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Abstract 

 
Cellulose is the most abundant organic compound found on earth. Cellulose’s recalcitrance to 

hydrolysis is a major limitation to improving the efficiency of industrial applications. The biofuel, 

pulp and paper, agriculture, and textile industries employ mechanical and chemical methods of 

breaking down cellulose. Enzymatic methods are attractive choices for industry due to their 

selectivity in their mode of action and high product yields. However, cellulases are not as economic 

as mechanical means of degrading cellulose, and few cellulases are optimized for large scales. 

Investigating the cellulolytic microbiome and functional potential of municipal waste sites, which 

house large amounts of paper waste, can identify novel cellulose degraders robust for industrial 

applications.   

The microbial diversity and metabolic potential in landfills have not been well studied. In this 

thesis, the cellulose degradation capacity was investigated at two municipal waste sites (MWS). 

First, the microbial composition and the cellulose degradation capacity of a leachate pond from a 

dump in Jamaica and the river adjacent to the dump were assessed using metagenomics. The 

diversity of metagenome-assembled metagenomes (MAGs) was greater in the leachate compared 

to the river, with thirteen high-quality MAGs identified across seven phyla, including 

Bacteroidetes, Proteobacteria and Firmicutes. In contrast, two high-quality MAGs, both members 

of the Proteobacteria, were reconstructed from the river metagenome. A MAG assigned to the 

candidate phylum CPR2 is the first candidate phylum radiation MAG to be reported from a landfill. 

The metagenomes were screened for genes belonging to glycosyl hydrolase (GH) families 

containing cellulases as a measure of cellulolytic potential at the sites. Beta-glucosidases were 

detected at both sites. In the metagenomes, the taxonomic affiliation of most potential cellulases 

in the leachate metagenome were to the Bacteroidetes, Firmicutes, Actinobacteria, Spirochaetes, 
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and Tenericutes, whereas Bacteroidetes and Proteobacteria cellulases were most abundant in the 

river metagenome. The microbial composition of the leachate and river did not overlap based on 

read mapping, suggesting no contamination of the river by the leachate at the times and sites 

sampled.  

Secondly, the cellulolytic microbial diversity was also analyzed in six metagenomes from a landfill 

in Southern Ontario. The samples included a composite leachate cistern (CLC), three leachate 

wells, and one groundwater well. Twelve GH families containing cellulases were detected across 

the six metagenomes, with genes from GH3 and GH5 being the most prevalent. Beta-glucosidases 

and endocellulases were detected across all sites, but exocellulases were only detected in some of 

the leachate sites and the groundwater well. A large number of hypothetical proteins and non-

specifically annotated proteins were also detected across all sites, which likely represent novel 

carbohydrate-modifying enzymes. The majority of the potential cellulase genes across the six sites 

were affiliated with the Bacteroidetes and Firmicutes.  

Thirdly, the potential cellulolytic capacity established from the metagenomes from the Ontario 

landfill was confirmed by enrichment cultivations of leachate biomass grown in synthetic leachate 

amended with cellulose. Several isolates from the enrichment cultures showed 

carboxymethylcellulose and cellobiose degradation capacities, signifying endocellulase and beta-

glucosidase activities. Results from 16S rRNA gene amplicon sequencing of copy-paper, 

cardboard, newsprint, and filter paper-enriched cultures showed enrichment of exact sequence 

variants assigned to Paenibacillus, Cytophaga, and Proteiniphilum bacteria over time. The 

research in this thesis represents the first connections between the cellulolytic potential and 

relevant taxonomic groups in MWS to cellulose degradation by isolates enriched from landfill 

leachate.   
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Chapter 1: Introduction 
 

Cellulose is the most abundant organic compound found on earth. It has been widely exploited in 

industrial applications, namely for pulp and paper, biofuel, agriculture, textile, and pharmaceutical 

products (Delmer and Haigler, 2002; Kuhad et al., 2011). Cellulose’s abundance, availability, and 

renewability are invaluable for large-scale industrial and biotechnology applications. An important 

limitation of cellulose is its recalcitrance to decomposition by hydrolysis (Pérez et al., 2002). 

Cellulose degradation has been a topic of study for more than 140 years, with a focus on improving 

the process’s efficiency. Earliest research investigated the products resulting from cellulose 

hydrolysis by sulphuric acid (Scientific Intelligence, 1860). Physical and thermochemical 

pretreatments of cellulose are currently the preferred cellulose hydrolysis methods for their speed 

and ability to degrade a wide range of lignocellulosic feedstocks continuously (Kumar and Sharma, 

2017). Enzymatic treatments, especially when combined with thermochemical pretreatments, are 

attractive alternatives because of increased specificity in the desired products, low energy usage, 

and lowered toxic waste production compared to chemical processes (Mathews et al., 2015; Kumar 

and Sharma, 2017). Research targeting discovery of novel microbial cellulases that enhance 

efficiency in industrial processes is a much needed area of study to harness the abundance of 

cellulose available for industrial applications. 

 

 

1.1 Cellulose and cellulases 

 

Cellulases are a family of enzymes that hydrolyze the beta-1,4-glycosidic bonds linearly 

connecting glucose subunits in cellulose molecules. Cellulases may also hydrolyze the hydrogen 

bonds that laterally interlink multiple chains of cellulose forming microfibrils (Béguin and Aubert, 

1994). Bundles of microfibrils form fibrils, which mostly exist in a crystalline form, interspersed 
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with amorphous regions where the structure of the cellulose is less organized and more weakly 

linked. In addition to cellulose, hemicellulose and lignin are the main molecules intricately 

complexed in the matrix that makes up the majority of plant biomass: lignocellulose. To degrade 

cellulose, lignin and hemicellulose must first be degraded by their respective enzymes (Pérez et 

al., 2002). Cellulose contributes to the physical support and defensive role of the plant cell wall as 

an insoluble, ordered, and uniformly structured molecule (Béguin and Aubert, 1994). A cocktail 

of three types of cellulases are needed to completely hydrolyze this structured polymer: 

endocellulase [EC 3.2.1.4], which randomly cleaves the glycosidic bond in the middle of the 

glucose chain; exocellulase (cellobiohydrolase) [EC 3.2.1.91], which cleaves near the end of the 

chain, releasing cellobiose; and beta-glucosidase [EC 3.2.1.21], which cleaves cellobiose, 

releasing glucose (Mathews et al., 2015). Cellulases can either occur as free exoenzymes that bind 

to cellulose or as cellulosomes, which are complexes of enzymes attached to the cell wall of certain 

anaerobic cellulose degraders (Cragg et al., 2015).  

 

 

1.2 Microbial diversity of cellulases  

 

Biochemically characterized cellulose degraders have been identified across the three domains of 

life, with a historical focus on cellulases identified from organisms that consume plant materials 

such as ruminants, herbivores, termites, and fungi (Güllert et al., 2016). From the CAZy database 

(Lombard et al., 2014) cellulolytic enzymes have been characterized across 16 glycosyl hydrolase 

families, and are found in 118 genera of bacteria; 164 genera of eukaryotes, of which 82 are fungi; 

and 8 genera of archaea (Table 1.1). Fungi have historically been the dominant microorganisms 



 3 

 

 

 

 

 

Table 1.1. Microorganisms that possess characterized cellulases across the tree of life. As of March 

2018, a total of 18 phyla and 201 genera across the tree of life contain members that have characterized 

cellulases, from 16 glycosyl hydrolase (GH) families (GH1, -3, -5, -6, -7, -8, -9, -12, -30, -44, -45, -48, -51, 

-74, -116, and -124) according to the CAZy database (Lombard et al., 2014). The number in brackets beside 

each domain or eukaryotic group indicates the number of phyla in that group that contains members 

possessing cellulases. The number in brackets beside each phylum indicates the number of genera in that 

phylum that contains members possessing cellulases. 
 Phyla Genera 

Bacteria 

(12) 

Actinobacteria 

(23) 

Acidothermus 

Actinomyces 

Actinosynnema 

Aeromicrobium 

Bifidobacterium 

Cellulomonas 

Cellulosimicrobium 

Clavibacter 

Gordonia 

Microbacterium 

Micrococcus 

Micromonospora 

Mycobacterium 

Pseudarthrobacter 

Pseudonocardia 

Saccharopolyspora 

Sanguibacter 

Streptomyces 

Terrabacter 

Thermobifida 

Thermobispora 

Thermomonospora 

Xylanimicrobium 

Aquificae (1) Aquifex    

Bacteroidetes 

(8) 

Bacteroides 

Cellulophaga 

Cytophaga 

Elizabethkingia 

Flavobacterium 

Mucilaginibacter 

Prevotella 

Rhodothermus 

 

 

Chloroflexi 

(3) 

Roseiflexus Thermobaculum Thermomicrobium  

Deinococcus-

Thermus (3) 

Deinococcus Meiothermus Thermus  

Dictyoglomi 

(1) 

Dictyoglomus    

Enterobacter 

(3) 

Pantoea Pectobacterium Salmonella  

Fibrobacteres 

(1) 

Fibrobacter    

Firmicutes 

(24) 

Acetivibrio 

Alicyclobacillus 

Anoxybacillus 

Bacillus 

Butyrivibrio 

Caldanaerobacter 

Caldanaerobius 

Caldicellulosiruptor 

Cellulosilyticum 

Clostridium 

Eubacterium 

Exiguobacterium 

Geobacillus 

Halothermothrix 

Klebsiella 

Lachnoclostridium 

Lactobacillus 

Oenococcus 

Paenibacillus 

Ruminiclostridium 

Ruminococcus 

Salipaludibacillus 

Thermoanaerobacter 

Thermoanaerobacterium 

Proteobacteria 

(42) 

Agrobacterium 

Azoarcus 

Azorhizobium 

Caulobacter 

Cellvibrio 

Desulfotalea 

Dickeya 

Enterobacter 

Erwinia 

Escherichia 

Hahella 

Halomonas 

Jeongeupia 

Komagataeibacter 

Legionella 

Lysobacter 

Magnetospirillum 

Marinomonas 

Martelella 

Myxobacter 

Neisseria 

Niveispirillum  

Novosphingobium  

Photobacterium 

Pseudoalteromonas 

Pseudomonas 

Ralstonia 

Rhizobium 

Rhodobacter 

Rhodopseudomonas 

Saccharophagus 

Salinivibrio 

Serratia 

Sinorhizobium 

Sphingomonas 

Sphingopyxis 

Stigmatella 

Teredinibacter 

Vibrio 

Xanthomonas 

Xylella 

Zymomonas 

Spirochaetes 

(1) 

Spirochaeta    

 Thermogotae 

(5) 

Fervidobacterium 

Petrotoga 

Pseudothermotoga 

Thermosipho 

Thermotoga  

Archaea 

(2) 

Crenarchaeota 

(5) 

Acidilobus 

Caldivirga 

Desulfurococcaceae  

Sulfolobus 

Thermosphaera  

Euryarchaeota 

(3) 

Halorhabdus Pyrococcus Thermococcus  
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Table 1.1. Microorganisms that possess characterized cellulases across the tree of life (continued) 

 Phyla Genera 

Fungi 

(5) 

Ascomycota (50) Acremonium 

Aspergillus 

Aureobasidium 

Bipolaris 

Bispora 

Botrytis 

Candida 

Chaetomium 

Chrysosporium 

Ciboria 

Claviceps 

Clonostachys 

Coccidioides 

Fusarium 

Fusicoccum 

Humicola 

Hypocrea 

Kluyveromyces 

Komagataella 

Kuraishia 

Lasiodiplodia 

Macrophomina 

Ciboria 

Claviceps 

Clonostachys 

Coccidioides 

Paecilomyces 

Penicillium 

Pestalotiopsis 

Phaeosphaeria 

Phialophora 

Pichia 

Podospora 

Rasamsonia 

Robillarda 

Saccharomyces 

Saccharomycopsis 

Schizosaccharomyces 

Sclerotinia 

Scopulariopsis 

Septoria 

Stachybotrys 

Staphylotrichum 

Stilbella 

Talaromyces 

Thermoascus 

Thermothelomyces 

Thielavia 

Trichoderma 

Wickerhamomyces 

Basidiomycota 

(22) 
Agaricus 

Coprinopsis 

Crinipellis 

Cryptococcus 

Dichomitus 

Flammulina 

Fomitopsis 

Ganoderma 

Gloeophyllum 

Hamamotoa  

Heterobasidion 

Irpex 

Lentinula 

Uromyces 

Ustilago 

Volvariella 

Phanerochaete 

Polyporus 

Postia 

Saitozyma 

Schizophyllum 

Trametes 

Uromyces 

Ustilago 

Volvariella 

Chytridiomycota 

(4) 

Anaeromyces Neocallimastix  Orpinomyces Piromyces 

Mucoromycota 

(5) 

Mucor 

Phycomyces 

Rhizomucor 

Rhizopus 

Syncephalastrum  

 

of study for cellulolysis, as they degrade the majority of cellulose-containing biomass on earth 

(Payne et al., 2015). Filamentous, aerobic fungi such as Aspergillus, Penicillium, and 

Trichoderma, are classical workhorses for cellulase production on an industrial scale due to their 

ability to secrete high concentrations of cellulases (Sajith et al., 2016).   

Compared to fungi, bacteria generally have short generation times and thrive in a wide range of 

environments and conditions. Because of this, robust cellulolytic bacteria resistant to 

environmental stresses may be useful for industrial processes (Pourramezan et al., 2012). 

Cellulases are secreted by free-living bacteria or bacteria in the rumen or gut microbiomes of 

eukaryotes to digest plant cell walls (Cragg et al., 2015). Bacterial metabolism and physiology can 

partially delineate groups of cellulolytic bacteria. Fermentative anaerobes, including some 

representatives from Clostridium, Ruminococcus, Butyrivibrio, and Fibrobacter, occur at high 
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numbers in ruminants, and are involved in converting cellulose to organic acids, ethanol, carbon 

dioxide, and hydrogen (Güllert et al., 2016; Dehority and Grubb, 1977; Hungate, 1950; Russell et 

al., 2009). Other fermentative anaerobes include the thermophilic Caldicellulosiruptor, found in 

terrestrial hot springs (Scott et al., 2015) and thermally heated mud flats (Huang et al., 1998), and 

Acetivibrio, isolated from sewage sludge (Khan et al., 1994). Other cellulolytic bacteria are aerobic 

Gram-positive bacteria from the Cellulomonas and Thermobifida genera (Lynd et al., 2002). 

Aerobic bacteria differ from anaerobic cellulolytic bacteria in their cellulose-degrading 

mechanisms. Aerobic bacteria mainly excrete extracellular endocellulases, exocellulases, and 

beta-glucosidases that bind to the cellulosic substrate and work cooperatively - sometimes 

synergistically - to hydrolyze it without cell adherence to cellulose (Lynd et al., 2008). Anaerobic 

bacteria, in contrast, possess cellulosomes, which are complexes of enzymes located on the cell 

wall that conduct cellulose degradation (Bayer et al., 2004). However, some anaerobic bacteria 

can produce both free enzymes and cellulosomes (Berger et al., 2007).  

Compared to the diversity present in cellulolytic fungi and bacteria, relatively few archaea have 

been identified as cellulose degraders. Thermophilic archaea Pyrococcus horikoshii and P. 

furiosus, first isolated from a hydrothermal vent (González et al., 1998), express active exogenous 

endocellulases, for which crystal structures have been resolved (Kim and Ishikawa, 2010b; Kim 

et al., 2012; Kim and Ishikawa, 2011). Thermophiles Sulfolobus solfataricus MT4, S. 

acidocaldarius, and S. shibatae each produce high amounts of active beta-glucosidases (Grogan, 

1991). Thermophilic archaeal cellulases are advantageous and valuable for industry use, as 

enzymatic reactions at higher temperatures promote greater cellulose solubility, faster reactions, 

and lower risk of unwanted bacterial contamination (Kim et al., 2012; Grogan, 1991; Girfoglio et 

al., 2012).  
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1.3 Cellulolytic microbial populations in municipal waste sites  

 

Generation of municipal solid waste (MSW) has been steadily increasing in the United States since 

1960. In 1960, 88.1 million tonnes of MSW were generated, and by 2015 that amount had almost 

tripled. In 2015, 262 million tonnes of MSW were generated, of which more than 137 million were 

landfilled (52.5%). Although recycling accounted for 25.8% of the total generated waste, paper 

waste still made up the largest fraction of organic material in landfills. Decomposition of organic 

materials in landfills generate gases such as methane and carbon dioxide, both of which are potent 

greenhouse gases that exacerbate global warming (Amritha and Anilkumar, 2016; Ontario). Of the 

waste landfilled, 13.3% or approximately 18 million tonnes was paper and cardboard (U.S. 

Environmental Protection Agency, 2018).  

Although landfills are engineered to limit microbial degradation of stored waste, paper products 

such as office paper, cardboard, and newspapers in landfills are subjected to degradation by 

cellulolytic microbes. The past few years have shown an increase in research on microbial diversity 

in landfills, with a handful of studies also examining microbial metabolisms and functions 

(McDonald et al., 2012; Staley et al., 2012; Song et al., 2015b, 2015a; Stamps et al., 2016; 

Ransom-Jones et al., 2017; Wang et al., 2017b; Collins-Fairclough et al., 2018). To date, a 

comprehensive understanding of the fate of cellulolytic materials in landfills is lacking.  

Metagenomic sequencing to mine cellulolytic genes and microbes from landfills are starting steps 

to discovering novel, efficient cellulases for industrial applications such as biofuel production 

(Ransom-Jones et al., 2017). The first large-scale sequence-based study on the microbial 

composition and species richness of municipal landfills used 16S rRNA gene amplicon sequencing 

on nineteen landfills from sixteen states across the United States of America (Stamps et al., 2016). 

This study detected nearly 5,000 OTUs, with Proteobacteria and Firmicutes dominating the 
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microbial communities in nearly all the landfills. The most abundant family detected was 

Ruminococcaceae, whose members have demonstrated cellulolysis in ruminants (Julliand et al., 

1999). Archaea were present at relatively low abundances, and unclassified organisms represented 

up to 20% of the sampled communities. The microbiome of a leachate sample from one of the 

landfills also contained members of the candidate division OP9. Putative glycosyl hydrolases 

(enzymes that hydrolyze the glycosidic bond between a sugar group and a non-sugar group) and 

an endocellulase were identified in the core genomes of two OP9 members, suggesting members 

of this phylum may be involved in cellulose degradation (Dodsworth et al., 2013). Stamps and 

colleagues (2016) provided insight into the microbial compositions of landfills, but a more focused 

study on cellulose degraders in landfills is needed to understand their diversity and activities in 

these sites.  

In a recent study, a combination of metagenomics and 16S rRNA gene sequencing was applied 

to leachate microcosms supplemented with cotton cellulose (Ransom-Jones et al., 2017). This 

work revealed abundant populations of Firmicutes, Bacteroidetes, Spirochaetes, and 

Fibrobacteres. This was the first study in landfills to report i) a Fibrobacter cellulase system, 

which involves secreting fibro-slime proteins, using pilli to attach to cellulose, and subsequently 

releasing hydrolytic cellulases, and ii) Bacteroidetes polysaccharide utilization loci (PULs): co-

localized gene clusters that encode enzymes and proteins needed for hydrolysis of carbohydrates 

(Ransom-Jones et al., 2017; Grondin et al., 2017). Gene families containing cellulases and other 

carbohydrate-modifying enzymes were identified in metagenome-assembled genomes (MAGs) 

in the cellulose amended leachate microcosms. From identification of these features, a 

cellulolytic lifestyle was hypothesized for these Fibrobacteres and Bacteroidetes in the landfill 

(Ransom-Jones et al., 2017). 
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1.4 Challenges in categorizing cellulases 

With rapid sequencing technology improvements and lowered costs, metagenomics has become 

a standard method for examining microorganisms and their potential functions in an 

environment. From this, large amounts of data – annotated, but sometimes ambiguously so—are 

continuously being added to sequence databases. This is a problem for the growing number of 

genes encoding glycosyl hydrolases, including cellulases, because current methods of 

categorization of cellulases are not standardized.  

Cellulases are non-homologous iso-functional enzymes (Sukharnikov et al., 2012). It has been 

suggested that all known cellulases exhibit similar protein folds and amino acid sequences among 

homologs (Sukharnikov et al., 2011). However, not all of these homologs demonstrate 

biochemical cellulose degradation, further complicating cellulase identification via sequence- 

based classification methods (Sukharnikov et al., 2011). Categorizing cellulases is additionally 

challenging as it can be done in one or more of three main ways, based on sequence identity, 

function, and/or structure. Depending on the type of analysis and its end goal, one method may be 

more appropriate than others. Unfortunately, this means that there is not one universal convention 

for grouping cellulolytic enzymes. Due to cellulase structural, sequence, and functional diversities, 

it is additionally difficult to confidently predict activity from genes annotated as potential 

cellulases in newly available genomes and metagenomes. 

One method for classification of enzymatic cellulases is the glycoside hydrolase (GHs) families, 

which is a grouping of enzymes that hydrolyze the glycosidic bonds in carbohydrates (Berlemont 

and Martiny, 2016). “Glycosyl Hydrolase” is one of several classes of enzyme in the 

Carbohydrate-Active enZyme (CAZy) database, which documents enzymes that anabolize, 

catabolize, or otherwise modify carbohydrates (Davies and Henrissat, 1995; Cragg et al., 2015; 
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Lombard et al., 2014). Since 1998, the online CAZy database has organized enzymes into classes, 

and each class further into families based on protein sequence similarity. Each family contains a 

minimum of one biochemically characterized enzyme. This system has been widely adopted for 

classifying carbohydrate-modifying enzymes (Lombard et al., 2014). Each protein family is 

grouped based on significantly similar amino acid sequences in CAZyme active and catalytic sites, 

identified using  gapped BLAST and HMMER using Hidden Markov Models (HMMs) with a 

threshold of >85% identity in ungapped alignments (Cantarel et al., 2009). As GH families are 

based on sequence similarity rather than activity, enzymes within a protein family may act on 

different substrates, and enzymes that catalyze the same reaction may be found in different GH 

families. For example, of the 152 GH families in the CAZy database, 16 contain cellulases (Table 

1.2) (Sharma and Yazdani, 2016). Beta-1,4-endoglucanase and β-glucosidase activities are in GH5 

and GH9, but GH5 also contains mannosidases and chitosanases, and GH9 also contains lichenases 

and xyloglucanases (Lombard et al., 2014). The variety of cellulose-acting and other carbohydrate 

substrate specificities present in a protein family with similar protein sequences suggests divergent 

evolution of the active sites to allow catalysis of different substrates. Conversely, cellulase 

activities found across a number of protein families suggests convergent evolution allowing the 

same substrate to be catalyzed by unrelated enzymes (Sharma and Yazdani, 2016). Biochemical 

characterization and protein modelling are needed to verify or reveal new functions (Cantarel et 

al., 2009; Aspeborg et al., 2012).  

