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Abstract

In this thesis we develop a parametrized generic hardware implementation for the Welch-
Gong (WG) stream cipher family for low power and low cost applications. WG stream
ciphers operate over finite fields GF2m , and are comprised of Linear Feedback Shift Register
(LFSR) and non-linear WG transformation as filtering function. These stream ciphers
provide mathematically proven keystream properties. We begin with design of individual
components that perform cryptographic functions. Then we construct WG transformation
using these components and perform analysis of dependency between design parameters
and circuit area pre place-and-route for ASIC and two FPGAs. We also explored a second
implementation approach that uses constant arrays or lookup tables generated with GAP
by Zidaric. Finally, instances of the complete cipher of different sizes from WG-5 to WG-16
that output from 1 to 32 bits / cycle are shown, and their performance and area is analyzed
for 65 nm CMOS technology post place-and-route.
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Chapter 1

Introduction

Communication security is an increasingly important area as our lives become more
and more dependant on computers and technology. Smart devices for all kinds of appli-
cations emerge around the world under the Internet-of-Things (IoT) paradigm, and Radio
Frequency Identification (RFID) tags with various functionality are used in daily life. One
of the aspects of communication security is confidentiality, commonly achieved by data
encryption using a cryptographic tool called a cipher.

Ciphers can be categorized by how the keys are used (asymmetric and symmetric key
algorithms) and by how data encryption is performed (block ciphers and stream ciphers).
Asymmetric key algorithms, also known as public key algorithms, use different keys to
encrypt and decrypt the data, while symmetric key algorithms use the same key for both
encryption and decryption. Block ciphers perform encryption over fixed size of data by
passing the blocks though an encryption algorithm. Stream ciphers do encryption contin-
uously by generating a keystream that is later XORed with data bit-by-bit. Asymmetric
ciphers incorporate computationally intensive algorithms that require a lot of processing
power to run and are not suitable for constrained environments like low power IoT devices
or RFID tags.

The thesis is a part of the WG-lite project of the ComSec group in the Electrical &
Computer Engineering department of the University of Waterloo. WG ciphers are based
on the WG transformation and provide a keystream with mathematically proven random-
ness properties. Previously, only specific instances of WG ciphers have been implemented
in hardware and software. The main contribution of the thesis is the development of a
universal generic implementation of the whole family. It allows us to compare instances
of different sizes directly as well as study design trade-offs between universal and highly

1



optimized manual implementations of the same instances.

As a part of this thesis, over 26000 different instances were synthesized for extensive
evaluation of how different design parameters affect cipher area, one of the most important
performance metrics for low power and low cost applications.

Two implementation approaches are used in this thesis - discrete components and con-
stant arrays, which are introduced in Section 2.3.3, a part of Chapter 2 that includes
necessary background information and related work. Chapter 3 is dedicated to discrete
components implementations. Each of the components performs a specific arithmetic oper-
ation and is discussed in a separate section. In Chapter 4 we perform an extensive analysis
of the effect of field size, field defining polynomial, implementation approaches and imple-
mentation technologies on WG transformation area pre place-and-route. We also propose
a way to reduce the search space to find a field defining polynomial that provides the small-
est WG transformation area. We select optimal parameters and implement complete WG
ciphers of different sizes in Chapter 5. We present instances with 1 bit / cycle output and
two options of instances with multiple bits / cycle output, provide performance metrics
post place-and-route and compare them with other implementations. In Chapter 6 we give
a conclusion and talk about future work possibilities.
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Chapter 2

Background and Related Work

2.1 Mathematical Background

In this section we introduce groups; finite fields, specifically the binary extension fields,
and define polynomial basis, which will be the focus of this thesis.

2.1.1 Groups and Finite Fields

A group G is a non-empty set with a binary operation +, that satisfies the following
criteria:

• ∀x, y ∈ G : x+ y ∈ G (closure)

• ∀x, y, z ∈ G : x+ (y + z) = (x+ y) + z (associativity)

• ∃ e ∈ G, ∀x ∈ G : x+ e = x (identity)

• ∀x ∈ G, ∃ y ∈ G : x+ y = y + x = e (inverse)

Group G is called an Abelian group if the binary operation + is commutative:

• ∀x, y ∈ G : x+ y = y + x ∈ G (commutativity)

A field F is a set with two operations called addition (+) and multiplication (·) (and
two corresponding identity elements 0 and 1 respectively) with the following conditions
[1, 2]:
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• F is an Abelian group under addition and therefore satisfies the group criteria (clo-
sure, associativity, identity and inverse) for addition

• All elements are associative under multiplication, i.e. ∀x, y, z ∈ F : x·(y·z) = (x·y)·z

• There exists a multiplicative identity element 1, i.e. ∀x ∈ F : x · 1 = x

• Every element except additive identity 0 has multiplicative inverse, i.e. ∀x ∈ F \{0}, ∃ y ∈
F \{0} : x · y = 1, i.e. x−1 = y

• Multiplication is distributive over addition, i.e. ∀ x, y, z ∈ F : x · (y+z) = x ·y+x ·z

A finite field is a field F with a finite number of elements, and this number is the order
of the field F [2]. A finite field or Galois field GFq has q elements and it only exists if
q = pm, where p is a prime number and m is a positive integer [1].

2.1.2 Binary Extension Fields and Polynomial Basis

A field with p elements GFp, where p is a prime number, is called prime field. Elements
of this field are integers {0, 1, 2, 3, . . . , p − 1}. Additions and multiplications in GFp are
regular integer operations followed by reduction mod p. A field GFpm is called an extension
field and has pm elements. If p = 2, such a field is called a binary extension field GF2m . The
elements of GF2m can be represented as binary polynomials of degree less than m. Similar
to how prime fields are constructed by mod p reduction, binary extension field can be
constructed using reduction by a binary irreducible polynomial P (x) of degree m. Addition
of polynomials is performed by modulo-2 addition of the corresponding coefficients and
multiplication is a regular polynomial multiplication followed by reduction by P (x) [3].

A polynomial basis is defined by an irreducible polynomial P (x). If we take a root α of
this polynomial (P (α) = 0), then the set {1, α, α2, α3, . . . , αm−1} forms a polynomial basis.
Every element of the field GF2m can be represented in this basis using binary coefficients
ai:

A =
m−1∑
i=0

ai · αi

Since each coefficient is binary, such a representation is very convenient to implement
on intrinsically binary digital hardware. Addition in polynomial basis is very simple and
cheap – all we need is m XOR gates to perform the modulo-2 addition of each corre-
sponding coefficient. Multiplication, however, requires both polynomial multiplication and
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reduction, which makes it a more costly operation. Therefore, a reasonable approach in
cryptographic hardware optimization is to try to minimize the number of multiplications
for a given circuit to keep its area small. Another common operation is squaring. Squaring
can be implemented using a multiplier with two united inputs. In polynomial basis, such
a multiplier is reduced to a much simpler circuit by the synthesis tools.

It is important to mention normal basis N = {β, βq, βq2 , . . . , βqm−1}, which is formed by
a normal element β and its conjugates with respect to GF2. From the hardware perspective,
normal basis provides essentially free squaring in a form of rotation of all coefficients, which
is just a rearrangement of wires inside a circuit. Multipliers, however, are more complex
than in polynomial basis.

The trace function on an element α with respect to the underlying subfield GFq is a
function that maps GFqm → GFq:

Tr
GFqm

GFq
(α) =

m−1∑
i=0

αqi = αq0 + αq1 + αq2 + · · ·+ αqm−1

If the subfield GFq is prime, the function is called absolute trace [4]. In this thesis trace
functions will be denoted as Trm1 for convenience.

2.2 The WG Cipher

WG (Welch-Gong) is a family of parametrized stream ciphers that provide mathemat-
ically proven randomness properties of the keystream such as guaranteed period, k-tuple
distribution, balance property, run property, ideal two-level autocorrelation and large lin-
ear span [5, 6]. A WG stream cipher consists of a Linear Feedback Shift Register (LFSR),
a WG permutation function with optional decimation and an absolute trace function, as
shown in Figure 2.1. The generated keystream is XORed with plaintext i text to provide
ciphertext o text.

The WG permutation can be referred to as the WGP and if optional decimation d is
present it can be referred to as DWGP. For simplicity, we will always use DWGP notation,
and refer to the case without decimation as DWGP with d = 1 later in this thesis. DWGP
followed by the absolute trace function will be referred to as the WG transformation with
decimation, or DWGT.

WG ciphers operate over GF2m extension fields with m mod 3 6= 0 condition, where m
is a field dimension. WG instantiations with low values of m are smaller and consume
less power, while the ones with higher m values provide higher security [6].
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Figure 2.1: WG cipher structure

Decimation is used to increase the algebraic degree and the algebraic immunity of the
cipher [7]. The DWGP function is defined as:

DWGP (A) = h(Ad + 1) + 1,

where
h(A) = A+ Ar1 + Ar2 + Ar3 + Ar4

is a permutation polymonial. The exponents are:

r1 = 2k + 1, r2 = 22·k + 2k + 1, r3 = 22·k − 2k + 1, r4 = 22·k + 2k − 1

where 3 · k = 1 (mod m). DWGT can be expressed as:

DWGT (A) = Trm1 (DWGP (A)),

i.e. by applying the absolute trace function Trm1 () over DWGP. For d = 1, it is possible to
rewrite the equation for h(A) as:

h(A) = A+ (A2k · A) + (A22·k · A2k · A) + (A22·k · A−2k · A) + (A22·k · A2k · A−1)

= A+ A · (A2k + (A22·k · A2k) + (A22·k · (A−1)2
k
)) + (A−1 · (A22·k · A2k))

to reduce the number of multiplications from 7 to 5 and the number of very expensive
inversion operations from 2 to 1.
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2.3 Implementation Techonologies

Hardware was implemented using VHDL. The following sections briefly describe the
details, including which software was used and how we achieved a high degree of design
automation.

2.3.1 ASIC library and FPGAs

In this thesis we perform pre place-and-route (logic) synthesis for extensive area analysis
using STMicroelectronics 65 nm CMOS ASIC library as well as two FPGAs: STRATIX
IV and MAX 10. The place-and-route synthesis is done for several complete instances of
WG ciphers using the 65 nm CMOS library.

Quick specifications of the FPGAs are given in Table 2.1. The main differences we are
concerned with are the number of configurable look-up tables (LUT), which are sometimes
referred to as logic elements (LE) in various sources, as well as their input and output
size. The LUT is a core atomic component of an FPGA and is used to implement logic
functions. For ASICs, different gates from an extensive library (NOT, NAND, NOR,
XOR, AND, OR, etc.) are used to construct digital circuits. In FPGAs, no such gates
exist. Instead, each LUT has a fixed number of input bits (for example, 4 or 6) and a
fixed number of output bits (for example, 1 or 2) and can be configured to represent an
arbitrary truth table. If a particular logic function requires more inputs or outputs than
a single LUT can provide, two of more LUTs will be dedicated to it. FPGAs also contain
dedicated flip-flops (registers) and memory bits.

Intel / Altera STRATIX IV FPGA Intel / Altera MAX 10 FPGA

Model EP4SGX70HF35 10M08SAE144C8GES

LUTs 58080 (8 input bits, 2 output bits)* 8064 (4 input bits, 1 output bit)

Registers 58080 8064

Memory Bits 6617088 387072

* certain restrictions apply [8]

Table 2.1: STRATIX IV and MAX 10 FPGAs specifications

The reason why we chose ASIC as a main implementation for area profiling is because
logic synthesis area results for ASIC are almost directly proportional to physical (post place-
and-route) area – unless target density is pushed to its absolute limit for each particular
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design, which is not the case in this thesis. A density value can be found to work well for all
designs that results in low increase from logic synthesis area to physical synthesis area (like
5.3% for density 0.95) without unreasonable increase in delay due to congestion. Place-
and-route on FPGA, however, is fundamentally different because routing is much harder
due to constrained resources in a form of fixed architecture of look-up tables and limited
amount of interconnects in-between. For example, it is common to have LUTs completely
blocked (i.e. impossible to use because all interconnects around them are being used for
other cells). Moreover, synthesis tools naturally do not put as much effort in efficient
resource allocation and routing when design is significantly smaller than the FPGA. That,
combined with different LUT and Slice designs between different FPGAs means that logic
synthesis results are less useful than for ASIC as they are specific to a particular FPGA
model and do not consistently predict physical synthesis results, and physical synthesis
results are still very specific to the FPGA model or family.

2.3.2 The tools for synthesis, simulation and automation

CAD software used in this thesis:

• Synopsys Design Compiler - logic (pre place-and-route) synthesis for ASIC im-
plementations

• Cadence Encounter by Cadence Design Systems - physical synthesis (post place-
and-route) for ASIC implementations and power consumption analysis

• Model Technology ModelSim SE-64 - design simulation at various steps like
program simulation to verify functional behaviour, logic simulation for pre place-and-
route synthesis results and physical simulation for post place-and-route. ModelSim
is able to perform timing simulations with .sdf (standard delay file) generated by
synthesis tools. The output of ModelSim in a form of .vcd (value change dump) file
can then be used for precise power analysis in Cadence Encounter.

• Mentor Graphics Precision RTL - logic synthesis for STRATIX IV and MAX
10 FPGAs

In order to make it possible to synthesize and evaluate thousands of various instances,
we had to take advantage of an extensive library of proprietary python scripts, which were
developed and are maintained by Dr. Mark D. Aagaard. We refer to them as UW tools.
They interface with the CAD software through the command line interface and make the
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process easy, fast and reliable. Brief description of UW tools functionality is presented
below:

• .uwp file - UW project file which contains the paths to all design files, testbenches,
necessary libraries (packages) and the name of top level entity and its architecture.

• uw-com - compile design files or a project

• uw-sim - simulate a project in ModelSim

• uw-synth - synthesize design files or a project. Possible arguments include:

F --logic - perform pre place-and-route synthesis

F --chip - perform place-and-route synthesis

F -O0, -O1, -O2, etc. – optimization level. A template with different settings for
synthesis tools. -O2 option is used exclusively in this thesis as the best option
to minimize area

F --board - choose the implementation technology. Possible options include
cmos65nm, stratixiv, lstep and other supported ASIC libraries or FPGAs

F -d - density for place-and-route synthesis, indicates area target w.r.t. pre place-
and-route area. -d=0.95 (95%) option is used in all cases as the highest density
that a) works consistently for all instances without violations and b) does not
result in unreasonable increase in circuit delay due to congestion caused by
inability of the CAD tools to route wires optimally without violating area re-
quirements.

