction of the oxidant molecules, and electrolyte bridges the anode and cathode to complete the 

circuit. The main role of electrolyte is to transport either anions or cations to the opposite electrode 

depending on the type of FC. By direct electrochemical oxidation and reduction leading to 

production and transportation of electrons FCs avoid energy transformation steps, which are 

inherent in conventional thermal power generation systems. This leads to higher efficiencies of the 

system making this technology more attractive.  

1.1.1 Working of a Fuel Cell 

The reactions taking place at the electrodes (anode and cathode) are commonly known as half-cell 

reactions. For instance, in the case of SOFC with hydrogen as fuel, the anode reaction is: 

𝐻2  +  𝑂2−  → 𝐻2𝑂 + 2ⅇ−  R-1.1 

The reaction at the cathode, in turn, is: 

1

2
𝑂2 + 2ⅇ− → 02−  R-1.2 

And the overall reaction is: 

𝐻2 + 1
2⁄ 𝑂2 → 𝐻20  R-1.3 

Depending on the type of FC, these reactions can take place at different temperatures, for instance 

in the case of SOFC the operating temperature is normally kept between 700-900℃ to allow for 

sufficient electrolyte conductivity. Regardless of the operating temperature, the overall 

performance is governed by thermodynamic and kinetic principles. The maximum work attainable 



3 

 

through a FC is equivalent to the Gibbs free energy of a particular full cell reaction. In the above 

case it will be the Gibbs free energy of the hydrogen reaction with oxygen. Using the first and 

second law of thermodynamics, equations for net heat generated/absorbed and work done by the 

system can be formulated as: 

𝑞 = 𝑇∆𝑠 − 𝑇𝛿𝑠  (1.1) 

𝑤 =  −∆𝐺 − 𝑇𝛿𝑠  (1.2) 

where ‘q’ is the heat generated or absorbed, ‘T’ is the absolute temperature of the system, ‘s’ is 

the entropy of the system, ‘𝛿𝑠’ is the entropy generated due to irreversibilities, ‘w’ is the work 

done and ‘∆𝐺’ is the Gibbs free energy. The equation for work done is basically the electrical work 

done by the system. This electrical work is made from two components including the reaction term 

as change in Gibbs free energy and the entropy generation term. For maximum work, the 

generation of entropy equals zero; under this condition the work done becomes the work done 

under reversible conditions. It should be noted that reversible work cannot be achieved in reality. 

However, it can be used as a standard to rate the performance of a fuel cell since the work done in 

that case is the maximum work done (Equation 1.3). 

𝑤𝑚𝑎𝑥 =  −∆𝐺   (1.3) 

An ideal fuel cell is arbitrarily taken to be a fuel cell running on hydrogen without any 

irreversibility. This is the standard hydrogen fuel cell and the reversible potential given from this 

cell is taken as the standard mark. Below is the calculation for evaluating reversible cell potential. 

The reversible cell potential is the electrical potential generated when a fuel cell works under 

completely reversible conditions. It is appropriate to express this work done in term of potential 

difference or the electromotive force as it better correlates to the output of a fuel cell. The electrical 

energy output, E, from a fuel cell is defined as the potential energy equivalent to the work done (J) 

in moving a unit charge (C) through an electrical field. This has the units of Volts (V) and the fuel 

cell potential is the potential difference between the cathode and anode potential (Equation 1.4). 

𝐸 =  
w

𝑛𝐹
  (1.4) 
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where ‘w’ is the work done, ‘n’ is the number of moles of electrons released per mole of fuel and 

F is the Faradays constant (F = 96487 C/mole electron). The maximum potential (or reversible cell 

potential), Emax can be determined as: 

𝐸𝑚𝑎𝑥 =  
𝑤𝑚𝑎𝑥

𝑛𝐹
=  

−∆𝐺

𝑛𝐹
  (1.5) 

Like any other energy conversion device, fuel cells are limited by the second law of 

thermodynamics to a maximum efficiency only attainable in case of reversible operation. This 

efficiency (ηr) is labeled as the second law efficiency and can be calculated through 

η𝑟 =  
∆𝑔

∆ℎ
  (1.6) 

As changes in Gibbs free energy and enthalpy are functions of temperature, the efficiency of a fuel 

cell also depends on temperature. In most cases the efficiency decreases with increasing 

temperature because the change in entropy increases. Other losses in fuel cell performance occur 

due to irreversibility in the system, such as incomplete reactions. However, since a fuel cell does 

not operate within a temperature range like conventional power production units, the efficiency of 

a fuel cell, in purely ideal terms, is higher than that of conventional thermal power generation 

device. 

The study of thermodynamics of a fuel cell is important to assess the maximum performance 

possible. However, the study of kinetics of a fuel cell gives details about how fast and how much 

current can be produced. It also gives insight into the actual reaction pathways or mechanism, as 

well as providing qualitative and quantitative analysis of losses occurring during actual working 

conditions. In a fuel cell electrochemical reaction takes place at both electrodes and hence there is 

an associated potential with the electrodes. This potential is referred to as the anodic and cathodic 

potentials. The overall cell potential, Er, is the difference between the cathode potential and the 

anode potential. 

𝐸𝑟 =  ∅𝑐,𝑟 −  ∅𝑎,𝑟  (1.7) 

where ′∅𝑐,𝑟′ and ′∅𝑎,𝑟′ are the reversible cathode and anode potentials, respectively. The overall 

reversible cell potential ‘𝐸𝑟’ represents the voltage generated when the fuel cell runs reversibly, 
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that is without any extraction of current and without any other losses. The actual overall cell 

potential can then be defined as: 

𝐸 =  ∅𝑐 −  ∅𝑎  (1.8) 

where ′∅𝑐′ and ′∅𝑎′ are the actual cathode and anode potentials, respectively. Using Eqs. 1.7 and 

1.8 the overpotential associated with a fuel cell can be calculated (see Eq. 1.9).  

η =  𝐸𝑟 − E   (1.9) 

Using eqs. 1.7-1.9, anode and cathode overpotentials can also be defined. It can be shown that the 

actual potential is the difference between the reversible overall cell potential and the sum of all the 

overpotentials. Normally, irreversibility in a cell increases the anodic potential and reduces the 

cathodic potential, thus decreasing the overall cell potential. Therefore, the anode overpotential is 

always positive and the cathode overpotential always negative. 

 

Figure 1.1: Ideal and actual fuel cell voltage/current characteristics [3]. 

The three major types of overpotentials are activation, ohmic and concentration overpotentials. 

Figure 1.1 shows voltage and current density relation and depicts the region where these losses 

occur. Among these, the activation and concentration overpotentials can be explained by studying 

the kinetics of a fuel cell, however, ohmic overpotential requires the study of transport 
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phenomenon in the fuel cell. Activation overpotential is the loss in cell potential due to activation 

energy required to start the reaction; that means that a certain amount of cell potential is used up 

in crossing the energy barrier associated with electrode reactions. Hence, when a current is drawn 

a small but steep decrease in cell voltage is seen at low current densities.   

The transport of species involved in a fuel cell operation is also very important. The rate at which 

reactants are supplied to the reaction active sites and the rate at which the products are removed is 

critical to maintaining a constant production of electrical power. For instance, in case of large 

current density (high rate of consumption for reactants) the supply of reactant limits the overall 

process. In extreme cases, the supply of reactants is slow compared to the current produced, and, 

hence, because of shortage of reactants, the current might rapidly decline to zero. The value of 

current density drawn for this to happen is called the limiting current density. Losses happening 

due to insufficient supply of reactants or mass transfer limitations are known as concentration 

overpotential and can be studied and optimized through a study of transport phenomena in 

electrodes. 

Similarly, the transport of charged species through the electrolyte governs the overall system 

performance. Charged species, preferably ions rather than electrons, move through the electrolyte 

to complete the electrochemical reaction and form a closed circuit. The flow of charged species 

happens under the influence of a charge gradient. Conductivity, transport of ions, is used as a 

characterization parameter for electrolyte selection. Governing equations pertaining to mass, 

energy and momentum coupled with Fick’s law of diffusion can be used to study the transport of 

these species in electrodes and the electrolyte.  

1.1.2 Types of Fuel Cells 

There are different types of fuel cells, depending on the choice of electrolyte. Even though the 

working principle remains the same, the type of charge the electrolyte transports is different for 

different fuel cells. The choice of electrolyte also governs the operating temperature of these fuel 

cells. Below is a list and brief description of the main types of fuel cells. 

1. Solid Oxide Fuel Cells (SOFC): 
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Solid oxide fuel cells use ceramic metal oxides, commonly doped zirconia and ceria, as the 

electrolyte to transport negative oxygen ions. Since these are ceramic oxides, their 

operating temperatures are in the range 600-1000C to sustain sufficient ionic conductivity.  

2. Molten Carbonate Fuel Cells (MCFC): 

MCFC uses a mixture of lithium and potassium carbonate to transport negative carbonate 

ions. Similar to SOFCs, higher conductivity is achieved at high temperatures. The usual 

operating temperatures are around 600oC.  

3. Polymer Electrolyte Membrane Fuel Cell (PEMFC): 

As goes by the name PEMFC uses a polymer electrolyte which can transport ions with 

positive charge. Hydrogen ions are transported through the electrolyte in this case. These 

fuel cells normally use an acidified polymer film to conduct the protons. Their normal 

operating temperatures fall in the range of 70 to 90oC. 

4. Phosphoric Acid Fuel Cells (PAFC): 

PAFCs also transport protons through the electrolyte. The direction is from anode to 

cathode. As suggested by the name, normally phosphoric acid is used as the electrolyte. 

Normal operating temperature ranges between 115 and 205oC.  

5. Alkaline Fuel Cells (AFC): 

AFCs transport negative hydroxyl ions through the electrolyte; hence the electrolyte is an 

alkaline solution normally. The most common choice is potassium hydroxide. These cells 

operate in the range of 100-220oC. 

Based on the above definition the most prominent feature of MCFC and SOFC is that they do not 

specifically need hydrogen as fuel. They show higher fuel flexibility when compared to others. 

The comparison of all these types of fuel cells is shown in Table 1.1. 

Table 1.1: Comparison of different Fuel Cells (adapted from [11]). 

 PEMFC PAFC MCFC SOFC 

Type of 

Electrolyte 

H+ ions (with 

anions bound in 

polymer 

membrane) 

H+ ions (H3PO4 

solutions) 

CO3
2- ions 

(typically molten 

LiKaCO3 

eutectics) 

O2- ions 

(Stabilized 

ceramic matrix 
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with free oxide 

ions) 

Common 

electrolyte 

Solid polymer 

membrane 

Liquid 

phosphoric acid 

in lithium 

aluminum oxide 

matrix 

Solution of 

lithium, sodium, 

and/or potassium 

carbonates 

soaked in a 

ceramic matrix 

Solid ceramic, 

Yttria stabilized 

zirconia (YSZ), 

Doped Ceria 

Typical 

construction 

Plastic, metal or 

carbon 

Carbon, porous 

ceramics 

High 

temperature 

metals, porous 

ceramic 

Ceramic, high 

temperature 

metals 

Internal 

reforming 

No No Yes, good 

temperature 

match 

Yes, good 

temperature 

match 

Oxidant Air to O2 Air to Enriched 

Air 

Air Air 

Operational 

Temperature 

150-180°F (65-

85°C) 

302-392°F (150-

200°C) 

1112-1292°F 

(600-700°C) 

1202-1832°F 

(700-1000°C) 

DG system level 

efficiency 

(%HHV) 

25 to 35% 35 to 45% 40 to 50 % 45 to 55% 

Solid oxide fuel cells (SOFC) are a type of FCs which can operate with a variety of different fuels, 

making SOFC a more viable and practical choice. They are also competitive when it comes to 

conversion efficiency (Table 1.1). SOFC is an all solid device made from special rare earth metals 

and metal oxides. These solid materials demonstrate electrochemical properties, in that they can 

conduct and transport charge species (ions and electrons) and promote electrochemical charge 

transfer reactions for the generation of electricity. These materials are only active at sufficiently 
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high temperatures, in the range of 700-1000℃. This means that SOFC is a device which operates 

at high temperatures and can be coupled with heat recycling for even higher efficiencies. This 

makes SOFC a popular choice for research globally.  

1.2 Fundamentals of Solid Oxide Fuel Cells  

The first fuel cell was created in 1838 by the English scientist, William Groove, and was named 

after him as the “Groove Cell”[4] . Since then, tremendous work has been done in the development 

and realization of this technology, with major contributions from Guagain, Nernst and Wagner in 

the field of SOFCs. In 1859 Guagain [5] made the discovery of ‘solid electrolyte’ followed by 

Nernst [6] who reported that 15 mol% Yittria stabilized with Zirconia supports ionic conductivity 

in 1899. Later in 1943 Wagner showed that doped oxides show ionic conductivity through oxygen 

ion vacancy hoping mechanism, where oxygen ions jump through the vacancies in the crystal 

structure of a doped oxide solid solution [7]. This phenomenon of vacancy hoping in solid 

solutions of doped oxides was later investigated for use in SOFC. Keeping this in mind, many 

patents were filled between the period of 1960-70 regarding oxygen conduction through thin 

ceramic oxide films, which showed appreciable performance at high temperatures of 1000oC [8].  

A simplified schematic of SOFC is shown in Figure 1.2.  

 

Figure 1.2: Schematic of a Solid Oxide Fuel Cell. 
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There are three sub kinds of SOFCS; Anode Supported Cells (ASC), Electrolyte Supported Cells 

(ESC) and Cathode Supported Cells (CSC). Although the choice of support, the component which 

is left thicker, depends on the application, commonly ASCs are the most popular choice. This is 

because of cell performance optimization. Since electrolyte is only liable for charge conduction, 

the thinner it is the lesser the resistance faced in the transport which ultimately leads to lower 

energy or cell potential loss. Since cathode shows a higher resistance to charge transfer reactions 

than anode, thin cathodes are preferable. The conventional structure, ASC, and operating 

conditions of a SOFC cause several problems pertaining to both cell life and performance. 

1.3 Motivation 

Limitations with SOFC can be divided into three categories; i) wear and tear of cell because of cell 

operation, ii) problems associated with cell component materials (reactivity of cobalt containing 

cathode with YSZ, grain coarsening of nickel containing anode, etc.), and iii) cell’s structure. 

Firstly, the operating temperature, being in the range of 700-900℃, can lead to cell wear and tear 

in many ways. Apart from inducing high capital costs it also causes prolonged start-up time for 

pre-heating requirements. Figure 1.3 shows the requirements and limitations of cell components 

operating at these high temperatures.  

 

Figure 1.3: Material limitations for SOFC [6]. 
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At these high temperature, nickel, the active anode catalyst, starts to sinter slowly [9,10] leading 

to agglomeration and coarsening of grains. The coarsening of nickel particles can lead to reduction 

in Triple Phase Boundary (TPB) which reduces the area available for electrochemical reactions 

and hence causes degradation[11]. Secondly, the choice of material can lead to chemical and 

physical changes in the cell structure leading to low cell life and decreased performance over time.   

Conventionally, nickel oxide mixed with common electrolyte materials (Yittrium Stabilized 

Zirconia (YSZ), Samarium Doped Ceria (SDC)) has been used as the anode material [12]. The 

choice of nickel is because of its high catalytic activity towards electrochemical oxidation of fuel 

molecules, and also because it is an active catalyst towards internal reforming of carbon fuels 

allowing for fuel flexibility in SOFCs. The use of a mix of nickel oxide and SDC as the anode and 

structural support comes with a problem. Prior to operation nickel oxide is reduced to activated 

nickel, as nickel is active towards the desired reactions opposed to nickel oxide. The reduction and 

oxidation reaction of NiO and Ni are given below. 

𝑁𝑖𝑂 +  𝐻2  →  𝑁𝑖 +  𝐻2𝑂  R-1.4 

𝑁𝑖 +  1

2
𝑂2  →  𝑁𝑖𝑂  R-1.5 

The above two reactions are exothermic, but the difference in magnitude of energy released is 

significant. Reduction reaction has a net enthalpy of -13 kJ.mol-1 and the net enthalpy for oxidation 

is -239.8 kJ.mol-1. This can lead to a thermal shock in the cell structure and is also a cause of cell 

degradation caused by reduction-oxidation cycle [13]. The continuous oxidation and reduction, 

commonly known as redox cycling, also leads to a large volume change in the support layer which 

can induce damage to the structure. In cases where there is fuel shortage or fuel cut off nickel can 

be oxidized back to nickel oxide gaining 69.2% volume as compared to bulk nickel [14]. Since the 

materials used are metal oxides and ceramics, which are brittle in nature, the integrity of the cell 

is compromised during redox cycling while in operation. Waldbilig et al. [15] have done extensive 

work on cell failure due to redox cycling in which the anode was made of nickel oxide mixed with 

either YSZ or SDC. Figure 1.4 shows a SEM image of the cross-section of an (ASC) after redox 

cycling. It is evident in the figure that because of stresses in the anode, caused by redox cycling, 

the electrolyte cracked.  



12 

 

 

Figure 1.4: SEM image of cross section of an Anode Supported Cell (ASC) with a vertical crack 

passing through the electrolyte layer [15]. 

Considerable research has been conducted to better understand redox cycling at the anode and to 

develop ways to mitigate this problem [16–18]. However, it has been reported that anode redox 

cycling is the major failure mechanism for ASCs [14,19].  

Thermal cycling, which is fast heat up and cool down of a cell also contributes to cell failure. It 

has been reported that ceramics, materials used in SOFC, undergo racheting (common in metals) 

where the properties of the material change due to plastic deformation at high temperature [12]. In 

the case of SOFCs it has been reported that cermet anode made of Ni/YSZ experiences an increase 

in its Coefficient of Thermal Expansion (CTE) during these cycles which leads to stresses in the 

support layer [20]. This change in CTE leads to an aggravated thermal expansion mismatch 

between different components of SOFC which can cause cell cracking and delamination. In 

summary, most of the problems associated with conventional SOFCs are related to low structural 

integrity caused by operating conditions and choice of materials. 

To cater for these problems, in the past two decades, a new type of SOFC has been under 

development, which is Metal Supported-Solid Oxide Fuel Cell (MS-SOFC). These cells are also 

being labelled as the third generation SOFCs. Essentially, the support layer is made of metal and 

all other components; anode, electrolyte and cathode are deposited on it. Figure 1.5 shows a 

comparison between ASC and MS-SOFC.  



13 

 

 

Figure 1.5: Schematic of a) Anode Supported Cell (ASC) and b) Metal Supported Cell (MS-

SOFC). 

In this type of cell, the porous metal layer acts as the mechanical support of the cell and can also 

acts as the interconnect in cell stacks. Researchers have used different materials (Alloys) as metal 

support but the most popular choice remains stainless steel. The addition of metal as a support can 

help introduce tolerance to redox and thermal cycling to the entire cell structure. In addition, it 

also provides cells with more ruggedness hence making it possible to use SOFC in portable 

applications where the system might go through physical shocks [21]. Further, it also allows for 

use of thinner active layers which reduces the overall ohmic resistance in the cell. 

The idea of MS-SOFCs, however, is not new; the first rounds of research date as far back as 1960s 

when zirconia was used as the electrolyte with austenitic stainless steel; the recorded performance 

for this cell was 115 mW.cm-2 at 750℃ [22]. Over time, researchers tried using special alloys like 

NiCrAlY and CrFe5Y2O3 [23]. Even though work in this type of cells took a faster pace in early 

2000s there is still a lot to cover to completely understand and perfect both the manufacturing and 

operation of these cells. A significant number of research groups rely on the use of techniques like 

Plasma Spray Deposition (PSD) and Pulsed Laser Deposition (PLD) for the manufacture of these 

cells. In these methods, ceramic layers (especially the thin dense electrolyte layer) are deposited 

on a pre-manufactured porous metal substrate. However, it has been reported that electrolyte 

deposited using thermal spray deposition methods is not fully dense leading to cell inefficiencies 
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[24,25]. Similarly, the use of plasma spray deposition can lead to localized hot spots on the 

substrate which can cause physical defects like warping and cracking [26]. It was only in the late 

1990s and early 2000s that wet ceramic processing techniques like tape casting were deemed useful 

in the manufacture of MS-SOFCs [27],[28]. In this method, cell components are casted in layer 

form, stacked together and co-sintered for bonding at high temperatures. One of the prominent 

features of this method is the higher electrolyte densifications can be reached. However, there are 

several challenges associated with the use of this technique to fabricate MS-SOFCs. 

Since the components of the cell fall under different material categories (metal support is a metal, 

and electrolyte is a metal oxide ceramic), there is a mismatch in shrinkage behaviors of these 

components under conventional sintering profiles. This mismatch can lead to cell cracking, 

warping, and layer delamination during co-sintering [29]. Similarly, the use of metal also puts a 

limitation on the choice  of the electrolyte material; for example, cerium (IV) tends to reduce to 

cerium (III) in reducing atmospheres at high temperature, rendering co-sintering of SDC with 

metal support difficult [30]. Further, use of reducing atmosphere can create problem with cathode 

sintering because cathode is a perovskite which can reduce under reducing atmosphere. Even 

though many research groups use tape casting and co-sintering to fabricate MS-SOFCs, there are 

little data published related to the specifics of this fabrication method. It is clear that most of the 

associated challenges are related to the materials used. Hence, a better understanding of material 

properties, especially shrinkage behavior, can help further optimize tape casting and co-sintering 

to fabricate MS-SOFCs with SDC and YSZ as electrolyte.  

SDC shows a higher conductivity than YSZ at lower temperatures. This means that using SDC as 

electrolyte with MS-SOFC can reduce the operating temperature and hence wear and tear of the 

cell during operation. However, as mentioned above, ceria (IV) oxide tends to reduce to ceria (III) 

oxide in reducing atmosphere at high temperatures. One solution might be to lower the sintering 

temperature of SDC which might mitigate the extent of reduction and hence distortion in ceria 

crystal lattice. In the past, several methods have been tried for lowering sintering temperature, with 

the use of sintering aid being labelled as the most effective [31]. It has been reported that copper 

acts as an effective sintering aid with small effect on the electrochemical properties of GDC [32]. 

Even though copper has already been identified as an effective sintering aid, all published works 

use more than 1.0 mol% doping of copper with GDC [33,34] or SDC [31]. Too high copper content 
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affects the ionic conductivity, and thus it is critical to study lower copper content (below 1.0 

mol%). Once the effect of copper is fully characterized, copper co-doped SDC may be used as 

electrolyte in MS-SOFCs. Copper co-doped SDC and SS-430L can be tape casted. The casted 

Layers of SS-430L and copper co-doped SDC can then be stacked and co-sintered at a lower co-

sintering temperature (e.g. 1100℃) in reducing atmosphere. Hence, the first objective of this 

research was to use copper as a sintering additive with SDC and to fully characterize the effect 

copper has on physical and electrochemical properties of SDC. Of particular importance is the 

effect on shrinkage profiles and conductivity.  

To successfully use co-sintering to fabricate MS-SOFCs, it is critical to understand the shrinkage 

behavior of cell components. Different cell components behave differently when heated under a 

particular sintering profile; if the shrinkage behavior of these components is not similar it can lead 

to physical defects. However, the shrinkage behavior of a particular material can be slightly tuned 

by changing the dynamics of the sintering temperature profile. For instance, different ramping 

rates during sintering to same final temperature may show different shrinkage profile for same 

material. In the case of MS-SOFC, it is desirable to co-sinter at least the metal support and 

electrolyte together. Having a deeper understanding of the shrinkage behavior of metal support 

(ferritic stainless steel 400 series here) and electrolyte (YSZ and SDC) will help achieve defect 

free (no cracks, warping, or delamination) co-sintered half-cells with desirable qualities (metal 

support porosity, cell component thickness, electrolyte layer density, etc.). Hence, the second 

objective of this research is first to study the shrinkage behavior of ferritic stainless steel 400 series, 

YSZ, and SDC and second to study the co-sintering of half-cells.  

1.4 Organization of Thesis 

Chapter 1 is an introduction to the research work presented in this thesis and also gives the 

motivation for why the work was done. Chapter 2 gives out the literature review pertaining to both 

sub-projects. The first section of chapter 2 summarizes the work that has already been done in the 

field of MS-SOFCs. This includes details about materials used and cell structures. The second 

section of chapter 2 gives out details about the work done on the use of sintering aid for SDC as 

electrolyte. Chapter 3 pertains to the general theory of sintering which is an important aspect of 

this research. In both, lowering the sintering temperature of doped ceria and in co-sintering of MS-
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SOFC cell components, it is important to understand the theoretical principles of sintering to later 

tune sintering profile for our purpose. Chapter 4 describes the experimental approach to achieve 

both objectives. Other than giving out the experimental plan, Chapter 4 also explains why certain 

experiments are necessary for this research and also discuss the underlying theory behind 

Electrochemical Impedance Spectroscopy (EIS) for the determination of conductivities. Chapter 4 

also describes some analytical equipment used in the research like SEM, XRD etc. The exact 

experimental procedures for sample preparation and testing, however, are given in the result 

chapters (Chapters 5 and 6). Chapter 5 gives out the results of using sintering aid (copper) with 

SDC. In it, results pertaining to crystal structure, morphology of sintered samples, sintering 

dynamics of samples, and electrochemical properties are discussed. Chapter 6 presents and 

discusses the results of fabrication of MS-SOFC using tape casting and co-sintering method. It 

primarily gives the results of experiments performed in order to fabricate MS-SOFC which can be 

tested for performance. Chapter 7 gives out the conclusions and recommendations for future work.  
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Chapter 2 Literature Review 

2.1 Metal Supported Solid Oxide Fuel Cells 

Interest in third generation SOFCs has its roots deep in the mid twentieth century. The first 

attempts at MS-SOFC date in 1960s when austenitic steel was used as a support with Zirconia as 

electrolyte [22]. However, after this there was not much research reported until mid 1990s. This 

was because SOFCs at that time were still in embryonic stages and a lot of work was being directed 

towards materials which might perform better electrochemically. As stated previously using metal 

as the support comes with numerous advantages as delineated by Tucker [21], such as: 

1. Reduction in material cost. Most of the support material in conventional cells like ASC, 

ESC or CSCs is replaced by cheaper metal. 

2. Metal as support enhances the tolerance to thermal cycling and to redox cycling. 

3. It makes a cell more robust and more viable for portable applications where the cell might 

go under physical shock.  

4. It also helps reduce the resistive losses during operation by allowing the use of thin-films 

of all functional ceramic layers.  

Since 1990s a few research groups have taken up work in the field of MS-SOFCs, with major 

research being done by Lawrence Berkeley National Laboratory (LBNL), Ceres Power, Riso 

National Laboratory, Forschungszentrum Julich, Danish Technological University (DTU), Topsoe 

Fuel Cells (TFC), DLR, Plansee, and the University of Toronto [35]. Groups from Korea and China 

have also made contributions to the development of MS-SOFCs. The addition of metal to an 

originally full ceramic cell creates problems due to the mismatch of material properties and these 

problems arise in manufacturing and during operation. Major issues with the use of metal as a 

support are: 

1. The choice of metal to be used. Since the metal comes in contact and binds to the ceramic 

components, it should have physical properties similar to those of ceramics. During 

operation the cell is heated to high temperatures and the CTE of all components should be 

similar to avoid cracking or delamination of cell layers [36]. 
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2. Co-sintering of metal support with ceramic layers (Anode Functional Layer (AFL), 

electrolyte, etc.) is difficult to design. Metal cannot be sintered in ambient atmosphere at 

conventional SOFC electrolyte sintering temperatures (1350-1500℃) [35]. Temperatures 

above 1200℃ can lead to physical deformation of the support; for instance it has been 

reported that high temperature sintering of metal support with NiO can lead to inter-layer 

diffusion of chromium and nickel [37]. 

