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Abstract

Obtaining accurate computational simulations of fluid flows with a complex thermody-
namic behaviour is difficult. This is partly due to the non-linear variation of thermophysical
properties in the vicinity of critical point. Supercritical fluid flows are observed in a wide
range of applications such as caffeine extraction, supercritical diesel fuel injection, nuclear
reactors, and liquid rocket engines. In the near-critical regime, thermodynamic properties
are accurately described by a multi-parametric equation of state, but most often using such
complex state equations involve expensive computations, thereby consuming a significant
portion of the available computational resources. To mitigate this issue, tabulation of state
equations stands as an alternative yet they are inefficient due to the strong non-linear prop-
erty variation in the proximity of critical point. In this thesis a novel tabulation method
based on adaptive mesh refinement (AMR) approach is presented, it enabled accurate ther-
modynamic and physical property evaluation with minimal computational effort. Detailed
analyses in the form of error validation, computational cost comparison were performed
with reference to the commonly used cubic equations of state. In order to demonstrate
the grid scaling effects on total computational cost of a real-fluid CFD simulation, a one
dimensional harmonic acoustic wave case was chosen. We show a significant computational
cost reduction with the adaptive tabulation approach relative to the cubic state equations
(with an underlying iterative root-finding method). It also offered an accurate emulation
of the backend equation of state with significantly less computation cost.

The developed adaptive tabular equation of state is also integrated into a Computa-
tional Fluid Dynamics (CFD) code which has numerical techniques enabling computation
of flows with large density gradients. To validate this CFD solver and to observe accurate
thermodynamics effects in gasdynamics simulations, the Sod-shock tube and Shu-Osher
shock tube problems were solved computationally for both perfect, real fluid thermody-
namics. Also the sod-shock tube problem was simulated with three different thermody-
namic initial conditions (supercritical, nearcritical, subcritical regions) the nearcritical case
has shown a relatively smaller change in temperature, pressure at the shock contact while
having a large change in density compared to two other scenarios. It represented the un-
derlying supercritical thermodynamic behaviour that the density increases drastically with
a relatively small change in temperature.
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Chapter 1

Introduction

1.1 Overview

Matter exists in three different phases: solid, liquid and gas [53]. The boundaries between
these phases are best illustrated with the help of a phase diagram, shown in figure 1.1. The
equilibrium phase diagram for a single-species allows us to determine the matter’s current
phase based on, at most, two intensive thermodynamic properties such as: pressure, and
temperature [35]. The dividing lines represent the phase boundaries and thereby indicate
the physical processes of boiling, melting and sublimation. There are two special points
in a phase diagram, namely: triple point and critical point. The triple point is a ther-
modynamic singularity in which all the three phases coexist in equilibrium [66]. Whereas,
the critical point is an endpoint in the phase equilibrium curve between liquid and gas
[12]. At a temperature and pressure above the critical point, one cannot differentiate the
state of matter (at least not using classical metrics); in this state, we are in a supercritical
regime [37]. Matter in this supercritical regime has distinct physical properties such as
large compressibility and a high diffusivity (similar to gases). This unusual behaviour is
exploited in various physical processes such as fluid extraction [48], separation and fuel
injection. For example, supercritical diesel injection provides better air-fuel mixing due to
the high molecular diffusivity (compared to liquid injection) and enables a better control
over the engine operation [5]. Another property of the supercritical regime is low viscosity
and non-existent surface tension [37] due to the fact there is no clear delineation between
the liquid, and gas states. Several industrial applications such as Organic Rankine Cycle
turbines, supercritical CO2 power systems, transcritical heat exchangers, liquid propellant
rocket engines[] are associated with near-critical, transcritical or supercritical flow regimes.
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In order to improve these systems efficiencies and assure stable operation, accurate study
of the flow physics is essential. Due to the cost and complexities involved in performing
experiments with supercritical fluids, researchers and engineers have adopted Computa-
tional Fluid Dynamics (Computational Fluid Dynamics (CFD)) simulations as an analysis
tool for design in many of these industrial applications.

Figure 1.1: Phase diagram: green line, blue line, red line delineate the solid-liquid, liquid-
vapour, solid-vapour transition lines, respectively. Source [1]

It is highly desirable to have an accurate, yet robust, CFD simulation for supercritical
thermodynamic applications. But CFD simulations involving such pseudo-phase tran-
sitions are inherently unstable [44] not only due to the large density gradient near the
critical point but also, due to the non-linearity of the thermophysical properties resulting
in spurious oscillations[47] in the numerical flux computations. Figure 1.2 shows the sharp
change in specific heat Cp at supercritical pressures for oxygen. Another aspect that in-
hibits the fidelity of such simulations is the accuracy of the equation of state (EOS) that
is being used in the CFD solver. The ideal gas law is the most commonly used EOS but
the inherent assumptions of this state equation break down in the supercritical thermo-
dynamic regime. In such scenarios, the EOS must account for the intermolecular forces
in the gas. For computational efficiency, CFD practitioners usually incorporate a cubic
equation of state such as Redlich-Kwong Equation of State (RK) [52], Peng-Robinson PR
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[49], Soave-Redlich Kwong SRK [58], all of which are derived from the Van der Waals
equation, to estimate the thermodynamic properties of the fluid. But these cubic equa-
tions have nearly 10-15 % relative errors [62] as we approach critical point as shown in
figure 1.3 when compared to a higher-order state equation such as the modified Benedict
Webb Rubin Modified Benedict-Webb-Rubin Equation of state (mBWR) [59] equation of
state. The mBWR has 32 parameters, 20 of which describe the saturation curve and its
critical point. It matches suitably with experimentally obtained thermodynamic property
data and is generally used to interpolate experimental data in thermodynamic databases
such as CoolProp, REFPROP.
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Figure 1.2: Isobaric specific heat (Cp) of oxygen.

In a typical CFD solution process, the compressible Navier-Stokes equations are closed
using an equation of state EOS. In other words, given the conserved quantities such as
[ρ, ρ⃗u, ρE], the EOS allows us to obtain the primitive variables pressure (P ) and tem-
perature (T ), the gradients of which are needed to compute the Navier-Stokes equations.
The key numerical difficulty in using a highly accurate non-linear EOS lies in computing
the primitive thermodynamic variables, as the state equations generally take the form of
P = f(ρ, T ) and are not a function of f(ρ, e). In the supercritical regime, the internal
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energy of a fluid depends on two indepedent thermodynamic variables. In order to find ap-
proximate thermodynamic solution, iterative numerical methods such as Newton-Raphson
solvers are used. One way to mitigate the cost of an iterative root-finding method is to
build a pre-tabulated look-up table [50, 73] where the CFD solver looks-up the thermo-
dynamic properties during run-time. However, the complexity lies in building such table
in the transcritical critical regime, as we can see from the figure 1.2 the thermodynamic
property gradient is highly non-linear near the critical point. Hence, any such look-up
table would have to consider this abrupt change in gradient (either Pressure-Temperature
or Density - Internal Energy).

