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Abstract 

Habitual kneeling in high knee flexion postures is a risk factor for knee joint dysfunction 

yet critical parameters for modeling this range of motion remain unknown or untested in three 

dimensions. High flexion is defined as postures exceeding 120° at the knee joint to a maximum 

of approximately 165°. Specific occupational and ethnic populations that regularly use high knee 

flexion postures have increased prevalence of degenerative knee diseases. This could suggest a 

causal relationship between habitual kneeling and disease prevalence resulting from repeated 

exposures. Therefore, this thesis was designed to explore two critical components for high knee 

flexion biomechanical modeling: intersegmental (thigh-calf and heel-gluteal) contact forces and 

lower limb muscular activation patterns across the full range of knee flexion. The global 

objective of this work was to develop a 3D musculoskeletal (MSK) model of the knee to estimate 

tibial contact forces in high knee flexion postures for determining the effect of intersegmental 

contact on these calculations. Two experimental studies, verification against a ‘gold-standard’ 

dataset, and an application study supported this global objective.  

Study 1: The purposes of this study were: 1) to measure total intersegmental contact 

force magnitude and centre of force (CoF) location during six high knee flexion movements and 

2) to define regression models, based on anthropometrics, for the estimation of intersegmental 

contact parameters. Fifty eight participants completed six high knee flexion movements while 

motion capture and pressure data from the right lower limb were recorded. High knee flexion 

movements had average peak total intersegmental contact force magnitudes ranging from ~50-

200N or ~8-30 %BW. Intersegmental CoF locations were segregated between thigh-calf and 
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heel-gluteal regions with CoF, at peak total force, being ~6.2 cm and ~32.7 cm distal from the 

functional knee joint center about the long axis of the femur respectively. 

Five parameters of intersegmental contact (onset, maximum knee flexion angle, total 

contact force, thigh-calf CoF, and thigh-calf contact area) were then assessed for anthropometric 

based regression model fit. Strong correlations and linear regression models were found for 

maximum knee flexion angle and thigh-calf CoF, but only moderate to weak results were found 

for all other intersegmental contact parameters. The overall poor fit and variance explained by 

the linear regression models for onset, total force, and contact area suggest further work is 

needed to provide estimations of these parameters for use in future modeling efforts.  

Study 2: The purposes of this study were: 1) to measure surface and fine-wire EMG 

activation profiles in six high knee flexion movements and 2) to establish if surface EMG sites 

can be used as a proxy for fine-wire activation profiles. Sixteen participants completed the same 

high knee flexion movements, and level walking, as study 1 while activation waveforms from 

three deep muscles—vastus intermedius (VI), adductor magnus (AM), and semimembranosus 

(SM)—were recorded using fine-wire electrodes for comparison to easily accessible surface 

sites. Average peaks of VI, AM, and SM fine-wire activations during high knee flexion 

movements were approximately 30, 85, and 35 %MVC respectively. None of the surface sites 

recorded satisfied our criteria to successfully model fine-wire recordings. This was largely due to 

the considerable variability of surface-indwelling comparisons between participants. Our 

findings would suggest that the use of fine-wire EMG to obtain representative activation 
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waveforms from VI, AM, or SM may be required if isolated muscle/motor unit activity is 

needed. 

MSK model: A full range of knee motion MSK model was developed for the estimation 

of tibial contact forces. Verification of the MSK model was completed by calculating the error 

between tibial compressive force estimates and measurements from an instrumented knee 

implant (gold standard). Vertex based object files of participant bones and CAD files of implant 

components were obtained from a public repository for gold standard data with muscle geometry 

scaled from our MSK model. Tibial compression estimates strongly fit implant data shape during 

walking (R2 0.83), squatting (R2 0.93), and ‘bouncy’ walking (R2 0.74) with an RMSD of 0.47, 

0.16 and 0.58 BW respectively. Qualitative assessments of recorded EMG and muscle force 

estimations showed poor agreement between time-series data. Therefore, the strong fit of MSK 

tibial compression estimates to gold standard data would suggest this model is phenomenological 

in nature and does not accurately represent neuromuscular control. 

Application: The purpose of this study was to quantify the effect of including 

intersegmental contact on external knee joint moments and tibial contact force estimations. This 

study used participant data collected from study 2. There was an average RMSD of 3.56, 0.16, 

and 0.06 %BW*HT in flexion/extension, ab/adduction, and int/external external moments 

respectively when considering intersegmental contact parameters. Reductions in external 

moments caused changes to mean RMSD tibial contact force estimates: 0.14 BW lower 

compression, 0.2 BW lower posterior shear, and 0.03 BW higher lateral shear. Muscle force 

estimates generally followed EMG waveforms in shape for vastii, gluteus medius, and AM with 
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SM having an improved agreement using its indwelling signal compared to surface 

measurements. 

General conclusions: Intersegmental contact forces must be considered when reporting 

tibial contact forces during high knee flexion movements as significant reductions to tibial 

posterior shear and increases in lateral shear were observed. Further work is required to refine 

MSK models in these ranges of knee motion as pressure sensor technology and soft tissue 

artifact are considerable limitations. Measurement of populations who habitually perform these 

activities needs to be completed to assess the translation of these findings to appropriate 

individuals. 
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Chapter 1 – General Introduction 

Habitual kneeling in high knee flexion postures is a risk factor for knee joint dysfunction 

yet critical parameters for modeling this range of motion remain unknown or untested in three 

dimensions (Coggon et al., 2000; Thompson et al., 2015). High flexion is defined as postures 

exceeding 120° at the knee joint (Hemmerich et al., 2006; Kobayashi et al., 2013) to a maximum 

of approximately 165° (Acker et al., 2011; Kingston and Acker, 2018a). At any given time, one 

in eight Canadian workers have diagnosable knee osteoarthritis (OA) with prevalence expected 

to increase to 1 in 4 as the population ages (Bombardier et al., 2011). Also, specific occupational 

and ethnic populations that habitually kneel have increased prevalence of degenerative diseases, 

such as OA (Baker et al., 2003; Kirkeshov Jensen, 2008), bursitis (Thun et al., 1987), and pain 

(Bombardier et al., 2011). This could suggest a causal relationship between habitual kneeling and 

increased degenerative disease prevalence resulting from repeated exposures. While self-report 

and physical exposure data has been collected from patients or workers, this retrospective 

method of data collection does not provide necessary detail for biomechanical modeling, 

exploration of disease mechanisms, or intervention planning.  

This thesis was designed to explore two critical components for high knee flexion 

biomechanical modeling: intersegmental contact forces and lower limb muscular activation 

patterns across the full range of knee flexion. Ignoring these components would result in 

computational models lacking construct validity (Hicks et al., 2014) with estimations of tibial 

contact forces in high knee flexion being questionable. Therefore, intersegmental contact forces 

were incorporated to a three-dimensional (3D) musculoskeletal (MSK) model of the knee for 
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estimating tibial contact forces with muscle activation data used as a qualitative assessment of 

model-estimated muscle force waveforms. 

1.1 Objectives 

Human MSK models provide researchers with tools that enable rapid testing of 

hypotheses and estimates of the mechanical processes in which our bodies produce movement. 

These estimates not only provide a deeper understanding of human kinesiology, but can assist 

clinical decisions and recovery (Zajac et al., 2003) or inform safe working guidelines (Guidelines 

for Modified Work, 2008). However, all models suffer a common limitation; estimates are only 

as good as the assumptions they have been built from. Generic MSK models verified for use in 

many different movements are rare as models are typically constrained to answer focused 

research questions. None of the most common knee joint contact models publicly available—

notably Arnold et al. (2010), Carbone et al., (2015), or Halloran et al. (2010)—were designed for 

use in high knee flexion. Therefore, the global objective of this work was to develop a 3D MSK 

model of the knee to estimate tibial contact forces in high knee flexion postures for determining 

the effect of intersegmental contact on these estimations. Although there are implications of high 

knee flexion postures on the patellofemoral joint, such an investigation is outside the scope of 

this thesis. This model includes experimentally measured intersegmental contact forces and 

lower limb muscle activation patterns from high flexion movements as input and qualitative 

verification parameters respectively. Two experimental studies, verification against a ‘gold-

standard’ dataset, and an application study supported this global objective (Figure 1.1). Their 

purposes were:  

1. To measure total force magnitude and centre of force location of intersegmental contact 

during six high knee flexion movements (Chapter 3).  
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2. To define regression models based on participant anthropometrics for the estimation of 

intersegmental contact parameters (Chapter 3).  

3. To measure surface and fine-wire EMG activation profiles in six high knee flexion 

movements (Chapter 4). 

4. To determine if EMG from surface sites can be used as a proxy for fine-wire activation 

profiles (Chapter 4). 

5. To quantify the error of the MSK model by comparing tibial compression force estimates 

to a gold standard (Chapter 5). 

6. To quantify the effect of incorporating intersegmental contact on tibial contact force 

estimations (Chapter 6). 
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Figure 1.1 Flowchart of proposed studies. Dashed lines indicate research motivation. Solid 

lines indicate flow of outcomes. The dotted line indicates an iterative feedback loop. MSK 

model components are shown in Figure 1.2. 

 

1.2 Intersegmental contact 

Transitioning from standing to maximal knee flexion during squatting or kneeling results 

in soft tissue contact between the thigh and calf (TC) as well as heel and gluteal (HG) structures. 

Intersegmental contact begins at ~125º and increases in force magnitude until maximum knee 

flexion in young healthy adults (Kingston and Acker, 2018a; Pollard et al., 2011; Zelle et al., 

2007). To date, no 3D MSK model has incorporated the effects of intersegmental contact forces 
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on knee joint contact force estimations. Researchers have used sagittal plane 2D MSK models to 

estimate the reductions in muscle or joint contact forces that occur when considering TC force 

changes to the external flexion moment (Caruntu et al., 2003; Zelle et al., 2009). It should be 

noted that neither of the referenced studies directly measured TC contact, but estimated TC force 

using mass-spring systems (Caruntu et al., 2003) or used data from a previous dataset (Zelle et 

al., 2007). Even so, reductions of 700 N in quadriceps force (Caruntu et al., 2003) or 944 N in 

knee joint compressive forces (Zelle et al., 2009) have been reported. These planar studies 

highlight the importance of TC contact for tibial compression force estimation and the necessity 

for its inclusion in a 3D MSK model of high knee flexion. 

Prior modeling efforts have acknowledged the need for incorporating TC contact data 

into future models, but considerable gaps remain. The most prolific TC contact dataset (Zelle et 

al., 2007) was collected from eight male and two female participants using a manually positioned 

pressure mat. The protocol used by Zelle et al. (2007) limits the applicability of their findings to 

a young healthy sample and suffers reliability issues when transforming contact forces to inputs 

for inverse dynamic (IVD) calculations due to not tracking the position of the pressure mat.  

Therefore, the first study of this thesis measured TC and HG contact from 58 participants 

(28 males, 30 females) while synchronously measuring kinetics and kinematics. The main 

contributions of this study were the quantification of intersegmental contact through the full knee 

flexion range and evidence that regression equations—based on participant anthropometrics—
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are unable to strongly estimate most intersegmental contact parameters except maximum knee 

flexion angle and TC CoF. For further details, refer to Chapter 3.  

1.3 EMG in transitions to high knee flexion postures 

There has been limited EMG measurement in the lower limb during high knee flexion 

movements (Gallagher et al., 2011; Kingston et al., 2017, 2016; Tennant et al., 2014). However, 

activation waveforms and discrete outcomes are well documented for musculature crossing the 

knee joint during gait (Dominici et al., 2011; Fregly et al., 2012; Hubley-Kozey et al., 2013) and 

activities of daily living (e.g. stair ambulation or rising from a chair) (Ciccotti et al., 1994; 

Heiden et al., 2009; Taylor et al., 2017). The lack of repeated studies to verify surface EMG 

measurements for high knee flexion movements suggests further assessment must be completed 

to provide a fulsome understanding of waveform patterns and provide verification data for the 

MSK modelling community. Despite this knowledge gap, there has not been any empirical work 

on the activation of deep muscles—notably vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM)—during high knee flexion movements, even though many MSK models 

incorporate their contribution to knee joint loading (Arnold et al., 2010; Carbone et al., 2015; 

Damsgaard et al., 2006; Lloyd and Besier, 2003; Modenese et al., 2011). 

Therefore, the second study in this thesis recorded muscle activity, from the right lower 

limb, in eleven superficial sites and three indwelling sites while measuring the kinetics and 

kinematics of high knee flexion movements. This was the first study to measure this number of 

muscles in dynamic transitions into high knee flexion postures. The main contribution of Study 2 

is that this study was the first to test the suitability of modeling deep muscle activity with surface 

EMG in high knee flexion activities. For further details, refer to Chapter 4. Additionally, the 
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activation waveforms of this muscle set for six high knee flexion postures were used as a 

qualitative assessment of MSK model muscle force estimations (Chapter 6).  

1.4 MSK model 

A novel MSK model of the pelvis and right lower limb was coded in Matlab 9.2 (R2017a, 

The MathWorks, Natick, MA) to estimate tibial contact forces across the full range of knee 

flexion. External kinetics, kinematics, and anthropometric in vivo data were used as model inputs 

with EMG data used for verification (Figure 1.2). The geometric model consists of a pelvis, 

femur, patella, shank, and foot as well as 161 muscle elements (Appendix A) that actuate the hip, 

knee, and ankle joints (Horsman et al., 2007). Muscles included in this model that have in vivo 

data for verification are: vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM), VI, 

biceps femoris (BF), semitendinosus (ST), SM, lateral gastrocnemius (LG), medial 

gastrocnemius (MG), tibialis anterior (TA), gluteus medius (GD), and AM. Muscular 

origin/insertion locations, lines of action (LoA), and physiological cross sectional area (PCSA) 

were taken from the most comprehensive lower limb cadaveric dataset available as of 2014 

(Horsman et al., 2007). Finally, individual muscle force estimates were optimized to equal 

experimentally determined external knee joint moments (Carbone et al., 2015; Crowninshield 

and Brand, 1981; Miller et al., 2009).  

This is the first 3D MSK model of the knee to incorporate intersegmental contact 

parameters which occur in high knee flexion postures. Therefore, this model is a unique tool 

which can estimate the magnitude of tibial contact forces in these exposures. While outside the 

scope of this thesis, this model could be used to provide insight on mechanisms of degenerative 



8 

disease progression and improve our understanding of knee structure loading. For further details 

on model components, refer to Chapter 5. 

 

 

Figure 1.2 Data flow and computational modules of musculoskeletal model of the knee. 

Parallelograms indicate input data, square boxes indicate processes, and the square box 

with intersecting lines indicates internal storage (IBM, 1969). 

 

1.4.1 Model verification 

Verification is a critical step in any computational model development cycle. Verification 

of this model was completed by comparing estimates of tibial compression force to an 

instrumented knee implant, considered the ‘gold standard’ in this work. Verification data 

included kinematic, kinetic, and EMG data from a two-legged squat, ‘bouncy’ walking, and five 

normal walking trials provided in the 4th Grand Knee Challenge dataset (Fregly et al., 2012). It 

should be noted that verification data were limited to knee flexion ranges of 0-100°. Model 

https://simtk.org/projects/kneeloads
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performance was assessed using criteria defined by Grand Knee Challenge organizers: root mean 

squared difference (RMSD) and the coefficient of determination (R2) of estimates compared to 

tibial compression measured from the instrumented implant. Surface EMG data was provided 

from fifteen muscles and used as a qualitative assessment to compare recorded muscle 

activations against estimated muscle force levels.  

This verification procedure established a level of confidence in MSK model estimates 

and highlights areas for future improvements. The qualitative assessment against EMG 

waveforms suggest MSK model estimates are phenomenological in nature. For further details, 

refer to Chapter 5. 

1.5 Model application 

To address the global objective of this thesis, the MSK model was used to estimate 

changes in external knee joint moments and tibial contact forces from including intersegmental 

forces. This application is exploratory due to sample size (n = 16), but provided the most 

comprehensive kinetic evaluation of high knee flexion postures to date. There was an average 

RMSD reduction of 3.56, 0.16, and 0.06 %BW*HT in flexion/extension, ab/adduction, and 

int/external external moments respectively. This reduction in external moments resulted in the 

following average RMSD changes to tibial contact force estimates: 0.14 BW lower compression, 

0.2 BW lower posterior shear, and 0.03 BW lower lateral shear. Significant reductions of 

posterior shear and increases of lateral shear was found in select movements when incorperating 

intersegmental contact. Muscle force estimates generally followed EMG waveforms in shape for 

https://simtk.org/projects/kneeloads
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vastii, GD, and AM with SM having better agreement with its idwelling signal compared to 

surface. 

This body of work meaningfully contributes to the modelling community through 

advancing the number of high knee flexion movements assessed and providing foundational data 

for future verification and comparisons. As well, this application could provide critical input 

parameters for finite element (FE) modelling and other simulations useful for high knee flexion 

prosthesis design in future work. For further details, refer to Chapter 6. 
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Chapter 2 – Literature Review 

This literature reviewed will briefly introduce knee OA as a disease with links to habitual 

exposure of high knee flexion postures. Then, a review of approaches and current data for 

modeling knee mechanics through in vitro and in silico methods will be completed. Finally, 

evidence will be provided to highlight the lack of fundamental data to support MSK modeling of 

high knee flexion postures. 

2.1 Knee osteoarthritis and disease progression 

On a global scale, lifetime knee OA prevalence among men 20-59 years of age is 54% (Baker et 

al., 2003) with incident rates of 250/100 000 people for both men and women (Cooper et al., 

2000). Knee OA is a debilitating disease that decreases quality of life and can predispose 

individuals to future medical issues (Persson et al., 2017). Knee OA is multifactorial, but primary 

risk factors are aging and obesity (Arden and Nevitt, 2006; Bombardier et al., 2011). With 

disease progression, articular cartilage of the femur thins and/or develops into osseous tissue 

(Mithoefer et al., 2009). The meniscus of the tibia can also thin or tear due to pathological 

tribology as cartilage integrity diminishes and bone is exposed (Andriacchi and Mündermann, 

2006). Osseous tissue may form around the joint or in connective tissue (Figure 2.1) with 

continued disease progression (Chu et al., 2012). These structural changes to joint tissues can 

result in friction during movement and a reduction in joint flexibility, which increases tissue 

stress, and stimulates biological responses such as inflammation and thinning of condylar 

cartilage (Andriacchi and Favre, 2014; Mündermann et al., 2008). An extreme representation of 

these changes is shown in Figure 2.2 with cadaveric examples in Figure 2.3.  Radiographs 
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comparing a healthy control to an occupational habitual kneeler with mild knee OA are shown in 

Figure 2.4. 

 

 

Figure 2.1 Ossification of an occupational kneeler’s posterior joint capsule (posterior) with 

a possible evulsion fracture at the tibial tuberosity or ossification of the patellar ligament. 

Image from a study that is not part of this thesis. 

 

The most common location of knee OA is in the medial compartment (i.e. distal medial 

femoral condyle and medial tibial plateau) which accounts for approximately 68% of cases 

(Felson et al., 2002). This is unsurprising given that 60-70% of weight-bearing load is 

transmitted through the medial compartment (Andriacchi et al., 2004; Arden and Nevitt, 2006; 
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Kinney et al., 2013). Although medication, gait modification, or bracing can effectively reduce 

pain in some individuals, severe knee OA patients require unilateral or total knee arthroplasty 

(Banks et al., 2005; Kinney et al., 2013; Winby et al., 2009). These procedures generally 

improve knee joint alignment, tribology, and overall quality of life. 

 

 

Figure 2.2 Healthy knee with complete articular cartilage covering underlying bone, intact 

meniscus, and normal joint spacing between the femur and tibial plateau (Left). Knee with 

Kellgren-Lawrence grade 4 osteoarthritis (Right) (Kellgren and Lawrence, 1957). Adapted 

from Foran & Fischer (2015).  
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Figure 2.3 Young (43 years) healthy and old (88 years) osteoarthritic knee joint specimens 

(left and right respectively). Images from Peters et al. (2018). 

 

 

Figure 2.4 The left set of knee radiographs shows Kellgren-Lawrence grade 0 in both knees 

whereas the right set of knees have grade 2 in both knees, with minimal joint space 

narrowing but cupping of the tibial plateau resulting in spurs at the joint midline. Images 

from a non-thesis study. 
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2.2 Osteoarthritis development: Loading of unconditioned tissue  

There is an increased prevalence of knee OA linked to high knee flexion exposure. 

Occupations which require kneeling more than thirty times a day or with heavy loads (>10 kg) 

have odds ratios of 2.3 and 2.9 for knee OA development (Coggon et al., 2000; Rytter et al., 

2009). In addition, individuals who kneel for more than one hour per day have an odds ratio of 

3.0 for knee OA development (Kirkeshov Jensen, 2008).  

A theory of knee OA development resulting from high knee flexion exposure is that these 

postures stress “unconditioned” tissue with high joint contact forces (Andriacchi et al., 2004; 

Andriacchi and Favre, 2014). When the knee joint is in flexion between 30-120º there is a 

roughly linear increase in lateral femoral condyle posterior translation (Johal et al., 2005). This 

flexion range represents the common span over which most activities of daily living (ADL) 

occur (Kinney et al., 2013; Mündermann et al., 2008). However, above 120º of flexion, rapid 

posterior translation of both the medial and lateral femoral condyles occurs (Figure 2.5). 
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Figure 2.5 Movement of medial and lateral femoral condyles relative to tibia: right knee; 

weight bearing males; neutral tibial rotation. Broken lines depict adjusted values for 

transfer from the flexion facet center to the more anterior extension facet. Image 

reproduced from (Johal et al., 2005) under individual Elsevier (RightsLink) license #: 

3723191122593. 

 

For example, ten 20-40 year old Caucasian males performed knee flexion, in an open 

MRI, from -5-120º resulting in 21.1 ± 4.7 mm of posterior translation of the lateral femoral 

condyle, whereas from 121-140º, an additional 9.8 ± 2.1 mm occurred (Johal et al., 2005). These 

data agree with previous in vivo findings from ~30 year old Japanese males, where passive 

flexion to 162º was achieved with ~28mm of posterior translation occurring at the midpoint of 

the femoral condyles compared to standing (Nakagawa et al., 2000). Additionally, when the knee 

joint is in high flexion, condylar contact area decreases from 6.3 ± 1.4 mm2 and 5.4 ± 0.7 mm2 to 

4.7 ± 0.9 mm2 and 3.3 ± 0.7 mm2 in the lateral and medial compartments compared to standing 
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(Yao et al., 2008). The posterior translation and decreased contact area resulting from high knee 

flexion causes loading of articular cartilage and meniscus in areas that are not stressed in most 

ADLs. Although knee OA patient data supports this theory of disease development, there is 

limited biomechanical data for modelling joint exposure in the high knee flexion range. 

2.3 Joint and tissue damage of the knee joint 

Cyclic compressive exposure is the most widely accepted cumulative mechanism for 

knee joint injury (Bevill et al., 2010; Seedhom, 2006). Healthy knee joint tribology generally 

results in minimal shear forces acting on articular cartilage in anterior-posterior (AP) or medial-

lateral (ML) directions as low coefficients of friction exist between femoral condyles and the 

tibial plateau (Sasazaki et al., 2006; Swann and Seedhom, 1993). However, joint level injuries, 

such as anterior cruciate ligament (ACL) or meniscal tearing, commonly result from acute shear 

loading exposures in plant-pivot sports such as rugby and soccer (Gianotti et al., 2009), or in 

stair ambulation (Smith and Barrett, 2001; Tomatsu, 1992). In ACL deficient knees, the 

meniscus and cartilage is particularly susceptible to AP shear damage as meniscal suture tear out 

can occur at shear forces of ~108 N or cartilage fissures can result from shear loads of ~40 N 

applied directly to tissue (Atkinson et al., 1998; Fisher et al., 2002). Although these data are 

compelling for knee joint and tissue damage in typical activities of daily living, injury pathways 

could be different for high knee flexion exposure. 

Shear loading of the knee joint in high knee flexion postures is poorly understood but has 

been identified as a likely cause of prosthetic loosening (Thambyah and Fernandez, 2014), and is 

a critical measure in tissue engineering and remodeling (De Sanctis et al., 2015; Whitney et al., 

2017). Given the small tibiofemoral joint contact area in high knee flexion compared to standing 

(Yao et al., 2008), cartilage level shear forces could be substantially increased if model estimates 
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of tibial compression augment frictional coefficients (Nagura et al., 2006). In addition, reported 

peak joint level shear forces during high knee flexion activities range from 0.27-0.34 BW 

(Thambyah, 2008; Thambyah and Fernandez, 2014) to 0.95 BW (Zelle et al., 2009) when muscle 

force contributions were or were not accounted for respectively. Given that both compressive 

and shear loads can result in injury or joint damage, accurate reporting of joint level compression 

and shear forces is necessary for future implant and tissue engineering design. 

2.4 Musculoskeletal modeling of the knee 

Motivated by a need for greater understanding of injury and disease progression, 

researchers have developed physical and computational models of knee function. Mechanical 

testing of human and animal tissue has provided many parameters required for simulating joint 

exposures in vitro and in silico. While there are assumptions in any modeling approach, the 

practical and ethical limitations of obtaining joint force data in vivo (other than telemetric 

implant data) present few alternatives. Animal models have been used to measure anterior 

cruciate ligament (ACL) injuries (Amiel et al., 1986; Mclean et al., 2015), meniscus damage 

(Proffen et al., 2012), bone remodeling (Zhang et al., 2006), and mechanical tissue testing 

(Chaudhari et al., 2008; Haut, 1989; Keller, 1994). However, cadaveric work remains a gold 

standard in tissue testing (Proffen et al., 2012).  

2.4.1 Muscle geometry 

Experiments and dissection of cadaveric muscles has been performed to obtain tissue 

architecture and geometry. Popular datasets used in computational modeling of the knee are 

Wickiewicz et al. (1984), Yamaguchi el at. (1990), Horsman et al. (2007), and Ward et al. 

(2009). From these sources, muscle parameters relevant to this thesis are reported in Appendix 
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A. A notable limitation of the Wickiewicz et al. (1984) dataset is that data is only provided for 

lumped groups (e.g. knee flexors) as opposed to individual muscles. These data do not allow 

scaling of separate muscles to allow for subject specific anthropometrics (Anderson et al., 2007; 

Damsgaard et al., 2006). The listed datasets were obtained from cadaveric samples which are 

typically elderly. This warrants caution on physiological cross sectional area (PCSA) parameters 

for modeling young populations (Delp et al., 1990). Functional MRI data will likely improve the 

detail and age appropriateness of muscle architecture parameters but, at present, these datasets 

are the most comprehensive available to researchers.  

2.4.2 Patellar tendon kinematics 

Cadaveric testing has defined relationships between knee flexion angle and skeletal 

kinematics for many structures. For example, altering separate vastii muscle force levels 

significantly affects patellar tendon kinematics and tension (Shalhoub, 2012; Steinbrück et al., 

2013). Applying low force magnitudes (62, 44, and 70 N for the rectus femoris, vastus medialis, 

and vastus lateralis respectively) causes mediolateral shifts of the patella up to 6 mm from 0-120º 

of knee flexion (Shalhoub and Maletsky, 2014). Patellar tendon moment arm length has also 

been quantified by numerous researchers from 0-90º of knee flexion (see the review by 

Tsaopoulos, Baltzopoulos, & Maganaris 2006) with a recent study (Fiorentino et al., 2013) using 

real-time MRI to validate in vivo patellar tendon moment arms from prior work (3-4 cm over 0-

90º range). This MRI study also reported the range of knee motion to 125º of flexion—still 20-

40º below end range of high flexion postures (Acker et al., 2011; Nakagawa et al., 2000)—where 
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the moment arm decreased to ~1 cm (Fiorentino et al., 2013). However, no patellar tendon 

moment arm data exists for high knee flexion postures.  

2.4.3 Tibiofemoral impact 

During ambulation the knee experiences impact forces at heel strike and sustained stress 

during the support phase of gait. When injury or disease is present in the knee, viscoelastic 

properties of tissues can be compromised and impact forces can increase. In an erect 

osteoligamentous knee specimen, compression increased 13% (radial cut of lateral and medial 

menisci), 21% (menisci removed), 35% (articular cartilage removed), and 79% (conventional 

total knee arthroplasty) due to respective tissue alterations (Hoshino and Wallace, 1987). This 

highlights the importance of tissue for cushioning impact loads in the non-pathologic knee. 

These magnitudes of tissue attenuation have been supported in porcine models; following 

meniscectomy compressive stress increased 2.2-5.2 times compared to intact testing depending 

on valgus or varus alignment in an un-flexed knee (Fukuda et al., 2000). The effects of OA tissue 

changes can increase knee impact data as much as 24% compared to a Kellgren-Lawrence (KL) 

scale 0 knee (Hoshino and Wallace, 1987; Kellgren and Lawrence, 1957). With increased stress 

due to reduced contact area in high knee flexion postures these effects could be further amplified, 

but no experimental testing to date has been completed. 

2.4.4 Mechanical testing of cadaveric knees 

Many in vitro knee testing devices are based off of the Oxford knee jig design (Zavatsky, 

1997). The Oxford jig allowed flexion/extension and ab/adduction at the femoral and tibial 

attachment points as well as vertical translation of the femur relative to the tibia (Figure 2.6). 

However, the Oxford jig was designed for use with an osteoligamentous specimen, therefore, 
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there are no considerations of muscle force. Modern Oxford-type simulators use pulley 

assemblies to simulate patellar tendon loads in knee specimens (Van Haver et al., 2013; 

Verstraete and Victor, 2015). Additionally, computer controlled servo-hydraulic simulators are 

currently in use; three research groups are noted in the following for reference.  

The University of Kansas has mechanical simulators to assess quadriceps and hamstring 

muscle load influence on patellofemoral kinematics (Shalhoub and Maletsky, 2014) and dynamic 

activities with a five degree of freedom knee (Halloran et al., 2010). The simulator of Shalhoub 

& Maletsky (2014) tested quadriceps loads up to ~600 N from 15-120º of knee flexion with one 

degree of freedom. Alternatively, dynamic activities of walking and cutting maneuvers have 

been simulated up to knee flexion angles of ~45º with combined quadriceps loads of ~3 000 N 

(Halloran et al., 2010).  

The University Hospital of Munich has a dynamic knee simulator which can replicate 

quadriceps and hamstring forces for total knee arthroplasty research (Steinbrück et al., 2013). 

This simulator produces a maximal quadriceps force of 400 N in flexion and 600 N in extension 

for surgical component testing. This simulator can apply muscle and hip moments within a 20-

120º range of knee flexion.  

Two groups in Belgium have simulators which are used to test surgical protocols for 

arthroplasty assessment (Heyse et al., 2014; Victor et al., 2009). Both simulators are designed for 

testing 10-120º of knee flexion with quadriceps and hamstring loads up to 180 N and 130 N. 