The disadvantage of the GH family classification system is that sequence identity does not 

necessarily indicate cellulolytic function. Protein structures within the same GH family suggests 

that structures are more conserved than their sequences. For example in GH7, phylogenetically 

different enzymes from fungi, protists, isopods, and water fleas share similar structures and 
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sequences, but enzyme surface properties such as electrostaticity vary, likely due to adaptations to 

different environments (Cragg et al., 2015). Furthermore, protein structures can delineate 

cellulases from non-cellulases within a family with more than one activity. The GH48 family 

contains endocellulases, beta-1,4-glycosidases, and chitinases (Cantarel et al., 2009). Within this 

family, cellulases can be differentiated from non-cellulases based on conserved amino acids and 

an omega-loop specific to the surface of GH48 cellulases, which can be used to mine for GH48 

cellulases in genomic datasets  (Sukharnikov et al., 2012). For larger GH families, i.e., GH5, that 

contain many enzymes catalyzing different reactions, identifying substrate-specific structures may 

be complicated (Aspeborg et al., 2012). Subfamilies within certain GH families (Table 1.2, e.g., 

GH5 and GH30) have been created to further narrow down the active site specificities via sequence 

identity and to attempt to group enzymes with shared functional properties. The GH5 family has 

been further classified into 51 subfamilies, restricting cellulases to certain subfamilies (Aspeborg 

et al., 2012). However, to put subfamilies into practical use, current protein databases will need to 

annotate genes with subfamilies, which is not common practice.  

A second option for categorizing cellulases is the Pfam (Protein family) database (Finn et al., 

2016), which assigns Pfam identification to cellulase families based on GH family classifications. 

Each Pfam is represented by a multiple sequence alignment and HMM covering the known 

diversity of the members of that Pfam (Finn et al., 2011, 2016). All GH families containing 

cellulases have Pfam identifiers except three (GH 51, 74, 124). These Pfam identifiers can be used 

to screen for potential cellulases in genomic datasets (Table 1.2). The Pfam identifications have 

not kept pace with the exponentially growing genomic and metagenomic databases, which may



 11 

Table 1.2. Classification of cellulases by glycoside hydrolase (GH) families, GH subfamlies, 

Pfam, and Enzyme Commission (EC) numbers. Cellulases (endo-β-1,4-glucanase, exo-β-1,4-

glucanase, β-glucosidase) are dominantly classified by the GH system into 16 families according to 

the CAZy database (Lombard et al., 2014). The Pfam accession numbers classify cellulases based on 

the GH protein family and their domains (Finn et al., 2016). The Enzyme commission (EC) numbers 

are assigned to enzymes that are characterized.  
GH Description GH Subfamily Pfam Accession EC 

1 β-glucosidase 

exo-β-1,4-glucanase 

- PF00232 3.2.1.21 

3.2.1.74 

3 β-glucosidase 

exo-β-1,4-glucanase 

- PF00933 3.2.1.21 

3.2.1.74 

5 endo-β-1,4-glucanase 

β-glucosidase  

exo-β-1,4-glucanase 

cellulose β-1,4-cellobiosidase 

1, 2, 4, 5, 8, 25, 26, 

37, 38 

12 

37, 52, 53 

1,2 

PF00150 3.2.1.4 

3.2.1.21 

3.2.1.74 

3.2.1.91 

6 endo-β-1,4-glucanase 

cellulose β-1,4-cellobiosidase 

- PF14871* 3.2.1.4 

3.2.1.91 

7 endo-β-1,4-glucanase 

reducing end-acting 

cellobiohydrolase 

- PF00840 3.2.1.4 

3.2.1.176 

8 endo-β-1,4-glucanase - PF01270 3.2.1.4 

9 endo-β-1,4-glucanase 

β-glucosidase  

exo-β-1,4-glucanase 

cellulose β-1,4-cellobiosidase 

reducing end-acting 

cellobiohydrolase 

- PF00759 3.2.1.4 

3.2.1.21 

3.2.1.74 

3.2.1.91 

3.2.1.176^ 

12 endo-β-1,4-glucanase - PF01670 3.2.1.4 

30 β-glucosidase 1 PF02055 (TIM-barrel domain) 

PF14587 (O-glycosyl) 

PF17189 (beta-sandwich 

domain) 

3.2.1.21 

44 endo-β-1,4-glucanase - PF12891 3.2.1.4 

45 endo-β-1,4-glucanase - PF02015 3.2.1.4 

48 endo-β-1,4-glucanase 

reducing end-acting 

cellobiohydrolase 

- PF14587 3.2.1.4 

3.2.1.176 

51 endo-β-1,4-glucanase - - 3.2.1.4 

74 endo-β-1,4-glucanase - - 3.2.1.4 

116 β-glucosidase - PF04685 (catalytic region) 

PF12215 (N-terminal) 

3.2.1.21 

124 endo-β-1,4-glucanase - - 3.2.1.4 

– = non-existent.  

* = family of hypothetical glycoside hydrolases.  

^ = activity not listed as seen in the GH family by CAZy but is found under the characterized 

protein section of the GH family in the database 
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require re-curating HMM seeds to better depict the current sequence diversity for GH families.  

A third method of classification for cellulases is the Enzyme Commission (EC) numbering system, 

which classifies biochemically characterized enzymes based on the type of chemical reaction they 

catalyze. Each four-number identifier groups enzymes into classes and subclasses. Enzymes are 

categorized based purely on function regardless of evolutionary relationship (McDonald et al., 

2009) which has both advantages and disadvantages. This classification system is useful to identify 

cellulases with higher specificity of function, distinguishing endo-β-1,4-glucanases (E.C. 3.2.1.4), 

β-glucosidases (E.C. 3.2.1.21), exo-β-1,4-glucanases (E.C. 3.2.1.74), cellulose (non-reducing end-

acting) β-1,4-cellobiosidases (E.C. 3.2.1.91), and reducing end-acting cellobiohydrolases (E.C. 

3.1.2.176). This classification system also prevents redundancy in categorizing an enzyme with the 

same catalytic function from different species (McDonald et al., 2009). However, E.C. numbers are 

only assigned to biochemically characterized enzymes, which is a much smaller pool in databases 

compared to sequences with predicted functions.  

The disparity between these three classification methods and existing vague annotations in 

databases make consistently classifying cellulases from genomic datasets difficult (Sukharnikov et 

al., 2012).  

 

1.5 Landfill design and operation 

Landfills are designed to prevent or reduce contamination of the environment by municipal solid 

wastes and leachate (Environmental Protection Agency, 2000). There is engineered infrastructure 

for monitoring and controlling leachate generation and gas production, to protect the surrounding 

soil and water, and to minimize nuisances such as pests, odours, and fires. Landfill fires can occur 

due to ignition of combustible material or via decomposition of organic waste, such as paper 

products and food, which generates heat, carbon dioxide, and methane. If the methane and heat are 
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not dissipated. but instead are retained and increase in concentration, chemical oxidation of the 

waste will continue until combustion (National Environment and Planning Agency, 2010). In some 

modern landfills, gas capture systems are in place to trap gas produced at landfills for biogas 

conversion, while in less instrumented landfills, methane vents allow release of methane to prevent 

combustion. Leachate collection systems prevent leachate movement, which can mobilize unwanted 

and/or toxic compounds from refuse into the environment.  

 

1.6 Scope of research and research objectives 

 

The heterogeneity of substrates and complex environmental conditions in municipal waste sites make 

these environments of high interest for microbial research with a focus on industrial applications, 

bioremediation, and biotechnology. With metagenomic sequencing technology becoming more 

accessible, we can investigate at greater depth than previous 16S rRNA gene amplicon-based analyses 

(Song et al., 2015a, 2015b; Stamps et al., 2016; Ransom-Jones et al., 2017). Through metagenomics, 

landfill microbial communities, key populations within these communities, and the functional 

potential that exists in these environments can be determined. The functional potential predicted from 

landfills can be corroborated through enrichment culturing and assaying enzymatic activities in vitro. 

As paper waste is the most abundant type of organic waste reported in landfills (U.S. Environmental 

Protection Agency, 2018), investigating paper degradation by cellulolytic microbial populations is 

valuable for improving downstream waste management decisions. Discovery of currently unknown 

microbial diversity may lead to improvements in the biofuel industry for the conversion of cellulose 

to cellulosic biofuel.  

The microbial communities of landfills, and particularly their cellulolytic potential, have not been 

well characterized. For my research, microbial diversity and cellulolytic potential were analyzed in 

two municipal waste sites, one in Jamaica and one in Canada, with different levels of engineered 
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infrastructure. The first site is the Riverton City Dump in Kingston, Jamaica and the adjacent Duhaney 

River. The Riverton dump, and in fact all Jamaican municipal waste sites, are not sanitary landfills 

(National Environment and Planning Agency, 2010). Sanitary landfills have infrastructure that 

physically isolate waste from the environment to prevent contamination, along with other engineered 

mechanisms that may include daily covers, methane capture systems, compacting, and waste 

organization (World Health Organization, 1999). The Riverton dump has been reported as a human 

health concern, with additional concerns raised that its leachate may be contaminating the Duhaney 

River (Collins-Fairclough et al., 2018). The Canadian municipal waste site is a landfill located in 

southern Ontario and its adjacent groundwater aquifer. This site is a sanitary landfill, with waste 

sorting, compacting, linings, daily covers, leachate capture systems, and a methane capture system. 

There are three main objectives to my research. The first objective of my research was to investigate 

the microbial diversity and cellulolytic populations and their potential from the Riverton City dump 

and the Duhaney River (Chapter 2). The second objective was to examine the diversity of cellulolytic 

enzymes from both the Riverton City dump (Chapter 2) and the southern Ontario landfill (Chapter 3). 

My third objective was to confirm the presence of the cellulolytic activity in the leachate at the 

southern Ontario landfill through culture-based approaches (Chapter 4).
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Chapter 2: Microbial Diversity and Cellulolytic Diversity at the Riverton Dump  
 

2.1 Introduction  

 

Municipal waste sites house highly heterogeneous waste and thus are complex environments. 

Paper is the most discarded organic waste in landfills and is likely subjected to degradation by 

resident microorganisms (U.S. Environmental Protection Agency, 2018).  Cellulose, the base 

constituent of paper, is the most abundant organic compound on earth and has been leveraged as a 

form of sustainable energy via cellulosic biofuels (Balan, 2014). Investigating degradation of paper 

waste in landfills can shed light on potentially novel cellulolytic microorganisms, whose genes 

may be used to improve the robustness and efficiency of biotechnology and industrial processes.   

Studies investigating the microbial compositions in landfills, predominantly using 16S rRNA gene 

amplicon sequencing, have become more frequent recently (Song et al., 2015b, 2015a; Stamps et 

al., 2016; Remmas et al., 2017b; Ransom-Jones et al., 2017). However, there has only been one 

study to date investigating the microbial composition and potential function in microcosms from 

cellulose-amended landfill leachate (Ransom-Jones et al., 2017). Through 16S rRNA gene and 

metagenomic analyses, Ransom-Jones et al. detected an increase in enrichment of microorganisms 

belonging to Firmicutes, Bacteroidetes, Fibrobacteres, and Spirochaetes in cellulose-enriched 

leachate microcosms when compared to raw leachate. Four metagenome-assembled genomes 

(MAGs) associated with each of these phyla and a proteobacterial MAG possessed carbohydrate 

active enzymes (CAZymes) in their genomes. 

The Riverton City dump in Jamaica and the Duhaney River were sites of interest (Figure 2.1). 

Most of the waste generated by weight within the Riverton wasteshed (the area including the four 

parishes that the Riverton City dump services) is compostable. In 2013, ~228 kg of paper was 

generated over a 3.5-day period, which accounted for ~9% of the waste by weight 
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Figure 2.1. Sampling sites in Jamaica. (A) Map of Jamaica. Grey-shaded area indicates the 

parishes the Riverton City dump (red star) services. (B) Physical map showing the leachate pond 

sampling site (red star), the Duhaney River sampling site (blue star), and its surrounding 

vegetation. (C) Satellite-viewed map (courtesy of Google Maps) showing the sampling sites and 

its distance. Red star = location of leachate pond sampling in the Riverton City dump, blue star = 

location of river sampling, white arrow indicates direction of river flow. Figure courtesy of 

Aneisha Collins-Fairclough (Collins-Fairclough et al., 2018). 

 

(National Solid Waste Management Authority, 2013). There is little to no sorting of waste in 

Jamaica; thus, there is often uncontrolled combustion at the dumpsites and the dumps pose human 

health risks (Planning Institute of Jamaica, 2007). There is also concern of contamination of the 

Duhaney river from leachate run-off from the dump (Collins-Fairclough et al., 2018). Investigating 

microbial communities and their cellulose potential in the Riverton waste site can potentially 

reveal novel cellulolytic microbes that are able to withstand the heterogeneous and changing 

environmental conditions of landfills and therefore may be robust for use in industrial processes.  

The objective of this chapter was to investigate the microbial composition of the leachate from the 

Riverton City dump and in the Duhaney River, and determine whether the detected 

microorganisms and the genes in the community have cellulolytic potential. 
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2.2 Materials and Methods 

2.2.1 Sample collection 

Collaborators from the University of Technology Jamaica sampled two locations in Jamaica—a 

leachate pond that passively develops within the Riverton City dump and a site in the Duhaney 

River adjacent to the dump, approximately 600 m from the leachate pond (Figure 2.1). There is no 

obvious fluid flow between the two sampling sites. The two locations were chosen as 

representative sites for the two environments. Leachate samples were collected from the periphery 

of a perennial leachate pond at the Riverton City dump (18.01052 N, 76.85667 W) in Jamaica. An 

autoclaved disposable jug was first rinsed with a surface sample from the leachate pond. The jug 

was used to scoop leachate from the top 1 m layer of one edge of the pond into two autoclaved 

2.5-L conical flasks. Water samples were collected from the Duhaney River in Jamaica, which 

passes through the Riverton City dump (18.012292 N, 76.850922 W). Autoclaved conical flasks 

were rinsed with surface water from the river. The flasks were then dipped in the river and filled 

to two-thirds capacity with surface water from the periphery of the river. Flasks were sealed with 

Parafilm M and capped with aluminum foil prior to transportation to the laboratory. All samples 

were transported directly to the laboratory and stored at 4°C, and DNA was extracted within 

four days of sample collection. 

 

2.2.2 DNA extraction and sequencing 

 

Our collaborators prepared the leachate and river samples for sequencing. Leachate samples 

(approximately 100 ml) were filtered using six 0.22-µm polyethersulfone membranes (diameter, 

47 mm; Sterilitech), switching filters upon clogging. DNA was extracted from the membranes 

using the MoBio PowerWater DNA isolation kit according to the manufacturer’s instructions. In 

parallel, the MoBio PowerSoil DNA isolation kit was used to extract DNA from 18 ml of leachate 
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as follows. First, 1.0-ml aliquots of leachate samples were centrifuged at 14,000 rpm for 30 min. 

Supernatants from the tubes were transferred to new tubes. The supernatant and pellet from each 

tube were processed separately for DNA extraction using the MoBio PowerSoil DNA isolation 

kit, according to the manufacturer’s instructions, with the supernatant and pellet as input in place 

of soil. The resulting eluates from all leachate DNA extractions (supernatants and pellets) were 

pooled and purified using a phenol-chloroform extraction. 

The Duhaney River water samples were filtered through a total of nine 0.22-µm polyethersulfone 

membranes using a vacuum pump attached to a Buchner funnel. The filtrate was further filtered 

through seven 0.03-µm polyethersulfone filters to trap small cell sizes. Approximately 10 L of 

river water was filtered in total. Filters were used for DNA extraction using the MoBio 

PowerWater DNA extraction kit. DNA eluates from all river extractions were pooled for 

sequencing. 

Shotgun metagenomic sequencing was conducted by the McMaster University Farncombe 

Metagenomics Facility in Canada. Prior to sequencing, the pooled leachate DNA was further 

purified using AMPure beads. The NEBNext Ultra DNA kit was used for library preparation from 

100 ng from each DNA sample. The leachate library and the river library were pooled, and a 

sequencing library was prepared using the Illumina MiSeq 250-bp paired-end read v2 kit. 

 

2.2.3 Metagenomic pipeline 

Metagenomes were assembled and annotated as described previously (Daly et al., 2016). Briefly, 

reads from both metagenomes were quality trimmed with Sickle (Joshi and Fass, 2011). Paired-

end reads were assembled using IDBA-UD (Peng et al., 2012) under default parameters, with each 

metagenome assembled separately. Open reading frames (ORFs) were predicted using 
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MetaProdigal (Hyatt et al., 2012), and annotated via USEARCH (Edgar, 2010) against KEGG 

(Kanehisa et al., 2012), UniRef90 (Suzek et al., 2007), and InterproScan (Jones et al., 2014) 

databases. Annotations were ranked A to E and reported as follows: (A) reciprocal best hits with 

bit score of >350, then (B) reciprocal best hit to UniRef with a bit score of >350, (C) best hit to 

KEGG with a bit score of >60 or best hit to UniRef90 with a bit score of >60. Proteins with 

InterproScan matches but no other hits were ranked as (D), and hypothetical proteins that were 

predicted open reading frames but no further annotations were ranked (E). Reads from both 

leachate and river were then mapped to both leachate and river assemblies using Bowtie 2 v. 2.2.6 

(Langmead and Salzberg, 2012) to determine contig coverage statistics and enable abundance-

based binning metrics. 

Anvi’o v. 2.0.2 (Eren et al., 2015) was used to bin the scaffolds, manually refine the bins, and 

visualize the data. First, a contig database was created from the respective metagenome’s contig 

file, and open reading frames were identified through Prodigal v. 2.6.2. These ORFs were used 

solely for assessing bin completion, while MetaProdigal annotations described above were used 

for metabolic reconstructions and phylogenetic inferences. Genes corresponding to single-copy 

core gene bacterial (Alneberg et al., 2014; Campbell et al., 2013; Creevey et al., 2011; Dupont et 

al., 2012) and archaeal (Rinke et al., 2013) gene collections were identified using HMMER v. 

3.1b2 (Finn et al., 2011). Coverage information for each contig was determined via samtools (Li 

et al., 2009a). Contigs were binned using CONCOCT (Alneberg et al., 2014), leveraging 

nucleotide frequency information as well as differential coverage. All programs were used under 

default parameters as implemented by Anvi’o. The bins were manually refined based on 

completion and redundancy statistics in the Anvi’o interactive interface. A bin was considered a 

high-quality MAG if it was greater than 70% complete and had less than 10% contamination. 
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Organism taxonomic placement was inferred from a phylogenetic tree built from concatenated 

protein alignments of 15 conserved, single-copy ribosomal proteins (RpL2, -3, -4, -5, -6, -14, -16, 

-18, -22, and -24, and RpS3, -8, -10, -17, and -19). The MAGs containing more than 50% of these 

marker genes were included in the phylogenetic inference alongside a reference set comprising 

one member of each genus for which sequenced genomes are available (from Hug et al., 2016). 

Each protein data set was aligned individually using MUSCLE v 3.8.31 (Edgar, 2004), and then 

the 15 alignments were concatenated. Alignments were edited using Geneious v. 10.0.5 (Kearse 

et al., 2012). Alignment positions with greater than 95% gaps were removed, and C- and N-termini 

with non-conserved regions were trimmed. Taxa with information for less than 50% of the trimmed 

concatenated alignment were removed. The final concatenated alignment contained 2,786 

sequences and 2,470 amino acid positions. A maximum likelihood tree was constructed using 

RAxML-HPC v. 8.2.10 (Stamatakis, 2014) on the public web server CIPRES Science Gateway v. 

3.3 (Miller et al., 2011) using the LG+gamma protein substitution matrix and with automatic 

bootstopping to determine the optimal number of bootstrap replicates. The phylogenetic tree was 

visualized in FigTree v. 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). All software programs 

used were operated under default parameters unless otherwise stated. 

 

2.2.4 16S rRNA gene community profiles 

We used the SILVA database core alignment to search for 16S rRNA genes within our data sets. 

The SILVA alignment contained 592,605 bacterial and 25,026 archaeal 16S rRNA genes. Reads 

with best hits to eukaryotes were removed from analyses from this point onwards. A hidden 

Markov model (HMM) was built using HMMER 3.1b2 for the nonredundant small-subunit 

reference data set (nonredundant at 99% identity) from the SILVA 132 release (Quast et al., 2012). 

http://tree.bio.ed.ac.uk/software/figtree/
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The 16S rRNA gene HMM was searched against the trimmed leachate and river reads using the 

per-target output, with an E-value of 1e−5. Reads identified from this search were BLASTn 

searched against the RefSeq RNA database (release 87) (Altschul et al., 1990) and the NCBI 

taxonomy database (November 2017). Top hits with a minimum E-value of 1e−40 were used to 

identify taxonomy at the phylum level for the 16S rRNA gene-containing reads. For the assembled 

data, the same 16S rRNA gene HMM was searched against the leachate and river assembled 

scaffolds using the same pipeline and parameters as for the read search. All plots were created with 

ggplot2 v. 3.0.0 (Wickham, 2016) in RStudio v. 1.0.136 (RStudio Team, 2015). 

 

2.2.5 Data availability 

The Riverton City dump leachate data are available under BioProject PRJNA475763 and 

biosample SAMN09401598. The Duhaney River data are available under BioProject 

PRJNA475764 and biosample SAMN09401599. The Leachate and the River reads are available 

in the Sequence Read Archive under accession no. SRR7299214 and no. SRR7346984, 

respectively.  

 

 

2.2.6 Abundance of potential cellulase genes in the metagenomes 

 

The leachate and river metagenomes (contigs >5,000 bases) were annotated using the dbCAN 

CAZyme database (released on July 31, 2018) on a local linux computer. The following steps were 

followed according to the readme.txt available on the dbCAN website. In summary, the dbCAN 

HMM database release 7.0 was downloaded and formatted using hmmpress. The function 

hmmscan from HMMER v. 3.1b2 was used to search the formatted HMMs against the leachate 

and river metagenomes. The resulting data were parsed using hmmscan-parser.sh available on the 
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dbCAN website, with the following parameters as suggested by dbCAN: if alignment >80 aa, use 

E-value threshold 1e-5 and coverage threshold 0.3. The resulting data was further screened for hits 

that had E-value >1e-15 and coverage >0.35. These parameters would give the same results as the 

dbCAN web interface, which is more stringent than those of the hmmscan-parser.sh.  

All hits to GH families containing cellulases were then annotated as described below. 

 

2.2.7 Potential cellulase community profile 

The dbCAN hits from the leachate and river contigs >5,000 bases were annotated taxonomically 

and functionally using blastp against the RefSeq protein database. Genes were considered 

potential cellulases if they were i) annotated as one of the three types of cellulases, i.e., 

endocellulase, exocellulase, or beta-glucosidase, including names that are synonymous with 

these, ii) annotated as “cellulase”, and iii) ambiguously annotated, i.e., “hypothetical protein” or 

“glycosyl hydrolase family n” where n is the GH family number. Hits whose protein annotations 

do not fall into one of the listed categories were not considered as potential cellulases. All plots 

were created with ggplot2 v. 3.0.0 (Wickham, 2016) in RStudio v. 1.0.136 (RStudio Team, 

2015). 

 

2.3 Results and Discussion 

2.3.1 Metagenome and metagenome-assembled genome statistics 

Total community shotgun sequencing from both the leachate DNA and the river DNA yielded 

metagenomes of 4.2 and 3.7 Gb, respectively. Metagenomes were assembled, and scaffolds longer 

than 2,500 bases were used for binning to reconstruct metagenome-assembled genomes (MAGs) 

for the high-abundance populations. The two metagenomes had similar total read numbers and 
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assembly sizes, indicating that the communities were sampled to approximately equivalent depths 

(Table 2.1). Using Anvi’o, assembled scaffolds were assigned to MAGs, leveraging differential 

abundance information combined with tetranucleotide frequencies by CONCOCT. Differential 

abundance-based binning was of limited use, as fewer than 0.5% of reads mapped to the non-

source assembly in each case. MAGs were manually refined prioritizing completion and 

redundancy statistics. After refinement, 13 of 55 leachate MAGs and 3 of 33 river MAGs were 

high-quality (>70% complete and <10% redundant) (Table 2.2). 