(a) Oxygen density computed using
Benedict-Webb-Rubin (BWR) Equation of
State compared with experimental data

(b) Relative errors of density as determined by
three different Equations of state with reference
to Experimental data

Figure 1.3: Comparison of various polynomial equations of state with experimental data
from Sychev et al. [62]

1.2 Motivation

The scale and complexity of computational fluid dynamics simulations are ever increasing,
compared to 800,000 mesh points in 1970s to more recent direct numerical simulation of
isotropic turbulence [32] with 40963 = 68 billion grid points there is a huge advancement in
terms of hardware and numerical methods that led to accelerated numerical convergence
rates and stable computational algorithms [56]. The need for an accurate real fluid ther-
modynamic property evaluation in transcritical, supercritical CFD simulations had been
suggested by several researchers [13, 30, 63, 44, 36]. A strong influence of real gas effects
for high pressure supersonic methane jets, hydrogen jets was demonstrated by Hempert et
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al. [30] and Bonelli et al. [13], as shown in figure 1.4 there was a difference in shockfront
width, a very small shockfront was recognizable in the case of real fluid while the absence
of real fluid thermodynamics had wider shockfronts. However, the current simulations
involving accurate real fluid thermodynamics are very expensive not only due to the num-
ber of chemical species involved, but also due to the inherent complexity in terms of their
properties evaluation based iterative numerical methods such as computing compressibility
factor (Z) using Newton-Raphson solver. Some of the widely used multi-parametric cubic
equation of states, such as SRK and PR, were invented for the sole purpose of evaluating
the hydrocarbon mixtures at low and high pressures. Even after 40 years of advancements
in both hardware and computational methods, relying on the same old method of iterative
root-finding to perform high fidelity simulations is a matter of concern. Hence, it is very
important to research new approaches/algorithms towards developing computationally ef-
ficient yet, accurate method of thermodynamic properties evaluation, which can also be
incorporated into the modern CFD codes with minimal effort.

Figure 1.4: Pressure ratio Pin

Pout
for a supersonic jet, LES simulation of high pressure super-

sonic jet [30] with (a) Ideal gas thermodynamics (b) Real fluid thermodynamics

Thermodynamic and thermophysical property evaluations often consume the majority
of computational resources in any CFD simulation involving real fluid thermodynamics.
For example in a LES [25] of a supercritical fuel-jet in a cross flow, real fluid thermo-
dynamic properties are considered and evaluated using PR EOS and computations are
accelerated with a Graphical Processing Units (GPU). The profiling data is illustrated
in the figure 1.5, 1.6. They show the fraction of time spent in various modules, sub-
routines to the fraction of total computation time. From figure 1.5 we can see that the
thermodynamic-transport closures comprise 51.2% of total computation time yet they oc-
cupy 24.1 % of total floating operations. Thereby making single floating point operation
of a thermodynamics-transport module significantly higher than other routines. Also, if
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we inspect thermodynamic-transport module more specifically (figure 1.6), the Z-factor
sub-routine (compressibility factor calculation) has a big influence on the total floating
point operations. Being able to lookup such computationally intensive operations during
the run-time would significantly enhance the solver’s capabilities.

Figure 1.5: (a) Floating point operations as a percent of total flops for all routines (left)
(b) Time for computation of different routines/modules as a percent of total computational
time (right). Data obtained from an LES simulation of supercritical fuel jet [25].

Figure 1.6: Floating point operations for different thermodynamic and transport
routines[25].
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1.3 Objectives

The objective of this work is to formulate a computationally efficient and accurate tab-
ulated thermodynamic equation of state and thermophysical properties for CFD solvers
and investigate its performance with reference to the current existing equation of states
such as cubic, multiparametric in terms of speed and accuracy. Further, we implemented
the developed EOS into a CFD code to simulate real fluid thermodynamic effects in gas
dynamic test cases.

1.3.1 Contributions

The main contributions of this thesis are:

• A tabulated equation of state using block-structured adaptive mesh refinement (AMR)
technique. Validation against the conventional methods of property evaluation such
as cubic, multi-parametric EOS for speed and accuracy. Demonstration of compu-
tational bottlenecks in using a cubic EOS for real-fluid simulations, with the help of
a one-dimensional harmonic acoustic wave test case.

• Extended an existing CFD code to enable real-fluid simulations, added features in-
clude: tabular EOS integration, adaptation of Harten-Lax-van Leer-Contact Rie-
mann solver (HLLC) to real fluid inviscid flux evaluation, fourth-order accurate
Runge-Kutta time advancement scheme with frozen specific heat ratio to prevent
spurious oscillations due to large density gradients.

• The significance of using an accurate thermodynamic properties evaluation in CFD
simulations is studied with the help of two gasdynamics test cases (Sod, Shu-Osher
shock tube). Three different scenarios i.e., Supercritical, nearcritical, subcritical
initial conditions were employed to observe non-classical gas dynamic behaviour.

1.4 Outline

This thesis is organized into six chapters, starting with chapter 2 on essential mathe-
matical background with regard to underlying governing equations and thermodynamics.
Chapter 3 details the tabulated thermodynamic EOS formulation using block-structured
adaptive mesh refinement. Chapter 4 describes the CFD solver that is used to test this
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tabulated EOS and explains the intricacies of integrating a real fluid thermodynamic EOS
into a Riemann solver. Using this combination of tabulated EOS and CFD solver, chapter
5 investigates gas dynamic test cases in three different thermodynamic regimes namely:
supercritical, near-critical and subcritical. Conclusions and future work are presented in
chapter 6.

Chapter 2 provides a detailed overview of compressible flow governing equations, their
properties such as characteristic form, Eigen-values. The concept of equation of state is ex-
plained and various types of existing EOS such as cubic, multiparametric, thermodynamic
databases are discussed in detail. The calculation of thermodynamic properties such as
enthalpy, entropy using departure function is presented.

Chapter 3 presents a detailed framework on tabulated real fluid thermodynamics. Start-
ing with the simplest form of tabulation i.e., homogeneous or logarithmic tabulation, var-
ious other forms of tabulation such as Block structured adaptive mesh refinement AMR
and Cubic Bezier surface based adaptive mesh refinement AMR. The table generation
process in each type of approach is discussed in detail. One of the important aspect in
the tabulation of thermodynamics is its storage and retrieval (look-up) process, which will
be discussed in this chapter. Also, tabulated EOS thermodynamic consistency evaluation
is discussed. Further error estimates, speed-up in computational time when such tabular
EOS is implemented in a CFD solver is discussed with the help of an 1D acoustic wave
simulation.

Chapter 4 details the numerical schemes, specialties of the CFD code (TwoDTher-
moCode) that is used for this study, starting with the computational domain discretization
of governing equations using finite volume method in an explicit form, we will discuss on
obtaining solution to the Riemann problem, refraction & shocks. For this code, second or-
der accurate reconstruction of cell interface states is achieved through piecewise parabolic
method. The main objective of this chapter is to discuss the method of integrating real
fluid thermodynamics into the HLLC Riemann solver to compute inviscid fluxes. Various
numerical methods to overcome spurious oscillations are explained, and a fourth order
accurate Runge-Kutta time advancement implementation is described.

Chapter 5 couples both the tabulated thermodynamic equation of state framework and
the CFD solver together to study the real gas effects on compressible flow, two test cases are
used for this study: the Sod shock tube and the Shu-Osher shock tube. A validation result is
obtained by simulating a near critical test case taken from Terashima [64]. Three different
thermodynamic initial conditions (subcritical, supercritical and near critical region) are
simulated and the real gas effects on shocks/expansion fans are observed.

8



Chapter 2

Mathematical Background

2.1 Compressible flow governing equations

The governing equations of unsteady, inviscid, compressible flow describing the macroscopic
motion of fluid is the following non-linear hyperbolic partial differential equation set, also
known as the Euler equations

∂ρ

∂t
+ ▽.(ρu⃗) = 0 (2.1)

∂ρ⃗u
∂t

+ ▽.(ρuu) + ▽.(p⃗) = 0 (2.2)
∂ρE

∂t
+ ▽.(ρEu⃗ + p⃗.u⃗) = 0 (2.3)

Here, E is the total energy per unit mass which includes the specific internal energy, e,
and kinetic energy of the flow:

E = e+
1

2
|u⃗|2 (2.4)

Similarly for enthalpy, we have:
H = h+

1

2
|u⃗|2 (2.5)

When viscous and heat transfer effects are included, the governing equation set takes
on some features of a parabolic partial differential equation; formally, this equation set
is referred to as the Navier-Stokes equations. In d space dimensions 1, we have up to

1In this thesis, we consider d = 1, 2
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d + 3 variables for a single species flow. For example, in 1D we have, [ρ, u, p, E] and in
2D we have, [ρ, u, v, p, E] and so on. We have d + 2 equations in the form of continuity
(2.1), conservation of momentum(2.2), conservation of energy(2.3) and an equation relating
primitive variables such as temperature (T ), pressure (p), density (ρ) to internal energy
(e), often referred as the thermal equation of state serves as a constraint and thereby closes
the problem.