Servo-hydraulic simulators can provide unparalleled experimental control to assess the 

influence of muscle activation patterns and loads on knee structures. These devices also provide 

critical data for design and surgical methods of total knee arthroplasty. Unfortunately, the 

physical size of mechanical controlling equipment makes many simulators unable to attain high 
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knee flexion postures. Therefore, limited in vitro experimental testing has been completed in 

high knee flexion, none of which investigated tibiofemoral compressive loads (Shalhoub, 2012). 

 

 

Figure 2.6 Oxford style knee jig. Image reproduced from (Zavatsky, 1997) under individual 

Elsevier (RightsLink) license #: 3723191122593. 
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2.4.5 Computational models 

Computational models provide researchers with a high level of control as individual 

parameters and model complexity can be tailored to best suit the research question. With the 

continuing increase of computational power, in silico approaches to human movement analysis 

have risen in popularity. In silico methods are also appealing due to the limited sample size and 

availability of gold standard in vivo telemetric datasets (Fregly et al., 2012; Taylor et al., 2017) 

and/or the monetary cost and biofidelity of pursing in vitro methodologies. The full knee flexion 

MSK model developed in this thesis, addressing the global objective of estimating tibial contact 

forces, uses static optimization (SO) to distribute muscle forces (Chapter 5). However, three 

generalized modeling approaches within the MSK space will be briefly discussed below: finite 

element (FE), Hill-type, and optimization approaches.  

2.4.5.1 Finite element 

Finite element models use 3D polygon meshes to represent tissue volumes (e.g. 

meniscus, cortical bone, ligaments) with each having defined material properties (Donahue et al., 

2002). Knee FE models are primarily used for joint contact force modeling in implant design and 

testing (Halloran et al., 2010; Knight et al., 2007). A divergent feature of FE models, compared 

to Hill-type or optimization MSK models, is that they model the stress and deformation of 

tissues. Ideally, FE models would be applied in series with MSK joint force estimations to gain 

further insight into mechanical response of human tissue. For example, SO could be used as part 

of the computation for knee joint forces, then, an FE model could be used to characterize 

articular cartilage, bone, and meniscus loading. 

Many industries and researchers use the commercially available software Abaqus 

(Dassault Systèmes, Cedex, France) to define and run FE models. Although FE methods can 
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generate accurate results (< 2 mm translational and < 3º rotational root mean squared error 

compared to joint capsule cadaveric testing) they provide little understanding of the overall 

system kinesiology (Halloran et al., 2010). As well, quantification of external and internal 

loading exposure and skeletal kinematics are critical for accurate FE predictions. Currently there 

is insufficient foundational data available for FE use in high knee flexion ranges. 

2.4.5.2 Hill-type  

Hill-type models use EMG and muscle architecture parameters to estimate individual 

muscle forces based on a three element mechanical system (Figure 2.7 and Eq 2.1). When 

combined with geometric models of skeletal motion, muscle forces are applied about respective 

LoA and moment arms to generate internal forces and moments. A strong argument in favor of 

Hill-type or EMG-driven models is the data source; a participant’s own muscle activation. 

Electromyographic data are collected ‘downstream’ from the CNS and contain additional 

sensory feedback in the signal (Cheung et al., 2005). This implies that individual muscular 

activation strategy is accounted for in muscle force estimates. However, Hill-type models require 

confidence in muscle fiber, tendon, and passive tissue length/force parameters for accurate 

estimations. Also, no reliability studies have been performed on EMG measurements in high 

flexion postures that likely result in considerable muscle length changes and motor unit shift. 

Many of these parameters have not been verified in high knee flexion postures and would require 

experimental validation prior to confident implementation.  
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 𝐹𝑚𝑡(𝜃, 𝑡) = 𝑓(𝑎(𝑡), 𝑙𝑚𝑡, 𝑣𝑚𝑡 , 𝜎𝑚𝑎𝑥, 𝑙𝑜
𝑚, 𝑇𝑠

𝑚, 𝜙𝑜) Eq 2.1 

 where 𝐹𝑚𝑡 is the musculotendinous force, 𝜃 is the angle of the joint of which the 

musculotendinous unit articulates, 𝑡 is time, 𝑎(𝑡) is conditioned EMG with considerations for 

activation dynamics, 𝑙𝑚𝑡 is the length of the musculotendinous unit, 𝑣𝑚𝑡 is the velocity of 

musculotendinous unit fibers, 𝜎𝑚𝑎𝑥 is the maximal isometric muscle force, 𝑙𝑜
𝑚 is the 

musculotendinous unit’s length at which optimal muscle fiber overlap occurs, 𝑇𝑠
𝑚 is the tendon 

slack length, and 𝜙𝑜 is the pennation angle between the muscle fiber and tendon (Buchanan et 

al., 2004). 

 

 

Figure 2.7 Schematic of muscle-tendon unit with Hill-type muscle model parameters 

highlighted in original caption. Image reproduced from Buchanan et al. (2004) under 

individual Human Kinetics license #: 3738370256215. 

 

Many of the parameters required as inputs for Hill-type models are difficult to 

experimentally validate. Currently, there is no method that can simultaneously measure 
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musculotendinous unit length, fiber pennation angle, motor unit activation, and filament overlap 

with respect to joint angles in vivo. Tendon stress/strain relationships also lack biofidelic testing 

as axial strain is the most common experimental protocol (Schatzmann et al., 1998; Yang et al., 

2010). This ignores changes to tissue properties resulting from tendons wrapping around soft and 

osseous tissue (Charlton and Johnson, 2001; Herzog and Read, 1993; Horsman et al., 2007). No 

model exists which can account for connective tissue responses which occur during force 

production across individual muscle fibers, nor the interaction of fiber types and fascia. 

2.4.5.3 Optimization  

Optimization approaches contrast with EMG-driven models in that a constrained 

mathematical equation is solved to determine an ‘optimal’ distribution of muscle forces 

satisfying mechanical equilibrium or other cost function. Applications in kinesiology typically 

involve cost functions which minimize physiological or neuromechanical based quantities, such 

as metabolic cost or muscle stress (Anderson & Pandy, 2001; Crowninshield & Brand, 1981). 

Any number of muscles can be modeled using optimization—35 in Arnold et al. (2010) to over 

80 in Damsgaard et al. (2006)—however this capability comes at a substantial cost; simplifying 

the central nervous system (CNS) control to a deterministic mathematical function. 

Adjustments to constraints for specific tasks can increase component validation of 

optimization methods, but verification almost always requires comparison to EMG data 

(Dickerson, 2005; Dowling, 1997; Hicks et al., 2014). This begs the question, “why not use 

EMG as an input in the first place?” One must have confidence in muscle architecture 

parameters for an EMG-driven model to be accurate, and at present, this is not possible for high 

knee flexion postures. Additionally, typical EMG comparisons consist of onset/offset congruence 
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more than magnitude comparisons (Hicks et al., 2014). Therefore, the model presented in this 

thesis for high knee flexion used SO to estimate muscle forces. 

Optimization models for human movement generally consist of three types: static 

optimization (SO), modified static optimization (MSO), and dynamic optimization (DO) 

(Ackermann, 2007; Sharif Shourijeh, 2013). Static optimization is a computationally efficient 

approach which solves for the objective function instantaneously (i.e. no consideration for 

previous or future solution points). As a result, SO cannot be used for time-integral objective 

functions such as minimizing metabolic cost (Anderson and Pandy, 2001).  

MSO is similar to SO, except that muscular contraction and activation dynamics are 

added to the optimization process (Ackermann, 2007). This allows for non-linear constraints to 

solution bounds for neural excitations and kinematics. However, MSO requires finite difference 

derivatives of the muscle force and activation in computing the muscle speed, activation, and 

excitation, which potentially leads to numerical issues, such as instability and truncation errors. 

Additionally, as previously mentioned, there is concern regarding the confidence one should 

have in using Hill-type parameters in high knee flexion postures. 

Dynamic optimization is the most intensive approach used in simulation/predictions of 

human movement and requires numerical integration of dynamical systems of equations. This 

can also be referred to as ‘forward dynamics’ (Buchanan et al., 2004). Dynamic optimization 

uses time-integral objective functions to minimize error over the entire movement (Ackermann, 

2007; Anderson and Pandy, 2001). The advantage of DO is that smooth transitions between 

solution points are paramount and non-physiological solutions, such as a muscle activation 

switching very low to very high activation within 1 ms, are avoided. Added biofidelity comes at 
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a considerable complexity and computational cost; below is an example calculation time for one 

trial of walking Table 2-1.  

 

Table 2-1 Approximate calculation times and number of variables for various approaches 

of optimization to solve a single walking trial for one participant (Ackermann, 2007). 

Method Computation Time Optimization Variables 

Static Optimization 5.3 s 8 

Modified Static Optimization 12.9 s 8 

Dynamic Optimization Multi-day +400 

 

The strength of optimization based models, compared to EMG-driven, is their ability to 

simulate data and outcome testing compared to in vivo methods as models can be adjusted in 

silico. These benefits are compounded with a reduction in the level of complexity and time 

required for experimental data collection as EMG procedures are absent. Those critical of 

optimization argue that simplifying the central nervous system to a cost function is unreasonable 

and question their validity in corner case testing (e.g. toe-in gait modification (Shull et al., 

2013)). Additionally, few cost functions solve with appropriate levels of co-contraction shown in 

experimental EMG studies unless constraints are applied (Dickerson et al., 2007).  

2.5 Measurement and modelling of EMG 

Improvements and availability of telemetric surface and fine-wire recording hardware 

have made it increasingly easier to attain high quality EMG data during dynamic movement. 

These hardware improvements reduce participant encumbrance and decrease experimental time 

as MVCs and movement trials are less prone to low-frequency wire movement artifact or 

pulling. The result is more repeatable trials, a wider range of testable movements, and 
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improvements to signal quality. Despite these advancements, issues remain when using EMG as 

a data source, namely: noise (Clancy et al., 2002); cross-talk between muscles (Howard et al., 

2015); and normalization method (Lehman and McGill, 1999; Rutherford et al., 2011). Between 

bi-polar electrode interfaces there is the concern of half-cell potentials, or the impedance of 

electron flow between each pickup. Modern electrodes consist of Ag-AgCl leads which has 

greatly improved electrical stability compared to stainless steel electrodes of the past (Ciccotti et 

al., 1994). Similarly, electrode impedance issues have been largely mitigated with modern 

hardware and standardized preparation/location protocols such as the SENIAM project (Hermens 

et al., 2005).  

Cross-talk is unavoidable with surface EMG, but negligible with indwelling EMG 

(Bogey et al., 2000; Fuglevand et al., 1992). Due to the pickup volume of surface EMG, signal 

content from neighboring muscles will be measured in addition to the muscle of interest. In the 

relatively large muscles of the lower limb (Wren et al., 2006), this is less of an issue than in trunk 

(e.g. electrocardiogram interference (Drake and Callaghan, 2006)) or upper extremity muscles 

(Kamavuako et al., 2013). If cross-talk is a concern for the muscle of interest, cross-correlation 

between individual EMG sites is a standard method used to assess signal similarity (Winter, 

2009). However, it is best to minimize cross-talk with careful electrode placement. 

Controversy exists on normalization methods for EMG reporting during dynamic 

movement. Within this thesis, static MVC trials to attain normalization values for individual 

participants was used. This is an accepted procedure for dynamic EMG assessment by many 

researchers (Hermens et al., 2005; Lehman and McGill, 1999). Although peak or a mean of peak 

values from dynamic tasks can be used as a normalization method, evidence suggests that 

variance ratio, interclass correlations, and overall reproducibility of EMG signals is improved 
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using isometric MVCs (Burden and Bartlett, 1999; Knutson et al., 1994; Rutherford et al., 2011). 

 The high knee flexion movements performed in this thesis were not performed quickly 

(~1 Hz) and do not require the normalization considerations inherent to rapid movements such as 

cycling or running (Ball and Scurr, 2013). Additionally, prior work in our laboratory (Kingston 

et al., 2016) has shown peak EMG values during high knee flexion activities to be below 100 

%MVC during kneeling transitions using standardized isometric contractions (Appendix B). 

2.6 Issues with current knee models for use in high flexion 

A number of limitations in existing knee joint MSK models which prevent their use in 

high knee flexion postures: (1) thigh-calf contact; (2) lower limb EMG data; (3) muscle moment 

arm distances; and (4) tibiofemoral and patellar kinematics above 120º of flexion. Currently, four 

2D models exists which consider force transfer between the thigh and shank (Caruntu et al., 

2003; Hirokawa and Fukunaga, 2013; Pollard et al., 2011; Zelle et al., 2009). These studies had 

one or two high knee flexion postures—dorsiflexed kneeling (Hirokawa and Fukunaga, 2013; 

Zelle et al., 2009) and squatting (Caruntu et al., 2003; Pollard et al., 2011)—performed with ten 

or fewer subjects (Pollard et al., 2011; Zelle et al., 2007). 

Outside of our research group, there is a single study which reports high knee flexion 

EMG data from a simulated low-seam mining task (Gallagher et al., 2011). This study only 

reports peak muscular activations from three vastii and two hamstring muscles when moving a 

11.3 kg cinderblock, making these data inappropriate for unloaded or time series comparison. 

Therefore, there is a need for more fulsome time-series EMG data in high knee flexion postures. 

Muscle moment arm data is limited in high knee flexion postures as the most 

comprehensive datasets only reported moment arms of a cadaveric specimen to ~130º of knee 

flexion (Buford et al., 1997; Herzog and Read, 1993). As well, in vivo moment arm data is only 
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available for the rectus femoris at 20-120º of knee flexion through the use of real-time MRI 

(Fiorentino et al., 2013). However, there is a wealth of data from cadaveric samples at ~0-100º of 

knee flexion for major lower limb muscle moment arms (Gerus et al., 2013; Tsai et al., 2012; 

Tsaopoulos et al., 2007; Wilson and Sheehan, 2010). Until muscular moment arm data in high 

knee flexion postures are available through MRI or other imaging methods, geometric models of 

the lower limb are required to estimate tendon attachment sites using wrapping surfaces (An et 

al., 1984a; Pandy, 1999; Spoor and Leeuwen, 1992).  

The most troubling issue which exists in current computational knee modeling is 

insufficient verification (Anderson et al., 2007; Hicks et al., 2014). Two situations currently 

exist: 1) in vitro models are tested without comparison to physiological loading magnitudes and 

data is extrapolated to in vivo conditions and 2) in silico models are developed and used without 

comparison to gold standard, EMG activation profiles, or physiologically based muscle 

architecture parameters. Many in vitro models (Shalhoub & Maletsky, 2014; Steinbrück et al., 

2013; Wünschel, Leichtle, Obloh, Wülker, & Müller, 2011) use tensile forces <300 N in 

quadriceps and <200 N in hamstrings muscles when simulating knee movements. These loads 

are below in vivo measured forces in the patellar tendon (~2200 N during a squat) and do not 

represent physiological magnitudes (Finni, Komi, & Lepola, 2000). Cadaveric tissue quality 

likely limits the tensile force applied, but a recent study applied ~1250 N through the patellar 

tendon (Verstraete and Victor, 2015). This quadriceps force was required to maintain mechanical 

equilibrium in an Oxford-type simulator when a specimen simulated a squat movement 
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(Verstraete and Victor, 2015). Therefore, the use of low tensile forces in some in vitro testing 

may not hold in vivo relevance.  

A brief review of two of the most commonly used optimization and EMG-driven in silico 

knee models will highlight their limitations to high knee flexion postures. OpenSim was created 

from the work of Delp et al. (1990) and evolved into the first multi-institution MSK model 

heavily used in biomechanics. A popular knee model in the OpenSim architecture was developed 

by Arnold et al. (2010). Her lower limb model has 35 muscles with cylindrical wrapping surfaces 

for the gastrocnemii and quadriceps musculature about a 1 DoF knee (flexion/extension). Muscle 

activation predictions from this model have been verified against EMG in gait and the geometric 

model has been the foundation for many MSK models using OpenSim (Arnold et al., 2010; 

Hicks et al., 2014; Millard et al., 2013; Stylianou et al., 2013). For example, Sartori et al. (2013) 

assessed the ability of their EMG driven model, which used Arnold et al. (2010) MSK geometry 

and muscle parameters, to estimate knee flexion moments in gait with 0.98 R2 and 0.08 

normalized RMSD compared to telemetric in vivo knee data (Fregly et al., 2012). These 

contributions to the knee modeling community are substantial but issues exist for generalizing 

this application to other movements.  

The AnyBody model (AnyBody Technology A/S, Salem, MA, USA) uses a polynomial 

SO objective function (Eq 2.2), similar to Crowninshield & Brand (1981), to estimate muscle 

forces without EMG data (Damsgaard et al., 2006). The ‘geometric knee’ model used in 

AnyBody software is a 6 DoF joint that results in marked differences when directly compared to 

Arnold et al. (2010). The AnyBody knee allows the use of subject specific 3D MRI data to scale 

bone and muscle attachments; unlike anatomical marker scaling in OpenSim. These differences 

contribute to an average increase in flexion moment of 58 Nm with peak differences occurring 
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18% of gait cycle earlier (stance phase) in OpenSim when compared to the AnyBody knee model 

(Sandholm et al., 2011). This occurred even though the AnyBody knee was imported into 

OpenSim to maintain generic model scaling and to provide consistency of optimized muscle 

forces. While there are no comparisons available between the OpenSim and AnyBody models 

using telemetric knee implant data, those critical of either software commonly point to inaccurate 

co-contraction predictions and/or underestimations of joint contact forces (Modenese et al., 

2016). 

 

 𝐺(𝐹𝑀) =  ∑ (
𝑓𝑖

𝑀

𝑁𝑖
)

𝑃𝑛𝑀

𝑖=1

 Eq 2.2 

where 𝐺 is the objective function (e.g. recruitment strategy of the central nervous 

system), 𝐹𝑀 forces of all modeled muscles, 𝑓𝑖 force of muscle 𝑀, 𝑁𝑖 the strength of the muscle, 

and 𝑃 is the a priori defined exponent; commonly 3 (Damsgaard et al., 2006). 

 

Limitations of the Arnold et al. (2010) model are considerable for applications to high 

knee flexion: a 1 DoF knee joint, a knee flexion range of 0-100º, and a maximal muscle stress of 

61 N/cm2. This muscle stress value was taken from Delp et al. (1990) and justified as a scaled 

value to adjust for PCSA decrease in cadaveric specimens. Values used for maximal muscle 

stress vary within the modeling community from 30-88 N/cm2 (Carbone et al., 2015; Dickerson, 

2005), however physiological studies on mammalian tissue commonly report values closer to 22 

N/cm2 in guinea pigs (Powell et al., 1984) or 24 N/cm2 in living humans (Fukunaga et al., 1996). 

Similarly, AnyBody applicability to high knee flexion is limited by its knee flexion range of 0-
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100º, proprietary source code, and cost. Therefore, either the OpenSim or AnyBody models 

would ultimately require such heavy modification that a novel model was warranted.  
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Chapter 3 – Intersegmental contact during high knee flexion 

movements 

Components of this chapter have been published (Kingston and Acker, 2018) or are 

currently accepted (Proceedings of the Institution of Mechanical Engineers, Part H: Journal of 

Engineering in Medicine, JOEIM-17-0153.R1), however, additional detail is provided in 

methodology and results sections. 

3.1 Introduction 

The magnitude and location of contact forces between thigh-calf (TC) and heel-gluteal 

(HG) structures in high knee flexion postures are critical input parameters for development of a 

high knee flexion joint contact model. Given the increased incidence of degenerative knee 

diseases in populations that regularly assume high knee flexion postures (Baker et al., 2003; 

Bombardier et al., 2011; Kirkeshov Jensen, 2008), further study to refine injury mechanisms by 

quantifying exposure is needed. A theoretical injury mechanism in high knee flexion postures is 

the exposure of under-conditioned tissues to high joint contact forces (Andriacchi et al., 2004; 

Andriacchi and Favre, 2014). However, this theory does not account for the potential unloading 

effect TC or HG contact may have on the joint. Therefore, the limited in vitro data available 

from testing knee joint compressive forces, up to 135º of flexion, likely over-estimate 

compressive forces when extrapolated to end range of motion (Hofer et al., 2012; Victor et al., 

2009).  

The issue of force over-estimation was first supported by Zelle et al. (2009), who used a 

finite element model of the knee with external TC contact forces (taken from Zelle (2007) in vivo 

data). Decreases from 4.37 to 3.07 times body weight (BW) in knee joint compression and 1.31 
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to 0.72 times BW in shear during a flatfoot squat movement were estimated as a result of 

including TC contact (Zelle et al., 2009). However, further verification of reported magnitude 

and location data is critical to improve estimates of joint contact forces in future computational 

models and to increase the variety of movements measured (Thompson et al., 2015). 

A variety of high knee flexion postures exist in activities of daily living where 

intersegmental contact data could be used to improve estimates of loading exposure. Islamic 

religious practices and traditional East Asian cultural customs involve symmetric high flexion 

kneeling with the feet in dorsiflexion or plantarflexion (Hefzy et al., 1998; Hemmerich et al., 

2006). High knee flexion squatting is also common during childcare, sport, and toileting in many 

cultures (Hemmerich et al., 2006; Kurosaka et al., 2002). Finally, single-leg (unilateral) kneeling 

is used during many occupational tasks (Gallagher et al., 2011) and is a primary shooting 

position used in military theater (Department of the Army, 2010).  

During symmetric kneeling, TC contact force has been reported at up to 34% BW (Zelle 

et al., 2007) with a separate study reporting HG contact forces of approximately 11% BW 

(Pollard et al., 2011). However, only a dorsiflexed foot position was tested during kneeling, and 

there is no known intersegmental contact data for unilateral kneeling positions. Further 

investigation of HG contact is needed as the large moment arm results in similar knee extension 

moments as TC contact with considerably smaller forces (Pollard et al., 2011). Therefore, also 

including HG contact forces in future modelling efforts will improve the biofidelity of tibial 

contact force estimates. 

Prior work on TC contact involved assessment only in the sagittal plane with pressure 

sensors not attached to segments. Small sample sizes (10 participants) also prevented the 

investigation of sex differences in prior work (Pollard et al., 2011; Zelle et al., 2007). Given the 
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anthropometric (Power and Schulkin, 2008) and flexibility differences between sexes (Krivickas 

and Feinberg, 1996), females may be exposed to lower joint compressive loads as a result of 

increased TC and HG contact in high flexion postures. In addition, females generally have a 

higher distribution of body-fat in the pelvic and thigh region (Cnop et al., 2003; Nielsen et al., 

2004) which may also result in different intersegmental loading when compared to males. Past 

studies have relied on manually positioning, or having participants hold, pressure sensors in 

place while performing movement trials (Pollard et al., 2011; Zelle et al., 2007). This could 

reduce repeatability between trials, and did not allow for unilateral postures as larger pressure 

sensors designed for seating applications (Conformat model #5330, Tekscan, South Boston, MA, 

USA) were used. Finally, prior studies used sensors with a low spatial resolution of 0.5 sensels 

per cm2, and were collected at a maximum of 8 Hz (Pollard et al., 2011; Zelle et al., 2007).  

It is assumed that variation in participant anthropometrics would partially explain 

variation in thigh-calf contact parameters. A single previous study reported moderate to strong 

bivariate correlations between TC contact parameters (onset, max angle, and total force) and 

anthropometrics (thigh and shank circumferences, BMI, and participant weight) during a heels-

up squat and dorsiflexed kneel (Zelle et al., 2007). However, such variables have not been used 

in the estimation of TC contact forces and collinearity between variables was not reported. In 

addition, the participant sample was small and predominantly male (8 male and 2 female), which 

limits the applicability of such findings to other populations (Zelle et al., 2007). Because the 

strength of intersegmental contact estimation and the collinearity between various 
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anthropometric measures is unknown an investigation of anthropometrics-based regressive 

models to estimate TC contact parameters is warranted. 

Overall, this study was designed to accomplish two goals: 1) quantify five intersegmental 

contact parameters from six high knee flexion postures and 2) develop anthropometric based 

regression equations to estimate contact parameters. 

3.1.1 Definition of intersegmental contact parameters 

Five parameters were identified to represent critical inputs for inverse dynamic 

calculations in high knee flexion postures. These parameters were: 1) the knee flexion angle at 

which TC contact begins (‘onset’), 2) maximum knee flexion range (‘max angle’), 3) contact 

force magnitude (‘force’), 4) contact force area (‘area’), and 5) longitudinal CoF location. A 

secondary objective of this component was to investigate sex differences within these 

parameters. 

3.1.2 Anthropometric regression of intersegmental contact parameters 

There were two objectives in investigating the estimation accuracy of anthropometric 

variables: 1) to define Pearson correlations between several anthropometric measurements and 

TC contact parameters and 2) to assess the accuracy with which these parameters could be 

estimated using multiple linear anthropometric models. Anthropometric measures (predictor 

variables) were height, mass, BMI, and the following measurements for both the thigh and 

shank: length, circumferences (proximal, mid, distal), and skinfold thickness. Intersegmental 

contact parameters (outcome variables) were onset, max angle, and three parameters measured at 

maximum knee flexion: force, longitudinal CoF location, and area. For these last three 

parameters, max angle was also included as a predictor variable. Based on Pearson correlations 
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reported previously (Zelle et al., 2007), we hypothesized that linear regressive models would: A) 

have a strong fit with onset, total force, CoF and contact area data; B) regressive models would 

have a moderate fit with max angle data. 

3.2 Methodology 

3.2.1 Participants 

An a-priori power analysis was performed using mean and standard deviation data from 

Zelle et al. (2007). The analysis indicated that seventy two participants (36M/36F) would be 

required to achieve a 0.8 power level (beta) with: 5 predictor variables, an estimated effect size 

of 0.2 (0.15 medium - Cohen, 1992), and α = 0.05. This sample size was determined using 

G*Power 3.1.7 software (Faul, 2013). During the study progression, it became apparent that the 

reported variability underestimated distributions present in this sample, likely due to the 

comparatively small sample in Zelle et al. (2007). Therefore, a total of twenty-eight male and 

thirty female participants (Table 3-1) were recruited from a sample of convenience in the 

university’s student body. Exclusion criteria consisted of any low back, or lower limb injury 

within the past year that required medical intervention or time off from work for longer than 

three days, and any history of surgical interventions to the back or lower limb. Only one 

participant was not right leg dominant. Each participant read and signed an informed consent 

form approved by the university’s research ethics board. 

  



40 

Table 3-1 Mean (SD) descriptive and anthropometric participant information of original 

sample. 

Parameter Female (n = 30) Male (n = 28) Total (n = 58) 

Age (yrs) 21.00 (3.8) 23.70 (3.8) 22.33 (4.00) 

Height (m) 1.63 (0.06) 1.77 (0.07) 1.70 (0.10) 

Mass (kg) 61.67 (10.26) 77.15 (15.60) 69.15 (15.15) 

BMI (kg/m2) 23.25 (3.84) 24.57 (4.08) 23.89 (3.98) 

Thigh Length (m) 0.39 (0.05) 0.40 (0.03) 0.40 (0.04) 

Proximal Thigh Circumference (m) 0.56 (0.06) 0.58 (0.08) 0.57 (0.07) 

Mid-Thigh Circumference (m) 0.51 (0.06) 0.54 (0.08) 0.52 (0.07) 

Distal Thigh Circumference (m) 0.39 (0.05) 0.40 (0.03) 0.40 (0.04) 

Thigh Skinfold (mm) 32      (12) 19      (13) 26      (14) 

Shank Length (m) 0.37 (0.03) 0.40 (0.03) 0.39 (0.03) 

Proximal Shank Circumference (m) 0.33 (0.03) 0.34 (0.03) 0.33 (0.03) 

Mid Shank Circumference (m) 0.34 (0.03) 0.37 (0.04) 0.36 (0.04) 

Distal Shank Circumference (m) 0.20 (0.02) 0.22 (0.02) 0.21 (0.02) 

Shank Skinfold (mm) 18      (11) 13      (12) 16      (11) 
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3.2.2 Experimental protocol 

Participant height and segmental anthropometrics (Table 3-1), from the right lower limb, 

were measured before instrumentation. Participant mass was calculated from force plate data 

during a static calibration trial. Thigh and shank skinfold measurements were taken at the 

midpoint between the inguinal fold and the anterior surface of the patella and the medial aspect 

of maximal shank girth respectively (International Society for the Advancement of 

Kinanthropometry, 2001) as a gross representation of adiposity. Thigh length was measured as 

the distance between the palpated greater trochanter and lateral femoral condyle. Thigh 

circumference measurements were taken at three distances from the greater trochanter: 10% 

(proximal), 50% (mid), and 90% (distal) of thigh length. Shank length was measured as the 

distance between the palpated lateral tibial condyle and malleolus with circumferences measured 

at the same distances, from the lateral tibial condyle, as the thigh. A generic measure of 

participant flexibility was not quantified as there are no verified and reliable protocols 

established for this measure. 

Following preparations for kinematic tracking, participants completed a static standing 

trial, followed by knee and hip functional joint center trials (Besier et al., 2003b; Camomilla et 

al., 2006). Then, after conditioning (see section 3.2.3), a pressure sensor was attached to the 

posterior right thigh (Figure 3.1). Participants first observed the high knee flexion movements, 

performed by the researcher, and then practiced until they could perform each comfortably. Five 

repetitions of the following six movements (Figure 3.2) were completed in a fully randomized 

order: heels-up squat (HS), flatfoot squat (FS), dorsiflexed kneel (DK), plantarflexed kneel (PK), 

dorsiflexed unilateral kneel (DUK), and plantarflexed unilateral kneel (PUK). Each trial took 6 

seconds to complete and consisted of stepping onto embedded force plates, descending to end 
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range of motion, and statically holding the position. Participants moved at a self-selected speed 

with movement instructions of: step with the right foot first followed by the left (all movements); 

kneel onto the right knee during the transitional phase (Figure 3.1 for kneeling movements); then 

assume the final posture (Figure 3.2). When performing unilateral kneeling movements, 

participants were instructed to support the majority of their body weight on the right leg in the 

static phase of these positions similar to techniques used in military theater (Department of the 

Army, 2010). 
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Figure 3.1 Participant performing a transition to kneeling with the pressure sensor (3005E) 

attached to the posterior thigh and positioned so the edge closest to the knee joint entered 

the popliteal fossa upon flexion. 
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Figure 3.2 High knee flexion postures performed in this study: Heels-up squat (HS), flatfoot squat (FS), dorsiflexed kneel 

(DK), plantarflexed kneel (PK), dorsiflexed unilateral kneel (DUK), and plantarflexed unilateral kneel (PUK). 
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3.2.3 Instrumentation 

Kinematic data were recorded at 64 Hz from rigid bodies attached to the right thigh, 

shank, foot, and the pelvis using an optoelectronic system (Certus, NDI, Waterloo, ON). Kinetic 

data were synchronously recorded at 2048 Hz from four embedded force plates (OR6-7, AMTI, 

Watertown, MA). Pressure data were synchronously recorded at 64 Hz (3005E-FScan, Tekscan, 

Boston, MA). This 8-bit resistive pressure sensor had a spatial resolution of 3.9 sensels/cm2 and 

a sensing region that was 15.75 cm wide by 39.62 cm long. It was conditioned to 103.4 kPa ten 

times in 3-second cycles, equilibrated for 30 seconds at three points (34.5 kPa, 68.9 kPa, and 

103.4 kPa) then calibrated following the manufacturer’s non-linear (power) procedure (Table 

3-6). The power calibration is the most accurate calibration provided in Tekscan software for 

varying load applications (Brimacombe et al., 2009). 