 

Table 2.1. Statistics for Riverton City dump leachate and Duhaney river metagenomes. 

Scaffolds >2,500 bp were used for binning. 

Sample # Reads Read 

length 

# Scaffolds 

total; 

>2500 bp 

Scaffold N50 

total; 

>2500 bp 

Max scaffold 

length (bp) 

% Reads 

assembled 

total; 

 >2500 bp 

Leachate 16,673,648 250 555,592; 

5,391 

12,753; 

1,011 

532,373 42.7; 

16.4 

River 14,615,770 250 455,023; 

3,348 

16,750; 

882 

511,705 65.2; 

24.0 

 

 

2.3.2 Microbial community composition of the Riverton City Dump leachate and the Duhaney 

River 

Microbial populations in the leachate and river metagenomes were identified via 16S rRNA genes 

and/or a set of 15 conserved, single-copy, co-located ribosomal proteins (Table 2.2; Figure. 2.2). 

The community composition of the reads, assembled scaffolds, and MAGs were compared using 

predicted 16S rRNA genes to assess whether the binned populations were representative of the 

total microbial diversity sampled from the sites (Figure 2.3). 

Reads containing 16S rRNA gene fragments were identified using a hidden Markov model (HMM) 

search using an HMM built from the SILVA database 16S rRNA genes. A total of 8,762 and 7,731 



 24 

reads from the leachate and river data sets contained predicted 16S or 18S rRNA gene sequences, 

of which 7,423 and 6,978 could be taxonomically placed into bacterial or archaeal phyla via 

BLASTn against the NCBI RefSeq RNA database (Figure 2.3). 

From the reads, the leachate pond contained three most abundant phyla: Proteobacteria (34.6%, 

with 16.7% Gammaproteobacteria and 12.2% Deltaproteobacteria, with other classes 

of Proteobacteria occurring at less than 2%), Firmicutes (22.9%), and Bacteroidetes (20.3%) 

(Figure 2.3). Low-abundance phyla, with relative abundances between 1 and 10%, include 

the Tenericutes, Spirochaetes, Actinobacteria, and Chloroflexi phyla. There were 30 rare phyla 

occurring at less than 1% abundance in the leachate community. The river sample was dominated 

by Proteobacteria, with 69.7% of 16S rRNA gene-containing reads classified to that phylum 

(25.4% Alphaproteobacteria, 20.6% Betaproteobacteria, 20.6% Gammaproteobacteria, 

2.6% Epsilonproteobacteria, and less than 1% Deltaproteobacteria) (Figure 2.3). The second most 

abundant river phylum was Bacteroidetes at 28.0%, with the remaining 22 detected phyla 

occurring at less than 1% of the total community. 

From assembled scaffolds, a total of 412 scaffolds from the leachate metagenome and 372 

scaffolds from the river metagenome contained predicted 16S rRNA gene sequences (Figure 2.3). 

The microbial composition in the assembled data sets showed that the leachate assembly was 

dominated by the same major groups as in the reads: 32.3% Firmicutes, 15.1% Bacteroidetes, and 

Proteobacteria, with 9.7% Gammaproteobacteria and 9.4% Deltaproteobacteria. Tenericutes were 

also present at 9.7%. In the river assembly, Proteobacteria again dominated (82.2%), with 30.7% 

Gammaproteobacteria, 29.1% Alphaproteobacteria, and 21.4% Betaproteobacteria, with 

Epsilonproteobacteria and Deltaproteobacteria at less than 1%. Phyla above 1% abundance in the 

river also included the Bacteroidetes (14.6%) and the Firmicutes (1.3%). Many of the identified 
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16S rRNA genes were present on short scaffolds (∼1 kb), which means that they were not included 

in the binning process. Of the leachate and river MAGs identified via the concatenated ribosomal 

protein tree, all 13 high-quality leachate MAGs and 2 of 3 high-quality river MAGs were included 

on the tree (Table 2.2, Figure 2.2, and Figure 2.4). 

From the taxonomically assigned MAGs, the dominant phylum in the leachate community was 

Bacteroidetes, with 35.4% relative abundance across five MAGs. The next most abundant phyla 

were Proteobacteria (4 MAGs, 25.7%, where Deltaproteobacteria contributed 23.4%) and 

Firmicutes (4 MAGs, 16.4%). Other phyla within the leachate community were represented by 

one MAG each, including Tenericutes, Spirochaetes, Chloroflexi, and a member of the candidate 

phylum CPR2. In contrast, the five MAGs from the river metagenome were all affiliated with the 

Proteobacteria, with Alphaproteobacteria dominating (68.7%) over Betaproteobacteria (8.5%), 

Gammaproteobacteria (9.6%), and Epsilonproteobacteria (13.3%). Across the reads, assemblies, 

and MAGs, archaea were a minor proportion of the communities, with their highest abundance at 

1.4% in the leachate assembly. Members of the Crenarchaeota, Euryarchaeota, and 

Thaumarchaeota were present at low abundance in both metagenomes. 

 

2.3.3 Key microbial populations 

The MAGs revealed microorganisms from seven phyla in the leachate and one from the river. 

Most of these phyla have been reported in previous landfill studies. Based on ribosomal protein 

marker gene abundances and the 16S rRNA gene analysis, Bacteroidetes and Firmicutes were the 

two most abundant phyla in the leachate, with 35.4% and 16.4% relative abundance in the reads, 

respectively, and included the most abundant MAGs (coverage of ~140x and 65x, respectively). 

Bacteroidetes and Firmicutes have frequently been detected in landfills irrespective of landfill age 



 26 

Table 2.2. Statistics on Riverton metagenome-assembled genomes that contained the 15 ribosomal proteins (RpL2, -3, -4, -5, -6, 

-14, -16, -18, -22, -24, and RpS3, -8, -10, -17, -19) in their scaffolds. Scaffolds >2,500 bp were used for binning. Good quality MAGs 

had completion >70% and redundancy <10%. LB=Leachate Bin RB = River Bin 
No. Bin Phylum Closest Relative/Clade Total 

length 

(mbps) 

Number 

of 

Contigs 

GC 

Content 

Abundance/

Coverage 

Completion 

(%) 

Redundancy 

(%) 

Leachate  

1 LB_9 Proteobacteria Desulfococcus 

oleovorans Hxd3 3.46 198 51.68 7.41 96.44 6.73 

2 LB_19 Bacteroidetes LB_7, LB_17 3.26 50 52.94 10.33 95.63 3.93 

3 LB_32 Tenericutes LB_18_1 1.18 52 28.68 16.46 94.99 3.55 

4 LB_22 Firmicutes Tepidimicrobium 

xylanilyticum DSM 

23310 1.58 137 43.32 8.12 94.23 6.17 

5 LB_18_1 Tenericutes LB_32 1.10 75 33.44 26.17 92.06 3.65 

6 LB_10 Bacteroidetes LB_12 2.31 204 32.84 7.99 91.32 3.02 

7 LB_7 Bacteroidetes LB_19, LB_17 2.48 223 42.19 99.51 88.51 5.01 

8 LB_27_3 candidate 

division CPR2  

 

0.74 8 37.52 22.23 88.24 2.22 

9 LB_8 Proteobacteria Desulfotignum 

phosphitoxidans FiPS 3 2.56 207 53.33 7.89 85.26 4.16 

10 LB_12 Bacteroidetes LB_10 2.23 182 43.54 12.44 79.84 2.95 

11 LB_26 Firmicutes Firmicutes, LB_26 0.98 102 40.31 8.23 79.11 7.77 

12 LB_16 Firmicutes Clostridiaceae 1.85 152 46.97 8.93 71.89 1.88 

13 LB_4_2 Proteobacteria Desulfuromusa kysingii 

DSM 7343 1.13 115 57.58 77.38 70.69 0.80 

14 LB_17 Bacteroidetes LB_7, LB_19 1.25 157 41.44 9.50 66.53 2.72 

15 LB_33 Chloroflexi Dehalococcoidetes 0.42 59 43.99 6.01 50.24 0.63 

16 LB_18_3 Firmicutes Erysipelothrix 

rhsiopathiae str. 

Fujisawa 0.57 55 33.92 39.46 49.70 0.92 

17 LB_15 Proteobacteria Halomonas elongata 

DSM 2581 1.23 158 57.53 8.87 41.23 2.90 

18 LB_4_3 Spirochaetes Spirochaeta sp. Buddy 1.58 154 51.95 18.01 26.45 0.18 

River 

20 RB_10 Proteobacteria RB_4_2 3.53 14 60.94 22.36 86.40 5.41 

21 RB_5 Proteobacteria Gammaproteobacteria 4.27 177 42.11 9.34 85.41 3.64 

22 RB_8_2 Proteobacteria Comamonadaceae 0.82 99 53.31 8.39 68.56 3.24 

23 RB_13 Proteobacteria Acrobacter nitrofigilis 

DSM 7299 1.37 130 37.39 13.12 45.29 8.79 

24 RB_4_2 Proteobacteria RB_10 1.36 159 59.63 45.46 38.98 1.99 
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Figure 2.2. Concatenated ribosomal protein tree of the tree of life and metagenome-

assembled genomes from the Riverton City dump leachate and Duhaney River. The 

maximum likelihood tree was constructed from a concatenated alignment of 15 ribosomal proteins 

(RpL2, -3, -4, -5, -6, -14, -16, -18, -22, -24, and RpS3, -8, -10, -17, -19), including 2,762 bacterial 

and archaeal reference organisms, 18 MAGs from the leachate, 5 MAGs from the river, and one 

ribosomal-protein-containing scaffold from the leachate. Organisms in red are from the Riverton 

City dump leachate and those in blue are from the Duhaney River. The closest relative to each 

Jamaican organism is named on the tree and taxonomic groups are collapsed where appropriate. 

 

 

 

Candidate phylum CPR2 
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Figure 2.3. Stacked bar comparison of relative abundance of microorganisms from the 

leachate and river datasets through the sequencing, assembly, and binning pipeline based on 

marker genes. Phylum-level assignments for unassembled reads, assembled scaffolds, and 

reconstructed MAGs are displayed for the leachate and river metagenomes. The abundance 

affiliated with a particular phylum was calculated as follows: i) for reads: the percentage of reads 

affiliated with the phylum out of all identified 16S rRNA gene-containing reads; ii) for assembled 

scaffolds: the percentage of scaffolds affiliated with the phylum out of all 16S rRNA-gene 

encoding scaffolds, iii) the average fold coverage for scaffolds within the MAG, which was 

taxonomically classified based on the concatenated 15 ribosomal protein tree. Microorganisms that 

occurred at less than 1% were summed together and labeled as rare phyla for clarity of community 

proportional abundance visualization. 

 

 

 

 



 31 

 

Figure 2.4. MAG-associated diversity of the Riverton City Dump leachate and Duhaney 

River. The height of each bar represents the summed average coverage of a phylum and each box 

represents the average coverage of each MAG as a proxy for abundance. Taxonomic assignments 

were based on a phylogeny inferred from a concatenated alignment of 15 ribosomal proteins 

(RpL2, -3, -4, -5, -6, -14, -16, -18, -22, -24, RpS3, -8, -10, -17, -19) (Figure 2.2). Genome bins 

encoding cellulase-containing GH families are highlighted in gold. 

 

and geographic location (Song et al., 2015a; Remmas et al., 2017b). They have been detected in 

landfills from different continents, including in the United States (Stamps et al., 2016), China 

(Wang et al., 2017b), and the United Kingdom (Ransom-Jones et al., 2017). Temporal analyses of 

landfill leachate have revealed that Bacteroidetes and Firmicutes are present in the methanogenic 

phases of waste decomposition, which suggests that they are involved in anaerobic decomposition 

of waste (Song et al., 2015b). In a study of cellulose-enriched microcosms in landfill leachate, 

Bacteroidetes and Firmicutes were enhanced by 5-10% compared to unenriched leachate (Ransom-

Jones et al., 2017). The Bacteroidetes and Firmicutes MAGs recovered by Ransom-Jones et al. 

(2017) revealed a variety of CAZyme families involved in polysaccharide degradation, including 
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those related to cellulose-degradation. In our study, the Bacteroidetes leachate MAGs (Leachate 

Bin (LB)_10, 8x coverage and LB_12, 12x coverage; as well as LB_7, 100x coverage; LB_17, 

10x coverage; and LB_19; 10x coverage) are most closely related to each other to the exclusion of 

other major Bacteroides groups. In contrast, the closest relatives of the two Firmicute MAGs were 

Tepidimicrobium xylanilyticum (LB_22, 8x coverage) and Erysipelothrix rhusiopathiae 

(LB_18_3; 39x coverage) (Figure 2.1). Members of Tepidimicrobium (class Tissierellia) have been 

isolated from a freshwater hot spring (Slobodkin et al., 2006) and a thermophilic anaerobic digester 

treating municipal solid waste (MSW) (Niu et al., 2009). Erysipelothrix rhusiopathiae is chiefly 

considered to be an animal pathogen causing erysipelas in pigs and erysipeloid in humans. Animals 

have been seen foraging in the Riverton Dump from nearby pig and cattle farms (Hamilton, 2012), 

which may contribute to Erysipelothrix presence. No virulence factors were identified from the 

Erysipelothrix bin LB_18_3 (Collins-Fairclough et al., 2018), making its potential for 

pathogenicity unclear. 

Two Desulfobacterales MAGs (LB_8, 8x coverage; LB_9, 7x coverage) and one 

Desulfuromonadales MAG (LB_4_2, 77x coverage) (order level) were identified, whose closest 

relatives were Desulfotignum phosphitoxidans FiPS 3, Desulfococcus oleovorans Hxd3, and 

Desulfuromusa kysingii DSM 7343, respectively (Figure 2.4, Figure 2.2). Deltaproteobacteria 

have been found at high abundance in landfills (Song et al., 2015a; Stamps et al., 2016). From a 

survey of 19 landfills across the United States, Desulfuromonadales were identified as one of the 

dominant classes of Deltaproteobacteria and Desulfobacterales were identified in three landfills 

that contained low concentrations of sulfate and high concentrations of barium (Stamps et al., 

2016). Members of Desulfobacterales and Desulfuromonadales are capable of sulfate reduction 

(Ontiveros-Valencia et al., 2013) and are likely contributors to this process in landfills.  
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The moderately high coverage of the two Tenericute MAGs (LB_18_1, coverage 33x; LB_32, 

coverage 32x) suggest that these populations are abundant in the Riverton City dump leachate 

(Figure 2.4). The closest relatives of these MAGs are each other, and they were assigned to the 

family Acholeplasmataceae (Figure 2.2). Tenericutes were reported at high abundance in  landfills 

sampled by Song and colleagues, with Acholeplasma as the dominant genus (2015a). 

Acholeplasma laidlawii, the type strain for this group, was isolated from wastewater and has been 

detected in pig manure slurry (Laidlaw and Elford, 1936; Hanajima et al., 2015). Acholeplasma 

tenericutes are free-living, unlike their parasitic cousins, the Mollicutes (Atobe et al., 1983; Kisary 

et al., 1976; Maejima et al., 2014).  

One MAG (LB_27_3) belonged to the candidate phylum CPR2 and had a coverage of 22x. 

Populations of candidate divisions are infrequently seen in landfill microbiomes, but candidate 

divisions OP3, OP9, and OP11 have been detected (Stamps et al., 2016; Huang et al., 2004). 

Candidate division CPR2 have never been reported in any landfill microbiome studies. At the time 

of writing, there were only eight public CPR2 draft genomes in the Joint Genome Institute’s 

Integrated Microbial Genomes (IMG) database, all from a groundwater aquifer microbiome study 

from Rifle, Colorado, USA (Brown et al., 2015). The metabolic functions of candidate phylum 

CPR2 are not well understood, as they encode small, highly reduced genomes. This new MAG 

from a landfill environment is a valuable addition to genomic databases. 

One MAG (LB_4_3) belonged to the Spirochaetes and had a coverage of 18x. Its closest relative 

was Spirochaeta sp. Buddy (Figure 2.2). Spirochaetes are known to cause syphilis and Lyme 

disease but some species are also free-living in waters and sediment (Gerbase et al., 1998; Dworkin 

et al., 2008; Canale-Parola et al., 1968; Canale-Parola, 1984). They have also been detected in 

landfills (Song et al., 2015b; Stamps et al., 2016; Remmas et al., 2017b). Ransom-Jones and 
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colleagues identified the bacterial composition of raw landfill leachate and cellulose-enriched 

microcosms, and found that Spirochaetes were present in both. Read counts of Spirochaetes 

specifically from the family Spirochaetaceae were greater in the cellulose enrichment by an 

average of ~5% (Ransom-Jones et al., 2017). The study posits Spirochaetes are one of the major 

phyla in degrading cellulose in the dump microbial community, possibly as a symbiotic partner to 

cellulose-degrading lineages. Some members of the Spirochaetes, such as those in the rumen, 

enhance cellulose degradation despite not being cellulose degraders (Stanton and Canale-Parola, 

1980; Kudo A N et al., 1987). The Spirochaete in the Riverton dump may be playing a similar role 

in supporting cellulose degradation.  

The gammaproteobacterial MAG (LB_15) had a coverage of 9x. Its closest relative was 

Halomonas elongata DSM 2581 (Figure 2.2). Gammaproteobacteria have been detected in 

relatively high abundance in landfill leachate (Xie et al., 2012; Song et al., 2015a; Stamps et al., 

2016; Remmas et al., 2017b). Members of Halomonas have been isolated from a variety of 

environments including marine, municipal sewage, hypersaline soils and waters, and alkaline soda 

lakes (Rafael R. de la Haba et al., 2006; Remmas et al., 2017a). Halomonadaceae are generally 

halophilic, and thus perhaps well suited to the high salt concentrations of mature landfill leachate 

(Remmas et al., 2017a).  

We reconstructed one Chloroflexi MAG (LB_33) with a coverage of 6x, which was placed in the 

class Dehalococcoidetes (Figure 2.2). Chloroflexi have been previously detected in landfill 

leachate at low abundance (Song et al., 2015a, 2015b; Remmas et al., 2017b; Bareither et al., 

2013; Stamps et al., 2016). Chloroflexi are associated with both aerobic and anaerobic 

metabolisms and have been found in freshwater sediments and anaerobic sludge (Inagaki et al., 

2003; Hug et al., 2013). Dehalococcoides are the only known organisms able to anaerobically 
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respire the groundwater contaminants tetrachloroethenes (PCE) and trichloroethenes (TCE) to the 

non-toxic product ethene (Maymó-Gatell et al., 1997). These chloroethenes are in dry-cleaning 

solvents, adhesives, paints, and caulking. PCE contaminants have been detected in groundwater 

aquifers near a landfill and a special waste compound in a landfill in Ontario (Canadian Council 

of Ministers of the Environment, 1999; Jackson, R.E. et al., 1991). The metabolic niche of an 

aerobic Dehalococcoidetes in the leachate is unclear; our leachate sample was taken from the 

surface and is presumed to be oxic.  

In the Duhaney River metagenome, all reconstructed genomes were from the Proteobacteria. Two 

alphaproteobacterial MAGs (RB_10 and RB_4_2) were each other’s closest relative, both 

affiliated with the family Rhodobacteraceae. These were the most abundant river MAGs, with 22x 

and 45x coverage, respectively. Marine Rhodobacteraceae encode various proteins that defend 

against toxic compounds and heavy metals (Simon et al., 2017). These proteins include (S)-2-

haloacid dehalogenase which detoxifies organohalogens largely produced by macroalgae, and 

mercury(II) reductase which reduces toxic mercury compounds to volatile mercury(0). Work led 

by Dr. Collins-Fairclough showed that RB_10’s genome encoded genes against some predicted 

metal resistance and two classes of antibiotics; no similar traits were found for RB_4_2 (Collins-

Fairclough et al., 2018).  

One river MAG (RB_5, 9x coverage) was only able to be identified at the class level, suggesting 

it is a novel lineage of Gammaproteobacteria. Gammaproteobacteria have been detected at 

relatively high abundance in tropical rivers and a polluted urban river through 16S rRNA gene 

sequencing (Thoetkiattikul et al., 2017; García-Armisen et al., 2014). Some members of the class 

are opportunistic heterotrophs that exploit nutrient-rich microniches and irregular availability of 

organic matter (Pernthaler and Amann, 2005; Lau et al., 2013). Gammaproteobacterial abundance 
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has also been found in tandem with phytoplankton blooms, where they are likely involved in the 

cycling of dissolved organic matter  (Buchan et al., 2014). Dr. Collins-Fairclough’s virulence 

analysis predicted that RB_5 is broadly resistant to metals and resistant to five antibiotic classes 

(Collins-Fairclough et al., 2018). 

The Epsilonproteobacteria MAG (RB_13) was present at 13x coverage, and was most closely 

related to Arcobacter nitrofigilis DSM 7299. Arcobacter nitrofigilis was originally called 

Campylobacter nitrofigilis but was later reclassified (Vandamme et al., 1991). The strain of free-

living A. nitrofigilis was isolated from the roots of cordgrass in coastal salt marshes.  A. nitrofigilis 

has also been found in meat and shellfish, but none of these strains were pathogenic (Collado et 

al., 2009), unlike Campylobacter spp. which are usually pathogens of warm-blooded animals 

(McClung and Patriquin, 1980). 

One MAG (RB_8_2, 8x coverage) belonged to the betaproteobacterial family Comamonadaceae. 

Members of the Comamonadaceae have been found in soil and water (Willems et al., 1991). They 

are aerobic chemoorganotrophs or chemolithotrophs, and most are motile via flagella (Willems et 

al., 1991). Comamonas sp. have been shown to mineralize nitrobenzene and release nitrite 

(Nishino and Spain, 1995). Nitrobenzenes are largely produced industrially for aniline and motor 

oil production, and can also occur in small quantities in the manufacture of pesticides, synthetic 

rubber, and dyes (Agency for Toxic Substances and Disease Registry, 1990). 

It is interesting to note that there is no explicit evidence of contamination of the Duhaney River 

from the Riverton dump from our samples: there is very little overlap in the populations detected 

(<0.5% of the reads from the leachate mapped to the river assembly and vice-versa) (Collins-

Fairclough et al., 2018). Due to a lack of spatial and temporal samples of the leachate and river, 

findings here cannot speculate on the presence or absence of leachate contamination in the river. 
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More spatial and temporal samples downstream of the dump would help to cover a greater portion 

of the microbial populations in the river, identify the core microbial composition, and investigate 

whether the microbial populations overlap with that of the leachate. 

