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Abstract 

 In this work the operating properties of PEDOT:PSS - silicon hybrid solar cells were carefully 

studied. The motivation is to find a cost-effective alternative to some of the energy, environmental and 

sustainability issues the world is currently facing. Solar cells are already providing plentiful renewable 

energy but they remain constrained by inflexibility, weight, cost and efficiency. Overcoming these obsta-

cles will allow these energy producing devices to become widespread and, along with them, new technol-

ogies and economies to emerge. Hybrid solar cells (HSCs) address these issues by junctioning conducting 

polymer with an inorganic semiconductor. The beneficial properties of these materials can be exploited to 

improve the cost effectiveness, flexibility, and ease of processing of the polymer, and the electron lifetime 

and diffusion length, and stability of the inorganic material. PEDOT:PSS and n-type silicon is one such 

HSC with easily reproducible high efficiencies around 12% that could greatly reduce the cost per watt 

ratio and other challenges associated with conventional silicon solar cells.  

 In Chapter 2, the material properties of inorganic semiconductors, focusing on silicon, are intro-

duced and the details of Schottky junctions, p-n junction and solar cells properties are discussed. These 

properties are compared and contrasted with conducting polymers, focusing on PEDOT:PSS, which func-

tion in a fundamentally different way from inorganics in that charge mobility is much more limited to in-

tra or inter molecular transport. Finally the physics behind thin films and surfaces for the absorbance of 

light is examined. 

 In Chapter 3, a novel method of increasing the conductivity of PEDOT:PSS was found by post-

treating pre-deposited films with a 50 vol% ethylene glycol/methanol mixture. This post-treatment meth-

od more than doubled the conductivity to 1334 S/cm over the method of adding an ethylene glycol co-

solvent to the PEDOT:PSS solution (637 S/cm). It also reduced the film thickness in half (51%) due to the 

removal of PSS. The treatment resulted in PEDOT to have a greater quinoidal character, and because of 

the decrease in PSS, more defined PEDOT containing nanodomains with the chains laying horizontal to 

the substrate. 

 In Chapter 4, the optical properties of the films were studied using a single stack layer to model 

the reflectance of PEDOT:PSS on silicon and to determine the effects of film thickness on short circuit 

current density (JSC). Using the complex refractive index, the reflection of PEDOT:PSS films and silicon 

respectively, and the phase shifts found from fitting experimental transmittance and reflectance data, the 

external quantum efficiency (EQE) for the cells could be simulated. The JSC calculated from these results 
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showed that JSC followed a sigmoidal curve and the highest value 28.3 mA/cm2 was obtained at a thick-

ness of 85 nm. Interestingly, the post-treated cells had overall lower JSC with  a maximum of 26.2 mA/cm2 

at 63 nm due to the increased anisotropy, absorbance and series resistance. A comparative measure of re-

sistivity was performed by removing the optical component from the quantum efficiency to reveal the 

electrical contributions and by fitting the data using a modified single diode equivalent circuit. This indi-

cated that the resistivity was 75% higher for the post-treated films over the co-solvent films. Using the 

absorbance, reflectance, and EQE models for the optimal thickness of 85 nm, the optical generation and 

loss mechanisms could be calculated: 61.5% of the incident light was converted into current, 22.2% was 

lost to reflectance, 6.9% was absorbed by the film, 2.7 was absorbed by the rear electrode, and 6.7 was 

lost to recombination at the surface and in the bulk silicon.  

 In Chapter 5, the PEDOT:PSS/silicon heterojunction was studied and the influence of passivation 

layers was examined using dark current density curves and the open-circuit voltage of the cell. It was dis-

covered that the size of the native silicon oxide layer could be determined by the blue shift in the Raman 

Cα =Cβ band. It was noted that the native oxide continued to grow uninterrupted after PEDOT:PSS was 

deposited on hydrogen-terminated silicon resulting in a contaminated native oxide layer with decreased 

performance. It was concluded that the contamination at the surface, increased defects and Fermi level 

pinning could cause a decrease in band bending, leading to increased carrier recombination and poor per-

formance. Allowing a controlled native oxide layer to grow to 2 nm in a clean environment increased the 

inversion layer and performance. The increase in bi-polaron modes with post-treatment together with the 

increased concentration of PEDOT and the effective density of acceptor states resulting from the removal 

of PSS, caused a stronger inversion and electron blocking at the interface.  

Finally in Chapter 5, P3HT was used as an interfacial layer between PEDOT:PSS and silicon. It 

was found that spin-coating a solution of P3HT dispersed in dichlorobenzene on silicon produced a ho-

mogeneous layer of small interconnected nanocrystallites. When applied to HSCs, no charge separation or 

transfer originating from the P3HT chromophore could be detected indicating the inversion layer existed 

entirely within the silicon substrate. However the larger open circuit voltage and change in dark saturation 

current undedicated the layer blocked electron majority carrier transfer from the silicon, increasing shunt 

resistance and open-circuit voltage. 

 By combining the research of into short-circuit current density, and open-circuit voltage, it was 

concluded that the highest achievable efficiency of the setup used in this research was 11.8%. 
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1. Introduction 

The sun continuously irradiates the earth with more than enough energy to satisfy the societies’ 

demands.1  Photovoltaics provides a sustainable method of capturing this energy, because it is pollution-

free, stable, has no moving parts, and versatile when compared to other alternatives such as fossil fuels or 

nuclear energy.  Photovoltaics makes use of an appropriate type of material capable of converting light 

into useful electricity, and it exploits the properties of semiconductor materials. Commercial photovoltaics 

are still expensive, energy intensive to produce, relatively inefficient, and it can be heavily dependent on 

the availability of rare materials that are hard to recycle. There is a push to develop new technologies to 

reduce the cost and increase the efficiency such that the price per kWh is more economical.  One such 

emerging technology are semiconducting polymer solar cells, which can be produced in an efficient 

manner very inexpensively, but the photoconversion efficiency of these solar cells remains low. To obtain 

high efficiencies at low cost, there has been a fusion between inorganic and organic photovoltaics, 

commonly referred to as hybrid solar cells.  These hybrid solar cells benefit from traditional 

photovoltaics, because they are more efficient than purely organic solar cells, and can be flexible, light 

weight, multicolour, and made with inexpensive and fast roll-to-roll processing. Beyond conventional 

energy demand in the future, hybrid solar cells will supply energy to unconventional applications and 

devices, open up new markets, and disrupt current ones.  

1.1. Energy use and alternatives 

 The demand for increased energy caused by a rising worldwide middle class able to purchase 

more power hungry appliances, and new devices and appliances entering the market means that future 

power generation will have to increase. Adding this increased power demand to the increased 

environmental and security concerns caused by traditional energy production, it becomes clear that 

alternative energy sources such as solar should be exploited. Unlike the conventional sources of energy 

(coal, oil, natural gas, and nuclear energy), solar energy does not depend on quickly diminishing natural 

reserves. Along with other sustainable energy sources (such as hydro and wind), solar energy would 

provide the best balance between maintaining our current quality of life and being able to extend it long 

into the future.   

 Solar energy is evolving quickly, and the growth and cost numbers for 2016/2017 indicate that 

this is an industry quickly approaching those of legacy energy generation.2 Table 1.1 compares different 
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electricity generating technologies reported in the US in the last 10 years from relevant studies (reported 

in 2010 USD). Shown are the average values, since there are large variations in the reported capital costs 

for electricity generation and they are influenced by the locations, regulations, labour cost, and financing 

options. The thermal efficiencies of power plants are determined by using the higher heating value that 

includes the heat of vaporization.3 The current global price of energy generation provided by solar 

modules stands at $0.447/Watt and it represents about14% of the total cost of installation for which the 

average in the US is at $3.21/Watt in 2016 [GTM research]. Large scale solar is already approaching the 

$/kW installation cost of coal in Canada, and it should become increasingly competitive as technology 

improves. Fossil fuels have additional cost in Canada after accounting for its transportation across its 

large land mass, which provides distinct advantages for solar energy in remote communities. Furthermore, 

solar can be more easily implemented in the north where ice and tundra make building large plats or wind 

mills difficult.   

 

Table 1.1: Cost, efficiencies and Canadian capacity of electric power generation. 

Technology Capital Cost 
($USD/kW)a 

Fixed Operation & 
Maintenance Cost 
($USD/kW-year)a 

Efficiency 
(%) 

Total Canadian
Capacity 
GWh 2016c 

Coal (steam plant) 2900 25 38b 60374 (9.3%)

Coal (IGCC)e 4000 35 39 b 

Natural Gas 
(simple cycle) 

750 6 34 b 65512 (9.6%)

Natural Gas (CC)f 1050 10 52 b 

Biomass (steam 
plant) 

4000 95 25 b 13214 (2.0%)

Biomass (IGCC) 6000 140 30 b 

Nuclear 5500 95 33 b 95418 (14.6%)

Wind (on-shore) 2000 50 <59d 30462 (4.7%)

Geothermal 5200 100 10 b 

Hydro  ~80d 383392 
(58.8%)

Solar

Photovoltaic 
(Rooftop) 

4200 60 ~20 b -

Photovoltaic 2800 40 ~22d 3568 (0.5%)
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(Large-scale) 

Concentrated Solar 4800 65 - -

Thermal 
Concentrated Solar 

8000 65 - -

a. NREL (National Renewable Energy Laboratory). 2016. 2016 Annual Technology Baseline. 
Golden, CO: National Renewable Energy Laboratory. 
http://www.nrel.gov/analysis/data_tech_baseline.html. 

b. Muratori, M.; Ledna, C.; McJeon, H.; Kyle, P.; Patel, P.; Kim, S. H.; Wise, M.; Kheshgi, H. S.; 
Clarke, L. E.; Edmonds, J. Cost of Power or Power of Cost: A U.S. Modeling Perspective. Renew. 
Sustain. Energy Rev. 2017, 77 (December 2016), 861–874.3 

c. Canadas Renewable Power Landscape 2017 – Energy Market Analysis. (2017) National Energy 
Board of Canada ( https://www.neb-one.gc.ca/nrg/sttstc/lctrct/rprt/2017cndrnwblpwr/cndnvrvw-
eng.html) 

d. Kreith, F. Principles of Sustainable Energy Systems; CRC Press, 2014.4 
e. Integrated gasification combined cycle (IGCC) 
f. Combined cycle (CC) 

 

Like all emerging technologies, solar energy will become even more cost-competitive with 

ongoing R&D, scale-up and commercialization. The adherence of Moore’s law in the semiconductor 

industry has caused a large reduction in the price of silicon wafers and has allowed the solar industry to 

follow a similar price reduction and efficiency increase in what is referred to as the Swanson’s law.5 Over 

the last 40 years, the price of solar modules decreases by 20% with each doubling of modules shipped. 

This has been the case for conventional silicon solar cells, but much research is taking place on different 

solar conversion technologies and there is great potential to accelerate Swanson’s law. While this rapid 

cost decrease in solar modules is occurring and is reducing the total cost of photovoltaic generation, the 

cost of building a new power plant based on fossil fuels has increased.3  

 Unconventional solar cells can be generally split into two groups: very high efficiency or 

inexpensive, both with the aim of lowering the cost-to-Watt ratio. High-efficiency photovoltaics includes 

germanium arsenide solar cells, cadmium telluride solar cells, solar cells used in space applications, and 

multi-junction solar cells used in high-concentrator photovoltaics (which have proven efficiencies 

between 20 and 46%), while inexpensive photovoltaics includes: amorphous silicon solar cells, dye 

sensitized solar cells, quantum dot or plasmonic solar cells, organic solar cells, hybrid solar cells, 

perovskite solar cells, and copper indium gallium selenide (CIGS) cells.  Typical performances of the 

more common solar cells are compared in Table 1.2. With the exception of amorphous silicon solar cells, 

these lower-cost cells are still in the research and development phase. A great deal of work is ongoing 
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with the goal to improve the stability, longevity, toxicity and performance. However, hybrid solar cells 

stand out since they can piggy-back on the proven efficiencies of silicon and are significantly simpler in 

design and preparation than the others. They have a real potential to fulfill the demand for low cost/watt. 

Table 1.2: Photovoltaic materials and properties of lower-cost solar cells. 

Type of 
Photovoltaic 
Cell 

Material Open-
circuit 
voltage 
(V) 

Short-circuit 
current density 
(mA/cm2) 

Fill 
factor 

Photoconversion 
Efficiency 
(%) 

Ref.

Conventional 
Silicon 

Crystalline silicon 0.696 42.0 0.836 24.4 (6) 

Provoskite Formamidinium lead 
iodide 

1.11 25.0 0.817 22.6 (7) 

CIGS Copper indium 
gallium selenide 

0.741 37.8 0.806 22.6 (8) 

Hybrid solar cell PEDOT:PSS – n-Si 0.663 31.9 0.7 14.8 (9) 
Dye sensitized 
solar cell  

TiO2, Cobalt 
electrolyte, Porphyrin 
dye (SM315) 

0.91 18.1 0.78 13.0 (10) 

Amorphous 
silicon 

H-Silicon 0.55 28.74 0.75 11.9 (11) 

Bulk 
heterojunction 
solar cell 

J61a :ITICb   0.912 18.31 0.706 11.77 (12) 

a. Benzdithiophene-alt-fluorobenzotriazole copolymer 
b. 2,2′-[[6,6,12,12-Tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-

b:5,6-b′]dithiophene-2,8-diyl]bis[methylidyne(3-oxo-1H-indene-2,1(3H)-
diylidene)]]bis[propanedinitrile] 
 

1.2. Hybrid Solar Cells 

Modern electronic devices are based on semiconducting materials, and silicon has long been the 

material that has dominated the industry. Silicon is abundant around the world, low-cost and stable, and it 

has been extensively studied and developed forming the foundation of today’s technologies, with mature 

production capabilities. However, unlike inorganic semiconductors, the properties of polymers can be 

easily altered through chemical means. Polymers can be easily synthesized and processed, and they are 

flexible, colorful and more versatile than inorganics. Many challenges remain until polymers can compete 

with silicon and be used to produce the low-cost and versatile devices dreamt about. However, we can 

come closer to reaching this goal by combining silicon with polymers in devices and gain the versatility 
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that is lacking in silicon while boosting the stability and electronic properties of polymers. This symbiosis 

is evident in the advances of hybrid solar cells.  

Hybrid solar cells (HSCs) incorporate the benefits of both inorganic and organic material groups 

such as the high stability, long electron lifetime and diffusion length of an inorganic material; and the 

lower-cost, processability and flexibility of an organic polymer. HSCs are developing into a viable 

alternative to conventional silicon-based cells and they strive to greatly reduce the price per watt 

produced.  There are three types of HSCs depending on where most light is absorbed and charge carriers 

are produced: (i) the organic chromophore, (ii) both organic and inorganic materials, or (iii) the inorganic 

semiconductor.13 Cells designed to absorb most light close to the heterojunction show greater charge 

separation and efficiency.14 Since HSCs are highly adaptable, they allow for the optimization of the 

absorption spectrum and electronic properties through changes in the organic or inorganic material, 

providing an effective way to optimize absorption.  

HSCs with a p-n junction, consisting of a n-type silicon base and a p-type conducting polymer 

blend  [poly(3,4-ethylene-dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)] emitter layer, have been 

shown to produce efficiencies as high as 14.8%.9 In a typical PEDOT:PSS – n-Si HSC, shown 

schematically in Figure 1.1, light absorbed in the silicon base produces positive and negative charge 

carriers which can be separated by an electric field between the top (silver) and bottom (aluminum) 

electrodes. These separated charges at the interface enter the circuit through the silver anode and 

aluminum cathode and they can be used to do electrical work. 
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Figure 1.1: PEDOT:PSS – n-silicon hybrid solar cell with a top silver anode and a bottom aluminum cathode. Light 

is absorbed and electron-hole pairs are created in the silicon base, the charge carriers are then separated due to the 

built-in-potential at the junction and they then enter the circuit through the electrodes to do work. 

Combining the p-type PEDOT:PSS with n-type silicon produces an extraordinarily simple hybrid 

solar cell. Due to the low absorption coefficient of PEDOT:PSS throughout the visible spectrum, most of 

the light is absorbed and charge carriers are produced in the silicon base.15,16,17 The PEDOT:PSS layer 

provides the built-in potential at the interface for charge separation and acts as a hole transport medium. 

However, the high potential of the lowest unoccupied molecular orbital (LUMO) of PEDOT:PSS causes 

the cell to be current-limited by the hole drift into the PEDOT:PSS layer, 16,18,19,20 which remains to be one 

of the greatest challenges in developing a viable HSC technology. 

1.3. Thesis Objectives 

The main objective of this research is to investigate the optical and electrical interactions between 

PEDOT:PSS and n-type silicon and the production of energy in hybrid solar cells. Chapter 2 discusses the 

fundamental concepts of semiconductor physics, solar cells, conducting polymers, analysis of PE-

DOT:PSS and P3HT, and the optical properties of thin films. In Chapter 3, the methods used to increase 

the conductivity of PEDOT:PSS are investigated, with particular attention paid to removing the insulating 

PSS component, which can have auxiliary consequences on the photovoltaic performance. The existing 

understanding of conductive enhancement, in particular post-treatment of the films, is found not to be suf-

ficient in explaining the electronic trends seen in photovoltaic operation. An improved morphological and 

electrical model appears necessary in understanding how these properties change after chemically altering 

the film and consequently in optimizing the photovoltaic behavior.  
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In addition to the morphological and electrical properties of the PEDOT:PSS film, photovoltaics 

performance is dependent on the optical characteristics, in particular its absorptivity, and reflective prop-

erties of the film (Figure 1.2). In Chapter 4, using experimentally derived reflectance and quantum effi-

ciency data, a model is proposed to account for the changes in absorptivity, reflectivity off silicon, refrac-

tive index, and resistivity as functions of the film thickness and concentration of PSS. With knowledge of 

how these parameters are correlated, they can be optimized to maximize the photocurrent produced by the 

cell.  

 

Figure 1.2: 1 cm2 PEDOT:PSS hybrid solar cells.  

The ability of a solar cell to capture light and to produce photo-carriers is one of two photovoltaic 

properties needed to produce power, the other being the electromotive force needed to propel the carriers 

around the circuit. In HSC, this electric potential depends on the complex and highly sensitive junction 

between PEDOT:PSS and n-silicon. In the fabrication of HSC, this junction can be formed by spin-

coating, printing, or doctor-blade application of the organic compound in solution, all of which are com-

monly performed in ambient conditions and not systematically deposited in vacuum controlled condi-

tions. The composition of these surfaces and their electronic properties are therefore considered contami-

nated, when compared to the clean pristine “ideal” surfaces. Chapter 5 examines the important interfacial 

effects introduced by silicon oxide growth, thickness, PEDOT:PSS composition, and the application of a 

poly(3-hexyl thiophene) interfacial layer. The investigation of the nature of this sensitive junction will 

lead to a better understanding of the interfacial properties that are beneficial for improving the efficiency 

and stability of HSC.  
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2. Fundamentals 

In this section the fundamental principles involved in the operation of hybrid solar cells will be 

presented. An introduction to semiconductors is given before discussing combining them with other mate-

rials to form junctions essential to the functioning of solar cells – Schottky and p-n junctions – and their 

interaction with light to generate photo-carriers and their subsequent recombination. Like conventional 

solar cells, the HSCs in this work involve silicon. A brief description of silicon is therefore given before 

explaining the main operation principles of solar cells. The fundamentals behind conducting polymers is 

presented since they form the counterpart to silicon in HSCs and the polymers PEDOT:PSS and P3HT 

used in this thesis are described. Finally the optical properties of thin films and their contribution to light 

absorption in solar cells will be discussed. 

2.1. Semiconductors 

 The transport of electrons and the conversion of light to electricity (and vice-versa) in solids 

requires an understanding of the band theory of solids. This well-developed theory can be used to explain, 

among other things, the differences between metals, semiconductors and insulators, the movement of 

charge carriers in them, the optical properties of solids, and the properties associated with surfaces and 

junctions. These properties could be well understood by the Kronig-Penney model of an electron in a one-

dimensional periodic potential and the Bragg/Lowe model concerning the wave reflections in a crystal 

lattice.14 

 The Kronig-Penney model reveals the dispersion relation between the wavevector (k=p/ℏ) and 

energy of an electron.21 It defines the allowed energy ranges that the electron can exist or its electronic 

energy bands, separated by energy gaps or band-gaps (forbidden regions where charges cannot exist). The 

Bragg equation identifies that the Brillouin zone boundaries as the locations that the electron wave 

experiences strong reflections from the crystal lattice planes, and the locations where the energy gap 

minima are likely to be observed.22 

 Simplistically, as atoms are brought together to form a molecule or a lattice as in a crystal, the 

wavefunctions of the valance electrons begin to overlap. Since no two electrons can share the same set of 

quantum numbers, as bound by the Pauli Exclusion Principle, the orbitals split into discrete energy levels. 

Given the large number of atoms in a solid lattice, these discrete orbitals become closely spaced in energy, 

and the large number of closely spaced energy levels can be effectively considered as a continuum or a 
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band of allowed energies. As the atoms are brought closer together the next electron shell may begin to 

interact and split into another band of allowed energies and so forth for each electron shell. Between these 

bands can be gaps where no solution to the Schrödinger equation exists and thus elections with that 

energy cannot exist, this gap is called the band-gap (Figure 2.1). At 0 K the available electrons will 

completely fill the low-lying states. The maximum number of states in the highest occupied energy band 

corresponds to double the amount of unit cells in the lattice (2N) due to the degeneracy arising from the 

electron spin quantum number, s, of either ½ or -½. In materials such as silicon or germanium with an 

even number of valance electrons, all the states up to the band-gap are filled at 0 K, since there is an even 

number of states. The band below this gap is referred to as the valance band and the empty band above 

the conduction band. Electrons gaining energy equal or above that of the energy gap can move from 

valance to conduction band. Those with large band-gaps ( >4 eV) are insulators. Materials with a small 

band-gap (< 3 eV) that can be easily overcome with additional energy is referred to as semiconductors. 

Electrons in the conduction band can easily access additional empty states that allow for movement and 

conduction. A half-filled band is the result of an odd number of valance electrons, as in the case of metals 

such as Al, Ga, and In, and can also be easily promoted to (partially) empty higher states within the band. 

Electrical conductivity results if an electric field is enough to impart a net momentum to these electrons.  

 

Figure 2.1: Left: reduced zone scheme of E vs k for the first Brillouin zone boundaries π/a. Right: energy diagrams 

for an insulator, a semiconductor and a metal. Ec and Ev represent the conduction band and valance band 

respectively.  

In semiconductors, if energy greater than the band-gap energy can be imparted to the electrons, 

such as through thermal or photoelectric excitations (as is the principle behind solar cells), the electron 

can leave breaking its covalent bond. The electron excited into the conduction band leaves behind a 
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broken bond, called a hole. The empty states in the valance band are mobile as they can be quickly filled 

with electrons and contribute to the conductivity. These electron-hole pairs give rise to two independent 

charge carriers. At higher temperatures, electrons will naturally be excited filling a state in the conduction 

band and leaving behind a hole. The energy above which there is a 50% probability of finding an electron 

and below which a 50% probability of finding a hole is called the Fermi energy. Since in pure or intrinsic 

semiconductors there is an equal number of conduction-band electrons and valence-band holes, the Fermi 

energy lies midway in the band-gap.   

Under an applied electric field the acceleration of an electron or hole in a crystal will depend on 

the reflections of its wave function off the crystal planes and the interaction with other charges. The 

effective mass is used to signify differences in inertia of electrons and holes for different materials.23 For 

some semiconductors, the valance band maximum and conduction band minimum coincide at the same 

crystal momentum, and results in a direct band-gap semiconductor (as shown in Figure 2.1). For these, an 

increase in energy equal to the band-gap is all that is needed to promote an electron. Semiconductors such 

as GaAs, GaN and CdTe have a direct band-gap. An indirect band-gap results when the valance band 

maximum and conduction band minimum occur at different k values. Silicon and GaP belong to this 

group, for which both energy equaling the band-gap and the correct momentum are needed to excite an 

electron from the valence band to the conduction band. The distinction between direct and indirect band-

gaps is important in solar cells and diodes, which involve photons whose momentum, ൌ
௛

ఒ
 , is very small, 

making harder for an electron to make the transition through absorption alone. The extra momentum is 

usually supplied by a phonon, or lattice vibration, which is dependent on temperature.  For this reason 

excitations to the conduction band are more difficult but the converse is also true. Indirect band-gaps have 

longer carrier lifetimes and diffusion lengths because they need a phonon to recombine. 

The Fermi level in an intrinsic semiconductor is found at the mid-gap energy. However, doping 

the semiconductor through the incorporation of different impurities allows for the control of electron or 

hole concentrations and can be used to shift the Fermi energy. When doping is done using atoms with 

additional valance electrons than the constituent atoms in the crystal, they could act as electron donors. 

