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Abstract

Structural inspections have traditionally been completed by inspectors using simple
tools to determine the health of a structure. The limitations using these techniques led to
the development of quantitative sensors such as strain gauges, displacement transducers,
and accelerometers. These sensors are still limited by requiring physical access to the
structure and extensive cabling and setup. Optical techniques, such as laser Doppler
vibrometry and photogrammetry, have been developed to allow technicians to inspect the
structure with little or no physical access to the structure and minimal cabling. Digital
Image Correlation (DIC) is a photogrammetry technique that involves tracking multiple
subsets through a series of images to determine full field displacements. DIC can take the
form of 2D DIC using one camera or 3D DIC using more than one camera.

DIC use has typically focused on strain analysis, although researchers have recently
begun to use DIC for full field dynamic analysis. Commercial packages have focused on
strain analysis, with few software packages having any modal analysis capabilities built
in. Commercial packages are also quite expensive. The goal of this work is to provide
an open-source 3D DIC software package with built in modal analysis functionality. The
software package will allow for use of various interpolation functions, shape functions,
and de-noising options working within an Inverse Compositional Gauss-Newton (IC-GN)
registration algorithm.

A numeric study was undertaken to determine optimal 2D and 3D DIC analysis pa-
rameters using the IC-GN algorithm. The numeric study made use of simulated images
to provide improved control over image quality and to eliminate or control error sources.
Images were simulated using 8px diameter speckles and a subpixel displacement from 0 to
1px. Left and right images were generated with a known horizontal displacement to simu-
late a classical stereo vision setup. For 2D analysis, a bicubic interpolation function with
a 5x5 Gaussian blur is recommended. If the displacement field is known, then a matching
shape function should be used. Otherwise, a 2nd order shape function should be used to
ensure the displacements are captured. A subset size between 41x41px and 61x61px is
recommended for 2D analysis. For 3D analysis, a bicubic interpolation function with no
Gaussian blur is recommended. A higher order interpolation function was found to not
improve error levels, and the Gaussian blur increased the random errors without improv-
ing the bias errors. A 2nd order shape function is recommended when matching between
left/right images to capture deformation with imperfectly aligned cameras. A matching
shape function is recommended for analyzing the sequential images if the displacement
field is known, otherwise a 2nd order shape function should be used for analyzing sequen-
tial images as well. A 41x41px to 61x61px subset size is also recommended for 3D DIC
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analysis.

An experimental validation test was conducted on a thin, vibrating steel plate. This
test demonstrated the capabilities of the 3D DIC system in conducting real world modal
analyses and served to verify the system measurements against a reference laser vibrome-
ter. Two high speed, high resolution cameras captured one side of the plate, while a laser
vibrometer captured the other side. Excitation was provided by an impact hammer. The
displacement signals were generally found to be 97 to 98% cross correlated. The mean error
in the magnitude of the displacement signal peaks was approximately 1.5 to 1.7% for most
test runs. The DIC system demonstrated very high accuracy in measuring displacements
using the laser vibrometer as a baseline. The modal analysis revealed very similar fun-
damental frequencies measured by the DIC system and laser vibrometer, with the largest
difference being only 0.08Hz. The DIC system was also able to extract the mode shapes of
the plate, which matched favourably with the results from finite element modal analysis.
Overall, 3D DIC is a very valuable tool in modal analysis due to its quick setup, good
accuracy, and additional information in the form of mode shapes and damping ratios.
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Chapter 1

Introduction

Structural inspections, which are critical to ensuring long term functionality and safety,
have traditionally been completed by human inspectors using their vision and simple tools
such as rulers, measuring tapes, levels, and analog displacement gauges. There are sig-
nificant limitations to such tools, which have resulted in more modern technologies being
developed to allow for more accurate, quantitative measurements. These technologies, such
as strain gauges, linear variable displacement transducers (LVDTs), and accelerometers,
still require physical access to the structure and often require extensive cabling and setup.
Modern technology has enabled the development of newer systems that require limited or
no access to the structure, such as optical and light based methods. These methods allow
inspectors and technicians to inspect the structure with minimal or no physical access to
the structure and no need for a stable ground reference under the structure. Light based
sensors make use of lasers to record the movement of structures in the direction of the laser,
while optical sensors make use of cameras and image processing to track various points on
a structure. Digital image correlation (DIC) is an image processing method that tracks
points between images for displacement measurements. However, current implementations
of DIC systems are typically proprietary, resulting in higher costs and limited adaptability.
An open-source DIC system would resolve the issues of cost while also allowing adapta-
tion to new analysis and inspection needs. An open-source DIC system would also require
validation tests and error measures to provide users with confidence in the system and to
demonstrate its abilities in real world experiments.
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1.1 Sensing Technologies

1.1.1 Conventional Sensors

Sensors are often required to measure displacements, strains, and/or accelerations in struc-
tures. Conventional sensors, such as strain gauges, LVDTs, stringpots, and accelerometers
have been widely used to monitor static, quasi-static, and dynamic loading. These sensors
are each suited for different purposes based on their nature (e.g., accelerometers to mea-
sure dynamic motion in the form of accelerations). Conventional sensors typically require
physical application to a structure through the use of glues, waxes, or clamps in order
to perform measurements. Unfortunately, many structures have poor or limited access,
making it difficult to apply carefully calibrated, sensitive sensors to the structure precisely
without affecting the measurement system. Many traditional sensors also require extensive
cabling that can quickly add complexity to setup and increase setup costs. Some of these
sensors, such as LVDTs, also require a ground reference below the structure, which may
be difficult in some field environments. Bridges in particular suffer from issues of access
due to typically spanning waterways, roadways, and other significant obstacles.

Conventional sensors have been researched and developed extensively in past decades,
and their use is commonplace in industry as well as in academia. The reliability of these
sensors is quite high when they are correctly applied to the structure, but the application
process remains an area of variability in their usage. The alternative to conventional,
contact based sensors are non-contact sensors such as the global positioning system (GPS),
radar based technologies, and optical systems.

1.1.2 Optical Sensors

To overcome the shortcomings of conventional sensors, non-contact optical sensing methods
have gained significant popularity amongst researchers and practitioners in recent times.
These methods vary widely in technology, analysis, and applicability, but can be broadly
grouped under the areas of pattern interferometry, laser Doppler vibrometry (LDV), and
photogrammetry. These methods involve relatively fast set up times, with minimal cabling
and often no physical access required, and can provide highly accurate results. However,
they are still an active field of research, with some methods being quite expensive and
others having limited field validation. Data storage concerns also exist for the imaging
based systems due to the large file sizes of images, but storage has become less of a concern
with the ever-decreasing cost of data storage.
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Laser Based Methods

Pattern interferometry makes use of an interference fringe pattern created by superposing a
pair of light patterns and measuring the difference between the patterns [6]. A laser pattern
is split, with part of the signal going directly to the sensor and the other part reflecting off
of the measured object. The two laser patterns are then recombined prior to reaching the
camera sensor, and the resulting amplitudes are read by the camera and used to measure
the displacements. Early use of pattern interferometry made use of photographic plates,
but this was very time consuming and quickly replaced by electronic speckle pattern inter-
ferometry (ESPI) using digital cameras. ESPI has been used to conduct accurate dynamic
measurements, but is very sensitive to ambient vibration [6].To combat the sensitivity to
ambient vibration, researchers developed digital speckle shearography (DSS). The laser
pattern is instead shone directly on the sample, and the reflected pattern is split instead of
the original laser signal [6]. These measurement techniques were originally limited to mea-
suring only a single axis of displacement, but ESPI has been successfully used to measure
three axes through the use of three cameras and beams [6].

Instead of measuring the phase shift to determine displacements, laser Doppler vibrom-
etry measures the frequency shift to determine velocities [6]. LDV is very commonly used
to measure structures, but is limited to measuring a single point in a single direction at a
given time. This can be extended to 3D measurements of a single point through the use of
three LDVs. To generate full field measurements, multiple lasers or a scanning LDV are re-
quired. However, scanning LDVs measure points sequentially rather than simultaneously,
and the excitation or response may change during a given measurement time step. This
may limit their usage in situations where loading may change rapidly during measurement
[6].

Photogrammetry

Photogrammetry focuses on determining and tracking the precise positions of points in
images and photographs. This can be as simple as a 2D analysis of an image with a
known scale or as complex as a multi-camera system to recreate 3D point clouds of items
of interest. Early work using photogrammetry for mechanical analysis was completed by
Peters and Ranson [39] in the 1980s, which allowed for calculating stress and strain in a
simple tension test. The concept was soon extended to digital image correlation (DIC) for
use in mechanical analyses by Sutton et al [53] and Chu et al [13].

DIC is a subfield of photogrammetry that involves the ability to measure full field
displacements and calculate full field strains of specimens. DIC works by comparing a
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subset of the first (reference) image to a subset in each subsequent (analysis) image and
optimizing a correlation score between these subsets to find the new position of the reference
subset. Early implementations of DIC investigated simple 2D DIC using a single camera
[13, 53]. 2D DIC systems can measure a single planar surface approximately parallel to
the image sensor. This technology was then extended to 3D in the early 1990s through
the use of early 3D point tracking and stereo vision principles [25]. 3D DIC is typically
performed with a pair of cameras in a stereo vision setup rather than a single camera,
although pseudo-stereo systems also exist using a single camera with the use of mirrors or
colour filters [67]. Researchers also began to examine the errors present in DIC and their
sources in the early 2000s, such as the errors present due to interpolation [44]. As camera
technology progressed, researchers also began to investigate their use for dynamic or high
speed measurements [18, 21]. DIC is typically performed through the use of non-linear
iterative solvers [10, 28, 32, 52], although some researchers make use of other methods
such as discrete Fourier transform (DFT) based DIC [7].

1.2 Camera Technologies

Cameras are optical devices composed of many parts, of which the key components are
the aperture and the recording media. The aperture can be as simple as a small pinhole
to allow light through, but it is more often an opening of variable, controllable size. The
recording media can take many forms, such as photographic plates, film, or digital sensors.
Lenses are also frequently used to magnify or focus the image, and are typically comprised
of magnification, focus, and chromatic aberration reduction elements in front of the aper-
ture. Digital cameras also contain a processor and sometimes a mechanical shutter. Single
lens reflex (SLR) cameras contain a mirror and a pentaprism or pentamirror to allow view-
ing through a viewfinder, but these are absent in most research and industrial cameras.
Digital sensors are comprised of millions of individual photosites that correspond to in-
dividual pixels, with each photosite made of a photosensitive material. As light reaches
the photosensitive material, it charges a capacitor, which is released into the processor
following a shutter completion. Figure 1.1 contains a labelled display of the main parts
present in a camera.

Sensors can be broadly divided into charged coupled device (CCD) and complemen-
tary metal oxide semiconductor (CMOS) sensors, also known as active pixel sensors. CCD
sensors contain a photosensitive layer and a transmission layer. The capacitors in the pho-
tosensitive layer are charged by photons of light striking the photosensitive layer. Following
an exposure, a control circuit causes the charge in a capacitor to shift to the neighbouring
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(a) Top down view of camera.
(b) Front view of camera, shutter open with-
out a lens.

Figure 1.1: Parts of a camera.

capacitor through the transmission layer, with the capacitor nearest to the edge discharging
into a charge amplifier, where it gets converted to voltage, and subsequently to a digital
signal through an analog-to-digital conversion. CMOS sensors also make use of a photosen-
sitive layer, but do not make use of a transmission layer. Instead, pixels in a CMOS sensor
contain individual active amplifiers. In the past, CCD sensors have had higher quality than
CMOS sensors due to more of the sensor space being comprised of photosensitive materi-
als, but this gap has narrowed over time. CMOS sensors have many advantages, including
a lower production cost and much less blooming (spilling into neighbouring pixels due to
overcharged photosites) in images due to there being no transmission layer. However, the
additional components in a CMOS sensor take up more space on the sensor that is not
found in CCD sensors, marginally reducing the photosensitivity of CMOS sensors relative
to comparably sized CCD sensors.

1.2.1 Digital Imaging

Digital images are discrete measurements of the light found in a given scene. These discrete
measurements are made at the individual photosites in the camera sensor, and are converted
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to digital pixels in an image. The pixels can be seen as similar to a matrix, where the value
at each (i, j) location in the matrix corresponds to the light captured by a pixel at that
location. Greyscale images contain a single channel consisting of intensity values from
black to white. Colour images make use of three colour channels corresponding to the
red, green, and blue light channels, which results in a three layer matrix of values. Colour
images are created by using photosites that are sensitive to specific light wavelengths.
A colour image is then reconstructed from the various colour intensities at each pixel
location in a process known as debayering or demosaicing. Demosaicing uses interpolation
to estimate the pixel values of each colour at photosites that are sensitive to the other
colours (i.e., to estimate the red values at green and blue photosites) to form a full image.
This can lead to some aliasing, so an optical anti-aliasing filter is often used at the back
of lenses to reduce artifacts. For this reason, greyscale cameras are still preferred in many
high precision applications. Some colour sensors use a stacked sensor approach, where the
various wavelengths are absorbed by different layers in the sensor, but these sensors are
uncommon.

Once digitized, images are often stored as 8 bit values ranging from 0 to 255, with 0
corresponding to no light (black) and 255 corresponding to maximum light (white). Images
may also be stored as 10 bit values, which instead range from 0 (black) to 1023 (white), or
12 bit values, which range from 0 (black) to 4095 (white). 10 and 12 bit images allow for a
finer gradation of intensity values, but come at the cost of increased storage and processing
requirements, and remain uncommon in many applications.

Once captured, images may be left in a raw format or compressed to reduce the stor-
age requirements. Raw images retain unprocessed pixel values, and each pixel retains a
value from 0 to 255 (for 8-bit images). Compression may take the form of lossy or loss-
less compression. Lossy compression schemes, such as JPEG, remove information that
will not be perceptible to the human eye to reduce file size through processes such as dis-
crete cosine transforms. Lossless compression, such as PNG, reduces the file size without
removing any information from the camera. Some file formats, such as TIFF, are able
to use lossy or lossless compression as dictated by the user. Lossy compression formats
are not recommended for photogrammetry applications. While the information removed
may be imperceptible to the human eye, it may still be usable by a computer to improve
registration or correspondence.
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1.3 Motivation and Objectives

Existing DIC systems are typically expensive, have limited adaptability, and are sometimes
linked to proprietary cameras. Most systems focus on measuring displacements for strain
analysis, and few systems are able to use the measured displacements for other uses like
modal analysis despite many systems boasting framerates in excess of 200fps. The vibration
characteristics of various materials and structures are also of interest to engineers, and
should be incorporated into DIC software. This project is aimed at producing an open-
source 3D DIC system that can provide full-field displacement measurements for both static
and dynamic testing. Open-source software will allow for lowered costs and the ability to
use generic cameras, while a modal analysis submodule will allow for the extraction of
fundamental frequencies and mode shapes of tested structures. The primary objectives are
to:

• Develop an open-source, adaptable, modern DIC system using current algorithms

• Quantify the error levels present in the developed system and determine ideal pa-
rameters to limit errors

• Demonstrate the accuracy and real world applicability of the system through vali-
dation displacement tests and dynamic measurements of a plate structure for modal
analysis
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Chapter 2

Literature Review

2.1 DIC Background

The earliest implementations of DIC worked in the spatial domain in two dimensions,
computing integer pixel displacements along a planar surface [39]. Subpixel interpolation
methods, such as the use of bilinear interpolators and cubic polynomials, were quickly
developed, which allowed for accuracy below that of integer pixel values [13, 51, 53]. More
advanced interpolators, such as higher order B-splines, were later used for improved ac-
curacy [12, 44]. Spatial domain methods made use of cost or correlation functions, which
were typically normalized cross correlation functions [23, 34, 52]. An efficient cross cor-
relation method was proposed by Lewis [23] that made use of running sums to improve
speed, which is particularly useful for calculating the initial guess of a subset displacement.
Early DIC implementations made use of a coarse-fine search subpixel registration algorithm
[13, 39, 51, 53], which was superseded by the Forward Additive Newton-Raphson (FA-NR)
method [10, 31, 34]. Pan et al [32] recently proposed the use of an Inverse Compositional
Gauss-Newton (IC-GN) subpixel registration algorithm for improved efficiency in place of
the FA-NR.

Modern implementations of DIC consist of four primary components: a correlation
function, a subpixel interpolation function, a shape function, and an iterative subpixel
registration algorithm [29, 34]. The correlation function is used to determine how well two
subsets match, and typically takes the form of a normalized cross correlation or normalized
sum of squared differences [29]. Image interpolation is completed in 2 dimensions, and the
interpolation functions are often made of bilinear or 2 dimensional B-spline interpolants
[9, 12]. Shape functions are used to account for displacements and deformations within sub-
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sets between images. The subpixel registration algorithm is used to solve for the unknown
displacement deformation parameters, and usually takes the form of a non-linear, itera-
tive solver. The most popular registration algorithms are currently the Forward Additive
Newton-Raphson (FA-NR) and recently developed Inverse Compositional Gauss-Newton
(IC-GN) [10, 29, 32, 38].

The first step in the DIC analysis is the creation of a reference subset, which is typi-
cally a square set of pixel values surrounding the point of interest in the first (reference)
image. This reference subset is compared to a target subset in a subsequent (current)
image through use of a correlation function. A shape function consisting of deformation
parameters is used to account for displacements and deformations in the subset between
the reference and current image. The target subset in the current image is shifted and
deformed in order to optimize the correlation score using an iterative process referred to as
the subpixel registration algorithm [29, 34]. Optimization using the subpixel registration
algorithm solves for the unknown displacement and deformation parameters that relate the
reference and target subsets. In each iteration, the target subset is updated by mapping
the (x, y) locations in the reference subset to new (x′, y′) points in the target subset using
the shape function parameters. The (x′, y′) points are typically not at integer locations,
and are interpolated based on the chosen subpixel interpolation function [29]. The tar-
get subset can then be used to calculate the updated correlation score or used to directly
update the deformation parameters for the next iteration [32]. An initial guess is often
required for the subpixel registration algorithms to accurately converge, so an integer based
pixel search can be used to efficiently determine an initial guess for each reference subset
in each image.

The simplest DIC setups make use of a single camera measuring in 2 dimensions per-
pendicular to the camera’s optical axis. This setup is limited to only measuring in 2D
and can be accurate only if the image sensor is placed approximately parallel to the sur-
face being measured. To alleviate these constraints, more than one camera can be used
to capture multiple images, which can be used to calculate 3 dimensional motion. The
calculation of 3D motion requires the use of stereo vision principles and an accurate cal-
ibration that captures the translation and rotation between the cameras well. Recently,
researchers have also been making inroads into using a single camera for 3D measurements,
typically through the use of multiple mirrors or multiple colour channels to allow for the
same image to be captured from different positions [67]. These systems still make use of
the same stereo principles, but work by segmenting the image sensor into multiple parts
rather than using multiple full sensors.
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2.1.1 Correlation Criteria

Correlation criteria are used to determine how closely two subsets match. The two subsets
being compared consist of a reference subset from the reference image and a target subset
from the current analysis image. The optimal displacement and deformation parameters
of the shape functions are found through the subpixel registration algorithm using the
correlation score as the optimization index. Early works made use of simple sum of squared
difference or cross correlation measures [39, 53], but issues could arise if lighting levels
changed or subsets crossed areas of high brightness rather than uniform brightness. For
example, as a subset crosses a bright area, a significantly higher cross correlation could
be registered simply due to the high intensity values found in the bright area despite
being potentially quite different. Zero mean normalized cross correlation and zero mean
normalized sum of squared difference criteria were developed to alleviate such issues [34].

Sum of Squared Difference

A simple of sum of squared difference can be used as a correlation score, but does not
account for shifts in intensity between the various images in a sequence, so a zero mean
normalized sum of squared differences (ZNSSD) is more commonly used to account for
intensity shifts between images [34]. The optimization goal when determining the shape
function parameters using the sum of squared difference is to minimize the difference to 0,
which denotes no difference between the reference and current subsets. The most significant
advantage of the sum of squared difference criteria is that the optimization goal is to always
minimize. The normalized sum of squared differences criteria is shown in Equation 2.1 [34]:

CZNSSD =
∑(

f(x, y)− f̄∑
(f(x, y)− f̄)2

− g(x, y)− ḡ∑
(g(x, y)− ḡ)2

)2

(2.1)

where f(x, y) is the pixel value in the reference image at point (x, y), g(x, y) is the pixel
value in the current image at point (x, y), f̄ is the average intensity of the reference subset,
denoted by Equation 2.2:

f̄ =

∑
f(x, y)

N
(2.2)

ḡ is the average intensity of the current subset given by Equation 2.3:

ḡ =

∑
g(x, y)

N
(2.3)
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N is the number of pixels in the subset, the summations are performed over the full subset,
and the other operations are performed element-by-element. For a typical square subset,
N = n× n, where n is the width or height of the subset.

Cross Correlation

Similar to the sum of squared differences, a simple cross correlation measure can be used but
does not account for intensity shifts, so a zero mean normalized cross correlation (ZNCC)
score is used to account for intensity shifts [36]. The goal of optimization using cross
correlation is to maximize the correlation score. The primary advantage of the normalized
cross correlation score is that it varies between two known values of 0 and 1. The normalized
cross correlation can be used to evaluate the accuracy of any correspondence between a
reference and a current subset, and allows for comparison between different points for which
has the highest accuracy. In turn, this normalized measure of correspondence allows points
to be sorted by level of accuracy, which can then be used as the initial guess in following
correlations. The normalized cross correlation score is shown in Equation 2.4 [34]:

CZNCC =

∑
(f(x, y)− f̄)(g(x, y)− ḡ)√∑

(f(x, y)− f̄)2
∑

(g(x, y)− ḡ)2
(2.4)

where f(x, y) is the pixel value in the reference image, f̄ is the average intensity of the
reference subset given by Equation 2.2, g(x, y) is the pixel value in the current image, ḡ is
the average intensity of the current subset given by Equation 2.3.

Parametric

The parametric cost function is similar to a simple sum of squared differences, but adds
either one or two parameters that account for offset and scale changes in image intensity.
The parameters a and b are used to capture the scale and offset changes of the intensity of
the target subset, respectively [29, 36]. The parametric cost function is shown in Equation
2.5 [29, 36]:

CPSSDab =
∑

(af(x, y) + b− g(x, y))2 (2.5)

where f(x, y) is the pixel value in the reference image, g(x, y) is the pixel value in the
current image, a is the scale parameter, and b is the offset parameter.
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Equivalency of Cost Functions

Relationships exist between the cost functions shown in Equations 2.1, 2.4, and 2.5. These
equivalencies allow for simplified computation of correlation values for each pixel if required.
This can allow for the use of one cost function to optimize the correspondence between
subsets, while using another cost function, such as normalized cross correlation, to display
the accuracy or to guide which subset should be analyzed next [28]. Equations 2.6 and 2.7
display the relationships between cost functions [36]:

CZNSSD = 2(1− CZNCC) (2.6)

CPSSDab =
∑

(g(x, y)− ḡ)2(1− C2
ZNCC) (2.7)

2.1.2 Shape Functions

Shape functions are used in DIC to represent different types of deformations between images
and can be derived from a Taylor series expansion of a bidirectional deformation field. The
typical shape functions are the 0th order, 1st order, and 2nd order shape functions, with the
1st order shape function being the most popular. A 0th order shape function only captures
rigid body displacements. A 1st order shape function captures overall subset displacement,
but also allows for the subset to experience shearing and elongation/compression defor-
mations in each direction. Lastly, a 2nd order shape function can account for curvature
changes in a subset. Examples of a 0th, 1st, and 2nd order shape function can be seen in
Figure 2.1.
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(a) 0th order. (b) 1st order. (c) 2nd order.

Figure 2.1: Typical shape functions used in DIC.

The displacement in the horizontal and vertical directions are typically referred to as u
and v, respectively. The corresponding elongation and shearing displacements are provided
by their first derivatives, where ux and vy are the elongations in the horizontal and vertical
directions, and uy and vx are the shearing deformations in the horizontal and vertical
directions. The second order derivatives, uxx, uxy, uyy, vxx, vxy, and vyy, account for the
curvature changes. Even for the simplest 0th order shape function, there are at least two
displacement variables (u and v) that must be solved for, while the 1st and 2nd order shape
functions contain 6 and 12 variables to solve for, respectively. This has led to the use of
non-linear optimization algorithms, such as the FA-NR and IC-GN, being commonly used
for modern digital image correlation. The 0th order through 2nd order shape functions can
be found in Equations 2.8 to 2.10:

x′ = x+ u

y′ = y + v
(2.8)

x′ = uxx+ x+ uxy + u

y′ = vxx+ vyy + y + v
(2.9)

x′ =
1

2
uxxx

2 + uxyxy +
1

2
uyyy

2 + uxx+ x+ uyy + u

y′ =
1

2
vxxx

2 + vxyxy +
1

2
vyyy

2 + vxx+ vyy + y + v
(2.10)

where x and y are the horizontal and vertical locations of the point of interest in the
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reference image, x′ and y′ are the horizontal and vertical locations of the point of interest
in the current image, u and v are the horizontal and vertical shifts, ux, uy, vx, and vy are
the first order partial derivatives of u and v with respect to x and y, and uxx, uxy, uyy,
vxx, vxy, and vyy are the second order partial derivatives of u and v with respect to x and
y. The first order partial derivatives account for elongation and shearing deformations of
the subset, while the second order partial derivatives account for rotational deformations
of the subset.

