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ABASTRACT  

Forecasting water demand requires quantifying potential relationships between relevant 

statistics and ambient conditions such as water price and weather. Dr. Enouy (2018) 

demonstrates that discrete histograms can be parameterized into continuous probability 

density functions. Consistent parametrization allows regression analysis to be applied to the 

PDF statistics, thus able to reproduce PDFs through time. 

This work briefly introduces Dr. Enouy’s (2018) methodology and mainly investigates the 

applicability of this method. It formalizes the implementation details of residential water 

application in terms of data culling, optimization and regression analysis. A modified version of 

this method is employed as an adaptation to the analysis of commercial water demand. 

This thesis also discusses the possibility of employing the scheme of software development, to 

assure the robustness and correctness of this implementation. 
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1 INTRODUCTION 

Our water distribution systems were constructed without consideration of the necessity for 

future maintenance. For instance, most of the watermain and sanitary sewer infrastructure in 

Waterloo Region are between 30-50 years old with some even more than 60 years old. 

According to the AWWA report Buried No Longer, most of these water infrastructures 

developed in the post-WWII are approaching the end of their service life. To maintain current 

levels of water service, at least $1 trillion is estimated to be spent on maintenance and 

replacement of these systems over the next 2 decades in the US (AWWA 2012). Faced with 

increased costs of operations and maintenance, higher revenues need to be generated by 

raising water prices. 

 

Tap water sales has been in decline for more than a decade, which leads to a large downfall on 

revenues for the City of Waterloo. In order to generate enough revenues to cover expenses to 

maintain the water distribution system, cities are forced to raise their water rates. However, 

failure to correctly quantify the decline in consumer demand resulting from price increases can 

even lead to an even greater shortfall in revenues. Therefore, to develop an accurate financial 

model is important for anticipating how consumer demand responds to price changes and 

other factors such as weather. 

 

The new financial model generates continuous probability density functions (PDFs) from the 

water demand histogram from historical data, following the methodology developed by Enouy 

(2018). These data were obtained from the City of Waterloo for years 2007 through 2014, and 

represented bimonthly water consumption of both residential and commercial accounts. The 

objective of this work is to validate and formalize the methodology developed by Enouy (2018) 

into a scalable object-oriented software algorithm and SQL database capable of quantify the 

demand response of any large city. This objective is realized by analyzing both the residential 

and commercial water demand response of the City of Waterloo. 
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Variability in the location, scale and shapes of the water consumption PDFs over time indicate a 

relationship between changes in price and weather, which is represented by temperature and 

rainfall, and shifts in the consumer demand. This work uses the computational methodology to 

quantifying the relationship between the control function parameters that define the PDF, as 

well as the median, standard deviation and mean statistics to that of water price, weather, 

household income and demographics. The outcome is to be able to forecast residential, 

commercial, institutional, and industrial water demand for the City of Waterloo under 

anticipated water price and weather scenarios.  

 

  

Figure 1 Average residential water consumption for last 10 years 

 

 

The following three steps broadly outline the scope of the software development and 

implementation. First, apply the methodology from Enouy (2018) to transforming water 

consumption histogram into continuous probability density functions, with a tabulated list of 

control function parameters as a function of ambient price and weather score.  Second, 

perform multi-variate curvilinear regression on the median, standard deviation, and control 
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function parameters as a function of the dependent variables of water price and weather score 

(as defined by precipitation and temperature). Third, reproduce probability density functions 

that can be used to calculate the probability of achieving a threshold water demand as a 

function of price and weather. 
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2 THEORY 

The foundation of this work is based on Enouy (2018), and in particular his method of 

reproducing discrete histogram data as a continuously differentiable parametric PDF, and 

quantify how the continuum statistics of a PDF evolve as a function of multiple ambient 

processes. This section briefly introduces the most important aspects of his methodology, as a 

guideline of the subsequent section for applications. 

2.1 Median and Standard Deviation 

The importance of median and standard deviation statistics needs to be addressed here for the 

discussion of statistical transformation in the subsequent section. The central tendency of the 

histogram of any discrete dataset can be represented by its median 𝑚𝑥,𝑖 , while the scale is 

represented by its standard deviation 𝜎𝑥,𝑖 (Enouy, 2018). The definition of standard deviation is 

modified for the purpose of this particular analysis is: 

 𝜎𝑥,𝑖 = √
1

𝑁 − 1
∑[𝑥𝑖 −𝑚𝑥,𝑖]2
𝑁

𝑖=1

 (2.1) 

 

Where, 𝑁 is the total number of measurements, and 𝑥𝑖 is the ith measurement. 

2.2 Continuously Differentiable PDFs 

This section discusses transformation from a PMF 𝑝𝑥,𝑘, a functional representation of a 

histogram, to a continuously differentiable PDF 𝑝𝑥. First, 𝑝𝑥,𝑘 needs to be expressed in the 

standard-score space as 𝑝𝑧,𝑘 = 𝜎𝑥,𝑖𝑝𝑥,𝑘. This transformation will be specifically defined in the 

following section. The corresponding 𝑝𝑧 is characterized by a control function 𝑔𝑧, which 

represents the lognormal derivative of 𝑝𝑧. 

 
𝑔𝑧 =

1

𝑝𝑧

𝑑𝑝𝑧
𝑑𝑧

 

 

(2.2) 

 

 
⇒ 𝑝𝑧 = exp (∫𝑔𝑧 𝑑𝑧) 

(2.3) 
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By optimizing the control function to fit 𝑝𝑧,𝑘, we are able to match the shape of the PMF. 

Meanwhile, guarantee the integral of 𝑝𝑧 on our definite scale to unit area (Enouy, 2018). 

 
𝑐𝑧 = ∫ 𝑝𝑧𝑑𝑧

𝑧1

𝑧0

 

 

(2.4) 

Now combined with the location, scale represented by median and standard deviation, the 

three attributes of a PDF are captured. 

2.3 Statistical Transformations 

Enouy (2018) introduce a new transformation referred to as median-relative space as a way to 

normalize PMFs and PDFs by dividing each measurement by the median statistic. A key 

attribute to making this projection possible, is to make sure that the CDF and the integration of 

PDF are identical:  

 ∫𝑝𝑥
∗ 𝑑𝑥 =  ∫𝑝𝑦

∗ 𝑑𝑦 =  ∫𝑝𝑧 𝑑𝑧  (2.5) 

 

Where, 𝑝𝑥
∗ , 𝑝𝑦

∗ , and 𝑝𝑧 represent the zero-centered PDFs in the measurement, median-relative, 

and standard-score spaces. The * superscript represents a distribution centered at zero by 

subtracting a median value in the measurement space 𝑥∗ = 𝑥 −𝑚𝑥 (Enouy et al., 2018).  

Table 2.1  introduces the transformations for continuous zero-centered PDFs between each 

spatial representation. 

 

Table 2. 1 Spatial transformation in measurement, median-relative and standard-score space 

Space Magnitude PDF Derivative 

𝒙 𝑥𝑖  𝑝𝑥
∗ = 

1

𝑚𝑥,𝑖
𝑝𝑦
∗ =

1

𝜎𝑥,𝑖
𝑝𝑧  

 𝑑𝑥 = 𝑚𝑥,𝑖𝑑𝑦 = 𝜎𝑥,𝑖𝑑𝑧 

𝐲 𝑦𝑖 = 
𝑥𝑖
𝑚𝑥,𝑖

=  
𝜎𝑥,𝑖
𝑚𝑥,𝑖

𝑧𝑖 + 1 𝑝𝑦
∗ = 

1

𝜎𝑥,𝑖
𝑝𝑦
∗ = 𝑚𝑥,𝑖𝑝𝑧 𝑑𝑦 =

𝜎𝑥,𝑖
𝑚𝑥,𝑖

𝑑𝑧 =
1

𝑚𝑥,𝑖
𝑑𝑥 

𝐳 
𝑧𝑖 = 

𝑦𝑖 − 1
𝜎𝑥,𝑖
𝑚𝑥,𝑖

 
𝑝𝑧 

𝑑𝑧 =
𝑚𝑥,𝑖

𝜎𝑥,𝑖
𝑑𝑦 =

1

𝜎𝑥,𝑖
𝑑𝑥 
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2.4 The Control Function 

As mentioned in the previous section, control function is defined as lognormal derivative of a 

PDF in standard-score space. Equation 2.6 is the basic form of a first-order control function that 

produces a normal distribution. 

 𝑔𝑧 = −[𝛼1 + 𝛼2𝑧] (2.6) 

 

Where 𝛼1 and 𝛼2 represent the control function parameters. 

Equation 2.7 represents a polynomial series expansion for the control function. It is reshaped by 

adding additional polynomial terms to a normal distribution (Enouy, 2018) as shown in the 

following equations.  

 

 

 𝑔𝑧 = − [𝛼1 + tan (
𝛼2𝜋

180
) 𝑧 + ∑ 𝛼𝑛𝑧+1𝑧

𝑛𝑧+1

𝑁𝑧

𝑛𝑧=1

] (2.7) 

 

 

where 𝛼𝑛𝑧  is the parametric constant. 

             𝑛𝑧 represents the order on the standard-score variable 𝑧. 

             𝑁𝑧 is the total order of the control function in the standard-score space. 

 

Equation 2.8 presents the measurement space PDF 𝑝𝑥  as a projection of the standard-score 

PDF 𝑝𝑧 using a combination of the median 𝑚𝑥 and standard deviation 𝜎𝑥 (Enouy, 2018). It is 

applied in the notion of statistical advection and dispersion: 

 

 𝑝𝑧 = 𝑓(𝑔𝑧), 𝑔𝑧 = 𝑓(𝑎𝑛𝑧) (2.8) 

 

 
      𝑝𝑥     ⏟    
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

    =     𝑚𝑥    ⏟    
𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑃𝑟𝑜𝑐𝑒𝑠𝑠

+      
1

𝜎𝑥
  ×    𝑝𝑧    

⏟        
𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒
𝑃𝑟𝑜𝑐𝑒𝑠𝑠

 
(2.9) 
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where, 

 𝑔𝑧 is a polynomial series control function that represents the lognormal derivative of the 

standard-score PDF; 

𝑎𝑛𝑧  represent the shape parameters that characterize the control function; and, 

𝑛𝑧 is the number of terms in the polynomial series.  

 

 

2.5 Median-Relative Space 

The introduction of the median-relative space is a very important feature of Enouy (2018). It 

provides an effective means of normalizing datasets for the purposes of data culling, which 

significantly improves parameter estimation when fitting the PDF for different sets and scales of 

histogram data. Its value in the context of analyzing the City of Waterloo residential and 

commercial data is described in the following sections. 

2.5.1 Data Culling 

For many discrete datasets, even after being transformed into the median-relative space, the 

upper bound could still be infinitely large. That small portion of data values at the tail could 

significantly disrupt the parameter estimation process for the control function defining the 

system. Therefore, these outliers were discarded from the dataset (Enouy, 2018). Excluding 

those data did not have a great influence on the median statistic. However, it did significantly 

affect the fitting processes for estimated control function parameters as well as the standard 

deviation statistic. Therefore, a proper upper bound ought to be set in the median-relative as 

𝑦𝑚𝑎𝑥 , culling ratio. The setting of culling ratio will be further discussed in Section 3.1. 

2.5.2 Objective Function 

The objective function that needs to be minimized as a least-square problem is defined in the 

following form: 

 
𝑀𝑆𝐸𝑐,𝑦 =

1

𝑁𝑘
∑[𝑐𝑦 − 𝑐𝑦,𝑘]

2

𝑁𝑘

𝑘=1

 

 

(2.10) 

Where 𝑁𝑘 represents the number of bins 



 8 

             𝑐𝑦 represents CDF probability at 𝑦  

             𝑐𝑦,𝑘 represent CMF probability at 𝑘th bin 

the median-relative space allows the size of each probability interval bin be independently 

predefined for all different datasets. 

2.5.3 The Mean Statistic 

The probability weighted mean 𝜇𝑥 is defined as: 

 

 
𝜇𝑧 = ∫ 𝑧𝑝𝑧

𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

𝑑𝑧 

 

(2.11) 

 
 𝜇𝑥 = 𝑚𝑥,𝑖𝜇𝑦 = 𝑚𝑥,𝑖 + 𝛼𝑥,𝑖𝜇𝑧 (2.12) 

 

The arithmetic mean 𝜇𝑦,𝑖 is compared to 𝜇𝑦 as another standard to evaluate the quality of a 

fitting.  