The excess electrons, which do not form bonds, are only weakly bound and can easily be excited and fill 

conduction band states. The result is an n-type semiconductor, an example of which would be a silicon 

crystal, belonging to Group IV, doped with a group V atom such as phosphorus. On the other hand, when 

an atom with one less valance electrons is used for doping, they act as electron acceptors, attracting 

electrons that result in hole states in the valance band and making it a p-type semiconductor. Boron, a 
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group III atom, is an electron acceptor that is commonly used to make p-type silicon. When dopant atoms 

are added, the number of electrons in the conduction band no longer equals the number of holes in the 

valance band. Instead, at room temperature, it is assumed that all dopant atoms are ionized such that the 

number of electrons (holes) in the conduction band (valance band) is equal to the number of dopants, 

since this temperature is not considered sufficient to excite a large number of electron-hole pairs. It is 

possible to change the Fermi level upon doping, so that it will lie closer to the conduction band in an n-

type material, and to the valance band in a p-type material. This results in conduction that is dominated by 

the movement of electrons in n-type or holes in p-type materials. 

2.2. Junctions 

Solar cells and light emitting diodes (LEDs) depend on an internal electric field confined to a 

small cross-section occurring at a junction where a material composition gradient exists. The field is 

referred to as a built-in potential, and it is the driving force behind the photovoltaic separation of charges 

that causes the electrons and holes to separate in opposite directions. The effective electric field can result 

from gradients in the effective density of states, work function (ϕ),Ϯ electron affinity (χ), ǂ and band-gap. A 

charge carrier density gradient by itself is not enough to generate a net current if the diffusion constants 

for elections and holes are the same, because any charges carriers separated by the field will simply 

recombine through diffusion. A potential difference only exists in an asymmetric environment where there 

is a mechanism to favour selectively removing electrons or holes, such as contact with a cathode or 

anode, respectively. The transition that forms the gradient can be achieved at the interface between two 

different materials, i,e. a heterojunction, or through a gradual change in the composition of an alloy, i.e. a 

homojunction. In a conventional p-n junction solar cell, the gradient is formed by varying the doping level 

(work function) of a single semiconductor, and/or by limiting material defects common with 

heterojunctions. 

The Fermi level, a measure of the electron energy level of a material described above, lies within 

the half-filled conduction band of a metal, or in the forbidden energy gap of a semiconductor. When two 

                                                      

Ϯ The energy required to remove the least tightly bound electron from the Fermi level in the material (Ef) to the vac-

uum level (Evac). 𝜙 ൌ 𝐸௩௔௖ െ 𝐸௙  

ǂ The energy difference between the conduction band minimum and the vacuum level. 𝜒 ൌ 𝐸௩௔௖ െ 𝐸௖ 
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materials with different Fermi levels are brought into contact, charges will flow across the junction to 

achieve the lowest energy configuration (unless, in the rare case, that the two Fermi levels align with each 

other). Unlike a metal, an internal electric field can be maintained in the semiconductor. This flow of 

electrons out of (or into) the semiconductor at the junction comes from donor (or acceptor) atoms in the 

semiconductor. This leaves the surface region from which the donors (or acceptors) originated ionized 

opposite to the bulk. These carriers originate from the space charge region, that exists one diffusion length 

from the interface (about 1 micron in silicon) beyond that the electric field falls back to zero. Charge 

carriers will flow from this space charge region until a charge gradient builds up sufficiently to prevent 

further flow, at which point the two layers are in thermal equilibrium. Unlike the electric potential, the 

electron affinity and the band-gap are material specific, and invariant with respect to the vacuum level. 

The conduction band and valance band energies must therefore change and bend to accommodate the 

changing energy levels in this region. This phenomenon is referred to as band bending. The amount of 

band bending is equal to the built-in-potential (qVbi).
14,23,24,25 

2.2.1. Schottky Junction 

In a metal-semiconductor junction, if the semiconductor is n-type, as inFigure 2.2., the space charge 

region becomes depleted of the majority carriers (electrons) and has a positive charge. This results in the 

conduction band and valance band bending upwards in this region, leading to an energy barrier for the 

electrons to overcome in order to leave the semiconductor for the metal. This barrier is equivalent to the 

difference between the work functions of the two materials. Consequently, there is an inequivalent 

impediment for the electron flow in both directions. These junctions that impede the majority carriers are 

referred to as Schottky contacts.24 For current to flow across the junction a potential must be applied to 

overcome this barrier, and this junction is referred to as a Schottky junction. 
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Figure 2.2: Fermi levels and band energies of separated and joined n-type semiconductor and metal. After contact, 

electrons flow from the semiconductor to the metal forming the space charge region (shaded area) and resulting in 

band bending and an electron barrier to electron flow in both directions. q is the electronic charge, ϕm and ϕs are the 

work functions of the metal and semiconductor, respectively, χ is the electron affinity, Evac is the vacuum-level 

energy, Ef is the Fermi energy, and Ec and Ev are the energies corresponding to the conduction band minimum and 

valance band maximum, respectively.  

In the case where the electron affinity of the metal is smaller than that of the n-type semiconductor, 

charges will flow from the metal to obtain equilibrium, leaving the space charge region electron rich and 

causing the bands to bend downward (Figure 2.3). In this case, there is no potential barrier for the flow of 

electrons from semiconductor to metal, although there is in the other direction. These junctions that freely 

allow the flow of majority carriers from the semiconductor, with the resulting current being linear with 

respect to the applied voltage, are referred as the ohmic contacts.   
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Figure 2.3: Metal and n-type semiconductor before and after contact to form an ohmic junction. Electrons flow into 

the semiconductor and a negative charge builds up on the semiconductor surface. There is no potential barrier to the 

electron flow from the semiconductor to the metal. 

Schottky junctions are dominated by the flow of majority carriers, and electrons in the metal experi-

ence a larger potential barrier than those in the semiconductor (as represented by Figure 2.2). Without any 

external potential only electrons in the conducting material with enough kinetic energy can overcome the 

barrier, which is dependent on temperature (T) and is called thermionic emission. Thermionic emission is 

determined using the equation: 14,23,24,25 

where A** denotes the reduced effective Richardson constant that is material-specific for the junction, and 

k is Boltzmann’s constant. Equation 2.1 illustrates that the Schottky diode reverse saturation current de-

creases as the barrier height increases. Besides the buildup of charges in the semiconductor to minimize 

the potential energy of the system described above, there are other sources of charges that could exist at 

the junction. These include: (i) Dangling bonds occurring at the interface since the lattices of the conduc-

tor material and semiconductor might not match along different crystallographic orientations. (ii) Diffu-

sion of metal atoms into the semiconductor causing a change in the surface potential. (iii) The presence of 

oxide layers or other impurities at the interface that could change the surface potential (e.g., silicide for-

mation in metal/silicon junctions). Since silicon interacts strongly with oxygen, it is very difficult to com-

pletely eliminate oxygen, the presence of which tends to trap positive charges due to the passivation of Si 

 𝐽௘ ൌ 𝐴∗∗𝑇ଶ exp ቀെ
௤ሺథ೘ିఞሻ

௞்
ቁ, (2.1)
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dangling bonds.26,27 The buildup of these charges causes band bending that is difficult to predict and must 

be regulated. 

2.2.2. p-n Junction 

The junction between two oppositely doped semiconducting materials forms the foundation of 

modern electronics. When electrons coming from donors in the n-type material combine with holes in the 

p-type material, both sides of the junction become oppositely charged with respect to the bulk. The space 

charge region that exists across the junction is referred to as the depletion region since it is devoid of ma-

jority carriers. The result is that majority carriers (electrons in the n-type side and holes on the p-side) 

need to overcome a potential barrier while the minority carriers (that comprise the photocurrent in a solar 

cell) could easily cross. A benefit of this is that potentially a much larger electric field can be created than 

those found in the Schottky junctions. 

 When the combination of n-type and p-type materials has reached their lowest energy configura-

tion, an equilibrium is established, in which case the diffusion current resulting from a concentration gra-

dient of the majority carriers and the drift current from the minority carriers entering the electric field 

cancel out, resulting in no net current. By taking a particle view of charge transfer and looking at the 

charge flux (electrons moves from negative to positive, opposite to the conventional current, while holes 

go from positive to negative), four carrier fluxes are considered.  These are minority carrier drift involv-

ing (i) electrons on the p-side or (ii) holes on the n-side entering depletion region driven by the built-in-

potential; and majority carrier diffusion involving (iii) electrons on the n-side or (iv) holes on the p-side 

diffusing across the junction due to the concentration gradients (Figure 2.4).  
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Figure 2.4 Band model of p-n junction showing the presence of the electric field across the depletion region and the 

contribution of hole and electron drift and diffusion. Note that electron and hole currents are used (opposite 

convention). 

 Applying an external bias to the diode will alter the electric field and the effective energy barrier 

height. Applying a forward bias, V > 0 (against the built-in-potential, negative electrode on p-type, 

positive on n-type), reduces the energy barrier resulting in a much larger diffusion flux (Figure 2.5). On 

the other hand, applying a reverse bias, V < 0 (in the same direction as the built-in-potential), increases 

the potential energy barrier, decreasing diffusion, and results in current dominated by the carrier drift flux. 

The sum of these fluxes becomes the measurable diode current density J and is given by: 

where J0 is the reverse saturation current density described below, V is the applied potential, k is the 

Boltzmann constant, and T is the temperature. Counter-intuitively the current in reverse bias does not go 

to zero. This is because drift fluxes are dominated by thermally generated (or photo-excited) minority 

carriers that produce a constant current. This current is essentially independent of the reverse bias but 

related to material properties, such as the band-gap, doping level (number of electron acceptors, NA, or 

donors, ND) , amount of defects, carrier lifetime (τn, τp) and diffusion coefficient (Dn, Dp), as well as the 

 𝐽 ൌ 𝐽௢ ቀexp ቀ௤௏

௞்
ቁ െ 1ቁ, (2.2)
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condition whether the carrier is generated on the n or p side of the junction. It is referred to as the reverse 

saturation current density, Jo, and is given by:23 

 

Figure 2.5: Diode current for the forward and reverse biases.  

2.3. Carrier Generation and Recombination 

The p-n junction provides the potential in solar cells but the photocurrent that flows through 

needs to be generated from exciting electrons that can make it to the circuit. It is important to maximise 

carrier creation while minimizing carrier loss for efficient solar cells of any type. Generation of carriers 

requires an input of energy equal to or greater than the forbidden energy gap, which can be provided 

thermally, or by lattice vibrations (phonons) or from radiation. Recombination is the destruction of carri-

ers through electronic relaxation with the release of energy.  Recombination could follow three different 

mechanisms: radiative recombination – with photon emission; non-radiative recombination – without 

phonon emission; or Auger recombination – imparting the excess energy to another free carrier (Figure 

2.6Figure 2.).25  
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Figure 2.6: Types of recombination involving Auger, non-radiative, radiative processes. 

Photogeneration is crucial to photovoltaic devices and it involves the generation of mobile charge 

carriers through the absorption of light by a semiconductor. The attenuation of light passing through a 

material is given by the macroscopic absorption coefficient α(λ), and the intensity, I, at a given thickness, 

d, can be found using the Beer-Lambert law: 

The absorption coefficient is related to the imaginary part of the refractive index:  

The total photocarrier generation rate for a material is the sum of all photon energies entering the material 

with energy above the band-gap energy that can be absorbed in the material given its thickness. Energy in 

excess of the band-gap is lost through thermalization, where the excess kinetic energy is imparted to the 

lattice through collisions that occur rapidly, on the picosecond time scale. 23,25  

Radiative recombination depends on carrier concentrations, since increasing the dopant level will 

increase recombination rate due to the increased probability of combining with a minority carrier, there-

fore R∝ np, where n and p are the carrier concentrations of electron and holes respectively.14,24,28 It is sup-

pressed in materials with an indirect band-gap since a phonon is needed for conservation of momentum. 

 𝐼ሺ𝑥ሻ ൌ 𝐼ሺ0ሻ𝑒ିఈௗ (2.4)
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 (2.5)



19 

 

Auger recombination is higher for low band-gap, doped materials at high temperatures. Of the recombina-

tion processes, non-radiative recombination processes are most affected by design and manufacturing of 

the photovoltaic devices, and steps can be taken to avoid these recombination processes, in contrast to 

radiative and Auger recombination processes, which are physical, intrinsic material processes in nature. 

Non-radiative processes usually involve trap states due to crystal impurities or defects. Shockley-Read-

Hall recombination is a prevalent non-radiative process that involves trap states in the band-gap. A trap 

state is spatially localized in the material as opposed to free carriers, and it limits the mobility of the cap-

tured carriers. A trapped carrier can be released by thermal activation, or if a carrier of the opposite polari-

ty is also captured the carriers will recombine, empting the trap. In areas where the doping concentrations 

are similar, n=p, such as in the depletion region, traps will lie close to the mid-gap, and they become ef-

fective recombination centers. Since defects are much more likely to occur at surfaces and interfaces due 

to dislocations, broken bonds and extrinsic impurities, they have a higher density of trap states and higher 

likelihood of annihilation of carriers. The result is a steady leakage of carriers to the surface resulting in a 

surface recombination current.  

2.4. Silicon Wafers and Conventional Solar Cells 

 The main contributors to the high cost of silicon wafers are the silicon purification techniques, the 

high temperatures needed for growing and doping silicon, and the difficulty in processing the very hard 

and brittle material. Since hybrid solar cells in this work employ n-type silicon and in order to understand 

the cost and time savings for HSCs, a brief description of processing silicon and conventional solar cell 

development is given below.  

To make a silicon solar cell, the silicon is first refined. Oxygen is removed from the SiO2 starting 

material, usually in the form of high-purity quartz rock, by heating it (to 1500°C – 2000°C) in the 

presence of carbon.29 

 𝑆𝑖𝑂ଶ ൅ 𝐶 → 𝑆𝑖 ൅ 𝐶𝑂ଶ 

 

The resulting metallurgical grade silicon is then reacted with HCl at 200°C allowing the impurities to 

form their halides (e.g. FeCl3, AlCl3, BCl3) so that distillation can be used to isolate the SiHCl3. SiHCl3 is 
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then reacted with hydrogen at 1100oC in a very time-consuming process (> 1 week) to produce the high-

purity silicon.30  

 𝑆𝑖 ൅ 2𝐻𝐶𝑙 → 𝑆𝑖𝐻𝐶𝑙ଷ ൅ 𝐻ଶ 

 𝑆𝑖𝐻𝐶𝑙ଷ ൅ 𝐻ଶ → 𝑆𝑖 ൅ 3𝐻𝐶𝑙 

 To produce crystalline silicon, the Czochralski method is most often used.  In this method, highly 

crystalline silicon is used as a seed for growing a single-crystal ingot from molten Si. Polycrystalline 

silicon is made simply by allowing the molten Si to cool slowly, which is much cheaper but this also leads 

to grain boundary defects.  Upon appropriate doping, the ingot bulk can be p-type (usually doped with 

boron) or n-type (doped with phosphorus).30 The ingots are then cut to size and cleaned in hot sodium 

hydroxide to remove the saw damage. For conventional solar cells, the wafer bulk is usually p-type and a 

phosphorus coating is screen printed on top. The wafer is then sintered above 1000oC to dope the surface 

through diffusion to form the p-n junction.25 An antireflection coating (commonly TiO2 or SiNx) can also 

be added. Finally, the front comb-shaped or busbar contacts and the rear electrode are added, usually 

using Ag for the former and Al for the latter because of their desirable work functions. 

2.5. Solar Cell Operation 

Conventional solar cells combine n-type and p-type materials with different electron affinities to 

form the junction, and the built-in potential is dependent on the band offset as shown in Figure 2.4. 

Wherein lays a tradeoff, since a stronger built-in potential can be created with a larger band-gap material, 

which results in less absorption and therefore less photocurrent. There is therefore a delicate balance be-

tween the two in forming high-efficiency solar cells. Heterojunctions specifically in hybrid solar cells 

present an interesting challenge since the junction types and the absorption properties must be finely tai-

lored. The operation of conventional p-n junction solar cells will be discussed below since many of the 

fundamentals are the same for HSCs.  

The p-n junction solar cells are operated in the forward bias, and they depend on minority carriers 

excited through the absorption of light. A photo-generated electron-hole pair in the bulk continues to ex-

perience a coulombic attraction. However, if the electron-hole pair is generated at or sufficiently near the 

junction, it is allowed to migrate to the depletion region. The electron and the hole can be separated upon 

entering the field, resulting in minority carrier drift that contributes to the photocurrent. For this reason, 
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the photocurrent is said to be made up of minority carriers. As described above for a diode, under the re-

verse bias condition, there is a constant current due to the thermal excitation of electron-hole pairs (creat-

ing the so-called reverse saturation current). This is similar for a solar cell, except that the carriers are 

primarily excited by the absorption of radiation, and the reverse current increases in magnitude that is de-

pendent on the light intensity and energy. Greater generation of the carriers and drift current means that 

open-circuit voltage occurs at a much larger forward bias and the entire ideal diode curve is shifted down 

such that the ideal diode equation under illumination becomes:14,25 

where Jl is the current density generated by photo carriers. The J-V curve is measured in the fourth quad-

rant, as seen in Figure 2.7, but it is conventional to reverse the sign of the current since they are assumed 

to generate power and not to consume it. By setting the current to zero, the built-in-potential can be esti-

mated by solving for the voltage:  

and is referred to as the open-circuit voltage.   

 𝐽 ൌ 𝐽௢ ൬exp ൬
𝑞𝑉
𝑘𝑇

൰ െ 1൰ െ 𝐽௟ (2.6)
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Figure 2.7: J-V characteristics of a solar cell under illumination, showing the operating point at which the area of the 

rectangle A is maximized. 

In operation the maximum power density output occurs when the product, 𝑃 ൌ 𝐽𝑉, is maximized 

as indicated by Vmp  and Jmp in figure 2.7. The fill factor (FF) is used as a figure-of-merit to quantify the 

quality of the solar cell and is defined as the ratio of the theoretical maximum power of the cell, the prod-

uct of short-circuit current density and open-circuit voltage (JSC×VOC) to the actual maximum power den-

sity output (JMP×VMP): 

For crystalline silicon solar cells, the fill factor is usually between 0.7 and 0.85.25  

 The ideal single diode equivalent circuit model is often used to describe the shape of the J-V 

curve under steady-state operation conditions (Figure 2.8), where the photogenerated electrons account 

for the source of the photocurrent, Iph. The diode is used to represent bulk recombination, where Rsh is the 

 𝐹𝐹 ൌ
𝐽ெ௉𝑉ெ௉

𝐽ௌ஼𝑉ை஼
 (2.8)
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shunt resistance representing an alternative pathway of photocarrier recombination (e.g. surface Shock-

ley-Read-Hall recombination), Rs is the ohmic series resistance that takes into account the conductivity of 

the emitter and base, electrical contacts and wiring, and finally Vcell is the operating voltage related to the 

built-in potential.  

 

Figure 2.8: Single diode equivalent circuit model for a solar cell. 

For which the output current Icell is given by: 

 

Ideally, light would be absorbed at the junction where the field is present so that electron-hole 

pairs are immediately separated without a chance to recombine. The location where absorption occurs in a 

material is a function of the absorption coefficient, and in most semiconductors a higher visible irradiation 

energy results in a smaller penetration depth. For these two reasons, the junction should be close to the 

surface where these photons are being absorbed. Hybrid solar cells are specifically designed to take ad-

vantage of this by tailoring the polymer emitter layer. To maximize the efficiency of the cells, they should 

be built with an understanding of the illumination conditions in which they will be functioning. For the 

sake of evaluation in our terrestrial environment, all cells are measured under standard testing conditions, 

i.e. at 25°C and under a black body spectrum of 5800 K (American Society of Testing Materials) shown 

in Figure 2.9. This solar spectrum is referred to as AM1.5G and it represents the sunlight reaching the cell 

 𝐼௖௘௟௟ ൌ 𝐼௣௛ െ 𝐼଴ ൤exp ൬
𝑞𝑉

𝑛𝑘𝑇
൰ െ 1൨ െ

𝑉 ൅ 𝐼𝑅௦

𝑅௦௛
 (2.9)
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through the atmosphere at an angle of 48° (from the vertical), taking into account the global (hemispheri-

cal) spectrum. It can be simulated by combining tungsten and xenon lamps. With an intensity maximum at 

500 nm, the solar spectrum is mostly made up of contributions between 250 nm and 1000 nm (5 – 1 eV), 

which makes silicon with its band-gap 1.12 eV ideally suited. 

 

Figure 2.9: Solar radiation spectrum on earth AM 1.5. Data from: American Society for Testing and Materials 

(ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation.31 

2.6. Conducting Polymers 

Conducting polymers, specifically polyacetylene, were discovered in 1977, which gained Allan J. 

Heeger, Allan MacDiarmid, and Hideki Shirakawa a Nobel Prize in Chemistry in the year 2000.32 In the 

past few decades, the field of conducting polymers has matured rapidly to a point where currently a wide 

range of applications has been envisaged. These conducting polymers have tremendous opportunities in 

polymer electronics and can function in devices that are flexible, colourful or transparent and easily 

processable. These properties make them highly advantageous for “optoelectronic” devices such as 

displays, light emitting didoes (LEDs) and especially photovoltaics. 

Conducting polymers refer to a chain of carbon atoms with alternating π and σ bonds or a 

conjugated structure, arising from the ability of carbon to have 3 different hybridizations: sp3 (alkanes), 

sp2 (alkenes), and sp (alkynes). Using ethylene as an example, there are three sp2 orbitals that form sigma 
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bonds (two with hydrogen and one with the other carbon), the two remaining p orbitals from each carbon 

atom are used to form the other covalent C=C bond, which is higher in energy and delocalized 

perpendicular to the plane formed by the sp2 orbitals. This bond orientation forms the lowest energy 

configuration of ethylene.  Above the highest occupied molecular orbital (HOMO) is the lowest 

unoccupied molecular orbitals (LUMO) to which electrons can be excited.  The energy gap between the 

HOMO and LUMO in molecules is similar to the band-gap seen in semiconductors. Adding a second 

ethylene molecule to the existing molecule could produce a butadiene molecule with four carbon atoms 

and two π bonds.  Adding a third ethylene molecule would lead to a hexatriene molecule with 6 carbon 

atoms and 3 π bonds. For (CH)2N, there are N/2 delocalized π  and π*  bonds resulting in a conjugated 

structure. Each time we add units to the chain, we add additional bonding configurations and energy 

levels, the energy levels become closer together, reducing the energy between the HOMO and LUMO to 

that of a band-gap. In semiconductors, it is the conduction band electrons that are mobile. In conjugated 

polymers the π electrons are delocalized and free to move around the polymer backbone.  However, it 

requires energy equivalent to the energy gap to switch the conjugation of C–C and C=C and the 

movement of charges. This is a simplified explanation of  intra-chain conduction in polymers, the ring 

structures and impurities of which are rarely uniform and are thereby complicating the physics used to 

describe them.33  

There are obvious limits in the intra-chain conduction in the bulk material if it were the only 

mechanism of charge transport.  The confinement of charges to a chain would not result in charge 

transport if the chain is not aligned with the field, even if it is, it would end up being trapped if there is no 

other means of hopping to another chain once isolated from the electrodes.  Inter-chain transport is caused 

by quantum-mechanical tunneling by which charges hop between chains.34  Inter-chain transport increases 

in importance as the chain length decreases. Hopping can also occur at kinks or defects or between two 

aromatic rings. As activation energy is needed for inter-chain hopping, conductivity in polymers, unlike 

semiconductors, increases with temperature. The delocalized electron cloud between two stacked ring 

structures will overlap due to van der Waals interaction. The absorption of a phonon allows an electron in 

one aromatic ring to lower its energy by moving to a nearby ring contributing to conduction.  

2.6.1. Doping  

As in semiconductors, doping causes a shift in the energy levels of the conjugated polymers. 

Doping can therefore be used to shift the energy levels to make them more conducting or change their 

absorption properties. Conducting polymers can be doped chemically by exposing them to electron accep-
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tors (p-type dopant) or donors (n-type dopant), or electrochemically. A redox reaction results between the 

dopants and the polymer chains, and together they form an ionic complex. This complex results in oxi-

dized or reduced polymer chains and their counter anion or cation, if an acceptor or donor is used respec-

tively. Halogens such as those in AsF5, and FeCl3 are often used as acceptors but so can polymers like 

PSS, while alkali metals are used as donors.33  The electrical properties including energy levels and the 

Fermi level can be altered through doping, which allows for the tunability of the material to act as an or-

ganic semiconductor or even a metal in some cases.35  As in semiconductors doping in polymers introduc-

es energy states within the band-gap just below the LUMO or above HOMO, resulting in charged quasi-

particles referred to as polarons. While doping does not stoichiometrically alter the polymer chain, it can 

cause molecular rearrangement by changing the nature of the bonds to accommodate the additional charg-

es in the chain. 