Equation 2.8 clearly shows that only the original coordinate and any displacement in
the given direction is used to determine the new coordinate for a given point for 0th order
shape functions. A 0th order shape function will work well in cases where a rigid body
is translated, but will perform quite poorly in full field, non-rigid displacement tests with
deformation of the target subsets. The 1st order shape function will perform much more ac-
curately in these situations due to the presence of the shearing and elongation/compression
partial derivative terms. Lastly, the 2nd order shape function shown in Equation 2.10
accounts for the curvature of the function, but can potentially contain additional error
compared to the 1st order shape function [24, 60, 66]. A shape function is deemed to be
matched to the displacement field when both are of the same order (i.e., a 0th order shape
function being used to measure rigid translation). A lower order shape function than the
displacement field (i.e., a 0th shape function being used to measure an elongating speci-
men) is referred to as undermatched, while using a higher order shape function than the
displacement field is referred to as being overmatched. Recent work has shown that an
overmatched shape function is often preferred when the order of the displacement field is
unknown to minimize errors due to undermatching [60, 66].

The basic Taylor series expansion forms of the shape functions shown in Equation 2.8
to 2.10 can be used directly in many of the subpixel registration algorithms, but cannot be
directly used in the IC-GN algorithm. The IC-GN algorithm uses a warp function based on
the shape function, and the algorithm requires that a warp function matrix be invertible
to apply the warp function update as discussed in Section 2.1.4 [4, 14, 32]. Therefore, the
warping functions for the 0th to 2nd order shape functions for use in the IC-GN algorithm
can be seen in Equations 2.11 to 2.13:x′y′

1

 =

1 0 u
0 1 v
0 0 1

xy
1

 (2.11)

x′y′
1

 =

1 + ux uy u
vx 1 + vy v
0 0 1

xy
1

 (2.12)
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
x′2

x′y′

y′2

x′

y′

1

 =


A00 A01 A02 2u(ux + 1) 2uuy u2

A10 A11 A12 uxv + uvx + v uyv + uvy + u uv
A20 A21 A22 2vvx 2v(vy + 1) v2

1
2
uxx uxy

1
2
uyy 1 + ux uy u

1
2
vxx vxy

1
2
vyy vx 1 + vy v

0 0 0 0 0 1




x2

xy
y2

x
y
1

 (2.13)

where A00 to A22 can be found in Equation 2.14:

A00 = 1 + uuxx + ux(ux + 2)

A01 = 2uy(ux + 1) + 2uuxy

A02 = u2
y + uuyy

A10 =
1

2
(uvxx + uxxv) + vx(ux + 1)

A11 = 1 + ux + vy + uxvy + uyvx + uvxy + uxyv

A12 =
1

2
(uvyy + uyyv) + uy(vy + 1)

A20 = v2
x + vvxx

A21 = 2vx(vy + 1) + 2vvxy

A22 = 1 + vvyy + vy(vy + 2)

(2.14)

The full derivations of the invertible shape functions can be found in Appendix A. The
second order shape function shown in Equation 2.13 ignores higher order terms with powers
greater than 2 for computation and simplicity [4, 14].

The Jacobian and Hessian matrices of the shape functions are used in recent subpixel
registration algorithms to determine the optimal correlation solution. Different shape func-
tions have different forms of the Jacobian, and therefore of the Hessian, although the Hes-
sian is derived from the Jacobian using the same method in all cases. The Jacobian can
be found by taking the partial derivative of the warp (shape function) with respect to the
incremental deformation parameter, ∆p. The Jacobian matrices for the 0th order (2.15a),
1st order (2.15b), and 2nd order (2.15c) shape functions are shown in Equation 2.15:[

1 0
0 1

]
(2.15a)[

1 ∆x ∆y 0 0 0
0 0 0 1 ∆x ∆y

]
(2.15b)[

1 ∆x ∆y 1
2
∆x2 ∆x∆y 1

2
∆y2 0 0 0 0 0 0

0 0 0 0 0 0 1 ∆x ∆y 1
2
∆x2 ∆x∆y 1

2
∆y2

]
(2.15c)
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where ∆x and ∆y are incremental updates to the x and y locations.

The Jacobian can then be used to find the Hessian of a chosen correlation function with
respect to the deformation parameter as shown in Equation 2.16:

H =
M∑

x=−M

M∑
y=−M

((
∇f ∂W

∂∆p

)T
×
(
∇f ∂W

∂∆p

))
(2.16)

where ∇f is the gradients of the reference image and is given by ∇f = [fx, fy] and ∂W
∂∆p

is
the Jacobian given by Equation 2.15. The Hessian is then used in the IC-GN registration
algorithm to determine update parameters for the shape function, which can be used to
update the target subset for the next iteration.

2.1.3 Subpixel Interpolation Functions

Images are comprised of discretized intensity values, while displacements occur on a con-
tinuous spectrum. Displacements typically do not get measured at exact integer pixel
shifts, resulting in displacements that are a fraction of a pixel being measured during test-
ing. Subpixel interpolation algorithms allow for measurement of non-integer values, which
improves the measurement precision and allows for capture of small displacements and
higher frequency vibration. Small movements are quite common in structural engineering,
and measuring to a fraction of a millimetre is common with some existing measurement
techniques. Subpixel interpolation functions are primarily used in DIC during the registra-
tion process when the reference subset coordinates are mapped to updated target subset
coordinates. The mapping process rarely results in integer coordinate values, and the inter-
polation function is then used to provide intensity values between the discrete pixel values.
Multiple subpixel interpolation schemes exist, with varying computational requirements,
complexity, and accuracy. Examples of interpolation schemes include nearest neighbour,
linear interpolation, and b-splines.

Nearest Neighbour

Nearest neighbour is the simplest form of interpolation found in computer graphics and
vision. Nearest neighbour interpolation determines the nearest pixel to the point of in-
terest and then assigns that pixel intensity to the point of interest. This process takes
very little computational power, but functionally does not improve the resolution of the
image. Instead, nearest neighbour interpolation simply changes the discretized signal to
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a continuously defined piece-wise signal with constant value in the area surrounding each
pixel.

Linear Interpolation

Linear interpolation is only slightly more complex than nearest neighbour interpolation,
but it is more accurate due to determining values between the grid points based on the
surrounding information [54]. In essence, linear interpolation draws a straight line between
known values and uses this to find the value at a given subpixel location. When extended
to 2 dimensions, linear interpolation is performed in both directions, otherwise known as
bilinear interpolation, given by Equation 2.17:

f(x, y) = a0 + a1x+ a2y + a3xyf(x, y) =
[
a0 a1 a2 a3

] 
1
x
y
xy

 (2.17)

where the a values are the interpolation constants, x is the location in the horizontal
direction, and y is the location in the vertical direction. Bilinear interpolation can be
thought of as performing a linear interpolation in one direction to find two intermediate
values, which are then linearly interpolated between in the other direction (the direction
order does not matter). The coefficients present in each grid location can be solved for
using Equation 2.18: 

1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y1 x2y1

1 x2 y2 x2y2



a0

a1

a2

a3

 =


f(Q11)
f(Q12)
f(Q21)
f(Q22)

 (2.18)

where Qij are the corner pixel locations, f(Qij) is the value at each corner location, x and
y are the location of the corners, and the a constants are the interpolation coefficients.

General B-Splines

B-splines are a class of piecewise polynomials for each section of a function between two data
points. They are very useful for interpolating between points where the underlying function
shape may be unknown due to their versatility. Splines have seen wide use in many fields,
including data analysis, computer graphics, and image resampling in popular commercial
programs such as Adobe Photoshop. B-spline interpolation in imaging generally takes a
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separable form wherein operations can be performed on the columns, then rows (or vice
versa) separately. This equates to performing a b-spline interpolation along the columns to
find values at a given y coordinate followed by interpolating between those y coordinates
to find the value at the specified x coordinate in the row. B-splines take the form shown
in Equations 2.19 and 2.20 [54, 57, 58]:

β0(x) =


1 for|x|< 1

2
1
2

for|x|= 1
2

0 for|x|> 1
2

(2.19)

βn(x) =
n+1∑
k=0

(−1)k(n+ 1)

(n+ 1− k)! k!

(n+ 1

2
+ x− k

)n
+

=
1

n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
x− k +

n+ 1

2

)n
+

(2.20)

where n is the order of b-spline, k is the summation index, x is the distance along the
interpolated section, and the + subscript indicates that only the positive portion of the
bracket shall be used. This results in a piecewise function that changes at integer points
for odd ordered b-splines and at the midpoints for even ordered b-splines. Either version of
Equation 2.20 may be used to determine the relevant b-spline equations. A b-spline of order
n = 1 is equivalent to a linear interpolation, a b-spline of order n = 3 is known as a cubic
b-spline, and a b-spline of order n = 5 is known as a quintic b-spline. In two dimensions,
these are known as bilinear, bicubic, and biquintic spline interpolation, respectively. Figure
2.2 displays the kernels of the linear spline, cubic spline, and quintic spline and Figure 2.3
displays bilinear, bicubic, and biquintic interpolations. The bidirectional interpolations are
performed by first interpolating in one direction, then interpolating between the results in
the other direction. Figure 2.3 interpolates first in the direction of the red lines, followed
by between the red lines in the direction of the blue lines.

Cubic B-Spline

The cubic b-spline is the result of setting n = 3 in the general b-spline equation given in
Equation 2.20. This form of b-spline is more accurate than bilinear interpolation, but is
still relatively easy to implement [58]. The high accuracy and easy implementation make
it very popular in computer graphics and applications. A bicubic interpolation avoids
artifacts such as blocking and smoothing that are present in bilinear and nearest neighbour
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Figure 2.2: B-Spline kernels for linear, cubic, and quintic splines.

(a) Bilinear. (b) Bicubic. (c) Biquintic.

Figure 2.3: Bidirectional spline interpolation functions.
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interpolation [54]. The expanded form of a cubic b-spline is shown in Equation 2.21:

β3 =


1
6
x3 + x2 + 2x+ 4

3
−2 ≤ x < −1

−1
2
x3 − x2 + 2

3
−1 ≤ x < 0

1
2
x3 − x2 + 2

3
0 ≤ x < 1

−1
6
x3 + x2 − 2x+ 4

3
1 ≤ x < 2

(2.21)

The pixel intensity at a given (x, y) location can be found from Equation 2.22:

p(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj

=
[
1 x x2 x3

] 
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33




1
y
y2

y3


(2.22)

where x and y are the distances from the center of the kernel. The deterministic solution
for the bicubic interpolation coefficients, a00 to a33, can be found through Equation 2.23:

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 = A


f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)
f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)
fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)
fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)

AT

where A =


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1


(2.23)

a00 through a33 are the interpolation coefficients, f(x, y) is the image at location (x, y),
fx(x, y) is the x derivative at (x, y), fy(x, y) is the y derivative at (x, y), and fxy(x, y)
is the mixed partial derivative at (x, y). This method requires additional calculations to
determine the gradients, which may slow down calculation of the coefficients.

Quintic B-Spline

Quintic b-splines correspond to n = 5 in the general b-spline equation shown in Equation
2.20. Quintic b-splines are less common in computer graphics and related fields due to
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their additional computational intensity. Quintic b-splines are generally more accurate
than cubic b-splines [26, 44], but require 6 constants compared to the 4 required for cubic
interpolation. Extending to 2D, biquintic interpolation requires 36 constants, while bicubic
only requires 16. Quintic b-splines are also more sensitive to high frequency noise than
lower order interpolators, and may experience poor results in environments with excessive
noise and no noise reduction filtering [30]. The expanded form of the quintic b-spline is
shown in Equation 2.24:

β5 =



1
120
x5 + 1

8
x4 + 3

4
x3 + 9

4
x2 + 27

8
x+ 81

40
−3 ≤ x < −2

− 1
24
x5 − 3

8
x4 − 5

4
x3 − 7

4
x2 − 5

8
x+ 17

40
−2 ≤ x < −1

1
12
x5 + 1

4
x4 − 1

2
x2 + 11

20
−1 ≤ x < 0

− 1
12
x5 + 1

4
x4 − 1

2
x2 + 11

20
0 ≤ x < 1

1
24
x5 − 3

8
x4 + 5

4
x3 − 7

4
x2 + 27

8
x+ 17

40
1 ≤ x < 2

− 1
120
x5 + 1

8
x4 − 3

4
x3 + 9

4
x2 − 27

8
x+ 81

40
2 ≤ x < 3

(2.24)

Interpolation can be accomplished using Equation 2.25:

p(x, y) =
5∑
i=0

5∑
j=0

aijx
iyj

=
[
1 x x2 x3 x4 x5

]

a00 a01 a02 a03 a04 a05

a10 a11 a12 a13 a14 a15

a20 a21 a22 a23 a24 a25

a30 a31 a32 a33 a34 a35

a40 a41 a42 a43 a44 a45

a50 a51 a52 a53 a54 a55




1
y
y2

y3

y4

y5


(2.25)

where x and y are the distances from the center of the kernel and a00 through a55 are the
interpolation coefficients.

Efficient B-Spline Interpolation

B-spline interpolation can be performed and stored efficiently using discrete Fourier trans-
forms and resampling matrices [9]. Generally speaking, interpolation can be thought of as
a convolution operation as shown in Equation 2.26:

p(x, y) =
n∑
i=0

n∑
j=0

aijβ
n(x, y) (2.26)
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where p(x, y) is the pixel intensity values at each (x, y) location in the image that is having
its coefficients calculated, aij is the b-spline coefficients, βn is the b-spline kernel used in
convolution (i.e., linear, cubic, or quintic). A convolution operation on large images can
be slow, but converting to the Fourier domain allows the convolution operation to become
an element by element multiplication, which can be performed rapidly. The coefficients,
aij, can then be found via the deconvolution shown in Equation 2.27 [9]:

F(p) = F(a) ? F(β)

F(a) =
F(p)

F(β)

a = F−1

(
F(p)

F(β)

) (2.27)

where F denotes a Fourier transform, F−1 denotes the inverse Fourier transform, and the
division is performed element by element. The b-spline kernel used in deconvolution can be
found by sampling the b-spline curves shown in Figure 2.2 at integer locations. This results
in the kernels, b0, for bilinear, bicubic, and biquintic interpolation shown in Equation 2.28:

b1
0 =

[
1
]

b3
0 =

[
1
6

2
3

1
6

]
b5

0 =
[

1
120

13
60

11
20

13
60

1
120

] (2.28)

The kernels are typically zero padded to the length of the image for use in the deconvolution
process.

Sampling using the kernels shown in Equation 2.28 corresponds to the value at a location
if the image were sampled with no subpixel shift. To account for shifts, the resampling
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matrices shown in Equation 2.29:

Q1 =

[
1 1
−1 1

]

Q3 =


1
6

2
3

1
6

0
−1

2
0 1

2
0

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6



Q5 =



1
120

13
60

11
20

13
60

1
120

0
− 1

24
− 5

12
0 5

12
1
24

0
1
12

1
6

−1
2

1
6

1
12

0
− 1

12
1
6

0 −1
6

1
12

0
1
24

−1
6

1
4
−1

6
1
24

0
− 1

120
1
24

− 1
12

1
24
− 1

24
1

120



(2.29)

can pre- and post-multiply the coefficients obtained from the b-spline kernel. This resam-
ples the kernel at the given subpixel shifts of ∆x and ∆y. The resampling matrices may be
derived by imposing a given shift of ∆x or ∆y on the b-spline kernel and determining the
new sampling values as a function of the shift [9]. The coefficients of these matrices corre-
sponding to ∆x from the 0th up to the 5th order make up the coefficients of the resampling
matrices. The derivations for each of the resampling matrices can be found in Appendix
A. Following this, the value at a given subpixel location can be found from Equation 2.30:

p(x, y) = x̃QCQT ỹ (2.30)

where Q is given above, C is the coefficient matrix derived from deconvolving the image
and relevant b0 kernel, and x̃ and ỹ are given by Equation 2.31:

x̃ =
[
1 ∆x

]
ỹ =

[
1 ∆y

]
x̃ =

[
1 ∆x (∆x)2 (∆x)3

]
ỹ =

[
1 ∆y (∆y)2 (∆y)3

]
x̃ =

[
1 ∆x (∆x)2 (∆x)3 (∆x)4 (∆x)5

]
ỹ =

[
1 ∆y (∆y)2 (∆y)3 (∆y)4 (∆y)5

]
(2.31)

Equation 2.30 can be thought of as resampling along the x direction, followed by resampling
along the y direction, similar to how the interpolation can be separated to operate in the
x and y directions separately.
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2.1.4 Subpixel Registration Algorithms

Correlation algorithms, also known as subpixel registration algorithms, are aimed at pro-
viding the ability to converge rapidly and accurately to the peak correlation value between
two image subsets. Various subpixel registration algorithms were used by early researchers.
These included the FA-NR [10, 29, 31, 44, 52], coarse-fine searching [13, 25, 39, 53, 70],
gradient based methods [38, 71], curve fitting, and more. The more popular methods in-
cluded the FA-NR and gradient based methods due to their accuracy and simplicity [20].
More recently, the IC-GN algorithm was developed and shown to be more computationally
efficient and more robust to noise than the classic FA-NR algorithm [32, 35].

Coarse-Fine Search

The coarse-fine search algorithm was an early method to perform DIC prior to the main-
stream usage of non-linear iterative algorithms such as the FA-NR [13, 25, 39, 53]. Early
researchers found coarse-fine algorithms easy to implement on processors with relatively
limited capabilities [13, 25, 39, 53]. The coarse-fine search algorithm worked by creating a
grid of possible displacement locations in an image, and a reference subset was compared
to target subsets generated at each of the possible grid points to find the maximum corre-
lation. If this correlation was not high enough, a finer search grid was created around the
point of maximum correlation. This process was repeated until a correlation or other differ-
ence threshold was achieved [53]. If a non-rigid shape function was chosen, then the process
would be completed first for the overall rigid displacement, followed by sequentially find-
ing the optimal values for each deformation parameter pair (such as expansion/contraction
parameters ux and vy together) using a matrix of values [53]. If the deformation parameter
pair did not achieve a required correlation score, then the range of the deformation param-
eters was centered about the optimal point and the range of values was decreased. This
was repeated until each deformation parameter also converged [53]. Interpolation can be
used throughout this process to provide for grid point values between pixels [53]. The first
level of a coarse-fine search may also be used by other methods to estimate the integer pixel
displacement for use as an initial guess, followed by use of the other registration algorithms
[70].

Gradient Based Methods

Gradient based methods were initially developed as a form of optical flow [38, 71]. Gradient
based methods necessitate the assumption that, if a given subset is small enough, that
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subset will translate as a rigid body and not deform [20, 38]. By doing so, the deformation
field can be assumed to take the form of a 0th order shape function shown in Equation 2.32
[38]:

g(x′, y′) = g(x+ u, y + v) + ∆xgx(x+ u, y + v) + ∆ygy(x+ u, y + v) (2.32)

where g(x′, y′) is the image intensity in the current image at updated point (x′, y′), g(x+
u, y+v) is the image intensity in the current image at integer location (x+u, y+v), gx and gy
are the x and y image gradients, and ∆x and ∆y are the subpixel displacement components
of the displacement. The nearest integer location can be found through integer pixel
based correlation, but the subpixel component requires a further solution. The solution
to Equation 2.32 for the subpixel displacement components can be given in a closed form
in terms of g, gx, and gy, allowing for a convenient solution for the subpixel displacement
components.

Curve Fitting

The curve fitting method of DIC starts by finding the closest matched integer pixel location
to the reference subset. The algorithm then treats that point, as well as the surrounding 8
points, as a curved surface that can be fitted using a two dimensional quadratic given by
Equation 2.33 [38]:

C(x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 (2.33)

where a0 through a5 are the curve fitting parameters and point (x, y) is the center of the
deformed subset. The maximum correlation location can be found through an optimization
process, which involves taking derivatives with respect to x and y, followed by solving the
resulting linear system of equations for the center of the deformed subset, (x, y). u and v
can then be found from u = x− x0 and v = y − y0, where x0 and y0 are the centers of the
undeformed image [38].

Forward Additive Newton-Raphson (FA-NR)

While early DIC researchers often made use of the coarse-fine search method, researchers
soon began using a non-linear iterative solver to perform DIC. The classic non-linear it-
erative algorithm used for DIC has been the Forward Additive Newton-Raphson (FA-
NR) algorithm, which was widely seen as the gold-standard of DIC until the early 2010s
[10, 29, 31, 44, 52]. In general, it has been found to give very high accuracy, but at the
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cost of high computational requirements. These requirements stem from calculating the
Hessian matrix on every iteration, followed by inverting it. The Hessian is typically com-
prised of a 2x2, 6x6, or 12x12 matrix corresponding to the 0th, 1st, and 2nd order shape
functions. This calculation and inversion of up to a 12x12 matrix is very computationally
expensive.

Solving for the optimal solution using the FA-NR algorithm requires the calculation
and updating of a displacement parameter, p. The size of p varies with the shape function
chosen to represent the subset, with a typical first order approximation taking the form
of p =

[
u ux uy v vx vy

]
[29, 31]. Equation 2.34 shows the parameter updating

algorithm of the FA-NR method [29, 31]:

pn = pn−1 −
(
∇∇C(pn−1)

)−1

∇C(pn−1)

= pn−1 + ∆p
(2.34)

where pn−1 is the previous iteration parameter, pn is the current iteration parameter,
∇C(pn−1) are the gradients of the correlation coefficient, and ∇∇C(pn−1) is the second
order derivatives of the correlation coefficient, otherwise known as the Hessian. If pn is
close to the exact solution, then the Hessian can be reduced to an approximation as shown
in Equation 2.35:

∇∇C(pn−1) = 2
M∑

i=−M

M∑
j=−M

(
1

(∆g)2
∇g(x′, y′)T∇g(x′, y′)

)
(2.35)

where g refers to the target image, ∆g is the standard deviation of the target subset
intensities, and ∇g(x′, y′) is the gradients of the target subset and is given by ∇g = [gx, gy].
The deformation parameter vector from the previous iteration, pn−1, is used to determine
the coordinates (x′, y′) in the target subset on the next iteration.

The FA-NR algorithm can be seen diagrammatically in Figure 2.4. The reference subset,
f(x + ξ) is compared with the original target subset, g(x + ξ), where f is the reference
image intensities, g is the target image intensities, x is the location of the subset, and ξ
is the locations within the subset. The change in the shape (or deformation) parameters,
∆p, is calculated and used to find the shape deformation parameters based on Equation
2.34. The deformation parameters are used to update the original target subset to create
g(x + W (ξ; pn−1)), where W (ξ; pn−1) is known as the warp function. The warp function
uses the deformation parameters to determine the new (x′, y′) pixel locations within the
subset, which can be used to create the updated target subset using interpolation. This
updated target subset is then compared to the reference subset, finding a new ∆p, which in
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turn updates the previously updated target subset to create g(x+W (ξ; pn)). This process
is repeated until a convergence criteria is achieved or a maximum iteration count is passed.
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Optimizing cost function
(ZNSSD, ZNCC, ZPSSD)

∆p

pn = pn−1 + ∆p

Update target subset with
new parameters
Red: g(x+W (ξ; pn))
Blue: g(x+W (ξ; pn−1))
Black: g(x+ ξ)

Reference subset, f(x+ ξ)
Target subset, g(x+ ξ)
Original subset shown in black

Update deformation
parameters for new
iteration, pn

Calculate deformation
parameter using
Equation 2.34

Iteration is continued until difference criteria is satisfied

Figure 2.4: Forward Additive Newton-Raphson algorithm (1st order shape function).
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Inverse Compositional Gauss-Newton (IC-GN)

The IC-GN algorithm is a modified version of the FA-NR algorithm that requires fewer
computations of the Hessian matrix, and therefore fewer computations of its inverse [32].
Where the FA-NR algorithm warps the target subset to match the reference subset, the
IC-GN actually warps the reference subset to match the target subset. The calculated
warp is subsequently inverted to find the deformation of the target subset relative to the
reference subset. This method can make use of any correlation function, which includes
robust criteria such as the CZNSSD or CZNCC functions. The IC-GN algorithm requires
that both the Hessian and applied warp functions are invertible, and so modifications must
be made to the shape function to allow for it to be invertible as discussed in Section 2.1.2
[4, 14, 32]. An incremental warp gets applied to the previous warp function according to
Equation 2.36 [32]:

W (ξ; p)n = W (ξ; p)n−1 ◦W−1(ξ; ∆p) (2.36)

where W (ξ; ∆p) is the incremental warp function, W (ξ; p) is the warp function, and n is
the current iteration. In general, the algorithm can be seen to follow the process shown
in Figure 2.5. The reference subset, f(x + ξ) is compared to the original target subset,
g(x + ξ), where f is the reference image intensities, g is the target image intensities, x is
the location of the subset, and ξ is the locations within the subset. The reference subset
is warped to better match the target subset, and the incremental warp is then inverted to
find the incremental warp of the target subset. The incremental warp of the target subset
is composed with the previous estimate to give an updated warping parameter, which can
be used to build an updated target subset, g(W (ξ; p)n−1). The reference subset is then
compared to this updated target subset to find a new incremental warp, which is again
inverted and composed to find the next updated target subset, g(W (ξ; pn). This process is
repeated until a convergence criteria is achieved or a maximum iteration count is passed.
The incremental warp function can be found in each loop by calculating the incremental
deformation parameter, ∆p, as shown in Equation 2.37 [32]:

∆p = −H−1

M∑
x=−M

M∑
y=−M

(
(∇f ∂W

∂∆p
)T × [(f(x+ ξ)− f̄)− ∆f

∆g
(g(x+W (ξ; p))− ḡ)]

)
(2.37)

where H is the Hessian matrix as described in Section 2.1.2, ∇f is the image intensity
gradients in the x and y directions, ∂W

∂∆p
is the Jacobian of the cost function with respect to

the deformation parameter, ∆f and ∆g are the standard deviations of the reference and
current subset intensities, and f̄ and ḡ are the means of the reference and current subset
intensities [29, 31, 32]. The Hessian and gradients are calculated for the reference subset
in the IC-GN algorith, allowing them to be calculated prior to analysis.
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Optimizing cost function
(ZNSSD, ZNCC, ZPSSD)

W (ξ; ∆p)

W−1(ξ; ∆p)

Update target subset with
new parameters
Red: g(W (ξ; p)n)
Blue: g(W (ξ; p)n−1)
Black: g(x+ ξ)

Reference subset, f(x+ ξ)
Target subset, g(x+ ξ)
Original subset shown in black

Invert incremental
warp of the reference
subset to get incremental
warp of the target subset

Calculate incremental
warp of the reference
subset using Equation 2.37

Iteration is continued until difference criteria is satisfied

Update target subset
by composing with the
incremental warp of the
target subset

W (ξ; p)n = W (ξ; p)n−1 ◦W−1(ξ; ∆p)

Figure 2.5: Inverse Compositional Gauss-Newton algorithm (1st order shape function).
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2.2 Digital Image Correlation in the Fourier Domain

DIC methods based in the image domain are quite accurate, but oftentimes are slow to
implement due to the iterative nature and point by point calculations. Fourier domain
based DIC has been used by a number of researchers to speed up calculation time [7, 15].
This is due to the nature of convolution, which is used in the correlation calculation,
being a simple matter of element-wise multiplication in the Fourier domain. The primary
limitations of DIC based in the Fourier domain are related to the accuracy found. While
subpixel interpolation can be performed through expansion of the image being correlated
against [7, 15], interpolation is still somewhat limited by computation power. There are
also difficulties in accounting for non-rigid deformations and rotations of the target subset.