𝑀𝑆𝐸𝜇,𝑦 = [𝜇𝑦 − 𝜇𝑦,𝑖]
2
 

 

2.6 Curvilinear Regression 

The goal of this model is to be able to quantify how both the residential and commercial water 

demand is impacted by multiple ambient processes, such as price, temperature, precipitation, 

water restriction by-law enforcement, water conservation policies (Enouy, 2018). This could be 

achieved by predicting how the optimal fitted PDF shifts as a response to the processes listed 

above. However, processes like restrictions and policies are unlikely to be quantified. We can 

only focus on the tangible processes of price, temperature, precipitation. Furthermore, we 

assume that the intangibles are minimal compared to others, and their impact can be inferred 

via changes in the water consumption that could not be explained by the other three major 

factors (Enouy, 2018). Prices are adjusted using the annual consumer price index (CPI) inflation 

rate to a base year of 2004. Weather is represented as a combined score of temperature and 

precipitation as:  

𝑊 = 𝑇 × 𝑅 
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where 𝑇 represents the average of the daily high temperature in degrees Celsius for all days 

within sampling periods (University of Waterloo Weather Station, 2017) . Precipitation 𝑅 

represents the number of days with less than 2mm of rainfall during sampling periods (NASA, 

2017; Environment Canada, 2017). The weather score is suggested by Enouy (2018) to avoid the 

impact brought by the inter-dependence between temperature and precipitation. 

 

Let 𝑃 and 𝑊 represent real price and weather score. Let 𝑈 represent 

{
𝑥

,𝑚𝑥,𝜎𝑥𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4} which are all the parameters that we regress with price and 

weather. The total differential of 𝑑𝑈 can be expressed as: 

 

 𝑑𝑈 =  𝐹𝑢,𝑝𝑑𝑝 + 𝐹𝑢,𝑤𝑑𝑤 (2.13) 

 

Where 𝐹𝑢,𝑝(𝑝, 𝑤) =   
∂U

∂p
  

            𝐹𝑢,𝑤(𝑝, 𝑤) =   
∂U

∂w
 

 
𝐹𝑈,𝑝 and 𝐹𝑈,𝑤 can be expanded using a Taylor series expansion around p = 0 and w = 0: 

 

𝐹𝑈,𝑝 − 𝐹𝑈,𝑝=0 = 
𝜕𝐹𝑈,𝑝

𝜕𝑤
𝑑𝑤 + 

𝜕𝐹𝑈,𝑝

𝜕𝑝
𝑑𝑝 + 2

𝜕2𝐹𝑈,𝑝

𝜕𝑝𝜕𝑤
𝑑𝑝𝑑𝑤 + 

1

2

𝜕2𝐹𝑈,𝑝

𝜕𝑝2
𝑑𝑝2 

+
1

2

𝜕3𝐹𝑈,𝑝

𝜕𝑝2𝜕𝑤
𝑑𝑝2𝑑𝑤 +⋯ 

 

𝐹𝑈,𝑤 − 𝐹𝑈,𝑤=0 = 
𝜕𝐹𝑈,𝑤
𝜕𝑝

𝑑𝑝 + 
𝜕𝐹𝑈,𝑤
𝜕𝑤

𝑑𝑤 + 2
𝜕2𝐹𝑈,𝑤
𝜕𝑝𝜕𝑤

𝑑𝑝𝑑𝑤 + 
1

2

𝜕2𝐹𝑈,𝑤
𝜕𝑤2

𝑑𝑤2 

+
1

2

𝜕3𝐹𝑈,𝑤
𝜕𝑤2𝜕𝑝

𝑑𝑤2𝑑𝑝 +⋯ 

(2.14) 

Next, substituting Equation 2.14 into 2.13 and compressing the notation using 𝐹𝑈,𝑝
′ = 

𝜕𝐹𝑈,𝑝

𝜕𝑝
, 

𝐹𝑈,𝑝
′′ = 

𝜕2𝐹𝑈,𝑝

𝜕𝑝2
, 𝐹𝑈,𝑝

∗ = 
𝜕𝐹𝑈,𝑤

𝜕𝑤
, 𝐹𝑈,𝑝

∗∗ = 
𝜕2𝐹𝑈,𝑤

𝜕𝑤2
, 𝐹𝑈,𝑝

∗′ = 
𝜕𝐹𝑈,𝑝

𝜕𝑤
, 𝐹𝑈,𝑝

∗′′ = 
𝜕2𝐹𝑈,𝑝

𝜕𝑝𝜕𝑤
,𝐹𝑈,𝑝

′∗ =

 
𝜕𝐹𝑈,𝑤

𝜕𝑝
, 𝐹𝑈,𝑝

∗∗′ = 
𝜕2𝐹𝑈,𝑤

𝜕𝑝𝜕𝑤
, 𝐹𝑈,𝑝

∗′′′ = 
𝜕3𝐹𝑈,𝑝

𝜕𝑝2𝜕𝑤
 , 𝐹𝑈,𝑝

∗∗∗′ = 
𝜕3𝐹𝑈,𝑤

𝜕𝑤2𝜕𝑝
 results in: 

 𝑑𝑈 = [𝐹𝑈,𝑝=0 + 𝐹𝑈,𝑝
∗′𝑑𝑤 + 𝐹𝑈,𝑝

′𝑑𝑝 + 2𝐹𝑈,𝑝
∗′′𝑑𝑝𝑑𝑤 + 

1

2
𝐹𝑈,𝑝

′′𝑑𝑝2 (2.15) 
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+
1

2
𝐹𝑈,𝑝

∗′′′𝑑𝑝2𝑑𝑤 +⋯]𝑑𝑝 + [ 𝐹𝑈,𝑤=0 + 𝐹𝑈,𝑤
′∗𝑑𝑝 + 𝐹𝑈,𝑤

∗𝑑𝑤

+ 2𝐹𝑈,𝑤
∗∗′𝑑𝑝𝑑𝑤 + 

1

2
𝐹𝑈,𝑤

∗∗𝑑𝑤2 +
1

2
𝐹𝑈,𝑤

∗∗∗′𝑑𝑤2𝑑𝑝

+⋯]𝑑𝑤 
 

 
Enouy (2018) truncate higher-order terms of the Taylor series expansion to avoid overfitting, 

𝐹𝑈,𝑝
∗∗∗′ = 𝐹𝑈,𝑝

∗′′′ = 𝐹𝑈,𝑝
∗∗ = 𝐹𝑈,𝑝

′′ = 0, resulting in: 

 
𝑑𝑈 = [𝐹𝑈,𝑝=0 + 𝐹𝑈,𝑝

∗′𝑑𝑤 + 𝐹𝑈,𝑝
′𝑑𝑝 + 2𝐹𝑈,𝑝

∗′′𝑑𝑝𝑑𝑤+ ]𝑑𝑝 + [𝐹𝑈,𝑤=0
+  𝐹𝑈,𝑤

′∗𝑑𝑝 + 𝐹𝑈,𝑤
∗𝑑𝑤 + 2𝐹𝑈,𝑤

∗∗′𝑑𝑝]𝑑𝑤 

 

(2.15) 

For conditions where 𝑑𝑝 = 𝑝 − 0 and 𝑑𝑤 = 𝑤 − 0, integrate on U: 

 

∫𝑈 =  𝐹𝑈,𝑝=0𝑝 + 𝐹𝑈,𝑤=0𝑤 + (𝐹𝑈,𝑝
∗′ +  𝐹𝑈,𝑤

′∗) 𝑝𝑤 +
1

2
𝐹𝑈,𝑤

∗𝑤2 +

𝐹𝑈,𝑤
∗∗′𝑤2𝑝 + 𝐹𝑈,𝑝

′𝑝2 + 𝐹𝑈,𝑝
∗′′𝑝2𝑤 

 

(2.16) 

Finally, all partial derivatives from the Taylor series expansion can be treated as coefficients of a 

curvilinear regression model as: 

 𝑈 = 𝑏0 + 𝑏1𝑝 + 𝑏2𝑤 + 𝑏3𝑝𝑤 + 𝑏4𝑤
2 + 𝑏5𝑤

2𝑝 + 𝑏6𝑝
2 + 𝑏7𝑝

2𝑤 (2.17) 

 

3 APPLICATION 

This section discussed the application of the above methodology for the analysis of residential 

and commercial water demand for the City of Waterloo. Water consumption data is obtained 

from 2007 to 2016. This section discuses pertinent details of implementation for some 

important processes, and compares the performance and quality of results obtained using a 

variety of numerical methods in the implementation of the algorithm. 

3.1 Residential Water Demand Analysis 

The City of Waterloo has a total 38,555 residential accounts created from 2007 to 2016, with 

each single billing period having more than 20,000 active accounts. The quantity of active 

accounts guarantee that the sequence of PMFs each exhibit a smooth and continuous shape 

representing a continuum response to transit price and weather conditions. 
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3.1.1 Data Culling 

The first step in the data culling process is to examine the dataset from each billing period to 

determine its maximum value, with peak residential water demand values shown on Figure 3.1. 

 

Figure 3. 1 Max volume consumed by a single account with median of each billing period 

 

As can be seen from Figure 3.1, the maximum volumes consumed by as single account can be 

hundreds and thousands of times of its median in each billing period. This could result from 

excessive measurement error or perhaps observations from another distinct population (Enouy, 

2017). For example, a student housing condo with thousands of individuals may be labeled as a 

single residential account by the City of Waterloo, but would obviously not represent the water 

consumption behavior of single family residence. These population outliers can potentially bias 

our evaluation of the median and standard deviation, as well as the parameters within the 

control function given their reliance on the standard-score space.  

 

To remove those outliers, an upper bound in the median-relative space is predefined. The 

upper bound in the median-relative space was defined a-priori as 𝑦𝑚𝑎𝑥 = 4 (Enouy, 2018). A 

key contribution from this code design is to specify an algorithm to determine a suitable value 

based on the shape of the histogram, subject to restricts defined by user input .  

1
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The implementation does not allow more than 5% of the data to be removed as part of the 

culling process. The algorithm begins with 𝑦𝑚𝑎𝑥 = 4 as the upper bound. Two conditions are 

then checked: 

1) that no more than 5% percent of the dataset has been culled; and, 

2) the median did not shift by more than 10% percent relative to the old median. 

If both conditions are met, then  𝑦𝑚𝑎𝑥 = 4  is applied as a culling ratio. If the percentage of data 

removed decreases by more than 1%, then increase 𝑦𝑚𝑎𝑥  by increments of 1 until a final value 

of 10 is reached. Otherwise, four becomes the default culling ratio. If either of the two 

conditions are not met, then increase the ratio by increments of 1 and repeat the process 

above until 10 is reached. If the culling ratio reaches 10, the distribution is classified as “heavy-

tailed” and is transformed into ln 𝑦 space. This transformation is discussed in detail in the next 

section. 

 

Pseudocode: 

culling ratio <- 4 

while (culling ratio < 10) 

              data culling 

              if (total after being culled /total < 95% and new median/old median > 90%)) 

                         old culling rate <- 1 - total after being culled /total 

                         new culling rate <- 0 

                         while (|new culling rate - new culling rate| > 1% and culling ratio < 10)                          

                                    culling ratio <- culling ratio + 1 

                                    data culling 

new culling rate <- 1 - total after being culled/total 

                         break 

else 

                        culling ratio <- culling ratio 

if culling ratio >= 10 

     This is a heavy-tailed distribution 
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Figure 3. 2 Median and median after culling by different ratio 

 

 

 

Figure 3. 3 Number of accounts before and after being culled by different ratios 
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Figure 3. 4 Percentage left after culling by different ratios 

 

 

 

When the culling factor is four, the median of most of the billing periods did not shift at all with 

some shifting at most by 1 𝑚3/𝑏𝑝/𝑎𝑐𝑐𝑜𝑢𝑛𝑡. This guarantees a stable environment for 

removing population outliers without recursively shifting the median statistic (Enouy, 2018). 

Figure 3.3 and 3.4 demonstrates that in most of the billing periods, having 4 as the upper bound 

remove less than 2% percent of the dataset. This outcome of this culling method dramatically 

improved the convergence rate, accuracy, and the stability of the algorithm. Table 3.1 

demonstrates that data culling reduced the number of non-linear Iterations to achieve 

convergence from 28 to 8 on average, while the residual error was reduced from 5.84 × 10−4 

to 2.98 × 10−5. 
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Figure 3. 5 Performance contrast before and after being culled 

 

 

Figure 3. 6 Result contrast before and after being culled 
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Table 3. 1 Average results of performance and accuracy with and without data culling 

 

Number of 
Iterations/original Residual/original 

Number of 
Iterations/n=4 Residual/n=4 

Average 28 5.84 × 10−4 8 2.98 × 10−5 
 

 

 

 

3.1.2 Optimization 

The purpose of the optimization strategy is adjust the control function parameters 

{𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4} in order to minimize the objective function: 

 𝑀𝑆𝐸𝑐,𝑦 = 
1

𝑁𝑘
∑[𝑐(𝑦𝑘) − 𝑐𝑦,𝑘]

2

𝑁𝑘

𝑘=1

  (3.1) 

 

Where 𝑐𝑦,𝑘 can be calculated from our discrete dataset, and 𝑐(𝑦𝑘) is the integration from 𝑦0 to 

𝑦𝑘: 

 
𝑐(𝑦𝑘) =  ∫ 𝑝𝑦𝑑𝑦

𝑦𝑘

𝑦0

 

 

(3.2) 

 

The PDF 𝑝𝑦 is transformed from 𝑝𝑧 as:                           

 
𝑝𝑦 = 

𝑚


𝑝𝑧 

 

(3.3) 

   

 
𝑝𝑧 =  exp (∫𝑔𝑧 𝑑𝑧) 

 

(3.4) 

 

 𝑔𝑧 = − [𝛼1 + tan (
𝛼2𝜋

180
) 𝑧 + ∑ 𝛼𝑛𝑧+1𝑧

𝑛𝑧+1

𝑁𝑧

𝑛𝑧=1

] (3.5) 
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Minimizing the objective function is achieved by solving a non-linear least-square problem by 

adjusting control function parameters. Two optimization algorithms are used for this purpose: 

Trust Region and Levenberg–Marquardt. Both are available in Matlab and Scipy. Next, we 

discuss issues related to their implementation and performance in the context of this objective 

function. 