2.6.2. Excitons 

Conduction in polymers differs greatly from the generally understood conduction in metals and 

semiconductors, and is better understood using the concept of excitons, or elementary electronic excita-

tions. These quasi-particles consist of solitons, polarons, and bipolarons (Figure 2.10) and are able to 

move along the polymer chains and participate in hopping between them.33  

Conducting polymers are categorized as either degenerate or non-degenerate depending on the 

degeneracy of the ground state. Polyacetylene is an example of a degenerate polymer in which the 

alternating single and double bond configuration results in alternating bonds of different length in the 

ground state. Such a polymer chain would have an energy curve with two equal minima, where, if a 

perturbation was to cause the alternating C=C and C–C to reverse, it would have an equivalent energy 

state. Aromatic polymers, such as PEDOT, are non-degenerate since no two equivalent states could exist. 

The presence of the fixed ring structures breaks the degeneracy because any perturbation must cause 

alteration of the bond lengths. The bond lengths for joining the rings in the ground state are larger than the 

double bonds in the quinoid conformation. A perturbation causing bond alteration would have to raise the 

energy by a small amount (>0.4 eV) to overcome an activation energy.35,36 

For degenerate polymers in which an electron is added or removed, through doping, photo or 

thermal means, the electronic energy levels rearrange themselves into a new lowest energy state resulting 

in a new conjugation. The alternating conjugation could become broken with the addition or removal of a 

double bond, respectively, due to the presence of an unpaired electron. This new state is stabilized by the 
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presence of a soliton, which can be neutral with a spin of ½ or positively or negatively charged (with e) 

but no spin.35 The presence of a soliton is often associated with kinks and defects and is delocalized over 

several monomer units. The soliton is located in the middle of the band-gap. 

When an electron is added to or removed from a non-degenerate conducting polymer, the 

polymer gains or losses a charge of e and spin ½ that is localized over several monomers, which obtains a 

quinoidal conformation33. This charge is called negative or positive polaron, depending on the addition or 

removal of the charge, or radical cation or anion in chemical terminology. Addition or removal of two 

electrons results in a bipolaron with a charge of ±2e if the spins of the separate polarons combine, 

although two polarons existing on one chain is also possible.33 The bipolaron extends further over 

multiple units with the charges at the extremes, and are identified in PEDOT:PSS. Polarons and 

bipolarons are associated with energy levels within the band-gap. The locations of these excitons in mid 

gap states are ideal for characterization using typical spectroscopic means, including UV-vis, IR and 

Raman.35  

 

Figure 2.10: Elementary electron excitations in polymers.  

 

2.7. PEDOT 

2.7.1. Discovery and Synthesis 

Polythiophenes have been known to have some interesting electronic properties since 

1967.37After the conductive properties of polyacetylene was discovered, in the Nobel work of Heeger, 
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MacDiarmid, and Shirakawa, heterocycles with S or N heteroatoms were often added to help stabilize 

these polymer chains.32 The thiophene or pyrrole rings provide the rigidity and stabilize the conjugated, 

doped bipolaron state through the electron-donating function of N or S.33 It was in the 1982 work of Tour-

illon and Garnier that showed the true conducting properties (10-100 S/cm) of thiophene when it was 

electropolymerized with perchlorate or tetrafluoroborate counterions.38 This discovery started a flurry of 

work, and poly(3-alkyl-thiophenes) (P3HT) were produced but they showed poor stability in air. Howev-

er, oxygen-substituted thiophenes such as poly(alkoxy-thiophenes) showed promising stability and con-

ductive properties, since the oxygen-bearing substituent could further delocalize the free radical and posi-

tively charged forms.39 Working with this knowledge, Bayer Central Research Department attempted to 

extend the thiophene structures to bicyclic ring systems. After failing with 3,4-methylenedioxythiophene 

and 3,4-propenedioxythiophene, they achieved success with 3,4-ethylenedioxytiophene (EDOT). EDOT 

was unstable and oxidized easily but after they polymerized it by the action of iron-III chloride, it was 

found that PEDOT (Figure 2.11 b) had excellent conductive and stability properties. Jonas, Heywang and 

Schmidtberg were credited with the invention of PEDOT in 1980 and a patent in 1988.40 Shortly after, 

synthesis of PEDOT by electrochemistry using the monomer EDOT was reported.41 A year after, PEDOT 

was combined with PSS to enable suspension in water and to better facilitate its widespread usage.39  

PEDOT is a p-type conducting polymer that is electrochemically stable and transparent. It has a 

rigid backbone and planar geometry. In its oxidized state, it has high electron delocalization along its 

chain and a conductivity of 10 – 750 S/cm (as-polymerized 10-3 – 10-5 S/cm). The work function for 

PEDOT is 5.1 eV but it can be extended to 5.4 eV with an increased doping level.42 PEDOT has an optical 

absorption band maximum at 2 eV which shifts to 0.6 eV upon doping.43  

 

Table 2.1: Synthetic approaches of producing PEDOT 

Synthesis Method Details Conductivity Ref. 
Oxidative 
Chemical Vapor 
Deposition 
(Vapor phase 
polymerization) 

In this approach, a PEDOT film is produced by 
pyrolysis. An oxidant (i.e. Fe(III)Cl3) is coated on a 
substrate and is then placed into a vacuum chamber. 
The EDOT monomer is sublimated around 110oC and 
allowed to condense and polymerize on the substrate. 
The films are rinsed with methanol to remove the 
oxidant, unreacted monomer, and spent oxidant (i.e. 
Fe(III)Cl2).  

9.1 x 10-4 S/cm 
(at a Cl doping 
level of 17%) 

(42,44) 
 

348 S/cm (at a 
Cl doping level 

of 33%) 
2500 S/cm 

 
(45) 

Self-Oxidation of 2,5-Dihalogeno-EDOTs are unstable and over time 80 S/cm (46) 
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EDOT Halogens they will decompose and transform into PEDOT 
solid. A prolonged reaction time (2 years) at low 
temperature (20oC) results in higher conductivities.  

Oxidative 
Polymerization 

PEDOT is synthesized through a redox reaction of 
EDOT with metal ions from FeCl4

-, FeCl3, MgO2, 
Ce(SO4)2, and CuCl2, and followed by reaction in 
boiling acetonitrial or polypyrrole, and benzonitrile. 
Peroxodisulfates such as NaS2O8 and hypervalent 
iodine compounds, such as Koser’s Reagent, are good 
oxidants that form conductive PEDOT.  

(1 – 600 S/cm) (47) 

Oxidative 
Polymerization 
using Fe(TOS)3  

The highest conductivity obtained using oxidative 
polymerization is with iron(III) complexes. EDOT is 
dissolved in a weak base imidazole solution, and then 
added to a solution of Fe(TOS)3 at 100oC. The 
mixture is then spin-coated onto a substrate. 
Polymerization occurs upon annealing at 110oC.  The 
films are washed with methanol. 

750 S/cm (48) 

Electrochemical 
Polymerization of 
PEDOT 

Uniform PEDOT films can be made to polymerize at 
the cathode in a potentiostatic or galvanostatic cell. 
This method is effective in doping the films since the 
choice of counterion is limited only by the solubility 
of the salt in solution.  

650 S/cm (49) 

 

2.7.2. PEDOT:PSS 

 The insulating PSSH anion (Figure 2.10 a) was first used in 1990 as the host polyelectrolyte and a 

template for PEDOT synthesis since the PEDOT polycation is insoluble in any solvent.50 Therefore the 

PEDOT:PSS polyelectrolyte complex is formed in situ.  PSS is durable and soluble in water, and it has no 

absorption in the visible region. The sulfonic acid group makes it strongly acidic and polar. Upon adding 

PSS in excess to the solution, the solubility of the EDOT monomers is increased, and PSS acts as an acid 

catalyst for the reaction. With a pH <3, the solution becomes more acidic as the reaction progresses.39 

Peroxodisulfates with monovalent cations (Na+, K+, NH3
+) are used as the oxidizing agent often in 

combination of a Fe(III) salt as the catalyst for the polymerization of EDOT in water.51 

 The weight ratio of PEDOT:PSS typically ranges from 1:2.5 to 1:20, which corresponds to a 

thiophene group to sulfonic acid group molar ratio of 1:1.9 to 1:15.2, and this weight ratio will affect 

many physical properties of the films. PEDOT has a typical molecular weight of 1000 – 2500 g/mol 

(representing 6 to 18 repeating EDOT units) while PSS has a typical weight of 400,000 g/mol.52,53 The 

PEDOT:PSS dispersions in water, in most cases, are below 2% with a viscosity under 80 mPas. Given the 

different unit spacing between charges in PEDOT compared to those of PSS, it is assumed there is no 
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ordering at the molecular or supramolecular level and the arrangement is expected to be of “spaghetti” 

type. The excess PSS surrounds the non-polar PEDOT, forming a micellar gel particle analogous to a 

nucleosome neckless (Figure 2.10 c). The size of the gel particles in solution ranges from 10 nm to 1 μm 

(but shear energy can be used to reduce the size). A larger gel particle results in greater conductivity but 

lower viscosity.51 The gel particles themselves are entangled to a degree and are held together by 

hydrogen bonding between the sulfate groups of PSS.54  

 

Figure 2.11: Chemical structures of a) PSS and b) PEDOT. c) In-situ polymerization on PSS and the rearrangement 

of the polyelectrolyte complex into micelles. 

 

PEDOT:PSS is sold by Heraeus under the brand name CleviosTM, which offers different grades 

with varying PEDOT:PSS weight ratios, viscosities and unsaturated conductivities varying from 10-5 – 1 

S/cm. The popular Clevios PH1000 has a conductivity of ~1 S/cm, 1:2.5 PEDOT:PSS by weight, a 

boiling point 100oC, pH 1.5-2.5, and a granular size around 30 nm.55 

2.7.3. PEDOT:PSS Film Properties 

 The as-deposited PEDOT:PSS films are mechanically stable with a Young’s modulus of 0.9 GPa 

at 55% relative humidity (rH) and 2.8 GPa at 23% rH.56,57 Films are thermally stable up to 200oC,58 above 

which PSS will start to fragment at 250oC and undergo carbon oxidation above 250oC.59 PEDOT:PSS is 

optically transparent in the visible range, with PSS absorbing in ultraviolet and charge carrier scattering of 
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PEDOT observable in the infra-red range. PEDOT is sensitive to light induced degradation by light-

enhanced oxidation in the presence of oxygen. Sulfoxide and sulfone structures can form on the thiophene 

ring, or a hydroxyl group can form on the α-carbon atom next to the thiophene sulfur impeding 

conductivity.60  

 PEDOT:PSS shows stable p-type conductivity, which can be described by the variable range 

hopping (VRH) model, but only holes contribute to the charge transport since electrons will immediately 

be trapped by positively charged (oxidized) sites on the chain. 61 The work function for PEDOT:PSS is 

relatively high, 5.13 ±0.05 eV, with the Fermi level near the middle of the band-gap.62,63  

For most semiconducting polymers deposited under ultra-high vacuum conditions, the alignment 

of the Fermi levels when interfaced with a metal occurs through a shift in the Fermi level in such a way 

that the vacuum level changes linearly when there is a change in the work function of the metal substrate. 

These types of interfaces fall within the Schottky-Mott regime, in which the vacuum level of the polymer, 

ϕp, changes linearly with the work function of substrate, ϕm, such that 
డథ೛

డథ೘
ൌ 1 and the Fermi level of the 

polymer is free to move within the band-gap.64 However, PEDOT:PSS does not follow this trend.  Instead, 

it approaches the Bardeen limit (
డథ೛

డథ೘
→ 0) similar to that demonstrated by small molecules and 

contaminated surfaces. 62,65 It is not until the outer PSS layer of the micellar grains is removed that mid-

gap Fermi-level pining, consistent with a higher density of states of a heavily p-doped  polymer 

(polarons), is identified. This indicates that PEDOT:PSS could equilibrate its Fermi level with that of a 

substrate by means of interface charge transfer because of its high density of charge carriers. A thin layer 

of insulating PSS will, however, reduce the interaction. 64 More importantly for solar cells and diodes, 

PEDOT:PSS exhibits a metallic behavior when interfaced on various metal substrates. The alignment of 

the Fermi level occurs through charge transfer at the polymer-metal (or polymer-semiconductor) 

interface, as described in Section 2.2. 

2.7.4. Secondary Doping 

It has been discovered that the conductivity of PEDOT:PSS can be increased by orders of 

magnitude simply by adding a co-solvent such as ethylene glycol to the polymer solution or by post-

treatment by applying a solution to the as-deposited polymer. This is referred to as secondary doping 
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because it results in an increase in the conductivity of the already doped polymer,ǂ which can be 

maintained even after the removal of the secondary dopant.66 Secondary doping usually causes a change 

in the morphology or an increase in the crystallinity. A range of chemicals including organic solvents, 

polyols, ionic liquids, surfactants and salts have proven to increase the conductivity of PEDOT:PSS films. 

The highest conductivity for the films have been produced by post-treating the films with sulfuric acid 

(4380 S/cm-1) but the strong acid is very destructive to the film.67 

The increase in conductivity is directly related to the film forming process where changes are ob-

served both at the surface and in the bulk after adding a secondary dopant. A reduction in the amount of 

PSS can be seen from atomic force microscopy (AFM) and X-rap photoelectron spectroscopy (XPS) and 

this has reduced the tunnelling barrier to charge transport between PEDOT domains. 63,68,69 Ouyang et al. 

observed a change from the benzoidal, coiled structure of the PEDOT to the more elongated quinoidal 

structure. The quinoid conformation is due to bond distortion caused by the addition of a charge carrier 

(in this case, a hole) to the chain. It breaks up the degeneracy allowing for greater delocalization and the 

movement of charge carriers along the conjugated structure. Unlike polyacetylene with a linear chain of 

conjugated bonds, altering the bonding in an aromatic polymer such as PEDOT also has an effect on the 

energy levels.35 An activation energy must be overcome to raise the energy state to that of the quinoid 

conformation. This can be done through doping or photo-excitation and is associated with the formation 

of bipolarons in PEDOT. The bipolarons are delocalized and they tend to be bound the quinoidal confor-

mation over multiple monomer units. 

2.8. P3HT 

Poly(3-hexylthiophene) (P3HT) is another popular p-type conducting polymer used in thin-film 

transistors and in organic heterojunction solar cells when combined with (6,6)-phenyl-C61-butyric acid 

methylester (PCBM), because of the excellent hole mobility >1 cm2/Vs of P3HT.70  P3HT has HOMO – 

LUMO gap  of 2.28 eV, with interesting self-organizing properties and multiple crystalline structures. For 

these reasons, P3HT is also a good candidate for application in HSCs. 

                                                      

ǂ Primary doping refers to the addition of small quantities of an ionic material to increase the conductivity of the pol-

ymers as described above in the doping section. 
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P3HT consists of a conducting thiophene backbone with hexyl side chains attached to the third 

carbon, which increase its solubility and help with crystallization (Figure 2.12). Its conductive properties 

and crystallinity are highly sensitive to the molecular weight, and a high regioregularity is desired. Syn-

thesis of regioregular P3HT makes use of the Grignard metathesis reaction, and Soxhlet extraction is used 

to isolate the desired product by molecular weight. P3HT is non-conducting in its natural state and only 

becomes conducting upon the addition of charges through doping. The HOMO level occurs at -5.12 eV 

and the LUMO is at -2.84 eV.71,72  

 

Figure 2.12: Placement of the hexyle side chains to produce (a) regioirregular, and (b) regioregular poly(3-

hexylthiophene). 

Regioregular P3HT is a rigid, planar polymer. Because of the strong intermolecular interactions, it 

will form ordered crystalline lamella and aggregate into spherulites, elongated 1D nanocrystals or fibers. 

Crystallinity is developed perpendicular to the polymer backbone, which is caused by the stacking of pol-

ymer chains due to the strong π-π interaction and repulsion arising from the hydrophobic interactions of 

the alkyl side chains. The polymer chains stack or zig-zag, along the fibrils folding back on themselves. 

The width of the nano-fiber is proportional to the temperature and molecular weight.73 Crystal formation 

can occur in solution or after deposition. Chain orientation with regards to the substrate can be edge-on, 

face-on, or even standing chain. The edge-on orientation is by far the most common (Figure 2.13) and is 

obtained under equilibrium conditions without being kinetically quenched by rapid drying. Charge 

transport is highest along the chain axis (c-axis) and π-stacking direction (b-axis) and worst through the 

insulating side chains (a-axis).74 
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Figure 2.13: Edge-on chain orientation and stacking of P3HT (Reprinted from Ref. 74 with permission from Wiley-

VCH). 

2.9. Thin Films 

The ability for solar cells to absorb light depends not only on the nature of its component 

materials but also strongly on their surface texture and reflectivity. It is only the absorbed light that can 

contribute to the photocurrent. As the PEDOT:PSS layer in a HSC is effectively transparent, it plays two 

important roles: (1) as the emitter layer to produce the built-in potential, and (2) as an optical thin film 

with the appropriate thickness, optical properties, and surroundings (other layers) to control the 

transmittance of light.  

For efficient utilization of light, it is desirable to minimize the amount of reflection and to 

facilitate light absorption at the p-n junction. An anti-reflection coating can be tailored to optimize both of 

these functions. Reflection or transmittance at an interface is dependent on the refractive index of both 

media, the angle and polarization of the incident light and the proportion reflected can be given by 

Maxwell’s equations. For reflection: 

 
𝑅 ൌ ൬

𝑛ଵ െ 𝑛଴

𝑛ଵ ൅ 𝑛଴
൰

ଶ
 (2.10) 
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where n0 and n1 are the complex refractive indices of the two media. When coating is applied to a surface, 

incident light will be reflected twice, once at the front surface and again at rear of the coating. When the 

phases of both these electromagnetic waves are 90° out of phase, they will undergo destructive 

interference reducing the reflectance (or constructive interference if they are 180° out-of-phase). For 

normal incidence, this will occur when the thickness of the film (d) is an integer value of a quarter of the 

wavelength of the incident light, 𝑑 ൌ
ఒ

ସ௡భ
, or if the index of refraction of the middle film (n1) film is the 

square root of the product of the surrounding films (n0 and n2) 𝑛ଵ ൌ ඥ𝑛଴𝑛ଶ. By using the appropriate 

index of refraction and film thickness, light can also be trapped through total internal reflection and be 

used in the solar cell. Since the solar spectrum is broad, the optimal wavelength for absorption should be 

in the middle of the spectrum.ǂ Often multiple anti-reflective coatings are added to provide minimal 

reflectance over a wider range of wavelength.  

Since reflection and transmission depend on the angle of incidence, texturing or roughening a 

surface will scatter the incident light and can therefore be used to increase the absorbance. A randomizing 

texture is often used on the rear surface of the cell to reflect the unabsorbed light back, causing total 

internal reflectance and effectively increasing the path length and increasing the probability that it can be 

absorbed.Ϯ  

                                                      

ǂ For conventional silicon solar cells, reflectance is minimized in the red region corresponding to the high solar irra-

diance. However this makes them reflective in the blue region, causing them to often appear blue or violet. 

Ϯ Asymmetrical front surfaces are used to increase the transmittance into the cell and increase the path length 

through it but they are mostly used with tracking systems with a constant angle of incidence.  
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3. PEDOT:PSS Film Post-Treatment – Optimization and Analysisǂ  

3.1. Introduction 

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a polyelectrolyte 

complex, in which the conducting PEDOT cation is polymerized in the presence of the non-conducting 

PSS anion that cannot be isolated from it. The long chains of PSS are thought to surround the rigid 

PEDOT resembling a micellar structure forming a very stable microdispersion in water. The PSS polymer 

chains reduce conductivity by screening and limiting charge delocalization to single PEDOT chains, and 

reducing variable range hoping (quantum-mechanical tunneling) of charge carriers from one chain to 

another. PSS will also induce defects and kinks into the PEDOT chain, producing mid-gap levels and 

other charge carrier traps. Moreover, it increases entanglement and inhibits the polymer from forming 

crystalline domains. A reduction in the detrimental effects of PSS on the conductivity and morphology of 

PEDOT should be beneficial to the performance of PEDOT:PSS containing optoelectric devices such as 

hybrid solar cells (HSCs). The as-prepared conductivity of films made from PEDOT:PSS dispersions 

(CleviosTM PH1000) are low, below 1 S/cm at room temperature. Because of this, researchers have sought 

to reduce the influence of PSS and its impact on PEDOT chains. Two techniques that have proven 

effective are addition of co-solvents to the aqueous PEDOT:PSS solution, and post-treatment of the 

deposited films with a solvent or through chemical vapor deposition. These different techniques result in 

vastly different changes in the properties of the PEDOT:PSS films and their effect on PEDOT:PSS/planar-

Si HSCs. 

3.1.1. PEDOT:PSS additives / Co-Solvents 

In 2002, Kim et al.75 increased the conductivity of PEDOT to 80 S/cm by adding dimethyl 

sulfoxide (DMSO) to the PEDOT:PSS solution. Since then, much research has been devoted to further 

increase the conductivity and to understand the fundamental processes causing the increase. Additives that 

have successfully increased the conductivity include salt solutions, surfactants, acids, and polar organic or 

high dielectric solvents. The additives used and their effectiveness are listed in Table 3.1 

                                                      

ǂ This section is made from one of my publications: McGillivray Donald, Thomas Joseph P., Abd-Ellah 

Marwa, Heinig Nina F., Leung K. T., 2016,  8, pp 34303-8. Copyright (2016) by ACS Applied Materials 

and Interfaces.137 
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Table 3.1: Conductivity enhancing co-solvents added to PEDOT:PSS solutions 

 Additives Conductivity 
(S/cm) 

Reference

Salts 1-butyl-3-methylimidazolium 
tetrafluoroborate 

136 (76) 

1-butyl-3-methylimidazolium bromide 118 (76) 
Zwitterions 94 (77) 
InI3 191 (77) 
CuBr2 187 (78) 

Surfactants Sodium dodecyl sulfonate 80 (79) 
Zonyl FS-300 47 (80) 

Point polar organic 
solvents 

Dimethylformamide 30 (75) 
Sorbitol 91 (81,82,61) 
Diethylene glycol 10 (63) 
Ethylene glycol - (83) 
Glycerol - (84) 
Methanol 70 (85) 

Acids Acetic acid 200 (86) 
Propionic acid - (86) 
Hydrochloric acid - (86) 
H2PtCl6 1094 (87) 
Sulfuric acid 100 (88) 

Base NaOH 10 (89) 

 

Organic/inorganic salts have good ionic conductivity and affinity for conducting polymers. They 

are often used in conjunction with conducting polymers in polymer-based electrochemical devices. The 

ions remain imbedded in the conducting polymer after annealing, acting as a dopant that adds charge 

carriers to PEDOT chains.76 This can also be problematic since the ions could diffuse under an electric 

field and deteriorate the performance of the device. Ouyang et al.78 found that the increase in conductivity 

was related to the softness parameter of the cation (soft Lewis acid), which is related to the binding 

energy of the metal cation to the PSS anion. The cation can interact with both the positively charged 

PEDOT and negatively charged PSS, screening the coulombic attraction between them and swelling the 

micellar particles in solution thereby allowing for rearrangement of PEDOT into a more linear 

confirmation. The lower affinity of PSS to PEDOT after the addition of ionic liquids can facilitate PSS 

being freed from the globular polymer network resulting in a lower concentration of PSS in the final 

film.77  
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Similarly, acids can induce PEDOT:PSS phase separation resulting in increased conductivity 

through protonation of PSS. PSS- + H+ → PSSH. An acid with low pKa can give rise to a higher 

conductivity, assuming that other properties that could have an effect such as viscosity are the same.90 

Surfactants added to the solution can also induce a phase separation and a change in the linear 

conformation of PEDOT but only up to a certain point, because they tend to be bulky and insulating and 

they cannot be removed after film deposition. However, their primary function is to increase the adhesion 

of the film onto the substrate and to enhance the overall flexibility.76  

Polar organic solvents used as co-solvents allow for charge screening between the cationic 

PEDOT and its surrounding anionic PSS. They can be less bulky and more easily penetrable between the 

PEDOT and PSS ions than some of the other reagents discussed. The decreased coulombic attraction can 

facilitate de-entanglement of PSS and will be discussed below. 

3.1.2. Post-Treatment 

Post-treatment is a technique of increasing the conductivity of PEDOT:PSS films after deposition 

usually by immersing the film in a solvent. Similar types of reagents can be used for post-treatment as the 

additive method mentioned above. The treatment of films after deposition can cause a greater change in 

morphology and conductivity through swelling of the polymer film, doping, or PSS removal. Moreover, 

post-treatment has the advantage that there are no concerns regarding the solubility or phase separation of 

the polyelectrolyte complex found in the additive method. 

Post-treatment can have a large effect on the film conductivity. Films treated with methanol had a 

conductivity of 1362 S/cm91 compared to only 69.7 S/cm when methanol was added as co-solvent.85 

Similarly, treating with sulfuric acid had led to a remarkably high conductivity of 2400 S/cm92 compared 

to only 100 S/cm when used as a co-solvent.88 It also has the benefit that repeated treatments can be 

performed to get further gains. A very high conductivity can be achieved when the films are treated with 

acids like sulfuric acid and oxalic acid (1900 S/cm), malonic acid (2210 S/cm) and methansulfonic acid 

(2870 S/cm).90 However, their concentrations have to be monitored or the acids can easily induce defects 

such as micropores at the interface or pinholes in the film.  

