
A computational study of practical
issues arising in short-term

scheduling of a multipurpose facility

by

Zachariah Stevenson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2019

© Zachariah Stevenson 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis focuses on two important considerations when solving short term scheduling
problems for multipurpose facilities: deciding when rescheduling should be performed and
choosing efficient time representations for the scheduling problems. This class of scheduling
problems is of practical importance as it may be used for scheduling chemical production
facilities, flexible manufacturing systems, and analytical services facilities, among others.
In these cases, improving the efficiency of scheduling operations may lead to increased yield,
or reduced makespan, resulting in greater profits or customer satisfaction. Therefore, ef-
ficiently solving these problems is of great practical interest. One aspect of real world
implementations of these problems is the presence of uncertainty, such as in the form of
new jobs arriving, or a machine breaking down. In these cases, one may want or need to
reschedule operations subject to the new disturbance. An investigation into how often to
perform these reschedulings is addressed in the first part of the thesis. When formulating
these problems, one must also choose a time representation for executing scheduling op-
erations over. A dynamic approach is proposed in the second part of the thesis which we
show can potentially yield substantial computational savings when scheduling over large
instances.

The first part of this thesis addresses the question of when to reschedule operations
for a facility that receives new jobs on a daily basis. Through computational experiments
that vary plant parameters, such as the load and the capacity of a facility, we investigate
the effects these parameters have on plant performance under periodic rescheduling. These
experiments are carried out using real data from an industrial-scale facility. The results
show that choosing a suitable rescheduling policy depends on some key plant parameters.
In particular, by modifying various parameters of the facility, the performance ranking of
the various rescheduling policies may be reversed compared to the results obtained with
nominal parameter values. This highlights the need to consider both facility characteristics
and what the crucial objective of the facility is when selecting a rescheduling policy.

The second part of this thesis deals with the issue of deciding which timepoints to in-
clude in our model formulations. In general, adding more timepoints to the model will offer
more flexibility to the solver and hence result in more accurate schedules. However, these
extra timepoints will also increase the size of the model and accordingly the computational
cost of solving the model. We propose an iterative framework to refine an initial coarse
uniform discretization, by adding key timepoints that may be most beneficial, and remov-
ing timepoints which are unnecessary from the model. This framework is compared against
existing static discretizations using computational experiments on an analytical services
facility. The results of these experiments demonstrate that when problems are sufficiently

iii

large, our proposed dynamic method is able to achieve a better tradeoff between objective
value and CPU time than the currently used discretizations in the literature.

iv

Acknowledgements

The financial support provided by Natural Sciences and Engineering Research Council
of Canada (NSERC), Ontario Centers for Excellence (OCE) and the industrial partner in
the analytical services sector are gratefully acknowledged.

I would like to thank my supervisors Ricardo Fukasawa, and Luis Ricardez-Sandoval
for their guidance and support.

I would also like to thank Joseph Cheriyan and Jochen Könemann for agreeing to read
this thesis.

v

Dedication

This is dedicated to the one I love.

vi

Table of Contents

List of Tables x

List of Figures xii

List of Algorithms xv

1 Introduction 1

1.1 Time Representations . 2

1.2 Rescheduling . 3

1.3 Tailoring Time Grids . 4

1.4 Contributions of the Thesis . 6

1.5 Structure of the Thesis . 7

2 Background and Literature Review 8

2.1 Problem Description . 8

2.2 Time Layered Graphs . 10

2.3 Scheduling Model . 14

2.4 When to Reschedule . 16

2.5 Time Grids for Discrete Time Representations 17

vii

3 Study on Rescheduling Frequency 21

3.1 Rolling Horizon Routine . 22

3.2 Rescheduling Policies . 24

3.3 Performance Metrics . 25

3.4 Design of Experiments . 26

3.5 Results . 29

3.5.1 Results with Moderate Facility Load 29

3.5.2 Effects of Different Plant Loads . 34

3.5.3 Effects of Varying Plant Capacity 35

3.5.4 Other Factors Considered . 39

3.6 Chapter Summary . 41

4 Study on Dynamic Timepoint Schemes 42

4.1 Problem Description . 43

4.2 Timepoint Modification Framework . 47

4.3 Computational Experiments . 59

4.3.1 Policies Tested . 59

4.3.2 Testing Procedure . 61

4.3.3 Performance on Small Size Problems 63

4.3.4 Performance on Medium Size Problems 63

4.3.5 Performance on Large Size Problems 67

4.3.6 Per Iteration Analysis . 67

4.4 Chapter Summary . 74

5 Conclusions 76

5.1 Future Work . 77

References 79

viii

APPENDICES 84

A Facility Parameter Values 85

B Additional Rescheduling Performance Profiles 92

C Dynamic Timepoint Algorithms 104

D Dynamic Timepoint Instances 108

ix

List of Tables

2.1 Algorithm 1, Generate Time Layered Graph 12

3.1 Descriptions of rescheduling policies considered. 24

3.2 Average performance factor (APF) values of each metric for instances with
5,000 starting samples and 500 arriving samples per day. 33

3.3 Problem size statistics for instances with a moderate job load. 34

3.4 APF differences comparison for instances starting with various numbers of
samples and 500 new samples per day. 36

3.5 APF differences comparison for instances starting with 5,000 samples and
various daily arrival loads. 37

3.6 Average makespan APF differences comparison between one quarter capac-
ity and full capacity instances. 39

4.1 Description of parameters used for the framework. 51

4.2 Algorithm 2, Get Instant Start Timepoints 53

4.3 Algorithm 3, Get Overloaded Timepoints 55

4.4 Algorithm 4, Get Dominated Timepoints 58

4.5 Descriptions of iterative policies tested. 60

4.6 Sizes of instances in each category. 62

4.7 Number of instances considered for each iteration number. 70

4.8 Average number of variables and constraints per iteration, numbers reported
in 1,000’s. 73

x

A.1 Normalized process parameters used during experiments. 85

C.1 Algorithm 5, Dynamic Timepoint Framework 105

C.2 Algorithm 6, Update Solution . 106

C.3 Algorithm 7, Helper Methods . 107

D.1 Results for each instance of dynamic timepoint study. 108

xi

List of Figures

2.1 A simplified version of the process network used for experiments. The let-
tered boxes represent processes and the arrows denote that a path uses these
processes (from tail to head) . 9

2.2 An example of how an underlying graph G with travel function τ , and
timepoint sets ε produces the time layered graph G∗. 13

2.3 Various timepoint discretizations that may be used. 19

3.1 Above is the scheduling horizon before partitioning. Below is a partition of
scheduling sub-horizons that we may actually solve. 23

3.2 Performance profile comparing job completion among rescheduling policies
for instances starting with 5,000 samples and 500 samples arriving each day. 31

3.3 Performance profile comparing average job makespan among rescheduling
policies for instances starting with 5,000 samples and 500 samples arriving
each day. 31

3.4 Performance profile comparing job completion among rescheduling policies
for instances with one eighth the original capacity. 38

3.5 Proportion of jobs on time for one month lead times and instances with one
eighth the original capacity. 40

4.1 An example of a time layered graph. 44

4.2 A flowchart outlining the dynamic timepoint framework. 49

4.3 A figure demonstrating under what conditions we add new instant start
timepoints. 54

4.4 A figure demonstrating under what conditions we add new overloaded time-
points. 56

xii

4.5 A figure demonstrating under what conditions we mark timepoints as dom-
inated, for removal. 57

4.6 Results for small instances. 64

4.7 Results for medium instances. 66

4.8 Results for large instances. 68

4.9 The average number of timepoints added, removed, and their difference
between iterations over each policy. 71

4.10 Per iteration timepoint differences for medium sized instances. 72

4.11 Average objective value improvements and time taken per iteration. 74

B.1 Proportion of jobs on time for one day lead times and instances starting
with 5,000 samples and 500 samples arriving each day. 93

B.2 Proportion of jobs on time for one week lead times and instances starting
with 5,000 samples and 500 samples arriving each day. 93

B.3 Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 500 samples arriving each day. 94

B.4 Proportion of jobs on time for one day lead times and instances starting
with 2,500 samples and 500 samples arriving each day. 94

B.5 Proportion of jobs on time for one week lead times and instances starting
with 2,500 samples and 500 samples arriving each day. 95

B.6 Proportion of jobs on time for one month lead times and instances starting
with 2,500 samples and 500 samples arriving each day. 95

B.7 Proportion of jobs on time for one day lead times and instances starting
with 10,000 samples and 500 samples arriving each day. 96

B.8 Proportion of jobs on time for one week lead times and instances starting
with 10,000 samples and 500 samples arriving each day. 96

B.9 Proportion of jobs on time for one month lead times and instances starting
with 10,000 samples and 500 samples arriving each day. 97

B.10 Proportion of jobs on time for one day lead times and instances starting
with 5,000 samples and 250 samples arriving each day. 97

B.11 Proportion of jobs on time for one week lead times and instances starting
with 5,000 samples and 250 samples arriving each day. 98

xiii

B.12 Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 250 samples arriving each day. 98

B.13 Proportion of jobs on time for one day lead times and instances starting
with 5,000 samples and 1,000 samples arriving each day. 99

B.14 Proportion of jobs on time for one week lead times and instances starting
with 5,000 samples and 1,000 samples arriving each day. 99

B.15 Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 1,000 samples arriving each day. 100

B.16 Performance profile comparing job completion among rescheduling policies
for instances with one half the original capacity starting with 5,000 samples
and 500 samples arriving each day. 100

B.17 Performance profile comparing job completion among rescheduling policies
for instances with twice the original capacity starting with 5,000 samples
and 500 samples arriving each day. 101

B.18 Performance profile comparing job completion among rescheduling policies
for instances with four times the original capacity starting with 5,000 sam-
ples and 500 samples arriving each day. 101

B.19 Performance profile comparing job completion among rescheduling policies
for instances with eight times the original capacity starting with 5,000 sam-
ples and 500 samples arriving each day. 102

B.20 Proportion of jobs on time for one week lead times and instances with one
eighth the original capacity starting with 5,000 samples and 500 samples
arriving each day. 102

B.21 Proportion of jobs on time for one week lead times and instances with one
quarter the original capacity starting with 5,000 samples and 500 samples
arriving each day. 103

B.22 Proportion of jobs on time for one month lead times and instances with one
quarter the original capacity starting with 5,000 samples and 500 samples
arriving each day. 103

xiv

List of Algorithms

1 Generate Time Layered Graph . 12
2 Get Instant Start Timepoints . 53
3 Get Overloaded Timepoints . 55
4 Get Dominated Timepoints . 58
5 Dynamic Timepoint Framework . 105
6 Update Solution . 106
7 Helper Methods . 107

xv

Chapter 1

Introduction

Scheduling is concerned with how and when to execute operations to optimize a chosen
objective such as maximizing profits, or minimizing costs, subject to operational constraints
such as deadlines that must be met, or available resource limitations. It is common practice
for many industries to make use of scheduling as an optimization problem to guide their
progress and meet various economic objectives [14, 29, 39, 40, 43]. Proper scheduling can
greatly increase the efficiency of a production plant and therefore is of great practical
importance. Scheduling operations over a relatively short period of time, such as a day, a
shift or a week is referred to as short term scheduling. We are interested in scheduling in
the context of the short term scheduling of a multipurpose plant in the analytical services
sector.

The analytical services sector is focused on carrying out analyses on samples that are
ordered by clients for various purposes, e.g. performing a nutritional analysis on a food item
to create the nutritional facts panel before bringing the product to market, or performing
air quality analyses to check for hazardous materials such as asbestos. Companies in the
analytical services sector may receive on the order of thousands of samples on a daily
basis to be processed at their facility and as such require a suitable method of scheduling
operations.

A multipurpose plant is a facility which has a set of processes, such as machines or
workers, that may carry out a variety of tasks, i.e. the plant may serve more than a
single purpose, such as producing several different products. The problem of scheduling
a multipurpose plant can be seen as a variant of the job shop scheduling problem [4, 32].
Jobs arrive at a multipurpose facility, and each job has a set of samples that comprise it
and a sequence of processes that the samples must be processed by in order. This sequence

1

of processes is called the path of a job. The goal is to generate a schedule for the facility,
which dictates what samples to assign to which processes over the length of time that is to
be scheduled such that an objective is optimized. This schedule must also abide by various
operational constraints of the problem such as process resource limitations and material
balance constraints.

Throughout this thesis, we model these scheduling problems as mixed integer linear
programs (MILP), meaning that we restrict the objective function, and constraints of the
model to be linear, and allow some variables to be integral. As such, there are already
a number of developed techniques designed to solve these problems, such as branch-and-
bound methods, and cutting-plane methods. We do not discuss integer programming or
these solution methods here, but instead refer the reader to [6] for further information.
There are several different MILP scheduling models that exist and one of the key classi-
fications of these models is the time representation that is used [24]. For this reason, we
discuss this topic in more detail below.

1.1 Time Representations

An important aspect to consider when modeling these scheduling problems is the time
representation that is used for scheduling operations. The time representation determines
when operations may be scheduled, and can play a large role in determining the com-
putational cost of solving the model and the final solution quality [22, 24, 45]. We call
each point in time where an operation may be scheduled a timepoint. There are two main
classes of time representation: continuous time representation and discrete time represen-
tation [13, 42].

Continuous time representations allow events to happen at precise points in time during
the scheduling horizon, with the selection of where these points should be placed being
decided by the model [27, 36, 53]. Because the model is able to choose precisely where
timepoints should be located, we may ensure that we obtain the best solutions using this
representation [24]. However, one must provide the model a fixed number of timepoints to
allocate as input. If the model is allowed to allocate too few timepoints, solution quality
may decrease, however if the model is allowed to allocate many timepoints, CPU time may
drastically increase. In general, selecting a suitable number of timepoints to allocate for
the model can be difficult.

Discrete time models instead fix the timepoints at which scheduling decisions may be
made to a subset of points during the scheduling horizon, a priori [21, 38]. We call the

2

set of timepoints that the schedule may use the time grid. The difficulty with this repre-
sentation is in choosing a suitable time grid to provide the model. There is once again a
tradeoff between how coarse or fine the discretization used is, the quality of the resulting
schedule and the amount of CPU time required to solve the model. Despite the contin-
uous time formulation allowing the model to use precise points in time, multiple works
have shown that using a discrete time representation results in better performance than
using a continuous time representation for scheduling multipurpose facilities [22, 26, 42].
Therefore, throughout this thesis we concern ourselves with models using a discrete time
representation. Moreover, among discrete time representations, the non uniform discrete
time representation has been shown to perform best for the scheduling problem considered
in ths thesis [22], and so we use this time representation throughout our experiments. This
will be discussed further in Chapter 2.

1.2 Rescheduling

Typically, works on scheduling have considered finding an optimal schedule in a static
environment where all of the operating conditions are known with certainty throughout
the scheduling horizon. While it is necessary to first understand scheduling in this context,
in practice it may not always be realistic to assume that all of the information pertinent
to generating an optimal schedule will be known in advance, and that no unexpected
disruptions to the schedule will occur during operation [49]. In particular, an initially
generated schedule can become infeasible or non-optimal because of uncertainties, such as
a machine breaking down [2, 5, 12, 19, 25, 34, 37], the arrival of rush orders [2, 19, 25], or
actual processing times differing from expected processing times [25, 31]. Furthermore, the
arrival of new job orders are considered in this thesis and are an important consideration
as they may change the optimal schedule and taking into account these new arrivals may
improve plant performance.

One possible way to deal with uncertainties is to reschedule, that is, to re-optimize
when disruptions occur or at specific (user-defined) time intervals. The decisions involved
with rescheduling can be divided into two issues of “how-to” and “when-to” reschedule [35].
The “how-to” addresses how new schedules should be generated. Some examples include
a full rescheduling of all operations or a partial rescheduling, where some operations that
were scheduled previously remain fixed [35, 49]. We do not focus on how new schedules
should be generated in this thesis and simply assume that when rescheduling is done
a new schedule is generated from scratch. This was done so that we may ensure that
newly generated schedules obtain the greatest performance given the available information,

3

assuming that the facility may pivot to the new schedules without performance loss. If
subsequent schedules must be similar to current schedules, then a partial rescheduling of
operations may be preferred.

Instead, we choose to focus on when to reschedule operations in the first part of this the-
sis. There have been a number of works conducted over the last few decades investigating
how rescheduling frequency affects schedule performance. There have been studies con-
ducted in a variety of environments such as job shop scheduling [2, 5, 28, 37, 47, 48], chem-
ical production scheduling [15, 20], material requirements planning [52], scheduling flexible
manufacturing systems [19, 31, 34, 35], and scheduling hospital operations [17, 41, 50].
However, in most of these studies the plant and operating parameters (e.g. plant load
or plant capacity) under consideration are fixed, and it is not discussed how the results
and conclusions vary when these parameters are modified. Understanding the relationship
between choosing when to reschedule and the operating parameters of a plant may be of
practical importance for several reasons such as seasonal industries where demand may
fluctuate greatly depending on the time of year, or facilities where the number of avail-
able resources may change (e.g. purchasing additional machines or laying off workers).
Indeed, the results show that under certain conditions, we (counterintuitively) find that
less frequent rescheduling performs better than frequent rescheduling.

Aside from rescheduling, we may consider robust or stochastic programming as a
method to mitigate the effects of these uncertainties on our schedules. Robust and stochas-
tic programming aim to find schedules which perform well under the expected disruptions
that may occur (stochastic) or subject to the worst case disruptions (robust). Since the
uncertainty considered in this work is the arrival of new jobs for which not much infor-
mation is known (e.g. number of samples, time of arrival, or path of the job) and there
does not seem to be an accurate way of predicting this information, using these methods
seems to be quite challenging. Due to these challenges and time limitations, these methods
were not considered in this work but could be explored for future work. Regardless of this,
we must first understand the relationship between when to reschedule and plant operating
parameters in the simplest setting before exploring robust or stochastic methods and this
thesis aims to address this gap.

1.3 Tailoring Time Grids

Given that the results concerning how often to reschedule show that in some cases less
frequent rescheduling performs better than more frequent rescheduling, large models may
be required for obtaining one’s desired scheduling performance. Therefore, the question

4

naturally arises: how do we solve these large scheduling problems more efficiently? This
question prompts us to take a look at timepoint representations in more detail. In general,
if we knew exactly which timepoints were needed to achieve the optimal solution obtained
by using a continuous time representation, we would be able to greatly reduce the size of
the model by using only these necessary timepoints. However, it is unlikely that we know
this information beforehand, yet we must still choose a time grid to use for the model.

As mentioned previously, choosing which timepoints to include in the time grids is in
general not obvious and can greatly impact the performance of the model. Furthermore,
there have been a very limited number of works that have considered how to tailor time
grids for individual problem instances [3, 45]. Here we mean an instance of a problem to
be a problem with given input data, as opposed to the general problem itself.

Velez and Maravelias show in [45] that they are able to generate non uniform time grids
based on the instance input data such that the optimal solution obtained by using these
time grids has equal objective value to the optimal solution obtained by using an arbitrarily
fine uniform discretization. Furthermore, they show that this method of choosing non
uniform time grids leads to a much smaller problem size than that obtained by using a
“super-fine” uniform discretization. However, to ensure that this guarantee holds, their
algorithm may include many timepoints making the resulting model very computationally
taxing to solve, especially for large problem instances.

In [3], Boland et al. provide a method for iteratively refining the set of timepoints
that they consider for solving the service network design problem. They take a different
approach than that of Velez and Maravelias, by beginning with only a few timepoints
initially and then determining where to add timepoints based on the obtained solution
from solving a relaxation of their problem. They are able to show that their method will
also terminate with an optimal solution whose objective value is equal to that obtained by
using an arbitrarily fine uniform discretization. Moreover, they show that their method
performs well in practice through a computational study.

One possible solution to determining what time grid to provide the model is to solve
many instances of the scheduling problem of interest in an attempt to discern a suitable
initial time grid based on the optimal schedules of these instances. This may be a time and
labor intensive process however, and moreover may provide bad results when optimizing
an instance which does not resemble the set of instances used to determine the time grid.
Furthermore, this procedure would need to be done for each application individually. In-
stead, the approach that we take in this work is to iteratively refine an initial discretization.
By carefully choosing the initial discretization and timepoints to add between iterations,
we are able to achieve a better tradeoff between solution quality and CPU time on large

5

problems than that obtained by using other time grids.

1.4 Contributions of the Thesis

As we have identified above several decisions that impact the quality of generated schedules
and the computational difficulty of solving these models, we now outline the contributions
of this thesis.

Firstly, a study investigating when to reschedule subject to varying plant parameters is
carried out to address the gap in the literature. In this study we consider the rescheduling
of a multipurpose facility in the analytical services sector that receives new jobs on a
daily basis. Based on the results of the computational experiments, we identify some key
parameters that influence how often rescheduling should be done. This study shows that
care must be taken to consider not only the scheduling problem being solved, but also the
operating conditions of a facility when deciding how often to reschedule. In particular,
we find surprising results when the facility is starved for processing resources which can
provide valuable insight into choosing a rescheduling scheme in real world scenarios.

Secondly, we present a generalized framework for iteratively refining time grids for
scheduling multipurpose facilities. We propose several heuristics for deciding where to add
and remove timepoints from the scheduling model’s time grid between iterations. The
efficacy of this framework is evaluated through computational experiments comparing its
performance against the currently used time grids for scheduling discrete time multipurpose
plants in the literature. The results of these experiments show that our method may
obtain significant performance improvements over the current time grids in use without
a substantial increase in CPU time. Moreover, since the performance of the proposed
framework remains relatively stable over a range of problem sizes in our experiments,
this framework provides a stepping stone toward improving instance-agnostic methods for
choosing time grids.

Note that we do not provide theorems and theoretical guarantees in this thesis. Rather,
the focus is on developing heuristic approaches to our scheduling problem with empirical
evidence obtained through computational experiments which demonstrate that our heuris-
tics seem to perform well in our test cases.

6

1.5 Structure of the Thesis

The structure of this thesis is as follows. In Chapter 2 we discuss some necessary back-
ground information on the work presented in Chapters 3 and 4 in more detail. In Chapter
3 we present our study on deciding when to reschedule subject to varying plant parameters.
This includes extensive long term computational experiments to evaluate our reschedul-
ing policies. Our work on iteratively refining the set of timepoints to schedule over is
presented in Chapter 4 which includes the proposed framework, our heuristics for select-
ing timepoints, and computational experiments demonstrating the efficacy of our method.
Concluding remarks and future work considerations are presented in Chapter 5.

7

Chapter 2

Background and Literature Review

This chapter includes the necessary background information and gives context to the results
of Chapters 3 and 4. We begin by discussing the scheduling problem that is used throughout
this thesis in section 2.1. To help develop the model for our scheduling problem, we present
the definition of time layered graphs in section 2.2. In section 2.3 we present the model
that is used throughout our experiments. We then discuss various strategies that are
used to determine when to do rescheduling in section 2.4. In section 2.5 we review the
developments with respect to choosing discrete time representations.

2.1 Problem Description

We now discuss the scheduling problem used throughout this thesis in more detail. The
problem under consideration is a variant of the job shop problem. A facility receives a set
of jobs to process, I, and has access to a set of processes, V . Each job i ∈ I is made up of
a discrete collection of samples, and a sequence of processes, Π(i), called a path, that must
be performed (in the specified order) on the samples. Using this notation, we specify the
k’th process in the path of job i as Π(i, k) for k = 1, . . . , |Π(i)|. Each process u ∈ V of the
plant has a set of identical resources (e.g. machines or workers) that may perform a single
operation on samples. Each of these resources u has a fixed capacity, κ(u), measured in
terms of samples and a fixed processing time, τ(u). Furthermore, we let ρ(u) represent the
number of resources available for each process u. We assume that resources may not be
interrupted once they have started processing (no pre-emption), and that each resource may
process samples from many jobs simultaneously (batch mixing), as long as there is available
capacity. Additionally, samples from a single job do not need to be processed together, they

8

Figure 2.1: A simplified version of the process network used for experiments. The lettered
boxes represent processes and the arrows denote that a path uses these processes (from
tail to head)

may be split into discrete batches and processed individually (batch splitting) as long as
each individual sample passes through the job’s specified path in order. To obtain an idea
of the type of network we use in this work, we include Figure 2.1 which presents a simplified
version of the process network that was used in the experiments throughout this thesis.
The network shown was obtained by considering all paths and processes such that the most
common 70% of the paths in one month of historical data from a real analytical services
facility are considered by this network. We refrain from including the actual network in
its entirety because as its size makes it cumbersome to include.

We consider scheduling operations for H minutes from time S until time S + H. We
refer to the interval [S, S + H] as the time horizon for the problem. Recall that previous
works have shown that discrete time representations perform better than continuous time
representations for scheduling multipurpose plants [22, 26, 42], therefore we also choose to
use a discrete time representation throughout this thesis. Each process u ∈ V has a set of

9

timepoints ε(u) = {ε(u, t) : t = 1, . . . , |ε(u)|}, where ε(u, t) ≥ ε(u, t−1) ∀t = 2, . . . , |ε(u)|.

Since we schedule or reschedule operations over a facility that is already in operation,
it is possible that not all processes and samples are available at the beginning of the
horizon. Therefore, to account for this we include some additional input parameters that
allow samples to arrive throughout the horizon, and process resources to be unavailable at
various points during the horizon. To denote both the samples that arrive at the facility
and samples that have not finished processing and are carried over from a previous horizon,
we use α(i, k, t) to represent the number of samples for job i that arrive at the k’th process
in the path of i (Π(i, k)) at the t’th timepoint of process Π(i, k) (ε(Π(i, k), t)). Z(u, t)
denotes the number of resources of process u that have been pre-allocated at time ε(u, t),
e.g. a machine is scheduled to be taken down for maintenance, or a machine is still running
a process that started before the beginning of the current scheduling horizon.