3.2.4 Data processing 

Data processing was completed using Matlab 9.0 (The Mathworks, Release R2016a, 

Natick, MA). Kinematic and GRF data were low-pass filtered using a bidirectional 2nd-order 

Butterworth digital filter with a 6 Hz cut-off frequency (Longpré et al., 2013; Winter, 2009). 

Knee and hip joint centers were calculated from functional trials following established protocols 

(Besier et al., 2003b; Camomilla et al., 2006; Ehrig et al., 2007). Knee joint angles were 

decomposed in a Z-X-Y Cardan sequence. Data were then truncated, starting when the GRF 

under the right foot (always the first foot to contact a force plate) exceeded 10 N. The trial end 

point was manually identified as the frame where the knee flexion waveform plateaued (Figure 

3.3). All data were then time normalized and averaged across the five repetitions of each 

movement. 
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Figure 3.3 Intersegmental contact range definition. Onset was defined using the criteria 

shown in Figure 3.5 while Max Angle was manually defined for each trial at the plateau of 

the knee flexion waveform. 

 

Raw pressure data, from the last frame of the truncated trial, underwent a ‘masking’ 

procedure to identify regions of TC and HG contact for every repetition (Figure 3.4). Masks 

were represented as matrices of 78 x 31 logical values (1 if element was in selected region, 0 if 

not) and multiplied by the raw data to omit the values of unselected sensels. This procedure was 

completed to reduce sensor noise as sensor deformation around the small circumference of the 

calcaneus resulted in pressure artifacts (Figure 3.4 – A vs D). Masking was completed on all 

trials for each participant (900 frames x 2 masks) twice (figure displayed maxima of 30 and 80 

kPa) to allow for an intraclass correlation (ICC) of mask selection reliability, and then completed 

by two additional untrained raters, at 30 kPa, to estimate interrater reliability.  

After masking, onset was calculated using knee flexion angle and total force from the 

pressure sensor. Mean and standard deviation were calculated from force data in a 10-frame 
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window surrounding the frame when the knee flexion angle reached 110º. The onset threshold 

was defined as the mean plus two standard deviations. Onset (Figure 3.5 – data at the point of 

onset indicated by black circles) was defined as the flexion angle at the frame where force data 

exceeded this threshold (Hodges and Bui, 1996). Contact area values were calculated from both 

contact regions as the sum of sensel areas that had values greater than 0 kPa after masking. 
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Figure 3.4 Raw (A) to masked (D) pressure sensor data completed through regional selections using a custom Matlab function. 

The frame of pressure data at Max Angle for every repetition was used to define masks for the thigh-calf and heel-gluteal (if 

applicable) contact regions. A is raw data, B is the selection of thigh-calf contact mask, C is the selection of heel-gluteal mask, 

and D is the masked data where raw data is multiplied by logical matrices (1 if element was in selected region, 0 if not) to omit 

the values of unselected sensels. For this example: total force in A = 175.4 N; total force in D = 123.5 N (51.9 N difference from 

A); thigh-calf force in D = 87.7 N; heel-gluteal force = 35.8 N. 
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Figure 3.5 Thigh-calf contact onset criteria. The vertical dashed lines indicate a window of 

10 data points surrounding the frame in which the participant reached 110º of knee flexion. 

The mean (bottom of shaded region) and standard deviation of the force values in this 

window were used to define the onset threshold (top of the shaded region at 2 SD above the 

mean). The circled red point indicates where force data exceeded onset threshold and the 

circled blue point indicates the knee flexion angle where onset of thigh-calf contact 

occurred. 

 

Longitudinal CoF was calculated as the distance from the functional knee joint center, for 

both the TC and HG contact regions using a weighted-centroid approach (Verkerke et al., 2005). 

A fixed transformation used to position the pressure sensor (and thus the CoF) with respect to the 

thigh was defined (Figure 3.6). Points on the pressure sensor that were digitized in the global 

coordinate system—while the participant was standing upright—were used to define a local 

coordinate system (LCS) on the sensor. The sensor LCS was assumed to lay flat in the regions 
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where contact occurred (Caruntu et al., 2003). The vertical-frontal plane of the sensor was 

positioned parallel to the frontal plane of the thigh segment (Figure 3.6). Anterior-posterior 

positioning of the sensor was accomplished by setting the perpendicular distance between these 

two planes (Figure 3.6 - A) such that sensor passed through the midpoint (O) of a vector between 

the most posterior points of the mid-thigh (Figure 3.6 - M) and distal thigh (Figure 3.6 - D) 

circumferences. The angle between the long axis of the pressure sensor and the long axis of the 

thigh in the plane of the sensor was then calculated using the dot product to convert CoF points 

from the sensor coordinate system into the thigh. 
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Figure 3.6 Sagittal view of the femur and shank depicting the position of the pressure 

sensor plane (hashed black rectangle) referenced to the thigh segment. Point M (green 

circle) is the posterior point on the mid-thigh circumference located at 50% of segment 

length. Point D (green circle) is the posterior point on the distal thigh circumference 

located at 90% of segment length. Point O (red X) is the mid-point between points M and 

D, which was used to define the anterior-posterior position of the pressure sensor that was 

a fixed perpendicular distance (A) from the long axis of the femur (vertical black arrow). 

 

3.2.4.1 Statistical analyses 

All statistical procedures were performed using SPSS (Version 20.0 – Released 2011, 

IBM Corp., Armonk, NY). To estimate trained rater reliability in mask selection, a two-way 

random ICC(2,1) was completed for 58 participants, using average absolute agreement between 
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thigh-calf region CoF from the 30 and 80 kPa rounds of masking (Shrout and Fleiss, 1979). 

Similarly, a second two-way random ICC(2,3) was completed to estimate rater reliability 

between the trained and two untrained raters in selecting masks. To assess differences between 

high knee flexion contact parameters across the six postures, a linear mixed model was used with 

fixed effects of posture and sex, and a priori 𝛼 = 0.05. Dependent variables were onset, max 

angle, and measures taken at the last frame of the truncated trial (max angle): total force, TC 

force, TC CoF, TC area, HG force, HG CoF, and HG area. Bonferroni corrections were applied 

for post hoc pairwise comparisons to adjust 𝛼 levels for multiple comparisons. 

Pearson correlation coefficients were computed between thirteen anthropometric 

predictors (Table 3-1 – excluding age) and five outcome variables (onset, max angle, peak force, 

CoF, and contact area) for each of the six high knee flexion movements separately. In addition, 

max angle was used as a predictor variable for peak force, CoF, and contact area as these 

outcome variables were discrete points taken at the frame of maximum knee flexion. Typically 

this number of comparisons would require Bonferroni adjustments to 𝛼, however, to facilitate 

comparison with the findings from previous work (Zelle et al., 2007) an uncorrected 𝛼 = 0.05 

was used to identify significant correlations. Correlation coefficient strengths were defined using 

the following criteria: 0.00-0.09 (none), 0.10-0.29 (weak), 0.3-0.59 (moderate), and 0.6-1.00 

(strong) (Cohen et al., 2003; Field, 2009).  

Multiple linear regressions were used to test associations between predictors, with 

random intercept and outcome variables, following backward stepwise procedures (Babyak, 

2004; Steyerberg et al., 2001). Predictor inclusion and exclusion criteria levels were set at p > 

0.05 and 0.10 respectively. Thirty separate regression equations (5 thigh-calf contact parameters 

x 6 movements) were assessed for model fit, frequency of predictor inclusion, and variance 
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explained. In line with previous work, Bonferroni p-value corrections adjusted for the number of 

statistical models, therefore, 𝛼 = 0.0017 was used to identify significantly predictive regression 

models (Chehab et al., 2017). Models were evaluated using correlation strength using intervals 

indicated in the previous paragraph (Cohen et al., 2003; Field, 2009) If models for a pair of 

similar movements (e.g. HS and FS) had multiple predictors in common, exploratory regressions 

were computed for combined movement data. All models were assessed for compliance with 

serial correlation (Durbin-Watson statistic 1.5-2.5), heteroscedasticity (visual inspection), and 

multicollinearity (tolerance > 0.2 and variance inflation factor < 4.0) assumptions (Babyak, 

2004; Field, 2009; Streiner, 1994). If an included predictor violated the above criteria 

hierarchical models were defined using variables resulting from stepwise regression, with 

suspect variables removed, until all criteria were met (Legendre and Legendre, 1998). 

3.3 Results – Intersegmental contact parameters 

ICC(2,1) estimates were excellent (lowest value 0.932) between masking attempts at 

different kPa display levels (Cicchetti, 1994). Likewise, ICC(2,3) values were excellent between 

raters (lowest single and mean values 0.873 and 0.954 respectively). A complete set of mean 

values and standard deviations for dependent variables is in Table 3-2. Notable differences are 

reported below. 
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Table 3-2 Mean values (± 1 SD) of high knee flexion parameters. † and ‡ indicate main effects of posture or sex respectively, * indicates an 

interaction of posture and sex (differences occurred in the DUK posture only). Values sharing lettered superscripts are not different within a 

column. HS is heels-up squat, FS is flatfoot squat, DK is dorsiflexed kneel, PK is plantarflexed kneel, DUK is dorsiflexed unilateral kneel, 

and PUK is plantarflexed unilateral kneel. TC is thigh-calf and HG is heel-gluteal contact. CoF is center of force. 

Posture Group 
Onset†‡ 

(deg) 

Max Angle†‡ 

(deg) 

Total Force† 

(N) 

TC Force† 

(N) 

TC CoF†* 

(mm) 

TC Area†* 

(cm2) 

HG Force† 

(N) 

HG CoF† 

(mm) 

HG Area† 

(cm2) 

HS 

Female 126.0 (7.9) 153.0 (7.3) 68.47 (34.86) 68.47 (34.86) 60 (15) 92.14 (26.20) - - - 
Male 123.9 (7.2) 146.2 (9.4) 78.91 (69.13) 78.91 (69.13) 54 (19) 88.79 (36.19) - - - 
Total 125.0  (7.5) a,b 149.6 (9.0) a 73.59 (54.19) 73.59 (54.19) 57 (17) a 90.49 (31.25) - - - 

           

FS1 

Female 130.6 (9.0) 152.8 (6.6) 42.54 (19.01) 42.54 (19.01) 58 (15) 75.75 (20.65) - - - 
Male 125.5 (5.0) 145.9 (7.1) 60.37 (45.49) 60.37 (45.49) 48 (18) 78.51 (35.88) - - - 
Total 128.1 (7.7) a 149.5 (7.5) 51.07 (34.70) 51.07 (34.70) 53 (17) 77.07 (28.29) - - - 

           

DK2 

Female 124.1 (7.4) 155.2 (7.5) 114.88 (55.17) 113.36 (55.09) 71 (21) 121.57 (36.73) 6.51 (6.17) 343 (18) 3.93 (2.37) 

Male 119.9 (6.5) 148.2 (10.4) 122.65 (80.60) 122.34 (80.55) 63 (19) 120.98 (38.91) - - - 
Total 122.1 (7.3) b,c,d 151.8 (9.6) b,c 118.63 (68.13) a 117.69 (68.11) a 67 (20) b 121.29 (37.47) a 6.51 (6.17) a 343 (18) a,b 3.93 (2.37) 

           

PK3 

Female 121.1 (6.4) 156.0 (6.9) 105.16 (49.56) 99.44 (49.00) 62 (15) 110.92 (30.11) 14.28  (9.88) 306 (16) 8.44 (4.43) 

Male 118.2 (6.2) 149.2 (9.2) 123.88 (72.74) 118.98 (68.80) 61 (20) 120.43 (38.51) 12.48 (12.52) 326 (22) 8.91 (4.94) 

Total 119.7 (6.4) c 152.7 (8.8) b 114.20 (62.01) a 108.88 (59.67) a 62 (17) a 115.51 (34.45) a 13.42 (11.00) a 315 (22) a 8.67 (4.58) 

           

DUK4 

Female 125.9 (6.9) 155.3 (7.1) 201.49 (89.16) 196.28 (87.66) 82 (27) 155.61 (41.03) 11.17 (11.91) 333 (24) 5.81 (3.89) 

Male 122.7 (8.5) 147.2 (11.9) 178.00 (110.30) 176.56 (109.07) 67 (22) 137.33 (51.10) 10.11 (4.33) 340 (20) 7.01 (3.16) 

Total 124.3 (7.8) a 151.4 (10.4) a,b 190.15 (99.74) b 186.76 (98.20) 75 (26) b 146.78 (46.67) 10.93 (10.58) a 335 (23) b 6.08 (3.68) 

           

PUK5 

Female 121.0 (6.0) 152.9 (7.5) 167.54 (94.43) 155.34 (92.06) 60 (18) 121.24 (40.88) 24.39 (23.24) 306 (20) 9.67 (4.73) 

Male 118.8 (6.9) 146.7 (12.3) 171.44 (106.28) 162.30 (101.31) 60 (23) 127.92 (48.82) 23.27 (19.57) 330 (21) 10.56 (4.94) 

Total 119.9 (6.5) d 149.9 (10.5) a,c 169.42 (99.46) b 158.70 (95.84) 60 (20) a 124.46 (44.61) a 23.92 (21.35) 316 (23) a 10.05 (4.75) 

1 Only 12 females and 11 males could achieve thigh-calf contact when performing the FS movement 
2 HG values in DK had 7 females 
3 HG values in PK had 12 females and 11 males 
4 HG values in DUK had 15 females and 11 males 
5 HG values in PUK had 14 females and 4 males 
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3.3.1 Range of flexion during thigh-calf contact 

There was a main effect of posture and sex for both onset (p < 0.001 and p = 0.01) and 

max angle (both p < 0.001). These variables define the range of flexion over which thigh-calf 

contact occurred. For male participants, onset (121.0º) and max angle (147.4º) occurred on 

average 3.1º and 7.0º earlier than for females (onset: 124.1º and max angle: 154.4º). Onset 

occurred earliest in PK (119.7º) which was 8.4º earlier (p < 0.001) than the activity with the 

latest onset, FS (128.1º). The only posture-pair (e.g. squatting, symmetric kneeling, or unilateral 

kneeling) that had onset differences was unilateral kneeling; PUK (119.9º) had a 4.4º earlier 

onset (p < 0.001) than DUK (124.3º). In addition, the movement with the highest max angle was 

PK (152.7º) which was 3.2º higher (p < 0.001) than the activity with the lowest max angle, FS 

(149.5º). 

3.3.2 Contact force 

For the measured forces, there was a main effect of posture only for total force (p < 

0.001), TC force (p < 0.001), and HG force (p = 0.012) at max angle. Individual participant and 

mean total force curves for each movement (normalized to percent body weight for comparison 

to previous data) are shown in Figure 3.7. Only two total force pairwise comparisons (Table 3-2) 

were not significantly different: DK vs. PK and DUK vs. PUK (p = 1.00 and 0.27 respectively). 

The range of mean total contact force at max angle was 139.08 N, from 51.07 N in FS to 190.15 

N in DUK. 
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Figure 3.7 Participant (grey) and mean (red) with shaded ± 1 SD band total force values 

across movements. Percentage movement after contact represents the time from onset to 

max angle for each participant. 
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Similar to total force, all TC contact force pairwise comparisons (Table 3-2) were 

different (p < 0.001) except for symmetric kneeling (DK and PK, p = 1.00). The highest TC 

contact force was in DUK (186.76 N) which was 135.69 N more force than FS (51.07 N).  

HG contact only occurred for 15 females and 11 males in DUK, 12 females and 11 males 

in PK, 14 females and 4 males in PUK, and 7 females in DK. Of this sub-sample, HG contact 

force was highest in PUK (23.92 N) which was 12.99 N higher (p = 0.02) than DUK (10.93 N) 

and 17.41 N higher (p = 0.02) than DK (6.51 N).  

3.3.3 Center of force 

An interaction was observed for the TC region CoF (p = 0.002). In DUK, the CoF was 15 

mm farther from the knee joint center in females when compared to males (82 and 67 mm 

respectively). A main effect of posture (p = 0.008) was present for the HG region CoF, with a 19 

mm difference (p = 0.01) occurring between PUK (316 mm) and DUK (335 mm). 

3.3.4 Contact area 

Similar to CoF, an interaction was observed for TC contact area (p = 0.013). In DUK, 

contact area was 18.28 cm2 larger for females (155.61 cm2) when compared to males (137.33 

cm2). A main effect of posture (p = 0.023) was present for heel-gluteal contact area, with PUK 

(10.05 cm2) having a 3.97 cm2 larger area (p = 0.022) than DUK (6.08 cm2). 

3.4 Results - Anthropometric regression 

Pearson correlations of predictor variables with outcomes are reported in Table 7-1-7.5. 

Seventy-eight correlations (13 potential predictors x 6 movements) were computed for onset and 

max angle outcome variables. Eighty-four correlations were computed for total force, CoF, and 

area outcome variables. The additional correlations were due to the addition of max angle as an 
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additional predictor. Significant Pearson correlations for onset were found in 27 of 78 

comparisons; 6 weak and 21 moderate correlations were observed (Table 7-1). Max angle had 

the largest number of significant correlations with 47 of 78 comparisons being significant; 2 

weak, 31 moderate, and 14 strong (Table 7-2). Total contact force at maximum flexion angle had 

only 3 weak and 2 moderate correlations (Table 7-3). Thigh-calf CoF had 5 weak, 14 moderate, 

and 4 strong correlations which mostly occurred in DK and DUK (Table 7-4). Thigh-calf contact 

area had 6 weak, 8 moderate, and 1 strong correlation which mostly occurred in DUK (Table 

7-5). 

Regression models shared similar trends to correlation findings in that the outcome 

variables with strong linear fits across all movements were max angle and CoF (Table 3-3). Max 

angle and CoF values from regression models are plotted against measured values in Figure 3.8 

and Figure 3.9 respectively. While a strong fit was achieved for area during the DUK and PUK 

postures, the four remaining postures had poor to moderate fits (Table 3-3). Of the thirty 

regression models, seven contained two variables that violated VIF and tolerance criteria; 5 in 

max angle (all but FS) and 1 (HS) in total force and CoF. Proximal thigh circumference was the 

variable that most commonly violated multicollinearity criteria. 

  



59 

Table 3-3 Summary of linear regression model fit across six movements. Correlation 

coefficient (R) and coefficient of determination (R2) values across separate regression 

models for each movement. Strong correlation coefficients are bolded.  

Movements 
Onset Max Angle Total Force CoF Area 

R R2 R R2 R R2 R R2 R R2 

Heels-up Squat  

(HS) 
0.41 0.17 0.77 0.59 0.17 0.03 0.61 0.38 0.47 0.22 

Flatfoot Squat  

(FS) 
0.56 0.31 0.77 0.59 0.36 0.13 0.63 0.39 0.30 0.09 

Dorsiflexed 

 Kneel (DK) 
0.39 0.15 0.79 0.62 0.24 0.06 0.72 0.52 0.54 0.30 

Plantarflexed  

Kneel (PK) 
0.46 0.21 0.68 0.46 0.44 0.20 0.68 0.38 0.49 0.24 

Dorsiflexed  

Unilateral Kneel (DUK) 
0.56 0.31 0.79 0.62 0.40 0.16 0.77 0.60 0.60 0.35 

Plantarflexed  

Unilateral Kneel (PUK) 
0.53 0.28 0.65 0.42 0.41 0.17 0.75 0.57 0.67 0.45 
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Figure 3.8 Mean estimated response (red lines) of maximum angle achieved during high 

flexion movements with 95% confidence interval bands from multiple linear regression 

(blue lines). Measured individual values are indicated with a black x. The solid black line 

indicates a perfect line of agreement. Pearson R and R2 values are indicated for the fit and 

variance explained for each movement.
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Figure 3.9 Mean estimated response (red lines) of longitudinal center of force (from the 

functional knee joint center) achieved during high flexion movements with 95% confidence 

interval bands from multiple linear regression (blue lines). Measured individual values are 

indicated with a black x. The solid black line indicates a perfect line of agreement. Pearson 

R and R2 values are indicated for the fit and variance explained for each parameter.
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The strong correlation coefficients and high coefficients of determination of max angle 

and CoF regressions resulted in an exploratory assessment by paired movements; squatting (FS 

and HS), kneeling (PK and DK), and unilateral kneeling (PUK and DUK). Combined models 

remained strongly fit for all paired movements in max angle and CoF except for a moderate fit of 

CoF squatting (Table 3-4). Comparisons of our findings to previously reported correlations are 

highlighted in Table 3-5. 
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Table 3-4 Summary of regression models structure and fit for grouped movement-pairs in estimating max knee flexion angle 

and center of force. Values for intercept and predictor variables are unstandardized 𝜷 values (standard error). Dst is distal 

and Cir is circumference. 

 Max Angle Center of Force 

Predictors Squat Kneel Unilateral Kneel Squat Kneel Unilateral Kneel 

R 0.78 0.74 0.72 0.59 0.72 0.74 

R2 0.60 0.55 0.58 0.35 0.52 0.55 

Intercept 128.03 (10.79) 128.99 (9.60) 123.01 (10.92) -172.36 (41.06) -205.33 (32.61) -240.82 (39.30) 

Mass -0.69 (0.08) -0.67 (0.07) -0.69 (0.08) - - - 

BMI - - - - - -1.16 (0.55) 

Mid-Thigh Cir - 11.15 (12.42) 19.00 (14.37) - - - 

Dst Thigh Cir - - - - - 75.32 (40.21) 

Thigh Skinfold 0.13 (0.05) 0.13 (0.05) 0.09 (0.06) - - - 

Shank Length 106.59 (34.15) 122.63 (28.04) 162.12 (31.13) -47.97 (78.94) - - 

Dst Shank Cir 116.28 (50.96) 61.65 (45.55) - 308.35 (105.54) 239.61 (65.95) 323.05 (87.51) 

Max Angle - - - 1.23 (0.20) 1.45 (0.16) 1.59 (0.19) 
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Table 3-5 Comparison of Pearson correlations between Zelle et al. (2007) and the current 

study (bold italicized) for measured parameters that were common to both studies (onset, 

maximum flexion angle, and total force at maximum flexion). We have assumed that 

circumference measurements reported in previous work were defined in the same manner 

as the mid-thigh circumference and the mid-shank circumference in the current work.  

Posture 
Outcome 

Variable 

Thigh 

Circumference 

Calf 

Circumference 
BMI Weight 

Heels-Up 

Squat 

Onset 
-0.54 -0.79 -0.42 - 

-0.22 -0.17 -0.27 -0.27 

Max Angle 
-0.63 -0.68 -0.81 - 

-0.40 -0.55 -0.68 -0.69 

Total Force 
0.73 0.77 0.57 0.73 

0.14 0.24 0.19 0.20 

      

Dorsiflexion 

Kneel 

Onset 
-0.70 -0.82 -0.69 - 

-0.26 -0.32 -0.35 -0.42 

Max Angle 
-0.32 -0.27 -0.49 - 

-0.40 -0.58 -0.69 -0.68 

Total Force 
0.93 0.81 0.74 0.72 

0.08 0.07 0.02 0.08 

3.5 Discussion – Intersegmental contact parameters 

A purpose of this investigation was to define TC and HG contact parameters for six high 

knee flexion movements and to investigate potential sex differences. The results for total force, 

CoF, and contact area are reported in Newtons and not normalized to any participant 

anthropometric measures. Results indicate that unilateral kneeling movements have the highest 

TC contact forces occurring at CoF locations farthest from the knee joint center. These activities 

would therefore theoretically result in the greatest reduction of knee joint flexion moments for 

the right knee, although not necessarily the lowest compression force. Squatting movements had 

the lowest TC contact forces, with the majority of participants (35) unable to achieve TC contact 

when performing FS. Sex differences occurred in range of flexion parameters (onset and max 

angle), with males having lower TC contact onset and max angle. This difference effectively 
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shifts the entire range of flexion during contact to lower flexion angles for males. Interactions of 

sex by movement occurred where sex had a significant effect on contact area and CoF location 

for the TC and HG regions for the DUK posture only. It should be noted that our results 

(specifically sex differences) reported in this study only relate to our sample of healthy, young, 

non-habitually kneeling participants and the reader is cautioned against generalizing these 

findings to a population level.  

The knee flexion angle where the onset of TC contact occurred was approximately 10º to 

15º earlier than values reported by Zelle et al. (2007), however, our max angles are also 

approximately 5º lower. This is likely attributed to differences in kinematic tracking as three 

markers were used to define thigh and shank motion in Zelle et al. (2007), as opposed to 3D 

reconstruction with functional joint centers (Besier et al., 2003b; Camomilla et al., 2006) used in 

our study. In addition, there is a non-sensing boarder around the perimeter of previously used 

sensors that may contribute to later onset angles. The sensor used in this study was more 

sensitive, therefore it enabled the use of onset criterion similar to established methods used in 

electromyographic work (Hodges and Bui, 1996). This threshold is different from the 5% 

bodyweight value used by Zelle et al. (2007). 

The mean total contact force values reported in this study are considerably lower than 

prior work (Table 3-6). However, it should be noted that a small number of participants achieved 

similar contact force magnitudes in our sample population (Figure 3.7). While it appears to have 

been largely ignored in prior work, noise within pressure sensor technology can be considerable 

when performing high knee flexion movements due to the deformation of the segment and 

sensor. For example, noise represented 51.9 N ≈ 30% of the raw total force displayed in Figure 

3.4 – A. Also, the approach used to calibrate Tekscan sensors can alter output substantially as the 
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power calibration method (used in the current study) is almost ten times more accurate, across 

full scale output, when compared to linear methods (Brimacombe et al., 2009). Previous work 

used linear calibration methods (Pollard et al., 2011; Zelle et al., 2007). In addition, contact areas 

were less than 50% of those reported in Zelle et al. (2007) and thus lower total contact forces 

would be expected.  

Differences in participant anthropometrics (e.g. thigh circumference/skinfold thickness) 

likely contributed to the differences in contact areas between these studies, but this theory is 

speculative as segment circumferences were not reported in previous work. As well, for the same 

TC contact area, the finer spatial resolution of the pressure sensor used in the current study 

would result in a smaller contact area measured, compared to a sensor with coarser resolution. 

Finally, it should be noted that prior work did not explicitly state if participants were barefoot or 

shod. Performing kneeling movements while shod can alter ankle flexion by up to 8º (Chong et 

al., 2017) and could result in increased contact area and pressure due to material of the shoe 

extending posteriorly from the heel. These issues, in addition to our study using a masking 

procedure to reduce noise, may help explain the differences in findings between studies. 
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Table 3-6 Summary of thigh-calf contact methods and findings from in vivo studies. All sensor models are from Tekscan 

(Tekscan Inc., South Boston, MA, USA). Mean (SD) contact force values are reported for the Heels-Up and Dorsiflexed 

Kneeling movements consistent across the listed studies. Dorsiflexed kneel values from Pollard et al. (2011) and the current 

study are reported with thigh-calf (left) and heel-gluteal (right) segregated values. 

Study 

Participants                 Sensor 
Heels-Up 

Squat 

(%BW) 

Dorsiflexed 

Kneel 

(%BW) 
Male Female Model 

Spatial 

Accuracy 

(sensels/cm2) 

Calibration  
Sample 

Rate (Hz) 

Sensitivity 

(kPa) 

Zelle et al. 

(2007) 

 

8 2 
Conformat 

(5330) 
0.5 Linear 8 0-33.3 34.20 (9.69) 30.90 (9.31) 

Pollard et al. 

(2011) 

 

7 3 
ClinSeat 

(5315) 
1.0 Linear 4 

41-2072 

0-2072 39.00 (14) 
28.00 

(13) 

11.00 

(6) 

Kingston & 

Acker (2018) 
28 30 3005E 3.9 Power1 64 0-1543 10.98 (7.01) 

17.88 

(10.14) 

1.13 

(0.84) 

1 Point 1 – 22.72kg over ≈610 sensels, Point 2 – 114.94kg over ≈820 sensels, Exponent 0.87-1.27, Scaling Factor 0.502-0.84, Sensel 

Excitation (S) = 34. 
2 Pollard et al., (2011) report a 0-30 PSI range for their sensor, however, details available from the 5315 specification sheet note a 6-30 

PSI sensitivity range. 
3 Specifications of the 3005E sensor state a 0-75 PSI or 0-120 PSI sensitivity range, but our F-Scan software allowed changing the 

excitation voltage of the sensor to lower the effective sensitivity range to ≈0-22 PSI.  
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Thigh-calf CoF values for HS are considerably lower in this study (≈5.7 ± 1.7 cm) 

compared to the findings of Zelle et al. (2007) (16.6 ± 2.64 cm), likely a result of smaller contact 

area measured. Our DK CoF values are separated into TC and HG components, as opposed to an 

overall CoF, limiting direct comparison to previous work. The difference in the reference points 

used to express the CoF locations in previous works—perpendicular distance between the 

posterior knee and the epicondylar axis (Zelle et al., 2007) or midway between the epicondyles 

of the femur (Pollard et al., 2011)—highlights that a reporting standard needs to be established. 

We feel that expressing the CoF with respect to the functional knee joint centre warrants 

consideration due to the ubiquity of its use in current 3D modeling (Hicks et al., 2014). 

Limitations of this study include the manual selection of contact regions, the inability to 

account for shear loading or deformation in the pressure sensor, soft-tissue artifact, and the 

weight distribution instruction for unilateral kneeling. Although ICCs were excellent for the 

user-defined masks, mask selection is subjective and could influence comparisons between 

studies. As well, the tapered shape of this pressure sensor toward the popliteal fossa may have 

resulted in not measuring thigh-calf contact data in rare instances, similar to the non-sensing 

border of rectangular pressure sensors. Current pressure sensing technology remains limited in 

that shear forces cannot be separated from normal force. In addition, deformation of the sensor—

especially in HG contact regions—manifests as pressure artifacts. Therefore, our assumption that 

the sensor was flat between contact areas likely results in systematically over-estimated force 

values. We acknowledge that soft tissue deformation of the thigh and shank segments is 

considerable during high knee flexion movements, and that this would affect both the calculation 

of knee flexion angle and confidence in pressure sensor location. Dual-plane fluoroscopic studies 

are needed in high knee flexion ranges before quantification of soft-tissue error can be estimated 
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from surface tracking (Cereatti et al., 2017). In addition, the authors are not aware of a verified 

method for tracking sensor deformation during dynamic activities and future work is needed to 

establish movement between the pressure sensor and segments. Finally, we instructed 

participants to support the majority of their bodyweight on the flexed leg during unilateral 

kneeling. This posture was novel to all participants although commonly used in military 

populations (Department of the Army, 2010). Therefore, results for these postures could be 

interpreted as ‘worst-case’ in-vivo thigh-calf and heel-gluteal load magnitudes. 