Assuming a working fluid as an inviscid and non heat conducting, the relation where
pressure (p) is a function of specific internal energy (e) and density (ρ), or mathematically

p = p(e, ρ) (2.6)

We define the thermodynamic derivatives γ(e, ρ), κ(e, κ) in order to simplify the flux vec-
tors.

γ(e, ρ) ≡ ∂p(e, ρ)

∂ρe
, κ(e, ρ) ≡ ∂p(e, ρ)

∂ρ
, dp(e, ρ) =

(∂p
∂ρ

)
e
+
(∂p
∂e

)
ρ

∂e

∂ρ
(2.7)

2.1.1 Flux formulations in Cartesian form

In two dimensions, the equations 2.1-2.3 can be written in Cartesian coordinates (x, y) as
follows,

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (2.8)

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

∂(ρuv)

∂y
= 0 (2.9)

∂(ρv)

∂t
+

∂ρuv

∂x
+

∂(ρv2 + p)

∂y
= 0 (2.10)

∂ρE

∂t
+

∂u(ρE + p)

∂x
+

∂v(ρE + p)

∂y
= 0 (2.11)

The above conservative system of equations can be written as follows

Ut +
(
F x(U)

)
x
+
(
F y(U)

)
y
= 0 (2.12)
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where,

U =


ρ
ρu
ρv
ρE


︸ ︷︷ ︸

Conservative Variables

F x(U) =


ρu

ρuu+ p
ρvu

uρE + pu


︸ ︷︷ ︸

Flux vectors in x-direction

F y(U) =


ρv
ρuv

ρvv + p
vρE + pv


︸ ︷︷ ︸

Flux vectors in y-direction

(2.13)

This conservative form of the equations is symbolically expressed in the form [68]

Ut + JxUx + JyUy = 0 (2.14)

where, Jx, Jy are the Jacobian matrices. Rewriting the flux vectors F (U) in terms of
conservative variables such as internal energy and density, with the help of equation of
state, thermodynamic derivatives (2.7), in doing so we represent pressure (P ) in terms of
the internal energy (e), density (ρ), derivatives of pressure with density

(
∂p(e,ρ)

∂ρ
≡ κ(e, ρ)

)
and internal energy

(∂p(e,ρ)
∂e
≡ γ(e, ρ)

)
. and thereby, the flux vectors in 2.13 are written as

F x(U) =


ρu

ρu2 + p(e, ρ)
ρvu

ρuE + p(e, ρ)u

 (2.15)

F y(U) =


ρv

ρv2 + p(e, ρ)
ρuv

ρvE + p(e, ρ)v

 (2.16)

We can obtain a Jacobian matrix by taking the partial derivatives of all individual vectors
in a given vector function, here in this case for the hyperbolic system of equations 2.12
with flux vectors F x(U), F y(U), where F =

(
f1, f2, f3..., fn

)T
, U =

(
u1, u2, u3..., un

)T for
any orthonormal basis ω = (ω1, ω2, ...., ωn)

T ∈ Rn, |ω| = 1, here U = [ρ, ρu, ρv, ρE], F =
[ρu, ρuu+ p, ρvu, ρuE+ pu], [ρv, ρuv, ρvv+ p, ρvE+ pv], as in equation 2.13, ω1, ω2..ωn are
unit vectors, normal to the flux vectors f1, f2, ..fn and Jacobian J(F, ω) is given by

J(F, ω) =
n∑

j=1
ωjJj(F) (2.17)
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and the matrix J has m real eigenvalues (λ1, λ2, .., λm) and m linearly independent eigen-
vectors (r⃗1, r⃗2, .., r⃗m)

J(F, ω) = Jxω1 + Jyω2 ≡
∂F

∂U
=


∂f1/∂u1 ∂f1/∂u2 . . . ∂f1/∂un

∂f2/∂u1 ∂f2/∂u2 . . . ∂f2/∂un
... ... . . . ...

∂fn/∂u1 ∂fn/∂u2 . . . ∂fn/∂un

 (2.18)

Jx =


0 1 0 0

γ u2+v2

2
+ κ− u2 (2− γ)u −γv γ
−uv v u 0

u
(
γ u2+v2

2
−H + κ

)
H − γu2 −γuv (1 + γ)u

 (2.19)

Jy =


0 0 1 0
−uv v u 0

γ u2+v2

2
+ κ− v2 −γu (2− γ)v γ

v
(
γ u2+v2

2
−H + κ

)
−γuv H − γu2 (1 + γ)v

 (2.20)

2.1.2 Characteristics and Eigenvalues

The characteristics in the context of a partial differential equation are a set of curves along
which the Partial Differential Equation (PDE) becomes an ordinary differential equation
Ordinary Differential Equation (ODE) [68]. The Jacobian matrix (J) has 4 eigenvalues
and they can be found by solving |J− λI| = 0, where |...| represents the determinant and
λ are the eigenvalues of J.

λ1 = Γ.ω − c; λ2 = Γ.ω; λ3 = Γ.ω; λ4 = Γ.ω + c; c =

√
∂p

∂ρ
+

∂p

∂e

p

ρ2
(2.21)

where, Γ = (u, v)T , ω⊥ = (−ω2, ω1)
T , ω1, ω2 are unit vectors, normal to the flux vectors

f1, f2, c is the speed of sound and the eigenvectors are,

r1 =


1

u− cω1

v − cω2

H − Γ.ωc

 r2 =


1
u
v

H − c2

γ

 r3 =


0
−ω2

−ω1

Γ.ω⊥

 r4 =


1

u+ cω1

v + cω2

H + Γ.ωc

(2.22)
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In hyperbolic systems of partial differential equations, there exists one wave for each eigen-
value [68], here in this 2D case there will be a total of 4 waves associated, in which the
acoustic waves resulting from the eigenvalues λ1, λ4 are non-linear in nature (meaning,
travelling with sound speed (±c) relative to the flow). If the compressible flow is super-
sonic, we can observe such non-linear acoustic waves in the form of shocks & expansion
fans. Whereas the other two waves are a contact discontinuity across which the pressure
(p) and velocity (u) are constant.

2.2 Equation of state (Pressure-Explicit)

An equation of state is a mathematical expression that relates various thermodynamic
state variables such as pressure, temperature, and volume/density. Some of the earliest
approaches to establish such equation of states were Boyle’s Law, Ideal gas Law, Gay-
Lussac’s Law, and Dalton’s law of partial pressure. Van der Waals equation of state was
the first state equation to account for the intermolecular forces present in a non-ideal gas.
Some of the more modern state equations are multi-parametric written in pressure explicit
form. Here we present some of the more common state equations.

2.2.1 Cubic Equation of state

In an attempt towards accurate thermodynamic property evaluation over a wide range of
temperatures and pressures, the first step was taken by Van der Waals [71] who proposed
a cubic equation of state that can be applicable to both gaseous and liquid phases of a
fluid. So far there are several hundred equations of states [24] that are built upon the Van
der Waals EOS in order to extend the range of evaluation of real fluids.