3. Most cathode materials (mostly doped metal oxides) require oxidizing atmosphere during 

sintering. With metal as the support, this becomes a hurdle as metal, especially ferritic 

stainless steel, cannot undergo high sintering temperatures in oxidizing atmospheres. 

Incorporation of cathode is one of the major challenges in the development of MS-SOFCs 

at this stage [35]. 

4. Morphological changes in the metal support during operation. These are basically both 

physical and chemical changes where the metal grains deform (coarsen, migrate etc.); 

chromium migrates from the alloy structure towards functional anode or in the case of fuel 

cut makes chromium oxide.  

All above stated issues can be categorized into two broader categories; one where the source of 

problem is the type of material used, and second where degradation of cell takes place during 

manufacturing and operation. The present literature review includes a history of what has been 

accomplished in the past two decades and highlights the remaining issues. For clarity, the review 

is divided into separate sections conforming to the major problems in the commercialization of 

MS-SOFCs. As of now there are four major aspects on which R&D is being carried out: 

1. Choice of metal to be used as substrate. Even though the most common choice of metal is 

stainless-steel, researchers are also studying other metals and alloys for the purpose of 

support in a MS-SOFC.  

2. Material to be used in MS-SOFC as the electro-catalysts. Researchers have tried a variety 

of anode and cathode catalyst materials. The electrochemical performance is usually 

measured in terms of open circuit voltage (OCV), polarization curves, stability over time, 

etc. and on the short term (during manufacturing) and long term (during operation) 

interaction of these materials with the metal support.  
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3. Structure of the cell. Apart from the four primary components (metal support, anode, 

electrolyte and cathode), researchers have worked on the effects of adding additional layers 

to act as barrier layers. These are done in part to solve the problem of interaction between 

components of the support and other layers.  

4. Fabrication techniques for MS-SOFCs. There are several ways to fabricate MS-SOFC, 

including Plasma Spray Deposition (PSD), Pulsed Laser Deposition (PLD), Magnetron 

Sputtering, and tape casting. Details, however, of fabrication techniques are commonly left 

out of published works. 

This review will first give out details about the metal materials which have been tried up till now 

and the most common choice based on performance. Then, the review will give out details of 

electro-catalyst materials for use in MS-SOFC. At the end, an overview of cell structures fabricated 

using tape casting and co-sintering is given.  

2.2 Materials used in MS-SOFC 

It was described earlier that a typical SOFC is made of at least three components, which increases 

to four in the case of metal supported solid oxide fuel cell. These components work together to 

produce electrical current, hence their compatibility with each other is vital. A schematic of MS-

SOFC is shown in Figure 1.5.  

2.2.1 Material for metal support 

Over time several metals have been tried in MS-SOFCs. The selection criteria include: 

1. Compatibility with other SOFC materials, especially during heat-up and cool down.  

2. High resistance towards oxidation. 

3. High resistance to thermal cycling.  

4. High electrical conductivity.  

5. Cost of material 

Based on above requirements ferritic stainless steel has been used extensively as metal support 

(MS). Firstly, the CTE of Stainless-Steel (SS) 430L, in the range of 10-12 ppm.K-1, matches 

closely to that of SDC and YSZ (also 10-12 ppm.K-1) [21]. Secondly, it contains 16-18% Cr which 
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can form an electrically conductive protective coating of chromium oxide [35]. Thirdly, it is one 

of the cheaper options relative to the use of special alloys like Hastelloy X, NiCrAlY, etc.[35]. 

Therefore, SS-430L has become one of the most common choices to act as metal support [38–40]. 

Xia et al. [41] used SS-430L in their MS-SOFCs and reported a maximum power density (MPD) 

of 246 mW.cm-2 at 700℃. However, some reports have also suggested against the use of SS-430L; 

for instance, an early study [42] showed that 16-18% Cr content is not enough to form a protective 

coating against oxidation when SS-430L was used as metal support for SOFC application.  Even 

though SS-430L has been successfully incorporated in MS-SOFCs, there are still some gaps in the 

complete understanding of its oxidation behavior, especially under fuel side conditions (mostly 

humidified H2 at 600-800℃). Although chromia scale is conductive, it is still the least conductive 

path between electrolyte and current collectors [35], which can somewhat increase the ohmic 

resistance of the entire circuit. Similarly, after a certain amount of oxidation, chromia can lead to 

spalling of SS-430L structure which leads to disconnected electrical paths [21]. It has been 

reported that a 5 micron thick layer of chromia is the threshold after which SS-430L starts to spall 

[28]. In [28], Tucker reported that in a 1200 hour long operation, SS-430L MS on the cathode side 

(air) showed a chromia scale of approximately 0.9 micron thickness. With similar growth kinetics 

it was concluded that the cell could run for 30,000 hours before spalling occurs. Another problem 

with ferritic stainless steel is the presence of silicon and aluminium. Both of these can form non-

conductive oxides during operation. It has been reported previously that even 0.017 wt% Si will 

oxidise in stainless-steel [43].  

Similar to SS 430L, other Fr-Cr alloys like crofer 22 APU, and 22 H have also been used as metal 

support. Both have chromium in the range of 20-24 wt% which provides a better oxidation 

resistance. As a comparison, the area specific resistance (ASR) of crofer 22 APU (0.02-0.03 

ohm.cm2) during a 200 hour exposure to air at 800℃ [44] was less than that of SS-430L (0.1 

ohm.cm2) after 30 hours exposure to air at 800℃ [42]. Sarasketa-Zabala et al. [45], studied the 

oxidation of crofer 22 APU in 50% humidified hydrogen at 800℃. They reported that chromia 

scale growth occurs during the first 500 hours of operation after which there is a very small growth 

in chromia scale thickness up to 4500 hours. The scale thickness at 3000 hours of operation was 

only 1.6 microns.   
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Other than iron-based materials, a lot of research has been focused on nickel-based materials. The 

choice of using nickel as the primary component is obvious since it is the most common anode 

electro-catalyst for SOFCs. However, there is a considerable mismatch in CTE of just nickel and 

most of the electrolyte materials; for instance it has been reported that the CTE of nickel is 16.5 

ppm.K-1 compared to 12.4 ppm.K-1 for GDC [35]. This presents a major problem during cell heat-

up and cool down, as well as during sintering. One way of lowering this CTE is by alloying nickel 

with another metal, like iron [21]. 

Iron has been used as the most common alloying metal with nickel metal support. Ishihara et al. 

[46] has done extensive work on the use of Ni-Fe alloy and concluded that 10wt% Fe gives the 

best performance. Molybdenum has also been used with nickel to act as metal support for SOFCs 

[47], [48]. High MPDs have been reported in this case; for instance, 1.196 W.cm-2 at 750℃ and 

0.6 V. Further, nickel with chromium in the form of IN625 [49] alloys (Ni22Cr) and PI600 [50] 

(Ni:Cr:Fe = 74:16:9 wt%) have been studied at Gdansk University of Technology in Poland. They 

reported that addition of yittrium in the form of a protective coating, can increase the oxidation 

resistance substantially. Samples of PI600 without yittrium protective coating showed an increase 

13 wt% in mass compared to only 2 wt% in samples which were coated with yittrium.  

2.2.2 Anode 

The anode is mainly responsible for facilitating electrochemical oxidation of fuel and transport of 

electrons to the outer circuit. The most common choice for anode  electro-catalyst has been nickel 

[51]. Nickel is active towards the electrochemical oxidation of fuel and also acts as a catalyst in 

internal reforming of carbon containing fuels. However, common anode electro-catalyst is not only 

made of nickel, rather it contains a mixture of nickel with SDC or YSZ. The reason for adding 

SDC or YSZ to the anode substrate is twofold: 1) it increases the Triple Phase Boundary (TPB) of 

the cell and 2) it helps match the CTE of anode to that of electrolyte. Matching CTE is important 

so that anode and electrolyte show similar thermal expansion/compression behavior and do not 

crack during operation. For instance, it is reported that Yittrium Stabilized Zirconia (YSZ) and 

SDC have CTEs in the range of 10-12 ppm.K-1 and that of nickel is 16.5 ppm.K-1
 [21]. This 

difference in CTE can lead to cell warping or layer delamination during heat up and cool down to 

high temperature operation, and during cool down from sintering. This is just one limitation 
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associated with the use of nickel as anode. With MS-SOFCs, several other problems arise which 

are discussed below. Hence, it is not uncommon to see a variety of combinations of anode materials 

being used in these kinds of cells. 

The primary problem with the use of nickel containing anode electro-catalyst in MS-SOFC (MS 

on anode side) is the interlayer diffusion of Ni and Cr [52][53]. Chromium diffusing into the anode 

layer can form chromia scale on the active sites, increasing the anode polarization resistance [53]. 

In the same way, nickel diffusing into steel can lead to microstructural changes in steel (ferrite 

stainless steel changes to austenite upon reaction with nickel) [54]. Austenitic steel has different 

CTE than ferritic steel which can lead to physical damages to the cell during heat up and cool 

down. However, nickel still remains the most popular choice as anode electro-catalyst. The reason 

for this is that it is the most active catalyst towards electrochemical oxidation and that the above-

mentioned problems maybe solved by making structural changes to MS-SOFCs like addition of 

micron level thin diffusion barrier layers.    

Zhan Z et al. [38] have worked widely on anode catalyst materials for MS-SOFCs. They have tried 

using only nickel as their functional anode [38] with a 2 wt% loading. During a 12-hour operation 

in humidified hydrogen, the combined electrode polarization resistance increased from 2.28 to 3.5 

Ω.cm2. Figure 2.1 shows impedance spectra at the start and end of 12 hours.  

 

Figure 2.1: Impedance spectra of a metal supported solid oxide fuel cell with impregnated nickel 

as anode and Strontium Samarium Cobalt oxide (SSC) as cathode [38]. 
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It was reported that the initial high polarization (2.28 Ω.cm2) was due to low catalyst loading and 

that its increase through the 12 hours period was because of coarsening of nickel particles. Based 

on the work of Zhan et al. [38,55,56], Table 2.1 gives a comparison between Ni, Ni-SDC, and Ni-

YSZ as the anode electro-catalyst.  

Table 2.1: Summary of performance of MS-SOFCs with different anode materials [38,55,56]. 

Anode Catalyst MPD/Temperature 

(W.cm-2)/(℃) 

Combined 

Polarization 

Resistance 

(Ω.cm2) 

Anode 

Polarization 

Resistance 

(Ω.cm2) 

Cathode 

Polarization 

Resistance 

(Ω.cm2) 

Ni [38] 0.38/750 2.28 - - 

Ni-SDC[55] 1.09/750 0.12 0.096 0.024 

Ni-YSZ[56] 0.548/750 0.44 0.35 0.09 

It can be seen that Ni-SDC shows the best performance as anode catalyst. The reason for this is 

the high triple phase boundary (TPB) when Ni is mixed with SDC and the mixed ionic electronic 

conduction (MIEC) nature of SDC. Since SDC can also conduct electrons it reduces the ohmic 

resistance inside the anode. Another group [57] used Ni-YSZ as the functional anode layer for 

MS-SOFCs. Their cell had a honeycomb microstructure for the metal support and it was reported 

that cell showed MPD of 0.05 W.cm-2 at 700℃. This performance is considerably lower than that 

reported in the work of Zhan et al. [56]. Gadolinium Doped Ceria (GDC) is an alternate material 

to SDC, showing similar electrical properties [58]. Blennow et al. [59] have tried using GDC with 

nickel in their MS-SOFCs, which was compared with the performance when only ceria and GDC 

were used. The results are summarized in Table 2.2. 

Table 2.2: Anode polarization resistance obtained from [59] at 650℃ for different anode materials. 

Anode material Anode Polarization Resistance (Ω.cm2) 

Ceria (CeO2) 5.1 

CGO20 (Gadolinium Doped Ceria) 1.2 
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CGO20-Ni 0.12 

Comparisons of Tables 2.1 and 2.2 shows that SDC and GDC lead to very similar performance.  

In [59], MS-SOFCs with Ni-GDC were tested for galvanostatic durability testing and showed 

5%/hour degradation. Similarly, Franco et al. [60] used Ni-YSZ for cells in mobile application. 

This cell was put through a galvanostatic durability testing as well, during which the cell went 

through thermal cycles (between room temperature and 800℃ at 3℃/min) after every 100 hours 

of durability test. Throughout the test the cell maintained a power density of 0.15 W.cm-2 which 

shows that even YSZ can be used to stablize the nickel structure. In another study [61] at Plansee-

Austria, Ni-GDC was compared with Ni-YSZ as the anode functional layer. Ni-GDC showed ASR 

of 0.41 Ω.cm2 at 759℃ [61]. They used electrochemical impedance spectroscopy (EIS) to explain 

the lower ASR/polarization for Ni-GDC, it was reported that Nyquist plots for Ni-GDC only had 

a low frequency arc whereas Ni-YSZ showed a low frequency and a medium frequency arc. The 

low frequency arc is mostly attributed to gas diffusion limitation and the medium frequency arc to 

electrode process (in this case charge transfer reactions and conduction). Lower resistance to 

charge transfer in the case of GDC can be attributed to the MIEC nature of ceria in reducing 

conditions (fuel side conditions).  

It was described earlier that redox cycling and long exposure to high temperature can lead to 

detrimental effects on the anode material [2, 4, 5]. Normally a dedicated/standalone AFL is 

preferred to increase TPB, however high Ni content in a dedicated AFL can lead to cell damage 

because of volume change during redox cycles and nickel grain coarsening. As a solution, 

researchers have tried using a porous backbone/scaffold, instead of standalone anode layer, which 

is infiltrated with the anode electrocatalysts [28]. Bae et al. [64] used 8-24 wt% loading of nickel 

into an anode scaffold and reported ASR close to 1 Ω.cm2. YSZ, however, is not a good electronic 

conductor and hence researchers have tried different materials for the backbone [65]. In [65] 

La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 (LSFNT) was used as the backbone material in MS-SOFC. The back 

bone was later infiltrated with Ni-GDC precursor solution (metal nitrate solution) which was 

thermally broken down in to Ni-GDC. At 700℃ they reported a MPD of 0.77 W.cm-2 with Fuel 

Utilization (FU) of 51%. Durability testing of up to 800 hours showed a degradation of 0.151 

W.cm-2/khr in power density. Based on the above literature, it is concluded that YSZ and SDC can 
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stablize Ni in anode, and also decrease the anode polarization resistance. However, Ni mixed with 

SDC shows better performance than Ni mixed with YSZ. 

As outlined earlier one of the issues with the use of nickel in MS-SOFC is the interlayer diffusion 

of nickel and chromium. According to Zhan et al. [66] the degradation of MS-SOFCs with 

infiltrated anode electro-catalyst is more affected by nickel particle coarsening than interlayer 

diffusion. These MS-SOFCs were run through a 1500 hour long durability test and showed 

degradation of only 1.3%/1000hr. To verify the effect of nickel grain coarsening and inter atomic 

diffusion, Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy 

(EDX) were used. SEM of anode before and after 175 hours operation showed significant change 

in the microstructure, whereas EDX did not show any signs of interatomic diffusion. SEM pictures 

of the samples are shown in Figure 2.2. 

 

Figure 2.2: SEM image of MS-SOFC with Ni-SDC as the functional anode. (ao) before cell 

operation and (a1) picture after cell operation of 175 hours at 700°C [66]. 

However, Bae et al. [37] concluded that significant inter atomic diffusion takes place during MS-

SOFCs operation.  It should be pointed out though that Bae et al. used cells in which the metal 

support was a pre-made stainless steel plate on which an anode supported cell was sinter joined. 

This means that before manufacture and operation there was a segregation of stainless steel 

constituents in the metal support layer. There was a transition or adhesion layer between the plate 

and the AFL. They studied inter atomic diffusion using EDX and their results are shown in Figure 

2.3. 
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Figure 2.3: SEM image coupled with EDX spectra for MS-SOFC cells with an adhesion layer 

between metal support and anode (a) Image  and spectra before operation (b) Image and spectra 

after operation [37]. 

Figure 2.3 shows significant diffusion of iron and chromium into the functional anode layer. Iron 

is initially up to the 300 µm mark inside the anode functional layer and moves to 200 µm mark 

during operation. The presence of iron and chromium in the anode layer prior to operation shows 

that iron and chromium also diffuse in the anode during manufacturing, especially during the 

sintering process. One solution to inhibit inter atomic diffusion is the use of a diffusion barrier 

layer (DBL) [53]. 

Nickel, although the most common choice for anode, is not the only material which has been 

researched. A summary of work done at Shanghai Institute of Ceramics-Chinese Academy of 

Science is given in Table 2.3 [67–69] 

Table 2.3: Performance results for different anode materials used in MS-SOFCs at the Shanghai 

Institute of Ceramics Chinese Academy of Science. 

Anode material Polarization resistance Maximum Power Density 

Sr2Fe1.5Mo0.5O6-d (SFMO)[68] 0.11 Ω.cm2 at 800℃ 0.81 W.cm-2 at 800℃ 

La0.6Sr0.4Fe0.9Sc0.1O3-d(LSFSc) | YSZ[69] 0.21 Ω.cm2 at 800℃ 0.65 W.cm-2  at 800°C 

La0.6Sr0.4Fe0.9Sc0.1O3-d | LSGM [67]  0.90 Ω.cm2 at 800℃  0.18 W.cm2 at 800℃ 

In [68] Zhan et al. also worked on the effect of anode catalyst loading and concluded that 16 wt% 

catalyst shows the lowest anode polarization. In  Comparison to Ni-SDC (0.096 Ω.cm2 at 750°C 

[55]), SFMO shows slightly higher resistance. The primary difference in cells in [69] and [67] is 
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the electrolyte; while the cells in [69] had YSZ, cells in [67] had LSGM as electrolyte. This might 

be reason for substantially lower performance of the cells in [67] as LSGM has a lower 

conductivity than YSZ. In [67], EIS showed that below 700℃ the controlling regime at the anode 

was hydrogen oxidation, this was attributed to poor oxygen ion transfer from LSGM. By increasing 

the temperature to 800℃ the ohmic resistance decreased from 7.5 Ω.cm2 to 3.11 Ω.cm2. Even 

more interesting is the fact that ohmic resistance reduces to 0.58 Ω.cm2 by the addition of copper. 

This means that high conduction/collection of electrons also reduces the resistance to hydrogen 

electrochemical oxidation reaction. Hence, the resistance to charge transfer reaction (hydrogen 

oxidation, previously labelled as controlling regime) is not because of only slow oxygen transfer 

between electrolyte and anode interface but may also be because of slow electron removal from 

anode when copper is not present. For overall electrochemical performance, cells with and without 

copper in LSFSc as anode were tried in humidified hydrogen as fuel; MPD for cells without copper 

at 800°C was 0.18 W.cm-2 and with copper it increased to 0.54 W.cm-2. Therefore, use of an 

additional electronic conducting material like copper might be useful to reduce firstly the ohmic 

resistance of the cell and secondly to reduce the anode polarization resistance.  

Persson et al. [70] used ruthenium and nickel separately with GDC. Ruthenium showed better 

electrochemical performance than nickel. Cells with ruthenium had lower Area Specific 

Resistance (ASR) of 0.322 Ω.cm2 compared to cells with nickel (0.453 Ω.cm2). The limiting 

current density for cells with ruthenium was also higher than that for nickel. The polarization 

curves and Nyquist plots are shown in Figure 2.4. 

 

Figure 2.4: a) polarization curve for MS-SOFC with Ni-GDC (red) and Ru-GDC (black) as 

anode, b) impedance spectra of MS-SOFC with Ni-GDC (red) and Ru-GDC (Black) as anode 

[70]. 
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2.2.3 Electrolyte 

The electrolyte is the heart of a SOFC, it transports negative oxygen ions through it to complete 

the electrical circuit and provides oxygen ions for reaction with fuel at the anode. To have good 

performance there are some key requirements for the micro and macro structure of the electrolyte.  

1. The electrolyte body should be dense. High density reduces the chances of fuel or oxidant 

gas from diffusing to the other side. This is important as crossover of these gasses will lead 

to reactants reacting without producing any external current. High density also ensures that 

there is sufficiently “connected” path available for oxygen ion transport, and thus ensures 

good ionic conductivity. 

2. Adhesion with other layers. Electrolyte should be such that it should adhere to the anode 

and cathode layer. Most cells fail due to delamination of layers and cracks between layers.  

3. Shrinkage of electrolyte is another important factor; during manufacturing using sintering, 

the shrinkage of all components should match that of electrolyte.  

To satisfy the above requirements most electrolyte materials are in fact doped oxides of zirconium 

or cerium [38,53,57,71,72]. Oxides have fixed oxygen positions in the crystal structure which form 

an oxygen path in the bulk of material. By doping the oxide with a lower valent cation, oxygen 

vacancies along this structure are created which act as a path for oxygen ions. In most of the 

published literature, an OCV slightly higher than 1 V (with hydrogen as fuel) is reported for dense 

electrolytes.  

Since there are only a few options available for electrolyte, most of the work done is on electrolyte 

densification opposed to the choice of material. In essence, there are two different methods for 

densification. First is the use of high sintering temperature and second is the use of thermal 

spraying deposition methods such as plasma spray deposition (PSD), magnetron sputtering or 

pulsed laser deposition (PLD). Table 2.4 shows results from different published articles pertaining 

to the type of electrolyte used, reported OCV values, and densification method.  

Table 2.4: Common electrolyte materials and densification methods for MS-SOFC. 

Electrolyte Material Reported OCV  Densification method. 
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YSZ 

[38,55,56,58,66,68,73–

76]  

1.0-1.12 V Sintering in reducing atmosphere (5% H2/95% N2) 

at 1300℃. 

YSZ [28,77] ⁓1.1 V  Co-sintering in reducing atmosphere above 1300℃. 

ScYSZ [59,78–80]  1.1-1.13 V Co-sintering in reducing atmosphere.  

YSZ [81]  >1.0 V Co-sintering in reducing atmosphere at 1300℃. 

YSZ [57] 1.078 V Co-sintering at reducing atmosphere. 

YSZ [82] 0.95-1.1 V Physical vapor deposition (PVD). Improvement in 

OCV by increasing the number of layers of 

electrolyte.  

YSZ [53] 0.95-1.05 V Plasma sprayed deposition. 

LSGM [39,47,83–85] 1.0-1.15 V Atmospheric plasma spray (APS) deposition. 

GDC[86] 0.95 V Physical vapor deposition.  

High sintering temperatures are required for maximum electrolyte densification, but this can lead 

to warping and microstructural changes in metal support and anode. To deal with this problem 

Franco et al. [86] have worked on the electrolyte deposition and densification aspect of MS-SOFC 

in collaboration with Forschungszentrum Jülich, Karlsruhe Institute of Technology (KIT), and 

AVL List GmbH. They have tried various state-of-the-art techniques to deposit dense thin layers 

of electrolyte on metal support to avoid high temperature sintering. In [86], they used a bi-layered 

electrolyte deposited via physical vapor deposition. The first layer (from anode side) consisted of 

sintered porous YSZ layer which was later coated with 1-2 µm thick layer of gas tight GDC film 

via PVD. In principle, YSZ is an adaption layer and acts as electron blocking layer. They obtained 

an OCV of 0.96 V at 823°C, which is lower than commonly reported OCV. They attributed the 

lower OCV to a leakage rate of 1.2×10-3 hPa⋅dm³.(s⋅cm²)-1 through the electrolyte. Upon further 

investigation it was noticed that the OCV increased to more than 1 V when the leakage rate was 

decreased, but the method used to decrease the leakage was not mentioned in this article. This cell 

showed a maximum power density of 530 mW.cm-2 when the current density was 0.76 A.cm-2 at 
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823℃. In another work [87] they have tried using gas flow sputtering to deposit a thin dense layer 

of YSZ on a metal support-anode substrate followed by coating a GDC barrier layer on YSZ via 

magnetron sputtering. However, electrochemical performance results were not reported in this 

article.   

Tsai et al. [39] have worked with La0.8Sr0.2Ga0.8Mg0.2O3 – δ (LSGM) as electrolyte. They used 

plasma spray deposition for coating LSGM of 30-40 µm thickness. They reported OCV of more 

than 1.0 V and MPD of 0.48 W.cm-2 at 750℃ with hydrogen as fuel. In another study, Tsai et al. 

[84] characterized the effect of atmospheric plasma spray (APS) parameters (specifically torch 

power) on the electrochemical function of LSGM electrolyte. The best reported performance in 

this study was MPD of 0.716 W.cm-2 at 750℃. The OCV for this cell was 0.9881 V.  

Even though doped oxides of ceria have been widely used as electrolyte in all-ceramic SOFCs, 

their use have been limited with MS-SOFCs. This can be explained by the tendency of ceria to 

reduce from Ce+4 to Ce+3 in reducing atmosphere, which is the choice of atmosphere during MS-

SOFC co-sintering. This change in valency can lead to changes in ceria crystal structure, which 

can cause cell cracking and electron short circuiting through electrolyte during operation. Still 

some researchers have tried using doped ceria as electrolyte in MS-SOFC by using techniques like 

pulsed laser deposition, plasma spray deposition and constricted sintering to successfully coat 

electrolyte layers. Hui et al [88] have used mono layered SDC as electrolyte and a bi-layered ScSZ-

SDC as electrolyte in MS-SOFCs (performance stats shown in Figure 2.5).  

 

Figure 2.5: a) comparison of OCV of cells with bi-layered ScSZ-SDC as electrolyte (OCV1) and 

cell with just SDC as electrolyte (OCV2); b) comparison of MPD of cell with bi-layered ScSZ-

SDC as electrolyte (MPD1) and cell with just SDC as electrolyte (MPD2)[88]. 
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A cell with only SDC as electrolyte had an OCV of 0.944 V at 600℃ compared 1.024 V for cell 

with bi-layered ScSZ-SDC as electrolyte. Cell’s higher OCV is attributed to electron blocking 

nature of ScSZ which prevents electron short circuiting from SDC electrolyte. 

2.2.4 Cathode 

Cathode is responsible for reduction of oxygen to oxygen ions. Most cathode materials are doped 

metal oxides; used in order to provide active sites for oxygen adsorption and reduction. Up till now 

numerous cathode materials have been tested and ranked based on their polarization and reactivity 

with the electrolyte, for example LSCF [59], LSC [89], LSM [53], SBSCo [90]. Conventionally 

cathode is applied in slurry form which is dried, and heat treated (sintered) to attain a good 

adhesion with the electrolyte. Using this cathode sintering method in MS-SOFCs can lead to 

numerous problems which can be highlighted as:  

1. Cathode materials are doped metal oxides and perovskites. At high sintering temperatures 

in reducing atmosphere (limitation because of metal support) these oxides can reduce and 

go through changes in crystal structure. This can lead to high cathode polarization, or 

worse, to catalyst inactivity.  

2. Since YSZ is easier to process in the case of MS-SOFCs, it has been the more common 

choice. A lot of commercial cathode materials are reactive towards YSZ which leads to 

physical changes in the electrolyte layer and the cathode layer. This can reduce cell life.  

The issue of cathode sintering can be solved by either decreasing the sintering temperature required 

by cathode material or by using cathode material which can be sintered in reducing atmosphere at 

high temperature. Both approaches have been tried by researchers. Bae et al. [91] . have suggested 

the use of barium containing cathode which can be sintered at lower temperatures (below 1000℃). 