 

3.1.2.1 Trust-Region 
The key concept of Trust-Region method is to define a region whose radius is limited to 𝑅𝑘, or 

in Euclidean norm for problems with higher dimensions, around the current solution (Ye, 2014).  

The model is evaluated after each step. If a huge decrease is achieved, the approximate model 

is deemed to be successful. Otherwise, the trust region is increased provided it does not exceed 

the upper bound. If very subtle change in the size of the trust region occurs, then it moves 

forward in a new direction. In order to calculate a new step, a trust-region subproblem is solved 

as a quadratic model that is approximated from the objective function as: 

 
min 𝑓(𝑥𝑘 + 𝑝) = min𝑚(𝑝) =  𝑓(𝑥𝑘) + 𝑔𝑘

𝑡𝑝 +
1

2
 𝑝𝑡𝐵𝑘𝑝 

 

(3.6) 

 

p <  𝑅𝑘   

where 𝑔𝑘 is the gradient at 𝑥𝑘. 𝐵𝑘 is an approximation of the real hessian matrix 𝐻𝑘 at 𝑥𝑘 . 

To find the minimum,               

  
𝑑𝑚

𝑑𝑝
= 𝑔𝑘 + 𝐵𝑘𝑝 = 0            𝐵𝑘𝑝 = −𝑔𝑘  (3.7) 

 

The evaluation of the model is done by calculating                     

 𝜌𝑘 =
𝑓(𝑥𝑘) −  𝑓(𝑥𝑘 + 𝑝)

𝑚(0) − 𝑚(𝑝)
 (3.8) 

and is evaluated numerically. 

 

Pseudo-code: 

𝑥 <-- 𝑥0 

while threshold is not met: 



 18 

Get the improving step by solving 𝐵𝑘𝑝 = −𝑔𝑘, the trust-region sub-problem 

               𝜌𝑘 =
𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+𝑝)

𝑚(0)−𝑚(𝑝)
    

if  𝜌𝑘 < 𝜂2 

       𝑅𝑘+1 < −     𝑡1𝑅𝑘 

else 

    if  𝜌𝑘 > 𝜂3 and p = ∥ 𝑅𝑘 ∥ 

          𝑅𝑘+1  < −min (𝑡2𝑅𝑘, 𝑅𝑀) 

    else 

         𝑅𝑘+1 <−    𝑅𝑘  

if  𝜌𝑘 > 𝜂1 

      𝑥𝑘+1 < −        𝑥𝑘 + 𝑝𝑘 

else 

     𝑥𝑘+1 < −      𝑥𝑘 

 

3.1.2.2 Parameter Scaling 
All of the control function parameters need to be on the scale given that the Trust-Region 

algorithm cannot step beyond the current trusted region. If one or a few parameters are on a 

much larger scale than the others, then the trust-region will have less ability to constrain the 

step size. This makes finding the minima of the objective function a much slower process.  

The  control function parameters 𝛼0, 𝛼1, ,  𝛼3,  𝛼4 are all dimensionless while 𝛼2 represents an 

angular slope measured in degrees with a value between 0° to 90°. Initial attempts at fitting 

indicated that −2 < 𝛼0, 𝛼1,  𝛼3,  𝛼4 < 2 implying that they are on a different scale from 𝛼2. 

Therefore, 𝛼2 was replace by 𝛼2′ = 
𝛼2

45
. A new starting position for the algorithm was selected as 

{0,0,1,0,0}. 
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Table 3. 2 Average results of performance and accuracy before and after scaling 

 

Number of 
Iterations/Starts 

at [0,0,45,0,0] 
Residual/Starts 
at [0,0,45,0,0] 

Number of 
Iterations/Starts 

at [0,0,1,0,0] 
Residual/Starts 

[0,0,1,0,0] 

Average 8.28 5.84 × 10−6 7.27 4.68 × 10−6 

 

Figure 3. 7 Results with and without scaling 

 

 

 

Figure 3. 8 Performance with and without scaling 
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3.1.2.3 Levenberg–Marquardt algorithm 
Levernberg-Marquardt method is another traditional technique for solving non-linear least 

square problems. It is the combination of two other classic minimization techniques for linear 

regression problems: the gradient descent method, and the Gauss-Newton method. Gauss-

Newton method can only be applied under the assumption that the model is quadratic. 

Therefore, is used when parameters are close to the local minimum. Gradient descent forces 

the parameter search direction to move forward in the direction steepest descent of the 

objective function. It is applied when parameters are further away from an optimal solution. 

As with the Trust-Region, the Levenberg–Marquardt algorithm also tries to solve Equation 3.7. 

However, Instead of setting restrictions on 𝑝, Levenberg-Marquardt method uses 𝐵 as: 

 

 𝐵 = 𝐻 +  𝜆𝐼  (3.9) 
    

Where 𝐼  is an identity matrix. 

             𝜆 is a value that gets iteratively updated. 

             H is the real hessian matrix of the objective function. 

             B is an approximation of H 

 

When 𝜆 is small, it is simply a Newton method. When 𝜆 becomes large, 𝐻 becomes more and 

more negligible causing the search direction to follow the direction of steepest descent dictated 

by the Gradient Descent method.  

3.1.2.4 Comparisons 
Both the Levenberg-Marquardt and Trust Region algorithms are Newton step-based 

methods. The steps in their respective search directions  both yield quadratic convergence 

behaviour for the solution variable when near the optimal solution (Berghen, F. V., 2004). The 

pertinent questions in this thesis is to empirically test which algorithm dominates in 

performance and accuracy for the water consumption data set. 
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In Equation 3.6, 𝑔𝑘 represents the gradient of 𝐹(𝑥) computed at 𝑥𝑘, while 𝑝 represents a step 

in the search direction. To ensure that the search direction is following the direction of steepest 

descent, 𝑔𝑘 and 𝑝 have to satisfy the condition:  

𝑝𝑡𝑔𝑘 < 0 

Take the value from Equation 3.7: 

−𝑝𝑡𝐵𝑝 < 0 ⇒ 𝑝𝑡𝐵𝑝 > 0  

Berghen (2004) provide a proof stating that if the model converges, then 𝐵 must be positive.  

The Levenberg-Marquardt algorithm ensures a positive 𝐵 by enlarging 𝜆. Issues arise when 𝜆 is 

an intermediate value as the algorithm then equally weighs the Newton and Gradient Descent 

methods in order to minimize the function. These two approach may not consistently choose 

the same minima and lead to poor performance of the algorithm. The direction of each step 

can repetitively change and slow down the convergence process (Berghen, 2004). Berghen 

(2004) concludes that Trust Region algorithm will thus exhibit better performances each time a 

negative 𝐵 occurs resulting in an “uphill search”, and thus exhibit better performance than all 

the Levenberg-Marquardt algorithms. Furthermore, because Levenberg-Marquardt algorithms 

apply two different strategies with different efficiencies, their performance can be very 

sensitive to the starting point position. 

 

 
Figure 3. 9 Trust-Region VS Levernberg-Marquardt in performace 
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Figure 3. 10 Trust-Region VS Levernberg-Marquardt in accuracy 

 

Table 3. 3 Average results of performance and accuracy of Trust-Region and Levenberg–Marquardt 

 
Trust-Region 

iterations 
Trust-Region 

residuals 

Levenberg–
Marquardt 
algorithm 
iterations 

Levenberg–Marquardt 
algorithm residuals 

Average 7.27 4.68 × 10−6      38.9 4.68 × 10−6 
     

 

 

Figure 3. 11 Trust-Region sensitivity to starting position(Performance) 
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Figure 3. 12 Trust-Region sensitivity to starting position(Accuracy) 

 

Table 3. 4 Average results of performance and accuracy of Trust-Region at different starting 

positions 

 

Trust-Region 
iterations/start 

at[0,0,1,0,0] 

Trust-Region 
iterations/start 

at[10,10,2,10,10] 

Trust-Region 
residuals/start 

at[0,0,1,0,0] 

Trust-Region 
residuals/start 

at[10,10,2,10,10] 

Average 7.27 142.4 4.68 × 10−6 5.58 × 10−6 
 

 

Figure 3. 13 Levernberg-Marquardt sensitivity to starting position(Performace) 
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Figure 3. 14 Levenberg-Marquardt sensitivity to starting position(Accuracy) 

 

 

Table 3. 5 Average results of performance and accuracy of Levenberg-Marquardt at different 
starting positions 

 

Levenberg-
Marquardt 

iterations/start 
at[0,0,1,0,0] 

Levenberg-
Marquardt 

iterations/start 
at[10,10,2,10,10] 

Levenberg-
Marquardt 

residuals/start 
at[0,0,1,0,0] 

Levenberg-
Marquardt 

residuals/start 
at[10,10,2,10,10] 

Average 7.27 682 4.68 × 10−6 5.58 × 10−6 
 

In order to examine the impact of sensitivity to the starting position for both methods, we 

experimented with a much worse position [10,10,2,10,10]. Note that 𝛼2′ exists between 0 and 

2 and was therefore set to 2. As can be seen from the Figures 3.13 and 3.14 above, choosing a 

bad starting position has a greater negative impact for Levenberg-Marquardt than for Trust-

Region algorithm. However, both still converge to the same global minimum.  

 

In summary, the Trust-Region method is better than Levenberg-Marquardt for both 

performance and accuracy, for both residential and commercial accounts. Therefore, it is used 
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as a default setting for the water consumption application. Because the starting position had a 

significant impact on performance when applying the Trust-Region, the global minima from 

previous solutions (at previous billing periods) are saved and then used to determine the 

starting solution for the next billing period. 

Pseudocode: 

𝑥0 ← zeros(n) 

𝑥𝐴 ← empty array 

For 1 to k: 

               𝑥, func = least_square(𝑓𝑢𝑛𝑘, 𝑥0)  

               append 𝑥 to 𝑥𝐴 

               if(k = 1 or (func > 1.5*pre_func or k is multiple of 10)) 

                    𝑥0 = mean(𝑥𝐴) 
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3.1.3 Histogram Fitting Results Summary 

To visualize the quality our fitting results are, we plot PMF and the PDF on the same graph for 

each billing period. 

 

 
 

Figure 3. 15 Residential water consumption by a single account PMF and PDF in 2007 
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Figure 3. 16 Residential water consumption by a single account PMF and PDF in July and August 

from 2007-2016 

 

Figure 3.16 shows residential consumption PDFs corresponding to each billing period of 2007. It 

demonstrates how water consumption distribution responds to changes in weather throughout the 

year. Closer to July and August, which are the warmest periods of time in Waterloo, the 

corresponding PDF shifts in a downward direction and away from the origin. When January and 

February approaches, it moves in the opposite direction. This meets the expectation that average 

consumption increases in summer, when more water is consumed and used for irrigations. In 

winter, outdoor water usage is limited (Enouy, 2018). 
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Figure 3.17 shows residential consumption PDFs of July/August every second year. The impact of 

increases in water price on water consumption can be seen as the corresponding PDF in each billing 

progressively compresses towards the origin from 2007 to 2015. This meets the expectation that 

average consumption drops as the price goes up. Quantifying the relationship between water 

demand and weather as well as price will be discussed in the next chapter. 

 

Figure 3. 17 Residential water consumption PDFs in 2007 
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Figure 3. 18 Residential water consumption PDFs in July and August from 2007-2016 

 

 

3.1.4 Regression 

This section discussed whether the relationship between water consumption and 

price/weather should be evaluated using a linear or a curvilinear regression model as 

mentioned in section 2.6, and how to avoid overfitting during the parameter estimation 

process. 