 

2.3.4 Disparities between the community composition as defined by reads, assembled scaffolds, 

and MAGs 

In general, the taxonomic composition and relative abundances of the leachate microbial 

community in the assembled metagenomes reflected that of the reads, varying by less than 3% (+/- 

2.8%) for a given taxonomic group (Figure 2.3). Exceptions were the Bacteroidetes, 

Gammaproteobacteria, and Firmicutes which differed by - 5.2%, -7%, and +9.3%, respectively in 

the assembly compared to the reads. In the river reads and assembly, the taxonomic group 

abundances were within +/- 3.8%, except for Gammaproteobacteria and Bacteroidetes reads, 

which exhibited +10.2% and -13.5%, respectively in the assembly compared to the reads. The 

MAGs in both leachate and river captured most of the prominent phyla in the scaffold, except that 

no Bacteroidetes river MAGs were assembled despite 14.6% of scaffolds in the assembly 

affiliating with the Bacteroidetes. Higher coverage for more abundant organisms facilitates 

generation of relatively good quality draft genomes (>70% complete and <10% redundant). This 

is seen in the recovered MAGs, which are mostly affiliated with the dominant phyla from the reads 

and assemblies.            

 

2.3.5 Cellulase diversity and abundance  

The same number of putative cellulases were identified in the leachate and river metagenomes. 

There were 46 genes identified from the leachate across six GH families (GH1, -3, -5, -8, -30, and 

-51) and 46 from the river spanning seven GH families (GH1, -3, -5, -8, -9, -30, and -51) 
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Figure 2.5. Abundance of cellulase types by glycosyl hydrolase families in the leachate and 

river metagenomes after manual curation. Genes whose protein sequences were annotated as 

glycoside hydrolase family n (where n is the family number) are grouped under “Glycosyl 

hydrolase.” Protein sequences that were not annotated as of the three types of cellulases, annotated 

as “cellulase,” hypothetical proteins, or “glycosyl hydrolase n”, were grouped under “Not 

cellulase.” 

 

 

(Figure 2.5). Genes belonging to these seven GH families have previously each been identified in 

at least one of five MAGs constructed from a cellulose-amended microcosm in landfill leachate 

(Ransom-Jones et al., 2017). Putative beta-glucosidases were identified in both the leachate and 

river metagenomes. A putative cellulase was only identified in the river. No genes explicitly 

annotated as “endocellulase” nor “exocellulases” were identified from either metagenome. A total 

of eight genes in the leachate and four in the river were annotated as beta-glucosidases from the 

GH1, -3, and -5 families. The beta-glucosidase protein sequences had identities ranging from 47-

57% and E-values from 0 - 3.52e-76 to their respective best hits. One gene from the river was 
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annotated as “cellulase.” Cellulase is used synonymously with endoglucanase in the CAZy 

database and in some literature (Alvarez et al., 2013; Hug et al., 2013) so this gene is potentially 

an endocellulase (identity: 84%, E-value: 0). A small number of genes (22 from leachate, 27 from 

river) were annotated as glycosyl hydrolase family n (where n is the family number) or as 

hypothetical proteins.  From leachate, the “Glycosyl hydrolase” genes ranged from 43-73% 

identity to their respective closest-related proteins with E-values of 0 - 3.85e-87, whereas the 

hypothetical proteins ranged from 33-57% identity and had E-values of 0 - 6.37e-34 (and one gene 

whose match to its closest-related protein had an E-value of 6.1). The low identities (and a 

relatively large E-value of 6.1) suggest that these proteins have either not been recorded in public 

databases, are novel cellulases, and/or are novel GHs, possibly from undescribed microorganisms. 

Investigation through protein modelling could provide more insight as to how similar these 

proteins’ structures are to existing cellulases. Genes that were best hits to non-cellulases (16 from 

leachate, 14 from river) were recovered from the HMMs because the GH families contain multiple 

enzymatic activities. 

There is no published metagenomic study of landfills examining the distribution and diversity of 

the three types of cellulases. Cellulolytic function and cellulase genes have instead been identified 

through enzymatic assays and one genomic analysis of isolates from landfill leachate (Pourcher et 

al., 2001; Masngut and Manap, 2017; Chua et al., 2014). The leachate community contained 

predicted beta-glucosidases and the river community contained potential beta-glucosidases and 

cellulases/endocellulases. This suggests that the cellulolytic capacity in leachate is low and that 

cellulose degradation may be possible in the river. Usually, endocellulases, exocellulases, and 

beta-glucosidases are needed for the complete degradation of cellulose. However, studies have 

shown that combinations of microbial endocellulases and beta-glucosidases can generate glucose 
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from cellulose (Jeon et al., 2009; Kim and Ishikawa, 2010a). Our results suggest that cellulose 

may be degraded in the landfill leachate and in the river, but this degradation would be more 

efficient if exocellulases were present as well. The wealth of functionally unknown proteins in the 

“Other” category provides the possibility that uncharacterized cellulases or exocellulases are 

present at the sampled sites.  

 

2.3.6 Taxonomic diversity of cellulases 

Bacteroidetes and Firmicutes were affiliated with putative cellulases on scaffolds from both 

metagenomes (Figure 2.6). Scaffolds affiliated with Actinobacteria, Spirochaetes, Synergistetes, 

and Tenericutes were only recovered in the leachate metagenome, whereas those affiliated with 

Proteobacteria (Alpha-, Beta-, Gamma-, and Epsilonproteobacteria) were recovered in the river. 

Of the 62 total potential cellulases (does not including proteins annotated as non-cellulases) 

detected across both environments, 17 genes (29%) belonged to Bacteroidetes; 8/30 (27%) of those 

were from leachate and 9/32 (33%) were from the river. Bacteroidetes-assigned cellulases were 

mainly from GH3 in both metagenomes, and additionally from GH30 in river. A total of 9/62 

(15%) potential cellulases were associated with Firmicutes, with 8/30 (27%) in the leachate and 

only 1/32 (3%) in the river. Firmicute-associated potential cellulases from leachate were from GH3 

and GH1, whereas the river one was from GH3. Potential cellulase genes affiliated with the 

Spirochaetes, Tenericutes, Actinobacteria, Synergistetes, and Balneolaeota were only identified in 

leachate and totalled to 14/30 (47%) genes, with less than four potential cellulase genes were 

affiliated with each of these phyla. Proteobacterial cellulases were identified only in the river. 

Alphaproteobacteria- and Gammaproteobacteria-associated potential cellulases were at a 
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relatively high abundance in the river, both were at 10/32 (32%). Beta- and Epsilonproteobacteria-

associated potential cellulases were present in the river at 1/32 genes each (3%).  

Taxonomic identification of potential cellulases was largely to lineages implicated in cellulase 

degradation. It was not surprising to identify potential cellulases associated with Bacteroidetes and 

Firmicutes, as several classes within these phyla are known to degrade cellulose, CMC, and/or 

cellobiose (e.g., members of the Anaerophaga, Marinilabilia, , Ohtaekwangia, and Clostridium) 

(Denger et al., 2002; Suzuki et al., 1999; Yoon et al., 2011; Koeck et al., 2014). The Bacteroidetes-

affiliated cellulases from the leachate and river shared highest similarity with Blautia, Hydrotalea, 

and Lentimicrobium genes. None of these Bacteroidetes genera have been shown to degrade 

cellulose or any of its smaller constituents. However, some members of Ruminococcus were 

renamed to Blautia, and members of Ruminococcus are known cellulose degraders (Liu et al., 

2008; Koeck et al., 2014). Members of the Bacteroidetes and Firmicutes possessing cellulose-

active enzymes are quite common and are usually found at high abundance in anaerobic 

environments, such as the rumen of cows, mangrove ecosystems, and soils (Güllert et al., 2016; 

Thompson et al., 2013; López-Mondéjar et al., 2016). 

The potential cellulases annotated as beta-glucosidases affiliated with the Spirochaetes were 

most closely related to proteins from Sphaerochaeta globusa strain Buddy, Sphaerochaeta 

pleomorpha, and S. caldaria (previously known as Treponema caldaria) (Abt et al., 2013). 

Sphaerochaeta caldaria has been shown to enhance cellulose degradation in co-cultures with 

cellulolytic bacteria (Caro-Quintero et al., 2012; Pohlsehroeder et al., 1994); however, the 

glycosyl hydrolases these organisms possess have yet to be investigated for their substrates and 

catalytic functions.  
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The potential cellulases that were most closely related to Tenericutes were related to genes from 

members of the Acholeplasma. Although occurring here at low abundance, Tenericutes have been 

identified in 16S rRNA gene surveys from the gut microbiomes of termites, where cellulolytic 

protists ferment cellulose to generate H2 and CO2. Endosymbiotic bacteria convert these products 

to acetate, and provide amino acids via nitrogen fixation to the protists (Brune, 2014; Hongoh et 

al., 2008; Sabree and Moran, 2014; Ohkuma et al., 2015). 

 
Figure 2.6. Taxonomic composition of GH families containing cellulases in the leachate and 

river metagenomes. Glycosyl hydrolases along the x-axis indicate those for leachate (first) and 

river (second). 

 

The potential cellulases affiliated with the Actinobacteria were most closely related to genes from 

Lysinimicrobium sp., Nitriliruptor alkaliphilus, and Demequina aurantiaca. Lysinimicrobium 
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species isolated from mangrove forest soil were able to use cellobiose (Hamada et al., 2015). A 

strain of N. alphaliphilus has been isolated from an isobutyronitrile enrichment culture inoculated 

with soda lake sediments and can utilize cellobiose but not cellulose (Sorokin et al., 2009). D. 

aurantiaca was isolated from seaweed from a lake in Japan and was shown to use cellobiose (Ue 

et al., 2011). The genes from our survey were related to ambiguously annotated glycosyl 

hydrolases, with identities from 56-60% to their best hits, thus they may be new genes either 

belonging to these species or their relatives.    

A potential cellulase affiliated with the Synergistetes was most closely related to a gene from 

Aminiphlilus circumscriptus which a strain has been isolated from an anaerobic sludge reactor 

treating wastewater (Díaz et al., 2007). There is no evidence that A. circumscriptus can utilize 

cellobiose, and cellulose has not been tested as a substrate.  

The predicted cellulases in the river annotated as “hypothetical proteins” most closely related to 

genes from the Alphaproteobacteria affiliated with Martelella mediterranea, Martelella sp., 

Marivita cryptomonadis, Sphingobium lactosutens, Tropicimonas isoalkanivorans, Roseomonas 

stagni, and Wenxinia marina. M. mediterranea conducts cellobiose and carboxymethylcellulose 

(CMC) degradation (Dong et al., 2010). A strain of S. lactosutens isolated from a 

hexachlorocyclohexane dump site has been shown to utilize cellobiose (Kumari et al., 2009). T. 

isoalkanivorans isolated from seawater from a port in Indonesia was also positive for cellobiose 

utilization (Harwati et al., 2009). M. cryptomonadis was isolated from a marine phytoplankton 

culture of Cryptomonas sp. and is able to utilize cellobiose (Hwang et al., 2009). R. stagni has not 

been tested for cellulose or cellobiose utilization but other species of Roseomonas are not able to 

hydrolyze CMC (Kim et al., 2003; Sik Baik et al., 2012). A strain of W. marina was isolated from 

oilfield sediments and also demonstrated CMC and cellobiose hydrolysis (Riedel et al., 2014; 
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Tokuda et al., 2005). Two genes showed relatively high identity (89-96%) to glycosyl hydrolases 

associated with Rhodobacteraceae, suggesting that these genes are promising potential cellulases 

from this family or close relatives of it. Further examinations of hypothetical proteins (i.e. gene 

cloning and activity assays) are needed to verify whether the predicted cellulases from our datasets 

are enzymes involved in cellulose degradation. 

In the river dataset, potential cellulases were closely related to glycosyl hydrolases from the 

Gammaproteobacteria Agaribacterium haliotis and Simiduia agorivorans, as well as a 

hypothetical protein from Methylomarinum vadi. Gammaproteobacteria have also been found in 

marine biofilms on cellulose baits (Edwards et al., 2010). A. haliotis has been isolated from 

abalone feces and is not able to degrade cellulose (Huang et al., 2017). S. agorivans is a cellulose 

degrader that has been isolated from coastal waters (Shieh et al., 2008). M. vadi is a methanotroph 

that has been isolated from marine environments, but its capacity for cellulose and cellobiose 

degradation has not been tested (Hirayama et al., 2013).  

A potential cellulase was closely related to a glycosyl hydrolase from Epsilonproteobacteria 

belonging to Campylobacter showae. Cellulose degradation by C. showae has not been tested. 

It is important to note that the literature presented here regarding the ability of these genera to 

degrade cellulose substrates are depended on the experimental conditions under which the 

microorganisms were tested. Thus, those that were not able to degrade cellulose at certain 

conditions may be active under other conditions, including different temperatures and the presence 

or absence of oxygen.  

 

 

2.3.7 Cellulase genes identified in MAGs 

Potential cellulase genes were identified in six of the twenty-three taxonomically classified 
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MAGs from the leachate and river metagenomes (Figure 2.4, Figure 2.7). The six MAGs 

included three Bacteroidetes (LB_7, LB_12, and LB_19), one Firmicute (LB_26), and two  

 
Figure 2.7. Types of potential cellulases detected in high-quality MAGs. The MAGs are listed 

in order of highest to lowest mean genome coverage for each dataset. The “Glycosyl hydrolase” 

category includes proteins that were annotated with or without a specific GH family. LB = 

Leachate Bin, RB = River Bin. 

 

Alphaproteobacteria (RB_4_2 and RB_10). Genes whose closest hits were to beta-glucosidases 

were in 4/6 MAGs and glycosyl hydrolases were identified in five of the putatively cellulolytic 

bins, with the exception of Alphaproteobacteria RB_4_2. The potential functions encoded by 

genes with closest hits to GHs and hypothetical proteins may encompass other carbohydrate 

enzymatic activities found within the respective GH families. The populations for which we have 

high-quality MAGs are not predicted to hydrolyze cellulose effectively based on the presence of 

only beta-glucosidase, as endo- and exocellulases are typically necessary for this process. 
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2.4 Conclusions 

Leachate MAGs possessed a greater diversity at the phylum level than river MAGs. In leachate 

MAGs, Bacteroidetes, Proteobacteria, Firmicutes, and Tenericutes were the abundant phyla, 

whereas only Proteobacteria were recovered from the river metagenome. Although there was little 

overlap between the microbial profiles based on the classes of the MAGs recovered between 

leachate and river, neither presence nor absence of contamination of the river from the leachate 

can be concluded.   

From the pool of potential cellulases identified in the metagenomes, the majority of beta-

glucosidases identified were classified as GH1 and GH3, and were mostly affiliated with members 

of the Bacteroidetes and Firmicutes. The absence of endocellulases and exocellulases suggests that 

cellulose degradation is unlikely by the sampled communities. The identified hypothetical proteins 

and the ambiguously annotated glycosyl hydrolases may be a source of novel cellulases in these 

environments. Cellulose decomposition or potential cellulases have been detected in mangrove 

ecosystems, river sediments near a sewage treatment plant, and in lotic ecosystems fueled by 

foliage (Thompson et al., 2013; Friedmann et al., 1979; Yue et al., 2016). These environments 

have either natural or engineered sources of organic material input. The presence of potential 

enzymes involved in cellulose degradation in the river metagenome suggests the presence of 

microorganisms active on cellulose and/or cellobiose, or that can enhance cellulose degradation. 

The sources of the organic matter in the river may be from leachate contamination, foliage falling 

into the water, or organic material run-off from farms upstream. 

A greater sample size including temporal and spatial samples of the leachate and river would be 

needed to elucidate the prevalent microbial populations over time and the possibility of 

contamination of the Duhaney river by the Riverton City Dump leachate. Spatial samples of the 
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river downstream of the Riverton City Dump and analyses of the chemical composition of the 

leachate and the river water could be compared to further ascertain the presence and scope of 

contamination of the river by the leachate.   
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Chapter 3: Microbial Diversity of Predicted Cellulases in the Southern Ontario 

Landfill 
 

3.1 Introduction  

 

Paper waste, which includes copy paper, newspaper, and cardboard, makes up the greatest fraction 

of waste in landfills. The rate of waste decomposition depends on environmental conditions, where 

the process is much slower in dry climates, and on leachate circulation through the refuse, which 

accelerates decomposition (Kjeldsen et al., 2002). Waste is degraded by microorganisms. The 

microbial diversity of landfills has been examined via 16S rRNA gene sequencing but microbial 

functional potential still remains understudied. Specifically, studying cellulose decomposition in 

landfills would be a promising approach to discovering novel cellulases.  

Recent studies have predicted cellulose degradative capacity in landfills based on cellulase-

containing GH families and/or based on the putative cellulolytic microbes identified by 16S rRNA 

gene amplicon sequencing and metagenomic analyses (Song et al., 2015a; Ransom-Jones et al., 

2017; Stamps et al., 2016). There are no published metagenomic studies that define the functional 

composition of genes belonging to cellulase-containing glycosyl hydrolase families in landfill 

refuse or landfill leachate. This distinction is important, as it separates non-cellulases from 

cellulases, allowing us to more precisely estimate the abundance and the taxonomy of the 

cellulases at a site. The common practice of reporting GH families in place of cellulases likely 

overestimates the abundance of cellulases in an environment. Instead, surveying true cellulolytic 

potential has been done by biochemical characterizations or genome analyses from selected 

isolates cultured from landfill refuse (Pourcher et al., 2001; Li et al., 2009b). From a phenotypic 

and biochemical survey of cellulolytic isolates cultured from refuse, 355 cellulolytic bacteria were 

isolated (Pourcher et al., 2001). In another study, a type of endocellulase that degrades 

carboxymethylcellulose, a more soluble derivative of cellulose, was detected in Bacillus species 
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isolated from a landfill in India (Korpole et al., 2011). Draft genomes of two Paenibacillus strains 

from landfill leachate revealed thirteen genes encoding endocellulases, exocellulases, and beta-

glucosidases (Chua et al., 2014). Although these studies demonstrated cellulolytic activity from 

landfills, they worked only with culturable isolates, most of which belong to phyla and genera 

whose members were already known to degrade cellulose. These genera are therefore not 

representative of the novel cellulolytic potential in landfills. More metagenomic studies targeting 

cellulolytic function in landfills are needed to expand our current knowledge of cellulolytic 

capacity in novel taxa. The discovery of new cellulolytic microbial diversity and their potential 

metabolic functions are then available to be optimized and applied to industrial and biotechnology 

processes.  

The cellulolytic microbial potential at an inactive area of the southern Ontario landfill was 

examined through analysis of metagenomes derived from leachate and groundwater wells. The 

sampling area actively received waste from 1972-2001, with leachate and groundwater monitoring 

as well as gas collection continuing to date. Sampling sites included one composite leachate 

cistern, three leachate wells transecting the landfill area, and groundwater from a perched water 

table. The objective of this chapter is to examine the diversity of cellulolytic enzymes from the 

southern Ontario landfill. 

 

 

3.2 Materials and Methods  

 

3.2.1 Sampling sites and sample collection 

 

Five sites of interest from the landfill in southern Ontario, Canada were sampled (Table 3.1; Figure 

3.1, Appendix A for original names of sampling sites at the landfill). The pumphouse is a 

composite leachate cistern (CLC), a reservoir where all the leachate in the landfill is pooled before 
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it is transported to a wastewater treatment plant. Pumphouse 3 was sampled twice, a week apart, 

where July 14th, 2016 (CLC1_T1) was a preliminary sampling trip and July 20th, 2016 (CLC1_T2) 

was the official expedition when the remaining sites were also sampled. The leachate wells were 

chosen to form a transect across the central, inactive landfilling area. A groundwater well on the 

periphery of the inactive landfill area was additionally sampled.  

 

Table 3.1. Sampling sites and dates at the inactive landfilling area of the Ontario landfill.  

Site_time point Type Date sampled 

CLC1_T1 

CLC1_T2 

Composite leachate cistern 14JUL2016  

20JUL2016 

LW1 Leachate well  20JUL2016 

LW2 Leachate well 20JUL2016 

LW3 Leachate well 20JUL2016 

GW1 Perched water table/groundwater well 20JUL2016 

 

 

 
Figure 3.1. Schematic of the sampling sites at the Ontario landfill. The map was  

modified from the 2014 landfill management report. 

 

Leachate and groundwater were collected by Hug Lab members using carboys that were first rinsed 

with the sample to be collected and then were used to collect 4-5 gallons of samples. The protocol 

to filter samples differed slightly between the two sampling days. On July 14th, the CLC1_T1 

sample was filtered through 144 mm Supor polyethersulfone membranes of 0.2 μm and 0.1 μm 
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pore sizes in series (Pall Corporation, New York, New York) using an electrical pump. 

Approximately 150 mL of leachate was filtered through each of three pairs of filters prior to 

clogging. On July 20th, samples were filtered through a 3.1 μm glass fibre pre-filter (Pall 

Corporation, New York, New York) and a 144 mm Supor® polyethersulfone 0.1 μm membrane 

in series. Sample volumes ranged from 150 mL (CLC) to ~10 L (GW1), and were determined 

based on time to filter clogging or filtering of all collected liquid.  

 

 

3.2.2 Genomic DNA extraction 

 

Total community genomic DNA was extracted from one half of a 0.1 μm filter from each July 

20th location and one half of a 0.2 µm filter and a 0.1 µm filter from the CLC1_T1 using the MO 

BIO PowerSoil DNA Kit according to manufacturer’s instructions, with the filter cut up into 

small pieces and used as direct input in place of soil. The eluted DNA was further concentrated 

using an overnight ethanol precipitation in 0.3 M sodium acetate and 2.5 volumes of ice cold 

ethanol. Following pelleting and resuspension of the DNA in molecular grade water, the 

concentrations and A260/280 ratio of the DNA was measured using the Nanodrop 1000 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). The CLC1_T1 0.1 µm filter 

extraction resulted in insufficient DNA for metagenomic sequencing.  

Six samples were sent for sequencing: leachate: CLC1_T1, CLC1_T2, LW1, LW2, LW3, and 

GW1. Library preparation and shotgun metagenome sequencing was done on a HiSeq 2500 1 TB 

platform (Illumina, Hayward, CA) with subsequent assembly and annotation also conducted by 

the U.S. Department of Energy Joint Genome Institute (JGI), (Walnut Creek, CA). 
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3.2.3 Data availability 

The Southern Ontario metagenomes are deposited on IMG with the following IMG Genome IDs 

(Taxon Object IDs): 3300014203 (CLC1_T1), 3300014206 (CLC1_T2), 3300014204 (LW1), 

3300015214 (LW2), 3300014205 (LW3), and 3300014208 (GW1). 

 

3.2.4 Identifying potential cellulase genes in the Ontario landfill metagenomes  

Through the IMG-ER online interface, a functional query for Pfam IDs (Finn et al., 2016) of 

glycosyl hydrolase (GH) families containing cellulases was used to search the six metagenomes 

for potential cellulases. The GH families searched were GH1, -3, -5, -6, -7, -8, -9, -12, -30, -44, -

45, -48, and -116. Search hits for each GH family were then identified taxonomically using 

blastp with an e-value threshold of <1e-40. All hits with e-values above 1e-40, regardless of 

whether they were annotated as cellulases or not, were excluded in the analysis of potential 

cellulases. The hits were then filtered for putative cellulolytic function, and categorized. For 

simplicity, the extensive synonymous names for different types of cellulases were simplified to 

three general categories: endocellulases, exocellulases, and beta-glucosidases. For example, 

genes that were annotated as 1,4-beta-D-glucan glucohydrolases or cellobiohydrolases were 

categorized as exocellulases, and endoglucanases were categorized as endocellulases. Other gene 

annotations that did not belong to those three categories included cellulases, hypothetical 

proteins, and glycosyl hydrolase family n proteins (where n is the GH family number). The 

uncategorized annotation hits were kept in the subset used for further analyses. Genes that were 

affiliated with the respective Pfam IDs but were not kept as part of the cellulolytic subset 

included glycosyl transferases, xylanases, mannanases, and membrane proteins. Genes affiliated 

with Eukaryotes which were not of interest were removed from analyses as well.  
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3.3 Results and Discussion 

 

3.3.1 Statistics of southern Ontario landfill metagenomes  

 

Genes annotated with Pfam IDs of cellulase-containing glycosyl hydrolase families were extracted 

from the six Ontario landfill metagenomes. The metagenomes ranged from 1.8-2.5 billion bases 

and 3.2-5.0 million genes (Table 3.2). The groundwater well metagenome produced the smallest 

metagenome and the second CLC time point the largest. Genes associated with Pfam GH families 

1, -3, -5, -6, -7, -8, -9, -12, -30, -44, -45, -48, and -116 were identified from the CLC, 

 

Table 3.2: Statistics for the southern Ontario landfill metagenomes. 