F -t - target delay for logic and physical synthesis in nanoseconds. -t=100 is
chosen as a way to allow synthesis tools to focus only on area minimization.
For several design instances that have delays close to 100 ns and 200 ns, -t=200
and -t=300 flag is used instead.

F -G - generic parameters passed to top level entity

F -C - configuration constants, that allow to have placeholders in any file type
within a project. For example, using -C FIELD DIR=pb 11/pb 11 2 as an
argument in a uw-synth command will substitute placeholders $FIELD DIR
and ${FIELD DIR} with the text pb 11/pb 11 2, which makes it possible to
define a folder path inside .vhd or .uwp files.
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• uw-loop - cycle through synthesis (uw-synth), timing simulation (uw-sim) and power
analysis

• uw-report - read data (area, performance, power, generic parameters used, etc.)
from report directories that were automatically created by uw-synth and export the
data as .csv file.

• uw-clean - delete temporary folders and files left after synthesis or simulation

• uw-plot - create charts from data in .csv files

In addition to the above, a large collection of custom python scripts is built on top of
the core UW tools library. Those scripts are typically used for batch synthesis or batch
data processing and are tailored to specific needs. While all of the core tools were already
present before the work on this thesis has begun, a number of custom scripts had to be
written or modified while working on this thesis as well as minor changes to the core UW
tools.

Several VHDL testbenches for individual components were used in this thesis. Also,
a robust testbench environment developed by Dr. Mark Aagaard was used for complete
WG stream cipher instances. Test vectors for individual components as well as for all WG
cipher instances were provided by Zidaric using GAP packages from [9]. Simulation of WG
ciphers included key and initialization vector (IV) loading phase, initialization phase and
running phase to generate 1024 bits of keystream for comparable power analysis results
among different instances.

2.3.3 Constant Array and Discrete Components

There are two different approaches in implementing cryptographic functions in VHDL.
The first approach is using discrete components, which is thoroughly discussed in Chapter
3 and is the main focus of this thesis. Such components include squarers, multipliers,
generic exponentiations and inversions that perform actual finite field arithmetic over the
inputs in real time. The second approach is using constant array, when a cryptographic
block as a look-up table with an input and an output. For each input value the output
value is written as a VHDL constant. The values are pre-computed and the corresponding
VHDL modules generated by Zidaric using GAP packages from [9].
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2.4 Related Work

In this section we discuss existing work on hardware implementations of various in-
stances of WG ciphers as well as two stream ciphers from the eSTREAM competition [10]
- Grain and Trivium. As this thesis is mostly concentrated on ASIC (65 nm CMOS), at
least when it comes to complete cipher implementations, it will be also the focus of this
review.

2.4.1 Hardware Implementations of WG

The first implementation of WG cipher was done for WG-29 [11], which was a cipher
submitted to the eSTREAM competition in 2005. In that work both hardware and software
implementations were done using type II optimal normal basis for efficient field arithmetic.
The multi-output WG architecture called MOWG was proposed and implemented in [12].
MOWG-7, MOWG-11 and MOWG-29 generate 3, 6 and 17 bits / cycle respectively us-
ing a different MOWG transformation with deep pipelining compared to 1 bit / cycle for
standard WG architecture. An improved MOWG-29 as well as a new more efficient imple-
mentation of the standard WG-29 were done in [13]. Area reduction and speed increase for
the standard WG-29 were achieved due to the discovery of useful properties of the trace
function and elimination of 4 multipliers. In [14], WG-29 and WG-16 ciphers were imple-
mented using polynomial basis, and in addition to standard WG, pipelined and serialized
architectures were explored. Pipelining allows to increase maximum clock speed at a cost
of area increase due to extra registers. Serializing decreases circuit area by having fewer
key components (like multipliers) and performing the same amount of computation over
several clock cycles instead of 1 clock cycle, while reusing these components. Also, imple-
mentations using regular multipliers and Karatsuba multipliers are shown. The approach
that lead to significant reduction in number of multipliers and therefore area is similar to
[13]. WG-16 was implemented using only 6 multipliers, while standard technique used in
this thesis yields 12.

For WG-29 (ONB II) implementation in [13] and WG-29 (PB) and WG-16 (PB) im-
plementations [14], the DWGP signal is not present explicitly during the run phase. In
order to recover the DWGP signal for initialization phase, one initialization round takes
3 cycles for WG-16 (PB), 7 cycles for WG-29 (PB) and 3 cycles for WG-29 (ONB II),
during which some internal components, including a multiplier, are reused. This approach
provides smaller area at the cost of a longer initialization phase.

WG-5 and WG-8, two lightweight cipher instances for applications like RFID tags, were
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Cipher Basis
State / Bits /

d
Area Max freq. Max tput Max T/A Power Energy

SourceKey (bits) cycle (GE) (MHz) (Mbps) (Mbps/GE) (µW) (pJ/bit)

65 nm CMOS ASIC library:

WG-29 ONB II 319/128 1 1 33180 144 144 0.00434 7280 (140 MHz) 52.00 (140 MHz) [11] †
WG-29

ONB II 319/128 1 1
19892 169 169 0.00850 4450 (140 MHz) 31.79 (140 MHz)

[13] †
MOWG-29 26261 151 2567 0.09775 5890 (140 MHz) 2.47 (140 MHz)

WG-29

PB 319/128

1

1

17165 202 202 0.01177

- - [14] †

WG-29 ‡ 1 21190 917 917 0.04328

WG-29 †† 1/6 7050 610 101 0.01433

WG-16

PB 512/256

1

1057

9103 189 189 0.02076

WG-16 ‡ 1 11795 1149 1149 0.09741

WG-16 †† 1/6 5267 680 113 0.02145

WG-16

PB * 512/256
1

1057

8060 193 193 0.02395

- - [14] †WG-16 ‡ 10681 1370 1370 0.12827

WG-16 †† 1/6 5026 714 119 0.02368

WG-16 ‡ TFB 512/256 1 1057

26300 2440 2440 0.09278

- - [15]10900 880 880 0.08073

9900 330 330 0.03333

WG-16 ‡ TFB 512/256 1 1057 12031 552 552 0.04588 25500 (552 MHz) 46.12 (552 MHz) [16]

WG-8 PB ** 160/80
1

19
1786 500 500 0.27996

- - [17]
11 3942 610 6710 1.70218

130 nm CMOS ASIC library:

WG-5 PB *** 160/80

1
1 1229

- - -

0.78 (0.1 MHz) 7.80 (0.1MHz)

[6]
11 1235 0.79 (0.1 MHz) 7.80 (0.1MHz)

2
1 1350 0.84 (0.1 MHz) 4.20 (0.1MHz)

11 1360 0.85 (0.1 MHz) 4.20 (0.1MHz)

180 nm CMOS ASIC library:

WG-5 PB *** 160/80

1
1 1361

- - - - - [6]
11 1373

2
1 1508

11 1521

d = decimation exponent; tput = throughput; T/A = throughput over area

† synthesis results only pre place-and-route

‡ pipelined implementation

†† serialized implementation

* Karatsuba multiplier was used

** implemented using constant array

*** implemented using GAP-derived equation

Table 2.2: Hardware implementations of WG stream cipher

proposed in [6] and [17] respectively. WG-5 had DWGP implemented using equations from
a symbolic algebra program. Versions with 1 bit / cycle and 2 bits / cycle using a single
copy of the LFSR and two copies of the combinational datapath were implemented and
were extensively compared to competing ciphers, outperforming them. WG-8 had DWGP
implemented using a constant array and 3 different tower field constructions. It turned out
that the constant array version provided significantly smaller area compared to the tower
field versions for that field size.
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WG-16 with 2 different tower field constructions and extensive pipelining was explored
in [15] and achieved frequency of 2.5GHz using the 65 nm CMOS ASIC library. Another
pipelined WG-16 with tower field construction is presented in [16].

A compilation of hardware implementations of WG is shown in Table 2.2. The WG
cipher family in this thesis is done using generic VHDL code and the results can be used
as a baseline for comparison with previous work, where hand-optimized solutions were
presented. It makes it possible to quantify the performance trade-offs (in terms of area,
throughput, power, etc.) between these two approaches. Moreover, having consistent im-
pementation allows us to compare the performance of WG instances using various field
sizes directly without the need to take unique optimizations into account. Our implemen-
tation results are presented in Sections 5.2.1 and 5.3.3 and a more in-depth comparison
with previous work is given in Section 5.4.

2.4.2 Hardware Implementations of Grain

Grain was proposed by Hell, Johansson & Meier [18] as a stream cipher for low-power
and low-performance environments. It consists of an LFSR, a Non-linear Feedback Shift
Register (NLFSR) and a filtering function. Two instances with 80-bit and 128-bit internal
state are called Grain and Grain-128.

�
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Figure 2.2: Internal structure of Grain stream cipher [18]
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The internal structure is shown in Figure 2.2. f(x) is a linear feedback, g(x) is a
non-linear feedback. The NLFSR state is updated by XOR-ing g(x) with an output from
the LFSR. The cipher outputs 1 bit / clock cycle. It is possible to increase throughput
by shifting both shift registers by more than one stage at a time, which requires multiple
copies of feedback functions and the filtering function. The initialization phase is 160
cycles for Grain and 256 cycles for Grain-128. Cipher operation and design decisions are
discussed in [18] and [19].

ASIC
Cipher Area

Max freq. Bits / Max tput Max T/A Max T/A
Sourcelibrary (MHz) cycle (Mbps) (Mbps/µm2) (Mbps/GE)

250 nm Grain 119821 µm2 300 16 4475 0.0373 - [20]

180 nm Grain
1410 GE

-
1

- - -

[6]
1585 GE 2

130 nm

Grain

1259 GE
-

1
- - -

1393 GE 2

1294 GE 724.6 1 724.6

-

0.5600

[21]

1678 GE 694.4 4 2777.6 2.1465

2191 GE 632.9 8 5063.2 2.3109

3239 GE 617.3 16 9876.8 3.0493

Grain-128

1857 GE 925.9 1 925.9

-

0.4986

2129 GE 584.8 4 2339.2 1.0987

2489 GE 581.3 8 4650.4 1.8684

3189 GE 540.5 16 8648.0 2.7118

4617 GE 452.5 32 14480.0 3.1362

90 nm Grain
4911 µm2 565 1 565 0.1150

- [22] *
10548 µm2 495 16 7920 0.7508

tput = throughput; T/A = throughput over area

* synthesis results only pre place-and-route

Table 2.3: Hardware implementations of Grain stream cipher

Results of Grain hardware implementations from difference sources are compiled in
Table 2.3.

2.4.3 Hardware Implementations of Trivium

The Trivium stream cipher construction is based on block cipher design principles. A
288-bit internal state is formed by an 80-bit secret key and an 80-bit initialization vector
(IV) in the following format:
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(s1, s2, . . . , s93) ← (K80, K79, . . . , K1, 0, . . . , 0)

(s94, s95, . . . , s177) ← (IV80, IV79, . . . , IV1, 0, . . . , 0)

(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1)

and after initialization phase provides 264 bits of key stream through iterative process that
extracts 15 bits from the state, updates 3 bits of the state and generates 1 output bit zi.
The next iteration begins after the state bits are rotated [23].

The internal structure of Trivium is shown in Figure 2.3. A list of hardware implemen-
tations of Trivium by various sources is compiled in Table 2.4.

ASIC
Area

Max freq. Bits / Max tput Max T/A Max T/A
Sourcelibrary (MHz) cycle (Mbps) (Mbps/µm2) (Mbps/GE)

250 nm 144128 µm2 312 64 18568 0.1288 - [20]

180 nm
2530 GE

-
1

- - -

[6]
2569 GE 2

130 nm

2088 GE
-

1
- - -

2122 GE 2

2580 GE 327.9 1 327.9

-

0.1271

[21]

2627 GE 574.7 2 1149.4 0.4375

2705 GE 473.9 4 1895.6 0.7008

2952 GE 471.7 8 3773.6 1.2783

3166 GE 467.3 16 7476.8 2.3616

3787 GE 350.9 32 11288.8 2.9809

4921 GE 348.4 64 22297.6 4.5311

90 nm
7428 µm2 840 1 840 0.1131

- [22] *
13440 µm2 800 64 51200 3.8095

tput = throughput; T/A = throughput over area

* synthesis results only pre place-and-route

Table 2.4: Hardware implementations of Trivium stream cipher
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258 C. De Cannière and B. Preneel

f⋆
1 (D) = 1 + D9 , g⋆

1(D) = D31 · (D−23 + 1) ,

f⋆
2 (D) = 1 + D5 , g⋆

2(D) = D28 · (D−26 + 1) ,

f⋆
3 (D) = 1 + D15 , g⋆

3(D) = D37 · (D−29 + 1) .

In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does not
suggest which state bits to use as inputs of the AND-gates, we simply choose to
minimize the length of the wires. The resulting scheme is shown in Fig. 6. The 96
state bits s1, s4, s7, . . . , s286 belong to the first sub-generator, s2, s5, s8, . . . , s287

to the second one, etc.

zi

s1

s
6
6

s 9
4

s162

s
178

s 2
4
3

s288

Fig. 6. Trivium

7 Specifications of Trivium

In this section, we give the complete specifications of Trivium. The synchronous
stream cipher is designed to generate up to 264 bits of key stream from an 80-
bit secret key and an 80-bit initial value (IV). As for most stream ciphers, this

Figure 2.3: Internal structure of Trivium stream cipher [23]
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Chapter 3

Discrete Components
Implementation of DWGP / DWGT

This chapter is dedicated to parametrized implementations of DWGP and DWGT and
their building blocks, such as multipliers, squarers and exponentiations. These blocks
perform finite field arithmetics in polynomial basis. Instances that are built using this
approach are referred to as “discrete components implementations” or simply “comp” in
certain plots.

3.1 Multiplier

A multiplier is a complex building block and significantly affects the area of the WG
cipher. As a part of the WG-lite project [24], different members of ComSec group wrote
VHDL implementations of combinational discrete multipliers for polynomial basis using
different algorithms (Karatsuba, Montgomery, Interleaved) and type 2 optimal normal
basis multiplier.