2.2.1 Fourier Transform of Digital Images

The Fourier transform of a 2D image is similar in concept to the 1D Fourier transform
found in time signal analysis. A typical 1D Fourier transform converts time series data to
frequency domain data consisting of a series of complex number that correspond to the
amplitude and phase of a signal. This signal is symmetric about a frequency related to the
sampling frequency, commonly known as the Shannon-Nyquist frequency [27, 46]. Images
are comprised of discrete pixel intensity values, so discrete Fourier transforms (DFTs) are
used. The common form of a 1D DFT is given by Equation 2.38:

X(a) =
M−1∑
u=0

x(u)e−j2π(
ua
M ) (2.38)

where X(a) is the discrete Fourier transform of x(u), x(u) is the original discretized func-
tion, u is a spatial dimension or time, depending on the signal, and M is the total number
of points (or pixels) available.

A 2D Fourier transform is similar, but operates along both dimensions instead of along
just one, which is applicable to 2D images. A 2D DFT can also be separated into symmetric
quadrants due to two Nyquist frequencies existing (one for each of the horizontal and
vertical directions). The common form of a 2D DFT is given by Equation 2.39:

X(a, b) =
M−1∑
u=0

N−1∑
v=0

x(u, v)e−j2π(
ua
M

+ vb
N ) (2.39)
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where X(a, b) is the discrete Fourier transform of x(u, v), x(u, v) is the original discretized
function or image, M is the number of pixels in the direction of u, and N is the number
of pixels in the direction of v.

Figure 2.6 contains an image and associated amplitude and phase plots. Due to the DC
component dominating the amplitude plots in Figure 2.6b when linearly scaled, the ampli-
tude plot has been logarithmically scaled. The center of the plot corresponds to the lower
frequency components, with the very center being the DC component (or mean intensity of
the image). The brightness in the 2D DFT amplitude plot indicates a higher level of that
frequency content in the image. Low frequencies refer to subtle or slow changes in pixel
intensities, while higher frequencies refer to sudden or sharper changes in pixel intensities.
The direction of lines in the amplitude plot also relate to the direction in which the fre-
quency change is occurring; a vertical line of high amplitude frequency components relates
to a hard horizontal line in the image. The phase of the 2D DFT shown in Figure 2.6c is
difficult to interpret intuitively, but is required for successful reconstruction of an image.
It can also be used to perform phase based correlation [7]. Phase based correlation has an
advantage in that it takes place along a continuous phase spectrum, allowing subpixel dis-
placement to be calculated in the Fourier domain prior to returning to the image domain.
The amplitudes of the various frequencies should not change significantly during displace-
ment provided the average pixel intensity and gradients stay constant, but the phase will
change to reflect the displacement of the pixels. However, phase based correlation is only
applicable in cases where the subset displaces rigidly. The phase portion of the DFT may
also be used to provide subpixel shifts in numerically simulated images [41].

Fourier transforms of 2D images are separable, which allows users to calculate the
Fourier transform of the image in each direction independently, saving on computational
time and allowing operations to be performed in each direction separately. This can be
expressed by Equation 2.40:

Y (u, b) =
N−1∑
v=0

x(u, v)e−j2π(
vb
N )

X(a, b) =
M−1∑
u=0

Y (u, b)e−j2π(
ua
M )

(2.40)

where X(a, b) is the 2D discrete Fourier transform of x(u, v), x(u, v) is the original dis-
cretized function or image, M is the number of pixels in the direction of u, N is the number
of pixels in the direction of v, and Y (u, b) is the discrete Fourier transform of x(u, v) applied
in only the v direction.

33



(a) Original image.

(b) Amplitude of DFT. (c) Phase of DFT.

Figure 2.6: Example of a 2D Fourier transform of an image.
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2.2.2 Correlation Using Discrete Fourier Transforms

There are multiple techniques that make use of Fourier transforms to compute the correla-
tion between two images. One method is to use a phase shift difference to find the resulting
displacement between two images [7], but this is limited to shifts in just the x or y direc-
tions. Rigid body displacements may be applicable for tracking individual targets or if the
subsets chosen are small enough, similar to that assumed by the gradient based traditional
DIC method. A second method is to make use of convolution to find the peak correlation,
but this is limited to finding displacements at only integer pixel values. Methods have been
proposed to improve the resolution to subpixel levels [15], including upsampling the entire
image using DFTs, upsampling a local neighbourhood around the initial estimate of the
peak, and multiple upsampling steps for a local neighbourhood around the initial estimate
of the peak [15]. Efficient upsampling techniques can drastically improve speeds, but non-
linear optimization approaches are still found to be more accurate than DFT approaches
in general [15].

2.3 Camera Calibration

Camera calibration is a critical process for optical measuring systems. 3D systems require
knowledge of the relative camera locations, which can be provided through a stereoscopic
calibration process. Calibration can also compensate for various distortions and errors
caused by cameras and lenses. Proper calibration can lead to high accuracy measurements,
while improper calibration may result in large errors.

Calibration accounts for the intrinsic properties of cameras and the distortions created
by lenses. The intrinsic properties of a camera include the focal length of the camera
(typically normalized to pixel units), the optical center (which may or may not be coincident
with the sensor center), and pixel skew (which is when the camera pixels are not truly
square). Calibration can take the form of a single camera calibration, which provides
the lens and camera intrinsics of a single camera, or a multiple camera calibration, which
provides the camera intrinsics for each camera as well as the external geometric relationship
between the two.

The calibration process assumes a pinhole camera model as shown in Figure 2.7. An
idealized pinhole camera is one in which the image is passed through a single point aperture
to the image sensor with no use of magnification or focusing lenses. A pinhole camera model
can use the intrinsic matrix of the camera to convert between the camera coordinate system
and the image coordinate system [25]. This model assumes that:
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• the aperture is a pinhole without diffraction, and therefore the depth of field is infinite
and all points are perfectly focused on the image sensor

• there is no lens present to distort the image radially or tangentially

• the aperture is located along the Z axis projected from the camera center (i.e., the
optical center coincides with the center of the sensor)

Camera calibration can be used to compensate for some of these assumptions, such as the
lack of radial and tangential distortion and the location of the aperture being along the Z
axis.

Figure 2.7: Typical pinhole camera model.

Three coordinates systems are present in camera imaging as shown in Figure 2.8. The
image coordinates are denoted by (x, y), the camera coordinates are denoted by (Xc, Yc, Zc),
and the world coordinates are denoted by (Xw, Yw, Zw). The image coordinates are ex-
pressed in units of pixels (px), while the camera and world coordinates are expressed in
real world units such as millimetres (mm). The camera coordinates are measured from the
center of the camera, with the Zc axis projecting outwards through the lens, perpendicular
to the imaging plane. The imaging plane is located at the focal distance, f , from the
camera center along the Zc axis. The image coordinates are typically measured from the
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top corner of the image. The pinhole camera model assumes that all points from the object
are projected through the projection center and onto the imaging plane using a straight
line [17, 63]. The camera intrinsics are used to convert between the image coordinates
and camera coordinates, while extrinsic parameters are used to convert between camera
coordinates and world coordinates.

Yc
Xc

Zc

Xw

Yw

Zw

x

y

P (Xw, Yw, Zw)

p(x, y)

Camera frame

Image plane

World frame

Figure 2.8: Coordinate systems present in pinhole camera model.

If a given image is located at a focal length f away from the image sensor, then the
relationships in Equation 2.41 can be derived geometrically:

x

f
=
Xw

Zw
y

f
=
Yw
Zwxy

1

 =
1

Zw

f 0 0
0 f 0
0 0 1

Xw

Yw
Zw


(2.41)

The intrinsic parameters are found through optimizing the reprojection error of a known
pattern, such as a checkerboard. The general camera intrinsics matrix can be found in
Equation 2.42:

K =

fx 0 0
s fy 0
cx cy 1

 (2.42)

where fx is the normalized focal length in the x direction, fy is the normalized focal length
in the y direction, cx is the optical center in the x axis, cy is the optical center in the y axis,
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and s is the skew coefficient that can be found from s = ftan(α). Figure 2.9 shows the
different parameters. The focal lengths in the x and y directions are typically the same, in
particular if the pixels have a square aspect ratio. The focal lengths are normalized relative
to the physical size of the pixels, and therefore expressed in units of pixels. The optical
center refers to the center of the lens and where the optical, or Z, axis passes through in
pixel coordinates. The skew coefficient accounts for if the x and y axes of the camera pixels
are not perfectly perpendicular; skew coefficients are occasionally omitted and assumed to
be 0. The intrinsics matrix may be transposed depending on the initial formulation, but
contains the same information regardless of orientation.

Yc

Xc

Zc

f

Image

O

(a) Focal length.

Imagex

y cy

cx

(b) Optical center.

Pixel

α

py

px

(c) Skew coefficient.

Figure 2.9: Intrinsic camera parameters found through calibration.

The camera calibration also contains information for the camera extrinsics, which mea-
sure the rotation and translation relative to a given reference in world coordinates. This al-
lows conversion from world coordinates (Xw, Yw, Zw) to 3D camera coordinates (Xc, Yc, Zc),
at which point the camera intrinsics can convert from 3D camera coordinates to image plane
coordinates (x, y). This allows for the perspective transformation given by Equation 2.43:

xy
1

 = K

R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3



Xw

Yw
Zw
1

 (2.43)

Radial and tangential distortions are related to the distortions present in the specific
lens/camera combination. Radial distortion occurs when the lens magnifies differently
at the outside edges of the frame than the center, preventing straight lines in the real
world from remaining straight in captured images. These distortions are assumed to be
symmetric about the optical axis [63]. Radial distortion is referred to as barrel distortion
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when the distortion results in negative radial displacement of image points, and referred to
as pincushion distortion when the distortion results in positive radial displacement of image
points in the resultant images [63]. Radial distortion can be modelled using Equation 2.44:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.44)

where r2 = x2 + y2, x is the pixel coordinate in the horizontal direction, y is the pixel
coordinate in the vertical direction, and k1 to k3 are the radial distortion coefficients (k3 is
optional for small distortions). Tangential distortion occurs when the camera sensor and
the back of the lens are not planar [17]. Tangential distortion appears as though one corner
or side of the image is leaning towards the sensor while the opposing side is leaning away
from the sensor. Tangential distortion can be modelled through Equation 2.45:

xdistorted = x+ [2p1xy + p2(r2 + 2x2)]

ydistorted = y + [p1(r2 + 2y2) + 2p2xy]
(2.45)

where r, x, and y are as above and p1 and p2 are the tangential distortion coefficients.

Multiple cameras can also be calibrated relative to each other for stereoscopic measure-
ment. Additional translation and rotation matrices are determined that are related to the
translation and rotation between the two cameras. These translation and rotation matri-
ces can be used to determine the fundamental and essential matrices, which are discussed
in Section 2.4. The relationship between the cameras can be used to estimate vision in
3 dimensions, allowing for calculation of Xw, Yw, and Zw coordinates based on a given
left-right pair of images.

2.4 3 Dimensional Vision

A single camera pointing at an object has difficulty accurately predicting 3 dimensional
movements. 3D motion can be estimated by a single camera using changes in the object
scale, but any rotation or deformation during capture would prevent accurate measurement.
Different scales would also be required for different points or objects. 3D point tracking
instead relies on multiple camera positions to determine the location of each point. Figure
2.10 shows how a pair of cameras can determine the location of a point in 3D space, relative
to one of the cameras or a reference point. Points O and O′ refer to the camera centers,
planes I and I ′ are the imaging planes, x and x′ are where the point X appears in each
image, e and e′ are known as the epipoles, and l and l′ are known as the epipolar lines.
This concept is generally known as stereo vision or stereoscopy.
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Figure 2.10: Basic two camera layout for three dimensional vision.

2.4.1 Stereoscopy

Humans see in 3D due to each eye seeing slightly different images. The discrepancy be-
tween what each eye sees is processed by the brain, resulting in perception of depth and
movement in all directions. The same concept can be applied to cameras. In the case of
humans, the brain knows the distance between the optic nerves (and thus the baseline of
the triangle shown in Figure 2.10) required to perceive depth, but cameras do not inher-
ently know this measure. A stereo calibration must be carried out using both cameras
simultaneously in order to minimize the error associated with reprojecting the corrected
points. The calibration provides the translation and any rotation between the cameras,
which in turn allows the software to calculate the depth to a given point. These parame-
ters are typically described by a 3x3 matrix of rotations shown in Equation 2.46 and a 3x1
vector of translations shown in Equation 2.47:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.46)
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T =

txty
tz

 (2.47)

where R11 through R33 are the rotations of the second camera relative to the first camera
and tx, ty, and tz are the translations between the cameras in the x, y, and z directions.

2.4.2 Epipolar Geometry

Epipolar geometry is simply the geometry behind stereo vision, and is related to solely
the camera properties and relative pose (i.e., the relative translation and rotation) of the
cameras [16]. Epipolar geometry can be subdivided into situations with calibrated cameras
and situations with uncalibrated cameras. Cameras may be calibrated either prior to or
following capture when conducting digital image correlation, so only the calibrated case
will be discussed. The assumptions underlying the calibrated case are that the intrinsic
parameters, extrinsic parameters, and relationship between the cameras are known, and
that the cameras follow the pinhole camera model.

The simplest case of epipolar geometry is the case where the camera sensors are coplanar
with the same lens and only a horizontal shift between the cameras as shown in Figure
2.11. Based on the geometry shown, and assuming that the distance between the cameras
is known, the depth can be calculated by Equation 2.48:

Z =
fb

d
(2.48)

where Z is the distance from the camera plane, f is the focal length, b is the distance
between the cameras, and d is the disparty and is equal to d = xR − xL. Error can occur
in the depth measurement due to the camera sensor discretizing the image as shown in
Figure 2.12. The error in disparity between the left and right image can be taken as
∆d = ∆xR − ∆xL. Assuming the error in each of ∆xR and ∆xL is independent and has
a mean of 0, the mean of the disparity error can be found to be 0 as well from Equation
2.49 [16]:

∆d = ∆xR −∆xL

E[∆d] = E[∆xR]− E[∆xL] = 0− 0 = 0
(2.49)

The depth, Z, contains no uncertainty due to focal length or distance between cameras
because the focal lengths do not change and the cameras are stationary. Therefore, the
depth has uncertainty only due to the disparity, d, which allows the error in depth, ∆Z,
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Figure 2.11: Simple case of epipolar geometry with co-planar camera sensors.
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Figure 2.12: Error due to quantization of camera sensor.
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to be found from Equation 2.50. The mean error in depth can also be found to be 0 from
Equation 2.50 [16]:

∆Z = −fb
d2

∆d

E[∆Z] = −fb
d2
E[∆d] = −fb

d2
∗ 0 = 0

(2.50)

Fundamental Matrix

The fundamental matrix, F , has properties derived from epipolar geometry, and may be
thought of the algebraic version of epipolar geometry [16]. Figure 2.13 shows that for
every point, x, in the left image there exists an epipolar line, l′ in the right image (and vice
versa). The ray from the point of interest, X, to the image plane location, x and passing
through the camera center can then be projected to the other image plane, resulting in
the epipolar line, l′. Therefore, a transformation from the location in the left image to the
corresponding epipolar line in the right image exists [16].

O O′

X

x

e′

l′

I I ′

Figure 2.13: Epipolar lines resulting from a point, x.

Assuming a 2D homography, Hπ, between the left and right images that transfers points
from x to x′ such that x′ = Hπx, then the epipolar line l′ passing through x′ and e′ can be
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written as Equation 2.51 [16]:
l′ = e′ × x′ = [e′]×x

′

l′ = [e′]×Hπx = Fx
(2.51)

where [e′]× refers to the skew symmetric matrix for e′ that provides the equivalent multipli-
cation as the cross product [16]. Equation 2.51 can be rewritten by substituting x′ = Hπx,
which can in turn be rewritten to find a matrix, F , otherwise known as the fundamental
matrix [16]. The fundamental matrix is essentially a mapping from the 2D plane of the
first image to determine the epipolar line through the second image epipole, e′.

The fundamental matrix has the property that for any and all pairs of corresponding
points in the two images, x′TFx = 0, and the rays defined by these points are coplanar
[16]. The fundamental matrix has seven degrees of freedom, and hence requires at least
seven points of known correspondence to calculate [16].

The essential matrix is closely related to the fundamental matrix. It is a special case of
the fundamental matrix where it is expressed in normalized image coordinates [16]. The
fundamental matrix does not assume that the cameras are calibrated, but the essential ma-
trix requires that the cameras be calibrated [16]. The normalized coordinates are expressed
by Equation 2.52:

E = [t]×R (2.52)

where R is the rotation matrix, and [t]× is the skew-symmetric matrix for the translation
vector, t, that provides the equivalent multiplication as the cross product.

If a camera matrix is given by P = K[R|t] and a point x is given by x = PX, then the
normalized coordinates x̂ can be given by x̂ = K−1x = [R|t]X. Equation 2.52 can be found
by taking the normalized camera matrices P = [I3|03] and P ′ = [R|t] for the fundamental
matrix shown in Equation 2.51 [16], where I3 is the 3x3 identity matrix and 03 is a 3x1 0
vector. Similarly to the fundamental matrix, a key property of the essential matrix is that
x̂′TEx̂ = 0 for all normalized, corresponding points x̂ and x̂′. This leads to Equation 2.53
[16]:

x̂′TEx̂ = 0

x′TK ′−1EK−1x = 0

x′TK ′−1EK−1x = x′TFx

E = K ′TFK

(2.53)

where K is the camera intrinsics matrix. Camera calibration software, such as that pro-
vided with MATLAB, can be used in conjunction with a checkerboard pattern to determine
the fundamental and essential matrices.
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2.5 Noise Reduction

2.5.1 Noise Sources

An ideal camera with ideal lighting would result in no noise. However, cameras have a
number of noise sources, which contaminate the signal coming from the camera sensor.
These noise sources include shot noise, quantization noise, and read noise.

Shot noise is related to the number of photons that actually strike the image sensor. The
number of photons given off by a constant light source is not constant in every direction,
leading to variation in the number of photons that strike the sensor throughout a test,
resulting in some variation in the signal. As the number of photons striking the sensor
increases, the variation decreases in relative magnitude and there is a more consistent
result that more closely matches the true brightness of the pixel. Therefore, brighter light
sources are generally recommended to reduce shot noise.

Quantization noise is the result of cameras measuring in discrete intervals, such as
from 0 to 255 (8-bit), which results in round off errors between the true, continuous signal
and the reported, quantized signal. The quantization error is then the difference between
the true signal and the rounded signal. Quantization error can be reduced in relative
magnitude through the use of 10- or 12-bit images.

Read noise is related to a number of factors, including the ambient temperature, camera
temperature, and how many electrons are actually created by a given number of photons
striking the imaging sensor. Each photon striking the image sensor would generate a single
electron in a perfect sensor, which would then be converted to a voltage signal. This voltage
is converted to a digital signal that is related to the raw value at that point. Thermal shifts
and interference from the surrounding environment can also introduce errors in the analog
to digital conversion of the voltage signal to a pixel value. The analog to digital converter
should ideally be shielded to limit interference and the cameras left to reach a steady state
temperature prior to measuring. The read noise can be determined at a given steady state
temperature by taking a very short exposure image with the lens cap on and any external
lights off.

Another form of noise, commonly known as salt and pepper noise, is when dark pixels
appear in bright areas and bright pixels appear in dark areas. Salt and pepper noise may
be caused by stuck or dead pixels, or it may be caused by other components always reading
a full or empty charge regardless of actual light level. It can be mitigated through the use
of non-linear median filtering.
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2.5.2 Gaussian Pre-Filtering

High order b-spline interpolants, such as quintic b-splines, have been found to be highly
accurate in numerical simulations without the presence of noise [30]. These higher order
b-splines interpolants are sensitive to high frequency noise which can add both bias error
and variability to the displacement measurements. A larger subset can be used to reduce
the variability, but it is unable to affect the bias error [30].

Pan [30] investigated the use of low pass Gaussian filters to reduce the bias error
when using higher order b-splines interpolants. Pan [30] examined numerically generated
images with varying noise levels as well as experimental images using the FA-NR algorithm
before and after applying a smoothing Gaussian filter. The filters varied in size from 3x3
to 9x9 pixels and were applied to all images. The application of a Gaussian filter acts
as a blurring effect and reduces the image gradients, which reduces the accuracy of the
algorithm as discussed in Section 2.6. All of the Gaussian filters reduced the bias errors
of the analysis, with the 3x3 filter having the lowest effect and the 5x5, 7x7, and 9x9
filters all having similar effects [30]. The larger filters reduced the detail though, which
increased the variability (or standard deviation error) of the results. Therefore, Pan [30]
recommended the use of a 5x5 Gaussian filter to remove bias error while limiting the
standard deviation error increase. The application of the 5x5 filter reduced bias error
to near 0 while only marginally increasing the standard deviation error. This was further
verified by experimental testing, and also showed that Gaussian pre-filtering combined with
a bicubic interpolation scheme could be as accurate as biquintic interpolation regardless of
whether the biquintic interpolation used pre-filtering [30].

2.6 Speckle Patterns

DIC requires a unique pattern or shape to be present in an image to accurately track
points. In the case where only a single or small number of points are being tracked, targets
or natural features on the structures can be used for tracking. Full field displacements,
however, require a large number of unique features dispersed across a given area. These
unique features are typically created artificially using a painted on speckle pattern, although
it is possible to use naturally occurring features in highly variable materials, such as rough
brick or masonry [3]. An example speckle pattern is shown in Figure 2.14.
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Figure 2.14: Example of a speckle pattern.

The quality of the speckle pattern applied to an object can have a significant impact
on the accuracy of the resulting DIC measurements [33]. Poor speckle patterns can lead to
significantly increased errors, resulting in very different measured displacement fields for
the same specimen [33]. If the speckle pattern is smudged or blurred, it may not provide
enough unique features to allow the algorithm to match accurately. If the speckles are
too large, they may take up too much of the subset area and consequently result in false
matches or lack of convergence. Finally, if the speckles are too small, they may not appear
as unique features in the pixels due to them being much much smaller than the pixels.
High contrast, such as black speckles on a white background, should be used in speckle
patterns to ensure high accuracy [37].

There are numerous ways of quantitatively evaluating the quality of the speckles. Local
methods include subset entropy [64] and the sum of squares of subset intensity gradient
(SSSIG) [37]. The SSSIG criteria can be seen in Equation 2.54 [37]:

SSSIGx =
∑

(fx)
2

SSSIGy =
∑

(fy)
2

(2.54)

where fx is the gradient of the subset in the x direction, fy is the gradient of the subset in
the y direction, and the summation is performed over the entire subset. For a randomly
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distributed speckle pattern, the SSSIG should be approximately equal in each direction. If
the SSSIG is too small, there is not enough variation in the subset to ensure accurate and
unique matches, resulting in larger errors [37]. The SSSIG can be increased by increasing
the contrast of the speckle pattern, increasing the bit depth of the images (i.e., using
10- or 12-bit images instead of 8- bit images), or decreasing the noise in an image. A
recommended subset size can also be determined by calculating the smallest subset that
achieves a threshold SSSIG value for correlation.