3.6 Discussion – Anthropometric regression 

This study assessed the correlation of thirteen predictor variables (anthropometric 

measures and knee flexion angle) to parameters of TC contact and quantified their fit to outcome 

variables using multiple linear regression. We hypothesized that multiple linear regressions on 

thigh-calf contact onset, total force, center of force, and area would have a strong linear fit and 

moderate fit for max angle. Our findings suggest strong correlations and estimates of max angle 

and CoF from regression models but moderate to weak correlations and estimates for other 

outcome variables.  

Person correlations did not support our hypotheses as the strength of trends were different 

than those reported in Zelle et al., (2007) (Table 3-5). The small samples used in prior work may 

have resulted in findings specific to a particular demographic that cannot be generalized to larger 

groups. Of note is the difference in correlations for total force outcomes across movements 

common to both studies (Table 3-5). We speculate that the wider range of anthropometrics, 
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particularly due to a more balanced sex distribution in participants, is a major contributor to the 

lower correlations in the current study. 

Of the thirteen anthropometric parameters used in this study, six were commonly retained 

in backward stepwise models: mass, proximal and mid-thigh circumferences, thigh skinfold, and 

shank length (Table 3-4). An interesting finding was that all CoF models (except for FS) retained 

distal shank circumference and max angle as predictors. We expected the small diameter and low 

variability in distal shank circumference to result in exclusion from most models, but further 

investigation of this relationship could be warranted. This effect is speculated to result from the 

relationship of shank circumferences and length where increased distal shank circumference 

results in a longer contact area due to soft tissue deformation. In addition, we provide support for 

the relationship that increased knee flexion angle results in a more distal CoF. A key 

consideration of these results is that collinearity was considered when developing regression 

models. Pearson bivariate correlations may imply estimation accuracy, but the unique variability 

captured from each predictor is not clear. For example, BMI was not included in the vast 

majority of regression models but was strongly correlated with outcome parameters across many 

movements Appendix C. 

Due to the overall poor fit and variance explained by the linear regression models of 

onset, total force, and contact area further work is needed to provide waveform estimations of 

these parameters for use in clinical and modeling settings. While the onset of thigh-calf contact is 

not strongly estimated from this sample, prior works have established that onset occurs between 

~125-135º of knee flexion (Kingston and Acker, 2018a; Zelle et al., 2007). This study has shown 

maximum knee flexion angle could be estimated based on anthropometrics. Therefore, other 

waveform assessment tools may be able to account for underlying sources of variation within the 
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total force waveform, and could be used to model the magnitude of thigh-calf contact parameters 

within the range of motion establish in existing works. 

Limitations of the regressive component of this study include limited sample size, lack of 

predictive testing, and the assumption of an underlying linear data structure. The procedures in 

this study assess the fit of a linear model based on anthropometric measures to TC contact 

parameters and provide guidance on whether anthropometric-based estimation of TC contact 

parameters is possible. Assessment of predictive ability on a new data set was not pursued due to 

the limited number of strong linear fits to the existing data. While these data were collected from 

the largest population measured for thigh-calf contact to date, this population consisted of 

healthy university aged participants who did not report habitual engagement in high flexion 

activities. Therefore, it requires further study to verify if parameter magnitudes, and regression 

results, found in the current study, would apply to older or habitually kneeling populations. 

Finally, only linear regressive models were used to fit these data and non-linear models may 

improve overall fit to the data. 

3.7 Conclusions  

Our results suggest that TC and HG contact can result in considerable force transfer 

between the thigh and shank segments during high knee flexion movements. While previous 

work has quantified these effects at the joint loading level (Pollard et al., 2011; Zelle et al., 2009) 

future work is required to incorporate TC contact parameters into a 3D MSK model. It is 

noteworthy that the population used in this study—consisting of young, generally active 

participants from many ethnic backgrounds—was largely unable to attain heel-gluteal contact in 

kneeling postures. Given our findings are markedly lower than previously published values in 

almost all contact parameters, it seems pertinent to recommend that future work on TC contact 
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should include detailed information about calibration procedures, instrumentation, and 

participant anthropometrics to facilitate comparisons between studies. As well, data is needed 

from sufficiently sampled populations with specific cultural or occupational kneeling practices 

that are linked to increased risks of knee joint degenerative diseases. 

Anthropometrics-based linear regression models for six high knee flexion movements 

strongly fit the maximum knee flexion angle and CoF using easily accessible anthropometric 

measurements (and maximum angle itself for the CoF equation). Regression estimates of TC 

onset, total force, and contact area were only weak to moderate. The identified predictor 

variables were robust to collinearity criteria from the largest currently available sample of TC 

contact data. Given the need to include TC contact forces in 3D MSK joint contact models of the 

knee in high flexion, waveform estimates of the studied parameters and other potential 

participant-specific explanatory variables should be explored to advance modeling of high knee 

flexion activities. 

This study provides normative data for future modelling efforts investigating knee joint 

contact forces. Implementation of the reported total forces at appropriate CoF locations would 

improve the biofidelity and accuracy of inverse dynamics calculations or finite element 

simulations. We speculate that these data could be used to improve knee joint prosthetic design 

as overestimations of joint contact forces could result in excessive material deposition or rigidity 

in components. Although regression equations were only defined for two of the five 

intersegmental contact parameters, future work investigating regressions of these parameters 
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after participant-specific normalization, or using nonlinear approaches, could provide stronger 

relationships. 
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Chapter 4 – High knee flexion EMG 

Components of this chapter have been published (Kingston and Acker, 2018b), however, 

additional detail is provided in methodology and results sections. 

4.1 Introduction 

Muscular activation waveforms of the vastus intermedius (VI), adductor magnus (AM), 

or semimembranosus (SM) during high knee flexion movements are unknown. High knee 

flexion is defined as movements where knee flexion exceeds 120º (Hemmerich et al., 2006; 

Kingston and Acker, 2018a; Zelle et al., 2009). Activation waveforms for these muscles are 

needed for muscle force modeling and verification in high knee flexion postures. Previous work, 

that did not measure deep musculature, represented the VI waveform as the average of vastus 

medialus (VM) and vastus lateralus (VL) or semitendinosus (ST) as identical to SM (Lloyd and 

Besier, 2003). Similarly, optimization based musculoskeletal (MSK) models currently have 

limited (Byrne et al., 2005; Montgomery et al., 1994; Saito et al., 2015) or no (Hamner et al., 

2010; Martelli et al., 2015) verification data to assess biofidelity of predicted muscle activity in 

these muscles. These muscles were studied because they are the deep lower-limb muscles with 

the largest cross-sectional areas (and thus are the most likely to contribute to joint contact forces) 

that can be measured using fine wire insertion. 

There have been previous attempts to represent fine-wire activation waveforms from 

surface EMG data. Jacobson et al. (1995) measured VM and biceps femoris (BF) activity during 

walking and running from 12 males with both surface and fine-wire electrodes. Between the two 

sites, there were similar variance ratios (< 0.4), reproduceability, and linear envelope shapes (R2 

> 0.5). McGill et al. (1996) reported that, in 5 males and 3 females, surface measured muscle 
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activity could represent fine-wire measured activity of the quadratus lumborum, external oblique, 

internal oblique, and transverse abdominis muscles within 15% RMSD but stated their R2 

comparisons were not informative as phase misalignment of EMG peaks can lead to 

unexpectedly low values given good overall visual agreement. Byrne et al. (2005) found a 

modest linear correlation (R = 0.579, R2 = 0.336) between surface and fine-wire recordings of 

the rectus femoris (RF) concluding that surface recordings might not be representative of RF 

activation levels due to vastii crosstalk. Finally, Allen et al. (2013) compared surface and fine-

wire activity from supraspinatus and infraspinatus, in 10 males and females, during a number of 

isometric exertions. During external or internal axial humeral rotation trials, surface recordings 

overestimated supraspinatus by 32% (R2 =.76) and 21% (R2 = 0.72) and infraspinatus by 72% 

(R2  = 0.64) and 500% (R2 = 0.62) respectively (Allen et al., 2013). Although these previous 

studies have achieved varying levels of success in using surface recordings as proxies for fine-

wire recordings, the promising results of Jacobson et al. (1995) motivated the current study.   

The purpose of this study was to quantify the activation of VI, AM, and SM using fine-

wire electrodes and to compare these signals to those acquired from easily accessible surface 

locations over VL, RF, VM, ST, and BF. We hypothesised that relationships exist in which fine-

wire signals may be estimated reliably from surface sites. Two criteria were used to evaluate if 

the surface locations reliably represented fine-wire: Coefficient of determination (R2) greater 

than 0.85 and RMSD less than 10 %MVC (McGill et al., 1996). These relationships, if robust, 
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would simplify future work of muscular control in high knee flexion movements and could 

potentially improve MSK model estimates of knee joint contact forces. 

4.2 Methodology 

4.2.1 Participants 

Sixteen participants, eight male and female, were recruited as a sample of convenience 

from the university’s study body (Table 4-1). Exclusion criteria consisted of any low back or 

lower limb injury within the past year that required medical intervention or time off from work 

for longer than three days, and any history of surgical interventions to the back or lower limb. 

All participants self-reported right leg dominance and the ability to kneel to the ground without 

pain. Each participant read and signed an informed consent form approved by the university’s 

research ethics board. 

 

Table 4-1 Mean (standard deviation) descriptive and anthropometric participant 

information. Circumferences were measured distally from the greater trochanter towards 

the lateral femoral condyle: proximal circumference was measured at 10%, mid at 50%, 

and distal at 90% of thigh length. 

Parameter Females (n = 8) Males (n = 8) All (n = 16) 

Age (yrs) 24.30 (4.5) 26.30 (3.2) 25.30 (3.9) 

Height (m) 1.70 (0.1) 1.80 (0.1) 1.80 (0.1) 

Mass (kg) 70.40 (10.7) 88.60 (16.5) 79.50 (16.4) 

BMI (kg/m2) 24.30 (3.8) 27.00 (3.4) 26.70 (3.8) 

Thigh Length (m) 0.41 (0.04) 0.40 (0.04) 0.40 (0.04) 

Proximal Thigh (m) 0.60 (0.04) 0.63 (0.09) 0.61 (0.07) 

Mid-Thigh (m) 0.53 (0.04) 0.55 (0.12) 0.54 (0.09) 

Distal Thigh (m) 0.41 (0.04) 0.42 (0.05) 0.41 (0.04) 
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4.2.2 Experimental protocol 

Participant height and segmental anthropometrics (Table 4-1), from the right lower limb, 

were measured before instrumentation. Participant mass was calculated from force plate data 

during a static calibration trial. Thigh circumferences were measured distally from the greater 

trochanter towards the lateral femoral condyle: proximal circumference was measured at 10%, 

mid at 50%, and distal at 90% of thigh length. 

Surface EMG electrode sites (Appendix D) were located and prepared following 

SENIAM guidelines (Hermens et al., 2005) in a similar configuration to a previous high knee 

flexion study (Kingston et al., 2016). Following surface EMG preparations, fine-wire electrodes 

were inserted into the VI, AM, and SM (Figure 4.1) of the right leg. After each insertion, 

participants firmly contracted against manual resistance 3-6 times in knee flexion/extension (VI 

and SM) or hip adduction (AM) to set fine-wires inside the muscle. Participants sat on the edge 

of a massage table (~90º knee flexion) for VI and AM insertions. Fine-wires for VI passed 

through the rectus femoris (RF) and terminated at the mid-point of the muscle belly (Figure 4.1 – 

A). Prior to the insertion at AM, Doppler ultrasound was used to identify femoral artery blood 

flow, then gentle adductions of the femur was monitored via ultrasound to identify the gracillis, 

AM, and adductor longus muscles (Figure 4.1 – B). Participants were able to stand and walk if 

cramping or discomfort occurred until they self-reported that discomfort had subsided. Fine-

wires remained in muscles for approximately 1 (SM) and 1.75 (VI and AM) hours. 

Participants then completed two 6 s isometric maximum voluntary contractions (MVC) 

for each muscle group with a minimum 60 s rest between trials. Vastii MVCs were performed 

with the right leg in a commercial leg extension exercise machine, under isometric conditions, 

with the knee joint positioned at 45º of flexion (Hermens et al., 2005; Kingston et al., 2016). 
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Adductor MVCs were performed with participants seated on a massage table where they 

isometrically adducted their hips to squeeze the thorax (~0.5 m diameter) of the investigator.  

Participants were then asked to assume a prone position for SM insertions. Prior to the 

insertion of SM the popliteal artery was identified with Doppler ultrasound medial to the 

semitendinosus tendon, then gentle knee flexion contractions were performed to find the border 

between SM and the flexor head of AM (Figure 4.1 – C). Semimembranosus MVCs were 

performed isometrically against manual resistance with the knee at 65º of flexion (Hermens et 

al., 2005; Kingston et al., 2016). 

After EMG preparations, rigid bodies were attached to the right thigh, shank, foot, and 

the pelvis for kinematic tracking (Figure 3.2). Participants then completed a static standing trial, 

followed by knee and hip functional joint center trials (Besier et al., 2003b; Camomilla et al., 

2006; Ehrig et al., 2007). The high knee flexion movements in this study were the same as those 

used in study 1 (Figure 3.2). Participants first observed all movements being performed by the 

investigator, then practiced until they could perform each movement comfortably. One repetition 

of each movement and a single walking trial were completed in a fixed order block. Movement 

order was then fully randomized for four more repetitions (a total of 5 repetitions) of: heels-up 

squat (HS), flatfoot squat (FS), dorsiflexed kneel (DK), plantarflexed kneel (PK), dorsiflexed 

unilateral kneel (DUK), plantarflexed unilateral kneel (PUK), and walking (WK). The fixed 

order block was used to ensure that at least a single trial of each movement was recorded as 

quickly as possible in case of accidental fine-wire shift or discomfort. Each squatting or kneeling 

trial took 6 s to complete and consisted of stepping onto an embedded force plate, descending to 

maximal knee flexion, and holding the position. Walking trials began with participants two steps 

away from the force plates such that their third step was contact of the right foot on a single force 



79 

plate. Participants moved at a self-selected pace in all trials, with the following movement 

restrictions during high flexion movements: step with the right foot first; kneel onto the right 

knee (kneeling trials); then hold the final posture until instructed to stand. During performance of 

DUK or PUK, participants were instructed to shift the most of their bodyweight onto the right 

leg to resemble firing positions used in military theater (Department of the Army, 2010). 
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Figure 4.1 Fine-wire insertion locations and needle positioning during preparation of participant P16. Top row: Ultrasound 

probe placement and needle positioning for insertion. Bottom row: Needle location (circled) within muscles before the cannula 

was removed. RF is rectus femoris, VI is vastus intermedius, AM is adductor magnus, AL is adductor longus, and SM is 

semimembranosus. 
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Figure 4.2 Fine-wire and surface EMG instrumentation from the posterior (left) and 

anterior (right) thigh of participant P04. Arrows indicate fine-wire insertion sites. A) Fine-

wire location of semimembranosus (SM) with surface electrodes spanning the insertion site. 

B) Fine-wire location of vastus intermedius (VI). C) Fine-wire location of adductor magnus 

(AM) with surface electrodes spanning the insertion site. 

 

4.2.3 Instrumentation 

The participant’s right leg was instrumented with wireless surface EMG equipment 

(Wave Plus, Cometa srl, Milan, IT; input impedance = 20 MΩ, common mode rejection ratio = 

120 dB at 60 Hz, bandpass filter 10-1000 Hz) to measure activity of the VL, RF, VM, ST, and 

BF at 2100 Hz. Bipolar Ag/AgCl electrodes (BlueSensor N, Ambu Inc., Glen Burnie, MD, USA) 

were adhered, with 2 cm inter-electrode spacing, after shaving, abrading, and cleaning of the 



82 

skin. Surface electrodes with 2-2.5 cm inter-electrode spacing were attached over the AM and 

SM insertion sites to avoid interference with fine-wires.  

Fine-wire measurement of VI, AM, and SM was recorded at 2100 Hz using the same 

hardware as surface signals. Researchers wore new nitrile gloves for each insertion and used 

isopropyl alcohol to create a 2 cm2 sterile field at the insertion site. Sterile single-use 50 mm long 

25 gauge (0.55 mm) hypodermic needles (Motion Lab Systems, Inc., Baton Rouge, LA) were 

used to insert bipolar fine-wire electrodes using guidelines from Perotto (2011) and real-time 

ultrasonography (M-Turbo, Sonosite Inc., WA, USA; Figure 4.1). Each needle contained two 

nylon insulated 304 series stainless steel wires (0.051 mm x 200 mm), which were insulated 

except for a 2 mm exposed sensor inside the muscle and 5 mm bare-wire termination for 

connection to spring leads. Fine-wires extended > 8 cm above the skin surface (Figure 4.2).  

Kinematic data were recorded at 100 Hz using an optoelectronic system (Optotrak, NDI, 

Waterloo, ON). Kinetic data were recorded at 2100 Hz from two embedded force plates (OR6-7, 

AMTI, Watertown, MA). All data were synchronized via collection software with a fixed 14 ms 

telemetric delay in EMG data accounted for in data processing. 

4.2.4 Data processing 

Processing was completed using Matlab 9.2 (R2017a, The Mathworks, Natick, MA). 

Kinematic and ground reaction force (GRF) data were low-pass filtered using a bidirectional 

2nd-order Butterworth digital filter with a 6 Hz cut-off frequency (Longpré et al., 2013; Winter, 

2009). Knee and hip joint centres were calculated from functional trials using the Symmetrical 

Centre of Rotation Estimation (SCoRE) algorithm (Ehrig et al., 2007, 2006) which provides 

accurate hip joint centre predictions from skin markers when compared to dual-plane 
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fluoroscopy (Fiorentino et al., 2016). Knee joint angles were decomposed in a flexion/extension-

ab/adduction-axial rotation (Z-X-Y) Cardan sequence (Wu and Cavanagh, 1995).  

Data were then truncated from when vertical GRF component exceeded 10 N to a 

manually identified frame where the knee flexion waveform plateaued in high flexion 

movements (Kingston and Acker, 2018a) and from heel-strike to toe-off in walking. Activation 

waveforms were visually screened for motion and/or electrode contact artifacts, then processed 

using a 2 Hz low-pass single-pass Butterworth filter to produce a linear envelope and normalized 

to isometric MVCs (Kingston et al., 2016; Shultz et al., 2001). The activation waveform of VI 

was compared to three surface vastii sites (VL, RF, VM), with SM compared to three surface 

hamstring sites (surface SM, BF, ST), and AM compared to its surface site.  

Time normalized trials were averaged within-participant with RMSD calculated between 

fire-wire and surface activation waveforms. RMSD were averaged across participants (Chapman 

et al., 2010; McGill et al., 1996). Regression was performed within-participant—between fine-

wire and respective surface sites—using a least-squares quadratic polynomial to define our R2 

criterion and then averaged across participants (Byrne et al., 2005; McGill et al., 1996). 

4.3 Results 

Based on mean RMSD and R2 values, no surface sites satisfied either of our criteria (< 10 

%MVC RMSD or R2 > 0.85) to act as a proxy for fine-wire sites in these movements. Mean 

RMSD and R2 in each movement are reported in Table 4-2. The best matched surface and 

indwelling signals from our sample, as per our stated criteria, are shown in Figure 4.3. Across 

participant mean fine-wire activation profiles for each movement, normalized to knee flexion 

angle, are reported in Appendix E. 
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Table 4-2 Mean (standard deviation) of RMSD and R2 values across participants for high flexion movement comparisons of 

surface to respective fine-wire signals. Movements listed in the leftmost column are: heels-up squat (HS), flatfoot squat (FS), 

dorsiflexed kneel (DK), plantarflexed kneel (PK), dorsiflexed unilateral kneel (DUK), plantarflexed unilateral kneel (PUK), 

and walking (WK). Muscles are vastus intermedius (VI), vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM), 

adductor magnus (AM), semimembranosus (SM), biceps femoris (BF), and semitendinosus (ST). 

Indwelling VI AM SM 

Surface VL RF VM AM BF ST SM 

Movement RMSD R2 RMSD R2 RMSD R2 RMSD R2 RMSD R2 RMSD R2 RMSD R2 

HS 15.6 

(14.8) 

0.40 

(0.24) 

16.3 

(15.0) 

0.29 

(0.25) 

14.7 

(14.6) 

0.39 

(0.22) 

40.7 

(20.7) 

0.39 

(0.19) 

27.3 

(26.4) 

0.29 

(0.18) 

26.6 

(26.8) 

0.36 

(0.19) 

26.9 

(27.9) 

0.31 

(0.19) 

FS 19.7 

(17.3) 

0.36 

(0.33) 

25.3 

(23.5) 

0.37 

(0.34) 

18.5 

(16.6) 

0.37 

(0.35) 

49.0 

(23.0) 

0.29 

(0.20) 

29.2 

(29.3) 

0.22 

(0.21) 

26.0 

(26.9) 

0.35 

(0.2) 

40.3 

(63.9) 

0.30 

(0.22) 

DK 17.2 

(13.5) 

0.46 

(0.26) 

17.7 

(14.2) 

0.45 

(0.32) 

15.4 

(13.6) 

0.45 

(0.26) 

43.0 

(25.3) 

0.32 

(0.20) 

21.6 

(19.6) 

0.18 

(0.15) 

20.8 

(18.7) 

0.30 

(0.21) 

35.5 

(63.4) 

0.39 

(0.19) 

PK 20.6 

(20.6) 

0.38 

(0.22) 

19.6 

(20.2) 

0.37 

(0.27) 

17.4 

(19.7) 

0.34 

(0.17) 

45.7 

(24.6) 

0.32 

(0.16) 

21.8 

(17.8) 

0.18 

(0.14) 

22.5 

(19.9) 

0.31 

(0.19) 

37.7 

(63.8) 

0.35 

(0.22) 

DUK 21.2 

(19.4) 

0.45 

(0.26) 

20.1 

(18.7) 

0.40 

(0.29) 

18.0 

(18.9) 

0.42 

(0.25) 

41.9 

(22.5) 

0.32 

(0.15) 

23.2 

(22.2) 

0.30 

(0.20) 

18.9 

(12.5) 

0.31 

(0.22) 

18.6 

(12.2) 

0.45 

(0.19) 

PUK 18.6 

(15.8) 

0.40 

(0.32) 

18.7 

(15.6) 

0.43 

(0.33) 

17.0 

(15.1) 

0.41 

(0.30) 

49.6 

(34.3) 

0.24 

(0.16) 

23.7 

(26.8) 

0.23 

(0.15) 

16.7 

(13.0) 

0.25 

(0.25) 

19.7 

(19.1) 

0.33 

(0.24) 

WK 39.3 

(37.9) 

0.43 

(0.31) 

36.3 

(39.0) 

0.34 

(0.29) 

35.2 

(39.8) 

0.43 

(0.29) 

76.1 

(48.0) 

0.45 

(0.27) 

33.5 

(21.0) 

0.38 

(0.27) 

32.8 

(20.2) 

0.52 

(0.26) 

34.7 

(21.3) 

0.48 

(0.29) 
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Figure 4.3 Muscle activation waveforms normalized to percentage of movement across five 

repetitions. Top: Vastii waveforms from participant P01 performing a dorsiflexed kneel.  

Middle: Adductor waveforms from participant P05 performing a heels-up squat. Bottom: 

Hamstrings from participant P04 performing a flat-foot squat. Muscle sites are: fine-wire 

vastus intermedius (VI-IND), vastus lateralis (VL), rectus femoris (RF), vastus medialis 

(VM), fine-wire adductor magnus (AM-IND), adductor magnus (AM), fine-wire 

semimembranosus (SM-IND), semimembranosus (SM), semitendinosus (ST), and biceps 

femoris (BF). 
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4.4 Discussion 

The purpose of this study was to quantify the activation of VI, AM, and SM using fine-

wire electrodes for comparison to easily accessible surface sites. These comparisons took place 

for six high knee flexion activities and level walking using criteria of < 10 %MVC RMSD and 

>0.85 R2 to indicate a reliable surface to fine-wire relationship. None of the surface sites satisfied 

our criteria in this healthy young sample. This was largely due to the considerable variability of 

surface-indwelling comparisons between participants (Table 4-2 and Appendix E). Our findings 

suggest that the measurement of VI, AM, and SM muscles during high knee flexion movements 

cannot be accurately represented by surface sites and that fine-wire EMG may be required if 

isolated muscle/motor unit activity is desired. 

Although vastii musculature did not meet our criteria, some participants met both criteria 

in select movements (primarily squatting activities). At a sample level, results would suggest that 

VM is the only muscle that could be modeled if a more relaxed RMSD and R2 criterion could be 

accepted. For 5 of our 16 participants, VM satisfied our RMSD criterion across all high flexion 

movements with 2 also satisfying our R2 criterion in select cases. Interestingly, of the surface 

vastii comparisons, RF activation was the least representative of VI activation even though its 

line of action, and assumed mechanical function, is the most similar to VI. 

The surface site for AM, confirmed appropriate via ultrasound, was below 20 %MVC for 

most participants while the fine-wire site was ~50 %MVC. We were surprised that the surface 

signal was lower than the indwelling given the influence of crosstalk from neighboring muscles 

due to the larger pick-up volume of surface compared to fine-wire approaches (Basmajian and 

De Luca, 1985; Clancy et al., 2002; Winter et al., 1994). Even so, AM comparisons were 
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consistently the worst of the fine-wire sites assessed in this study and is rarely reported in lower 

limb EMG studies. Therefore, limited comparisons can be made to previous work.  

The RMSD results of SM comparisons should be viewed with caution as the descent 

phase of high flexion activities generally requires less than 20 %MVC from hamstring muscles 

(Kingston et al., 2016). The small magnitude of the signals could allow this criterion to be met 

despite a poor fit in terms of pattern. Therefore, R2 outcomes may be the more meaningful metric 

for this muscle group in this study. Across this sample, these muscles did not meet our R2 

criterion nor the more relaxed 0.5 R2 criterion used by Jacobson et al. (1995). 

The largest difference between surface and fine-wire sites, across all movements, 

occurred during the weight bearing phase of our walking trial. We speculate that this is due to the 

localized pick-up volume of our fine-wire sites as the motor units with exposed sensors present 

may have been, by chance, more active than the holistic representation surface sites provide 

(Clancy et al., 2002; Winter et al., 1994). The low physical demand of walking, compared to 

squatting or kneeling, may support this theory as site agreement would likely be higher if more 

motor units were recruited (Fuglevand et al., 1992; Henneman et al., 1965; Yao et al., 2000). 

Limitations of this study include muscle fibre/motor unit movement relative to surface 

locations, the muscle fibre/motor unit type that was measured from fine-wire electrodes, and the 

relative novelty of some of these high knee flexion movements to most participants. Participants 

performed movements using their entire range of knee flexion, therefore, the signal measured 

from surface EMG was not from the same volume of muscle fibers throughout the trial. Surface 

EMG pickup volume would also be influenced by soft-tissue artifact as local displacement of 

electrodes is unavoidable in high knee flexion postures. However, fine-wire measurements 

would be minimally influenced by such artifact. While fine-wire EMG provides a precise 
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representation of muscle activity, we are not aware of any assessment (or the practicality) of the 

day-to-day repeatability in these measures for the muscles investigated. Finally, this sample of 

convenience consisted of young healthy individuals who do not commonly perform these high 

knee flexion movements. Therefore, the applicability of these findings to habitually kneeling 

populations (e.g. construction workers, practicing Muslims) requires further investigation. 

4.5 Conclusion 

The results of this study suggest that variability in %MVC RMSD and R2 is high when 

comparing surface EMG activation waveforms to fine-wire measurement of VI, AM, and SM 

during high knee flexion activities and walking. Therefore, representative surface locations were 

not identified for the high knee flexion movements investigated in this study. Future modelling 

efforts using EMG based muscle force estimation may benefit from fine-wire measurement of 

the activity of these muscles, as crosstalk would be eliminated, but researchers should be 

cautious of electrode site specificity being unrepresentative of a musculotendinous unit. 

These data will support verification of future high knee flexion models as they are the 

first report of activation waveforms for high knee flexion movements in general, but also for four 

newly investigated postures. As described in the limitations, the reported fine-wire signals are 

site specific and should be interpreted with caution if being used for comparative purposes. 

Future work is needed on combining multiple surface measurements to assess weighted fit with 

fine-wire signals and the investigation of regional variability of EMG signals in the large 

muscles of the lower limb. Should regional variability exist within this musculature, there would 
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be empirical support for variable activation of muscle partitions in musculoskeletal modelling 

approaches. 
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Chapter 5 – Full flexion musculoskeletal knee joint model 

This chapter will detail modules and assumptions which were part of the first stage of 

development for a full range of motion 3D MSK model of the knee designed to estimate tibial 

contact forces in high knee flexion postures. 

5.1 Introduction  

There is no current 3D MSK model of the knee that can incorporate the effects of 

intersegmental contact during high knee flexion postures. Sagittal plane models have been 

previously reported (Hirokawa and Fukunaga, 2013), as have finite element models (Caruntu et 

al., 2003; Zelle et al., 2009), but none of these studies incorporated 3D intersegmental contact 

force orientation. In addition, these models used lumped muscle parameters to simplify MSK 

geometry to the sagittal plane. The model used by Zelle et al. (2009) consisted of tibia and femur 

segments only and was not verified for use in lower ranges of knee flexion (closer to standing). 

Caruntu et al. (2003) used a spring-damping model to estimate thigh-calf contact forces, but did 

not report magnitudes nor verify their predictions against empirical intersegmental contact data. 

Hirokawa and Fukunaga (2013) used thigh-calf contact parameters reported from Zelle et al. 

(2007), but were limited to a seven muscle sagittal plane model. Therefore, development of new 

model using more fulsome MSK geometry and 3D intersegmental parameters was warranted.  

Intersegmental contact is a critical parameter when modelling high knee flexion 

movements. Omitting intersegmental contact may result in model overestimations of tibial 

compression and shear as high as 1.99 and 0.54 BW respectively (Zelle et al., 2009). The 

importance of including intersegmental contact was also highlighted by Nagura et al. (2006) as 

their 2D high knee flexion model did not consider these forces and predicted tibial compression 
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as high as 5 kN or 7.3 BW during a full squat. In our own work (Kingston and Acker, 2018a), it 

became apparent that direct tracking of a pressure sensor with a known measurement plane 

would be advantageous compared to assuming a sagittal plane force vector. This would allow for 

a more accurate tibial contact force orientation and provide the first 3D report of these forces in 

high knee flexion movements. 