They attribute the high sinterability of these perovskites to the presence of barium on ‘B’ site in a 

perovskite structure. Two different barium containing cathode materials were tried; 

SmBa0.5Sr0.5Co2O5-d/Ce0.9Gd0.1O1.9 (SBSC50) and Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF). Both cathode 

materials were in-situ sintered at 800℃ during operation of cell and showed ASR of 0.02 Ω.cm2 

and 0.054 Ω.cm2 for SBSC50 and BSCF respectively. They also compared sinterability of different 

cathode materials in [92]. Table 2.5 gives out the summary of this comparison 
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Table 2.5: Sinterability comparison of different cathode materials [92]. 

Cathode material  Adhesion at low sintering temperature (below 

900℃) 

LSM82 Poor 

LSF82 Good 

LSCF Good 

SSC40 Good 

SBSC50 Excellent 

BSCF Excellent 

Zhan et al. [90,93]  have also worked with SBSC50 as cathode material. However, they used 

SBSC50 infiltrated into a SSZ [90] and a LSGM [93] scaffold as opposed to a screen printed layer 

in case of Bae et al. [91,92]. Their cells showed ASR of 0.413 Ω.cm2 at 550℃ in case of SSZ 

scaffold and 0.035 Ω.cm2 at 550℃ for LSGM scaffold. For cells with SBSC50 is a porous LSGM 

scaffold, charge transfer reaction of adsorbed oxygen was labelled as the controlling mechanism.  

Blennow et al. [59,78,79,89,94] have studied the effect of in-situ sintering temperature on the 

performance of LSC and LSCF cathode with and without GDC. They report that addition of GDC 

can decrease the polarization resistance for both LSC and LSCF by increasing the ionic 

conductivity of the bulk material. However, GDC also requires a high sintering temperature 

because of its low sinterability, this implies that LSCF and LSC with GDC will need high in-situ 

sintering temperature (up to 900℃). Other than pure LSCF, all solid solutions, i.e, LSC, 

LSC/GDC, and LSCF/GDC, show small polarization values which decrease with increasing 

sintering temperature. At 650℃ operation temperature the total polarization resistance of cathodes 

sintered at 800℃ were ⁓2 Ω.cm2 for LSCF, ⁓0.15 Ω.cm2 for LSCF/GDC, ⁓0.08 Ω.cm2 for LSC, 

and ⁓0.04 Ω.cm2 for LSC/GDC.  

Another approach towards reducing the cathode sintering temperature is the use of a porous 

scaffold on cathode side (normally made of YSZ, SSZ, LSGM etc.). In this the cathode catalyst is 
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infiltrated in the cathode scaffold and hence does not need a sintering process for binding to the 

electrolyte surface. Zhan et al. [38,55,75,76,90,93,95,56,58,66–69,73,74] have worked extensively 

with different cathode materials which were all infiltrated in a cathode scaffold and heat treated at 

850℃ in reducing atmosphere (5% H2/95% N2). Table 2.6 shows a list of all the cathode catalysts 

they have tried.  

Table 2.6: Performance comparison of infiltrated cathode catalyst (work from CAS Key 

Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy 

of Sciences (SICCAS). 

Cathode material ASR/polarization resistance MPD 

SSC [38] Combined polarization resistance 2.28 Ω.cm2 at 

750℃. 

0.38 W.cm-2 at 750℃. 

(LSFSc) [55] Cathode ASR using symmetrical cathode cells 

0.037 Ω.cm2 at 750℃ and 0.155 Ω.cm2 at 

650℃. 

1.09 W.cm-2 at 750℃. 

LSFSc [95] ASR using symmetrical cathode cells 0.16 

Ω.cm2 at 650℃. 

0.636 W.cm-2 at 750℃. 

ESB-Ag [56] Cathode ASR 0.09 Ω.cm2 at 750℃. 0.568 w.cm-2 at 750℃. 

ESB-Ag [73] Combined polarization resistance is 0.10 Ω.cm2 

at 750℃ with YSZ as electrolyte. 

Combined polarization resistance is 0.07 Ω.cm2 

at 750℃ with SSZ as electrolyte.  

1.3 W.cm-2 at 750℃ 

with YSZ electrolyte.  

1.55 W.cm-2 at 750℃ 

with SSZ as electrolyte.  

SFMO [75] Cathode ASR of approximately 0.1 Ω.cm2 at 

750℃. 

0.316 W.cm-2 at 750℃. 

SFMO [76] Cathode ASR of 0.09 Ω.cm2 at 750℃.  0.56 W.cm-2 at 750℃. 

SBSCo [90] with 

SSZ as electrolyte 

For samples with catalyst calcined at 700℃ 

Cathode ASR 0.413 Ω.cm2 at 550℃. 

1.25 W.cm-2 at 700℃ 
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and cathode 

backcone.  

SBSCo [93] with 

LSGM as 

electrolyte and 

cathode 

backbone. 

For samples with catalyst calcined at 850℃ 

Cathode ASR 0.035 Ω.cm2 at 500℃. 

1.5 W.cm-2 at 600℃. 

This was not a MS-

SOFC, the support was 

made of porous LSGM 

infiltrated with Ni as 

anode catalyst.  

Similarly, Tucker [28,77,96] has used a porous scaffold of metal on both anode and cathode side 

with LSM as the cathode catalyst.  

The second major problem to address is the interaction of cathode catalyst with YSZ electrolyte. 

Blennow et al. [78,94] have tried using a diffusion barrier layer of GDC between YSZ and Cobalt 

and Strontium containing cathode catalysts (LSCF, and LSM). They tried two different deposition 

techniques for the barrier layer, the first one was Physical Vapor Deposition (PVD), and the second 

was spin coating. The report that dense barrier layer deposited using PVD can effectively block 

the reaction between LSCF, and LSM.  Similarly, Franco et al. [82] have also used a thin GDC 

barrier layer deposited via magnetron sputtering with LSF, LSCF, and LSM cathodes.  

Another approach to reduce the interaction of cathode catalyst and YSZ is to use catalyst which 

do not contain Lanthanum, Cobalt or Strontium. Zhan et al. [95] have tried using different cathode 

catalyst, amongst which they reported that LSFSc, ESB-Ag (oxides of bismuth-erbium and 

silver)[56], (La0.74Bi0.10Sr0.16)-MnO3 (LBSM)-ESB-Ag, and GDC-LBSM-ESB[97] do not react 

with YSZ. A detailed comparison cathode catalyst used in their work is given in Table 2.6 

Bae et al. [40] has studied the effect of Cobalt content in La0.8Sr0.2Co1−xMnxO3−δ (LSCM) on the 

performance of MS-SOFCs. It was reported that 40 mol% Cobalt gives the optimum performance, 

and that higher amounts of Cobalt may react with YSZ electrolyte. In further study they reported 

that Cobalt higher than 40 mol% in LSCM can change the CTE of LSCM which can lead to 

cracking [98]. As a solution to cobalt reaction with YSZ, Bae et al. [99] have tried the use of 
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chromium containing cathodes. Chromium content was varied in La0.8Sr0.2Cr1−xMnxO3−δ (LSCrM) 

between 0 and 80 mol%. In addition, they also used a binary cathode of LSCrM and ruthenium 

(5mol%).  They reported that by replacing Cobalt with Chromium the cathode can be sintered in 

inert atmosphere. Table 2.7 shows ASR values of samples sintered in nitrogen and in air. It can be 

seen that ASR of LSM (without chromium) is higher than that of sample with 50 mol% chromium. 

It was also reported that addition of ruthenium stabilized the performance.  

Table 2.7: Approximated values of ASR for different LSCrM cathodes calculated using ASR plots 

at 900°C [99]. 

Cathode  ASR (Ω.cm2)  

(sintered in N2) 

ASR (Ω.cm2)  

(Sintered in air) 

LSM ⁓5.0 ⁓0.1 

La0.8Sr0.2Cr0.2Mn0.8O3-d ⁓4.5 ⁓45.0 

La0.8Sr0.2Cr0.5Mn0.5O3-d ⁓0.2 ⁓0.2 

La0.8Sr0.2Cr0.8Mn0.2O3-d ⁓3.16 ⁓23.0 

La0.8Sr0.2Cr0.45Mn0.5O3-d/Ru0.05 ⁓0.2 ⁓0.15 

2.2.5 Structures of co-sintered MS-SOFC 

When using tape casting and co-sintering for MS-SOFC fabrication, a half-cell structure is co-

sintered prior to the addition of electrode catalysts. This is primarily done to optimize cell 

performance and increase cell life. High temperature exposure to electrode catalyst can lead to 

grain coarsening of the catalyst particles which reduces cell performance. Another reason is the 

instability of conventional cathode materials in reducing atmospheres at high temperature. This 

means, that apart from maintaining cell mechanical integrity during co-sintering it is necessary 

that the cell structure be such that it can accommodate electrode catalysts. This co-sintered half-

cell structure functions as a base structure on which electrode catalysts are added. Tucker et al. 

[28,77,96,100–103] have extensively worked with MS-SOFC fabrication using co-sintering. They 

have tried various half-cell structures for co-sintering, however, their symmetrical MS-SOFC 

structure (Figure 2.6) offers numerous advantages [28,100]. By having a metal on both sides, the 
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shrinkage profile mismatch between ceramic and metal does not cause cell warping during co-

sintering. Similarly, it affords good mechanical strength on both sides of the cell, good current 

collection on both sides, and the electrode catalysts can be subsequently infiltrated into the porous 

anode and cathode structures. It has been reported that the cell structure and performance remain 

stable during 200 thermal cycles (between room temperature and 800℃) and during 20 redox 

cycles [28]. In a recent publication they report that this cell structure shows MPD of 1.34 W.cm-2 

at 700℃. 

 

Figure 2.6: SEM image of cross-section of a symmetrical MS-SOFC [28]. 

Zhan et al. [38,55,73,74] have worked on a structure made of porous Stainless Steel (SS) 430L 

followed by dense YSZ electrolyte and porous YSZ cathode backbone layer. After co-sintering 

the base structure, anode and cathode catalysts are infiltrated into the porous 430L layer and porous 

YSZ backbone, respectively. This structure helps cathode in-situ sintering during operation as the 

backbone (YSZ) is co-sintered with the cell and is infiltrated with cathode catalyst. The backbone 

layer, hence, has enough strength to house the cathode catalyst, and maintain its original geometry. 

Figure 2.7 shows an SEM image of their cell structure. Zhan et al. [38,55,75,76,90,93,95,56,58,66–

69,73,74] have used this structure with many different anode and cathode catalysts. Some 

electrochemical performance results were given in section 2.2.4.   
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Figure 2.7: SEM image of cross-section of MS-SOFC, left to right-Porous metal support| 

Electrolyte| YSZ cathode backbone [38]. 

Blennow et al. [59,78,79,89,94] have reported a slightly different half-cell structure for co-

sintering. In their work they co-sinter stacked metal support, a cermet layer (metal/YSZ mixture), 

and an electrolyte layer (see Figure 2.8). To add anode catalyst, they use solution infiltration 

whereas cathode is screen printed. In some of their work [78,94] they use a barrier layer of GDC 

between cathode and electrolyte. This barrier layer is deposited using PVD and spin coating [78]. 

They have reported MPD of 1.14 W.cm-2 at 650℃ for their cells with barrier layer [78].  

 

Figure 2.8: SEM of cross-section of co-sintered MS-SOFC [59]. 
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2.2 Use of sintering aid for doped ceria electrolytes 

Ceria, whether doped with samarium or gadolinium, needs a temperature of approximately 1400oC 

for considerable densification to prevent fuel and/or oxidant short circuiting [104]. Further, CeO2 

also shows surface and bulk reduction to Ce2O3 at high temperatures and reducing atmosphere 

[105]. This implies that co-sintering of SDC with metal support close to 1400℃ in reducing 

atmosphere may lead to structural changes in the doped ceria electrolyte layer and may cause 

cracking. To limit the extent of ceria reduction the sintering temperature for SDC can be lowered, 

so that doped ceria does not face extremely high sintering temperatures and reducing atmosphere.  

Researchers have used the following methods to lower the sintering temperature: 

1. Reduce the powder size through mechanical milling techniques, and/or using specific 

synthesis routes like Glycine Nitrate Combustion (GNC) process etc. Smaller particle size 

increases the driving force of sintering (reduction of surface area) [31].  

2. Use of metal oxides as sintering additives to activate liquid phase sintering and increase 

the surface atom mobility. Researchers have used Mn2O3 [106], Co3O4 [106], Ga2O3 [107] 

Fe2O3[108][109], LiO[110], and CuO [33,34,111].  

Sintering aid’s primary purpose is to lower the sintering temperature. Sintering is a thermally 

activated process, which works by reducing the excess surface energy of particles by atomic 

diffusion through the grains and along the grain boundaries. Through sintering theory, it is known 

that, amongst others, particle size and particle arrangement of initial powder compact also have an 

effect on the sintering dynamics. For instance, it has been reported that small size pores between 

ultra fine particles can lead to high capillary pressure which causes low final sintered density and 

cracks[31]. Hence the packing and re-packing of particles during sintering is critical to achieve 

maximum density. Keeping this in mind, a sintering aid can affect the diffusivity of the grains of 

primary material and induce a closed packing. In published literature, researchers have used 

arguments based on this to explain how particular sintering additives work. In literature, [34], it 

has been reported that CuO as sintering aid with GDC can form a ternary phase Gd2O3–CeO2–

CuO which can melt and promote liquid phase sintering. Presence of liquid at the grain boundaries 

can increase the mobility of the grains [32], however it is also reported that primary solid phase 

should be soluble in the liquid phase for effective liquid phase sintering [112].  
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Among the few transition metals investigated as sintering additives for doped ceria, iron, lithium, 

cobalt, and copper have been the preferred choices. Amongst these, copper is of special interest 

due to the following reasons: 

1. Copper has been identified as one the most effective sintering aids, where it can reduce the 

sintering temperature of GDC from 1400℃ to 1000℃ [32].  

2. In [31] it was reported that copper forms an additional phase on the surface of sintered 

copper doped SDC. Copper oxide diffusion to the electrolyte surface on the anode side 

might actually be beneficial to lower the anode polarization resistance. Under anode 

conditions (humidified hydrogen) the copper oxide phase on SDC electrolyte can be 

reduced back to copper which has a high electronic conductivity. It has been reported that 

increase of electronic conductivity near TPB can lead to decrease in anode polarization 

because of fast removal of electrons [67]. 

Even though a lot of literature has been published on copper as sintering aid, most of the work was 

based on copper addition to GDC [32–34,111]. Similarly, the amount of copper used for doping 

was mostly 1 mol% and only a few articles showed the effect of a higher copper content on only 

the microstructural properties of copper co-doped ceria [31].  

The addition of sintering aids have an effect on the conductivity of the electrolyte [113]. The effect 

a sintering aid might have on the conductivity is still unclear;  Zhang et al. [31] showed that 1 

mol% addition of CuO lowers the conductivity of SDC whereas Macedo et al. [34] showed that 1 

mol% CuO increases the conductivity of SDC.  Similarly, varied conclusions have been reported 

about many other sintering aids and their effect on the conductivity of SDC/GDC 

[31,33,109,110,114–117]. Ceria and doped oxides of ceria are a complex conduction system, as 

they exhibit both ionic and electronic conductivities which is labelled as their Mixed Ionic 

Electronic Conduction (MIEC) behavior [59]. Ceria exhibits this character because of cerium ion’s 

tendency to reduce to a +3 valency from +4 in reducing conditions and high temperatures. Hence 

the evaluation of the effect of sintering aid on conductivity of doped ceria can be difficult as the 

sintering aid may affect both ionic and electronic conductivities. In most of the literature, the 

amount of sintering aid used is limited (normally close to 1.0 mol%) [31,106,113], which makes 

it difficult to draw concrete conclusions about the effect of a sintering aid on conductivity of SDC.  
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Chapter 3 Theoretical Background on Sintering 

The main work in the present research is related to sintering of ceramics and co-sintering of metal 

and ceramics. To understand the behavior of different materials during sintering it is important to 

understand the fundamentals of sintering process. This section gives out the details of working 

principles of sintering.  

3.1 Working principles of sintering  

Sintering is an important step in material synthesis/processing. It consists of producing dense solid 

bodies from powder compacts by the application of thermal energy. The earliest application of 

sintering can be found in pottery, and dates back as far as the prehistoric era. Now, the major 

purpose of sintering is seen in powder metallurgy, where sintering is used to produce solid bodies 

with controlled microstructure, grain size distribution, distribution of pores and formation and 

distribution of secondary phases.  

In principle, there are two main categories of sintering: 1) solid state sintering and 2) liquid state 

sintering. In solid state sintering the solid powder is sintered or formed in to a solid body at the 

sintering temperature, whereas in liquid state sintering the solid powder is sintered in the presence 

of liquid at the sintering temperature. However, other types of sintering do exist, but the primary 

phases remain solid and liquid. Figure 3.1 shows a general equilibrium binary phase diagram for 

a mixture of ‘A’ and ‘B’. 

 

Figure 3.1: Various types of sintering on a phase diagram [118]. 
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Four types of sintering are shown in Figure 3.1; those types are 1) solid state sintering, 2) transient 

liquid phase sintering, 3) liquid phase sintering, and 4) viscous flow sintering. At the composition 

X1 different sintering mechanisms might occur at different temperatures. At temperature T1, 

anywhere along the composition the mixture is well below the eutectic point and solidus lines for 

A and B, which means that upon heating to sintering temperature (T1), there is no chance of liquid 

formation. Hence, at this composition the compound will remain solid throughout the sintering 

process and will undergo solid state sintering. At temperature T2 the temperature is above the 

eutectic point and below the solidus. If the distributed phase, that of ‘B’, shows diffusivity into 

‘A’, there will be a transient liquid formed of ‘B’ phase. After ‘A’ phase reach equilibrium 

composition between ‘A’ and ‘B’ the remaining pure ‘B’ phase segregates on the surface and 

solidifies. This type of sintering is called transient liquid phase sintering. At temperature T3 the 

temperature is between solidus and liquidus, however the composition mark is closer to solidus 

compared to liquidus. This means that there will be more solid phase present compared to liquid 

phase during sintering, this type of sintering is termed liquid phase sintering. Another approach is 

to add a low melting temperature third phase in the mixture of ‘A’ and ‘B’. By moving the 

composition mark towards liquidus, the amount of liquid phase present during sintering can be 

increased. If the amount of liquid is such that it can flow in the solid matrix, the sintering is termed 

viscous flow sintering.   

The driving force for sintering is the change in the total interfacial energy of the sample. Interfacial 

energy is the energy which is present in excess at the surface compared to the bulk and is expressed 

as the product of surface energy, γ (J.m-2), and surface area, A (m2). The total change in surface 

energy, hence, can be described mathematically as [118]: 

    ∆(𝛾𝐴) = ∆𝛾𝐴 +  𝛾∆𝐴        (3.1) 

From Eq. 3.1 it can be seen that the change in total interfacial energy or sintering depends on two 

different paths, where the first term on the right-hand side represents densification and second term 

represent grain coarsening. The first term on the right-hand side of Eq. 3.1 is termed as the 

densification and the second term represents grain coarsening. Densification refers to the change 

in energy associated with replacement of solid/vapor interface by solid/solid interfaces, whereas 

grain coarsening is the growth of grains. A schematic of sintering is shown in Figure 3.2. 
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Figure 3.2: Illustration of densification and grain growth, the two paths for sintering [118]. 

Like any other processes, sintering is dependent on a few material and system variables. The 

chemical properties of the materials, including the composition, and the physical properties, 

including powder size distribution, greatly affects the sintering process. Similarly, temperature, 

and pressure have an effect on the process too.  

Sintering takes place by the movement of atoms in the crystal lattice structure. In scientific terms 

this can be labeled as atomic diffusion or random walk, following the same principles underlying 

Ficks laws for diffusion. 

     𝐽 =  −𝐷
𝑑𝐶

𝑑𝑥
             (3.2) 

Where ‘J’ is the flux of atoms (mol.m-2.s-1), ‘D’ is the diffusivity (m2.s-1), ‘C’ is the concentration 

of species (mol.m-3), and ‘x’ is the direction of movement (m). In the case of atomic diffusion, 

however, the mechanism of diffusion or movement of atoms is actually accompanied by jumping 

through lattice sites. While moving between two different positions an atom takes a higher energy 
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level intermediate site and then moves on. Hence, the energy required in taking that jump is 

dependant on the energy barrier of the intermediate position. By the use of Einstein formula, we 

can calculate the diffusion constant by: 

     𝐷 =  
<𝑥2>

6𝑡
              (3.3) 

where < x2 > is the mean square displacement of an atom. Since the movement of an atom is 

random, the mean displacement can be replaced by the product of number of jumps ‘n’ and the 

square of mean displacement an atom moves in one jump ‘s’. In that case Eq. 3.3 becomes. 

     𝐷 =  
𝑛𝑠2

6𝑡
                 (3.4) 

Similarly, the diffusion coefficient has been shown to take other forms as well. It is shown in [119] 

that the diffusion coefficient can also be expressed mathematically as: 

     𝐷 =  𝐷𝑜exp (
∆ℎ

𝐾𝑇
)    (3.5) 

Where, ∆ℎ is the enthalpy of inter atomic diffusion, ‘K’ is the Boltzmann constant (1.38064852 × 

10-23 m2.kg.s-2.K-1), ‘T’ is the temperature (K) and 𝐷𝑜 is the reference diffusivity (m2.sec). The 

reference diffusivity can be expressed as: 

     𝐷𝑜 =  
𝜐𝜆2

6
exp (

Δ𝑠

𝑘
)   (3.6) 

where 𝜐 is the vibrational frequency of an atom in all six orthogonal directions, 𝜆 is the distance 

between two adjacent planes and Δ𝑠 is the change in entropy for inter atomic diffusion. In the 

derivation of the above equation it is assumed that an atom jumps from one plane to the adjacent 

plane which is a distance 𝜆 apart.  

However, sintering is a special case of diffusion. Sintering is the inter-atomic diffusion which can 

have many driving force gradients rather than just concentration gradients. In the past, a lot of 

work [119–121] has been performed to derive diffusion equations for sintering by taking chemical 

potential as the gradient, since changes in chemical potential can be attributed as the set containing 

all possible gradients driving diffusion. 
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As shown in Figure 3.2, sintering is the densification and grain growth of a powder mass. The 

major driving force for the densification process is the surface curvature or more accurately the 

chemical potential gradient because of surface curvature.  

Imagine a surface containing convex and concave parts, as shown in Figure 3.3. Due to the 

presence of compressive stress beneath the convex surface, atoms are pushed out of from under 

that surface. Similarly, more vacancies are present under a concave surface. Hence, there is a 

vacancy concentration gradient between these points and if appropriate energy is supplied the 

vacancies start to move from concave to convex surface making it flatter or reducing the surface 

area.  

 

Figure 3.3: Surface curvature showing vacancy movement in solids [119]. 

The chemical potential can be related to three possible driving forces; external pressure, surface 

curvature and concentration difference by: 

                                              𝜇𝑣 =  𝜇𝑜𝑣 + (𝑝 + 𝛾𝑠𝑣𝐾)Ω + 𝑘𝑇𝑙𝑛𝐶𝑣           (3.8) 

Eq. 3.8 is for vacancies and, in a similar way, the equation for atoms can be written down as: 

                                              𝜇𝑎 =  𝜇𝑜𝑎 + (𝑝 +  𝛾𝑠𝑣𝐾)Ω + 𝑘𝑇𝑙𝑛𝐶𝑎           (3.9) 

In the above equation 𝜇 is the chemical potential and the subscript denotes whether it is for atom 

‘a’ or vacancy ‘v’, p is the external applied pressure, 𝛾𝑠𝑣 is the surface energy of the material, Ω is 

the molar volume. ‘K’, the curvature of surface, in Eqs 3.8 and 3.9 is expressed as: 



45 

 

𝐾 =  
1

𝑅1
+  

1

𝑅2
                              (3.10) 

where R1 and R2 are the principal radii of a curved surfaces. The atomic flux, expressed as 

proportional to gradient in chemical potential, can now be used instead of only concentration 

gradient. However, a key question in sintering relates to the time required to achieve the desired 

microstructure. In principle, sintering can occur through six paths, each contributing to either 

densification or grain coarsening. Grain coarsening is the expansion in size of the grains whereas 

densification is the replacement of solid/vapor interfaces by grain boundaries. Those six paths are 

1) surface diffusion, 2) lattice diffusion (from the surface), 3) evaporation vapor transport, 4) grain 

boundary diffusion, 5) lattice diffusion (from the grain boundary) and 6) plastic flow. Those six 

paths are shown in Figure 3.4.  

Lattice diffusion (atoms from surface), surface diffusion and vapor transport are the mechanisms 

that help in grain coarsening while lattice diffusion (atoms from grain boundaries) and grain 

boundary diffusion are the mechanisms that help in densification of the powder sample. The sixth 

step, plastic flow diffusion, can help in both densification and grain coarsening.  

 

Figure 3.4: Solid state sintering mechanisms [119]. 

In our case the most important mechanisms are those that contribute to densification. 
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3.2 Enhanced sintering through sintering aid 

There are four different ways in which the sintering of a particular compound can be enhanced 

[122]: 

1. Process conditions: Reduction in particle size of initial powder, use of higher 

sintering temperature, and longer sintering times.  

2. Changing defect features of the compound to increase atomic diffusivity.  

3. Application of external force.  

4. Use of sintering aids.   

All of the above stated factors govern the microstructure of the sintered product. Although such a 

detailed analysis of sintering is not within the scope of this project, some aspects will be explained 

as they are important when determining sintering parameters. Herring [123] showed that, 

according to his scaling law, the time required for sintering increases with increasing particle size. 

Smaller particle size means more surface to volume ratio and hence more curvature. This leads to 

larger difference in chemical potential as discussed earlier. It has been reported that higher 

sintering temperature and longer sintering time lead to better mechanical properties, due to high 

densification, for sintered metal powder compacts [120]. The composition of the material affects 

the atomic diffusion coefficient, which in turn impacts the transport of atoms through the crystal 

lattice. A higher diffusion coefficient means that atoms will travel faster under the same driving 

force and hence will require lesser time. Increasing defect features in material by alloying, 

radiation treatment, etc. can lead to higher diffusion coefficients leading to higher sintering activity 

[122].  

Sintering aid (a.k.a sintering additive) works by inducing either liquid phase sintering or activated 

solid state sintering in the base material being sintered. The secondary phase, belonging to 

sintering aid, provides a short-circuit low energy diffusion path to the atoms of the base material. 

Diffusion rates within a solid are scaled along the melting temperature, hence a compound with 

higher melting temperature will need higher sintering temperature. Sintering aids have lower 

melting temperature than the base material and hence higher diffusion rates which lead to enhanced 

sintering.  
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It is important, however, to carefully select the sintering additive because the choice and amount 

of sintering aid govern the dynamic of shrinkage and have an effect on the physical properties of 

the sintered product. The following criteria should be considered in the selection of sintering aid:  

1. Solubility of base material in sintering phase: For effective use of the low energy diffusion 

path provided by the sintering aid phase, the base material should be soluble in the sintering 

aid phase. In contrast, the sintering aid phase should not be soluble in the base material 

phase, as it leads to swelling. It has been reported that for aluminium oxide-iron system, 

the solubility of aluminium in iron is higher and leads to swelling of grains upon heating 

[122].  

2. Segregation of sintering aid phase on grain boundaries: To use the low energy diffusion 

path provided by the sintering aid phase, base material atoms have to dissolve in the 

sintering aid phase. Since base material’s atoms transfer across the grain boundary into the 

sintering aid phase, the presence of sintering aid phase along grain boundaries is important. 

The higher the amount of grain boundary covered the higher the dissolution of base 

material’s atoms.  

3. Diffusivity of sintering aid phase: The sintering aid phase should have lower activation 

energy of atomic diffusion compared to the base material. Since, generally, the diffusion 

rates are inversely related to the melting temperature, the sintering aid should have a lower 

melting temperature than base material.  