The goal is to generate a schedule (i.e. an assignment of samples to process resources
and times) such that an objective of the facility is optimized (e.g. maximize throughput
or minimize makespan) and the schedule is feasible. Namely, we require that we do not
over allocate our process resources, we abide by path sequencing constraints (e.g. a sample
cannot begin processing by a resource which it has not yet reached), and that resource
capacity constraints are met. Note that the particular objective that is used will change
throughout this thesis, so we do not specify what is used at this time.

2.2 Time Layered Graphs

We now present the definition of a time layered graph, which is needed to develop the
scheduling model for the problem described in section 2.1. Time layered graphs may be
useful when representing problems which have a network of states, and decisions must be
made based on spatial locations in the graph and time, e.g. routing material between
states and over a time horizon. The use of these graphs typically arises in transportation
routing problems such as bus or flight routing [1, 3, 8, 11]. They augment the standard
static network flow models by adding an extra dimension (time) allowing flows to change
over time. This time component will be used in this work to model the scheduling of when
to start batch processes in a multipurpose facility.

We assume that there is an underlying directed network G = (V,A) where our node set
V is comprised of a set of “states” (e.g. physical locations such as stations or holding depots,
machines or processes), and our directed arc set A indicates how we may transition from
state to state. For each state u, there is a discrete set of integer timepoints ε(u), indicating

10

at which times we may leave state u. We denote the k’th timepoint of ε(u) as ε(u, k). We
denote the set of all sets of timepoints as ε = {ε(u) : u ∈ V }. Furthermore, we denote the
next timepoint in the timepoint set of state u after or at time t as n(u, t) = min{t′ : t′ ∈
ε(u), t′ ≥ t} if it exists, otherwise ∞. At each point in time, t, we assume that there is
an integer travel time associated with traveling from state u, to state v, denoted τ(u, v, t).
Note that restricting ourselves to integral points in time for timepoints and integer travel
times is without loss of generality (as long as the original time data is rational) as we may
discretize time as finely as needed.

With respect to any graph G = (V,A), we denote the set of arcs leaving a node q ∈ V as
δ+
G(q), and the set of arcs entering q as δ−G(q). Similarly, we denote the set of nodes that can

be reached by traversing a single arc from node q ∈ V as N+
G (q) = {v ∈ V : ∃(q, v) ∈ A},

and the set of nodes which can reach q by traversing a single edge as N−G (q) = {v ∈ V :
∃(v, q) ∈ A}. When the context of which graph we are discussing is clear, we will omit the
subscript to make the notation less cumbersome.

To obtain our time layered graph G∗ = (V ∗, A∗) we perform the following construction.
The set of nodes V ∗ = {(u, t) : u ∈ V, t ∈ ε(u)} is the set of all pairs of states and timepoints
for each given state. Arcs either start and end at two distinct states, representing the
transition from one state to another, or start and end at the same state, representing
staying in the same state. We denote the former set of arcs as A∗L (“leaving arcs”), and
use the next timepoint function n(v, t) and travel function τ(u, v, t) to add arcs from (u, t)
to (v, n(v, t + τ(u, v, t))) for each neighbor v ∈ N+

G (u). The latter set of arcs are denoted
as A∗H (“holding arcs”) we add arcs from (u, t) to (u, n(u, t + 1)). The full set of arcs of
G∗ are A∗ = A∗L ∪ A∗H . The precise algorithm used to generate the time layered graph
G∗ from the underlying network G and set of timepoints ε is given by algorithm Generate
Time Layered Graph shown in table 2.1.

As an example, consider the graph G = ({A,B,C,D}, {(A,B), (A,C), (B,D), (C,D)}),
with travel function τ(A,B, t) = 2, τ(A,C, t) = τ(B,D, t) = τ(C,D, t) = 1 ∀t, and time-
point sets ε(A) = {1, 2, 3}, ε(B) = {1, 2, 3}, ε(C) = {2, 3}, ε(D) = {1, 3}. Following the
construction given by algorithm Generate Time Layered Graph, the graph G along with
the resulting time layered graph G∗ are shown in Figure 2.2.

In the proceeding discussions throughout this thesis, when we refer to a time layered
graph we will assume that we also have access to the underlying graph G, travel function τ
and timepoint sets ε. Moreover, we will use G to denote a graph with no time components
and G∗ to denote a time layered graph obtained from G (with travel function τ and
timepoint sets ε).

11

Table 2.1: Algorithm 1, Generate Time Layered Graph

Algorithm 1 Generate Time Layered Graph

1: function Build Graph(G, ε, τ)
2: V ∗ ← Build Node Set(G, ε)
3: A∗ ← Build Arc Set(G, ε, τ)
4: return G∗ = (V ∗, A∗)
5: end function
6: function Build Node Set(G, ε)
7: V ∗ ← ∅
8: for all u ∈ V do
9: for all t ∈ ε(u) do

10: V ∗ ← V ∗ ∪ {(u, t)}
11: end for
12: end for
13: return V ∗

14: end function
15: function Build Arc Set(G, ε, τ)
16: A∗L, A

∗
H ← ∅

17: for all u ∈ V do
18: for all t ∈ ε(u) do
19: if n(u, t+ 1) <∞ then
20: A∗H ← A∗ ∪ ((u, t), (u, n(u, t+ 1))) . Staying at state u
21: end if
22: for all v ∈ N+(u) do
23: if n(v, t+ τ(u, v, t)) <∞ then
24: A∗L ← A∗ ∪ {((u, t), (v, n(v, t+ τ(u, v, t))))} . Going from u to v at

time t
25: end if
26: end for
27: end for
28: end for
29: return A∗L ∪ A∗H
30: end function

12

A

B

C

D

2

1

1

1

A, 1

B, 1

D, 1

A, 2

B, 2

C, 2

A, 3

B, 3

C, 3

D, 3

G G∗

τ(A,B, t) = 2, τ(A,C, t) = τ(B,D, t) = τ(C,D, t) = 1
ε(A) = ε(B) = {1, 2, 3}, ε(C) = {2, 3}, ε(D) = {1, 3}

Figure 2.2: An example of how an underlying graph G with travel function τ , and timepoint
sets ε produces the time layered graph G∗.

13

2.3 Scheduling Model

Using the notion of time layered graphs from section 2.2 and the problem description given
in section 2.1, we may proceed to present the complete model formulation below. Note
that the names used for input data when describing the problem previously will be reused
below.

Begin by constructing the graph G = (V,A) as follows. Let the set of nodes be the set
of processes of the facility, and add an arc to A from process u to process v if and only
if there is a job i ∈ I, k ∈ {2, . . . , |Π(i)|} such that Π(i, k − 1) = u, Π(i, k) = v. Let the
set of timepoints ε correspond to those given as input for each process. For defining the
travel function τ of the time layered graph, we use the processing times of each process,
i.e. τ(u, v, t) = τ(u) ∀u ∈ V, v ∈ N+

G (u), t ∈ ε(u). With this information, we may construct
the time layered graph G∗ = (V ∗, A∗) as described in section 2.2.

For every job i, every process Π(i, k) in the path of job i, and timepoint t for process
Π(i, k) we have an integer decision variable x(i, k, t) which denotes the number of samples of
job i that begin processing on process Π(i, k) at time ε(Π(i, k), t). Similarly, we let w(i, k, t)
be the number of samples of job i that can be processed on process Π(i, k) but instead wait
at time ε(Π(i, k), t). For every process u and every timepoint t = 1, . . . , |ε(u)| we have an
integer decision variable y(u, t) which denotes the number of resources of process u that
begin processing samples at time ε(u, t). Note that the x and w variables correspond to
flows on the corresponding arcs in G∗.

Two additional sets are needed to complete the model. The first set is Θ1(i, k, t) = {t′ =
1, . . . , |ε(Π(i, k − 1))| : ε(Π(i, k), t− 1) < ε(Π(i, k − 1), t′) + τ(Π(i, k − 1)) ≤ ε(Π(i, k), t)}.
Θ1(i, k, t) is the set of timepoints t′ such that if process Π(i, k− 1) starts at t′, then it will
end in the interval (ε(Π(i, k), t− 1), ε(Π(i, k), t)]. To put this set into the context of time
layered graphs, Θ1(i, k, t) is the set of timepoints t′ such that a variable x(i, k, t′) will have
t as its head. The second set is Θ2(u, t) = {t′ = 1, . . . , |ε(u)| : ε(u, t) < ε(u, t′) + τ(u) ≤
ε(u, t) + τ(u)}. Θ2(u, t) is the set of timepoints t′ for process u such that if process u
started processing at t′, then the process would still be running at time ε(u, t).

We now show the complete model formulation, given by problem (P1). The model takes
the form of a Flexible Discrete-Time Formulation; for a more in depth discussion of the
model along with computational experiments comparing its performance to the continuous

14

time version, we refer the reader to the original work it appeared in [22].

max
x,w,y

∑
i∈I

|Π(i)|∑
k=1

|ε(Π(i,k))|∑
t=1

f(i, k, t)x(i, k, t)−
∑
u∈V

|ε(u)|∑
t=1

c(u, t)y(u, t) (P1)

s.t. x(i, k, t) + w(i, k, t)− w(i, k, t− 1)

−
∑

t′∈Θ1(i,k,t)

x(i, k − 1, t′) = α(i, k, t), ∀i ∈ I, k = 2, . . . , |Π(i)|, (1)

t = 2, . . . , |ε(Π(i, k))|
x(i, 1, t) + w(i, 1, t)− w(i, 1, t− 1) = α(i, 1, t), ∀i ∈ I, t = 2, . . . , |ε(Π(i, 1))| (2)

x(i, k, 1) = 0, ∀i ∈ I, k = 1, . . . , |Π(i)| (3)
w(i, k, 1) = α(i, k, 1), ∀i ∈ I, k = 1, . . . , |Π(i)| (4)∑

i∈I,k′=1,...,|Π(i)|:Π(i,k′)=u

x(i, k′, t) ≤ κ(u)y(u, t), ∀u ∈ V, t = 1, . . . , |ε(u)| (5)∑
t′∈Θ2(u,t)

y(u, t′) ≤ ρ(u)− Z(u, t), ∀u ∈ V, t = 1, . . . , |ε(u)| (6)

x(i, k, t), w(i, k, t) ≥ 0, ∀i ∈ I, k = 1, . . . , |Π(i)|, (7)
t = 1, . . . , |ε(Π(i, k))|

y(u, t) ≥ 0, ∀u ∈ V, t = 1, . . . , |ε(u)| (8)
x,w, y integral, (9)

The constraints given by (1) and (2) above are flow conservation constraints on each
node of the time layered graph. They ensure that at every point in time for each process
in the path of each job (i.e. for every node in the time layered graph), every sample that
is available at this point either waits at the current process or is processed. Note that for
constraints (1) we have only a single arc leaving the vertex since we have flow constraints
for each job i and therefore there is only one arc of A∗L which may be used (due to path
sequencing constraints). Constraints (3) ensure that at the first timepoint, no samples are
processed, however note that this is without loss of generality as we may define a second
timepoint with the same time as the first timepoint. Constraints (4) set the number of
samples that are waiting at the beginning of the horizon based on any samples that arrive
at the beginning of the horizon, and any samples that were waiting at the end of the
previous horizon. Constraints (5) ensure that enough machines are allocated to meet the
proposed schedule. Constraints (6) enforce that we do not allocate more machines than
we have available. Constraints (7) - (9) enforce that our variables are non-negative, and
integral.

The objective function presented in (P1) is designed to maximize the number of samples
that begin processing on any process in their path during the horizon with a penalty for

15

starting process resources. This was done by summing over x(i, k, t) for each job i, each
process Π(i, k) in the path of job i and each timepoint t ∈ ε(Π(i, k)) and subtracting from
the objective each time a process u is used at time t ∈ ε(u). This was selected to incentivize
the processing of samples even if it was not possible to finish processing them during the
time horizon H to ensure that progress is made on finishing jobs. f(i, k, t) in (P1) is used
to represent the per sample value of processing the k’th process in job i’s path at time
ε(Π(i, k), t) and c(u, t) is the per machine cost of starting process u at time ε(u, t). The
specific choices of f and c vary between the two studies presented in Chapters 3 and 4, so
we discuss them in these chapters respectively.

Note that (P1) has been presented elsewhere [22, 30] and in these works the time
layered graphs were not explicitly constructed. However, time layered graphs were used
implicitly for the development of (P1) in these works.

2.4 When to Reschedule

There are various methods that have been proposed for when to trigger reschedulings.
“When-to” rescheduling policies can be categorized as fixed periodic, variable periodic,
event-driven, and hybrid [35, 49]. Fixed periodic policies invoke rescheduling at equal
time intervals, whereas variable periodic policies reschedule not based on the time the last
rescheduling was done, but instead based on the qualities of the system. For example,
rescheduling may be triggered once the difference between the actual schedule and the
planned schedule exceeds some allowed tolerance. Event-driven policies instead focus on
the disruptive events considered by the model and rescheduling is performed whenever a
disruptive event occurs. Furthermore, hybrid policies use periodic rescheduling in conjunc-
tion with event-driven rescheduling when some key events occur, typically events which
will cause a greater disruption to the schedule such as a machine breakdown or a rush
order arrival [5, 19]. For more information about process rescheduling, we refer the reader
to [49] for a thorough review of the subject.

As mentioned previously in Chapter 1, there have been numerous studies conducted
on rescheduling in a range of environments. Despite these efforts, a general agreement on
how rescheduling frequency affects performance has not been conclusive in the literature.
Some works suggest that both scheduling too frequently and not frequently enough result
in decreased performance [15, 19]. On the other hand, other studies suggest that one
should reschedule as frequently as possible [28, 31, 37], although relative benefits may drop
off after some critical point [5, 34, 35]. Hozak and Hill discussed these differences in [18].
They identified some modelling choices that may help explain why the conclusions have

16

been mixed, such as how instability is modelled, the assumptions used for demands and
productions, and not considering human factors. Irrespective of these differing conclusions,
it is clear that the performance of different rescheduling frequencies will vary, and hence
studying this tradeoff is of interest from a practical standpoint.

The study we conduct on when to reschedule focuses only on fixed periodic policies.
Since the disturbances we consider are not highly disruptive to the plant operation, i.e.
new jobs arriving will not make the current schedule infeasible, we do not expect to gain
much by triggering immediate reschedules which dissuades us from using an event-driven
or hybrid policy. Moreover, there does not seem to be more or less important times of
the day to schedule, so using equally spaced timepoints appears to be reasonable. If more
serious disruptions were considered, investigating a more complex rescheduling policy could
be beneficial to account for the disruptions and is considered as possible future work.

2.5 Time Grids for Discrete Time Representations

Recall that discrete time representations refer to when a time grid (a set of timepoints) is
given as input to the scheduling model dictating at what points in time the model may
choose to make scheduling decisions. Moreover, there is a tradeoff between how many
timepoints are included in the time grid, the CPU cost of solving the model, and the
quality of the solution obtained by solving the model [22]. Therefore, the choice of time
grid that is supplied to the model can greatly influence the performance characteristics of
solving the problem.

The most common choice of time grid is to use a uniform discretization (UD) with
some fixed timestep ∆ between points. In fact, until recently, all works on scheduling mul-
tipurpose facilities using a discrete time representation did so using a uniform discrete time
grid [44]. For uniform discretizations, the timestep may be adjusted to be smaller if more
precision in the timepoints is needed, or larger if timepoint precision is less of an issue or
CPU solving times are too large. However, the main drawback of this discretization scheme
is that the granularity of the discretization is constant both over the scheduling horizon
and among all processes in the facility. This can be wasteful if one knows beforehand
that few or no timepoints are necessary during some interval of time during the scheduling
horizon, or if it is known in advance that only a few scheduling decisions will be made for
a certain process during the scheduling horizon. Conversely, if one wants to increase the
granularity of the time grid during an interval of time, or allow a single process to have
more scheduling decisions, then many more timepoints will be added to the time grid than
necessary.

17

A solution to this problem is to consider non uniform discrete (NUD) time grids. NUD
time grids assign a (possibly different) set of timepoints for each process such that schedul-
ing decisions for a process p may only occur at timepoints on the time grid of process p [44].
This generalization allows us to overcome the issues discussed previously by adjusting the
granularity of the time grid for each process at various points throughout the scheduling
horizon. By more carefully selecting where to include timepoints, one may obtain a better
tradeoff between CPU time and solution quality than that obtained by using a uniform
discretization [22, 44]. Velez and Maravelias [45] showed that using the multi-grid model
with their choice of timepoints was guaranteed to produce the optimal solution obtained
by using a sufficiently fine global uniform discretization. It has also been shown that using
multiple time grids can be suitable for scheduling large scale applications [22, 46].

Figure 2.3 demonstrates the difference between uniform discretizations, non uniform
discretizations using constant timesteps, and non uniform discretizations using arbitrary
timepoints over a time horizon [0, H] where each x marks indicate the presence of a time-
point.

However, guaranteeing that the optimal solution (solution obtained by using an arbi-
trarily fine time grid) is not cutoff by using multiple time grids may still result in the use
of many timepoints and therefore large problems. The non uniform discrete M (NUDM)
discretization is one such discretization which does not guarantee that the returned solu-
tion is optimal. The NUDM discretization uses the minimum of M and the processing
time of a process as the timestep for each process’ time grid. This discretization aims
to provide timepoints that are not too far apart for processes which have long processing
times by selecting an appropriately sized M , and to allow processes with short processing
times to begin processing again immediately after finishing a previous run. For the same
problem considered in this thesis, the NUD60 discretization (M = 60 minutes) was shown
in [22] to have a better tradeoff between schedule performance and CPU solving time than
the other uniform discretizations that were tested. Therefore, we will refer back to this
discretization several times throughout Chapters 3 and 4. Nevertheless, using a NUDM
discretization may still suffer from the problem of having many extra timepoints where
they are not needed, especially if the considered time horizon is long, or there are many
processes with short processing times.

Despite the positive results surrounding using multiple discrete time grids, the pool of
works using this method is still very shallow [3, 22, 33, 44, 45, 46]. As alluded to before,
choosing a suitable discretization can depend on factors such as the properties of the
facility and the length of the scheduling horizon. However, most of these works determine
the discretization for their problem either experimentally or by using a time grid which
ensures that the optimal solution is not cut off and fix this. The work of Boland et al.

18

∆ ∆ ∆ ∆0 H

same step size ∆ for each process p

(a) A uniform discretization, each time grid is the same and timepoints are evenly spaced through-
out.

∆1 ∆1 ∆1 ∆1

∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2 ∆2

...

∆n ∆n

0 H

0 H

0 H

step size ∆1 for process p1

step size ∆2 for process p2

step size ∆n for process pn

(b) A non uniform discretization, each time grid is evenly spaced, however spacing varies between
grids.

...

0 H

0 H

0 H

arbitrary time grid for each process p

(c) A non uniform discretization, each time grid has arbitrarily spaced timepoints.

Figure 2.3: Various timepoint discretizations that may be used.

19

[3] is an exception which does not use a fixed discretization chosen beforehand. Boland
et al. [3] employed an iterative method to refine their discretization for the continuous
time service network design problem (CTSNDP). They begin by constructing a relaxation
to CTSNDP using a carefully chosen time layered graph whose arcs are shorter than the
actual travel times for their problem. After solving their relaxation, either the solution
may be converted to a solution for CTSNDP, in which case the solution is optimal, or
they identify at least one arc to lengthen in their relaxation and repeat this process. They
were able to prove that their method terminates with the optimal solution obtained by
using a continuous time representation and showed positive results using computational
experiments. However, part of their proof of optimality for their method uses a fact which
does not hold true in our setting. We attempted to modify their method and proof to fit
our setting, but were unable to do so. Nonetheless, their method provided inspiration for
the computational work presented in Chapter 4 (even though there is no proof that it will
result in the optimal schedule). This work aims to propose a new way of refining the time
grids for scheduling problems iteratively, contributing to the lack of such methods using
non uniform discrete time representations in the literature.

20

Chapter 3

Study on Rescheduling Frequency

In this chapter, we perform an investigation on the effects plant parameters play on de-
termining when to reschedule operations. As discussed in Chapter 1 and section 2.4,
understanding how often one should reschedule under various facility operational condi-
tions has practical importance and has not been well studied. To study the performance
of different rescheduling policies on a facility that receives new job orders throughout the
day, we must compare the long term performance of the facility as short term performance
differences may be negligible. To address this issue, we use the rolling horizon framework
which we present in section 3.1. This framework is used to breakup a horizon that may
be impractical to schedule over because of its length into several manageably sized sub-
horizons that can be scheduled over in a reasonable amount of time. In section 3.2 we
present the various rescheduling policies that were tested in our experiments. Section 3.3
details the various metrics which were used to evaluate a policy’s performance. In section
3.4 we discuss the model parameters that were used for our experiments and the design of
our experiments. Section 3.5 presents the results of the experiments and a discussion on
the results, leading to some recommendations on choosing a suitable rescheduling policy
based on the properties of the production environment. A summary of the chapter is given
in section 3.6.

We want to note that the work in this chapter was submitted for publication. Z. Steven-
son, R. Fukasawa, L. Ricardez-Sandoval, “Evaluating periodic rescheduling policies using a
rolling horizon framework in an industrial-scale multipurpose plant”. This manuscript was
co-authored by myself, and my supervisors, Dr. Fukasawa and Dr. Ricardez-Sandoval and
was submitted to the Journal of Scheduling published by Springer on October 25, 2018.

21

3.1 Rolling Horizon Routine

A rolling horizon routine was used with the model (P1) presented in section 2.3 to simulate
the operation of the facility over long periods of time (e.g. months). Decomposing the
scheduling horizon into several smaller, contiguous time horizons is necessary as scheduling
over the entire horizon at once would be computationally intractable. Furthermore, when
scheduling operations in practice for a facility whose future arrivals are not known in
advance, and over an indeterminate amount of time, the operator must implicitly use a
rolling horizon strategy to schedule operations. The choice of how often to reschedule
operations and how long the horizons should be will impact when new job arrivals are
considered by the model, the computational cost of scheduling, and the quality of the
actual implemented schedule. For these reasons, it is important to gain insight on the
tradeoffs of using different policies so that an operator can make an informed decision
when choosing how to reschedule operations in practice.

The routine can be thought of as partitioning the entire horizon that needs to be sched-
uled into smaller sub-horizons and then solving each of these sub-horizons sequentially. Let
Γ denote the time horizon that needs to be scheduled, and denote the i’th sub-horizon by
Γi for some partitioning of Γ into n sub-horizons, see figure 3.1. We start by setting i = 1
and the state of the facility as having an initial set of jobs arriving at time S and all
machines empty. We then solve the model (P1) over the sub-horizon Γi to generate a
schedule Schedi. Denote the set of jobs that arrive at the facility during sub-horizon Γi
as αi. The state of the facility is updated using Schedi and αi to reflect the current jobs
and the current machine usage at the beginning of sub-horizon Γi+1. After updating the
state of the facility, we then check if there are other sub-horizons to schedule over. If
there are, then we increment i and repeat the process. If we have scheduled over all of
the sub-horizons, then we stop and concatenating (Sched1, . . ., Schedn) gives us a feasible
schedule for the entire horizon Γ. Note that this process involves creating and solving a
model (P1) for each sub-horizon to obtain the corresponding schedule.

After generating a schedule Schedi and considering arrivals αi for sub-horizon Γi, several
operations must be performed to update the state of the facility for the following sub-
horizon. These operations are done to maintain consistency of the facility between horizons
and we describe them next. Jobs which arrive during the sub-horizon Γi have their arrival
times pushed back to the start of sub-horizon Γi+1 since we may not consider these jobs
during the current horizon but want the model to be able to schedule them at the beginning
of the next sub-horizon. Note that we push these samples back because we schedule
each sub-horizon once using the information available at the beginning of the sub-horizon.
Samples which arrived at the facility prior to sub-horizon Γi are handled according to

22

S S +H

S S +H
Γ1 Γ2 Γ3

. . . Γn

Figure 3.1: Above is the scheduling horizon before partitioning. Below is a partition of
scheduling sub-horizons that we may actually solve.

the following rules. Consider a variable x(i′, k, t) > 0 which is scheduled during Γi. If
this variable corresponds to samples that are actively being processed at the end of Γi
(i.e. ε(Π(i′, k), t) + τ(Π(i′, k)) ∈ Γi+1), then a corresponding arrival (α(i′, k + 1, t′)) for
these samples is created in Γi+1 for the next process in their path, Π(i′, k + 1), at time
ε(Π(i′, k), t) + τ(Π(i′, k)) (e.g. when the samples will finish being processed by Π(i′, k)).
Similarly, consider a variable w(i′, k, t) > 0 which is scheduled during Γi, such that t is
the last timepoint of process Π(i′, k). In this case, a corresponding arrival (α(i′, k, t′)) is
created in Γi+1 for the same process they were waiting for, Π(i′, k), at the beginning of Γi+1.
Note that these two cases cover all of the samples scheduled during Γi as each sample is
either being processed at the end of the horizon, or is waiting to be processed. Any process
resources that are running at the end of Γi (i.e. y(u, t) > 0, ε(u, t) + τ(u) ∈ Γi+1), are
accounted for by adding y(u, t) to the Z(u, t′) variables in Γi+1 for all timepoints t′ ∈ ε(u)
such that t′ < ε(u, t) + τ(u).

This procedure allows us to generate a schedule which spans Γ by solving smaller sub-
problems when Γ is prohibitively large to schedule all at once. However, it is worth noting
that even without considering new arrivals, this procedure is a heuristic with respect to
scheduling over the entire horizon. Each sub-schedule Schedi may be optimal with respect
to its corresponding sub-horizon, but the concatenated schedule (Sched1, . . ., Schedn) will
not necessarily be optimal with respect to Γ due to the myopic nature of scheduling over
each sub-horizon individually.