Other modelling considerations specific to high knee flexion movements exist. There are 

no known reports of musculotendinous moment arms—for knee flexor and extensor muscles—in 

the high knee flexion range as current in vitro studies report from 0-120° (Buford et al., 1997; 

Wagner et al., 2013) or from 40-110º in vivo (Fiorentino et al., 2013). Therefore, estimates of 

moment arms must be computed using knowledge of regional anatomy during these movements. 

There is a wide range of muscle specific tension values used in the modelling literature that have 

not been assessed for sensitivity in high knee flexion ranges. Many modern MSK model specific 

tensions exceed the 15-30 N/cm2 values reported for mammalian and human tissue (Erskine et 

al., 2011, 2009; Fukunaga et al., 1996; O’Brien et al., 2010). For example, Carbone et al. (2015) 

used 30 N/cm2, Arnold et al. (2010) and Delp et al. (1990) used 61 N/cm2, and Dickerson et al. 

(2007) used 88 N/cm2. Therefore, model sensitivity to specific tension must be assessed. 

Verification of MSK model predictions is a critical aspect in any computational model 

development cycle. Although there is no known instrumented implant data available from high 

knee flexion ranges, publicly available gold-standard datasets are available for ~0-100º of knee 

flexion (Fregly et al., 2012; Taylor et al., 2017). The Grand Knee Challenge was a semi-annual 

modelling competition where kinematic, kinetic, EMG, and tibial compression data were 

provided to researchers. Similarly, Orthoload datasets will provide triaxial tibial forces—in 

https://simtk.org/projects/kneeloads
https://orthoload.com/
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addition to kinematic, kinetic, and EMG data—but fulsome datasets are not yet publicly 

available (personal communication with Dr. William Taylor-ETH Zurich).  

Therefore, the purpose of this study was to define and quantify prediction error of a full 

range of motion 3D MSK model of the right lower limb that incorporated 3D intersegmental 

contact parameters. Component verification consisted of comparing estimates of tibial 

compressive force to instrumented implant values during activities in the ~0-100º knee flexion 

range and to qualitatively compare EMG waveforms to muscle force estimates of in vivo data 

from the 4th Grand Knee Challenge dataset (Fregly et al., 2012).  

5.2 Methods 

5.2.1 Overview 

This model contains 13 DoF across three joints: a 6 DoF ankle, 4 DoF knee, and 3 DoF 

hip and was coded in Matlab 9.2 (R2017a, The MathWorks, Natick, MA). Required inputs are 

kinematic, kinetic, and anthropometric data which is detailed below. This model was designed in 

modular format to facilitate future development and is presented in that layout. Data collected 

from sixteen participants—reported in section 4.2.1—were used as inputs to the model. In 

addition, ten participants who took part in both studies 1 and 2, were used as a sub-sample for 

repeatability of intersegmental contact parameter measurement (section 5.2.4). 

5.2.2 Anatomical Geometry 

Kinematic data of the lower limb was recorded from rigid body marker clusters on the 

pelvis, femur, shank, and foot. Three-dimensional displacement of rigid bodies from an Optotrak 

system (Certus/3020, NDI, Waterloo) was output with digitized landmarks in a GCS. A 

https://simtk.org/projects/kneeloads
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standardized set of anatomical points was used across all studies for segmental LCS definitions 

(Appendix F). 

5.2.2.1 Functional joint centers 

Functional joint centres (CoR in Eq 5.1) were defined for the hip and knee using the 

Symmetrical Centre of Rotation Estimation (SCoRE) algorithm (Ehrig et al., 2007, 2006) written 

as a linear least-squares problem (Eq 5.1). Functional definition of the hip joint center location 

improves point estimates by 14-62 mm (Camomilla et al., 2006) when compared to geometric 

scaling (Bell et al., 1989) in simulated data. The SCoRE algorithm was shown to be the best 

predictor (10.8 ± 3.2 mm) of hip joint center locations when compared to dual-plane fluoroscopy 

from in vivo data (Fiorentino et al., 2016). Similarly, Besier, Lloyd, & Ackland (2003) found 

increased landmark repeatability using functional hip joint centers and averaged helical knee 

axes, similar to the Gillette algorithm, used in Visual 3D software (Schwartz and Rozumalski, 

2005). Functional joint trials were cyclic knee flexion extension and star-arc movements 

(Camomilla et al., 2006). 

 

 (
𝑝𝑅1 −𝑑𝑅1

⋮ ⋮
𝑝𝑅𝑛 −𝑑𝑅𝑛

) (
𝑝𝐶𝑜𝑅𝑙𝑜𝑐

𝑑𝐶𝑜𝑅𝑙𝑜𝑐
) = (

𝑑𝐿𝐶𝑆𝑜1
− 𝑝𝐿𝐶𝑆𝑜1

⋮
𝑑𝐿𝐶𝑆𝑜𝑛

− 𝑝𝐿𝐶𝑆𝑜𝑛

) Eq 5.1 

𝑝𝑅𝑛 is the LCS of the proximal segment for frame 𝑛, 𝑑𝑅𝑛 is the LCS of the distal 

segment for frame 𝑛, 𝑝𝐶𝑜𝑅𝑙𝑜𝑐 is the locally expressed centre of rotation estimation from the 

proximal segment, 𝑑𝐶𝑜𝑅𝑙𝑜𝑐 is the locally expressed centre of rotation estimation from the distal 

segment, 𝑑𝐿𝐶𝑆𝑜𝑛
 is the translation vector from GCS origin to the distal segment’s LCS origin for 

frame 𝑛, 𝑝𝐿𝐶𝑆𝑜𝑛
 is the translation vector from GCS origin to the proximal segment’s LCS origin 

for frame 𝑛. 
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5.2.2.2 Bone Scaling 

Bone surfaces were obtained from vertex based object files of a single Japanese male 

patient (BodyParts3D, © The Database Center for Life Science licensed under CC Attribution-

Share Alike 2.1 Japan). Hip and knee joint spacing was calculated from source bone models by 

manually selecting vertices on the acetabulum and femoral head (hip), medial tibial and femoral 

plateaus (knee), and distal tibial plateau and talus (ankle).  

After establishing source model joint spacing, rigid affine scaling (Umeyama, 1991) was 

used to modify each bone separately by minimizing the 3D Euclidean distance between the 

following bone vertex locations and measured anatomical points: pelvis) right ASIS, right PSIS, 

left ASIS, and left PSIS; thigh) GT, lateral and medial femoral epicondyles; shank) lateral and 

medial tibial epicondyles, tibial tuberosity, and lateral and medial malleoli; foot) heel, 1st and 5th 

metatarsals (Figure 5.1 and Figure 5.2). Mean 3D scaling errors, for each participant and 

segment, were calculated to assess reconstruction error. Joint spacing was also re-assessed post 

scaling and segmental translations were used to position scaled bone models with less than 1mm 

3D error compared to pre-scaling values.  
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Figure 5.1 Anterior view of bone and muscle geometry of musculoskeletal (MSK) model. Red spheres are manually selected 

landmarks matching those from Horsman et al. (2007). Black spheres are the scaled positions of source MSK geometry with 

blue lines indicating muscle paths. Green spheres within a muscle path are scaled VIA points. 3D bone models are from 

BodyParts3D, © The Database Center for Life Science licensed under CC Attribution-Share Alike 2.1 Japan. 
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Figure 5.2 Posterior view of Figure 5.1. 
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5.2.2.3 Muscle parameters and moment arms 

Muscle origin and insertion locations were defined using coordinate data from Horsman 

et al. (2007). These data were taken from the right leg of an embalmed male (age 77 yrs, height 

1.74 m, mass 105 kg) sectioned at the superior aspect of the L1 spinal body (Horsman et al., 

2007). Muscle parameters (e.g. PCSA, pennation angle, fibre length) and origin/insertion 

locations—with respect to the hip joint center—are listed in Appendix A. This data set included 

56 muscle partitions (38 muscles in total) that were further segmented into 161 muscle elements. 

Muscle attachment and VIA points were provided in relation to specific segments (Appendix A).  

Quadriceps muscles have a confluence at the proximal patella. Therefore, knee extensor 

muscles passing the knee joint were forced to conform to a participant specific spherical 

wrapping surface (Figure 5.3 – B & C) if the perpendicular distance to a LoA from the sphere 

origin was less than its radius (Charlton and Johnson, 2001; Damsgaard et al., 2006). The 

engagement of wrapping was determined using the vector quadruple product to determine 3D 

point-line distance each frame (Figure 5.4 and Eq 5.2). The wrapping sphere radius (Figure 5.3 - 

A) was determined as the perpendicular distance between the femoral groove and an axis defined 

between vertices of the medial and lateral femoral condyles (Iwaki et al., 2000).  
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Figure 5.3 Determination of wrapping surface size and path of common knee extensor musculature. A) blue points represent 

vertices of the medial and lateral femoral condyles and femoral groove (perpendicular to the condylar axis); B) anterior view 

of wrapping sphere (cyan) with curved path (green points) connecting to the proximal patella (red point), distal patella (black 

point) and tibial tuberosity (magenta point); C) anterior-sagittal view of wrapping surface depicting orientation of quadriceps 

and patellar tendons.  
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Figure 5.4 Visual depiction of the vector quadruple product. In this application, 𝒙𝟎 is the 

wrapping sphere centroid, 𝒙𝟏 is the origin of a muscle element, 𝒙𝟐 is the common insertion 

of knee extensors on the proximal patella, and 𝒅 is the shortest perpendicular distance to 

line between 𝒙𝟏and 𝒙𝟐. See Eq 5.2 for further details. (Weisstein, n.d.).  

 

 𝑑 =
|(𝑥0 − 𝑥1) × (𝑥0 − 𝑥2)|

|𝑥2 − 𝑥1|
 Eq 5.2 

where 𝑥0 is the wrapping sphere centroid, 𝑥1 is the origin of a muscle element, 𝑥2 is the 

common insertion of knee extensors on the proximal patella, and 𝑑 is the perpendicular distance 

to the line between 𝑥1and 𝑥2 from 𝑥0. 

 

The tendon-excursion method (An, 2007; An et al., 1984; Pandy, 1999) was used to 

populate a muscle Jacobian matrix for each muscle element allowing an estimate of time varying 

musculotendinous moment arms (Eq 5.3). This method involves iterations of positively and 

negatively rotating a distal segment about a joint’s degree of freedom by a small (e.g. 5º) angular 

perturbations. The derivative of musculotendinous unit length between the perturbed states, with 

respect to angle, is equivalent to the perpendicular moment arm about that degree of freedom 

(An et al., 1984; Pandy, 1999).  
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 𝐽𝑖𝑗 =
𝜕𝑙𝑖

𝜕𝜃𝑗
 Eq 5.3 

where 𝐽𝑖,𝑗 is the moment arm for muscle element 𝑖 about the 𝑗 degree of freedom, 𝑙𝑖 is the 

length of muscle element 𝑖, 𝜃 is the angular perturbation, and 𝑗 represents the degree of freedom. 

 

5.2.3 Segmental kinematics 

Linear kinematic calculations were completed using standard procedures with angular 

kinematics determined from segmental LCS (Appendix F) (Winter, 2009; Zatsiorsky, 1998). 

Segmental angular velocities (𝜔) were determined by correcting for intermittent 3D axial 

rotations following the Euler decomposition sequence used (Eq 5.4-Eq 5.7). Segmental angular 

accelerations (𝛼) were derived as the finite difference of 𝜔 values. Joint kinematics were 

determined using a Cardan flexion/extension, ab/adduction, and int/external (Z-X-Y) rotation 

sequence (Eq 5.8). Direction cosine matrices (DCM) were decomposed into Euler angles using 

elemental relationships defined in Eq 5.9. 

  



101 

𝜔𝑧 = [
0
0
𝜃̇3

] Eq 5.4 

𝜔𝑥 = [
𝜃1̇

0
0

] + [
1 0 0
0 𝑐1 𝑠1

0 −𝑠1 𝑐1

] [
0
0
𝜃3̇

] = [
𝜃1̇

0̇
0

] + [

1
𝑠1𝜃̇3

𝑐1𝜃̇3

] = [

𝜃̇1

𝑠1𝜃̇3

𝑐1𝜃̇3

] Eq 5.5 

𝜔𝑦 = [
0
𝜃2̇

0
] + [

𝑐2 0 −𝑠2

0 1 0
𝑠2 0 𝑐2

] [

𝜃̇1

𝑠1𝜃̇3

𝑐1𝜃̇3

] = [
0
𝜃2̇

0
] + [

𝑐2𝜃̇1 − 𝑠2𝑐1𝜃̇3

𝑠1𝜃̇3

𝑠2𝜃̇1 + 𝑐2𝑐1𝜃̇3

] =  [

𝑐2𝜃̇1 − 𝑠2𝑐1𝜃̇3

𝜃̇2 + 𝑠1𝜃̇3

𝑠2𝜃̇1 + 𝑐2𝑐1𝜃̇3

] Eq 5.6 

𝜔 = [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] = [
𝑐2 0 −𝑠2𝑐1

0 1 𝑠1

𝑠2 0 𝑐2𝑐1

] [

𝜃̇1

𝜃̇2

𝜃̇3

] Eq 5.7 

where 𝜔 is angular velocity, 𝜃 is the segmental angle in global space, 𝑠 is sin, 𝑐 is cosine, 

and dots represent a finite difference. 

 

 𝐷𝐶𝑀 = 𝑅𝑌3
𝑅𝑋2

𝑅𝑍1
= [

𝑐𝑦𝑐𝑧 − 𝑠𝑥𝑠𝑦𝑠𝑧 −𝑐𝑥𝑠𝑧 𝑐𝑧𝑠𝑦 + 𝑐𝑦𝑠𝑥𝑠𝑧

𝑐𝑧𝑠𝑥𝑠𝑡 +  𝑐𝑦𝑠𝑧 𝑐𝑥𝑐𝑧 −𝑐𝑦𝑐𝑧𝑠𝑥 + 𝑠𝑦𝑠𝑧

−𝑐𝑥𝑠𝑦 𝑠𝑥 𝑐𝑥𝑐𝑦

]  Eq 5.8 

where 𝑐𝑖 represents the cosine of the 𝑖 axis, 𝑠𝑗 represents the sine of the 𝑗 axis, 𝑅𝑘 is the 

rotation sequence for axis 𝑘, and 𝐷𝐶𝑀 is the direction cosine matrix. 

 

 

𝜃𝑋 = arcsin(𝐷3,2) 

𝜃𝑌 = atan2(−𝐷3,1, 𝐷3,3) 

𝜃𝑍 = atan2(−𝐷1,2, 𝐷2,2) 

Eq 5.9 

where 𝜃𝑍 is the rotation about the flexion/extension axis, 𝜃𝑋 is the rotation about the 

abduction/adduction axis, 𝜃𝑌 is the rotation about the internal/external axis, and 𝐷𝑖,𝑗 refers to the 

element of matrix 𝐷 from Eq 5.8. 

 

Patellar kinematics were modeled at this stage of MSK model development as our lab did 

not have the capability to track patellar movement in vivo. Participants assumed three knee 
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flexion angles (0º, 90º, and end range of motion in HS) while the tibial tuberosity, distal, and 

proximal patellar points were manually palpated and digitized with respect to the shank LCS. 

Patellar points were piecewise linearly interpolated—in 0.5º knee flexion increments—to provide 

reference locations for MSK attachment points and LoA of knee extensor muscles. 

Femoral anterior-posterior (AP) translation with respect to the tibial plateau was modeled 

as a linear function of knee flexion angle. Values from active and passive range of motion tests 

in vivo report posterior translations up to 2.8 cm at 162º of knee flexion using MRI (Nakagawa et 

al., 2000). Therefore, a posterior shift was applied to the femoral LCS origin of 0-3 cm through 

the 0-180º knee flexion range to approximate in vivo data. This reduced the knee to a 4 DoF joint 

as medial-lateral (ML) and axial translations of the femur with respect to the tibia were fixed.  

The hip joint was limited to a 3 DoF joint to maintain joint spacing imposed during bone 

scaling. After initial bone scaling and positioning was completed, the centroid of the femoral 

head was determined. This point was used to establish a rotation point, local to the pelvis, which 

fixed the distance of the pelvis LCS origin from the femoral head and allowed only rotations. 

5.2.4 Intersegmental contact 

A post hoc addition to the experimental protocol used in Chapter 4 was measurement of 

thigh-calf (TC) and heel-gluteal (HG) contact during one trial of all six high knee flexion 

movements. The pressure sensor was attached to a polycarbonate sheet and manually positioned 

by a research assistant (Figure 5.5) which limited participant movement to approximately half 

speed. This protocol was used to measure 3D orientation, CoF, magnitude, and active area of 

intersegmental contact as a function of knee flexion angle. Participants started movements from 

standing (HS and FS), kneeling on hands and knees (DK and PK), or with hands on the floor and 
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the non-measured leg raised to simulate the end position of DUK or PUK movements (Figure 

3.2). The DUK and PUK starting position was similar to that of a sprinter in track blocks. 

When incorporating intersegmental contact as an external force, these data were rounded 

to the nearest 0.25º of knee flexion each frame and averaged if more than one value was present 

at a given angle. This assumes that when participants were statically resting in a high knee 

flexion posture, a constant intersegmental exposure was applied. Intersegmental contact data 

were not collected during the ascending phase of movement using the protocol outlined above. 

Therefore, it was assumed that forces during the ascending phase of movement were identical to 

those measured in descent. This assumption was made as Tekscan (Tekscan Inc., South Boston, 

MA, USA) resistive pressure sensors are susceptible to drift during sustained loading 

(Nicolopoulos et al., 2000; Wilson et al., 2003).  
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Figure 5.5 Positioned pressure sensor (top) during transition to a plantarflexed kneel (PK). 

Participant at maximal knee flexion during PK (bottom).  

 



105 

Following calibration (section 3.2.3), the pressure sensor was attached to a 4 mm thick 23 

x 19 cm polycarbonate sheet (Figure 5.6) and a motion trial was collected synchronously with 

pressure data. Using the tip of a digitizing probe to activate a small cluster of sensels (1-4), four 

locations were used to define a LCS in pressure sensor coordinates originating at point 3 (Figure 

5.6 and Figure 5.7). Locally defined pressure locations were used to transform planar distances 

of pressure outputs into global space (Figure 5.7). The exterior corners of the sheet were 

digitized, with respect to the attached marker cluster, for global positioning of pressure outputs. 

Total force, onset, max angle, and contact area were computed identically to section 3.2.4. 

 

 

Figure 5.6 3005E sensor attached to the polycarbonate sheet. Points 1-4 used for 

transforming pressure sensor data to global space are highlighted for clarity in square 

pattern on the sensor in yellow. Digitized corners are highlighted in magenta (and under 

the assistant’s thumb). 
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Figure 5.7 A participant performing a plantarflexed kneel with a blue rectangle representing the reconstructed polycarbonate 

sheet in sagittal (left) and posterior (right) views. Green spheres indicate fixed transformation points (1-4) in Figure 5.6. 

Magenta spheres are the instantaneous center of force location for thigh-calf and heel-gluteal contact with black arrows 

indicating the direction and scaled magnitude of total force normal to the sheet. 
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The novel approach used to measure intersegmental contact in this chapter was tested for 

repeatability of intersegmental contact parameter measurements made in Chapter 3 as the 

compressive surfaces—posterior thigh versus a polycarbonate sheet—differed. A sample of ten 

participants took part in both in vivo data collections (Table 5-1). Participant means were taken 

from the protocol used in Chapter 3 and compared to single trials detailed above.  

 

Table 5-1 Mean (SD) descriptive and anthropometric participant information of reliability 

sample. 

Parameter Female (n = 3) Male (n = 7) Total (n = 10) 

Age (yrs) 23.67 (5.51) 25.14 (3.85) 24.40 (1.04) 

Height (m) 1.67 (0.03) 1.81 (0.09) 1.74 (0.10) 

Mass (kg) 66.34 (2.05) 91.19 (17.54) 78.77 (17.57) 

BMI (kg/m2) 23.82 (1.04) 27.58 (3.75) 25.70 (2.66) 

Thigh Length (m) 0.38 (0.05) 0.40 (0.04) 0.39 (0.02) 

Proximal Thigh Circumference (m) 0.59 (0.01) 0.63 (0.09) 0.61 (0.03) 

Mid-Thigh Circumference (m) 0.54 (0.02) 0.55 (0.13) 0.55 (0.01) 

Distal Thigh Circumference (m) 0.38 (0.05) 0.40 (0.04) 0.39 (0.02) 

Thigh Skinfold (mm) 36      (1) 30      (19) 33      (4) 

Shank Length (m) 0.39 (0.01) 0.41 (0.03) 0.40 (0.01) 

Proximal Shank Circumference (m) 0.34 (0.00) 0.36 (0.04) 0.35 (0.02) 

Mid Shank Circumference (m) 0.36 (0.01) 0.39 (0.04) 0.37 (0.02) 

Distal Shank Circumference (m) 0.20 (0.01) 0.23 (0.03) 0.21 (0.02) 

Shank Skinfold (mm) 19      (7) 22      (20) 21      (3) 

 

5.2.5 Inverse dynamics  

External reaction forces acting at joint centers were calculated using Eq 5.10 (Hof, 1992; 

Zatsiorsky, 2002). Segmental mass and moments of inertia were estimated using segmental 

length ratios adjusted from Zatsiorsky et al. (1990) to joint center locations (de Leva, 1996). 



108 

External forces considered in this approach were gravity, GRF measured from force plates, and 

intersegmental contact forces. 

 

 𝐹𝐽𝐶 =  − ∑ 𝐹𝑟

𝑓

𝑟=1

− ∑ 𝑚𝑠𝑔

𝑘

𝑠=1

+ ∑ 𝑚𝑠𝐿𝑠

𝑘

𝑠=1

 Eq 5.10 

where 𝑓 is the number of external forces, 𝑘 is the number of segments, 𝐹𝑟 are external 

forces, 𝑚𝑠 is the mass of segment 𝑠, and 𝑔 is the vertical acceleration due to gravity, and 𝐿𝑠 is 

the linear acceleration of segment 𝑠. 

 

 External joint moments about the ankle, knee, and hip were calculated using an inverse 

approach (Hof, 1992; Plamondon et al., 1996; Zatsiorsky, 2002). Knee joint forces were not 

separated into medial and lateral compartments at this stage of model development. External 

joint moments were calculated in four components: reaction (Eq 5.11), segmental (Eq 5.12), 

linear acceleration (Eq 5.13) and angular acceleration (Eq 5.14) (Hof, 1992; Plamondon et al., 

1996). These terms were summed to obtain the overall external joint moment.  

 

 𝑀𝐺𝑅𝐹 =  − ∑(𝑝𝑟 − 𝑝𝐶𝑜𝑀) ×

𝑓

𝑟=1

𝐹𝑟 − ∑ 𝑀𝑟

𝑚

𝑟=1

 Eq 5.11 

where 𝑓 is the number of external forces, 𝑚 is the number of external moments, 𝑝𝑟 is the 

global point of ground reaction force application, 𝑝𝐶𝑜𝑀 is the global location of the foot segment 

center of mass, 𝐹𝑟 are the external forces applied to the foot from the force plate, 𝑀𝑟 are the 

external moments applied to the foot from the force plate, and 𝑀𝐺𝑅𝐹 is the moment due to 

external reaction forces. 
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 𝑀𝑆𝑒𝑔 =  − ∑[(𝑝𝑠 − 𝑝𝑝) × 𝑚𝑠𝑔]

𝑘

𝑠=1

  Eq 5.12 

where 𝑘 is the number of segments, 𝑝𝑠 is the global point of segment 𝑠’s center of mass, 

𝑝𝑝 is the global location of the segment proximal endpoint, 𝑚𝑠 is the mass of segment 𝑠, 𝑔 is the 

vertical acceleration due to gravity, and 𝑀𝑆𝑒𝑔 is the moment due to segmental mass. 

 

 𝑀𝐿𝑖𝑛 =  ∑(𝑝𝑠 − 𝑝𝑝) × 𝑚𝑠𝐿𝑠

𝑘

𝑠=1

 Eq 5.13 

where 𝑘 is the number of segments, 𝑝𝑠 is the global point of segment 𝑠’s center of mass, 

𝑝𝑝 is the global location of the functional knee joint center, 𝑚𝑠 is the mass of segment 𝑠, 𝐿𝑠 is the 

linear acceleration of segment 𝑠 CoM, and 𝑀𝐿𝑖𝑛 is the moment due to linear acceleration of the 

segment. 

 

 𝑀𝐴𝑛𝑔 =  ∑
𝑑

𝑑𝑡
𝐼𝑠𝜔𝑠

𝑘

𝑠=1

 Eq 5.14 

where 𝑘 is the number of segments, 𝐼𝑠 is the moment of inertia about segment 𝑠 CoM, 𝜔𝑠 

is the angular velocity of segment 𝑠, and 𝑀𝐴𝑛𝑔 is the moment due to angular acceleration of the 

segment. 

 

5.2.6 Static optimization 

Muscle forces were estimated using static optimization for each frame of motion data. A 

cost function (CF, Eq 5.15) was minimized to solve for muscle forces which incorporates the 

minimization of muscular fatigue and co-contraction (Collins, 1994; Crowninshield and Brand, 

1981; Dul et al., 1984; Monaco et al., 2011). This optimization problem minimized 𝐶𝐹 using 161 

individual muscle elements and was solved using the generalized non-linear solver ‘fmincon’ 

from the Matlab Optimization Toolbox (R2017a, The MathWorks, Natick, MA). Possible muscle 
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element force estimations were limited between zero and a predicted upper bound 𝑈𝐵𝑚 

determined by multiplying the specific tension of a muscle by its PCSA (Eq 5.16). An equality 

constraint required that the muscles crossing each joint produced equivalent forces to oppose the 

joint moments computed by inverse dynamics at each frame (Eq 5.17) (Miller et al., 2009). 

 

 𝐶𝐹 =  ∑ (
𝐹𝑚

𝑃𝐶𝑆𝐴𝑚
)

3161

𝑚 = 1

 Eq 5.15 

 where 𝐶𝐹 is the instantaneous cost function,  𝐹𝑚 is the force estimate of muscle element 

𝑚, and 𝑃𝐶𝑆𝐴𝑚 is the physiological cross sectional area of muscle element 𝑚. 

 

 0 ≤ 𝐹𝑚 ≤ 𝑈𝐵𝑚 Eq 5.16 

where 𝐹𝑚 is a muscle element force estimate and 𝑈𝐵𝑚 is the maximum force of a muscle 

element determined by multiplying the specific tension of a muscle by its PCSA. 

 

 ∑ 𝑟𝑚𝑗𝐹𝑚

161

𝑚=1

= 𝑀𝑗 Eq 5.17 

where 𝑟𝑚𝑗 is the moment arm of muscle element 𝑚 at joint 𝑗 and 𝑀𝑗 is the external joint 

moment at joint 𝑗 computed from inverse dynamics. 

 

Linear equality and inequality constraints are defined in Eq 5.18 and Eq 5.19. Inequality 

constraints consisted of limiting the force estimation between elements in the same muscle 

partition to within 15% (Balice-Gordon and Thompson, 1988; Crago et al., 1980; Huijing and 

Baan, 2001). Similarly, a 15% limit on force estimation differences between the medial and 

lateral gastrocnemii was assumed due to selective recruitment of these muscles being unlikely. 
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 𝐴𝑥 = 𝑏 Eq 5.18 

where 𝐴 is a 9x161 matrix containing the moment arms of muscle elements (columns) for 

every DoF of each joint (rows), 𝑥 is a 161x1 vector for the unknown force for each muscle 

element, and 𝑏 is a 1x9 vector containing net external moments for every DoF of each joint. 

 

 𝐴𝑖𝑥 = 𝑏𝑖 Eq 5.19 

where 𝐴𝑖 is a 106x161 matrix containing muscle force disparity limits for muscle 

elements within a partition and between muscle partitions, 𝑥 is the same 161x1 vector for 

unknown muscle forces in Eq 5.18, and 𝑏𝑖 is a 106x1 zero vector. 

 

The optimization solver required an initial guess to drive the search algorithm, however, 

solutions using this approach are to be sensitive to the initial guess (Neptune, 1999; Wu and Zhu, 

2001). Given that muscle force estimates are unknown for this set of muscle elements in these 

postures the ‘MultiStart’ solver was used from the Matlab Global Optimization Toolbox 

(R2017a, The MathWorks, Natick, MA) to generate 1000 random initial guesses of 𝐹𝑚 within 

estimate bounds. Once an optimal solution was found for the first frame of data, following 

iterations used the preceding solution as the initial guess (Miller et al., 2009).  

5.2.7 Verification 

Estimates of tibial compression from the MSK model were compared to in vivo data from 

the 4th Grand Knee Challenge dataset (Fregly et al., 2012). These data were collected from an 

elderly male participant (height: 1.68 m, mass: 66.7 kg) who had undergone a total hip and knee 

arthroplasty where the knee contained an instrumented tibial plateau. Vertex based object files of 

participant bones and CAD files of the implant were available. Manually selected landmarks 

were used to scale MSK origin and insertion points from the Horsman et al. (2007) dataset using 

the procedure described in section 5.2.2.2 (Figure 5.8 and Figure 5.9). 

https://simtk.org/projects/kneeloads


112 

 

Figure 5.8 Anterior view of bone and muscle geometry from the 4th Grand Knee Challenge dataset (Fregly et al., 2012). Red 

spheres are manually selected landmarks matching those from Horsman et al. (2007). Green spheres are the scaled positions of 

source MSK geometry with blue lines indicating muscle paths. Spheres within a muscle path are scaled VIA points.  

 

https://simtk.org/projects/kneeloads
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Figure 5.9 Posterior view of Figure 5.8. 
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Time synchronized data were provided for marker trajectories, surface EMG, tibia 

compression (eKnee), and GRF. Kinematic variables were calculated identically to previously 

defined methods except for the foot segment as the participant was shod. This resulted in the 

same points for the long axis of the foot (heel and toe), but a ‘lateral mid-foot’ marker was used 

in place of the distal head of the 5th metatarsal (Figure 5.10). Anatomical landmarks were 

extracted from a static pose trial with functional joint centers determined (flexion-extension trial 

for the knee and star-arc pattern for the hip) using the SCoRE method (Ehrig et al., 2007, 2006). 

EMG data were provided from 15 muscles: SM, BF, VM, VL, RF, MG, LG, tensor fascia lata 

(TL), TA, peroneus longus (PL), soleus (SL), AM, gluteus maximus (GX), GM, and sartorius 

(SA). Data from MVC trials were provided and all EMG data were processed using the same 

linear envelope as detailed in section 4.2.4. eKnee data were converted to a single compression 

force using validated regression equations for this implant (Zhao et al., 2007). 
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Figure 5.10 Representation of surface marker locations during dynamic trials from the 

Grand Knee Challenge manual (Fregly et al., 2012). Additional markers were present 

during pose providing similar markers to kinematic procedures detailed in Appendix F.  