This thesis use the classic combinational discrete multiplier with brief comparison with
Karatsuba [25] multiplier. Other multiplier architectures were considered as well. The
Karatsuba multiplier [25] was chosen for evaluation because it has clear potential to give
area advantage over the classic multiplier even in a fully combinational implementation.

The classic multiplier can be described as a regular polynomial multiplication followed
by a reduction, which brings the result back to the extension finite field GF2m , where
m = field sz (Figure 3.1).
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Multiplier (mul comb.vhd)

Kind Type Description

field sz Generic integer dimension of binary extension field

field poly Generic std logic vector (field sz downto 0) field defining polynomial

i a Input std logic vector (0 to field sz - 1) first input

i b Input std logic vector (0 to field sz - 1) second input

o z Output std logic vector (0 to field sz - 1) output

Table 3.1: Parameters for the multiplier entity

A multiplier entity description is given in Table 3.1.
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Figure 3.1: Principal structure of multiplier

Figure 3.2 shows an example reduction matrix for the field defining polynomial f(x) =
x5 + x2 + 1, where [a0 a1 a2 . . . a8 a9] is s a product of polynomial multiplication with
length 2 ·m − 1, and [b0 b1 b2 b3 b4] is a is a final multiplication result after reduction.
The red line in reduction matrix corresponds to the field defining polynomial. It can be
read as x5 = x2 + 1, starting with 1 for a constant term, 0 for x, 1 for x2, 0 for x3 and 0
for x4. The two last lines, for example, correspond to x8 = x3 + x2 + 1 and x9 = x4 + x
respectively. The effect of field defining polynomial on the classic multiplier area is studied
in Section 4.1.

As we can see in Table 3.2, the Karatsuba multiplier gives the highest area advantage
for ciphers using larger fields like WG-16 and this advantage gradually decreases with field
size. The lowest input size for which it is beneficial to do Karatsuba decomposition is 8
bits. That means if we need to multiply two 7-bit vectors, it is better to use the classic
multiplier instead. Our implementation iteratively performs Karatsuba decomposition and
then instantiates the classic multiplier once the input size drops below 8 bits. Actual area
for both multiplier architectures is shown in Figure 3.3

In this thesis classic multiplier will be used for area studies due to its more consistent
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[
a0 a1 a2 . . . a8 a9

]
·



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 0 0 1



=
[
b0 b1 b2 b3 b4

]

Figure 3.2: Using a reduction matrix to obtain the final multiplication result

Reference Levels of decomposition

(classic) 1 2 3

WG-5 71 GE +16.9% +40.8% –

WG-7 141 GE +6.4% +17.7% –

WG-8 197 GE −4.1% +4.1% –

WG-10 288 GE −5.2% +5.2% +25.0%

WG-11 349 GE −3.4% −2.3% +22.6%

WG-13 510 GE −12.4% −1.4% +10.4%

WG-14 587 GE −11.4% −8.0% +2.6%

WG-16 783 GE −13.7% −16.6% −8.4%

Table 3.2: Area change for the Karatsuba multipliers w.r.t. the classic multiplier (%)

behaviour across different fields and our focus on smaller fields. Another reason why
Karatsuba was not used as a main architecture is given in the following Section 3.2.
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Figure 3.3: Area comparison of the Karatsuba and the classic multipliers (65 nm CMOS)

3.2 Squarer

Squaring is the most frequent operation inside the WG cipher and has to be imple-
mented in an efficient way. Entity description can be found in Table 3.3.

Squarer (sqr comb.vhd)

Kind Type Description

field sz Generic integer dimension of binary extension field

field poly Generic std logic vector (field sz downto 0) field defining polynomial

i a Input std logic vector (0 to field sz - 1) input

o z Output std logic vector (0 to field sz - 1) output

Table 3.3: Parameters for the squarer entity

Unlike in normal basis, where squaring is just a cyclic shift, the polynomial basis imple-
mentation is not as straightforward. Let’s take an element of WG-10 with the polynomial
basis and the field defining polynomial f(x) = x10 + x3 + 1 as an example:

A = (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
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All coefficients belong to the ground binary field, so it is possible to express A2 like this:

A2 =
9∑

i=0

ai ·x2·i = (x18 ·a9+x16 ·a8+x14 ·a7+x12 ·a6+x10 ·a5)+(x8 ·a4+x6 ·a2+x2 ·a1+a0)

AL = x8 · a4 + x6 · a2 + x2 · a1 + a0

AH = x18 · a9 + x16 · a8 + x14 · a7 + x12 · a6 + x10 · a5
= (x8 · a9 + x6 · a8 + x4 · a7 + x2 · a6 + a5) · x10
= (x8 · a9 + x6 · a8 + x4 · a7 + x2 · a6 + a5) · (x3 + 1)

= (x11 + x8) · a9 + (x9 + x6) · a8 + (x7 + x4) · a7 + (x5 + x2) · a6 + (x3 + 1) · a5
= (x8 + x4 + x) · a9 + (x9 + x6) · a8 + (x7 + x4) · a7 + (x5 + x2) · a6 + (x3 + 1) · a5

We can rewrite:

A2 = AH + AL

= x9 · a8 + x8 · (a9 + a4) + x7 · a7 + x6 · (a8 + a3) + x5 · a6 + x4 · (a9 + a7 + a2)

+ x3 · a5 + x2 · (a6 + a1) + x · a9 + (a5 + a0)

In terms of hardware, such single squarer requires six XOR gates as shown in Figure 3.4.
Each XOR gate consists of 6 transistors and occupies the circuit area of 1.5 GE.
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Figure 3.4: Squaring hardware for WG-10, f(x) = x10 + x3 + 1

In WG generally there are chains of subsequent squarers in various parts of the design.
For example, WG-10 has chains of length 1, 2, 3, 4 and 7 squarers. A chain that consists of
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several squarers can be optimized due to different XOR gates cancelling each other out and
due to the appearance of common sub-expressions. For example, a chain of 5 subsequent
squarers will not have 5 times more XOR gates. It is, however, unnecessary to perform
such optimizations by hand as they will be done automatically by the synthesis tools. Area
results (pre place-and-route) for chains of squarers of different length are shown in Figure
3.5. In the figure, each line represents a different field. Chain length varies between 1
(single squarer) and 2m−1, where m = field sz. The area rises as the number of squarers
in chain increases until reaching saturation somewhere in the middle, and then the area
starts to decrease, with the chain of length 2m−1 being very close in area to a single squarer.
The chain with length 2m is a simple wire, because A2m = A, and therefore is not shown.
Chains with length above 2m do not exist because A2m−1+n = An, where n is an integer
number.

We can also see from Figure 3.5 that the chains of squarers do not exceed 140 GE even
for WG-16. That is equal to the area of one classic multiplier for WG-7 according to Figure
3.3. The same multiplier for WG-16 has the area of 783 GE.
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Figure 3.5: Area for chains of squarers using the classic multiplier (65 nm CMOS)

An important implementation detail is that the squarer component in polynomial basis
in terms of VHDL code is a combinational classic multiplier with merged inputs – one
input signal goes to both multiplier inputs. Synthesis tools were capable of reducing the
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complex multiplier down to a very small squaring circuit. Such approach allows for generic
code without the need to manually derive the squaring equation for each polynomial basis
or even write separate VHDL code for squarer hardware. Squarer for normal basis is a
cyclic rotation by 1, a trivial piece of hardware (wire) written as another architecture of
the same entity.

The same, however, can not be said about the Karatsuba multiplier. We were unable
to force the Design Compiler to simplify the squaring equations reliably, which resulted
in huge area for long chains of squarers as can be seen in Figure 3.6. The data without
WG-16 and WG-14 is shown in Figure 3.7 to highlight the behaviour for smaller fields.
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Figure 3.6: Area for chains of squarers using the Karatsuba multiplier (65 nm CMOS)

Such behaviour means that it will be impossible to simply substitute the classic multi-
plier by the Karatsuba multiplier in our design. In order to get consistent results for area
profiling, it was decided to stick with the classic multiplier despite an area disadvantage
when used as an actual multiplier. In order to incorporate the Karatsuba multiplier in
large WG instances later on without massive area penalty, we still have to keep using the
classic multipliers for the squarers. The implementation results for WG ciphers using the
Karatsuba multipliers are presented in Table 5.3 on page 71.
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Figure 3.7: Area for chains of squarers using the Karatsuba mul., zoomed in (65 nm CMOS)

3.3 Exponentiation

Exponentiation ad in WG is used in a form of fixed exponent (d) as natural number
and unknown base a (a ∈ GF2m , where m = field sz). The exponent value is provided
as a generic constant and the base is an m-bit input std logic vector. The output is
the exponentiation result, also an m-bit std logic vector representing an element of the
extension field GF2m . The exponentiation component is purely combinational. Entity
description is in Table 3.4.

Exponentiation (exp comb.vhd)

Kind Type Description

field sz Generic integer dimension of binary extension field

field poly Generic std logic vector (field sz downto 0) field defining polynomial

d Genetic integer exponent value

i a Input std logic vector (0 to field sz - 1) exponent base

o z Output std logic vector (0 to field sz - 1) exponentiation result

Table 3.4: Parameters for the exponentiation entity
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Hardware components for exponentiation with the fixed exponent are built using lower
level building blocks – multipliers and squarers. An algorithm that arranges and connects
these blocks one-by-one in a chain is written as a VHDL function making the file self-
contained – it does not depend on any external software or tool. Two algorithms were
implemented and compared for the number of multipliers both theoretically and empiri-
cally.

Algorithm 1 is a straightforward square-and-multiply approach. It is documented in
[26] and requires ||d|| − 1 squaring operations and H(d) − 1 multiplications, where d2 is
an exponent value in binary representation, ||d|| is the number of bits that are needed to
represent d in binary form and H(d) is Hamming weight.

Algorithm 1: Let A be an input, Temp an intermediate value and d2 an exponent value
encoded in the binary form with its MSB = 1 (no leading zeros). Let Temp = A. In
each iteration Algorithm 1 processes one bit of the exponent starting from the second most
significant bit. If the bit is 0, then Temp = Temp2, if the bit = 1, then Temp = A ·Temp2.

Let’s look at an example. A203 is a decimation block for WG-11, which uses the small-
est field size where discrete components have an area advantage over the constant array
implementations.

A203 example for Algorithm 1:

d10 = 203

d2 = 11001011

# of multipliers: H(d2) = 4

# of squarers: = 7

A · A2 = A3 Iter. 1 (bit7 = 1) 1 multiplier, 1 squarer

(A · A2)2 = A6 Iter. 2 (bit6 = 0) 1 squarer

((A · A2)2)2 = A12 Iter. 3 (bit5 = 0) 1 squarer

A · (((A · A2)2)2)2 = A25 Iter. 4 (bit4 = 1) 1 multiplier, 1 squarer

(A · (((A · A2)2)2)2)2 = A50 Iter. 5 (bit3 = 0) 1 squarer

A · ((A · (((A · A2)2)2)2)2)2 = A101 Iter. 6 (bit2 = 1) 1 multiplier, 1 squarer

A · (A · ((A · (((A · A2)2)2)2)2)2)2 = A203 Iter. 7 (bit1 = 1) 1 multiplier, 1 squarer

Result: A203 = A · (A · ((A · (((A · A2)2)2)2)2)2)2, 4 multipliers, 7 squarers Hardware built
by the algorithm is shown in Figure 3.8.
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Figure 3.8: Decimation block hardware for WG-11 using Algorithm 1, d = 203

Algorithm 2 is based on a proposal by Hasan in [27] called “Efficient S&M based
Inversion (using NB)”. While the original algorithm by Hasan is given only for inversion
in normal basis, it can be merged with Algorithm 1 and applied to general exponentiation
in polynomial basis with great results. Algorithm 2: Let A be an input, d an exponent
value and Temp an intermediate exponent value. Let Temp = d . Each iteration Algorithm
looks at the value of Temp and does one of the following steps:

• if Temp = 22·n− 1, it performs a substitution A22·n−1 = A2n−1 · (A2n−1)2
n
, which is a

hardware block that takes A2n−1 as input, squares it n times and then multiplies the
result with A2n−1. New Temp = 2n− 1. This step gives advantage over Algorithm 1
due to more efficient decomposition of the exponent with fewer multipliers.

• if Temp = odd, but simultaneously Temp 6= 22·n − 1, the algorithm performs a
substitution ATemp = A · (A0.5·(Temp−1))2, which is a hardware block that takes
A0.5·(Temp−1) and A as inputs, squares the first input once and multiplies it by A.
New Temp = 0.5 · (Temp− 1). This step is essentially a part of regular square and
multiply Algorithm 1.

• if Temp = even, the algorithm just adds a square block. New Temp = 0.5 · Temp.
This is also step taken directly from Algorithm 1.

A203 example for Algorithm 2:

A203 = A · A202 = A · (A101)2 Iter. 1 (203 is odd) 1 multiplier, 1 squarer

A101 = A · (A50)2 Iter. 2 (101 is odd) 1 multiplier, 1 squarer

A50 = (A25)2 Iter. 3 (50 is even) 1 squarer

A25 = A · (A12)2 Iter. 4 (25 is odd) 1 multiplier, 1 squarer

A12 = (A6)2 Iter. 5 (12 is even) 1 squarer

A6 = (A3)2 Iter. 6 (6 is even) 1 squarer

A3 = A · A2 Iter. 7 (3 is odd) 1 multiplier, 1 squarer
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Result: A203 = A·(A·((A·(((A·A2)2)2)2)2)2)2, 4 multipliers, 7 squarers. The corresponding
hardware is shown in Figure 3.9.
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Figure 3.9: Decimation block hardware for WG-11 using Algorithm 2, d = 203

As we can see from Figure 3.8 and Figure 3.9, both algorithms provide exactly the same
result. The only difference is that Algorithm 1 goes from MSB down to LBS and Algorithm
2 goes from LSB to MSB (in a form of checking whether the current intermediate exponent
is even or odd).

Algorithm 2 allows to reduce the number of multipliers from m− 1 to blog2(m− 1)c+
H(m − 1) − 1 [27] when used for exponent d = 2m − 2 that corresponds to inversion
according to Fermat’s Little Theorem (A−1 = A2m−2, where m = field sz). Squaring
operation is essentially free in the normal basis (rotation) but requires several XOR gates
in the polynomial basis. But it is still much cheaper than multiplication, and therefore an
algorithm that minimizes the number of multiplications is equally useful for the polynomial
basis exponentiation as it is for the normal basis exponentiation.