23

Table 3.1: Descriptions of rescheduling policies considered.

ID Description

4P
Schedule the current day’s operations at the beginning

of every day and revise the remainder of the day’s
schedule 3 times during the day at equal intervals

2P
Schedule the current day’s operations at the beginning
of every day, then revise the second half of the schedule

halfway through the day

S
Schedule the current day’s operations at the beginning

of every day

3D
Schedule the next three days of plant operation at the

beginning of every third day

5D
Schedule the next five days of plant operation at the

beginning of every fifth day

3.2 Rescheduling Policies

We now describe the rescheduling policies that were considered in this study. Recall that we
consider only fixed periodic rescheduling policies during this study for the reasons discussed
in section 2.4. Table 3.1 gives a summary of the rescheduling policies considered in this
work.

As shown in Table 3.1, policies “4P”, and “2P”, which can be thought of as “4 Parts”,
and “2 Parts”, both schedule operations more than once per day at equal intervals. For
example, if we consider scheduling operations for twenty four hours per day with the “4P”
policy, then we will first generate a schedule for the next twenty four hours at the beginning
of the day. We will follow this schedule for the first six hours, and then a new schedule
will be generated for the following eighteen hours of the day. We will then generate a
schedule for the remaining twelve hours after twelve hours and similarly for the last six
hours after eighteen hours. These rescheduling policies emulate the operation of a facility
that is concerned with the short term, day to day operations and wishes to reschedule
frequently based on new job arrivals. The reason we do these reschedulings is because
any new jobs that arrive during the first six hours may not be scheduled at the beginning
of the day as they have not yet arrived at the facility, however by rescheduling after six
hours, we may generate a new schedule for the remainder of the day that considers these
new arrivals. The “2P” policy uses a similar strategy, but only schedules operations twice,
once at the start of the day and again halfway through the day.

24

The “S” policy, referred to as “Single”, generates a single schedule for the current day
at the beginning of the day and will follow it, ignoring new job arrivals until a new schedule
is generated at the beginning of the following day. This policy simulates a facility that is
concerned with day to day operations but will not disrupt or modify the current schedule.
The “3D”, and “5D” policies which can be thought of as “3 Days”, and “5 Days”, schedule
operations for the next three and five days, respectively. During this time, these policies
behave like the “S” policy, ignoring new job arrivals until the next time operations are
rescheduled. For this reason, in the worst case scenario when scheduling with the “5D”
policy, the model may not be aware of a job which arrives at the facility until five days
after it initially arrived. These policies simulate a facility that is more concerned with
schedule stability, rather than reacting quickly based on the newest job arrivals.

These period lengths were chosen for testing so that we may test a wide range of policies
and also policies which may be typically used in practice. For instance, the “5D” policy
which corresponds to scheduling on a weekly basis, and the “S” policy which corresponds
to scheduling once per day are both natural candidates for rescheduling. The “4P” policy
was chosen to obtain information about how rescheduling very frequently would perform
and the “2P” and “3D” policies were chosen to test policies which fell between the “S”
policy and the other two extremes.

These policies may also be related to the rolling horizon framework discussed in section
3.1. The “5D” policy corresponds to using sub-horizon lengths of 120 hours for each Γi.
Similarly, the “3D” and “S” policies correspond to sub-horizon lengths of 72 hours and 24
hours respectively. The “2P” and “4P” policies differ however, as discussed above, these
policies schedule the remainder of the current day at equal intervals. Therefore, the “4P”
policy corresponds to using sub-horizons of length 24, 18, 12, and 6 hours to schedule each
day. The “2P” policy operates similarly with sub-horizons of length 24 hours and 12 hours
each day.

3.3 Performance Metrics

To compare the performance of the various policies considered in this study, we use job
completion, average job makespan, and proportion of jobs on time. We begin by presenting
the formulation of these metrics, before discussing them below.

Let arr(i) be the arrival time of job i, fin(i) be the time that the last sample of job i
finishes processing, jobs(t) = {i : arr(i) ≤ t} be the set of jobs that arrive before or at time
t, and comp(i, t) = 1 if job i has finished processing before or at time t, and 0 otherwise.

25

Then job completion at time t, average job makespan at time t, and proportion of jobs on
time at time t with lead times of d minutes were defined as follows:

completion(t) =

∑
i∈jobs(t) comp(i, t)

|jobs(t)|
(3.1)

avg makespan(t) =

∑
i∈jobs(t):comp(i,t)=1 fin(i)− arr(i)
|{i ∈ jobs(t) : comp(i, t) = 1}|

(3.2)

on time(d, t) =
|{i ∈ jobs(t) : comp(i, t) = 1, fin(i)− arr(i) ≤ d}|

|jobs(t)| (3.3)

For comparing policies using these metrics, we use the value measured at the end of
the final scheduling horizon. Since we do not require that all jobs finish processing during
the corresponding scheduling horizon, for measuring average job makespan we consider only
those jobs that have finished processing at the end of the time horizon. Job completion at
time t was defined as the proportion of jobs that finished processing all samples out of all
the jobs that have arrived at the facility between the beginning of the first horizon and t.
Makespan was taken to be the difference in minutes between when the final sample finished
processing for a given job and when that job initially arrived at the plant, and was only
considered for jobs that have finished processing. Proportion of jobs on time with respect
to some lead time d was defined as the number of jobs that finished within the lead time
d out of all jobs that had arrived before time t.

3.4 Design of Experiments

In this section we go over the details relating to how the experiments were carried out for
this study. We begin by describing the facility that was considered in more detail. As
discussed in section 2.3, the plant used for our experiments is based on a multipurpose
industrial-scale analytical services facility. Due to confidentiality agreements, we cannot
disclose detailed data. The facility is rather large with nearly 200 distinct processes,
each of which may have multiple identical machines. During a thirty day timespan, the
facility received jobs comprising of over 150 unique paths, using approximately 100 unique
processes. Over this timespan, they received several hundred jobs comprising of more than
20,000 samples. This large volume of jobs leads to large formulations when using long
horizon lengths in the rolling horizon routine described in section 3.1. The capacities and
processing times of the individual processes vary greatly. The largest capacity among all

26

processes is over 1,300 times the size of the smallest capacity, similarly the processing
times of the processes vary from a few minutes to several days. In Appendix A, we present
normalized values for capacity, processing time, and number of resources for each process.
These qualities differentiate the plant studied from the simpler and smaller facilities found
in other rescheduling studies [15, 37, 48]. Although our experiments use a plant based on
the facility of our industrial partner, the model defined in Section 2.3 is a general job shop
formulation that may be used for other industrial applications that require a multipurpose
plant. Therefore, the same methodology and experiments may be performed using other
applications of multipurpose plants.

The following choices for parameter values for the model (P1) were used throughout
the experiments. The time grid given to the model, ε, was chosen to be the NUD60
discretization used in [22] as it was shown to have a good tradeoff between solving time
and solution quality for this problem, compared to the other discretizations tested. Re-
call that for the NUD60 time discretization, each process u has an associated timestep
∆(u) = min {60, τ(u)} and the timepoints for process u are ε(u) = {S, S + ∆(u), . . . , S +
(bH/∆(u)c)∆(u), S+H}. This choice of timepoints allows processes which have short pro-
cessing times to have fine granularity, and also allows us to be flexible with the scheduling
of long processes by including a timepoint each hour.

We will now discuss the choice of objective function used for our experiments. We
compare the performance of the various policies based on job throughput, average job
makespan, and proportion of jobs on time, over the scheduling horizon as described in
section 3.3. However, we do not optimize these metrics directly because of the inherent
difficulties associated both with optimizing multiple and conflicting objectives, and the
length of some job paths being longer than the lengths of the subhorizons used. For
instance, suppose job throughput was our main objective and hence the objective function
only provided incentive to processing the last process in each job’s path. If we consider a
job whose path length is longer than the length of the subhorizon, then the model would
have no incentive for processing the job through earlier processes in its path and potentially
no progress would be made on the job. Instead of optimizing these metrics directly, we
chose the values for the objective function parameters of model (P1) to be the following:

f(i, k, t) =
(

1 + |ε(Π(i,k))|−t
|ε(Π(i,k))|

)(
k∑|Π(i)|

m=1 m

)
,

∀i ∈ I, k = 1, . . . , |Π(i)|, t = 1, . . . , |ε(Π(i, k))|
c(u, t) = 0.001, ∀u ∈ V, t = 1, . . . , |ε(u)|

These values were chosen to put a larger weight on processing samples that are further
along in their path, and also to put a higher priority on processing samples earlier in

27

the horizon. The rationale behind these decisions was that, by prioritizing samples that
were closer to being finished we would push currently open jobs toward completion before
starting new jobs. Furthermore, if a schedule could be shifted in time we would prefer
it be executed as early as possible so that resources may be left unused to accommodate
for possible job arrivals in the future. This was accomplished by assigning more weight to
processing samples earlier in the horizon. We also assign a cost for using resources so that
optimal schedules will allocate process resources if and only if the schedule assigns samples
to be run on those resources. These decisions were done in an attempt to obtain attractive
solutions (measured in terms of job throughput, job makespan, and proportion of jobs
on time), in the rolling horizon framework. We note that these choices for the objective
function parameters do not assign a cost to schedule disruptions between horizons. These
costs are more difficult to quantify and are beyond the scope of this study.

We now describe the experimental procedure that was used. We let the initial state of
the facility be empty with no machines running (Z(u, t) = 0, ∀u, t) and an initial influx
of jobs all arriving at the beginning of the horizon (time S). We carry out the rolling
horizon routine from section 3.1 for 60 days, assuming that new jobs arrive uniformly at
random throughout each day. We decided to carry out the experiments for 60 days so that
the plant was able to reach a stable operation and then continue running to obtain results
when measuring proportion of jobs on time with one month lead times.

Unless otherwise specified, the following methods were used for the experiments pre-
sented in section 3.5. To assign job paths, actual job arrivals to the facility were recorded
over the span of a high production month using historical data from the plant. Job paths
were sampled according to the observed frequencies of each path during this timespan. The
number of samples in each job was selected uniformly at random between ten and fifty,
which was determined based on the observed historical plant data during this month.

We allowed the facility to be fully operational for the first eight hours each day. During
this period, the plant operates with complete staffing and all available resources may be
used to process samples. During the following sixteen hours each day we did not allow new
operations to begin, but previously started operations were allowed to continue processing.
The way this was handled with the “2P” policy was to first schedule the eight hour shift,
and then revise the schedule for hours five through eight after hour four. Similarly, we revise
the remainder of the schedule after hours two, four, and six for the “4P” policy. This was
done to simulate actual plant operation. Workers may begin new operations while they are
on site during the first eight hours each day, during the following sixteen hours only a few
workers are present to supervise the operation of previously started processes. After fixing
the design parameters for each experiment, ten random instances with different job arrivals
and starting jobs were generated and scheduled over to obtain an accurate representation

28

of the results.

3.5 Results

The present study was performed on a 48 core machine running at 2.3GHz, with access
to 256GB of RAM. The implementation was done using the Julia programming language
(version 0.6.2), the CPLEX.jl (version 0.3.1) and JuMP.jl [10] (version 0.18.0) packages,
and CPLEX (version 12.6.0.0) [7] for the solver. All of the CPLEX parameters were set to
their default values, except for a limitation to use only 2 CPU cores, setting the relative
MIP gap to be 0.5%, and imposing time limits on the instances. Time limits were set to
be 15 minutes for each day being scheduled in the horizon, e.g. if the instance was using a
“3D” policy as described above, then the time limit was set to be 45 minutes. This policy
was set by the industrial partner based on their scheduling requirements. The time limits
were met by some instances that solved three or five days consecutively, but for all of the
problems that reached the time limit the relative optimality gap was at most 5% and was
typically less than 1%.

Performance profiles are one of the main representations used below for showing the
results of the experiments. In our context, we compare the performance of the different
rescheduling policies over a large test set and use performance profiles to show the perfor-
mance of each policy relative to the best performing policy with respect to some metric
over each of the tests in the test set. Examples will be given in the following section as
to how to read these figures. For more detailed information about performance profiles we
refer the reader to [9].

3.5.1 Results with Moderate Facility Load

The experiments described next were considered to obtain results that were representative
of a facility that received enough new jobs to be running constantly, but not enough
that the queue of waiting jobs grows indefinitely. We considered the parameters of the
problem to be the following: the facility starts with 5,000 samples (approximately 170
jobs) arriving at the beginning of the first horizon. Jobs arrive at the facility throughout
each day according to the following sampling method: first an arrival time for the job
is selected uniformly at random during the horizon, next a number of samples is selected
uniformly at random between ten and fifty, now if the total number of samples set to arrive
during the horizon is at least 500, then we stop, otherwise, we sample another arrival time

29

for another job and repeat. The facility is operated for 8 hours each day as described in
section 3.4. These numbers of samples were determined experimentally. The names of
the plots in the figures below have the following format: (number of samples added per
day) - (rescheduling policy), for instance “500 - 4P” corresponds to the performance of
rescheduling four times per day for instances where 500 samples are added each day over
the 60 day horizon.

Figure 3.2 shows a performance profile comparing average job completion percentage
over the 60 day horizon between the different rescheduling policies. On the x-axis we
have the performance of each policy measured as a factor of the performance of the best
performing policy on each test. Note that we are comparing against the best performing
policy tested, not necessarily the true optimum. On the y-axis we have the proportion
of tests that a policy achieves within a given factor of the optimal performing policy for
each test. This Figure shows that the “4P” policy clearly dominates the other policies.
The point (1, 1) in the curve of the “4P” policy in the figure indicates that it was the
best performer in all of the tests. Similarly, the point (1.02, 0.5) in the curve of the “3D”
policy indicates that in 50% of the instances, the “3D” policy performed within 2% of
the best performing policy for that instance. We also observe that rescheduling more
frequently continues to improve job completion performance for each of the policies tested.
Furthermore, in the worst case, rescheduling only once every five days is approximately
5.6% worse than rescheduling four times per day. This is indicated by the point (~1.056, 1)
in the curve of the “5D” policy and by noting that for all smaller x values, the curve lies
below 1. Therefore, depending on how much importance is placed on schedule stability, it
may be worth it to delay the rescheduling of operations to only once every few days.

Figure 3.3 shows a performance profile comparing average job makespan performance
over the scheduling horizon between the different rescheduling policies. From this figure we
draw the same conclusion as for job completion (that more frequent rescheduling is better),
however the performance differences between the policies are much larger for this metric.
For instance, we observe that in all of the tested instances, using the “5D” policy results
in an average job makespan that is over twice as large as the best performing policy. In
this case, if job makespan is an important objective of the facility, there is less of a case to
be made for delaying the scheduling of new arrivals rather than scheduling them as soon
as possible.

Table 3.2 summarizes the results obtained when considering the other metrics. The
performance profiles for the other metrics are similar to Figure 3.2, so instead of presenting
each performance profile, we present the average performance factor (APF) values as a more
informative measure of relative differences. The APF of a policy is defined to be the mean
performance (measured as a factor of the best performing policy) a policy achieves over

30

Figure 3.2: Performance profile comparing job completion among rescheduling policies for
instances starting with 5,000 samples and 500 samples arriving each day.

Figure 3.3: Performance profile comparing average job makespan among rescheduling poli-
cies for instances starting with 5,000 samples and 500 samples arriving each day.

31

the ten random instances. The APF was used to compare the relative performance of each
policy and estimate the differences in APF values between pairs of policies when decreasing
rescheduling frequency from most to least frequent, i.e. when moving from the “4P” policy
toward the “5D” policy.

From Table 3.2 we draw the same conclusion as above: rescheduling more frequently
improves performance. The degree of performance gain is dependent on the chosen metric,
and can vary from negligible improvements to an order of magnitude difference between the
“4P” and “5D” policies in some cases. Furthermore, we observe that the relative benefit
obtained by moving from less frequent rescheduling policies to more frequent rescheduling
policies diminishes as one begins to reschedule frequently. This is demonstrated by the
generally increasing APF differences as we move from the “4P” policy toward the “5D”
policy. We note that the performance differences between policies also decrease in general
with respect to proportion of jobs on time as lead times are increased. Therefore, if
longer job turn around times are acceptable, then the smaller performance loss may be
a worthwhile tradeoff for the added schedule stability achieved by rescheduling only once
every few days. For more detailed results, we include the performance profiles which
generate Table 3.2 in the Appendix B.

Table 3.3 shows the average number of variables and constraints that were used when
solving each model for the industrial-scale facility. To clarify, these numbers correspond to
the average size of each model that was solved for each of the policies tested. Note that
each policy may solve a different number of models to generate a schedule over the same
scheduling horizon. For instance, the “4P” policy generates a schedule four times per day,
and hence solves 240 models over a 60 day horizon, whereas the “5D” policy will solve
12 models over the same 60 day horizon. We also include average problem solving times.
As expected, the average time required to solve each model increases as the lengths of the
horizons scheduled in each model increases. However, we also note that there is a tradeoff
between solving smaller models and the total number of models that are solved over the 60
day horizon by observing the total solving times for the different policies. We observe that
scheduling once per day using the “S” policy requires the least amount of time, scheduling
multiple times per day increases the total solving time moderately, and scheduling over
long horizons for the “3D” and “5D” policies increases the total solving time considerably.
This drastic increase in cost when scheduling over multiple days can be attributed to the
much larger problems that are being solved. The problems are larger with respect to the
number of timepoints considered because of the added length of the horizon. Furthermore,
by stockpiling new job arrivals for several days, accounting for all of them during the next
horizon increases the number of jobs considered, which further increases the problem size.

Overall, the results obtained by using nominal values for load parameters agree with

32

Table 3.2: Average performance factor (APF) values of each metric for instances with
5,000 starting samples and 500 arriving samples per day.

ID Job Completion APF (Difference)

4P 1.0 (-)
2P 1.0021 (0.0021)
S 1.007 (0.0049)

3D 1.0199 (0.0129)
5D 1.0496 (0.0297)

ID Job Makespan APF (Difference)

4P 1.0 (-)
2P 1.0705 (0.0705)
S 1.2422 (0.1717)

3D 1.66 (0.4178)
5D 2.0822 (0.4222)

ID Proportion of Jobs On Time APF, 1 Day Lead Times (Difference)

4P 1.0 (-)
2P 1.2256 (0.2256)
S 2.5536 (1.328)

3D 8.1484 (5.5948)
5D 11.059 (2.9106)

ID Proportion of Jobs On Time APF, 1 Week Lead Times (Difference)

4P 1.0 (-)
2P 1.0031 (0.0031)
S 1.0113 (0.0082)

3D 1.0307 (0.0194)
5D 1.1075 (0.0768)

ID Proportion of Jobs On Time APF, 1 Month Lead Times (Difference)

4P 1.0002 (-)
2P 1.0021 (0.0019)
S 1.007 (0.0049)

3D 1.0204 (0.0134)
5D 1.05 (0.0296)

33

Table 3.3: Problem size statistics for instances with a moderate job load.

4P 2P S 3D 5D

Average Number of Variables
Per Model

56,212 59,297 65,251 234,488 522,046

Average Number of Constraints
Per Model

44,525 46,092 49,123 165,283 340,737

Average Solving Time Per Model
(s)

0.64 0.96 1.82 16.8 86.5

Total Solving Time for 60 Day
Horizon (s)

153 115 109 336 1,038

the most common conclusion in the literature that more frequent rescheduling is better
and that the relative benefit may diminish as rescheduling frequency increases. We noted
that the degree of this benefit varies depending on the performance measure chosen for
comparison.

3.5.2 Effects of Different Plant Loads

To observe the effect of plant load on the results, we generated new instances that varied
both the starting number of samples and the number of arriving samples per day from
their nominal values. In particular, we kept the number of starting samples constant but
varied the number of arriving samples per day in some experiments. In other experiments,
we varied the number of starting samples but kept the number of samples arriving per day
constant. For each of these pairs of number of starting samples and number of arriving
samples per day, we generated and solved ten random instances with 60 day horizons,
which were used to produce the results shown in Table 3.4 and Table 3.5.

Table 3.4 shows the APF values for each policy, both in terms of job completion and
average makespan, when the number of starting samples was varied, and the number of
samples added per day was fixed to 500. We tested with 2,500, 5,000, and 10,000 starting
samples as shown in Table 3.4 (column 2). By observing the job completion and average
makespan APF differences for the three different starting loads, we note that, as the
number of samples available at the beginning of the experiment increases, the performance
difference between policies decreases. We also note that more frequent rescheduling again
performs better.

Table 3.5 shows the APF values for each policy when the number of starting samples

34

is fixed to 5,000 and the number of samples arriving daily is varied. Similar to above, we
tested with 250, 500, and 1,000 samples arriving per day and calculated the APF differences
between policies as rescheduling frequency is decreased, for these different loads. Contrary
to the observations for Table 3.4, Table 3.5 shows that increasing the number of daily
sample arrivals actually increases the performance differences observed between policies.
However, we again note that more frequent rescheduling appears to perform better.

Note that by increasing the amount of samples arriving at the beginning of the horizon,
the plant begins the experiment with a larger queue of jobs. As a consequence of this, all
policies have a backlog of jobs to schedule and hence there is less advantage to receiving
new job arrivals more promptly, since there are already many jobs to schedule. It is sensible
then that the performance differences between policies decreases as the number of starting
samples increases. Similarly, when more samples are received at the facility on a daily basis,
by rescheduling frequently the model is able to consider these many new samples earlier
than policies which will not consider these samples until at least the next day. Therefore, it
is reasonable that performance differences increase as the number of daily sample arrivals
increases. We also note that these results suggest that plant capacity may play a role, as
we observe that the differences between policies is variable with respect to the load on the
facility and the presence of a backlog of jobs.

With regards to how the proportion of jobs on time reacts to different loads on the
facility, we largely observe the same trends as when moderate loads were used above.
That is, as the number of starting samples was increased, the performance differences
between policies decreased. However, as the number of daily job arrivals was increased,
the performance differences between policies increased as well. These observations agree
with the results discussed above concerning makespan and job completion, and follow from
the same discussion. We omit the inclusion of these Figures here for brevity, but include
them in the Appendix B.

3.5.3 Effects of Varying Plant Capacity

Based on the observations obtained from the previous scenario, we investigate the role plant
capacity plays on the rescheduling frequency. In the following experiments, the capacity of
all the processes in the plant was tested at 8x, 4x, 2x, 1

2
x, 1

4
x, and 1

8
x their original capacity.

These values were chosen to obtain data for a wide range of overall capacities with the
1
8
x representing a facility that is severely starved for resources and the 8x representing a

facility which has more than enough resources to process the given demand. We performed
ten random instances for each plant capacity, and instances were run with moderate job

35

Table 3.4: APF differences comparison for instances starting with various numbers of
samples and 500 new samples per day.

ID
Starting
Samples

Job
Completion

APF

Job
Completion

APF
Differences

Average
Makespan

APF

Average
Makespan

APF
Differences

4P 2,500 1.0 - 1.0 -
2P 2,500 1.002 0.002 1.0658 0.0658
S 2,500 1.0083 0.0063 1.2333 0.1675

3D 2,500 1.0213 0.013 1.6709 0.4376
5D 2,500 1.0537 0.0324 2.1863 0.5154

4P 5,000 1.0 - 1.0 -
2P 5,000 1.0021 0.0021 1.0705 0.0705
S 5,000 1.007 0.0049 1.2422 0.1717

3D 5,000 1.0199 0.0129 1.66 0.4178
5D 5,000 1.0496 0.0297 2.0822 0.4222

4P 10,000 1.0 - 1.0 -
2P 10,000 1.0019 0.0019 1.0559 0.0559
S 10,000 1.0068 0.0049 1.1707 0.1148

3D 10,000 1.0179 0.0111 1.415 0.2443
5D 10,000 1.0418 0.0239 1.7077 0.2927

36

Table 3.5: APF differences comparison for instances starting with 5,000 samples and vari-
ous daily arrival loads.

ID
Samples

Added Per
Day

Job
Completion

APF

Job
Completion

APF
Differences

Average
Makespan

APF

Average
Makespan

APF
Differences

4P 250 1.0001 - 1.0 -
2P 250 1.0024 0.0023 1.0657 0.0657
S 250 1.0083 0.0059 1.2145 0.1488

3D 250 1.0221 0.0138 1.5785 0.364
5D 250 1.0477 0.0256 1.9481 0.3696

4P 500 1.0 - 1.0 -
2P 500 1.0021 0.0021 1.0705 0.0705
S 500 1.007 0.0049 1.2422 0.1717

3D 500 1.0199 0.0129 1.66 0.4178
5D 500 1.0496 0.0297 2.0822 0.4222

4P 1,000 1.0002 - 1.0 -
2P 1,000 1.0029 0.0027 1.0658 0.0658
S 1,000 1.0099 0.007 1.2333 0.1675

3D 1,000 1.0263 0.0164 1.6709 0.4376
5D 1,000 1.0556 0.0293 2.1863 0.5154

37

Figure 3.4: Performance profile comparing job completion among rescheduling policies for
instances with one eighth the original capacity.

loads. When the capacity was between one half the original capacity and eight times
the original capacity, the conclusions with respect to job throughput remained the same
as when nominal parameter values were used as in section 3.5.1 and so we include these
results in the Appendix B. When the plant capacity was lowered to one eighth of the original
capacity, we observed that longer rescheduling policies outperformed frequent rescheduling,
as shown in Figure 3.4. With greatly reduced plant capacity, there is more contention for
resources and the longer horizons used by the “3D” and “5D” policies allows for better
utilization of processes as discussed previously. This follows the same trend observed when
increasing the load on the facility, although the results are more pronounced with the
drastic reduction in capacity across all processes.