Among those equations, the first major contributions is from Soave [58] in 1972 and then
the Peng & Robinson[49] equation in 1976. Both were developed to accurately compute
the thermodynamic properties for the oil and gas industries. To this day, they are the
most widely used equation of states in the computational fluid dynamics software, this
is largely due to their relative simplicity in terms of number of parameters involved and
ability to quantify the underlying uncertainty when working with both pure components
and mixtures, and also their ability to compute consistent mixture rules. Both the SRK
and PR polynomial expressions have a similar form as in equation 2.23 and constants are
tabulated in table 2.1

P =
RT

V − b
− aα

(V + σb)(V + ϵb)
(2.23)
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Figure 2.1: A density( kg
m3 ) vs Temperature (K) plot for nitrogen, oxygen where the density

is evaluated with different equation of states namely, CoolProp , Soave Redlich-Kwong
SRK, Ideal gas law, Peng-Robinson Equation of State PR

14



where, V is the specific molar volume, α, ϵ, are the constant parameters which differ with
each equation of state, and the terms a, b are detailed in table 2.1. Even though we can
compute pressure using 2.23 for a given temperature (T), density (ρ), to obtain density
or temperature given the other two variables, one has to go through an iterative process
of root-finding which is computationally inefficient, also the uncertainties associated with
cubic equation of states are high [24] in comparison with experimental data or multipara-
metric equation of states. In terms of capabilities, when compared to SRK, RK equations
of state, PR has better accuracy in calculating vapour liquid equilibrium [49].

Parameter Redlich and Kwong Soave-Redlich -Kwong Peng-Robinson

σ 1 1 1 +
√
2

ϵ 0 0 1−
√
2

a 0.42747 R2Tc
2

pc
0.42747 R2Tc

2

pc
0.45724 R2Tc

2

pc

b 0.8664 RTc

pc
0.8664 RTc

pc
0.07780RTc

pc

k
0.48508+

1.55171ω

−0.15613ω2

0.48508+

1.55171ω

−0.15613ω2

0.37464

+1.54226ω

−0.26992ω2

α 1
Tc

0.5

[
1 + k

(
1−

√
T
Tc

)]2
Table 2.1: Various parameters of cubic equations of state [24], here ω is accentric factor

2.2.2 Multi-parametric Equation of state

Evaluating thermodynamic properties with very low uncertainties is crucial for many in-
dustrial and scientific applications. In this section, we discuss a few such equation of states
that are derived based on the fundamental relations of thermodynamics such as, internal
energy as a function of entropy and volume, Gibbs energy (or) Helmholtz energy as a
function of temperature and pressure, enthalpy as a function of entropy and pressure.

Among the multi-parametric high accuracy models, the Benedict-Webb-Rubin equation
of state [11] or Benedict-Webb-Rubin Equation of state (BWR) is the most common form
that is still being used in a number of industrial and scientific applications, thermodynamics
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softwares. It was developed in 1940 by Benedict et al. to extend the Beattle-Bridgeman
equation of state into high density regimes across various fluids. BWR is given as

p = ρRT +
(
B0RT − A0 −

C0

T 2

)
ρ2 + (bRT − a)ρ3 + aαρ6 +

(cρ3
T 2

)
(1 + γρ2)e−γρ2 (2.24)

The empirical constants A0, B0, C0, a, b, c, α, γ are determined based on experimental data.
This simple exponential form of representation evaluated properties in gas phase and low to
medium density supercritical phases but when used for energy evaluation in the high density
liquid phase and supercritical phases there was a ±10% relative error [24]. There were
several attempts [10, 60] to improve and extend BWR equation of state’s capabilities into
wider thermodynamic ranges across various species. Its present day version, the mBWR
(modified Benedit-Webb-Rubin) comes from Jacobsen-Stewart equation of state [33], which
is an advanced version of its predecessor by incorporating 32 empirical parameters making
the property calculations precise and accurate.

2.2.3 Thermodynamic property evaluation using Pressure-Explicit
Equation of State

To calculate real fluid extensive properties such as enthalpy, entropy, internal energy, we
need departure functions. A departure function for a given thermodynamic property is
defined as the difference between the value computed for an ideal gas and its real value
(computed in its existing form) [24]. Hence, the properties like enthalpy, entropy, internal
energy are evaluated relative to a base state i.e., as an amount of change between two
thermodynamic state spaces [24]. For example in the case of enthalpy, the change between
two thermodynamic states (states 0 and n), we first compute the departure function be-
tween ρ1 and near zero density at T = T0, then it is added to the ideal gas enthalpy change
due to the temperature change form T0 to Tn, then subtract the departure function value
between ρn and near zero density. The enthalpy of any state is calculated as,

H(T, ρn) = H0(T 0) +

∫ ρn

0

[
R

ρn
−
(

1

ρ2n

)(
∂p

∂T

)
ρn

]
T

dρn +

∫ ρn

0

[(
p

ρ2n

)
−
(
RT

ρn

)]
T

dρn

+

∫ T

T 0

[
Cpg

p (T )

T

]
dT −Rln(RTρn)

(2.25)

The entropy, S, of any thermodynamic state is calculated using,
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S(T, ρn) = S0(T 0) +

∫ T

T 0

[
Cpg

p (T )

T

]
dT −Rln(RTρn) +

∫ ρn

0

[
R

ρn
−
(

1

ρ2n

)(
∂p

∂T

)
ρn

]
T

dρ

(2.26)
The speed of sound for any given fluid can be calculated as

c2 =
(∂p
∂ρ

)
s,Xi

=
γ

ρκT

(2.27)

Here the specific heat capacity ratio (γ) is equal to cp
cv

and the isothermal compressibility
(κ) is estimated using the volume gradient with respect to pressure as, (ν is the volume)

κT = −1

ν

(
∂v

∂p

)
T,Xi

(2.28)

The heat capacity at constant volume CV,m is given by,

CV,m(T, ρn) =
[
Cpg

p,m(T )−R
]
−

∫ ρn

0

[
T

ρn2
∂2p

∂T 2

]
dρn (2.29)

The heat capacity at constant pressure Cp,m calculated as,

Cp,m(T, ρn) = CV,m(T, ρn) +

[
T

ρn2
( ∂p
∂T

)2
ρn

(∂ρn
∂p

)
T

]
(2.30)

2.2.4 Thermodynamics, transport properties database

The standard way of evaluating thermodynamic properties, physical properties (excep-
tions are surface tension, viscosity, thermal conductivity) to the highest possible accuracy
is through an equation of state that is developed using Helmholtz energy formulations. It
would be practically inconvenient to implement/use such formulations in a CFD software.
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So, it is customary to use a database or wrapper module that evaluates the thermodynamic
properties for a given physical state and composition. The most commonly used libraries
are REFPROP[41], it is based on modified BWR EOS developed by NIST and its looka-
like but open source version is CoolProp, developed by Bell et. al[9] both libraries offer
thermodynamic, transport properties for pure, pseudo-pure phase mixtures. They evaluate
properties based on highly accurate Helmholtz energy formulation, and most commonly
viscosity, thermal conductivity are evaluated using Chung’s method [16, 17]. With the help
of wrappers in various interpretable languages such as python, Matlab CFD developers can
import and implement into the solvers.
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Chapter 3

Tabulated thermodynamics for
Computational fluid Dynamics

3.1 Tabulated Thermodynamics

State equation tabulation involves storing the thermodynamic and transport properties of
the species in a library (e.g. binary file, .xml file, .json file), by doing so we move the
evaluation of the EOS to a preprocessing step. Thus decoupling the EOS computational
complexity from runtime performance of the solver. This approach allows for the use of
accurate high-quality multiparametric backend EOS such as BWR without major runtime
penalty. Tabulated approaches also provide an effective control on the thermodynamic
error of the state equation. For single species fluid, two independent thermodynamic vari-
ables are needed to fully define the local thermodynamic state in a single phase. Classically,
the choice of the thermodynamic tuple has been pressure and temperature given the con-
venience of computing the isothermal and isobaric conditions. For CFD simulations, this
approach is sub-optimal since the known transported quantities (in a conservative form)
are ρ and e; thus making these the ideal basis for any thermodynamic table. Once the
corresponding position in the table is found, all thermodynamic and transport properties
may be interpolated or computed. Here, we consider three different tabulation approaches:

• Homogeneous of logarithmic tabulation

• Block structured Adaptive Mesh Refinement (AMR)

• Adaptive Mesh Refinement with Bezier patch fitting
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Figure 3.1: A typical cell in a 2D lookup table, the red dot indicating the unknown point

3.1.1 Previous works

The quest for calculating thermodynamic properties using interpolation approaches started
in 1977, Theodore E. Fessler[22] worked on a ”double-lagrangian” interpolation method
that evaluates thermodynamic properties at intermediary points (xi, yi) to the tabulated
nodes a1, a2, a3, with the help of approximated functions (F (a1), F (a2), F (a3)). This tab-
ulation method has been explained and implemented in section 3.2.