It was stated above that addition of sintering aid can induce both liquid phase sintering and 

activated solid state sintering. The difference between the two is that in liquid phase sintering, the 

sintering aid phase melts into a liquid phase whereas in activated solid state sintering the sintering 

aid remains in solid phase. Liquid phase sintering is more effective than activated solid state 

sintering. Firstly, the liquid phase automatically segregates on the grain boundaries, because of 

higher wetting characteristics than a solid. Secondly, liquid phase also exerts capillary pressure on 

adjoining grains which leads to a closer re-packing of the base material’s grains. Thirdly, the 

presence of liquid phase increases the grain boundary thickness which further lowers the resistance 

to atomic diffusion. Figure 3.5 shows the presence of liquid phase along grain boundaries. 
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Figure 3.5: Grain boundary diffusion in a) solid state sintering and in b) liquid-phase sintering. 
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Chapter 4 Experimental methods 

This chapter gives out the details of the experimental approach and experimental procedures used 

in conducting this research. As such, this chapter is divided into three sections: 

1. Use of Sintering aid: In this section, details are given for making SDC with and without 

sintering aid (copper) and for further processing of the manufactured powder for different 

analytical experiments for microstructure, shrinkage and electrochemical characterization. 

2. Fabrication of MS-SOFC via tape casting and co-sintering: In this section, details are given 

for the fabrication of MS-SOFC with YSZ and SDC as electrolyte using tape casting and 

co-sintering. Sub sections are given for processing of individual components (metal, 

electrolyte, etc.) followed by the procedure used to put all the components together for co-

sintering. Since this part deals more with manufacturing of cells, different analytical 

experiments will also be discussed to assess the appropriate manufacturing method and 

conditions. 

3. Apparatus and techniques used: This section gives out details about the apparatus used for 

analysis including XRD, SEM, dilatometry, and electrochemical testing station. 

4.1 Use of sintering aid: 

Copper was used as the sintering aid for SDC in this work. Since copper addition can affect 

physical properties, including crystal structure, shrinkage behavior, and conductivity, of SDC, 

experiments were chosen in a way to satisfy the objectives listed below: 

1. Determine whether copper takes up space inside the fluorite crystal structure of ceria and/or 

segregates on the boundaries. If it dissolves in crystal structure, then is there a solubility 

limit after which further addition of copper will lead to a secondary phase precipitation on 

the grain boundaries of fluorite crystal structure of ceria?  

2. Does copper, as sintering aid, help in enhancing the sintering of SDC, that is, does it lower 

the sintering temperature and time? Does the amount of copper used has any effect on the 

enhancement of SDC sintering?  
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3. How does copper addition affect the conductivity of SDC? and does it have an effect on a 

specific conduction mechanism of solid electrolytes (e.g. grain boundary conduction, grain 

interior conduction)?  

To get a clearer picture of how copper interacts with the SDC crystal structure, a wide range of 

copper content (0, 0.1, 0,.5, 1.0, 3.0, 5.0 mol%) was considered. The analysis was divided into two 

categories; material property analysis, and conductivity analysis.  

In material property analysis the structure of the samples (micro and macro) and the shrinkage 

dynamics of the samples were studied. For this purpose, following techniques were used: 

1. X-Ray diffraction: To study the effect of copper addition on the crystal structure of SDC. 

This can help identify the number and types of phases formed, crystal structure parameters 

(lattice constant) and bulk density.  

2. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-Ray (EDX): 

This was used to study the macro structure of sintered samples. This can help in observing 

the apparent density of sintered samples, identification of different phases, and can also 

give an idea of the composition of phases involved.  

3. Dilatometry: Dilatometry was used to study the shrinkage dynamics of samples for a given 

sintering profile. Dilatometry can be used to record the maximum shrinkage of samples at 

a given sintering temperature, shrinkage set-off temperature, time required for maximum 

shrinkage, and calculation of Coefficient of Thermal Expansion (CTE). 

For conductivity analysis, Electrochemical Impedance Spectroscopy (EIS) was used. Through EIS 

total conductivity of the samples can be evaluated along with conductivity through different 

mechanisms (grain boundary and grain interior).  

4.1.1 Fabrication of the electrolyte  

The electrolyte material (SDC), with and without copper, was synthesized in lab using Glycine 

Nitrate Combustion (GNC) process. This is an auto-thermal combustion method where glycine is 

used as a complexing agent and as a fuel. Glycine (NH2-CH2-COOH) has zwitterionic nature 

where one end of the molecule has a carboxylic acid group and the other end has an amine group. 

This character of glycine helps in dissolution of metal salts in aqueous solution and also prevents 
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metal salt precipitation when the aqueous solution is heated/dried. Metal nitrates hydrates are 

mixed with glycine in De-Ionized (DI) water and heated on a heating plate. Over time, excess 

water evaporates leaving a high viscous gel. This gel is then combusted on a hot plate leaving ash 

of metal oxide behind.  

The balanced reaction for the GNC process in the case of SDC is given below.  

0.2 𝑆𝑚(𝑁𝑂3)3 +  0.8 𝐶ⅇ(𝑁𝑂3)3 +  
5

3
𝑁𝐻2𝐶𝐻2𝐶𝑂𝑂𝐻 +  

1

5
𝑂2  

→  𝑆𝑚0.2𝐶ⅇ0.8𝑂1.9 +  
7

3
𝑁2 + 

10

3
𝐶𝑂2 +  

25

6
𝐻2𝑂                          (4.1) 

The amount of copper was set with respect to the cerium content and hence appropriate changes 

were made to equation (4.1). For example, if the copper content is set to 1 mol% then the assumed 

stoichiometric equation is: 

0.01 𝐶𝑢(𝑁𝑂3)2 +  0.2 𝑆𝑚(𝑁𝑂3)3 +  0.79 𝐶ⅇ(𝑁𝑂3)3 +  
5

3
𝑁𝐻2𝐶𝐻2𝐶𝑂𝑂𝐻 

→  𝑆𝑚0.2𝐶ⅇ0.79𝐶𝑢0.01𝑂1.9 +  
7

3
𝑁2 + 

10

3
𝐶𝑂2 +  

25

6
𝐻2𝑂                         (4.2) 

It should be noted that such small amount of copper does not lead to significant changes in the 

required amount of glycine. Commercial metal nitrate hexahydrates (Alfa Aesar-VWR, Canada) 

of all cations were used. Stoichiometric amounts of metal nitrate hexahydrates were dissolved in 

250 mL of DI-water followed by the addition of glycine (Alfa Aesar-VWR, Canada). The prepared 

solution was heated and stirred overnight at 90℃, using a heating plate (VWR, USA), until the 

solution turned into a viscous gel. This gel was then transferred to a ceramic crucible which was 

covered with a glass tube. Since the combustion reaction is vigorous and produces high amounts 

of gasses, the glass tube was covered with a perforated mesh to allow for the passage of gasses and 

retention of most of the powder formed. The crucible and glass tube assembly was placed on a hot 

plate (Salton Canada, Canada) using a lab stand and the gel was allowed to combust. Figure 4.1 

shows a picture of the apparatus used for combustion process.  
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Figure 4.1: Picture of apparatus used for GNC process. 

Once the reaction is complete, the powder was collected in a ceramic crucible and calcined. 

Calcination was done to remove any residual moisture, volatile and residual carbon materials in 

the powder. For calcination, a muffle furnace (Barnstead Thermolyne, USA) was used. The 

calcination temperature for all powders was kept at 700℃ with a dwell time of 2 hours.  

Once the powders were calcined, they were processed in different ways for analytical experiments. 

Figure 4.2 shows the sequence of experiments done to characterize the samples.  

4.1.2 Sample preparation for physical properties characterization 

For XRD, calcined powder was used as is. For SEM, calcined powder was pressed into circular 

disk of 20 mm diameter, using a hydraulic press, at a pressure of 250 MPa for 2 minutes. Pressed 

samples were then sintered in a high temperature furnace. Conventionally, sintering temperature 

of 1300-1400℃ is used for SDC. In this study, two different sintering temperatures were used 

based on dilatometry results. A more conventional sintering temperature of 1350℃ was used for 

plain SDC and a lower sintering temperature, 1100℃, was used for samples with copper. This was  
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Figure 4.2: Sequence of experiments conducted to study the effect of copper as sintering aid with 

SDC. 
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done so that a fair comparison can be established between the microstructures of samples with 

sintering aid and the sample without sintering aid sintered at a conventional sintering temperature.  

For dilatometry, calcined powder was pressed into samples with rectangular cross-section (6 mm 

x 8 mm) at a pressure of 250 MPa for 2 minutes. 

For conductivity analysis, calcined powder was pressed into 20 mm diameter circular disks at 250 

MPa for 2 minutes. These disks were then sintered in a high temperature furnace. Similar to 

samples prepared for SEM, samples for conductivity analysis were sintered at different 

temperatures. SDC sample (without copper) was sintered at 1350℃ for 5 hours, and copper co-

doped SDC was sintered at 1100℃ for 5 hours. Once the samples were sintered, silver paste was 

applied on both sides of the sample using a simple paint brush technique. In this, 6 pieces of scotch 

tape were stacked together and a hole, of 6 mm diameter, was punched in the stacked tape. The 

stacked tape was then placed on the surface of sintered sample so that the punched hole was aligned 

with the center of the surface. The silver paste was then applied on the punched hole and levelled 

off. Once the silver paste was dry, similar procedure was used to paint silver paste on the other 

surface of the circular sintered sample. Samples with silver paste were then sintered at 820℃ for 

2 hours in air for adequate bonding of silver paste with sample surface. These samples were then 

used in an electrochemical testing system (details given later) for electrochemical impedance 

spectroscopy (EIS). 

4.2 Fabrication of MS-SOFC via tape casting and co-sintering.  

In this section, details are given for the experimental approach used in the study of MS-SOFC 

fabrication using tape casting and co-sintering. In tape casting, layers (tapes) of a material are 

casted by using a slurry of the material. The slurry, which can be organic or aqueous depending 

on application, is dropped on a substrate and then spread across the substrate using a blade. This 

results in a layer of the material of required thickness. Co-sintering is a high temperature sintering 

process where more than one material is stacked and sintered together.  
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4.2.1 Experimental approach 

In the case of MS-SOFCs, cell components are casted using tape casting and then layers of these 

components are stacked together for co-sintering. Hence, the structural and chemical integrity of 

the final cell is dependant on the materials used, the quality of tape casting, and the effectiveness 

of co-sintering. Therefore, the approach used in this study relates to the following: 

1. Selection of material for metal support and electrolyte which are compatible. YSZ and 

SDC were used as electrolyte, and a choice between Stainless-Steel (SS)-430L and 

410L was made, based on compatibility with YSZ.  

2. Tuning of tape casting procedure. This includes formulation of casting slurries which 

are stable i.e. the particles should be uniformly distributed, there should be no particle 

agglomeration, the particles should not sediment, and the slurry should not crack upon 

casting and drying.  

3. Tuning of co-sintering temperature profile. This includes the study of behavior of 

individual cell components under different sintering temperature profiles. This leads to 

a better understanding of shrinkage behavior of cell components which can be used to 

tune the co-sintering profile to obtain defect free co-sintered cells.  

4. Optimization of cell structure to reduce the amount of material used while achieving as 

simple cell structure as possible.  

Once the sintering temperature profile is tuned, electrode catalysts (anode and cathode electro-

catalysts) can be incorporated in the sintered cells for testing. Figure 4.3 shows the sequence in 

which the experiments were conducted.  

Some of the experiments are coupled in iterative loops, i.e. based on the results of a subsequent 

experiment in that loop, the first experiment may be modified. This is the case with slurry 

formulation and tape casting. Once the layers are tape casted, based on the final form of layers, the 

slurry composition may be changed.  
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Figure 4.3: Sequence of experiments conducted in study of tape casting and co-sintering for MS-

SOFC. 
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Selection of metal support material. 

A choice between SS-430L and SS-410L was made based on their shrinkage compatibility with 

YSZ. For this purpose, dilatometry was used to study the shrinkage dynamics of both SS-430L 

and SS-410L. Commercial powder (VWR, Canada) for both materials of size 325 mesh (44 

micron) were mixed with Poly Vinyl Butryl (PVB), Di-Octyl Phathalate (DoP), PMMA, and 

ethanol. The solution was ball milled overnight for complete mixing and then dried at 60℃ for 6-

8 hours. The resulting powder was ground using a ceramic mortar and pestle. Dried powders were 

pressed, at 343 MPa for 2 minutes, using a hydraulic press and a molding die set with a rectangular 

cross-section (6mm by 8mm). Pressed samples were then heat treated at 800℃ in reducing 

atmosphere (5% H2/95% Ar) to remove the organics. Burnt out samples were then run in a 

dilatometer in reducing atmosphere at a temperature of 1400℃. A high sintering temperature was 

used to study the complete shrinkage spectrum of the samples.   

Slurry formulation and tape casting of cell components. 

During fabrication of MS-SOFCs using tape casting and co-sintering, only a half-cell structure is 

co-sintered. This half-cell consists of the porous metal support, transition layers, and the 

electrolyte. The transition layers provide a smooth transition between metal support and 

electrolyte, and also act as a porous scaffold for anode catalyst. In this study three different types 

of transition layers were tried; the first one contained a 50/50 mass ratio of metal and electrolyte, 

the second one contained a 30/70 mass ratio of metal and electrolyte, and the third one contains 

only electrolyte mixed with pore former. Hence, slurries for 5 different layers were made: 

1. Metal support. 

2. 50/50 transition layer.  

3. 30/70 transition layer.  

4. Porous YSZ transition layer.  

5. Dense YSZ electrolyte layer.  

Even though different layers were casted the general requirements for all layer types from slurry 

formulation and tape casting were similar. It should be noted that slurry formulation and tape 

casting are co-dependant and hence results of tape casting were used to tune the slurry composition. 

The following are the requirements for slurry formulation and tape casting: 
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1. The slurry should be stable. That means that the particles should be uniformly distributed 

in the slurry, there should be no agglomeration of particles, and the particles should not 

sediment.  

2. The slurry should have a viscosity which can be used with tape casting. That means that it 

should not be too viscous that it cannot be spread using a doctor blade, and it should not 

have too low viscosity so that it spreads by itself.  

3. Upon drying the casted layer should not crack. This is governed by the type and amounts 

of organics in the slurry.  

Numerous slurry compositions were tried for tape casting and the slurry composition was tuned 

accordingly each time. For brevity, only the final compositions of the slurries are given in Chapter 

6. The effect of pore former content on the final porosity of metal support was also studied. It is 

critical that metal support be porous enough to allow for sufficient diffusion of fuel gas.  

Tuning of sintering profile. 

In co-sintering it is important that the materials being co-sintered attain similar shrinkage at the 

end of co-sintering. In case of MS-SOFC, a metal layer is stacked with a cermet (metal and 

ceramic) and a ceramic layer (electrolyte) and co-sintered. Hence it is important to study the 

shrinkage behavior of individual components (metal and ceramic) and the effect of sintering profile 

on their shrinkage behavior. As a requirement of metal in MS-SOFC the sintering atmosphere 

cannot be oxidizing (air) as it would lead to metal corrosion. This leaves the possibility of either 

inert or reducing atmosphere. Therefore, tuning of co-sintering profile requires both, the study of 

effect of sintering temperature profile and the sintering atmosphere. To achieve this, dilatometry 

of metal samples and ceramic samples was done in inert and in reducing atmosphere. The 

difference in sintering temperature profile was that of ramping temperature between 1000℃ and 

sintering temperature (1350℃). The reason for change only after 1000℃ is that neither metal (SS-

430L) nor ceramic (YSZ) shrinks below 1000℃. Through this type of experiment the following 

information is evaluated: 

1. Temperature at which shrinkage starts for metal support and YSZ under different ramping 

rates and sintering atmospheres. 
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2. Temperature required to reach maximum shrinkage for metal support and YSZ under 

different ramping rates.  

3. Calculation of shrinkage rates of metal support and YSZ samples under different ramping 

rates and atmospheres.  

4. Shrinkage of metal support and YSZ upon reaching the sintering temperature (1350℃) 

under different ramping rates and atmospheres.  

5. Final shrinkage of samples after dwell at the sintering temperature. 

The above information can be used to tailor a co-sintering profile which can be used for co-

sintering of the metal support and YSZ so that the cells are free of physical defects (warping, 

delamination, cracking, etc.) 

Co-sintering of MS-SOFC half-cells and structural analysis 

Once the co-sintering profile is determined based on dilatometry analysis of individual 

components, MS-SOFC half-cells were co-sintered. This, in a way, is the application of 

information gained from dilatometry to real scenario. Since the shrinkage dynamics of individual 

component are different than that of stacked component during co-sintering, tuning of the co-

sintering process of stacked half-cell might be necessary. The required changes in the co-sintering 

procedure were based on the physical appearance of the co-sintered samples (e.g. cracks, 

delamination, direction of warping).  

MS-SOFCs with YSZ and SDC as electrolyte were both fabricated. The procedure of making green 

samples for co-sintering is given in Chapter 6.  

Anode catalyst infiltration and cathode deposition. 

The anode catalyst was infiltrated into the porous metal support using vacuum solution infiltration 

which was followed by printing of cathode ink on the YSZ surface of co-sintered samples.  

The anode electro-catalyst was infiltrated into the porous metal support using vacuum assisted 

solution infiltration. Aqueous solution containing nitrate salts of the anode catalyst (nickel) and 

samarium and cerium (1:4 molar ratio for samarium and cerium, and 55:45 for nickel and 

samarium-cerium) was vacuum impregnated into the porous metal support. Figure 4.4 shows a 

labelled picture of the apparatus used for vacuum infiltration of anode electro-catalyst. 
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Figure 4.4: Picture of apparatus used for anode electro-catalyst infiltration. 

The infiltrated samples were heat treated at 400℃ for 5 minutes to thermally break down the 

nitrates to form oxides. Infiltration and heat treatment cycle was repeated until a 10 mass % 

loading, based on mass of co-sintered half-cell, was achieved. Characterization of the resulting 

cell was done to evaluate the following: 

1. Whether the nitrate salt solution turns to metal oxide powder of desired composition. This 

was done by heat treating metal nitrate solution and running the resulting powder in XRD.  

2. Mass gain per infiltration cycle. This was done by weighing the sample before infiltration 

and then again after heat treatment. The difference in mass represents the mass of electro-

catalyst loaded into porous metal support and transition layer.  

3. Since heat treatment after every infiltration is done in air, its effect on metal support is 

important. Hence TGA of porous metal support was done to assess the effect of heat 

treatment cycle on the extent of oxidation of metal during these cycles.  

4. To assess the efficacy of solution infiltration (whether NiO/SDC powder is uniformly 

distributed), SEM, coupled with EDX, of the cell cross-section was used.  

5. To assess the effect of cathode sintering (1100℃ for 2 hours in argon) on the anode 

electrocatalyst powder, SEM-EDX of anode side full cells was done after cathode 

application and sintering. Since cathode sintering is at high temperature, it may lead to 

 



61 

 

micro-structural changes in NiO/SDC powder in the porous metal support and transition 

layer.  

For cathode, a simple printing method was used. In this method, two pieces of scotch tape were 

stacked together and then a hole (6 mm diameter) was punched. The hole was placed in the center 

of the electrolyte surface, and the cathode ink was dropped on the hole. Dropped ink was then 

leveled off using a blade and the tape was removed. This left a circular printed cathode on the 

electrolyte surface. Ex-situ sintering in inert atmosphere at 1100℃ for 2 hours was used for 

cathode bonding to the electrolyte. Micro-structural analysis of the cathode was done using SEM 

for a full cell cross-section.  

Electrochemical Performance testing 

Full MS-SOFCs were tested for electrochemical performance. Tests were done with hummidified 

H2 as fuel and air as oxidant and the operation temperature was 700℃. OCV measurement, 

polarization curve measurement and EIS were used to assess the performance of the fabricated 

cells. The setup of testing station is described in section 4.3 under the heading electrochemical 

testing. 

4.2.2 Experimental procedure and details for slurry formulation and tape casting 

As mentioned previously, different types of cell component layers were used in the fabrication: 

the metal support, the transition layers, and the electrolyte layer. The procedure and the chemicals 

used in the synthesis of the transition layers and electrolyte were similar as opposed to metal 

support layer. The primary reason for different procedures is that metal particles are denser (7.7 

g/cm3) compared to YSZ particles (6.1 g/cm3), which tends to make the metal particles’ 

sedimentation easier. Also, the way YSZ (metal oxide) particles interact with the organics used in 

the slurry is different than that for stainless-steel particles. Since the research is not about 

interaction of these particles in a colloidal system, no quantitative work was done to characterize 

these suspensions.  
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Slurry formulation for the metal support layer.  

Stainless steel powder of 430L grade (Alfa Aesar, VWR-Canada) was used in the metal support. 

The slurry for tape casting was based on Acetonitrile and Poly Ethylene Oxide (PEO), which was 

used as the binder and viscosity increasing agent. Since the density of bulk SS-430L is high the 

sedimentation of powder can happen quickly (approximately in one hour). However, the viscosity 

of the solution (acetonitrile and PEO) can be varied to control the sedimentation of the powder. 

Also, the amount of SS-430L powder used will influence the density of the casted layer. After trial 

and error, the composition of slurry was fixed based on visual inspection: agglomeration or not of 

particles, sedimentation, and slurry viscosity. The particles in the slurry should not agglomerate 

and settle down. Also, the slurry should have the right viscosity; if the viscosity is too high the 

slurry will have difficulty spreading, and if it is too low it will overspread. First, PEO was mixed 

with acetonitrile in a mass ratio of 1:14 and ball milled for 24 hours. The mixed slurry was labelled 

“MS-Preliminary Slurry”. This ratio gave a MS-Preliminary Slurry with a honey like consistency. 

Then, in 12 grams of MS-Preliminary Slurry, 7.2 grams of SS-430L powder was mixed using a 

variable frequency vortex mixer (VWR, Canada). To induce pores in the metal support structure 

an organic pore former, Poly (methyl methacrylate) PMMA, was used. 12.5 mass % with respect 

to the mass of SS-430L powder was used for pore former. Pore former was added to the slurry 

while mixing on a vortex mixer. The reason for this was to avoid any agglomeration of PMMA 

particles. The slurry was allowed to sit for one minute to remove any air bubbles before casting.  

Slurry formulation for transition and electrolyte layer 

The electrolyte and transition layer slurries were based on ethanol and toluene. Poly Vinyl Butyral 

(PVB), Santicizer S-160, and Hypermer KD-1 were used as binder, plasticizer and dispersant, 

respectively. The slurry synthesis was carried out in two steps where a “preliminary slurry” was 

made in parallel to a “base slurry”.  The preliminary slurry is a slurry containing the binder and 

plasticizer, whereas the base slurry contains the powder of desired material and dispersant. The 

base slurry is made separately with only dispersant and powder of desired material so that the 

particles are well distributed by the action of dispersant. If all the components were mixed together 

from the start there might be some particle’s agglomeration because of the presence of binder and 

plasticizer. The preliminary slurry is a mixture of solvents (ethanol and toluene), PVB, and 

Santicizer S-160 ball milled for 24 hours. The base slurry is a mixture of solvents (ethanol and 
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toluene), Hypermer KD-1 (dispersant), and base powder (YSZ in case of electrolyte and YSZ-

stainless-steel in case of transition layer). For the base slurry, ethanol and toluene were mixed with 

Hypermer KD-1 first to achieve a homogeneous solution, and then YSZ was added to the slurry. 

This slurry was ball milled for 24 hours. After separately ball-milling the preliminary and base 

slurries, they were mixed together for 6 hours using a ball mill.  

For the electrolyte slurry, once the preliminary slurry and base slurry were mixed for 6 hours, the 

slurry was tape casted to a thickness of 150 microns.  

In the case of the transition layer only the required percentage of YSZ was added to the base slurry 

initially. SS-430L was only added at the end, when the base slurry and preliminary slurry are 

already mixed for 6 hours. The reason for this is uniformity of the final slurry; it was observed that 

if SS-430L powder is added to the base slurry with YSZ the base slurry becomes very viscous and 

it is difficult to mix it with preliminary slurry afterwards. Hence, SS-430L powder and pore former 

(PMMA) were added to the mixture of the base slurry and preliminary slurry while mixing on a 

vortex mixer.  

As in the case of metal support slurry, this was an iterative process. Hence only the final slurry 

composition is reported in Chapter 6.  

Details of tape casting parameters 

A table top tape caster (MTI corp., USA) was used for tape casting the samples. Silicon coated 

mylar sheet was used as the tape casting substrate. Table 4.1 gives out the casting thickness of all 

cell components.  

Table 4.1: Casting thickness of cell components. 

Cell component Casting thickness (microns) 

Metal support 750 

50/50 MS/YSZ transition layer 300 

30/70 MS/YSZ transition layer 300 

Porous YSZ transition layer 300 
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Dense YSZ for electrolyte 150 

The details of the materials used in this work are given in table 4.2 

Table 4.2: Details of chemicals used. 

Material Vendor 

Stainless Steel (400 series) Alfa Aesar, VWR-Canada 

YSZ tape casting grade powder Fuel Cell materials, USA 

SDC tape casting grade powder Fuel cell materials, USA 

Polyethylene Oxide (PEO)-400000 Sigma Aldrich 

Poly(methyl methacrylate) (PMMA) Scientific Polymers Inc., USA 

Poly Vinyl Butyral (PVB) Scientific Polymers Inc., USA 

Santicizer S-160 Tape Casting Warehouse Inc., USA 

Hypermer KD-1 Tape Casting Warehouse Inc., USA 

Acetonitrile Chem-Store-University of Waterloo 

Ethanol Chem Store-University of Waterloo 

4.3 Apparatus and techniques used 

This section gives the details of the apparatus used in the physical and electrochemical 

characterization of SDC with and without copper, and of MS-SOFC.  

4.3.1 X-Ray Diffraction 

X-ray diffraction was used to identify the crystal structure including the basic crystal type and 

crystal lattice parameters. The measurement was conducted using Bruker D8 Focus X-Ray 

diffractometer (Bruker, Germany) available at the chemical engineering department at University 

of Waterloo. SDC with and without copper, and NiO/SDC synthesized for MS-SOFC were 
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analysed through XRD. Powders of each sample was distributed on the sample holder using a glass 

slide to make the surface even. Later, the sample holder was loaded on the sample holder tray 

(attached to the equipment). The tray could carry 8 samples at the same time. The tray was then 

recalled into the equipment. For XRD measurement the X-Ray generator was supplied with a 

voltage of 40 kV and a current of 40 mA. CuKα radiations, with a wavelength (λ) of 1.5425 Å, 

were used and the sample was rotated between 2ϴ values of 5-110°.  

Eva software was used to identify the crystal structure, and peak positions from the generated XRD 

spectra.  

4.3.2 Scanning Electron Microscopy (SEM) 

Essentially, SEM-EDX was used for sintered samples of electrolyte disks (SDC with and without 

copper) and cross-sectional analysis of co-sintered half-cells for MS-SOFC. Preparation of SDC 

samples with and without copper for use in SEM is given in section 4.1.2 whereas preparation of 

the half and full MS-SOFCs is given in Chapter 6.  

SEM Zeiss Ultra Plus, SEM LEO 1530 and ESEM available at the Waterloo Advanced 

Technology Lab (WATLab) were used for SEM and EDX analysis. All samples were coated with 

a 10 nm thin gold layer using sputtering equipment available at WATLab. Secondary Electrons 

(SE) and Back Scattered Electrons (BSE) were used to take SEM images of varying 

magnifications.  