The makespan performance results remained largely the same as to those presented
with moderate facility load in section 3.5.1. However, when the capacity was restricted
to one quarter of the original capacity, the performance differences of the rescheduling
policies decreases greatly. This is shown by the APF differences between the different
policies compared to when the plant has full capacity, as shown in Table 3.6.

When measuring the proportion of jobs on time we observe that, for lead times of at
least one week, and capacity one quarter or less than the original capacity, the policies with

38

Table 3.6: Average makespan APF differences comparison between one quarter capacity
and full capacity instances.

ID

Average
Makespan APF
with Quarter

Capacity

Average
Makespan APF
Differences with

Quarter Capacity

Average
Makespan
APF with

Full Capacity

Average
Makespan APF
Differences with

Full Capacity

4P 1.0258 - 1.0 -
2P 1.0082 -0.0176 1.0705 0.0705
S 1.0309 0.0227 1.2422 0.1717

3D 1.0866 0.0557 1.66 0.4178
5D 1.1974 0.1108 2.0822 0.4222

longer horizons perform best. Figure 3.5 shows the proportion of jobs on time for each of
the different policies with one eighth capacity and one month lead times. The results with
one week lead times are similar to those with one month lead times, however in these cases
the “5D” policy falls short of the other policies. This observation is likely caused by the
increased latency between job arrival time and the first time a job may be scheduled, that
the “5D” policy is subject to. The performance profiles for these other cases are included
in the Appendix B. The results when capacity was increased beyond the original capacity
did not differ substantially from those obtained using moderate facility load, presented in
section 3.5.1.

These experiments demonstrate that, for plants which are starved for resources, the
longer horizons used when scheduling less frequently can allow for better resource utiliza-
tion. This better utilization can then be translated into better job completion performance
and more jobs considered on time if long lead times are acceptable. These results differ
from the general consensus in the literature that more frequent rescheduling is beneficial
and show that plant and problem specific parameters, particularly with respect to facility
load, may play an important role when choosing a suitable rescheduling policy.

3.5.4 Other Factors Considered

Beyond the results that were shown above, we also performed additional experiments
simulating a plant that was run continuously for 24 hours each day as opposed to the 8
hours per day mode used for the experiments described above. For these tests we used the
“4P”, “2P”, and “S” policies described in Table 3.1 but instead of using an 8 hour day

39

Figure 3.5: Proportion of jobs on time for one month lead times and instances with one
eighth the original capacity.

with a 16 hour gap between horizons we used a 24 hour day with no gap. We also used a
“2D” policy that is similar to the “3D”, and “5D” policies which schedules two days at a
time. This was done because solving three days and five days using a 24 hour horizon was
computationally taxing and so we lessened the number of days down to two.

Additionally, when creating random jobs while generating test instances, the set of job
paths that was sampled from was varied in some experiments. We tested sampling from
paths that could be requested at the facility but did not necessarily arrive during the month
of observation, and also paths that were completely random and may not be realistic to
arrive at the facility.

In both of these cases, the conclusions drawn from these experiments did not change
from those discussed when considering the experiments with nominal parameter values.
The results were very similar for these experiments, with the most notable difference being
that the performance differences between policies was less than when the plant was run with
actual paths that may arrive at the facility. A possible explanation is that the increased
diversity in paths spreads the process demand over more processes, and hence leads to less
resource contention. Since the results were very similar and the conclusions do not change,
we omit these results. The results of these experiments suggest that our previous results

40

did not rely on our choice of plant operating mode nor choice of job paths to sample from.

3.6 Chapter Summary

In this chapter, we presented the rolling horizon routine used to link individual horizons
together for carrying out our long term experiments. The performance of using various
rescheduling policies to schedule operations for a real industrial-scale facility were com-
pared over a span of several months. The results demonstrate that choosing a suitable
rescheduling policy can vary on the properties of the facility that is being scheduled. In
particular, we found that the load on the facility and the processing capacity of the facility
can have a large impact on selecting a rescheduling policy. When Under low to mod-
erate loads, our results agreed with the most common conclusion in the literature: that
rescheduling more frequently is better. However, when capacity is the main limiting factor,
rescheduling less frequently may be beneficial.

41

Chapter 4

Study on Dynamic Timepoint
Schemes

In this chapter we go into detail about the research that was conducted with respect to
modifying the underlying time grids of our problem using iterative methods. Nearly all the
research using non uniform discrete time grids have assumed that the time grids are fixed.
However, as mentioned in section 2.5, choosing the time grids is non trivial and can lead
to both wasted timepoints at times during the horizon where they are unnecessary, and
missing timepoints whose inclusion would benefit the model. By shaping the time grids
iteratively, we aim to improve solution quality with small computational overhead. We
believe that the method developed in this chapter may be used for more general models
that use a time layered graph representation. Therefore, we begin by presenting the more
general model that is used in this chapter and explaining the differences between this model
and (P1) (presented in section 2.3) in section 4.1. We then discuss the framework that we
use to solve our problem in section 4.2. This includes the overall iterative method along
with the heuristics that were used for our work to identify potentially beneficial missing
timepoints to add, and possibly unneeded timepoints to remove. Section 4.3 describes the
experiments that were carried out, how timepoint modification strategies were evaluated,
and the results of the experiments. We go into detail discussing under what conditions
these iterative methods appear to be most beneficial and under what conditions one may
benefit more from using a fixed time grid.

42

4.1 Problem Description

In this section we discuss the scheduling problem that is under consideration for chapter
4. The problem is very similar to (P1) presented in section 2.3, however we take a more
network oriented approach to the problem and define it with more generality to emphasize
the applicability of our proposed method to other applications that use time layered graphs.

Assume that we start with a time layered graph G∗ = (V ∗, A∗) with underlying network
G = (V,A), timepoint sets ε, and travel function τ , as described in section 2.2. We have
a set I of jobs that must be scheduled. Each job i ∈ I is comprised of a discrete set of
materials and a path Π(i) = (Π(i, 1),Π(i, 2), . . . ,Π(i,m)) of states, which it must be routed
through, in order. We denote the number of materials of job i that arrive at process u at
time t ∈ ε(u) as α(i, u, t).

States of the underlying graph, u ∈ V , have a number of properties. We denote the
number of resources of state u as ρ(u), and the capacity of each resource as κ(u). These
properties restrict how material may flow through the network; for instance, sending m
units of material from state u to a different state v at time t requires that dm/κ(u)e
resources of state u are available to be dispatched at time t. Note that we assume that
packing material into state resources is not an issue as we allow material to be processed
by different state resources and state resources to transport material from different jobs,
as long as there is sufficient capacity. We assume that arcs that start and end at the same
state, which represent material waiting at a state, have unlimited capacity and do not
require any state resource allocation as the material is just being held at the state.

Resources of state u that are dispatched to state v at time t, become available to be
reused after some time ω(u, v, t). We call ω(u, v, t) the return time of u to v at t. Let
us define ωmax(u, t) = maxv∈N+

G (u) ω(u, v, t), to be the longest return time for a u state

resource which is utilized at time t. Similarly, let ωmin(u, t) = minv∈N+
G (u) ω(u, v, t) denote

the minimum return time for a u state resource which is utilized at time t.

Let H(i, u, t) denote the head of the arc in G∗ corresponding to material of job i at
state u being sent to the subsequent state in its path at time t. To make this notation
more clear, let us again consider the example given in Section 2.2, with the corresponding
figure repeated as figure 4.1. Suppose the path of job i is Π(i) = (A,B,D) and the
path of job j is Π(i) = (A,C,D). Then we have H(i, A, 1) = (B, 3), H(j, A, 1) = (C, 2),
H(j, A, 2) = (C, 3), and H(i, B, 1) = H(i, B, 2) = H(j, C, 2) = (D, 3).

We have three types of variables in the present problem. Let y(u, v, t) denote the
number of resources of state u dispatched to state v at time t. This allocation allows up
to κ(u)y(u, v, t) units of material to be sent from state u to state v at time t. Let x(i, u, t)

43

A

B

C

D

2

1

1

1

A, 1

B, 1

D, 1

A, 2

B, 2

C, 2

A, 3

B, 3

C, 3

D, 3

G G∗

τ(A,B, t) = 2, τ(A,C, t) = τ(B,D, t) = τ(C,D, t) = 1
ε(A) = ε(B) = {1, 2, 3}, ε(C) = {2, 3}, ε(D) = {1, 3}

Figure 4.1: An example of a time layered graph.

44

denote the number of materials of job i sent from state u at time t to H(i, u, t). Let
w(i, u, t) denote the number of materials of job i that wait at state u at time t, i.e. instead
of proceeding to H(i, u, t), the materials proceed to (u, n(u, t + 1)). Note that again the
x and w variables are flow variables on the arcs of G∗, and the resulting problem (P2)
(shown below) is a flow problem.

We now present the complete model formulation as problem (P2).

max
x,y

fG∗ =
∑
i∈I

∑
u∈Π(i)

∑
t∈ε(u)

f(i, u, t)x(i, u, t)−
∑
u∈V

∑
v∈N+

G (u)

∑
t∈ε(u)

c(u, v, t)y(u, v, t) (P2)

s.t. x(i, u, t) + w(i, u, t)

−
∑

(w,t′):H(i,w,t′)=(u,t)

x(i, w, t′) = α(i, u, t), ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (1)∑
v∈N+

G (u),t′:t′≤t<t′+ω(u,v,t′)

y(u, v, t′) ≤ ρ(u), ∀ (u, t) ∈ V ∗ (2)∑
i∈I:∃k,Π(i,k)=u,Π(i,k+1)=v

x(i, u, t)

−κ(u)y(u, v, t) ≤ 0, ∀ (u, t) ∈ V ∗, v ∈ N+
G (u) (3)∑

i∈I:∃k,Π(i,k)=u,Π(i,k+1)=v

x(i, u, t)

−κ(u)(y(u, v, t)− 1) ≥ 1, ∀ (u, t) ∈ V ∗, v ∈ N+
G (u) (4)

x(i, u, t) ≥ 0, ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (5)
w(i, u, t) ≥ 0, ∀ i ∈ I, u ∈ Π(i), t ∈ ε(u) (6)
y(u, v, t) ≥ 0, ∀ (u, t) ∈ V ∗, v ∈ N+

G (u) (7)
x,w, y integral, (8)

Constraints (1) are flow constraints which ensure that the in-flow that comes into a
node (u, t) is equal to the out-flow that leaves (u, t) for each job i. Constraints (2) ensure
that state resources are not over-allocated at any point in time. Constraints (3) ensure
that enough state u resources are allocated at time t to support the amount of material
scheduled to leave. Constraints (4) force that we do not dispatch resources without need,
i.e. we do not waste state resources in our solution. Constraints (5) - (8) are non-negativity
and integrality constraints for the variables. Note that both the w and y variables are
completely determined by the values of the x variables; hence, for the remainder of the
chapter, we will refer to the solution as x and but assume that the w and y variables are
stored and accessible as well.

45

The objective function is a general weighted sum on the x and y variables, where
f(i, u, t) is the per material objective weight of sending material of job i from state u at
time t to H(i, u, t), and c(u, v, t) is the per resource cost of dispatching resources of state
u to state v at time t. We call a solution x′, a “backward time-shifted” version of x,
if x, and x′ are solutions to (P2) such that x′ can be obtained from x by shifting some
amount of material, δ, from a job i, scheduled to leave state u at time t to an earlier
time t′. More precisely, ∃i ∈ I, u ∈ Π(i), t, t′ ∈ ε(u), δ ∈ Z, δ > 0 such that t′ ≤ t,
x′(i, u, t′) = x(i, u, t′)+δ, x′(i, u, t) = x(i, u, t)−δ, and x′(i, u, t) = x(i, u, t) otherwise. The
only assumption that is considered on the objective function is that if x′ is a backward
time-shifted version of x, then fG∗(x

′) ≥ fG∗(x), i.e. the backward time-shifted solution is
no worse than the original solution. We note that this is a fairly reasonable assumption
as it is natural to assume that adding delays to a schedule will not improve its objective
value.

This model may be adapted for use with similar scheduling problems to our application.
For example, consider the problem of scheduling trains to travel between railroad stations,
with the objective of transporting cargo from an origin station to a destination station.
Let states be stations, and the resources of a state be trains at the station. The flow
conservation constraints of our model ensure that cargo is routed through its specified
path from the origin to the destination, while the resource allocation constraints ensure
that we do not dispatch more trains than are available at each station.

Note that other types of problems may also be encoded using time layered graphs as
well. For instance, buses are the state resources, states are bus terminals, and we want to
impose that at least k buses are dispatched from terminal u to terminal v between times
t1 and t2 (

∑
t1≤t≤t2 y(u, v, t) ≥ k); materials are samples, states are machines that process

samples, and we want to impose that if material is processed on machine u, then it is also
processed subsequently on machine v within k minutes after the completion of machine u
(x(i, u, t) ≤

∑
t+τ(u,v,t)≤t′≤t+τ(u,v,t)+k x(i, v, t′) ∀i ∈ I, t ∈ ε(u), and w(i, v, t) + x(i, v, t) ≤∑

t−τ(u,v,t′)−k≤t′≤t−τ(u,v,t′) x(i, u, t′) ∀i ∈ I, t ∈ ε(v)).

The main differences between problem (P2) and problem (P1), presented in section 2.3,
are that it is no longer assumed that states (previously processes) have the same processing
time to reach subsequent states, and that we do not assume that state (process) resources
become available immediately after they finish processing. To demonstrate why relaxing
these assumptions may be useful, consider again the problem of scheduling trains. Without
the first relaxation, we would need that a train leaving a station takes the same amount
of time to reach any other station, which is likely not the case. The second relaxation
allows us to have a train arrive back at the origin station after some time which depends
on both the station it was sent to, and the time at which it left the station, i.e. without

46

this relaxation we would have that trains may depart the origin station again as soon as
they reach their destination.

To demonstrate that (P2) is a more general version of (P1), we give an overview of
how to transform an instance of (P1) into an instance of (P2). Firstly, set the following
parameters for (P2) to be equal to those for (P1): I, V , ε, κ, ρ, Π, α, f , c. Construct the
arc set A of (P2) as follows: for each job i, for each pair of adjacent processes (u, v) in i’s
path, add (u, v) to A. For each state u, set τ(u, v, t) for (P2) to τ(u) for each neighbor
v and timepoint t. For each state u, set ω(u, v, t) to the processing time τ(u) for each
neighbor v and timepoint t. Now, any solution which satisfies the problem (P2), satisfies
the same operational constraints as those imposed on (P1), namely: flow constraints,
resource allocation constraints, and resource capacity constraints. In particular, using
the above transformation, optimal schedules for both problems (P1) and (P2) will be
equivalent.

4.2 Timepoint Modification Framework

In this section we discuss the framework for solving our scheduling problem (P2) from
section 4.1, using an iterative approach. We first discuss the work of Boland et al. [3]
and briefly explain why the algorithm and results presented there may not be directly
applied to our scheduling problem. They concern themselves with a similar scheduling
problem of transporting commodities through a network by dispatching trucks or trailers
between depots, with the goal of transporting all commodities from their origin depot to its
destination depot before it is due. They define a relaxation to the continuous time version
of their problem (assuming time is discretized into one minute intervals), and show that at
each iteration after solving their relaxation, either they are able to convert the solution into
one which is feasible for the continuous time version of their problem, or they are able to
refine their relaxation by adding a new timepoint and modifying their time layered graph.
Since there are finitely many timepoints to add, eventually their relaxation will model
the continuous time version and solving this iteration will be sufficient to get an optimal
solution to the continuous time version. Attempting to apply the construction of their
relaxation problem on our application does not result in the same relaxation. We attempted
to modify their procedure to prove a result similar to theirs but were unsuccessful. However,
our procedure can still produce beneficial results even if we cannot prove that it terminates
with the optimal solution to the continuous time formulation. In their problem, they have
trucks or trailers which travel between depots. In our case, these trailers correspond to
state resources, and the depots correspond to states. The main difference between our

47

problems comes from the assumption that in their case, the number of trucks or trailers
that can be dispatched from a depot is unbounded (ρ(u) = ∞), which allows them to
transform a solution to their continuous time version of their problem into a solution for
their relaxation of equal cost. Essentially, this corresponds to us removing constraints (2)
from model (P2). However, these constraints present a roadblock in using their methods
on our application. In lieu of this, the general idea of identifying timepoints that need to
be added and repeating this procedure iteratively is used below and has similarities to the
approach of Boland et al.

We first present Figure 4.2 to give an overview of how the framework proceeds, before
describing the framework in more detail below. Note that some details about the framework
are omitted in the flowchart to avoid over complicating the diagram. Namely, we omit
the details that problems are given solutions found from previous iterations as input and
how the previously found solutions are transformed into feasible solutions for the current
problems. Note that this transformation is simple and roughly involves copying the x
variables from the original solution to the x variables for the new solution, and then
setting the w and y variables for the new solution appropriately so that the new solution
is feasible.

Our iterative method is now described as follows. We begin by instantiating our
timepoint sets, ε, to some sufficiently coarse uniform discretization which we will call
start disc. We then use a solution method, e.g. passing (P2) to Gurobi, or CPLEX, to
solve problem (P2) and obtain a list, X, of any feasible solutions found by the optimization
method. Using each obtained solution x ∈ X as input, we proposed a set of algorithms,
i.e. Get Instant Start Timepoints, Get Overloaded Timepoints, and Get Dominated Time-
points (which will be discussed in more detail later) to obtain a set of timepoints ε+ to
add to our current timepoints and a set of timepoints ε− to remove from our current time-
points. That is, algorithms Get Instant Start Timepoints and Get Overloaded Timepoints
produce a set of timepoints to add for each solution x ∈ X, and Get Dominated Timepoints
produces a set of timepoints to remove for each x ∈ X. To obtain ε+, we take the union
of all of the sets of timepoints to add, and to obtain ε−, we take the intersection of all of
the sets of timepoints to remove. By choosing to use the union for added timepoints, we
add all timepoints that are identified as being potentially beneficial, and by choosing to
use the intersection for removed timepoints, we remove only those timepoints which were
considered not needed for every solution x ∈ X. We proceed to construct a new instance
of problem (P2), (P2∗), by adding ε+ and/or removing ε− from the current timepoints
ε. The best solution found previously, x, is used to generate a new solution x∗ which is
feasible for our newly formed problem, (P2∗). x∗ is given as an initial solution to our
new problem (P2∗) and we repeat this process of solving the current problem, using the

48

Start

Input: G, ε, fG∗ , τ

Solve (P2)

Output: Set of found feasible solutions, X

Apply algorithms Get Instant Start
Timepoints, Get Overloaded Timepoints,
and Get Dominated Timepoints on x ∈ X

Output: Modifications to timepoint sets, ε+, ε−

ε = ε ∪ ε+ \ ε−

ε+ = ∅?Time limit
reached?

Sufficient
obj. value
increase?

Solve (P2∗)

Add discretization fin disc to ε

Solve (P̂2)

Output: Best solution found

Stop

no

yes
yes

no

yes

no

Figure 4.2: A flowchart outlining the dynamic timepoint framework.

49

solution(s) found to generate new timepoints to add and remove, and then modifying the
current set of timepoints. We provide the solution x∗ as an initial solution for (P2∗) so that
the solver may use x∗ as a feasible solution, with the goal of optimizing (P2∗) more quickly
than if no initial solution was provided. This continues until we reach a stopping criterion
such as reaching a computational time limit, finishing an iteration such that algorithms
Get Instant Start Timepoints and Get Overloaded Timepoints do not produce any new
timepoints to add, or completing an iteration in which there is insufficient improvement
between the new solution and the previous solution. Note that we measure the difference
between solution values as the new solution value divided by the old solution value and
we call the improvement we require between iterations obj thresh. To demonstrate, if
obj thresh = 1.1, then we impose that the new solution value is at least 1.1 times the
old solution value, and if an iteration terminates such that this condition is not met, we
stop iterating. We call the allowed time between solutions sols tl, and the time limit for
the aforementioned iterative procedure its tl. That is, if we are solving a single instance
of (P2) using a method that generates multiple solutions such as CPLEX or Gurobi, then
once we find an incumbent solution to (P2) we require that a better solution is found before
sols tl seconds have elapsed since finding the previous solution. If no better solution is
found during this time, we quit the solution procedure for the iteration and return with
whatever solution(s) were found. This is done with the aim of reducing the amount of time
spent on a single iteration. The time limit for the entire iterative procedure, its tl, is
checked between iterations and if exceeded, we stop iterating and move on to the next step.
The way this was implemented in our experiments was to call Gurobi with the remaining
time left of the iterative procedure (its tl - (current time - start time)) as the time limit
and to provide two types of callbacks to Gurobi. The first type of callbacks are triggered
any time a new solution is found; it records the time that the latest solution was found and
stores the solution in an external array for use with the timepoint modifying algorithms
later. The second type of callbacks are triggered intermittently and check how long it has
been since the last solution was found. If the elapsed time has exceeded sols tl, then we
quit Gurobi and proceed to the next iteration.

After this process of adding and removing timepoints iteratively has reached a stopping
criteria and terminated, we store the best solution found previously, x̂, add all of the
timepoints associated with some chosen discretization (which we call fin disc) to our

timepoint sets, create a problem (P̂2), and solve this problem with input x̂ given as an
initial solution. We call the time limit passed to the solution method for solving this final
problem fin tl. By adding all of the timepoints from a discretization which is assumed to
provide acceptable solutions, we aim to find any solutions better than x̂ we may have missed
earlier during our iterative process. However, despite adding possibly many new timepoints

50

Table 4.1: Description of parameters used for the framework.

Parameter
Name

Parameter Description

start disc
The timepoint discretization to use for building the first iteration

of problem (P2)

fin disc
The timepoint discretization to use for building the final solve of

problem (P2), after the iterative procedure

its tl
The total amount of time to allow for the iterative procedure

(before adding fin disc to (P2) and solving (P̂2))

obj thresh
The required objective improvement between iterations, measured

as new objective value as a factor of old objective value

sols tl

The allowed time between solutions during a single iteration. If
more than sols tl time has passed since finding the last solution,

then quit the current iteration

fin tl
The allowed time for solving the final problem (P̂2), after adding

fin disc to (P2)

during this final step, we still expect to take advantage of the incumbent solution x̂, to
be able to optimize (P̂2) faster than if we optimized (P̂2) from scratch. The framework

terminates by returning the best solution found for problem (P̂2).

Table 4.1 provides a summary of the parameters used in the framework with their
corresponding descriptions for reference.

We include and discuss the heuristics used to identify new timepoints to add and which
timepoints to remove below. However, for more information about the framework, we
provide pseudo code algorithms for the framework and how to update solutions between
iterations in the Appendix C.

Algorithms Get Instant Start Timepoints, Get Overloaded Timepoints, and Get Domi-
nated Timepoints describe the heuristics that are used for modifying timepoints during the
procedure. The driving idea of the heuristics is to add timepoints such that actions from
a previous schedule may be shifted to happen earlier in time, and to remedy cases where
a state’s resources cannot be efficiently utilized because of a lack of timepoint availability.
Similarly, we remove timepoints which seem to be unnecessary, from a time-shifting per-
spective, to reduce the size of the resulting problems. Our goal is that by applying these
heuristics iteratively, we may shape the starting coarse timepoint sets into sets which in-
clude sufficient timepoints for obtaining high quality solutions, but without the unneeded

51

timepoints that a fine uniform discretization may have. Note that this is where we use the
assumption that the objective function of (P2) is such that backward time-shifting solu-
tions does not result in worse objective values. If this assumption holds, then we expect
that shifting scheduled events to happen earlier in time (possibly allowing for more events
to be scheduled) will improve the best objective value over each iteration.

Algorithm Get Instant Start Timepoints shown in Table 4.2 describes how timepoints
are added such that material that leaves from state a w to a state umay leave u upon arrival.
Namely, suppose a state u has resources dispatched at timepoint t (

∑
v∈N+

G (u) y(u, v, t) > 0).

We then consider all vertices (w, t′) of G∗ that have an arc from (w, t′) to (u, t) that is being
used (y(w, u, t′) > 0) and whose resources will arrive before time t (t′+ τ(w, u, t′) < t). For
each of these neighbors, we add a new timepoint at the actual time that samples departing
from this vertex arrive at state u (i.e. t′ + τ(w, ut′) is added to ε(u)). This procedure is
carried out over all vertices (u, t) of G∗ such that resources of state u are dispatched at
time t.

We call the timepoints added by this heuristic, “instant start timepoints” as they allow
material which leaves a state w and arrives at a state u to begin departing u immediately
upon arrival (t′ + τ(w, u, t′)) instead of waiting until time t to leave. The timepoints that
this heuristic adds allows material which is being scheduled by the model to have fewer
instances where it must wait at a state before proceeding to the next one in its path.
We anticipate that by including these timepoints, future schedules may obtain greater
objective value by shifting operations to happen earlier, possibly allowing more operations
to be scheduled later in the horizon. Figure 4.3 provides a graphical representation of how
instant start timepoints are identified and added to the timepoint sets.

Algorithm Get Overloaded Timepoints shown in Table 4.3 describes how timepoints
are added for states which are heavily utilized but whose timepoint sets is lacking poten-
tially useful timepoints. Suppose a state u has all of its resources dispatched at time t
(
∑

v∈N+
G (u) y(u, v, t) = ρ(u)). We use this criteria to identify times of high resource uti-

lization for state u. We then add a timepoint for state u at the earliest time that we can
guarantee that the resources will be available again, that is after the maximum return time
of u at time t, t+ωmax(u, t). We continue to repeat adding timepoints spaced by ωmax(u, t)
until we reach the timepoint proceeding t, n(u, t+1). Note that this heuristic will only affect
timepoints where there is extra time between when a resource for state u will return to be
used again, and the next timepoint dispatching may occur at (t+ωmax(u, t) < n(u, t+ 1)).
We carry out this procedure over all vertices (u, t) of G∗ such that all resources of state u
are dispatched at time t.