However, it is important to show that Algorithm 2 sometimes requires fewer multipli-
cations than Algorithm 1 (when exponent values d = 2m − 2 occur at any decomposition
step) and never requires more multiplications than Algorithm 1. Figure 3.10 shows actual
exponentiation block area after logic synthesis for different exponent values in WG-11 field
using the polynomial basis with the field defining polynomial f(x) = x11 + x2 + 1. Each
dot is an exponent (range from 1 to 2046), with X coordinate being area using Algorithm
2 and Y coordinate being the area using Algorithm 1. As we can see, the Algorithm 2 is
always at least as efficient as the Algorithm 1. Every dot that lies above the Y = X line
corresponds to an exponent for which Algorithm 2 gives noticeable area advantage.

Exponents in the Figure 3.10 are clustered in multiple groups with equal gaps between
them. These gaps correspond to addition of 1 extra multiplier. Exponents within one
group have the same number of multipliers but different number of squarers.

In order to take advantage of the Algorithm 2, a term in form of A22·n−1 must occur
somewhere during its execution. It allows for efficient substitution with only one multiplier:
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Figure 3.10: Area comparison between Algorithm 1 and 2 for exponentiation, WG-11

A22·n−1 = A(2n−1)·(2n+1)

= (A2n−1)2
n · A2n−1

compared to decomposition of the same term by Algorithm 1 using n multipliers:

A22·n−1 = A · (A22·n−2)

= A · (A22·n−1−1)2

= A · (A · A22·n−1−2)2

= A · (A · (A22·n−2−1)2)2

= A · (A · (A · A22·n−2−2)2)2

= A · (A · (A · (A22·n−3−1)2)2)2

= . . .

Now let’s consider an example that fully takes advantage of the Algorithm 2. For that
it is a good idea to choose an inversion.

A−1 = A211−2 = A2046 (inversion in GF211) example for Algorithm 1:
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d10 = 2046
d2 = 11111111110
# of multipliers: H(d2) = 9
# of squarers: 10

A · A2 Iter. 1 (bit10 = 1) 1 mult., 1 sq.

A · (A · A2)2 Iter. 2 (bit9 = 1) 1 mult., 1 sq.

A · (A · (A · A2)2)2 Iter. 3 (bit8 = 1) 1 mult., 1 sq.

A · (A · (A · (A · A2)2)2)2 Iter. 4 (bit7 = 1) 1 mult., 1 sq.

A · (A · (A · (A · (A · A2)2)2)2)2 Iter. 5 (bit6 = 1) 1 mult., 1 sq.

A · (A · (A · (A · (A · (A · A2)2)2)2)2)2 Iter. 6 (bit5 = 1) 1 mult., 1 sq.

A · (A · (A · (A · (A · (A · (A · A2)2)2)2)2)2)2 Iter. 7 (bit4 = 1) 1 mult., 1 sq.

A · (A · (A · (A · (A · (A · (A · (A · A2)2)2)2)2)2)2)2 Iter. 8 (bit3 = 1) 1 mult., 1 sq.

A · (A · (A · (A · (A · (A · (A · (A · (A · A2)2)2)2)2)2)2)2)2 Iter. 9 (bit2 = 1) 1 mult., 1 sq.

(A · (A · (A · (A · (A · (A · (A · (A · (A · A2)2)2)2)2)2)2)2)2)2 Iter. 10 (bit1 = 1) 1 mult., 1 sq.

Result: A2046 = (A · (A · (A · (A · (A · (A · (A · (A · (A · A2)2)2)2)2)2)2)2)2)2, 9 multipliers,
10 squarers. Hardware for this example is shown in Figure 3.11.
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Figure 3.11: Inversion block hardware for WG-11 using Algorithm 1, d = 2046

Here is the same A−1 = A211−2 = A2046 (inversion in GF211) example for Algorithm 2:

A211−2 = (A210−1)2 = (A(25−1)·(25+1))2 = ((A25−1)2
5 · A25−1)2 Iter. 1 1 mult., 5 sq.

A25−1 = A · A25−2 = A · (A24−1)2 Iter. 2 1 mult., 1 sq.

A24−1 = A(22−1)·(22+1) = (A3)2
2 · A3 Iter. 3 1 mult., 2 sq.

A3 = A · A2 Iter. 4 1 mult., 1 sq.
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Result: A211−2 = ((A · ((A ·A2)2
2 · (A ·A2))2)2

5 ·A · ((A ·A2)2
2 · (A ·A2))2)2, 4 multipliers,

9 squarers. Hardware for this example is shown in Figure 3.12.
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Figure 3.12: Inversion block hardware for WG-11 using Algorithm 2, d = 2046

For this exponent value the Algorithm 2 was able to reduce the number of multipliers
from 9 to 4 and the number of squarers from 10 to 9. Overall, implementation of the
Algorithm 2 allows the use of the same generic exponentiation block everywhere in design
without worrying about special cases like inversion.

3.4 Trace

Absolute trace in a form of:

Trm1 (α) =
m−1∑
i=0

α2i = α + α2 + α22 + · · ·+ α2m−1

is implemented directly in VHDL. After the first term α, each term in the equation above
is a chain of squarers with length from 1 to m − 1. It maps an input of length m bits to
an output of length 1 bit. The trace equation above simplifies down to a few (from 1 to
m− 1) bitwise XOR operations depending on the field defining polynomial f(x).

However, it was observed that Design Compiler was unable to fully simplify the trace
circuit for WG-13 and above, despite giving correct functionality. This could happen due
to the high complexity of the circuit, which makes it possible for a tool to get stuck in
a local minimum while trying to simplify the equation. In order to resolve this problem,
Zidaric computed the final trace equation in GAP. That equation was implemented directly
in VHDL for each field and field defining polynomial. This is not an ideal, but a necessary
workaround until the solution to the problem is found. A comparison of two different trace
implementations for WG-13, 14 and 16 is shown in Table 3.5.

Penalty for complete WG ciphers is discussed in Section 5.2.1 on page 70. Parameters
for the trace entity are shown in Table 3.6.
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Trace area

GAP-derived equation Chains of squarers

WG-13 13 GE 60 GE

WG-14 13 GE 658 GE

WG-16 2 GE 247 GE

Table 3.5: Trace area for 2 different approaches (65 nm CMOS)

Trace (trace comb.vhd)

Kind Type Description

field sz Generic integer dimension of binary extension field

field poly Generic std logic vector (field sz downto 0) field defining polynomial

i a Input std logic vector (0 to field sz - 1) Input

o z Output std logic Absolute trace

Table 3.6: Parameters for the trace entity

3.5 DWGP and DWGT

DWGP is a complex block that combines decimation and WG permutation. Figure 3.13
shows the DWGT (DWGP + trace) hardware. WGP is split into two separate blocks - sim-
ple and compose - for the sake of code clarity and consistency with other implementations.
Intermediate DWGP output is required for the cipher initialization mode.

DWGP block (dwgp.vhd, dwgp-comp.vhd)

Kind Type Description

d exp Generic integer decimation exponent value

i x Input std logic vector (0 to field sz - 1) input signal

o wgp Output std logic vector (0 to field sz - 1) output signal

Table 3.7: Parameters for the DWGP entity

Tables 3.7 and 3.8 show parameters for the DWGP and DWGT entities respectively.
Entity and architecture declarations are in separate files because two architectures are used
within the project (-comp, or implementation using discrete components, and -const array,
or implementation using constant array).
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Figure 3.13: DWGP / DWGT hardware

DWGT block (dwgt.vhd, dwgt-comp.vhd)

Kind Type Description

d exp Generic integer decimation exponent value

i x Input std logic vector (0 to field sz - 1) input signal

o wgt Output std logic output signal (1-bit keystream)

Table 3.8: Parameters for the DWGT entity

Discrete components implementation instantiates all individual building blocks from
the files included in project. This allows, for example, swap one multiplier architecture
for another without making any changed in the code. Inclusion of such trivial instances
as add one, which adds a constant 1 to the signals, is necessary to support other bases –
like normal basis - in the future. In polynomial basis, addition of 1 in terms of hardware
is an inversion of the least significant bit of the input signal, while in normal basis it is an
inversion of all bits.

INV component, that is shown as a red rectangle in Figure 3.13, is the inversion, i.e.
exponentiation to the power of 2m − 2.
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Chapter 4

DWGP Area Results & Analysis

In this chapter we evaluate area for DWGP / DWGT for implementations using discrete
components and constant array (see Section 2.3.3 for more details). There is a difference
between these two approaches in circuit area and how it changes based on field size and field
defining polynomial. An in-depth study of these implementations is presented in sections
4.1 and 4.2 and more than 26000 DWGP instances were synthesized.

Changing the field defining polynomial affects the DWGP area. That means it is
important to find the polynomial that gives the smallest DWGP area and ultimately the
smallest WG cipher area. One way to find the polynomial is to do the exhaustive search
by synthesizing the DWGP for all the polynomials that exist for a given field size. This
approach is reasonable with the ciphers that use smaller fields like WG-5 or WG-10. As field
size increases, the number of polynomials increases and the synthesis time of each DWGP
increases as well. For example, it takes almost 2 months of compute time to synthesize
DWGP for all 2048 primitive polynomials that exist for GF216 on a typical workstation PC
and it is impractical for larger fields. Alternatively, it might be possible to find a metric
that correlates with area.

In [28], Zidaric proposed to use the Hamming weights of field defining polynomials,
derived matrices, and pre- and post-PAR synthesis results for profiling of various arithmetic
blocks. In the WG-lite project, this idea was extended to compare simple metrics with
the DWGP area. The metrics used are the Hamming weight of field defining polynomial,
Hamming weight of reduction matrix, reduction matrix area (before place-and-route) and
multiplier area (before place-and-route). The first two can be quickly precomputed, while
the latter two require running synthesis tools. Using such a metric would allow us either
pinpoint the best polynomial or to reduce the search space. This thesis provides in-depth
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correlation analysis between the aforementioned metrics and the DWGP: we show that
reduction matrix Hamming weight is indeed a good metric to reduce search space for the
smallest area polynomial. Most examples use WG-14 to better illustrate the behaviour due
to a high number of primitive field defining polynomials available (756). And the reason we
chose WG-14 over WG-16 is consistency – DWGP for WG-16 implemented with discrete
components does not fit on the MAX 10 FPGA.

Area analysis in these sections is done with synthesis results pre place-and-route for
65 nm CMOS ASIC library, STRATIX IV FPGA and MAX 10 FPGA.

4.1 DWGP Implementations Using Discrete Compo-

nents

This section is dedicated to area analysis of the DWGP implemented using discrete
components. We discovered that this approach results in high area variability, and finding
the polynomial that corresponds to the smallest DWGP provides a noticeable area de-
crease of more than 10% w.r.t. the mean area for most field sizes. We will evaluate each
implementation technology separately, and then compare the results for ASIC and FPGAs.

4.1.1 65 nm CMOS ASIC library

Figure 4.1 shows correlation between DWGP area and reduction matrix area for each
field defining polynomial. Similarly, Figure 4.2 shows correlation between DWGP area
multiplier area for WG-14. The smallest reduction matrix and the smallest multiplier both
correspond to the smallest DWGP. This behaviour is consistent across different libraries
and from WG-5 to WG-16. It is reasonable to assume that the same can be said about
ciphers using larger fields.

There is no significant difference between using either reduction matrix area or mul-
tiplier area to find the smallest DWGP area, aside from the fact that reduction matrix
takes less time to synthesize. However, both approaches share the same disadvantage.
They require exhaustive search through all primitive polynomials. Much faster synthesis
times compared to DWGP can make it practical for a few more larger fields (ciphers above
WG-16), but the process still should not scale well. That is why it is important to have
an alternative metric that does not require running the synthesis tools.
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Figure 4.1: DWGP vs. red. matrix area (WG-14, 65 nm CMOS, d = 1, discrete comp.)

590 600 610 620 630 640
Multiplier Area (GE)

7200

7400

7600

7800

8000

DW
GP

 A
re

a 
(G

E)

WG-14, d = 1, 65nm CMOS, DWGP area vs. multiplier area, discrete components

Figure 4.2: DWGP area vs. multiplier area (WG-14, 65 nm CMOS, d = 1, discrete comp.)
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Figure 4.3: DWGP area vs. Hamming weights (WG-14, 65 nm CMOS, d = 1, disc. comp.)
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Figure 4.4: DWGP area vs. Hamming weights (WG-14, 65 nm CMOS, d = 47, disc. comp.)
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In Figure 4.3 we can see correlation between DWGP size and Hamming weights of
both field defining polynomial and reduction matrix. Like for two previous figures, all 756
primitive field defining polynomials for GF214 are shown.

The smallest DWGP area corresponds to the field defining polynomial with Hamming
weight = 11, and the second and third correspond to the ones with Hamming weight of
9 and 11 respectively. Only the 5th smallest DWGP corresponds to a polynomial with
minimal Hamming weight of 5, with area increase of 4% compared to the smallest DWGP.
Choosing to explore only polynomials with the lowest Hamming weight reduces the search
space from 756 to 42 polynomials.

Reduction matrix Hamming weight, on the other hand, correlates better with DWGP
area. If we evaluate field defining polynomials one by one, starting with the one with the
smallest reduction matrix Hamming weight, and go in ascending order, it will take only 3
attempts to find the polynomial that corresponds to the smallest DWGP area for WG-14.
The number of attempts for other field sizes can be found in Figure 4.20 on page 47.

Figure 4.4 shows the same data for the case of decimation exponent = 47 (d = 47). As
can be inferred from the chart, introduction of decimation hardware noticeably increases
DWGP area, however the relation between different polynomials does not change a lot.
This consistency allows us to proceed with area analysis of only DWGP without decimation,
and it greatly reduces the number of instances needed to be synthesized, making a more
in-depth approach feasible.

Figure 4.5 shows an effect of decimation on DWGP area with discrete components
implementation more clearly. The closer the plot is to a straight line, the more consistent
is the effect of decimation. Also, we are mostly interested in the lower left quadrant, where
DWGP instances with the smallest area are located.