3.1.4.1 Linear vs Curvilinear Regression 
When more high-order derivatives are truncated in Equation 2.17, a linear model results of the 

form: 

 𝑈 =  𝑏0 + 𝑏1𝑝 + 𝑏2𝑤 

 

(3.10) 

We begin with 𝑼 ∈ {𝒙,𝒎𝒙, 𝝈𝒙𝜶𝟎, 𝜶𝟏, 𝜶𝟐, 𝜶𝟑, 𝜶𝟒}. When 𝑼 ≡ 
𝒙
 we obtain the linear regression results 

shown on Table 3.6 indicating that linear regression in an acceptable model. Moreover, When 𝑼 ≡

{𝒎𝒙, 𝝈𝒙} yields similar results. 
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Table 3. 6 Linear Regression results for mean statistic 

 
 Coefficients Standard Error t Stat P-value R Square F 

𝑏0 49.77 1.40 35.60 1.24 × 10−40 

0.77 
96.51 

(5 × 10−19) 
𝑏1 6.69 0.51 -13.12 7.33 × 10−19 

𝑏2 0.002 0.0004 4.78 1.25 × 10−5 

 
However, we proceed to the control function parameters 𝑼 ≡ {𝜶𝟎, 𝜶𝟏, 𝜶𝟐, 𝜶𝟑, 𝜶𝟒}, the results indicate 

that a linear model is not acceptable. Table 3.7 itemizes results for 𝜶𝟐: 

 

Table 3. 7 Linear Regression results for 𝜶𝟐 

 
 Coefficients Standard Error t Stat P-value R Square F 

𝑏0 1.27 0.029 43.61 1.78 × 10−45 

0.036 
1.06 

(0.35) 
𝑏1 -0.015 0.0106 -1.41 0.16464766 

𝑏2 3 × 10−6 9 × 10−6 0.38 0.70347716 

 
Note:           F-stat 
          (significance of  F) 
 
 
The degrees of freedom in the denominator equals 2, while the degrees of freedom in the 

numerator is 57. This yields a 𝐹 critical value of 3.93 (95% confidence interval). F of 𝛼2 is 1.06 < 

3.93, which means the null hypothesis cannot be rejected. In other words,  𝛼2 might be related 

to price and weather. In summary, while linear regression is acceptable for the mean, median 

and standard deviation statistics, it fails to explain the parametrization of the control function 

parameters. 

 

Next we apply curvilinear regression 𝑼 ∈ {
𝒙
,𝒎𝒙, 𝝈𝒙𝜶𝟎, 𝜶𝟏, 𝜶𝟐, 𝜶𝟑, 𝜶𝟒}. On Table 3.8 and 3.9, 

regression results are itemized for  
𝒙

 and 𝜶𝟐 on the basis that they failed and passed linear 

regression, respectively. The expectation is that curvilinear regression would explain the 

parametrization of both parameters. For curvilinear regression, the degrees of freedom in the 

denominator equals 7 while the degrees of freedom in the numerator is 52, which yields a 𝐹 
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critical value of 2.55 (95% confidence interval). 𝐹 of 𝛼2 is 2.76 < 2.55, which is sufficient to 

reject the null hypothesis. Curvilinear shows great improvement on our analysis, and able to 

quantify the relationship between 𝛼2 and price, weather.  

 

Table 3. 8 Curvilinear Regression results for mean 

 Coefficients Standard Error t Stat P-value R Square F 

𝑏0 15.62 12.67 1.23 0.22 

0.84 
38.45 

(2.20 × 10−18) 

𝑏1 20.42 10.15 2.01 0.05 

𝑏2 1.09 × 10−4 0.02 0.01 1.00 

𝑏3 -0.01 0.01 -0.42 0.68 

𝑏4 1.65 × 10−5 7.42 × 10−6 2.22 0.03 

𝑏5 −4.89 × 10−6 2.66 × 10−6 -1.83 0.07 

𝑏6 -5.21 1.99 -2.62 0.01 

𝑏7 1.92 × 10−3 2.70 × 10−3 0.71 0.48 
 

 

Table 3. 9 Curvilinear Regression results for 𝜶𝟐 

 Coefficients 
Standard 

Error 
t Stat P-value R Square F 

𝑏0 0.80 0.27 2.95 4.72 × 10−3 

0.27 
2.76 

(0.016) 

𝑏1 0.35 0.22 1.62 0.11 

𝑏2 2.56 × 10−4 3.98 × 10−4 0.64 0.52 

𝑏3 −7.84 × 10−5 2.98 × 10−4 -0.26 0.79 

𝑏4 −2.24 × 10−7 1.59 × 10−7 -1.41 0.16 

𝑏5 6.29 × 10−8 5.71 × 10−8 1.10 0.28 

𝑏6 -0.07 0.04 -1.67 0.10 

𝑏7 2.5 × 10−6 5.79 × 10−5 0.04 0.97 

 

In the next step for curvilinear regression, we set our threshold at 20%. on the 𝑝-value of the 𝑡-

statistic to evaluate the significance of a given parameter. Specifically, terms whose 𝑝-value is 

above 20% get truncated. Tables 3.10 and 3.11 tabulate curvilinear regression results for 
𝒙

 and 

𝜶𝟐 following the first truncation iteration. For 𝛼2, the degrees of freedom in the denominator 

equals 3 while the degrees of freedom in the numerator is 56, which leads to an 𝐹 critical value 

of 3.34 (95% confidence interval). 𝐹 of 𝛼2 is 3.81 < 3.34, which also meets the requirement, but 
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did not show any improvement. We note that 𝑝-value of 𝑡-stat in 𝑏7 exceeds the threshold 

again requiring another truncation iteration. 

 

Table 3.10 Curvilinear Regression results for mean terms truncated 

 Coefficients Standard Error t Stat P-value R Square F 

𝑏0 0 N/A N/A N/A 

0.998  
7444.83 

(1.82 × 10−74) 

𝑏1 31.89 0.79 40.30 4.73 × 10−43 

𝑏2 0 N/A N/A N/A 

𝑏3 0 N/A N/A N/A 

𝑏4 7.4 × 10−6 2.30 × 10−6 3.22 2.17 × 10−3 

𝑏5 −1.92 × 10−6 8.35 × 10−7 -2.30 0.03 

𝑏6 -7.31 0.28 -26.00 6.11 × 10−33 

𝑏7 0 N/A N/A N/A 

 
 

Table 3.11 Curvilinear Regression results for 𝜶𝟐 truncate 

 Coefficients 
Standard 

Error 
t Stat P-value R Square F 

𝑏0 0.74 0.18 4.11 1.29 × 10−4 

0.17 
3.81 

(0.015) 

𝑏1 0.41 0.14 2.87 0.01 

𝑏2 0 N/A N/A N/A 

𝑏3 0 N/A N/A N/A 

𝑏4 2.06 × 10−9 7.25 × 10−9 -0.28 0.78 

𝑏5 0 N/A N/A N/A 

𝑏6 -0.08 0.03 -2.98 4.32 × 10−3 

𝑏7 0 N/A N/A N/A 

 

 

Table 3.12 Curvilinear Regression results for 𝜶𝟐 second truncation 

 Coefficients 
Standard 

Error 
t Stat P-value R Square F 

𝑏0 0.73 0.18 4.14 1.15 × 10−4 

0.17 
5.76 

(0.0053) 

𝑏1 0.41 0.14 2.93 4.89 × 10−3 
𝑏2 0 N/A N/A N/A 

𝑏3 0 N/A N/A N/A 

𝑏4 0 N/A N/A N/A 
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𝑏5 0 N/A N/A N/A 

𝑏6 -0.08 0.03 -3.04 3.56 × 10−3 

𝑏7 0 N/A N/A N/A 

 

After the second truncation iteration, the critical value becomes 3.15 and the model still holds. 

Therefore, we conclude that 𝛼2 does not have a relationship with weather. Instead, it is only 

affected by price. 

 

In summary, curvilinear regression does significantly improve the parameter estimation process 

for Equation 2.17. However, iteratively truncation of all terms with 𝑝-values greater than 20% 

must be conducted to ensure that unrelated terms do not cause overfitting.  
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3.1.4.2 Result Summary 

Results show that the mean, standard deviation and median statistics are related to both 

weather and water price. However, the control function parameters 𝛼0, 𝛼1, 𝛼2 and 𝛼4tend to 

be dependent on a single ambient process, that is: either weather or price. In contrast, 𝛼3 

appears to be independent of both weather and price and should be discarded. 
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Table 3. 13 Summary of regression results for residential water demand 
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Figure 3.19 is the visualization of our regression results. 
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Figure 3. 19 Modeled Results vs Actual Results for residential water demand 

 
 

3.2 Commercial Water Demand Analysis 

In contrast to the large number of residential accounts, the city only has had 2957 commercial 

accounts created in the past ten years, with only approximately 1000 accounts active in each 

billing period. This section provides an analysis of water consumption using these records. 

3.2.1 Lognormal of the Median-Relative 

None of residential water consumption histogram data  fall under the category of heavy-tailed 

distribution. However, all of the commercial water consumption data are classified as heavy-

tailed distributions. Even when culling ratio 𝑦𝑚𝑎𝑥 = 10, more than 10% of the data still get 

removed. Therefore, we decide to fit the data using the logarithm of the median-relative space 

which we denote it as . This transformation satisfies the following properties: 

 

 
∫𝑝𝑥

∗ 𝑑𝑥 =  ∫𝑝
∗ 𝑑 = ∫𝑝𝑧 𝑑𝑧 

  

(3.11) 

 

Furthermore, Table 3.13 summarizes the transformations for continuous zero-centered PDFs 

between each spatial representation. 
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Table 3. 14 Spatial transformation in measurement, logarithm median-relative and standard-score 

space 

Space Magnitude PDF Derivative 

𝒙 𝑥𝑖  𝑝𝑥
∗ =

1

𝜎𝑥,𝑖
𝑝𝑧  

 𝑑𝑥 = 𝜎𝑥,𝑖𝑑𝑧 
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Figure 3.20 depicts the City of Waterloo commercial water consumption data from Jan/Feb 

2008 before and after being transformed to  space.  

 

Figure 3.20 Commercial water histogram before and after transformation log(y) space 

 

Table 3.14 shows the result of directly applying expolynomial series on the whole dataset and 

compared to that after being transformed. This transformation significantly improved both 

performance and the accuracy of the final result. 

 

Table 3.15 Average results of performance and accuracy of fitting in y and logY space 

 LogY 
Space/Iterations 

LogY 
Space/Residuals Y Space/Iterations Y Space/Residuals 

Average 8.87 2.66 × 10−5 41.9 0.0047 
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3.2.2 Result Summary 

 

 

Figure 3. 21 Commercial water consumption by a single account PMF and PDF in 2007 
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Figure 3. 22 Commercial water consumption by a single account PMF and PDF in July and August 

from 2007-2016 
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Figure 16 Commercial water consumption by a single account PDFs in 2007 

 

 

Figure 3. 23 Commercial water consumption by a single account PDFs in July and August from 

2007-2016 
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The fitted PDF from 2007 deviates significantly from those in subsequent years. Water 

consumption by commercial accounts in 2007 is lower than in later periods. This could be a 

result of a change in the manner in which accounts were classified. For instance, some of the 

account could have been reclassified as residential accounts in later years. Therefore, results 

from 2007 were not used in this regression. 
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Table 3. 16 Summary of regression results for commercial water demand 
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Figure 3. 24 Model Results vs Real Results for commercial water demand 
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4 SOFTWARE BUILDING WORKFLOW 

Unlike most software programs which focus on directing traffic flow, the design elements of a 

numerical or data analysis software are in its algorithm. The complexity of the algorithm 

determines how difficult it is for a software engineer to understand and specify the 

requirements. With reference to this analysis, the following issues were considered. 

 

1) Errors in original requirements 

The original requirements were presented in the form of a paper. Four examples were 

initially implemented in am Excel spreadsheet. These implementations were then broken 

down into a few steps, with some steps implemented manually. At this point, implicit errors 

could have been made by the client during mathematical processes like constructing 

numerical integrals and derivatives. These errors might only result in incorrect results for 

some specific cases that haven’t been implemented and examined in Excel as test problems. 

Being able to discover these errors requires the software engineer to have a solid math 

background and to fully understand the algorithm. 

 

2) Uncertainties in results 

The program can be divided into two parts: data compression, and regression analysis. 

Data compression involves fitting the histogram with a continuous probability density 

function and then representing the discrete data as its mean, median, standard deviation 

and function parameters. These statistics are a product of fitting, with the final result being 

dependent upon both visual inspection and by minimizing a residual value of an error 

function. Constrains on the residual value are a function of the accuracy of the various 

solvers implemented in the process. Finally, the data obtained from the city of Waterloo 

only covers the last ten years of water consumption. Thus may not be a sufficiently large 

enough data sample to determine whether the multivariate curvilinear regression analysis 

can successfully determine the dependence of the water consumption on ambient process 

of price and weather. 
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3) Testing of results  

Constructing tests is a difficult process given the uncertainties in the results themselves. In 

many cases, the data compression results can be visually examined for accuracy. However, 

poor fitting results do not necessarily indicate an implementation failure. Instead, they 

could arise from limitations of algorithm when fitting certain data sets. Occasionally, ideal 

fitting results can also arise from a poor implementation of the algorithm itself.  