We call the timepoints added by this heuristic “overloaded timepoints” because they

52

Table 4.2: Algorithm 2, Get Instant Start Timepoints

Algorithm 2 Get Instant Start Timepoints

1: function Get Instant Start Timepoints(G,G∗, ε, x)
2: ε+ ← {ε+(u) = ∅ : u ∈ V } . Instantiate set of timepoints to add
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, t) > 0 then . Material is leaving (u, t) in the solution

6: for all (w, t′) ∈ N−G∗((u, t)) : t′ + τ(w, u, t′) < t do . Consider neighbors
such that material departing from that neighbor arrives at u before t

7: if y(w, u, t′) > 0 then . Arc from (w, t′) to (u, t) that is being used
in solution

8: ε+(u)← ε+(u) ∪ {t′ + τ(w, u, t′)} . Set t′ + τ(w, u, t′) to be
added to ε(u)

9: end if
10: end for
11: end if
12: end for
13: ε+ ← ε+ ∪ {ε+(u)}
14: end for
15: return ε+ . Return set of instant start timepoints to add
16: end function

53

Instant Start Timepoints:

u

0 Ht

(v, t′′)

(w, t′)

t′ + τ(w, u, t′)

y(w, u, t
′) ≥ 1

y(u, v, t)
≥ 1

u

0 Ht

t′ + τ(w, u, t′) added

Figure 4.3: A figure demonstrating under what conditions we add new instant start time-
points.

are added in cases where we identify a fully utilized resource. This heuristic aims to reduce
cases where there is a backlog of materials waiting at a state, but the state’s resources
are underutilized because u has insufficient timepoints around time t. In these cases, we
add timepoints for state u so that resources for state u may be used once they return
from a neighboring state and become available again, thereby allowing better resource
utilization for this state. Figure 4.4 demonstrates how overloaded timepoints are added to
the timepoint sets.

Algorithm Get Dominated Timepoints shown in Table 4.4 describes how timepoints
are removed in cases when we have two adjacent timepoints that are sufficiently close.
Consider a state u has two adjacent timepoints, t and n(u, t + 1), such that no resources
of state u are dispatched at time n(u, t + 1) (

∑
v∈N+

G (u) y(u, v, n(u, t + 1)) = 0). Suppose

that the timepoints are also close enough that a resource dispatched at time t may not be
dispatched at time n(u, t+1), that is the time difference between the points (n(u, t+1)−t)
is less than the minimum return time of u at time t, ωmin(u, t). Finally, if there are also
no flows on arcs whose head is (u, n(u, t + 1)) (

∑
(w,t′)∈N−

G∗ ((u,n(u,t+1))) y(w, u, t′) = 0), and

material that leaves state u at time t arrives at its destination before material which leaves
u at time n(u, t+ 1) (t+ τ(u, v, t) ≤ n(u, t+ 1) + τ(u, v, n(u, t+ 1)) ∀v ∈ N+

G (u)), then we
remove n(u, t+ 1) from state u’s timepoints.

54

Table 4.3: Algorithm 3, Get Overloaded Timepoints

Algorithm 3 Get Overloaded Timepoints

1: function Get Overloaded Timepoints(G,G∗, ε, x)
2: ε+ ← {ε+(u) = ∅ : u ∈ V } . Instantiate set of timepoints to add
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, t) = ρ(u) then . Solution is dispatching all resources of
state u at time t

6: t′ ← n(u, t+ 1)
7: while t+ ωmax(u, t) < t′ do . Current time is between t and proceeding

timepoint
8: t← t+ ωmax(u, t)
9: ε+(u)← ε+(u) ∪ {t} . Set t to be added to ε(u)

10: end while
11: end if
12: end for
13: end for
14: return ε+ . Return set of overloaded timepoints to add
15: end function

55

Overloaded Timepoints:

ωmax(u, t) ωmax(u, t+ ωmax(u, t))

y(u, v, t) ≥ 1

y(u,w, t) ≥ 1

u

0 Ht t′

(v, t′′)

(w, t′′′)∑
v∈N+

G (u) y(u, v, t) = ρ(u)

u

0 H

t

t+ ωmax(u, t) added

t+ ωmax(u, t) + ωmax(u, t+ ωmax(u, t)) added

Figure 4.4: A figure demonstrating under what conditions we add new overloaded time-
points.

56

Dominated Timepoints:

No arrivals during this interval

u

0 Ht n(u, t+ 1)

ωmin(u, t)

∀v ∈ N+
G (u), t+ τ(u, v, t) ≤

n(u, t+ 1) + τ(u, v, n(u, t+ 1))

u

0 Ht n(u, t+ 1)

Figure 4.5: A figure demonstrating under what conditions we mark timepoints as domi-
nated, for removal.

We call the timepoints which are removed according to the previous critera “dominated
timepoints”. Based on the assumption that backward time shifting a solution cannot
worsen its objective value, then any solution which uses resources of state u at time n(u, t+
1) could be changed to an equal or better solution which uses the same resources at time
t. Identifying and removing these timepoints helps to reduce the number of timepoints in
the model, and hence the model size with the aim of improving the CPU cost of solving
the model. Figure 4.5 shows how we identify dominated timepoints to remove from the
timepoint sets.

Note that the proposed framework above also has several limitations. Given that this
is a heuristic approach, global optimality is not guaranteed; thus, we accept practical
solutions that may be sub-optimal but can be resolved in short CPU times. The algo-
rithms Get Instant Start Timepoints, Get Overloaded Timepoints, and Get Dominated
Timepoints used for modifying the timepoints between iterations have no guarantees, even
though the ideas behind their development seems suitable and intuitive. With respect
to the convergence of the framework, we did not observe any cycling (timepoints being
added and subsequently removed many times) in our testing, but we do not guarantee that
cycling may not occur. However, if such cycling is possible, the various stopping criteria

57

Table 4.4: Algorithm 4, Get Dominated Timepoints

Algorithm 4 Get Dominated Timepoints

1: function Get Dominated Timepoints(G,G∗, ε, x)
2: ε− ← {ε−(u) = ∅ : u ∈ V } . Instantiate set of timepoints to remove
3: for all u ∈ V do
4: for all t ∈ ε(u) do
5: if

∑
v∈N+

G (u) y(u, v, n(u, t+ 1)) = 0 then . No materials leaving state u at

time n(u, t+ 1)
6: if n(u, t+ 1)− t < ωmin(u, t) then . We cannot allocate the same

resource to both timepoints
7: if t+ τ(u, v, t) ≤ n(u, t+ 1) + τ(u, v, n(u, t+ 1)) ∀v ∈ N+

G (u) then .
Material leaving at time t arrives before material leaving at time n(u, t+ 1)

8: if
∑

(w,t′)∈N−
G∗ ((u,n(u,t+1))) y(w, u, t′) = 0 then . No material

arrives after t and at or before n(u, t+ 1)
9: ε−(u)← ε−(u) ∪ {n(u, t+ 1)} . Set n(u, t+ 1) to be removed

from ε(u)
10: end if
11: end if
12: end if
13: end if
14: end for
15: end for
16: return ε− . Return set of dominated timepoints to remove
17: end function

58

discussed above will still ensure that the framework terminates.

Additionally, there are a number of parameters whose values must be chosen a priori
such as the starting discretization to use for the initial problem (start disc), the values
for the stopping criteria (its tl, obj thresh, and sols tl), and the parameters relating

to solving (P̂2) (fin disc and fin tl). The choices for these parameters will have an
influence on the performance of the framework, and setting these parameters will depend
on the specific problem being solved and one’s solving preferences (CPU time limitations,
hardware limitations, required solution quality, etc.). We present the actual choices for the
parameters used in our experiments in section 4.3.1.

4.3 Computational Experiments

We now discuss the experiments that were conducted using our previously described itera-
tive method. In section 4.3.1 we discuss the choices of parameters for the iterative method
used, and the other discretizations that will be used for comparison. Section 4.3.2 describes
the instances that we use for our experiments, along with how each method was evaluated.
Sections 4.3.3 - 4.3.6 include the results of the experiments, as well as discussion on when
our iterative method provides the most benefit and when it may be better to forgo the
iterative procedure.

4.3.1 Policies Tested

The framework described previously in section 4.2 does not specify parameters for stop-
ping criteria to use for ending the iterative phase of the procedure. It allows setting a
time limit for both the iterative phase and the final solve, an objective value percent im-
provement threshold between iterations, and a maximum time threshold between solutions
when solving a model. Furthermore, it does not specify what discretization to use when
constructing the problem to solve for the first iteration of the framework, or the discretiza-
tion to use when the iterative process has finished and we add missing timepoints from
a known “good” discretization. Setting these parameters to different values may change
what timepoints are added to the timepoint sets, which may impact how the framework
performs. Therefore, we must select some values for these parameters for testing, and the
choice of these parameters is important when using our iterative method.

For the computational experiments described in this chapter, we used the following
choices of parameters for testing the efficacy of our method. Similar to how we defined

59

Table 4.5: Descriptions of iterative policies tested.

Policy Name
Starting

Discretization

Time
Limit for
Iterative
Phase (s)
(its tl)

Min.
Objective
Change

(obj thresh)

Max. Time
Between
Solutions

(s)
(sols tl)

Time
Limit for

Final
Solve (s)
(fin tl)

5 - 0 - UD60 UD60 600 1 5 600
5 - 0 - UD120 UD120 600 1 5 600
5 - 0 - UD240 UD240 600 1 5 600

60 - 1.05 - UD240 UD240 600 1.05 60 600

the NUDM discretization, we will refer to the uniform discrete M (UDM) discretization
as having a timepoint at times S, S + M,S + 2M, . . . , S + bH/McM for each resource,
where S is the start time of the horizon and H is the length of the horizon. We test each
of UD60, UD120, and UD240 as starting discretizations (start disc) with no minimum
percent improvement between iterations (obj thresh = 1) and a five second time limit
between solutions during a single iteration (sols tl = 5 seconds). These choices represent
a policy which favors doing many iterations without spending too much time on each
one. We also test our method by starting with the UD240 discretization, allowing sixty
seconds between solutions (sols tl = 60 seconds), and requiring a minimum objective
value improvement of 5% between iterations (obj thresh = 1.05). This set of parameters
represents a policy which is willing to spend more time searching for solutions during a
solve, but also may not perform as many iterations if the amount of improvement slows.
These parameter values were chosen experimentally, as the resulting policies performed
best in our testing. All iterative policies were given a 10 minute time limit for both the
iterative phase (its tl = 10 minutes) and the final solve after adding the known good
discretization (fin tl = 10 minutes). The NUD60 discretization was chosen as the set of
timepoints to add after the iterative process ends (fin disc = NUD60) as it was shown
to provide high quality solutions in prior experiments [22]. A summary of these policy
parameters are shown in table 4.5.

These iterative policies were compared against using the following discretizations with-
out any sort of modifications: UD60, UD120, UD240, NUD60. We will refer to the use
of these discretizations without modification as static discretizations throughout this sec-
tion. These discretizations were chosen because they provide a wide range of granularity
in the timepoint sets and so they should allow us to observe the tradeoff between computa-
tional expense and solution quality between the different discretizations. Additionally, the

60

NUD60 discretization was shown to perform best among these other static discretizations
in [22], and so we use it as a benchmark for comparing the iterative policies’ performance.

4.3.2 Testing Procedure

Up to this point, we have described the problem as a scheduling problem over a time
layered graph. We used this more general setting to emphasize that this method is not
solely applicable to our use case and may be used for other applications such as railroad
[23, 51] or truck routing [3], or job shop problems [4]. Our experiments however deal
again with the case of the industrial sized, analytical services facility used in chapter 3.
In particular, we have the following differences compared to the general description of the
framework above. We have a single return time for u state resources used, independent of
what time the resources are utilized and to which neighboring state they are dispatched
to, ω(u, v, t) = ω(u) ∀v ∈ N+(u), t ∈ ε(u). We have a single travel time from state u to
any other neighboring state v, again independent of what neighbor the material travels to
and at what time, τ(u, v, t) = τ(u) ∀v ∈ N+(u), t ∈ ε(u). Furthermore, the state resources
become available immediately after material has been moved from state u to state v, i.e.
τ(u) = ω(u) ∀u ∈ V . The parameters of the facility such as processing times, number of
process resources, processing capacity are the same as those described in section 3.4.

Regarding the objective function of (P2), fG∗ , we use f(i, u, t) = 1 ∀i ∈ I, u ∈ Π(i), t ∈
ε(u), and c(u, v, t) = 0 ∀u ∈ V, v ∈ N+(u), t ∈ ε(u). These choices for f and c were
used so that we may maximize the total amount of material that is being sent through
the network assuming that the resource usage costs are negligible. To evaluate the efficacy
of the framework described previously in section 4.2 we use the following procedure. For
each policy that is being tested, we record the maximum objective value that the policy
has obtained after 1 minute, 5 minutes, 15 minutes, 30 minutes, and 60 minutes have
elapsed. We will refer to these elapsed times as “checkpoints”. To normalize the results
between instances, for each policy and checkpoint, we compare the objective value at that
checkpoint as a percentage of the maximum objective value any policy obtains over the
entire procedure. This allows us to better visualize the gain in objective value obtained by
allocating larger amounts of computational time to the solver and also allows us to more
easily compare the performance of the different policies at each checkpoint. The times
indicated above were chosen so that we may try to compare based on a wide range of solving
requirements and based on the observed solving times of our problems. Additionally, we
also record the amount of time taken for each policy to complete the procedure and report
this value as a proportion of the maximum time taken over all policies. An example of how
to interpret the results is given in section 4.3.3.

61

Table 4.6: Sizes of instances in each category.

Size Category
Min.

Variables
Min.

Constraints
Max.

Variables
Max.

Constraints
Instances

Small 304,444 209,449 698,866 388,218 10
Medium 1,146,524 614,159 1,997,392 1,108,319 34

Large 2,016,628 1,117,913 3,399,906 1,880,512 16

We sort our results into three categories based on size. We measure instance size in
terms of number of variables and constraints present in the model created when using the
NUD60 static discretization. Instances were categorized into small, medium, and large
size problems. Instances with less than 1,000,000 variables were considered to be small,
instances with at least 2,000,000 variables were considered to be large, and other instances
were considered medium sized. Note that all of the variables in our model are integer
variables, and hence these numbers (1,000,000 and 2,000,000) refer to the total number of
(integer) variables in the instance. More information about the sizes of the instances in
each category is shown in table 4.6. Columns 2 and 3 present the minimum number of
variables and constraints among all instances in each category. Similarly, columns 4 and 5
present the maximum number of variables and constraints among all instances. Column 6
indicates how many instances were sorted into each size category. Note that the number
of instances sorted into each category varies from 10 to 34. The reason for this is because
the instances were first formulated based on realistic horizon lengths and job arrivals using
data from the indutrial partner. The instances were not sorted based on size until the
results were analyzed, at which point this discrepancy was observed.

The individual instances are made up of various combinations of horizon length, and
number of samples. The number of days varies from one to seven. Regarding the actual
plant under analysis, the number of samples considered varies between 5,000 and 30,000.
Each instance was solved assuming that the facility was able to operate constantly over the
scheduling horizon to simplify testing. Detailed information about each instance including
model size, relative objective values at each checkpoint, and which size category each
instance was sorted into is provided in Appendix D.

Tests were run using 2 threads running at 3.2 GHz on a machine with access to 8 GB
of RAM. The implementation was done using the Julia programming language (version
0.6.2), along with the Gurobi.jl (version 0.4.1) and JuMP.jl [10] (0.18.2) packages. Gurobi
(version 8.0.1) [16] was used for solving the problems. The optimality tolerance given to
Gurobi was set to stop solving when the best found solution was within 0.5% of the optimal
solution.

62

4.3.3 Performance on Small Size Problems

The experiments described in this section consist of instances which were categorized as
being small. Figure 4.6 depicts the results over the small instances. By observing the
values for each policy after 1 minute has elapsed, we conclude that after 1 minute, we could
obtain a solution whose value is approximately 54% of the highest objective values among
all tested policies by using a UD240 static discretization. Similarly, static UD120, UD60,
and NUD60 discretizations yield approximately 77%, 89%, and 98% respectively of the
greatest objective value after 1 minute. These values demonstrate that as the granularity
of the static policies is increased, so does the performance of the schedule obtained from
these policies.

By examining the results for the dynamic timepoint policies, we observe that the per-
formance obtained using any of the dynamic variants is approximately equal to that of
the NUD60 after 1 minute has elapsed. Furthermore, the performance of the dynamic
timepoint policies increases, surpassing the NUD60 policy, after 5 minutes have elapsed.
However, the final cluster of bars depicting the amount of time required for each policy
to finish demonstrates that on these instances, the dynamic policies take much longer to
terminate compared to the static policies. This extra time may be attributed to the itera-
tive process of adding timepoints and solving several models. From a tradeoff standpoint,
the static NUD60 discretization offers nearly the best performance, at a fraction of the
computational cost that the dynamic policies have.

This efficient tradeoff between objective value and solving time was presented in [22] and
demonstrates that when instances are small, the NUD60 discretization is a good performer
on the present scheduling problem. In these cases where the problem size is relatively
small and the NUD60 policy may finish quickly, the dynamic framework appears to be
unnecessary as it may improve the solution quality only marginally but may also incur a
comparatively large computational cost.

4.3.4 Performance on Medium Size Problems

The results on the set of medium sized instances presented by Figure 4.7 indicate a dif-
ferent story, however. Observing the performance after 1 minute, we no longer see the
NUD60 discretization being the best performer. In fact, the UD240 and UD120 static dis-
cretizations both have performance better than the UD60 and NUD60 static policies after
1 minute. This can be attributed to the instances being larger, and hence the solver not
being able to make as much progress as quickly, on the problems with more dense timepoint

63

Figure 4.6: Results for small instances.

64

sets, compared to those with coarser timepoint sets. This demonstrates the weakness of
using a fine discretization and the tradeoff between computational cost, solution quality,
and discretization used. Furthermore, by comparing the coarser dynamic policies against
their static counterparts, e.g. the 60 - 0 - UD240 dynamic policy and the UD240 static
policy, after 1 minute has elapsed, we observe that even in cases where we desire solutions
very quickly, and hence are forced to use coarse discretizations, there may still be a benefit
to using an iterative approach. In this case, the 60 - 0 - UD240 dynamic policy is able to
obtain approximately 77% of the greatest solution after 1 minute, while the UD240 obtains
approximately 61% of the greatest solution on average.

We observe that all of the dynamic policies perform better than the static policies after
5 minutes have elapsed and that the NUD60 policy does not attain the same performance
until 30 minutes have elapsed. Furthermore, at each checkpoint in time, a dynamic policy
is performing best relative to the other static policies. This difference between the best
performing static policy and the best performing dynamic policy ranges from 0% (at 30 or
60 minutes) - 20% (at 5 minutes). This demonstrates that for obtaining strictly the best
performance, these policies were suitable on these medium sized problems. However, the
same observation discussed in the previous paragraph still applies. As the problems are
larger, the policies which use a more fine initial discretization must solve larger problems
and hence we see that the 5 - 0 - UD60 policy does not attain similar performance to the
other dynamic policies until the 15 minute checkpoint. This observation highlights the need
to pick the parameters used for the dynamic policies suitably depending on the problem
specifications, e.g. if solutions must be attained within 1 minute, then using a more coarse
starting discretization would be preferable to starting with the UD60 discretization.

The tradeoff between the dynamic policies and the static policies in terms of time to
completion is also less extreme than for the small instances. Most of the dynamic policies
are still taking the longest to complete, and are taking longer than the NUD60 policy,
but the amount of extra time spent is less significant than when the instances were small.
Overall, over these instances, it appears that the 60 - 1.05 - UD240 policy is able to remain
one of the best performers at each check point and also terminates sooner than the other
dynamic policies and NUD60. This makes the 60 - 1.05 - UD240 an attractive alternative
to the NUD60 static discretization over these problems.

Depending on the user’s preferences, on medium size instances it appears to be beneficial
to use a dynamic timepoint policy over a static discretization. However, this decision will
be influenced by how large the problems to solve are, the amount of performance the user
must obtain, and the time restrictions the problems must be solved within.

65

Figure 4.7: Results for medium instances.

66

4.3.5 Performance on Large Size Problems

Figure 4.8 shows the performance results on the large instances. It is at this point that
we observe the breaking point of the NUD60 policy. On these instances, the NUD60
policy does not become competitive with the other policies until the 30 minute mark,
and furthermore does not obtain a feasible solution within 1 minute on any of the large
instances. The dynamic policies again offer good performance relative to the other policies
at all checkpoints in time. The extra time cost associated with the dynamic policies is
further reduced compared to the small and medium size instances. Over these instances,
our iterative method offers a better alternative to the NUD60 discretization for users who
require higher performance than a uniform discretization may offer by either being equal to
or exceeding the performance of the NUD60 policy at each checkpoint and by terminating
in less than 30% of the time. However, a coarse static policy may still be the preferable
option if very fast solve times are the top priority, e.g. one needs solutions as fast as
possible.

Furthermore, we see a benefit to increasing the amount of time to allow between so-
lutions in these instances between the 60 - 1.05 - UD240 and the 5 - 0 - UD240 policies.
It may be that the extra time we allow to spend searching for solutions with these large
problems, leads to a better, more careful selection of timepoints to add to our timepoint
sets. This observation highlights again the importance of the parameter selection discussed
in section 4.3.1.

It is with the large size problems that we are able to best demonstrate where the
iterative refinement method pulls ahead of the static discretizations. When the problems
considered are sufficiently large, the NUD60 discretization produces many timepoints which
makes the resulting problem very computationally expensive. By starting with a coarse
discretization and then refining the set of timepoints iteratively, we are able to increase
the solution quality, without incurring the same computational expense as starting with
the NUD60 policy.

4.3.6 Per Iteration Analysis

In this section we analyze the behavior of the dynamic framework on the medium sized
instances with respect to each iteration. We choose to discuss the medium size instances
here because most of the instances tested fell into this category (see Table 4.6); however
the observed trends are similar for the small and large sized instances. Note that for these
medium sized instances, the maximum number of iterations that were performed by the

67

Figure 4.8: Results for large instances.

68

60 - 1.05 - UD240 policy was five, and therefore data for this policy does not show up in
the results for iterations greater than five. Furthermore, because a given policy will not
necessarily perform the same number of iterations on each problem instance (e.g. the 5 -
0.0 - UD120 policy may perform 3 iterations for medium sized instance 1, and perform 8
iterations for medium sized instance 2), the averages reported in this section are obtained
using less data points for later iterations than earlier iterations.

The actual number of instances that were used for each policy and iteration number
are presented in Table 4.7. The first column denotes the iteration number, and columns
2 - 4 denote how many instances were run for each policy such that the policy used that
many iterations. For example, Table 4.7 shows that there were 28 instances where the 5
- 0.0 - UD60 policy took at least 3 iterations to complete, but only 22 instances where it
took at least 4 iterations to complete. All policies terminated within 14 iterations over all
medium sized instances. From Table 4.7 we are able to observe that the policies which start
with more coarse uniform discretizations generally iterate more times before termination.
This is not overly surprising as the more coarse policies start with fewer timepoints and
therefore should be able to be solved more quickly. Since we impose the same its tl

time limit for each policy, then using a more coarse discretization should allow for more
iterations. This does not hold for the 60 - 1.05 - UD240 policy however because of the 5%
improvement that we impose between iterations. We observe that most instances complete
in 3 iterations, with all of the instances completing within 5 iterations.

We now discuss the average number of timepoints that were added, removed, and
their difference between iterations. This information is presented by Figure 4.9. We may
immediately discern that regardless of the policy considered, after a few iterations there is
a sharp decline in both the number of timepoints that are being added and the number of
timepoints that are being removed between iterations. This trend shows that the timepoint
sets undergo large changes at the beginning of the procedure and then become relatively
stable after a few iterations. In other words, these results show that the iterative procedure
converges to a single timepoint set rapidly. Moreover, we observe that there are a large
number of timepoints which are removed in the beginning iterations. The number of
timepoints removed is directly related to the granularity of the initial discretization, where
more fine discretizations have more timepoints removed and in particular the 5 - 0.0 -
UD60 policy removes more timepoints than it adds after the first iteration. This shows
that using a uniform discretization will include many timepoints which are not required
for obtaining high quality solutions. By observing the relative magnitudes of the timepoint
changes between iterations, we see that the amount of timepoints modifications done by
policies which start with more coarse discretizations decreases more slowly than policies
which start with more fine discretizations. This is reasonable because the quality of the

69

Table 4.7: Number of instances considered for each iteration number.

Iteration
Number

5 - 0.0 - UD60
(# Instances)

5 - 0.0 - UD120
(# Instances)

5 - 0.0 - UD240
(# Instances)

60 - 1.0.5 - UD240
(# Instances)

1 34 34 34 34
2 34 34 34 34
3 28 33 34 34
4 22 27 34 10
5 21 23 31 2
6 18 23 28 0
7 13 17 21 0
8 9 11 15 0
9 7 9 12 0
10 4 5 10 0
11 3 4 9 0
12 3 4 4 0
13 3 3 3 0
14 3 2 2 0

initial solutions is directly related to the granularity of the starting discretization. Starting
with a fine discretization allows us to make many timepoint modifications initially but then
quickly converge to a suitable set of timepoints.