Kunick [39] developed a ”spline-based table look-up method (SBTL)” and also success-
fully tested it in a CFD solver with water and steam as working fluids, the SBTL method
combines global bi-quadratic spline interpolation, a combination of linear transformation
functions. In a project of International Association for the Properties of Water and Steam
(IAPWS) the SBTL method has been applied to the industrial formulation of IAPWS-97.
SBTL property functions for water and steam have been generated for the independent
variables specific volume (ν) and internal energy (e).

However there are some shortcomings in this approach, the nodes are often clustered
to consider the nonlinear behaviour of the fluid property function, which leads to com-
putationally intensive cell search algorithms and also most frequently applied property
functions are often calculated from inverse functions, rather than from an explicit forward
function. [39]

As the requirement of an adaptive Cartesian mesh is obvious in the transcritical re-
gions of the look-up table, many researchers started to develop such irregular grid spacing

20



meshes. Even though there were many readily available adaptive meshing procedures,
they are primarily used in the field of numerical analysis, computational mathematics,
the first approach to apply an adaptive Cartesian mesh for complex fluid computations
is done by Xia et al.[73]. The thermodynamic properties and their pertinent deriva-
tives are evaluated by means of an adaptive Cartesian mesh in the thermodynamic plane
that provides user-specified accuracy over any selected domain. After comparing with the
REFPROP database, the properties are not only accurate but also their reconstructions are
approximately two orders of magnitude faster than property evaluations from the original
database(REFPROP).

Carpenter[15] worked on an adaptive tabulation scheme for multi-phase equations of
state where in the computational efficiency is provided through the use of a quad-tree
representation. Using both rectangular and triangular interpolation regions resulting in a
accurate description of phase boundaries.

Zhiqi et. al[42] constructed an adaptive tabular thermodynamic representation with
triangular elements, which is an efficient method to reconstruct the phase boundaries, ther-
modynamic properties of real fluids. It can provide user-defined accuracy over a selected
thermodynamic plane with fewer nodes than a simple homogeneous tabulation. A generic
function approximation algorithm for real valued functions in two independent variables
is developed by Luke [19] where in a method for evaluating the approximate surface is
generated using a piecewise C1 - continuous cubic Bezier surface. The significance of this
approach is observed in terms of the number of patches required to fit the supercritical
region for a given accuracy of 0.1% (in reference to the REFPROP database) which is
1,968 whereas the isotropic tabular formulation of Xia et al[73] required 225,121 patches
to fit. Though, Xia et al[73] reported similar speedup of performance improvements over
REFPROP, the an-isotropic refinement used by Luke et al. [19]’s tabular fitting technique
improved the efficiency of tabulation in terms of storage.

3.2 Homogeneous or Logarithmic tabulation

Homogeneous tabulation is the simplest form of storing data in a multidimentional array
covering the entire thermodynamic domain with an equal spacing or alternatively under
a known mapping function like a logarithmic distribution, so that the indexes map to the
structured data points as shown in figure 3.1. The advantage of using such an approach is
that the lookup time complexity is minimal as it is a matter of calculating the normalized
x, y values and mapping them to the index for interpolation. But, this results in very large
table sizes as the grid size is not adapted to the magnitude of the local error.
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Figure 3.2: Uniform spaced EOS table for oxygen in internal energy (E), density (ρ) space.

The minimal accuracy is in the region in which the function varies most rapidly so
that slowly varying regions must be over-refined to accommodate high-gradient regions.
Tabulating in density/energy space, as shown in figure 3.2, allows for a simple lookup from
the transport equations but simultaneously the corner regions of the table contain pressure
and temperature values that are far outside the region of interest for most CFD problems.
Therefore, typical boundaries of isobaric conditions of the simulation are mapped to the
energy/density space.
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3.3 Block structured Adaptive Mesh refinement (AMR)

In order to achieve an uniform accuracy of tabulated thermodynamic properties (i.e., when
the error computed with reference to a NIST database), we have to balance or adjust the
grid spacing on the basis of local property gradient throughout the thermodynamic domain
space. Such adaptable grid spacing or ”mesh refining” methods fall under the category of
unstructured grids. Block structured adaptive mesh refinement is one such method, where
the grid spacing/cell size is based on a hierarchical level of resolution that is defined for a
particular block (a structured group of cells) within which the cell lies.
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1 2

34
13 14
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5354

5556

Figure 3.3: Block structured Adaptive Mesh refinement

The criteria on which a given block gets a new hierarchical level of resolution primarily
depends on the accuracy with which we are able to compute the thermodynamic param-
eters. Blocks associated with a non-linear change in property values such as near-critical
region of a phase diagram will have a finer grid spacing than the regions where the property
gradient is much smoother or linear.

3.3.1 AMR Table Generation

The adaptive mesh refinement tabulation is based on Cartesian adaptive mesh structure. A
rectangular x-y region defined by the table limits and these x, y variables can be Pressure,
Temperature, density or internal energy. During initalization, the unknown thermody-
namic properties are evaluated at each of the rectangle corners using NIST database and
an approximate reconstruction method (interpolation) is used to evaluate these proper-
ties at pre-selected equidistant points. For simplicity, we chose bivariate interpolation to
evaluate the properties at those selected 25 equidistant points for each cell created due to
subdivision. We start by transforming the rectilinear domain of interest (i.e., χ) into a

23



square coordinate system (κ) and the condition for subdivision is defined based on relative
error(Φ) computed with reference to NIST database as,

Φ =
χInterpolated − χNIST

χNIST

(3.1)

Algorithm 1: Block Structured Adaptive refinement based Tabular EOS Generation
ϵ← User defined Error tolerance;
η ← Table maximum resolution limit;
[(min1,max1), (min2,max2)]← State space(χ) range (P-T) or (ρ-e);
f : χ→ κ Projective transform(f) of state space(χ) into square domain(κ);
Evaluate thermodynamic properties using NIST,∀v ∈ [(min1,max1), (min2,max2)];
Initialize the Quadtree Root node with transformed state space;
Function Subdivide(Rootnode):

Add new child nodes with properties evaluated, to the list;
for child in childnodes : do

for point← 1 to 25 points do
Interpolate thermodynamic properties using 4 neighbour nodes;
Relative Error Φ ← Computed using 3.1 ;
Check for thermodynamic consistency using 3.4;
Append error to a list;

end for
if max(Errors(Φ)) ≥ ϵ & Quadtree.depth < η then

Subdivide(child);
else

end for

End Subdivide;
Prune(Rootnode);
Traverse(Rootnode);
Save Rootnode and its leaves in a list;
return Table;

The reconstructed (interpolated) properties are validated with the reference data ob-
tained from NIST database or any backend EOS to quantify the interpolation error. If
the error is more than the user-specified tolerance, the domain is further divided into four
equal regions (squares), again they will be validated by comparing with the exact NIST
database values. With such repetitive subdivisions, a majority of flatter(linear) regions
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of the mathematical expression will satisfy the desired accuracy within few subdivisions
whereas the areas of sharper change such as near-critical region will be subdivided further.
Storing this data in a dynamically spaced quadtree format can able quick lookup that can
be comparable to the speed of equally of spaced tables.