The proposed conductivity enhancement mechanisms reported in the literature can be broken 

down into charge screening between PEDOT and PSS (using polar organic solvents, surfactants); or 

neutralizing PSS and doping PEDOT (using ionic liquids, acids). In this chapter, polar organic solvents 
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ethylene glycol and methanol are studied to determine the effects of vapor pressure and dielectric constant 

on the films. Parameters including reduction of film thickness, change in absorbance, swelling, 

conductivity, and morphology that affect solar cell performance were carefully examined.  

3.2. Experimental Details  

The HSCs were prepared on 1×1 cm2, n-type (100) phosphorus-doped silicon substrates with a 

resistivity of 1-2 Ω cm and thickness of 200 μm (Virginia Semiconductor Inc.). The substrates were 

cleaned by sonication in acetone, isopropyl alcohol and washed with filtered high-resistivity water (18.2 

MΩ-cm ). The native silicon oxide layer on the wafers was removed with hydrofluoric acid (2 vol%) and 

then allowed to regrow on the polished side in air for 2 hours. Aluminum is used as the anode because of 

the good alignment of the Fermi level of Al with the conduction band edge of n-type silicon. To form the 

back electrode, Aluminum was sputter-coated with a magnetron sputtering system (EMS575X) 

immediately after the HF treatment to limit the oxide layer and to form a consistent ohmic contact on the 

Lambertian textured back side of the wafer.ǂ   

3.2.1. PEDOT:PSS Film Formation: 

Spin coating is a simple method of producing uniform films of a few nanometers to a few 

micrometers by applying a dispersion or “ink” to the substrate, spreading it by spinning onto the substrate 

and then drying the molecules on the substrate (Figure 3.1). The ink discussed here is PEDOT:PSS 

(CleviosTM PH1000) with the addition of 7 wt% ethylene glycol and 0.25 wt% florosurfactant (Zonyl FS-

300) to increase its conductivity and wettability, respectively, unless otherwise noted.80,93 The centripetal 

force combined with the surface tension of the ink removes excess solution leaving a uniform film.  There 

are a number of considerations when spin-coating PEDOT:PSS onto silicon wafers, such as the spin speed 

and time, and ink application via static or dynamic deposition, all of which could affect the device 

performance. One major consideration is the film thickness (t), which is related  to the spin speed (w) by 

𝑡 ∝ 1 √𝑤⁄ , as shown in Figure 3.1 a) inset. The drying rate related to the spin time and speed is important 

to the π-to-π  stacking and crystallization of the films. A high drying rate can quench molecular motions 

into a thermodynamically unfavorable configuration, limiting the π-to-π stacking and ultimately 

                                                      

ǂ A Lambertian textured surface is patterned with rough, micrometer-sized features that result in the diffuse scatter-

ing of light and aid in the light trapping ability of solar cells through the total internal reflectance.161   
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interchain transport. After spin coating for 2 minutes at 6000 RPM, the polymer still contains a degree of 

moisture. The film is in a swollen state, with a thickness about 4 times its final thickness, which decreases 

with the continued evaporation of water (Figure 3.1 b)). Because of this, the films were left at room 

temperature for 10 minutes before annealing at 110°C to drive off any remaining moisture. Figure 3.2 

shows a representation of this process. 

 

Figure 3.1: (a) Film thickness of PEDOT:PSS (Clevios PH 1000) film (a) as a function of spin speed and (b) as a 

function of drying time. The inset of (a) shows the inverse square-root relation of the spin speed with thickness, 

while (b) shows the reduction of swelling and relaxation of film with evaporation after spin coating. 
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Figure 3.2: Typical steps in fabricating a HSC.  

Post-treatment was done by adding 80 μL of a binary mixture of methanol (Sigma Aldrich, 

≥99.9% purity) and ethylene glycol (VWR, ≥99.0% purity) with known volume fractions onto the 

PEDOT:PSS film. The solution was left on the surface for 2 minutes to insure penetration into the film 

and stop the Marangoni eddiesǂ that result from mixing solutions with a large difference in surface tension 

and vapor pressures. After spin coating at 6000 RPM for 2 minutes, the substrate was placed on a hot 

plate for 10 minutes.  

10×10 mm2 quartz substrates (SPI Supplies), 1 mm thick, were used for UV-vis experiments. 

They were prepared identically as the Si substrate. Absorbance/transmittance measurements were done by 

using a Perkin Elmer Lambda-1050 UV-Vis spectrometer, with the baseline obtained on the pristine 

quartz substrates before the film was deposited. A Filmmetric F40-UV thin film analyzer was used to 

collect reflectance spectra and to determine the film thickness, which was also verified by using a KLA 

Tencor P-6 profilometer.  Conductivity measurements were done on glass substrates using the four-point 

                                                      

ǂ The Marangoni effect refers to turbulence in a mixture caused by differences in surface tension of two fluids. Gra-

dients arise since the liquid with a higher surface tension will naturally tend to lower its total energy by bonding 

with the surrounding liquid, causing mass transfer from regions with low surface tension. The effect is opposed by 

gravity or a temperature gradient causing turbulence until equilibrium is achieved likely with the evaporation of the 

lower surface tension fluid. This is the effect that causes “wine tears” in one’s favorite alcohol.   
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probe method in a van der Pauw configuration (Ecopia HMS-5300). Raman spectra were collected with a 

785 nm laser in a Bruker Senterra spectrometer. AFM images were collected by using an Asylum Cypher 

AFM in AM/FM mode unless otherwise noted. 

3.3. Results and Discussion 

3.3.1. Ethanol/Methanol Post-treatment  

Co-solvents, such as ethylene glycol (EG) or methanol (MeOH),85,91 have been used to improve 

the performance of PEDOT:PSS based organic solar cells. 16,94,95 Post treatment shows similar 

enhancements using similar solvents. 68,69 For both co-solvent and post-treatments, the proposed 

mechanism for enhancement is through phase segregation of PEDOT and PSS caused by charge screening 

from the solution and a reduction of the coulombic attraction between them.69 This reduced interaction 

allows for rearrangement of the PEDOT segments into a more linear conformation and a greater 

delocalization of charge. The mechanism behind the phase segregation is not yet well understood. Both 

methanol and EG post-treatments show conductivity enhancements of the same order of magnitude and 

similar mechanisms have been proposed. 83,96,97 It is, however, unclear why these different solvents, with 

vastly different properties (Table 3.2), have produced the same result on the conductivity, while water, 

which shares similar properties, does not. In this Chapter, the physical and electrical properties of films 

treated with different solvents are examined to elucidate the mechanism that causes the observed changes 

and in their application to hybrid solar cells. 

Table 3.2: Properties of solvents used as co-solvents and for post-treatment of PEDOT:PSS solution. 

 Methanol 50 vol% EG/MeOH Ethylene Glycol DMSO Water
Density (g/cm3) 0.791 0.985 1.113  

(1.04 @ 117oC )a 
1.100 0.998

Viscosity (mPa*s) 0.587 3.824 20.806  
(2.06 @ 100oC)a 

1.996 0.890

Molar Volume (cm3/mol) 40.482 47.357 55.757 - 18.05
Dielectric Constant 32.6 - 37.7 47 78.54
Boiling Point (oC) 64.6 78.7 195 189 100 
Vapor Pressure (kPa at 20oC ) 13.02 - 0.008 - 2.3 
Dipole Moment (μ Debye) b 1.69 - 2.38 3.96 1.85 

a. Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, 
S.; Choulis, S. a. Thermal Degradation Mechanisms of PEDOT:PSS. Org. Electron. physics, Mater. 
Appl. 2009, 10 (1), 61–66. 98 

b. CRC handbook of chemistry and physics; a ready-reference book of chemical and physical data, 
85th ed., 2004-2005. (2004, 12). Scitech Book News, 28 
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UV-vis and thickness measurements were conducted on 85-nm-thick films before and after the 

post-treatment in order to determine the extent of PSS removal and the reduction in the film thickness, 

respectively (Figure 3.3a). The removal of PSS from PEDOT:PSS films can be monitored by the intensity 

reduction of the absorption band at 193 nm, associated with the benzene rings of PSS, before and after 

post-treatment (Figure 3.3b).16,82 The greatest reductions in the film thickness and in the PSS absorption 

band intensity have been found for films post-treated with a 1:1 MeOH:EG mixture, which removes 51.7 

±2.8% of the film. For comparison, water reduced the thickness by 11.3 ± 4.3%. Experiments with con-

secutive post-treatment cycles on the same film were also attempted.  The second cycle reduces ~10% of 

the thickness, after which only a slight decrease can be detected, indicating a limit to how much material 

can be removed through post-treatment. 

 

Figure 3.3: a) UV Absorbance spectra of PEDOT:PSS thin film treated with different MeOH/EG ratios. b) Percent 

reduction of film thickness and relative intensity reduction of the PSS absorption band at 195 nm for MeOH-EG 

solutions with different MeOH/EG ratios.  

The conductivity was also examined and found to be greatly enhanced from 1 S/cm to 637 S/cm 

(±58 S/cm) with the addition of co-solvent to the stock PEDOT:PSS solution. It further increased, by over 

a factor of two, after post-treatment. Evidently, post-treatment using the MeOH-EG binary mixture leads 

to the film conductivity enhancement that follows a similar trend as the UV-vis and film thickness, with 

the highest recorded value of 1431 S/cm (the average was 1334 ±129 S/cm) found for a 1:1 mixture 

(Figure 3.4 a). A considerable increase in the conductivity by at least 10% relative to those of single-
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solvent post-treatment is obtained by the post-treatment using the 1:1 binary mixture. The conductivity 

does not improve notably with consecutive treatments so only one cycle was needed. 

 

Figure 3.4: (a) Comparison of conductivities of the pristine, co-solvent-added and post-treated PEDOT:PSS films. 

(b) Raman spectra showing the structural changes of PEDOT to a more quinoidal conformation with post-treatment. 

Raman spectroscopy is very sensitive to structural changes in polymers and is useful in studying 

secondary doping in conjugated polymers.99 The vibrational modes of PEDOT and PSS were followed 

using a 785 nm excitation line for pristine, co-solvent-added and post-treated films (Figure 3.4 b). The 

785 nm band was chosen for its proximity to the bi-polaron electronic transition of PEDOT at 850 nm, 

which is enhanced by resonance effects.100 Bands for PEDOT lie mostly in the 1100 – 1600 cm-1 range. 

The most intense band located near 1425 cm-1, to which the spectrum is normalized, is assigned to the 

Cα=Cβ symmetric stretching mode, while the two weaker bands at 1532 cm-1 and 1563 cm-1 correspond to 

the Cα=Cβ asymmetric stretching modes.101  The bands at 1368 cm-1 and at 1256 cm-1 are attributed to the 

Cβ–Cβ stretching and Cα–Cα inter-ring stretching, respectively.99  Broadening of the 1425 cm-1 band is 

evident with the addition of co-solvent, and further broadening is found with post-treatment. The relative 

intensity of the 1368 cm-1 band increases with the addition of a co-solvent and then again with post-

treatment. We also observe a slight intensity increase and a red shift for the Cα–Cα inter-ring stretching 

mode at 1256 cm-1. These changes are often associated with a change in the linear structural arrangement 

from the benzoidal conformation to a more quinoidal-like conformation.99 
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Unlike doping, the post-treatment methods are unlikely to provide any additional charge carriers, 

and they produce only a change in structural arrangement that leads to stable electronic redistribution, 

commonly referred to as secondary doping. The higher conductivity is attributed to the presence and 

greater delocalization of quasi particles, polarons and bi-polarons.16 As mentioned above these free charge 

carriers are also detectable in the IR region of the absorbance spectra discussed below.  There was not a 

large difference in the Raman or IR region when comparing methanol to ethylene glycol, or when 

multiple post-treatments were attempted, indicating that all solutions induce a similar electronic change. 

The loss in thickness and reduction of PSS bands in the absorption spectrum provide evidence for 

the removal of hydrophilic PSS from the film. This was confirmed by Raman and ATR-FTIR on the white 

precipitate that could be seen with a microscope when the post-treatment wash solution was evaporated 

off (Figure 3.5a). The Raman done on these features did not detect any discernible PEDOT peaks. The 

ATR-FTIR on them shows a sharp PSS absorption band without any characteristic bands of PEDOT 

(Figure  3.5b). The main absorbance peaks for PSS at 1167 and 1125 cm-1 represent asymmetric stretching 

vibrations while those at 1035 and 1005 cm-1 correspond to the symmetric stretching vibration of –SO3
- 

pendent. Peaks at 830, 772, and 670 cm-1 can be attributed to the =C–H out of plane deformations while 

the peaks at 3048 and 3186 cm-1 are assigned to the aromatic =C-H stretching mode. The peak at 2920 

cm-1 belongs to alkyl C-H stretching.102 Absent from the PSS precipitate are PEDOT peaks, with the fea-

tures at 1529, 1413 and 1368 cm-1 corresponding to the aromatic –C=C– component in the thiophene 

backbone.99 The bands at 1154, 1118, and 1060 cm-1 belong to C–O–C of the dioxane component, while 

the features at 945, 861, and 707 cm-1 correspond to C–S stretching mode of the thiophene ring.  
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Figure 3.5: (a) Optical microscope image of the PSS precipitates obtained after the methanol-ethylene glycol 

solution is evaporated off.  (b) ATR-FTIR spectra of the PEDOT:PSS film and the PSS precipitate desorbed from the 

film. 

3.3.2. Film Morphology 

Morphological changes can be observed among different films with AFM (Figure 3.6). The 

average RMS surface roughness is seen to increase from 0.96 ± 0.08 nm, to 1.56 ± 0.18 nm, and to 1.81 ± 

0.24 nm for the respective pristine, co-solvent-added and post-treated films. At the same time better 

defined domains appear.  This evolution is especially evident in the frequency images, depicting the third 

fundamental cantilever frequency in tapping mode, which are much more surface sensitive to the soft PSS 

(bright network) than the hard PEDOT (dark domains)(see appendix 1).103 Evidently, the domains become 

larger and less elongated with the addition of co-solvents, and even more so with the post-treatment. The 

average area of the domains increases from 21.9 nm2 to 35.2 nm2 to 183 nm2, while the aspect ratio 

increases from 0.308 to 0.312 to 0.428 for the respective pristine, co-solvent-added and post-treated films. 
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Figure 3.6: AFM images (Topography - top row, Frequency - bottom row) of pristine (left column), co-solvent-

added (middle column) and post-treated films (right column), showing the segregation of PEDOT and PSS with 

secondary doping and the formation of nanodomains. 

AFM investigations performed on films before and after post-treatment at the same spot were 

remarkably similar. Figure 3.7a) shows the area adjacent to a scratch on the film before and after post-

treatment while Figure 3.7b) depicts a 33% decrease in the film thickness after the post-treatment. The 

films have outcrops of agglomerated PEDOT:PSS on the surface, a result of not filtering the solution, but 

these outcrops provide easy identification of the same location after post-treatment. Along the edge of the 

scratch is the accumulation of PSS. The RMS roughness of the film increased after treatment (from 1.4 to 

1.8 nm) but the standard deviation decreased from 1.3 to 1.2 nm, indicating that after treatment the films 

were rougher over short lengths but more uniform over longer scales). Features that were present before 

could also be identified after post-treatment, despite many reports from other groups that a high 

concentration of PSS lies at the surface of the PEDOT:PSS film. 63,75,98,91  The similarities of the before 

and after images indicate this is not the case. The reduction in thickness is the cause of PSS being 

removed uniformly throughout the film.  



48 

 

AFM on the white PSS deposits obtained from evaporation of the wash solution shows that they 

are extraordinarily smooth and different from the bulk film, with a RMS roughness of 0.23 nm, which can 

be expected for a homogeneous polymer.104 These results indicate that post-treatment leads to the disen-

tanglement of PSS from the films remarkably without the removal of much PEDOT. 

 

 

 

Figure 3.7: a) AFM perspective images for a scratched area of the PEDOT:PSS film (10×10 μm2) before (upper) and 

after post-treatment (lower). The smooth material along the edge for the post-treated film is the accumulation of 

PSS. b) Line scans along the films showing a 33% decrease in height (thickness)  for the post-treated film . 
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Figure 3.8: Amplitude (left) and phase (right) AFM images of an 1×1 μm2 area before (upper row) and after post-

treatment (lower row). Center feature is an agglomeration of PEDOT:PSS. 

PEDOT:PSS films on silicon can be easily removed by agitation in a solution of water. What re-

mains is a thin hydrophilic residue on silicon. Figure 3.9 shows the residue on the silicon surface before 

and after post-treatment at the same location where the film was removed. The surface is significantly 

cleaner after post-treatment with the RMS decreasing from 0.9 nm to 0.6 nm following the removal of 

PSS but major features are still identifiable. These features are isolated PEDOT:PSS micelles described 

above and they stand apart from the silicon background and PSS residue appearing as dark regions of low 

energy dissipation. Particle analysis selected for these features revealed that the average height reduced 

by a third, from 3.0 to 2.1 nm, (Figure 3.10 a) and the volume decreased from 5030 to 4040 nm3, while 

the average area and aspect ratio increased from 1520 to 1760 nm2 and from 0.63 to 7.3, respectively. 

These flat pancake-like structures are consistent to STM studies by Nardes et al.105  
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Figure 3.9: a) 1 μm x 1 μm topography AFM images (left) and energy dissipation maps (right) of the PEDOT:PSS 

residue on silicon before and after post-treatment (top and middle rows, respectively).   

This compression and rounding out of PEDOT:PSS micelles are indicative of the rearrangement 

of the internal structure as a result of post-treatment and we can evaluate chain alignment with respect to 

the substrate. Given that the PEDOT:PSS weight ratio of Clevios PH1000TM is 1:2.5 and the molecular 

weights range from 1000 to 2500 for PEDOT and from 75000 to 400000 for PSS, their chain lengths are 

expected to be 3-7 nm and 250 – 800 nm respectively.52,104 ,106 The length of PEDOT and its linear con-

formation, which is supported by its stiff conjugated bonding and the change in Raman spectra, entails 

that the PEDOT chains lie parallel to the substrate and are stacked by one or two layers to give rise to a 2 

nm high feature.  The confinement of PEDOT chains in two dimensions, horizontal to the substrate plane, 

increases the density of conducting chains and π-to-π orbital overlap within the micelle schematically 

shown in Figure 3.10b).  
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3.10: AFM height line scan of micelles before and after post-treatment. c) Schematic representation of the change in 

micellar domain after post-treatment with the PEDOT chains lying parallel to the surface. 

3.3.3. Effect of Solvents on Post-treatment 

A way to induce molecular motion in the chains and to change the rheological properties, without 

heating, is by increasing the free-volume through swelling. This will allow the chains to undergo 

structural relaxation toward equilibrium, and to change to a more linear conformation and cause the 

preferred orbital overlap of the thiophene rings. Hydrophilic PSS readily absorbs water and polar organic 

solvents into the film, saturating the sulfonic groups and causing them to swell. The degree of swelling of 

the annealed films was measured by AFM equipped with a micro-fluidic cell. A trench was cut in the film, 

and the film was measured initially in air under normal conditions and then placed in the cell that was 

filled with water or an EG-MeOH mixture to measure the increase in swelling.  From the swelling 

experiments done by AFM in solution, the film thickness was found to increase remarkably 8.6 times its 

original thickness in water and only 3.7 times when in an EG-MeOH mixture (Figure 3.11). The lower 

swelling in EG-MeOH is due to the removal of PSS from the matrix and to the increased van-der-Waals 

interaction between the non-soluble PEDOT chains. An analogy would be the Mullins effect with 

reinforcing fillers that make elastomers stiffer, the EG-MeOH would increase the concentration of 

PEDOT chains acting as a reinforcing filler. 
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Figure 3.11: AFM line scans of PEDOT:PSS films before and after swelling in water (left) and an ethylene glycol-

methanol mixture (right). 

The large degree of swelling and the deviation from ideal behavior with a 1:1 MeOH-EG mixture, 

observed from conductivity measurements, thickness measurements, UV-Vis spectroscopy and Raman 

spectroscopy, are the result of lower viscosity than pure ethylene glycol and higher dielectric constant and 

charge screening ability than pure methanol.107 The mixture readily interacts through hydrogen bonding 

with the sulfate group of PSS or with the oxygen atoms of the PEDOT monomer. The charge screening 

effect between PEDOT and PSS reduces the interchain interaction and the activation barrier for the 

reorientation of the respective chains. The binary mixture has been shown to form a nearly regular 

solution at ~1:1 MeOH-EG at room temperature,108 as is commonly found when alcohols are dissolved in 

non-polar solvents. This mixture is, however, less stable with possible partial clustering, and that the 

hydrogen bond strength increased with ethylene glycol concentration, MeOH-MeOH < MeOH-EG < EG-

EG108,109 similar to water-EG mixtures.110 The non-zero enthalpy of mixing is expected to increase the 

segregation between PEDOT and PSS, allowing the bulkier ethylene glycol molecule to intercept and 

obstruct the ionic attractions and to further promote chain reorientation. There are also significant 

Marangoni eddies when the EG-MeOH solution is added onto the polymer surface because of the mixture 

of high and low vapor pressures. The agitation likely further disentangles the PSS, allowing PSS to move 

around the PEDOT more so than any pure solvent. 
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Unlike PEDOT, the PSS component is highly soluble, allowing the chains that are not entangled 

in the matrix to be readily removed with the solution, which accounts for a small reduction in thickness as 

observed even with water. The much shorter PEDOT chains act as a molecular binding agent pinning the 

PSS chains at different points, stiffening the films, similar to the effect of cross-linking agents. Thickness 

studies were done with sulfuric acid and NaOH to examine the effect of acidity on the removal of PSS, as 

it is expected that the neutralization of PEDOT:PSS would reduce their attraction and result in a large 

decrease in the film thickness. However, the observed decrease, for both acid and base, was similar in 

magnitude to that for pure water (~12%), indicating that it had little effect on the removal of material. The 

reason that the oxygenates were so much more effective than water has to do with their greater molecular 

volume and the fact that they can be easily electronically polarizable (with higher London dispersion 

forces), despite not necessarily having a large orientational polarizability especially in the case of 

ethylene glycol. The effectiveness of oxygenates at removing PSS is the cause of the smaller swelling 

seen in the solution-AFM measurements and those chains not contributing to the film distortions.  

3.3.4. Cell Performance 

A collection of 72 HSCs have been constructed and their performance data are analyzed to 

provide relevant comparison between treatments shown in Figure 3.12 with the top performing cells. 

Evidently, the VOC for the cells with post-treated PEDOT:PSS films (average 0.49 V) is found to be 

slightly higher and with a smaller distribution than those for the cells with co-solvent-added films (0.48 

V) and pristine films (0.35 V). The fill factor is also consistently higher after post-treatment. The swelling 

and chain rearrangement during post-treatment allows for the reduction of defects in the film and at the 

PEDOT:PSS/n-Si interface. This leads to greater charge transfer across the junction and the larger average 

VOC and fill factor.  
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Figure 3.12: Box plots for (a) short-circuit current JSC, (b) open-circuit voltage VOC, (c) fill factor FF, and (d) 

photoconversion efficiency for the 72 HSCs obtained with pristine, co-solvent-added and post-treated PEDOT:PSS 

films.(e) top performing cells obtained 

The removal of PSS and the enhanced conductivity with post-treatment are expected to have a 

positive effect on the short-circuit current density as reported in other devices.16,85,68 Interestingly, careful 

examination reveals this not to be the case for our HSCs. The average JSC are 8.58, 27.73, and 27.15 

mA/cm2 for HSCs with pristine, co-solvent-added and post-treated films, respectively. To further 
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investigate this unexpected result, external quantum efficiency (EQE) measurements were performed on 

the HSCs and used to determine JSC. As EQE corresponds to the number of electrons collected per 

incident photon entering the device,18,28,111,112 EQE measurement can reveal the optical origins of the 

electronic process occurring in the cell, allowing the determination of a more accurate and reproducible 

value for Jsc.
28  The EQE curves for HSCs with the pristine, co-solvent-added, and post-treated films (85 

nm thick) are shown in Figure 3.13 a). The EQE curves for HSCs with the pristine and co-solvent-added 

films are similar, while those with the post-treated film are discernibly lower. The corresponding JSC 

calculated from EQE for HSCs with the pristine, co-solvent-added and post-treated films are 28.2, 28.4, 

and 25.5 mA/cm2, respectively.  