An alternative to local subset based speckle evaluation is to use global speckle pattern
quality measures. One form of global quality evaluation is the mean intensity gradient
(MIG) [29, 33]. The MIG is conceptually similar to the SSSIG, but is an average of the
gradients of the whole region of interest rather than of an individual subset. The MIG can
be calculated by Equation 2.55:

MIG =
∑ |∇f |

WH
(2.55)

where |∇f |=
√

(fx)2 + (fy)2, W is the width of the region of interest, and H is the height
of the region of interest. If the MIG is too low, it is a sign that there is not enough variation
in the subset to ensure accurate matches [33]. The SSSIG of a local subset can also be
approximated from the MIG according to Equation 2.56 [29]:

√
SSSIG ≈ N ×MIG (2.56)

where N is the size of a subset, and the sum is performed over the entire region of interest
or image. The MIG and SSSIG are easily implemented and valuable in evaluating and
comparing different speckle patterns or images.

2.6.1 Speckle Pattern Simulation

A number of researchers have proposed different ways to simulate speckle patterns. Zhou
and Goodson [71] used various numbers and sizes of speckles and found that the best results
were achieved by speckle sizes between 2 and 5 pixels. Zhou and Goodson [71] chose a
speckle size and number and then randomly assigned locations to each of the speckles,
which were then used to build the image. Undersampling of the image occurred when a
speckle size of 1px or smaller was used, which resulted in increased errors. Larger speckles
were seen to perform well, but only to an upper limit, at which point errors again rose
[71]. The ideal range of 2 to 5 pixels when using the FA-NR generally agreed with previous
experimental results showing 2 to 3 pixels was ideal [10]. Other authors have also suggested
a range of 2 to 7 pixels in previous years [68].
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2.7 Applications of DIC

DIC has been used for applications ranging from simple 2D tensile tests to large scale,
3D tests on full scale structures like bridges and buildings. Most applications in civil
engineering to date have used commercial software such as VIC-2D and VIC-3D from
Correlated Solutions, Istra4D from Dantec Dynamics, ARAMIS from GOM, Video Gauge
from Imetrum, and MatchID, although others have made use of open-source or research
oriented software such as NCORR, DICe, GeoPIV, and YADICS. A very small number of
research groups have created their own software packages for internal use or development
as well.

2.7.1 Laboratory Usage

The earliest work in DIC was typically completed in 2 dimensions, and was primarily
focused on laboratory work. One of the earliest forms of DIC was used by Peters and
Ranson [39], who used an early form of DIC that was able to account for a rigid body
translation using a coarse-fine search method. They verified their algorithms by measuring
a small aluminum plate under uniform tension. A shift of 0.1419 inches was found before the
images could not correlate [39]. Sutton et al [53] incorporated an early bilinear interpolation
scheme. This system also made use of a 1st order shape function, allowing it to track
shearing and elongation as well as rigid body displacement [53]. Sutton et al [53] made
use a form of coarse-fine search where the initial parameters were initially estimated using
a coarse grid, and were estimated in pairs (u and v, ux and vy, and uy and vx). The
estimates were then refined in a local area. A validation test performed on a cantilever
found results close to beam theory, with errors less than 5% [53]. Horizontal displacements
were found to be very inaccurate due to the small displacements, and the authors estimated
a 0.10px threshold for accurate measurement in their system. Chu, Ranson, and Sutton
[13] expanded on the interpolation used by Sutton et al [53] by using both polynomial and
bilinear interpolation in 2D DIC. They additionally derived the finite strain equations that
can be used to determine the 2D strains (εxx, εyy, εxy) directly from the displacement fields
[13]. They found that polynomial interpolation smoothed the data better than bilinear
interpolation, resulting in lowered frequency content, and that bilinear interpolation was
more accurate than polynomial. The researchers made use of a similar coarse-fine search
as Sutton et al [53]. Two specimens were tested in pure translation and pure rotation
using DIC and compared to the results from a dial indicator, and errors were below 10%
for strain values from 0 to 0.03 [13]. Additional work by Sutton et al [52] examined the
use of smoothing functions for 2D displacement fields, and found a point-to-point strain
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error in the order of 150 µε, although the average strain error was in the order of 30 µε.
The displacement noise was found to be approximately 0.01px [52].

An early 3D DIC system was developed by Luo et al [25]. Stereo vision was used for
3D vision through the use of a stereo pair of CCD cameras. The cameras were calibrated,
so the camera parameters and relative pose were used to determine the 3D coordinates,
and DIC algorithms with an accuracy within 0.05px were used to determine the shifts
within image planes and to match paired subsets. Luo et al conducted experimental tests
on both a cantilever beam, which matched closely to theory, and a cracked 304L stainless
steel specimen.

Zhou and Goodson [71] developed a DIC method that used a non-linear iterative solver
and optical flow based interpolation to determine displacements. They also numerically
simulated speckle patterns by randomly assigning locations of speckles of various sizes.
Speckle sizes ranging from 1 to 14px were examined, with the number of speckles varying as
the speckles increased in size. The simulated images were used to determine ideal speckle
parameters, and the algorithm was validated using an experimental test that evaluated
various rigid body translations and rotations with good results [71].

Trebuna and Hagara [55] completed work on extracting the mode shapes of a vibrating
plate using DIC and a laser vibrometer. A DIC analysis was performed on a vibrating plate
using Istra4D, and a custom MATLAB script was used to extract the natural frequencies
and mode shapes of the vibrating plate. The custom script took a given set of loads
(f) and displacements (x, y, z) at each load step, found the related DFTs (Ffft, Xfft,
Yfft, Zfft), then found the transfer functions (Hx, Hy, Hz). The normal mode indicator
function (NMIF) and complex mode indicator function (CMIF) were calculated for each
spectral line, and the maxima of the CMIF were taken as the fundamental frequencies of
the vibrating plate and used to calculate the mode shapes [55]. The technique was verified
by experiments conducted on two thin steel plates. The detected frequencies and the mode
shapes were similar to that of the verification system.

Javh, Slavic, and Boltezar [21] completed vibration tests and conducted modal analyses
using 2D DIC and identified modal information up to 10 kHz. They made use of a hybrid
system consisting of an accelerometer and high speed cameras combined using a simplified
gradient-based optical flow that generated full field 2D displacements. Experimental work
was conducted on a steel beam with free-free conditions. A large force was applied using
an impulse hammer to assist in higher frequencies being visible in the optical system. The
DIC system picked up the first three modes up to 2730Hz, after which taccelerometer was
used to detect the modes. The first 8 modes were produced by plotting the amplitudes of
the spectra measured by the camera at each of the identified frequencies. The first four
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modes appeared clearly, while the higher modes were more difficult to see. The addition of
an accelerometer to detect the eigenvalues was beneficial when combined with high speed
cameras to measure the mode shapes [21].

Reu et al [42] examined 3D DIC for modal measurements and compared to a scanning
LDV. The primary advantage that DIC found over the scanning LDV was that the DIC
system was able to calculate displacements for all points in the structure at the same time,
whereas the LDV was only able to measure sequentially. Both were found to have noise
floors in the range of nanometers (approximately 1/10,000th of a pixel), allowing for the
ability to pick up very slight differences in displacement to show the relevant mode shapes.
The modal properties of a square aluminum plate were tested using a scanning LDV and
pair of stereo cameras to capture simultaneously under the same excitation. VIC-3D was
used to determine the displacement field. The 3D scanning LDV used 3 separate PSV-500
lasers to create 3D measurements. The scanning LDVs and the 3D DIC system found the
modal frequencies to be within 0.02%, although the damping ratios found varied by up to
50% [42]. The mode shapes were also found to be quite comparable except for the 4th
mode, where the DIC amplitudes were lower than the scanning LDV, which may be due
to the small response of mode 4 that was only slightly above the noise floor of the DIC
system. The strain fields resulting from each technique were compared and found to vary
noticeably, primarily due to DIC measuring the direct response to surface displacements
whereas the points that the LDVs are measuring may shift during testing. The noise floors
of each technique were compared, and the scanning LDV was found to be better for out of
plane movements. Both methods were comparable for in plane movements [42]. Reu et al
noted that a scanning LDV is still preferred for out of plane modal analysis, but that 3D
DIC is preferred if in plane displacements or strains are also required [42].

2.7.2 Field Usage in Civil Engineering

While early usage of DIC focused on material testing, it has also been used to monitor a
number of real world civil structures. As early as 1993, Stephen, Brownjohn, and Taylor
[48] adopted vision based methods for use in both dynamic and static measurements of a
bridge structure. A single camera was used to measure the Humber Bridge in England,
which is a 2,220m suspension bridge with a 1,410m long main span. This early application
of optical measurements made use of a telescope sighting an area of high contrast, which
in this case was artificially applied in the form of black and reflective rings clamped to
the structure [48]. The targets and camera were aligned to measure the vertical and
lateral motion of the structure. The algorithm calculated a correlation between the chosen
subset and each integer pixel value in a chosen window slightly larger than the subset

51



to determine the peak correlation point, which was taken as the displacement. Subpixel
interpolation was not used, but it was noted that interpolation may improve the results [48].
A double-integrated acceleration signal was used to compare the displacement results, and
the peak-to-peak amplitudes were found to be in agreement, although the detailed trends
differed. Vertical and lateral vibration modes of the structures were found using the optical
system and compared to the results of a modal survey of the structure. In general, the
vertical frequencies aligned almost exactly, while the lateral frequencies were similar but
varied more significantly compared to the modal survey [48]. Mode shapes passing through
midspan were not apparent from the optical system, which only measured at midspan.

Yoneyama [65] examined bridge deflections using 2D DIC. A random pattern was ap-
plied to one external girder of a bridge and natural features were used on the other. This
structure was loaded with a heavy cargo truck and measured at various locations along
the bridge. The measured girders were well illuminated by artificial light due to the test
being conducted overnight. Yoneyama [65] found that DIC was able to determine deflec-
tions at the subpixel level, and the measured deflections were comparable to displacement
transducers, although there were minor discrepancies with the transducers at one loca-
tion. Some minor scattering at the midspan of the bridge on the side using natural girder
features was seen, resulting in the displacements at this point containing relatively large
errors, although enough points were present along the rest of the girder to estimate the
midspan deflections using a third order polynomial fit between the measured points [65].

Busca et al [11] completed vibration studies on full scale bridge structures using pattern
matching, edge detection and DIC, all of which were compared to a laser interferometer as
a reference sensor. The optical methods all made use of 2D imaging, although two differ-
ent cameras were used to determine the effect the cameras had on the measurements. The
camera frame rates during testing were limited to 17fps and 25fps, limiting the measurable
fundamental frequencies to 9.5Hz and 12.5Hz, respectively, due to the Shannon-Nyquist
sampling criterion. DIC was performed using the commerical program VIC-2D, while edge
detection and pattern matching were performed using LabView 2010 edge detection and
pattern matching tools. Busca et al [11] also examined various zoom levels, which affected
the pixel to real world unit scale of their images and allowed for an evaluation of the scale
factor affect on measurement accuracy. A 50m steel truss bridge in Italy was chosen as
the test bridge for this study, and images were captured as trains drove over the bridge.
The laser interferometer was mounted below the bridge at midspan, while three different
measurement setups were used for the optical measurements: frontal measurements with
targets, frontal measurements without targets, and in-axis measurements with targets. The
measurement uncertainty using edge detection and pattern matching were both shown to
only vary with the camera settings and scaling factor, rather than the vibration character-
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istics of the bridge. A number of targets were placed at different depths, and only some
of the targets remained within the focused depth of field, but this did not affect the mea-
surement uncertainty [11]. The targetless measuring approach was found to have higher
uncertainty as expected. The targetless areas were noted to contain only small intensity
gradients, which can affect performance [33, 29].

Ribeiro et al [43] performed dynamic and static tests both in laboratory and in the field
monitoring railway structures. The laboratory tests assessed various factors, such as light-
ing, stiffness of the stand, and magnification (zoom) level, while the field test evaluated the
field performance of the system. Targets were glued to a metallic plate to provide tracking
targets on the structures, which were then illuminated by a light source. Focal lengths
from 400mm to 3200mm were examined, and found to impact the measurement resolution.
However, no interpolation beyond “1/2 pixel” interpolation was used [43]. SAPERA vision
software and custom C++ functions were used for target tracking on the structures. No
distortion correction appeared to be carried out, although the targets were kept to the
center of the field of view to minimize distortional effects [43]. Errors present under in-
candescent lighting approached 0.02mm, while errors present under LED lighting remained
close to 0.005mm. A stiff tripod was recommended to reduce errors associated with camera
shake, particularly under air flow. Air flow rates of up to 10m/s were tested, and the error
was found to approach 0.10mm. Ribeiro et al [43] compared their system to an LVDT, and
found absolute errors in the order of 0.018 to 0.042mm for distances from 3 to 15m from the
target. These distances correspond to 15px/mm to 25px/mm. Following the laboratory
testing, a 42m long bowstring arch rail bridge was tested in Portugal. Distances from 5
to 25m were examined, relating to 12.5px/mm to 21px/mm. The results from the video
sequence generally matched closely to the LVDT results. The 25m distance contained the
largest error, which is possibly due to a large digital gain being applied in conjunction with
both 2x and 4x extender tubes, resulting in a much lower signal to noise ratio and possibly
higher distortion from the extender tubes.

Hoag [19] used 2D DIC to measure the lateral and vertical displacements of rail-
way structures. These tests were performed under both static and dynamic conditions,
and made use of live traffic loading. An open-source MATLAB based 2D DIC program,
GeoPIV, was used for displacement measurements [19]. The structures tested ranged from
single spans of steel railway bridges to a large steel bascule lift bridge in Kingston. Only
some of the measurements were compared to other sensors, but those that were compared
tended to match well with the other sensor(s) [19].
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2.8 Errors in Digital Image Correlation

The errors present in DIC that make use of the FA-NR, IC-GN, or related algorithms
are presented here. The errors from other registration algorithms, such as curve fitting
or gradient based methods, are not covered here. The errors in curve fitting, gradient
based, and other registration methods have generally been found to be larger than for the
non-linear iterative solving methods [38].

2.8.1 Errors in 2D DIC

Various error quantifications have been completed for DIC techniques. The primary errors
in the DIC algorithms have been found to be related to the interpolation [44] and shape
[45, 60, 61, 66] functions used in the algorithms. The interpolation errors are generally
related to the interpolation function used, with higher order interpolation giving more
accurate results but being more sensitive to noise [44, 61]. The shape function errors are
generally related to whether the shape function adequately captures the deformation field
of a specimen, and can be seen as undermatched, matched, or overmatched.

Much of the work on error quantification in DIC has examined the effect of different
shape functions on different deformation fields [45, 60, 61, 66]. In an ideal experiment,
the displacement field shape would be known (i.e., whether it is rigid, linear, or includes
curvatures, allowing operators to use 0th, 1st, or 2nd order shape functions), but this is rarely
the case in practice. Schreier and Sutton [45] examined the errors related to undermatched
shape functions in DIC. This occurs when a shape function is chosen that is unable to
capture the full effects of the displacement field, such as a 0th order shape function being
used to analyze linearly deforming materials. Schreier and Sutton [45] created a quadratic
displacement field and analyzed it using both a first and second order shape function with
biquintic interpolation. Using a first order shape function should result in systemic bias
errors due to not capturing the displacement field correctly, but a second order shape
function should be able to capture the displacements correctly and result in no systemic
errors. For small subsets, the second order shape function was found to have almost double
the random error of the first order, but otherwise had less random error. In general though,
a similar level of random error was found for each, but the second order shape function that
accurately captured the displacement field had fewer systematic errors present [45]. The
authors suggested the use of the smallest possible subsets while meeting other criteria (such
as a minimum size to correlate correctly) [45]. This would avoid accidentally undermatching
the shape function, but may overmatch the shape function for some displacement fields
and increase the random error slightly.
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Yu and Pan [66] and Wang and Pan [60] examined the effects of overmatched or matched
shape functions on DIC, and Wang et al [61] examined the errors present in a matched
rigid body shape function. Overmatched shape functions result from the use of a higher
order shape function than the displacement field, such as using a 2nd order shape function
to measure rigid body displacements. Overmatched shape functions have been found to
give error results similar to matched shape functions, and 2nd order shape functions have
generally been seen to give approximately double the random error of 0th and 1st order
shape functions [60, 61, 66]. The random errors due to a matched or overmatched shape
function have been shown to vary relative to the random noise in the image and the SSSIG
of the subsets being considered. This holds true for 0th to 2nd order shape functions, and
theoretical work has shown that the 2nd order shape function has twice the random error
of the 0th and 1st order shape functions [60, 61, 66]. The random error associated with a
matched 0th order shape function can be found in Equation 2.57a [61], with a matched or
overmatched 1st order shape function can be found in Equation 2.57b [60, 66], and with a
matched or overmatched 2nd order shape function in Equation 2.57c [60, 66]:

Std[u] ≈
√

2σ√∑∑
(fx)2

≈
√

2σ√∑∑
(gx)2

(2.57a)

Std[u] ≈
√

2σ√∑∑
(fx)2

≈
√

2σ√∑∑
(gx)2

(2.57b)

Std[u] ≈ 2
√

2σ√∑∑
(fx)2

≈ 2
√

2σ√∑∑
(gx)2

(2.57c)

where u is the displacement under consideration, σ is the standard deviation of the 0
mean random Gaussian noise in the image,

∑∑
(fx)

2 is the SSSIG of the reference subset,
and

∑∑
(gx)

2 is the SSSIG of the current subset being analyzed, which is approximately
the same as the SSSIG of the reference subset. The derivations of Equation 2.57 assumed
perfect interpolation and that the image noise was much smaller than the image intensi-
ties, which is generally true in digital imaging. Wang and Pan [60] validated the matched
and overmatched results using a numeric study, which found that the the standard devi-
ation error was not affected by the subpixel displacement (as expected based on previous
works), and varied approximately linearly with the standard deviation of the added noise.
This agreed with Equation 2.57, which also varies linearly with the standard deviation of
the added noise. Additionally, a homogenous strain profile was tested numerically, and
the numeric results revealed that the undermatched 0th order shape function had error in-
crease almost linearly, while the 1st (matched) and 2nd (overmatched) order errors remained
relatively constant. The magnitude of the 2nd order errors was approximately double the
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magnitude of the 1st order errors, although both were still below 0.01px. In both validation
tests, an inverse relationship between the subset size, which is related to the SSSIG, and
standard deviation error was found. This matches with Equation 2.57, which predicted an
inverse relationship between SSSIG and the standard deviation error. The 2nd order shape
function also matched Equation 2.57c well under a quadratic deformation field [60]. The
increased standard deviation error caused by the use of a second order shape function can
be compensated for using a larger subset to improve the SSSIG score in the denominator
[66]. Overall, the errors from overmatched shape functions were much smaller than those
from undermatched shape functions, leading Yu and Pan [66] to recommend the use of a
2nd order shape function with a subset between 31x31 and 71x71 pixels if the deformation
field is unknown.

Schreier, Braasch, and Sutton [44] examined the errors due to interpolation in the
FA-NR algorithm. A bias error was found for both bicubic and biquintic interpolation
functions, which has been found to be related to the interpolation functions used [44]. This
result was also found by Wang et al [61] when examining linear and cubic interpolants and
confirmed by Su et al [49]. The mean bias error was found to be a sinusoid that varies
according to the subpixel displacement as shown in Figure 2.15, and that is 0 at the integer
pixel positions and 0.5px displacement. Su et al [49] derived a theoretical measure of the
interpolation that took the form of ue = Csin(πu0), where u0 is the subpixel displacement
level. The constant, C, was found to vary directly with the interpolation method used
[49]. The magnitude of the bias error due to interpolation depends on the interpolant used
as well as the intensity distribution of the analyzed images [44, 49, 61]. High frequency
components of the speckle pattern were found to significantly contribute to the bias error
measure due to interpolation [49]. One way to avoid interpolation bias is the use of the
sinc function to interpolate, but the infinite nature and slow decay of sinc means it is
impractical [49]. An ideal interpolation would not cause aliasing, and the transfer function
would stretch from −0.5 to 0.5 pixels around a given point. This is not the case with
practical interpolants, which partially overlap beyond the ±0.5px boundary [49]. A low
pass filter can be used to reduce interpolation bias errors through suppressing the aliasing
effects by reducing high frequency content [49].

The FA-NR and IC-GN algorithms use image gradient values differently in their for-
mulation. The FA-NR algorithm requires interpolation of the target subset from which the
gradients are calculated, while the IC-GN algorithm is able to directly calculate the gradi-
ents from integer pixel values due to the inverse composition involved [35]. Shao, Dai, and
He [47] found that noise does not impact the bias error in the IC-GN algorithm due to it
sampling at integer pixel locations, but does impact the bias error of the FA-NR algorithm
due to interpolation of the noise of the target subset. Shao et al [47] examined a rigid
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Figure 2.15: Bias error vs. subpixel displacement.

shape function however, so Pan and Wang [35] expanded on their work and derived the
theoretical measures of error in the IC-GN framework for common interpolants. Su et al
[50] investigated the effect of the discrete gradient estimators and found that the gradient
estimator has a different impact on interpolation bias error in the IC-GN algorithm than in
the FA-NR algorithm. The bias error in the IC-GN framework has been found to depend
directly on the form of gradient estimator used in the analysis [50]. Su et al [50] noted that
the Barron gradient operator is approximately similar to results obtained from the FA-NR
algorithms previously, but that the Prewitt operator outperformed both in limiting bias
error. Su et al [50] also found that noise level had a negligible effect on bias error for the
IC-GN algorithm, although it did significantly affect standard deviation error.

2.8.2 Errors in 3D DIC

The errors in 2D DIC have received much of the literature focus, with only a few papers
detailing the errors present in 3D DIC systems. Errors can occur in 3D DIC due to many
sources, including noise and interpolation biases, but also from errors related to the camera
calibration process. Early work by Becker et al [8] demonstrated that calibration errors
can introduce systemic errors into a 3D DIC system, and showed that larger subsets may
actually increase errors in some situations. This is due to poorly capturing the deformation
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field, although this is more likely an effect of undermatching the shape functions between
the left and right images. Other authors [5, 14] have since recommended the use of a
2nd order shape function when interpolating between left-right paired images to avoid
this undermatching effect, although a 1st order shape function may still be applicable to
matching between left-left or right-right image sets.

Gao et al [14] examined the use of both the FA-NR and the IC-GN subpixel registration
algorithms for 3D DIC. They used both algorithms with both 1st and 2nd order shape
functions, and created two simulated tests using a sinusoidal deformation field and a planar
homography deformation field. The planar homography deformation field was used to
simulate the shift from the left camera to the right camera. Gao et al [14] found that the
computation speed of the IC-GN was much faster than FA-NR in all cases, and found that
the 2nd order IC-GN was only marginally slower than the 1st order version due to taking
more time to compute each iteration, but requiring fewer iterations to correlate. Errors
were found to be much lower in the tests when using the 2nd order algorithms, which is
due to the non linear deformation between images.

Balcaen et al [5] created a digital image generator based on a finite element (FE) mesh
to create unbiased images for use in numerical 3D DIC studies. This generator maps a
known speckle pattern to an FE mesh, which can then be deformed and projected into
the camera views. This generator was used to evaluate errors due to the 3D DIC setup,
calibration, and image aliasing. As the distance from the center of the field of view (FOV)
increased, uncertainy was found to increase in the X direction, but remained relatively
constant in the Y and Z directions. Most of the error found was able to be attributed
to the quality of the calibration. For the X and Y directions, the camera centers and
distortion parameters were found to have the most effect, while the Z direction depended
most heavily on the relative camera pose [5].

Recommendations from various authors include using as much of the FOV as possible
in calibration to better account for distortion, use up to 50 image pairs to calibrate, and to
use the center of the cameras’ FOV to measure when possible in order to limit the effects
of distortion [5]. A stereo angle greater than 10◦ is also recommended to allow for an
increased baseline between the cameras, which can significantly improve the accuracy [5].
A higher stereo angle in general decreases the uncertainty in the Z direction, but increases
the uncertainty in the X and Y directions due to the quantization errors shown in Figure
2.12. To avoid aliasing issues, it is also recommended to use a higher resolution camera,
move the cameras closer to the test piece, use a higher focal length, or use a pre-analysis
low pass filter to minimize the effects of aliasing [5].

Wang et al [62] and Ke et al [22] examined errors in stereo DIC extensively across
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two papers, and found general formulae for bias and variance errors in 3D position. The
bias generally took the form of E = Asin(w(X)X). In general, the variance of the 3D
position was found to depend on the baseline, focal length, and angle between the cameras
by Equation 2.58 [62]:

V ar[P ] =
L2

f 2cos(θ)
(2.58)

where P is the point of interest, L is the baseline, f is the focal length, and θ is the
angle between the cameras. They found through both simulation and experiments that
the in plane variability was slightly impacted by the angle between the cameras, but the
out of plane variability was significantly improved with larger angles between the cameras.
Provided a good camera calibration is used, the angle between cameras can be tailored to
whether in plane or out of plane accuracy is more desired by investigators [62].