 

External kinetics were calculated (section 5.2.5) and used as inputs to the static 

optimization procedure (section 5.2.6) to estimate tibial compression in three different 

exposures; two-legged squatting, walking, and ‘bouncy’ walking. Model performance was 

assessed by RMSD and R2 between MSK compression estimates and eKnee data as these were 

the outcome measures used to evaluate Grand Knee Challenge models (Fregly et al., 2012).  

A qualitative comparison of EMG to estimated muscle force was also completed to 

provide insight on the biofidelity of muscle force estimates. Muscle force estimates were 

computed by taking the mean of element force estimations within a muscle partition. These 

https://simtk.org/projects/kneeloads
https://simtk.org/projects/kneeloads
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estimates were expressed as a percentage of maximal force capacity (% Max) and directly 

compared to %MVC EMG. 

5.2.8 Statistical analyses 

Statistical procedures were performed using SPSS (IBM Corp. Released 2011. IBM 

SPSS Statistics for Windows, Version 20.0, Armonk, NY). For reliability testing between 

intersegment contact measurement approaches used in Chapter 3 and those outlined in section 

5.2.4 outcome parameters listed in Table 3-2 were compared using paired-sample t-tests. An a 

priori 𝛼 level was set at 0.05 for each statistical model.  

5.3 Results 

5.3.1 Anatomical geometry 

Hip and knee joint spacing, prior to scaling, was found to be within healthy population 

ranges; 6.5 mm medial compartment knee joint space (Anas et al., 2013; Marsh et al., 2013) and 

4 mm femoral head to acetabular wall (Im and Kim, 2010; Kashimoto and Friedenberg, 1977; 

Lequesne et al., 2004; Ratzlaff et al., 2014). After bone scaling, mean 3D error of anatomical 

points was calculated per participant (Table 5-2). 
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Table 5-2 Mean 3D error (m) between all bone vertex and corresponding anatomical points 

after rigid affine scaling. 

Participant Foot Shank Femur Pelvis 

P01 0.004 0.012 0.017 0.020 

P02 0.007 0.011 0.010 0.021 

P03 0.004 0.016 0.010 0.019 

P04 0.004 0.015 0.011 0.007 

P05 0.009 0.009 0.009 0.013 

P06 0.006 0.011 0.006 0.020 

P07 0.003 0.012 0.009 0.014 

P08 0.004 0.012 0.011 0.017 

P10 0.004 0.014 0.009 0.010 

P11 0.006 0.017 0.013 0.018 

P12 0.006 0.011 0.006 0.015 

P13 0.007 0.010 0.004 0.011 

P14 0.003 0.012 0.008 0.018 

P15 0.000 0.013 0.008 0.016 

P16 0.004 0.011 0.013 0.017 

 

5.3.1.1 Muscle parameters and moment arms 

Participant musculotendinous moment arms were within 1 SD for knee flexion ranges 

where cadaveric data is available (Wagner et al., 2013). However, it should be noted that the 

quadriceps/patellar tendon is the primarily reported moment arm and no in vitro data are 

available to compare the vast majority of moment arm estimates.  

5.3.2 Intersegmental contact 

A summary of significant differences is listed in Table 5-3. There were no significant differences 

between intersegmental contact parameters for FS or PK movements. Of note: contact force 

magnitudes were an average 34% higher when using the polycarbonate sheet and participants 

were able to achieve an average 6% higher maximum flexion angle. 
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Table 5-3 Significant differences in pressure measurement outcomes between approaches. Mean values were computed as 

sensor attached to participant (approach 1) minus sensor attached to the polycarbonate sheet (approach 2). Therefore, 

negative values indicates approach 2 was larger in magnitude. Postures are: heels-up squat (HS), dorsiflexed kneel (DK), 

dorsiflexed unilateral kneel (DUK), and plantarflexed unilateral kneel (PUK). TC is thigh-calf with CoF reported as difference 

in axial (with respect to shank LCS) distance from the functional knee joint center. 

Posture Measure 

Paired Differences 

t df Sig 
Mean SD SE Mean 

95% CI 

Lower Upper 

HS1 

Max Angle (deg) -12.50 9.24 2.92 -19.11 -5.89 -4.278 9 .002 

Total Force (N) -98.08 67.49 22.50 -149.96 -46.19 -4.359 8 .002 

TC CoF (mm) 49.66 19.99 6.66 34.29 65.02 -7.450 8 .000 

TC Area (cm2) -28.81 29.77 9.92 -51.70 -5.92 -2.903 8 .020 

          

DK 
Onset (deg) -8.96 5.05 1.60 -12.57 -5.34 -5.607 9 .000 

TC CoF (mm) -21.32 15.46 4.89 -32.38 -10.26 -4.360 9 .002 

          

DUK 

Onset (deg) -7.88 6.13 1.94 -12.26 -3.49 -4.063 9 .003 

Max Angle (deg) -6.64 8.94 2.83 -13.04 -0.24 -2.349 9 .043 

Total Force (N) -121.00 133.38 42.18 -216.42 -25.59 -2.869 9 .019 

TC Force (N) -132.90 144.98 45.85 -236.62 -29.19 -2.899 9 .018 

TC CoF (mm) -29.60 13.58 4.53 -40.04 -19.16 -6.539 9 .000 

TC Area (cm2) -25.45 32.11 10.15 -48.42 -2.48 2.506 9 .034 

          

PUK 
Max Angle (deg) -11.06 12.61 3.99 -20.08 -2.04 -2.774 9 .022 

Total Force (N) -163.85 219.12 69.29 -320.60 -7.10 -2.365 9 .042 

 1 Total force and TC force were equivalent as no heel-gluteal contact occurred  
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5.3.3 Verification 

Mean tibial compression estimations from five walking trials was compared to eKnee 

data in Figure 5.11. Model estimates strongly fit implant data shape (R2 0.83) with an overall 

RMSD of 0.47 BW. Effects of changing specific tension for walking, cyclic squatting, and 

‘bouncy’ walking trials is reported in Table 5-4 and shown in Figure 5.12-Figure 5.14. 

 

Table 5-4 Tibial compression force estimate error and fit when comparing MSK model to 

implant data from the 4th Grand Knee Challenge. RMSD values are reported in BW.  

Specific Tension 

(N/cm2) 

Walking Squatting ‘Bouncy’ Walking 

RMSD R2 RMSD R2 RMSD R2 

30 0.44 0.82 0.16 0.93 0.58 0.74 

61 0.50 0.79 0.17 0.94 0.65 0.66 

88 0.45 0.83 0.35 0.94 0.87 0.61 

 

https://simtk.org/projects/kneeloads
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Figure 5.11 Model estimated tibial compression compared to eKnee data from the 4th Grand Knee Challenge dataset during 

five normal walking trials with a specific tension of 30 N/cm2. Shaded bands represent ± 1 SD. RMS is the root mean squared 

difference (BW) and R2 is the corrected coefficient of determination between estimates and implant data. 

 

https://simtk.org/projects/kneeloads
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Figure 5.12 Model estimated tibial compression compared to eKnee data from the 4th Grand Knee Challenge dataset from a 

single walking trial when altering the specific tension (i.e. maximal muscle force) to 30, 61, or 88 N/cm2. 

 

https://simtk.org/projects/kneeloads
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Figure 5.13 Model estimated tibial compression compared to eKnee data from the 4th Grand Knee Challenge dataset from a 

cyclic squatting trial when altering the specific tension (i.e. maximal muscle force) to 30, 61, or 88 N/cm2. 

 

https://simtk.org/projects/kneeloads
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Figure 5.14 Model estimated tibial compression compared to eKnee data from the 4th Grand Knee Challenge dataset from a 

‘bouncy’ walking trial when altering the specific tension (i.e. maximal muscle force) to 30, 61, or 88 N/cm2. 

 

https://simtk.org/projects/kneeloads
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EMG data from the 4th Grand Knee Challenge walking trials had some signals which 

exceeded 100 %MVC. Of note are VM, TF, and SA waveforms during a walking trial (Figure 

5.15). Remaining figures depicting EMG to muscle force comparisons is provided in Appendix 

G. Overall, model estimates of muscle force did not follow general visual trends of EMG 

activation waveforms. GM and SA were the only muscles which showed general alignment of 

increasing muscle force with EMG activity (Figure 5.15). 

 

https://simtk.org/projects/kneeloads
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Figure 5.15 Muscle activations (blue) compared to mean muscle forces (orange) for a walking trial with a specific muscle 

tension of 30 N/cm2. Muscles are: semimembranosus (SM), biceps femoris (BF), vastus medialis (VM), vastus lateralis (VL), 

rectus femoris (RF), medial gastrocnemius (MG), lateral gastrocnemius (LG), tensor fascia lata (TL), tibialis anterior (TA), 

peroneus longus (PL), soleus (SL), adductor magnus (AM), gluteus maximus (GX), gluteus medius (GM), and sartorius (SA). 
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5.4 Discussion 

The purpose of this study was to define and verify a full range of motion 3D MSK model 

of the right lower limb that incorporated 3D intersegmental contact parameters. Component 

verification consisted of comparing estimates of tibial compression and qualitative comparisons 

of EMG waveform to predicted muscle force estimates of in vivo data from the 4th Grand Knee 

Challenge dataset (Fregly et al., 2012). Error between instrumented implant compression forces 

and MSK model estimations was highest during early and late stance in normal and ‘bouncy’ 

gait resulting in approximately 0.5-1 BW overestimations. Model estimations during cyclic 

squatting was superior to walking with the lowest RMSD of 0.16 BW. The use of 30 N/cm2 as a 

specific muscle tension was supported as it had the lowest RMSD across all movements. The 

overall poor agreement of EMG to muscle force estimate comparisons suggests that the MSK 

model is phenomenological in nature. 

Model estimations of tibial compression has lower RMSD during squatting movements 

when compared to walking or bouncy gait. This is a curious result given that model predictions 

at moderate compressive magnitudes (0.5-1.5 BW) were well matched during squatting but poor 

in gait. A feasible explanation could be issues of model predictive ability at lower knee flexion 

angles. Compressive estimates were worst near standing in cycle squatting or early/late stance 

phase in gait and best when the knee was flexed during descent/ascent of squatting or mid-stance 

in gait. A plausible explanation could be the poor biofidelity of using straight lines of action 

gastrocnemii and gluteal muscles, as these “primary movers” have been highlighted as influential 

on model force estimations (Carbone et al., 2015, 2012). Incorporating cylindrical or additional 

spherical wrapping surfaces would result in curvilinear insertions and increase the mechanical 

advantage of these muscles. However, compressive estimates were underestimated during 

https://simtk.org/projects/kneeloads
https://simtk.org/projects/kneeloads
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squatting and overestimated during gait. Although the intended application of this model is high 

knee flexion postures where intersegmental contact occurs, this inconsistency in model 

prediction near standing requires future investigation.  

The qualitative assessment of EMG data to muscle force estimations suggests that this 

model does not represent muscle activation measurements taken during these activities. 

However, it is difficult to make comparisons without more intimate knowledge of EMG 

collection protocol (e.g. specific electrode placements, MVC protocol) since protocols can vary 

widely and affect signal outcomes (Clancy et al., 2002; Hermens et al., 2005; Lehman and 

McGill, 1999). This was highlighted by the finding that some muscles far exceeded 100% MVC 

during a walking task. Inspection of video recordings of participant trials did not reveal any 

contact of visible electrodes/leads. Although gross qualitative assessments of EMG to muscle 

force estimations are common within the modelling literature (Durandau et al., 2018; Modenese 

et al., 2011; Mohammadi et al., 2015; Sartori et al., 2014; Winby et al., 2009) the direct 

relationship of EMG to force is far more complicated (Buchanan et al., 2004; Guimaraes et al., 

1994; Nussbaum and Chaffin, 1998; Walter et al., 2014). 

The bone and MSK scaling procedure used in this model had a varying level of error for 

each participant—maximal mean 3D errors of 0.9 cm (foot), 1.7 cm (shank/femur), and 2.1 cm 

(pelvis)—but used a segment specific scaling approach as opposed to a whole body scaling 

factor common in OpenSim software. This approach was selected as segmental scaling would be 

required to alter source MSK geometry for future subject specific models. However, this 

approach likely introduces geometric errors on origin and insertion locations between single or 

multi-joint muscles. In addition muscle origin and insertion points were obtained from a single 

cadaver and participants’ ages, body composition, ethnicity, and in some cases sex differed from 
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the donor. Due to considerable variability in muscle size and geometry between individuals 

Carbone et al. (2012) completed a fulsome sensitivity analysis of the MSK geometry used in this 

model for a gait ranges of knee flexion. Unsurprisingly, Carbone et al. (2012) reported that small 

errors in MSK geometry can have a significant effect on muscle force predictions, specifically in 

“primary movers” (e.g. muscles attaching through the Achilles tendon, gluteal muscles, and 

vastii). The separation of larger muscles into partitions (e.g. superior/mid/inferior gluteus 

maximus) and further separation the further separation of partitions to multiple elements, would 

theoretically reduce the effect of poorly positioned origin and insertion points. 

Rigid body mechanics was assumed for all segments which has implications on kinematic 

and kinetic outcomes. High flexion postures result in thigh and shank soft tissue deformation 

causing marker deflection. This introduces uncertainty in the coordinates of anatomical points 

reconstructed from technical coordinate systems. Bone pin rigid bodies could be used in high 

flexion postures to quantify soft tissue artifact. However, the invasiveness of this approach and 

variance in lean mass between participants make the use of bone pins ethically and logistically 

problematic. Similarly, accurate patellar tracking was not feasible in our laboratory. Inaccurate 

patellar positioning would alter knee extensor wrapping paths and LoA, but a first attempt of 

modelling patellar movement with a piecewise linear fit was performed (section 5.2.3).  

Soft tissue artifact would also alter segmental kinematic outcomes. Internal/external axis 

rotations are disproportionally influenced by this soft tissue artifact—even in gait ranges of knee 

flexion (Sangeux et al., 2017)—and would likely be highest for the thigh rigid body due to lean 

and fat mass concentrations. This issue was the primary motivation for limiting the DoF of the 

knee to reduce distal translations of the modeled femur. Although this MSK model contains two 

joints with constrained movement—4 DoF knee and a 3 DoF hip—limiting biofidelity it should 
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be noted some researchers use a 1 DoF (flexion/extension) knee joint (Arnold et al., 2010). Until 

surface measurement approaches/corrections are robust to soft tissue artefact, mechanical 

simplifications are required to maintain joint spacing and ensure plausible muscle and ligament 

length/LoA estimates.  

Joint center locations were defined using an algorithm verified for ranges of motion 

below 100° of knee flexion (Ehrig et al., 2007, 2006), therefore, the accuracy of the SCoRE 

method has not been tested for use in high knee flexion postures. Given that the femur 

posteriorly translates relative to the tibia (Nakagawa et al., 2000), the KJC estimate would only 

be computed across the flexion range input to the algorithm. The functional knee joint trial used 

in sections 3.2.2 and 4.2.2 is the current standard (Besier et al., 2003b), but is completed during 

standing with an unloaded limb. This limitation requires future investigation.  

This iteration of the MSK model does not contain joint capsular ligaments. Basing joint 

surface geometry on a scaled model results in less confidence in knee joint congruency than 

when directly-measured joint surface geometry is used. Thus, the scaling in our current approach 

limits our ability to estimate ligament forces as the toe regions of knee joint ligaments is below 2 

mm (Yang et al., 2010). This limitation is somewhat attenuated by the low force contributions, 

measured in vitro, of the ACL (< 40 N), PCL (< 20 N), MCL (< 10 N), and LCL (< 5 N) 

ligaments above 90º of knee flexion (Yang et al., 2010). 

Total force measured from the pressure mat was expressed as external forces acting 

through the calculated CoP (section 5.2.4). This simplifies the external tissue loading 

environment. While outside the scope of this thesis, an FE model could use a matrix of 3D force 

vectors to more accurately model tissue response. Current pressure mat technology only 

measures forces normal to its surface, resulting in under predicted shear force magnitudes 
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between the thigh and shank segments and ultimately shear force estimates at the joint. These 

considerations would likely result in increased knee flexor activation responses and ultimately 

change tibial contact force predictions. 

Caution is warranted when interpreting muscle force predictions from any MSK model. 

The SO procedure used in the MSK model simplifies the CNS and peripheral system to a three 

term cost function. As well, a fixed 30 N/cm2 specific tension was applied to all muscle elements 

even though a range of tissues and fibre types exist within the musculature used in this model. 

Given the mechanical constraint of external force equilibrium, there is no consideration for heat 

liberation, or energy storage in tissues. Additionally, few computational models account for joint 

tribology and frictionless surfaces were assumed. The instantaneous objective function used may 

produce non-physiological results as muscle contraction/relaxation time is not accounted for. 

Finally, linear relationships are assumed within the listed constraints due to mathematical 

simplicity over viscoelastic models (Fung, 1994). 

5.5 Conclusions 

The RMSD magnitudes between MSK model predictions and in vivo data from the 4th 

Grand Knee Challenge dataset (Fregly et al., 2012) suggest that this model could be confidently 

used to predict tibial compression forces from ~0-100º of knee flexion. However, qualitative 

comparisons of EMG to muscle force estimates imply this model is phenomenological. Model 

details and assumptions made in general, and with respect to high knee flexion activities, were 

presented. Intersegmental contact parameters were measured using a novel approach and 

https://simtk.org/projects/kneeloads
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expressed in relation to knee flexion angle to allow incorporation to future inverse dynamic 

calculations.  

This model is currently the most fulsome representation of anatomical geometry available 

that is capable of modeling high knee flexion ranges of activity. In addition, this model can be 

used to estimate tibial contact forces to gain further insight into joint loading during high knee 

flexion activities. The inclusion of 3D intersegmental contact parameters in this model results in 

a more accurate representation of joint loading than has previously been available. Although 

model estimates of tibial compression during a squatting activity were quite accurate, further 

investigations are need into the comparatively poor accuracy in gait estimations. Further 

verification of tibial contact force estimations is required in high knee flexion postures, but 

estimates from this model could be used to guide prosthetic design and improve our 

understanding of knee joint tissue loading in this exposure.  
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Chapter 6 – Influence of intersegmental contact on tibial contact 

forces during high knee flexion movements 

6.1 Introduction 

High knee flexion postures result in intersegmental contact in the lower limb but the 

effect of these external forces on modeled muscle and internal joint force estimates has not been 

assessed in 3D. High knee flexion is defined as movements where knee flexion exceeds 120º 

(Hemmerich et al., 2006; Kingston and Acker, 2018a; Zelle et al., 2009). There is an increased 

incidence of knee tissue degeneration in populations that regularly use high knee flexion postures 

(Baker et al., 2003; Bombardier et al., 2011; Kirkeshov Jensen, 2008). Therefore, accurately 

representing the exposure of knee joint structures to loading is critical. One explanation of 

disease progression in high knee flexion postures is the exposure of under-conditioned tissues to 

high joint contact forces (Andriacchi et al., 2004; Andriacchi and Favre, 2014). However, this 

theory did not consider the effect intersegmental contact has on tibial contact force estimates as 

current 3D musculoskeletal (MSK) models are not designed for use in high knee flexion ranges 

(Arnold et al., 2010; Carbone et al., 2015; Modenese et al., 2011). In this study, a 3D MSK 

model (Chapter 5) designed for use in the full range of knee flexion was used to assess the effect 

of including intersegmental contact on tibial contact force estimates.  

The effect of incorperating intersegmental contact on knee joint compressive force 

estimates was investigated by Zelle et al. (2009) when performing a flatfoot squat. Their finite 

element model of the knee, which included sagittal plane external thigh-calf contact forces (Zelle 

et al., 2007), reported a decrease of 1.3 BW (from 4.37 to 3.07 BW) in knee joint compression. 

However, Zelle et al. (2009) used primarily sagittal plane inputs, only a partial femur and tibia, 

and potentially inflated intersegmental force magnitudes (Kingston and Acker, 2018a). Prior 
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sagitttal plane high knee flexion models—which did not account for intersegmental contact—

have predicted markedly higher knee joint compressive forces of 7.3 ± 1.9 BW or 4470 ± 1825 N 

during a full squat (Nagura et al., 2006). While the Nagura et al. (2006) model included cruciate 

ligaments, their peak estimations were over 2 BW higher than a preceding sagitttal plane model 

in similar flexion ranges (Dahlkvist et al., 1982). Therefore, this study used a more fulsome 

model of the lower limb, 3D intersegmental contact parameters, and a variety of high knee 

flexion movements to provide a range of exposures (Chapter 3 & Chapter 4). 

Tibial anterior-posterior (AP) and midal-lateral (ML) shear is not as well understood as 

compression largely due to few instrumented tibial implants having this measurement capability 

(Heinlein et al., 2007; Zhao et al., 2007). Data reported from studies using multi-axis 

instrumented implants are in knee flexion ranges of ~0-100º but can still provide meaningful 

insight for verification of model predictions (Bergmann et al., 2014; Kutzner et al., 2010; 

Mündermann et al., 2008; Taylor et al., 2017; Zhao et al., 2007). The only known 3D MSK study 

which estimated tibial AP shear forces in high knee flexion—and included sagittal plane thigh-

calf contact estimates—predicted a peak decrease of 0.54 BW from 0.95 BW (Zelle et al., 2009). 

However, only a quadriceps force was modeled in this simulation (Zelle et al., 2009). Thambyah 

(2008) estimated peak AP shear forces during a flatfoot squat and found maximal anterior forces 

of 0.27 BW during descent and 0.34 BW during ascent phases. Although these magnitudes are 

far lower than compression, there is a rapid change from posterior to anterior shear during 

transitional movements to high knee flexion postures and finite element analyses have suggested 

this is a primary cause of femoral implant loosening (Thambyah, 2008; Thambyah and 

Fernandez, 2014). The lack of any ML shear predictions in high knee flexion postures, in 
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addition to a single report of AP shear changes from intersegmental contact, warranted 

investigating these forces using our model.  

Currently, there is limited information on electromyographic (EMG) activity of lower 

limb musculature when performing high knee flexion postures (Gallagher et al., 2011; Kingston 

and Acker, 2018b; Kingston et al., 2017). While the relationship of EMG activity to the force 

generating capacity of a muscle is complex (Jia et al., 2011; Manal and Buchanan, 2013; 

Nussbaum and Chaffin, 1998) a comparison between these two parameters can provide a 

qualitative assessment of muscle force estimations (Modenese et al., 2016; Walter et al., 2014; 

Winby et al., 2009). Therefore, should muscle force estimations follow general trends of EMG 

activity, this model could be used to garner insights of neuromuscular control during high knee 

flexion movements. 

Therefore, the primary purpose of this study was to quantify the effect of including 

intersegmental contact on tibial compression, AP, and ML shear estimations during the static 

phase of six high knee flexion movements. We hypothesized that the inclusion of intersegmental 

contact would significantly decrease tibial compression, anterior shear, and medial shear forces. 

We speculated that this would result from a reduction in knee joint external moments when 
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including intersegmental contact to inverse dynamic calculations. A secondary objective of this 

study was to qualitatively compare EMG waveforms to muscle force estimates.  

6.2 Methodology 

This study is a secondary assessment of data collected in Chapter 4 (Kingston and Acker, 

2018b). For brevity, please see details on participants, experimental protocol, and general 

methodology of data collection in section 4.2. Aspects new to this study are detailed below.  

6.2.1 Data processing 

High knee flexion trials were truncated into three movement phases: descending from 

standing to kneeling (descent), resting in a static posture (static), and ascending from kneeling to 

standing (ascent). The beginning of the descent phase was defined similar to section 3.2.4; once 

the knee flexion angle exceeded a 10 frame threshold in standing and continued to a manually 

identified frame where the knee flexion angle plateaued in high flexion movements (Kingston 

and Acker, 2018a). The static phase was defined from the end of the descent phase to a manually 

identified point where a rapid change in knee flexion moment could be visually identified. The 

ascent phase was defined identically to descent but in reverse order. 

External joint moments and forces were calculated for the ankle, knee, and hip (section 

5.2.5) (Hof, 1992; Zatsiorsky, 2002) and expressed with respect to distal segment LCS (e.g. knee 

forces and moments are expressed with respect to the shank). External moments and forces were 

calculated with and without incorporating intersegmental contact magnitude, CoF, and 

orientation obtained from the protocol defined in section 5.2.4. Truncated knee flexion and 

external moment data were then intra-participant averaged and a representative trial was selected 

using the lowest RMSD value from their mean curve. Joint moments and muscle element 
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moment arms (section 5.2.2.3) from the representative trial were fit to 100 points representing 

100% of movement phase. This was necessary due to the 1.5 hour runtime required to solve a 

single 1500 frame trial with available hardware (dual-core Intel Core i3-3220 CPU at 3.30 GHz 

with 8 GB of RAM) using the protocol detailed in section 5.2.6.  

Tibial contact force estimates were computed, with and without intersegmental contact, 

using methods defined in Chapter 5. Quantification of intersegmental contact effect on tibial 

contact forces was performed using RMSD for each high knee flexion movement and phase 

(Hicks et al., 2014; Modenese et al., 2011; Sartori et al., 2014). Inter-participant RMSD averages 

were then computed for each high knee flexion movement and phase. 

Muscle force estimates were computed as an average representation of all muscle 

elements for comparison to EMG signals. For example, VL has two partitions—superior and 

inferior—which contain two and six elements respectively (Appendix A). Force estimates for 

each element were expressed as a percentage of its maximum force generating capacity (% 

Max). A mean of all elements—from all partitions—that were part of the VL muscle was 

computed and directly compared to %MVC EMG (section 4.2.2) for qualitative assessment of 

waveform trends. This procedure was completed for all 14 muscles which had EMG 

measurements for comparisons. Inter-participant averages of muscle force estimates and EMG 

signals were completed and with mean curves reported in Figure 6.8 and Appendix H.  

6.2.2 Statistical analysis 

All statistical procedures were performed using SPSS (IBM Corp. Released 2011. IBM 

SPSS Statistics for Windows, Version 20.0, Armonk, NY). To test the hypothesis that the 

inclusion of intersegmental contact would significantly decrease tibial contact forces three 6 x 2 

two-way repeated measures ANOVA—with fixed effects of movement 
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(HS/FS/DK/PK/DUK/PUK) and intersegmental contact (none/included) and a random effect of 

participant—were used across mean tibial compression, AP, and ML shear values from the static 

phase of high knee flexion movements. The 𝛼 level for all comparisons was preset at 0.05 with 

Bonferroni adjustment to account for multiple comparisons and simple main-effect analysis 

performed on significant interaction terms. 

6.3 Results 

6.3.1 External knee joint moments 

There was a consistent reduction in external knee moments for all high knee flexion 

movements when intersegmental contact was considered (Table 6-1). A representative waveform 

of the effect of incorporating intersegmental contact on an external knee flexion moment is 

provided in Figure 6.1.  

 

Table 6-1 Mean changes in peak external moments resulting from the inclusion of 

intersegmental contact parameters. All values are reported in %BW*HT. Movements are: 

heels-up squat (HS), flatfoot squat (FS), dorsiflexed kneel (DK), plantarflexed kneel (PK), 

dorsiflexed unilateral kneel (DUK), plantarflexed unilateral kneel (PUK). Brackets indicate 

1 SD. Negative values indicate a decrease. 

Axis HS FS DK PK DUK PUK 

Flex/Extension 
-2.77 

(1.48) 

-2.11 

(1.36) 

-2.69 

(1.53) 

-3.40 

(1.98) 

-5.12 

(3.06) 

-5.29 

(3.40) 

Ab/Adduction 
-0.18 

(0.37) 

-0.24 

(0.35) 

-0.06 

(0.17) 

-0.08 

(0.18) 

-0.13 

(0.29) 

-0.25 

(0.63) 

Int/External Rotation 
-0.03 

(0.04) 

-0.02 

(0.02) 

-0.04 

(0.07) 

-0.10 

(0.09) 

-0.06 

(0.10) 

-0.12 

(0.12) 
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Figure 6.1 Changes to the external knee flexion (+)/extension (-) moment during a flatfoot squat when considering 

intersegmental contact parameters for participant P01. TC is thigh-calf contact. 
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6.3.2 Estimated tibial contact forces 

Tibial compression had a main effect of movement (p = 0.001) with post hoc tests 

indicating a 2.01 BW lower compression during the FS movement when compared to PUK (p = 

0.008) (Table 6-2). No other significant differences were found in axial forces. Tibial AP shear 

had an interaction effect between movement and intersegmental contact (p < 0.001) (Table 6-2). 

Simple main effects revealed that with intersegmental contact there were decreases in posterior 

shear of 0.25 BW in HS (p = 0.017), 0.21 BW in PK (p = 0.024), 0.42 BW in DUK (p = 0.008), 

and 0.42 BW in PUK (p < 0.001). Finally, tibial ML shear also had an interaction effect between 

movement and intersegmental contact (p < 0.001) (Table 6-2). Simple main effects revealed 

increases in lateral shear of 0.05 BW in DK (p = 0.39) and 0.08 BW in DUK (p = 0.014) with 

intersegmental contact. 

In addition to statistical findings, peak RMSD between tibial force estimates that did or 

did not include intersegmental forces are reported in Table 6-3 with inter-participant mean tibial 

force waveforms provided in Figure 6.2-Figure 6.7. 
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Table 6-2 Mean tibial contact forces—in BW—during the static phase of high knee flexion movements. Brackets indicate 1 SD. 

Movements are: heels-up squat (HS), flatfoot squat (FS), dorsiflexed kneel (DK), plantarflexed kneel (PK), dorsiflexed 

unilateral kneel (DUK), and plantarflexed unilateral kneel (PUK). This data resulted from calculations that did not include 

intersegmental contact (NO) and those that did (TC). † indicates a main effect of movement with bold italicized pairs 

indicating interaction effects of movement and intersegmental contact identified at a movement level by simple main effects. 

Tibial compression (+) is COMP, anterior (+)/posterior (-) shear is AP, and medial (-)/lateral (+) shear is ML. 

 COMP† AP ML 

Movement NO TC NO TC NO TC 

HS 3.23 (1.49) 2.96 (1.52) -0.27 (0.13) 0.02 (0.29) 0.05 (0.08) 0.06 (0.07) 

FS 1.98 (1.48) 1.99 (1.43) -0.09 (0.24) 0.00 (0.22) 0.03 (0.06) 0.03 (0.04) 

DK 4.50 (2.25) 4.38 (2.32) -0.26 (0.31) -0.05 (0.28) 0.07 (0.08) 0.12 (0.07) 

PK 3.25 (2.14) 3.26 (2.16) -0.28 (0.20) 0.07 (0.31) 0.10 (0.07) 0.13 (0.05) 

DUK 4.13 (2.09) 4.18 (1.92) -0.48 (0.22) -0.06 (0.30) 0.01 (0.14) 0.10 (0.09) 

PUK 4.02 (2.03) 3.97 (2.00) -0.47 (0.20) -0.05 (0.41) 0.07 (0.10) 0.09 (0.07) 
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Table 6-3 Mean RMSD of tibial contact force estimates—in BW—for each high knee 

flexion movement and movement phase when intersegmental contact was included in MSK 

model calculations. Brackets indicate 1 SD. Movements are: heels-up squat (HS), flatfoot 

squat (FS), dorsiflexed kneel (DK), plantarflexed kneel (PK), dorsiflexed unilateral kneel 

(DUK), and plantarflexed unilateral kneel (PUK). 