 

4) Performance attributes  

The original algorithm specified by client was implement in Excel. Therefore, it is difficult to 

benchmark the performance of this algorithm given the limitations in the original design. 

Some metrics are reasonable such as number of non-linear solver iterations to achieve the 

minima of the objective function.  

 

4.1 Database Construction 

The current database contains more than ten million records consisting of observations from 

the cities of Waterloo and London, Ontario. The intent is to be able to scale the database to 

include even more records. Hence, it is imperative to promote efficiency as part of this future 

expansion. To promote efficacy, database indexes are used on various items to reduce run time 

from 𝒪(𝑛) to 𝒪(log 𝑛). Future improvements can also be achieved by improving logical plans or 

query optimizations. 

The water demand database is designed and constructed in MySQL. There are three entities: 

Account, Consumption, and Location. Furthermore, there are two sub-entities of Account: 

Municipal and Res_type. Account consists all the accounts from the different cities. 

Account_No is the primary key representing local account numbers, and is further qualified by 

appending Municipal_id to the front. Res_type records represent each individual residential 

and sub-residential account, with each account given a unique identifier. Each city is assigned a 

specific Municipal_id. Records indicate water consumption for a specific account during a single 

billing period. Consumption is related to both Account and Location by referencing an 

Account_No to an Address. 
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Figure 4. 1 Water demand database EER 

The structure of the database is designed in an account-transaction style to facilitate expansion. 

As more records being imported, computations will need to be distributed to across more 

machines given the increased load on the algorithm and framework. 

4.2 Requirements and Specifications 

The highest-level requirement is to be able to uniquely define the relationship between 

residential water consumption with water price and weather for the City of Waterloo. To the 

degree that records are short in duration, measurements of water consumption are obtained 

only to the nearest cubic meter, weather is approximated from temperature and precipitation 

measurements, and other ambient process such as policy are ignored, this requirement can 

never be met. However, we can reasonably define the relationship during the time interval 

from 2007-2016 during which data is available. This requirement has been met by replicating 

the analysis done using Excel as recorded by Enouy (2018). Therefore, a more accurate 

requirement should be stated as: validation by virtue of implementing the algorithm from 

Enouy (2018). This validation effort is acceptable given the following assumptions. 

1) The Excel spreadsheet implementation is consistent with the Enouy (2018). 

2) Enouy (2018) correctly defines the mathematical methodology. 
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4.2.1 Prototyping 

One important step of working on specifications with clients and trying to test the algorithm at 

the same time is to build a prototype in shortest time.  

Matlab is a perfect option for building a prototype since it has a complete a library of plotting 

diagrams, a variety of options for a least square problem solver. One of the important steps of 

this algorithm is to generate probability density function parameters by solving a least square 

problem. The quality of the generated results significantly depends selecting a correct 

algorithm for the solver and properly applying it. Because the non-linear least square algorithm 

applied by excel is exclusive, it might be a better choice for us to make full use of the 

optimization library in Matlab, instead of implementing a random non-linear least square 

algorithm in another language.  

In addition, by enabling the client to monitor the whole process of converging to the desired 

result from starting point through each iteration, it gives them a better vision on how to 

quantify efficiency requirements on the program. 

 

  

Figure 4. 2 Results generated by Matlab 

 

 



 52 

The plotting library helps visualize the results since visualizing the quality of fitting results is 

used as part of the tests. 

  

Figure 4. 3 Histogram fitting plotted by Matlab 
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The user interface of the prototype is constructed in the form of question-answer data entry. 

User can only enter the options available to them on the screen. The advantage of this type of 

interface is that it restricts the options of user input, making the program more robust, and 

most importantly, easier and faster to program. 

The expansion of the requirement might lead to a much larger and complicated program, to the 

extent where Matlab code might fail to meet the minimum efficiency level that is required. 

Therefore, the prototype is most likely to be discarded once a complete specification is formed. 

 

 

4.2.2 Client Writing Out Black Box Test Cases 

The spreadsheet implementation is done by the client not only to test the algorithm, but also to 

be used as a guide for a software engineer. But from a software engineer’s perspective, it is 

better to be used as black box test cases. The published paper should be the only material to a 

software engineer can refer to, which motivates the software engineer to go through every 

detail in the paper. Any confusion should be solved by communicating directly with the client 

instead of referring to the excel sheet. 

 

Value of many parameters can be chosen alternatively from the excel implementation such as, 

step, starting point for a least square. Those might lead to different efficiency and accuracy. 

Taking different paths might be helpful for finding the best combination of both efficiency and 

accuracy. 

As mentioned in the previous section, the implementation in excel is broken down to several 

steps. Each step should be set up as a single test case throughout the whole implementation. 

Failure to pass the test does not directly indicate the implementation of the prototype is wrong. 

Instead, it proves  

1) prototype is wrong  

2) or implementation of the excel is inconsistent with paper 

3) or the least square algorithm in excel (Non-linear GRG) behaves differently from those     

in Matlab (trust-region and levernberg-marquardt) 
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Number 3 should only be a matter of choice if they both generate ideal results.  

Through this approach, errors resulting from inconsistencies can be very well eliminated.  

4.2.3 Communication through Sequence Diagram 

The implementations in excel are done under very limited conditions. In these case, even wrong 

implementations can occasionally achieve ideal results but fail to do so when being applied in 

more cases. Since the algorithm has yet to be proven a robust one, errors can possibly result 

from both the limitation of the algorithm or mistakes in the paper, when excel implementation 

is proven to be consistent with the paper. 

It is impossible for software engineer to capture ideas in a client’s mind that are inconsistent 

with what was written in the paper. But good communication is still crucial when the client is 

trying to be convinced that the algorithm is properly implemented.  

Asking a client to go through thousands of lines of code is tedious and unreasonable. 

Multiple scenarios of sequence diagrams can describe the process in more understandable 

ways, which give the client a complete picture on whether the program is implemented in the  

way they desire and finally rule out the possibility that the implementation is wrong.  
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Figure 4. 4 Sequence Diagram for creating PDF 
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5 CONCLUSION 

This work is developed based on Dr. Enouy’s theory, applying the methodology into water 

utilities, learning the how residential and commercial water demand evolves as water price and 

weather changes. The analysis focuses on the application of this methodology into residential 

and commercial water consumption in the City of Waterloo, exploring its potential value as a 

software in terms of efficiency and robustness. 

The results of histogram fitting for residential water consumption are mostly compromised by 

many outliers at the tail of the histogram. Not only those high volumes of outliers fall far out of 

the range that a single family can consume, they also had a huge impact on the efficiency and 

fitting results. The data culling method is proven to be helpful to solve these issues. It is also 

refined in this work for two reasons. 

1) As an anomaly detection technique, able to distinguish a heavy-tailed distribution from 

one having many outliers. 

2) To find a proper culling ratio that minimizes the loss of information and maximize the 

performance improvements. 

This refined analysis proves that using 4 as a culling ratio according to Dr.Enouy (2018) is 

appropriate. It also classified commercial water consumption in each billing period as a heavy-

tailed distribution, instead of culling data that aren’t outliers, resulting in significant loss of 

information.  

This work also demonstrates how Trust-Region is advantageous over Levernberg-Marquardt, 

regarding both performance and results’ quality, and how control function parameter scaling 

can slightly improve efficiency in the case of fitting residential water consumption data, which 

could be a huge improvement when fitting some cities with much shorter billing periods.  

Adjustments are made for fitting commercial water demand, by fitting data in the lognormal of 

median-relative space. More intellectual schemes for shape recognition and data 

transformation should be made, when dealing distributions abnormal forms. 

The regression analysis applies curvilinear regression, aiming to find out high-order 

relationships between dependent and independent variables. It is shown that control function 
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parameters tend to depend on one variable, either weather score or real water price, while 

mean statistics, median and standard deviation are dependent on both. 

The last chapter talks about employing multiple strategies from the software industry, with the 

goal to guarantee a more reliable, efficient transfer from academic work to real-life application. 
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APPENDIX 

Table 1: Maximum of water consumption in each billing period vs Median 

 

Billing Periods  Most consumption(m3) Median 

2007-01-01 0:00 498 33 

2007-03-01 0:00 734 31 

2007-05-01 0:00 585 33 

2007-07-01 0:00 339 40 

2007-09-01 0:00 471 36 

2007-11-01 0:00 737 33 

2008-01-01 0:00 2560 33 

2008-03-01 0:00 2080 33 

2008-05-01 0:00 1850 32 

2008-07-01 0:00 9983 35 

2008-09-01 0:00 2540 32 

2008-11-01 0:00 2450 31 

2009-01-01 0:00 1600 31 

2009-03-01 0:00 1600 31 

2009-05-01 0:00 1680 31 

2009-07-01 0:00 2060 33 

2009-09-01 0:00 3110 31 

2009-11-01 0:00 3030 31 

2010-01-01 0:00 3066 31 

2010-03-01 0:00 20006 31 

2010-05-01 0:00 10011 30 

2010-07-01 0:00 2026 33 

2010-09-01 0:00 3060 30 

2010-11-01 0:00 2830 30 

2011-01-01 0:00 1661 30 

2011-03-01 0:00 2090 29 

2011-05-01 0:00 2746 30 

2011-07-01 0:00 2220 32 

2011-09-01 0:00 2770 31 

2011-11-01 0:00 4320 29 

2012-01-01 0:00 3536 27 

2012-03-01 0:00 3626 28 

2012-05-01 0:00 3470 28 

2012-07-01 0:00 3054 33 
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2012-09-01 0:00 3629 31 

2012-11-01 0:00 5367 28 

2013-01-01 0:00 4155 27 

2013-03-01 0:00 3309 28 

2013-05-01 0:00 3736 27 

2013-07-01 0:00 4006 29 

2013-09-01 0:00 3563 28 

2013-11-01 0:00 4786 28 

2014-01-01 0:00 5255 28 

2014-03-01 0:00 4008 27 

2014-05-01 0:00 12021 27 

2014-07-01 0:00 4397 28 

2014-09-01 0:00 11167 27 

2014-11-01 0:00 6992 27 

2015-01-01 0:00 12410 26 

2015-03-01 0:00 8245 27 

2015-05-01 0:00 8550 27 

2015-07-01 0:00 10607 28 

2015-09-01 0:00 8859 27 

2015-11-01 0:00 10205 27 

2016-01-01 0:00 7550 25 

2016-03-01 0:00 8428 25 

2016-05-01 0:00 9877 26 

2016-07-01 0:00 10661 30 

2016-09-01 0:00 11107 28 

2016-11-01 0:00 10240 26 
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Table 2: Median under different culling ratios 
 

Billing Periods Actual Median Median when n = 4 Median when n = 5 

2007-01-01 0:00 33 33 33 

2007-03-01 0:00 31 31 31 

2007-05-01 0:00 33 32 32 

2007-07-01 0:00 40 40 40 

2007-09-01 0:00 36 36 36 

2007-11-01 0:00 33 33 33 

2008-01-01 0:00 33 33 33 

2008-03-01 0:00 33 32 33 

2008-05-01 0:00 32 32 32 

2008-07-01 0:00 35 34 35 

2008-09-01 0:00 32 32 32 

2008-11-01 0:00 31 31 31 

2009-01-01 0:00 31 31 31 

2009-03-01 0:00 31 31 31 

2009-05-01 0:00 31 31 31 

2009-07-01 0:00 33 33 33 

2009-09-01 0:00 31 31 31 

2009-11-01 0:00 31 31 31 

2010-01-01 0:00 31 31 31 

2010-03-01 0:00 31 31 31 

2010-05-01 0:00 30 30 30 

2010-07-01 0:00 33 33 33 

2010-09-01 0:00 30 30 30 

2010-11-01 0:00 30 30 30 

2011-01-01 0:00 30 30 30 

2011-03-01 0:00 29 29 29 

2011-05-01 0:00 30 30 30 

2011-07-01 0:00 32 32 32 

2011-09-01 0:00 31 31 31 

2011-11-01 0:00 29 29 29 

2012-01-01 0:00 27 27 27 

2012-03-01 0:00 28 28 28 

2012-05-01 0:00 28 28 28 

2012-07-01 0:00 33 33 33 

2012-09-01 0:00 31 31 31 
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2012-11-01 0:00 28 28 28 