DWGP area distributions in percentage above the minimal area for all field dimensions
are shown in Figure 4.6 (without decimation) and Figure 4.7 (with decimation). Decima-
tion values used are shown in Table 4.1 on page 56. As can be seen from the plots, there is
a significant difference from 10% to more than 15% between the absolute minimum DWGP
area and the mean value, or up to 10 standards deviations. That means there exist a few
polynomials that provide a significant area decrease compared to the rest of them - they
correspond to the sharp spikes down in distribution plots. It makes searching for such
polynomials worthwhile.
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Figure 4.5: Decimation effect on DWGP area (WG-14, 65 nm CMOS, discrete components)
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Figure 4.6: DWGP area distribution (d = 1, 65 nm CMOS, discrete components)
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Figure 4.7: DWGP area distribution (d = x, 65 nm CMOS, discrete components)

4.1.2 STRATIX IV FPGA

Let’s look at the same results for STRATIX IV FPGA. Depending on the axis scale, it
is possible to observe more discrete nature of plots, as the smallest area unit is 1 look-up
table (LUT) and is atomic.

For STRATIX IV FPGA, the correlation between DWGP area and Reduction Matrix
area (Figure 4.8), Multiplier Area (Figure 4.9) and Reduction Matrix Hamming weight
(Figure 4.10) is much less pronounced compared to 65 nm CMOS. The first two figures
have noticeable discretization on the horizontal axis, which makes it difficult to perceive.

In Figure 4.10 we can observe that, unlike for 65 nm CMOS in Figure 4.3, most poly-
nomials are grouped at the bottom. In all STRATIX IV charts in this section there are
several outlying data points - surprisingly, the polynomials that have the smallest reduc-
tion matrix Hamming weight often provide very large area from 20% to 40% above the top
threshold, below which the majority (> 90%) of data points are located.

The impact of decimation on DWGP area for STRATIX IV, shown in Figure 4.11, is
similar to what we observed for 65 nm CMOS in Figure 4.5 - in fact, the correlation is even
stronger for STRATIX IV implementations.

Figures 4.12 and 4.13 show DWGP area distributions in percentage above the minimal
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Figure 4.8: DWGP vs. reduction matrix area (WG-14, STRATIX IV, d = 1, disc. comp.)
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Figure 4.9: DWGP vs. multiplier area (WG-14, STRATIX IV, d = 1, discrete comp.)
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Figure 4.10: DWGP area vs. Hamming weights (WG-14, STRATIX IV, d = 1, d. comp.)
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Figure 4.11: Decimation effect on DWGP area (WG-14, STRATIX IV, discrete comp.)
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Figure 4.12: DWGP area distribution (d = 1, STRATIX IV, discrete components)

area without decimation and with decimation. Compared to discrete components imple-
mentations using 65 nm CMOS in the previous section, the distributions for STRATIX IV
look the opposite. The majority of the polynomials provide small DWGP area within 2-3
standard deviations from the minimum. A few polynomials result in significant area in-
crease and corresponds to spikes up in the plots. However, it does not mean that searching
for the best polynomials is less important for STRATIX IV than it is for 65 nm CMOS. If
we look at the percentage difference, we notice much higher area variability, and the mean
area is often 20% higher than minimum area.

There is also a risk to end up with anomalously high area with the increase in the range
from +65% to almost +100% for some field sizes if area profiling is not done correctly -
as already stated in the previous paragraph, these polynomials often have the smallest
reduction matrix Hamming weights. As this thesis is focused on 65 nm CMOS as a main
technology, at least when it comes to implementations of complete WG cipher instances,
we did not search for an explanation of this behaviour.
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Figure 4.13: DWGP area distribution (d = x, STRATIX IV, discrete components)

4.1.3 MAX 10 FPGA

The MAX 10 board, however, shows more correlation for the same charts. All 3 charts
have noticeable inclination from bottom left to top right.

Figure 4.14 and Figure 4.15 show area correlation between DWGP and reduction matrix
and between DWGP and multiplier respectively. It is possible to observe the same outlying
data points as in Figure 4.8 and Figure 4.9 for STRATIX IV. However, the same polynomial
with the smallest reduction matrix Hamming weight that resulted in surprisingly large
DWGP area for STRATIX IV (see Figure 4.10) gives DWGP area close to mean value for
MAX 10 (see Figure 4.16).

The behaviour observed in decimation impact chart in Figure 4.20 is similar to STRATIX
IV implementations.

Finally, Figures 4.18 and 4.19 show DWGP area distribution in percentage above the
minimal area without decimation and with decimation. The overall picture seems to be
similar to we saw in STRATIX IV results in Section 4.1.2.
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Figure 4.14: DWGP vs. reduction matrix area (WG-14, MAX 10, d = 1, discrete comp.)
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Figure 4.15: DWGP vs. multiplier area (WG-14, MAX 10, d = 1, discrete components)
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Figure 4.16: DWGP area vs. Hamming weights (WG-14, MAX 10, d = 1, discrete comp.)

2200 2400 2600 2800 3000 3200 3400 3600
DWGP area (LUT), d = 1

3000

3250

3500

3750

4000

4250

4500

DW
GP

 a
re

a 
(L

UT
), 

d 
= 

47

DWGP area, WG-14, MAX 10, d = 1 vs. d = 47, discrete components

Figure 4.17: Decimation effect on DWGP area (WG-14, MAX 10, discrete components)
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Figure 4.18: DWGP area distribution (d = 1, MAX 10, discrete components)
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Figure 4.19: DWGP area distribution (d = x, MAX 10, discrete components)
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Brief Summary for Discrete Components Implementations

It is clear from the sections above that reduction matrix Hamming weight can be used
as a good indicator to find the field defining polynomial that corresponds to the smallest
DWGP area implemented with discrete components. We can take advantage of good
correlation and use it to reduce the search space. If we sort all field defining polynomials
by their reduction matrix Hamming weight, then go through the list in ascending order
and synthesize DWGP for each of them, it will take us several attempts before we stumble
upon the one that results in the smallest DWGP area. In this work, all field defining
polynomials were evaluated, so it is possible to find an exact number of attempts required
for each field dimension and each library. This number, when extrapolated to larger fields,
may be used as a reference of how many polynomials should be included in exhaustive
search. If too few attempts are made, the polynomial for smallest DWGP area will not be
found. If too many attempts are made, the search time will increase.
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Figure 4.20: Number of attempts needed to find the smallest DWGP (d = 1, disc. comp.)

The number of attempts needed for different fields and different libraries/devices (65 nm
CMOS, STRATIX IV and MAX 10) is shown in Figure 4.20. If we extrapolate the results
to larger fields, where exhaustive search in the entire space of primitive polynomials is not
feasible, we can conclude that it only takes to explore a fraction of it after precomputing
the reduction matrix Hamming weight and sorting all the polynomials based on it.
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Even for the worst case (STRATIX IV, WG-14), it only takes 37 attempts (out of 768
primitive polynomials), and it drops to 4 for WG-16 (out of 2048 primitive polynomials).
The data point for MAX 10 and WG-16 is not shown because the design does not fit on
that particular FPGA.

It is, however, very important to note that polynomials which gave the smallest DWGP
area for each implementation technology most of the time were different (see further dis-
cussion on page 62 and example in Figure 4.38 on page 63).

4.2 DWGP Implementations Using Constant Array

As a part of the work, it is important to assess how switching to constant array im-
plementations affects DWGP area minimization. It turns out that the results are not as
promising as with discrete components. There is very low correlation on 65 nm CMOS,
which makes it hard to minimize the area. On both FPGAs, however, finding the best
polynomial is not needed because area variation is either zero (STRATIX IV) or very low
(MAX 10).

4.2.1 65 nm CMOS ASIC Library

Figure 4.21, 4.22 and 4.23 show much lower correlation between DWGP area and all of
the 3 metrics for 65 nm CMOS library. Therefore, using reduction matrix Hamming weight
as a metric to reduce search space by eliminating some polynomials is not going to give
significant advantage. Refer to the following summary chapter for specific numbers and
their implications.

Decimation impact on DWGP area for WG-8 is shown in Figure 4.24. In order to make
a direct comparison with discrete components implementation, refer to Figure 4.25, which
shows that WG-8 provides the same behaviour as WG-14 in Figure 4.5. Inclusion of deci-
mation is no longer providing a small consistent increase in area. Decimation completely
changes the values in constant array and its effect on area is unpredictable.

As can be inferred from Figure 4.24, there are cases when the same field defining poly-
nomial gives relatively small DWGP area without decimation and relatively large DWGP
area with decimation, and vice versa. There is also no significant change in maximum
/ minimum DWGP area for different decimation values, while with discrete components
decimation is a separate hardware block with consistent area penalty.
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Figure 4.21: DWGP vs. reduction matrix area (WG-14, 65 nm CMOS, d = 1, const. array)
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Figure 4.22: DWGP vs. multiplier area (WG-14, 65 nm CMOS, d = 1, constant array)
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Figure 4.23: DWGP area vs. Hamming weights (WG-14, 65 nm CMOS, d = 1, const.)
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Figure 4.24: Decimation effect on DWGP area (WG-8, 65 nm CMOS, constant array)
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Figure 4.25: Decimation effect on DWGP area (WG-8, 65 nm CMOS, discrete components)
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Figure 4.26: DWGP area distribution (d = 1, 65 nm CMOS, constant array)

51



DWGP area distribution in Figure 4.26 shows a significantly lower area variation com-
pared to discrete components implementations. For instances that use large field sizes
(for example, WG-14 and WG-16) we can see familiar spikes down that correspond to a
few polynomials that give sharp decrease in the area compared to the mean value. How-
ever, the difference between mean and absolute minimum does not exceed 7% (except for
WG-5). This means that while finding the best polynomial is much harder for constant
array implementations due to low correlation of the DWGP area with reduction matrix
Hamming weight, it is also less important due to lower area variability.

4.2.2 STRATIX IV FPGA

STRATIX IV provides the same DWGP area with constant array implementaion for
all field defining polynomials.

4.2.3 MAX 10 FPGA

For the MAX 10 board, WG-11 is used as an example instead of WG-14. The reason
behind this is that DWGP for WG-13 (and higher) in constant array implementations do
not fit on this FPGA. The results are shown in Figure 4.27, 4.28 and 4.29.

The MAX 10 does not provide the same DWGP area for all field defining polynomials,
unlike STRATIX IV. It could be explained by MAX 10 having smaller LUTs in comparison.
Despite that, it is obvious that area variation is very small if we look at Figure 4.30, where
DWGP area distribution is shown for the case without decimation. High variability for
WG-5 can be explained - DWGP area for this case varies from 30 to 33 LUTs, which is
actually insignificant in practice. Standard deviation of only several LUTs is also the case
for other field sizes. While formally we never observed the same zero variability as with
STRATIX IV, we can proceed as if it was zero.
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Figure 4.27: DWGP area vs. reduction matrix area (WG-11, MAX 10, d = 1, const. array)
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Figure 4.28: DWGP area vs. multiplier area (WG-11, MAX 10, d = 1, constant array)
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Figure 4.29: DWGP area vs. Hamming weights (WG-11, MAX 10, d = 1, constant array)
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Figure 4.30: DWGP area distribution (d = 1, MAX 10, constant array)

54



4.2.4 Brief Summary for Constant Array Implementations

The number of attempts needed for constant array implementations and different fields
and different libraries (65 nm CMOS, STRATIX IV and MAX 10) is shown in Figure 4.31.
The significant values for 65 nm CMOS library are caused by low correlation shown in
previous charts. However, those numbers are not going to matter in practice. As shown
is the following chapter, constant array implementations of DWGP are only useful for
small fields (WG-5, WG-7, WG-8 and WG-10) and become impractically large afterwards.
The data points for MAX 10 and WG-13, WG-14 and WG-16 are not shown because
these designs are too large and do not fit on that FPGA. The number of attempts for
STRATIX IV is 0 for all fields because there is no difference in area for different field
defining polynomials. Moreover, despite high value of attempts for WG-11 and MAX 10
board, the actual area varies from 2584 to 2599 LUTs, with mean value of 2590.37 and
standard deviation of 2.84. This corresponds well with the trend that all constant array
implementations on FPGA have 0 or very low variation in absolute units (LUTs).
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Figure 4.31: Number of attempts needed to find the smallest DWGP (d = 1, const. array)
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4.3 DWGP Area Summary: Discrete Components vs.

Constant Array

The discrete components implementations increase in area quadratically with field di-
mension. The constant array implementations increase in area exponentially with field
dimension. Table 4.1 includes pre place-and-route area results for the smallest DWGP.
Implementations using discrete components and constant array are presented separately,
and two decimation values are shown for discrete components. A list of field defining
polynomials that provide the smallest DWGP area for each implementation is compiled in
Table 4.2. Constant array implementations for FPGAs are not listed because of extremely
low variation – there is no practical difference between different polynomials (standard
deviation is 0 for STRATIX IV and 1-3 LUT for MAX 10 for all field sizes). Results for
WG-16 and MAX 10 for discrete components implementation are not provided because
the design does not fit on the FPGA.