     *Genes annotated as endocellulase, exocellulase, beta-glucosidase, and cellulase were  

included, as well as genes that could potentially be cellulases but not specifically annotated as such 

which included hypothetical proteins and GH family n protein (where n is a particular GH family). 

 

 

LW, and GW metagenomes to analyze the proportion of glycosyl hydrolases with potential 

cellulolytic function. These families also include enzymes with activities other than cellulolysis. 

Less than 0.2% of genes in all metagenomes were annotated as belonging to the families surveyed. 

Of the total genes in the metagenomes, 77-88% of proteins were considered to be potential 

cellulases at each site. The criteria for inclusion as a potential cellulase were proteins annotated as 

 CLC1_T1 CLC1_T2 LW1 LW2 LW3 GW1 

Size of metagenome 

(millions of bases) 

2,244 2,497 2,297 2,151 2,274 1,835 

No. of genes in assembly 4,628,938 5,019,461 4,947,135 3,941,155 4,713,313 3,307,093 

Subset of genes 

associated with GH 

families containing 

cellulases (A); % of 

assembly 

6,153; 

0.13% 

4,729; 

0.09% 

1,689; 

0.03% 

 

2,447 

0.06% 

2,127 

0.05% 

2,524 

0.08% 

Subset of genes (A) that 

are potential cellulases*; 

% of (A) 

5281; 

86% 

 

4006; 

85% 

1482; 

88% 

1874; 

77% 

1728; 

81% 

1842; 

79% 

Subset of genes (A) 

annotated as specific 

types of cellulases;  

% of A 

1,326; 

25% 

1,018; 

25% 

340; 23% 499; 27% 491; 28% 307; 17% 
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endocellulases, exocellulases, beta-glucosidases, and cellulases. The selected genes also included 

those annotated as predicted proteins, hypothetical proteins, and glycosyl hydrolase family n 

(where n is the particular GH family), as their annotations do not disqualify the genes as potential 

cellulases. Of the potential cellulases, 23-28% from CLC and LW samples and 17% from GW 

were explicitly annotated as one of the three types of cellulases or as “cellulase.” The remaining 

~72-77% of putative cellulases lacked clear annotations, suggesting that there is substantial 

carbohydrate active enzyme (CAZyme) novelty in the landfill system, including potentially 

unannotated cellulases in the twelve GH families examined.  

 

 

3.3.2 Presence and abundance of cellulase-containing glycosyl hydrolase families  

 

Of the twelve cellulase-containing GH families, eight (GH1, -3, -5, -8, -9, -30, -44, and -116) were 

present at all sites (Figure 3.2A; Appendix B, Table B1 for full gene count and relative abundance 

for all GH families across all sites). Genes belonging to GH7, which is composed of exclusively 

eukaryotic cellulases (Cragg et al., 2015), were not detected at any of the sites prior to filtering out 

eukaryotic genes. Glycosyl hydrolase families 5, 3, 9, and 1 were the most abundant, representing 

~87-92% of hits across all sites. Approximately 74% of all of the predicted GH genes belonged to 

GH3 and GH5 (Figure 3.2B). No GH family was unique to leachate nor groundwater. 

The two CLC metagenomes had the largest number of genes (CLC1_T1 = 6,153 and CLC1_T2 = 

4,729) belonging to the glycosyl hydrolase families of interest, where CLC1_T1 had ~2.5 times 

the number of genes as the highest represented LW (LW2) and the GW metagenome (Figure 3.2A). 

In the CLC samples, although the first time point (CLC1_T1) had 23% more genes than the later 

time point (CLC1_T2), the relative proportions of GH families within the two metagenomes 

showed consistency across the week of sampling, with a maximum of 3.2% change in relative  
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Figure 3.2. Distribution of the total cellulolytic potential by GH families containing 

cellulases families across the southern Ontario landfill sites (before filtering) by A) gene 

counts and B) relative abundance of genes belonging to relevant GH families. Gene counts 

are total hits, prior to filtering to remove non-cellulase annotations. 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 



 56 

abundance across GH families (Figure 3.2B). The consistent GH family proportions in the CLC 

was unexpected, as the CLC is a reservoir of pooled leachate where leachate from across the 

landfill is constantly mixed and then discharged at 15.2 L/s to the local wastewater treatment centre 

(Stantec Consulting Ltd., 2015). Even though the cistern experiences constant changes through 

inflow and discharge of leachate, very minor change was seen in the overall relative abundance of 

the GH families. It could also be that the constant mixing of leachate in the CLC could homogenize 

the pooled leachate, resulting in similar compositions over time. Either way, the data suggests that 

CLC1, and, by extension the landfill, harbours a stable community of potential cellulolytic 

microorganisms over the timescale of at least a week. 

In contrast to the CLC samples, the relative abundance of GH families amongst the three leachate 

wells were not as similar. The leachate wells varied both in terms of the total number of relevant 

GH genes and their GH family composition. The three LWs had 1,600-2,500 GH genes, which 

represent 0.03-0.06% of the total genes in the metagenomes (Table 3.2). The differences in the 

proportions of GH families (Figure 3.2) suggest that the range of carbohydrate-hydrolyzing 

enzymes are quite different between leachate wells in the same landfill at a given time. Sample 

series from each site would clarify if the observed differences in GH compositions are stable over 

time.    

Most of the cellulase-containing GH families detected in the leachate samples (CLC and LW) have 

also been found in cellulolytic environments. A number of CAZymes were identified in 

metagenome-assembled genomes (MAGs) generated from a cellulose-amended landfill leachate 

microcosm, including GH families associated with lignocellulose degradation (i.e., GH1, -3, -5, -

8, -9, -30, -48, -51, -74, and -94, and -116) (Ransom-Jones et al., 2017).  Similarly, GH1, -3, -5, -

6, -8, -9, -12, -30, -44, -45, -48, -51, and -94 have been identified in cellulolytic environments such 
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as biogas fermenters, forest soil, and/or cow rumens (Güllert et al., 2016; López-Mondéjar et al., 

2016; Wang et al., 2013). To our current knowledge, the genes from GH6 identified in the Ontario 

landfill are the first from this GH family reported from landfills. The GH6  family  contains 

proteins with characterized endocellulase and exocellulase activities from bacteria and eukaryotes 

(Lombard et al., 2014).  

Lastly, the metagenome from the groundwater well had approximately 2,500 genes from the GH 

families of interest, which accounted for ~0.08% of the GW annotated genes (Table 3.2). The two 

most abundant GH families, GH3 and GH5, made up 71%, a distribution between that of the CLC 

and LWs (Figure 3.2B). One notable difference was the majority of genes identified as GH6 were 

from the groundwater metagenome (31/42, 74%). The GW metagenome also contained one of two 

genes from GH12 detected across all sites. There is little investigation on the presence of glycosyl 

hydrolase families in groundwater, but one study profiled more than 2,000 Candidate Phyla 

Radiation (CPR) genomes in groundwater wells and detected genes from GH1, -3, -5, -6, -8, -9, -

12, -30, -44, and -116 (Danczak et al., 2017). Although the profiling of the CPR genomes revealed 

a wide range of GH families encompassing potential activities that can process carbon compounds, 

it is unclear what the proportion of these genes were cellulases.  

The most prevalent families across all samples were GH3 and GH5, even though the absolute 

abundance of glycosyl hydrolases were much greater in the CLCs than in the LWs and GW. 

Glycosyl hydrolase families -3 and -5 are amongst the largest and most functionally diverse CAZy 

families, even more so when considered within those associated with cellulose degradation. Beta-

glucosidase and exocellulase activities are present in GH3 whereas GH5, formerly “cellulase 

family A”, includes all three types of enzymes needed for hydrolytic breakdown of cellulose (Dodd 

et al., 2010; Aspeborg et al., 2012; Lombard et al., 2014). Glycosyl hydrolase families -3 and -5 
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also contain hydrolytic cellulases and other related enzymes such as xylanases, xylosidases, alpha-

mannanases, and alpha-L-arabinofuranosidases, which promote the degradation of lignocellulose 

(Lombard et al., 2014; Pérez et al., 2002; Béguin and Aubert, 1994). At the time of writing 

(September 2018), the CAZy database had 19,211 bacterial and 104 archaeal proteins in GH3, and 

9,990 bacterial and 93 archaeal proteins in GH5 (Lombard et al., 2014). One reason for the 

abundance of genes belonging to GH3 and GH5 across the different metagenomes may be the sizes 

of these families and the microbial diversity that they encompass.  

Smaller GH families such as GH1, -8, -9, -30, -44, and -116 were present in all samples. The 

relative abundances of these families also remained quite stable in the CLC samples (maximum of 

0.3% difference in GH30) but fluctuated amongst the LW samples (minimum difference was 0.4% 

in GH116 and the greatest difference was 8% for GH1) (Figure 3.2B). Glycosyl hydrolase family 

-6 was only detected in LW2, LW3, and GW1; GH12 was detected only in LW2 and GW1, making 

these two of the rarer GH families in the metagenomes. GH6 contains endocellulases and 

cellobiohydrolases, whereas GH12 contains only endocellulases (Lombard et al., 2014). The 

reference sets available for these two families are smaller than those for the other GH families, 

thus the detection of potential cellulases belonging to these GH families may be lower due to 

database bias.  

 

 

3.3.3 Composition of types of cellulases across the sites 

The glycosyl hydrolase genes described in the previous section included all genes assigned to the 

GH families surveyed, regardless if they were annotated as cellulases or not. This encapsulated the 

total potential cellulases belonging to these families, as is commonly presented in the literature  
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Figure 3.3. Composition of the types of cellulases across the composite leachate cistern, 

leachate wells, and groundwater well A) by gene count and B) by relative abundance. Genes 

annotated as “cellulase”, “glycosyl hydrolase”, and “hypothetical protein” are ambiguous in 

function thus have been included as separate categories. 
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when potential function is inferred from metagenomes (Danczak et al., 2017; Ransom-Jones et al., 

2017). In this section, a more thorough estimate of the total cellulolytic potential of the landfill 

system is provided. The total hits presented in the previous section were filtered to only include 

those whose protein annotation was <1e-40 by blastp against the RefSeq protein database. The 

threshold was imposed to ensure we were working with high-quality protein annotations.  

The curated potential cellulase genes were then further screened by annotation for one of the three 

cellulase categories, “cellulases”, hypothetical proteins (to account for potential novel cellulases), 

and “glycosyl hydrolase family n” in order to specifically focus on genes with potential cellulolytic 

activities. Genes confidently annotated as cellulases in the screened dataset constituted 22%, 20-

22%, and 12%, in the CLCs, the LWs, and the GW samples, respectively (Figure 3.3B; see 

Appendix B, Table B2 for full gene count and relative abundance for all GH families across all 

sites). The majority of curated genes comprised the hypothetical and vaguely annotated genes, 

which are potential cellulases (Figure 3.3B). Beta-glucosidases were the most abundant type of 

unambiguously annotated cellulase, making up 18%, 8-20%, and 9% in the screened genes of 

CLCs, LWs, and GW, respectively (Figure 3.3B). As beta-glucosidase activity was present in half 

of the GH families analyzed (GH1, -3, -5, -8, -30, and -116), the predominance of this activity in 

the cellulase subset may be a result of database bias. Endocellulases made up approximately 5% 

of both CLC samples, 2-5% in the LWs, and ~5% in the GW sample. Exocellulases occurred at 

<1% across all sites except in LW1, in which none were detected. Genes annotated as “cellulases” 

made up 1-4% of each site. It is unclear which specific type of enzyme the annotation “cellulase” 

refers to, as cellulase is a collective term referring to all three categories of cellulolytic enzymes. 

To avoid incorrect assumptions, analyses of genes annotated as “cellulase” were not combined 
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with any specific cellulolytic enzyme but rather kept as a category on their own, contributing to 

the collective cellulolytic potential of the site.  

The composition of cellulase types generally shows remarkable consistency of relative abundances 

between the CLC time points, amongst the spatially distributed LWs, and between the CLC and 

LWs (Figure 3.3B). Comparing the CLC metagenomes, the relative abundances of all cellulase 

types were <1.1% different. The cellulase composition of LW2 and LW3 was the most similar 

among all LWs with a difference of <1.5%. The consistency in relative abundance of the cellulases 

seen across the CLC and LW sites suggests that there exists a stable suite of cellulase functionality 

that may degrade the cellulosic material in the landfill.  

In contrast, there were a couple of differences in the proportional abundance of the cellulases 

between the leachate samples and the groundwater sample. The lower proportion of confidently 

annotated cellulases in the GW sample (12%, ~10% lower than other samples) was balanced by 

an increase in hypothetical proteins, which made up 44% of the cellulase subset in GW, 9-16% 

more than those in the CLC and LW. This signifies that there are more unknown carbohydrate-

modifying activities and genes in the groundwater community, which may or may not be 

cellulolytic. It is uncertain whether the CAZymes detected in GW are abundant due to 

contamination from the landfill or from an alternative carbohydrate or cellulose source outside of 

the landfill. The GW well surveyed is impacted by landfill leachate, but the cellulose concentration 

moving with the leachate is not documented.  

 

3.3.4 Microbial composition of potential cellulases 

The microbial compositions of the cellulase-specific datasets were analyzed to identify the 

taxonomy and trends in the predicted cellulolytic bacteria and archaea in the leachate and 
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groundwater. Across all sites, Bacteroidetes was the most abundant phylum, accounting for, on 

average, ~47% in the CLC samples, ~36% in the LWs, and 44% in the GW (Figure 3.4; see 

Appendix B, Table B3 for full gene count and relative abundance for all taxonomic groups across 

all sites). Bacteroidetes have been found at high abundance in many cellulolytic environments, 

such as cellulose microcosms from landfill leachate, cow rumens, elephant feces, and biogas 

fermenters (Ransom-Jones et al., 2017; Song et al., 2015a; Güllert et al., 2016; Lo et al., 2010). It 

was also not surprising that Firmicutes was an abundant group, representing ~23% in CLC 

samples, 10-21% in the LWs, and ~7% in GW of the curated cellulase genes. Firmicutes have been 

detected at high abundance in landfills and other cellulolytic environments through both 16S rRNA 

gene sequencing and metagenomics (Song et al., 2015a, 2015b; Stamps et al., 2016; Güllert et al., 

2016; Ransom-Jones et al., 2017). Culture-based studies also identified Bacillus and 

Paenibacillus, both Firmicutes, as major cellulolytic groups in landfills (Pourcher et al., 2001). In 

the curated sets of cellulases, the other phyla and proteobacterial classes that were present at >1% 

at all sites included Verrucomicrobia, Spirochaetes, Actinobacteria, and Gammaproteobacteria. 

These phyla have also been detected at relatively low abundance in landfills, cellulolytic 

microcosms from landfill leachate, and cellulolytic microcosms from landfill leachate biogas  

fermenters, (Song et al., 2015b; Stamps et al., 2016; Huang et al., 2004; Ransom-Jones et al., 

2017; Güllert et al., 2016). Phyla that occurred at <1% at all sites were categorized as rare phyla. 

The pooled abundance of rare phyla was 5-7% across all sites, consisting of 22 bacteria phyla, 2 

archaeal phyla, and several unclassified bacteria. Archaeal cellulases affiliated with the 

Euryarchaeota were detected from all sites, with crenarchaeotal genes only detected at CLC1_T2, 

LW2, and LW3. Archaea were recovered at low abundance (0.8-4%) in a previous study, which 

examined 19 landfills using 16S rRNA gene sequencing (Stamps et al., 2016).  
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Figure 3.4. Taxonomic composition of predicted cellulases across the composite leachate cistern, leachate wells, and groundwater well. The size of 

the box with a taxon name indicates the taxon’s relative abundance and its colour represents its absolute abundance of the genes at a particular site. The 

unlabelled box in CLC1_T2 is Epsilonproteobacteria. The Rare phyla category consists of the highest-level of identifiable taxonomic group and 

proteobacterial classes that occurred at <1% at each site. A phylum that has a designated box (present at >1%) in one site and not in others means it occurred 

at <1% in the other sites (not necessarily absent nor undetectable). 
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From a taxonomic perspective, the CLC samples were largely consistent, with a maximum phylum 

abundance difference of 2.8% seen in the Bacteroidetes. Beyond the Bacteroidetes and Firmicutes, 

the LW curated cellulases were assigned to 13 phyla at less than 10% abundance, whereas the GW 

curated cellulases were assigned to 14 phyla with abundances between 1-10%. Fibrobacteres had 

a varied distribution across the landfill and was present as one of the top three most abundant phyla 

in the CLC samples (8-10%)  and LW1 (8%) but was at less than 1% in all other samples. All 

potential cellulases detected belonging to GH45 were affiliated with Fibrobacteres, in contrast to 

the GH45 family in the CAZy database, which, though dominated by Eukaryotic sequences, 

contains an even mix of Fibrobacteres and Proteobacteria sequences. Fibrobacteres have been 

implicated as contributors to bovine rumen cellulolytic communities, as Fibrobacter succinogenes 

is a known cellulose degrader and is the most commonly isolated Fibrobacteres species from 

bovine rumen (Henderson et al., 2015; Suen et al., 2011; Russell et al., 2009). Fibrobacteres have 

been observed to decrease in abundance in cattle rumen when protozoa were removed. 

Fibrobacteres have also been detected in landfills (Song et al., 2015b; Ransom-Jones et al., 2017). 

A Fibrobacteres MAG from a landfill leachate microcosm contained potential cellulases belonging 

to GH5, -9, -12, and, exclusive to this MAG, GH45 (Ransom-Jones et al., 2017). GH45 proteins 

have been found in all representatives of the Fibrobacteres phylum except Chitinivibro alkaliphilus 

(Abdul Rahman et al., 2016). Fibrobacteres may be degrading cellulose in the CLC and the LW1 

sites but their functions require confirmation.   

Several phyla identified here were not previously associated with cellulose degradation at landfills. 

Dictyglomi cellulase genes were detected at ~3-5% in LW2, LW3, and GW1, and at <1% at all 

other sites (Figure 3.4). Members of the Dictyoglomi are thermophilic, anaerobic bacteria (Saiki 

et al., 1985). Both Dictyloglomi turgidum and Dictyloglomi thermophilum encode endoglucanases 
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used to break down carboxymethylcellulose (CMC) (Brumm et al., 2011; Shi et al., 2013) and D. 

thermophilum has been shown to use cellobiose as well (Saiki et al., 1985). Additionally 

unexpected were the Ignavibacteria, whose cellulase genes occurred at ~2-4% in LW1, LW3, and 

GW1, and at <1% at all other sites. Iganvibacteria have not previously been described at municipal 

landfills. Ignavibacteria are generally facultatively anaerobic thermophilic bacteria related to 

Bacteroidetes and Chlorobi. Within the Ignavibacteria, a strain of Melioribacter roseus is able to 

use microcrystalline cellulose and CMC (Podosokorskaya et al., 2013b).  

 

3.4 Conclusions 

 

Glycosyl hydrolase families 5, 3, 9, and 1 were the most prevalent, making up 87-93% of detected 

GHs. Within this, GH3 and GH5 accounted for 64-79% of all glycosyl hydrolases detected across 

all sites. Beta-glucosidases were the most abundant type of unambiguously annotated cellulases. 

The relative abundances of the different types of potential cellulases were generally consistent 

between the two CLC samples, suggesting a stable presence of cellulases in the CLC. In contrast, 

relative abundances of the larger GH families, such as GH3 and GH5 varied across the three 

leachate wells in the landfill at a given time, suggesting differences in the range of carbon-

processing potential in leachate wells across the sampled landfill area. This speaks to the 

heterogeneity of the waste composition in landfills that may enrich for activities belonging to 

different CAZyme protein families. A large proportion of the putative cellulases were annotated 

as hypothetical proteins or ambiguously annotated genes. These represent a considerable amount 

of currently unknown carbohydrate-modifying function and diversity across the five sites. 

Potential cellulases affiliated with bacteria belonging to Bacteroidetes, Firmicutes, 

Verrucomicrobia, and Spirochaetes, were most abundant within the CLC and LW metagenomes’ 



 66 

annotated genes. Dictyoglomi and Ignavibacteria-associated putative cellulases were observed at 

greater than 1% abundance in two LW sites and the GW site in the Ontario landfill.  Dictyoglomi 

and Ignavibacteria have not been previously reported in landfill leachate studies; our work suggests 

they may be contributors to cellulose degradation or carbohydrate-active function in landfills. 

A generally low proportion of cellulase genes was detected in the LW metagenomes, well below 

1% of all annotated genes for any of the metagenomes. The low numbers may be due to two factors. 

First, the LW sites sampled are in an inactive part of the landfill that stopped receiving waste in 

2001. In a study comparing older (5 years) and newer (1 year) landfill sections, a lower absolute 

number of cellulolytic bacteria was reported in the older parts of the landfill, which could be 

attributed to decreased levels of cellulose waste (Pourcher et al., 2001). Cellulolytic bacteria are 

predicted to be most active at the beginning of anaerobic digestion of landfill waste, converting 

waste biomass to sugars and acids (Lynd et al., 2002; Li et al., 2009b). Second, only cellulases 

belonging to glycosyl hydrolase families were surveyed in the Ontario landfill, but profiling other 

protein families associated with cellulose degradation could increase the gene counts and therefore 

increase the predicted cellulose degradation potential. 