The theoretical results were confirmed by Ke et al [22], who performed a number of
validation experiments and compared to the theoretical derivations. Up to approximately
3% noise, the theoretical and experimental values were in good alignment, although beyond
3% image noise the experimental variance was found to increase beyond that predicted by
theory. Ke et al [22] found that areas away from the camera center generally exhibited
higher uncertainty even without distortion present, which is likely due to the quantization
errors. Experiments with noisy images found that 2D errors had randomly varying bias
in either direction, with a peak magnitude up to 0.01px. The 3D errors matched theory
quite well, and the bias present is likely due to the intensity interpolation and the subset
quality.
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Chapter 3

Experimental Setup

3.1 Numeric Testing

3.1.1 Image Simulation

Images for the numerical analysis were simulated using the process detailed by Reu [41]
with speckle sizes ranging between 1 and 18 pixels. Images were generated with a 450
x 350 resolution, then windowed using a Tukey window [56]. These images were then
transformed to the Fourier domain, where they were translated in a single direction using
Equation 3.1 [41]:

Xm =
L−1∑
i=0

xie
−j2πmi/L

Ym = Xme
−j2πmk/L

ym = F−1(Ym)

(3.1)

where xi is a given row/column, m is the Fourier index, L is the length of the row/column,
and k is the imposed shift. The images were then transformed back to the spatial domain
and cropped to a resolution of 400 x 300 to remove the edge effects caused by the Tukey
windowing. A simulated image is shown in Figure 3.1. A subpixel shift of 0.05px was used
between images, and a series of 21 images was used to capture subpixel displacements from
0 to 1px. Left/right image pairs were generated by displacing the right images 5px in the
horizontal direction.

The simulated images were first analyzed to determine which speckle size would be
used for the remainder of the analysis, which resulted in 8 pixel speckles being used to
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Figure 3.1: Example simulated image.

determine the other optimal parameters of the system. An 8 pixel speckle is similar to the
range of 2 to 7 pixels that has been recommended as best practice for practical use of the
FA-NR algorithm [10, 71].

3.1.2 Test Procedure

A series of tests were completed while varying the shape function, interpolation method,
Gaussian pre-blur, subset size, speckle size, and deformation field. Table 3.1 displays the
variables and ranges tested. A regular grid pattern was used comprised of 651 (31x21)
analysis points, which were used across all tests. These analysis points were used to deter-
mine the bias and random (standard deviation) errors discussed in Chapter 4. The mean
bias error was taken by finding the measured error between the correlated displacement
and the exact subpixel displacement at each pixel location and averaging across the ROI.
Similarly, the standard deviation errors were calculated by taking the standard deviation
of the error across all pixel locations in the ROI. A simple rigid translation in the vertical
direction was used to determine the effects of each variable on the system. This allows for
easier comparison to previous works, which have most often made use of rigid translations.

The 2D analyses were completed using pixel coordinates to provide a normalized error
measure that is applicable to any camera system and geometric setup. The 2D analyses
involved a 0 to 1 subpixel displacement. The 3D analyses were completed using real
world coordinates. The subpixel displacement shown for the x-axis of the 3D results
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Table 3.1: Simulated image test matrix.

Variable Details
Shape Function 1st order, 2nd order
Interpolation Method Bicubic, biquintic
Noise Gaussian distributed; σ = 0% to 4%; 1% increment
Gaussian Blur 1x1 (no blur) to 7x7 kernels
Subset Size 21x21px to 81x81px; 10px increment
Speckle Size 1px to 18px; 1px increment
Deformation Field Rigid

is the subpixel change given in the y direction, and corresponds to a shift from 0 to
0.22mm in the y direction. The approximate distance between the planar cameras and the
target is 2000mm. Figure 3.2 displays the 3D displacement error results from a 1st order
shape function with bicubic interpolation, and shows that the Z displacement bias error
is significantly larger than the X or Y displacement components in the presence of noise.
The 3D analyses were therefore conducted on just the Z (out of plane) displacements.

3.2 Laboratory Testing

3.2.1 Equipment

High Speed Cameras

A pair of high speed cameras were used to capture images. These cameras were both JAI
SP-12000M high speed monochrome digital cameras, with a resolution of 12MP (4096px
x 3072px) shown in Figure 3.3. The cameras have 22.53x16.90mm APS-C sensors, which
allow for low noise levels in good lighting. The maximum capture rate at full resolution
is 189fps when connected by four coaxial cables to the frame grabber boards (subject
to memory/processor limitations in the computer). The cameras captured at a sampling
rate of 30fps or 30Hz. The camera settings were controlled via the coaxial cable from
the computer, and the first camera (in this case, the left camera) was triggered by the
computer. The signal was passed through the first camera via an output connection to the
input connection of the second camera, causing it to trigger simultaneously. Both cameras
made use of the same fixed focal length ZEISS 50mm f/2.2 manual focus lenses. The focus
ring was able to be locked down by a thumb screw to ensure focus did not shift during
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Figure 3.2: 3D displacement errors.
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capture. The cameras were mounted to a 1/2” (12.7mm) aluminum plate by four M3 screws
each to ensure they did not shift relative to each other during testing, and the aluminum
plate was mounted to a Cameron T310BH aluminum ballhead tripod using a standard
1/4” (6.35mm) UNC threaded hole. Figure 3.4 shows the camera setup during the planar
testing.

Figure 3.3: JAI SP-12000M high speed cameras with ZEISS 50mm f/2.2 lenses.

The lens apertures were both set to f/5.6 for calibration and measurement. This aper-
ture was chosen because it possessed a reasonable depth of field and high sharpness without
being too small and limiting the light entry too much. Supplemental lighting was present
during the tests, so wider apertures were not required. Smaller apertures were also avoided
to prevent diffraction issues. The calibration parameters are displayed in Tables 3.2 and
3.3. The calibration model used 3 radial distortion parameters and accounted for pixel
skew and tangential distortion. The supplemental lighting was provided by a 1500 Lumen
Husky LED work light and a Neewer CN-160 video light mounted on light stands.
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Figure 3.4: JAI SP-12000M high speed camera setup.

Table 3.2: Individual camera calibration parameters.

Camera Parameter RMS Error (px)

Left
Intrinsics, K

9534.5 0 0
−19.42 9538.9 0
2118.4 1500.6 1


0.673

Radial Dist.
[
0.0234 0.1567

]
Tangential Dist.

[
−0.00027 0.0038

]
Right

Intrinsics, K

9555.0 0 0
−15.16 9559.7 0
2108.6 1654.2 1


0.662

Radial Dist.
[
0.0286 0.0672

]
Tangential Dist.

[
0.0040 0.0011

]
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Table 3.3: Stereo camera calibration parameters.

Camera Parameter

Left

Rotation Matrix, R

 1.0000 0.0032 −0.0010
−0.0032 0.9998 0.0187
0.0010 −0.0187 0.9998


Translation Vector, t

[
−201.8120 −2.4650 −1.5298

]
Essential Matrix, E

 0.0073 1.4835 −2.4932
−1.7246 3.7714 201.7752
1.8157 −201.7837 3.7684


Fundamental Matrix, F

 0.0000 0.0000 −0.0003
−0.0000 0.0000 0.0211
0.0002 −0.0213 0.8330


Stereo RMS Error (px) 0.667

Laser Vibrometer

A Polytec PDV 100 laser vibrometer shown in Figure 3.5 was used to provide a baseline
comparison for the tests, albeit at a single point roughly in the middle of the vibrating
plate. The laser vibrometer was mounted on a Benro TMA37AL Mach3 aluminum tripod
to ensure stability during testing, and faced the backside of the plate that the cameras
measured. This was to ensure that the surface of the plate could be properly prepared for
each instrument separately. Figure 3.6 shows the setup for the laser vibrometer. The LDV
data was captured with a sampling rate of 240Hz. No highpass filter was used for the LDV,
and a 1kHz lowpass filter was used by the LDV hardware. The LDV required a lowpass
filter to be selected for operation, and a 1kHz lowpass filter was the default setting.
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Figure 3.5: Polytec PDV100 laser vibrometer.
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Figure 3.6: Laser vibrometer setup.
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Impact Hammer

A Dytran Dynapulse 5800-B4 impact hammer was used to excite the plate. The impact
hammer data was collected through the use of a 32 channel Siemens LMS Scadas Mobile
system. The LMS system was connected to the same laptop as the laser vibrometer, but
the signals were not hardware synchronized. The impact hammer data was collected at a
sampling rate of 512Hz. The impact hammer had a voltage to force conversion factor of
2.473mv/N.

3.2.2 Test Procedure

A 596.9mm (231/2”) wide by 558.8mm (22”) tall steel plate was hung from a support as
shown in Figure 3.7. The high speed cameras and laser vibrometer were set up on opposite
sides of it. The cameras measured the entire plate area, while the laser vibrometer was used
to measure a single point at the approximate middle of the plate (276.23mm from the top
edge and 282.58mm from the left edge). The impact hammer was used to excite the plate
by striking it at the bottom edge of the plate on the side of the high speed cameras (22.39
mm from the bottom and 536.41 mm from the left edge). Five trials were completed using
this setup. The cameras captured 1200 images during each test.The high speed cameras
had an exposure time of 10000µs and a framerate of 30fps (30Hz) to ensure sharp images
and that the cameras captured at least the first 4 modes of the plate.

3.2.3 Modal Analysis

The experimental modal analysis was completed through the use of built-in MATLAB
functions (modalfrf,modalsd,modalfit). A rectangular window was used on the data to
avoid cutting off or lowering the amplitude of the impulse load in the test. The frequency
response functions (FRFs) of the plate were estimated using Welch’s averaged, modified
periodogram method [2]. The FRFs were then used to build a stabilization diagram to
determine the physical frequencies of the structure. The least squares complex exponential
(LSCE) algorithm was used to determine the modal parameters from the FRFs [2]. The
calculated modal parameters include the fundamental frequencies, damping ratios, and
mode shapes of each mode.
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Figure 3.7: Stainless steel plate hanging from support (speckle side shown).

3.3 Software Architecture

The DIC software was developed using MATLAB R2017a [2], and is compatible with
versions R2014a onward. MATLAB allowed for easy creation of a graphic user interface
(GUI) while also allowing for use of MATLAB’s many built-in functions and ability to
compute matrix calculations efficiently. The created software is capable of analyzing either
a 2D or 3D image set and saving the resulting displacement fields. Figure 3.8 shows the
main interface of the GUI. Users start by selecting relevant settings such as the interpolation
type, Gaussian blur size, and shape function before loading the stereo calibration and
loading undistorted images. Users then select a region of interest (ROI) in the left reference
image, from which future calculations stem. A seed point is used as the initial guess in each
analysis image. The location of the seed point in the left reference image is selected by the
user, and then the seed points are calculated automatically for the remaining images by
maximizing the normalized cross correlation using 2D DFTs. The user may then run the
correlation analysis in the image planes, determine the 3D triangulation, and output the
results, which may be saved in .mat file format or viewed graphically in the program. The
program is also able to load results from previous analyses for viewing. Optional settings
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Figure 3.8: Main GUI of the DIC system.

include sequential loading for large image sets to avoid memory issues, pre-calculation of
the right reference image subsets to speed right image correlation, and pre-calculation of
interpolation constants and clearing of greyscale images to save memory. The option to
add a randomly generated noise at a level from 0 to 4% (of an 8-bit image) was added for
examining the effect of noise on numeric images, but is not intended for general usage.

The software makes use of the inverse compositional Gauss-Newton (IC-GN) non-linear
iterative solver, and is capable of using 0th, 1st, or 2nd order shape functions. Bilinear,
bicubic, and biqunitic b-splines are available for interpolation, which is conducted using
the efficient manner described in Chapter 2. Gaussian pre-filtering is completed using
the built in MATLAB function, imgaussfilt, where the standard deviation of the filter is

determined by σ =
√
h−1
4

for a filter size of h [2, 30]. The image analysis order is shown
graphically in Figure 3.9. The 2D images are analyzed sequentially, while the 3D images
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are analyzed in three steps. The first step consists of correlation among the left images, the
second step correlates the left reference image to the right reference image, and the third
step correlates the right images to the right reference image at points chosen based on the
second step. This limits the only correlation between different camera views to the left and
right reference images, improving computation time and limiting error [14]. The 2nd order
shape function is generally recommended when computing between camera views, and this
allows it to be limited to a single step when not required in general [14].

Left Image 1

Left Image 2

Left Image 3

...

Left Image N

Left Reference
Image

(a) 2D analysis.

Left Image 1

Left Image 2

Left Image 3

...

Left Image N

Right Image 1

Right Image 2

Right Image 3

...

Right Image N

Left Reference
Image

Right Reference
Image

(b) 3D analysis.

Figure 3.9: Image order in DIC system.

3.3.1 Calibration Model

The DIC system assumes the use of calibrated stereo cameras, so an adequate stereo
calibration should be performed before use. Camera calibration was completed through
the use of the MATLAB built in stereo calibration function [2]. The camera calibration
makes use of the pinhole camera model, and is generally suitable for up to a 95◦ FOV. A
series of stereo-paired images were loaded into the function, which operates in two steps.
The first step assumes that the lens distortion is 0 and uses closed form solutions to generate
initial guesses for the camera intrinsic and extrinsic parameters. The initial guesses are
then used for the full calibration, which makes use of Levenberg-Marquardt non-linear
optimization to minimize the reprojection error [2]. Lens distortion is also accounted for
in this step.
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Chapter 4

Results

Select results are presented in this chapter to validate the DIC system developed during
this thesis. The full set of results may be found in Appendix B for both the numeric and
laboratory test sets.

4.1 Numeric Results

4.1.1 Speckle Size

The results of the investigation into speckle size can be found in Figures 4.1 and 4.2. The
results shown are for rigid body displacement from 0 to 1px using 31x31px square subsets,
a 10px step, and a convergence criteria of |∆p|< 10−6. The images were correlated and
errors evaluated in 2D for the speckle size analysis. All points were found using a grid
of 31x21 points, for a total of 651 analysis points in each image. Correlation deteriorated
starting at a pixel size of 14px and failed to correlate beyond 16px; hence, only results up
to 16px are plotted.

75



Figure 4.1: Peak bias error vs. speckle size.

Figure 4.2: Mean bias error vs. speckle size.
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4.1.2 Shape Function

1st and 2nd order shape functions were examined during the numerical simulation. This
was to match the real world practice of typically using at least a 1st order shape function,
even for rigid deformations. Figure B.1 shows that the shape function does not have any
significant effect on the bias error. There is no difference in bias error when using a 1st

or a 2nd order shape function without image noise. With image noise, there are slight
differences between a 1st and 2nd order shape function, but they are relatively similar in
both magnitude and shape. The largest difference between the shape functions can be
seen in the standard deviation error, where the 2nd order shape function gives twice the
standard deviation error of the 1st order shape function for the same noise level.

Figure B.2 contains similar plots with a 3x3 Gaussian blur added prior to analysis.
The effects of the blur in general are discussed in more detail in Section 4.1.5, but the
results here show that the Gaussian blur does not affect the errors differently for each
shape function. The difference between the shape functions can again be seen primarily
in the standard deviation error, where the 2nd order shape function again gives twice the
standard deviation error of the 1st order shape function at the same noise level.

Figures B.3 and B.4 show that the shape function does not significantly impact the bias
errors in 3D DIC. Without noise, the errors are extremely small, in the order of 10−5mm.
The shape function did have a significant impact on the 3D standard deviation error, with
the 2nd order shape function having approximately double the standard deviation error of
the 1st order shape function. The 3D errors due to the shape function chosen also do not
appear to be influenced by whether a Gaussian blur is applied.

4.1.3 Interpolation Function

The interpolation function results in a sinusoidal bias error in the 2D case as shown in
Figure B.5, the magnitude of which depends on the interpolation method chosen. The
sinusoid is equal to zero at both the integer pixel locations and at the 0.5px shift. The
magnitude of the bias error of the bicubic interpolation was found to be larger than the
biquintic regardless of shape function. The addition of image noise increased the peak
magnitude of the bias errors and reduced the smoothness of the sinusoidal bias error
due to random variation. The noiseless biquintic interpolation was found to have small
errors (< 1.0 × 10−3px) even before the addition of a Gaussian blur, which reduced it
further (< 3.0 × 10−4px). These values are both smaller than the noiseless bicubic bias
errors, which were found to be < 3.0 × 10−3px before filtering and < 1.5 × 10−3px after
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filtering. The presence of noise increases the bias error significantly; the biquintic peak bias
increased from < 1.0× 10−3px to 4× 10−3px and the bicubic interpolation increased from
< 3.0 × 10−3px to < 7.5 × 10−3px. The standard deviation errors are approximately the
same regardless of which interpolation method is used (when considering the same shape
function), although the biquintic standard deviation error is marginally smaller than the
bicubic standard deviation error.

The interpolation function did not appear to significantly affect the bias error or stan-
dard deviation errors in the 3D analysis as shown in Figure B.7. Additionally, the sinusoidal
shape present in the 2D analysis largely disappears in the 3D analysis. In a perfectly noise-
less case, the sinusoidal bias error can still be faintly seen, but this is removed entirely at
even 1% noise. The biquintic standard deviation error is again marginally smaller than
the bicubic standard deviation error, but they are very similar when using the same shape
function.

4.1.4 Noise

The 2D bias error due to additional noise is very small for the IC-GN algorithm. Even
with large noise levels (4% of an 8-bit max value 255, or 10.2 intensity levels), the error
does not increase appreciably. Biquintic interpolation generally had a smaller magnitude
of 2D bias error under comparable noise levels, but did seem to increase more relative to
the noiseless case than bicubic interpolation did. The standard deviation increases directly
with the addition of noise (as expected by [60, 61, 66]). In general, the 2nd order shape
function has twice the standard deviation error of the 1st order shape function, but the
interpolation function does not appear to affect the standard deviation error at all.

The 3D bias error was significantly affected by the addition of image noise. With no
noise, the analysis is incredibly accurate (to approximately 10−5mm), but the introduction
of image noise causes significantly more bias error. Even a 1% noise results in ±0.2mm of
error, and larger noise levels result in up to ±1mm of bias error. However, it appears that
the peak magnitude of the bias error is unrelated to the noise level beyond 1%, with the 2-
4% noise levels giving similar bias error results. The standard deviation error was affected
by noise similarly to the 2D results, with an increasing noise level increasing the standard
deviation noise level approximately linearly. The 2nd order shape function additionally had
approximately double the standard deviation error of the 1st order shape function.
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4.1.5 Noise Reduction

The addition of a Gaussian blur prior to DIC analysis was used to reduce noise and to
smooth edges in the images. Figures B.13 to B.18 display the effects of applying a Gaussian
filter in the presence of 0%, 2%, and 4% noise in the images. In the case of noiseless bicubic
images, the 5x5 Gaussian blur was most successful at reducing the bias error in the images,
and actually outperformed the stronger 7x7 blur. In the case of noiseless biquintic images,
the 3x3 and 5x5 Gaussian blurs performed very similarly, and both out performed the
7x7 blur, although the differences were very small in all cases. In both the bicubic and
biquintic cases, the Gaussian blur increased the standard deviation error, with the 7x7
blur increasing the standard deviation error the most and the 3x3 blur increasing the
standard deviation the least. In general, the 3x3 blur had only a very slight impact on
the standard deviation. As the noise level increased, the benefits of applying a Gaussian
blur became much less pronounced, but the relative impact to the standard deviation of
the error also became less pronounced. At the 2% noise level shown in Figures B.15 and
B.16, the 5x5 and 7x7 blurs still performed best for bicubic interpolation, and all blurs
performed approximately equally well for biquintic interpolation. At the 4% noise level
shown in Figures B.17 and B.18, the 5x5 and 7x7 filters still had a small effect on the
bicubic bias error, but much less pronounced than at lower noise levels, and there was no
improvement in the biquintic bias error.

The shape of the 3D bias errors appear to be random, and the magnitude of the errors
is not changed with larger blur levels at noise levels from 0% to 4%. Figures B.19 to
B.23 demonstrate that the bias errors are approximately the same across all blur levels
investigated. The standard deviation error levels were found to increase slightly as the
blur size increased, similarly to the 2D results. The noise level seemed to much more
strongly affect the standard deviation errors in 3D as well.

4.1.6 Subset Size

The effect of subset size on both the bias and random errors in 2D and 3D can be seen
in Figures B.25 to B.28. The plots show a slight negative relation between bias error and
subset size in the noiseless case, and no relation between bias error and subset size for
the noisy case. The plots do show a strong relation between standard deviation error and
subset size for both the noiseless and noisy cases. Both the 2D and 3D random errors
decrease in an approximately exponential manner as the subset size gets larger. The 2nd

order shape functions had poor correlation at a 21x21 pixel subset size, and so sizes from
31x31 to 81x81 are plotted for the 2nd order shape function. The magnitude of the random

79



errors in the 2nd order shape function is approximately double that of the 1st order shape
functions. The relative computation time for each subset size is shown in Figure B.29.
The computation time depends on the power of the computer and processors used and will
vary significantly between different hardware configurations. Therefore, the relative time
using a single computer was used to demonstrate the increase in computation time. The
computation time increases in an exponential manner as the subset size increases.

4.2 Laboratory Results

4.2.1 Camera Noise

20 bias images were captured using each camera. Each camera was evaluated independently
to account for any variation between the cameras. Noise levels were evaluated using the
standard deviation of the pixel intensities, which can in turn be used to simulate a Gaussian
noise. The camera used as the left camera in all tests was found to have a standard deviation
or noise level that ranged from 0.5846 to 0.5925 and a mean of 0.5877. The camera used
as the right camera in all tests was found to have a noise level that ranged from 0.6316 to
0.6382, with a mean of 0.6346. These levels of noise correspond to mean values of 0.23%
and 0.25% of the 8-bit values.

4.2.2 DIC Analysis Settings

The images were analyzed using a subset size of 51x51 pixels, a subset step of 75px, and a
convergence criteria of |p|= 10−5. Bicubic interpolation with no Gaussian blur was used in
the correlation process. The subset step of 75px was chosen to allow for faster computation
of the results considering the 12MP images being used. The region of interest used in the
test is shown in Figure 4.3. The top left corner was located at (1750, 750) in the left image
and the ROI had a width and height of 1750px. Images were captured at a rate of 30fps
(or 30Hz). The initial seed point in each image was chosen at (2625,1625), which is the
center of the ROI. This resulted in a 24x24 grid of analysis points, or 576 total analysis
points.
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Figure 4.3: Region of interest used in testing.
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4.2.3 Displacements

An example plot of the displacement found by the DIC system in Run 3 is presented in
Figure 4.4 at a single point corresponding to the LDV measurement location. The corre-
sponding LDV velocity profile is shown in Figure 4.5, which was in turn highpass filtered
at 0.25Hz and numerically integrated to generate the LDV displacement time series shown
in Figure 4.6. The DIC point grid did not perfectly align with the LDV measurement
location, and bilinear interpolation was used between the four points nearest to the LDV
measurement location to calculate the resulting DIC displacement time series. The mea-
surements found by both the DIC system and LDV followed the steady decay expected of
the plate motion due to an impulse load.
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Figure 4.4: Example of displacements found by the DIC system.
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Figure 4.5: Example of velocities found by the LDV.

0 10 20 30 40 50 60 70

Time (s)

-10

-5

0

5

10

D
is

p
la

c
e

m
e

n
t 

(m
m

)

Run 3

Figure 4.6: Example of numerically integrated displacements found by the LDV.
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4.2.4 Modal Analysis Results

The DIC system provided full field displacements at known grid points and was excited
at a single point by an impulse from an impulse hammer, so the system was treated as
single input, multiple output (SIMO). The fundamental frequencies, damping ratios, and
mode shapes were then determined through the use of built in MATLAB functions [2].
Figure 4.7 displays the stabilization diagram from Run 1 of the experimental testing. All
of the stabilization diagrams may be found in Appendix B. The fundamental frequencies
and damping ratios found through the experimental modal analysis using DIC can be seen
in Tables 4.1 and 4.2. The stabilization diagrams clearly show the fundamental frequencies
shown in Table 4.1. When fundamental frequencies for a given run were found to be very
close, the mode with a reasonable damping ratio (typically below 1%) was chosen as the
correct mode. The plate was only intrinsically damped, and was thus considered a very
lightly damped system. Examples of the first 4 mode shapes from Run 3 can also be seen
in Figure 4.8. The mode shape output was complex valued, so the amplitude of each point
was taken to determine the amplitude of the vibration in a given direction. The mode
shapes shown are for the Z-direction, which is approximately perpendicular to the plate
surface. The values for the X- and Y -directions were found to be heavily contaminated by
noise, resulting in unclear mode shapes.

Table 4.1: Fundamental frequencies from DIC (full field).

Mode
Frequency (Hz)

Test 1 Test 2 Test 3 Test 4 Test 5 Average Std. Dev.
1 1.53 1.53 1.53 1.52 1.52 1.53 0.005
2 4.63 4.56 4.60 4.61 4.59 4.60 0.026
3 7.32 7.13 7.22 7.28 7.18 7.23 0.078
4 9.38 9.13 9.22 9.22 9.29 9.25 0.092
5 11.4 11.6 11.6 11.6 11.7 11.6 0.097
6 13.0 12.8 12.9 12.9 12.8 12.9 0.102
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Figure 4.7: Stabilization diagram from the experimental testing, Run 1.
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(a) Mode shape 1. (b) Mode shape 2.