The lower EQE for the HSC with the post-treated film is the result of increased absorbance in the 

visible and near IR region as shown for the 85 nm thick films in Figure 3.13b). The PSS features at 293 

and 225 nm incrementally decrease in intensities from pristine, to co-solvent-added and to post-treated 

films. However, the overall visible absorbance not associated with PSS increases in intensity solely for 

the post-treated film (Figure 3.13b) inset), which is indicative of an increased concentration of PEDOT.89 

There is also significantly higher absorbance in the IR region attributed to free charge carrier absorption 

related to redistribution of charge as a result of secondary doping.16,82,88,65 The band near 850 nm 

corresponds to the high-energy bipolaron transition.16,88 

 

Figure 3.13: a) EQE spectra of HSCs with 85 nm thick pristine, co-solvent-added, and post-treated PEDOT:PSS 

films, and b) absorbance spectra of the respective PEDOT:PSS films deposited on quartz substrates. 
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The changes in the conductivity (Figure 3.4a), Raman spectra (Figure  3.4b), and AFM images 

(Figure 3.6Figure ) reported here are found to incrementally change when going from pristine to co-

solvent-added to post-treated films. In contrast, UV-Vis and EQE results for the post-treated films are 

discernibly different from both pristine and co-solvent-added films. Compared to the pristine and co-

solvent-added films, the post-treated films have been subjected to an additional cycle of swelling and 

rinse with the MeOH-EG mixture followed by curing treatment at 110 °C.  As confirmed by UV-Vis 

(Figure 3.3a) and FTIR (Figure 3.5b) results, the segregation and removal of PSS produce a higher 

composition ratio of PEDOT to PSS chains in the post-treated films compared to the pristine and co-

solvent-added films. This higher density of PEDOT chains leads to the higher absorbance in the visible 

range by the film.  

The higher PCE found for the HSCs with the post-treated films is due to the higher VOC and FF. 

The dismal performance of the pristine films follows from the poor JSC and FF and is the result of light-

induced structural change of the benzoidal PEDOT structure.111 Kinks and imperfections that are more 

prevalent in the pristine films cause changes in the conjugation and the amount of free radicals, and they 

impede hole transport. This is consistent with the higher JSC value found in the EQE measurements 

because of the significantly lower light intensity used (1 mW/cm2) when compared to those employed in 

standard IV measurements (100 mW/cm2). 

Overall, the HSCs with the post-treated films show a higher average PCE, with the maximum 

recorded being as high as 11.5%. While the so-called champion-data cells, i.e. those with the best 

performance, can be achieved, the HSCs with the post-treated films reported here represent “production-

ready” cells with easily achievable performance.  

3.4. Conclusion 

A novel method of secondary doping was developed for improving PEDOT:PSS in HSCs by 

using a post-treatment method that employs a 1:1 MeOH:EG binary mixture to remove PSS from the film 

and hence to increase the conductivity. The changes induced in the films using these oxygenates were 

studied and the results suggest that the low viscosity and polarizability caused a charge screening effect 

between PEDOT and PSS, freeing and removing the soluble PSS from the film. These solvation driven 

changes increased the quinoidal nature of PEDOT, the anisotropy, and conductivity parallel to surface. 

Three large sets of cells with the PEDOT:PSS films are found to exhibit vastly different conductivities: 

pristine (0.8 S/cm), co-solvent-added (637 S/cm) and post-treated films (1334 S/cm). With over a 10% 
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gain in the conductivity obtained for post-treatment with the present binary mixture when compared to 

single-solvent post-treatment, post-treatment with a binary mixture offers an improved method for 

enhancing the conductivity.  In addition to the increase in the sheet conductivity, the post-treatment also 

results in greater VOC through stronger interface interaction and charge transfer at the junction, offsetting 

the observed fdecrease in JSC and ultimately increasing the PCE. This work shows a delicate balance 

when employing PEDOT:PSS for optoelectronic devices and other applications and that gains in 

conductivity should not come at the expense of other properties such as absorbance.   
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4. Hybrid Solar Cell Optical Properties 

4.1.  Introduction 

Optoelectronic devices such as LEDs and solar cells that are based on organic materials offer 

opportunities to reduce the cost, increase efficiencies, and expedite production compared to conventional 

devices based on inorganic materials. One major challenge with these devices is that highly conductive 

electrodes need to be transparent to allow visible light in and out. Poly(3,4-ethylene-dioxythiophene) and 

poly(styrenesulfonate) (PEDOT:PSS) films can function as a transparent conducting electrode, however 

its thin-film, and optical, and electrical properties will greatly influence device performance and are thus 

examined closely in this Chapter. 

As discussed in Chapter 3, the post-treatment method can be used to remove material, providing a 

novel way of achieving a very small film thickness. The film thickness could directly affect the short-

circuit current density (Jsc) by modifying three main properties: (1) The resistivity and path-length (that 

the photogenerated holes have to travel to reach the electrodes) will decrease with smaller film 

thickness;113 (2) the optical properties, particularly anti-reflective properties of the film where reflectance 

is minimized through constructive and destructive interference arising from the wave nature of light; and 

(3) the extent of photoexcitation of molecules in the film medium or lattice (phonon) vibrations. This 

absorption by the material with a thickness d follows the Beer-Lambert law: 

 𝐼ሺ𝑑ሻ ൌ 𝐼ሺ0ሻ𝑒ିఈௗ (4.1) 

where 𝛼 is the absorption coefficient, and d is the thickness which is related to the imaginary part 𝜅 of the 

refractive index by 

 𝛼 ൌ 4𝜋𝜅/𝜆 (4.2) 

Reducing the film thickness would lead to lower parasitic absorption by the film and increase the 

probability of absorption at the interface or in the silicon base. It is therefore vitally important to optimize 

the film thickness of the PEDOT:PSS film to achieve a high-performance solar cell.  

Here, we focus on the important role of both conductivity and film thickness of PEDOT:PSS 

specifically on the performance of HSCs. The optical properties of the films are examined 
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spectroscopically and used to simulate the optical behavior of the solar cells. The complex indices of 

refraction of the films are determined from absorption and reflectance measurements and used to model 

the reflectance with respect to thickness, which is then applied to the external quantum efficiency (EQE) 

measurements used to determine the optical efficiency of HSCs. In these EQE measurements, the 

electrical current is accurately measured as a function of wavelength at a well-defined incident light 

intensity, from which Jsc can be calculated. Using internal quantum efficiency calculations for the silicon 

base, the carrier generation and collection efficiency is studied as a function of thickness to identify how 

resistivity of the film is related to the performance. Finally, the loss mechanisms for an optimized cell are 

identified. This method of using perpendicular beam absorption, reflectance and transmittance to study 

and obtain the optical parameters of these HSCs has advantages over elipsometry since it will not be 

affected by the anisotropy of the film, or require a predefined model to account for multi-stake layer 

interference. 

Three sets of films with different conductivities were studied: (a) films obtained from as-received 

PEDOT:PSS solution with 0.25 vol% of fluorine surfactant to aid adhesion to silicon (referred here as 

pristine); (b) films obtained from co-solvent enhanced PEDOT:PSS solution with 7% EG (co-solvent-

added); and (c) co-solvent-added films after an optimized post-treatment consisting of 1:1 MeOH/EG to 

increase the conductivity and to facilitate the removal of PSS (post-treated). These three different sets of 

films are studied over a range of thickness to determine the role that PEDOT:PSS film thickness plays on 

short-circuit current density, open-circuit voltage and, ultimately, device performance. 

4.1.1. Reflectance 

The interaction of light with matter is best described by the propagation of an electromagnetic 

wave.† For any interaction, the photon energy 𝐸 ൌ ℏ𝜔 (where ℏ is the square of Planck constant over 2π, 

ω is the frequency). Given the complex dielectric function 𝜀ሺ𝜔ሻ ൌ  𝜀ଵ ൅ 𝑖𝜀ଶ is physically relevant, the 

propagation of light through a media is best described using the complex refractive index, which is related 

to the dielectric function through the Maxwell’s relation, 

                                                      

† Since this work uses light that is incident normal to the surface it does not contain a description of electromag-

netism. If ellipsometry measurements were used and the polarization state was considered it would be more relevant. 

A good explanation can be found in Introduction to Electrodynamics, by David J. Griffiths.162 
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where n and κ are the real and imaginary components of the complex refractive index.114  

 

Figure 4.1: Ray diagram of an incident light beam I interacting with a thin film of index n1 and of thickness d on an 

absorbing substrate of index n2. The r’s and t’s are the Fresnel coefficients, the primes (`) represent the second 

reflection or transmission off a surface, the B’s and C’s are the respective higher-order reflections and transmissions, 

and R and T are the measured total reflection and transmission, respectively,   

 

Electromagnetic radiation incident upon an interface of different refractive indices will undergo 

reflection off the surface at an angle equal to the incident beam. A proportion will also be refracted into 

the medium according to Snell’s law: 𝑛ଵሺ𝜆ሻ sinሺ𝜃ଵሻ ൌ 𝑛଴ ሺ𝜆ሻsinሺ𝜃଴ሻ (Figure 4.1). The reflectance and 

the refracted portion of the light are determined by several optical parameters: refractive indices of sur-

rounding media, angle of incidence, and polarization. The amplitude coefficients of the reflected, r, and 

refracted, t, portions of the electric filed vector for an incident beam at an angle θ0 from the surface nor-

mal comprising of refractive indices n0 and n1, are given by the Fresnel equations:115114 

 𝑛 ൅ 𝑖𝜅 ൌ ඥ𝜀ଵ ൅ 𝑖𝜀ଶ (4.3) 

 
𝑟௣ ൌ

𝑛଴ cos 𝜃଴ െ 𝑛ଵ cos 𝜃ଵ

𝑛଴ cos 𝜃଴ ൅ 𝑛ଵ cos 𝜃ଵ
 (4.4) 
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where θ0, and θ1 are the angle of incidence and reflected angle, and the s and p subscripts label the per-

pendicular and parallel plane-polarized components of the electric field vector. Reflectometry measures 

the spectral reflectance or the ratio of reflected energy to incident energy reflected at normal incidence of 

the film over a range of wavelengths. Recalling that the intensity I is 𝐼 ൌ |𝐸|ଶ ൌ 𝐸 ൈ 𝐸∗ where E is the 

electric field vector of the electromagnetic wave and * denotes its complex conjugate, then the intensities 

of the reflection and refraction off an interface are given by 𝑅 ൌ 𝑟𝑟∗, and  𝑇 ൌ
௡೚

௡భ
𝑡𝑡∗ since for T the two 

beams are in different media. Energy is conserved across the boundary and for an incident beam normal 

to the surface R+T=1. The reflectivity (R) normal to a single absorbing interface can be written in terms 

of the complex refractive index: 

for non-absorbing substrate 𝜅 ൌ 0.114,116  

For beams penetrating into thin films, Snell’s law dictates that reflection and refraction will occur 

at each interface with a decreasing proportion propagating within the film. The proportion of light reflect-

ed from a single isotropic film of refractive index n1 on a substrate of n2 is obtained through a linear su-

perposition of all reflected beams, each normalized to the intensity of the preceding incident beam.114 

Considering the first interference of beams reflected once off each surface (B1 and B2 in Figure 4.1), the 

reflectance with respect to thickness, d, and wavelength, λ, is: 114,117  

 
𝑟௦ ൌ

𝑛ଵ cos 𝜃଴ െ 𝑛଴ cos 𝜃ଵ

𝑛ଵ cos 𝜃଴ ൅ 𝑛଴ cos 𝜃ଵ
 (4.1) 

 
𝑡௣ ൌ

2𝑛ଵ cos 𝜃଴

𝑛଴ cos 𝜃଴ ൅ 𝑛ଵ cos 𝜃ଵ
 (4.2) 

 
𝑡௦ ൌ

2𝑛ଵ cos 𝜃଴

𝑛ଵ cos 𝜃଴ ൅ 𝑛଴ cos 𝜃ଵ
 (4.3) 

 
𝑅 ൌ

ሺ𝑛ଵ െ 𝑛଴ሻଶ ൅ 𝜅௢
ଶ

ሺ𝑛ଵ ൅ 𝑛଴ሻଶ ൅ 𝜅௢
ଶ (4.4) 
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where R01 and R12 are the reflectances off the exposed thin film, and off the film–substrate interface, re-

spectively, and 𝜙 is the phase shift (which is zero for nonadsorbing substrates). The normal reflectance 

with respect to thickness is oscillatory at each wavelength. When the film has an index of refraction be-

tween those of air and the substrate [i.e., 𝑛଴ ≷ 𝑛ଵ ≷ 𝑛ଶ, which is the case for a polymer (<1.77)118 on sili-

con (3.98)119], the thickness is related to the positions of maximum and minimum reflectance as 

follows:116
 

where j is an integer. Each normalized higher-order interference (m) will decrease in magnitude by 

൫ඥ𝑅ଵ଴𝑅ଵଶ൯
ଵି௠

.ǂ 120 Absorption in films causes the magnitude of the reflected signal also to decrease in 

accordance to Equation 4.1. Furthermore, any surface roughness causing scattering could also lower the 

total reflectance. Taking into account absorption and the multiple higher-order beam interference (B1 + Bm 

with m = 2, 3, 4…)  for normal incidence, the reflectance for the film becomes:120 

                                                      

ǂ Higher-order reflectance interferences (m>3) can be assumed to be insignificant for a film like PEDOT:PSS on 

silicon because of the already high refraction at the PEDOT:PSS/air interface. 

 𝑅 ൌ 𝑅଴ଵሺ𝜆ሻ ൅ 𝑅ଵଶሺ𝜆ሻ ቀ1 െ 𝑅଴ଵ
ଶ ሺ𝜆ሻቁ

൅ 2ට𝑅଴ଵሺ𝜆ሻ𝑅ଵଶሺ𝜆ሻ൫1 െ 𝑅଴ଵ
ଶ ሺ𝜆ሻ൯ cos ቆ

4𝜋𝑛ଵሺ𝜆ሻ𝑑
𝜆

൅ 𝜙ሺ𝜆ሻቇ 
(4.5) 

 𝑅௠௔௫ ൌ ቀ௡మି௡బ

௡మା௡బ
ቁ

ଶ
at 𝜆௠௔௫ ൌ

ଶ௡భௗ

௝
 (4.6a) 

 
𝑅௠௜௡ ൌ ቀ௡భ

మି௡బ௡మ

௡భ
మା௡బ௡మ

ቁ
ଶ
at 𝜆௠௜௡ ൌ

ସ௡భௗ

ଶ௝ାଵ
 (4.8b) 

 

𝑅 ൌ
ቆோబభሺఒሻାோభమሺఒሻ ୣ୶୮ቀିቀ

ఴഏ
ഊ

ቁ఑ௗቁାଶඥோబభሺఒሻோభమሺఒሻ ୣ୶୮ቀିቀ
రഏ
ഊ

ቁ఑ௗቁ ୡ୭ୱቆ
రഏ೙భሺഊሻ೏

ഊ
ାథሺఒሻቇቇ

ቆଵାோబభሺఒሻோభమሺఒሻ ୣ୶୮ቀିቀ
ఴഏ
ഊ

ቁ఑ௗቁାଶඥோబభሺఒሻோభమሺఒሻ ୣ୶୮ቀିቀ
రഏ
ഊ

ቁ఑ௗቁ ୡ୭ୱቆ
రഏ೙భሺഊሻ೏

ഊ
ାథሺఒሻቇቇ

  (4.7) 
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The proportion of light transmitted through a film into the substrate follows the same oscillating pattern 

but opposite.120 

where T is the proportion of transmitted light intensity at each surface 𝑇 ൌ ሺ1 െ 𝑅ሻ and the subscripts 01 

and 12 denote the thin film and substrate interfaces, respectively. For these calculations, it is assumed that 

all the light is absorbed by the silicon wafer. It should be clear that the oscillatory behavior of the reflec-

tance and transmittance can be exploited to determine not only the thickness but also the optical constants 

of the thin films.  

4.2. Experimental Details 

The HSCs were prepared on 10×10 mm2, n-type phosphorus-doped Si(100) substrates with 

resistivity of 1-2 Ω cm and thickness of 200 μm (Virginia Semiconductor Inc.). The substrates were 

cleaned by sonication in acetone and in isopropyl alcohol, and then washed with filtered high-resistivity 

(18.2 MΩ) water. The native silicon oxide layer on the Si substrate was removed with hydrofluoric acid (2 

vol%, Sigma Aldrich) and then the Si substrate was exposed to air for 2 hours to obtain a stable oxide 

layer with a reproducible thickness. Aluminum was sputter-coated on the back side of the substrate to 

form the bottom electrode by using a magnetron sputtering system (EMS575X). Pristine films were 

prepared from a PEDOT:PSS (CleviosTM PH1000) solution added with a fluorosurfactant (0.25 wt%, 

Sigma Aldrich) to increase adhesion to the Si substrate. Co-solvent-added films were prepared from the 

pristine solution by adding ethylene glycol (7 wt%, VWR, ≥99.0%) to enhance the conductivity.93,95 To 

control the thickness, a PEDOT:PSS aliquot was spin-coated onto the Si substrate (between 1000 – 12000 

RPM to control the thickness), allowed to relax for 5 minutes and then placed on a hot plate at 110 °C for 

10 minutes. Post-treatment was performed by adding 80 μL of a binary mixture of methanol (Sigma 

Aldrich, ≥99.9%) and ethylene glycol with known volume fractions onto the co-solvent-added film. The 

mixture was drop-casted on and allowed to penetrate the film for 2 minutes before it was spin-coated at 

6000 RPM for 2 minutes, allowed to relax for 5 minutes and then to cure on a hot plate at 110 °C for 10 

minutes. Finally, the top silver electrode was sputter-coated onto the film using a comb-pattern shadow 

mask.  

 
𝑇 ൌ

బ்భሺఒሻ భ்మሺఒሻ ୣ୶୮ቀିቀ
ఴഏ
ഊ

ቁ఑ௗቁ

ଵାோబభሺఒሻோభమሺఒሻ ୣ୶୮ቀିቀ
ఴഏ
ഊ

ቁ఑ௗቁାଶඥோబభሺఒሻோభమሺఒሻ ୣ୶୮ቀିቀ
రഏ
ഊ

ቁ఑ௗቁ ୡ୭ୱቆ
రഏ೙భሺഊሻ೏

ഊ
ାథሺఒሻቇ

   (4.8) 



64 

 

Absorbance/transmittance measurements were performed by using a Perkin Elmer Lambda 1050 

UV/Vis/NIR spectrophotometer on films supported on 10×10 mm2 quartz substrates (1 mm thick, SPI 

Supplies). A Filmmetric F40-UV thin film analyzer was used to collect reflectance spectra and to 

determine the film thicknesses of the films supported on silicon substrates. The film thickness was 

verified by using a KLA Tencor P6 profilometer. EQE measurements were performed by using a PV 

Measurements QEX10 system. The performance of the solar cells were tested with a 4×4 mm2 

illumination area under 1 Sun condition (100 mW/cm2) using a PV Measurements IV5 solar simulator 

(equipped with an AM 1.5G filter). 

4.3. Results and Discussion 

The optical properties of solar cells need to be carefully monitored and controlled to optimize 

performance. Here, an in-depth look at the different optical properties influencing hybrid solar cells is 

examined and optimized with thickness and conductivity of the film. The removal of the PSS and the 

enhanced conductivity with post-treatment are expected to have a positive effect on the short-circuit 

current density, post-treatment should therefore increase the efficiency, as shown in other devices.16,85,68 In 

Chapter 3, it was shown that this was not the case for HSCs and in fact the co-solvent method had 

produced devices with statistically higher Jsc while post-treatment had led to better overall device 

performance because of higher open circuit voltage likely resulting from improvements to the 

heterojunction. To further investigate this discrepancy, absorbance, reflectance and external quantum 

efficiency measurements were analyzed in order to maximize the number of photon-generated electrons. 

As EQE corresponds to the number of electrons collected per incident photon entering the device, EQE 

measurement provides the amount of charges collected after optical and recombination losses, allowing 

the determination of a more accurate and reproducible value for Jsc. 
18,28,111, 112 

4.3.1. Absorbance/Transmittance 

In Chapter 3, the difference between PEDOT:PSS post-treated films and those not treated was 

found to be related with the optical properties of the cells. To further investigate this, the absorption coef-

ficient (α), extinction coefficient (κ), and refractive index (n) were calculated from UV-Vis measurements 

of films supported on quartz substrates.† The absorption spectra of films with 7 different thicknesses were 

                                                      

† Quartz is used because it has no absorption, 𝜅 ൌ 0,  over the spectral region of interest. 
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collected. The UV-Vis spectrophotometer was operated in a double-beam configuration with one film in 

the path of the reference beam and the thicker film in the sample beam path. In this setup, the effects of 

surface-reflection at the film-substrate interface can be removed and the absorption will be due only to the 

difference in the film thickness. 

 The extinction coefficient and refractive index of PEDOT:PSS were determined using the trans-

mittance spectra and applying a Lavenberg-Marquardt least squares algorithm (Appendix 2). The function 

for total transmittance, 𝑇 ൌ 𝑇௙௥௢௡௧ ൈ 𝑇௥௘௔௥ ൈ 𝐴௙௜௟௠, is derived from the Fresnel equations (Eq 4.4-4.7):116 

 

𝑇 ൌ
16𝑛ଶሺ𝑛ଵ

ଶ ൅ 𝜅ଵ
ଶሻ exp ቀെ

4𝜋𝜅ଵ𝑑
𝜆 ቁ

ሾሺ𝑛ଵ ൅ 1ሻଶ ൅ 𝜅ଵ
ଶሿሾሺ𝑛ଶ ൅ 𝑛ଵሻଶ ൅ 𝜅ଵ

ଶሿ
 (4.9) 

Figure 4.2 shows the extinction coefficient and refractive index as functions of wavelength for 

films with the three different treatments. The post-treated film generally displays a higher extinction coef-

ficient and a lower refractive index than the other films over the whole spectral range. The inflection 

points of the extinction coefficient correspond to the maximum/minimums of the refractive index as de-

manded by Kramers-Kronig analysis.115,120 A higher extinction coefficient is expected to give rise to an 

increased conductivity. The discernibly higher extinction coefficient in the IR region is attributed to the 

free charge carrier absorption related to charge redistribution as a result of secondary doping and to the 

quinoidal conformation of PEDOT.16,82,65 The increase in the visible r 

ange can be associated with the greater concentration of PEDOT relative to the PSS chains, which 

have a greater absorbance in that region. Concomitantly, the refractive index curve for the post-treated 

film generally lies lower than the other films, which is consistent with the reduction in the concentration 

of the higher-index PSS. The latter has been reported for PEDOT:PSS films with PEDOT:PSS concentra-

tion ratios of 1:6 and 1:20. 39,82 Interestingly, no significant change is seen in the extinction coefficient 

between the co-solvent-added and pristine PEDOT:PSS films, despite the increase in the conductivity 

found the co-solvent-added film. IR absorbance as the result of mid-gap states could cause the observed  

red shift in the absorption maximum.82 
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Figure 4.2: (a) the refractive index n, (b) extinction coefficient k, and  (c) absorption coefficient α for pristine, co-

solvent-added and post-treated PEDOT:PSS films as functions of wavelength The error bars indicate standard 

deviations.  

 

4.3.2. Reflectance 

The reflectance spectra of PEDOT:PSS on planar Si, with light incident normal to the surface, for 

different PEDOT:PSS film thicknesses are given for both experimental curves (red) and simulated curves 

(black) in Figure 4.3. The shifts in maxima and minima with thickness and wavelength caused by con-

structive/destructive interferences as expected from Equation 4.9, are evident. The reflectance of hybrid 

solar cells was optimized under standard surface conditions, air mass 1.5G, for peak power in the visi-

ble/NIR (300 – 1100 nm) range. The thickness at which the greatest anti reflective behavior occurs for 

this range is 102 nm. This reflectance profile is important when optimizing cells for different conditions, 
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like for indoor use where the incoming irradiation spectrum is different. Moreover by tailoring the thick-

ness to minimize reflectance at desired wavelengths, these cells can easily be made into photodetectors. 

 

Figure 4.3: Experimental (red) and simulated (black) reflectance spectra for the post-treated PEDOT:PSS film as a 

function of film thickness and wavelength. The oscillatory behaviour of the spectral intensity with respect to 

wavelength and thickness is evident. 

Film thickness is usually determined from the numbers of maxima and minima in the oscillating 

pattern with respect to wavelength.120 However, the small thicknesses of the spin-coated films make it 

difficult to fit and obtain other optical properties because full oscillations cannot be observed until a film 

thickness of ~150 nm. Further complicating the analysis is the large extinction coefficient of the silicon 

substrate. Silicon becomes more transparent at longer wavelengths with a sharp onset in transparency for 

wavelengths of lower energy than the band-gap (1.12 eV; 1107 nm). Indeed the wavelength for which the 

200 400 600 800 1000

0.00

0.15

0.30

0.45

0.60

0.75

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280

200 400 600 800 1000

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280

Wavelength (nm)

R
ef

le
ct

an
ce

Thick
nes

s (
nm

)



68 

 

signal-to-noise ratio becomes larger than the detection of the reflectance amplitude is ~875 nm for a 200 

um silicon wafer.119 This causes interference from refraction out of silicon and a multiple stack layer 

would be needed in the model, which greatly complicates the calculations. Therefore an assumption must 

be made that internal refraction within silicon does not affect the reflectance of spectra and that all light is 

absorbed by the silicon. This is valid since the Lambertian textured rear side of the silicon wafer will 

scatter the light reaching it and very little will be reflected directly back.  