2013-01-01 0:00 27 27 27 

2013-03-01 0:00 28 28 28 

2013-05-01 0:00 27 27 27 

2013-07-01 0:00 29 29 29 

2013-09-01 0:00 28 28 28 

2013-11-01 0:00 28 28 28 

2014-01-01 0:00 28 28 28 

2014-03-01 0:00 27 27 27 

2014-05-01 0:00 27 27 27 

2014-07-01 0:00 28 28 28 

2014-09-01 0:00 27 27 27 

2014-11-01 0:00 27 27 27 

2015-01-01 0:00 26 25 26 

2015-03-01 0:00 27 26 26 

2015-05-01 0:00 27 26 27 

2015-07-01 0:00 28 28 28 

2015-09-01 0:00 27 27 27 

2015-11-01 0:00 27 26 26 

2016-01-01 0:00 25 25 25 

2016-03-01 0:00 25 25 25 

2016-05-01 0:00 26 26 26 

2016-07-01 0:00 30 30 30 

2016-09-01 0:00 28 27 27 

2016-11-01 0:00 26 26 26 
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Table 3: Amount of accounts left under different culling ratios 

Billing Periods 
Number of 

Accounts/n=4 
Number of 

Accounts/n=5 
Number of 

Accounts/n=6 
Number of 

Accounts/n=7 
Number of 

Accounts/n=10 

2007-01-01 0:00 22643 20616 20653 20672 20681 

2007-03-01 0:00 22643 20677 20744 20768 20793 

2007-05-01 0:00 22643 20606 20657 20676 20688 

2007-07-01 0:00 22643 21344 21438 21468 21487 

2007-09-01 0:00 22643 21817 21944 21976 22015 

2007-11-01 0:00 22643 21492 21569 21600 21626 

2008-01-01 0:00 24908 22470 22528 22552 22576 

2008-03-01 0:00 24908 22509 22626 22668 22710 

2008-05-01 0:00 24908 21851 21899 21926 21947 

2008-07-01 0:00 24908 22847 22964 23002 23028 

2008-09-01 0:00 24908 23971 24089 24131 24191 

2008-11-01 0:00 24908 23413 23500 23528 23556 

2009-01-01 0:00 27223 24663 24737 24770 24789 

2009-03-01 0:00 27223 24693 24800 24841 24876 

2009-05-01 0:00 27223 25179 25294 25334 25364 

2009-07-01 0:00 27223 24265 24365 24405 24433 

2009-09-01 0:00 27223 26351 26518 26576 26638 

2009-11-01 0:00 27223 26803 26901 26935 26969 

2010-01-01 0:00 27457 26828 26925 26966 26999 

2010-03-01 0:00 27457 26649 26786 26846 26900 

2010-05-01 0:00 27457 25173 25253 25274 25303 

2010-07-01 0:00 27457 26531 26712 26778 26846 

2010-09-01 0:00 27457 25131 25293 25353 25418 

2010-11-01 0:00 27457 26876 27025 27080 27141 

2011-01-01 0:00 27538 23657 23720 23741 23776 

2011-03-01 0:00 27538 26828 26945 26986 27037 

2011-05-01 0:00 27538 26711 26915 26999 27080 

2011-07-01 0:00 27538 26708 26861 26909 26970 
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2011-09-01 0:00 27538 23454 23603 23659 23727 

2011-11-01 0:00 27538 26847 26992 27041 27107 

2012-01-01 0:00 27622 20986 21053 21085 21109 

2012-03-01 0:00 27622 26873 26971 27014 27038 

2012-05-01 0:00 27622 26948 27040 27065 27098 

2012-07-01 0:00 27622 26653 26840 26919 26984 

2012-09-01 0:00 27622 26697 26922 27039 27135 

2012-11-01 0:00 27622 27013 27125 27166 27219 

2013-01-01 0:00 27744 27088 27179 27217 27262 

2013-03-01 0:00 27744 26959 27038 27063 27105 

2013-05-01 0:00 27744 26988 27070 27105 27151 

2013-07-01 0:00 27744 26889 27027 27073 27121 

2013-09-01 0:00 27744 26926 27109 27188 27273 

2013-11-01 0:00 27744 27223 27317 27367 27412 

2014-01-01 0:00 27907 27264 27348 27373 27412 

2014-03-01 0:00 27907 27048 27139 27173 27216 

2014-05-01 0:00 27907 26983 27078 27107 27152 

2014-07-01 0:00 27907 26903 27056 27123 27188 

2014-09-01 0:00 27907 27074 27214 27278 27343 

2014-11-01 0:00 27907 27268 27369 27409 27460 

2015-01-01 0:00 28042 27282 27401 27429 27479 

2015-03-01 0:00 28042 27123 27217 27252 27329 

2015-05-01 0:00 28042 27154 27269 27303 27356 

2015-07-01 0:00 28042 27096 27234 27279 27347 

2015-09-01 0:00 28042 27141 27310 27391 27468 

2015-11-01 0:00 28042 27301 27430 27483 27543 

2016-01-01 0:00 26306 25839 25924 25961 26010 

2016-03-01 0:00 26306 25746 25832 25866 25902 

2016-05-01 0:00 26306 25874 25951 25986 26029 

2016-07-01 0:00 26306 25728 25874 25942 26007 

2016-09-01 0:00 26306 25681 25889 25971 26063 

2016-11-01 0:00 26306 25837 25952 25996 26049 
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Table 4: Percentage of accounts left under different culling ratios 

Billing Periods 
Percentage 
of Accounts 

Left/n=4 

Percentage 
of Accounts 

Left/n=5 

Percentage 
of Accounts 

Left/n=6 

Percentage 
of Accounts 
Left/n=10 

2007-01-01 0:00 99.68% 99.85% 99.95% 99.99% 

2007-03-01 0:00 99.41% 99.73% 99.85% 99.97% 

2007-05-01 0:00 99.59% 99.84% 99.93% 99.99% 

2007-07-01 0:00 99.33% 99.77% 99.91% 100.00% 

2007-09-01 0:00 99.09% 99.67% 99.81% 99.99% 

2007-11-01 0:00 99.34% 99.69% 99.84% 99.96% 

2008-01-01 0:00 99.49% 99.74% 99.85% 99.96% 

2008-03-01 0:00 99.08% 99.59% 99.78% 99.96% 

2008-05-01 0:00 99.55% 99.77% 99.89% 99.99% 

2008-07-01 0:00 99.18% 99.69% 99.86% 99.97% 

2008-09-01 0:00 99.05% 99.53% 99.71% 99.95% 

2008-11-01 0:00 99.38% 99.75% 99.86% 99.98% 

2009-01-01 0:00 99.47% 99.77% 99.90% 99.98% 

2009-03-01 0:00 99.20% 99.63% 99.80% 99.94% 

2009-05-01 0:00 99.24% 99.69% 99.85% 99.96% 

2009-07-01 0:00 99.28% 99.69% 99.86% 99.97% 

2009-09-01 0:00 98.88% 99.51% 99.73% 99.96% 

2009-11-01 0:00 99.32% 99.69% 99.81% 99.94% 

2010-01-01 0:00 99.29% 99.65% 99.80% 99.93% 

2010-03-01 0:00 99.01% 99.52% 99.74% 99.94% 

2010-05-01 0:00 99.43% 99.74% 99.83% 99.94% 

2010-07-01 0:00 98.76% 99.43% 99.68% 99.93% 

2010-09-01 0:00 98.78% 99.42% 99.65% 99.91% 

2010-11-01 0:00 98.94% 99.49% 99.69% 99.92% 

2011-01-01 0:00 99.42% 99.68% 99.77% 99.92% 

2011-03-01 0:00 99.16% 99.59% 99.74% 99.93% 

2011-05-01 0:00 98.57% 99.32% 99.63% 99.93% 

2011-07-01 0:00 98.97% 99.53% 99.71% 99.94% 

2011-09-01 0:00 98.76% 99.39% 99.63% 99.91% 

2011-11-01 0:00 98.92% 99.46% 99.64% 99.88% 

2012-01-01 0:00 99.30% 99.61% 99.76% 99.88% 

2012-03-01 0:00 99.26% 99.62% 99.78% 99.87% 

2012-05-01 0:00 99.34% 99.68% 99.77% 99.89% 
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2012-07-01 0:00 98.68% 99.37% 99.67% 99.91% 

2012-09-01 0:00 98.23% 99.06% 99.49% 99.84% 

2012-11-01 0:00 99.08% 99.49% 99.64% 99.84% 

2013-01-01 0:00 99.20% 99.53% 99.67% 99.84% 

2013-03-01 0:00 99.31% 99.61% 99.70% 99.85% 

2013-05-01 0:00 99.26% 99.57% 99.69% 99.86% 

2013-07-01 0:00 98.96% 99.47% 99.64% 99.82% 

2013-09-01 0:00 98.53% 99.20% 99.49% 99.80% 

2013-11-01 0:00 99.15% 99.49% 99.68% 99.84% 

2014-01-01 0:00 99.25% 99.56% 99.65% 99.79% 

2014-03-01 0:00 99.16% 99.49% 99.62% 99.78% 

2014-05-01 0:00 99.17% 99.51% 99.62% 99.79% 

2014-07-01 0:00 98.78% 99.35% 99.59% 99.83% 

2014-09-01 0:00 98.81% 99.32% 99.55% 99.79% 

2014-11-01 0:00 99.10% 99.47% 99.61% 99.80% 

2015-01-01 0:00 99.08% 99.52% 99.62% 99.80% 

2015-03-01 0:00 98.98% 99.32% 99.45% 99.73% 

2015-05-01 0:00 99.05% 99.47% 99.60% 99.79% 

2015-07-01 0:00 98.88% 99.38% 99.55% 99.80% 

2015-09-01 0:00 98.56% 99.18% 99.47% 99.75% 

2015-11-01 0:00 98.88% 99.35% 99.54% 99.76% 

2016-01-01 0:00 99.10% 99.43% 99.57% 99.76% 

2016-03-01 0:00 99.15% 99.48% 99.61% 99.75% 

2016-05-01 0:00 99.20% 99.49% 99.63% 99.79% 

2016-07-01 0:00 98.72% 99.28% 99.54% 99.79% 

2016-09-01 0:00 98.31% 99.10% 99.42% 99.77% 

2016-11-01 0:00 98.94% 99.38% 99.55% 99.75% 
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Table 5: Performance and results, original vs culled 
 

Billing Periods 
Number of 

Iterations/original Residual/original 
Number of 

Iterations/n=4 Residual/n=4 

2007-01-01 0:00 9 1.33E-05 7 8.84E-06 

2007-03-01 0:00 7 2.25E-06 6 7.62E-06 

2007-05-01 0:00 9 6.33E-06 9 1.08E-05 

2007-07-01 0:00 8 3.97E-06 8 3.97E-06 

2007-09-01 0:00 8 1.12E-05 9 1.38E-05 

2007-11-01 0:00 9 3.16E-06 7 4.63E-06 

2008-01-01 0:00 15 1.31E-05 9 6.45E-06 

2008-03-01 0:00 17 1.60E-05 8 5.78E-06 

2008-05-01 0:00 9 1.81E-06 8 1.67E-06 

2008-07-01 0:00 31 4.98E-05 8 2.19E-06 

2008-09-01 0:00 22 1.78E-05 9 5.71E-06 

2008-11-01 0:00 10 4.09E-06 8 4.02E-06 

2009-01-01 0:00 10 1.96E-06 7 5.93E-06 

2009-03-01 0:00 12 8.77E-06 8 8.41E-06 

2009-05-01 0:00 10 9.55E-06 7 6.80E-06 

2009-07-01 0:00 10 6.00E-06 7 3.94E-06 

2009-09-01 0:00 28 2.27E-06 9 7.27E-06 

2009-11-01 0:00 15 1.26E-06 8 3.02E-06 

2010-01-01 0:00 25 1.90E-05 8 2.97E-06 

2010-03-01 0:00 40 1.36E-06 8 4.64E-06 

2010-05-01 0:00 46 4.49E-05 8 6.28E-06 

2010-07-01 0:00 9 5.56E-06 9 8.38E-06 

2010-09-01 0:00 30 3.83E-06 9 4.66E-06 

2010-11-01 0:00 17 2.76E-06 9 3.15E-06 

2011-01-01 0:00 17 6.46E-07 7 4.38E-06 

2011-03-01 0:00 16 6.10E-06 8 1.62E-06 

2011-05-01 0:00 32 1.49E-05 13 4.65E-06 

2011-07-01 0:00 30 1.59E-05 8 3.64E-06 

2011-09-01 0:00 27 3.07E-05 10 6.68E-06 

2011-11-01 0:00 24 2.80E-06 10 5.73E-06 
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2012-01-01 0:00 29 2.21E-06 7 5.08E-06 