3.3.2 Lookup Approach

The usual query/search in quadtrees follows either top-down or bottom-down approach
like starting from the root node and isolate the child within which the point belongs to or
vice versa. This has a time complexity of O(Log n) where ’n’ is the depth of tree. As an
alternative approach, we employ a fast lookup algorithm that requires additional memory
to store the indices in tree data-structure, and the efficiency doesn’t depend much on the
depth of the tree. It is constructed by the following steps.

A uniform index array based on quadtree subdivision covering the entire computational
domain is generated as per the pre-defined maximum refinement level. For example, at a
given maximum refinement level of 3, the uniform index table is shown in the figure 3.5. If
the maximum refinement level is n+1 (the refinement, level of the single rectangular cell
that cover the entire thermodynamic region of interest is 0) then there will be 4n number
of individual patches (in this case rectangular cells), the integer number stored in the cell
indicates the index of that patch.

1 uni_old = np.zeros((1,1))
2 for n in range(QuadTree.maxdepth):
3 uni_new = np.zeros((2**(n+1), 2**(n+1)))
4 for i in range(2**n):
5 for j in range(2**n):
6 uni_new[2*i][2*j] = int(uni_old[i][j]*4 + 1)
7 uni_new[(2*i)+1][2*j] = int(uni_old[i][j]*4 + 2)
8 uni_new[(2*i)+1][(2*j)+1] =int(uni_old[i][j]*4+3)
9 uni_new[2*i][(2*j)+1] = int(uni_old[i][j]*4 + 4)

10 uni_old = uni_new
Listing 3.1: Generating an uniform array index
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Figure 3.4: Sample quadtree subdivision
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An overlapping mapped index array is also generated which contains the child node
index in the place of all further sub divisions pertaining to that child if there was a refine-
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ment as illustrated in figure 5. The cell within which a point (Tx, Px) is located can be
determined at an algorithmic complexity O(1), directly without searching the tree (which
is of algorithmic complexity O(n) where n being the refinement level), by using the map-
ping index array. Furthermore, the storage required for the uniform index table is small
for this generation computers, for example, if the maximum refinement level of the adap-
tive table is 10, and an integer requires 4 B of memory, the uniform index table requires
(29x29x4)/(10242)MB = 1MB.

Algorithm 2: Block Structured Adaptive refinement based Tabular EOS Lookup
Input: (Pressure(P), Temperature(T)) or (Density(ρ), Internal-Energy)
Output: List of thermodynamic properties
∂χ1, ∂χ2 ← Calculate the grid resolution based on maximum depth of tree;
f : χ→ κ Projective transform(f) of state space(χ) into square domain(κ);
Compute the x-index, y-index based on the ratio of x-value, y-value to grid spacing;
idx← floor

(
χ1

∂χ1

)
;

idy ← floor
(

χ2

∂χ2

)
;

v ← Uniform Index[idy][idx] ▷ O(1);
u← Overlapping Index[v] ▷ O(1);
w ← np.where(Quadtree list == u) ▷ O(1);
Data← Quadtreedata[w] ▷ O(1);
Pn ← Data[0] ▷ The square nodes in which the point lies;
Dn ← Data[1:] ▷ Access thermodynamic property data stored in those nodes;
P ← Interpolation(Pn, Dn);
return P ;

3.3.3 AMR Storage

Once we subdivide the tree based on the underlying non-linear equation of state as de-
scribed in algorithm 1, we traverse the tree top down and update the leaves (nodes) of
the quadtree. Then for each element in leaves (Quadtree.nodes) we append the node’s
stored properties into a list file(”Quadtree-leaves”), also as the data is unstructured we
keep track of their indices into another file (”Quadtree index”). A uniform index array is
constructed as described in 3.3.2 based on the table’s observed maximum tree depth and
written into a file (”Uniform Index”). The final task is to construct an overlapping index
with the help of previously constructed quadtree index file and the uniform index file. The
overlapping index superposes the uniform index in such a way that for any given unknown
coordinate the overlapping index overrides its uniform index except, in case of child nodes
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where they both are equal. Finally, the projective transform module is also stored so that
the same mapping will be used during the lookup to convert the thermodynamic state
space variables (χ1, χ2) into a square coordinates (κ1, κ2).
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Figure 3.7: Memory allocation of Block structured AMR tabular EOS during runtime in
Random Access Memory, for the physical conditions range; Pressure: 1.0 MPa - 10.0 MPa,
Temperature: 100K - 900K, Oxygen. Here the error is calculated in reference to underlying
backend EOS

In terms of size of files that need to loaded into the Random access memory (RAM)
during the simulation runtime, it varies corresponding to the accuracy and range within
which are are constructing the table. Figure 3.7 shows the runtime memory allocation with
respect to error tolerance for a fixed range of physical conditions i.e., Oxygen in pressure
(1.0 MPa - 10.0 MPa) and temperature (100K - 900K). Also the table is size is proportional
to the maximum resolution to which the subdivision was allowed.

3.3.4 Visualization of the tabular thermodynamics

To visualize the generated tabular EOS, we recursively plot the cells, to provide a easier
understanding readers can compare the below plots to the phase diagram (figure 1.1).
The below (P, T) tables are for oxygen, with decreasing order of error tolerances (0.1%,
0.01%, 0.001%) and (ρ, e) table is also presented (figure 3.11). The evaluation ranges
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are [Pmin, Tmin] = [0.02E06 Pa, 85 K], [Pmax, Tmax] = [10E06 Pa, 600 K]. Whereas in the
case of (ρ, e) table, boundaries are [ρmin, emin] = [0.14 Kg

m3 , 50000
J
Kg

] and [ρmax, emax] =

[130.20 Kg
m3 , 300000

J
Kg

]

Figure 3.8: Block structured AMR Pressure(P) -Temperature(T) lookup table for oxygen
with 0.1% error tolerance compared to NIST’s REFPROP database.
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Figure 3.9: Block structured AMR Pressure(P) -Temperature(T) lookup table for oxygen
with 0.01% error tolerance compared to NIST’s REFPROP database.
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Figure 3.10: Block structured AMR Pressure(P) -Temperature(T) lookup table for oxygen
with 0.001% error tolerance compared to NIST’s REFPROP database.
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Figure 3.11: Block structured AMR lookup table for oxygen with 0.01% accuracy compared
to NIST’s REFPROP database., generated in (ρ, e) state space
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3.4 AMR with Bezier patch fitting tabulation [31]
This method is a work done by Matthew Yao[31], for the block structured AMR table,
the underlying criteria for refinement is based on the multivariate approximation. Rather
than tabulating solely on the basis of bilinear interpolation error we can implement Bezier
surfaces/patches that are approximated functions. This function of two independent vari-
ables is [19], here, B3

i (u) are the third-degree (fourth-order) Bernstein polynomials, bij are
the control points.