The spectra were modeled with respect to the film thickness, using a Lavenberg-Marquardt least 

squares algorithm (Appendix 2) with the extinction coefficient calculated from the transmittance analysis 

discussed above. The PEDOT:PSS refractive index, phase shifts and reflectance off the air/PEDOT:PSS 

interface and off the PEDOT:PSS/silicon interface were obtained by fitting the reflectance spectra of 150 

pristine, co-solvent-added and post-treated films. The fitting parameters are shown in Figure 4.4. The 

reflectance off the PEDOT:PSS/silicon interface contains the characteristic interband transitions expected 

at 365 nm and the broader shoulder of the 288 nm peak (R12, Figure 4.4a).ǂ The reflectance of the 

PEDOT:PSS film is small and is under 5%. The index of refraction and the phase shift both show a 

generally decreasing trend with increasing wavelength. 82,121 

                                                      

ǂ Transitions associated with the electronic band structure of Si where the vertical transitions, at wavevector 𝒌 ൌ 0, 

occur. 
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Figure 4.4: (A) Simulated reflectance spectra off the top PEDOT:PSS surface (R01) and the silicon interface (R12). 

(B) Simulated refractive index (n) and phase shift (𝝓ሻ as functions of wavelength. 

 

4.3.3. Quantum Efficiency 

The external quantum efficiency curves for the pristine, co-solvent-added, and post-treated films 

of different thicknesses are shown in Figure 4.5. The EQE profiles for both the pristine and co-solvent-

added films are similar at equivalent film thicknesses, while the EQE profiles for the post-treaded films 

appear to lie lower than the others. The differences between the post-treated films and the others become 

greater at larger wavelengths. For practical solar cell application, the EQE should be maximized in the 

visible spectrum in order to maximize the efficiency.  

As shown in Figure 4.6, the EQE at any given wavelength appears to follow a sinusoidal behavior 

with respect to film thickness, which is the opposite trend of the reflective behavior of the films. It is 

evident that post-treatment reduces the overall EQE but it does not change the reflectance significantly.ǂ 

The change in n after post-treatment noted in the transmittance analysis (Section 4.3.1) causes a decrease 

                                                      

ǂ For multiple interference to take place, the condition 𝑑 ൌ 𝑚𝜆/4 for m>2 is only satisfied for film thickness above 

150 nm for the wavelengths considered. Moreover, the condition 𝜅ଶ ≪ ሺ𝑛 െ 1ሻଶ does not hold for PEDOT:PSS and 

the optical properties and effects are difficult to be observed with normal incidence.163,164 
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in the maxima of EQE and a red shift in peak positions in accordance with Equation 4.10, although such a 

significant decrease especially at larger wavelength is unexpected. The lower EQE could result from 

changes in the complex refractive index and series resistance in the PEDOT:PSS film, which will be 

discussed further below. For wavelength above 875 nm, the amplitudes of EQE curves all follow a 

decreasing trend with respect to wavelength and they appear not dependent on changes in the film 

thickness. In this wavelength region, the 200 μm silicon wafer is too thin to absorb these low energy 

wavelengths and produce photoelectrons.  
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Figure 4.5: EQE spectra of pristine, co-solvent-added, and post-treated PEDOT:PSS films at selected film 

thicknesses.  
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Figure 4.6: Quantum efficiency and reflectance at selected wavelengths, all following the inverse sinusoidal 

behavior with respect to film thicknesses. The solid symbols correspond to EQE of pristine and co-solvent films 

whereas the open symbols are EQE of the post-treated films.  

Quantum efficiency data can be perceived as the proportion of energy transmitted into the silicon 

substrate which produces charge carriers. As discussed in Chapter 3, it is a safe assumption that no charge 

carriers are produced in the PEDOT:PSS emitter layer. The quantum efficiency data with respect to 

thickness was simulated similarly to the reflectance measurements however using transmittance into a 

substrate from a single layer, Equation 4.10. Assuming, for a moment, that all the photons absorbed by the 

silicon produce electron-hole pairs (neglecting the absorbance, especially at the longer wavelength, by 

free carriers caused by dopants in Si), then the number of photocarriers generated in the 200-μm-thick 

silicon substrate base is proportional to the absorbance given by Beer-Lambert law: 𝐼ሺ200𝜇𝑚ሻ ൌ

𝑇ଵଶ expሺെ𝛼ௌ௜ ൈ 200𝜇𝑚ሻ where the macroscopic absorption coefficient, αSi(λ), refers to the attenuated 

light, and corresponds to the fraction of absorbed light upon passing through the silicon wafer. T12 is the 

proportion of light refracted at the PEDOT:PSS/Si interface, 𝑇ଵଶ ൌ ቀ1 െ 𝑅ଵଶ exp ቀെ
ସగ఑ೄ೔ௗ

ఒ
ቁቁ where κsi is 

the extinction coefficient for silicon. Therefore, to model the EQE with respect to the film thickness, a 

multiple layer stack should be used and a third term G(λ) is added. G represents the generation and 

collection of carriers by the silicon base, which from here on is referred to as Si-Generation. EQE in 

relation to the PEDOT:PSS film thickness was modeled using: 
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𝐸𝑄𝐸ሺ𝑑ሻ ൌ
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ఴഏ
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ഊ
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   (4.10) 

 The simulated EQE spectra from fitting the pristine and co-solvent-added spectra using 𝑅଴ଵ, 𝑅ଵଶ, and 𝜙 

obtained from the reflectance model, and n1 and κ calculated from the absorption of the co-solvent-added 

films are shown in Figure 4.7.  
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Figure 4.7: Experimental (red) and simulated (gray) EQE spectra at different thicknesses. 

Using equation 4.12 and the assumptions that all the light transmitted into the silicon base is cap-

tured and no charge carriers are produced in the PEDOT:PSS layer results in a simulated EQE in good 

agreement with experimental results. Analytical simulations of any solar cell is difficult since both elec-

trons and holes usually contribute to both transport and recombination making decoupling the optical and 

electronic parts of the EQE difficult.90 Since hole minority carriers are only produced in the silicon base 
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and are the relevant carrier in HSCs the optical absorption and electronic properties are easily to discerna-

ble and a solution to the continuity equation exists. The goodness of the fit between simulation and exper-

iment depends on the correct accounting of the optical and electrical loss mechanisms in the simulation.   

The simulation of EQE allows for precise optimization of the film thickness of HSCs and a method to 

tailor the cells for specific lighting conditions. With this equation the EQE and film thickness can be ob-

tained in a rapid single measurement. It can be easily modified to fit other PEDOT:PSS optoelectrical de-

vices or other transparent conductive films with only knowledge of their indexes of refraction and base 

substrate.  

4.3.4. Short-Circuit Current Density 

External quantum efficiency is the number of electrons collected per incident photon entering the 

device.18,28,111,112 It reveals the optical origins of the electronic processes occurring in the cell that account 

for reflectance and recombination losses, allowing the determination of a more accurate and reproducible 

value for Jsc.
28 Using the entire EQE spectrum, Jsc can be obtained by using the equation: 

 
𝐽௦௖ ൌ 𝑞 න 𝐸𝑄𝐸 𝑑𝜙 ൌ න 𝑅𝑠 ൈ 𝑆𝑟 𝑑𝜆

ఒ௠௔௫

ఒ௠௜௡
 (4.11) 

Where dϕ is the incident photon flux in units of cm-2s-1, Rs is reference spectrum of the sun under the AM 

1.5G condition (Figure 2.9), and Sr is the spectral response of the cell.  Sr corresponds to the current gen-

erated per unit power of the incident light on the device in [A/W] and is given by:.  

 
𝑆𝑟 ൌ

𝑞𝜆
ℎ𝑐

𝐸𝑄𝐸 (4.12) 

The corresponding Jsc calculated for HSCs of different thicknesses are given in Figure 4.8, along 

with that calculated from the modeled EQE extended to film thickness up to 250 nm. Experimentally, Jsc 

reaches its maximum values of 28.3 mA/cm2 for film thickness of 85 nm for both pristine and co-solvent-

added films but 26.2 mA/cm2 at 63 nm for the post-treated films. Interestingly, the Jsc values for the non-

treated cells, despite having higher sheet resistance, are discernibly higher (by ~8%) than HSCs with post-

treatment, all compared at the optimal film thicknesses. To calculate the Jsc of the post-treated films, 

optical properties n and k from the transmittance study were used. Evidently, the calculated Jsc was higher 

than those found experimentally, indicating that the decrease for film thickness greater than 60 nm could 
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be due to not just a change in optical properties but also electrical properties. Cells with film thickness 

below 35 nm stop adhering to the model, likely because the decrease in the built-in-potential, and the 

increased likelihood of shorting the device with the sputtered silver top grid.  
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Figure 4.8. Experimental short-circuit current density obtained from EQE data for pristine, co-solvent-added and 

post-treated PEDOT:PSS films with different film thicknesses, and simulated Jsc for pristine and co-solvent-added 

films (black line) and post-treated films (blue line). The maximum occurs at an optimal film thickness that provides 

a balance between decreasing reflectance and increasing absorbance and emitter resistance.  

An advantage that these cells have over organic heterojunction solar cells is their broad 

absorption spectrum and long electron-hole diffusion length. For bulk heterojunction solar cell, Mourle et 

al. observed a similar oscillatory behavior as that shown in Figure 4.7. in the reflectance and EQE with 

respect to thickness, which was replicated in the measured Jsc.
122,123 This oscillatory behavior of Jsc is not 

found in HSC even extending the model to 500-nm-thick films since these HSCs are not as sensitive to 

the shot diffusion lengths of excitons and localized absorption at the junction. Optimizing the film 

thickness to maximize the light intensity for desired wavelengths at the heterojunction is therefore not as 

necessary for HSCs while instead these cells can be optimized to the solar irradiance on earth.  
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4.3.5. Internal Quantum Efficiency 

As photon-generated electrons and holes are produced in the silicon base in HSCs, all the remain-

ing photons not reflected are assumed to pass into the silicon, such that the absorbance is given by 

𝐴 ൌ 1 െ 𝑅. The internal quantum efficiency (IQE) corresponds to the total number of electrons produced 

per photon passing into the silicon:28,112 

 
𝐼𝑄𝐸 ൌ

𝐸𝑄𝐸
ሺ1 െ 𝑅ሻ

 (4.13) 

Substituting Equation 4.9 for reflectance and Equation 4.12 for EQE, IQE is found to be equivalent to Si-

generation, G, introduced above in Section 4.3.3. G can be considered the internal quantum efficiency of 

the silicon base layer or the effectiveness of this layer at generating photocurrent.  It is a function of the 

generation of carriers (g) in the material and the collection probability (fc) , 𝐺ሺ𝜆ሻ ∝ ׬ 𝑔ሺ𝜆, 𝑥ሻ𝑓௖ሺ𝑥ሻ𝑑𝑥
௫

଴ , 

where x is the depth inside the silicon wafer.25,28 The percentage of light captured by a 200 μm silicon 

substrate is given by the transmittance using the absorption coefficient of intrinsic silicon at 300 K that 

was taken from Green et al.124,125  Si-generation, the transmission through of a 200-μm-thick silicon sub-

strate, along with the calculated collection probability is shown in Figure 4.9. Comparing G to the trans-

mission through silicon shows that the cells have a lower than expected collection probability for short 

wavelength likely due to surface recombination. Collection probability for wavelengths between 600 nm 

and 1050 nm decreases, which is caused by the indirect band-gap of silicon and recombination in the bulk 

and rear of the cell (where carriers are generated more than one diffusion length away from the junction 

often seen in optical devices).126 The increase in collection probability for wavelength over 1050 nm is the 

result of the textured Lambertian rear surface that scatters the light, increasing the probability of absorp-

tion. since the calculated transmittance assumes two sided polished surface it underestimates the absorb-

ance in the region.  
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Figure 4.9: Si-Generation (black), transmittance spectra of silicon (red) and collection probability (blue) with respect 

to wavelength. 

The experimental IQE profile for pristine, co-solvent-added and post-treated films with several 

different thicknesses are shown in Figure 4.10. Evidently, the IQE curves for all cases are found to de-

crease with increasing film thickness, and since the optical effects have been eliminated the decrease can 

be associated with electronic mechanisms (recombination and resistivity). The post-treated films with the 

reported film thicknesses all exhibit a relatively flat IQE in the 300-400 nm (blue) range, in marked con-

trast to those of pristine and co-solvent-added films. This is likely the result of less interface recombina-

tion and overall better surface passivation as discussed in Chapter 5.   
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Figure 4.10: Internal quantum efficiency of pristine, co-solvent and post-treated films of different thicknesses. 

By integrating under the IQE curves – similar to the treatment of the EQE – we can obtain the To-

tal IQE or the Si-generation over the whole solar spectrum with respect to film thickness. Normalizing it 

to the expected 100% collection efficiency of the entire spectrum gives the ratio of current generated to 

incident photon flux (assuming each photon produces a photon-generated electron).  

 
𝑇𝑜𝑡𝑎𝑙 𝐼𝑄𝐸 ൌ න 𝑅𝑠 ൈ

𝑞𝜆
ℎ𝑐

𝐼𝑄𝐸𝑑𝜆
ఒ೘ೌೣ

ఒ೘೔೙

 (4.14) 

For all films, the Total IQE is found to decrease for film thickness greater than ~35 nm (Figure 

4.11), as expected since the resistance through the film will increase with thickness. From this a compara-

tive measure of the resistivity of the films can be surmised. The reflection-eliminated, normalized current 

density can be fitted using the a modified single diode equivalent circuit model for a solar cell (Figure 

2.8). The resistivity can be approximated according the following semi-empirical equation derived from 

Equation 2.9 under short circuit conditions assuming constant shunt resistance: 

 
𝑇𝑜𝑡𝑎𝑙 𝐼𝑄𝐸ሺ𝑑ሻ ∝

𝐽௟

1 ൅ 𝜌𝑑
 (4.15) 
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where 𝜌 is the resistivity (Ω) and Jl  is the light-generated current density.ǂ As shown in Chapter 3, there is 

little to no change in the resistivity between the pristine and co-solvent-added films, both of which have 

very different sheet conductivities; and an increased resistivity in the post-treated samples that exhibited 

the highest sheet conductivity (Figure 3.4). The calculated resistivity of the post-treated film (1.01×103 

Ω/cm) was 75% and 64% more than that of the pristine (5.77×102 Ω/cm) and co-solvent-added (6.15×102 

Ω/cm) films, respectively. These anomalous results arise from anisotropy differences between the treat-

ments as identified in Chapter 3. The post-treatment causes PEDOT chains to lay parallel to the surface 

because of the removal of the PSS scaffold and the secondary spinning process (to which they are sub-

jected) impeding current movement normal to the surface. The light generated current density should the-

oretically be constant and be related to the Total IQE for the Si-generation curve, however Jl increases 

from pristine (41.89 mA/cm) to co-solvent-added (42.90 mA/cm) and post-treated films (43.87 mA/cm), 

this change could be related with a higher open-circuit voltage and lower shunt resistance as noted in 

Chapter 3.  

                                                      

ǂ The light-generated current density is the maximum current produced from the silicon while taking the limit to a 

film thickness of zero or zero resistivity, and is related to Si-Generation (G) and the collection probability (fc) by   

𝐽௟ ൌ 𝑞 ׬ 𝐺ሾ𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑐𝑚ଶሿ𝑓𝑐ሺ𝑥ሻ𝑑𝑥
ௗ

଴ . 25,28  
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Figure 4.11: Total IQE for pristine, co-solvent-added and post-treated PEDOT:PSS films. The rate of decent of the 

curves of best fit is related to the optical transparency, and the resistivity of the set of films as well as charge transfer 

at the interface.  

 

The maximum Jsc occurs at a thickness where the decreasing total reflectance of the cell, which 

follows a sigmoidal shape (Figure 4.8), is not overwhelmed by the linearly increasing total absorbance 

and resistivity of the film. The position of this maximum depends on the transparency and conductivity of 

the film, with greater values leading to larger maxima for the thicker films. From analysis of the reflection 

data alone (Figure 4.3) in the absorption window of these HSCs (300 – 1100 nm), it can be concluded that 

a thickness of 102 nm results in the greatest anti–reflective behavior. It is thought that if film transparency 

could be increased and resistivity decreased, a higher JSC maximum could be archived experimentally 

with a film thickness approaching 102 nm .  

Using the calculated absorbance, reflectance, and quantum efficiency from the models above, we 

can make a full representation of the generation and loss mechanisms in HSCs for the cells with the best 

Jsc, involving 85-nm-thick, co-solvent-added films over the optical window studied. These cells convert a 

commendable 61.5% (calculated from simulated EQE) of incoming light to photon-generated electrons, 

which corresponds to a short-circuit current density of 28.3 mA/cm2. Optical losses result in the largest 

reduction to the current, 22.2% through reflectance (calculated from simulated reflectance), followed by 
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6.9% through PEDOT:PSS absorption (calculated from simulated transmittance), both of which cause 

photons to never reach the silicon base to produce the charge carriers. Of the energy entering the silicon, 

2.7% is absorbed by the rear aluminum electrode (calculated from experimental transmittance.† Finally, 

the remaining energy associated with the recombination processes at the front, in the bulk and at the rear 

of the cell makes up 6.7% of the energy lost.  

This maximum short circuit current density is within the range of conventional planar silicon 

solar cell which tends to be between 28 – 37 mA/cm2.14,127,128 The hybrid solar cells tested here are 

producing similar current densities using very simple processing methods, at low temperatures and only 

using an organic polymer as the emitter layers making them an ideal replacement to expensive 

conventional solar cell.  

                                                      

† this proportions are slightly higher than the actual, because they were experimentally obtained on a two-sided pol-

ished wafer with a 85-nm-thick PEDOT:PSS film and not one with a lambertian rear surface as used in the hybrid 

solar cells 
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Figure 4.12: Optical generation, and optical and electrical loss mechanisms affecting the current density inside a 

hybrid solar cell. 

4.3.6. Solar cell performance 

The J-V solar simulator measurements of the cells used above in the EQE measurements were 

tested and compared (Figure 4.13). The higher efficiency found for the post-treated films is due to the 

higher VOC, which results from the improved PEDOT:PSS/n-Si interface as mentioned above. The trends 

in Jsc are not duplicated in the J-V curves, which shows the difficulty in using this measure to produce 

meaningful conclusions associated with the current. The solar simulated curves suffer from uncertainties 

that are greatly reduced or non-existent using EQE measurements, including: errors associated with 

improper measurement of the surface area, increased probability of interface defects such as micropores 

and impurities that can increase the number of microshunts due to the larger area exposed, and influences 

such as temperature, humidity, differences in spectral response between the silicon calibration cell and the 

test cells, and changes in the potential barrier under low-intensity monochromatic illumination and 
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AM1.5G illumination. 28,129 The poor performance of the pristine films follows from the lower Jsc and FF 

values, and is a result of the light-induced structural change.111 Kinks and imperfections that are more 

prevalent in the pristine films cause changes in the conjugation and the amount of free radicals, which 

impede hole transport. With the injection of light-induced charge carriers and the presence of polaron 

modes, PEDOT chains are distorted and must rearrange themselves often resulting in a new geometry and 

a change in the electronic energy levels. This effect is not seen in the EQE measurements because of the 

low light intensity used (1 mW/cm2). Secondary doped films are not affected because the linear 

conformation changes to the longer quinoidal structure, which leads to greater stability, delocalization of 

charges associated with bipolarons, and better hole transport. Overall, the post-treated cells showed higher 

efficiencies, with the highest being 11.2% for a cell with an optimized film thickness of 87 nm, and the 

VOC followed a similar trend. However, as shown in the simulated JSC, it would be expected that this 

higher efficiency would not be maintained for thicker films since the Jsc values for the post-treated cells 

decrease rapidly with increasing film thickness because of real increases in the film absorbance and 

resistivity.  
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Figure 4.13: I-V characteristics for pristine, co-solvent-added, and post-treated films at different thicknesses: Short-

circuit current density (Jsc);  open-circuit voltage (VOC);  fill factor; and efficiency. 

4.4. Conclusion 

The effect of PEDOT:PSS film thickness on hybrid solar cells with PEDOT:PSS films secondary 

doped using different methods: co-solvent-added and post-treated cells was examined, together with 

HSCs with pristine PEDOT:PSS films. It was found that the optical properties for pristine and co-solvent-

added films were similar, but the post-treated films had a lower index of refraction and a higher extinction 

coefficient (indicating higher absorption) than the other two films, as a result of a change in stoichiometry 

between PEDOT and PSS. Through modeling the reflectance spectra at different thicknesses and 

obtaining the reflectance of the air/PEDOT:PSS and PEDOT:PSS/silicon interface, the quantum 

efficiency could be simulated. This simulation is significant in the optimization PEDOT:PSS/silicon 
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HSCs and in precisely uncovering how different properties influence the performance. It was identified 

that after post-treatment the EQE decreases significantly due to absorption and resistive effects of the 

film. After analyzing the Jsc determined from EQE measurements, Jsc was found to decrease after post-

treatment despite its higher sheet conductivity shown in Chapter 3. The optimal Jsc occurred at a film 

thickness where decreasing reflectance was overcome by increasing absorbance and perpendicular 

resistance of the film. Using internal quantum efficiency to separate the electronic loss mechanisms from 

the optical measurement showed that the perpendicular resistivity of the post-treated film was 75% and 

64% higher than the pristine and co-solvent-added films, respectively. This work therefore shows a 

delicate balance when applying PEDOT:PSS to optoelectronic devices and that there is a large anisotropy 

between PEDOT:PSS sheet and vertical resistivity through the film. The present analysis exemplifies the 

insensitivity of solar simulated JV curves and difficulty in detangling and identifying properties 

associated in changes seen in performance. Moreover that the conductivity of the PEDOT:PSS film does 

not significantly increase the collected photocurrent or the short-circuit current, and the observed 

efficiency improvement is the result of other processes, such as changes in absorbance, and open-circuit 

voltage as will be discussed in Chapter 5. The models used in this chapter can be easily applied to other 

systems of inorganics simply by obtaining the reflectance of the material, or used with other polymers by 

obtaining the complex index of refraction though transmittance measurements. This method provides a 

computational method to disentangle the optical and electronic properties of heterojunction solar cells 

which is very difficult through other methods and should be the first phase in optimizing or testing new 

systems. 
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5. PEDOT:PSS – n-Silicon Heterojunction properties 

5.1. Introduction 

The interface between the p-type material and n-type material is the most important feature of the 

solar cell circuit. It is at this critical junction where the built-in-potential exists, causing the electromotive 

force that powers the circuit, and where electron-hole pairs are separated to produce photo-carriers. In 

heterojunctions this sensitivity is magnified since there are usually changes in lattice constants that cause 

anomalies in the bonding at the junction and possible dislocations contributing to surface states and trap-

assisted-carrier recombination.24 Heterojunction materials also differ in electron affinities and band-gaps 

that lead to conduction and valence band offsets where highly localized electric fields and charge densi-

ties exist. A consequence of this is that photogenerated electron and hole charge carriers can experience 

unequal potential barrier heights and charge transfer kinetics. Precise control of the choice of material and 

fabrication processes can help to limit these impediments, and the benefit of having controlled light ab-

sorption at the junction and material choice (offered by the heterojunctions) often outweighs the depredat-

ing effects. In this Chapter, the interface between PEDOT:PSS and n-silicon is examined with the goal to 

obtain higher open-circuit voltages. Three different approaches were used to determine the influences on 

HSCs: (1) the introduction of a passivating silicon oxide layer with different thickness; (2) post-treatment 

and the removal of PSS to effect changes in effective density of acceptor states, NA, of the emitter; and (3) 

the placement of a chromophore and semiconducting polymer at the interface. 

In a solar cell, the strength of the electric field at the junction is the force (per unit charge) that 

provides the potential to drive the photocurrent through a resistive load in a reverse-bias direction. The 

strength of this build-in-potential can be determined at zero current flow, or when an applied forward bias 

is of equal strength.  This open-circuit potential, VOC, is given by: 14 ,23,25 

where Jsc is the short-circuit current density (the current under illumination when the applied bias is set to 

zero), q is the charge of an electron, m is the ideality factor , k is the Boltzmann constant, T is the tem-

perature, and Jo is the dark saturation current which depends directly on the junction characteristics. In the 

inorganic-organic heterojunction solar cell, the organic layer acts as a p-type layer analogous to p-doped 
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silicon in a conventional solar cell. However, the highly doped nature of PEDOT:PSS makes it act as a 

hole transport medium and the PEDOT:PSS is often described as quasi-metallic. Conceptually, the junc-

tion with n-type silicon is more similar to a Schottky junction than an ideal p-n junction.130 Schottky di-

odes tend to have a higher dark saturation current than ideal diodes causing a lower open-circuit voltage, 

and they cannot adequately explain the high VOC seen in HSCs. 