4.3.3 Dilatometry Analysis 

Dilatometry (DIL 402 dilatometer, Netzsch) was used to study the shrinkage behavior of SDC with 

and without copper, metal support used in MS-SOFC (made from SS-430L), and YSZ for 

electrolyte in MS-SOFC. The results obtained gave data pertaining to time, temperature and linear 

shrinkage of samples. Linear shrinkage is the dimensional change as a percentage or fraction of 

initial dimension of sample (eq. 4.3). 

𝐿𝑖𝑛ⅇ𝑎𝑟 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔ⅇ =  
𝛥𝐿

𝐿
                                (4.3) 
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Results were analyzed based on plots between linear shrinkage and temperature and linear 

shrinkage and time. The plots were used to identify the sintering set off temperature, shrinkage 

rate, temperature at which maximum sintering is achieved, time required for sintering, and 

Coefficient of Thermal Expansion (CTE).  

Shrinkage rate was taken as the change in linear shrinkage per unit time.  

4.3.4 Electrochemical Testing 

Electrochemical testing was done using the electrochemical testing station available in the lab. 

Essentially, it is composed of a reaction tube housed in an electrically heated furnace, gas mass 

flow controllers connected to the reaction tube, and current collectors from the reaction tube 

connected to the electrochemical testing stations (solartron 1287 and 1260). Figure 4.5 shows a 

schematic of the testing assembly (setup of reaction tubes). The electrochemical testing equipment 

can run regular electrochemical tests like cyclic voltammetry, polarization testing, potentiostatic 

measurements, galvanostatic measurements, and EIS.  

The electrical furnace houses two reaction tubes, one for the anode side and one for the cathode 

side. Each reaction tube is made of two concentric tubes. The inside tube is made of quartz while 

the outside tube is made of alumina (Arklay S Richard Inc, USA). The inside quartz tube is used 

for flow of gasses to the cell and the annulus space (between inside and outside tube) is for the 

flow of gasses coming from the cell. Both reaction tubes are fixed in a special Swagelok fitting on 

outer ends, while the inside ends (inside end is inside the furnace) is attached to the cell. The 

swagelok fitting has a spring fitted inside on which the inside quartz tube, in both reaction tubes, 

sit. The purpose of the spring is to provide some forward push to the quartz tube so that it makes 

firm contact with the cell on the other end of the reaction tube. This also means that without a 

sample the quartz tube slightly protrudes outwards from the alumina tube. To make electrical 

connections, the inside end of the quartz tube (the end in contact with the cell) is covered with a 

silver mesh. The silver mesh is in contact with a silver wire which goes in to the actual 

electrochemical testing station (Solartron 1260 and 1287). There is a slight difference in the 

procedure for securing symmetrical electrolyte sample for conductivity analysis and that for full 

cell electrochemical testing.  
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Figure 4.5: Schematic of reaction tube assembly for EIS and Electrochemical testing. 

Assembly for symmetrical electrolyte samples 

EIS for electrolyte was done in air. Symmetrical cell with silver paste was placed between the top 

and bottom reaction tube. The inside ends of the quartz tubes were covered with mesh and touching 

the silver paste on either side of the sample. The furnace housing was sealed and ramped to 400℃. 

Tests were conducted between 400-800℃ with an interval of 50℃.  

Assembly for MS-SOFCs 

In electrochemical performance testing, H2 is used on the anode side and air on the cathode side. 

To avoid any leakage of fuel to the cathode side, the anode side of the cell (metal support side) 

was sealed to the bottom the reaction tube. Once the cell was placed on the reaction tube, 

cermabond (Aremco, USA) was used as a sealant to seal the cell to the bottom reaction tube. The 

seal was dried in ambient air for 1 hour before curing at 92℃ for 2 hours first and then at 262℃ 

for 2 hours. Once the seal was in place, the top reaction tube was placed on the cell such that the 

inner quartz tube was touching the printed cathode. The temperature of the furnace was ramped up 
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to 700℃ with 80 mL/min flow of dry H2 on the anode side and 86 mL/min flow of air on cathode 

side.  

Once at the operating temperature electrochemical performance tests were performed.  

Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) is a frequency dependant electrochemical 

characterization technique. In the case of solid electrolyte, the current passes through the 

electrolyte using two different pathways, through grain interior and through grain boundary. Both 

mechanisms have different time constants and hence behave differently (i.e. show different 

resistances). Using AC voltage bias with varying frequencies it is possible to differentiate between 

the resistance or impedance behavior of these two mechanisms. In the experiments, a frequency-

based AC voltage signal was applied which can be written mathematically as:  

𝐸′ =  𝐸𝑜sin (⍵𝑡)                          (4.4) 

In the above equation 𝐸′ is the actual voltage signal, 𝐸𝑜 is the set voltage bias, t is the time, and ⍵ 

is the angular frequency (⍵ = 2πf). When this signal is applied across the sample a resulting 

current passes through the system of the magnitude: 

𝐼′ =  𝐼𝑜sin (⍵𝑡 +  𝜑)                         (4.5) 

Where 𝐼′is the actual current passing through the sample, 𝐼𝑜 is the output current signal, and 𝜑 is 

the phase angle. Analogous to DC circuit relation between voltage-current-resistance, a relation 

can be constructed for AC voltage and current.  

𝑍 =  
𝐸′

𝐼′
                   (4.6) 

Where Z is the impedance of the system. This relation, in time domain, can be converted to a 

complex number in frequency domain [124] as: 

𝑍 = |𝑍| exp 𝑗𝜑 = |𝑍| 𝑐𝑜𝑠(𝜑) + 𝑗|𝑍| sin(𝜑) =  𝑍′ +  𝑍"              (4.7) 
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In the above equation 𝑍′ is the real part of impedance and 𝑍" is the imaginary. EIS can be used for 

conductivity measurement of electrolytes and for ohmic and polarization resistance measurement 

for a full cell under working conditions.  

In case of conductivity measurement using EIS, the Nyquist plot can be plotted between imaginary 

and real impedance. Figure 4.6 below shows a typical Nyquist plot for electrolyte materials [125].  

 

Figure 4.6: Typical Nyquist plot for a solid electrolyte. 

In a Nyquist plot each semicircle represents a different conduction mechanism, realized based on 

its time constant. In the case of a solid electrolyte the first semicircle represents grain interior 

conduction, the second semicircle represents grain boundary and the third semicircle represents 

electrode-electrolyte interface/contact resistance. Values at the x-intercepts are used as the 

resistance values. From the Nyquist plot, equivalent circuit data fitting is used to predict the actual 

resistance values. Equivalent circuits are normal RC circuits with both active and passive electrical 

components sequenced in a way which produce same impedance response as that of the test 

sample. In principle an equivalent circuit is the reflection of conduction mechanism of a material 

on to electrical circuit components. In the case of solid electrolytes, commonly used circuit 

elements are inductor, resistor, and Constant Phase Element (CPE). CPE represents the capacitance 
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or charging of material. Every semicircle can be represented by a parallel combination of resistor 

and CPE and the entire Nyquist plot can be represented by a series combination of all the parallel 

resistor-CPE circuits. For analysis, Z plot and Z view (Scribner Associates, USA) software were 

used. Figure 4.7 shows an example of equivalent circuit used in this study.  

 

Figure 4.7: An example of equivalent circuit. 

In the present study, during EIS experiments an AC voltage bias of 10 mV in the frequency range 

of 0.1 Hz to 1 MHz was used. The temperature range for experiment was set between 400-800℃ 

in air atmosphere. In air it is assumed that oxygen ion conduction would be dominant whereas in 

inert or reducing atmosphere (low oxygen partial pressure) electron conduction can become 

significant. The dependence of conductivity in MIEC like doped ceria on oxygen partial pressure 

is given by 

𝜎 =  𝜎𝑂 + 𝜎𝑒 . (𝑃𝑂2
)−

1
4 

In the above equation ‘𝜎’ is the total conductivity and subscript ‘o’ and ‘e’ represent oxygen and 

electron conductivity. Conductivity of a sample can be calculated using resistances calculated 

through EIS using the equation: 

𝜎 =  
𝑙

𝑅. 𝐴
 

Where ‘𝑙’ is the sample thickness, ‘R’ is the resistance and ‘A’ is the active area. In our case the 

active area was taken as the area of the silver paste which was equal to 0.283 cm2. The conductivity 

had the units of S.m-1 or S.cm-1. Sample calculation for electrolyte conductivity and conduction 

activation energy is given in Appendix B. 

L1 R GI

CPE GI

R GB

CPE GB

R ee

CPE ee

Element Freedom Value Error Error %

L1 Fixed(X) 1E-11 N/A N/A

R GI Fixed(X) 6.9 N/A N/A

CPE GI-T Fixed(X) 0 N/A N/A

CPE GI-P Fixed(X) 1 N/A N/A

R GB Fixed(X) 1.5 N/A N/A

CPE GB-T Free(±) 0.35954 N/A N/A

CPE GB-P Free(±) 0.48258 N/A N/A

R ee Fixed(X) 30.99 N/A N/A

CPE ee-T Free(±) 0.01378 N/A N/A

CPE ee-P Free(±) 0.51681 N/A N/A

Data File:

Circuit Model File: C:\SAI\ZModels\doped ceria symmetrical c

ells low temperature.mdl

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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In case of full cell ohmic and polarization resistance measurement using EIS, Nyquist plot shows 

two semi-circles. The one at higher frequency is attributed to the ohmic resistance of the cell and 

the one at lower frequency is attributed to the polarization resistance. In case of a full cell ohmic 

resistance represents the resistance to charge conduction through a cell component and at the 

interface of two components. Polarization resistance, on the other hand, is a reflection of resistance 

to electrode process like charge transfer reactions, etc.  

4.3.5 Porosity measurement 

Porosity measurement of sintered metal support samples was done using vacuum assisted oil 

impregnation. Sintered samples were weighed, and the mass was recorded as dry mass. The 

samples were placed in a chamber and vacuum was induced in the chamber using a vacuum pump. 

Samples were left in vacuum for 5 minutes before filling the chamber with oil of known density. 

Vacuum was slowly increased to atmospheric pressure and samples were left in the oil for 20 

minutes. The samples were then taken out of the oil and a non-absorbing paper was used to wipe 

the excess oil on the surface. The samples were weighed again, and the mass recorded as wet mass. 

The difference between wet mass and dry mass is that of the impregnated oil. Using the density of 

SS-430L and oil, and the mass of SS-430L and oil, volume of each phase and porosity was 

calculated (sample calculation shown in Appendix A). The apparatus used for oil impregnation 

was the same as that used for anode electro-catalyst infiltration for MS-SOFCs. A picture of the 

apparatus is shown in Figure 4.4. 
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Chapter 5 Use of Sintering Aid with SDC Electrolyte 

5.1 Introduction 

In conventional methods, electrolyte materials used in SOFCs, be it YSZ, SDC or others, are 

sintered at high temperatures, up to 1400℃, to allow for maximum densification of the electrolyte. 

The reason behind this is to make the electrolyte gas tight so that there is no short circuiting of 

reactants, which leads to inefficiencies. Reaching this high temperature contributes to the 

manufacturing cost which acts as a hinderance in the commercialization of this technology. Also, 

with advances made in third generation SOFCs, or MS-SOFCs, high sintering temperature can be 

a problem in cases where the metal support is pre-sintered. Similarly, for MS-SOFC the use of 

reducing atmosphere for sintering can lead to reduction of cerium (IV) oxide to cerium (III) oxide. 

To reduce the exposure of metal support and SDC to high temperature, complex techniques like 

Plasma Spray Deposition (PSD), Pulsed Laser Deposition (PLD), and sputtering have been 

employed. Thermal spray deposition techniques are normally used with a pre-sintered metal 

support. Although they have been more popular there are some limitations to the use of these 

techniques in case of MS-SOFCs. It has been reported that electrolytes deposited using thermal 

spray deposition like atmospheric plasma spraying are not fully dense leading to inefficiencies in 

cell performance[24,25]. Also, the use of focused plasma can lead to localized hot spots on the 

porous metal substrate which can lead to metal support warping[26]. Another smaller limitation is 

the long processing times required, where it has been reported that processing rate can be as low 

as 1-2 µm/hr[126]. Hence, it would be desirable to derive a procedure using conventional ceramic 

processing technique to lower the sintering temperature, while minimizing negative effect on cell 

performance. Since SDC has been known to show a comparable conductivity at lower 

temperatures in comparison to YSZ, this work deals with the reduction of sintering temperature of 

SDC. As outlined in chapter 2 numerous methods can be used to reduce the sintering temperature; 

however, the use of sintering aid has been labelled as effective in the past [31]. It is important to 

fully characterize the system of electrolyte when using sintering aid; that is microstructure, 

shrinkage behavior and electrochemical properties should be fully characterized. In the past, 

several different transition metals have been employed as sintering aids including iron [109], 
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cobalt[115,127], lithium[125], bismuth[114], zinc[116], and copper [33,34,111]. Amongst these, 

cobalt, iron and copper have been the popular choices. The cost of cobalt, however, makes it a 

difficult choice as a sintering aid. In the case of iron oxide as sintering aid it has been reported that 

low amounts of iron doping (less than 0.5 mol%) can lower the total conductivity slightly. In the 

case of copper most of the work done in the past has been on copper content of 1 mole % with 

Gadolinium Doped Ceria (GDC) [31,33,34,111]. Hence copper was chosen as the sintering aid in 

this study where copper content was varied between 0 and 5.0 mol%. The objective of the study is 

to shed light on how copper content affects the crystal structure, sintering dynamics, and 

conductiity of SDC. 

The first task of this work is the study of the crystal structure resulting from sintering aid 

incorporation to SDC powder. The objective of this task is to establish whether copper ions go 

inside the cubic fluorite crystal structure of ceria and if there is a solubility limit. The second task 

is the characterization of the microstructure and the shrinkage behavior of the sintered samples. 

Microstructure is characterized through SEM-EDX and gives a general idea about observable 

porosity or surface porosity of the sintered samples, about the presence or not of secondary phases 

and information about grain size and shape. The shrinkage behavior, on the other hand, deals with 

the dynamics of the sintering process. With the help of the shrinkage curves, sintering set-off 

temperature, sintering time, maximum shrinkage, temperature required for maximum shrinkage 

and CTE can be measured. The last task is the characterization of effect of copper sintering aid on 

the electrochemical performance, more particularly, the determination of the electrolyte 

conductivity. 

5.2 Experimental procedure 

Copper was used as sintering aid with SDC in this work. Varying content of copper in the form of 

copper nitrate hydrate was added to a metal nitrate-glycine solution of samarium and cerium. 

Electrolyte powders were prepared in lab using Glycine Nitrate Combustion (GNC) process. 

Nitrate hydrates (from VWR, Canada) of desired metals were mixed with glycine in De-Ionized 

(DI) water. Glycine in this reaction is used as an oxidant and a fuel at the same time. The solution 

was heated over night at 90℃ to form a gel. This gel was later transferred to ceramic crucibles and 
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combusted on a heating plate. For comparison purpose, undoped Plain Samarium Doped Ceria 

(PSDC), 0.1 mol% copper doped SDC (0.1CSDC), 0.5 mol% copper doped SDC (0.5CSDC), 1.0 

mol% copper doped SDC (1.0CSDC), and 3.0 mol% copper doped SDC (3.0CSDC), and 5.0 mol% 

copper doped SDC (5.0 CSDC) were prepared. After combustion the powders were calcined at 

700℃ for 2 hours in air.  

The characterization of samples can be organized into two categories; physical and conductivity. 

5.2.1 Physical Characterization 

For physical characterization, XRD, SEM, and dilatometry were used. For XRD analysis, calcined 

powder for all samples were run in Bruker D8 Focus X-Ray diffractometer (Bruker, Germany). 

Diffraction angles (2ϴ was fixed between 5-110°) were used with CuKα radiation with a 

wavelength (λ) of 1.5425 Å. For SEM analysis, calcined powders of different samples were 

pressed into circular disks of 20 mm diameter at 250 MPa for 2 minutes and were sintered at 

1100℃ for 5 hours in air. Sintered samples were then observed under SEM. Additional PSDC 

sample was also sintered at 1350℃ to act as a standard reference sample. For dilatometry, samples 

with rectangular cross section were pressed using the calcined powder. The dimensions of the 

cross-section are 6 mm by 8 mm. The samples were pressed at 250 MPa for 2 minutes. Pressed 

samples were then used in a horizontal push rod dilatometer (DIL 402 C, NETZSCH). The 

sintering profile used for dilatometry tests is given in Table 5.1.  

Table 5.1: Temperature profile used for dilatometry analysis. 

Step Number Step description 

1 Heat up to 400℃ in air at 3℃/min. 

2 Dwell at 400℃ for 30 minutes.  

3 Heat up to 1000℃ at 3℃/min. 

4 Dwell at 1000℃ for 10 minutes. 

5 Heat up to 1350℃ at 2 ℃/min 

6 Dwell at 1350℃ for 5 hours. 
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High sintering temperature was used to allow for comparison between a standard PSDC sample 

sintered at a more conventional sintering temperature of 1350℃.  Key parameters identified 

through the dilatometry analysis were sintering set-off temperature, temperature needed to attain 

maximum shrinkage, time to achieve maximum shrinkage, and CTE. 

5.2.2 Conductivity Characterization 

For conductivity analysis calcined powders for different samples were pressed into circular disks 

of 20 mm diameter at 250 MPa for 2 minutes. Pressed samples with copper were then sintered at 

1100℃ for 5 hours whereas PSDC was sintered at 1350℃ for 5 hours. Sintering temperature of 

1350℃ for PSDC was chosen so that PSDCs performance is not compromised. This means that 

electrochemical performance of copper doped samples should be tested against SDC sample which 

is sintered at conventional sintering temperature. Once the samples were sintered, silver paste was 

applied on both sides using ‘printing’, as described next. 6 pieces of scotch tape were stacked 

together and a hole (6 mm diameter) was punched in the stacked tape. Punched-stacked tape was 

then carefully placed on the cell so that the hole is in the center of the surface of the sintered 

samples. Silver paste (Electrochemical Systems Inc.) was then applied and levelled off on the 

punched hole. The applied paste was dried before turning over the cell and applying the silver 

paste on the opposite surface. Once the silver paste was deposited on both sides of the cell, it was 

heat treated at 820℃ for 2 hours in air to allow for bonding between the silver electrodes and the 

electrolyte disk. After sintering the samples were mounted on the test rig. A schematic of the test 

rig is shown in Figure 5.1. 

A more detailed description of the testing station is given in chapter 4. The test rig consists of two 

concentric tubes on both sides of symmetrical cells. Outer tube is made of alumina and inner tube 

is made of quartz. The annulus space acts as the outlet passage for gasses while gasses flow in 

through the quartz tube. The test rig is placed in a vertical tubular furnace so that tests could be 

conducted at higher temperatures. 
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Figure 5.1: Schematic of test for rig for electrochemical testing. 

For conductivity analysis, ionic conductivity was characterized using Electrochemical Impedance 

Spectroscopy (EIS). During EIS experiments A.C. potential bias of 10 mV was used between a 

frequency range of 0.1 Hz to 1Mhz. Generally, for ceramics or metal oxides Nyquist plot contains 

three consecutive semicircles where each semicircle represents a unique conduction mechanism 

(grain interior, grain boundary, and charge transfer between electrolyte and electrode). In a Nyquist 

plot, frequency decreases along the positive x-axis. The second x-intercept of each semicircle is 

taken as the impedance of that specific mechanism. In case of metal oxides the arc/semicircle 

corresponding to the highest frequency is for grain interior, the arc at medium frequency is for 

grain boundary and the arc at lowest frequency is for electrode-electrolyte interface [116]. To 

determine the impedance values from experimental results equivalent circuit fitting is used to find 

out conductivity components of grain interior, grain boundary and electrode-electrolyte interface. 

Each conductivity mechanism is represented by a parallel combination of Resistor (Ri)-Constant 

Phase Element (CPEi) and overall each component is placed in series. Subscript ‘i’ stands for the 

component, in that ‘gi’ represents grain interior, ‘gb’ represents grain boundary, and ‘ee’ 

represents electrode-electrolyte. Once the resistance values are known the following equation is 

used to calculate the conductivity values. 
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𝜎 =  
𝑙

𝑅. 𝐴
                                                (5.1) 

EIS testing of symmetrical electrolyte samples was conducted between 400-800℃.  

5.3 Results and Discussion 

5.3.1 Physical characterization 

Physical characterization of the samples comprises the studies of crystal structure, microstructure 

of sintered samples, and shrinkage behavior of samples in a given sintering profile.  

Crystal Structure Analysis 

The first step in physical characterization was to run the calcined powders of electrolyte under 

XRD for crystal structure characterization. The purpose was to see any obvious changes in the 

crystal structure as indication of whether copper goes inside the crystal and/or stays outside the 

crystal structure and segregates on the boundaries. Other than peak identification on the spectra, 

lattice parameter was also calculated to see the effect of copper content on the crystal structure. 

Table 5.2 shows the ionic radii of all cations involved in the crystal structure of SDC with and 

without copper.  

Table 5.2: Ionic radii of cations in copper doped SDC [33][113]. 

Cation Ionic radius (Å) 

Cerium (IV) 0.97 

Samarium (III) 1.08 

Copper (II) 0.73 

The crystal lattice parameter of ceria (CeO2) is 0.541 nm [128]. The replacement of cerium ion 

with a bigger ion will lead to a stretch in the crystal structure which will increase the lattice 

constant, and vice versa. Figure 5.2 shows XRD spectra for PSDC, 0.1CSDC, 0.5CSDC, and 

1.0CSDC, 3.0CSDC, and 5.0CSDC. From Figure 5.2 it is evident that there are no apparent 
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changes in the crystal structure of SDC when it is doped with copper up to a content of 5 mol %. 

Major peaks form at the same 2ϴ values and there are no additional peaks in comparison to the 

fluorite crystal structure of ceria (same as that for PSDC).  

 

Figure 5.2: XRD spectra of different electrolyte samples. 

It appears from XRD spectra and the lattice constant shown in Table 5.3 that copper forms a solid 

solution with ceria as there is no additional peak formation relative to XRD spectra of PSDC 

(Figure 5.2).  

Table 5.3: Lattice constant for SDC with and without copper. 

Sample ID Lattice constant (nm) using 

peak (1,1,1) 

Lattice constant (nm) using 

peak (2,0,0) 

PSDC 0.5446 0.5455 

0.1 CSDC 0.5436 0.5431 
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0.5 CSDC 0.5436 0.5429 

1.0 CSDC 0.5435 0.5428 

3.0 CSDC 0.5435 0.5426 

5.0 CSDC 0.5427 0.5425 

Increasing the amount of copper leads to a slight progressive decrease in the lattice constant. This 

points to the fact that copper ions are replacing cerium ions in the crystal structure as the ionic 

radius of copper ion is smaller than that of cerium ion (Table 5.2). It has been previously reported 

that lattice constant for SDC ranges between 0.5411 and 0.5450 nm depending on the calcination 

temperature and sintering [113]. Lattice constant calculated here falls within this range. Literature 

reporting the use of copper as sintering aid also shows a similar slight decreasing trend with the 

addition of copper [33][34]. GDC samples with 1 mol% copper addition has been reported to have 

a lattice constant of 0.54177 nm [34] and 0.54086 nm [33]. It can be seen that these values are 

smaller compared to lattice constant values for 1.0 CSDC determined here. The reason might be 

the use of gadolinium instead of samarium in the literature;  gadolinium has a smaller ionic radius 

(1.05 Å) [109] than samarium (1.08 Å) [113]. The lattice constant for GDC (0.5425 nm) [109] is 

smaller than SDC (0.5450 nm)[113] to begin with. However, the addition of copper up to 5.0 mol% 

does not significantly decrease the lattice constant (only 0.35% decrease from SDC lattice 

constant). 

The theoretical density is also an important parameter to see the effect of copper on the crystal 

structure of the material. Since it is assumed that both samarium and copper ions are replacing 

cerium ions in the crystal lattice and keeping in mind that ceria has cubic fluorite crystal structure 

the following equation can be used to compute the theoretical density [113].  

𝑑𝑡ℎ = (
4

𝑁𝑎.𝑎3)((1 − 𝑥 − 𝑦)(𝑀𝐶𝑒 + 𝑥𝑀𝑆𝑚 + 𝑦𝑀𝐶𝑢 + (2 −
(𝑥+𝑦)

2
) 𝑀𝑂)           (5.2) 

where x and y are molar fractions of samarium and copper in a single crystal, respectively; Mi is 

the atomic weight of component ‘i’, Na is the Avogadro’s number (6.022× 1023), and ‘a’ is the 

lattice constant. The calculated theoretical densities for each electrolyte are given in Table 5.4. 
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Table 5.4: Theoretical density of different samples. 

Sample ID Theoretical Density using (1,1,1) 

peak / (g.cm-3) 

Theoretical Density, using (2,0,0) 

peak / (g.cm-3) 

PSDC 7.10 7.06 

0.1 CSDC 7.13 7.15 

0.5 CSDC 7.12 7.14 

1.0 CSDC 7.10 7.13 

3.0 CSDC 7.03 7.07 

5.0 CSDC 6.99 7.00 

It is clear from Table 5.4 that theoretical density of samples first increases (addition of 0.1 mol% 

copper) and then decreases as the copper content is increased. When a dopant lighter and smaller 

in size than cerium is added to the ceria structure it can affect the density through two different 

ways. Firstly, it can increase the density by decreasing the lattice constant or unit cell volume and 

secondly it can decrease the density by decreasing the mass of unit cell. As seen in Table 5.3 the 

lattice constant does not change appreciably with copper addition, only 0.35 % change noticed 

with 5.0 mol% copper addition. However, the theoretical density does show a more significant 

change, a decrease of 1.42 % between PSDC and 5.0CSDC. This shows that copper shows a more 

pronounced effect on mass of a unit cell.  

Microstructure of Sintered Samples 

SEM was used to observe the microstructure of sintered samples and see whether they are fully 

dense or not.  Figure 5.3 shows SEM images of electrolyte samples sintered at 1100°C in air for 5 

hours. Pure SDC and 0.1CSDC sample are not fully dense, as many pinholes can be observed 

(Figures 5.3a and 5.3b). On the other hand, the 0.5, 1, 3, and 5 CSDC sample shows that the 

material has fully densified.  
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Figure 5.3: SEM images of electrolyte samples sintered at 1100°C; a) Pure SDC sample, b) 0.1 

CSDC sample, and c) 0.5 CSDC sample, d) 1.0 CSDC, e) 3.0 CSDC, and f) 5.0 CSDC. 

For PSDC and 0.1 CSDC not much grain coarsening is observed at 1100℃ compared to other 

samples. Samples with 0.5 mol% and more copper show very similar microstructure and bi-modal 

grain size distribution after sintering.  This is an indication of final stage of sintering, which 

commonly happens after the maximum contact is established between particles. During the final 

stage of sintering grain coarsening is observed where the bigger grains keep on increasing their 

size by “consuming” smaller grains. In our case, indication of final stage sintering for samples 

containing 0.5 mol% and more copper implies that either sintering starts at a lower temperature 

and/or shrinkage is faster than that for PSDC and 0.1 CSDC. From Figure 5.3 it is clear that 0.5 

mol% copper doping is sufficient to enhance sintering of SDC so that near full density is achieved 
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at 1100℃. For comparison PSDC sample was also sintered at 1350°C (conventional sintering 

temperature) in air for 5 hours. Figure 5.4 shows the SEM image of the sintered sample.  

 

Figure 5.4: SEM of PSDC samples sintered at 1350°C; a) 5 KX magnification and b) 50 KX 

magnification. 

Even at 1350°C sintering of PSDC does not show full density. From Figures 5.3 and 5.4 it appears 

that using 0.5 mol% copper in SDC can greatly decrease the sintering temperature (up to 200℃). 