There are several potential additional future directions for this research. Although HMM profiling 

of GH families based on conserved domains is a way to identify potential GHs,  the sequences 

used to construct the HMM profiles are composed of both cellulases and non-cellulases for many 

of the relevant GH families (Sukharnikov et al., 2011). This is because the GH families are 

categorized based on sequence similarity, not substrate specificity nor enzyme activity. As 

suggested by Sukharnikov et al. (2011), generation of new HMMs consisting of cellulase 

sequences, making use of conserved domains and protein folds for each GH family, would be an 

improved approach for cellulase identification. Profiling cellulases in the leachate and 
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groundwater can be expanded to include other types of cellulases and protein structures involved 

with cellulose degradation. Cellulose phosphorylases, which use phosphate instead of water to 

break down cellulose, can be surveyed. Other informative targets include carbohydrate-binding 

modules (CBMs), scaffoldin, and dockerin structures associated with cellulosomes (Ohmiya et al., 

1997). Carbohydrate-binding modules in cellulases are believed to increase hydrolytic activity by 

increasing the surface area exposed to cellulose (Karita et al., 1996). Scaffoldin proteins anchoring 

CBMs and dockerins can form cellulosomes, complexes that exists on the cell surface of anaerobic, 

cellulolytic bacteria and degrade cellulose in close proximity to the cell (Várnai et al., 2013).  Also, 

polysaccharide-utilization loci (PUL) could be mined; PULs have been specifically studied in 

Bacteroidetes, are co-localized and co-regulated genes involved in detection, take up, catabolism, 

and import of complex carbohydrates (Cragg et al., 2015; Grondin et al., 2017). Lastly, because 

of the temporal consistency seen in the CLC, it may be better to take more spatial samples in 

different individual leachate wells when investigating for more novel cellulases.  
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Chapter 4: Cellulose degradation capacity and microbial diversity of cellulose- and 

paper- enriched cultures 
 

4.1 Introduction  

 

It is estimated that 1% or less of bacteria and archaea in the environment can be cultured and 

isolated in the lab using current techniques (Amann et al., 1990). As sequencing technologies have 

been steadily improving and becoming more economically feasible, many researchers have instead 

turned to 16S rRNA gene amplicon sequencing and metagenomics to gain insight into the 

microbial functional potential in the environment. However,  prior to the advent of high-throughput 

sequencing, there were several studies that investigated the cellulolytic capabilities of isolates 

cultured from landfill waste or leachate (Bagnara et al., 1985; Westlake et al., 1995; Pourcher et 

al., 2001; Shiratori et al., 2006). Isolates from municipal waste sites have been characterized to 

confirm the functions and microbial populations predicted from metagenomes and 16S rRNA gene 

analyses (Korpole et al., 2011; Ransom-Jones et al., 2017). There has not yet been a study 

connecting the potential cellulolytic activities detected in landfill metagenomes through isolation 

and characterization of isolates from the same landfill. My research links the cellulolytic potential 

predicted by metagenome analyses of a landfill with cellulolytic activity detected through 

enrichment of the microbial populations in the landfill leachate via enrichment culture and 

isolations. 

The objective of this chapter was to enrich for cellulolytic microorganisms from the leachate in 

CLC1, a composite leachate cistern at the southern Ontario landfill, identify the microbial 

communities in the enrichments, and test for their ability to degrade cellulose.  
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4.2 Materials and Methods 

 

4.2.1 Sampling sites and sample collection 

 

Biomass collected from CLC1 at the Ontario landfill on July 14th, 2016 (CLC1_T1) was used as 

inoculum for the cellulose-degrading enrichment cultures. Please refer to section 2.2.1 for site 

and sample collection information.  

 

4.2.2 Developing synthetic leachate recipe 

 

The composition of the synthetic leachate (Table 4.1) was based on the protocol developed by 

Rowe and colleagues (2002), and adjusted to reflect the chemical composition of the landfill 

leachate as reported by the Southern Ontario landfill’s site engineers in the 2014 annual report (see 

Table C1 for a comparison between the synthetic leachate composition developed for this research 

and that of  Rowe et al., 2002). Each solution was made and autoclaved separately. Solution 1 was 

autoclaved at 95°C for 15 min and all other solutions were autoclaved at 121°C for 20 min. When 

making synthetic leachate medium amended with microcrystalline cellulose (average particle size 

= 90 µm), Solutions 1-5 were combined. When making synthetic leachate medium without 

microcrystalline cellulose, Solutions 2-5 were combined. When making synthetic leachate agar 

medium with microcrystalline cellulose or without cellulose, Solutions 1-6 or Solutions 2-6 were 

combined, respectively. All synthetic leachate media without agar were combined at room 

temperature and the pH adjusted to 6.6-6.8 using 0.22 µm filter-sterilized 2.5 M hydrochloric acid 

while stirring. Media components for media with agar were added while the agar was still molten, 

with slow stirring.  
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Table 4.1. Compositions of synthetic leachate and metal stock solution 

 Amount Unit (/L) dH2O 

Solution 1*   * 

Microcrystalline cellulose 10 g  

Solution 2 200 ml 

CaCl2 x 2H2O 870 mg  

Solution 3 200 ml 

MgSO4  54 mg  

MgCl2 x 6H2O 1,083 mg  

Solution 4 100 ml 

K2HPO4 30 mg  

Solution 5 500 ml 

KHCO3 312 mg  

K2CO3 324 mg  

NaCl 745 mg  

NaHCO3 1,558 mg  

NaNO3 26 mg  

NH4HCO3 1,430 mg  

CO(NH2)2 (urea) 407 mg  

Solution 7 - Metal Stock Solution  1 ml  

Solution 6**    * * 

Agar 15 g  

Solution 7 - Metal Stock Solution top up to 1 L 

Al2(SO4)3 x 16 H2O 30 mg  

CoSO4 x 5 H2O 150 mg  

CuSO4 x 5 H2O 40 mg  

FeSO4 4,000 mg  

H3BO3 19,446 mg  

MnSO4 x H2O 2,453 mg  

(NH4)6Mo7 O24 x 4 H2O 50 mg  

NiSO4 x 6 H2O 500 mg  

ZnSO4 x 7 H2O 50 mg  

96% concentrated H2SO4 2.3 ml  

* Only added when making synthetic leachate amended with microcrystalline cellulose. Autoclave 

Solution 1 separately and combine with Solutions 2-6 at room temperature. Adjust total volumes 

of Solutions 1-6 to total 1 L.  

** Only added when making synthetic leachate agar media or synthetic leachate with 

microcrystalline cellulose agar media. Adjust total volume of synthetic leachate to 1 L with the 

amendment. 

Adjusted pH to ~6.6-6.8 with HCl 
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4.2.3 Enriching for cellulose degraders on microcrystalline cellulose 

 

Approximately half of one 0.2 µm filter was diced into little pieces, and the biomass was then re-

suspended in 10 ml of synthetic leachate, and vortexed thoroughly at high speed in order to 

maximize biomass resuspension off of the filter. The S0 microcrystalline cultures (MCC S0) 

contained 5 ml of the resuspended biomass and 95 ml of synthetic leachate amended with 

microcrystalline cellulose (MCC) in two clear 120 ml glass serum bottles capped with butyl 

stoppers. One bottle of MCC S0 culture was incubated in the dark at 25°C with shaking at 170 

RPM. The other bottle was maintained in the dark at room temperature without shaking. A negative 

control containing only synthetic leachate with MCC and no biomass was incubated under both 

conditions. After two weeks, the MCC S0 cultures were transferred at 1:10 dilution into synthetic 

leachate amended with MCC for a total of 100 ml, in duplicate (MCC S1 cultures), which were 

incubated at 25°C and at room temperature. MCC S1 bottles were subcultured into MCC S2 in the 

same way after two weeks of incubation. Subculturing of MCC in the same way was continued up 

until S5. All cultures were batch-refreshed every two weeks by removing 15 ml of spent culture 

and adding 15 ml of fresh synthetic leachate amended with MCC. A negative control for each sub-

culture was incubated in parallel, containing the same synthetic leachate used as diluent but 

without any MCC.  

 

4.2.4 Enriching for cellulose degraders on paper substrates 

 

Copy paper (CP), cardboard (CB, Thermo Fisher box), inkless newsprint (NP, sourced from the 

Imprint campus newspaper), and filter paper (FP, Whatman filter paper No. 1, Whatman, Dassel, 

Germany) were cut into 1 x 6 cm strips, individually wrapped in aluminum foil, and autoclaved. 

A paper degradation trial was designed as follows: i) paper controls contained one strip of paper 
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and 10 ml of synthetic leachate in a test tube (in duplicate); ii) paper-free controls (CTRL) 

contained 9 ml of synthetic leachate in a test tube and 1 ml of a biomass suspension from MCC S2 

(in duplicate); and iii) test cultures contained a strip of one paper (CP, CB, FP, or NP) combined 

with 9 ml of synthetic leachate and 1 ml of MCC S2 culture in a test tube (in triplicate). Test tubes 

were capped with plastic test tube caps.  

 

Table 4.2. Composition and source of inoculum in samples. Incubation times indicate length 

of enrichment prior to DNA extraction for a given culture. S = Subculture, MCC = 

microcrystalline cellulose, CTRL = paper-free control, CP = copy paper, CB = cardboard, FP = 

filter paper, NP = newsprint. 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     * this sample was not sequenced 

Sample Biomass inoculum 

Incubation time 

of sample before 

subculture(weeks) 

Time at inoculation of 

sample (total weeks) 

Microcrystalline cellulose enrichment cultures 

S0 MCC 

biomass from 

leachate 2 0 

S1 MCC S0 MCC 2 2 

S2 MCC S1 MCC 2 4 

S3 MCC* S2 MCC 2 6 

S4 MCC* S3 MCC 2 8 

S5 MCC* S4 MCC 2 10 

Paper enrichment cultures 

S0 CTRL S2 MCC 5 0 

S0 CP S2 MCC 5 0 

S0 CB S2 MCC 5 0 

S0 FP S2 MCC 5 0 

S0 NP S2 MCC 5 0 

S1 CTRL S0 CTRL 13 11 

S1 CP S0 CP 13 11 

S1 CB S0 CB 13 11 

S1 FP S0 FP 13 11 

S1 NP S0 NP 13 11 

S2 CTRL S1 CTRL 8 24 

S2 CP S1 CP 8 24 

S2 CB S1 CB 8 24 

S2 FP S1 FP 8 24 

S2 NP S1 NP 8 24 
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Media controls in test tubes contained 10 ml of synthetic leachate and no paper nor biomass (in 

duplicate). All cultures were incubated in the dark at 37°C with shaking at 170 rpm. Cultures were 

refreshed every 5-7 days by removing 1 ml of spent culture and adding 1 ml of fresh synthetic 

leachate medium. All paper cultures were sub-cultured to S1 and then to S2 subcultures when the 

copy paper and filter paper trials showed physical degradation (Figure 4.1, Table 4.2). 

 

 

4.2.5 Detecting cellulose degrading isolates from the MCC enrichment culture 

 

4.2.5.1 Testing for carboxymethylcellulose degradation 

 

Presence of endocellulase activity in the MCC enrichment culture was tested by using MCC S5 

bottles #1 and #2, subcultures that had been incubated for 59 weeks at 25°C with shaking with 

Figure 4.1. Timeline of MCC and paper subcultures. Microcrystalline cultures were done in 

duplicate except S0. A media control without biomass was prepared fresh with each MCC 

subculture.  Paper culture series were done in triplicate for each subculture and its paper-free 

control was done in duplicate. DNA was extracted at each subculture time point. The paper 

control and the media control are not shown. 
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periodic media refreshment. A modified version of carboxymethyl cellulose (CMC) (w/v) agar 

medium (American Type Culture Collection (ATCC) medium 2720 protocol (American Type 

Culture Collection)) (Table 4.3) was used to test isolates for endocellulase activity, where FeCl3 

was omitted and casitone was replaced by Trypticase Peptone (Catalog No. 211921, BD 

Biosciences, Mississauga, ON). The medium was autoclaved at 115°C for 15 mins and K2HPO4 

was added right before plates were poured. 

A loopful of MCC S5 liquid culture from bottle #1 and #2 were each used to make one straight 

streak on CMC agar plate, which was incubated at 30°C for one week to encourage faster colony 

growth. The plate was stained with 0.1% Congo red solution for 15 min, then the dye was poured 

off before adding 1 M NaCl for 15 min. Carboxymethyl cellulose hydrolysis was visualized by 

chromogenic clearing on the plate. Clearing zones, where there was little to no Congo red stain, 

indicate zones of cellulose hydrolysis (Teather and Wood, 1982).  

To isolate potential cellulose-degrading colonies, two classical streak plates were made using 

MCC S5 bottle #1 only (as the previous Congo red staining identified more cellulose degradation 

activity in bottle #1 than #2). These streak plates were incubated at 30°C and 45°C until colonies 

formed. Eight colonies of different morphologies were chosen from the streak plates on CMC and 

further purified by restreaking on fresh CMC agar. Once isolated colonies were obtained, a colony 

was picked and streaked back and forth five times on fresh CMC agar. Plates were incubated at 

30°C and 45°C for seven days. Bacillus subtilis (ATCC 6633), a known endocellulose degrader, 

was used as a positive control. After seven days, the CMC agar was stained with Congo red as 

before. Endocellulase activity of isolates was assessed through CMC hydrolysis by computing the 

ratios of the widths of the hydrolysis zones to the widths of the growth streaks. Isolates were 

purified on nutrient agar to phenotypically characterize cell morphologies and Gram-reaction.  
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Table 4.3 Carboxymethyl cellulose medium. The medium composition was modified from 

ATCC medium 2720.  

Component Mass (g) / Volume (ml) 

(NH4)2SO4 1.0 g 

MgSO4 x 7H2O 1.0 g 

CaCl2 X 2H2O 1.0 g 

K2HPO4 (filtered) 1.0 g in 50 ml of distilled water 

Peptone 2.0 g 

Carboxymethyl cellulose 15.0 g 

Agar 15.0 g 

Distilled water 950 ml  

 

 

 

4.2.5.2 Testing for microcrystalline cellulose degradation 

 

Exocellulase activity was tested by the degradation of microcrystalline cellulose. The isolates 

grown on CMC were streaked on the ATCC 2720 medium with microcrystalline cellulose 

substituted as the cellulose source and supplemented with 0.2% Congo-Red in the medium. Plates 

were incubated at 30°C and 45°C for eleven days.  Degradation was visualized by chromogenic 

clearing of Congo red. 

 

4.2.5.3 Testing for cellobiose degradation 

 

Beta-glucosidase activity of isolates was tested on minimal medium amended with cellobiose. The 

isolates were streaked on modified ATCC Medium: 2511 M9 Minimal agar (American Type 

Culture Collection) and on M9 where the glucose was replaced with 1% D(+)- cellobiose (w/v) as 

the sole carbon source. The ATCC Medium 2511 M9 minimal agar without glucose was used as a 

control medium.  Both cultures were incubated at 30°C and 45°C for seven days, after which 

growth on the two media was compared. Cells able to grow on cellobiose as the sole carbon source 

would have enhanced growth compared to those that cannot. To quantitatively assess beta-

glucosidase activity, the ratio of the widths of the growth streak on M9 amended with cellobiose 
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to that of the M9 control medium was calculated. Enhanced growth on cellobiose signifies beta-

glucosidase activity. Bacillus subtilis (ATCC 6633) was used as a positive control. 

 

 

4.2.6 16S rRNA gene amplicon sequencing on time series cultures 

 

The MCC S0-S2 cultures and the paper cultures S0-S2 (Table 4.2) maintained over ~7.5 months 

were selected for 16S rRNA gene amplicon sequencing to analyze microbial population 

enrichment dynamics over time on various cellulose substrates. 

 

4.2.6.1 DNA extraction 

 

A 1 ml aliquot of each culture was centrifuged at 13.5 rpm for 2 minutes. Cell pellets were stored 

at -20°C until extraction. An extraction kit control with no added biomass was carried out 

alongside the samples. Genomic DNA was extracted using the DNeasy PowerSoil Kit (QIAGEN, 

Hilden, Germany) as per manufacturer’s instructions except the pellets were re-suspended in the 

bead-beating fluid pipetted out of the bead-beating tubes and then the suspensions were transferred 

back to their respective bead-beating tubes, in place of the suggested soil samples. Bead beating 

was done using a MO BIO Vortex Adapter (MO BIO). The elution volume for DNA was 50 µl in 

kit solution S6 (10 mM Tris). Extracted DNA was stored at -20°C.  

 

4.2.6.2 DNA amplification, purification, and quantification 

The variable region V4-V5 of the 16S rRNA gene was amplified using the primers 515F 

(5’GTGYCAGCMGCCGCGGTAA-3’) and 926R (3’-CCGYCAATTYMTTTRAGTTT-5’) 

(Parada et al. 2016) using Taq DNA polymerase (New England Biolabs Ltd., Whitby, ON). The 

PCR amplification was done on the Bio-Rad T100™ Thermal Cycler (Bio-Rad Laboratories, 
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Hercules, CA) using the following protocol modified from Bartram et al.’s (2011) protocol: initial 

denaturation at 95˚C for 3 min, 35 cycles of 95˚C for 30 s, 50˚C for 30 s, 68˚C for 1 min, and the 

last extension at 68˚C for 7 min. The primers included 5’ Illumina sequencing adapters composed 

of a unique barcode corresponding to each sample for multiplexing and the Illumina adapter 

sequences that bind to the sequencing primers. For this analysis, we used two forward primers with 

different barcodes, 515fi14 and 515fi6, and a suite of 32 uniquely barcoded reverse primers. The 

composition of the PCR master mix per reaction consisted of: 2.5 µl of 10X ThermoPol Buffer 

buffer, 1.5 µl of 10 mg/ml Bovine Serum Albumin, 0.05 µl of 100 µM V4 forward primer, 1 µl of 

5 µM V5 reverse primer, 0.05 µl of 100 mM dNTPs, 0.125 µl of Taq DNA polymerase (0.6 

units/µl), 1 µl of 1-10 ng of template DNA (1-10 ng), and 18.775 µl of nuclease-free molecular 

grade water (UV-treated). The water was UV-treated for 20 min. The final reaction volume was 

25 µl. The PCR amplification for each sample was done in triplicate to lower PCR bias and reduce 

contamination effects.  The amplification included four non-template controls (containing the 

master mix and enzyme but without template DNA). Triplicate amplicon reactions from each 

sample were pooled and the concentrations were quantified by 1% gel electrophoresis (with 1X 

TAE buffer). The 1 kb Sigma DirectLoad DNA ladder (10 µl loaded) (Sigma Aldrich Oakville, 

ON, Canada) was used as reference for DNA amplicon size. The DNA was visualized using 

GelRed (Biotium, Hayward, CA) on the AlphaImager HP (Bio-Techne, Minneapolis, MN) and the 

accompanying AlphaView software was used to quantify the DNA concentration of the bands. A 

stock PCR master mix was made without the uniquely barcoded reverse primers and then 

combined with the individually pipetted reverse primers and DNA templates in a 96-well plate.  

Amplicons from each sample were pooled at equal concentrations. The pooled library was spiked 

with a positive control of a 1ng/µl mixture of Allivibrio fischeri’s and Thermus thermophiles’s 



 78 

341F – 926R fragment of the 16S rRNA gene cloned into vectors at a 1:1 ratio. Amplicons were 

run on a 1% agarose gel alongside 50 ng of a 1 Kb Plus DNA ladder (Invitrogen, Carlsbad, CA) 

and visualized using ethidium bromide. The pooled sequencing library was excised from the gel 

using a razor blade and purified using the New England Biolabs Monarch DNA Gel Extraction Kit 

(New England Biolabs Ltd., Whitby, ON) with the following modifications to the protocol to 

accommodate for the larger size of the gel slice (~2.67 g): i) 10.7 ml of gel dissolving buffer was 

added to the gel in a 15 ml centrifuge tube and the gel dissolved as indicated in the manufacturer’s 

protocol; ii) two spin columns were used, with each processing half the volume of the dissolved 

DNA gel solution; and iii) the final product was eluted in a total of 20 µl of elution buffer. The 

purified amplicon library was quantified using a Qubit dsDNA HS Assay kit on the Qubit 2.0 

Fluorometer (Invitrogen, Carlsbad, CA). A portion of the library was diluted to 6 nM in 10 nM 

Tris and 0.05% Tween 20, pH 8. The concentration of the diluted amplicon library was verified 

using Qubit and 1% agarose gel quantification. 

 

4.2.6.3 Sequencing 

 

The MiSeq (Illumina, Hayward, CA) platform was used to sequence the pooled library of 

amplicons from all samples and controls. The MiSeq v2 Reagent Kit for 500 cycles (2 x 250 bp) 

(Illumina, Hayward, CA) was used per manufacturer’s instructions. The library had an average 

final template size of 411 base pairs. The library was also spiked with 10% PhiX for run quality 

control and to increase library diversity in the case of low-diversity libraries. The library and PhiX 

were denatured using 0.2 N sodium hydroxide, diluted to 5 pM, and combined in a 10:1 ratio for 

a total volume of 600 µl. The library pool was loaded in one lane of a MiSeq flow cell. After 

sequencing, indexed reads for each sample were demultiplexed by the MiSeq Reporter Generate 
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FASTQ software (Illumina). Read metrics and data quality were analyzed using the online 

interface BaseSpace Sequence Hub (https://basespace.illumina.com). 

After demultiplexing, ~65% of the clusters were not assigned to a sample. Unassigned clusters are 

due to barcode mismatches between the sequenced clusters and the assigned barcodes (known 

primer sequences). In an attempt to increase the number of assigned clusters, the samples were 

demultiplexed again with modification of the 6-base barcode sequence where the first nucleotide 

was replaced with an “N” for all of the forward and reverse primers. 

 

4.2.7 Bioinformatic pipeline and sequence analyses 

 

Quality control, denoising, merging of paired end reads, and training of a classifier to assign 

taxonomy to sequences were done by using plugins in QIIME2 v. 2018.2 (Caporaso et al., 2010). 

Bases were trimmed at base position 25 of the forward read and at position 23 of the reverse reads. 

Reads were then denoise and merged using the DADA2 (Callahan et al., 2016) plugin. Taxonomic 

assignments for the individual features in Qiime2 were generated by first training a Naive Bayes 

classifier on the SILVA (release 132) 99% OTUs reference dataset (Quast et al., 2012) using the 

q2-feature-classifier plugin, after which the classifier was applied to the sample dataset. Individual 

features were collapsed at the species level (level 7) at the taxonomic analysis step of Qiime2 and 

species-level taxonomic abundances were summed. From this point forward, the term “ESV” 

(exact sequence variant) is used to represent a taxonomic level at which individual features sharing 

the same taxa at the species level have been collapsed. The ESVs that were present only in the 

positive controls (A. fischeri and T. thermophiles), the non-template controls, and extraction 

controls were removed from further analysis. Samples that had a lower number of reads than any 

non-template control or extraction control were also removed from analysis, which included one 
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replicate of copy paper S2 and one replicate of the paper-free control S1. Taxonomy and abundance 

patterns of the most abundant ESVs in each paper trial were analyzed and visualized by bar plots 

and line plots using ggplot2 (Wickham, 2016), and heat maps using the Phyloseq v. 1.24.2 

(McMurdie and Holmes, 2013) in RStudio (RStudio Team, 2015). The core microbiome of each 

culture was determined as follows: i) the relative abundance of an ESV across all replicates in a 

paper trial were summed and the ESVs were ranked from greatest to least abundance; ii) a cut-off 

threshold was applied at which the last ESV ranked that was included in the core microbiome was 

>1% relative abundance in any S2 replicate. Any ESVs whose relative abundance was <1% in all 

replicates and all subcultures but were above this cut-off threshold were removed from the core 

microbiome. To investigate enrichment of the core microbiota from the MCC S2 (T=0 inoculum) 

over the 26-week enrichment trial on different papers, ESVs whose relative abundance were >5% 

in any replicate from any culture were screened for an upward trend in relative abundance by 18 

weeks (S1) in any one of the paper enrichments. 