F (u, v) =

3∑
i=0

3∑
j=0

B3
i (u)B

3
j (v)bij (3.2)

B3
i (u) =

3!

i!(3− i)!
(1− u)3−iui (3.3)

u

v
v

u

Figure 3.12: Sample Bezier patch being adapted into local grid

Using the linear combination of these bij control points, the shape of the surface is
determined. The surface is generated by recursively subdividing the domain until the
resulting Bezier patches are capable of reconstructing the original value to a specified error
threshold or if the maximum refinement level is reached. The table generation process is
similar to the previously described Block structured AMR, we use a quad tree to recursively
refine the thermodynamic domain by dividing into four patches and evaluate the properties
within each patch.
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Figure 3.13: Bezier patch based Tabulated EoS for Density(ρ) adaptive refinement using
quadtree, reproduced with permission from Matthew Yao[31]
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3.5 Thermodynamic consistency

A valid EOS must satisfy the thermodynamic condition of consistency. Maintaining ther-
modynamic consistency involves satisfying the Maxwell relations [61] and also thermody-
namic properties such as pressure(P), density(ρ), internal energy(e) must confine to their
definitions in these derivatives. A tabular EOS may exhibit wide range of behaviour over
the range of temperature and density if it is not consistent. Such behaviour manifests itself
as sharp discontinuities in thermodynamic property evaluation near phase boundaries. In
CFD codes, it is important to have a tabular interpolation scheme that can produce con-
sistent thermodynamic properties. Even insignificant inconsistencies of the order of ≈ 10−5

can pose difficulties for the implicit solution of underlying governing equations. In order to
be able to construct accurate fluxes, we must be able to know how to evaluate physically
realistic values of several dimensionless quantities, thermodynamic derivatives. For exam-
ple, if we express internal energy E as a function of entropy(S) and specific volume(V).
The thermodynamic property definitions of temperature(T) and pressure(P) are

T = −∂E

∂S

∣∣∣∣∣
V

, P = −∂E

∂V

∣∣∣∣∣
S

(3.4)

This is one of the thermodynamic consistency condition. With the bilinear interpolation,
both the density and its first order derivatives vary linearly over each local rectangular cell.
Nevertheless, as the thermodynamic properties stored on the mesh nodes are themselves
obtained from a consistent thermodynamic database such as NIST, CoolProp), in a fine
tabulation such intrinsic inconsistencies are going to be small. [73]

3.6 Error Estimates & Verification

To verify and understand the accuracy of the tabulation methods, we uniformly random
sample the entire tabulation domain (T-P, ρ-E) and evaluate the error in density evalua-
tion. Starting with the homogeneous tabulation and considering two interpolation schemes
i.e., bilinear and bicubic the contour error plots are shown in figure 3.14a, 3.14b. when
compared both, bicubic interpolation performed well in terms of maintaining accuracy.
Except in the vapour-liquid curve and the supercritical state. This is attributed to the us-
age of derivatives across the interpolating nodes and thereby making bicubic interpolation
C1 continuous, which is the feature lacking in bilinear method as can be seen in the figure
3.14a the erroneous regions form patch like shape in between the grids compared to much
smoother transition observed in the latter case.
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(a) Tabulation with bilinear interpolation

(b) Tabulation with bicubic interpolation

Figure 3.14: Homogeneous Tabulation Relative Error[%] in Density estimates
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The T-P tabular grid is sampled into 10000x10000 linear-linear grid (figure 3.15), log-
linear (figure 3.17). In each patch 100 points are sampled and then the maximum relative
error in density is computed. As seen from the relative error contour plot, the maximum
error is along the phase change line or where the density changes rapidly. Except for
that region the uniform accuracy is maintained as a result of adaptive subdivision. The
highest error points lies close to the critical point. The number of patches required to
capture the thermodynamics is different in three approaches (Homogeneous, Adaptive,
Bezier patch) The highest being the homogeneous due to its uniform spacing, it will take
enormous number of patches to get the error close to 0.01%, although Bezier patch has
less number of patches it can only accommodate one property at a time, which means it
requires individual table for each property. The Block based AMR has moderate number
of patches that are not oversized but can tabulate all thermodynamic properties.

Figure 3.15: Relative error in density for the Block structured adaptive tabulation

The comparison of various tabulation approaches demands a quantitative thermody-
namic error metric. As the exactness thermodynamic properties remain a subject of scien-
tific relevance, the current study evaluates the error relative to the NIST database. These
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data points represent the highest fidelity data set for the computation of the thermody-
namic and thermophysical properties and constructed from an ensemble of experimental
data supplemented with Modified Benedict-Webb-Rubin curve fitting.

Figure 3.16: Speed of sound for Oxygen computed with REFPROP, SRK, PR, tabulated
AMR EOS (AdapTable)

Table 3.1: Error estimates

Grid type Block based AMR
(0.0001 tol.)

Bezier Patch
AMR
(0.0001 tol.)

Total
patches 12648 1120

% patches
with rho
error >0.001

0.101 -

Maximum
rho error % 1.2 -
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To evaluate different types of equation of states, we employ few statistical techniques
such as Average Percent Relative Error (ARE%), calculated as a reference measure

which is defined below is a measure of the bias of the correlation; a value of zero
indicates a random of the measured values around the correlation.

ARE% =
100

Nd

Nd∑
i=1

(ρexp.i − ρcalc.i )

ρexp.i

(3.5)

The AARE%, is the arithmetic average of the absolute values of the relative errors; is an
indication of the accuracy of the correlation.

AARE% =
100

Nd

Nd∑
i=1

|ρexp.i − ρcalc.i |
ρexp.i

(3.6)

The R2, is the correlation coefficient; is a measure of the precision of fit of the data. If
data are perfectly correlated, then R2 = 1. A small value of AARE% and R2 close value
to one (simultaneously) denote a good correlation based on good data.

Another parameter, Sum of Absolute of Residual (SAR) shows the reliability of corre-
lation for higher order data points.

SAR% =

Nd∑
i=1

|ρexp.i − ρcalc.i | (3.7)

The statistical parameters of the well known EoSs are listed in table 3.2

Table 3.2: Error metrics comparison with NIST

Equation
of State

AARE ARE
SAR
[Kg/m^3]

R^2

Peng-Robinson PR 3.015 0.993 70.600 0.991
Redlich-Kwong RK 4.409 -0.026 89.816 0.987
AMR Tabular EOS 1.022 0.0021 91.232 0.995
Soave-Redlich-Kwong SRK 6.388 6.381 131.009 0.990
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Figure 3.17: Error Validation (Log-Linear plot)

3.7 Computational cost comparison

The increase in speed of thermodynamic properties evaluation compared to cubic EOS is
one of the primary motivations of this thesis, here we show an example of the speedup of
computations. When (ρ, e) pair is evaluated from uniformly generated (P, T ) combination
in the nearcritical regime. For each pair iteration, 100000 loops/calls are executed and the
slowest run time is tabulated. A contour plot of such calls is presented in figure 3.18. In
comparison, the tabular lookup calls are 10 times faster than the calls to cubic EOS which in
this case is chosen as Peng-Robinson EOS, it involves an iterative root-finding process and
for this comparison its convergence tolerance is set to 1E−06. Whereas in the tabular EOS,
the searching algorithm (for a binary search tree it is O(n)) and interpolation scheme (here
it is a bilinear) influence the lookup time, the adaptive tabulation is comparably denser in
the near critical regime, because of high non linearity, comparatively higher lookup search
times are observed for those regions as shown in the figure 3.18a
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(a) Block based tabulated AMR lookup computa-
tional cost in µ sec

(b) PR EOS evaluation computational Cost in µ sec

Figure 3.18: Computational cost (µ sec) comparison over Density(Kg
m3 ) evaluation calls.
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3.8 Harmonic Acoustic wave test case

To test the computational performance and significance of using a tabular EOS, a one-
dimensional acoustic wave propagation in supercritical fluid is considered, Using periodic
boundary conditions at both sides a harmonic wave is initialized in supercritical conditions.
The computational domain is x ∈ [0, 10] m and 100 grid points are used, giving a uniform
grid spacing ∆x = 0.1m. With fourth order accurate schemes in both spatial and temporal
scales, both cubic (PREOS) and tabular EOS are used. The sound pressure level Lp = 23
(dB) is calculated according to:

Lp = 20log10(
∆p

pref
√
2
) (3.8)

Where ∆p is the amplitude of the pressure harmonic wave (Pa).