Even though XRD results showed no additional phase for copper oxide, SEM showed an additional 

phase which was identified as copper oxide using EDX (see Figures 5.5 and 5.6). Back Scattered 

Electron (BSD) function can be used for phase identification in SEM. In this, electrons fired on 

the sample are back fired to the BSD detector. Bigger atoms back scatter electrons with more 

energy (due to higher chances of elastic collision) as opposed to smaller atoms.  

 

Figure 5.5: SEM in Back Scattered Electron (BSD) mode for a) 0.1 CSDC, b) .0.5 CSDC, and c) 

1.0 CSDC sintered at 1100℃ for 5 hours. 
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Based on the higher intensity of electrons back scattered from heavier atoms the image formed for 

heavier atoms is brighter compared to lighter atoms. Hence BSD can be used to identify different 

phases in a sample based on the color of the image. Figure 5.5 shows BSD images of samples 

containing 0.1, 0.5, and 1.0 mol% copper. In Figures 5.5b and 5.5c, SEM-BSD shows images with 

two different colors. Since cerium is heavier than copper, the ceria phase appears brighter. The 

dark colored phase is identified as copper oxide. Another feature visible in Figures 5.5b and 5.5c 

is the difference in shape of grains for doped ceria phase and copper oxide phase. Where doped 

ceria grains appear more spherical, the copper oxide seems to have faces. EDX was performed on 

Figure 5.5c to verify and assess the identity of the darker colored phase. This is shown in Figure 

5.6. The presence of copper oxide phase implies that copper oxide promotes sintering of SDC by 

promoting liquid phase sintering. It has been reported that copper oxide forms a ternary phase with 

GDC [34], similarly it forms a ternary phase with SDC in this case. Transient liquid phase is 

formed during formation of this phase at high sintering temperature.  

 

Figure 5.6: SEM and EDX of 0.5-CSDC sintered at 1100℃ for 5 hours. 

Since the basic requirement from SDC or SOFC electrolytes is oxygen conduction; the effect of 

formation of a secondary phase (CuO), and the dissolution of copper in crystal structure on the 

conductivity should be studied. In the first case, where copper forms an additional copper oxide 

phase at the grain boundaries the total conductivity of the sample might change. The reason for 

this is that copper oxide phase might exhibit a different conductivity than doped ceria phase. 

Another reason maybe the interaction of copper oxide with the surface of doped ceria. Presence of 

copper oxide on the surface can lead to changes in the defects present at the surface of doped ceria 

Element Weight % Atomic %

O K 14.74 41.83

Cu K 78.25 55.92

Ce L 5.85 1.9

Sm L 1.17 0.35
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which can lead to changes in conductivity at the grain boundary.  In the second scenario if copper 

does not form an additional phase and continues to replace cerium in the crystal lattice, it might 

hamper the oxygen diffusion/conduction due to increased association enthalpy of oxygen 

vacancies [109]. This will happen as Cu+2 has a smaller ionic radius than Ce+4 (see Table 5.2). 

Even though 0.5 mol% copper addition seems enough for sintering, higher copper content is used 

to see whether increasing the amount of copper increases the conductivity of SDC and/or further 

lowers the sintering temperature. 

Shrinkage Analysis of Samples 

Dilatometry was used to study the dynamics of sintering for different samples. Figure 5.7 shows 

shrinkage curves of samples sintered up to 1350°C in air. 

 

Figure 5.7: Shrinkage curve for SDC with and without copper doping; PSDC, 0.1 CSDC, 0.5 

CSDC, and 5.0 CSDC. 

The sintering set-off temperature is similar for all samples (slightly above 700°C). 0.1CSDC shows 

very similar trend to PSDC, where the sintering set-off temperature, and shrinkage rate are 

identical. The only difference in PSDC and 0.1CSDC is the maximum shrinkage; PSDC shrinks 

to a maximum value of ⁓23% whereas 0.1CSDC shrinks to a maximum value of ⁓20%. However, 

the rate of shrinkage increases for 0.5 mol% or more copper. This leads to copper doped samples 
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with more than 0.5 mol% copper attaining maximum shrinkage in a shorter time and before 

reaching the maximum sintering temperature used here (1350C). The maximum shrinkage for all 

samples, with and without copper, is between 20 and 25%.  The results from dilatometry 

experiments are summarized in Table 5.5 below. 

Table 5.5: Maximum shrinkage and temperature required to attain maximum shrinkage. 

Sample ID Maximum Linear Shrinkage 

(%) 

Temperature for maximum 

shrinkage (°C) 

Pure SDC 22.6 1350 

0.1 CSDC 20.0 1350 

0.5 CSDC 21.5 1180 

5.0 CSDC 22.0 1050 

Table 5.5 indicates that copper is an effective sintering aid and can reduce sintering temperature 

substantially. In the extreme case, 5.0 mol% copper can lead to a reduction of 300℃ in 

conventional sintering temperature. A better presentation of shrinkage dynamics can be seen 

through a plot of shrinkage rate against temperature (Figure 5.8). The shrinkage rate increases with 

increasing copper content, but the shrinkage set-off temperature remains the same (in the vicinity 

of 700C). However, for all samples (with exception of 0.5 CSDC) the peak shrinkage rate is 

attained close to 800℃. Although the 0.5 CSDC sample reaches a maximum shrinkage rate near 

800, unlike the other samples it retains that shrinkage rate for a wider range of temperature (up to 

1000℃). Since the maximum shrinkage rate is achieved in the earlier stage of sintering profile, it 

is concluded that the majority of shrinkage happens during the initial sintering stage for copper 

doped SDC. 5.0 CSDC has a shrinkage rate which is almost 2.5 times higher than shrinkage rates 

for other samples (Figure 5.8). This means that 5.0 CSDC can reach the maximum attainable 

shrinkage much earlier during sintering. Through Figure 5.8 it can be seen that the majority of the 

shrinkage in the case of 5.0 CSDC takes place before the isothermal step at 1000℃. It can also be 

pointed out that during the isothermal step at 1000℃ the shrinkage rate rapidly declines.  Since 

the shrinkage rate declines during the isothermal step at 1000℃ and then increase again when 

temperature is increased, it can be concluded that shrinkage is more dependant on temperature as 
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opposed to time.  This means that shrinkage in the case of SDC is more affected by temperature 

than time, at least at 1000℃. 

 

Figure 5.8: Shrinkage rate versus temperature for electrolyte samples. 

Another important information which can be extracted from Figure 5.7 is the Coefficient of 

Thermal Expansion (CTE). Since all the samples reach maximum shrinkage, they experience 

compression during the cool down period with dimensional changes corresponding to that of a 

bulk solid of that material. It can also be seen that the shrinkage data during cooling (which starts 

close to 900 minutes) for all the samples have almost the same gradient, and those data were used 

to calculate the CTE, which is around 10 ppm.K-1 for all samples. 

5.3.2 Conductivity Characterization 

In the case of doped ceria, oxygen ions travel through oxygen vacancies present in the bulk of 

material and on the grain boundaries. Once copper is added to SDC it can change both bulk and 

grain boundary conductivities. When copper segregates as copper oxide on the boundaries (see 

Figure 5.5 and 5.6) it can add to the resistance at the grain boundaries. When copper goes inside 

the crystal lattice, because of decrease in lattice constant the association energy of oxygen 

vacancies may increase leading to a difficulty in oxygen ion conduction. Hence it is critical to 
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study the effect of copper on the total conductivity, the grain bulk conductivity, and the grain 

interior conductivity. EIS was used to study/calculate all these parameters.  

Figure 5.9 shows the Arrhenius plot of total conductivity. 

 

Figure 5.9: Arrhenius plot of  total conductivity for different electrolyte samples. 

The conductivity of pure SDC remains higher than all the other samples with copper. For instance, 

at 800℃ the total conductivity of PSDC is 0.077 S.cm-1 as opposed to other samples which show 

a maximum of 0.0642 S/cm at 800℃ (in the case of 0.5 CSDC). It has been reported that SDC 

made through GNC (similar procedure as used in this work) showed a conductivity of 0.082 S.cm-

1 at 800℃ [129]. Liu et al. [130] also reported that SDC made using same preparation method 

shows a conductivity of 0.075 S.cm-1 at 800℃. However, other reported values of conductivity 

vary a lot, as a conductivity of 0.0065 S.cm-1 at 800℃ [33] and that of 0.0061 S.cm-1 at 800℃ 

[113] for SDC have also been reported. Similarly, in the case of copper doped GDC, it has been 

reported that 1 mol% copper doped GDC shows a total conductivity of 0.026 S.cm-1 at 600℃[33]. 

In another report with 1 mol% copper doped GDC the total conductivity is reported as 0.0155 

S.cm-1 at 600℃ [34]. In our work 1.0 CSDC shows considerably lower total conductivity (0.006 

S.cm-1 at 600℃). By increasing the amount of copper, the conductivity continues to decrease in 

which the sample with 5 mol% copper shows a conductivity of 0.055 S.cm-1 at 800℃. The 

exception to this trend is 1.0 CSDC with conductivity lower than all other samples (0.0514 S.cm-

1 at 800℃). 
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The effect of copper on grain bulk and grain boundary conductivity was studied by separately 

plotting grain boundary and grain bulk conductivities. At higher testing temperatures (shown in 

Table 5.6) the Nyquist plot does not realize two semicircles for grain bulk and grain boundary 

polarization, and electrode-electrolyte interface. Instead, there was only one semicircle 

corresponding to electrode-electrolyte interface. This means that the first intercept of that 

semicircle is the sum of grain boundary and grain interior resistance and hence above a certain 

temperature the grain boundary and grain interior conductivity can not be calculated separately. 

Another implication of this is the change in equivalent circuit used for fitting. It was described in 

Chapter 4 that a parallel combination of resistor and CPE is used to reflect a given conduction 

mechanism when that conduction mechanism is realized as a semicircle on Nyquist plot. At high 

temperatures, when the grain boundary arc disappears the parallel combination of grain boundary 

resistor and CPE is replaced by a resistor only. Figure 5.10 shows Nyquist plot at different 

temperatures along with the equivalent circuits used (shown as sub figures). 

 

Figure 5.10: Nyquist plot for 0.1 CSDC at a) 400℃ and b) 700℃. 

Figure 5.10 shows that the first semicircle in Figure 5.10a (for grain boundary resistance) 

disappears at 700℃ (Figure 5.10b). At higher temperature due to reduced impedance and chemical 

capacitance, even at high frequencies the arcs for grain boundary cannot be captured. Table 5.6 

shows the temperature at which the grain boundary arc disappears for each sample.  

 

L1 R-GI R-GB

CPE-GB

R-EE

CPE-EE

Element Freedom Value Error Error %

L1 Fixed(X) 1E-11 N/A N/A

R-GI Fixed(X) 6.9 N/A N/A

R-GB Fixed(X) 1.5 N/A N/A

CPE-GB-T Free(±) 0.35954 N/A N/A

CPE-GB-P Free(±) 0.48258 N/A N/A

R-EE Fixed(X) 30.99 N/A N/A

CPE-EE-T Free(±) 0.01378 N/A N/A

CPE-EE-P Free(±) 0.51681 N/A N/A

Data File:

Circuit Model File: C:\SAI\ZModels\doped ceria symmetrical c

ells low temperature.mdl

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

L1 R-GB R-EE

CPE-EE

Element Freedom Value Error Error %

L1 Fixed(X) 1E-11 N/A N/A

R-GB Fixed(X) 1.5 N/A N/A

R-EE Fixed(X) 30.99 N/A N/A

CPE-EE-T Free(±) 0.01378 N/A N/A

CPE-EE-P Free(±) 0.51681 N/A N/A

Data File:

Circuit Model File: C:\SAI\ZModels\doped ceria symmetrical c

ells low temperature.mdl

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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Table 5.6: Temperature above which grain boundary arc disappears. 

Sample ID Temperature (℃) 

PSDC 700 

0.1 CSDC 600 

0.5 CSDC 600 

1.0 CSDC 600 

3.0 CSDC 750 except for 500 

5.0 CSDC Does not disappear till 800 

The grain boundary arc disappears at 600℃ for samples up till 1 mol% copper addition. For a 

higher copper percentage, the grain boundary semicircle does not disappear till a higher 

temperature (750℃ for 3.0 CSDC and 800℃ for 5.0 CSDC). This maybe explained by the 

formation of a more continuous phase of copper oxide, which has a different time constant than 

grain boundary conduction of SDC, on the grain boundary as the copper content is increased. 

Figure 5.11 shows the SEM images of samples at low magnification.  

 

Figure 5.11: SEM image of a) 0.5 CSDC, b) 1.0 CSDC, and c) 3.0 CSDC. 

It is evident that copper oxide starts forming a continuous network (dark in color) when the 

percentage of copper is increased. This implies that the grain boundary semicircle present at higher 

copper percentage may actually represent a third mechanism of conduction which is conduction 

through copper oxide. Activation energies for grain interior conduction and grain boundary 
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conduction, which will be different depending on copper content, can be used to verify this. Using 

Arrhenius law to describe intrinsic conductivity of a compound, a plot between natural log of 

conductivity and reciprocal of temperature can be used to calculate activation energies. The 

Arrhenius law for conductivity is given in the equation below: 

𝜎 = 𝜎0 exp (
−𝐸𝑎

𝑘𝑇
)  (5.3) 

In the above equation ‘𝜎’ is the conductivity, ‘𝐸𝑎’ is the activation energy, ‘𝑘’ is the Boltzmann 

constant, and ‘𝑇’ is the temperature. Figure 5.12 shows Arrhenius plot for grain interior and grain 

boundary conductivity. For samples between 0.1 and 1.0 mol% copper the grain boundary 

semicircle disappears before 600℃ due to which their grain bulk and grain boundary conductivity 

were only measured till 550℃. Both grain bulk/interior and grain boundary conductivity for SDC 

is higher than all other samples. There is a higher difference in grain boundary conductivity 

between SDC and 3.0CSDC and 5.0CSDC samples as compared to grain bulk conductivity. This 

also points to the fact that higher copper content leads to more copper oxide deposition on the grain 

boundary of SDC grains. 

 

Figure 5.12: Arrhenius plot of conductivity; a) grain bulk conductivity, and b) grain boundary 

conductivity. 

Based on the plots shown in figure 5.12 and 5.9 activation energies for all samples were computed. 

Figure 5.13 shows the activation energies for total conductivity, grain bulk conductivity, and grain 

boundary conductivity. In all cases activation energy initally increase with an increase in copper 

content. For grain bulk conductivity the lowest activation energy is for PSDC and for 5CSDC. The 
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activation energy for this mechanism first increases and then gradually decreases. The initial 

increase (at low copper content up to 0.5 mol%) is attributed to increased association energy of 

oxygen lattice sites due to decrease in crystal lattice constant. Further addition of copper, causing  

 

Figure 5.13: Activation energy as a function of copper content of SDC. 

a further decrease in lattice constant, may lead to loaclized distortion of the lattice. In this some 

parts of the crystal structure come under compression because of reduced lattice constant resulting 

in some expansion (distant from copper sites) to balance the internal stress. Oxygen lattice sites 

which lie in the exapnded part of the crystal structure will have lower association energy and hence 

lower activation energy for conduction.  

For grain boundary conduction, activation energy increases by adding 0.1 mol% copper. However, 

it then decreases suddenly at 0.5 mol% copper and then gradually increase again up till 5.0 mol% 

copper. This in a way verifies that copper starts forming an additional phase on grain boundaries 

at 0.5 mol% copper and higher. Since the activation energy keeps increasing, it indicates that the 

amount of copper oxide formed increases with increasing copper content. 

Summary 

The effect of copper as a sintering aid for SDC was studied. A wider spectrum of copper content, 

between 0.1 and 5.0 mol%, was used to better understand how copper interacts with SDC. Glycine 
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Nitrate Combustion (GNC) process was used successfully to incorporate copper with SDC. To 

assess the effect of copper; physical characterization, which comprises the study of crystal 

structure, microstructure of sintered samples, and shrinkage behavior of SDC with and without 

copper, and conductivity characterization was done.  

Copper is soluble in ceria crystal structure, i.e. that copper ions replace the positive cations in the 

ceria crystal structure indicated by the gradual decrease of crystal lattice constant. However, after 

a certain copper content (0.5 mol% and more), an additional phase, copper oxide, appears on the 

grain boundaries. Since the crystal lattice constant decreased gradually from 0 to 5.0 mol% copper 

(indicating the continued dissolution of copper), it appears that there is a thermodynamic balance 

between the additional copper phase formed and the copper dissolved in the crystal structure of 

ceria. Using dilatometry analysis, it was seen that copper acts as an effective sintering aid where 

5.0 mol% copper doping can lead to a decrease in sintering temperature of up to 300℃. Samples 

with 5.0 mol% copper attained maximum shrinkage at 1050℃ whereas samples without copper 

attained maximum shrinkage at 1350℃. However, the addition of copper does not change the 

maximum shrinkage attained by the samples (maximum shrinkage of samples with and without 

copper is between 20-23%), and in our work no particular trend was observed. Combining the 

results of SEM and dilatometry it can be concluded that samples with 0.5 mol% or more copper 

will show similar final shrinkage values. As, through SEM, it was established that 0.5 mol% copper 

gives a very dense structure and any addition further of copper does not change the microstructure 

of sintered samples, i.e. the visible surface porosity, grain shape, and grain size are same for 

samples containing 0.5 mol% and more copper.  

Conductivity analysis, which comprised computation of total conductivity, grain interior 

conductivity, grain boundary conductivity, and activation energies, showed that copper decreases 

the conductivity of SDC. There was a progressive decrease in total conductivity with progressive 

increase in copper content where SDC without copper showed a conductivity of 0.077 S.cm-1 and 

SDC with 5.0 mol% copper showed a conductivity of 0.055 S.cm-1 at 800℃. It was also observed 

that copper has a more pronounced effect on grain boundary conductivity compared to grain 

interior/bulk conductivity. Computed activation energies for grain bulk conductivity showed that 

increasing copper content to 1.0 mol% copper increases the activation energy of grain interior and 

further increase in copper decreases activation energy up till 5.0 mol% copper content. Similarly, 
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for grain boundary conduction, activation energy first increased up till 0.1 mol% copper and then 

suddenly decreased at 0.5 mol% copper. Further increase in copper increased the activation 

energies of grain boundary conduction up till 5.0 mol% copper. This is also in line with the SEM 

analysis of samples with and without copper. The additional copper phase appeared as distributed 

grains on the grain boundaries of sintered sample at 0.5 mol% copper content. Increasing the 

copper content gave a more uniform and connected copper phase on the grain boundaries. Since 

the copper phase starts to become more continuous and larger, its effect on grain boundaries will 

be higher.  

It is concluded that 0.5 mol% copper is a sufficient amount to be used as a sintering aid with SDC. 

Firstly, it increases the density of SDC to the same extent as when higher copper content was used 

and secondly a minimum additional copper phase is formed with 0.5 CSDC. Further, the decrease 

in conductivity in the case of 0.5 mol% is the lowest, sample with 0.5 mol% copper showed a 

conductivity of 0.0642 S.cm-1 at 800℃. 
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Chapter 6 Fabrication of Metal Supported-Solid Oxide Fuel 

Cells using Tape Casting and Co-Sintering 

6.1 Introduction 

This chapter pertains to the study of tape casting and co-sintering used for fabrication of MS-

SOFCs. Tape casting consists of casting layers of desired materials using a slurry and a tape caster. 

Sintering is a thermally activated high temperature process used to form consolidated solid bodies 

from shaped powders. Co-sintering is when more than one material are stacked and sintered 

together for bonding. In case of MS-SOFCs, metal support is co-sintered with electrolyte to form 

a half-cell structure before anode and cathode electro-catalysts can be added to the cell. Specific 

to SOFCs is the high sintering temperature requirement (up to 1400℃) for maximum densification 

of common electrolyte materials, such as YSZ and SDC. Mismatch of material properties 

(especially shrinkage) during this high temperature co-sintering may lead to physical defects (cell 

cracking, layer delamination, and warping), thus rendering the processing difficult. Presence of 

metal in cell creates material limitations during co-sintering. For example, metal cannot be sintered 

in oxidizing atmosphere due to corrosion problem, as even stainless steel goes through oxidation 

at temperatures above 500℃ in air [131]. Hence, MS-SOFCs co-sintering must be done in 

reducing or inert atmosphere.  

It was initially planned to use SDC as electrolyte because of its higher ionic conductivity at lower 

operating temperature (600-700C), but sintering SDC in reducing atmosphere leads cerium ion in 

ceria to undergo reduction from Ce+4 to Ce+3, even at the relatively low sintering temperature of 

1100C when sintering aid is used. This created significant issues, such as cracking, which could 

not be resolved. Therefore, the more conventional YSZ electrolyte was chosen as the electrolyte 

in MS-SOFCs studied in this thesis. Another issue in MS-SOFC is that of cathode deposition. The 

cathode is normally made from metal oxides and perovskites but cannot be treated at high 

temperatures in reducing atmosphere due to the chances of reduction. Hence using conventional 

sintering technique for the manufacture of MS-SOFC presents many challenges.  
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A detailed study of material properties, including shrinkage behavior of cell components and 

microstructure analysis of co-sintered cells was done to fine tune the fabrication method. This 

chapter gives results for: 

1. Material selection (between SS-430L and SS-410L) for metal support based on the 

shrinkage compatibility with YSZ.  

2. Study of shrinkage dynamics of SS-430L (chosen as metal support) and YSZ (electrolyte) 

to fine tune the co-sintering profile (includes temperature profile and sintering 

atmosphere). 

3. Cell structure analysis.  

4. Application of electrode catalysts. The anode electro-catalyst was infiltrated as solution in 

the porous metal support whereas the cathode was printed on YSZ surface.  

5. Electrochemical performance tests results of fabricated MS-SOFC. 

The objective of this study was to fine tune the tape casting and co-sintering methods for 

fabrication of MS-SOFCs and to add NiO/SDC as anode electro-catalyst and LSCF/GDC as 

cathode electro-catalyst to the sintered MS-SOFCs.  

6.2 Experimental 

6.2.1 Selection of materials for metal support 

SS-430L and SS-410L commercial powders were mixed with PVB, DOP, PMMA, and ethanol 

and ball milled for 24 hours. After milling the solution was left to dry at 60℃ for 6 to 8 hours in 

ambient air. Once the solution was dry the remaining mixture was ground using ceramic pestle 

and mortar. The ground powder was then pressed at 343 MPa for 2 minutes using a mold into 

cylindrical disks of 6 mm diameter. These disks were first heat treated in reducing atmosphere (5% 

H2/95% Ar) at 800℃ for 30 minutes and then run in a dilatometer (DIL 402 Netzsch, Germany). 

A sintering temperature of 1400℃ was used because it is similar to conventional sintering 

temperatures for YSZ and SDC. The temperature profile used had an isothermal step at 400℃ for 

60 minutes for removal of organics. The sintering profile used is shown in Figure 6.1. The results 

of dilatometry were used to make a selection between SS-430L and SS-410L.  
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6.2.2 Slurry synthesis for tape casting 

Slurries for tape casting of cell components were organic based. Essentially, three different 

components were tape casted; the metal support, transition layers, and the electrolyte. The 

procedures for making electrolyte and transition layer slurries were similar and based on similar 

organics compared to metal support slurry. The procedure for slurry synthesis for cell components 

is described in detail in chapter 4. The tuning of slurries compositions was an iterative process, 

where the slurry composition was changed based on slurry’s viscosity and visual inspection of the 

quality of the tape casted layers. If the viscosity is too high the slurry will have difficulty spreading, 

and if it is too low it will overspread. Also, the casted layers should not show particle 

agglomeration, and should not have cracks upon drying. The final composition of the slurries used 

in this study are listed in Tables 6.1-6.4. An electronic mass balance was used for weighing, the 

uncertainty in each measured value was ± 0.001 grams.  

Table 6.1: Composition of slurry for metal support. 

Component Mass (%) 

Acetonitrile 55.72 ± 0.005 

PEO 3.98 ± 0.005 

SS-430L 35.82 ± 0.004 

PMMA 4.48 ± 0.005 

Table 6.2: Preliminary slurry for transition layers and electrolyte. 

Component Mass (%) 

Ethanol 17.11 ± 0.006 

Toluene 26.88 ± 0.005 

Santicizer 36.50 ± 0.008 

PVB 19.51 ± 0.007 



97 

 

Table 6.3: Base powder slurry for transition layers. 

Component Mass (%) 

50/50 transition layer 30/70 transition layer Porous YSZ layer 

Ethanol 9.53 ± 0.009 9.53 ± 0.009 9.53 ± 0.009 

Toluene 13.96 ± 0.008 13.96 ± 0.008 13.96 ± 0.008 

Hypermer 1.99 ± 0.008 1.99 ± 0.008 1.99 ± 0.008 

PMMA 12.42 ± 0.009 12.42 ± 0.009 12.42 ± 0.009 

SS-430L 31.05 ± 0.009 18.63 ± 0.007 - 

YSZ 31.05 ± 0.009 43.47 ± 0.009 62.10 ± 0.006 

Table 6.4: Base powder slurry composition for electrolyte layer. 

Component Mass (%) 

Ethanol 10.96 ± 0.01 

Toluene 16.06 ± 0.01 

Hypermer 1.56 ± 0.009 

YSZ 71.42 ± 0.007 

These casted layers were used for different purposes: 

1. Shrinkage analysis of cell components. 

2. Effect of pore former content on final porosity of sintered metal support. 

3. Fabrication of button cells: 

a. Half-cells (co-sintered metal support, transition layer, and electrolyte) were used 

for structural analysis using SEM-EDX. 

b. Electrochemical performance tests. 
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6.2.3 Shrinkage analysis of cell components 

For tuning the sintering profile, dilatometry was run on samples of metal support (SS-430L) and 

electrolyte (YSZ) made via tape casting. Rectangular pieces (6mm by 8mm) were cut from the 

casted layers of metal support and electrolyte. These rectangular pieces were stacked together (20 

pieces in one sample) and pressed at a pressure of 343 MPa for 2 minutes. The samples were then 

heat treated in reducing atmosphere (5% H2/95% Ar) at 800℃ for 30 minutes to remove all the 

organics and also to provide sufficient strength for further sample handling. These samples were 

then run in a dilatometer (DIL 402 Netzsch, Germany). Sintering temperature of 1350℃ was used 

in dilatometry because this falls in the range of conventional sintering temperature of YSZ and 

SDC (1300-1400℃). The temperature profile had isothermal steps at 400℃ for 30 minutes to 

burn-out the organics, and at 1000℃ for 10 minutes to ensure that the sample is at uniform 

temperature before actual shrinkage.  

Different sintering atmospheres (reducing and inert) and ramping rates (2.5, 5.0, 7.5℃/min) 

between 1000 and 1350℃ were used to study the effect of sintering profile on shrinkage dynamics 

of SS-430L and YSZ.  

To assess compatibility of SDC with SS-430L, shrinkage profile of SDC (given in Chapter 5) was 

used. 

6.2.4 Effect of pore former content on final porosity of sintered metal support 

To study the effect of pore former content on the porosity of the sintered metal support, circular 

disks of 20 mm diameter were punched from the metal support casted layer. These disks were 

stacked together (4 disks per sample) and pressed at 343 MPa for 2 minutes. These disks were then 

sintered in reducing atmosphere (5% H2/95% Ar) using the fine-tuned sintering profile (given in 

results section). Once the metal support disks were sintered, oil impregnation was used to measure 

the porosity. Samples were weighed after sintering and then after impregnation of oil using vacuum 

impregnation. The surface of the impregnated sample was wiped with a non-absorbing paper to 

remove extra oil on the surface before weighing the impregnated sample. The difference in 

samples’ mass before and after impregnation is mass of the impregnated oil. Knowing the densities 
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of SS-430L and oil, and their respective masses, one can calculate the volume of solid SS-430L 

and oil, and hence, the porosity. A sample calculation is shown in Appendix A. 