Discrete Components Constant Array

d DWGP DWGT DWGP DWGT

min max mean std min* max * min max mean std min * max *

WG-5
1 426 473 446 21 125 183 46 57 53 4 9 13

11 537 619 586 29 201 218

WG-7
1 1157 1390 1316 66 904 1250 247 268 257 6 53 57

63 1711 2064 1957 101 1435 1940

WG-8
1 1937 2078 2035 42 1641 2081 508 574 542 24 90 87

19 2360 2536 2477 46 2064 2553

WG-10
1 2520 3018 2928 87 2007 2816 2173 2257 2211 18 300 309

73 3167 3770 3645 105 2650 3544

WG-11
1 3134 3674 3567 81 2556 3560 5104 5470 5282 79 520 498

203 4634 5407 5248 119 4033 5290

WG-13
1 5642 6366 6170 99 6511 5737 18163 19731 18985 289 1532 1528

195 7271 8209 7982 124 7359 8390

WG-14
1 7136 8102 7885 116 7696 8911 35299 38164 37338 414 2752 2748

47 9619 11006 10665 161 10204 11796

WG-16
1 11052 12302 12036 145 11259 12512 127171 137624 135513 1596 8673 8578

1057 12948 14353 14029 159 13145 14574

d = decimation exponent

* min/max DWGT = DWGT area for the field defining polynomial that corresponds to min/max DWGP

Table 4.1: DWGP and DWGT area in GE, pre place-and-route (65 nm CMOS)
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Field defining polynomial, f(x) ASIC / FPGA Implementation

WG-5

x5 + x3 + 1
65 nm CMOS

comp

x5 + x4 + x3 + x+ 1 const

x5 + x3 + 1 STRATIX IV comp

x5 + x3 + 1 MAX 10 comp

WG-7

x7 + x+ 1
65 nm CMOS

comp

x7 + x6 + x5 + x3 + x2 + x+ 1 const

x7 + x+ 1 STRATIX IV comp

x7 + x+ 1 MAX 10 comp

WG-8

x8 + x6 + x4 + x3 + x2 + x+ 1
65 nm CMOS

comp

x8 + x6 + x5 + x2 + 1 const

x8 + x4 + x3 + x2 + 1 STRATIX IV comp

x8 + x4 + x3 + x2 + 1 MAX 10 comp

WG-10

x10 + x3 + 1
65 nm CMOS

comp

x10 + x5 + x3 + x2 + 1 const

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1 STRATIX IV comp

x10 + x9 + x7 + x6 + x4 + x3 + x2 + x+ 1 MAX 10 comp

WG-11

x11 + x2 + 1
65 nm CMOS

comp

x11 + x10 + x8 + x7 + x6 + x4 + x2 + x+ 1 const

x11 + x7 + x5 + x3 + 1 STRATIX IV comp

x11 + x8 + x5 + x2 + 1 MAX 10 comp

WG-13

x13 + x12 + x11 + x9 + x6 + x5 + x4 + x2 + 1
65 nm CMOS

comp

x13 + x12 + x11 + x9 + x7 + x6 + x3 + x2 + 1 const

x13 + x11 + x9 + x5 + 1 STRATIX IV comp

x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + 1 MAX 10 comp

WG-14

x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x3 + x+ 1
65 nm CMOS

comp

x14 + x13 + x12 + x11 + x10 + x8 + x7 + x6 + x3 + x2 + 1 const

x14 + x12 + x9 + x6 + x5 + x2 + 1 STRATIX IV comp

x14 + x8 + x3 + x2 + 1 MAX 10 comp

WG-16

x16 + x14 + x12 + x10 + x8 + x7 + x6 + x5 + x4 + x2 + 1
65 nm CMOS

comp

x16 + x15 + x14 + x11 + x5 + x4 + x2 + x+ 1 const

x16 + x10 + x7 + x6 + 1 STRATIX IV comp

comp = discrete components; const = constant array

Table 4.2: Field defining polynomials for the smallest DWGP area (d = 1)

An interesting observation is that DWGT implemented with constant array is smaller
than DWGT done using discrete components for all field sizes. We did not perform DWGT
area profiling, and the min and max values for DWGT area listed in Table 4.1 correspond
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to the same field defining polynomial that gave the smallest DWGP area. The massive
difference in area between constant array DWGP and DWGT can be explained by a much
smaller output size – 1 bit instead of m bits, where m is a field dimension.

Constant array DWGT is smaller than discrete components DWGT as well as DWGP of
any implementation for all fields evaluated. The biggest area difference is observed for WG-
11, for which constant array DWGT has 9.3 times lower area than DWGP. As a reminder,
DWGP for WG-11 is built using discrete components. As the field size increases, the area
difference gets lower because DWGP area grows quadratically with field dimension, while
DWGT constant array area grows exponentially. This area advantage still remains even for
WG-16 (1.5x times). Extrapolating the trend shows that WG-16 is indeed using the larger
field, for which constant array DWGT gives area advantage over DWGP built with discrete
components, which is shown in Figure 4.32. And as can be inferred from the same table,
DWGT built with discrete components does not give any advantage over DWGP using the
same implementation - synthesis tools seem to lose the ability to efficiently analyze and
simplify complex circuits after certain size.
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Another important note is that constant array DWGP followed by a trace equation or
trace component comprised of squarers does not achieve the same low area as straight-
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forward constant array DWGT implementation for fields larger than 10. The results are
compiled in Table 4.3. Note that polynomials for smallest discrete components DWGP area
were used to conduct the test, which explains a minor mismatch with data from Table 4.1.
There is still a noticeable area decrease of −81% for DWGP + trace equation w.r.t. the
straightforward constant array DWGP implementation for WG-11 (and the area penalty
compared to the pure constant array DWGT is +94%), but for WG-13 and higher even
than is no longer the case. For them DWGP + trace component area is actually slightly
larger than pure DWGP due to the extra gates needed for the trace equation. DWGP
+ trace equation provides lower area, but still significantly above the pure constant array
DWGT. A possible explanation is that trace components end up too large and compli-
cated and synthesis tools evaluate and optimize them only individually. In the case of
DWGP + trace equation, it might be that synthesis tools evaluate DWGP first, finding
and implementing as many common subexpressions as possible for each DWGP output
bit. Then, when trace equation effectively discards most of the DWGP output bits, large
portion of the DWGP hardware still remains. In order to match straightforward constant
array DWGT, it has to be re-evaluated again. That is why in Section 5.3 we only use
actual constant array DWGT for all field sizes.

DWGP
DWGT

Constant array DWGP +

(reference) trace equation trace component

WG-5 49 12 12 12

WG-7 257 53 53 53

WG-8 552 94 94 105

WG-10 2190 305 305 341

WG-11 5406 517 1004 1026

WG-13 19014 1532 11972 19075

WG-14 37395 2762 21846 37904

WG-16 137058 8593 17259 137283

Table 4.3: Constant array DWGT area using 3 different approaches (d = 1, 65 nm CMOS)

The smallest DWGP area for discrete components vs. constant array implementations
is also plotted in Figure 4.33 for 65 nm CMOS. Note, that logarithmic scale was used.
As we can see, the crossover point is somewhere between WG-10 and WG-11. Constant
array implementations provide smaller area for field sizes below the crossover point, while
discrete components give smaller area for field sizes above the crossover point.
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Figure 4.33: DWGP area for discrete components vs. constant array (d = 1, 65 nm CMOS)

The same plot for STRATIX IV is shown in Figure 4.34. Surprisingly, the crossover
point moved up to slightly above WG-13. The opposite happened for MAX 10 - the
crossover point moved down to slightly below WG-10 according to Figure 4.35.

Minimal area for DWGP with discrete components implementation for 65 nm CMOS
library could be up to 10 standard deviations lower than mean area (see Figures 4.6 and
4.7). Typically, there are a few standalone polynomials that provide significantly lower area
than the rest. The constant array DWGP implementations for the 65 nm CMOS library
(except for WG-7, 8 and 16, see Figure 4.26) have noticeably smaller difference between
mean area and absolute minimum compared to discrete components implementation, de-
spite having similar standard deviation values in %. WG-16 only shows modest decrease
in area variation for constant array implementations, while WG-7 and WG-8 show the
opposite effect, where area variation for discrete components implementations is lower (see
Figure 4.26). Variability for constant array implementations is zero with STRATIX IV
and close to zero in practice with MAX 10.

Using reduction matrix hamming weight to find field defining polynomial is effective for
DWGP implemented with discrete components. This method does not work for constant
array implementations. However, constant array implementations are used for smaller
fields, where exhaustive search is practical.
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Figure 4.34: DWGP area for discrete comp. vs. const. array (d = 1, STRATIX IV)
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Figure 4.35: DWGP area for discrete components vs. constant array (d = 1, MAX 10)
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The last step is to look for correlation between 65 nm CMOS and FPGA implementa-
tions and for correlation between discrete components and constant array implementations.
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Figure 4.36: DWGP area for WG-14, 65 nm CMOS (discrete comp. vs. constant array)

Figure 4.36 shows DWGP discrete components area vs. constant array area for each
primitive polynomial for WG-14 using 65 nm CMOS library. The bottom left quadrant of
the chart is empty, which means that there are no polynomials that result in the smallest
DWGP for both implementations simultaneously. Polynomials from top left quadrant
(there are very few of them) provide small discrete components implementation and large
constant array implementation, while polynomials from bottom right quadrant give the
opposite. Very dense top right quadrant corresponds to the majority of polynomials that
give large DWGP area for both implementations. This dense area corresponds to the peak
in distribution in Figures 4.6 and 4.7 for field dimension m = 14. The conclusion is that it
is necessary to find best field defining polynomial for both implementations separately.

The same plot for MAX 10 and WG-11 is shown in Figure 4.37. It is important to note
that variation on Y axis (constant array DWGP implementation area) is very small. While
bottom left quadrant is not completely empty, the overall conclusion is the same as for
65 nm CMOS if the absolute smallest DWGP area for both implementations is required.
There are, however, few ”sweet-spot” polynomials, that give very small area for both
implementations. And, of course, one may consider very small variation in DWGP area
for constant array insignificant in practice.
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Figure 4.37: DWGP area for WG-11, MAX 10 (discrete componentsvs. constant array)
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Figure 4.38: DWGP area for WG-14, discrete comp. (65 nm CMOS vs. STRATIX IV)
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Figure 4.39: DWGP area for WG-14, discrete components (STRATIX IV vs. MAX 10)

Another question is whether the best field defining polynomial for 65 nm CMOS is also
the best for STRATIX IV when using discrete components implementation. Figure 4.38
clearly shows that, unfortunately, it is not. Moreover, two dots in top left quadrant mean
that the best two polynomials for 65 nm CMOS are in fact among 3 absolute worst ones
for STRATIX IV. It is necessary to perform the search for best field defining polynomial
separately for 65 nm CMOS library and STRATIX IV FPGA. However, WG ciphers must
use the same field defining polynomial to communicate.

Figure 4.39 shows correlation between DWGP area on STRATIX IV and MAX 10 FP-
GAs using discrete components implementation. Unlike all previous cases, the majority of
the polynomials are located in bottom left quadrant. That means there are many polyno-
mials that results in small DWGP area for both FPGAs. However, the best polynomial
for MAX 10 is clearly not the best for STRATIX IV. So despite higher correlation, it is
recommended to search for best polynomial separately for each FPGA board.
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Chapter 5

WG Cipher Implementation

In this chapter we focus on complete WG ciphers and provide the final choice of the
following parameters:

• Preferred implementation technique (discrete components or constant array) for each
field size

• Field defining polynomial f(x) for each field size and chosen implementation tech-
nique

• γ for multiplication by a constant

• LFSR feedback polynomial l(x) for each field defining polynomial and chosen γ

We also present implementation results for different WG ciphers post place-and-route
for the 65 nm CMOS library for 80-bit key and 80-bit IV, with metrics that include:

• Area in Gate Equivalents (GE)

• Maximum frequency in MHz

• Maximum throughput (also denoted as tput) in Mpbs.

• Maximum throughput over area in Mbps/GE
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• Total power consumption in µW at 2 MHz frequency, calculated for a complete key
+ IV loading phase, initialization phase and generation of 1024 bits of keystream. It
consists of dynamic power and leakage power.

• Energy per single keystream bit at 2 MHz frequency in pJ/bit

The choice of the 80-bit key is justified by smaller fields and smaller area implementa-
tions being the priority of this thesis. A 256-bit key version of WG-16 is also presented for
a direct comparison with other implementations.

5.1 Parameters for the WG Ciphers

The standard WG cipher has a single DWGP and a separate trace unit connected to the
last LFSR stage as shown in Figure 5.1. For each field size, we chose the implementation
technique and field defining polynomial f(x) that gives the smallest area based on the
results in Section 4.3.

The value of γ was chosen based on the smallest multiplication matrix Hamming weight
[28], and LFSR feedback polynomial l(x) was chosen arbitrarily from multiple polynomials
found with GAP search for a given LFSR size and gamma.

There is a potential to further optimize the hardware by evaluating different LFSR
feedback polynomials. The parameters are compiled in Table 5.1.
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Field defining polynomial, f(x) LFSR Key State Implementation

LFSR feedback polynomial, l(x) size (bits) (bits) DWGP DWGT

WG-5
f(x) = x5 + x4 + x3 + x+ 1

32

80

160

const

const

l(x) = x32 + x14 + x13 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x+ ω

WG-7
f(x) = x7 + x6 + x5 + x3 + x2 + x+ 1

23 161
l(x) = x23 + x12 + x10 + x9 + x8 + x7 + x6 + x3 + x2 + x+ ω

WG-8
f(x) = x8 + x6 + x5 + x2 + 1

20 160
l(x) = x20 + x8 + x7 + x5 + x4 + x3 + x2 + x+ ω

WG-10
f(x) = x10 + x5 + x3 + x2 + 1

16 160
l(x) = x16 + x9 + x8 + x6 + x5 + x4 + x+ ω

WG-11
f(x) = x11 + x2 + 1

15 165

comp

l(x) = x15 + x9 + x6 + x5 + x4 + x2 + ω

WG-13
f(x) = x13 + x12 + x11 + x9 + x6 + x5 + x4 + x2 + 1

13 169
l(x) = x13 + x7 + x4 + x3 + x+ ω

WG-14
f(x) = x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x3 + x+ 1

12 168
l(x) = x12 + x7 + x5 + x4 + x3 + ω

WG-16
f(x) = x16 + x14 + x12 + x10 + x8 + x7 + x6 + x5 + x4 + x2 + 1

10 160
l(x) = x10 + x7 + x6 + x2 + ω

WG-16
f(x) = x16 + x14 + x12 + x10 + x8 + x7 + x6 + x5 + x4 + x2 + 1

32 256 512
l(x) = x32 + x8 + x6 + x5 + x3 + x2 + x+ ω

comp = discrete components; const = constant array

Table 5.1: Parameters for the WG ciphers

In the l(x) polynomial for LFSR feedback the γ is shown as a power of ω, a root of field
defining polynomial f(x). For our polynomial bases the powers happen to be 1. LFSR
size is chosen in order to fit 80-bit key and 80-bit IV (or 256-bit key and 256-bit IV for the
second WG-16 instance). The actual internal state size is determined as field dimension m
times the number of LFSR stages and is padded with zeroes after loading if necessary.

As can be inferred from Table 5.1, WG-5, 7, 8 and 10 are implemented using constant
array for both DWGP and DWGT (when applicable, see Section 5.3). WG-11, 13, 14 and
16, on the other hand, are implemented using discrete components for DWGP and constant
array for DWGT. These choices are made based on the area profiling results summarized
in Table 4.1 on page 56.