2012-03-01 0:00 28 1.29E-06 7 3.87E-06 

2012-05-01 0:00 29 1.09E-05 7 8.04E-06 

2012-07-01 0:00 27 1.58E-05 8 8.02E-06 

2012-09-01 0:00 27 3.28E-05 13 1.32E-05 

2012-11-01 0:00 43 2.70E-06 9 1.27E-05 

2013-01-01 0:00 26 2.87E-05 7 3.86E-06 

2013-03-01 0:00 26 7.07E-07 8 2.07E-06 

2013-05-01 0:00 29 2.25E-05 8 5.43E-06 

2013-07-01 0:00 25 3.78E-05 8 9.02E-06 

2013-09-01 0:00 30 4.97E-05 10 4.02E-06 

2013-11-01 0:00 28 1.09E-05 7 5.75E-06 

2014-01-01 0:00 35 1.51E-05 8 5.90E-06 

2014-03-01 0:00 51 2.59E-05 7 4.80E-06 

2014-05-01 0:00 63 1.25E-04 7 3.60E-06 

2014-07-01 0:00 29 2.40E-06 9 9.35E-06 

2014-09-01 0:00 46 7.36E-05 9 4.84E-06 

2014-11-01 0:00 51 3.85E-06 8 4.06E-06 

2015-01-01 0:00 22 8.97E-05 7 3.41E-06 

2015-03-01 0:00 53 2.20E-05 8 2.19E-06 

2015-05-01 0:00 43 7.59E-06 8 2.22E-06 

2015-07-01 0:00 76 2.04E-04 9 6.40E-06 

2015-09-01 0:00 58 1.23E-04 10 1.05E-05 

2015-11-01 0:00 26 8.81E-07 8 2.66E-06 

2016-01-01 0:00 67 3.46E-06 9 4.31E-06 

2016-03-01 0:00 63 2.92E-06 8 6.81E-06 

2016-05-01 0:00 22 3.78E-06 7 1.87E-06 

2016-07-01 0:00 51 2.75E-04 8 1.53E-05 

2016-09-01 0:00 37 2.69E-04 11 6.80E-06 

2016-11-01 0:00 17 2.92E-06 8 6.89E-06 
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Table 5: Performance and results, Unscaled control function parameters vs Scaled 
 
 

Billing Periods 

Number of 
Iterations/Starts 

at [0,0,45,0,0] 
Residual/Starts 
at [0,0,45,0,0] 

Number of 
Iterations/Starts 

at [0,0,1,0,0] 
Residual/Starts 

[0,0,1,0,0] 

2007-01-01 0:00 7 8.84E-06 8 5.58E-06 

2007-03-01 0:00 6 7.62E-06 7 1.56E-06 

2007-05-01 0:00 9 1.08E-05 8 6.25E-06 

2007-07-01 0:00 8 3.97E-06 8 3.76E-06 

2007-09-01 0:00 9 1.38E-05 8 8.35E-06 

2007-11-01 0:00 7 4.63E-06 7 3.38E-06 

2008-01-01 0:00 9 6.45E-06 7 2.65E-06 

2008-03-01 0:00 8 5.78E-06 8 1.17E-05 

2008-05-01 0:00 8 1.67E-06 7 4.83E-06 

2008-07-01 0:00 8 2.19E-06 7 6.77E-06 

2008-09-01 0:00 9 5.71E-06 7 7.49E-06 

2008-11-01 0:00 8 4.02E-06 7 3.63E-06 

2009-01-01 0:00 7 5.93E-06 7 4.51E-06 

2009-03-01 0:00 8 8.41E-06 8 7.14E-06 

2009-05-01 0:00 7 6.80E-06 7 2.98E-06 

2009-07-01 0:00 7 3.94E-06 7 7.67E-06 

2009-09-01 0:00 9 7.27E-06 7 4.28E-06 

2009-11-01 0:00 8 3.02E-06 6 3.00E-06 

2010-01-01 0:00 8 2.97E-06 7 3.54E-06 

2010-03-01 0:00 8 4.64E-06 7 3.46E-06 

2010-05-01 0:00 8 6.28E-06 7 3.01E-06 

2010-07-01 0:00 9 8.38E-06 7 6.16E-06 

2010-09-01 0:00 9 4.66E-06 8 4.53E-06 

2010-11-01 0:00 9 3.15E-06 8 2.72E-06 

2011-01-01 0:00 7 4.38E-06 7 3.78E-06 

2011-03-01 0:00 8 1.62E-06 7 2.04E-06 

2011-05-01 0:00 13 4.65E-06 8 2.80E-06 

2011-07-01 0:00 8 3.64E-06 7 5.68E-06 

2011-09-01 0:00 10 6.68E-06 8 9.24E-06 

2011-11-01 0:00 10 5.73E-06 8 5.57E-06 

2012-01-01 0:00 7 5.08E-06 6 4.00E-06 

2012-03-01 0:00 7 3.87E-06 7 3.14E-06 

2012-05-01 0:00 7 8.04E-06 7 1.78E-06 

2012-07-01 0:00 8 8.02E-06 7 7.33E-06 
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2012-09-01 0:00 13 1.32E-05 7 3.50E-06 

2012-11-01 0:00 9 1.27E-05 8 6.21E-06 

2013-01-01 0:00 7 3.86E-06 7 6.37E-06 

2013-03-01 0:00 8 2.07E-06 7 1.73E-06 

2013-05-01 0:00 8 5.43E-06 7 4.44E-06 

2013-07-01 0:00 8 9.02E-06 7 6.72E-06 

2013-09-01 0:00 10 4.02E-06 7 9.21E-06 

2013-11-01 0:00 7 5.75E-06 8 6.81E-06 

2014-01-01 0:00 8 5.90E-06 8 3.58E-06 

2014-03-01 0:00 7 4.80E-06 6 3.91E-06 

2014-05-01 0:00 7 3.60E-06 7 5.97E-06 

2014-07-01 0:00 9 9.35E-06 7 3.23E-06 

2014-09-01 0:00 9 4.84E-06 7 4.86E-06 

2014-11-01 0:00 8 4.06E-06 8 5.32E-06 

2015-01-01 0:00 7 3.41E-06 8 3.82E-06 

2015-03-01 0:00 8 2.19E-06 7 2.99E-06 

2015-05-01 0:00 8 2.22E-06 7 4.01E-06 

2015-07-01 0:00 9 6.40E-06 7 2.41E-06 

2015-09-01 0:00 10 1.05E-05 7 1.23E-06 

2015-11-01 0:00 8 2.66E-06 7 5.41E-06 

2016-01-01 0:00 9 4.31E-06 8 1.66E-06 

2016-03-01 0:00 8 6.81E-06 7 3.38E-06 

2016-05-01 0:00 7 1.87E-06 8 6.75E-06 

2016-07-01 0:00 8 1.53E-05 7 3.32E-06 

2016-09-01 0:00 11 6.80E-06 7 3.23E-06 

2016-11-01 0:00 8 6.89E-06 8 6.57E-06 

Average 8.28 5.84E-06 7.27 4.68E-06 
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Table 6: Trust-Region vs Levenberg–Marquardt 

Billing Periods 
Trust-Region 

iterations 
Trust-Region 

residuals 

Levenberg–
Marquardt 
algorithm 
iterations 

Levenberg–
Marquardt algorithm 

residuals 

2007-01-01 0:00 8 5.58E-06 43 5.58E-06 

2007-03-01 0:00 7 1.56E-06 37 1.56E-06 

2007-05-01 0:00 8 6.25E-06 43 6.25E-06 

2007-07-01 0:00 8 3.76E-06 43 3.76E-06 

2007-09-01 0:00 8 8.35E-06 43 8.35E-06 

2007-11-01 0:00 7 3.38E-06 37 3.38E-06 

2008-01-01 0:00 7 2.65E-06 37 2.65E-06 

2008-03-01 0:00 8 1.17E-05 43 1.17E-05 

2008-05-01 0:00 7 4.83E-06 37 4.83E-06 

2008-07-01 0:00 7 6.77E-06 37 6.77E-06 

2008-09-01 0:00 7 7.49E-06 37 7.49E-06 

2008-11-01 0:00 7 3.63E-06 37 3.63E-06 

2009-01-01 0:00 7 4.51E-06 37 4.51E-06 

2009-03-01 0:00 8 7.14E-06 43 7.14E-06 

2009-05-01 0:00 7 2.98E-06 37 2.98E-06 

2009-07-01 0:00 7 7.67E-06 37 7.67E-06 

2009-09-01 0:00 7 4.28E-06 37 4.28E-06 

2009-11-01 0:00 6 3.00E-06 37 3.00E-06 

2010-01-01 0:00 7 3.54E-06 37 3.54E-06 

2010-03-01 0:00 7 3.46E-06 37 3.46E-06 

2010-05-01 0:00 7 3.01E-06 37 3.01E-06 

2010-07-01 0:00 7 6.16E-06 37 6.16E-06 

2010-09-01 0:00 8 4.53E-06 43 4.53E-06 

2010-11-01 0:00 8 2.72E-06 43 2.72E-06 

2011-01-01 0:00 7 3.78E-06 37 3.78E-06 

2011-03-01 0:00 7 2.04E-06 37 2.04E-06 

2011-05-01 0:00 8 2.80E-06 43 2.80E-06 

2011-07-01 0:00 7 5.68E-06 37 5.68E-06 

2011-09-01 0:00 8 9.24E-06 43 9.24E-06 

2011-11-01 0:00 8 5.57E-06 43 5.57E-06 

2012-01-01 0:00 6 4.00E-06 37 4.00E-06 

2012-03-01 0:00 7 3.14E-06 37 3.14E-06 

2012-05-01 0:00 7 1.78E-06 37 1.78E-06 

2012-07-01 0:00 7 7.33E-06 37 7.33E-06 

2012-09-01 0:00 7 3.50E-06 37 3.50E-06 

2012-11-01 0:00 8 6.21E-06 43 6.21E-06 
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2013-01-01 0:00 7 6.37E-06 37 6.37E-06 

2013-03-01 0:00 7 1.73E-06 37 1.73E-06 

2013-05-01 0:00 7 4.44E-06 37 4.44E-06 

2013-07-01 0:00 7 6.72E-06 37 6.72E-06 

2013-09-01 0:00 7 9.21E-06 37 9.21E-06 

2013-11-01 0:00 8 6.81E-06 43 6.81E-06 

2014-01-01 0:00 8 3.58E-06 43 3.58E-06 

2014-03-01 0:00 6 3.91E-06 37 3.91E-06 

2014-05-01 0:00 7 5.97E-06 37 5.97E-06 

2014-07-01 0:00 7 3.23E-06 37 3.23E-06 

2014-09-01 0:00 7 4.86E-06 37 4.86E-06 

2014-11-01 0:00 8 5.32E-06 43 5.32E-06 

2015-01-01 0:00 8 3.82E-06 43 3.82E-06 

2015-03-01 0:00 7 2.99E-06 37 2.99E-06 

2015-05-01 0:00 7 4.01E-06 37 4.01E-06 

2015-07-01 0:00 7 2.41E-06 37 2.41E-06 

2015-09-01 0:00 7 1.23E-06 37 1.23E-06 

2015-11-01 0:00 7 5.41E-06 37 5.41E-06 

2016-01-01 0:00 8 1.66E-06 43 1.66E-06 

2016-03-01 0:00 7 3.38E-06 37 3.38E-06 

2016-05-01 0:00 8 6.75E-06 43 6.75E-06 

2016-07-01 0:00 7 3.32E-06 37 3.32E-06 

2016-09-01 0:00 7 3.23E-06 37 3.23E-06 

2016-11-01 0:00 8 6.57E-06 43 6.57E-06 

Average 7.27 4.68E-06             38.9                 4.68E-06 
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Table 7: Trust-Region at different starting position 
 

Billing Periods 

Trust-Region 
iterations/start 

at[0,0,1,0,0] 

Trust-Region 
iterations/start 

at[10,10,2,10,10] 

Trust-Region 
residuals/start 

at[0,0,1,0,0] 

Trust-Region 
residuals/start 

at[10,10,2,10,10] 