(c) Mode shape 3. (d) Mode shape 4.

Figure 4.8: First four mode shapes found from the experimental modal analysis, Run 3.
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Table 4.2: Damping ratios from DIC (full field).

Mode
Damping Ratio (%)

Test 1 Test 2 Test 3 Test 4 Test 5 Average Std. Dev.
1 0.74 0.22 0.32 0.50 0.01 0.36 0.28
2 0.49 0.27 0.40 0.36 0.16 0.34 0.13
3 0.76 0.10 0.37 0.35 0.44 0.41 0.24
4 1.70 1.28 1.44 1.64 2.06 1.62 0.30
5 0.69 0.30 0.81 0.67 0.50 0.59 0.20
6 0.52 0.26 1.10 0.80 0.71 0.68 0.31

Figure 4.9 displays a typical power spectral density curve for the LDV signal from
Run 3. The power spectral density curve was found by taking the amplitude of the FFT
of the velocity. The peaks of the power spectral density curves were then taken as the
fundamental frequencies from the LDV signal. The fundamental frequencies found from
analyzing the LDV signal can be seen in Table 4.3.
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Figure 4.9: Power spectral density (PSD) curve for the LDV from Run 3.
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Table 4.3: Fundamental frequencies from LDV (single point).

Mode
Frequency (Hz)

Test 1 Test 2 Test 3 Test 4 Test 5 Average Std. Dev.
1 1.53 1.53 1.52 1.52 1.52 1.52 0.005
2 4.55 4.54 4.56 4.57 4.56 4.56 0.013
3 7.30 7.12 7.21 7.21 7.16 7.20 0.067
4 9.30 N/A N/A N/A N/A 9.30 N/A

Finite Element Analysis Results

A finite element analysis (FEA) model was created in ABAQUS CAE Version 6.13-4 to
compare to the fundamental frequencies and mode shapes of the experimental testing [1].
The plate was created through the use of linear shell (S4) elements with a 5 layer deep
integration. The element size was approximately 15x15mm. The use of quadratic shell
elements (S8) and an increase or decrease in the shell layers were briefly investigated, and
found to not significantly affect the result. The plate thickness was measured using calipers,
and found to average 0.62mm. The corners of the plate were fixed in all three directions and
all three rotations. A modal analysis was conducted using the subspace model. The results
from the FEA model are summarized in Table 4.4. The FEA model and first three modes
found using the FEA analysis are shown in Figure 4.10. The first two mode shapes matched
very closely to the experimental mode shapes from DIC, while the third FEA mode shape
was similar to the fourth DIC mode in some runs. The fundamental frequencies of the first
two modes are approximately 5 to 7% different than the experimental frequencies, but are
still relatively similar.

Table 4.4: Fundamental frequency comparison with FEA model.

Mode
Frequencies (Hz)

FEA Freq. DIC Freq. % Diff. FEA Freq. LDV Freq. % Diff.
1 1.63 1.53 +6.35% 1.63 1.52 +6.54%
2 4.35 4.60 -5.65% 4.35 4.56 -4.69%
3 N/A 7.23 N/A N/A 7.20 N/A
4 10.1 9.25 +8.51% 10.1 9.30 +7.98%
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(a) ABAQUS model. (b) Mode shape 1.

(c) Mode shape 2. (d) Mode shape 3.

Figure 4.10: ABAQUS model and first three mode shapes.
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Chapter 5

Analysis & Discussion

5.1 Numeric Discussion

5.1.1 Speckle Size

The size of speckles used in numeric images can affect the results significantly. Previous
studies have recommended between 2 and 7 pixels as the ideal size for speckles when using
the FA-NR algorithm [10, 68, 71], but the ideal speckle range may be different for the
IC-GN. Figure 4.1 shows that at very small speckle sizes, such as 1 or 2px, the error is
relatively high, which was expected due to undersampling or aliasing as discussed by Zhou
and Goodson [71]. Beyond 6px speckle size, the peak bias errors remain relatively similar
(below 0.003px) until the correlation values degrade in images beyond 16px. Figure 4.2
shows that at large speckle sizes, the mean bias error increases, even though the overall
peak bias error remains relatively constant. When the pixels approach larger sizes, the
subset (which in this case was 31x31px) may start to become dominated by individual
pixels, resulting in fewer unique features to correlate in the scene. While the peak bias
error may remain similar, showing that the worst correlation in each case is similar in bias
error magnitude, each individual subset shows more bias error. For this reason, a speckle
size above 4px and below approximately 12px is recommended for use. These tests were
conducted using a 31x31 pixel subset, and smaller subsets may have poor correlation when
using 12px speckles, so speckles below 8px are further recommended for smaller subsets.
Future analyses utilize an 8px speckle size to ensure that the speckle size falls in the ideal
range while also remaining close to the previously recommended 2 to 7px for the FA-NR
algorithm.
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5.1.2 Shape Function

The numerical simulations presented here involve pure translation. The matching shape
function for this is a 0th order (rigid) shape function, which means that the 1st and 2nd order
shape functions examined here are both overmatched shape functions. An overmatched
shape function is recommended by Yu and Pan [66] if the deformation field is unknown, and
Yu and Pan, Wang and Pan [60], and Wang et al [61] show that the errors for a matched
and overmatched shape function are similar in magnitude. The 2D errors shown here also
correspond with the theoretical derivations provided by Wang et al. [61] and Wang and
Pan [60] for the standard deviation error associated with matched or overmatched shape
functions. Even when using different interpolation functions, the 2nd order shape function
shows approximately the same bias error and approximately twice the random error of the
1st order shape function in 2D. This demonstrates that the effects of interpolation method
are independent of the shape function used in 2D.

Unlike in the 2D case, a 0th order shape function will not typically capture any small
translations and rotations between cameras, so a 1st or 2nd order shape function should
always be used with stereoscopic DIC. Previous authors have recommended using a 2nd

order shape function to match the left and right images at a minimum [14]. The results
from the 3D numerical simulations show that the shape order does affect the bias error
slightly, but the errors are in the same range of ±1mm, showing that the effect is very
minimal. However, the standard deviation errors approximately double by using a 2nd

order shape function instead of a 1st order shape function. This result is similar to the 2D
results, and shows that the standard deviation errors due to shape function are not related
to errors specific to 3D analysis. A larger subset could be used to reduce the standard
deviation error with the 2nd order shape function.

5.1.3 Interpolation Function

The biquintic bias errors were found to be much smaller than the bicubic bias errors in
2D. This is due to the biquintic interpolation allowing more accurate modelling of the
intensity changes between pixels than the bicubic interpolation and matches with previous
work [44]. Higher order interpolants, such as biseptic or higher, would be expected to
continue the trend, although at higher computational cost. Biquintic interpolation bias
errors appear to be more sensitive to noise, likely due to the noise causing additional high
frequency content to appear in the images that is picked up by the biquintic interpolation
kernel. As the noise approaches 4%, the 2D bias error present due to biquintic and bicubic
interpolation begin to approach similar magnitudes, although biquintic does remain lower.
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The standard deviation errors for both interpolation methods are quite small without noise,
with biquintic being slightly smaller. However, the addition of any noise overshadows any
differences in the standard deviation errors, and the standard deviation errors can be seen
as generally the same for both interpolation methods in 2D.

Adding a Gaussian blur to remove some of the higher frequency content in the images
appeared to reduce the 2D bias error for both methods by approximately the same amount
in very noisy images, while less noisy images saw more accuracy improvement in the bicubic
method, which is discussed in more depth in Section 4.1.5.

Interestingly, in the 3D analysis, the use of a bicubic or a biquintic interpolation function
did not appear to affect the bias or standard deviation errors. This is likely due to the
error being dominated by the noise level present resulting in lower quality triangulation
rather than the interpolation function. For this reason, a bicubic interpolation function is
actually recommended for 3D works to allow for faster computation with minimal impact
to result accuracy.

5.1.4 Noise

The 2D bias error was found to increase marginally with the addition of image noise,
but did not generally increase the magnitude of error significantly. Low noise levels, such
as 0 to 2% showed particularly strong invariance to image noise. The IC-GN algorithm
is known to be relatively noise invariant in terms of bias error, while previous algorithms
such as the FA-NR may increase bias errors by an order of magnitude or more [35]. The 2D
standard deviation errors were expected to increase with increasing noise due the additional
random variance introduced in the final correlations due to the noise. This was shown to
be the case, with the standard deviation error increasing linearly with increasing noise.
Previous authors [60, 66] have found similar results, with theoretical derivations showing
that the standard deviation error should be linearly proportional to the image noise. The
noise levels encountered also agree closely with the theoretical standard deviation errors.
The 2nd order shape function had standard deviation errors double that of the 1st order
shape function, but the standard deviation errors still increased linearly with the noise as
expected.

The 2D bias and standard deviation errors demonstrate that the proposed system
matches closely with expected theoretical results. The noise invariance of the bias error
measures shows that the systemic errors in the system due to noise are very small. The
random errors in the system vary proportionally to the image noise however, so image noise
should still be reduced when possible.
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The 3D analysis was particularly impacted by the presence of noise in the images. The
level of noise directly impacts not only the standard deviation error as in the 2D analysis,
but also the bias error. The inclusion of even 1% of noise changes the error from almost
imperceptible to over 1mm in magnitude (for this geometry and situation). The sinusoidal
pattern commonly seen in 2D disappeared with the inclusion of even 1% noise. This is likely
due to 3D specific errors from triangulation, where otherwise small errors from image noise
cause the position estimate in each image plane to vary slightly. The variation magnitudes
are different between each image, causing the triangulation estimate to vary as well. The
standard deviation errors increased linearly with the noise level as expected, similar to the
2D result.

Image noise has by far the most significant impact on 3D displacement error results, so it
is critical that noise levels are reduced in 3D imaging systems. Image noise can be reduced
by ensuring adequate light reaches the sensors to reduce shot (photon) noise, using higher
bit depth images to reduce quantization noise, ensuring gains are set to the base (native)
value, ensuring that the camera is left running to reach a steady state temperature to
reduce read noise, and using shielded cables or avoiding interference laden areas to reduce
read noise. Higher quality imaging sensors and lenses may also be able to reduce errors
and provide much better results.

5.1.5 Noise Reduction

Applying a Gaussian filter to reduce noise in images is recommended by previous authors
using the FA-NR algorithm to reduce bias errors in DIC [30]. The IC-GN algorithm is
generally less sensitive to noise though [35], and so the effects of the Gaussian pre-filtering
may differ.

In the 2D analysis, a 5x5 Gaussian filter was found to provide the greatest decrease in
the bias error for the images when using bicubic interpolation in both 1st and 2nd order
overmatched shape functions. This held true for both the noiseless and noisy image cases,
although the improvement was smaller in the noisy image case. The 5x5 filter was found
to be similar or even better than the 7x7 filter at reducing the bias error. However, the use
of a Gaussian filter blurs edges in the image to reduce the high frequency content (acting
as a low pass filter to reduce possible aliasing issues [49]), but in doing so decreases the
image intensity gradients present. Decreasing the image intensity gradients results in lower
SSSIG scores. The SSSIG score has previously been found to be inversely proportional to
the standard deviation errors in the analysis, so decreasing the SSSIG will increase the
standard deviation errors [60, 61, 66]. This was found to be the case for the simulation
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images, and the theoretical standard deviations errors as predicted by previous authors
[60, 61, 66] match quite closely to those seen in the numerical simulations. In general,
the larger the Gaussian blur, the higher the standard deviation error, in particular for
noiseless images. In the presence of noise, the increased standard deviation error due to
the Gaussian blur was mostly overshadowed by the increased error due to noise.

For biquintic interpolation in both the 1st and 2nd order overmatched shape functions
in 2D, a 3x3 Gaussian filter was found to provide the greatest decrease in the bias error
for the images. However, this was only found to be the case for noiseless images, and all
of the noisy images demonstrated a similar level of bias error regardless of which filter
was applied. Similar to bicubic interpolation, the larger Gaussian filters caused a larger
increase in standard deviation errors, particularly for the noiseless images. In the presence
of noise, the increased error due to the Gaussian filter was mostly overshadowed by the
increases due to noise.

Overall, Gaussian filters were found to improve the bias error of bicubic interpolation
at small noise levels in 2D measurements. As the noise level increased to 4%, the effects
of noise were found to overwhelm the effects of the Gaussian filter, particularly for the
2nd order shape function. The 2nd order shape function was found to have correlation
difficulties when using a 7x7 blur, with approximately 1 to 5 subsets (of 651 possible points)
not converging in some images. The Gaussian filters were found to slightly improve the 2D
bias error performance of biquintic interpolation in noiseless images, but were not found
to appreciably improve the bias error performance of biquintic interpolation at real world
noise levels. This is in contrast to work done by Pan [30] on Gaussian blurs in the FA-
NR algorithm, where biquintic interpolation was still found to benefit significantly from
filtering. However, the bias errors shown in Figure B.17 are of a similar magnitude to those
found by Pan when using a 5x5 or larger filter [30]. In both cases, the standard deviation
errors increased by a similar amount between bicubic and biquintic interpolation. These
increases can be significant for noiseless images relative to the unfiltered standard deviation
errors, but are generally insignificant relative to the impact of noise on the measurements.

A 5x5 Gaussian filter may be beneficial in 2D DIC analysis when used in conjunction
with bicubic interpolation in relatively noise-free images (< 2% random noise), and can
allow the bias error to approach or surpass the accuracy found by unfiltered biquintic
interpolation as shown in Figure 5.1. The increase in standard deviation error can be an
acceptable tradeoff for the improved computational speed of the bicubic interpolation. The
increased standard deviation error may also be partially compensated for by using a slightly
larger subset. No Gaussian filter is recommended for use with biquintic interpolation for
any images due to the poor improvements in bias error and related increases in the standard
deviation error.
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Figure 5.1: Bias errors present in analysis due to 5x5 Gaussian blur.
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The Gaussian pre-blur did not appear to significantly affect the bias error at any noise
level or for any shape function or interpolant when conducting 3D DIC analyses. No ideal
blur size was found in reducing the bias errors for 3D analysis. However, the Gaussian
blur did increase the 3D standard deviation errors as the blur increased in size. The 3D
standard deviation errors did not appear to increase as much as the 2D result did, but still
did increase noticeably. The increase in random error is due to decreasing the SSSIG of
the subset, which results in larger random errors [35, 60].

The pre-blur does not appear to improve the bias error of any of the analysis, but does
increase the standard deviation errors significantly. A larger subset could be used to reduce
the standard deviation errors, but this would lead to increased computation time for larger
subsets with no benefit to bias error. A Gaussian pre-blur may still be beneficial in 3D
analysis to improve accuracy within each camera plane, but is not required or recommended
for purely 3D analysis. This is likely due to the 3D triangulation being affected much more
strongly by any noise in the system rather than by the Gaussian blur. The triangulation
errors due to noise at each point largely overshadow the other error sources.

5.1.6 Subset Size

The bias errors for the IC-GN algorithm can be divided into bias errors due to noise
and bias errors due to interpolation [35]. The interpolation component of the bias error
decreases as the subset size increases, while the noise component is unaffected by subset
size. This is generally shown by the 2D results, which show a slight decrease in peak bias
error in all of the noiseless cases. However, the noise induced bias error component appears
to be equally as strong as the interpolation induced bias error component, and the results
with 4% image noise are less consistent, although they do trend slightly downwards in all
cases but the 2nd order shape function with bicubic interpolation. The 3D peak bias errors
do not show any consistent trends relative to the subset size, which is likely due to the
triangulation errors caused by slightly random variations being much larger than the other
error sources.

The standard deviation errors are inversely related to the SSSIG, which is in turn related
to the subset size [29, 35, 60]. Therefore, the standard deviation errors are expected to
decrease inversely to the subset size increase. Both the 2D random errors and 3D random
errors follow this trend very closely for both the noisy and noiseless cases. The standard
deviation errors are once again approximately double for 2nd order shape functions relative
to the 1st order shape functions. The random errors using a 1st order shape function show
good results when the subset is larger than approximately 41x41 pixels, while the 2nd order
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shape function begins to show good results when the subset is larger than approximately
61x61 pixels.

The relative computation time increases drastically as the subset grows, primarily due
to the requirement to interpolate and correlate N2 pixels, where N is the subset size.
This makes smaller subsets exponentially faster than larger subsets, particularly in the
time intensive interpolation step. However, using a smaller subset results in increased
errors, and can possibly result in additional iterations prior to convergence. Subset sizes in
excess of 61x61 pixels take a very long time to calculate and may add additional error if the
shape function is not able to adequately capture the subset deformations, while subset sizes
below 41x41 pixels result in large random errors. Therefore, a subset size between 41x41
and 61x61 pixels is recommended for analysis, although larger subsets are recommended for
2nd order shape functions if computation time allows for it. This matches well to previous
work recommending a 31x31px to 71x71px subset [66].

5.1.7 Recommended Analysis Parameters

Certain parameters are critical in DIC analysis, such as the subset size, speckle pattern,
interpolation function, and shape function. Table 5.1 summarizes the recommended pa-
rameters for 2D and 3D DIC analysis.

Table 5.1: Recommended analysis parameters for 2D and 3D DIC.

Parameter 2D DIC 3D DIC
Speckle Size 4 to 8px 4 to 8px

Interpolation Function Bicubic Bicubic

Shape Function
Field known: 1st Sequentially: Same as 2D

Field unknown: 2nd Between cameras: 2nd

Gaussian Blur 5x5 filter No filter
Subset Size 41x41 to 61x61px 41x41 to 61x61px

The speckle pattern can be defined by the size of speckles, which are recommended to
be between 4 and 12px. Previous authors have recommended between 2 and 7px speckles
when using the FA-NR algorithm [71, 68], but the best results appear to fall in the 4 to
12px range for the IC-GN algorithm. Larger speckle sizes may result in poor correlation
when using smaller subsets, so a speckle size of between 4 and 8 pixels is recommended for
images.
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The recommendations for 2D and 3D analyses differ. 2D analysis should make use of
a bicubic interpolation function with a 5x5 Gaussian blur, which allows for the bicubic
interpolation to approach the accuracy of biquintic interpolation while allowing for faster
analysis. This comes at the expense of slightly increased random errors, which can be
partially compensated for by using a slightly larger subset. Biquintic interpolation could
also be used, but should not make use of any Gaussian blur if it does. A 1st order shape
function should be used if it is known that the displacement field will be linear or rigid since
a 22nd order shape function contains twice the random error without any improvement in
bias error. If the displacement field is unknown or includes non-linear components, then
a 2nd order shape function should be used to ensure the displacement field is captured
accurately. The subset size should range between 41x41 and 61x61 pixels to balance the
magnitude of random error with the computation time.

A 3D analysis should make use of bicubic interpolation, since both biquintic and bicubic
interpolation had similar bias and random error levels and bicubic interpolation requires
fewer computations. No Gaussian blur is recommended for 3D analysis due to Gaussian
blurs increasing the random errors without improving the bias error result. A 1st order
shape function should be used if possible, particularly between the sequential images from
each camera, due to the lower random errors present when using a 1st order shape function.
However, if the displacement field is unknown, a 2nd order shape function should always
be used. Additionally, if the cameras are angled and the displacement field is unknown or
likely to be linear, a second order shape function should be used to match between the left-
right image pairs. This will allow for warping based on the different camera perspectives,
which a 1st order shape function may not be able to capture. The subset size should
range between 41x41 and 61x61 pixels to balance the magnitude of random error with the
computation time.

5.2 Laboratory Discussion

Of the 5 runs completed for the modal analysis experiment, Run 2 was found to be affected
significantly by noise or other errors prior to the impact hammer striking the plate, resulting
in a bias shift for the run. The other 4 runs were generally of high quality, although slight
bias shifts existed for each of the runs depending on the initial ambient motion of the
plate and when the reference image was captured during the ambient motion. This is
an issue with controlled vibration experiments in general, but one that is easily remedied
by subtracting the mean of the signal from each signal. This bias shift is likely at least
partially due to small ambient vibrations disturbing the plate and the reference images not
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being captured when the plate was at exactly 0 displacement.

5.2.1 Comparison to Laser Vibrometer

The DIC system displayed a slight mean bias in the signals that depended on when the
reference image was captured. Once this mean was corrected, the DIC system displacement
signal and the LDV displacement signals were synchronized through maximizing the cross
correlation between the signals, which resulted in excellent agreement for Runs 1, 3, 4, and
5. Run 2 found a false peak correlation due to the presence of a disturbance at the start of
the signal, and therefore the second highest correlation score was used to synchronize the
time series signals. Due to the sampling rate mismatch, the DIC results were resampled
from 30Hz to 240Hz by an integer increase of 8. Resampling was accomplished using a built
in MATLAB function which applies a lowpass FIR filter to avoid aliasing and accounts for
lag due to the filtering [2]. An example of the synchronized and overlaid time series for
Run 3 can be seen in Figure 5.2.
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Figure 5.2: Displacements from the DIC system and numerically integrated LDV signal.

The DIC displacement signal at the LDV measurement point matched very well with
the displacement signal from the LDV in all runs. Both the phase and the magnitudes
of the signals are almost identical, although the DIC system does exhibit slightly larger
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peaks than the LDV. The largest peak difference and the average absolute peak difference
are shown in Table 5.2. In each run, there appeared to be one point with a significantly
larger DIC displacement, while the remainder of points were much more similar. This is
also shown by the maximum differences of 6 to 14% of the total displacement while the
mean difference was below 2% in the final three runs and approximately 3% for the first
two runs. The normalized cross correlation of Run 2 was lowest, with a score of 92%,
while Runs 1, 3, 4, and 5 had cross correlation scores from 97% to 98%. The noticeably
lower cross correlation score in Run 2 is due at least in part to the significant noise present
in the DIC signal prior to the impact hammer strike. Overall, the DIC system matches
very closely with the LDV signal, reinforcing the accuracy of the DIC system in real
world dynamic applications. These tests were performed on a relatively flexible plate that
exhibited noticeable deformation, and similar tests with more stiff structures may find
more noise contamination due to the smaller displacements to be measured.

Table 5.2: Differences between the DIC and LDV systems.

Run Max Peak Diff. (mm) % of Signal Mean Peak Diff. (mm) % of Signal
1 2.081 14.3 0.462 3.18
2 1.776 12.2 0.511 3.52
3 1.133 7.80 0.234 1.61
4 1.334 9.18 0.242 1.67
5 0.906 6.24 0.227 1.56

The other differences that are readily apparent are at the start of the signal for Runs
1 and 2 and at the end of the signal in Run 1. There is additional noise in the DIC signal
that is not present in the LDV signal at the start of Runs 1 and 2. There is also a slight
desynchronization between the DIC and LDV signals at the end of Run 1, which is due to
a memory issue in testing. These issues are discussed in depth in Section 5.2.3.

5.2.2 Modal Analysis

A preliminary examination of the stabilization diagrams from the DIC analysis and power
spectral density plots from the LDV measurements show good agreement in the fundamen-
tal frequencies. The stabilization diagrams calculated for the DIC analysis show strong
peaks at approximately 1.5Hz, 4.5Hz, 7.2Hz, and 9.2Hz, which match closely with the
fundamental frequencies calculated via MATLAB’s modalfit using the least squares com-
plex exponential method [2]. These were also the frequencies that exhibited reasonably
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low levels of damping. This implies that these modes are the true physical modes of the
structure. The power spectral density plots for the LDV measurement also show clear
peaks at approximately 1.5Hz, 4.5Hz, and 7.2Hz. There is a fourth peak at approximately
9.3Hz in the first run power spectral density plot, but it is not a clear frequency in the
later runs. Two additional modes can also be seen in the stabilization diagrams from the
DIC measurement at approximately 11.5Hz and 13.0Hz. The mode at 11.5Hz was found
to produce an expected mode shape as well, which reinforces the 11.5Hz mode being a
physical mode of the structure.

Fundamental Frequencies

The frequencies found from the DIC analysis and the LDV measurements were found to
align quite closely. A statistical evaluation of the difference was conducted using a paired,
two tailed t-test. The variance in testing was assumed to be normally distributed due
to the Gaussian nature of image noise, random nature of the 3D DIC bias error, and the
constant 3D DIC standard deviation error found from numeric testing. The null hypothesis
was chosen to be that the means of the two samples do not differ (i.e., µd = µ1 − µ2 = 0).
The test could only be completed for Modes 1 to 3 due to a lack of data for the 4th mode
in the LDV measurements, and the results are summarized in Table 5.3, where d̄ is the
mean of the differences between the pairs, sd is the standard deviation of the differences
between the pairs, t is the calculated t value, and p is the corresponding probability.

Table 5.3: Statistical significance test of fundamental frequencies.

Mode d̄ sd t p Reject Null?
1 0.0024 0.0042 1.290 0.266 No
2 0.0414 0.0249 3.712 0.021 Yes
3 0.0260 0.0257 2.262 0.086 No

Modes 1 and 3 both result in failing to reject the null hypothesis. This means that
the means are not different at a statistically significant level (p > 0.05). Mode 2 resulted
in a rejection of the null hypothesis, but it should be noted that p = 0.021, so the null
hypothesis would not be rejected for a more stringent condition of p < 0.01. This means
that the mean values are different at a statistically significant level (p < 0.05). It should
also be noted that the results only show a mean difference of approximately 0.041Hz, or less
than 1% of the frequency measured, so there is little practical difference between the means
in the context of operational modal analysis. To evaluate the means as truly different, the
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sample difference should be both statistically significant and practically different in the
context of the problem [59]. Therefore, the mean frequencies from Mode 2 are found to be
functionally the same, although with a slightly larger difference than Modes 1 or 3. The
mean frequencies for Modes 1 and 3 are significantly the same between the DIC system
and LDV measurement.