5.2 1 Bit / Cycle WG Instances

Figure 5.2 shows a schematic example of the WG cipher in the initialization phase
(left) and the running phase (right). The example LFSR has 32 stages. A square with
number 33 denotes a “future” value that was calculated through feedback and will be
shifted into the LFSR in the next cycle. The DWGP output is fed back to the LFSR to
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create non-linear feedback during the initialization phase for security reasons [5, 7]. That
is the reason why we need DWGP to be a separate block and can’t use the much smaller
DWGT instead. A possible option would be to find and use a technique similar to the one
discovered in [13, 14], which was briefly discussed in Section 2.4.1, but is not considered in
this thesis.
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Figure 5.2: WG cipher: 1 round / cycle in init. phase, 1 bit / cycle in running phase

5.2.1 Results

Post place-and-route results for 65 nm CMOS ASIC library for different fields are com-
piled in Table 5.2. Decimation does not significantly increase the area for constant array
implementations, but it noticeably affects both area and delay for discrete components
implementations. There is also an abrupt drop in maximum frequency when going from
constant array to discrete components. Maximum throughput does not have a separate
column, but it has the same value in Mbps as maximum frequency in MHz because all
ciphers in the table output 1 bit / clock cycle. As this thesis is considering low power
and low frequency applications, it was chosen to benchmark total power consumption at
frequency of 2 MHz. The total power was calculated for key/IV loading phase followed by
initialization phase and generation of 1024 keystream bits in running phase. This value
should scale closer to linear with frequency for larger designs like WG-11 to WG-16, be-
cause frequency-independent leakage power for them is typically within 1 to 5% of total
power. For smaller constant array implementations, leakage power is between 14 and 17%
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of total power. Energy per bit, however, is a different metric and should stay relatively
constant for different frequencies. It is still a subject of higher variation based on the
percentage of leakage power, with it getting lower for higher frequencies.

d
Area Max freq. Max T/A Power (µW) Energy (pJ/bit)
(GE) (MHz) (Mbps/GE) @ 2 MHz @ 2 MHz

constant array implementations:

WG-5
1 1160 792.4 0.6834 9.64 4.82

11 1168 809.7 0.6934 9.99 5.00

WG-7
1 1396 575.0 0.4119 11.20 5.60

63 1411 603.5 0.4279 11.18 5.59

WG-8
1 1644 489.7 0.2980 14.54 7.27

19 1654 441.5 0.2670 12.77 6.39

WG-10
1 3412 310.6 0.0910 28.39 14.19

73 3458 286.0 0.0827 28.60 14.30

discrete components implementations:

WG-11
1 4462 131.6 0.0295 100.30 50.15

203 6006 81.4 0.0135 261.99 130.99

WG-13 *
1 7143 71.1 0.0100 276.44 138.22

195 8847 51.4 0.0058 575.49 287.74

WG-14 *
1 8745 63.2 0.0072 404.73 202.36

47 11355 42.7 0.0038 918.08 459.04

WG-16 *
1 12864 43.5 0.0034 945.03 472.51

1057 14786 33.0 0.0022 1462.11 731.06

WG-16 * 1 14841 42.9 0.0029 975.20 487.60

(256-bit key) 1057 16765 35.0 0.0021 1457.38 728.69

d = decimation exponent; T/A = throughput over area

* trace module done via explicit equation derived from GAP

Table 5.2: WG ciphers, post place-and-route (80-bit key, 1 bit / cycle, 65 nm CMOS)

An effect of decimation on power and delay in WG-11 is demonstrated in Figure 5.3,
which is a screenshot from ModelSim during post place-and-route simulation with timing
data. The waveforms correspond to signals from similar parts of the design. After the
rising edge of the clock signal (not shown) happened at 200250 ns, we can see signal glitches
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until the values stabilize. Every transition consumes energy, and the higher number of such
transitions results in an increase of power consumption per transistor, i.e. per unit of area.
Another major part of the increased total power is the larger circuit area itself.

Figure 5.3: Signal glitches in WG-11 (top: d = 203, bottom: d = 1)

As mentioned in Section 3.4, trace implementation using squarers provided less than
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optimal hardware for WG-13, 14 and 16 after synthesis compared to a simple trace equation
obtained through GAP for a specific field size and field defining polynomial f(x) - likely,
due to a high complexity of the circuits. Area penalty post place-and-route was 46 GE for
WG-13, 531 GE for WG-14 and 223 GE for WG-16. It also affected maximum frequency
and power/energy, the worst case being WG-14 with 13% maximum frequency drop and
63 pJ more energy per 1 bit of keystream at 2 MHz. For every other instance from WG-5
to WG-11, there was absolutely no difference between two approaches. Using GAP-derived
equation makes the code less generic, but currently is the best solution.

d Area Max freq. Max T/A Power @ 2 MHz

discrete components implementations:

WG-11
1 −0.5% −9.0% −8.6% +3.1%

203 +0.4% −7.8% −8.2% +5.4%

WG-13 *
1 −1.1% −3.5% −2.5% +0.8%

195 −0.4% −4.2% −3.8% +0.9%

WG-14 *
1 −4.1% −1.2% +3.0% −2.4%

47 −4.7% +3.7% +8.8% −3.2%

WG-16 *
1 −1.1% −0.5% +0.6% +13.0%

1057 +0.8% +9.9% +9.1% +8.4%

WG-16 * 1 −0.9% +3.6% +4.6% +9.1%

(256-bit key) 1057 +0.7% +3.2% +2.5% +10.3%

d = decimation exponent; T/A = throughput over area

* trace module done via explicit equation derived from GAP

Table 5.3: Difference from using Karatsuba mult. (80-bit key, 1 bit / cycle, 65 nm CMOS)

Table 5.3 shows the difference in area, maximum frequency, throughput over area and
power between WG ciphers using Karatsuba multiplier and the ones using classic multi-
plier. The results are unexpected – unlike for standalone multipliers (see Table 3.2 on page
19), where Karatsuba architecture provided consistent and tangible decrease in area up to
-16.6%, the effect on the complete WG ciphers is much smaller. In fact, only WG-14 shows
noticeable decrease in area (-4.7% for decimation = 47) and quite often using Karatsuba
multiplier has overall negative effect. It might be another example of optimization incon-
sistency, where a simpler single-entity classic multiplier design allows for more efficient
implementations during synthesis.
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5.3 Multiple Bits / Cycle WG Instances

In order to generate more than 1 bit of keystream per cycle, two approaches were
considered - with fast and normal initialization speeds. The common idea is to have
multiple copies of the LFSR feedback, each offset by 1 stage. During each cycle there are
multiple future values ready, so it becomes possible to shift the LFSR by more than 1 stage
at a time. The first option retains shifting LFSR by multiple stages in initialization phase,
while the second option switches LFSR into standard 1 round / cycle shifting mode for
initialization. This minor detail resulted in significant differences, which are discussed in
the following sections. The last step is to add more copies of DWGP + trace.

These instances will be also referred as WG ciphers with parallel output and the number
of bits / cycle will be also referred to as degree of parallelism. The current implementation
does not support the number of output bits / cycle higher than LFSR size. Addition-
ally, odd number of bits / cycle is not supported by our testbench environment. These
limitations will be removed in the future.

5.3.1 Fast Initialization Phase Option

Figure 5.4 and Figure 5.5 show diagrams of WG ciphers that output 2 bits / cycle and 3
bits / cycle respectively. On the left side of each figure a configuration during initialization
phase is given. The red line denotes critical path, which goes though all DWGP instances.
Since DWGP is a major contributor to the overall cipher delay, doubling or tripling the
number of the permutations will almost double or triple the delay. For an instance with
16 or 32 bits / cycle this limitation could have a very significant impact on maximum
frequency.

This approach has one advantage:

• Faster initialization time

and three major disadvantages:

• Using separate DWGP + trace for each additional output bit result in large area

• Each additional output bit increases critical path delay

• Total number of initialization rounds can only be a multiple of the number of rounds
/ cycle, which limits design options
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Figure 5.4: WG cipher: 2 rounds / cycle in init. phase, 2 bits / cycle in running phase
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Figure 5.5: WG cipher: 3 rounds / cycle in init. phase, 3 bits / cycle in running phase

For example, WG-8 with 80-bit key and 80-bit IV uses 20 stage LFSR and requires 40
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initialization rounds. If we have an instance with 8 rounds / cycle, we can achieve exactly
40 rounds in 5 cycles. However, if we increase the number of rounds to 16 / cycle, we can
either get 32 rounds in 2 cycles or 48 rounds in 3 cycles. The former option is insufficient
in terms of security [5, 7], and neither match the standard value. If standard for WG-8
with 80-bit key is changed to 48 initialization rounds, it will provide compatibility with 2,
4, 6, 8, 12 and 16 rounds / cycle in initialization phase. However, options like 10, 14 or
odd number of rounds will remain incompatible.

5.3.2 Normal Initialization Phase Option

An alternative to fast initialization that we call normal initialization is shown in Figures
5.6 and 5.7. The LFSR is only shifting by one stage each cycle in initialization phase. This
approach was initially proposed by Yang in [17] and has three major advantages:

• Regardless of the number of bits / cycle, there is only 1 DWGP in critical path

• It is possible to replace other DWGP + trace copies by DWGT to reduce area

• Any number of bits / cycle is possible because initialization phase does not impose
any constraints

and two disadvantages:

• No decrease in initialization time compared to regular 1 bit / cycle instances

• Additional multiplexors for each LFSR stage to support two shifting modes result in
area overhead noticeable for small field sizes (see Section 5.3.3)

According to Table 4.1 on page 56, DWGT as a single block using constant array
implementation has noticeably smaller area than discrete component DWGT and DWGP
of any implementation for each field size evaluated.
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Figure 5.6: WG cipher: 1 round / cycle in init. phase, 2 bits / cycle in running phase
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Figure 5.7: WG cipher: 1 round / cycle in init. phase, 3 bits / cycle in running phase

5.3.3 Results

In this section we present post place-and-route results for WG-5, WG-8 and WG-11
with various degree of parallelism. Results are presented in Tables 5.4, 5.5 and 5.6.

It is possible to isolate common trends:

• The higher is the degree of parallelization, the higher is area and maximum frequency
advantage of the standard initialization phase option
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Bits / Area Max freq. Max tput Max T/A Power (µW) Energy (pJ/bit)
cycle (GE) (MHz) (Mbps) (Mbps/GE) @ 2 MHz @ 2 MHz

1 1168 809.7 809.7 0.6934 9.99 5.00

with fast initialization phase:

2 1295 502.3 1004.5 0.7758 11.30 2.82

4 1591 275.0 1099.8 0.6911 14.44 1.81

8 2245 137.7 1101.8 0.4908 18.51 1.16

16 3510 73.8 1180.6 0.3364 32.75 1.02

32 6148 39.2 1254.6 0.2041 81.80 1.28

with standard initialization phase:

2 1521 517.3 1034.7 0.6801 11.73 2.93

4 1698 585.8 2343.3 1.3798 13.35 1.67

8 2121 552.2 4417.4 2.0826 16.79 1.05

16 2833 532.2 8515.2 3.0059 24.71 0.77

32 4293 172.4 5515.3 1.2847 49.06 0.77

tput = throughput; T/A = throughput over area

Table 5.4: WG-5 ciphers, d = 11, post place-and-route (80-bit key, 65 nm CMOS)

• Fast initialization phase option tends to keep maximum throughput relatively con-
stant for different value of bits / cycle - maximum frequency halves as we double the
number of output bits

• Standard initialization phase option has consistent maximum frequency and linear
increase in maximum throughput with the number of output bits

• Standard initialization phase option provides noticeable decrease in energy / bit of
keystream for higher degree of parallelization

• Standard initialization phase option has higher area than fast initialization phase
option for small fields like WG-5 with low number of output bits (2 or 4) due to the
area overhead from multiplexors needed to support two LFSR shifting modes.

The drop in maximum frequency for WG-5 in Table 5.4 with standard initialization
phase and 32 bits / cycle option might be attributed to a high number of LFSR feedback
copies required and the corresponding increase in critical path delay. It formally decreases
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our maximum T/A performance metric, but we chose to keep high density target to min-
imize area. It makes sense given the potential use case of these WG-5 cipher instances in
very constraint environments like RFID tags of IoT devices at much lower frequency.

The same effect can be observed for WG-8 in Table 5.5 with 16 bit / cycle option, but
to a lower extent. Also, due to higher DWGP area for WG-8, fast initialization phase no
longer has area advantage for options with any number of bits / cycle.

Bits / Area Max freq. Max tput Max T/A Power (µW) Energy (pJ/bit)
cycle (GE) (MHz) (Mbps) (Mbps/GE) @ 2 MHz @ 2 MHz

1 1654 441.5 441.5 0.2670 12.77 6.39

with fast initialization phase:

2 2373 241.8 483.6 0.2038 18.94 4.74

4 3725 113.8 455.0 0.1221 30.79 3.85

8 6312 49.5 396.3 0.0628 56.66 3.54

16 11741 26.7 426.7 0.0363 137.18 4.29

with standard initialization phase:

2 2153 439.9 879.9 0.4086 15.55 3.89

4 2563 453.9 1815.7 0.7083 19.46 2.43

8 3338 450.2 3602.0 1.0792 26.51 1.66

16 4914 270.0 4319.7 0.8790 44.37 1.39

tput = throughput; T/A = throughput over area

Table 5.5: WG-8 ciphers, d = 19, post place-and-route (80-bit key, 65 nm CMOS)

Since our implementation currently does not support the output of more bits / cycle
than LFSR size, we had to limit our WG-11 with 14 bits / cycle in Table 5.6. While
technically we could have used 15 bits / cycle (the LFSR size is 15 stages for 80-bit key
/ IV option), our testbench environment does not work with odd values yet. Overall,
the trend of standard initialization phase having significant area and frequency advantages
remains and is even exaggerated due to the highest relative area savings from using DWGT
instead of DWGP.