We now analyze the average number of timepoints considered for each iteration. These
results are presented by Figure 4.10. Based on the discussion on the average number
of timepoint modifications above, the results of Figure 4.10 are expected. In the first
iteration, we are able to observe the differences in the number of timepoints for the starting
discretizations considered, UD60, UD120, and UD240. After the first iteration, we see a
moderate increase in the number of timepoints for the 5 - 0.0 - UD120, 5 - 0.0 - UD240,
and 60 - 1.05 - UD240 discretizations, while there is a decline in the number of timepoints
for policy 5 - 0.0 - UD60, as was depicted by Figure 4.9a. These observations support the
idea that policies which start with coarse discretizations are able to identify many new
timepoints which may be beneficial to a schedule formulation, whereas the policies which
start with fine discretizations are not able to identify as many timepoints to add because
many are already included. Note that the average number of timepoints considered by
the NUD60 static policy for small, medium, and large instance sizes are as follows: small
instances - 18,117, medium instances - 45,763, large instances - 92,384. Comparing the

70

(a) Timepoint modifications for 5 - 0.0 - UD60 policy. (b) Timepoint modifications for 5 - 0.0 - UD120 policy.

(c) Timepoint modifications for 5 - 0.0 - UD240 policy. (d) Timepoint modifications for 60 - 1.05 - UD240 policy.

Figure 4.9: The average number of timepoints added, removed, and their difference between
iterations over each policy.

71

Figure 4.10: Per iteration timepoint differences for medium sized instances.

number of timepoints the NUD60 policy used on the medium sized instance to the number
of timepoints the dynamic policies used shows more than a 75% reduction in the number
of timepoints considered in some cases. This reduction in timepoints translates into a
reduction in problem size as well as shown in Table 4.8. This table presents the average
problem size (in terms of number of variables and constraints) for each policy and iteration
and compares it to the average problem size of the NUD60 discretization. The maximal
problem sizes among all iterations for each policy have been boldfaced. Therefore, reducing
the number of timepoints may be useful in cases where the size of the problems considered
surpasses the capabilities of the available hardware (e.g. CPU or memory limitations).
Instead of using a fine static discretization, a user may iteratively refine the time grids by
solving smaller sized problems, yet still achieve good solution quality as discussed in the
earlier results sections 4.3.3 - 4.3.5.

Figure 4.11a presents the per iteration performance improvements for each policy, in
terms of objective value percentage increase. Similar to the results discussed above when
considering timepoint differences between iterations, most of the performance improve-
ments are obtained within the first few iterations of the framework. This is unsurprising
as we have already noted that the timepoint sets are only marginally changed in the later
iterations so we do not expect to gain as much improvement then. These results suggest
that only a few iterations are necessary and that perhaps a stopping criteria based on

72

Table 4.8: Average number of variables and constraints per iteration, numbers reported in
1,000’s.

Iteration
Number

5 - 0.0 - UD60 5 - 0.0 - UD120 5 - 0.0 - UD240 60 - 1.05 - UD240 NUD60
Vars Cons Vars Cons Vars Cons Vars Cons Vars Cons

1 329 192 171 101 93 56 93 56

1,611 900

2 1,191 621 1,002 521 796 412 802 416
3 1,250 654 1,121 583 928 481 935 485
4 1,271 664 1,122 584 1,034 536 1,108 569
5 1,268 663 1,129 588 1,088 564 951 493
6 1,304 680 1,156 601 1,106 573 N/A N/A
7 1,348 696 1,213 628 1,086 562 N/A N/A
8 1.428 735 1,431 734 1,170 603 N/A N/A
9 1,442 739 1,369 704 1,300 666 N/A N/A
10 1,156 595 1,165 598 1,396 713 N/A N/A
12 1,179 606 1,131 581 1,114 570 N/A N/A
11 1,176 604 1,133 582 1,387 709 N/A N/A
13 1,182 608 1,176 605 1,133 580 N/A N/A
14 1,175 604 1,141 587 1,109 569 N/A N/A

73

(a) Per iteration objective value improvements. (b) Time taken per iteration.

Figure 4.11: Average objective value improvements and time taken per iteration.

the number of iterations carried out may allow us to obtain most of the benefits of the
procedure, without incurring all of the computational cost.

Figure 4.11b shows the time taken to complete each iteration for each policy. From
this figure, we observe an initial increase in the solving time per iteration. This increase
corresponds to the rapidly changing timepoint sets which render previously obtained so-
lutions not as relevant a starting solution as for later iterations where timepoints do not
change much. After the initial period of increasing solution times, we see that the time
per iteration begins to decrease and stabilize to approximately 50 seconds. By limiting the
number of iterations as suggested previously, we may remove the extra time spent in the
later iterations without much improvement.

4.4 Chapter Summary

In this chapter, we presented our proposed iterative method for timepoint refinement. We
presented our problem as a more general scheduling problem over a time layered graph and
explained how our proposed heuristics are designed to reduce the amount of time between
when material arrives at a state and when it is able to exit. We presented results comparing
our dynamic method to commonly used discretizations and showed that in our tests, there
were benefits in terms of both computational time and solution quality compared to the
static discretizations, when problems are sufficiently large. When problems are small, we

74

showed that our method is also able to provide high quality solutions, but that the increase
in time for our method to terminate compared to using static discretizations may be large.
We discussed the importance of choosing parameters for our dynamic method and how the
choice of parameters plays a role in how the method performs. Furthermore, we analyzed
the evolution of the iterative framework on a per iteration basis and showed that most of
the improvements and timepoint modifications are done in the first few iterations.

75

Chapter 5

Conclusions

The goal of this thesis was to investigate two questions pertaining to scheduling multipur-
pose facilities: when should rescheduling be done and how to efficiently solve the resulting
scheduling problems? The aim of the first study was to better understand the role facility
parameters play when determining how often to reschedule a multipurpose facility. The
second was to present and validate an iterative method for choosing time grids for general
scheduling problems over time layered graphs.

The work in Chapter 3 presents a comparison between several different periodic reschedul-
ing policies varying from generating a schedule four times per day to generating a schedule
only once every five days. Experiments were conducted simulating a real analytical services
facility to compare the performance between the policies using a rolling horizon routine
and the non uniform discrete time model presented in [22]. The effectiveness of each policy
was measured throughout the experiments using percentage of jobs completed, average job
makespan, and proportion of jobs on time as performance measures.

Based on the results obtained through the computational experiments, this study shows
that choosing a suitable rescheduling policy can depend greatly on the environment of the
facility that is being modeled. By varying the capacity of the processes in the experiments
we observed that in some cases, less frequent rescheduling policies may outperform more
frequent rescheduling policies both in job completion and proportion of jobs on time. In
particular, in some experiments, we were able to observe nearly a complete reversal of the
results obtained when nominal parameter values were used.

When nominal parameter values were used, we observed that more frequent reschedul-
ing can have a significant positive impact on improving the proportion of jobs on time and
makespan of a production plant.

76

In environments where capacity is not much of a concern or where very short lead
times are required, more frequent rescheduling policies seem to be best. However, if long
lead times are acceptable or capacity is the main limiting constraint, then scheduling less
frequently with longer horizons can be beneficial.

Chapter 4 presented the study done on iteratively refining time grids. The general
framework used for our method was presented along with a discussion on the motivating
ideas used to choose new timepoints. Computational experiments were performed which
showed that by refining the time grids of our scheduling problem with the proposed frame-
work, we were able to improve performance over the conventionally used discretizations
without substantially increasing the computational cost.

In particular, the NUD60 discretization which has performed well on small problems
in practice began to perform worse as problem sizes get large. However, the performance
of the iterative policies stayed relatively stable across various problem sizes, but with
improved tradeoff as problems became large. Moreover, analyzing the performance of the
framework over each iteration showed that most of the performance improvements and
timepoint modifications are done in the first few iterations.

The results of these experiments show that using a refinement strategy can improve
solution quality over the conventionally used uniform discretizations even when very short
solving times are required. It is also worth noting that the proposed method is a general
strategy which may be applied to other scheduling applications with similar requirements,
bypassing the need to experimentally determine efficient time grids.

5.1 Future Work

There are a number of ways that the work presented in this thesis may be extended. With
respect to rescheduling frequency, future work could consider implementing further sources
of uncertainty such as job retesting if a process malfunctions or the possibility of machine
breakdowns. With these augmentations, a more robust scheduling policy than fixed pe-
riodic may be desirable to reschedule immediately when a more serious disruptive event
occurs and to forgo rescheduling when it is not necessary. Additionally, more research into
quantifying the costs of rescheduling such as schedule disruption and latency introduced
by deviating from the originally intended schedule could be beneficial. In this study we
assumed that these costs were negligible but a study focusing on quantifying and measur-
ing these costs could help us to better understand the other side effects of rescheduling.
Finally, an investigation into how the results vary with different job arrival patterns, such
as bursty arrivals, may also be an interesting contribution.

77

On the topic of choosing time grids for scheduling problems, there are several directions
one could explore. Investigations into selecting a more specialized initial time grid rather
than simply using a uniform discrete variant could help the iterative method converge
even more quickly. Additional heuristics for choosing which timepoints to add or remove
during the method could be proposed and their efficacy tested. This could be especially
useful when the performance differences between iterations become small. Furthermore,
there are a number of parameter choices that are used for the iterative method, and the
choices for these parameters can have a large impact on the efficiency of the policies.
More research into how to fine tune these parameters, particularly for different problem
applications, would be a worthwhile endeavor. The values for these parameters were chosen
experimentally in this work, but an algorithmic method of selecting these values would be
helpful when applying this method to other applications or facilities.

78

References

[1] J. Andersen, M. Christiansen, Crainic T. G., and R. Grønhaug. Branch and price for
service network design with asset management constraints. Transportation Science,
45(1):33–49, 2011.

[2] A. Baykasoğlu and F. S. Karaslan. Solving comprehensive dynamic job shop schedul-
ing problem by using a grasp-based approach. International Journal of Production
Research, 55(11):3308–3325, 2017.

[3] N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time service
network design problem. Operations Research, 65(5):1303–1321, 2017.

[4] I. A. Chaudhry and A. A. Khan. A research survey: review of flexible job shop
scheduling techniques. International Transactions in Operational Research, 23:551–
591, 2016.

[5] L. K. Church and R. Uzsoy. Analysis of periodic and event-driven rescheduling policies
in dynamic shops. Int. J. Computer Integrated Manufacturing, 5(3):153–163, 1992.

[6] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer, 2014.

[7] IBM ILOG CPLEX. Cplex user’s manual, 2018.

[8] T. G. Crainic, M. Hewitt, M. Toulouse, and D. M. Vu. Service network design with
resource constraints. Transportation Science, 50(4):1380–1393, 2016.

[9] E. D. Dolan and J. J. More. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[10] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical
optimization. SIAM Review, 59(2):295–320, 2017.

79

[11] A. Erera, M. Hewitt, M. Savelsbergh, and Y. Zhang. Improved load plan design
through integer programming based local search. Transportation Science, 47(3):412–
427, 2013.

[12] J. Fang and Y. Xi. A rolling horizon job shop rescheduling strategy in the dynamic
environment. Int J Adv Manuf Technol, 13(3):227–232, 1997.

[13] C. Floudas and X. Lin. Continuous-time versus discrete-time approaches for scheduling
of chemical processes: a review. Computers and Chemical Engineering, 28(11):2109–
2129, 2004.

[14] A. Froger, M. Gendreau, J. E. Mendoza, E. Pinson, and L.-M. Rousseau. Mainte-
nance scheduling in the electricity industry: A literature review. European Journal of
Operational Research, 251:695–706, 2016.

[15] D. Gupta and C. Maravelias. On deterministic online scheduling: Major considera-
tions, paradoxes and remedies. Computers and Chemical Engineering, 94(2):312–330,
2016.

[16] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[17] M. Heydari and A. Soudi. Predictive/reactive planning and scheduling of a surgical
suite with emergency patient arrival. J Med Syst, 40:1–9, 2016.

[18] K. Hozak and J. A. Hill. Issues and opportunities regarding replanning and reschedul-
ing frequencies. International Journal of Production Research, 47(18):4955–4970, 2009.

[19] M. H. Kim and Y.-D. Kim. Simulation-based real-time scheduling in a flexible man-
ufacturing system. Journal of Manufacturing Systems, 13(2):85–93, 1994.

[20] R. Koller, L. A. Ricardez-Sandoval, and L. Biegler. Stochasic back-off algorithm for
simultaneous design, control, and scheduling of multiproduct systems under uncer-
tainty. AIChE J, 64(7):2379–2389, 2018.

[21] E. Kondili, C. C. Pantelides, and R. W. H. Sargent. A general algorithm for short-
term scheduling of batch operations—i. milp formulation. Computers and Chemical
Engineering, 17(2):211–227, 1993.

[22] S. Lagzi, D. Yeon Lee, R. Fukasawa, and L. A. Ricardez-Sandoval. A computational
study of continuous and discrete time formulations for a class of short-term scheduling
problems for multipurpose plants. Ind. Eng. Chem. Res., 56(31):8940–8953, 2017.

80

[23] J. Lange and F. Werner. Approaches to modeling train scheduling problems as job-
shop problems with blocking constraints. Journal of Scheduling, 21:191–207, 2018.

[24] H. Lee and C. T. Maravelias. Combining the advantages of discrete- and continuous-
time scheduling models: Part 1. framework and mathematical formulations. Comput-
ers and Chemical Engineering, 116:176–190, 2017.

[25] R.-K. Li, Y.-T. Shyu, and S. Adiga. A heuristic rescheduling algorithm for computer-
based production scheduling systems. Int. J. Prod. Res., 31(8):1815–1826, 1993.

[26] A. F. Merchan, H. Lee, and C. T. Maravelias. Discrete-time mixed-integer program-
ming models and solution methods for production scheduling in multistage facilities.
Computers and Chemical Engineering, 94:387–410, 2016.

[27] L. Mockus and G. V. Reklaitis. Continuous time representation approach to batch and
continuous process scheduling. 1. minlp formulation. Ind. Eng. Chem. Res., 38(1):197–
203, 1999.

[28] A. P. Muhlemann, A. G. Lockett, and C.-K. Farn. Job shop scheduling heuristics and
frequency of scheduling. International Journal of Production Research, 29(2):227–241,
1982.

[29] D. C. Paraskevopoulos, G. Laporte, P. P. Repoussis, and C. D. Tarantilis. Resource
constrained routing and scheduling: Review and research prospects. European Journal
of Operational Research, 263:737–754, 2017.

[30] B. Patil, R. Fukasawa, and L. A. Ricardez-Sandoval. Scheduling of operations in a
large-scale scientific services facility via multicommodity flow and an optimization-
based algorithm. Ind. Eng. Chem. Res., 54:1628–1639, 2015.

[31] M. E. Pfund and J. W. Fowler. Extending the boundaries between scheduling and
dispatching: hedging and rescheduling techniques. International Journal of Production
Research, 55(11):3294–3307, 2017.

[32] M. Pinedo. Scheduling. Springer, 2016.

[33] R. Renaldi and D. Friedrich. Multiple time grids in operational optimisation of energy
systems with short- and long-term thermal energy storage. Energy, 133:784–795, 2017.

[34] I. Sabuncuoglu and S. Karabuk. Rescheduling frequency in an fms with uncertain pro-
cessing times and unreliable machines. Journal of Manufacturing Systems, 18(4):268–
283, 1999.

81

[35] I. Sabuncuoglu and O. B. Kizilisik. Reactive scheduling in a dynamic and stochastic
fms environment. International Journal of Production Research, 41(17):4211–4231,
2003.

[36] G. Schilling and C. C. Pantelides. A simple continuous-time process scheduling for-
mulation and a novel solution algorithm. Computers and Chemical Engineering,
20(2):S1221–S1226, 1996.

[37] R. Shafaei and P. Brunn. Workshop scheduling using practical (inaccurate) data part
1: The performance of heuristic scheduling rules in a dynamic job shop environment
using a rolling time horizon approach. International Journal of Production Research,
37(17):3913–3925, 1999.

[38] N. Shah, C. C. Pantelides, and R. W. H. Sargent. A general algorithm for short-term
scheduling of batch operations—ii. computational issues. Computers and Chemical
Engineering, 17(2):229–244, 1993.

[39] T. Stablein and K. Aoki. Planning and scheduling in the automotive industry: A
comparison of industrial practice at german and japanese makers. Int. J. Production
Economics, 162:258–272, 2015.

[40] M. Steinrücke. Integrated production, distribution and scheduling in the aluminium
industry: a continuous-time milp model and decomposition method. International
Journal of Production Research, 53(19):5912–5930, 2015.

[41] K. Stuart and E. Kozan. Reactive scheduling model for the operating theatre. Flex
Serv Manuf J, 24:400–421, 2012.

[42] A. Sundaramoorthy and C. T. Maravelias. Computational study of network-based
mixed-integer programming approaches for chemical production scheduling. Ind. Eng.
Chem. Res., 50(9):5023–5040, 2011.

[43] M. A. H. van Elzakker, E. Zondervan, N. B. Raikar, I. E. Grossmann, and P. M. M.
Bongers. Scheduling in the fmcg industry: An industrial case study. Ind. Eng. Chem.
Res., 51:7800–7815, 2012.

[44] S. Velez and C. Maravelias. Multiple and nonuniform time grids in discrete-time mip
models for chemical production scheduling. Computers and Chemical Engineering,
53:70–85, 2013.

82

[45] S. Velez and C. T. Maravelias. Theoretical framework for formulating mip scheduling
models with multiple and non-uniform discrete-time grids. Computers and Chemical
Engineering, 72:233–254, 2015.

[46] S. Velez, A. F. Merchan, and C. T. Maravelias. On the solution of large-scale mixed
integer programming scheduling models. Chemical Engineering Science, 136:139–157,
2015.

[47] G. E. Vieira, J. W. Herrmann, and E. Lin. Analytical models to predict the per-
formance of a single-machine system under periodic and event-driven rescheduling
strategies. International Journal of Production Research, 38(8):1899–1915, 2000.

[48] G. E. Vieira, J. W. Herrmann, and E. Lin. Predicting the performance of rescheduling
strategies for parallel machine systems. Journal of Manufacturing Systems, 19(4):256–
266, 2000.

[49] G. E. Vieira, J. W. Herrmann, and E. Lin. Rescheduling manufacturing systems: A
framework of strategies, policies, and methods. Journal of Scheduling, 6(1):39–62,
2003.

[50] B. Wang, X. Han, X. Zhang, and S. Zhang. Predictive-reactive scheduling for single
surgical suite subject to random emergency surgery. J Comb Optim, 30:949–966, 2015.

[51] Y. Wang, Z. Liao, T. Tang, and B. Ning. Train scheduling and circulation planning
in urban rail transit lines. Control Engineering Practice, 61:112–123, 2017.

[52] C. A. Yano and R. C. Carlson. Interaction between frequency of rescheduling and
the role of safety stock in material requirements for planning systems. International
Journal of Production Research, 25(2):221–232, 1987.

[53] X. Zhang and R. W. H. Sargent. The optimal operation of mixed production
facilities—a general formulation and some approaches for the solution. Computers
and Chemical Engineering, 20(6-7):897–904, 1996.

83

APPENDICES

84

Appendix A

Facility Parameter Values

Table A.1 below includes the normalized process parameter values used for our experiments.
The first column is the process index, the second column includes the capacity of each
process resource as a fraction of the largest resource capacity among all processes. The
third presents the processing time of each process as a portion of the greatest processing
time over all processes. The fourth column includes the number of resources available for
each process.

Table A.1: Normalized process parameters used during experiments.

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))

1 0.724638 0.001488 2
2 0.043478 0.005952 3
3 0.039855 0.047619 1
4 0.000725 0.142857 4500
5 0.362319 0.037202 4
6 0.036232 0.018651 10
7 0.036232 0.099206 2
8 0.036232 0.018651 6
9 0.036232 0.019841 2
10 0.002174 0.000794 1
11 0.036232 0.019841 3

Continued on next page

85

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
12 0.036232 0.014881 1
13 0.036232 0.00496 3
14 0.07971 0.107143 1
15 0.036232 0.009921 1
16 0.030435 0.003968 2
17 0.030435 0.003968 2
18 0.021739 0.10119 4
19 0.156522 0.029762 2
20 0.015217 0.014881 2
21 0.005797 0.018849 1
22 0.034783 0.061012 1
23 0.000725 0.016567 1
24 0.005072 0.142857 1
25 0.042754 0.209425 1
26 0.028986 0.165179 2
27 0.028986 0.744048 40
28 0.021739 0.035714 2
29 0.005797 0.053571 1
30 0.03913 0.050595 4
31 0.021739 0.005952 1
32 0.019565 0.011409 1
33 0.019565 0.040675 1
34 0.018841 0.013889 1
35 0.018841 0.013889 1
36 0.018841 0.013889 1
37 0.018116 0.0125 1
38 0.017391 0.013889 1
39 0.019565 0.010913 1
40 0.144928 0.011905 1
41 0.073913 0.011905 2
42 0.05942 0.000992 2

Continued on next page

86

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
43 0.221014 0.011905 2
44 0.108696 0.02381 1
45 0.074638 0.005952 1
46 0.09058 0.017857 1
47 0.09058 0.017857 1
48 0.008696 0.005952 1
49 0.042754 0.008929 1
50 0.014493 0.001984 1
51 0.043478 0.005952 1
52 0.004348 0.005952 2
53 0.028986 0.005952 1
54 0.043478 0.005952 1
55 0.021739 0.005952 2
56 0.347826 0.017857 3
57 0.318841 0.02381 2
58 0.072464 0.041667 1
59 0.036232 0.098214 1
60 0.008696 0.013393 2
61 0.021739 0.002976 1
62 0.005797 0.026786 3
63 0.156522 0.011905 4
64 0.313043 0.021825 2
65 0.318841 0.021825 4
66 0.021739 0.005952 5
67 0.052174 0.014385 1
68 0.049275 0.02629 1
69 0.037681 0.048611 1
70 0.021739 0.066964 1
71 0.000725 0.024306 2
72 0.013043 0.048115 1
73 0.001449 0.001984 2

Continued on next page

87

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
74 0.043478 0.005952 1
75 0.030435 0.006448 2
76 0.030435 0.000992 2
77 0.06087 0.005952 1
78 0.004348 0.032738 2
79 0.030435 0.004167 2
80 0.013043 0.001488 2
81 0.030435 0.001488 2
82 0.030435 0.007937 2
83 0.013043 0.007937 2
84 0.030435 0.004167 1
85 0.030435 0.004167 2
86 0.010145 0.047619 1
87 0.021739 0.006746 1
88 0.092754 0.073016 4
89 0.092754 0.006349 2
90 0.000725 0.000992 1
91 0.000725 0.142857 1
92 0.108696 0.142857 2
93 0.018841 0.012897 1
94 0.018841 0.012897 1
95 0.018116 0.013988 1
96 0.018841 0.011905 1
97 0.019565 0.042659 1
98 0.130435 0.03869 1
99 0.173913 0.142857 1
100 0.082609 0.31498 1
101 0.084058 0.01746 1
102 0.521739 0.072917 10
103 0.347826 0.046726 10
104 0.521739 0.070536 10

Continued on next page

88

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
105 0.121739 0.017857 10
106 0.217391 0.024802 10
107 1.0 0.138393 10
108 0.26087 0.025595 2
109 0.081159 0.124603 8
110 0.097826 0.113194 8
111 0.05942 0.025198 8
112 0.05942 0.142659 8
113 0.053623 0.127083 8
114 0.374638 0.159226 8
115 0.195652 0.077976 8
116 0.191304 0.133929 1
117 0.15 0.136905 5
118 0.007971 0.000298 6
119 0.021739 0.000992 1
120 0.021739 0.000992 1
121 0.007971 0.002976 1
122 0.007971 0.000694 1
123 0.347826 0.047619 1
124 0.386232 0.047619 1
125 0.104348 0.047619 1
126 0.26087 1.0 1
127 0.521739 1.0 1
128 0.072464 0.041667 1
129 0.065217 0.029762 2
130 0.03913 0.012897 1
131 0.008696 0.125 1
132 0.03913 0.102183 1
133 0.03913 0.012897 1
134 0.011594 0.02629 1
135 0.011594 0.029762 1

Continued on next page

89

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
136 0.03913 0.019841 1
137 0.018841 0.075496 1
138 0.03913 0.007937 2
139 0.018841 0.030556 1
140 0.03913 0.008929 4
141 0.069565 0.064782 3
142 0.069565 0.006944 4
143 0.104348 0.020536 1
144 0.073913 0.091071 1
145 0.073913 0.040476 1
146 0.073913 0.040476 1
147 0.043478 0.005952 1
148 0.010145 0.166667 2
149 0.010145 0.044643 2
150 0.005797 0.041667 2
151 0.005797 0.018353 1
152 0.005797 0.001488 2
153 0.043478 0.002976 2
154 0.015942 0.00248 2
155 0.005797 0.003175 1
156 0.000725 0.000198 1
157 0.013043 0.029762 1
158 0.019565 0.113095 1
159 0.015942 0.005952 1
160 0.014493 0.089286 1
161 0.000725 0.001587 1
162 0.000725 9.9e-5 1
163 0.043478 0.105655 1
164 0.043478 0.105655 1
165 0.043478 0.105655 1
166 0.318841 0.160714 4

Continued on next page

90

Table A.1 – Continued from previous page

Process ID
(u)

Process
Capacity

(κ(u))

Processing
Time (τ(u))

Number of
Resources

(ρ(u))
167 0.318841 0.166667 4
168 0.017391 0.056548 1
169 0.011594 0.15873 1
170 0.017391 0.02381 1
171 0.004348 0.03869 1
172 0.014493 0.006151 1
173 0.008696 0.012401 1
174 0.023188 0.008929 1
175 0.000725 9.9e-5 6
176 0.000725 9.9e-5 1
177 0.01087 0.001488 1
178 0.000725 9.9e-5 1
179 0.000725 0.000893 1
180 0.000725 9.9e-5 1
181 0.000725 0.000992 3
182 0.008696 0.016667 1
183 0.000725 0.001488 1
184 0.000725 9.9e-5 1
185 0.004348 0.002183 5
186 0.000725 9.9e-5 2
187 0.724638 0.000992 1
188 0.724638 0.142857 1
189 0.724638 0.142857 1

91

Appendix B

Additional Rescheduling
Performance Profiles

Figures B.1 - B.22 present performance profiles for the experiments conducted in Section
3.5. Figures B.1 - B.3, present the performance profiles for test instances using moderate
facility load. Figures B.4 - B.15, present jobs on time performance profiles for test instances
with various facility loads. Figures B.16 - B.19, present job completion performance profiles
for test instances with 1/2x, 2x, 4x, 8x capacity. Figures B.20 - B.22, present jobs on time
performance profiles for test instances with 1/8x, 1/4x capacity.