6.2.5 Fabrication of MS-SOFC using tape casting and co-sintering. 

Half-cell fabrication with YSZ as electrolyte. 

For half-cell fabrication 20 mm diameter disks were punched out of casted sheets of metal support, 

transition layer and electrolyte layer. Different structural designs, based on the number and type 

of transition layers, were tested. These disks were stacked together according to the respective cell 

structure and then pressed together at 343 MPa for 2 minutes. For example, for cell structure # 1 - 

4 disks of metal support, 1 disk of 50/50 transition, 1 disk of 30/70 transition, one disk of PYSZ, 

and 1 disk of electrolyte were pressed together (see Figure 6.19). Once the samples were pressed, 

they were co-sintered according to the fine-tuned sintering profile (given in detail in the results 

section).  

Half-cell fabrication with SDC as electrolyte.  

For half-cell fabrication with SS-430L as metal support and SDC as electrolyte, disks (20 mm 

diameter) were punched out from casted layers of metal support, 50/50 transition layer and 0.5 

mol% copper doped SDC. These layers pressed together at a pressure of 343 MPa for 2 minutes 

and co-sintered at 1100℃ for 5 hours in reducing atmosphere.   

Once half-cells with YSZ and SDC as electrolyte were made their structural analysis was done. 

For structural analysis, the co-sintered samples were studied through SEM and EDX.  

Electrochemical performance testing 

For electrochemical performance testing, the electrode catalysts were added to the co-sintered 

samples.  

For anode, solution infiltration through vacuum was used. A solution of nickel nitrate, samarium 

nitrate, and cerium nitrate in DI-water was used as the infiltration solution. Co-sintered samples 

were sealed in a chamber and vacuum was created up to -750 mmHg. The samples were allowed 

to stay in the vacuum for 5 minutes before filing the chamber with anode solution (see Figure 4.4 
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in Chapter 4). The vacuum pump was turned off at this point and the chamber was allowed to reach 

atmospheric pressure and then stay at that pressure for another 5 minutes (a total of 30 minutes). 

The samples were then taken out of the solution and heat treated at 400℃ for 5 minutes in air. The 

heat treatment is used to thermally break down the metal nitrate to oxides. The infiltration and heat 

treatment is marked as one complete anode infiltration cycle. The procedure was repeated to attain 

an anode mass equivalent to 10% of the initial cell mass (which needed up to 5 cycles). To verify 

that nitrates are breaking down to oxides, the anode solution was heat treated independently at 

400℃ for 5 minutes and the resulting powder was analysed using XRD.  

This was followed by application of the cathode. Commercially available cathode ink for 

LSCF/GDC (Fuel Cell Materials, USA) was used for this purpose. The ink was printed on the 

electrolyte surface (printing method described in section 4.2 under the heading ‘anode catalyst 

infiltration and cathode deposition’) and sintered at 1100℃ for 2 hours in argon. These cells were 

then fixed to the testing rig and heated up to 700℃ for electrochemical performance testing.  

6.3 Results 

6.3.1 Selection of material for metal support 

YSZ was chosen as the primary electrolyte in this research. This means that the metal support 

should exhibit shrinkage close to that of YSZ when sintered to conventional sintering temperatures 

(up to 1400℃). Shrinkage curve from dilatometry for SS-430L and SS-410L in reducing 

atmosphere are shown in Figure 6.1. 
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Figure 6.1: Shrinkage curve for SS 430-L and SS 410-L and temperature profile used for 

dilatometry tests. 

The primary y-axis in Figure 6.1 shows shrinkage along positive y-direction and expansion along 

negative y-direction. SS-430L and 410L both expand initially before the actual shrinkage. In case 

of SS-430L shrinkage starts around 1000℃ compared to almost 1150℃ for SS-410L. SS-430L 

also shows higher shrinkage (almost 20%) which is closer to YSZ shrinkage [52] as opposed to 

SS-410L (almost 14%). It was, therefore, decided to use SS-430L as the metal support for further 

work.  

6.3.2 Effect of pore former content on final porosity of sintered metal support 

The porosity of the sintered metal support is an important parameter as it affects the diffusion of 

fuel gas to the anode active sites. When tape casting is used, pore formers are used in the slurry to 

induce porosity. In this study PMMA was used as the pore former. Figure 6.2 shows the effect of 

pore former content on porosity. The porosity experiment was conducted twice to assure accuracy. 

It can be seen in Figure 6.2 that the trend is same in both data sets. There is an initial increase in 

porosity with increasing pore former content, as expected, but followed by a decline once the pore 

former content is increased from 15 to 20%. 
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Figure 6.2: Porosity percentage versus pore former content in metal support slurry. Porosity 

measurements were done twice; first trial is labelled Data Set 1 and second trial is labelled Data 

Set 2. 

The reason for this decline might be that at 20% pore former content the open porosity or open 

passages through the cross-section are so big that they do not hold the impregnation liquid (oil in 

this case) as well, affecting the measured mass, and thus calculated porosity. In the past, 

researchers have commented that up to 40% porosity is adequate for fuel transport in MS-

SOFCs[35,55,76,132]. Based on this recommendation, a pore former content of 12.5% was used 

in this work. According to Figure 6.2, 12.5% pore former content will induce 39-43% porosity in 

the sintered metal support.  

Upon repeating experiment twice with 12.5 wt% pore former the calculated porosity was 39.75 ± 

0.25 %. 

6.3.3 Shrinkage analysis of cell components 

Co-sintering analysis was mostly based on the results of the dilatometry for metal support and 

electrolyte (YSZ). It is evident in Figure 6.1 that metal starts to shrink only after 1000℃ and hence 
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the difference in temperature profiles used in dilatometry was essentially in the ramping rate from 

1000℃ to the actual sintering temperature. Three different ramping rates were studied; 2.5, 5.0, 

and 7.5℃/min. Furthermore, the effect of atmosphere (reducing or inert) on shrinkage of each 

component was also studied. Results of the dilatometry tests were used to identify: 

1. Temperature at which sintering starts. 

2. Shrinkage rate with different ramping rates.  

3. Maximum shrinkage of each component.  

4. Shrinkage of each component when the component reaches the actual sintering temperature 

during testing.  

Figure 6.3 shows the three different sintering temperature profiles used in this study.  

 

Figure 6.3: Sintering temperature profiles used for dilatometry analysis. 

There are three isothermal steps in the temperature profile. The first one is at 400℃ for 30 minutes 

and the second is at 1000℃ for 10 minutes. The first one serves the purpose of a burn-out step 

where all the organics in the pressed cell are burned off. The second one is a temperature 

stabilization step so that cell attains a uniform temperature, same as that of the furnace, before 
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heating up for actual sintering. The third one is the actual sintering step, with a sintering 

temperature of 1350℃. The dwell time at 1350C was set to 90 minutes.  

Dilatometry results in reducing atmosphere 

Figure 6.4 shows the shrinkage curves for SS-430L under different sintering profiles. The legend 

uses entries in the format “ramping rate-atmosphere”. For example, a sample which underwent 

2.5℃/min ramping between 1000 and 1350C in reducing atmosphere will be labelled as “2.5 

C/min – reducing gas”. 

 

Figure 6.4: Shrinkage profiles for SS-430L under different ramping rates in reducing 

atmosphere. 

The start of sintering is the same for all ramping rates and occurs shortly after 1000℃ or after 320 

minutes. The extent of shrinkage, however, is different for the different sintering temperature 

profiles. The highest shrinkage is shown by samples with a ramping rate of 5.0℃/min, where the 

shrinkage is slightly more than 25%. In Figure 6.4 sample with 7.5℃/min shows very low 

shrinkage of up to 8%. This result seems unrealistic and due to unavailability of the dilatometer a 

re-run was not possible. Later in the shrinkage analysis in inert atmosphere it will be seen that the 
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shrinkage percentage increases with increasing ramping rate. Hence, for further discussion the 

sample with 7.5℃/min ramping rate in Figure 6.4 is considered as an outlier.  

A better representation of shrinkage dynamics is possible through a plot of shrinkage rate versus 

temperature. Figure 6.5 shows plots of shrinkage rate versus sintering temperature for two ramping 

rates (2.5 and 5.0 C/min).  

 

Figure 6.5: Shrinkage rate versus temperature for SS-430L with 2.5, and 5.0℃/min ramping rate 

in reducing atmosphere (5% H2 / 95% Ar). 

The shrinkage rate for 5.0℃/min is considerably higher than that for samples with 2.5℃/min. The 

peaks formed are similar for both samples, where shrinkage rate increases between 1100 and 

1150℃ and then increases again close to the sintering temperature (1350℃). Similar peak 

positions, regardless of the ramping rate, shows that shrinkage of SS-430L only starts after 

reaching a certain temperature. This implies that shrinkage for SS-430L is strongly dependant on 

temperature. Since a higher ramping rate provides a higher driving force per unit time (larger 

temperature difference per unit time) the shrinkage rate of samples with higher ramping should be 

higher. For metal support (SS-430L) sintering in reducing gas, shrinkage seems to occur in two 

phases. The first one between 1100℃ and 1150℃ and the second one close to sintering 
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temperature. The abrupt decrease in shrinkage rate as soon as the samples reach the sintering 

temperature also shows that sintering is more temperature dependant that time dependent. Further, 

it can be assumed that close to 1350℃ the shrinkage will be close to its maximum extent which 

means that even a small change in shrinkage will need more time as the sample is close to 

equilibration.  

Figure 6.6 shows shrinkage profile of YSZ samples up to 1350C, at different ramping rates and 

in reducing environment (5% H2 / 95% Ar).  

 

Figure 6.6: Shrinkage profile of YSZ with 2.5, 5.0, and 7.5℃/min ramping between 1000℃ and 

1350℃ in reducing atmosphere (5% H2/ 95% Ar). 

From Figure 6.6, all sintering profiles have similar S-shape, except that they are shifted toward 

lower time as the ramping rate increases. Figure 6.7 shows the shrinkage rate profile of YSZ as a 

function of temperature. It can be seen that shrinkage starts at different temperatures, depending 

on the ramping rate. For sample with 2.5℃/min ramping rate shrinkage begins slightly after 

1150℃, for sample with 5.0℃/min ramping rate shrinkage begins slightly after 1050℃, and for 

sample with 7.5℃/min ramping rate shrinkage starts slightly before 1050℃. This points to the fact 
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that higher ramping provides a higher driving force per unit time for shrinkage and hence shrinkage 

starts earlier.  

 

Figure 6.7: Shrinkage rate for YSZ samples versus temperature with different sintering 

temperature profiles in reducing atmosphere. 

Another important feature, evident through Figure 6.7, is the prolonging of sintering for YSZ 

samples with increasing ramping rate. The shrinkage rate peak for samples with higher ramping 

rate occurs at a higher temperature. Even though the shrinkage rates for YSZ are higher than 

shrinkage rates for metal support, they attain maximum shrinkage rates at higher temperatures. 

This implies that the energy required for YSZ shrinkage is higher than for SS-430L. A sudden 

decrease in shrinkage rate close to 1350C, as in the case of metal support, is also exhibited by 

YSZ samples with 5.0℃/min, and 7.5℃/min ramping rate. Sample with 2.5℃/min ramping, 

however, forms a peak close to 1280℃ and the rate starts falling well before reaching the sintering 

temperature. This means that the YSZ samples with 2.5C/min ramping rate are close to their 

maximum shrinkage upon reaching sintering temperature.  

Useful information regarding the dynamics of sintering and retrieved from Figures 6.4-6.7 is 

summarized in Table 6.5.  
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Table 6.5: Summary of important parameters from Figure 6.4-6.7 (reducing sintering atmosphere). 

 2.5℃/min ramping 

rate 

5.0℃/min ramping 

rate 

7.5℃/min ramping rate 

Parameter Metal 

Support 

YSZ Metal 

Support 

YSZ Metal 

Support 

YSZ 

Sintering start 

temperature (℃) 

1020 1175 1020 1050 1020(N/A) 1023 

Maximum 

shrinkage (%) 

16.5 19.6 25.1 20.5 8.8 (N/A) 20.4 

Shrinkage (%) 

upon reaching 

1350℃. 

8.8 17.1 17.1 18.1 3.2 (N/A) 17.3 

Maximum 

sintering rate 

(1/minute) 

0.0022 0.0056 0.0043 0.0073 0.0018(N/A) 0.0107 

Temperature at 

max sintering rate 

(℃) 

1345 1280 1347 1325 1343 1340 

As mentioned previously, metal support shrinkage (in reducing atmosphere) starts around similar 

temperature values irrespective of the ramping rate. However, for YSZ the shrinkage start 

temperature decreases with increasing ramping rate. If the thin YSZ electrolyte layer densifies too 

early, it will become brittle and may crack as the metal supports continues to shrink. Thus, ideally, 

the metal support should reach its maximum shrinkage prior to YSZ. Hence, during co-sintering 

of porous metal support and YSZ electrolyte layer it is critical to prolong the shrinkage of YSZ as 

much as possible.   Figure 6.8 shows a graphic representation of this concept, in the diagrams metal 

support is at the bottom (thicker layer) and YSZ is at the top (thinner layer). In Figure 6.8 cell 

geometry after dwell on sintering temperature is what the samples looked like after cooldown. 
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However, cell geometry at the start of sintering temperature was speculated based on numbers 

from Table 6.5 and shape of the cells after sintering.  

 

Figure 6.8: Schematic showing sample geometry upon reaching sintering temperature and after 

dwell on sintering temperature for samples with 2.5, 5.0, and 7.5℃/min ramping rate. 

The shrinkage value of the samples just prior to reaching 1350C plateau helps fine-tuning the co-

sintering temperature profile. Cracking, delamination and warping of cells are dependant on how 

the components behave during the isothermal sintering step (1350℃ for 2 hours here). Ideally 

YSZ layer should be soft and continue to shrink during this step. That means that upon reaching 

sintering temperature YSZ should not be in its final stage of shrinkage. Metal support, on the other 

hand, should be close to its maximum shrinkage. From Figure 6.8 (using information from Table 

6.5) three scenarios can be considered.  

Shrinkage profile with 2.5℃/min ramping rate. 

In this case, upon reaching sintering temperature, the cell will be warped towards the electrolyte 

side (see Figure 6.8a). The metal support still has to shrink 7.7% to reach its final shrinkage 

compared to 2.5% for YSZ. The electrolyte will be somewhat brittle at this point and when the 

metal support continues to shrink the electrolyte might break or delaminate.  

Shrinkage rate with 5.0℃/min ramping rate. 

In this case, when the sample will reach sintering temperature both the metal support and 

electrolyte will have shrunk to almost the same value, 17.1% for metal support and 18.1% for YSZ. 
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The metal support still has to shrink 8% to get to its final shrinkage and YSZ have to shrink only 

2.4%. Even in this case YSZ will be somewhat brittle and might crack when the metal support 

continues to shrink.  

Shrinkage profile with 7.5℃/min ramping rate 

In this case, when YSZ reaches sintering temperature it still has to shrink 3.1% (this is higher than 

that for samples with 2.5 and 5.0℃/min ramping). At the same time, although reliable dilatometry 

data for metal support in this condition is not available, it is anticipated from the trend at 2.5 and 

5.0 ℃/min that metal support likely shows a higher shrinkage (more than 17.1%) upon reaching 

sintering temperature.  Therefore, even if metal support still has to shrink (but less than that for 

2.5 and 5.0℃/min ramping), the YSZ layer will be relatively softer and hence may not crack or 

delaminate when metal support continues to shrink while at the shrinkage temperature.  

Keeping in mind the above reasoning, the best possible ramping rate seems to be 7.5℃/min 

between 1000 and 1350℃ for co-sintering in reducing atmosphere. Hence for co-sintering in 

reducing atmosphere this was chosen as the ramping rate.  

The primary purpose for the use of reducing atmosphere is the protection of metal support. This 

may also be achieved by using inert atmosphere for sintering as long as shrinkage dynamics are 

similar. For this reason, similar dilatometry analysis was done in inert atmosphere (100% argon).  

Dilatometry results in inert atmosphere 

Figures 6.9 and 6.10 show shrinkage profiles of metal support in Argon. From Figure 6.9, it can 

be seen that the shrinkage of metal support samples, regardless of ramping rate, is higher than 

26%, and there is no progressive increase in the shrinkage with increasing ramping rate. This is 

different than for metal support sintered in reducing atmosphere. Firstly, the maximum shrinkage 

of samples sintered in reducing atmosphere increases with increasing ramping rate (Figure 6.4). 

Secondly the final shrinkage of samples sintered in reducing atmosphere for all ramping rates is 

lower than for samples sintered in argon; final shrinkages for samples sintered in reducing 

atmosphere are between 16.5 and 25.1% whereas samples sintered in argon are all around 26%. 
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Figure 6.9: Shrinkage profile of metal support samples sintered at 1350℃ in inert gas atmosphere 

(Ar) and at different ramping rates. 

Figure 6.10 shows shrinkage rate of metal support samples sintered in argon with temperature. 

Unlike samples sintered in reducing atmosphere, metal support sintered in inert atmosphere shows 

only a single peak for shrinkage rate for different ramping rates (Figure 6.10).  

 

Figure 6.10: Shrinkage rate versus temperature for SS-430L samples sintered at 1350℃ in inert 

gas atmosphere. 
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The shrinkage rate increases and the shrinkage rate peak position shifts to a slightly higher 

temperature with increasing ramping rate. For instance, the shrinkage rate for metal support 

sintered in reducing atmosphere with a 5.0℃/min ramping is 0.0041 min-1 compared to 0.009 min-

1 for samples sintered in inert. 

The higher shrinkage rate might be the reason why samples sintered in inert gas atmosphere only 

show a single peak. When samples reach close to the actual sintering temperature (1350℃) they 

are already close to their maximum shrinkage (due to higher shrinkage rates at lower temperature). 

This means that upon reaching sintering temperature shrinkage will be lesser and slower and hence 

the shrinkage rate will be low as well. High shrinkage rates in case of sintering in argon might be 

due to the formation of chromia or silica on the metal support. This is discussed in more detail 

later. 

Figures 6.11 and 6.12 show the shrinkage profile and shrinkage rate for YSZ samples sintered in 

inert gas atmosphere with different ramping rates.  

 

Figure 6.11: Shrinkage profile for YSZ samples sintered at 1350℃ at different ramping rates in 

inert gas atmosphere. 
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Figure 6.12: Shrinkage rate vs. temperature for YSZ samples sintered at 1350℃ in inert 

atmosphere with different ramping rates. 

YSZ samples sintered in inert gas atmosphere show very similar dynamics to when the samples 

were sintered in reducing atmosphere. Even the maximum shrinkage rates are comparable for 

samples with 2.5℃/min and 7.5℃/min. For example, shrinkage rate for samples sintered with 

2.5℃/min in reducing and in inert atmosphere are both close to 0.0055 min-1. Table 6.6 

summarizes important information that can be extracted from Figures 6.9-6.12. 

Table 6.6: Summary of key parameters from Figures 6.9-6.12. 

 2.5℃/min ramping 

rate 

5.0℃/min ramping 

rate 

7.5℃/min ramping rate 

Parameter Metal 

Support 

YSZ Metal 

Support 

YSZ Metal 

Support 

YSZ 

Sintering start 

temperature (℃) 

1010 1200 1010 1200 1010 1100 

Maximum 

shrinkage (%) 

26.1 20 26.7 20.6 26.2 19.8 



114 

 

Shrinkage (%) 

upon reaching 

1350℃. 

23.5 16.5 26.2 13.8 26.3 17.4 

Maximum 

sintering rate 

(1/minute) 

0.0036 0.0058 0.009 0.0114 0.0138 0.0106 

Temperature at 

max sintering rate 

(℃) 

1124 1282 1151 1311 1162 1340 

The metal support shrinkage upon reaching the sintering temperature is always substantially higher 

than the shrinkage of YSZ at all ramping rates in inert atmosphere. The difference in shrinkage 

values of metal support and shrinkage of YSZ samples with 7.5℃/min ramping is 9% upon 

reaching the sintering temperature. This might not be ideal since metal support and YSZ both start 

off with same dimensions and such a huge difference in shrinkage upon reaching the sintering 

temperature will lead to physical defects. The reason for very high metal support shrinkage in inert 

gas compared to reducing gas is attributed to the presence of chromia (chromium oxide) or silica 

(silicon oxide) in the case of inert gas sintering. In inert atmosphere, in the absence of hydrogen, 

even trace amount of oxygen can lead to silica formation. Similarly, samples sintered for 

microstructure analysis were placed on a porous alumina support in the furnace which can lead to 

presence of alumina grains on the surface of sintered metal support. Figure 6.13 shows SEM 

images for metal support sintered in reducing and inert atmosphere. In both cases the ramping rate 

between 1000 and 1350℃ was set to 7.5℃/min. 

It can be seen that the samples sintered in reducing atmosphere (Figure 6.13a) have more porous 

structure than that of samples sintered in inert atmosphere (Figure 6.13b). Higher magnification 

SEM images of samples shows that there is an additional phase present in samples sintered in inert 

atmosphere (Figure 6.13d, additional phase circled in red). EDX was used to identify the additional 

phase, and the results are shown in Figure 6.14. The extra phase in this picture is identified as 

silicon oxide and aluminium oxide due to the prominent peaks of silicon, aluminium, and oxygen 

in the EDX spectra (Figure 6.14b). 
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Figure 6.13: SEM images of metal support sintered in reducing atmosphere (a and c), and in inert 

atmosphere (b and d). 

Upon further inspection it was found that the entire surface of the samples sintered in inert 

atmosphere have small particles of this phase. Hence, in the case of inert gas, silica and alumina 

present might act as a sintering aid and enhance the sintering of metal supports so that it shrinks 

faster (higher shrinkage rates) and to a larger extent (higher maximum shrinkage).  

 

Figure 6.14: a) SEM image of metal support sintered in inert atmosphere; b) EDX spectra of 

selected area in SEM image in ‘a’. 
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From the above discussion there are two major reasons why inert atmosphere might not be a good 

choice for co-sintering: 

1. Metal support shrinks to a high very high extent before reaching the sintering temperature. 

This implies that the metal support is already in its final stage of sintering and that the cell 

is warped towards the metal side. During the isothermal sintering step, YSZ continues to 

shrink whereas the metal support shows minimum shrinkage, which can lead to YSZ layer 

cracking or delamination.  

2. Silicon is present in SS-430L (0.5 wt%) and during sintering in inert atmosphere it forms 

silica. In the same way, during sintering the metal support was placed on an alumina 

support, and traces of alumina were also present on the surface of metal support. Both silica 

and alumina grains protrude from the surface of the metal support. Even though non-

conductive silica and alumina do not form continuous phases, their presence may lower the 

conductivity of the metal support [21].  

This analysis does not take into account the effect of interaction of metal support with YSZ when 

they are co-sintered. Co-sintering in reducing atmosphere will be presented in the next section with 

a ramping rate of 7.5℃/min between 1000 and 1350℃. Figure 6.15 shows the sintering 

temperature profile used in the rest of this work.  

 

Figure 6.15: Refined sintering temperature profile for co-sintering of metal supported half-cells. 
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6.3.4 Fabrication of MS-SOFCs with copper co-doped SDC 

Shrinkage profile of 0.5 mol% copper co-doped SDC (Figure 5.7 and 5.8 in Chapter 5) was used 

to assess the compatibility of SDC shrinkage with SS-430L. Figure 5.7 shows that the shrinkage 

set-off temperature for 0.5CSDC is close 700℃, which is considerably lower than that of SS-430L 

(around 1100℃). Further, the shrinkage rate peak (where the shrinkage is highest) for 0.5CSDC 

occurs before 1000℃ and then the shrinkage rate drops. This means that 0.5CSDC will have 

attained close to maximum shrinkage even before SS-430L starts to shrink. Such mismatch in 

shrinkage behavior leads to physical defects, like cracking of the electrolyte layer. Nonetheless, 

0.5CSDC was sintered on a pre-fabricated porous MS at 1100℃ in reducing atmosphere, and 

PSDC was co-sintered with MS at 1350℃ in inert atmosphere. The resulting microstructure of the 

electrolyte layers are shown in Figure 6.16. 

 

Figure 6.16: SEM image of a) 0.5CSDC surface of a SS-430L|0.5CSDC half-cell sintered at 

1100℃ in reducing atmosphere and b) SEM image of PSDC surface of a SS-430L|PSDC half-

call sintered at 1350℃ in inert atmosphere. 

In both cases it can be seen that the electrolyte surface is cracked. Unfortunately, MS-SOFCs with 

copper doped SDC and plain SDC were not successfully fabricated in this research.  

6.3.5 Fabrication of MS-SOFC with YSZ electrolyte using tape casting and co-sintering 

Fabrication and characterization of MS-SOFCs was done in three sequential parts. The first was 

co-sintering of MS-SOFC half-cells where the sintering profile tuned (from previous section) was 
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used to co-sinter stacked metal support and electrolyte. Once half-cells with little to no physical 

defects were co-sintered, the next step was the structural analysis of the cell. In this, the cell 

structure was optimized to get a simple structure with minimum material usage. The last step was 

the addition of electrode electro-catalyst and electrochemical performance testing.  

Co-sintering of hall cells (Metal support and electrolyte) 

All metal supported cells were co-sintered using sintering profile presented in Figure 6.15, in 

reducing atmosphere. Figure 6.17 shows optical images of two sample sintered in reducing 

atmosphere in the same sintering profile. The difference between sample in Figure 6.17a and b is 

that an oxygen scavenger used during sintering for sample in Figure 6.17b. The reason to use 

scavenger is to remove trace amount of oxygen present in the furnace. 

 

Figure 6.17: Optical image of a Metal Supported half-cell sintered in reducing atmosphere at 

1350℃; a) Samples sintered without a scavenger, and b) samples sintered with a scavenger. 

In Figure 6.17, the bottom part of both samples is metal support and the thin layer on top is YSZ. 

There is a difference in color between the samples. The sample sintered without scavenger (Figure 

6.17a) shows a greenish color which is attributed to formation of chromia (indicates presence of 

oxygen in the furnace). Upon careful inspection, delamination is also seen close to the YSZ layer 

in the sample in Figure 6.17a. Use of scavenger (loose SS-430L powder in this case) can reduce 

the amount of chromia formed as seen by the absence of green color in sample in Figure 6.17b. 

Other than having a greyish color, the porosity of metal support is also more visible in the sample 

sintered with scavenger (Figure 6.16b).  
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In Figure 6.17 both samples seem to warp towards the YSZ (electrolyte) side. To resolve the issue 

of warping a counter weight (0.5 g.cm-2) was used. The counter weight was placed on the cell 

during co-sintering to constraint the sintering of cell so that it does not warp. Figure 6.18 shows 

an optical image of a half-cell co-sintered with a counter weight.  

 

Figure 6.18: Optical image of co-sintered half-cell with a counter weight during sintering. 

The final sintering profile was set as that shown in Figure 6.15 in reducing atmosphere.  The next 

step is the structural analysis of different cell structures (shown in Figure 6.19). 

Structural analysis of Metal-Supported half-cells. 

Figure 6.18 shows the different half-cell structures studied. The difference is only in the type and 

number of transition layers used. 

 

Figure 6.19: Cell structures tested in this study. 
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In Figure 6.19, ‘50/50’, ‘30/70’, and ‘PYSZ’ are all transition layers in which ‘50/50’ means 50% 

YSZ and 50% stainless-steel by mass, ‘30/70’ mean 30% YSZ and 70% stainless-steel by mass, 

and ‘PYSZ’ means porous YSZ layer. Also, the transition layers had 20% by mass pore former. 