Since all WG-5, WG-8 and WG-11 instances shown in this chapter are for 80-bit key,
their internal states are similar in size (160 bits for WG-5, 160 bits for WG-8 and 165 bits
for WG-11). The area overhead associated with multiplexors for standard initialization
phase is therefore constant and becomes less noticeable with field size increase.
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Bits / Area Max freq. Max tput Max T/A Power (µW) Energy (pJ/bit)
cycle (GE) (MHz) (Mbps) (Mbps/GE) @ 2 MHz @ 2 MHz

1 6006 81.4 81.4 0.0135 261.99 130.99

with fast initialization phase:

2 10992 39.0 78.0 0.0071 506.85 126.71

4 21028 19.5 78.0 0.0037 1057.65 132.21

8 41106 9.6 76.8 0.0019 2171.68 145.29

14 71211 5.1 71.3 0.0010 5140.73 183.60

with standard initialization phase:

2 6967 80.7 161.3 0.0232 240.51 60.13

4 8271 79.6 318.2 0.0385 263.03 32.88

8 10901 81.8 654.2 0.0600 277.15 17.32

14 14775 78.5 1098.8 0.0744 322.89 11.53

tput = throughput; T/A = throughput over area

Table 5.6: WG-11 ciphers, d = 203, post place-and-route (80-bit key, 65 nm CMOS)

5.4 Comparison with Existing Implementations

The implementation results from Table 5.4 for WG-5 are compared to the ones from
[6] in Table 5.7. However different ASIC library was used, which has to be taken into
account. For 1 and 2 bits per clock cycle, WG-5 implementations from this thesis provide
slightly lower area in GE (which can be caused by a different library) and lower energy per
bit, which can be partially attributed to 20 times higher frequency that we used for power
analysis because it reduces the contribution of leakage power.

WG-8 was implemented using constant array in [17]. Table 5.8 shows a comparison
with our normal initialization mode. For 1 bit / cycle the results from this thesis provide
7.4% smaller area, but lower maximum frequency and slightly lower throughput over area.
If we are not concerned with frequency, our implementation is superior. While we do not
have 11 bits / cycle implementation, we have 8 and 16 bits / cycle - but both with lower
throughput over area score.

While large fields like WG-16 were not the main focus of the thesis, it is still interesting
to see how parametrized code fares against optimized implementations. When compared
to the compiled results from various sources (see Table 5.9) it is clear that our imple-
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State / Bits /
d

Area Power Energy
SourceKey (bits) cycle (GE) (µW) (pJ/bit)

130 nm CMOS ASIC library:

160/80

1
1 1229 0.78 (0.1 MHz) 7.80

[6] *
11 1235 0.79 (0.1 MHz) 7.80

2
1 1350 0.84 (0.1 MHz) 4.20

11 1360 0.85 (0.1 MHz) 4.20

180 nm CMOS ASIC library:

160/80

1
1 1361

- - [6] *
11 1373

2
1 1508

11 1521

65 nm CMOS ASIC library:

160/80

1
1 1160 9.64 (2 MHz) 4.82 (2 MHz)

this thesis

11 1168 9.99 (2 MHz) 5.00 (2 MHz)

2 **
11

1295 11.30 (2 MHz) 2.82 (2 MHz)

4 ** 1591 14.44 (2 MHz) 1.81 (2 MHz)

2 †
11

1521 11.73 (2 MHz) 2.93 (2 MHz)

4 † 1698 13.35 (2 MHz) 1.67 (2 MHz)

d = decimation exponent

* implemented using GAP-derived equation

** with fast initialization phase

† with standard initialization phase

Table 5.7: WG-5 implementations comparison (polynomial bases)

mentation has higher area and lower maximum frequency even compared to non-pipelined
implementation. One of the reasons of such a big difference in area is that [15, 16] used
efficient tower field construction and [14] greatly reduced the number of multipliers from 12
to 6 after discovering new properties of the trace function. Such optimizations can be done
for a specific set of parameters (field size, field defining polynomial) but not for a generic
or universal version that was developed in this thesis. In addition to that, all pipelined
architectures show significant intrinsic advantage in maximum frequency. When compared
to [16], their pipelined implementation requires 15.8 times less energy per bit. This can
be explained by much higher evaluation frequency, which reduces contribution of leakage
power and 7-stage pipeline, which likely results in much less signal glitching due to reduced
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State / Bits /
d

Area Max freq. Max tput Max T/A
SourceKey (bits) cycle (GE) (MHz) (Mbps) (Mbps/GE)

160/80
1

19
1786 500 500 0.27996

[17] *
11 3942 610 6710 1.70218

160/80

1

19

1654 441.5 441.5 0.2670

this thesis8 3338 450.2 3602.0 1.0792

16 4914 270.0 4319.7 0.8790

d = decimation exponent; tput = throughput; T/A = throughput over area

* implemented using constant array

Table 5.8: WG-8 implementations comparison (polynomial bases, 65 nm CMOS)

complexity of combinational paths in-between stage boundaries.

Basis
State / Bits /

d
Area Max freq. Max tput Max T/A Power Energy

SourceKey (bits) cycle (GE) (MHz) (Mbps) (Mbps/GE) (µW) (pJ/bit)

PB 512/256

1

1057

9103 189 189 0.02076

- - [14] **† 1 11795 1149 1149 0.09741

†† 1/6 5267 680 113 0.02145

PB * 512/256

1

1057

8060 193 193 0.02395

- - [14] **† 1 10681 1370 1370 0.12827

†† 1/6 5026 714 119 0.02368

† TFB 512/256 1 1057

26300 2440 2440 0.09278

- - [15]10900 880 880 0.08073

9900 330 330 0.03333

† TFB 512/256 1 1057 12031 552 552 0.04588 25500 (552 MHz) 46.12 (552 MHz) [16]

PB 512/256 1 1 14841 42.9 42.9 0.0029 975.20 (2 MHz) 487.60 (2 MHz) this thesis

PB 512/256 1 1057 16765 35.0 35.0 0.0021 1457.38 (2 MHz) 728.69 (2 MHz) this thesis

d = decimation exponent; tput = throughput; T/A = throughput over area

† pipelined implementation

†† serialized implementation

* Karatsuba multiplier was used

** synthesis results only pre place-and-route

Table 5.9: WG-16 implementations comparison (65 nm CMOS)

A comparison of our smallest instance, WG-5, with Grain and Trivium is shown in
Table 5.10. While it is not fair to compare area implementations results for different ASIC
libraries even using GE metric, the comparison data is still useful. WG-5 (0.065 µm) with
standard initialization phase shows advantage over Trivium (0.13 µm) in area, maximum
frequency and T/A for implementations with 1 to 16 bits / cycle output. Grain (0.13 µm)
seems to provide lower area than Trivium for 1 to 8 bits / cycle options and is similar
to WG-5 in this range. The 0.09 µm implementations results for Grain and Trivium are
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ASIC
Cipher Area

Max freq. Bits / Max tput Max T/A Max T/A
Sourcelibrary (MHz) cycle (Mbps) (Mbps/µm2) (Mbps/GE)

250 nm
Grain 119821 µm2 300 16 4475 0.0373 -

[20]
Trivium 144128 µm2 312 64 18568 0.1288 -

130 nm

Grain

1294 GE 724.6 1 724.6

-

0.5600

[21]

1678 GE 694.4 4 2777.6 2.1465

2191 GE 632.9 8 5063.2 2.3109

3239 GE 617.3 16 9876.8 3.0493

Trivium

2580 GE 327.9 1 327.9

-

0.1271

2627 GE 574.7 2 1149.4 0.4375

2705 GE 473.9 4 1895.6 0.7008

2952 GE 471.7 8 3773.6 1.2783

3166 GE 467.3 16 7476.8 2.3616

3787 GE 350.9 32 11288.8 2.9809

4921 GE 348.4 64 22297.6 4.5311

90 nm

Grain
4911 µm2 565 1 565 0.1150

-

[22] *
10548 µm2 495 16 7920 0.7508

Trivium
7428 µm2 840 1 840 0.1131

-
13440 µm2 800 64 51200 3.8095

65 nm

WG-5 1168 GE 809.7 1 809.7 0.3334 0.6934

this thesis

WG-5 **

1295 GE 502.3 2 1004.5 0.3730 0.7758

1591 GE 275.0 4 1099.8 0.3323 0.6911

2245 GE 137.7 8 1101.8 0.2360 0.4908

3510 GE 73.8 16 1180.6 0.1617 0.3364

6148 GE 39.2 32 1254.6 0.0981 0.2041

WG-5 †

1521 GE 517.3 2 1034.7 0.3270 0.6801

1698 GE 585.8 4 2343.3 0.6634 1.3798

2121 GE 552.2 8 4417.4 1.0013 2.0826

2833 GE 532.2 16 8515.2 1.4451 3.0059

4293 GE 172.4 32 5515.3 0.6176 1.2847

tput = throughput; T/A = throughput over area; 1 GE = 2.08 µm2 for 65 nm ASIC

* synthesis results only pre place-and-route

** with fast initialization phase

† with standard initialization phase

Table 5.10: Comparison between WG-5, Grain and Trivium (80-bit key)

given for pre place-and-route. We might assume that their design is synthesizeable at 0.95
density target we used, which would give us good area estimates. However, area in µm2 is
not that useful for a direct comparison because different ASIC libraries were used.
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Chapter 6

Conclusion

In this thesis, a parametrized implementation of the WG cipher family operating over
polynomial bases was developed and analyzed. Having consistent implementation for dif-
ferent field sizes, field defining polynomials, implementation approaches and technologies
allowed us to study their impact on key cipher performance parameters, such as area,
maximum frequency, maximum throughput, power consumption and derivative perfor-
mance metrics like maximum throughput over area and energy per bit of keystream. The
results are also compared to existing implementations of WG ciphers.

Two implementation approaches (constant array and discrete components) and three
implementation technologies (65 nm CMOS ASIC library, STRATIX IV FPGA and MAX
10 FPGA) were considered in this thesis. Definitions of constant array and discrete com-
ponents are given in Section 2.3.3. A brief summary of implementation technologies and
fundamental differences between them can be found in Section 2.3.1.

Discrete components implementations were studied in Chapter 3. Individual building
blocks like multipliers, squarers, exponentiations and trace were developed. The chapter is
concluded with the hardware design of DWGP and DWGT, which is a core of WG cipher.
Constant array implementations of DWGP and DWGT were provided by Zidaric [9] and
were incorporated in the cipher design.

Area profiling of DWGP is the focus of Chapter 4. More than 26000 instances were
synthesized and their area pre place-and-route was analyzed. We found that the Hamming
weight of the reduction matrix (see Section 4.1.3) can be used effectively to reduce the
search space for a field defining polynomial that provides the smallest DWGP area when
discrete components implementations are used. It was also discovered that the importance
of finding such polynomial for 65 nm CMOS is higher than for FPGAs due to the differences
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between the absolute minimum and mean values. Thankfully, using reduction matrix
Hamming weight also works well for 65 nm CMOS implementations. It was also shown that
this method does not work for constant array implementations on 65 nm CMOS. However,
it is not a big problem, because the constant array approach itself is only practical for
smaller fields (from WG-5 to WG-10), where exhaustive search is possible. Moreover,
constant array implementations on FPGA either have negligible variation in area (MAX
10) or do not have any variation at all (STRATIX IV). In Section 4.3 we summarize the
area profiling results and choose field defining polynomials and implementation techniques
for complete WG ciphers. It is important to notice exponential increase in DWGP area
with respect to field dimension for constant array implementations and quadratic increase
in DWGP areawith respect to field dimension for discrete components implementation.
It was found that constant array DWGP is smaller for WG-5, WG-7, WG-8 and WG-
10, while discrete components DWGP is smaller for WG-11, WG-13, WG-14, WG-16 and
above. Also, constant array implementations of DWGT are preferred for all fields that
were studied (from WG-5 to WG-16) and extrapolation of the trend allowed us to predict
that it will not be the case for DWGT for 17 and above.

Complete WG cipher implementations for all field sizes using 65 nm CMOS ASIC library
post place-and-route are shown in Chapter 5. Instances with 1 output bit / cycle as well as
multiple output bits per cycle are shown. For the latter, two options with fast and standard
initialization phase were given. WG ciphers with normal initialization phase provide lower
area, lower power and higher maximum frequency compared to the ones fast initialization.
There are exceptions from this rule, for example, WG-5 with 2 or 4 bits / cycle options. Our
WG ciphers are comparable with the existing WG-5 and WG-8 implementations. However,
when it comes to larger field sizes, like WG-16, highly optimized hardware provides smaller
area, lower power and faster maximum frequency than our designs. This is the price we
pay for a fully parametrized generic implementation, because such optimization are often
specific to a particular field size and field defining polynomial. Also, since pipelining was
not considered in this thesis (our datapath is fully combinational), we see a significant
advantage of pipelines designs in throughput, maximum frequency and even energy per
output bit.

It is also important to talk about synthesis tools limitations, Synopsys Design Compiler
in particular, that we faced. While it is very likely that all of these issues can be solved
with certain flags and settings passed to the tool, we were unable to find the solution at
this point. The problems include inability to simplify chains of squarers with Karatsuba
multipliers (see Figure 3.6 on page 23), area penalty for constructing trace block with
squarers instead of straightforward equation (see Table 3.5 on page 31), area penalty for
using constant array DWGP + trace instead of constant array DWGT (see Table 4.3 on
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page 59) and loss of area advantage of Karatsuba multipliers in WG ciphers (see Table 5.3
on page 71). Additionally, Design Compiler had issues with the Karatsuba multiplier that
used recursive instantiation. Before an update to a new version of Design Compiler, it
worked with only one problem – if a common generic m was used to calculate signal ranges
in a port map of a recursive instantiation, the new value of m (that was passed to the child
instance) was taken instead of the value from the parent entity. This was not intuitive,
because m was used in the range of a signal that belonged to the parent instance. After
an update, Design Compiler started assigning a single value of the generic m to the parent
component and all of its recursive instantiations. It forced us to create a duplicate entity
of the multiplier so that two identical entities with different names would instantiate each
other.

Future work might include finding optimal LFSR feedback polynomials for each field
size, exploring opportunities for hardware optimizations for discrete components imple-
mentations and finding a way to increase efficiency and consistency of synthesis tools in
minimizing area of larger design instances. Another options is to develop a generic pipelined
and a generic serialized implementation with similar degree of parametrization, as well as
an extension of the current design to normal basis and tower field bases.
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Glossary

65 nm CMOS STMicroelectronics 65 nm CMOS ASIC library. 1 gate equivalent (GE)
= 2.08µm2 iii, 7, 11, 13, 20, 22–24, 31, 35–37, 39, 40, 43, 48–52, 56–61, 63–66, 69,
70, 72, 77–81, 83, 84

MAX 10 Intel / Altera MAX 10 FPGA, sometimes also referred to as lstep board 7, 8,
35, 44–49, 53–58, 61–65, 83, 84

STRATIX IV Intel / Altera STRATIX IV FPGA 7, 8, 35, 40–44, 48, 49, 53, 56–58, 61,
62, 64, 65, 83, 84
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