92

Figure B.1: Proportion of jobs on time for one day lead times and instances starting with
5,000 samples and 500 samples arriving each day.

Figure B.2: Proportion of jobs on time for one week lead times and instances starting with
5,000 samples and 500 samples arriving each day.

93

Figure B.3: Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 500 samples arriving each day.

Figure B.4: Proportion of jobs on time for one day lead times and instances starting with
2,500 samples and 500 samples arriving each day.

94

Figure B.5: Proportion of jobs on time for one week lead times and instances starting with
2,500 samples and 500 samples arriving each day.

Figure B.6: Proportion of jobs on time for one month lead times and instances starting
with 2,500 samples and 500 samples arriving each day.

95

Figure B.7: Proportion of jobs on time for one day lead times and instances starting with
10,000 samples and 500 samples arriving each day.

Figure B.8: Proportion of jobs on time for one week lead times and instances starting with
10,000 samples and 500 samples arriving each day.

96

Figure B.9: Proportion of jobs on time for one month lead times and instances starting
with 10,000 samples and 500 samples arriving each day.

Figure B.10: Proportion of jobs on time for one day lead times and instances starting with
5,000 samples and 250 samples arriving each day.

97

Figure B.11: Proportion of jobs on time for one week lead times and instances starting
with 5,000 samples and 250 samples arriving each day.

Figure B.12: Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 250 samples arriving each day.

98

Figure B.13: Proportion of jobs on time for one day lead times and instances starting with
5,000 samples and 1,000 samples arriving each day.

Figure B.14: Proportion of jobs on time for one week lead times and instances starting
with 5,000 samples and 1,000 samples arriving each day.

99

Figure B.15: Proportion of jobs on time for one month lead times and instances starting
with 5,000 samples and 1,000 samples arriving each day.

Figure B.16: Performance profile comparing job completion among rescheduling policies for
instances with one half the original capacity starting with 5,000 samples and 500 samples
arriving each day.

100

Figure B.17: Performance profile comparing job completion among rescheduling policies
for instances with twice the original capacity starting with 5,000 samples and 500 samples
arriving each day.

Figure B.18: Performance profile comparing job completion among rescheduling policies
for instances with four times the original capacity starting with 5,000 samples and 500
samples arriving each day.

101

Figure B.19: Performance profile comparing job completion among rescheduling policies
for instances with eight times the original capacity starting with 5,000 samples and 500
samples arriving each day.

Figure B.20: Proportion of jobs on time for one week lead times and instances with one
eighth the original capacity starting with 5,000 samples and 500 samples arriving each day.

102

Figure B.21: Proportion of jobs on time for one week lead times and instances with one
quarter the original capacity starting with 5,000 samples and 500 samples arriving each
day.

Figure B.22: Proportion of jobs on time for one month lead times and instances with one
quarter the original capacity starting with 5,000 samples and 500 samples arriving each
day.

103

Appendix C

Dynamic Timepoint Algorithms

Algorithm Dynamic Timepoint Framework shown in Table C.1 describes the framework
discussed in Section 4.2 in more detail. Algorithm Update Solution shown in Table C.2
demonstrates how we update the solution from our current iteration to be feasible for the
proceeding problem. The functions included in algorithm Helper Methods shown in Table
C.3 are used by the main framework in algorithm Dynamic Timepoint Framework.

104

Table C.1: Algorithm 5, Dynamic Timepoint Framework

Algorithm 5 Dynamic Timepoint Framework

1: procedure Iteratively Solve(G, ε, x0, its tl, obj thresh, sols tl, fin tl, fin disc)
2: . Description of parameters given in Table 4.1
3: start time← Now()
4: x← x0 . x0 is an initial solution, if provided
5: stop iterating← false
6: while stop iterating = false do
7: G∗ ← Build Graph(G, ε) . Build G∗

8: X ← Solve Problem(G∗, fG∗ , CG∗ , x, its tl, sols tl) . Solve (P2)
9: if X 6= ∅ then . A solution was found

10: ε+ ← {ε+(u) = ∅ : u ∈ V }; ε− ← {ε−(u) = {S, S + 1, S + 2, . . . , S + H} :
u ∈ V } . Initialize timepoint modification sets to be empty

11: for all x∗ ∈ X do . For all found solutions
12: (ε+

x∗ , ε
−
x∗)← Get Dynamic Timepoints(G,G∗, ε, x∗) . Get timepoint

modifications
13: ε+ ← {ε+(u) ∪ ε+

x∗(u) : u ∈ V }; ε− ← {ε−(u) ∩ ε−x∗(u) : u ∈ V } . Collate
timepoint modifications

14: end for
15: ε∗ ← {ε(u) ∪ ε+(u) \ ε−(u) : u ∈ V } . Construct next set of timepoints
16: G∗∗ ← Build Graph(G, ε∗) . Build graph for next iteration
17: x∗ ← Get Modified Solution(x,G∗, G∗∗, ε, ε+, ε−) . Modify best

solution from current iteration to be feasible for next iteration
18: stop iterating ← Check Stopping Crite-

ria(x, x∗, fG∗ , fG∗∗ , start time, obj thresh, its tl)
19: x← x∗; ε← ε∗

20: else . We did not find any solutions
21: stop iterating← true
22: end if
23: end while
24: ε+ ← fin disc

25: ε∗ ← {ε(u) ∪ ε+(u) : u ∈ V } . Add timepoints from discretization assumed to give
acceptable solutions

26: G∗∗ ← Build Graph(G, ε∗)
27: x∗ ← Get Modified Solution(x,G∗, G∗∗, ε, ε+, ε−)
28: X ← Solve Problem(G∗, fG∗ , x, fin tl,∞) . Solve problem with many

timepoints
29: return X
30: end procedure

105

Table C.2: Algorithm 6, Update Solution

Algorithm 6 Update Solution

1: function Get Modified Solution(x,G∗, G∗∗, ε, ε+, ε−)
2: x∗ ← 0 . Initialize new solution to be of correct dimension, with all entries 0
3: Set Active Arcs(x,G∗, ε, ε+, ε−, x∗) . Set the x variable entries
4: Set Active Resources(x,G∗, ε, ε+, ε−, x∗) . Set the y variable entries
5: Set Inactive Arcs(x,G∗, ε, ε+, ε−, x∗) . Set the w variable entries
6: return x∗

7: end function
8: procedure Set Active Arcs(x,G∗, ε, ε+, ε−, x∗)
9: for all i ∈ I do

10: for all u ∈ Π(i) do
11: for all t ∈ ε(u) do
12: x∗(i, u, t)← x(i, u, t) . Set all active arcs from previous solution
13: end for
14: end for
15: end for
16: end procedure
17: procedure Set Active Resources(x,G∗, ε, ε+, ε−, x∗)
18: for all (u, t) ∈ V ∗ do
19: for all v ∈ N+

G (u) do
20: y∗(u, v, t)← y(u, v, t) . Set all resource usage values from previous

solution. Any new timepoints are already initialized to have 0 resource usage
21: end for
22: end for
23: end procedure
24: procedure Set Inactive Arcs(x,G∗, ε, ε+, ε−, x∗)
25: for all i ∈ I do
26: for all k ∈ {1, . . . , |Π(i)|} do
27: u← Π(i, k)
28: for all k ∈ {1, . . . , |ε(u)|} do
29: t← ε(u, k); t− ← ε(u, k − 1)
30: w∗(i, u, t)← w∗(i, u, t−)− x∗(i, u, t) +

∑
x∗(i, v, t′) : H(i, v, t′) = (u, t) .

Add material that waited previously or arrived from earlier state, and subtract material
leaving state

31: end for
32: end for
33: end for
34: end procedure

106

Table C.3: Algorithm 7, Helper Methods

Algorithm 7 Helper Methods

1: function Get Dynamic Timepoints(G,G∗, ε, x)
2: ε+, ε− ← {∅ : u ∈ V } . Initialize timepoint modifications sets to be empty
3: ε+

1 ← ∪ Get Instant Start Timepoints(G,G∗, ε, x)
4: ε+

2 ← ∪ Get Overloaded Timepoints(G,G∗, ε, x)
5: ε−1 ← ∪ Get Dominated Timepoints(G,G∗, ε, x)
6: ε+ ← {ε+(u) ∪ ε+

1 (u) ∪ ε+
2 (u) : u ∈ V } . Collate timepoints to add

7: ε− ← {ε−(u) ∪ ε−1 (u) : u ∈ V } . Collate timepoints to remove
8: return (ε+, ε−)
9: end function

10: function Check Stopping Criteria(x, x∗, fG∗ , fG∗∗ , start time, obj thresh, its tl)
11: if (fG∗∗(x

∗)− fG∗(x))/fG∗(x) < obj thresh then . Insufficient progress made
12: return true
13: end if
14: if Now()−start time > its tl then . Iterations time limit exceeded
15: return true
16: end if
17: return false
18: end function
19: function Solve Problem(G∗, fG∗ , x, fin tl, sols tl)
20: P2← max fG∗(x) : all constraints are satisfied . Define problem P2
21: X ← Solve(P2, x, fin tl, sols tl) . Use a solver to solve P2, provide x as

initial solution, use time limit fin tl, return if elapsed time since last found solution
surpasses sols tl

22: return X . X is set of found solutions (possibly empty)
23: end function

107

Appendix D

Dynamic Timepoint Instances

Table D.1 presents detailed information about the results that were reported in Section
4.3 concerning the performance of dynamic timepoint policies. The first column is the
instance number of the entry, the second column refers to the amount of elapsed time the
entry corresponds to, and the third and fourth columns include the size of the instance
when using the static NUD60 discretization. The fifth and sixth columns refer to the
number of days that were scheduled for the instances and the number of samples that were
scheduled. The seventh column displays the size category that the instance was sorted
into. The remaining columns indicate the relative performance of each policy at the time
of the relevant checkpoint.

Table D.1: Results for each instance of dynamic timepoint study.

In
st

an
ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

gt
h

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
60

U
D

60

U
D

12
0

U
D

24
0

5
-

0
-

U
D

60

5
-

0
-

U
D

12
0

5
-

0
-

U
D

24
0

60
-

1.
05

-
U

D
24

0

1 1 698,866 388,218 1 10,000 Small 0.954 0.954 0.954 0.851 0.851 0.851 0.682 0.682

1 5 698,866 388,218 1 10,000 Small 0.954 0.954 0.851 0.851 0.682 0.682 0.486 0.486

1 15 698,866 388,218 1 10,000 Small 0.954 0.851 0.851 0.682 0.486 0.486 0.975 0.948

1 30 698,866 388,218 1 10,000 Small 0.954 0.851 0.682 0.486 0 0.975 0.984 1

Continued on next page

108

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

1 60 698,866 388,218 1 10,000 Small 0.954 0.851 0.682 0.486 0.975 0.984 1 0.973

2 1 686,782 382,158 1 10,000 Small 0.933 0.933 0.933 0.841 0.841 0.841 0.667 0.667

2 5 686,782 382,158 1 10,000 Small 0.933 0.933 0.841 0.841 0.667 0.667 0.474 0.474

2 15 686,782 382,158 1 10,000 Small 0.933 0.841 0.841 0.667 0.474 0.474 1 0.922

2 30 686,782 382,158 1 10,000 Small 0.933 0.841 0.667 0.474 0 1 0.991 0.993

2 60 686,782 382,158 1 10,000 Small 0.933 0.841 0.667 0.474 1 0.991 0.993 0.98

3 1 657,822 367,693 1 10,000 Small 0.953 0.953 0.953 0.842 0.842 0.842 0.658 0.658

3 5 657,822 367,693 1 10,000 Small 0.953 0.953 0.842 0.842 0.658 0.658 0.461 0.461

3 15 657,822 367,693 1 10,000 Small 0.953 0.842 0.842 0.658 0.461 0.461 0.98 0.924

3 30 657,822 367,693 1 10,000 Small 0.953 0.842 0.658 0.461 0 0.98 0.976 1

3 60 657,822 367,693 1 10,000 Small 0.953 0.842 0.658 0.461 0.98 0.976 1 0.998

4 1 646,562 361,874 1 10,000 Small 0.973 0.973 0.973 0.864 0.864 0.864 0.684 0.684

4 5 646,562 361,874 1 10,000 Small 0.973 0.973 0.864 0.864 0.684 0.684 0.487 0.487

4 15 646,562 361,874 1 10,000 Small 0.973 0.864 0.864 0.684 0.487 0.487 0.985 0.939

4 30 646,562 361,874 1 10,000 Small 0.973 0.864 0.684 0.487 0 0.985 0.984 0.999

4 60 646,562 361,874 1 10,000 Small 0.973 0.864 0.684 0.487 0.985 0.984 0.999 1

5 1 662,390 369,871 1 10,000 Small 0.956 0.956 0.956 0.839 0.839 0.839 0.669 0.669

5 5 662,390 369,871 1 10,000 Small 0.956 0.956 0.839 0.839 0.669 0.669 0.469 0.469

5 15 662,390 369,871 1 10,000 Small 0.956 0.839 0.839 0.669 0.469 0.469 0.974 0.946

5 30 662,390 369,871 1 10,000 Small 0.956 0.839 0.669 0.469 0 0.974 0.987 1

5 60 662,390 369,871 1 10,000 Small 0.956 0.839 0.669 0.469 0.974 0.987 1 0.975

6 1 1,245,832 664,038 1 20,000 Med. 0.955 0.955 0.955 0.832 0.832 0.832 0.68 0.68

6 5 1,245,832 664,038 1 20,000 Med. 0.955 0.955 0.832 0.832 0.68 0.68 0.525 0.525

6 15 1,245,832 664,038 1 20,000 Med. 0.955 0.832 0.832 0.68 0.525 0.525 0.967 0.807

6 30 1,245,832 664,038 1 20,000 Med. 0.955 0.832 0.68 0.525 1 0.967 0.994 1

6 60 1,245,832 664,038 1 20,000 Med. 0.955 0.832 0.68 0.525 0.967 0.994 1 0.998

7 1 1,318,834 700,531 1 20,000 Med. 0.932 0.932 0.932 0.808 0.808 0.808 0.651 0.651

7 5 1,318,834 700,531 1 20,000 Med. 0.932 0.932 0.808 0.808 0.651 0.651 0.479 0.479

7 15 1,318,834 700,531 1 20,000 Med. 0.932 0.808 0.808 0.651 0.479 0.479 0.991 0.877

7 30 1,318,834 700,531 1 20,000 Med. 0.932 0.808 0.651 0.479 1 0.991 0.982 1

7 60 1,318,834 700,531 1 20,000 Med. 0.932 0.808 0.651 0.479 0.991 0.982 1 0.987

8 1 1,235,072 658,557 1 20,000 Med. 0.928 0.936 0.936 0.827 0.827 0.827 0.67 0.67

Continued on next page

109

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

8 5 1,235,072 658,557 1 20,000 Med. 0.936 0.936 0.827 0.827 0.67 0.67 0.497 0.497

8 15 1,235,072 658,557 1 20,000 Med. 0.936 0.827 0.827 0.67 0.497 0.497 0.976 0.905

8 30 1,235,072 658,557 1 20,000 Med. 0.936 0.827 0.67 0.497 1 0.976 0.985 1

8 60 1,235,072 658,557 1 20,000 Med. 0.936 0.827 0.67 0.497 0.976 0.985 1 0.976

9 1 1,146,524 614,159 1 20,000 Med. 0.951 0.951 0.951 0.828 0.828 0.828 0.678 0.678

9 5 1,146,524 614,159 1 20,000 Med. 0.951 0.951 0.828 0.828 0.678 0.678 0.514 0.514

9 15 1,146,524 614,159 1 20,000 Med. 0.951 0.828 0.828 0.678 0.514 0.514 0.989 0.922

9 30 1,146,524 614,159 1 20,000 Med. 0.951 0.828 0.678 0.514 1 0.989 0.983 1

9 60 1,146,524 614,159 1 20,000 Med. 0.951 0.828 0.678 0.514 0.989 0.983 1 0.975

10 1 1,337,332 709,802 1 20,000 Med. 0.938 0.938 0.938 0.82 0.82 0.82 0.667 0.667

10 5 1,337,332 709,802 1 20,000 Med. 0.938 0.938 0.82 0.82 0.667 0.667 0.499 0.499

10 15 1,337,332 709,802 1 20,000 Med. 0.938 0.82 0.82 0.667 0.499 0.499 0.948 0.904

10 30 1,337,332 709,802 1 20,000 Med. 0.938 0.82 0.667 0.499 1 0.948 0.987 1

10 60 1,337,332 709,802 1 20,000 Med. 0.938 0.82 0.667 0.499 0.948 0.987 1 0.993

11 1 1,973,660 1,030,570 1 30,000 Med. 0.941 0.941 0.941 0.78 0.78 0.78 0.649 0.649

11 5 1,973,660 1,030,570 1 30,000 Med. 0.941 0.941 0.78 0.78 0.649 0.649 0.5 0.5

11 15 1,973,660 1,030,570 1 30,000 Med. 0.941 0.78 0.78 0.649 0.5 0.5 0.985 0.761

11 30 1,973,660 1,030,570 1 30,000 Med. 0.941 0.78 0.649 0.5 1 0.985 0.97 0.998

11 60 1,973,660 1,030,570 1 30,000 Med. 0.941 0.78 0.649 0.5 0.985 0.97 1 0.975

12 1 1,897,032 992,192 1 30,000 Med. 0.934 0.934 0.934 0.799 0.799 0.799 0.661 0.661

12 5 1,897,032 992,192 1 30,000 Med. 0.934 0.934 0.799 0.799 0.661 0.661 0.509 0.509

12 15 1,897,032 992,192 1 30,000 Med. 0.934 0.799 0.799 0.661 0.509 0.509 0.975 0.767

12 30 1,897,032 992,192 1 30,000 Med. 0.934 0.799 0.661 0.509 2 0.975 0.964 1

12 60 1,897,032 992,192 1 30,000 Med. 0.934 0.799 0.661 0.509 0.975 0.964 1 0.985

13 1 1,856,322 971,578 1 30,000 Med. 0.932 0.932 0.932 0.791 0.791 0.791 0.667 0.667

13 5 1,856,322 971,578 1 30,000 Med. 0.932 0.932 0.791 0.791 0.667 0.667 0.516 0.516

13 15 1,856,322 971,578 1 30,000 Med. 0.932 0.791 0.791 0.667 0.516 0.516 0.938 0.667

13 30 1,856,322 971,578 1 30,000 Med. 0.932 0.791 0.667 0.516 1 0.938 0.962 1

13 60 1,856,322 971,578 1 30,000 Med. 0.932 0.791 0.667 0.516 0.938 0.962 1 0.966

14 1 1,887,126 987,090 1 30,000 Med. 0.936 0.936 0.936 0.782 0.782 0.782 0.651 0.651

14 5 1,887,126 987,090 1 30,000 Med. 0.936 0.936 0.782 0.782 0.651 0.651 0.501 0.501

14 15 1,887,126 987,090 1 30,000 Med. 0.936 0.782 0.782 0.651 0.501 0.501 0.967 0.881

Continued on next page

110

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

14 30 1,887,126 987,090 1 30,000 Med. 0.936 0.782 0.651 0.501 1 0.967 0.97 1

14 60 1,887,126 987,090 1 30,000 Med. 0.936 0.782 0.651 0.501 0.967 0.97 1 0.969

15 1 1,931,448 1,009,384 1 30,000 Med. 0.921 0.921 0.921 0.785 0.785 0.785 0.654 0.654

15 5 1,931,448 1,009,384 1 30,000 Med. 0.921 0.921 0.785 0.785 0.654 0.654 0.503 0.503

15 15 1,931,448 1,009,384 1 30,000 Med. 0.921 0.785 0.785 0.654 0.503 0.503 0.953 0.865

15 30 1,931,448 1,009,384 1 30,000 Med. 0.921 0.785 0.654 0.503 1 0.953 0.96 0.998

15 60 1,931,448 1,009,384 1 30,000 Med. 0.921 0.785 0.654 0.503 0.953 0.96 1 0.964

16 1 1,267,144 707,713 2 10,000 Med. 0 1 1 0 0.868 0.868 0.743 0.743

16 5 1,267,144 707,713 2 10,000 Med. 0.987 1 0.868 0.868 0.743 0.743 0.515 0.515

16 15 1,267,144 707,713 2 10,000 Med. 1 0 0.868 0.743 0.515 0.515 0.989 0.743

16 30 1,267,144 707,713 2 10,000 Med. 1 0.868 0.743 0.515 2 0.989 0.977 0.96

16 60 1,267,144 707,713 2 10,000 Med. 1 0.868 0.743 0.515 0.989 0.977 0.96 0.963

17 1 1,268,814 708,545 2 10,000 Med. 0 1 1 0 0.866 0.866 0.733 0.733

17 5 1,268,814 708,545 2 10,000 Med. 0.989 1 0.866 0.866 0.733 0.733 0.515 0.515

17 15 1,268,814 708,545 2 10,000 Med. 1 0 0.866 0.733 0.515 0.515 0.982 0.764

17 30 1,268,814 708,545 2 10,000 Med. 1 0.866 0.733 0.515 2 0.982 0.977 0.981

17 60 1,268,814 708,545 2 10,000 Med. 1 0.866 0.733 0.515 0.982 0.977 0.981 0.951

18 1 1,347,948 748,069 2 10,000 Med. 0 0.992 0.992 0 0.828 0.828 0.718 0.718

18 5 1,347,948 748,069 2 10,000 Med. 0.979 0.992 0.828 0.828 0.718 0.718 0.508 0.508

18 15 1,347,948 748,069 2 10,000 Med. 0.992 0 0.828 0.718 0.508 0.508 0.985 0.95

18 30 1,347,948 748,069 2 10,000 Med. 0.992 0.828 0.718 0.508 2 1 0.973 0.965

18 60 1,347,948 748,069 2 10,000 Med. 0.992 0.828 0.718 0.508 1 0.973 0.965 0.916

19 1 1,360,774 754,589 2 10,000 Med. 0 1 1 0.845 0.854 0.854 0.714 0.714

19 5 1,360,774 754,589 2 10,000 Med. 0.989 1 0.854 0.854 0.714 0.714 0.516 0.516

19 15 1,360,774 754,589 2 10,000 Med. 1 0.845 0.854 0.714 0.516 0.516 0.988 0.898

19 30 1,360,774 754,589 2 10,000 Med. 1 0.854 0.714 0.516 2 0.988 0.932 0.967

19 60 1,360,774 754,589 2 10,000 Med. 1 0.854 0.714 0.516 0.988 0.932 0.967 0.948

20 1 1,259,862 704,040 2 10,000 Med. 0 0.993 0.993 0 0.869 0.869 0.764 0.764

20 5 1,259,862 704,040 2 10,000 Med. 0.993 0.993 0.869 0.869 0.764 0.764 0.51 0.51

20 15 1,259,862 704,040 2 10,000 Med. 0.993 0 0.869 0.764 0.51 0.51 0.987 0.764

20 30 1,259,862 704,040 2 10,000 Med. 0.993 0.869 0.764 0.51 3 0.987 0.961 0.961

20 60 1,259,862 704,040 2 10,000 Med. 0.993 0.869 0.764 0.51 0.987 0.961 1 0.961

Continued on next page

111

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

21 1 1,910,338 1,030,553 2 15,000 Med. 0 1 1 0 0.863 0.863 0 0.719

21 5 1,910,338 1,030,553 2 15,000 Med. 0 1 0 0.863 0.719 0.719 0.496 0.496

21 15 1,910,338 1,030,553 2 15,000 Med. 1 0 0.863 0.719 0.496 0.496 0.995 0.719

21 30 1,910,338 1,030,553 2 15,000 Med. 1 0.863 0.719 0.496 11 0.995 0.954 0.932

21 60 1,910,338 1,030,553 2 15,000 Med. 1 0.863 0.719 0.496 0.995 0.954 0.932 0.937

22 1 1,834,310 992,558 2 15,000 Med. 0 1 1 0 0.9 0.9 0.726 0.726

22 5 1,834,310 992,558 2 15,000 Med. 0 1 0.898 0.9 0.726 0.726 0.511 0.511

22 15 1,834,310 992,558 2 15,000 Med. 1 0 0.9 0.726 0.511 0.511 0.992 0.726

22 30 1,834,310 992,558 2 15,000 Med. 1 0.9 0.726 0.511 9 0.992 0.96 0.93

22 60 1,834,310 992,558 2 15,000 Med. 1 0.9 0.726 0.511 0.992 0.96 0.98 0.897

23 1 1,949,002 1,049,765 2 15,000 Med. 0 0.996 0.996 0 0.831 0.831 0.685 0.685

23 5 1,949,002 1,049,765 2 15,000 Med. 0 0.996 0 0.831 0.685 0.685 0.48 0.48

23 15 1,949,002 1,049,765 2 15,000 Med. 0.996 0 0.831 0.685 0.48 0.48 0.986 0.685