Axis Phase HS FS DK PK DUK PUK 

Tension 

Compression 

Descent 
0.13 

(0.10) 

0.12 

(0.18) 

0.09 

(0.07) 

0.08 

(0.07) 

0.08 

(0.06) 

0.10 

(0.06) 

Static 
0.27 

(0.26) 

0.17 

(0.25) 

0.17 

(0.23) 

0.11 

(0.09) 

0.16 

(0.15) 

0.18 

(0.12) 

Ascent 
0.13 

(0.10) 

0.10 

(0.17) 

0.08 

(0.08) 

0.08 

(0.08) 

0.08 

(0.06) 

0.09 

(0.06) 

        

Anterior 

Posterior 

Descent 
0.12 

(0.08) 

0.05 

(0.06) 

0.10 

(0.09) 

0.12 

(0.06) 

0.16 

(0.08) 

0.18 

(0.12) 

Static 
0.29 

(0.19) 

0.10 

(0.12) 

0.22 

(0.19) 

0.36 

(0.22) 

0.42 

(0.22) 

0.43 

(0.26) 

Ascent 
0.14 

(0.08) 

0.06 

(0.08) 

0.11 

(0.09) 

0.14 

(0.07) 

0.22 

(0.14) 

0.23 

(0.14) 

        

Medial 

Lateral 

Descent 
0.02 

(0.02) 

0.02 

(0.02) 

0.02 

(0.03) 

0.01 

(0.02) 

0.03 

(0.03) 

0.02 

(0.02) 

Static 
0.04 

(0.05) 

0.03 

(0.03) 

0.05 

(0.06) 

0.03 

(0.04) 

0.08 

(0.10) 

0.05 

(0.06) 

Ascent 
0.02 

(0.02) 

0.02 

(0.02) 

0.03 

(0.03) 

0.02 

(0.02) 

0.04 

(0.05) 

0.03 

(0.04) 
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Figure 6.2 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a heels-up squat. Shaded regions represent ±1 SD. 
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Figure 6.3 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a flatfoot squat. Shaded regions represent ±1 SD. 
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Figure 6.4 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a dorsiflexed kneel. Shaded regions represent ±1 SD. 
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Figure 6.5 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a plantarflexed kneel. Shaded regions represent ±1 SD. 
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Figure 6.6 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a dorsiflexed unilateral kneel. Shaded regions represent ±1 SD. 
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Figure 6.7 Mean model estimates of tibial compression (+), anterior (+)/posterior (-) shear, and medial (-)/lateral (+) shear 

forces during a plantarflexed unilateral kneel. Shaded regions represent ±1 SD.
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Model estimates of muscle force that generally had the best visual agreement with mean 

EMG waveforms were vastii, GD, AM (surface site), ST, and SM (fine-wire site) (Figure 6.8 and 

Appendix H). There was a poor overall agreement with hamstrings and gastrocnemii (Figure 6.8 

and Appendix H). Mean muscle force predictions had notably worse visual agreement during the 

PK movement (Appendix H) as force magnitudes were elevated during the static phase of 

movement (33-66 % movement cycle) compared to transitional periods, 0-32 % (descent) and 

67-100% (ascent) of movement cycle.  
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Figure 6.8 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for heels-up squat. Muscles are: vastus lateralis 

(VL), rectus femoris (RF), vastus medialis (VM), adductor magnus (AM), tibialis anterior 

(TA), gluteus medius (GD), biceps femoris (BF), semitendinosus (ST), semimembranosus 

(SM), lateral gastrocnemius (GL), medial gastrocnemius (GM), with indwelling recordings 

of adductor magnus (AD IND), vastus intermedius (VI IND), and semimembranosus (SM 

IND). 
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6.4 Discussion 

The primary purpose of this study was to quantify the effect of including intersegmental 

contact on tibial compression, AP, and ML shear estimations during the static phase of six high 

knee flexion movements. Due to an average RMSD of 3.56, 0.16, and 0.06 %BW*HT in 

flexion/extension, ab/adduction, and int/external external moments from including 

intersegmental contact parameters, significant reductions in posterior shear were observed for HS 

(0.25 BW), PK (0.21 BW), DUK (0.42 BW), and PUK (0.42 BW). Also, significant increases in 

tibial lateral shear were found when including intersegmental contact parameters during DK 

(0.05 BW) and DUK (0.08 BW) movements. The secondary objective of this study was to 

qualitatively compare EMG waveforms to muscle force estimates. Muscle force estimates 

generally followed EMG waveforms in shape for vastii, GD, and AM with SM having an 

improved agreement using its indwelling signal compared to surface measurements. 

External moments have previously been reported for transitional and static phases of 

some kneeling activities (Chong et al., 2017) with similar flexion/extension magnitudes reported 

(0-6 %BW*HT) as our DK and PK movements. As well, Pollard et al. (2011) reported 3D 

external knee joint moments for symmetric squatting and kneeling tasks of 3-5, 0.5-1.3, and 

0.25-0.4 %BW*HT for flexion/extension, ab/adduction, and int/external axes respectively. Given 

the 30-40% reduction in flexion moment resulting from incorporating intersegmental contact, 

one could expect the largest reduction to occur in tibial compression. However, AP shear had the 

largest magnitude and highest number of significant reductions.We speculate that there could be 

two fesible explanations: 1) the current MSK model geometry and cost function are insensitive to 

changes in external flexion moments or 2) high levels of tibial compression occur in high knee 

flexion postures. Unfortunately, there is no instrumented implant data available beyond ~100º of 
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knee flexion to verify our reported tibial compression magnitudes. Therefore, future work is 

required to assess model sensitivity for these estimations.  

Tibial contact force estimations are within reported instrumented implant values for a 

variety of low to mid range knee flexion activities (Bergmann et al., 2014; Kutzner et al., 2010; 

Mündermann et al., 2008; Taylor et al., 2017; Zhao et al., 2007). For example, average MSK 

model predictions of all tibial contact forces were slightly above magnitudes observed during 

stair abulation (Kutzner et al., 2010) and 1-2 BW higher than peak loading when standing from a 

chair at a knee flexion angle of ~80º (Taylor et al., 2017). The only known study which 

estimated tibial contact forces in high knee flexion—and modeled thigh-calf contact—predicted 

peak decreases of 1.99 BW in compression and 0.54 BW in posterior shear (Zelle et al., 2009). 

Our maximum mean RMSD compressive force reduction was considerably smaller (0.27 BW), 

but we reported similar changes in posterior shear with a maximum mean RMSD of 0.30 BW. 

Tibial contact force estimates from this model appear to be more biologically feasible 

than prior 2D reports. Our peak tibial compression and shear estimates are almost half (Nagura et 

al., 2006) or 1-3 BW (Dahlkvist et al., 1982) lower than sagitttal plane high knee flexion models 

which did not account for intersegmental contact. Using joint contact areas measured in 

prostheses (Thambyah et al., 2005; Zhao et al., 2007), the peak compressive and shear force 

magnitudes reported by Nagura et al. (2006) are in excess of 21 MPa tensile yield stress of both 

ultra high molecular weight (UHMW) polyethylene (Chapman-Sheath et al., 2003) and 15-20 

MPa range known to damage cartilage and kill chondrocytes (Clements et al., 2001). Defining a 

knee joint contact model for high knee flexion postures was outside the scope of this thesis, but 



152 

our peak tibial compression and AP shear estimates were comparable to Zelle et al. (2009) and 

mid-range implant data (Fregly et al., 2012; Taylor et al., 2017). 

We speculate that the tibial contact force magnitudes estimated in the current study 

support a theory that intersegmental contact could be a protective mechanism for knee joint 

articular cartilage in high knee flexion postures. The superficial tangential zone of knee articular 

cartilage acts as a callous to resist shear forces; which this tissue is more sensitive to than 

compression (Bevill et al., 2010). Given the susceptability of cartilage to damage after sustained 

compression (Kim et al., 2012), individuals who regularly assume high knee flexion postures 

may be predisposed to injury. This would support the cascade of OA initiation (Andriacchi et al., 

2006, 2004; Bevill et al., 2010) and the inability of treatment due to loss of tissue integrity. Since 

individuals can regularly perform high knee flexion activities with negligible acute tissue 

damage, we feel the inclusion of intersegmental contact is necessary in future tissue and joint 

contact models of the knee. 

Based on visual inspection, muscle force estimates generally followed EMG waveform 

profiles for vastiis, GD, AM, and SM (Figure 6.8 and Appendix H). This style of comparison is 

subjective, but common within the modelling literature (Durandau et al., 2018; Modenese et al., 

2011; Mohammadi et al., 2015; Sartori et al., 2014; Winby et al., 2009). PK had more instances 

of poor agreement between EMG and mean muscle force estimations than other activities; 

specifically in the static phase of movement where estimated muscle forces increased when 

EMG activity was consistantly low. The most kinematically similar movement, PUK, had much 

better agreement. This outcome requires further investigation.  

Limitations of this study include soft tissue artifact, the exclusion of knee capsular 

ligaments, assumptions of intersegmental contact parameters, and no estimation of knee joint 
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contact area. Soft tissue deformation is considerable in the thigh segment during high knee 

flexion postures which lowers confidence in kinematic measurements. There is no data currently 

available to quantify error of surface markers compared to skeletal structures in high knee 

flexion movements. Although external force and moment calculations—which are inputs to the 

MSK model—would be affected by this error, it would be consistent between our tibial contact 

force calculations. Noted in section 5.4 was the exclusion of knee capsule ligaments. This 

limitation is somewhat attenuated by the low force contributions, measured in vitro, of the ACL 

(< 40 N), PCL (< 20 N), MCL (< 10 N), and LCL (< 5 N) ligaments have above 90º of knee 

flexion (Yang et al., 2010). However, in vivo response of these tissues in high knee flexion 

movements could alter capsular ligament contribution to tibial forces as in vitro studies are 

commonly osteoligamentous (Yang et al., 2010) or contain limited simulated muscle forces 

(Steinbrück et al., 2013; Victor et al., 2009). Intersegmental contact pressure distributions used in 

this study were measured against a polycarbonate sheet and modeled as a function of knee 

flexion angle. This assumes an approximately constant external force during the static phase of 

movements and ‘mirrored’ loading during the ascending phase as only the descent phase was 

measured. This was a limitation of measurement approach detailed in section 5.2.4. Finally, the 

current model does not have the capability to estimate contact area between femoral condyles 

and the tibial plateau. This does not allow us to comment on stress of knee joint tissues resulting 

from estimated tibial contact forces as contact area between femoral and tibial structures is 

unknown in this model. 

6.5 Conclusion 

Including 3D intersegmental contact forces when estimating tibial contact forces using a 

high knee flexion 3D MSK model resulted in a significant decrease in posterior shear and 
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increase in lateral shear in select movements. Tibial posterior shear had peak forces of 

approximately 0.5 BW but was reduced by a peak mean RMSD of 0.43 BW in unilateral 

kneeling movements. Although tibial lateral shear was significantly increased in dorsiflexed 

kneeling movements, the biological effect of a 0.08 BW change is presumed to be negligible. 

There was no significant differences in tibial compression as a result of including intersegmental 

contact. These results suggest that intersegmental contact could significantly reduce the exposure 

of knee tissues to AP shear stress, however estimates of tibiofemoral contact area would be 

required to confirm this possibility. Although qualitative agreement between EMG and estimated 

muscle force measurement was improved when compared to section 5.3.3, this model does not 

represent underlying physiology.  

Prior work has highlighted the need for accurate tibial compressive and shear force 

magnitudes to improve tissue engineering of knee joint structures (De Sanctis et al., 2015; 

Moroni et al., 2007) and robustness to prosthetic loosening (Thambyah, 2008; Thambyah and 

Fernandez, 2014). Further verification of our reported magnitudes are needed as, unlike some 

biological tissues, conservative estimates of tissue loading is as detrimental as overestimates in 

terms of menisci and cartilage growth (Orsi et al., 2016; Seedhom, 2006). Therefore, the findings 

from this study are a substantial step forward in improving our understanding of the tibial 

loading environment during high knee flexion exposures. Future work is needed to address soft 

tissue artifact as confidence in femoral and tibial plateau surface geometry is needed to 

implement realistic finite element models of tissue strain. These simulations could then be used 

to predict tissue injury and identify mechanisms of disease progression. 
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Chapter 7 – Contributions 

The series of experimental and modelling efforts detailed in this document supported the 

global objective of this work: to develop a 3D MSK model of the knee to estimate tibial contact 

forces in high knee flexion postures for determining the effect of intersegmental contact on tibial 

contact forces. This section is separated into novel contributions and novel findings presented in 

a listed format.  

7.1 Novel contributions 

1) Intersegmental contact data were collected from the largest sample to date during six high 

knee flexion movements, four of which had never been previously measured (Chapter 3). 

These data were calculated using a newly defined artifact reduction process (Kingston 

and Acker, 2018a) and measured with approximately four times the spatial accuracy and 

eight times the sampling frequency of previous efforts (Pollard et al., 2011; Zelle et al., 

2007). Mounting a pressure sensor to a polycarbonate sheet with kinematic markers 

enabled the first experimentally collected 3D position and orientation data of 

intersegmental contact forces (section 5.3.2).  

2) Time-series waveforms of surface and indwelling EMG data were collected during six 

high knee flexion movements with many of the measured muscles being reported for the 

first time (Chapter 4). In addition, this was the first known attempt to model fine-wire 

recordings of three large PCSA muscles based on surface EMG signals. 

3) A full flexion 3D MSK model of the pelvis and lower limb was defined that incorporated 

a 4 DoF knee joint, posterior translation as a function of knee flexion angle, and 161 

muscle elements (Chapter 5). This statically determinant phenomenological model was 
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capable of matching tibial compression measurements from instrumented implant data 

within 0.16, 0.44, and 0.58 RMSD during cyclic squatting, walking, and ‘bouncy’ 

walking respectively (section 5.3.3).  

7.2 Novel findings 

1) Strong linear regression models were developed—based on participant 

anthropometrics—to estimate maximum knee flexion angle and TC CoF location at 

maximum knee flexion (section 3.4). 

2) Strong linear regression models—based on participant anthropometrics—could not be 

formulated for thigh-calf contact onset angle, total force at maximum knee flexion, or 

contact area at maximum knee flexion (section 3.4). 

3) Fine-wire EMG recordings of vastus intermedius, adductor magnus, and 

semimembranosus could not be modeled using surface EMG recordings from vastus 

lateralis, rectus femoris, vastus medialis, semitendinosus, and biceps femoris using 

criteria of R2 > 0.85 and RMSD < 10 %MVC for the high knee flexion activities studied 

(Chapter 4). This was attributed to the considerable variability of surface to fine-wire 

comparisons between participants (Table 4-2 and Appendix D). 

4) Intersegmental contact significantly reduced posterior shear and increased lateral shear 

contact force estimates but had little effect on compression (section 6.3.2). This could 

suggest that intersegmental contact acts as a protective mechanism for knee articular 

cartilage during high knee flexion movements as this tissue is less tolerant to shear than 

compressive loading.  
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7.3  Future work 

Considerable work is still required to understand the motor control of high knee flexion 

movements and to assess the relation of our results to habitual kneeling populations. This should 

involve more high-quality studies of lower limb EMG during a variety of tasks as well as 

investigating balance and movement patterns. Additionally, cultural or ethnic considerations 

could be a promising line of questioning as anthropological versus anatomical capabilities may 

help explain the prominent use of high knee flexion postures in some cultures (Hemmerich et al., 

2006). Occupational kneelers need to be assessed as this population commonly performs manual 

material handling tasks during high knee flexion and is a prominent group in North America 

exposed to these postures. Occupational kneelers would likely be the most receptive to assistive 

devices designed to reduce knee loading which could also provide case-control studies for the 

investigation of acute tissue responses to high knee flexion movements. 

A limitation of using skin-mounted instrumentation in the study of high knee flexion 

activities—be it motion capture or EMG—is the issue of soft tissue artifact. Deformation of soft 

and lean tissue of the thigh is visually apparent in high knee flexion movements and would result 

in measurement error. Characterization of this artifact could be completed using a matrix of 

servomotors to simulate intersegmental loading pattern and experimentally perturb these tissues 

to measure response. Given the limitations of current pressure sensing technology, this could be 

the most feasible near-term approach. Similarly, functional joint center algorithms need to be 

assessed for robustness to soft tissue artifact for use in high flexion ranges as current approaches 

were verified for use in sub 100º knee flexion ranges.  

Implants used in total knee arthroplasty are not commonly designed for high knee flexion 

ranges of motion (Thomsen et al., 2013). Although prosthetics exist which can restore function 
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for cross-legged sitting or some kneeling tasks (Jain et al., 2013; Sancheti et al., 2013) lifespan of 

these implants is still under investigation as well as the multitude of rehabilitative factors which 

dictate ultimate range of motion. Specific to this body of work is results which may be used to 

inform implant design criteria. Although FE models have been developed to guide some aspects 

of prosthesis design (Zelle et al., 2009) our refinement on the external loading of the lower limb 

provides 3D force data not previously considered. The utility of these studies for such design 

choices is speculative, but improvements to FE simulations of external loading conditions is a 

feasible outcome. 

The model defined within this thesis is an initial step towards improving tibial contact 

force estimations. Although it is able to estimate tibial compression and some muscle activation 

waveforms well, computational redundancies exist which add complexity to troubleshooting and 

sensitivity analyses. Elimination of muscle elements minimally contributing to joint contact force 

estimations will simplify the model in its next iteration. Further investigation of using EMG 

waveforms to dynamically modify limits on muscle force estimations could improve 

concordance with a participant’s muscle activity. Using the existing inverse dynamics module, 

implementation of a neuromechanical or Hill-type model could be a useful investigation for 

comparative and learning purposes as question-specific muscle force estimations—beyond 

altering objective functions—could be facilitated. 

Finally, although the reliability of the developed masking procedure (section 3.2.4) was 

determined to be excellent, the influence this procedure had on TC parameters or regression 

equations requires further investigation. The use of masks would reduce overall total force 

magnitude and contact area, and would alter CoF locations. Using intersegmental contact data 

collected as part of study 2 (section 5.2.4) as ‘novel’ data, regression equations determined from 
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raw and masked data in study 1 could be evaluated. This investigation would also provide 

comparative data to determine the magnitude of differences between posterior thigh and 

polycarbonate sheet attachment methods of the pressure sensor which could guide future studies 

using this measurement technology. 
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Appendix A – Musculoskeletal Model Muscle Parameters 

   Origin  Insertion       

# Muscle (part) Element 
X 

(cm) 

Y 

(cm) 

Z 

(cm) 
O. Seg 

X 

(cm) 

Y 

(cm) 

Z 

(cm) 
I. Seg 

Fibre 

Length 

(cm ± SD) 

Sarcomere 

Length (cm 

± SD) 

Pennation 

Angle (deg 

± SD) 

Muscle 

PCSA 

(cm2) 

Tendon 

PCSA 

(cm2) 

1 
Adductor Brevis 

(proximal) 
1 4.62 -1.3 -6.92 5 -1.85 -8.34 1.81 4 

10.7 ± 0.6 3 ± 0.2 - 3.8 0 
2 5.07 -1.32 -7.12 5 -1.32 -9.52 1.92 4 

2 
Adductor Brevis 

(mid) 

1 4.57 -1.82 -7.61 5 -0.96 -10.75 1.99 4 
11.7 ± 0.6 3 ± 0.2 - 3.5 0 

2 4.93 -1.84 -7.78 5 -0.68 -12.02 2.01 4 

3 
Adductor Brevis 

(distal) 

1 3.86 -2.57 -8.34 5 -0.39 -13.28 1.97 4 
12.6 ± 0.6 3 ± 0.2 - 3.2 0 

2 4.09 -2.58 -8.45 5 0.02 -14.52 1.87 4 

4 Adductor Longus 

1 5.25 -0.92 -6.64 5 1.54 -17.44 1.68 4 

11.5 ± 0.5 2.9 ± 0.2 - 15.1 0 

2 5.44 -1.16 -6.89 5 1.84 -18.64 1.52 4 

3 5.57 -1.37 -7.19 5 2.16 -19.86 1.44 4 

4 5.63 -1.56 -7.51 5 2.49 -21.09 1.39 4 
5 5.61 -1.73 -7.85 5 2.8 -22.31 1.29 4 

6 5.5 -1.88 -8.2 5 3.07 -23.52 1.1 4 

5 
Adductor Magnus 

(distal) 

1 -2.1 -7.1 -4.85 5 5.66 -36.31 -2.54 2 
9.7 ± 0.9 2.4 ± 0.3 - 26.5 0.11 2 -1.51 -6.71 -5.57 5 5.66 -36.31 -2.54 2 

3 0.21 -5.78 -7.03 5 5.66 -36.31 -2.54 2 

6 
Adductor Magnus 

(mid) 

1 -2.79 -6.9 -4.94 5 1.82 -19.92 1.43 4 

8.6 ± 0.9 2.2 ± 0.2 - 22.1 0 

2 -2.5 -6.68 -4.53 5 1.82 -19.92 1.43 4 

3 -2.12 -6.6 -5.53 5 2.65 -23.01 0.99 4 

4 -1.87 -6.42 -5.18 5 2.65 -23.01 0.99 4 
5 -1.25 -6.21 -6.24 5 3.41 -26.12 0.9 4 

6 -1.06 -6.07 -5.98 5 3.41 -26.12 0.9 4 

7 
Adductor Magnus 

(proximal) 

1 1.86 -4.5 -7.74 5 0.03 -10.75 1.54 4 

8.8 ± 0.8 2.2 ± 0.2 - 5 0 
2 0.39 -5.33 -6.76 5 0.55 -12.77 1.52 4 

3 1.13 -4.92 -7.25 5 1.07 -14.8 1.5 4 

4 1.86 -4.5 -7.74 5 1.58 -16.82 1.48 4 

8 
Biceps Femoris 

Longus 
1 -3.78 -6.09 -1.71 5 1.63 -45.15 4.62 2 7.1 ± 0.3 2.3 ± 0.2 29.9 ± 3.5 27.2 0.51 

9 
Biceps Femoris 

Brevis 

1 0.58 -19.35 1.77 4 1.63 -45.15 4.62 2 
11.2 ± 0.4 3.3 ± 0.3 - 11.8 0.51 2 1.81 -23.83 1.34 4 1.63 -45.15 4.62 2 

3 2.68 -28.65 1.6 4 1.63 -45.15 4.62 2 

10 
Extensor Digitorum 

Longus 

1 2.49 -51.38 3.75 2 17.36 -96.59 6.79 1 

8.1 ± 1.2 3.7 ± 0.2 8.3 ± 2.6 5.4 0.12 2 2.9 -47.38 4.5 2 17.36 -96.59 6.79 1 

3 3.39 -44.82 5.18 2 17.36 -96.59 6.79 1 

11 
Extensor Hallucis 

Longus 

1 4.12 -66.43 3.48 2 21.52 -93.48 4.97 1 
7.3 ± 0.3 3.3 ± 0.2 14.4 ± 3.3 6.1 0.08 2 3.45 -61.01 3.27 2 21.52 -93.48 4.97 1 

3 2.89 -55.52 3.48 2 21.52 -93.48 4.97 1 

12 
Flexor Digitorum 

Longus 

1 6.4 -54.9 0.81 2 17.58 -96.88 5.87 1 

2.9 ± 0.5 2 ± 0.2 28.5 ± 7.4 6.6 0.09 2 7.16 -60.18 0.93 2 17.58 -96.88 5.87 1 

3 7.24 -64.27 1.11 2 17.58 -96.88 5.87 1 
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13 
Flexor Hallucis 

Longus 

1 2.22 -58.59 2.83 2 22 -94.84 4.55 1 

2.1 ± 0.3 2.2 ± 0.2 30.1 ± 5.2 31.1 0.2 2 3.01 -63.93 2.81 2 22 -94.84 4.55 1 
3 3.8 -69.41 2.81 2 22 -94.84 4.55 1 

14 
Gastrocnemius 

Lateralis 
1 3.43 -37.75 2.21 4 2.9 -81.98 -1.89 1 4.8 ± 0.3 2.3 ± 0.2 25.4 ± 1.6 24 1.06 

15 
Gastrocnemius 

Medialis 
1 5.04 -36.71 -1.48 4 3.01 -82.21 -2.74 1 5.7 ± 0.3 2.6 ± 0.2 10.8 ± 3.2 43.8 1.06 

16 
Gluteus Maximus 

(superior) 

1 -7.91 7.77 -1.57 5 -4.04 5.7 7.47 4 

11.5 ± 1.7 2.6 ± 0.4 - 49.7 0 

2 -8.98 5.51 -3.46 5 -4.31 2.63 7.74 4 

3 -9.64 2.73 -5.01 5 -4.73 -0.44 7.99 4 

4 -9.13 8.91 -2.68 5 -2.4 5.45 7.74 4 
5 -10.33 6.77 -4.69 5 -2.6 2.37 8.02 4 

6 -10.94 3.94 -6.19 5 -3.09 -0.69 8.26 4 

17 
Gluteus Maximus 

(inferior) 

1 -10.74 -0.83 -7.52 5 -5.61 -7.16 4.07 4 

14.1 ± 0.8 2.5 ± 0.3 - 22.5 0 

2 -9.87 -1.49 -7.31 5 -5.07 -8.47 3.75 4 

3 -9.05 -2.56 -7.35 5 -3.66 -10.78 3.38 4 

4 -10.25 -0.16 -6.86 5 -5.61 -7.16 4.07 4 
5 -9.38 -0.82 -6.65 5 -5.07 -8.47 3.75 4 

6 -8.65 -2 -6.8 5 -3.66 -10.78 3.38 4 

18 
Gluteus Medius 

(anterior) 

1 0.4 9.48 4.46 5 -3.03 -0.25 5.9 4 

4.5 ± 0.3 3.2 ± 0.2 - 37.9 0 

2 1.43 9.03 4.56 5 -2.25 -0.44 6.19 4 

3 2.49 8.19 4.26 5 -1.53 -0.54 6.42 4 

4 0.93 9.95 5.22 5 -3.36 -1.09 6.2 4 
5 1.8 9.36 5.09 5 -2.68 -1.5 6.56 4 

6 2.81 8.47 4.72 5 -1.96 -1.6 6.79 4 

19 
Gluteus Medius 

(inferior) 

1 -3.88 11.87 2.51 5 -3.85 0.88 4.5 4 

4.2 ± 0.3 2.5 ± 0.4 15.9 ± 3.1 60.8 1.92 

2 -6.02 10.15 -0.41 5 -4.01 0.86 3.97 4 

3 -6.82 7.21 -2.31 5 -4.24 0.76 3.62 4 

4 -4.81 13.46 2.07 5 -3.85 0.88 4.5 4 
5 -7.34 12.41 -1.03 5 -4.51 0.39 4.66 4 

6 -8.41 9.93 -3.06 5 -4.76 0.26 4.34 4 

20 
Gluteus Minimus 

(lateral) 
1 -0.08 7.89 3.31 5 -1.5 -2.27 6.16 4 3.5 ± 0.2 3.4 ± 0.3 - 10 0.1 

21 
Gluteus Minimus 

(medial) 
1 -2.26 7.55 1.73 5 -1.5 -2.27 6.16 4 3.5 ± 0.2 2.8 ± 0.1 - 8.1 0.1 

22 
Gluteus Minimus 

(mid) 
1 -4.03 6.51 0.07 5 -1.5 -2.27 6.16 4 3.5 ± 0.2 2.6 ± 0.2 - 7.4 0.1 

23 Gracilis 
1 1.65 -4.88 -7.39 5 7.7 -48.16 0.27 2 

21.2 ± 4.7 3.2 ± 0.2 - 
4.9 0.05 

2 3.67 -3.46 -7.98 5 7.7 -48.16 0.27 2   

24 Iliacus (lateral) 

1 -2.95 13.23 2.75 5 -2.34 -5.12 0.37 4 

13 ± 0.4 3.4 ± 0.2 26.5 ± 0 6.6 0.21 2 -1.13 11.48 2.92 5 -2.34 -5.12 0.37 4 

3 -0.34 10.01 2.78 5 -2.34 -5.12 0.37 4 

25 Iliacus (mid) 

1 -5.58 13.54 0.03 5 -2.34 -5.12 0.37 4 

6.6 ± 0.6 3.4 ± 0.2 - 13 0.07 2 -4.32 11.03 -0.21 5 -2.34 -5.12 0.37 4 
3 -3.08 8.61 -0.38 5 -2.34 -5.12 0.37 4 
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26 Iliacus (medial) 

1 -5.27 12.75 -3.9 5 -2.34 -5.12 0.37 4 

10.3 ± 0.5 3.1 ± 0.2 - 7.6 0.48 2 -4.67 10.77 -3.51 5 -2.34 -5.12 0.37 4 

3 -3.68 8.13 -3.61 5 -2.34 -5.12 0.37 4 

27 
Obturator Exturnus 

(inferior) 

1 -0.04 -4.83 -6.75 5 -4.5 -5.54 2.77 4 
7.1 ± 0.5 2.8 ± 0.3 - 5.5 0.1 

2 1.89 -3.95 -7.98 5 -4.5 -5.54 2.77 4 

28 
Obturator Externus 

(superior) 

1 3.88 -1.77 -8.02 5 -3.09 -1.18 2.56 4 
2.8 ± 0.3 3.2 ± 0.3 - 24.6  2 2.11 -3.26 -7.72 5 -3.09 -1.18 2.56 4 

3 -0.04 -4.33 -6.87 5 -3.09 -1.18 2.56 4 

29 Obturator Internus 
1 -2.22 2.19 -4.19 5 -2.68 0.26 4 4 

2 ± 0.2 2.6 ± 0.2 - 25.4 0.13 2 -1.98 0.35 -4.92 5 -2.68 0.26 4 4 

3 -0.93 -1.28 -5.9 5 -2.68 0.26 4 4 

30 Pectineus 

1 3.47 1.38 -5.13 5 -1.82 -7.67 1.58 4 

13.5 ± 0.3 3.2 ± 0.3 - 6.8 0 
2 3.97 1.03 -5.48 5 -1.66 -8.54 1.59 4 

3 4.47 0.67 -5.83 5 -1.5 -9.41 1.6 4 

4 4.97 0.32 -6.18 5 -1.82 -7.67 1.58 4 

31 Peroneus Brevis 

1 2.59 -60.53 3.39 2 7.57 -89.43 3.62 1 

3 ± 0.4 3 ± 0.2 23.1 ± 3.6 19 0.29 2 3.16 -65.19 3.29 2 7.57 -89.43 3.62 1 

3 3.78 -69.69 3.23 2 7.57 -89.43 3.62 1 

32 Peroneus Longus 

1 1.67 -48.99 4.08 2 7.18 -87.15 3.54 1 

3.6 ± 0.5 2.9 ± 0.2 15.8 ± 3.5 23.9 0.2 2 1.9 -52.73 3.73 2 7.18 -87.15 3.54 1 

3 2.16 -56.43 3.4 2 7.18 -87.15 3.54 1 

33 Peroneus Tertius 

1 4.33 -68.61 3.55 2 11.08 -92.42 4.51 1 

5.6 ± 0.3 3.6 ± 0.2 19.1 ± 3.8 6.2 0.05 2 3.64 -63.48 3.51 2 11.08 -92.42 4.51 1 

3 3.08 -58.34 3.49 2 11.08 -92.42 4.51 1 
34 Piriformis 1 -10.07 2.31 -7.42 5 -3.48 0.88 2.74 4 4 ± 0 2.8 ± 0.2 - 8.1 0.13 