 

 

4.3 Results and Discussion 

 

4.3.1 Cellulolytic isolates from the microcrystalline cellulose culture 

 

Biomass filtered from the CLC1_T1 leachate was cultured in synthetic leachate enriched with 

microcrystalline cellulose (MCC) (S0) at 25-27°C. Subcultures were set up using a 1:10 dilution 

in fresh MCC enrichment medium every two weeks up to S5. The subcultures were additionally 

refreshed every two weeks by removing 15% of spent culture volume and replacing with fresh 

media. The MCC S5 enrichment at 59 weeks was streaked onto carboxymethyl cellulose (CMC) 

medium to isolate cellulose-degrading colonies from the mixed culture and incubated at 30°C and 

45°C for one week to test the growth capacity and cellulase production at different temperatures. 
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Eight phenotypically different isolates (Table 4.4) were randomly chosen from the MCC S5 mixed 

culture grown on CMC medium and were purified on the same medium.  

Irrespective of incubation temperature, six colonies (I1, I2, I3, I4, I6, I7) demonstrated CMC 

hydrolysis (ratio >1) (Table 4.5; Figure 4.2A). At 30°C and 45°C, four isolates (I1, I3, I4, and I6)  

 

Table 4.4. Phenotypic characteristics of isolates.  

Isolate Gram-reaction Cellular morphology 

I1 Gram-negative rod 

I2 Gram-negative coccobacillus 

I3 Gram-negative rod 

I4 Gram-negative rod 

I5 Gram-negative coccobacillus 

I6 Gram-negative rod 

I7 Gram-negative rod 

I8 Gram-negative rod 

 

Table 4.5. Assessment of CMC and cellobiose hydrolysis by isolates. For carboxymethyl 

cellulose, the ratios of the widths (mm) of hydrolysis zones to the widths (mm) of the growth 

streaks are shown. For cellobiose, the ratio of the widths of the growth streak on M9 amended with 

cellobiose to that of M9 (control) was computed (Cellobiose:Control ratio).  

 

demonstrated strong CMC hydrolysis (ratio: >1.5). The endocellulases secreted by these 

organisms are active at mesophilic and at the low end of thermophilic microorganisms’ growth 

temperatures. Two isolates (I2, I7) showed weaker hydrolysis of CMC (ratio = 1-1.2) at 30°C and 

no hydrolysis at 45°C (Figure 4.2A).  Two isolates (I5, I8) showed no hydrolysis (ratio ≤1) at 

 Medium Temp-

erature 

(°C) 

Ratios 

I1 I2 I3 I4 I5 I6 I7 I8 

CMC  30 3.7 1.1 4.3 5.7 0.0 6.0 1.2 1.0 

CMC  45 3.8 0.0 9.7 14.5 1.0 6.0 0.0 1.0 

Cellobiose: 

Control 

Ratio 

30 

0.0 0.8 0.2 0.0 1.7 0.8 1.7 1.7 

Cellobiose: 

Control 

Ratio 

45 

0.0 0.6 7.0 1.0 1.3 1.3 1.4 2.0 
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either temperature. Isolates that can hydrolyze CMC have endocellulases that randomly cleave the 

cellulose chain at internal bonds of amorphous regions (Sajith et al., 2016). These results indicate 

that I1, I3, I4, and I6 are mesophilic or potentially thermophilic cellulose degraders that possess 

endocellulases. This evidence demonstrates that microorganisms exhibiting endocellulase activity 

are present in the MCC S5 enrichment cultures and in the Southern Ontario landfill as well.  

None of the isolates definitively showed exocellulase activity on microcrystalline cellulose (MCC) 

at 30ºC nor 45ºC. Although growth of all isolates was observed for at least one temperature, 

chromogenic clearing of Congo red by any of these isolates was not seen (Figure 4.2B). 

The difference in the tones of the plates were due to the difference in the thickness of the agar 

where two plates, each incubated at 30ºC and 45ºC were less thick (top two) and thus allowed 

more light to pass through than the other (bottom two). Growth was possible without hydrolysis 

zones because the microorganisms could have been growing on the peptone in the medium instead 

of the MCC.  

Several reasons may explain the absence of hydrolysis zones on MCC: first, these isolates may not 

be able to hydrolyze microcrystalline cellulose in the allotted incubation time (11 days). No 

positive control pure culture was available to confirm the validity of this test. Secondly, the MCC 

may have settled to the bottom of the plate as the agar was solidifying, preventing the 

microorganisms from accessing most of the MCC. To remedy this problem for future tests, an 

underlay of the MCC agar containing no MCC can be poured before adding a thin layer of agar 

containing MCC. Alternatively, MCC degradation can be qualitatively detected by culturing in 

liquid MCC medium and the surface morphology of MCC after incubation with the isolates can 

observed by scanning electron microscopy for degradation (Wang et al., 2017a). Thus,  
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A       B 
  30ºC       45ºC         30ºC          45ºC 

I2 I1 

I3 I4 

I5 I6 

I7 I8 

C     1          2            1           2  
   30ºC        30ºC                 45ºC         45ºC 

Figure 4.2 Colonies grown on cellulose-containing media at different temperatures. A) Clearing 

zones formed on carboxymethyl cellulose stained by Congo red (CR) B) Growth on microcrystalline 

cellulose containing CR. C) M9 medium amended with cellobiose (1) and unamended M9 medium 

(2). Orientation of isolates as specified in A) are the same on all plates.  
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exocellulase activity was not demonstrated in the MCC S5 enrichment culture, but cannot be ruled 

out at this time.  

Beta-glucosidase activity was demonstrated by five isolates (I3, I5, I6, I7, I8) through enhanced 

growth on cellobiose-amended medium. At 30ºC, three isolates (I5, I7, and I8) grew better (ratio 

>1) on cellobiose-amended medium compared to growth on the control (M9 minimal medium) 

(Table 4.5, Figure 4.2C). At 45ºC, four isolates (I3, I5, I6, I7) were able to grow better on 

cellobiose-containing M9 minimal medium. These observations suggest that the beta-glucosidases 

of two isolates (I3 and I6) operate only at a warmer, thermophilic temperature. The optimal 

temperature for beta-glucosidases has been reported to be 45ºC for i) a beta-glucosidase isolated 

from soil that was closely related to beta-glucosidase from Methanocella paludicola 

(Euryarchaeota), ii) a putative beta-glucosidase from Caldiliniea aerophila (Chloroflexi), and iii) 

a beta-glucosidase from Anaerolinea thermophila (Chloroflexi), as well as at 50ºC for Bacillus 

licheniformis from the rumen of a goat (Bergmann et al., 2014; Seo et al., 2013).  

My results indicate that I1, I2, and I4 contain endocellulase(s), while I5 and I8 contain 

betaglucosidase(s). Isolates I3, I6, and I7 likely encode both of these cellulolytic enzyme types. 

 

 

4.3.2 Frequency of ESVs in enrichment cultures and the paper-free control 

 

A cumulative total of 319 ESVs were detected across the microcrystalline cellulose enrichments, 

paper enrichments, and the paper-free control cultures. The greatest number of ESVs were detected 

in MCC S0 (199 ESVs), which was expected because this enrichment represents the time zero for 

the paper enrichment trial, and would theoretically represent the maximum number of populations 

present under the given conditions (Table 4.6). The MCC S0 enrichment was sequenced two weeks 

after incubation meaning microorganisms recovered from the leachate filter were already enriched 
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for cellulolytic activity through exposure to MCC as a substrate. The number of ESVs detected in 

the microcrystalline cellulose enrichment remain stable between S1 and S2. It is uncertain whether 

the microbial populations have actually stabilized: sequencing of subsequent subcultures would be 

needed to verify this. The microcrystalline S2 enrichment culture was used as the inoculum (in a 

1:10 dilution) to create the paper enrichments with either copy paper, cardboard, newsprint, or 

filter paper as the amended substrate. The average number of ESVs detected and the average 

number of ESVs occurring at >1% relative abundance in the paper enrichment cultures declined 

from S0 to S2, indicating a general reduction in microbial population richness over the enrichment 

trial (Table 4.6). Two exceptions were the Newsprint culture, where the average number of ESVs 

increased from S1 to S2 and the Filter Paper culture where the number of ESVs remained 

unchanged from S1 to S2. In the paper-free control (CTRL), of the 75 ESVs detected in S0 and 77 

ESVs in S2, 49 ESVs were shared between the two subcultures. The relative abundance of the 20 

and 28 other ESVs in S0 and S2, respectively, were at <1% relative abundance. It is possible that 

these organisms fluctuate at abundances near our limit of detection. Six ESVs in the CTRL S0 

sample present at 1-5.6% were undetectable in S2, representing organisms that were lost or at lower 

abundance via the enrichment process. The relatively stable composition of ESVs from S0 to S2 in 

the paper-free control samples suggests that the synthetic leachate on its own is not strongly 

affecting the microbial community when considering the reductions in richness seen in the paper 

enrichments. A note that the S1 time point for the paper-free cultures was discarded as one replicate 

was removed after filtering by read number, and the other was considered unreliable without a 

replicate. 
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Table 4.6. Number of ESVs detected and the number of ESVs with >1% relative abundance 

in the MCC and paper enrichment trials. All numbers come from averages over three replicates 

per culture except where noted.  

Culture Average frequency of ESVs 

detected per subculture (±sd of 

replicates) 

Average frequency 

of ESVs >1% 

 Subculture Subculture 

 0 1 2 0 1 2 

Microcrystalline 

cellulose 

196a 89a 90a 17 a 3 a 7 a 

Copy paper 122±22 

 

94b±9 51±7 14 15b 15 

Cardboard 114±9 68±14 50±7 21 14 7 

Filter paper 119±11 94±7 94±6 17 7 10 

Newsprint 91±8 67±2 83±9 20 15 11 

Paper-free control 75±9 28c 77±22 27 16c 13 

sd = standard deviation 
a 

No replicates 

b Duplicates 
c 

Only one replicate available 

 

4.3.3 Microbial composition of enrichment cultures 

4.3.3.1 Core microbiota 

Of the 319 ESVs cumulatively detected across all cultures, analysis was focused on ESVs that 

form the core microbiota in each enrichment as well as the ESVs that enriched within each 

culture’s core microbiome over time and transfers. In this context, the core microbiome in a 

particular enrichment represents the consistently present, relatively abundant organisms across an 

enrichment trial. Core microbiome members were ranked based on summed relative abundance 

across the trial. A cut-off threshold at which the last ranked ESV of the core microbiome was 

detected above 1% in any replicate of the S2 cultures (final time point) was applied to separate the 

core microbiota potentially involved in cellulose degradation from other low abundance 

organisms. The core microbiota for the different trials ranged from 20-37 ESVs (MCC = 21 ESVs; 

CP = 26; CB = 20; FP = 30; NP = 37, and paper-free control = 35) (Figure 4.3), and included 96 
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unique ESVs in total. Across all cultures, members of the Proteobacteria, with representatives from 

Gammaproteobacteria and Alphaproteobacteria, as well as Bacteroidetes, Firmicutes, and 

Chloroflexi were predominant (Figure 4.3). Actinobacteria were present in the core microbiome 

of the paper-free control but not in the cellulose enrichments. As mentioned in previous chapters, 

these phyla and classes have been detected in landfills (Song et al., 2015a, 2015b; Collins-

Fairclough et al., 2018). A comparison between raw landfill leachate and cellulose-enriched 

landfill leachate microcosms showed members of Bacteroidetes and Firmicutes increased 5 and 

8% respectively, and Proteobacteria decreased 15% in the enriched leachate (Ransom-Jones et al., 

2017). Metagenome-assembled genomes of Proteobacteria, Bacteroidetes, and Firmicutes from 

the cellulose-enriched microcosms in landfill leachate were generated and they were shown to 

encode glycosyl hydrolase families containing cellulases (Ransom-Jones et al., 2017). It was 

surprising that representatives of Chloroflexi were present in the core microbiota of the paper 

enrichments. Although not usually implicated in cellulose degradation, Chloroflexi possess 

thermophilic representatives from the classes Anaerolineae and Ktedonobacteria that exhibit 

cellulose degradation in culture (Podosokorskaya et al., 2013a; King and King, 2014). It is 

interesting to note that the strains cultured in these studies were grown at 47°C and 40-65°C 

respectively, but our paper enrichments were cultured at 37°C. It is possible that the incubation 

temperature restricted the Chloroflexi population from growing.  

At the genus or lowest classifiable taxonomic level, the 96 core microbiota ESVs comprised 14 

genera in MCC, 19 in CP, 13 in CB, 18 in FP, 21 NP enrichments, and 20 in the paper-free control 

culture (CTRL), with some ESVs present in multiple culture trials (Figure 4.4, Figure 4.5). The 

majority of ESVs are between 0-10% relative abundance in each enrichment (Figure 4.4). Two 
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ESVs at >1% relative abundance were common in all the paper enrichments and the paper-free 

control: ESV171-Caulobacteraceae and ESV28-Proteiniphilum, (Figure 4.4). 

 

 
Figure 4.3. Core microbiome ESVs coloured by their taxonomic group (phylum and 

proteobacterial-class) affiliations for the microcrystalline cellulose enrichment, the paper 

enrichment cultures, and the paper-free control.  
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Figure 4.4. Heat maps showing the average relative abundance of ESVs at >1% in the A) copy paper, B) newsprint, C) cardboard, D) filter 

paper, and E) paper-free control cultures.  

E 
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Figure 4.5. Line plots showing the change in the average relative abundance across all cultures for ESVs (A-I) with >5% relative 

abundance in any time point, in any culture, that showed an increase in relative abundance by week 18 (S1). CP = copy paper, FP = filter 

paper, CB = cardboard, NP = newsprint, NP = newsprint, CTRL = paper-free control.  
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4.3.3.2 Population dynamics in the microbial communities of paper enrichment cultures  

A subset of the most abundant ESVs (>5% relative abundance in any replicate, 21 ESVs) was 

selected to examine enrichment patterns over the experiment. This group was screened for an 

increase in relative abundance from T=0 (relative abundance taken from MCC S2) over at least 18 

weeks (S1). The ESVs that showed increases in relative abundance only from T=0 to 5 weeks (S0) 

were not considered potential cellulose degraders and were not considered further. Four ESVs 

were present at >5% in the MCC and paper enrichments that showed an increase in their average 

relative abundance by at least 18 weeks: ESV94-Paenibacillus, ESV57-Cytophaga uncultured 

bacterium, ESV-Proteiniphilum, and ESV161-Caulobacteraceae uncultured bacterium (Figure 

4.5A-D). 

ESV94-Paenibacillus (phylum Firmicutes) was not detectable in the MCC S2 enrichment, 

increased to 56% in FP by 18 weeks, but decreased by 26 weeks to 2.5% (Figure 4.5A). In the CP 

culture, Paenibacillus peaked at 24% but gradually decreased to 12% by 26 weeks. In CB, 

Paenibacillus slowly increased to peak at 18% at 26 weeks. Its abundance remained relatively 

stable, and low, in NP and the CTRL. The filter paper we used has a minimum 98% cellulose 

content, with other trace constituents such as ash and minerals (Sigma-Aldrich). The cellulose 

content of waste office paper was reported as 87%, with newsprint at 48%, and cardboard at 57% 

(Palmisano and Barlaz, 1996). The relative increase in ESVs affiliated with Paenibacillus in the 

paper cultures, especially those with higher cellulose content such as filter paper and copy paper, 

strongly suggests that is involved in cellulose degradation. Paenibacillus have been found in 

landfill leachate (Chua et al., 2014; Remmas et al., 2017b) and isolated strains of the genus from 

forest soil have demonstrated degradation of cellulose (Wang et al., 2008; López-Mondéjar et al., 

2016). ESV94 – Paenibacillus is the most likely cellulose degrader enriched in the paper cultures. 
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ESV57-Cytophaga uncultured bacterium (phylum Bacteroidetes) was also not detectable in the 

MCC enrichment S2 culture. It increased in abundance to 61% by 26 weeks in the CB culture 

(Figure 4.5B). In CP, Cytophaga also increased to 19% by 18 weeks but declined by 26 weeks. In 

FP, Cytophaga increased to 10% by 5 weeks and then hovered around 10% for the remainder of 

the trial. Cytophaga in NP increased to 12% by 5 weeks then decreased to 1% by 18 weeks, and 

increased again to 7% by 26 weeks suggesting it was not stably enriched and potentially not a 

strong competitor for cellulose. ESV57 in the paper-free control increased to 7% by 18 weeks but 

was not detectable by 26 weeks. This suggests it was able to survive on the synthetic leachate, 

which has urea as the only organic compound, as well as potentially low amounts of 

microcrystalline cellulose subcultured from the original MCC bottle. By S2, the cellulose was 

likely diluted out or consumed and ESV57 could no longer sustain itself without a carbon source. 

A member of the Cytophaga, Cytophaga hutchinsonii, is a well-known aerobic cellulolytic soil 

bacterium. C. hutchinsonii’s genome encodes CAZymes with predicted involvement in 

hemicellulose hydrolysis (Xie et al., 2007). Waste corrugated cardboard is composed of 57% 

cellulose, 9.9% hemi-cellulose, and 20.8% lignin, whereas copy paper is 87.4% cellulose, 8.4% 

hemi-cellulose, and 2.3% lignin (Staley et al., 2012). The high relative abundance of Cytophaga 

in CB by week 26 suggests it can hydrolyze lignin and/or hemicellulose in the complex 

lignocellulose matrix, allowing cellulose to be physically accessed for hydrolysis. A recent study 

reported enrichment of Cytophaga from forest soil amended with 13C-lignin and 13C-cellulose, 

suggesting an ability to break down these substrates (Wilhelm et al., 2019). No Cytophaga 

populations have been reported in landfill leachate, but C. hutchinsonii exhibits contact-dependent 

degradation of crystalline cellulose (as opposed to releasing extracellular cellulases) and quick 

gliding motility (Walker and Warren, 1938; Xie et al., 2007). These features can potentially aid in 
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rapid colonization of cellulolytic substrates and immediate uptake of glucose released from 

cellulose. In the paper cultures, it seems possible Cytophaga is degrading lignin and hemicellulose, 

making cellulose available. Populations that are capable of cellulose degradation and are at 

relatively high abundance could then hydrolyze the available cellulose, and these populations 

would therefore further increase. This is likely the case for ESV94-Paenibacillus in CB, as an 

increase is seen from weeks 18-26 concurrent with an increase in Cytophaga abundance. 

ESV28-Proteiniphilum (phylum Bacteroidetes) was detected at 0.2% in the MCC enrichment. This 

ESV increased in to 48% in FP by week 26, but non-linearly: it had increased to 17% by week 5 

and then dropped to 7% in week 18 (Figure 4.5C). In CB, Proteiniphilum steadily increased to 

47% then dropped to 5% by week 26. In CP and NP, Proteiniphilum increased to similar 

abundances by 5 weeks, to 13%. The two trials then diverged by 18 weeks, with its abundance in 

CP decreasing to 6% whereas it increased to 20% in NP. Then by 26 weeks, Proteiniphilum 

increased to 14% in CP and decreased to 8% in NP. The relative abundance of ESV28 in the CTRL 

remained relatively even, nearing 2% from week 18 and onwards, suggesting no enrichment of 

Proteiniphilum from the synthetic leachate alone. These observations generally suggest that 

Proteiniphilum grows well on cardboard, which is high in cellulose and lignin content and on filter 

paper, which is mostly cellulose. One study found that Proteiniphilum sacchorofermentans str. 

M3/6T demonstrated weak enzymatic activity against CMC and phosphoric acid-swollen cellulose 

(Hahnke et al., 2016). However, another research group sequenced the M3/6T genome and found 

that it possessed genes encoding all three types of cellulases as well as enzymes predicted to 

degrade sugar compounds in hemicellulose  (Tomazetto et al., 2018). However, Tomazetto et al. 

(2018) suggested that the environmental conditions from which M3/6T was isolated were different 

from isolation conditions and thus the metabolisms observed differed from what was predicted 
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from the genome. Proteiniphilum have not been reported from landfill microbiota but P. 

acetatigenes has been found in an anaerobic reactor (Chen and Dong, 2005). It is also interesting 

to note that Proteiniphilum is reported to be an obligate anaerobe and ferments glucose and 

cellobiose producing a variety of acids (Chen and Dong, 2005; Tomazetto et al., 2018). However, 

our cultures were incubated with shaking, thus promoting oxygen diffusion. However, it is possible 

that anoxic micro-niches in the crevices of the cardboard and the environment near the bottom of 

the test tube persisted. The proliferation of Proteiniphilum could mean a high amount of acid was 

produced, which may have self-impeded the growth of that population as well as others until 

eventually a negative feedback loop in acid production was created. There is an interesting 

dynamic between ESV-94-Paenibacillus and ESV28-Proteiniphilum. It is unclear as to why the 

abundance of Paenibacillus in FP decreased between 18-26 weeks. However, in this interval of 

time, ESV28-Proteiniphilum increased 5-18 weeks. The growth pattern of these two organisms 

switched after being at similar abundances after five weeks of enrichment. This dynamic suggests 

resource competition between these two groups. 

ESV171-Caulobacteraceae uncultured bacterium (Alphaproteobacteria) was not detected in the 

MCC S2 enrichment, but was weakly enriched in CP and NP (Figure 4.5D). Recent study shows 

members of Caulobacteraceae were enriched from forest soil amended with lignin, hemicellulose, 

and cellulose, and have been shown to assimilate these 13C-labeled substrates (Wilhelm et al., 

2019). In the same study, members of Caulobacter were able to assimilate the three substrates. 

ESV171-Caulobacteraceae may break down these components of lignocellulose in the paper 

enrichments. It is a bit surprising that this population is not more abundant compared to previously 

discussed ESVs. One reason may be the production of three types of cellulases by the 

Caulobacteraceae bacterium may require a higher energy expenditure than the other cellulolytic 
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organisms which only have one or two types of cellulases, thus hampering the proliferation of the 

Caulobacteraceae population.  

The other ESVs that showed an increase in relative abundance over one or more subcultures 

included ESV225-Altererythrobacter, ESV89 - an organism from the class Bacteroidia, ESV207-

Stappia, ESV276-Thauera, and ESV224-Methyloversatillis (Figure 4.5E-I). Some members of the 

Altererythrobacter have demonstrated cellulose degradation in culture (Xue et al., 2012; Yuan et 

al., 2017). Thauera isolated from coal have been shown to degrade lignin (Wang et al., 2016). To 

our present knowledge, no study has looked at cellulose degradation by Stappia and 

Methyloversatillis. Our data shows Stappia slightly increased in abundance at 18 weeks in NP but 

decreased again by 26 weeks, suggesting a weak enrichment (Figure 4.5G). These microorganisms 

seem to be slightly to moderately enriched in the presence of a paper-based cellulose source 

compared to their abundance in MCC S2, whereas their stable low abundance in the CTRL cultures 

do not suggest enrichment in the synthetic leachate alone. One exception to this was the ESV207-

Stappia CTRL at 18 weeks, which is quite high. However, this data point was based on only one 

replicate (the other replicate was removed after sequencing because its read counts were lower 

than the non-template PCR controls), thus it should be interpreted with caution. This data point 

does suggest caution in inferring a cellulose degrading role for ESV207-Stappia.  