23 30 1,949,002 1,049,765 2 15,000 Med. 0.996 0.831 0.685 0.48 4 0.986 1 0.975

23 60 1,949,002 1,049,765 2 15,000 Med. 0.996 0.831 0.685 0.48 0.986 1 0.975 0.998

24 1 1,892,194 1,021,458 2 15,000 Med. 0 0 1 0 0.875 0.875 0 0.7

24 5 1,892,194 1,021,458 2 15,000 Med. 0 1 0 0.875 0.7 0.7 0.481 0.481

24 15 1,892,194 1,021,458 2 15,000 Med. 0 0 0.875 0.7 0.481 0.481 0.868 0.7

24 30 1,892,194 1,021,458 2 15,000 Med. 0.998 0.875 0.7 0.481 10 0.99 0.963 0.951

24 60 1,892,194 1,021,458 2 15,000 Med. 1 0.875 0.7 0.481 0.99 0.963 0.978 0.881

25 1 1,740,642 945,620 2 15,000 Med. 0 0.992 0.992 0 0.87 0.87 0.708 0.708

25 5 1,740,642 945,620 2 15,000 Med. 0 0.992 0 0.87 0.708 0.708 0.498 0.498

25 15 1,740,642 945,620 2 15,000 Med. 0.992 0 0.87 0.708 0.498 0.498 0.989 0.708

25 30 1,740,642 945,620 2 15,000 Med. 0.992 0.87 0.708 0.498 11 1 0.953 0.909

25 60 1,740,642 945,620 2 15,000 Med. 0.992 0.87 0.708 0.498 1 0.953 0.909 0.91

26 1 1,955,878 1,087,585 3 10,000 Med. 0 0.944 1 0 0.828 0.828 0.011 0.794

26 5 1,955,878 1,087,585 3 10,000 Med. 0 1 0 0.828 0.794 0.794 0.574 0.574

26 15 1,955,878 1,087,585 3 10,000 Med. 0.944 0 0.828 0.794 0.574 0.574 0.958 0.011

26 30 1,955,878 1,087,585 3 10,000 Med. 0.994 0.828 0.794 0.574 13 0.958 0.956 0.791

26 60 1,955,878 1,087,585 3 10,000 Med. 1 0.828 0.794 0.574 0.958 0.956 0.791 0.896

27 1 1,974,954 1,097,106 3 10,000 Med. 0 1 1 0 0.83 0.83 0 0.795

27 5 1,974,954 1,097,106 3 10,000 Med. 0 1 0.83 0.83 0.795 0.795 0.61 0.61

Continued on next page

112

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

27 15 1,974,954 1,097,106 3 10,000 Med. 1 0 0.83 0.795 0.61 0.61 0.982 0

27 30 1,974,954 1,097,106 3 10,000 Med. 1 0.83 0.795 0.61 21 0.982 0.957 0.959

27 60 1,974,954 1,097,106 3 10,000 Med. 1 0.83 0.795 0.61 0.982 0.957 0.959 0.948

28 1 1,997,392 1,108,319 3 10,000 Med. 0 0 1 0 0.812 0.812 0.775 0.775

28 5 1,997,392 1,108,319 3 10,000 Med. 0 1 0.812 0.812 0.775 0.775 0.615 0.615

28 15 1,997,392 1,108,319 3 10,000 Med. 0 0 0.812 0.775 0.615 0.615 0.982 0.775

28 30 1,997,392 1,108,319 3 10,000 Med. 1 0.812 0.775 0.615 9 0.982 0.922 0.82

28 60 1,997,392 1,108,319 3 10,000 Med. 1 0.812 0.775 0.615 0.982 0.922 0.82 0.942

29 1 1,908,742 1,063,943 3 10,000 Med. 0 0.976 1 0 0.84 0.84 0 0.807

29 5 1,908,742 1,063,943 3 10,000 Med. 0 1 0.83 0.84 0.807 0.807 0.632 0.632

29 15 1,908,742 1,063,943 3 10,000 Med. 0.976 0 0.84 0.807 0.632 0.632 0.968 0

29 30 1,908,742 1,063,943 3 10,000 Med. 1 0.84 0.807 0.632 11 0.968 0.976 0.947

29 60 1,908,742 1,063,943 3 10,000 Med. 1 0.84 0.807 0.632 0.968 0.976 0.947 0.886

30 1 2,016,628 1,117,913 3 10,000 Large 0 0.974 1 0 0.822 0.822 0.01 0.784

30 5 2,016,628 1,117,913 3 10,000 Large 0 1 0.822 0.822 0.784 0.784 0.585 0.585

30 15 2,016,628 1,117,913 3 10,000 Large 0.974 0 0.822 0.784 0.585 0.585 0.987 0.01

30 30 2,016,628 1,117,913 3 10,000 Large 1 0.822 0.784 0.585 8 0.987 0.899 0.942

30 60 2,016,628 1,117,913 3 10,000 Large 1 0.822 0.784 0.585 0.987 0.899 0.942 0.951

31 1 304,444 189,749 3 5,000 Small 0.997 0.997 0.997 0.941 0.941 0.941 0.889 0.889

31 5 304,444 189,749 3 5,000 Small 0.997 0.997 0.941 0.941 0.889 0.889 0.61 0.61

31 15 304,444 189,749 3 5,000 Small 0.997 0.941 0.941 0.889 0.61 0.61 0.997 0.998

31 30 304,444 189,749 3 5,000 Small 0.997 0.941 0.889 0.61 0 0.997 0.998 0.997

31 60 304,444 189,749 3 5,000 Small 0.997 0.941 0.889 0.61 0.997 0.998 0.997 1

32 1 353,656 214,302 3 5,000 Small 0.999 0.999 0.999 0.943 0.943 0.943 0.892 0.892

32 5 353,656 214,302 3 5,000 Small 0.999 0.999 0.943 0.943 0.892 0.892 0.581 0.581

32 15 353,656 214,302 3 5,000 Small 0.999 0.943 0.943 0.892 0.581 0.581 0.999 1

32 30 353,656 214,302 3 5,000 Small 0.999 0.943 0.892 0.581 0 0.999 1 0.999

32 60 353,656 214,302 3 5,000 Small 0.999 0.943 0.892 0.581 0.999 1 0.999 0.999

33 1 364,180 219,584 3 5,000 Small 0.998 0.998 0.998 0.872 0.872 0.872 0.824 0.824

33 5 364,180 219,584 3 5,000 Small 0.998 0.998 0.872 0.872 0.824 0.824 0.584 0.584

33 15 364,180 219,584 3 5,000 Small 0.998 0.872 0.872 0.824 0.584 0.584 0.997 0.993

33 30 364,180 219,584 3 5,000 Small 0.998 0.872 0.824 0.584 0 0.997 1 0.997

Continued on next page

113

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

33 60 364,180 219,584 3 5,000 Small 0.998 0.872 0.824 0.584 0.997 1 0.997 1

34 1 364,596 219,762 3 5,000 Small 1 1 1 0.932 0.932 0.932 0.887 0.887

34 5 364,596 219,762 3 5,000 Small 1 1 0.932 0.932 0.887 0.887 0.608 0.608

34 15 364,596 219,762 3 5,000 Small 1 0.932 0.932 0.887 0.608 0.608 0.999 0.997

34 30 364,596 219,762 3 5,000 Small 1 0.932 0.887 0.608 0 0.999 0.997 0.996

34 60 364,596 219,762 3 5,000 Small 1 0.932 0.887 0.608 0.999 0.997 0.996 0.997

35 1 344,038 209,449 3 5,000 Small 0.998 0.998 0.998 0.903 0.903 0.903 0.854 0.854

35 5 344,038 209,449 3 5,000 Small 0.998 0.998 0.903 0.903 0.854 0.854 0.612 0.612

35 15 344,038 209,449 3 5,000 Small 0.998 0.903 0.903 0.854 0.612 0.612 1 0.999

35 30 344,038 209,449 3 5,000 Small 0.998 0.903 0.854 0.612 0 1 0.999 1

35 60 344,038 209,449 3 5,000 Small 0.998 0.903 0.854 0.612 1 0.999 1 0.998

36 1 2,709,636 1,500,018 4 10,000 Large 0 0 1 0 0.857 0.857 0 0.827

36 5 2,709,636 1,500,018 4 10,000 Large 0 1 0.857 0.857 0.827 0.827 0.744 0.744

36 15 2,709,636 1,500,018 4 10,000 Large 0 0 0.857 0.827 0.744 0.744 0.997 0

36 30 2,709,636 1,500,018 4 10,000 Large 0.911 0.857 0.827 0.744 40 0.997 0.965 0.721

36 60 2,709,636 1,500,018 4 10,000 Large 1 0.857 0.827 0.744 0.997 0.965 0.727 0.984

37 1 2,276,894 1,283,585 4 10,000 Large 0 0 1 0 0.88 0.88 0 0.85

37 5 2,276,894 1,283,585 4 10,000 Large 0 1 0 0.88 0.85 0.85 0.74 0.74

37 15 2,276,894 1,283,585 4 10,000 Large 0 0 0.88 0.85 0 0.74 0.999 0

37 30 2,276,894 1,283,585 4 10,000 Large 1 0.88 0.85 0 102 0.999 0.995 0.976

37 60 2,276,894 1,283,585 4 10,000 Large 1 0.88 0.85 0.74 0.999 0.995 0.991 0.976

38 1 2,760,022 1,525,133 4 10,000 Large 0 0 1 0 0.805 0.805 0.775 0.775

38 5 2,760,022 1,525,133 4 10,000 Large 0 1 0.801 0.805 0.775 0.775 0.737 0.737

38 15 2,760,022 1,525,133 4 10,000 Large 0 0 0.805 0.775 0.737 0.737 0.98 0.775

38 30 2,760,022 1,525,133 4 10,000 Large 0.97 0.805 0.775 0.737 20 0.98 0.893 0.983

38 60 2,760,022 1,525,133 4 10,000 Large 1 0.805 0.775 0.737 0.98 0.893 0.983 0.983

39 1 2,438,780 1,364,424 4 10,000 Large 0 0.962 1 0 0.856 0.856 0 0.826

39 5 2,438,780 1,364,424 4 10,000 Large 0 1 0.856 0.856 0.826 0.826 0.763 0.763

39 15 2,438,780 1,364,424 4 10,000 Large 0.962 0 0.856 0.826 0.763 0.763 0.998 0.826

39 30 2,438,780 1,364,424 4 10,000 Large 1 0.856 0.826 0.763 34 0.998 0.988 0.972

39 60 2,438,780 1,364,424 4 10,000 Large 1 0.856 0.826 0.763 0.998 0.988 0.972 0.972

40 1 2,537,444 1,413,707 4 10,000 Large 0 0 1 0 0.832 0.832 0.804 0.804

Continued on next page

114

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

40 5 2,537,444 1,413,707 4 10,000 Large 0 1 0.832 0.832 0.804 0.804 0.736 0.736

40 15 2,537,444 1,413,707 4 10,000 Large 0 0 0.832 0.804 0.736 0.736 0.976 0.804

40 30 2,537,444 1,413,707 4 10,000 Large 0.963 0.832 0.804 0.736 20 0.976 0.972 0.985

40 60 2,537,444 1,413,707 4 10,000 Large 1 0.832 0.804 0.736 0.976 0.972 0.99 0.987

41 1 1,375,486 831,659 4 5,000 Med. 0 1 1 0.881 0.881 0.881 0.835 0.835

41 5 1,375,486 831,659 4 5,000 Med. 1 1 0.881 0.881 0.835 0.835 0.806 0.806

41 15 1,375,486 831,659 4 5,000 Med. 1 0.881 0.881 0.835 0.806 0.806 0.998 0.983

41 30 1,375,486 831,659 4 5,000 Med. 1 0.881 0.835 0.806 6 0.998 0.999 0.999

41 60 1,375,486 831,659 4 5,000 Med. 1 0.881 0.835 0.806 0.998 0.999 0.999 1

42 1 1,315,546 801,605 4 5,000 Med. 0 1 1 0.882 0.882 0.882 0.84 0.84

42 5 1,315,546 801,605 4 5,000 Med. 1 1 0.882 0.882 0.84 0.84 0.814 0.814

42 15 1,315,546 801,605 4 5,000 Med. 1 0.882 0.882 0.84 0.814 0.814 0.998 0.995

42 30 1,315,546 801,605 4 5,000 Med. 1 0.882 0.84 0.814 4 0.998 1 1

42 60 1,315,546 801,605 4 5,000 Med. 1 0.882 0.84 0.814 0.998 1 1 1

43 1 1,376,592 832,173 4 5,000 Med. 0.988 1 1 0 0.862 0.862 0.813 0.813

43 5 1,376,592 832,173 4 5,000 Med. 1 1 0.862 0.862 0.813 0.813 0.778 0.778

43 15 1,376,592 832,173 4 5,000 Med. 1 0 0.862 0.813 0.778 0.778 0.999 0.951

43 30 1,376,592 832,173 4 5,000 Med. 1 0.862 0.813 0.778 8 0.999 0.999 1

43 60 1,376,592 832,173 4 5,000 Med. 1 0.862 0.813 0.778 0.999 0.999 1 1

44 1 1,306,294 797,005 4 5,000 Med. 0.998 0.998 0.998 0.88 0.88 0.88 0.835 0.835

44 5 1,306,294 797,005 4 5,000 Med. 0.998 0.998 0.88 0.88 0.835 0.835 0.808 0.808

44 15 1,306,294 797,005 4 5,000 Med. 0.998 0.88 0.88 0.835 0.808 0.808 1 0.981

44 30 1,306,294 797,005 4 5,000 Med. 0.998 0.88 0.835 0.808 5 1 1 1

44 60 1,306,294 797,005 4 5,000 Med. 0.998 0.88 0.835 0.808 1 1 1 0.998

45 1 1,252,562 770,184 4 5,000 Med. 0 1 1 0 0.928 0.928 0.88 0.88

45 5 1,252,562 770,184 4 5,000 Med. 1 1 0.928 0.928 0.88 0.88 0.854 0.854

45 15 1,252,562 770,184 4 5,000 Med. 1 0 0.928 0.88 0.854 0.854 1 0.98

45 30 1,252,562 770,184 4 5,000 Med. 1 0.928 0.88 0.854 7 1 0.996 0.996

45 60 1,252,562 770,184 4 5,000 Med. 1 0.928 0.88 0.854 1 0.996 0.996 1

46 1 3,305,890 1,833,463 5 10,000 Large 0 0 0.931 0 0.848 0.848 0.816 0.816

46 5 3,305,890 1,833,463 5 10,000 Large 0 0.931 0 0.848 0.816 0.816 0.791 0.791

46 15 3,305,890 1,833,463 5 10,000 Large 0 0 0.848 0.816 0.791 0.791 1 0.816

Continued on next page

115

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

46 30 3,305,890 1,833,463 5 10,000 Large 0 0.848 0.816 0.791 50 1 0.971 0.726

46 60 3,305,890 1,833,463 5 10,000 Large 0.931 0.848 0.816 0.791 1 0.971 0.726 0.988

47 1 3,234,804 1,798,044 5 10,000 Large 0 0 0.998 0 0.851 0.851 0 0.815

47 5 3,234,804 1,798,044 5 10,000 Large 0 0.998 0 0.851 0.815 0.815 0.787 0.787

47 15 3,234,804 1,798,044 5 10,000 Large 0 0 0.851 0.815 0.787 0.787 0.997 0

47 30 3,234,804 1,798,044 5 10,000 Large 0.979 0.851 0.815 0.787 48 0.997 1 0.698

47 60 3,234,804 1,798,044 5 10,000 Large 0.998 0.851 0.815 0.787 0.997 1 0.698 0.998

48 1 3,399,906 1,880,512 5 10,000 Large 0 0 1 0 0.836 0.836 0.799 0.799

48 5 3,399,906 1,880,512 5 10,000 Large 0 1 0.834 0.836 0.799 0.799 0.772 0.772

48 15 3,399,906 1,880,512 5 10,000 Large 0 0 0.836 0.799 0.772 0.772 0.997 0.799

48 30 3,399,906 1,880,512 5 10,000 Large 0 0.836 0.799 0.772 15 0.997 0.974 0.982

48 60 3,399,906 1,880,512 5 10,000 Large 1 0.836 0.799 0.772 0.997 0.974 0.982 0.982

49 1 3,192,728 1,776,841 5 10,000 Large 0 0 0.998 0 0.841 0.841 0 0.808

49 5 3,192,728 1,776,841 5 10,000 Large 0 0.998 0 0.841 0.808 0.808 0.77 0.77

49 15 3,192,728 1,776,841 5 10,000 Large 0 0 0.841 0.808 0.77 0.77 1 0.808

49 30 3,192,728 1,776,841 5 10,000 Large 0.926 0.841 0.808 0.77 49 1 0.996 0.7

49 60 3,192,728 1,776,841 5 10,000 Large 0.998 0.841 0.808 0.77 1 0.996 0.7 0.974

50 1 3,339,016 1,850,121 5 10,000 Large 0 0 0.95 0 0.858 0.858 0 0.822

50 5 3,339,016 1,850,121 5 10,000 Large 0 0.95 0 0.858 0.822 0.822 0.793 0.793

50 15 3,339,016 1,850,121 5 10,000 Large 0 0 0.858 0.822 0.793 0.793 0.983 0

50 30 3,339,016 1,850,121 5 10,000 Large 0 0.858 0.822 0.793 37 0.983 0.985 1

50 60 3,339,016 1,850,121 5 10,000 Large 0.95 0.858 0.822 0.793 0.983 0.985 1 1

51 1 1,743,006 1,050,816 5 5,000 Med. 0 1 1 0.879 0.879 0.879 0.815 0.815

51 5 1,743,006 1,050,816 5 5,000 Med. 0 1 0.879 0.879 0.815 0.815 0.778 0.778

51 15 1,743,006 1,050,816 5 5,000 Med. 1 0.879 0.879 0.815 0.778 0.778 0.995 0.994

51 30 1,743,006 1,050,816 5 5,000 Med. 1 0.879 0.815 0.778 3 0.995 0.999 1

51 60 1,743,006 1,050,816 5 5,000 Med. 1 0.879 0.815 0.778 0.995 0.999 1 0.992

52 1 1,657,794 1,008,232 5 5,000 Med. 0 1 1 0 0.896 0.896 0.84 0.84

52 5 1,657,794 1,008,232 5 5,000 Med. 1 1 0.896 0.896 0.84 0.84 0.809 0.809

52 15 1,657,794 1,008,232 5 5,000 Med. 1 0 0.896 0.84 0.809 0.809 0.997 0.998

52 30 1,657,794 1,008,232 5 5,000 Med. 1 0.896 0.84 0.809 3 0.997 0.998 0.99

52 60 1,657,794 1,008,232 5 5,000 Med. 1 0.896 0.84 0.809 0.997 0.998 0.99 1

Continued on next page

116

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

53 1 1,832,988 1,095,905 5 5,000 Med. 0 0.996 0.996 0.908 0.908 0.908 0.85 0.85

53 5 1,832,988 1,095,905 5 5,000 Med. 0 0.996 0.908 0.908 0.85 0.85 0.818 0.818

53 15 1,832,988 1,095,905 5 5,000 Med. 0.996 0.908 0.908 0.85 0.818 0.818 1 0.982

53 30 1,832,988 1,095,905 5 5,000 Med. 0.996 0.908 0.85 0.818 3 1 0.986 0.98

53 60 1,832,988 1,095,905 5 5,000 Med. 0.996 0.908 0.85 0.818 1 0.986 0.98 0.979

54 1 1,665,390 1,012,064 5 5,000 Med. 0 1 1 0 0.937 0.937 0.877 0.877

54 5 1,665,390 1,012,064 5 5,000 Med. 1 1 0.937 0.937 0.877 0.877 0.841 0.841

54 15 1,665,390 1,012,064 5 5,000 Med. 1 0 0.937 0.877 0.841 0.841 0.996 0.994

54 30 1,665,390 1,012,064 5 5,000 Med. 1 0.937 0.877 0.841 4 0.996 1 0.991

54 60 1,665,390 1,012,064 5 5,000 Med. 1 0.937 0.877 0.841 0.996 1 0.991 0.991

55 1 1,734,194 1,046,389 5 5,000 Med. 0 0.999 0.999 0.889 0.889 0.889 0.833 0.833

55 5 1,734,194 1,046,389 5 5,000 Med. 0.992 0.999 0.889 0.889 0.833 0.833 0.804 0.804

55 15 1,734,194 1,046,389 5 5,000 Med. 0.999 0.889 0.889 0.833 0.804 0.804 0.999 1

55 30 1,734,194 1,046,389 5 5,000 Med. 0.999 0.889 0.833 0.804 2 0.999 1 0.999

55 60 1,734,194 1,046,389 5 5,000 Med. 0.999 0.889 0.833 0.804 0.999 1 0.999 0.999

56 1 2,452,604 1,476,603 7 5,000 Large 0 0 0.998 0 0.901 0.901 0.833 0.833

56 5 2,452,604 1,476,603 7 5,000 Large 0 0.998 0.901 0.901 0.833 0.833 0.794 0.794

56 15 2,452,604 1,476,603 7 5,000 Large 0 0 0.901 0.833 0.794 0.794 1 0.833

56 30 2,452,604 1,476,603 7 5,000 Large 0.998 0.901 0.833 0.794 7 1 0.996 0.998

56 60 2,452,604 1,476,603 7 5,000 Large 0.998 0.901 0.833 0.794 1 0.996 0.998 0.998

57 1 2,667,758 1,584,269 7 5,000 Large 0 0 1 0 0.955 0.955 0.877 0.877

57 5 2,667,758 1,584,269 7 5,000 Large 0 1 0.955 0.955 0.877 0.877 0.835 0.835

57 15 2,667,758 1,584,269 7 5,000 Large 0 0 0.955 0.877 0.835 0.835 0.995 0.877

57 30 2,667,758 1,584,269 7 5,000 Large 1 0.955 0.877 0.835 7 0.995 0.994 1

57 60 2,667,758 1,584,269 7 5,000 Large 1 0.955 0.877 0.835 0.995 0.994 1 1

58 1 2,082,018 1,291,228 7 5,000 Large 0 1 1 0 0.977 0.977 0.901 0.901

58 5 2,082,018 1,291,228 7 5,000 Large 0 1 0.977 0.977 0.901 0.901 0.864 0.864

58 15 2,082,018 1,291,228 7 5,000 Large 1 0 0.977 0.901 0.864 0.864 0.998 1

58 30 2,082,018 1,291,228 7 5,000 Large 1 0.977 0.901 0.864 13 0.998 1 0.996

58 60 2,082,018 1,291,228 7 5,000 Large 1 0.977 0.901 0.864 0.998 1 0.996 0.996

59 1 2,078,980 1,289,713 7 5,000 Large 0 0.996 0.996 0 0.996 0.996 0 0.936

59 5 2,078,980 1,289,713 7 5,000 Large 0 0.996 0 0.996 0.936 0.936 0.892 0.892

Continued on next page

117

Table D.1 – Continued from previous page

In
st

a
n

ce

T
im

e
E

la
p

se
d

(M
in

.)

#
V

ar
s.

#
C

on
s.

L
en

g
th

of
H

or
iz

on
(D

ay
s)

#
S

am
p

le
s

S
iz

e

N
U

D
6
0

U
D

60

U
D

1
20

U
D

2
40

5
-

0
-

U
D

60

5
-

0
-

U
D

1
2
0

5
-

0
-

U
D

2
4
0

6
0

-
1
.0

5
-

U
D

2
4
0

59 15 2,078,980 1,289,713 7 5,000 Large 0.996 0 0.996 0.936 0.892 0.892 0.996 0.936

59 30 2,078,980 1,289,713 7 5,000 Large 0.996 0.996 0.936 0.892 34 0.996 1 0.997

59 60 2,078,980 1,289,713 7 5,000 Large 0.996 0.996 0.936 0.892 0.996 1 0.997 0.997

60 1 2,515,326 1,508,049 7 5,000 Large 0 0 1 0 0.956 0.956 0 0.88

60 5 2,515,326 1,508,049 7 5,000 Large 0 1 0 0.956 0.88 0.88 0.842 0.842

60 15 2,515,326 1,508,049 7 5,000 Large 0 0 0.956 0.88 0.842 0.842 0.996 0.88

60 30 2,515,326 1,508,049 7 5,000 Large 0.979 0.956 0.88 0.842 55 0.996 0.996 0.997

60 60 2,515,326 1,508,049 7 5,000 Large 1 0.956 0.88 0.842 0.996 0.996 0.997 0.997

118

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Time Representations
	Rescheduling
	Tailoring Time Grids
	Contributions of the Thesis
	Structure of the Thesis

	Background and Literature Review
	Problem Description
	Time Layered Graphs
	Scheduling Model
	When to Reschedule
	Time Grids for Discrete Time Representations

	Study on Rescheduling Frequency
	Rolling Horizon Routine
	Rescheduling Policies
	Performance Metrics
	Design of Experiments
	Results
	Results with Moderate Facility Load
	Effects of Different Plant Loads
	Effects of Varying Plant Capacity
	Other Factors Considered

	Chapter Summary

	Study on Dynamic Timepoint Schemes
	Problem Description
	Timepoint Modification Framework
	Computational Experiments
	Policies Tested
	Testing Procedure
	Performance on Small Size Problems
	Performance on Medium Size Problems
	Performance on Large Size Problems
	Per Iteration Analysis

	Chapter Summary

	Conclusions
	Future Work

	References
	APPENDICES
	Facility Parameter Values
	Additional Rescheduling Performance Profiles
	Dynamic Timepoint Algorithms
	Dynamic Timepoint Instances