2007-01-01 0:00 8 126 5.58E-06 6.60E-06 

2007-03-01 0:00 7 102 1.56E-06 1.62E-06 

2007-05-01 0:00 8 125 6.25E-06 6.69E-06 

2007-07-01 0:00 8 157 3.76E-06 5.60E-06 

2007-09-01 0:00 8 108 8.35E-06 1.19E-05 

2007-11-01 0:00 7 119 3.38E-06 4.14E-06 

2008-01-01 0:00 7 124 2.65E-06 3.21E-06 

2008-03-01 0:00 8 119 1.17E-05 1.24E-05 

2008-05-01 0:00 7 102 4.83E-06 5.11E-06 

2008-07-01 0:00 7 92 6.77E-06 7.67E-06 

2008-09-01 0:00 7 97 7.49E-06 9.21E-06 

2008-11-01 0:00 7 87 3.63E-06 4.12E-06 

2009-01-01 0:00 7 99 4.51E-06 5.95E-06 

2009-03-01 0:00 8 89 7.14E-06 8.76E-06 

2009-05-01 0:00 7 94 2.98E-06 4.34E-06 

2009-07-01 0:00 7 121 7.67E-06 8.48E-06 

2009-09-01 0:00 7 101 4.28E-06 5.45E-06 

2009-11-01 0:00 6 98 3.00E-06 3.30E-06 

2010-01-01 0:00 7 89 3.54E-06 3.84E-06 

2010-03-01 0:00 7 95 3.46E-06 3.28E-06 

2010-05-01 0:00 7 100 3.01E-06 2.99E-06 

2010-07-01 0:00 7 90 6.16E-06 5.21E-06 

2010-09-01 0:00 8 99 4.53E-06 4.12E-06 

2010-11-01 0:00 8 92 2.72E-06 3.34E-06 

2011-01-01 0:00 7 110 3.78E-06 4.82E-06 

2011-03-01 0:00 7 161 2.04E-06 2.58E-06 

2011-05-01 0:00 8 89 2.80E-06 3.03E-06 

2011-07-01 0:00 7 89 5.68E-06 8.73E-06 

2011-09-01 0:00 8 96 9.24E-06 1.13E-05 

2011-11-01 0:00 8 158 5.57E-06 5.65E-06 

2012-01-01 0:00 6 199 4.00E-06 4.54E-06 

2012-03-01 0:00 7 171 3.14E-06 4.05E-06 

2012-05-01 0:00 7 179 1.78E-06 2.41E-06 

2012-07-01 0:00 7 91 7.33E-06 1.10E-05 

2012-09-01 0:00 7 94 3.50E-06 6.06E-06 
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2012-11-01 0:00 8 179 6.21E-06 7.68E-06 

2013-01-01 0:00 7 193 6.37E-06 7.61E-06 

2013-03-01 0:00 7 170 1.73E-06 2.49E-06 

2013-05-01 0:00 7 195 4.44E-06 5.84E-06 

2013-07-01 0:00 7 166 6.72E-06 6.69E-06 

2013-09-01 0:00 7 181 9.21E-06 1.17E-05 

2013-11-01 0:00 8 192 6.81E-06 8.60E-06 

2014-01-01 0:00 8 173 3.58E-06 2.94E-06 

2014-03-01 0:00 6 194 3.91E-06 4.64E-06 

2014-05-01 0:00 7 184 5.97E-06 7.55E-06 

2014-07-01 0:00 7 182 3.23E-06 3.12E-06 

2014-09-01 0:00 7 184 4.86E-06 4.61E-06 

2014-11-01 0:00 8 196 5.32E-06 7.22E-06 

2015-01-01 0:00 8 195 3.82E-06 3.27E-06 

2015-03-01 0:00 7 182 2.99E-06 2.54E-06 

2015-05-01 0:00 7 181 4.01E-06 3.61E-06 

2015-07-01 0:00 7 178 2.41E-06 3.69E-06 

2015-09-01 0:00 7 177 1.23E-06 1.96E-06 

2015-11-01 0:00 7 182 5.41E-06 4.73E-06 

2016-01-01 0:00 8 197 1.66E-06 1.58E-06 

2016-03-01 0:00 7 247 3.38E-06 4.49E-06 

2016-05-01 0:00 8 195 6.75E-06 8.08E-06 

2016-07-01 0:00 7 91 3.32E-06 5.24E-06 

2016-09-01 0:00 7 184 3.23E-06 5.25E-06 

2016-11-01 0:00 8 184 6.57E-06 7.90E-06 

Average 7.27 142.4 4.68E-06 5.58E-06 
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Table 8: Levenberg-Marquardt at different starting position 
 

Billing Periods 

Levenberg-
Marquardt 

iterations/start 
at[0,0,1,0,0] 

Levenberg-
Marquardt 

iterations/start 
at[10,10,2,10,10] 

Levenberg-
Marquardt 

residuals/start 
at[0,0,1,0,0] 

Levenberg-
Marquardt 

residuals/start 
at[10,10,2,10,10] 

2007-01-01 0:00 43 780 5.58E-06 6.60E-06 

2007-03-01 0:00 37 634 1.56E-06 1.62E-06 

2007-05-01 0:00 43 685 6.25E-06 6.69E-06 

2007-07-01 0:00 43 563 3.76E-06 5.60E-06 

2007-09-01 0:00 43 676 8.35E-06 1.19E-05 

2007-11-01 0:00 37 733 3.38E-06 4.14E-06 

2008-01-01 0:00 37 769 2.65E-06 3.21E-06 

2008-03-01 0:00 43 663 1.17E-05 1.24E-05 

2008-05-01 0:00 37 641 4.83E-06 5.11E-06 

2008-07-01 0:00 37 695 6.77E-06 7.67E-06 

2008-09-01 0:00 37 565 7.49E-06 9.21E-06 

2008-11-01 0:00 37 570 3.63E-06 4.12E-06 

2009-01-01 0:00 37 708 4.51E-06 5.95E-06 

2009-03-01 0:00 43 640 7.14E-06 8.76E-06 

2009-05-01 0:00 37 641 2.98E-06 4.34E-06 

2009-07-01 0:00 37 678 7.67E-06 8.48E-06 

2009-09-01 0:00 37 618 4.28E-06 5.45E-06 

2009-11-01 0:00 37 589 3.00E-06 3.30E-06 

2010-01-01 0:00 37 610 3.54E-06 3.84E-06 

2010-03-01 0:00 37 580 3.46E-06 3.28E-06 

2010-05-01 0:00 37 666 3.01E-06 2.99E-06 

2010-07-01 0:00 37 599 6.16E-06 5.21E-06 

2010-09-01 0:00 43 608 4.53E-06 4.12E-06 

2010-11-01 0:00 43 655 2.72E-06 3.34E-06 

2011-01-01 0:00 37 664 3.78E-06 4.82E-06 

2011-03-01 0:00 37 690 2.04E-06 2.58E-06 

2011-05-01 0:00 43 611 2.80E-06 3.03E-06 

2011-07-01 0:00 37 573 5.68E-06 8.73E-06 

2011-09-01 0:00 43 633 9.24E-06 1.13E-05 

2011-11-01 0:00 43 680 5.57E-06 5.65E-06 

2012-01-01 0:00 37 714 4.00E-06 4.54E-06 

2012-03-01 0:00 37 711 3.14E-06 4.05E-06 

2012-05-01 0:00 37 711 1.78E-06 2.41E-06 

2012-07-01 0:00 37 605 7.33E-06 1.10E-05 
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2012-09-01 0:00 37 602 3.50E-06 6.06E-06 

2012-11-01 0:00 43 713 6.21E-06 7.68E-06 

2013-01-01 0:00 37 703 6.37E-06 7.61E-06 

2013-03-01 0:00 37 696 1.73E-06 2.49E-06 

2013-05-01 0:00 37 707 4.44E-06 5.84E-06 

2013-07-01 0:00 37 708 6.72E-06 6.69E-06 

2013-09-01 0:00 37 677 9.21E-06 1.17E-05 

2013-11-01 0:00 43 774 6.81E-06 8.60E-06 

2014-01-01 0:00 43 723 3.58E-06 2.94E-06 

2014-03-01 0:00 37 743 3.91E-06 4.64E-06 

2014-05-01 0:00 37 711 5.97E-06 7.55E-06 

2014-07-01 0:00 37 716 3.23E-06 3.12E-06 

2014-09-01 0:00 37 710 4.86E-06 4.61E-06 

2014-11-01 0:00 43 777 5.32E-06 7.22E-06 

2015-01-01 0:00 43 723 3.82E-06 3.27E-06 

2015-03-01 0:00 37 718 2.99E-06 2.54E-06 

2015-05-01 0:00 37 728 4.01E-06 3.61E-06 

2015-07-01 0:00 37 683 2.41E-06 3.69E-06 

2015-09-01 0:00 37 739 1.23E-06 1.96E-06 

2015-11-01 0:00 37 686 5.41E-06 4.73E-06 

2016-01-01 0:00 43 723 1.66E-06 1.58E-06 

2016-03-01 0:00 37 871 3.38E-06 4.49E-06 

2016-05-01 0:00 43 722 6.75E-06 8.08E-06 

2016-07-01 0:00 37 651 3.32E-06 5.24E-06 

2016-09-01 0:00 37 750 3.23E-06 5.25E-06 

2016-11-01 0:00 43 808 6.57E-06 7.90E-06 

Average 7.27 682 4.68E-06 5.58E-06 
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Table 8: Performance and result, LogY vs Y 
 
 

Billing Periods 
LogY 

Space/Iterations 
LogY 

Space/Residuals 
Y 

Space/Iterations Y Space/Residuals 

2007-01-01 0:00 12 2.86E-05 9 4.24E-05 

2007-03-01 0:00 10 2.76E-05 10 3.96E-05 

2007-05-01 0:00 14 2.46E-05 8 1.12E-04 

2007-07-01 0:00 13 8.38E-05 10 3.34E-05 

2007-09-01 0:00 11 1.65E-05 9 5.22E-05 

2007-11-01 0:00 12 1.08E-05 8 2.68E-05 

2008-01-01 0:00 9 2.29E-05 77 1.87E-03 

2008-03-01 0:00 9 3.86E-05 57 2.71E-03 

2008-05-01 0:00 8 1.79E-05 56 7.29E-03 

2008-07-01 0:00 8 1.36E-05 34 5.35E-03 

2008-09-01 0:00 10 3.88E-05 46 6.18E-03 

2008-11-01 0:00 10 2.60E-05 29 6.35E-03 

2009-01-01 0:00 8 2.27E-05 44 5.66E-03 

2009-03-01 0:00 8 2.50E-05 21 2.15E-02 

2009-05-01 0:00 8 1.64E-05 46 5.37E-03 

2009-07-01 0:00 8 1.41E-05 51 6.28E-03 

2009-09-01 0:00 8 1.44E-05 54 6.57E-03 

2009-11-01 0:00 9 1.14E-05 48 5.40E-03 

2010-01-01 0:00 9 2.47E-05 50 4.88E-03 

2010-03-01 0:00 9 1.56E-05 51 5.35E-03 

2010-05-01 0:00 8 1.98E-05 50 5.10E-03 

2010-07-01 0:00 9 1.94E-05 43 4.57E-03 

2010-09-01 0:00 9 2.84E-05 38 5.29E-03 

2010-11-01 0:00 8 2.31E-05 47 5.54E-03 

2011-01-01 0:00 9 4.02E-05 33 6.34E-03 

2011-03-01 0:00 9 2.57E-05 43 5.48E-03 

2011-05-01 0:00 8 1.77E-05 51 5.11E-03 

2011-07-01 0:00 9 3.49E-05 47 5.01E-03 

2011-09-01 0:00 9 3.65E-05 52 4.51E-03 

2011-11-01 0:00 9 2.67E-05 55 5.26E-03 

2012-01-01 0:00 8 5.50E-05 39 5.02E-03 

2012-03-01 0:00 8 2.15E-05 52 5.36E-03 

2012-05-01 0:00 8 1.86E-05 39 4.82E-03 

2012-07-01 0:00 9 2.59E-05 47 4.59E-03 

2012-09-01 0:00 8 1.19E-05 46 4.89E-03 
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2012-11-01 0:00 8 2.03E-05 44 5.09E-03 

2013-01-01 0:00 7 2.03E-05 46 4.69E-03 

2013-03-01 0:00 9 2.36E-05 40 4.62E-03 

2013-05-01 0:00 8 2.85E-05 46 4.67E-03 

2013-07-01 0:00 9 1.88E-05 46 4.27E-03 

2013-09-01 0:00 8 2.41E-05 48 4.15E-03 

2013-11-01 0:00 10 3.05E-05 36 4.99E-03 

2014-01-01 0:00 9 3.14E-05 45 4.46E-03 

2014-03-01 0:00 9 2.56E-05 49 4.82E-03 

2014-05-01 0:00 8 3.29E-05 48 4.38E-03 

2014-07-01 0:00 8 3.30E-05 39 4.12E-03 

2014-09-01 0:00 8 3.33E-05 39 5.31E-03 

2014-11-01 0:00 9 2.92E-05 46 4.30E-03 

2015-01-01 0:00 9 2.64E-05 42 4.22E-03 

2015-03-01 0:00 9 2.30E-05 45 4.41E-03 

2015-05-01 0:00 8 1.72E-05 49 4.87E-03 

2015-07-01 0:00 8 3.57E-05 42 5.24E-03 

2015-09-01 0:00 8 2.36E-05 41 4.12E-03 

2015-11-01 0:00 8 2.47E-05 46 4.51E-03 

2016-01-01 0:00 9 2.67E-05 44 4.33E-03 

2016-03-01 0:00 9 2.93E-05 48 4.26E-03 

2016-05-01 0:00 8 3.52E-05 44 4.54E-03 

2016-07-01 0:00 8 1.45E-05 42 4.75E-03 

2016-09-01 0:00 8 3.58E-05 56 4.70E-03 

2016-11-01 0:00 9 5.26E-05 43 4.15E-03 

Average 8.87 2.6593E-05 41.9 0.0047 
 
 
 
 
 
 
 
 
 
 
 
 