  

 

4.4 Conclusions 

 

Members of the microbial community in the leachate from CLC1_T1 at the southern Ontario 

landfill showed cellulolytic activity in culture and, based on 16S rRNA gene amplicon sequencing, 

enrichment of specific populations when amended with microcrystalline cellulose, copy paper, 

cardboard, filter paper, and newsprint. Select isolates were able to degrade carboxymethyl 
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cellulose (CMC) and cellobiose at 30°C and 45°C, thus demonstrating endocellulase and 

exocellulase activities. Microcrystalline cellulose degradation was not observed by any of the 

isolates either because this activity was absent from these organisms, insufficient incubation time 

was allowed, or a methodological improvement in plating MCC is needed. Hence, exocellulase 

potential in the MCC enrichment cultures was not definitively determined. However, the detected 

CMC and cellobiose degradation in the MCC enrichment culture may be sufficient to partially 

hydrolyze MCC in the culture. Microcrystalline cellulose has both crystalline and amorphous 

regions on which endocellulases can act and release cellodextrins (polymers of glucose with 

greater than two subunits that have been released from cellulose hydrolysis). The cellodextrins can 

then be hydrolyzed by both endo- and exocellulases, and subsequently beta-glucosidases (Wood 

and Bhat, 1988; Annamalai et al., 2016). 

The ESVs identified from the microcrystalline cellulose and paper enrichment cultures were from 

members of the Proteobacteria including the Alphaproteobacteria and Gammaproteobacteria 

classes, Bacteroidetes, Firmicutes, and Chloroflexi. Of the abundant (>1%) ESVs, only two ESVs 

of nearly 100 found collectively across the MCC and paper enrichments were shared in the core 

microbiota of the cultures. One member each from the Paenibacillus, Cytophaga, Proteiniphilum, 

and Caulobacteraceae were the most abundant ESVs showing enrichment in at least one paper 

culture, to a minimum of 5% abundance. Paenibacillus, Cytophaga, and Caulobacter from 

Caulobacteraceae are known cellulose degraders, however only Paenibacillus and Caulobacter 

have been detected in landfill leachate (Wang et al., 2008; Remmas et al., 2017b; Xie et al., 2007; 

Wilhelm et al., 2019; Abraham et al., 1999). Proteiniphilum has neither been reported to degrade 

cellulose nor been found in landfills. The shifts in population dynamics seen in the paper cultures 

may be a result of some microorganisms’ abilities to hydrolyze lignin and hemicellulose thus 
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freeing cellulose in the paper, giving rise to other microbial populations in the enrichment cultures. 

Taken together, these data demonstrate that microbial cellulose degradation is present in the 

composite leachate cistern at the southern Ontario landfill.
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Chapter 5: Conclusions and Future Directions 
 

Municipal waste sites are complex and heterogeneous engineered sites that house substantial 

microbial diversity. Past landfill research has used culture-based methods to identify and 

characterize isolates, as well as 16S rRNA gene sequencing to identify the microbial communities 

(Pourcher et al., 2001; Song et al., 2015a, 2015b; Remmas et al., 2017a; Stamps et al., 2016). Our 

research advances on these techniques with the application of metagenomics to a landfill 

environment in order to connect the functional potential with its community composition. 

Although landfills are engineered to minimize and delay the degradation of waste, the results of 

this study show that there are potential cellulolytic microbes harbouring different types of 

cellulases in the leachate of two landfills, and that this cellulose degradation is confirmed in landfill 

leachate biomass grown in enrichment cultures at the bench scale. These are encouraging 

preliminary results that emphasize the value of investigating municipal solid waste for novel 

microorganisms that degrade cellulose under challenging conditions, and which in future could be 

leveraged, optimized, and scaled up for industrial processes.  

Investigation of the Riverton City dump in Jamaica and the adjacent Duhaney River showed that 

the microbial community represented by MAGs in leachate is more diverse than that of the river. 

Bacteroidetes, Proteobacteria, Firmicutes, and Tenericutes were the most abundant phyla 

recovered in the eighteen metagenome-assembled genomes (MAGs) identifiable by ribosome 

proteins. Only five MAGs were recovered from the Duhaney river sample, all associated with the 

Proteobacteria. Six of the high-quality leachate MAGs and one alphaproteobacterial river MAG 

possessed potential cellulase genes. The total number of genes belonging to glycosyl hydrolase 

(GH) families containing cellulases was similar in the leachate and the river, whereas beta-

glucosidases were detected in both systems, endocellulases were only detected in the river. 
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Cellulose degradation may occur in the river environment; however, it would perhaps be more 

effective if exocellulases were also present. The potential cellulases detected in the leachate 

belonged mostly to Bacteroidetes, Firmicutes, and Spirochaetes, whereas Bacteroidetes and 

Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) encoded the prevalent potential 

cellulases in the river. A large majority of potential GH genes were either vaguely annotated or 

labeled as hypothetical proteins, suggesting novel carbohydrate-modifying enzymes not exclusive 

to cellulases are present in these systems. These two sites do not seem to have overlapping 

community members, as <1% of the reads of one metagenome mapped to the other metagenome 

and vice-versa. However, this does not dismiss the possibility of contamination of the river by the 

leachate, a growing concern in Jamaica. 

The data presented in Chapter 2 was interpreted with caution as one metagenome each from 

leachate and the river was used to define the community composition and cellulolytic capacity at 

these sites. Future directions would include re-sampling of the landfill leachate and the river to 

gather more temporal and spatial samples. Multiple samples would help support the interpretations 

here, and possibly increase the detection of taxonomic groups that appear seasonally and at 

different sampling locations, especially important given the heterogeneity of landfills. 

Furthermore, enrichment cultures can be set up to capture the cellulolytic populations in landfill 

in order to confirm the low cellulolytic potential that was seen in the original metagenomes. 

The results from the southern Ontario landfill also suggested cellulolytic capacity by members of 

Bacteroidetes, Firmicutes, Verrucomicrobia, and Spirochaetes being prevalent across leachate-

containing wells. This study is the first report of potential cellulases affiliated with Dictyoglomi 

and Ignavibacteria in landfill leachate, suggesting that they may have cellulose degradation 

capacities or carbohydrate-modifying activities. Putative endocellulase genes and beta-glucosidase 
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activities were detected at all sites, but putative exocellulases genes made up a small fraction of 

genes identified from only three of six sites (LW2, LW3, and GW1). As was seen in the Jamaican 

sites, the relative abundance of genes annotated as glycosyl hydrolases and hypothetical proteins 

in the Ontario landfill metagenomes make up the majority of the dataset upon screening for 

cellulase genes. This speaks to the growing abundance of novel genes in databases, where the 

genes identified in the landfill here add to those that need to be better annotated. The data also 

showed remarkable consistency in the relative abundance of GH families containing cellulases in 

the composite leachate cistern (CLC) in the difference of a week, suggesting a stable presence of 

cellulases in an open system where the landfill leachate is constantly circulated and pumped to a 

wastewater treatment plant. In contrast, the GH compositions of the three leachate wells sampled 

varied more strongly amongst each other, indicating the carbohydrate-active enzymes in the 

spatially separated leachate wells are different at a given time. Genes annotated as beta-

glucosidases, exocellulases, endocellulases, and cellulases were identified in the groundwater well. 

The groundwater sample also had the highest proportion of glycosyl hydrolase and hypothetical 

proteins, indicating a large amount of novel cellulose-degradation capacity and carbohydrate-

modifying activity.  

The research of the GH composition and its taxonomic affiliations presented in Chapter 3 can be 

strengthened by repeated sampling of these sites. It would be interesting to see if other CLCs at 

the Ontario landfill are consistent with CLC1 and whether the relative abundance of the GH 

families at each CLC are consistent over time in order to confirm the trend that was seen here. 

Repeated sampling of the LWs may reveal whether the LWs maintain a heterogeneity in the 

relative abundance of GH families. Moreover, sampling of a pristine aquifer (“pristine” based on 

chemical composition, total organic carbon measurements, or total dissolved solids) at the landfill 
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site could help to establish baseline microbial communities and functions. The microbial 

communities of this pristine aquifer could then be compared to GW1 in order to gauge whether 

the GH composition seen in this metagenome is driven by leachate contamination. Lastly, in 

addition to glycosyl hydrolase families, other protein families associated with cellulose 

degradation could be screened to increase the cellulolytic potential we identified from our 

metagenomes. These include protein families such as carbohydrate-binding modules; cellulases 

that use another medium besides water, such as cellulose phosphorylases; and other non-enzymatic 

proteins that are associated with anaerobic cellulose degradation (i.e., scaffoldin, dockerin, and 

cohesin in cellulosomes, and/or polysaccharide-utilization loci) (Cragg et al., 2015; Grondin et al., 

2017).  

Cellulose degradation, with carboxymethyl cellulose and cellobiose as specific substrates, was 

demonstrated by isolates in enrichments cultured from biomass from landfill leachate (CLC1_T1). 

Enrichments were maintained in synthetic leachate amended with microcrystalline cellulose over 

59 weeks.  The 16S rRNA gene amplicon sequencing of enrichments on different paper sources 

(copy paper, cardboard, filter paper, and newsprint) revealed 96 unique exact variance sequences 

(ESVs) in the core microbiota across all conditions. Four ESVs: Cytophaga, Proteiniphilum, and 

Caulobacteraceae showed general increased relative abundance over 26 weeks and were the most 

abundant in the paper-enriched cultures. Proteiniphilum has neither been reported to degrade 

cellulose nor previously been found in landfills.  

Future directions of the culture-based research in Chapter 4 could include developing a method to 

detect or measure microcrystalline cellulose degradation definitively, such using scanning electron 

microscopy to observe the change in crystalline structure of microcrystalline cellulose after 

incubation with enrichment or isolate cultures. Furthermore, sequencing the metagenomes of the 
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microcrystalline cellulose cultures could confirm whether potential cellulase genes are enriched, 

what additional potential functions are present in the cellulolytic communities, and which 

microorganism(s) may be performing these potential functions. 16S rRNA gene sequencing of the 

isolates derived from MCC agar plates would identify these culturable microorganisms. 

Quantitative assessment of their cellulase activity, such as measuring the specific activity of their 

enzymes, could indicate their cellulase efficiency in vitro. Lastly, it would be interesting to test the 

synergistic effects of a mixed culture of the cellulolytic isolates grown on carboxymethylcellulose, 

microcrystalline cellulose, and cellobiose, as well as on the different types of paper.  
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Appendices 

 

Appendix A 

 

Given sample names used in thesis corresponding to wells in the southern Ontario landfill 

with their sampling dates 

 

CLC1_T1: Pumphouse 3 (PH3) sampled on July 14, 2016 

CLC1_T2: Pumphouse 3 (PH3) sampled on July 20, 2016 

LW1: LW64_88 sampled on July 20, 2016 

LW2: LW138R sampled on July 20, 2016 

LW3: LW168 sampled on July 20, 2016 

GW1: OW334 sampled on July 20, 2016 
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Appendix B 

 
Table B1. Gene counts and relative abundance of genes from glycosyl hydrolase families containing cellulases (pre-filtered dataset) representing the total 

cellulolytic potential in the sampled sites at the Ontario landfill. RA = relative abundance within all GHs identified. 

GH family CLC1_T1 CLC1_T2 LW1 LW2 LW3 GW1 

GH1 385 295 194 182 327 305 

RA (per site) 0.06 0.06 0.11 0.07 0.15 0.12 

GH3 2463 2030 784 1161 626 842 

RA (per site) 0.40 0.43 0.46 0.47 0.29 0.33 

GH5 2394 1688 332 752 753 957 

RA (per site) 0.39 0.36 0.20 0.31 0.35 0.38 

GH6 0 0 0 8 3 31 

RA (per site) 0.00 0.00 0.00 0.00 0.00 0.01 

GH8 146 110 45 49 30 39 

RA (per site) 0.02 0.02 0.03 0.02 0.01 0.02 

GH9 389 316 161 161 254 105 

RA (per site) 0.06 0.07 0.10 0.07 0.12 0.04 

GH12 0 0 0 1 0 1 

RA (per site) 0.00 0.00 0.00 0.00 0.00 0.00 

GH30 261 188 103 69 81 176 

RA (per site) 0.04 0.04 0.06 0.03 0.04 0.07 

GH44 21 20 28 2 12 12 

RA (per site) 0.00 0.00 0.02 0.00 0.01 0.00 

GH45 24 16 7 1 0 0 

RA (per site) 0.00 0.00 0.00 0.00 0.00 0.00 

GH48 0 3 0 3 0 0 

RA (per site) 0.00 0.00 0.00 0.00 0.00 0.00 

GH116 70 63 35 58 41 56 

RA (per site) 0.01 0.01 0.02 0.02 0.02 0.02 
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Table B2. Gene counts and relative abundance of genes annotated as types of cellulases (screened dataset) representing the specific cellulolytic potential 

in the sampled sites at the Ontario landfill. RA = relative abundance. 

Type CLC1_T1 RA CLC1_T2 RA LW1 RA LW2 RA LW3 RA GW1 RA 

Endocellulase 276 0.0523 209 0.0522 37 0.0250 75 0.0400 73 0.0422 92 0.0499 

Exocellulase 1 0.0002 6 0.0015 0 0.0000 7 0.0037 9 0.0052 10 0.0054 

Beta-

glucosidase 

941 0.1782 723 0.1805 275 0.1856 363 0.1937 342 0.1979 163 0.0885 

Cellulase 108 0.0205 80 0.0200 28 0.0189 54 0.0288 67 0.0388 42 0.0228 

Glycosyl 

hydrolase 

2182 0.4132 1699 0.4241 729 0.4919 733 0.3911 670 0.3877 728 0.3952 

Hypothetical 

protein 

1773 0.3357 1289 0.3218 413 0.2787 642 0.3426 567 0.3281 807 0.4381 

Total 5281 - 4006 - 1482 - 1874 - 1728 - 1842 - 
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Table B3. Gene count and relative abundance of putative cellulase genes (filtered) across the sites sampled at the southern Ontario landfill. Highest-level 

of identifiable taxonomic group and proteobacterial classes at <1% relative abundance are categorized as Rare Phyla, with all rare phylum abundances summed. 

CLC1 = Composite leachate cistern, LW = Leachate well, GW = Groundwater well, T# = Time point, RA = relative abundance. 

Taxonomic group CLC1_T1 RA CLC1_T2 RA LW1 RA LW2 RA LW3 RA GW1 RA 

Bacteroidetes 2563 0.4862 1829 0.4579 533 0.3913 772 0.3779 516 0.3239 688 0.3762 

Firmicutes 1187 0.2252 927 0.2321 266 0.1953 424 0.2075 171 0.1073 121 0.0662 

Fibrobacteres 485 0.0920 322 0.0806 105 0.0771 18 0.0088 1 0.0006 2 0.0011 

Verrucomicrobia 251 0.0476 140 0.0351 42 0.0308 63 0.0308 152 0.0954 169 0.0924 

Spirochaetes 199 0.0377 174 0.0436 57 0.0419 62 0.0303 26 0.0163 37 0.0202 

Actinobacteria 98 0.0186 60 0.0150 26 0.0191 71 0.0348 50 0.0314 134 0.0733 

Alphaproteobacteria 32 0.0061 17 0.0043 22 0.0162 87 0.0426 93 0.0584 75 0.0410 

Gammaproteobacteria 72 0.0137 45 0.0113 30 0.0220 56 0.0274 67 0.0421 55 0.0301 

Deltaproteobacteria 45 0.0085 55 0.0138 55 0.0404 40 0.0196 58 0.0364 58 0.0317 

Dictyoglomi 22 0.0042 27 0.0068 1 0.0007 69 0.0338 78 0.0490 90 0.0492 

Chloroflexi 30 0.0057 42 0.0105 35 0.0257 46 0.0225 71 0.0446 42 0.0230 

Planctomycetes 62 0.0118 36 0.0090 8 0.0059 37 0.0181 40 0.0251 72 0.0394 

Tenericutes 53 0.0101 77 0.0193 18 0.0132 73 0.0357 3 0.0019 1 0.0005 

Ignavibacteriae 13 0.0025 17 0.0043 27 0.0198 14 0.0069 71 0.0446 69 0.0377 

Betaproteobacteria 15 0.0028 10 0.0025 10 0.0073 43 0.0210 58 0.0364 33 0.0180 

Cyanobacteria 14 0.0027 11 0.0028 18 0.0132 15 0.0073 38 0.0239 37 0.0202 

Acidobacteria 14 0.0027 18 0.0045 10 0.0073 27 0.0132 19 0.0119 24 0.0131 

Rare taxonomic group 302 0.0573 232 0.0581 89 0.0653 137 0.0671 85 0.0534 125 0.0683 

Thermogotae 23 0.0044 49 0.0123 11 0.0081 36 0.0176 11 0.0069 3 0.0016 

Epsilonproteobacteria 17 0.0032 42 0.0105 0 0.0000 18 0.0088 7 0.0044 2 0.0011 

Armatimonadetes 16 0.0030 14 0.0035 11 0.0081 7 0.0034 4 0.0025 17 0.0093 

Balneolaeota 3 0.0006 9 0.0023 25 0.0184 6 0.0029 6 0.0038 5 0.0027 

Deinococcus-Thermus 5 0.0009 9 0.0023 12 0.0088 8 0.0039 10 0.0063 5 0.0027 

unclassified Haloplasmatales 15 0.0028 20 0.0050 5 0.0037 7 0.0034 1 0.0006 1 0.0005 

Euryarchaeota 8 0.0015 10 0.0025 5 0.0037 8 0.0039 6 0.0038 6 0.0033 

Chlorobi 2 0.0004 4 0.0010 14 0.0103 12 0.0059 2 0.0013 9 0.0049 

unclassified bacteria 17 0.0032 13 0.0033 3 0.0022 2 0.0010 2 0.0013 3 0.0016 

Elusimicrobia 3 0.0006 0 0.0000 8 0.0059 0 0.0000 1 0.0006 18 0.0098 

Candidatus Kryptonia 0 0.0000 0 0.0000 2 0.0015 0 0.0000 5 0.0031 17 0.0093 

Gemmatimonadetes 1 0.0002 0 0.0000 0 0.0000 2 0.0010 1 0.0006 13 0.0071 

Calditrichaeota 1 0.0002 3 0.0008 1 0.0007 2 0.0010 4 0.0025 6 0.0033 

Kiritimatiellaeota 0 0.0000 1 0.0003 0 0.0000 4 0.0020 2 0.0013 10 0.0055 

Crenarchaeota 0 0.0000 3 0.0008 0 0.0000 1 0.0005 6 0.0038 0 0.0000 

Chrysiogenetes 2 0.0004 4 0.0010 1 0.0007 1 0.0005 1 0.0006 0 0.0000 

Rhodothermaeota 0 0.0000 1 0.0003 0 0.0000 1 0.0005 4 0.0025 2 0.0011 

Enterobacteria 2 0.0004 1 0.0003 0 0.0000 2 0.0010 1 0.0006 1 0.0005 

Chlamydiae 0 0.0000 0 0.0000 0 0.0000 0 0.0000 3 0.0019 3 0.0016 
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Table B1. continued             

Rare taxonomic group CLC1_T1 RA CLC1_T2 RA LW1 RA LW2 RA LW3 RA GW1 RA 

Synergistetes 0 0.0000 1 0.0003 0 0.0000 4 0.0020 0 0.0000 0 0.0000 

Candidatus Saccharibacteria 0 0.0000 0 0.0000 0 0.0000 2 0.0010 2 0.0013 0 0.0000 

Lentisphaerae 1 0.0002 1 0.0003 0 0.0000 1 0.0005 0 0.0000 0 0.0000 

Fusobacteria 1 0.0002 1 0.0003 1 0.0007 0 0.0000 0 0.0000 0 0.0000 

Deferribacteres 0 0.0000 1 0.0003 0 0.0000 0 0.0000 0 0.0000 1 0.0005 

Nitrospirae 0 0.0000 0 0.0000 0 0.0000 1 0.0005 0 0.0000 0 0.0000 
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Table C1. Comparison of compositions of synthetic leachate recipes. Synthetic leachate 

composition was modified from (Rowe et al., 2002) based on leachate compositions from the 

surveyed leachate wells from the Ontario landfill.  

- Same component used in the Ontario leachate (column 1) 

N/A Not applicable 

NC Component amount is the same in both leachate protocol 

* Only added when making synthetic leachate amended with microcrystalline cellulose. Autoclave 

Solution 1 separately and combine with Solutions 2-6 at room temperature. Adjust total volumes 

of Solutions 1-6 to total 1 L.  

** Only added when making synthetic leachate agar media or synthetic leachate with 

microcrystalline cellulose agar media. Adjust total volume of synthetic leachate to 1 L with the 

amendment. 

The synthetic leachate was adjusted pH to ~6.6-6.8 with HCl. 

The synthetic leachate (Rowe et al., 2002) was adjusted to pH 5.8-6.0 with NaOH. 

 

Synthetic leachate Rowe et al., 2002 

 Amount Unit (/L) Deionized 

H2O 

Component Unit(/L) 

Solution 1*   *   

Microcrystalline cellulose 10 g  N/A N/A 

Solution 2 200 ml   

CaCl2 x 2H2O 870 mg  CaCl2 2,882 mg 

Solution 3 200 ml   

MgSO4  54 mg  - 156 mg 

MgCl2 x 6H2O 1,083 mg  - 3,114 mg 

Solution 4 100 ml   
K2HPO4 30 mg  - 30 

Solution 5 500 ml   

KHCO3 312 mg  - NC 

K2CO3 324 mg  - NC 

NaCl 745 mg  - 1,440 mg 

NaHCO3 1,558 mg  - 3,012 mg 

NaNO3 26 mg  - 50 mg 

NH4HCO3 1,430 mg  - 2,439 mg 

CO(NH2)2 (urea) 407 mg  - 695 mg 

Solution 7 - Metal Stock Solution  1 ml  - 1 ml 

Solution 6**    * *   

Agar 15 g  N/A N/A 

Solution 7 - Metal Stock Solution top up to 1 L Distilled  H2O top up to 1L 

Al2(SO4)3 x 16 H2O 30 mg  - NC 

CoSO4 x 5 H2O 150 mg  CoSO4 x 7 H2O - 

CuSO4 x 5 H2O 40 mg  - - 

FeSO4 4,000 mg  - 2,000 mg 

H3BO3 19,446 mg  - 50 mg 

MnSO4 x H2O 2,453 mg  - 500 mg 

(NH4)6Mo7 O24 x 4 H2O 50 mg  - NC 

NiSO4 x 6 H2O 500 mg  - NC 

ZnSO4 x 7 H2O 50 mg  - NC 

96% concentrated H2SO4 2.3 ml  - 1 ml 
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Other modifications to Rowe et al.’s protocol: 

i) Acetic acid, proprionic acid, and butyric acid were omitted because they would have 

been additional carbon sources beyond the the microcrystalline cellulose.  

ii) Na2S x 9H2O was omitted because of its toxicity.  

iii) All of the components that are not in the Metal Stock Solution (Rowe et al., 2002) are 

prepared in multiple solutions then combined after autoclaving, instead of mixed 

together in one solution. This modification was to avoid precipitation. 

iv) NaOH was omitted because the microcrystalline cellulose generated a basic initial 

pH, so HCl was used to adjust the pH instead.  

 

The leachate well chemical composition data was derived from four sampling dates at the 

Southern Ontario landfill, reported by the site engineers in the 2014 annual report. This 

information was pooled and used to modify concentrations such that the synthetic leachate more 

closely matched conditions at the site. The following sampling dates were used: 

LW1: April 2013, October 2013, April 2014, October 2014 

LW2: October 2012, April 2013, October 2013, April 2014 

LW3: April 2013, October 13, April 2014, October 2014 
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