35 Plantaris 1 2.83 -38.59 3.73 4 4.51 -81.41 -2.33 1 5 ± 0.4 2.8 ± 0.1 - 2.4 0.13 

36 Popliteus 
1 2.74 -41.05 4.49 4 6.21 -51.18 0.37 2 

2.8 ± 0.2 3.1 ± 0.2 - 10.7 0 
2 2.74 -41.05 4.49 4 4.91 -47.08 -0.08 2 

37 Psoas Minor 1 -5.06 25.28 -5.61 5 1.59 -1.79 -0.8 4 7.2 ± 0 3.3 ± 0.1 - 1.1 0 

38 Psoas Major 
1 -5.74 22.64 -5.56 5 -2.34 -5.12 0.37 4 

11.9 ± 0.6 3.2 ± 0.2 13.4 ± 5.4 19.5 0.48 2 -2.91 18.44 -5.96 5 -2.34 -5.12 0.37 4 

3 -2.81 14.2 -5.88 5 -2.34 -5.12 0.37 4 

39 Quadratus Femoris 

1 -0.9 -4.98 -6.3 5 -4.65 -2.43 2.81 4 

2.9 ± 0.3 2.4 ± 0.3  14.6 0 
2 -1.54 -5.24 -5.5 5 -4.6 -3.22 2.87 4 

3 -2.17 -5.5 -4.69 5 -4.54 -4.01 2.93 4 

4 -2.8 -5.76 -3.89 5 -4.48 -4.8 2.99 4 
40 Rectus Femoris 1 3.02 4.27 2.03 5 9.46 -35.06 3.48 3 6.7 ± 0.3 2.3 ± 0.2 22 ± 3.3 28.9 2.79 

  2 3.02 4.27 2.03 5 8.86 -35.03 4.48 3   -   

41 
Sartorius 

(proximal) 
1 3.2 7.49 3.5 5 7.94 -47.72 0.38 2 43.3 ± 0.6 3.4 ± 0.3 - 5.9 0.22 

42 Satorius (distal) 1 3.2 7.49 3.5 5 7.94 -47.72 0.38 2 43.3 ± 0.6 3.4 ± 0.3 - 5.9 0.22 

43 Semimembranosus 1 -2.8 -6.61 -2.03 5 4.12 -43.84 -2.97 2 7.1 ± 0.4 2.4 ± 0.3 25 ± 3.6 17.1 0.27 
44 Semitendinosus 1 -4.03 -6.07 -2.78 5 7.22 -49.29 -0.24 2 15.7 ± 0.3 3 ± 0.1 - 14.7 0.13 

45 Solius (medial) 

1 1.85 -54.4 2.79 2 2.9 -81.98 -1.89 1 

1.8 ± 0.2 2 ± 0.2 64.5 ± 10.1 94.3 10.6 2 1.57 -51.72 2.92 2 2.9 -81.98 -1.89 1 

3 0.97 -47.81 3.08 2 2.9 -81.98 -1.89 1 
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46 Solius (lateral) 

1 7.63 -58.1 0.81 2 4.18 -81.71 -2.71 1 

1.9 ± 0.1 2 ± 0.2 58.7 ± 6.4 85.9 10.6 2 7.21 -54.96 0.57 2 4.18 -81.71 -2.71 1 
3 6.5 -52.52 0.27 2 4.18 -81.71 -2.71 1 

47 
Tensor Faciae 

Latae 

1 2.83 7.99 4.76 5 4.68 -38.51 5.4 2 
11.5 ± 0.6 3.3 ± 0.3 - 8.8 0 

2 2.37 9.01 5.13 5 4.68 -38.51 5.4 2 

48 Tibialis Anterior 

1 5.78 -46.65 4.26 2 14.55 -87.06 1.79 1 

5.7 ± 0.3 3.4 ± 0.2 9.6 ± 1.8 26.6 3.1 2 6.36 -49.36 3.89 2 14.55 -87.06 1.79 1 

3 6.38 -54.64 2.94 2 14.55 -87.06 1.79 1 

49 
Tibialis Posterior 

(medial) 

1 5.04 -50.06 2.22 2 11.3 -83.54 1.54 1 

1.9 ± 0.7 2.1 ± 0.2 25.2 ± 5.2 21.6 0 2 5.51 -54.88 2.03 2 11.3 -83.54 1.54 1 

3 6.12 -61.14 2.09 2 11.3 -83.54 1.54 1 

50 
Tibialis Posterior 

(lateral) 

1 2.91 -54.31 3.38 2 11.3 -83.54 1.54 1 

1.9 ± 0.1 2 ± 0.2 58.7 ± 6.4 21.6 10.6 2 3.74 -61.64 3.13 2 11.3 -83.54 1.54 1 

3 4.64 -68.75 3.29 2 11.3 -83.54 1.54 1 

51 Vastus Intermedius 

1 5.41 -22.86 2.55 4 9.46 -35.06 3.48 3 

6.2 ± 0.5 2.2 ± 0.3 11.8 ± 0 38.1 2.79 

2 3.71 -17.44 2.95 4 9.46 -35.06 3.48 3 

3 1.62 -11.67 3.74 4 9.46 -35.06 3.48 3 
4 4.74 -23.17 3.53 4 8.86 -35.03 4.48 3 

5 2.92 -17.81 4.11 4 8.86 -35.03 4.48 3 

6 1.01 -11.97 4.64 4 8.86 -35.03 4.48 3 

52 
Vastus Lateralis 

(inferior) 

1 2.69 -29.27 2.17 4 8.86 -35.03 4.48 3 

3.3 ± 0.4 2.1 ± 0.2 - 10.7 2.79 

2 2.09 -24.72 2.18 4 8.86 -35.03 4.48 3 

3 1.19 -20.26 2.39 4 8.86 -35.03 4.48 3 
4 -0.01 -15.88 2.81 4 8.86 -35.03 4.48 3 

5 -1.51 -11.59 3.44 4 8.86 -35.03 4.48 3 

6 -3.3 -7.38 4.28 4 8.86 -35.03 4.48 3 

53 
Vastus Lateralis 

(superior) 

1 -2.66 -3.32 6.1 4 8.86 -35.03 4.48 3 
7.0 ± 0.5 2.1 ± 0.2  59 2.79 

2 -0.9 -1.61 5.16 4 8.86 -35.03 4.48 3 

54 
Vastus Medialis 

(inferior) 
1 4.17 -29.43 0.75 4 9.46 -35.06 3.48 3 

6.2 ± 0.2 2.2 ± 0.2  9.8 2.79 
2 5.25 -29.22 0.78 4 9.46 -35.06 3.48 3 

55 
Vastus Medialis 

(mid) 

1 3.68 -24.91 1.22 4 9.46 -35.06 3.48 3 
6.2 ± 0.1 2.2 ± 0.2 - 23.2 2.79 

2 4.73 -24.71 1.26 4 9.46 -35.06 3.48 3 

56 
Vastus Medialis 

(superior) 

1 2.59 -19.76 1.76 4 9.46 -35.06 3.48 3 

6.8 ± 0.3 2.2 ± 0.2 - 26.9 2.79 

2 3.55 -19.58 1.79 4 9.46 -35.06 3.48 3 

3 1.21 -14.6 2.29 4 9.46 -35.06 3.48 3 

4 2.17 -14.42 2.32 4 9.46 -35.06 3.48 3 

5 -0.08 -8.01 2.98 4 9.46 -35.06 3.48 3 

6 0.42 -7.92 2.99 4 9.46 -35.06 3.48 3 

Note:  O. Seg is the originating segment and I. Seg is the inserting segment. Segment numbers are as follows: 1-Foot, 2-Tibia, 3-Patella, 4-Femur, 5-Pelvis. 
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Muscle (part) Via point X (cm) Y (cm) Z (cm) Segment 

Extensor Digitorum Longus 

1 

2 

3 

4 

5 

7.4 

7.6 

7.7 

7.8 

9.3 

-76.3 

-77.4 

-78.6 

-79.8 

-84.7 

5.3 

5.4 

5.6 

5.6 

5.8 

2 

2 

2 

2 

1 

Extensor Hallucis Longus 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

8.3 

8.7 

9.1 

9.5 

9.7 

9.9 

13.2 

14.2 

15.3 

16.5 

17.2 

18.1 

18.6 

-73.9 

-75.9 

-76.8 

-77.8 

-78.7 

-79.1 

-85.5 

-86.3 

-87.2 

-88.5 

-89.1 

-90.1 

-90.5 

4.9 

5 

5 

5 

5 

4.9 

5.1 

4.8 

4.4 

3.9 

3.6 

3.4 

3.4 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

Flexor Digitorum Longus 

1 

2 

3 

4 

5 

6 

7 

8 

7.5 

8.2 

8.4 

8.7 

9.1 

9.4 

10 

10.1 

-77.8 

-79 

-79.6 

-80.2 

-80.7 

-81.4 

-83.2 

-83.7 

1 

0.9 

0.8 

0.6 

0.7 

0.6 

0.9 

1.1 

2 

2 

2 

2 

2 

2 

2 

2 

Flexor Hallucis Longus 

1 

2 

3 

4 

5 

6 

7 

8 

6.7 

7.2 

7.5 

7.7 

7.8 

8.2 

8.8 

9.3 

-79.1 

-80 

-80.4 

-80.7 

-80.8 

-81.4 

-82.4 

-83.3 

0.8 

0.7 

0.6 

0.5 

0.4 

0.2 

0.3 

0.4 

2 

2 

2 

2 

2 

2 

2 

2 

Gracilis 

1 

2 

3 

4 

5 

6 

7 

8 

5.7 

6.2 

6.3 

6.8 

7.1 

7.2 

7.7 

8.1 

-44.1 

-44.8 

-44.8 

-45 

-45.6 

-45.6 

-46.1 

-46.4 

-3.1 

-2.6 

-2.6 

-2.3 

-1.7 

-1.7 

-0.6 

0.5 

2 

2 

2 

2 

2 

2 

2 

2 

Iliacus (lateral) 1 2.34 3.15 -1.05 5 

Iliacus (mid) 1 2.34 3.15 -1.05 5 

Iliacus (medial) 1 2.34 3.15 -1.05 5 

Obturator Exturns (superior) 1 -1.43 -3.28 0.57 4 

Obterator Internus 1 -5.7 -2.5 -4.3 5 

Peronius Brevis 

1 

2 

3 

4 

4.7 

4.8 

5.1 

5.5 

-76.8 

-78.3 

-80.3 

-81.4 

2.7 

2.8 

2.9 

3.1 

2 

2 

2 

2 

Peronius Longus 

1 

2 

3 

4 

4.7 

4.8 

5.1 

5.5 

-76.8 

-78.3 

-80.3 

-81.4 

2.7 

2.8 

2.9 

3.1 

2 

2 

2 

2 

Peronius Tertius 

1 

2 

3 

7.2 

7.5 

8.3 

-77.1 

-78.7 

-80.8 

5.3 

5.5 

5.6 

2 

2 

2 

Poplitius 1 2.6 -44.8 2.3 2 
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Psoas Major 1 2.34 3.15 -1.05 5 

Sartorius (proximal) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

5.3 

6.6 

6.5 

6.5 

6.2 

5.8 

5.6 

5.4 

5.2 

5.2 

5.3 

5.3 

5.3 

-10.2 

-18.7 

-19.7 

-21.2 

-22.3 

-23.6 

-24.8 

-26.1 

-27.5 

-29 

-30.5 

-32 

-32.3 

-1.1 

0 

-0.4 

-0.9 

-1.4 

-1.9 

-2.4 

-2.6 

-2.9 

-3.1 

-3.3 

-3.6 

-3.6 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Sartorius (distal) 1 3 -37.3 -4.2 4 

Semitendinosus 

1 

2 

3 

4 

5 

6 

7 

2.9 

3.1 

3.7 

4.4 

5 

5.4 

5.6 

-43.5 

-44.2 

-44.9 

-45.7 

-46.2 

-46.6 

-47.2 

-2.9 

-2.9 

-2.6 

-2.2 

-1.9 

-1.7 

-1.4 

2 

2 

2 

2 

2 

2 

2 

Tibialis Anterior 
1 

2 

12 

13.8 

-78 

-85.2 

2.8 

2.6 

2 

1 

Tibialis Posterior (medial) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

7.5 

7.9 

8.2 

8.4 

8.5 

8.7 

9 

9.2 

9.6 

10.3 

11.2 

-73.9 

-75.1 

-76 

-76.8 

-77.3 

-77.8 

-78.3 

-78.7 

-79.4 

-80 

-81.3 

1.2 

1.1 

0.9 

0.7 

0.6 

0.4 

0.4 

0.4 

0.3 

0.5 

1.3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Tibialis Posterior (lateral) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

7.9 

8.2 

8.4 

8.5 

8.7 

9 

9.2 

9.6 

10.3 

11.2 

-75.1 

-76 

-76.8 

-77.3 

-77.8 

-78.3 

-78.7 

-79.4 

-80 

-81.3 

1.1 

0.9 

0.7 

0.6 

0.4 

0.4 

0.4 

0.3 

0.5 

1.3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
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Appendix B – MVC Procedures for EMG Studies 

Muscle(s) SENIAM Guidelines Study Protocol 

Tibialis Anterior 

 Support above the ankle joint 

 Ankle joint in dorsiflexion and the 

foot in inversion 

 Apply pressure against the medial 

dorsal surface of the foot in the 

direction of plantar flexion and 

eversion 

 Participant seated on edge 

of a massage table with 

legs hanging over the side 

 Followed guideline  

Gastrocnemii 

 Plantar flexion of the foot with 

emphasis on pulling the heel 

upward more than pushing the 

forefoot  

 Apply pressure against the forefoot 

as well as against the calcaneus 

 Participant seated in leg 

press machine with a leg 

straight, but not locked at 

the knee 

 Attempt plantar flexion of 

the foot against weighted 

resistance 

Semitendinosus 

Biceps Femoris 

 Press against the leg proximal to 

the ankle in the direction of knee 

extension 

 Participant prone on a 

massage table 

 Flex knee joint to an angle 

of ~115º 

 Attempt knee flexion while 

manually resisting in the 

direction of knee extension 

Vastus Lateralis 

Rectus Femoris 

Vastus Medialis 

 Extend the knee without rotating 

the thigh while applying pressure 

against the leg above the ankle in 

the direction of flexion 

 Participant seated in leg 

extension exercise machine 

 Extend knee joint to an 

angle of ~135º  

 Attempt extension of the 

knee against weighted 

resistance 
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Appendix C – Correlation of Outcome Variables with Regression Predictors 

Table 7-1 Pearson correlation of the knee flexion angle at thigh-calf contact onset with predictor variables for each movement. 

Significant correlations are bolded with *, †, and ‡ indicating significant correlations at p = 0.05, < 0.01, and <0.001 levels 

respectively. Prx is proximal, Dst is distal, and Cir is circumference. 

Predictor 
Heels-up 

Squat 

Flatfoot 

Squat 

Dorsiflexed 

Kneel 

Plantarflexed 

Kneel 

Plantarflexed 

Unilateral Kneel 

Dorsiflexed 

Unilateral Kneel 

Height -0.12 -0.21 -0.28* -0.18 -0.18 -0.26* 

Mass -0.27* -0.36 -0.42‡ -0.24 -0.39† -0.46‡ 

BMI -0.27* -0.34 -0.35† -0.19 -0.38† -0.42‡ 

Thigh Length 0.09 -0.01 -0.17 -0.23 -0.42‡ 0.03 

Prx Thigh Cir -0.27* -0.25 -0.39† -0.21 -0.37† -0.51‡ 

Mid-Thigh Cir -0.22 -0.28 -0.26 -0.11 -0.30* -0.40† 

Dst Thigh Cir 0.09 -0.01 -0.17 -0.23 -0.42‡ 0.03 

Thigh Skinfold -0.06 0.15 -0.06 0.08 -0.07 -0.19 

Shank Length 0.04 -0.23 -0.17 -0.09 -0.22 -0.13 

Prx Shank Cir -0.20 -0.41 -0.31* -0.13 -0.33* -0.46‡ 

Mid-Shank Cir -0.17 -0.38 -0.32* -0.12 -0.31* -0.44‡ 

Dst Shank Cir -0.03 -0.18 -0.26 -0.05 -0.30* -0.35† 

Shank Skinfold -0.12 0.14 -0.14 -0.05 -0.14 -0.28* 
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Table 7-2 Pearson correlation of maximum knee flexion angle with predictor variables for each movement. Significant 

correlations are bolded with *, †, and ‡ indicating significant correlations at p = 0.05, < 0.01, and <0.001 levels respectively. 

Prx is proximal, Dst is distal, and Cir is circumference. 

Predictor 
Heels-up 

Squat 

Flatfoot 

Squat 

Dorsiflexed 

Kneel 

Plantarflexed 

Kneel 

Plantarflexed 

Unilateral Kneel 

Dorsiflexed 

Unilateral Kneel 

Height -0.32* -0.41 -0.29* -0.29† -0.19 -0.33* 

Mass -0.69‡ -0.68‡ -0.68‡ -0.61‡ -0.54‡ -0.70‡ 

BMI -0.68‡ -0.61† -0.69‡ -0.59‡ -0.55‡ -0.66‡ 

Thigh Length -0.05 -0.27 -0.01 -0.10 -0.08 -0.05 

Prx Thigh Cir -0.61‡ -0.42* -0.63‡ -0.57‡ -0.54‡ -0.65‡ 

Mid-Thigh Cir -0.40† -0.47* -0.40† -0.36 -0.31† -0.42‡ 

Dst Thigh Cir -0.06 -0.27 -0.02 -0.10 -0.08 -0.05 

Thigh Skinfold -0.17 0.08 -0.17 -0.07 -0.15 -0.22 

Shank Length -0.15 -0.33 -0.10 -0.15 -0.04 -0.11 

Prx Shank Cir -0.59‡ -0.54† -0.61‡ -0.54‡ -0.52‡ -0.64‡ 

Mid-Shank Cir -0.55‡ -0.53† -0.58‡ -0.50‡ -0.47‡ -0.59‡ 

Dst Shank Cir -0.38† -0.31 -0.41‡ -0.36† -0.32* -0.47‡ 

Shank Skinfold -0.38† 0.01 -0.32† -0.21 -0.24 -0.35† 
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Table 7-3 Pearson correlation of total contact force with predictor variables for each movement. Significant correlations are 

bolded with *, †, and ‡ indicating significant correlations at p = 0.05, < 0.01, and <0.001 levels respectively. Prx is proximal, 

Dst is distal, and Cir is circumference. 

Predictor 
Heels-up 

Squat 

Flatfoot 

Squat 

Dorsiflexed 

Kneel 

Plantarflexed 

Kneel 

Plantarflexed 

Unilateral Kneel 

Dorsiflexed 

Unilateral Kneel 

Height 0.10 0.20 0.14 0.28* 0.05 -0.08 

Mass 0.20 0.24 0.08 0.28* 0.03 -0.21 

BMI 0.19 0.19 0.02 0.18 0.03 -0.20 

Thigh Length 0.12 0.27 0.03 -0.04 -0.05 -0.02 

Prx Thigh Cir 0.14 0.36 0.06 0.21 0.03 -0.18 

Mid-Thigh Cir 0.14 0.36 0.08 0.18 0.07 -0.10 

Dst Thigh Cir 0.11 0.27 0.02 -0.05 -0.05 -0.02 

Thigh Skinfold 0.02 -0.25 -0.07 0.08 -0.09 -0.13 

Shank Length 0.21 0.33 0.24 0.26* 0.13 0.08 

Prx Shank Cir 0.20 0.29 0.04 0.22 0.01 -0.21 

Mid-Shank Cir 0.24 0.20 0.07 0.25 0.05 -0.18 

Dst Shank Cir 0.17 0.34 0.05 0.22 0.03 -0.21 

Shank Skinfold -0.07 -0.23 -0.03 0.10 -0.04 -0.15 

Max Angle 0.09 0.03 0.17 0.08 0.32† 0.41‡ 
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Table 7-4 Pearson correlation of thigh-calf longitudinal center of force location with predictor variables for each movement. 

Significant correlations are bolded with *, †, and ‡ indicating significant correlations at p = 0.05, < 0.01, and <0.001 levels 

respectively. Prx is proximal, Dst is distal, and Cir is circumference. 

Predictor 
Heels-up 

Squat 

Flatfoot 

Squat 

Dorsiflexed 

Kneel 

Plantarflexed 

Kneel 

Plantarflexed 

Unilateral Kneel 

Dorsiflexed 

Unilateral Kneel 

Height 0.01 -0.19 -0.01 0.12 0.07 -0.12 

Mass -0.21 -0.36 -0.35† -0.15 -0.25 -0.45‡ 

BMI -0.28* -0.35 -0.45‡ -0.27* -0.36† -0.50‡ 

Thigh Length 0.15 0.03 0.14 0.10 0.18 0.16 

Prx Thigh Cir -0.14 -0.12 -0.31* -0.16 -0.27* -0.38† 

Mid-Thigh Cir -0.19 -0.17 -0.22 -0.13 -0.13 -0.27* 

Dst Thigh Cir 0.15 0.03 0.14 0.10 0.17 0.16 

Thigh Skinfold -0.11 0.03 -0.17 -0.11 -0.25 -0.22 

Shank Length 0.13 -0.08 0.14 0.13 0.19 0.10 

Prx Shank Cir -0.17 -0.34 -0.38† -0.19 -0.25 -0.39† 

Mid-Shank Cir -0.02 -0.27 -0.30* -0.09 -0.18 -0.33* 

Dst Shank Cir 0.15 0.00 -0.06 0.10 0.04 -0.10 

Shank Skinfold -0.23 0.05 -0.23 -0.16 -0.27* -0.32* 

Max Angle 0.46‡ 0.63‡ 0.68‡ 0.50‡ 0.70‡ 0.69‡ 
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Table 7-5 Pearson correlation of thigh-calf contact area with predictor variables for each movement. Significant correlations 

are bolded with *, †, and ‡ indicating significant correlations at p = 0.05, < 0.01, and <0.001 levels respectively. Prx is 

proximal, Dst is distal, and Cir is circumference. 

Predictor 
Heels-up 

Squat 

Flatfoot 

Squat 

Dorsiflexed 

Kneel 

Plantarflexed 

Kneel 

Plantarflexed 

Unilateral Kneel 

Dorsiflexed 

Unilateral Kneel 

Height 0.10 0.05 0.18 0.32* 0.16 -0.07 

Mass 0.02 0.01 -0.08 0.14 -0.08 -0.37‡ 

BMI -0.03 -0.01 -0.22 -0.03 -0.19 -0.42‡ 

Thigh Length 0.06 0.12 0.06 0.02 0.04 0.05 

Prx Thigh Cir 0.03 0.16 -0.09 0.06 -0.13 -0.33† 

Mid-Thigh Cir 0.03 0.14 -0.07 0.01 -0.08 -0.21* 

Dst Thigh Cir 0.06 0.12 0.05 0.02 0.04 0.05 

Thigh Skinfold 0.02 -0.11 -0.08 0.03 -0.16 -0.19 

Shank Length 0.18 0.15 0.28* 0.27* 0.23 0.15 

Prx Shank Cir 0.02 0.04 -0.14 0.05 -0.11 -0.32† 

Mid-Shank Cir 0.12 0.02 -0.05 0.14 -0.03 -0.24* 

Dst Shank Cir 0.14 0.20 0.05 0.22 0.08 -0.13 

Shank Skinfold -0.11 -0.08 -0.09 0.02 -0.15 -0.27* 

Max Angle 0.32† 0.30 0.43‡ 0.27* 0.53‡ 0.62‡ 
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Appendix D – Surface Electrode Sites 

Muscle Electrode Placement 

Medial Gastrocnemius 
1/3 of the distance along the line starting at the head of the 

fibula and ending at the heel 

Lateral Gastrocnemius 
1/3 of the distance along the line starting at the head of the 

fibula and ending at the medial malleolus 

Tibialis Anterior 
1/3 of the distance along the line starting at the tip of the 

fibula and ending at the medial malleolus 

Vastus Medialis 

80% of the line from the anterior superior iliac spine (ASIS) 

and ending at the joint space in front of the anterior border 

of the medial ligament 

Rectus Femoris 
1/2 the distance along the line from the ASIS to the superior 

part of the patella 

Vastus Lateralis 
2/3 of the distance along the line starting at the ASIS and 

ending at the lateral side of the patella 

Biceps Femoris 
1/2 of the distance along the line starting at the ischial 

tuberosity and ending at the lateral condyle of the tibia 

Semitendinosus 
1/2 of the distance along the line starting at the ischial 

tuberosity and ending at the medial condyle of the tibia 

Gluteus Medius 50% of the line from the iliac crest to the trochanter 

Gluteus Maximus 

50% of the line between the sacral vertebrae and the greater 

trochanter. This corresponds with the largest prominence of 

the middle of the buttocks above the greater trochanter.  
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Appendix E – Deep Muscle EMG Waveforms 

 

Figure 7.1 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a heels-up squat (HS). The shaded 

band represents ± 1 SD. 
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Figure 7.2 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a flatfoot squat (FS). The shaded 

band represents ± 1 SD. 
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Figure 7.3 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a dorsiflexed kneel (DK). The shaded 

band represents ± 1 SD. 
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Figure 7.4 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a plantarflexed kneel (PK). The 

shaded band represents ± 1 SD. 
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Figure 7.5 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a dorsiflexed unilateral kneel (DUK). 

The shaded band represents ± 1 SD. 
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Figure 7.6 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a plantarflexed unilateral kneel 

(PUK). The shaded band represents ± 1 SD. 
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Figure 7.7 Mean fine-wire vastus intermedius (VI), adductor magnus (AM), and 

semimembranosus (SM) activation waveforms during a walking trial (WK). The shaded 

band represents ± 1 SD. 
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Appendix F – Lower limb segmental local coordinate system definitions 

Pelvis  

Origin Mid-point between the left and right anterior superior iliac spines 

z-axis Vector from the origin towards the right ASIS 

y-axis Cross product of temporary vector from the origin to the midpoint of left 

and right PSIS and z-axis 

x-axis Cross product of y and z-axes 

  

Thigh  

Origin Functional knee joint centre (Ehrig et al., 2007) 

z-axis Cross product of the x by y-axes 

y-axis Vector from origin to functional hip joint centre (Ehrig et al., 2006) 

x-axis Cross product of the y-axis and a temporary vector from the Origin to the 

lateral greater trochanter 

  

Shank  

Origin Midpoint of malleoli 

z-axis Cross product of x- by y-axes 

y-axis Vector from the mid-point between the malleoli to the functional knee 

joint centre 

x-axis Cross product of the y-axis and a temporary vector pointing from the 

origin to lateral malleoli  

  

Foot  

Origin Heel 

z-axis Cross product of x by y-axes 

y-axis Vector from the origin to the toe 

x-axis 
Cross product of the y-axis and temporary vector pointing from the 

origin to the midpoint of the malleoli 
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Appendix G – Grand Knee Challenge EMG compared to model estimates of muscle forces 

 

Figure 7.8 Muscle activations (blue) compared to mean muscle forces (orange) for a walking trial with a specific muscle 

tension of 61 N/cm2. Muscles are: semimembranosus (SM), biceps femoris (BF), vastus medialis (VM), vastus lateralis (VL), 

rectus femoris (RF), medial gastrocnemius (MG), lateral gastrocnemius (LG), tensor fascia lata (TL), tibialis anterior (TA), 

peroneus longus (PL), soleus (SL), adductor magnus (AM), gluteus maximus (GX), gluteus medius (GM), and sartorius (SA).
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Figure 7.9 Muscle activations (blue) compared to mean muscle forces (orange) for a walking trial with a specific muscle 

tension of 88 N/cm2. Muscles are the same as Figure 7.8. 
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Figure 7.10 Muscle activations (blue) compared to mean muscle forces (orange) for a cyclic squatting trial with a specific 

muscle tension of 30 N/cm2. Muscles are the same as Figure 7.8. 
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Figure 7.11 Muscle activations (blue) compared to mean muscle forces (orange) for a cyclic squatting trial with a specific 

muscle tension of 61 N/cm2. Muscles are the same as Figure 7.8.
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Figure 7.12 Muscle activations (blue) compared to mean muscle forces (orange) for a cyclic squatting trial with a specific 

muscle tension of 88 N/cm2. Muscles are the same as Figure 7.8. 
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Figure 7.13 Muscle activations (blue) compared to mean muscle forces (orange) for a ‘bouncy’ walking trial with a specific 

muscle tension of 30 N/cm2. Muscles are the same as Figure 7.8. 
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Figure 7.14 Muscle activations (blue) compared to mean muscle forces (orange) for a ‘bouncy’ walking trial with a specific 

muscle tension of 61 N/cm2. Muscles are the same as Figure 7.8. 
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Figure 7.15 Muscle activations (blue) compared to mean muscle forces (orange) for a ‘bouncy’ walking trial with a specific 

muscle tension of 88 N/cm2. Muscles are the same as Figure 7.8. 
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Appendix H – Muscle activation compared to force predictions during 

high knee flexion movements 

 

Figure 7.16 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for flatfoot squat (FS). Muscles are: vastus 

lateralis (VL), rectus femoris (RF), vastus medialis (VM), adductor magnus (AM), tibialis 

anterior (TA), gluteus medius (GD), biceps femoris (BF), semitendinosus (ST), 

semimembranosus (SM), lateral gastrocnemius (GL), medial gastrocnemius (GM), with 

indwelling recordings of adductor magnus (AD IND), vastus intermedius (VI IND), and 

semimembranosus (SM IND).  
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Figure 7.17 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for dorsiflexed kneel (DK). Muscles are the 

same as Figure 7.16. 



225 

 

Figure 7.18 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for plantarflexed kneel (PK). Muscles are the 

same as Figure 7.16. 
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Figure 7.19 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for dorsiflexed unilateral kneel (DUK). Muscles 

are the same as Figure 7.16. 
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Figure 7.20 Mean muscle activations (blue) compared to mean muscle forces with (orange) 

and without intersegmental contact (black) for plantarflexed unilateral kneel (PUK). 

Muscles are the same as Figure 7.16. 
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