The LDV and DIC frequencies were plotted against each other to compare to an ideal fit.
Ideally, the points should all fall on the line shown, which would indicate exact agreement
between the DIC system and LDV. Practically speaking, an excellent result would be one
where the points fall almost on the line and do not consistently fall above or below the
ideal fit line, indicating minor random errors and no systemic errors [40]. Figure 5.3 shows
that the DIC and LDV results are in very good agreement for Modes 1 and 3, although
the DIC system very slightly overpredicted the frequencies. Mode 2 showed the furthest
deviation from the ideal fit, with all 5 frequencies overpredicted by the DIC system. One
data point (circled) corresponding to Run 1 noticeably deviates from the trend as well.
That point shows the DIC system overpredicting the frequency by much more than the
other data points, although still only by about 0.08Hz.

Overall, the results from the LDV and DIC are generally in very good agreement, with
only very minor differences between the frequencies. There is some indication of a very
slight systematic bias error in the DIC that overpredicts the fundamental frequencies, but
it is typically in the order of 0.02Hz or less.

The FEA model gave similar results for the first two modes, although a model calibra-
tion was not carried out to improve the model accuracy. The FEA model found the first
two frequencies to approximately ±6.5%, and the mode shapes matched very closely. The
FEA model did not provide the third mode found by the DIC and LDV analyses, but did
find the fourth mode. However, the fourth mode was overestimated by the FEA model by
approximately 8.5%. Higher order modes were generally found to be overestimated by the
FEA model as well.
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(b) Mode 2.
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(c) Mode 3.

Figure 5.3: Graphical comparison of LDV and DIC frequencies.
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Mode Shapes

The mode shapes from the DIC system and FEA analysis can be found in Figure 5.4.
It should be noted that the very top and bottom edges of the plate were not analyzed
in the experimental test, so the 0 displacement point is actually slightly above the mode
shapes shown for the DIC system. The first 2 mode shapes were found to be very similar
throughout the 5 test runs, as well as being very similar to the FEA mode shapes. Mode
1 from both systems is the first flexural mode in the vertical direction, and both mode
shapes increase from 0 at the top (clamped) edge to a maximum at the bottom (free) edge.
The FEA mode shape contains almost flat gradients in the horizontal direction, while the
DIC mode shapes display a slight curve in the gradients along the horizontal direction.
Mode 2 from both systems is a twisting of the bottom two corners. Both mode shapes
display peak displacements at the bottom corners and 0 displacement at the top corners.
The FEA mode shape is perfectly symmetric, while the DIC mode shape is slightly to the
left of the vertical symmetry axis. This may be due to the hammer excitation occurring
on the right half of the plate, slight variation in the material properties across the plate,
or minor differences in support at the top corners.

The third DIC mode shape does not match with any of the FEA mode shapes. The
frequency found for Mode 3 was also not found in the FEA analysis. This mode was
captured by both the DIC and LDV systems, implying that it did occur in the experimental
testing. The errors may be due to the FEA boundary conditions being idealized, since a
similar model with no support condition along the top edge (shown in Figure 5.4f) found
a third mode shape similar to that found by the DIC system. The fundamental frequency
for the mode shape was also close (FEA: 6.32Hz, DIC: 7.23Hz), although all frequencies
were underpredicted by the unsupported top edge model discussed. The mode shape still
differs along the top and bottom edges however, with the DIC mode shape displaying no
displacement along the top edge and bottom corners, while the FEA mode shape allows
free movement along the top and bottom edges. The top edge may have been partially
supported in the experimental testing, allowing the middle to deform more freely while
preventing motion along the very top edge. The bottom edge may have deformed during
testing, but the deformed area may have fallen outside of the ROI in the DIC analysis.

The fourth DIC mode shape is somewhat similar to the third FEA mode shape in
some runs, although much more contaminated by experimental noise. The fourth DIC
mode shape exhibits its peak displacements at the middle of the left and right edges, while
the FEA mode shape has significant displacement at the same locations. The FEA mode
shape has a large displacement along the bottom edge in a narrow band, while the DIC
mode shape does not show the displacement along that bottom edge. This may be due to
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(a) DIC mode 1. (b) DIC mode 2. (c) DIC mode 3.

(d) FEA mode 1. (e) FEA mode 2. (f) FEA mode 2 (un-
supported top edge
model).

(g) DIC mode 4. (h) DIC mode 5.

(i) FEA mode 3. (j) FEA mode 4. (k) FEA mode 5.

Figure 5.4: Mode shapes from DIC and FEA model.
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the peak displacement point at the bottom being slightly outside of the ROI of the DIC
analysis. This mode shape was the least consistent between test runs, and some test runs
did not match the FEA mode shape.

The fourth FEA mode shape does not have a corresponding DIC mode shape, which
may be due to FEA analysis error or difficulties capturing the displacements using the
DIC system. The fourth and fifth FEA fundamental frequencies were very similar and at
approximately 15Hz however, so the experimental plate may have exhibited the theoret-
ical fifth mode at just below 15Hz and the theoretical fourth mode at just above 15Hz,
preventing it from being captured during testing.

The fifth DIC and FEA mode shapes match up quite closely, although the fifth DIC
mode shape shows some noise contamination. However, both mode shapes display dis-
placements along the left and right edges, as well as in the bottom corners, with the area
along the vertical line of symmetry showing no displacement. The DIC analysis did not
extend to the very corners of the plates, so the displacements at the very bottom corners
were not captured. Both also show no displacement in the top left and right corners.

In general, the DIC system was able to accurately capture the first 2 modes in every test
run, as well as possibly capturing a third mode that was not present in the FEA model. It
was also able to capture the fourth and fifth modes of the vibrating plate, although lower
signal-to-noise ratios in the fourth and fifth modes resulted in noisy mode shapes. This
was particularly true for Runs 1 and 5, which had difficulty finding higher order modes
beyond the third mode. Overall, the DIC system was most accurate at finding the first
three modes of the system, and was useful in finding higher order modes in some cases.

5.2.3 Testing Errors

The largest error encountered during testing can be seen in the final 1 to 2 seconds of
Figure 5.5. The cameras were initially set to capture 1250 images per camera per run, but
the end of testing typically featured a significant drop in framerate. The likely cause of
this framerate drop is due to there being no contiguous system memory (RAM) available
to store pictures. When the images are captured, they are sent to the framegrabber cards,
which piece the images together and store them in RAM. However, the computer capturing
images was limited to 32GB of RAM, some of which was additionally used by the operating
system and by the camera control system. As the number of images approached 1200, the
computer began resorting information on the RAM as required to store the next images,
but in doing so caused frames to drop. The other 4 runs were completed with a limit of
1200 images per camera per run, which resolved the issue.
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Figure 5.5: Error in Run 1.

The plate did not return fully to rest between the tests or may have been lightly excited
by ambient vibration as shown by the first few seconds of each test. Both the LDV and
the DIC system picked up on very small displacements during this time. This may have
led to a small mean bias error occurring in the DIC measurements based on when the
reference image was initially chosen. If the reference DIC image was taken while the
plate was closer to the cameras, the recorded measurements would show larger positive
displacements (away from the camera) and smaller negative displacements (towards the
camera). This bias error was easily removed by subtracting the mean of the signal from
each point, which gave almost identical results in both magnitude and phase for the LDV
and DIC displacement signals.

Run 1 and Run 2 both had additional errors occur just prior to the test starting
in the DIC system. These errors are likely attributable to human errors, such as the
operator contacting the plate or the plate support and causing minor fluctuations prior
to applying the impact hammer. Additionally, significant shadowing of the test surface
caused by the operator setting up to use the impact hammer may have caused significant
changes in lighting temporarily prior to impact, causing more extensive errors, although
the normalized correlation functions should minimize the effects of lighting changes during
testing.

108



Chapter 6

Conclusions and Recommendations

A 3D DIC system was created using the MATLAB programming language and modern
DIC algorithms. This system will be provided open-source, and was written in MATLAB
to allow for easy modification. A numeric study using simulated images was conducted to
determine the bias and random errors present within the system and to determine the ideal
parameters for both 2D and 3D DIC analysis. A real world verification experiment was
then conducted on a thin, vibrating plate. The vibrating plate test was used to demonstrate
the accuracy of the system through comparison to an LDV and to demonstrate the real
world applicability and advantages of 3D DIC for modal analysis.

6.1 Numeric Results

6.1.1 Speckle Size

A speckle pattern of between 4 and 12px was found to provide the best results for simulated
images in DIC analysis. Speckles sizes below this found large peak bias errors, while speckle
sizes above this found large mean bias errors. Between 4 and 8px is recommended for the
speckle size for simulated images in case a small subset, such as 11x11 or 15x15, is used
in the analysis. This would prevent a 12px speckle size from dominating the subset and
causing decorrelation.
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6.1.2 2 Dimensional DIC

The 2D numeric results were very similar to previous literature results for both the FA-NR
and IC-GN algorithms. The 2nd order shape function had twice the random error as the
1st order shape function, and the error levels for each were very similar to theoretically
derived results. This led to the recommendation of using a matched shape function if
possible, although a 2nd order shape function was recommended in the event of an unknown
displacement field. The bias errors due to biquintic interpolation were smaller than for
bicubic interpolation as expected, and the interpolation method did not significantly affect
the random errors. This held true for both 1st and 2nd order shape functions as well as
for noisy and noiseless images. The effects of image noise were similar to previous works
on the IC-GN algorithm as well, where an increase in image noise resulted in a linear
increase to random error and only slight effects to bias error. The use of a Gaussian blur
for noise reduction acted as expected, resulting in reduced bias errors, especially for the
bicubic interpolation, and a small increase in random error. The random errors increased
slightly due to the Gaussian blurs, but were more strongly affected by the increased noise
levels. A 5x5 Gaussian blur with bicubic interpolation was recommended for future 2D
DIC analysis, which is in line with recommendations by previous authors using the FA-NR
algorithm. The subset size was recommended to be between 41x41px and 61x61px, which
is similar to the range of 31x31px to 71x71px found by previous authors.

6.1.3 3 Dimensional DIC

3D DIC errors have not been studied in depth to date, so there is little literature to
compare to. However, comparison to the 2D results reveals a number of insights. The
shape function (which was overmatched in this case) was found to act similarly in 3D and
2D, where it had minimal effect on the bias errors, but a 2nd order shape function had twice
the random error of a 1st order shape function. A 1st order shape function is recommended
for registration between all of the left or all of the right images, but a 2nd order shape
function is still recommended for left-right image registration based on previous author
recommendations. A significant difference between 2D and 3D analysis was shown for the
interpolation function. A biquintic interpolation function was found to have similar bias
errors as a bicubic interpolation function in 3D. This contrasts sharply with the 2D result,
where a bicubic interpolation function had larger bias errors than a biquintic function. This
is likely due to errors specific to a 3D analysis, such as errors in the triangulation process.
The interpolation bias took the form of a sinusoid for noiseless images, but it did not take
the shape of a sinusoid when any noise was present. This further implied that slight image
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noise caused each analysis point to triangulate slightly differently. The standard deviation
errors were not noticeably affected by the interpolation function though, which is similar
to 2D, so it is not due to random error or noise. A bicubic interpolation is recommended
for 3D analysis due to similar bias error levels as the biquintic interpolation at a lower
computational cost. The addition of image noise caused the bias errors to significantly
increase in the 3D analysis, unlike in 2D where the image noise only slightly affected the
bias errors. This is again likely due to errors specific to 3D, such as triangulation errors
due to noise. The random errors were affected similarly however, and increased linearly
with an increasing noise level. This highlights the importance of low noise levels in 3D
DIC applications. The noise can be reduced through the use of high quality sensors, good
lighting, and a good speckle pattern when possible. The Gaussian blur did not appear
to significantly affect 3D analysis. The 3D specific errors appeared to dominate the bias
error results, and did not appear to be affected by the Gaussian blurs. This is unlike 2D,
where a Gaussian blur was found to reduce the bias errors significantly. The random errors
were also increased slightly by the Gaussian blur, although the random errors were still
dominated by the image noise level. Therefore, no Gaussian blur was recommended for 3D
analysis due to a Gaussian blur increasing random errors without decreasing bias errors.

6.2 Laboratory Results

6.2.1 Accuracy of System

The DIC system was found to be very close to the measurements provided by the LDV
system. Run 2 had the lowest cross correlation at 92%, but the other 4 runs had cross
correlations in the range of 97% to 98%. The main differences were found in the peak
measurements of the signals, where the DIC system showed an average of between 1.5%
and 3.5% larger displacements than the LDV system. A single peak in each run was
noticeably higher in the DIC measurement by up to 14%. The first two runs may have
experienced some operator errors in the DIC measurement based on the initial portion of
the runs, which is further borne out by the more consistent accuracy achieved by Runs 3,
4, and 5, which averaged 1.5% to 1.7% differences and had a maximum difference of 6% to
10%.
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6.2.2 Modal Analysis

Digital image correlation was shown to be a valuable tool in modal analysis. The setup
requirements are very small, only requiring a speckle pattern or other trackable features,
setting up 1 or 2 tripods, and setting up the cameras. The cameras are able to capture
the full field displacements, allowing for not only out of plane movement from a distance,
but also in plane movement. This may allow capture of mode shapes that do not have a
large out of plane component. DIC can be used to capture many points in a structure,
which allows for more modes to be picked up even when a mode shape amplitude is 0 at a
single measurement point. DIC systems also avoid introducing additional mass to systems
because no direct contact is required during testing.

The DIC system created here was evaluated through an experimental test of a thin
plate structure. The thin plate was clamped to a rigid frame and subjected to an impulse
loading. The DIC system and an LDV were used to capture data during excitation, and
the LDV was used to provide a baseline comparison to the DIC system measurements.

The DIC system was able to find the first 5 fundamental frequencies of the structure
as well as the attendant mode shapes. The calculated fundamental frequencies had a peak
difference of 0.08Hz or 1.8% of the results given by a reference LDV, although most of the
DIC frequencies were within 1% or less of the LDV frequencies. The first 2 DIC frequencies
were within 6.5% of the frequencies given by a finite element model, although the model
was not calibrated. The DIC was also able to successfully determine the first 5 mode shapes
of the structure. The first two mode shapes corresponded exactly with those given by the
FEA model, while the fourth and fifth DIC mode shapes were similar to mode shapes
given by the FEA model. The DIC system was unable to pick up one mode shape shown
by the FEA model, although it is suspected that that mode shape was slightly above the
Shannon-Nyquist frequency for the tests conducted.

Stereoscopic DIC is a very valuable tool in conducting operational modal analysis. Not
only is it able to determine the fundamental frequencies of the structure being tested, but
it is also able to determine the mode shapes for comparison to an FEA model or for further
interpretation by the analyst. The results were found to be within 1% of the reference LDV
in all but one case, demonstrating that it has comparable accuracy to an LDV for modal
analysis while providing additional information in the form of mode shapes. Considering
the comparable setup time of both systems, similar accuracy, and additional mode shape
information provided by the DIC system, it is strongly recommended that DIC be used for
further modal analysis.
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6.3 Future Work

6.3.1 Applications

DIC has widely been used in simulated and laboratory situations, but has only recently
been gaining more widespread use in field investigations. More diverse weather conditions,
lighting conditions, and structure types need to be monitored by DIC. Weather condi-
tions can play a large role, resulting in significant errors due to precipitation obscuring
the target, harsh shadows developing during testing, and more. Lighting conditions in a
laboratory setup are often easily implemented and highly idealized, while field conditions
may have variable lighting during the course of a test or between tests. This means that
field operators must be more aware of conditions, and as such, be able to adjust settings
more rapidly. Civil field applications to date have largely focused on bridge structures,
but future works should also investigate structures such as walls, slabs, cranes, or even
full buildings under various loads. The full field nature of DIC would be very beneficial in
tracking displacements or strains through walls and slabs in particular, both in field and
laboratory testing. It may also be beneficial in the testing of larger structures that would
otherwise be limited to only a few strain measurement points. Additional work on bridges
would also be beneficial, including both dynamic and static testing of multiple points in a
single structure using a single pair of cameras and natural targets.

6.3.2 DIC System Improvements

A variety of recommendations to improve the DIC system are presented here. These recom-
mendations include functionality improvements, performance improvements, and accuracy
improvements.

Functionality Improvements

The first functionality improvement is the addition of a strain module, which has been suc-
cessfully implemented in other DIC systems but was not investigated in this system. One
common use of DIC is to calculate the strains in specimens, which can take many different
forms. An in-depth investigation into various strain formulations from a displacement field
should be conducted and used to create a strain sub-module that can be accessed directly
from the software GUI.
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Minor options that would improve the user experience should also be implemented,
such as an option to undistort images if necessary based on the calibration parameters.
This option avoids users having to undistort images beforehand and would save on storage
space at the expense of additional computation requirement.

The last functionality improvement is primarily tied to performance improvements.
Real time DIC, even at reduced framerates, reduced resolution, or for limited targets, would
allow for better field user experience. The operators would be better able to determine
optimal parameters prior to full structure testing. This would likely require simplified
calculations (such as a 0th order shape function), cameras that can be directly read during
acquisition, and implementation of a highly parallelized or GPU based algorithm.

Performance Improvements

While MATLAB is a convenient programming language to use for research and fast pro-
totyping, it is not as efficient as properly optimized C or C++ programs. Efficiency
improvements would almost definitely result from the proper use of C++ code for DIC
analysis, and is recommended for future iterations of any DIC packages developed. C++
additionally can make use of OpenCV, which is a large, open-source library with many
similar functions to MATLAB’s image processing toolbox and camera calibrators.

Parallel processing would also be beneficial in DIC for multiple purposes. The primary
bottleneck in DIC occurs during image correlation due to the interpolation of the target
subsets. This operation can likely be further optimized by calculating all of the interpolated
points in the subset simultaneously using parallel processing rather than determining them
sequentially in a loop. Performance could be improved significantly through the use of
general purpose graphics processing unit (GPGPU) to parallelize computations, especially
computations involving FFTs [47, 69]. The use of GPGPUs and the relevant FFT functions
would allow for the use of parallel seed matches, potentially allowing every subset in the first
image to make use of an independent seed point to improve calculations, rather than relying
on the neighbouring subsets and possibly propagating error. The excellent performance of
GPGPUs when calculating FFTs may even allow for the potential use of Fourier domain
based interpolation, which is generally seen as a bias-free form of interpolation. This
would eliminate or significantly reduce the bias errors present in DIC analysis. The use
of GPGPUs could be implemented through the use of OpenCL or CUDA (if an NVIDIA
graphics card will be known to be used). A version of the correlation score guided analysis
order could also be used with multi-core computer processing units (CPUs) using OpenMP
to allow for simultaneous computation of as many valid calculation points as possible
simultaneously. An explicit version of the 2nd order warp function inverse may be derived
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rather than inverting the updated warp function on each iteration. This would remove
the 6x6 matrix inversion required in the warp function update. If this inversion can be
turned into an explicit solution, then the only inversion required in analysis would be the
initial inversion of the reference subset Hessian, which would significantly improvement
computation time.

Accuracy Improvements

Noise was found to play a very large role in the accuracy of 3D DIC, and so reducing the
effects of noise is a key area of improvement. This could be achieved through the use of
various noise filters, such as median filters or geometric mean filters. These filters should
be investigated for their effects on both 2D and 3D DIC, since Gaussian filters appear to
have been the primary filter investigated to date.

The gradient operator used by the algorithm has been shown to have an effect on the
accuarcy of a DIC system by previous authors [50]. Various gradient operators such as
Prewitt, Sobel, Roberts, and Central Difference should be investigated to determine their
effects on both 2D and 3D DIC.
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Appendix A

Derivations

A.1 Derivation of Warp Functions

A.1.1 0th Order Shape Function

The 0th order shape function generally takes the form of Equation A.1, which is the same
as the matrix form given in Equation A.2.

x′ = x+ u

y′ = y + v
(A.1)

[
x′

y′

]
=

[
1 0 u
0 1 v

]xy
1

 (A.2)

The IC-GN requires an invertible matrix that takes the same form before and after
the update step, and so a square, invertible matrix of the form given in Equation A.3 is
required. x′y′

1

 =

1 0 u
0 1 v
0 0 1

xy
1

 (A.3)
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A.1.2 1st Order Shape Function

A similar process was conducted for the 1st order shape function, which typically takes the
form shown in Equation A.4.

x′ = uxx+ x+ uyy + u

y′ = vxx+ vyy + y + v
(A.4)

This can be converted to the matrix form shown in Equation A.5.

[
x′

y′

]
=

[
1 + ux uy u
vx 1 + vy v

]xy
1

 (A.5)

However, this form of the equation does not comprise an invertible matrix with the same
form before and after the update step, and so is converted to the form shown in Equation
A.6. The addition of the bottom row of 0s and 1 allows the matrix to take an invertible
form that is the same pre- and post-update.x′y′

1

 =

1 + ux uy u
vx 1 + vy v
0 0 1

xy
1

 (A.6)

A.1.3 2nd Order Shape Function

The 2nd order shape function is significantly more involved than the 0th or 1st order shape
function. It typically takes the form given by Equation A.7, which results in 12 unknowns
(u, v, ux, uy, vx, vy, uxx, uxy, uyy, vxx, vxy, and vyy).

x′ =
1

2
uxxx

2 + uxyxy +
1

2
uyyy

2 + uxx+ x+ uyy + u

y′ =
1

2
vxxx

2 + vxyxy +
1

2
vyyy

2 + vxx+ vyy + y + v
(A.7)

The matrix form of this equation takes the form given by Equation A.8. This form is
clearly not invertible in the same form as the original, and so must be modified to allow
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for this step.

[
x′

y′

]
=

[
1
2
uxx uxy

1
2
uyy 1 + ux uy u

1
2
vxx vxy

1
2
vyy vx 1 + vy v

]

x2

xy
y2

x
y
1

 (A.8)

In order to generate an invertible matrix of the same form, the matrix shown in Equation
A.8 needs to be expanded, which can be done through the addition of the second order
deformation terms to the left side and adding the related terms to the warp matrix. This
means that the warp function will take the form of Equation A.9.

x′2

x′y′

y′2

x
y
1

 =


A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25
1
2
uxx uxy

1
2
uyy 1 + ux uy u

1
2
vxx vxy

1
2
vyy vx 1 + vy v

0 0 0 0 0 1




x2

xy
y2

x
y
1

 (A.9)

x′2 =
(1

2
uxxx

2 + uxyxy +
1

2
uyyy

2 + uxx+ x+ uyy + u
)2

=
(1

4
u2
xx

)
x4 +

(
uxxuxy

)
x3y +

(1

2
uxxuyy + u2

xy

)
x2y2 +

(
uxyuyy

)
xy3

+
(1

4
u2
yy

)
y4 +

(
uxx(ux + 1)

)
x3 +

(
uyuxx + 2uxy(ux + 1)

)
x2y +

(
2uyuxy

+ uyy(ux + 1)
)
xy2 +

(
uyuyy

)
y3 +

(
1 + uuxx + ux(ux + 2)

)
x2 +

(
2uy(ux + 1)

+ 2uuxy

)
xy +

(
u2
y + uuyy

)
y2 +

(
2u(ux + 1)

)
x+

(
2uuy

)
y + u2

(A.10)
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(A.11)

y′2 =
(1

2
vxxx

2 + vxyxy +
1

2
vyyy

2 + vxx+ y + vyy + v
)2

=
(1

4
v2
xx

)
x4 +

(
vxxvxy

)
x3y +

(1

2
vxxvyy + v2

xy

)
x2y2 +

(
vxyvyy

)
xy3

+
(1

4
v2
yy

)
y4 +

(
vxvxx

)
x3 +

(
2vxvxy + vxx(vy + 1)

)
x2y +

(
vxvyy

+ 2vxy(vy + 1)
)
xy2 +

(
vyy(vy + 1)

)
y3 +

(
v2
x + vvxx

)
x2 +

(
2vx(vy + 1)

+ 2vvxy

)
xy +

(
1 + vvyy + vy(vy + 2)

)
y2 +

(
2vvx

)
x+

(
2v(vy + 1)

)
y + v2

x′y′ =
(1

2
uxxx

2 + uxyxy +
1

2
uyyy

2 + uxx+ x+ uyy + u
)

×
(1

2
vxxx

2 + vxyxy +
1

2
vyyy

2 + vxx+ y + vyy + v
)

=
1

4

(
uxxvxx

)
x4 +

1

2

(
uxxvxy + uxyvxx

)
x3y +

1

4

(
(uxxvyy + uyyvxx) + 4uxyvxy

)
x2y2

+
1

2

(
uxyvyy + uyyvxy

)
xy3 +

1

4

(
uyyvyy

)
y4 +

1

2

(
uxxvx + vxx(ux + 1)

)
x3

+
(1

2
uxx(vy + 1) + uxyvx +

1

2
uyvxx + vxy(ux + 1)

)
x2y +

(1

2
vyy(ux + 1) + uyvxy

+
1

2
uyyvx + uxy(vy + 1)

)
xy2 +

1

2

(
uyvyy + uyy(vy + 1)

)
y3 +

(1

2
(uvxx + uxxv)

+ vx(ux + 1)
)
x2 +

(
1 + ux + vy + uxvy + uyvx + uvxy + uxyv

)
xy

+
(1

2
(uvyy + uyyv) + uy(vy + 1)

)
y2 +

(
v + uvx + uxv

)
x+

(
u+ uvy + uyv

)
y + uv

(A.12)

This is clearly quite complex and difficult to implement, so the higher order terms of
degree greater than 2 with respect to x and y are ignored. Ignoring these terms (i.e., x4,
x3y, x2y2, xy3, y4, x3, x2y, xy2, and y3), Equations A.10 to A.12 reduce to

(A.13)x′2 =
(

1 + uuxx + ux(ux + 2)
)
x2 +

(
2uy(ux + 1) + 2uuxy

)
xy

+
(
u2
y + uuyy

)
y2 +

(
2u(ux + 1)

)
x+

(
2uuy

)
y + u2
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(A.14)y′2 =
(
v2
x + vvxx

)
x2 +

(
2vx(vy + 1) + 2vvxy

)
xy +

(
1 + vvyy

+ vy(vy + 2)
)
y2 +

(
2vvx

)
x+

(
2v(vy + 1)

)
y + v2

x′y′ =
(1

2
(uvxx + uxxv) + vx(ux + 1)

)
x2 +

(
1 + ux + vy + uxvy + uyvx + uvxy + uxyv

)
xy

+
(1

2
(uvyy + uyyv) + uy(vy + 1)

)
y2 +

(
v + uvx + uxv

)
x+

(
u+ uvy + uyv

)
y + uv

(A.15)

This can be summarized in a matrix warp form according to Equations A.16 and A.17.
x′2

x′y′

y′2

x′

y′

1

 =


A00 A01 A02 2u(ux + 1) 2uuy u2

A10 A11 A12 uxv + uvx + v uyv + uvy + u uv
A20 A21 A22 2vvx 2v(vy + 1) v2

1
2
uxx uxy

1
2
uyy 1 + ux uy u

1
2
vxx vxy

1
2
vyy vx 1 + vy v

0 0 0 0 0 1




x2

xy
y2

x
y
1

 (A.16)

where A00 to A22 can be found in Equation A.17.