The Schottky junction formed when a n-type semiconductor is brought into contact with a con-

ductor results in the migration of electrons across the junction into the conductor to minimize the potential 

energy of the system as described in Chapter 1. In so doing, the electrons create an electric filed at the 

surface and leave the donor atoms, located about one diffusion length away from the surface, positively 

ionized opposite to those of the bulk silicon. The resulting space charge region in silicon, if strong enough 

[band bending, qψbi > Eg-2(Ec-EF), where ], is referred as a strong inversion layer that effectively gener-

ates a depletion region existing solely within the semiconductor.23 In this region, the field is especially 

strong, and transport across this field is dominated by minority carriers (holes in the case of n-type sili-

con). However, such inversion layer does not typically form in a silicon-metal junction due to defects, 

causing a high density of surface states in the semiconductor band-gap and Fermi-level pinning limiting 

the band bending to Eg/2.131,132 Despite this, this inversion layer have been identified in a PEDOT:PSS-n-

Si hybrid solar cell.130  

The nature of the Schottky junction depends on the work function of the conducting material, ϕ,   

electron affinity of the semiconductor, χ, and the amount of band bending, ψbi, (difference between Fermi-

level and conduction band). The reverse saturation current is limited by thermionic emission, Je, intro-

duced in Section 2.2, Equation 2.1, and is only slightly dependent on the diffusion length, Lp, mobility, μp, 

and doping concentration ND.13 This Schottky junction model alone cannot account for the high open-

circuit voltages seen in these HSCs and therefore they must not be limited by thermionic emission or re-

combination.13,133 Jackle et al. identified a relation between silicon doping concentration and the reverse 

saturation current in HSCs and they found that it was better modeled using a p+-n (where the + denotes 

heavy doping) junction and the ideal diode equation. For an ideal diode or solar cell, the saturation current 

Jdiff is dominated by the diffusion of minority carriers.14 

 
𝐽ௗ௜௙௙ ൌ 𝑞 ቆ

𝐷௡

𝐿௡
𝑛௣ ൅

𝐷௣

𝐿௣
𝑝௡ቇ (5.2) 



87 

 

where  Ln and Lp are the diffusion lengths for electrons and holes respectively, and np is the equilibrium 

concentration of electrons in the p-doped layer and pn is the equilibrium concentration of holes in the n-

doped layer, Dn and Dp are the diffusion constants for electrons and holes respectively and they are related 

to the respective mobility μn or μp through the Einstein relation.  

PEDOT:PSS is a hole transport medium with a large LUMO and  effectively no conduction electrons. 

Equation 5.2 can be rewritten as: 13,133  

where k is the Boltzmann constant, μp is the hole mobility, ni is the intrinsic carrier concentrations, and ND 

is the donor doping concentration. Unlike thermionic emission, it can be seen that the diffusion current is 

inversely proportional to the doping of silicon. 

For a Schottky junction, the saturation current is driven by thermionic emission, Je as described in 

Chapter 2. The electrons flow from the semiconductor to the metal through electron drift in a similar rela-

tionship as a respective heavily p-doped side and normally n-doped side (p+-n junction), such that the ide-

al diode equation can be applied for both types of junctions by substituting either Je, or Jdiff for the appro-

priate junction.14,133  

where 𝑘𝑇/𝑞 is the thermal voltage and m is the ideality factor. In a typical J-V test, the value of Jo can be 

determined by linear extrapolation of dark J(V) curve to V=0 and the ideality factor can be obtained from 

the slope of V vs natural log of J.13,19,130,133 Under ideal conditions, the ideality factor is unity (i.e. m=1) 

for all voltages, which indicates that the net current flow is dominated by drift of thermally generated mi-

nority carriers and it should be proportional to the radiative-recombination rate R that is material and do-

pant dependent ሺ𝑅 ∝ 𝑛𝑝 ሻ where n and p are the number of electron or hole chare carriers respectively. 
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However, typically Shockley-Read-Hall recombination occurs in heterojunctions when defects in the 

band-gap and surface states in the space charge region are involved, assuming that the mid-gap state re-

combination rate scales with 𝑅 ൌ
௡௣ି௡೔

ሺ௡ା௣ሻఛ
, where τ is the carrier lifetime, ni is the intrinsic carrier consenta-

tion, and n and p are the carrier concentrations.28 These other pathways allow for an increased recombina-

tion, a decrease in shunt resistance, and an increase in the dark saturation current, causing m to increase 

and to approach 2 under strong recombination in the space charge region. In the heterojunction, the ideali-

ty factor can be greater than 2 where recombination can be increased by tunnelling enhanced by local 

electric field.  

Experimentally, different values of m are observed at different voltages. At higher voltages carri-

ers are injected across the boundary, bulk radiative recombination dominates, and m→1. At low voltages, 

the current is driven mostly by recombination in the space charge region at the junction, and the ideality 

factor increases. In this low-voltage regime, a cell with a low shunt resistance will have increased current 

density. Because of the two different processes driving the observed current, a two-diode model is used: 

Where m1 and m2  are the ideality factors for both high and low voltage regimes respectively and  Jscr is 

the recombination current within the space charge region and is given by: 

where 𝒲n is the width of the depletion region in silicon.  In conventional cells, the dark saturation current 

density can be as low as 10-14 A/cm2 allowing for high Voc (0.8 V) and high efficiencies, whereas for 

Schottky solar cells, the dark current density is ~10-7 A/cm2, resulting in a low Voc of ~0.3 V. 25,28,72  

The low-temperature processing of PEDOT:PSS–n-Si solar cells allows greater interface control 

and the accommodation of molecular passivation layers such as oxides134 or methyl/allyl 

termination.135,136 The termination of dangling bonds is dramatically reduced through covalent bonding 

between the silicon surface atoms and the passivation layer, which generates upward band bending and 

stops the Fermi-level pinning effect. 27,136 PEDOT:PSS–n-Si is a good model system to study polymer – 
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inorganic heterojunctions since PEDOT:PSS has little absorption, or generation of charge carriers.  PE-

DOT:PSS acts as a minority carrier (hole) collector while blocking majority carrier (electrons) due to the 

high LUMO and the presence of an inversion layer at the interface and can be determined electronically. 

5.2. Experimental Details 

The HSC’s were prepared on 1×1 cm2, one-sided polished, n-type phosphorus-doped silicon (100) 

substrates (200 μm thick) with a resistivity of 1-2 Ω cm (Virginia Semiconductor Inc.). The substrates 

were cleaned by sonication in acetone and isopropyl alcohol and then thoroughly washed with filtered 

high-resistivity water (18.2 MΩ-cm). Co-solvent-added PEDOT:PSS solution was prepared by adding 

ethylene glycol (7 wt%) to PEDOT:PSS (CleviosTM PH1000), along with a fluorosurfactant (0.25 wt%).137 

SiOx Studies: 

The native silicon oxide layer on the Si(100) substrate was removed by submersing the substrate 

in 2 vol% hydrofluoric acid for 10 minutes at room temperature and it was then rinsed with deionized 

water. Aluminum was immediately sputter-coated on the back side of the substrate to form the back 

electrode by using a magnetron sputtering system (EMS575X). For junctions on H-terminated Si 

substrates, the PEDOT:PSS solution was deposited on the front side immediately after the Al sputter-

coating.  PEDOT:PSS solution (80 μL) was spin-coated onto the silicon substrate at 6000 RPM, allowed 

to relax for 5 minutes, and then placed on a hot plate for curing at 110°C for 10 minutes. For junctions on 

SiO2 passivated substrates, the substrates were washed with deionized water and allowed to oxidize 

naturally in a clean hood at room temperature for 2 hours, then the polymer was deposited identically as 

those without the oxide layer.  

Post-treatment Studies 

Post-treatment was conducted by adding 80 μL of a binary mixture of 50 vol% methanol (Sigma 

Aldrich, ≥99.9%) and 50 vol% ethylene glycol (VWR, ≥99.0%) onto the cured PEDOT:PSS film. The 

solution was allowed to penetrate the film for 2 minutes, and then it underwent spin-coating at 6000 RPM 

for 2 minutes and curing at 110 °C on a hot plate for 10 minutes. 
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P3HT Studies 

 Electronic grade rigioregular Poly-3-hexylthiophene (P3HT), mn: 54000-75000 (Sigma Aldrich) 

was dissolved in selected solutions with different vapour pressures (VP) and boiling points (BP): chloro-

benzene (VP: 9 Torr; BP: 131° C) , chlorobenzene (VP: 1.3 Torr; BP: 131° C), 1,2-dicholorobenzene 

(boiling point: 180° C), and 1,2,4-trichlorobenzene (VP: 1 Torr; BP: 214° C). The films were made by 

using 60 mg/ml solutions by dynamically applying 20 μl to a Si surface with native oxide, spinning at 

6000 RPM for 20 seconds to obtain a 10-nm-thick film, or 3000 RPM for 20 seconds for a 30-nm-thick 

film, or 3000 RPM for 5 seconds for a 50-nm-thick film, or 3000 RPM for 5 seconds repeated twice for a 

80-nm-thick film, each followed by 2-second acceleration to 12000 RPM to remove any excess solution. 

The ethylene glycol co-solvent-added PEDOT:PSS solution was then added to the P3HT layer as men-

tioned above. 

Quartz substrates (SPI supplies), 10×10 mm2 in size and 1 mm thick, were used for UV-Vis ex-

periments. They were cleaned by sonication in acetone and isopropyl alcohol and then thoroughly washed 

with filtered high-resistivity water (18.2 MΩ-cm). Absorbance/transmittance measurements were con-

ducted by using a Perkin Elmer Lambda 1050 UV-NIR spectrophotometer. A Filmmetric F40-UV thin 

film analyzer was used to measure film thickness, which was further verified by using a KLA Tencor P-6 

profilometer. Raman spectra were collected by using a 785 nm laser in a Bruker Senterra Raman confocal 

microscope. Atomic Force Microscopy (AFM) images were collected by using an Asylum Research Cy-

pher microscope. 

5.3. Results and Discussion 

5.3.1. Silicon Passivation Layer 

The silicon oxide layer, SiOx, at the interface between the PEDOT:PSS and n-Si substrate is ex-

amined since it acts as a passivation layer that will affect the open-circuit voltage of HSCs through its 

influence on carrier recombination. Figure 5.1 shows a comparison between HSCs prepared on H-

terminated silicon with a native oxide layer that was allowed to grow for 2 hours before the PEDOT:PSS 

layer was applied and on H-terminated silicon where SiOx was not allowed to grow. From the dark satura-

tion JV curve of the passivated cell, the magnitude of the current is lower and the slope is higher with 

alower ideality factor (m) than that without passivation. Moreover the transition to diffusive behavior 
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(change in slope occurring at above 0.4 V) occurs at a lower voltage, which is indicative of a longer carri-

er lifetime and less recombination. 
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Figure 5.1: Dark saturation current vs applied voltage curves for cells with a H-terminated silicon substrate, and a 2-

nm-thick SiOx passivation layer on the silicon substrate. 

The SiOx passivation layer limits the amounts of defects and dangling bonds and the extent of 

Fermi level pinning at the midpoint of the band-gap (Eg/2), and it is believed to be beneficial to the sepa-

ration of electron-hole pairs created in the space charge region. Thin, nm-thick, oxide layers have been 

reported to easily allow electron tunneling.27,138 He et al. found that as the native-oxide passivation layer 

in HSCs became thicker than ~2 nm, it could act as an insulating layer, similar to a parallel plate capaci-

tor, causing a potential drop and increasing resistance.134  

Oxide growth occurs naturally in ambient conditions and it is accelerated at elevated temperatures 

or in high humidity environments. This sensitivity suggests that care must be taken in controlling the 

growth of this layer.139 In our studies involving Raman spectroscopy, differences in the PEDOT peak 

shape and position were evidently dependent on whether the PEDOT:PSS film was applied to a H-

terminated or a SiOx passivated silicon substrate.  Changes in the Raman features therefore provide a 

quick method of characterizing the underlying oxide layer. Figure 5.2 shows a large peak shift in the main 

Cα=Cβ band from 1415 to 1428 cm-1 and a smaller blue shift of the Cα =Cα band at 1255 cm-1, as well as an 

increase in the relative intensity of the Cβ –Cβ band at 1365 cm-1 with increasing thickness in the oxide 
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layer. To confirm that this shift is not a result of changes in the bulk electronic levels at the interface of 

silicon, the experiments were repeated on p-type silicon and identical results were obtained, confirming 

the change is not a result of charge transfer and de-doping of PEDOT:PSS. Instead, the observed changes 

are associated with molecular strain of the polymer caused by the hydrophobic nature of H-terminated 

silicon as opposed to the hydrophilic silicon oxide.  
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Figure 5.2: Raman spectra of PEDOT:PSS on silicon with different silicon oxide layer thicknesses.  

It has been shown that organic molecules chemically binding onto the silicon substrate offer ox-

ide growth resistance, 27,135,138 However, dynamic changes in the Raman spectrum of PEDOT:PSS on sili-

con with the native oxide layer removed can be observed with the growth of the underlying SiOx layer. 

Figure 5.3a) shows the shift in the Cα =Cβ band on H-terminated silicon over time for co-solvent-added 

films. The blue-shift in the peak maximum of the band follows an exponential trend with increasing time, 

as shown in Figure 5.3b), with an initial rate constant of 4x10-3 cm-1/h-1, that follows an increasing trend 

for the first ~10 hours before levelling out.  The observed trend is in good agreement with the growth of 

the native oxide on bare silicon,139,140 indicating that PEDOT:PSS offers little oxide growth resistance be-

cause the bands appear to shift toward positions  corresponding to PEDOT:PSS on thick oxide layers, and 
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that silicon continues to oxidize gradually in ambient conditions.ǂ The formation of an oxide layer takes a 

couple of hours and should occur in a clean and controlled environment to be effective and reproducible. 

Quickly adding PEDOT:PSSS solution to h-terminated silicon, spin coating and annealing it during the 

oxide growth results in contamination and cell made in this fashion will be referred to as having a con-

taminated native oxide layer. 

 

Figure 5.3: a) Evolution of the Raman spectrum of PEDOT:PSS on Si substrate over time, following the growth of 

the underlying silicon oxide layer. b) Changes in Cα =Cβ peak position with time. 

 The JV characteristics were tested during the growth of the oxide layer under a co-solvent added 

PEDOT:PSS film (Figure 5.4a). An HSC was fabricated on a silicon substrate shortly after the substrate 

was treated with HF. The open-circuit voltage is found to decrease logarithmically with increasing oxidi-

zation time, while the fill factor also shows an overall downward trend. Figure 5.4b) shows increasing 

dark saturation current with time,  along with the decreasing slope (between 0.1 and 0.4 V) of the curves, 

representing higher ideality factor, which suggests greater recombination through defects.14,23,28 This de-

crease in performance with oxide growth is inconsistent with the increased performance seen when PE-

DOT:PSS is applied to pre-grown oxide (Figure 5.1). This is explained by the contamination of the oxide 

                                                      

ǂ Raider et al. showed that impurities are rapidly absorbed on silicon substrates after etching in HF, and that more 

carbon is initially absorbed on an etched substrate than one with an oxide present.140 Moreover the impurity layer is 

found to decrease after oxidation had already been initiated. 
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layer. As the layer grows, it incorporates fragments and other impurities from the PEDOT:PSS, increasing 

the number of defects, resulting in Fermi-level pinning and higher Shockley-Read-Hall recombination.24 

 

Table 5.1: J(V) characteristics during the growth of SiOx under a co-solvent-added PEDOT:PSS film. 

Time (h) Jsc (mA/cm2) Voc (V) FF Efficiency (%) 
0.4 15.9 0.451 0.562 4.04 
1.4 16.1 0.446 0.539 3.88 
3.3 16.0 0.430 0.519 3.66 
5.3 15.6 0.435 0.546 3.71 
7.4 15.6 0.432 0.534 3.59 

19.4 15.1 0.429 0.520 3.37 
25.4 16.0 0.426 0.503 3.42 

 

Figure 5.4: a) Illuminated J(V) curves and b) Dark saturation curves over time with the growth of silicon oxide layer 

under a co-solvent-added PEDOT:PSS film. 

It has been well documented that covalently bonded passivating layers have an effect on the elec-

tron affinity, causing band bending either up or down depending on the charge and molecular polarization. 
27,134,141 Figure 5.5 shows a schematic representation of the Schottky barrier junction for PEDOT:PSS on 

H-terminated Si, Si with contaminated native oxide, and Si with SiOx interfaces. The growth of the oxide 

under the PEDOT:PSS layer could result in a range of bond lengths and orientations, disrupting any long-

range order and could explain the changes seen in the Raman data (Figure 5.3). Moreover, contamination 
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of the surface from anionic PSSǂ can leave the surface negatively charged and can act as electron donors, 

limiting band bending and the extent of the depletion layer as indicated by the decrease in current density 

(Jo) and open circuit voltage (Voc).25 On the other hand, allowing for controlled native oxide growth on 

the surface before applying the polymer results in better surface passivation. Electron loss from dangling 

bonds traps positive charges and provides a positive surface dipole, blocking recombination, assisting 

hole transport and insuring a strong inversion layer so electron back transfer is minimized.14 This sensitiv-

ity to surface defects exposes the challenges observed by others in obtaining high VOC and efficient cells 

on nanostructured silicon142,143,144.  

 

Figure 5.5:  Energy band diagrams showing band bending at the interface between PEDOT:PSS and different n-

silicon substrates: (Left) An H-terminated surface contains dangling bonds, and an increase in the number of surface 

states resulting in mid-gap Fermi-level pinning. (Center) A contaminated oxide layer results in more charged defects 

and a decrease in band bending. (Right) A controlled native oxide layer results in the greatest band bending and an 

inversion layer through a reduction in space charge region recombination. q is the electronic charge, ϕ are the work 

function of the metal, χ is the electron affinity of the semiconductor, Evac is the vacuum level, Ef is the Fermi level, 

and 𝛹௕௜ ൌ 𝜙 െ 𝐸௙ is the built in potential and 𝜙௕ ൌ 𝛹௕௜ ൅ |𝐸௖ െ 𝐸௙| is the barrier height. 

                                                      

ǂ It was shown in Chapter 2 that PSS remains on the silicon surface after the film is removed. 
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5.3.2. Post-Treatment 

As mentioned in Chapters 3 and 4 (Figure 3.10, and Figure 4.13), the open-circuit voltage ob-

tained from illuminated IV curves for post-treated films was on average higher than those not. Moreover, 

after the post-treatment higher internal quantum efficiency was obtained in the short-wavelength region, 

which suggests greater collection of photocarriers created near the junction (Figure 4.10).ǂ The dark satu-

ration current of the top performing co-solvent-added and post-treated cells are shown in Figure 5.6. 
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Figure 5.6: Dark saturation currents density as functions of voltage for cells made from co-solvent-added 

PEDOT:PSS films and post-treated films. 

Linear extrapolation of the current density in the high forward bias range to V=0 indicates that the 

post-treated cells have a smaller Jo (1.5×10-9 mA/cm2)  than the co-solvent-added cells (5.8×10-8 mA/cm2) 

and a smaller ideality factor indicated by the larger slope than that for the co-solvent-added cells, shown 

as dashed lines. It is well known that the dark saturation current is dominated by majority carrier injection 

into the anode material (electrons injection into PEDOT:PSS),24,130,145 a lower value after post-treatment 

                                                      

ǂ A higher IQE in this region is indicative of low recombination through a lower majority carrier (electron) charge 

transfer coefficient, which also manifests itself as a higher potential barrier.13  
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indicates stronger inversion and electron blocking. Moreover, the transition to diffusive behaviour occurs 

at a lower voltage after post-treatment. Together these indicate that Shockley-Read-Hall recombination 

decreases and the charge carrier lifetime increases within the space charge region as indicated by Equa-

tion 5.6. However, the current density at lower voltage that is indicative of shunt resistance is similar for 

both films, which suggests similar majority charge carrier transfer at the interface.  

Post-treatment has a large effect on the interface. As described in section 2.7.3. the removal of 

PSS from the interface allows the film to fall within the Schottky-mott regime causing the PEDOT work 

function to feel greater influence from the inorganic fermi-level.62,65 This together with the change in 

blend stoichiometry of PEDOT after post-treatment and the increase in positive bi-polaron modes as evi-

denced by Raman and UV-vis experiments would indicate a strong change in interfacial potential. These 

effects results in the effective density of acceptor states, NA to increase,146 and causes an increase the in-

version layer and decrease the electronic coupling between PEDOT:PSS and n-silicon. Future work 

should be conducted with different PEDOT:PSS grades to conclusively determine the effect that doping 

density has on the space charge region. 

5.3.3. Poly(3-hexylthiophene) 

  Regioregular Poly(3-hexylthiophene) (P3HT) is a large band-gap semiconducting polymer with 

interesting self-organizing properties and different crystalline structures from PEDOT:PSS. P3HT is an 

ambipolar conductor and is non-conducting in its natural state and only becoming conducting upon dop-

ing and the addition of excess charges.147,148 Morphological studies were conducted to produce highly 

crystalline P3HT, with good charge-transport properties, to be placed as an interfacial layer between PE-

DOT:PSS and n-type silicon with a native oxide layer.  

The drying or relaxation rate of polymers has a significant effect on the crystal structure and thus 

conductivity.149,150,151 For this reason, solvents with different vapor pressures and boiling points were test-

ed to prepare crystalline regioregular P3HT, and these solvents include (in the order of increasing boiling 

point) chlorobenzene (CB), dichlorobenzene (DCB), and trichlorobenzene (TCB). The AFM and optical 

birefringence images of P3HT in these solvents all exhibit different morphologies and they are shown in 

Figure 5.7a). All solutions showed regular features but on different length scales. Low boiling point CB 

resulted in a short range chain structure whereas high boiling point TCB had much longer range structure 

with well-defined nanofibers a couple of micrometers long and <10 nm thick. The corresponding phase 

images shown in Figure 5.7b) show that CB has a homogeneous surface with the presence of some isolat-
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ed polymer aggregates, while TCB exhibits straight, aligned bundles of fibers. DCB appears to have large 

regular elongated 2D features on the same scale as TCB, while the 1 μm scan indicates that they consist 

of entangled and agglomerated chain structures like those of CB. With the onset of large regular surface 

features, like those seen when DCB or TCB is employed, birefringence patterns can be observed using a 

cross polarizer (Figure 5.7c). Birefringence appear due to anisotropy and crystallization of a polymer 

film.45,74 They are likely observable due to the higher crystallinity of DCB and TCB and inherent polymer 

structures with high orientation, like those shown in Figure 2.13.118 There was no observable Birefrin-

gence for CB, the small features visible in the microscopic image are surface features. 



99 

 

 

Figure 5.7: a) Tapping-mode AFM images of P3HT films prepared with chlorobenzene (left), dichlorobenzene 

(middle) resulting in surface features, and trichlorobenzene (right) resulting in nanofibers; b) their corresponding 

phase images; and c) optical cross polarized birefringence maps of these films on a silicon surface (50X 

magnification). 

The extent of π-π stacking and crystallization can be identified through the UV-Vis absorption 

spectra as shown in Figure 5.8a). The broad absorbance band at ~550 nm corresponds to the π-π* (So – 
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S1) transition of the polymer chain.74,152 The red shift of the absorbance maximum with cosolvents with 

decreasing vapour pressure and increasing boiling point reflects an increase in conjugation length and 

decrease in kinks or twists of the backbone.73 The lower-energy vibrionic feature at 620 nm indicates 

strong π-stacked aggregates,153 while the higher-energy tail of the spectrum is associated with unaggregat-

ed, disordered chains that give rise to the formation of intrachain states.74,152,154 The two lower-energy 

peaks observed near 620 nm and 570 nm correspond to the A0-0, and A0-1 vibrationally excited states, re-

spectively.ǂ The Spano model uses the intensity ratio between these peaks to estimate the aggregate con-

tent and degree of intrachain order:155 

where Ep is the main intermolecular vibration energy, and W is the free exciton bandwidth within the 

crystalline domains. Qualitatively, the TCB results in the highest degree of crystallinity and the lowest 

amount of disordered unaggregated chains. This is further supported by their corresponding Raman spec-

tra in Figure 5.8 b), which shows a broadening of the thiophene C=C ring breathing mode at 1450 cm-1 

and a relative intensity increase in the thiophene C-C band at 1372 cm-1. The decreasing trend in this 

(C=C/C-C) intensity ratio from CB to DCB to TCB is attributed to an increase in the corresponding con-

jugation length.152 

                                                      

ǂ The subscripts 0-0 and 0-1 correspond to the transition from the ground state S0 to the vibrational states v=0, 1, 2 of 

the excited state or exciton S1. 
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Figure 5.8: a) UV-Vis absorption spectra and b) Raman spectra of P3HT prepared using CB, DCB, TCB.  