Only the above three structures were chosen as they represent the complete spectrum of structures. 

Structure 1 being the most complex provides a very gradual and smooth transition by using two 

cermet layers and then a porous YSZ layer. Structure 2 on the other hand just employ one cermet 

layer (for transition) and structure 3 only used porous YSZ (for increasing TPB). In all cases, 4 

disks of metal support and a single disk of other component layers were used. Transition layers 

are used in the cell structure to provide a smooth transition from metal support to YSZ. The 

transition layers also act as a bonding layer, where the metal particles in the metal support tend to 

bond to the metal particles in the transition layer, and where the YSZ particles in the electrolyte 

tend to bond to YSZ particles in the transition layer. Once the cells were co-sintered with different 

cell structures SEM was used to assess the structure on a micro level. The goal was to use the 

simplest structure which does not lead to any physical defects. Figure 6.20 shows a cross-sectional 

image of cell with structure 1.  

 

Figure 6.20: Cross-sectional SEM of a sintered MS-SOFC half-cell with structure 1 ‘Metal 

Support | 50/50 transition layer | 30/70 transition layer | Porous YSZ | Dense YSZ (electrolyte). 

Complete segregation of the different layers (metal support, transition, and electrolyte) is evident 

from the SEM picture. However, it seems that the metal support layer (bottom part) is making one 

solid phase with very big pore sizes. Also, the transition layers 50/50, 30/70, and porous YSZ layer 

appear to form one indistinguishable layer. There is also a crack running through the interface of 
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transition layers and electrolyte. Since samples were broken in half for cross-sectional SEM the 

crack can also be a result for that. Figure 6.21 shows the cross-sectional image of sintered MS-

SOFC half-cell with cell structure 2 (Figure 6.19). Segregation between the different layers is clear. 

In structure 2, the transition layer comprises only one 50/50 transition layer, as opposed to 3 

transition layers for structure 1 (‘50/50’, ‘30/70’, and ‘PYSZ’). It can be concluded that having 

three different transition layers in structure 1 does not make a big difference on the micro-structure 

of the cell, compared to having only one layer as in structure 2. The electrolyte in this case (cell 

structure 2) appears flat, the edges seen are because the cell was broken in half. Even though cells 

were dipped in liquid nitrogen and broken in half in a thick cloth, the electrolyte layer still cracks 

a little during the breaking process (attributed to the low thickness and brittle nature of electrolyte).  

 

Figure 6.21: Cross-sectional SEM image of MS-SOFC sintered half-cell with structure 2 “Metal 

Support | 50/50 transition layer | Dense YSZ (electrolyte)”. 

Figure 6.22 shows the cross-sectional SEM image of cell with cell structure 3 (Figure 6.19). In this 

structure the mixed transition layers (mixture of stainless-steel and YSZ) were removed and only 

porous YSZ layer was used. Figure 6.20 shows clear segregation of the different layers. In cell 

structure 1, PYSZ was also employed, but as seen in Figure 6.20 the PYSZ layer was not 

distinguishable. Also, the presence of only Porous YSZ might lead to an increased Triple Phase 

Boundary (TPB) as the TPB in this case will be formed between the anode catalyst (NiO-SDC), 

electrolyte (YSZ), and the reactant fuel gas. Hence if a stand-alone layer of porous YSZ is 

incorporated in the cell it can lead to a higher TPB.  
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Figure 6.22: Cross-sectional SEM image of MS-SOFC sintered half-cell with the structure 

“Metal support | Porous YSZ | Electrolyte”. 

For structure 3, the porous YSZ layer has a very different structure compared to the transition 

layers of the other cell structures (Figure 6.20 and 6.21). The pore size is smaller, about 10 microns, 

whereas cells with structures 1 and 2 had pore sizes within the transition layers of up to 200 

microns.  

The low pore size of cell structure 3 might be a problem for anode catalyst solution infiltration. 

Cell performance will be compromised if the solution does not infiltrate the smaller pores of PYSZ 

layer. To increase the porosity of the porous YSZ layer in structure 3 the pore former content of 

PYSZ layer was increased. The cell shown in Figure 6.22 had 20 wt% pore former in PYSZ layer. 

Figure 6.23 shows pictures of MS-SOFC half-cells in which PYSZ layers had 30 and 40 wt% pore 

former.  

 

Figure 6.23: Co-sintered MS-SOFC half-cells; a) cell had 30 wt% pore former in PYSZ layer, b) 

cell has 40 wt % pore former in PYSZ layer. 
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Increasing pore former to more than 20 wt% leads to layer delamination and cracking of cell during 

co-sintering. Hence, structure 3 was discarded. Since structures 1 and 2 led to similar cells, 

structure 2 was selected for the next phase of the study because of its simpler configuration.  

 The next step is the infiltration of the anode electrocatalyst, and deposition of the cathode.  

Anode catalyst infiltration. 

A mixture of nickel oxide and Samarium Doped Ceria (SDC) was used as anode catalyst. Solution 

infiltration was used to incorporate the catalyst on the porous metal support side where a solution 

of nickel nitrate, samarium nitrate and cerium nitrate was infiltrated in the porous metal support. 

After infiltration the samples were heat treated at 400℃ (burn-out step) to thermally break down 

nitrates into oxides. The powder formed was run through XRD, and the resulting spectra is shown 

in Figure 6.24.  

 

Figure 6.24: XRD spectra of anode powder made through heat treatment of anode catalyst 

solution (nitrate solution of Ni, Ce, and Sm). 

The XRD spectra of the powder show peaks pertaining to only SDC and NiO. This shows that 

after every infiltration, a heat cycle at 400℃ will thermally crack the nitrates into oxides. The 
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amount of catalyst loaded on to the cell is important, with a target of 10 wt% with respect to the 

mass of the co-sintered sample. 5 to 6 infiltration cycles were necessary to achieve this target.  

Since the burn-out is done in air, there is a chance of metal support oxidation. Figure 6.25 shows 

the TGA results of sintered metal support which underwent the first burn-out cycle. Figure 6.25 

shows that there is an initial drop in mass, which is attributed to the removal of moisture in the 

sample. This is followed by a gradual, albeit small, increase in mass when the temperature reaches 

~140C. Hence, the actual mass percentage gained during one cycle is 0.04%. Jasinski et al. [42] 

reported mass percentage gain of 0.3% for SS-430L over approximately 225 hours at 400℃ in air 

(Figure 3 in [42]). Through their graph a rough estimation shows that mass gain in the first 15 

hours of operation is up to 0.06%. In [42] the samples were sintered at 1000℃ as opposed to 

1350℃ in our case.  

 

Figure 6.25: TGA result for sintered metal support for the first anode burn-out cycle. a) 

Percentage mass change with temperature and time; b) Actual mass change with temperature and 

time. 

Oxidation of stainless-steel is due to the oxidation of silicon, aluminium, and chromium in the 

structure. It has been reported that the initial formation of chromia is not detrimental to the metal 

support as it is conductive and also protects iron from oxidation [35]. However, when chromia 

scale starts to grow (continued oxidation of chromium in SS-430L) then the chromia scale can lead 

to break away oxidation, spalling and disconnected structure of metal support which can reduce 

conductivity [54]. In the case of metal support structures for SOFCs it has been reported that a 

chromia scale of 5 micron thickness can lead to physical damage to the metal support [28]. 
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However, due to a very small percentage mass gain, the possibility of 5-micron thick chromia scale 

formation during one burn-out cycle is ruled out.  

Figure 6.26 shows an SEM image of MS-SOFC half-cells infiltrated with 10 wt% NiO/SDC and 

heat treated at 400℃ after each infiltration cycle.  

 

Figure 6.26: a) SEM image of MS-SOFC half-cell infiltrated with NiO/SDC and heat treated at 

400℃, b) SEM image of section circled in Figure 6.24a (electrolyte-electrode interface). 

The cross-section of the cell seems to have a rough surface, this is because the samples were broken 

in half before SEM. The high magnification image in Figure 6.26b shows the electrolyte (top)-

transition layer (bottom) interface. It can be seen that there is a thick coating of infiltrated 

NiO/SDC on the interface. Figure 6.27 shows a further zoomed in SEM image (of circled section 

Figure 6.26b), with corresponding EDX spectra in Figure 6.28. 

 

Figure 6.27: SEM image of electrolyte-transition layer interface. 
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Three different areas were selected for EDX measurement; ‘selected area 1’ is in the electrolyte 

region, ‘selected area 2’ is right at the boundary of electrolyte, and ‘selected area 3’ is on the anode 

catalyst.  

 

Figure 6.28: EDX spectra of selected areas in Figure 6.25; a) EDX spectra of selected area 1, b) 

EDX spectra of selected area 2, and c) EDX spectra of selected area 3. 

From the EDX spectra in Figure 6.28a it is clear that the top region is pure YSZ only. The EDX 

spectra in figure 6.86b and c show that NiO/SDC is infiltrated up till to the start of electrolyte. 
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Through EDX spectra, comparing Figure 6.28b(interface) and 6.28c (anode catalyst) shows that 

Ni, Ce, and Sm are infiltrated up to the interface. From SEM it was also determined that the 

approximate particle sizes of NiO/SDC were in the range of 20-45 nm.  

The above characterization confirms that solution infiltration and subsequent heat treatment at 

400℃ lead to incorporation of NiO/SDC throughout MS-SOFCs, in particular up to the electrolyte.  

Deposition of cathode: 

LSCF/GDC was used as cathode with the fabricated MS-SOFCs and applied by printing on the 

electrolyte surface. Figure 6.29 is a picture of a MS-SOFC with anode and cathode catalyst used 

for electrochemical performance testing.  

 

Figure 6.29: Picture of a MS-SOFC with anode and cathode catalyst. 

Figure 6.30 shows a SEM image of a cross-section of MS-SOFC with cathode.  

 

Figure 6.30: SEM image of cross-section of MS-SOFC with sintered cathode. 
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In Figure 6.30, the top layer is the cathode sintered at 1100℃ for 2 hours in argon. The middle 

layer is electrolyte and the bottom layer is a part of transition layer. The thickness of the sintered 

cathode was approximately 10 microns. The morphology of the cathode layer looks porous and 

there is a complete segregation of cathode layer from the electrolyte. After sintering, a brush was 

used to rub the surface of the cathode to see if it comes off or turns into powder; the cathode layer 

stayed intact.  

Electrochemical Performance test 

For electrochemical performance test full MS-SOFCs were used. Polarization curve, EIS, and 

microstructural analysis of used cell was used to fully characterize the fabricated cell’s 

performance. The OCV of cells in humidified hydrogen at 700℃ was 0.989 V. Figure 6.31 shows 

the polarization curve (Figure 6.31a) and Nyquist plot (Figure 6.31b) at 700℃ under humidified 

hydrogen. The performance of the tested cell was very low compared to that of cells reported in 

literature. The Maximum Power Density (MPD) was 0.66 mW.cm-2, compared to ⁓425 mW.cm-2 

for a cell with similar electrode catalysts[79]. Figure 6.31b shows the Nyquist plot for this cell at 

2.47 mA.cm-2 at 700℃. Both ohmic (close to 80 ohms) and polarization resistance (220 ohms) are 

very high.  

 

Figure 6.31: a) Polarization curve of MS-SOFC tested at 700℃; b) Nyquist plot for the same 

MS-SOFC at 700℃ with 2.47 mA.cm-2 current density. 

Ohmic resistance is the summation of all the resistances to charge conduction through the cell 

which includes the resistance faced at interface of current collector-electrode, electrode-

electrolyte, and through electrolyte. In this case, since the OCV (an indication of gas-tightness of 
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electrolyte) is close to 1.0 V, the high ohmic resistance is attributed to high resistance to electron 

transfer between current collector and electrodes.  

Polarization resistance depicts mostly the resistance faced in the electrodes, i.e. the resistance to 

charge transfer reactions, and transfer of oxygen ions between electrolyte and electrode. Figure 

6.32 shows SEM of cross-section of the MS-SOFC used in performance testing.  

 

Figure 6.32: SEM image of cross-section of MS-SOFC used in performance testing. The top 

layer is cathode, the middle layer is electrolyte, and the bottom layer is the 50/50 transition layer. 

In Figure 6.32 crack or delamination between the electrolyte and transition layer can be seen. 

However, this is attributed to the fact that these cells were fractured for SEM which can cause 

cracking and delamination of layers. Figure 6.33 shows an SEM image with high magnification 

showing the infiltrated anode catalyst after cathode sintering (before operation), and after 

operation.  

 

Figure 6.33: a) SEM image of anode catalyst before cathode sintering; b) SEM image of anode 

catalyst after operation. 
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SEM was used to measure the size of particles for anode catalyst, and it was seen that particle size 

increases from ⁓650 nm to ⁓1000nm during operation. This will increase the anode polarization 

due to decrease in active area with high particle size. The particle size during cathode sintering 

increases from 25-40 nm (Figure 6.27) to ⁓650 nm. This shows that particle size increases more 

during the sintering of cathode than during operation. Figure 6.34 shows the surface of cathode 

before and after operation of cell. 

 

 

Figure 6.34: a) SEM image of cathode surface before operation, b) SEM image of cathode 

surface after operation. 

It can be seen that the cathode surface is broken during operation which is attributed to reaction 

between cathode (LSCF/GDC) with the electrolyte (YSZ). This will also contribute to a high 

polarization resistance of the cell.  

Summary 

This chapter gives out the results of study of tape casting and co-sintering for fabrication of Metal 

Supported-Solid Oxide Fuel Cells using ferritic Stainless-Steel 400 series. In summary the 

following conclusions were made: 

1. SS-430L is a more suitable metal support material compared to SS-410L for MS-SOFCs 

fabricated using tape casting and co-sintering. This was based on shrinkage profiles of both 
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SS-430L and SS-410L up till 1400℃ which showed that SS-430L shrinks more than SS-

410L.  

2. Stable slurries were formulated for tape casting. For use in tape casting the slurry should 

be uniform, without agglomeration, and should not crack upon casting.  

3. Based on the components of slurry used in this study, it was concluded that 12.5% pore 

former content was suitable for metal support layers. This gave a porosity in the range of 

39-43%.  

4. Shrinkage analysis of SS-430L and YSZ was done in reducing (5% H2/95% Ar) and inert 

(Ar) atmosphere under different sintering temperature profiles. The primary difference in 

the temperature profiles was the ramping rate between 1000℃ and sintering temperature 

(1350℃), in this case 2.5℃/min, 5.0℃/min, and 7.5℃/min was used. The following 

information was extracted through this analysis: 

a. Regardless of the ramping rate SS-430L shows a similar trend in the shrinkage 

profile, represented by shrinkage vs. temperature plot and shrinkage rate vs. time 

plot, in reducing atmosphere. SS-430L shows two peaks in shrinkage rate one 

closer to 1150℃, and the second one close to 1350℃.  

b. Higher ramping rate enhances the sintering, more shrinkage, of SS-430L by 

increasing the shrinkage rate. This is attributed to the high driving force for 

sintering with high a higher ramping rate in reducing atmosphere.  

c. By increasing the ramping rate for YSZ sintering in reducing atmosphere, the 

shrinkage rate increases and YSZ shrinkage also experiences a delaying effect. This 

means that with increasing the ramping rate the shrinkage rate peak position moves 

to a higher temperature. In this case with 7.5℃/min ramping the shrinkage peak 

occurred close to 1325℃.  

d. It was observed that high ramping rate of 7.5℃/min when sintering in reducing 

atmosphere is suitable for co-sintering SS-430L and YSZ together. This is so that 

when the samples (pressed half-cells) reach sintering temperature (1350℃), YSZ 

(electrolyte), which is more brittle and thinner (compared to metal support layer), 

is soft and continues to shrink. Whereas SS-430L (metal support) should be close 

to its maximum shrinkage.  
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e. Shrinkage in inert atmosphere was ruled out as suitable for co-sintering of MS-

SOFCs. The reason was formation of non-conductive alumina and silica during 

sintering. This leads to very high shrinkage of SS-430L which can cause SS-430L 

reaching its maximum shrinkage before reaching the sintering temperature. When 

this happens SS-430L is already stiff at sintering temperature and YSZ layer 

continues to shrink which can cause cracks, delamination, and warping of sintered 

half-cells.  

5. Shrinkage analysis of copper co-doped SDC and SS-430L showed that there is a significant 

mis-match in the shrinkage profile of 0.5CSDC and SS-430L. The half-cells which were 

co-sintered were always cracked.  

6. MS-SOFC half-cells were successfully fabricated using tape casting and co-sintering based 

on the sintering temperature profile fixed using dilatometry analysis. It was also observed 

that a scavenger (loose SS-430L powder here) is critical to remove any trace oxygen, which 

might lead to oxidation, in the sintering furnace. A counter weight (0.5 g/cm-2) is placed 

on the pressed samples during sintering to avoid slight cell warping.  

7. Solution infiltrate of anode electro-catalyst (NiO/SDC) can be used for adding anode 

catalyst to the porous metal support. After infiltration of metal nitrate solution, a heat 

treatment at 400℃ ensures that nitrates break down to metal oxides.  

8. Similarly, cathode catalyst (LSCF/GDC) can be printed on the YSZ surface and sintered at 

1100℃ for 2 hours.  

9. Cell electrochemical performance showed an OCV close to 1.0 V. This implies that 

electrolyte is sufficiently dense and without any cracks. This means that co-sintering can 

be used to fabricate MS-SOFCs.  

a. Ohmic resistance was very high in the initial tests which was attributed to the high 

resistance to current at the current collector-electrode resistance.  

b. Polarization resistance was also very high and attributed to the poor performance 

of electrode catalysts. Anode catalyst showed coarsening during cathode sintering, 

and during operation. The particle size increased from 40nm to almost 1 micron. 

Similarly, deposited cathode seems to disintegrate during operation. Nickel 

coarsening and creak down of cathode can increase polarization resistance. 
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

The primary objective of this work was to fabricate MS-SOFCs with SDC and YSZ as electrolyte 

using co-sintering. To use SDC, a lower than conventional sintering temperature (up to 1400℃) 

was desired to reduce the exposure of SDC to reducing atmosphere (5% H2/95% Argon). Hence a 

study a was done on the effectiveness of copper as a sintering additive for SDC. To use YSZ (does 

not have limitation of sintering atmosphere) tape casting and co-sintering was studied to fabricate 

MS-SOFCs, which includes a detailed study of shrinkage behavior analysis of SS-430L (used as 

metal support), SDC, and YSZ.  

7.1.1 Use of copper as sintering aid for SDC 

1. 0.5 mol% copper doping in SDC is sufficient to enhance the sintering of SDC for the following 

reasons: 

a. The sintering temperature is reduced to 1180℃, 170℃ lower than for SDC (1350℃).  

b. Sample with 0.5 mol% copper content shrinks/densifies to the same extent as those with 

higher copper content, evident by similar grain size (1-2 micron), grain shape, and 

negligible visible surface porosity for sintered samples. 

c. 0.5 mol% copper samples show formation of an additional copper phase, but in lower 

amount than for higher copper content. 

d. Amongst samples doped with copper, the sample with 0.5 mol% copper shows the highest 

conductivity. Conductivity of plain SDC is 0.077 S.cm-1 and that of 0.5CSDC is 0.0642 

S.cm-1 at 800℃. 

2. Copper amount of 0.5 mol% and above affects both grain boundary and grain interior conductivity: 

a. Activation energies for grain interior conduction increase till 1.0 mol% copper content and 

then decrease till 5.0 mol% copper content.  

b. Activation energy for grain boundary conduction first increases by addition of 0.1 mol% 

copper and then decreases up to 0.5 mol% copper. 0.5 mol% is also when the copper oxide 

additional phase appears. Further increase in copper content (up to 5.0 mol%) increases the 

grain boundary conduction activation energy.  
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7.1.2 Fabrication of MS-SOFCs using tape casting and co-sintering 

1. Reducing atmosphere (5% H2 / 95% Ar) is more suitable for co-sintering of MS-SOFCs than inert 

atmosphere. The reason is that sintering of metal support (SS-430L) in inert atmosphere leads to 

formation of silica and alumina. Firstly, these oxides are non-conductive and will increase the 

ohmic resistance of the metal support. Secondly, these oxides act as sintering additives for metal 

support and enhance its shrinkage. Metal support sample sintered in inert atmosphere with 5.0 

℃/min ramping rate shows a shrinkage of more than 26% before reaching sintering temperature 

compared to only 17.1% in reducing atmosphere. This means that the metal support in inert 

atmosphere will already be close to its final shrinkage and, therefore, stiff. Any continued shrinkage 

of thin YSZ layer will result in physical defects since one layer (metal support) is stiff and the 

second layer (YSZ) is shrinking.  

2. SS-430L when sintered in reducing atmosphere at a temperature of 1350℃ shows two shrinkage 

peaks regardless of the ramping rate used in sintering temperature profile. The features of the peaks 

are: 

a. These peaks are shrinkage rate peaks and indicate how fast shrinking is occurring at a given 

temperature. The shrinkage rate increases with increasing ramping rate and hence the peaks 

are bigger for samples sintered with higher ramping rate.  

b. Irrespective of the ramping rate, shrinkage peaks occur at the same temperatures, the first 

one around 1150℃ and the second one around 1350℃.  

c. This signifies that shrinkage of SS-430L is more temperature dependant than time.  

3. The type of atmosphere does not have a significant effect on YSZ shrinkage. However, by 

increasing the ramping rate, the shrinkage of YSZ is delayed. This means that at higher ramping 

rate, YSZ samples show shrinkage peak at higher temperature. For instance, for sintering in 

reducing atmosphere the shrinkage peak for YSZ with 2.5℃/min ramping rate occur at 1280℃ 

compared to 1340℃ for YSZ sintered at 7.5 ℃/min.  

4. A higher ramping rate (7.5 ℃/min) is more suitable for MS-SOFC co-sintering with SS-430L as 

metal support and YSZ as electrolyte. Due to higher shrinkage of SS-430L at higher ramping rate, 

the metal support would have reached a high shrinkage upon reaching sintering temperature. 

Similarly, due to delayed shrinkage of YSZ with higher ramping rate, upon reaching sintering 

temperature YSZ layer will not be too dense or brittle. Hence, continued shrinkage of YSZ while 

at sintering temperature will not lead to any physical defects like cracking, delamination, and 

warping.  
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5. Shrinkage of SDC with copper starts at a lower temperature (⁓700℃) than SS-430L (⁓1100℃). 

During co-sintering, copper co-doped SDC will already be in its final stage of shrinkage, and hence 

brittle, when the SS-430L starts its shrinkage. Due to significant mismatch in shrinkage behavior 

of copper co-doped SDC and SS-430L, using sintering aid to lower the co-sintering temperature 

can not be used for MS-SOFC fabrication with copper co-doped SDC electrolyte.  

7.2 Recommendations.  

7.2.1 Use of copper as sintering aid for SDC 

1. Copper content between 0.1 mol% and 0.5 mol% can be studied to find out the solubility limit of 

copper in SDC crystal structure.  

2. SDC with copper sintering aid may still be useful for all-ceramic cells because reducing the 

sintering temperature may reduce nickel coarsening in the anode and reduce the cost. Hence, testing 

under such situation should be pursued.  

7.2.2 Fabrication of MS-SOFC using tape casting and co-sintering 

1. More detailed study on gas tightness of electrolyte can be done. Even though the cell showed OCV 

of up to 1.0 V, it can be further increased. This might require slight changes in the electrolyte slurry, 

as well as in the co-sintering profile. For instance, a denser slurry can be used for YSZ, and co-

sintering dwell time can be increased.  

2. Improvement in anode performance: 

a. The composition and loading of anode catalyst can be varied to improve cell performance 

by reducing anode polarization.  

b. The sequence of anode and cathode processing can be reversed. That means that cathode 

can be deposited and sintered first followed by anode catalyst infiltration and heat treatment 

cycles. Since the cathode sintering temperature is above 1000℃, it can lead to anode 

catalyst coarsening.  

c. Study of copper containing anode catalyst can be carried out. In the past it has been reported 

that copper has been used to mitigate carbon deposition and enhance electronic conduction 

of anode for all-ceramic SOFCs. Copper containing anode like Cu-Ni/SDC can be studied 

with MS-SOFCs.  

3. Improvement of cathode performance: 



136 

 

a. Due to reaction between conventional cathode materials and YSZ, a SDC barrier layer 

should be used between YSZ electrolyte and cathode. Specifically, the deposition method 

and further processing of the barrier layer can be studied, including the possibility of using 

copper doped SDC for denser barrier layer at lower sintering temperature.  

b. Alternative cathode materials, such as BSCF, and SBSC50, with lower reactivity with YSZ 

and which can be sintered at lower temperature can be studied with MS-SOFCs.   

c. Ex-situ sintering of cathode can be studied, where the effect of sintering temperature and 

time on the cathode polarization can be evaluated. 
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APPENDIX A 

Porosity calculation for sintered metal support 

Data was collected for 12.5 wt% pore former content. 

Collected Data 

Table A.1: Measured values of mass for porosity measurement. 

Description Mass (grams) 

Mass before impregnation 0.5627 ± 0.001 

Mass after impregnation 0.6064 ± 0.001 

Mass impregnated 0.0437 ± 0.002 

 

Density of stainless-steel 430L: 7.8 g.cm-3 

Density of oil: 0.9118 g.cm-3 

Volume of stainless-steel 430L: 
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
 = 0.5627/7.8 = 0.072 ± 0.0001 cm3 

Volume of oil: 
𝑚𝑎𝑠𝑠

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 = 0.0437/0.9118 = 0.048 ± 0.0022 cm3 

Porosity = 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
 = 

0.048

(0.048 + 0.072)
 = 0.4 ± 0.024. 
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APPENDIX B 

Use of EIS for conductivity and activation energy calculation.  

Conductivity calculation 

Figure B.1 shows Nyquist plot (experimental and fit) for 0.5 CSDC at 400℃ 

 

Figure B.1: Nyquist plot for 0.5CSDC at 400℃. 

Equivalent circuit data fitting was done using z-view software. Fitting of experimental was used 

to get values of resistance for grain interior and grain boundary.  

Grain interion resistance (Rgi) = 1478 ohms. 

Grain boundary resistance (Rgb) = 5374 ohms.  

Total resistance (RT) = Rgi + Rgb = 6852 ohms. 
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Conductivity (σ) = 
𝐿𝑒𝑛𝑔𝑡ℎ 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝐴𝑟𝑒𝑎
  

Thickness of sample = 0.0944 cm 

Area = 0.283 cm2 

Grain interior conductivity (σgi) = 2.26 × 10-4 S.cm-1 

Grain boundary conductivity (σgb) = 6.21 × 10-5 S.cm-1 

Total conductivity (σT) = 4.87 × 10-5 S.cm-1 

Activation energy calculation 

Arrhenius equation: 𝜎 =  σ𝑜ⅇ𝑥𝑝 (
−𝐸𝐴

𝐾𝑇
) 

For activation energy calculation, plot of Ln(conductivity) vs (1/Temperature) can be used. The 

slope of the linear plot is the ratio of activation energy and Boltzmann constant.  

𝐿𝑛(𝜎)  =  (
−𝐸𝐴

𝐾
)(

1

𝑇
)  +  𝐿𝑛(σ𝑜) 

Figure B.2 shows Arrhenius plot of PSDC grain boundary conductivity.  

 

Figure B.2: Arrhenius plot of PSDC grain boundary conductivity. 
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From Figure B.2: 

−𝐸𝐴

𝐾
 =  −17463 

EA = (-17463) × K = (-17463) × (-8.6173303 × 10-5) = 1.52 eV  