A00 = 1 + uuxx + ux(ux + 2)

A01 = 2uy(ux + 1) + 2uuxy

A02 = u2
y + uuyy

A10 =
1

2
(uvxx + uxxv) + vx(ux + 1)

A11 = 1 + ux + vy + uxvy + uyvx + uvxy + uxyv

A12 =
1

2
(uvyy + uyyv) + uy(vy + 1)

A20 = v2
x + vvxx

A21 = 2vx(vy + 1) + 2vvxy

A22 = 1 + vvyy + vy(vy + 2)

(A.17)

131



A.2 Derivations of Explicit Warp Inversion

The IC-GN algorith makes use of an update step in the warp function as shown in Equation
A.18:

W (ξ; p)n = W (ξ; p)n−1 ◦W−1(ξ; ∆p) (A.18)

This update step varies depending on the shape function chosen, and the warp update for
each shape function is shown in Equation A.19a to A.19b:1 0 u

0 1 v
0 0 1

 =

1 0 u
0 1 v
0 0 1

 ◦
1 0 ∆u

0 1 ∆v
0 0 1

−1

(A.19a)

1 + ux uy u
vx 1 + vy v
0 0 1

 =

1 + ux uy u
vx 1 + vy v
0 0 1

 ◦
1 + ∆ux ∆uy ∆u

∆vx 1 + ∆vy ∆v
0 0 1

−1

(A.19b)

The explicit forms of these equations can be found by inverting the matrix on the right
side to find the updated warp parameters using explicit expressions for speed. The 2nd

order shape function makes use of a 6x6 warp matrix, which is very difficult to manually
invert. The 2nd order shape function was therefore not explicitly inverted for computation.

A.2.1 0th Order Shape Function

The 0th order shape function makes use of a 3x3 warp matrix in the IC-GN to capture
the rigid body translation. The inverse of a 3x3 matrix, M , can be found by calculating
the matrix of cofactors, transposing the matrix of cofactors to find the adjugate matrix,
followed by dividing by the determinant of the original matrix to find the inverse. In this
case, the matrix M is:

M =

1 0 ∆u
0 1 ∆v
0 0 1

 (A.20)

The matrix of cofactors for the 0th order shape function can be found through taking the
determinant of each 2x2 minor matrix and multiplying by + or − depending on location,
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resulting in:

Mcofactor =



∣∣∣∣1 ∆v
0 1

∣∣∣∣ −
∣∣∣∣0 ∆v
0 1

∣∣∣∣ ∣∣∣∣0 1
0 0

∣∣∣∣
−
∣∣∣∣0 ∆u
0 1

∣∣∣∣ ∣∣∣∣1 ∆u
0 1

∣∣∣∣ −
∣∣∣∣1 0
0 0

∣∣∣∣∣∣∣∣0 ∆u
1 ∆v

∣∣∣∣ −
∣∣∣∣1 ∆u
0 ∆v

∣∣∣∣ ∣∣∣∣1 0
0 1

∣∣∣∣


=

 1 0 0
0 1 0
−∆u −∆v 1


(A.21)

The adjugate matrix can then be found by transposing the cofactor matrix:

Madjugate = MT
cofactor

=

1 0 −∆u
0 1 −∆v
0 0 1

 (A.22)

Finally, the matrix inverse can be found by dividing the adjugate matrix by the deter-
minant of the original matrix. The determinant of the matrix, M , is:

det(M) =

∣∣∣∣∣∣
1 0 ∆u
0 1 ∆v
0 0 1

∣∣∣∣∣∣
= 1

∣∣∣∣1 ∆v
0 1

∣∣∣∣− 0

∣∣∣∣0 ∆v
0 1

∣∣∣∣+ u

∣∣∣∣0 1
0 0

∣∣∣∣
= 1

(A.23)

The matrix inverse of the 0th order shape function is then:

W−1 =
1

det(M)
Madjugate

=

1 0 −∆u
0 1 −∆v
0 0 1

 (A.24)
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A.2.2 1st Order Shape Function

The 1st order shape function makes use of a 3x3 warp matrix in the IC-GN to capture the
shearing and elongation/compression deformations. Similarly to the 0th order shape func-
tion, the inverse of a 3x3 matrix, M , can be found by calculating the matrix of cofactors,
transposing the matrix of cofactors to find the adjugate matrix, followed by dividing by
the determinant of the original matrix to find the inverse. In this case, the matrix M is:

M =

1 + ∆ux ∆uy ∆u
∆vx 1 + ∆vy ∆v

0 0 1

 (A.25)

The matrix of cofactors for the 1st order shape function can be found through taking the
determinant of each 2x2 minor matrix and multiplying by + or − depending on location,
resulting in:

Mcofactor =



∣∣∣∣1 + ∆vy ∆v
0 1

∣∣∣∣ −
∣∣∣∣∆vx ∆v

0 1

∣∣∣∣ ∣∣∣∣∆vx 1 + ∆vy
0 0

∣∣∣∣
−
∣∣∣∣∆uy ∆u

0 1

∣∣∣∣ ∣∣∣∣1 + ∆ux ∆u
0 1

∣∣∣∣ −
∣∣∣∣1 + ∆ux ∆uy

0 0

∣∣∣∣∣∣∣∣ ∆uy ∆u
1 + ∆vy ∆v

∣∣∣∣ − ∣∣∣∣1 + ∆ux ∆u
∆vx ∆v

∣∣∣∣ ∣∣∣∣1 + ∆ux ∆uy
∆vx 1 + ∆vy

∣∣∣∣


=

 1 + ∆vy −∆vx 0
−∆uy 1 + ∆ux 0

∆uy∆v −∆u(1 + ∆vy) ∆u∆vx −∆v(1 + ∆ux) (1 + ∆ux)(1 + ∆vy)−∆uy∆vx


(A.26)

The adjugate matrix can then be found by transposing the cofactor matrix:

Madjugate = MT
cofactor

=

1 + ∆vy −∆uy ∆uy∆v −∆u(1 + ∆vy)
−∆vx 1 + ∆ux ∆u∆vx −∆v(1 + ∆ux)

0 0 (1 + ∆ux)(1 + ∆vy)−∆uy∆vx

 (A.27)

Finally, the matrix inverse can be found by dividing the adjugate matrix by the deter-
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minant of the original matrix. The determinant of the matrix, M , is:

det(M) =

∣∣∣∣∣∣
1 + ∆ux ∆uy ∆u

∆vx 1 + ∆vy ∆v
0 0 1

∣∣∣∣∣∣
= (1 + ∆ux)

∣∣∣∣1 + ∆vy ∆v
0 1

∣∣∣∣−∆uy

∣∣∣∣∆vx ∆v
0 1

∣∣∣∣+ ∆u

∣∣∣∣∆vx 1 + ∆vy
0 0

∣∣∣∣
= (1 + ∆ux)(1 + ∆vy)−∆uy∆vx

(A.28)

The matrix inverse of the 1st order shape function is then:

W−1 =
1

det(M)
Madjugate

=
1

(1 + ∆ux)(1 + ∆vy)−∆uy∆vx

1 + ∆vy −∆uy ∆uy∆v −∆u(1 + ∆vy)
−∆vx 1 + ∆ux ∆u∆vx −∆v(1 + ∆ux)

0 0 (1 + ∆ux)(1 + ∆vy)−∆uy∆vx


(A.29)

A.3 Derivations of B-Spline Kernels

The general B-spline equation is shown in Equation A.30 [58]. The resampling matrices
can be found by adding a shift of ∆x to the B-splines and finding the resultant matrix in
terms of the powers of ∆x.

β0(x) =


1 for|x|< 1

2
1
2

for|x|= 1
2

0 for|x|> 1
2

βn(x) =
n+1∑
k=0

(−1)k(n+ 1)

(n+ 1− k)! k!
(
n+ 1

2
+ x− k)n+

=
1

n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k(x− k +

n+ 1

2
)n+

(A.30)

A.3.1 Bilinear B-Spline

A bilinear B-spline takes the form of a single linear B-spline in each direction, which can be
found by setting n = 1 in the general equation. The linear B-spline is shown in Equation
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A.31.

β1 =

{
x+ 1 −1 ≤ x < 0

−x+ 1 0 ≤ x < 1
(A.31)

A shift of ∆x to the kernel gives Equation A.32. Sampling at each of the valid integer
values of x to find the new shifted interpolation kernel gives Equation A.33

β1(x−∆x) =

{
x−∆x+ 1 −1 ≤ x < 0

−x+ ∆x+ 1 0 ≤ x < 1
(A.32)

β1(∆x) =

{
−∆x+ 1 x = 0

∆x x = 1
(A.33)

This can then be summarized in the matrix form of Equation A.34.

β1(∆x) =
[
1 ∆x

] [ 1 0
−1 0

]
(A.34)

A linear interpolation can then be applied in both directions to form bilinear interpo-
lation. To perform the linear interpolation in the other direction, the same process may
be followed for β(y−∆y), which simply results in the same matrix. To interpolate in both
directions, the resampling matrices can be used to pre- and post-multiply the sampling
coefficient matrix, resulting in Equation A.35.

p(x, y) =
[
1 ∆x

] [ 1 0
−1 0

]
C

[
1 0
−1 0

]T [
1

∆y

]
(A.35)

where C is the 2x2 sampling coefficient matrix, which can be found from deconvolution of
the image and the B-spline kernel.

A.3.2 Bicubic B-Spline

A bicubic B-spline takes the form of a cubic B-spline in each direction, which can be found
by setting n = 3 in the general equation. The cubic B-spline is shown in Equation A.36.

β3 =


1
6
x3 + x2 + 2x+ 4

3
−2 ≤ x < −1

−1
2
x3 − x2 + 2

3
−1 ≤ x < 0

1
2
x3 − x2 + 2

3
0 ≤ x < 1

−1
6
x3 + x2 − 2x+ 4

3
1 ≤ x < 2

(A.36)
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A shift of ∆x to the kernel gives Equation A.37. Sampling at each of the valid integer
values of x to find the new shifted interpolation kernel gives Equation A.38

β3(x−∆x) =


1
6
(x−∆x)3 + (x−∆x)2 + 2(x−∆x) + 4

3
−2 ≤ x < −1

−1
2
(x−∆x)3 − (x−∆x)2 + 2

3
−1 ≤ x < 0

1
2
(x−∆x)3 − (x−∆x)2 + 2

3
0 ≤ x < 1

−1
6
(x−∆x)3 + (x−∆x)2 − 2(x−∆x) + 4

3
1 ≤ x < 2

(A.37)

β3(∆x) =


−1

6
∆x3 + 1

2
∆x2 − 1

2
∆x+ 1

6
x = −1

1
2
∆x3 −∆x2 + 2

3
x = 0

−1
2
∆x3 + 1

2
∆x2 + 1

2
∆x+ 1

6
x = 1

1
6
∆x3 x = 2

(A.38)

This can then be summarized in the matrix form of Equation A.39.

β3(∆x) =
[
1 ∆x ∆x2 ∆x3

] 
1
6

2
3

1
6

0
−1

2
0 1

2
0

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6

 (A.39)

Cubic interpolation can be completed in each direction to perform a bicubic interpola-
tion. The same process can be followed for the y direction to find β3(∆y), which results
in the same matrix as for β3(∆x). To interpolate in both directions, the resampling ma-
trices can be used to pre- and post-multiply the sampling coefficient matrix, resulting in
Equation A.40.

p(x, y) =
[
1 ∆x ∆x2 ∆x3

] 
1
6

2
3

1
6

0
−1

2
0 1

2
0

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6

C


1
6

2
3

1
6

0
−1

2
0 1

2
0

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6


T 

1
∆y
∆y2

∆y3

 (A.40)

where C is the 4x4 sampling coefficient matrix, which can be found from the deconvolution
of the image and the B-spline kernel.

A.3.3 Biquintic B-Spline

Biquintic B-splines can be found by taking a quintic B-spline in each direction. The single
direction quintic B-spline can be found by setting n = 5 in the general B-spline equation.
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The 1D quintic B-spline is shown in Equation A.41.

β5 =



1
120
x5 + 1

8
x4 + 3

4
x3 + 9

4
x2 + 27

8
x+ 81

40
−3 ≤ x < −2

− 1
24
x5 − 3

8
x4 − 5

4
x3 − 7

4
x2 − 5

8
x+ 17

40
−2 ≤ x < −1

1
12
x5 + 1

4
x4 − 1

2
x2 + 11

20
−1 ≤ x < 0

− 1
12
x5 + 1

4
x4 − 1

2
x2 + 11

20
0 ≤ x < 1

1
24
x5 − 3

8
x4 + 5

4
x3 − 7

4
x2 + 27

8
x+ 17

40
1 ≤ x < 2

− 1
120
x5 + 1

8
x4 − 3

4
x3 + 9

4
x2 − 27

8
x+ 81

40
2 ≤ x < 3

(A.41)

A shift of ∆x to the kernel gives Equation A.42. Sampling at each of the valid integer
values of x to find the new shifted interpolation kernel gives Equation A.43

β5(x−∆x) =



1
120

(x−∆x)5 + 1
8
(x−∆x)4 + 3

4
(x−∆x)3 + 9

4
(x−∆x)2 + 27

8
(x−∆x) + 81

40
−3 ≤ x < −2

− 1
24

(x−∆x)5 − 3
8
(x−∆x)4 − 5

4
(x−∆x)3 − 7

4
(x−∆x)2 − 5

8
(x−∆x) + 17

40
−2 ≤ x < −1

1
12

(x−∆x)5 + 1
4
(x−∆x)4 − 1

2
(x−∆x)2 + 11

20
−1 ≤ x < 0

− 1
12

(x−∆x)5 + 1
4
(x−∆x)4 − 1

2
(x−∆x)2 + 11

20
0 ≤ x < 1

1
24

(x−∆x)5 − 3
8
(x−∆x)4 + 5

4
(x−∆x)3 − 7

4
(x−∆x)2 + 27

8
(x−∆x) + 17

40
1 ≤ x < 2

− 1
120

(x−∆x)5 + 1
8
(x−∆x)4 − 3

4
(x−∆x)3 + 9

4
(x−∆x)2 − 27

8
(x−∆x) + 81

40
2 ≤ x < 3

(A.42)

β5(∆x) =



− 1
120

∆x5 + 1
24

∆x4 − 1
12

∆x3 + 1
12

∆x2 − 1
24

∆x+ 1
120

x = −2
1
24

∆x5 − 1
6
∆x4 + 1

6
∆x3 + 1

6
∆x2 − 5

12
∆x+ 13

60
x = −1

− 1
12

∆x5 + 1
4
∆x4 − 1

2
∆x2 + 11

20
x = 0

1
12

∆x5 − 1
6
∆x4 − 1

6
∆x3 + 1

6
∆x2 + 5

12
∆x+ 13

60
x = 1

− 1
24

∆x5 + 1
24

∆x4 + 1
12

∆x3 + 1
12

∆x2 + 1
24

∆x+ 1
120

x = 2
1

120
∆x5 x = 3

(A.43)

This can then be summarized in the matrix form of Equation A.44.

β5(∆x) =
[
1 ∆x ∆x2 ∆x3 ∆x4 ∆x5

]


1
120

13
60

11
20

13
60

1
120

0
− 1

24
− 5

12
0 5

12
1
24

0
1
12

1
6

−1
2

1
6

1
12

0
− 1

12
1
6

0 −1
6

1
12

0
1
24

−1
6

1
4
−1

6
1
24

0
− 1

120
1
24

− 1
12

1
24
− 1

24
1

120

 (A.44)

Quintic interpolation can be completed in each direction to perform a biquintic in-
terpolation. The same process can be followed for the y direction to find β5(∆y), which
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results in the same matrix as for β5(∆x). To interpolate in both directions, the resampling
matrices can be used to pre- and post-multiply the sampling coefficient matrix, resulting
in Equation A.45.

p(x, y) =
[
1 ∆x ∆x2 ∆x3 ∆x4 ∆x5

]
QCQT


1

∆y
∆y2

∆y3

∆y4

∆y5

 (A.45)

where C is the 6x6 sampling coefficient matrix, which can be found from the deconvolution
of the image and the B-spline kernel, and

Q =



1
120

13
60

11
20

13
60

1
120

0
− 1

24
− 5

12
0 5

12
1
24

0
1
12

1
6

−1
2

1
6

1
12

0
− 1

12
1
6

0 −1
6

1
12

0
1
24

−1
6

1
4
−1

6
1
24

0
− 1

120
1
24

− 1
12

1
24
− 1

24
1

120


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Appendix B

Graphs
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B.1 Numeric Results

B.1.1 Shape Function
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Figure B.1: Errors present in 2D analysis due to shape function (no blur added).
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Figure B.2: Errors present in 2D analysis due to shape function (3x3 blur added).
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3D Results

0 0.05 0.1 0.15 0.2 0.25

Displacement (mm)

-1.5

-1

-0.5

0

0.5

1

1.5

B
ia

s
 E

rr
o

r 
(m

m
)

Bicubic Interpolation

0 0.05 0.1 0.15 0.2 0.25

Displacement (mm)

-1.5

-1

-0.5

0

0.5

1

1.5

B
ia

s
 E

rr
o

r 
(m

m
)

Biquintic Interpolation

1st Order, 0% Noise

2nd Order, 0% Noise

1st Order, 4% Noise

2nd Order, 4% Noise

0 0.05 0.1 0.15 0.2 0.25

Displacement (mm)

0

2

4

6

8

10

12

14

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 E

rr
o

r 
(m

m
)

Bicubic Interpolation

0 0.05 0.1 0.15 0.2 0.25

Displacement (mm)

0

2

4

6

8

10

12

14

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 E

rr
o

r 
(m

m
)

Biquintic Interpolation

Figure B.3: Errors present in 3D analysis due to shape function (no blur added).
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Figure B.4: Errors present in 3D analysis due to shape function (3x3 blur added).
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B.1.2 Interpolation

2D Results
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Figure B.5: Errors present in 2D analysis due to interpolation (no blur added).
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Figure B.6: Errors present in 2D analysis due to interpolation (3x3 blur added).
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3D Results
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Figure B.7: Errors present in 3D analysis due to interpolation (no blur added).
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Figure B.8: Errors present in 3D analysis due to interpolation (3x3 blur added).
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B.1.3 Noise Level

2D Results
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Figure B.9: Errors present in 2D analysis due to noise.
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Figure B.10: Errors present in 2D analysis due to noise.
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3D Results
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Figure B.11: Errors present in 3D analysis due to noise.
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Figure B.12: Errors present in 3D analysis due to noise.
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B.1.4 Noise Reduction (Gaussian Pre-Filtering)

2D Results
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Figure B.13: Bias errors present in 2D analysis due to Gaussian blur (0% noise).
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Figure B.14: Standard deviation errors present in 2D analysis due to Gaussian blur (0%
noise).
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Figure B.15: Bias errors present in 2D analysis due to Gaussian blur (2% noise).
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Figure B.16: Standard deviation errors present in 2D analysis due to Gaussian blur (2%
noise).
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Figure B.17: Bias errors present in 2D analysis due to Gaussian blur (4% noise).
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Figure B.18: Standard deviation errors present in 2D analysis due to Gaussian blur (4%
noise).
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3D Results
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Figure B.19: Bias errors present in analysis 3D due to Gaussian blur (0% noise).
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Figure B.20: Standard deviation errors present in 3D analysis due to Gaussian blur (0%
noise).
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Figure B.21: Bias errors present in 3D analysis due to Gaussian blur (2% noise).
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Figure B.22: Standard deviation errors present in 3D analysis due to Gaussian blur (2%
noise).
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Figure B.23: Bias errors present in 3D analysis due to Gaussian blur (4% noise).
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Figure B.24: Standard deviation errors present in 3D analysis due to Gaussian blur (4%
noise).
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Figure B.25: Bias errors due to subset size in 2D.
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Figure B.26: Random errors due to subset size in 2D.
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Figure B.27: Bias errors due to subset size in 3D.
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Figure B.28: Random errors due to subset size in 3D.
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Figure B.29: Relative computational time of subsets.
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B.2 Laboratory Results

B.2.1 Raw Data Graphs

DIC Displacement Time Series (Middle Point Selected)
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Figure B.30: DIC displacement time series from Run 1.
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Figure B.31: DIC displacement time series from Run 2.
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Figure B.32: DIC displacement time series from Run 3.
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Figure B.33: DIC displacement time series from Run 4.
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Figure B.34: DIC displacement time series from Run 5.
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LDV Velocity Time Series
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Figure B.35: LDV velocity time series from Run 1.
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Figure B.36: LDV velocity time series from Run 2.
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Figure B.37: LDV velocity time series from Run 3.
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Figure B.38: LDV velocity time series from Run 4.
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Figure B.39: LDV velocity time series from Run 5.
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Impact Hammer Time Series
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Figure B.40: Impact hammer force time series from Run 1.
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Figure B.41: Impact hammer force time series from Run 2.
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Figure B.42: Impact hammer force time series from Run 3.
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Figure B.43: Impact hammer force time series from Run 4.
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Figure B.44: Impact hammer force time series from Run 5.
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B.2.2 Displacement Comparison Graphs
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Figure B.45: LDV (integrated) vs. DIC displacement measurements from Run 1.
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Figure B.46: LDV (integrated) vs. DIC displacement measurements from Run 2.
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Figure B.47: LDV (integrated) vs. DIC displacement measurements from Run 3.
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Figure B.48: LDV (integrated) vs. DIC displacement measurements from Run 4.
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Figure B.49: LDV (integrated) vs. DIC displacement measurements from Run 5.
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DIC (Mean Bias Corrected)
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Figure B.50: LDV (integrated) vs. bias corrected DIC displacement measurements from
Run 1.
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Figure B.51: LDV (integrated) vs. bias corrected DIC displacement measurements from
Run 2.
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Figure B.52: LDV (integrated) vs. bias corrected DIC displacement measurements from
Run 3.
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Figure B.53: LDV (integrated) vs. bias corrected DIC displacement measurements from
Run 4.
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Figure B.54: LDV (integrated) vs. bias corrected DIC displacement measurements from
Run 5.
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B.2.3 DIC Stabilization Diagrams
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Figure B.55: Stabilization diagram from Run 1.
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Figure B.56: Stabilization diagram from Run 2.
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Figure B.57: Stabilization diagram from Run 3.
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Figure B.58: Stabilization diagram from Run 4.
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Figure B.59: Stabilization diagram from Run 5.
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B.2.4 Laser Vibrometer FFTs
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Figure B.60: FFT of LDV measurements from Run 1.
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Figure B.61: FFT of LDV measurements from Run 2.
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Figure B.62: FFT of LDV measurements from Run 3.
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Figure B.63: FFT of LDV measurements from Run 4.
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Figure B.64: FFT of LDV measurements from Run 5.
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B.2.5 Mode Shapes

(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.65: Mode shapes of Run 1.
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(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.66: Mode shapes of Run 2.

195



(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.67: Mode shapes of Run 3.
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(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.68: Mode shapes of Run 4.
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(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.69: Mode shapes of Run 5.
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(a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.

(d) Mode shape 4. (e) Mode shape 5. (f) Mode shape 6.

Figure B.70: FEA mode shapes
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