The crystalline orientation of the polymer is important and crystallization is preferred along the 

charge transport direction, parallel to the applied field.33 Crystalline polymer chains with fewer defects 

result in greater orbital overlap, such as π-stacking, which facilitates inter-chain charge transport. The 

charge mobility in P3HT is therefore strongly dependent on the morphology.70  Despite the high mobility 

in the one-dimensional crystalline nanostructures, the macroscopic mobility of the film is determined by 

the twisted chains in the amorphous regions and the level of nanocrystal interconnectivity.154 Himmel-

berger et. al. has shown that local aggregation over very few chains is a preferred mesoscopic structure 

and that extended crystallinity is not necessary (explaining the excellent conductivity of PEDOT:PSS).156 

Charges propagate mainly along the polymer backbones but are not as easily isolated and trapped at grain 

boundaries.157 Films with small crystallites and long interconnecting chains acting as bridges can have 

higher mobility. For this reason, the smaller crystallites and more homogeneous film coverage obtained 

for the DCB sample was chosen for the HSC experiments. 

 The ability of P3HT to act as a chromophore and the effect of its thickness on short-circuit current 

density is examined using quantum efficiency measurements. Figure 5.9a) shows the EQE curves of a 

DCB P3HT nanofiber layer with different thicknesses (of 10 nm, 30 nm, 50 nm and 80 nm) between a 80 

nm co-solvent added PEDOT:PSS and Si substrate. Evidently, the EQE in the 400-600 cm-1 region de-

creases as a result of greater absorbance of increasing P3HT layer thickness and follows the absorbance 

profile of DCB (Figure 5.8a), indicating that photons absorbed by P3HT do not contribute to the photo-

current. Since the addition of even a thin layer of P3HT would reduce the photocurrent across this region, 
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it is unlikely that the addition of a chromophore at the interface could extend the absorbance spectra of 

HSCs. The creation of excitons and separation into electron-hole photocarriers at the interface do not oc-

cur, validating the Schottky model and that the space charge region is confined to the silicon base. For 

wavelengths larger than 650 nm, the EQE increases with thickness up to 50 nm and then decreases for 

larger thicknesses.  

 

Figure 5.9: (a) External quantum efficiency of HSCs and (b) dark saturation current with P3HT interfacial layers of 

different thicknesses.(The 50 nm sample shows interference effects at longer wavelengths often seen in untextured 

solar cells)90 

The dark saturation current is used to examine the interfacial effects introduced by a P3HT layer 

(Figure 5.9 b). Up until 50 nm the current density is found to decrease in the low forward bias region (0-

0.4 V) with increasing P3HT layer thickness (as marked by the arrow in the low bias region), indicating 

that the shunt resistance of the cells increases with increasing thickness. The slope has become steeper 

(indicating a lower ideality factor) until the P3HT layer thickness reaches 50 nm above which layer thick-

ness the slope decreases. The Jo values obtained from linear extrapolation of the curves in the mid for-

ward bias region (0.4 V – 0.6 V) are shown in Table 5.2.  Evidently, J0 for cells with P3HT layer thinner 

than 80 nm are similar to that for the post-treated cells discussed above. There is also a slight increase in 

the current density in this region with decreasing thickness, suggesting a corresponding decrease in the 

series resistance (as marked by the arrow at high forward bias) with increasing P3HT layer thickness. 

(The Jsc for the highest performing post-treated cell, (30.48 mA/cm2) is higher than the maximum of 28.3 

mA/cm2 discussed in chapter 4 because of the tendency of solar simulated Jsc to produce inflated values. 

(This is mainly due to changes in the potential barrier under low-intensity monochromatic illumination 
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and AM1.5G illumination. 158) The increasing EQE above 650 nm, increasing shunt resistance, and simi-

lar Jo are indicative of better charge transfer at the interface and increasing carrier lifetime with increasing 

P3HT layer thickness below 80 nm. Figure 5.10a) shows the corresponding illuminated J vs V curves of 

HSCs containing a P3HT interface layer with different layer thicknesses. Significantly higher open-circuit 

voltages were obtained with an interfacial layer thinner than 80 nm than that without the P3HT interface 

layer. The highest achievable voltage, 0.592 V, was obtained with a P3HT layer thickness of 50 nm. How-

ever, significant effects from the series resistance resulting from increasing layer thickness that cause re-

duction in the fill factor are observed, which accounts for the poor performance when thicker interfacial 

films are used. If the conductivity of P3HT could be increased through, for example, doping, the series 

resistance could possibly be reduced, which would alleviate this adverse effect.  

Table 5.2: J(V) characteristics of different thickness P3HT layer under PEDOT:PSS. 

Thickness (nm) Jo (mA/cm2) Voc (V) Jsc (mA/cm2) FF Efficiency (%) 
80 3.2x10-8 0.521 23.35 0.239 2.91 
50 1.7x10-9 0.592 28.40 0.402 6.75 
30 1.5x10-9 0.576 25.16 0.542 7.85 
10 2.7x10-9 0.565 28.88 0.628 10.25  

Post-treated 1.5x10-9 0.557 30.48 0.701 11.90 

 

Figure 5.10: (a) Illuminated J(V) curves of PEDOT:PSS-Si HSCs with a P3HT interface layer of different thickness. 

(b) Schematic of band structure of the P3HT interface layer in the HSC. Orange arrow represents the electron 

current while green arrows represent the hole current (conventional current). 
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The relative positions of the band levels of the interfacial layer will determine the carrier 

transport across the junction, the proper alignment of band energies could favorably facilitate transport of 

photo-generated minority carriers (holes) while blocking majority carriers (electrons). For an effective 

electron blocking layer on silicon, the LUMO must be higher than the conduction band, with the HOMO 

ideally matching or slightly higher than the valance band. A staggered type heterojunction band alignment 

provides energetically favorable flow of holes while blocking electrons, and P3HT paired with silicon 

exhibit band levels matching these characteristics as seen in figure 5.10 b. Since the addition of P3HT at 

the interface has an effect on the carrier lifetime without greatly affecting the diffusion current (as sup-

ported by the nearly constant Jo  for layer thickness below 80 nm), the P3HT layer is thought not to affect 

the surface energy and band bending but act as a blocking layer for electrons . Although a P3HT layer is 

not directly beneficial to HSCs (since excitons created by absorbance outside the silicon base layer do not 

contribute to the photocurrent), a sufficiently thin such layer (less than 80 nm) does increase the open-

circuit voltage acting as an electron blocking layer. Future work will be to develop an appropriate trans-

parent interfacial layer that could also increase the efficiency of these cells.  

Combining the calculated maximum short circuit current, of 28.3 mA/cm2 from chapter 4 and the 

maximum obtainable open circuit voltage of 0.557 (seen for HSCs using silicon wafers with a resistivity 

of 1-2 Ω cm and phosphorous doping concentration of 1018 cm-3 and a 2 nm controlled native oxide layer) 

and with an achievable fill factor of 0.75, The maximum achievable hybrid solar cell efficiency of 11.8% 

is obtained for this set up. This could be approved upon through the use of a more highly doped silicon 

substrate, more transparent or conductive polymer film, or the use of an appropriate blocking layer as 

shown here. 

5.4. Conclusion 

The effects of interfacial conditions on HSCs were examined in the present study. First, the pas-

sivation of silicon surface was tested. The cells with a 2-nm-thick SiOx passivation layer are found to per-

form better than those with H-terminated Si substrate and they produce a greater surface band bending 

forming an inversion layer. Remarkably, PEDOT:PSS does not appear to protect against the oxide growth 

on the Si substrate. If the PEDOT:PSS layer is applied without sufficient passivation, formation of a con-

taminated interface with reduced band bending and reduced open-circuit voltage would occur. Second, as 

shown in previous chapters, stoichiometric and morphological changes in PEDOT:PSS emitter layer 

through post-treatment was tested.  Post-treatment was found to produce a statistically higher open-circuit 

voltage and interfacial charge transfer as seen from IQE measurements. Analysis of the dark saturation 
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current studied showed a significantly lower Jo, and a constant shunt resistance indicative of a change in 

the effective density of acceptor states with the removal of PSS and incensement of bi-polaron modes as 

the result of post-treatment. Lastly, P3HT was tested as an interfacial layer. Chlorobenzene resulted in 

films with good homogeneity but poor crystallinity, while trichlorobenzene was found to produce films 

with significant crystallinity with the formation of an fibrous network parallel to the substrate, i.e. per-

pendicular to the direction of electron transport.  Films prepared with dichlorobenzene resulted in homo-

geneous, two-dimensional surface features with interconnected monocrystalline domains, best suited for 

use in HSCs. When a P3HT blocking layer was deposited between PEDOT:PSS and the silicon substrate, 

it behaved as a chromophore absorbing light but not as an electron donor as it does in organic heterojunc-

tion solar cells, indicating that the depletion region stays in the silicon surface validating the Schottky 

model. However, the addition of P3HT of an appropriate layer thickness led to the largest open-circuit 

voltages obtained. Such a P3HT layer was seen to reduce the shunt resistance while maintaining Jo, indi-

cating that it acted as a blocking layer for electrons while allowing holes to pass, likely due to its appro-

priately positioned band energies. In summary, a passivation layer results in upward band bending 

through the reduction of surface states. Post-treatment further increases the band bending through the in-

crease in the effective density of acceptor states of the emitter layer, and has been witnessed in higher 

open circuit voltage, IQE, and in light generated current density in Chapters 3 and 4. Finally, the insertion 

of P3HT acts as a blocking layer, and selectively blocks electron charge carriers in the silicon while per-

mitting holes to cross. 
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6. Conclusion and Future work 

The highly conducing polymer PEDOT:PSS was paired with n-type silicon to examine its photoe-

lectrical properties in hybrid solar cell devices. First, PEDOT:PSS films were prepared by using the con-

ductivity enhancing methods, including post-treatment and the addition of a co-solvent to the aqueous 

solution. Then, the optical and electrical properties were quantified to determine the contribution of film 

thickness on the reflectance and resistivity in order to precisely optimize the short-circuit current of the 

cell. Finally, the interaction between PEDOT:PSS and silicon was evaluated by examining the formation 

of the heterojunction and the effect on the open-circuit voltage. 

In order to increase the sheet conductivity of spin-coated PEDOT:PSS films, a post-treatment 

method was developed by using a mixture of ethylene glycol and methanol. The optimal mixture of 50 

vol% resulted in a doubling in the sheet conductivity to 1334 ±129 S/cm over films formed from PE-

DOT:PSS films with ethylene glycol added as a co-solvent (637 S/cm ±58 S/cm).  It also resulted in an 

average 51.7% reduction in film thickness as observed in reflectometry and UV-vis measurements. The 

conductivity enhancing methods caused a change in the linear conformation of the PEDOT to a more 

quinoidal character, with the post-treatment method producing the greatest change, as seen with Raman 

spectroscopy. 

 FTIR of the effluent post-treatment solution indicated that the observed reduction in film thick-

ness was due to the removal of PSS, which was soluble in the ethylene glycol/methanol solution while 

PEDOT remained as a film. Observed in  AFM images, the nanodomains that make up the film become 

more defined after post-treatment. However, similarities in topography before and after post-treatment 

indicate the immutability of the domains and that the PSS is removed uniformly throughout the film. 

Analysis of individual domains revealed that they deformed after post-treatment, decreasing in height and 

increasing in aspect ratio, which is attributed to an elongated quinoidal structure of PEDOT chains laying 

more parallel to the silicon substrate. These large changes observed using 50 vol% ethylene glycol and 

methanol post-treatment solution are the result of a decrease in viscosity when compared to pure ethylene 

glycol, and large London dispersion forces capable of intercepting and cause charge screening between 

the PEDOT and PSS chains. Together with the added benefit of agitation of the polymer caused by Ma-

rangoni eddies.  

When the films were tested in hybrid solar cells, the open-circuit voltage increased from 0.48 V 

to 0.49 V, fill factor increased from 0.49 to 0.60 and the efficiency from 6.77% to 8.05% for co-solvent 
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and post-treated films, respectively. However the property most strongly correlated to the conductivity, 

the short-circuit current actually decreased after the post-treatment (that improved the conductivity) and 

went from 27.73 mA/cm2 to 27.15 mA/cm2 for co-solvent and post-treated films, respectively. This de-

crease was attributed to increased absorbance of the PEDOT rich films as observed by UV-Vis spectrome-

try, and a decrease in quantum efficiency due to increased anisotropy and resistance perpendicular to the 

substrate. 

To explore why post-treatment decreased the short-circuit current and examine the effect of 

thickness on hybrid solar cells, the optical and electrical properties of the films were thoroughly investi-

gated by fitting the experimental results with thin film optical models. From UV-vis transmittance meas-

urements, the extinction coefficient and refractive index were calculated and they showed that the values 

obtained for the post-treated films deviated from those of the pristine and co-solvent added films, both of 

which were similar.  

Using the extinction coefficient, the reflectance was modeled using a single stack layer. The re-

flection spectra of PEDOT:PSS films on silicon were measured at different thicknesses.  By fitting the 

model to the experiment data, the contribution to reflectance of PEDOT:PSS and silicon could be ob-

tained. The thickness at which reflection is minimized and anti-reflectance is maximized was found to be 

102 nm. Using the reflectances, index of refraction and phase shift determined through fitting, the model 

was extended to estimate the quantum efficiency for the amount of energy transmitted into the silicon and 

then used to fit EQE data and calculate the short-circuit current. It could be seen that Jsc followed a sig-

moidal curve with increasing thickness with a maximum of 28.3 mA/cm2 at a thickness of 85 nm for pris-

tine and co-solvent films and 26.2 mA/cm2 at 63 nm for post-treated films. The experimental data indicat-

ed that post-treatment had a significantly lower EQE at higher wavelengths (above 500 nm) resulting in 

lower overall EQE. Fitting allows the generation and collection of photo carriers entering silicon, Si-

Generation, to be determined, from which the collection probability was calculated. The indirect band-gap 

of silicon contributed to a decreased collection probability between 600 nm and 1050 nm. There was an 

increase above 1050 nm, which was likely the result of the Lambertian textured rear surface trapping the 

light. 

 Knowing the reflectance, quantum efficiency, and absorbance data with respect to the film thick-

ness, the optical and electrical loss mechanisms for incident light could be determined for the optimized 

85 nm hybrid solar cell. A respectful 61.5% was captured by the cell and converted to current; 22.2% and 
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69% was lost to reflectance and absorbance, respectively; 2.7% traversed the cell and was absorbed by the 

rear electrode; while the remaining 6.7% was lost due to recombination at the surface and in the bulk.  

Removing the optical component of the EQE allowed for the electrical contributions to be ob-

served, the internal quantum efficiency. With increasing thickness, the IQE decreased as a result of in-

creasing resistivity. The total IQE was fitted using the single diode equivalent circuit model to obtain a 

comparative measure of the resistivity, and that for the post-treated films was 75% and 64% more than the 

that of pristine and co-solvent added films, respectively, which was caused by increase in the anisotropy 

and resistance perpendicular to the substrate. It was concluded that the maximum short-circuit current 

density depends on optimizing the decreasing total reflectance and increasing the resistivity and absorb-

ance with thickness. Signifying a decrease in either perpendicular resistivity or absorbance would lead to 

a higher JSC at a larger thickness. 

 The hybrid solar cells showed a wide variability in the open-circuit voltage between samples, A 

detailed examination of the heterojunction using of dark current density was conducted to understand this 

and to improve performance. Surface passivation of the silicon, by allowing a thin native oxide layer to 

form naturally in ambient conditions, resulted in a lower ideality factor and dark current density than hy-

drogen-terminated bare silicon. It was discovered that the oxide layer thickness caused a blue shift in the 

Raman signal of Cα =Cβ band allowing for easy normalization of the substrates. Using this method, it was 

also found that the oxide growth continued after the application of PEDOT:PSS on H-terminated silicon 

resulting in a contaminated passivation layer. However, following this peak position with the growth of 

the oxide layer could also be measured in real time. The continued growth of this contaminated oxide lay-

er under the PEDOT:PSS film resulted in decreasing solar cell performance and increasing ideality factor 

with time. It was concluded that the dangling bonds of H-terminated silicon created surface defects and 

Fermi level pinning, applying PEDOT:PSS and allowing oxide layer to grow underneath could  encapsu-

late anionic PSS and other contaminates and increase the number of defects and trap sites reducing the 

band bending in the space charge region. The controlled growth of a layer of native oxide in clean ambi-

ent conditions for 2 hours before the application of PEDOT:PSS resulted in stable high VOC, and low ide-

ality factor solar cells that are the result of a strong inversion layer at the heterojunction. 

 Consistently higher VOC from the solar simulator measurements, and higher short wavelength 

IQE for post-treated films indicated favorable heterojunction properties for these cells compared to those 

with pristine or co-solvent added films. Examination of the dark current density showed that post-treated 

cells exhibited lower saturation current (1.5×10-9 mA/cm2) and smaller ideality factor than the co-solvent-
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added cells (5.8×10-8 mA/cm2) indicating a stronger inversion layer and electron blocking. The removal 

of PSS from the film after post-treatment and change in the ratio of PEDOT to PSS would change the ef-

fective density of acceptor states at the surface resulting in a stronger inversion layer and the observed 

increase in VOC and IQE. In future work, detailed examination of the dark current density of hybrid solar 

cells with different ratios of PEDOT to PSS should be conducted in order to determine how the effective 

density of acceptor states influences the inversion layer in hybrid solar cells.  

 P3HT was studied to examine the effect of an absorbing, high band gap interfacial thin layer. Sol-

vents with different vapor pressures and boiling points were tested to modify morphology and crystallini-

ty. Crystallinity was observed to increase with lower vapor pressure and higher boiling point. Trichloro-

benzene resulted in long crystalline fibers, dichlorobenzene solution resulted in regular elongated 2D  

structures, while chlorobenzene produced homogeneous short-chain structures. Since films made from 

dichlorobenzene consisted of small homogenous crystallites with good crystallinity and orientation for 

perpendicular charge transport, it was applied as an interfacial layer. EQE measurements showed a de-

crease in efficiency caused by absorbance from P3HT and no beneficial charge carrier generation. This 

leads to the conclusion that the space charge region shares similar characteristics as a p+-n junction and 

lies primarily in the silicon and that charge separation and transfer does not occur on the polymer side of 

hybrid solar cells. Future work should examine extending the space charge region by placing appropriate 

inorganic quantum-dot chromophores at the surface to extend and enhance the blue (300- 500 nm wave-

length) region.  

 Dark current density was tested to observe the charge transfer properties with the large band gap 

P3HT at the interface. A layer thickness of 50 nm resulted in the lowest dark current density obtained in 

all tests indicating high shunt resistance, even though the dark saturation current was similar as those 

post-treated films.  These results along with a higher EQE seen above 650 nm and higher open-circuit 

voltage (0.592 V) are associated with increased charge carrier lifetime and charge transfer across the junc-

tion with increasing P3HT below 80 nm. Despite this, the increased absorbance from the film, poor con-

ductivity resulting in large series resistance, and a low fill factor resulted in poor hybrid solar cell perfor-

mance. Future work should be conducted to increase the conductivity of P3HT by doping, or by using a 

large band gap polymer with higher mobility, or a thin transparent inorganic film such as TiO2 to serve as 

a blocking layer. 

 This thesis took an comprehensive look at all the properties of PEDOT:PSS/silicon hybrid solar 

cells, a cheap and viable alternative technology to conventional solar cell. This research showcased effec-
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tive, and easy ways of quickly increasing the conductivity of PEDOT:PSS through post-treatment and the 

removal of PSS, however it highlighted that not all conductivity enhancing methods effect devices in the 

same way. For efficient hybrid solar cells it is important to not compromise the optical and interfacial 

properties in the drive to increase conductivity. This work exposed the importance of film thickness to 

device properties. A versatile model was developed that can be used on other hybrid organic/inorganic 

systems to quickly optimize, and separate the optical and electrical properties. This model should be used 

as a starting point and validity test to see the suitability of any new hybrid system. The examination of the 

PEODT:PSS/Silicon heterojunction emphasized the sensitivity and importance of forming an appropriate 

junction. Under controlled deposition conditions, device post-treatment or through the addition an interfa-

cial blocking layer; changes to the p+-n junction could be realized and exploited for better performance. 

This work showed that for this combination of materials the highest obtainable efficiency was 11.8%, a 

respectful value for these modest devices, and it highlighted ways other hybrid solar cell systems improve 

upon this.   
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Appendix 1: AM-FM 

 Atomic force microscopy multifrequency imaging also known as bimoidal AFM, or amplitude 

modulation frequency modulation (AM-FM) uses multiple lock-in amplifiers to monitor multiple higher 

order cantilever vibration modes in non-contact mode. 159 Generally the first and the first and the second, 

or the first and the third fundamental frequency is used, with the higher order is superimposed onto the 

lower frequency as in Figure A1. In AM-FM the higher frequency mode is adjusted to keep the frequency 

constant, while the lower frequency maintains amplitude. Since the first fundamental frequency is sensi-

tive to energy loss it is often used with phase imaging to determine physical properties of polymers as 

well as topographic contributions, but can be influenced by contact area, and viscoelasticity and adhesion. 
159,160,103The higher frequencies are sensitive to tip sample interactions that conserve energy like viscoelas-

ticity, or van-der-Walls interactions which can be converted into quantitative modulus measurements they 

tend to have a higher quality (Q) factor resulting in sharper images. 159,160,103

 

Figure A1: first and second cantilever harmonics superimposted. 
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Appendix 2: Lavenberg-Marquardt Algorithm 

The nonlinear least squares method was used in solving for different parameters since all cases 

were over determined systems (there were more equations than unknowns). Least squares method mini-

mizes the sum of the squares of the residuals of every curve to be fitted to obtain the optimum solution. 

Since they are nonlinear they must be solved numerically in an iterative process.  

 The Lavengerg-Marquardt algorithm (LMA) interpolates between Gauss-Newton algorithm and 

gradient decent method. Such minimization process is good at finding the local minimum but not always 

the global minimum. The parameter(s), 𝛽, that best minimizes the sum of the squares of the deviations, 

𝑠ሺ𝛽ሻ, is: 

𝛽መ ൌ argminఉ 𝑆ሺ𝛽ሻ ≡ argminఉ ෍ሾ𝑦௜ െ 𝑓ሺ𝑥௜, 𝛽ሻሿଶ

௠

௜ୀଵ

 

Which minimizes a model curve, 𝑓ሺ𝑥, 𝛽ሻ, over a set of empirical curves, m, comprised of independent 

and dependent variables ሺ𝑥௜, 𝑦௜ሻ. Informed initial guesses are given for 𝛽 indicating where to start the it-

erative procedure to insure proximity to the global minimum. To begin the gradient decent is used to de-

termine the next best value: 

𝑓ሺ𝑥௜, 𝛽 ൅ 𝛿ሻ ൎ 𝑓ሺ𝑥௜, 𝛽ሻ ൅
𝜕𝑓ሺ𝑥௜, 𝛽ሻ

𝜕𝛽
𝛿 

If the reduction of S is too fast or slow a damping factor is added and controlled to avoid getting trapped 

in a local minimum, and speeding up convergence. This contribution of the Gauss-Newton algorithm. 
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Appendix 3: Permissions 

DISCLAIMER 

The National Renewable Energy Laboratory (NREL) is operated for the U.S. Department of En-

ergy by the Alliance for Sustainable Energy, LLC ("Alliance"). As such the following rules ap-

ply: 

Copyright Status 

NREL-authored documents are sponsored by the U.S. Department of Energy under Contract DE-

AC36-08GO28308. Accordingly, with respect to such documents, the U.S. Government and oth-

ers acting on its behalf retain a paid-up nonexclusive, irrevocable world-wide license to repro-

duce, prepare derivative works, distribute copies to the public, and perform publicly and display 

publicly, by or on behalf of the Government. Use of documents available from or referenced by 

this server may be subject to U.S. and foreign Copyright Laws.  

Data and Software 

Access to or use of any data or software made available on this server ("Data") shall impose the 

following obligations on the user, and use of the Data constitutes user's agreement to these terms. 

The user is granted the right, without any fee or cost, to use or copy the Data, provided that this 

entire notice appears in all copies of the Data.  Further, the user agrees to credit the U.S. Depart-

ment of Energy (DOE)/NREL/ALLIANCE in any publication that results from the use of the Da-

ta.  The names DOE/NREL/ALLIANCE, however, may not be used in any advertising or public-

ity to endorse or promote any products or commercial entities unless specific written permission 

is obtained from DOE/NREL/ ALLIANCE.  The user also understands that 

DOE/NREL/ALLIANCE are not obligated to provide the user with any support, consulting, 

training or assistance of any kind with regard to the use of the Data or to provide the user with 

any updates, revisions or new versions thereof. DOE, NREL, and ALLIANCE do not guarantee 

or endorse any results generated by use of the Data, and user is entirely responsible for the re-

sults and any reliance on the results or the Data in general.  
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USER AGREES TO INDEMNIFY DOE/NREL/ALLIANCE AND ITS SUBSIDIARIES, AF-

FILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DE-

MAND, INCLUDING REASONABLE ATTORNEYS' FEES, RELATED TO USER’S USE OF 

THE DATA.  THE DATA ARE PROVIDED BY DOE/NREL/ALLIANCE "AS IS," AND ANY 

EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIA-

BLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-

AGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED 

WITH THE LOSS OF DATA OR PROFITS, THAT MAY RESULT FROM AN ACTION IN 

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR 

IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THE DATA.  
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