Figure 3.19: Harmonic Acoustic wave propagation; PREOS (·) vs AMR (-)
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As shown in the figure 3.19, there is a distinction in the form of density by using accurate
tabular real fluid EOS (Block-AMR) rather than conventional cubic PREOS. It is within
the usually observed relative error, but it is important to mention that slight variations in
temperature and pressure can cause significant change in density in the nearcritical regime.
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Figure 3.20: Grid convergence plot for the acoustic wave propagation case.

3.8.1 Computational cost comparison

To investigate how the choice of EOS affects the CFD computational cost (wall time in
seconds) an experiment is performed with the above mentioned acoustic test case, the
simulation is repeated using the available different EOS such as cubic (PREOS), tabular
(Block-AMR, Bezier patch) and perfect gas law. The computational cost in seconds in
plotted against increasing grid size in figure 3.22. It is important to mention here that the
simulation code was written in Python, parallelized and ran on a CPU (Intel Core i5-4590
CPU 3.30GHz × 4) and utilized fourth order accurate schemes in both spatial and temporal
scales. Hence the computational cost time is different from what is observed in a typical
1D simulation written in compiled languages such as C/C++. When we compare tabular
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lookup based thermodynamic property evaluation and cubic polynomial equations. There
are two important aspects that play a key role in influencing the time complexity in AMR
and cubic EOS, they are ’lookup approach’ and ’iterative solution method’ respectively.
The lookup approach here refers to the procedure to search/query the table for a given
physical conditions (thermodynamic variables) and the iterative solution method refers to
the repetitive root finding method such as Newton-Raphson solver, Bi-section method that
is employed to obtain the root of the polynomial expression.

Xn+1 = Xn −

[
f(Xn)

f ′(Xn)

]
(3.9)

In the latter case, the time complexity depends on how good the initial guess value (x0)
is, i.e., how close the initial guess value is to the root value. Further, during each iteration
there will be a reduction of guess value into half x0

2
over and over. So approximately, it

takes 1
2
log2(x0) steps to reach within the vicinity of the supposed solution value of √x0.

After which, there will be a convergence process to zero-in onto the exact solution value.
Here, the number of iteration steps that are required would be depended on the error
tolerance value (not on the ”Initial guess”). Thereby, the time complexity scales in the
O(log(n))

In the case of lookup search/query, the conventional data structures are multidimen-
sional array, binary tree, quad-tree. Only the multidimensional array has a least worst case
time complexity in access (O(1)). Whereas for the binary, quad-trees, K-D tree the worst
case time complexity in accessing an element is O(n). k-d tree has order of complexity
O(k.N1−1/k) in the worst case, where ’k’ being the number of dimensions.
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Figure 3.21: Big-O complexity plot
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In our experiment we ran harmonic acoustic wave simulations with different types of
EOS available namely, cubic, tabular and perfect gas. With a timestep size of ∆t =
3.003E − 05s, we ran until time t = 0.129s starting with a grid size of 100 grid points,
we increased grid size and plotted computational cost vs grid size as shown in figure 3.22.
The key findings are that the cubic EOS involving iterative process of root finding had
its computation cost vary quadratic with respect to the grid size. Upon an approximate
logarithmic scaling analysis, the computation cost varies as

Figure 3.22: Computational cost (CC) comparison with respect to grid size [Nx] for 1D-
Acoustic wave problem with real fluid thermodynamics
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Computational cost(CC) ≈



0.000252[Nx]2 + 0.058[Nx],PREOS,
0.000023[Nx]2 + 0.0394[Nx],Block-AMR Tabulation ,

0.000023[Nx]2 + 0.0372[Nx],Bezier-AMR Tabulation,
0.000023[Nx]2 + 0.0352[Nx],Homogeneous tabulation,
0.000003[Nx]2 + 0.0324[Nx],Perfect gas law

3.9 Conclusions

Thermodynamic properties evaluation using tabulated EOS is implemented and various
forms of tabulation such as homogeneous, adaptive grid based, higher degree polynomial
based versions are developed, tested for their computational performance, accuracy and
compared to the existing cubic EOS. In homogeneous tabulation the accuracy is heavily
constrained to the properties range within which the table is being constructed, this is due
to the limitations from cache memory perspective due to a uniform fine grid.

To avoid such limitations, adaptive tabulation methods are researched and efficient
tabulation in the form of Block-structured AMR is presented. Although, it overcomes
the table range limitations and being able to lookup with minimal computation cost, it
requires additional storage in the form of predefined uniform index arrays (figure 3.5),
overlapping index files. By avoiding the need to use any iterative solution methods to
obtain thermodynamic properties, tabulation methods save a lot of computational cost as
the experiment on the harmonic acoustic wave supports the claim.
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Chapter 4

Implementation details of CFD
Solver

In this chapter we provide a detailed overview of numerical methods involved in the
TwoDThermoCode, the CFD solver extended as part of this thesis. The code is devel-
oped on top of Pyro2 [?], an Astrophysics simulation code. Additional features that was
added for this thesis work are:

• Real fluid thermodynamic equation of state. (CoolProp database, Tabulated EOS)

• HLLC Riemann solver adapted to the real fluid thermodynamics

• Higher order time stepping scheme (RK4)

ii− 1 i+ 1i− 2 i+ 2i− 1/2 i+ 1/2

Qi

Qi−1

Qi+1

∆x

Figure 4.1: A representation of finite volume grid where an averaged value represents the
variable throughout each cell [Figure reproduced based on [68]]
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4.1 Conservative discretization of governing equations
using Finite Volume methods

Assuming a conservation law in the form,
qt + f(q)x = 0 (4.1)

where, q is a flux quantity, f is a flux function. We can discretize this in a one dimensional
domain with the cell edges at [xi−1/2, xi+1/2], as shown in the figure 4.1. The numerical
solution (Qn

i ) will be the volume average of the true solution q(x, tn) over the cell. In
simple terms, when we run a finite volume CFD solver we are not getting a pointwise
value, instead we obtain the cell averaged value to the solution. By defining cell averages
over the interval Ci = [xi−1/2, xi+1/2], we can write the numerical solution as,

Qn
i =

1

∆x

∫
Ci

q(x, tn)dx (4.2)

The time rate of change of the true solution q(x, tn) cell average is,
d

dt

∫
Ci

q(x, t)dx = −
∫
Ci

d

dx
f(q(x, t))dx = f(q(xi−1/2, t))︸ ︷︷ ︸

Flux in

− f(q(xi+1/2, t))︸ ︷︷ ︸
Flux out

(4.3)

On integrating equation 4.3 in time, we obtain the time average value at time tn+1 as∫
Ci

q(x, tn+1)dx =

∫
Ci

q(x, tn)dx+

∫ tn+1

tn

[f(q(xi−1/2, t)− f(q(xi+1/2, t)]dt (4.4)

Using numerical fluxes, we can write the update as,

Qn+1
i = Qn

i −
∆t

∆x

[
F n
i+1/2 − F n

i−1/2

]
(4.5)

Qn+1
i −Qn

i

∆t
+

F n
i+1/2 − F n

i−1/2

∆x
= 0 (4.6)

Which resembles the conservation law equation 4.1 and we want to approximate the nu-
merical fluxes (F n

i+1/2, F
n
i−1/2) for a given flux function f(q(x, t)) and explicit time stepping

scheme at cell interfaces [xi−1/2, xi+1/2], in the form of,
F n
i−1/2 = F(Qn

i , Q
n
i−1), F

n
i+1/2 = F(Qn

i+1, Q
n
i ) (4.7)

where Qn
i+1, Q

n
i , Q

n
i−1 are the cell averages. So, in simple terms we are trying to find the flux

across the edges using the pointwise cell average values. This leads us to a classic Riemann
problem of solving the hyperbolic conservation law with an initial constant piecewise data
to obtain an analytic solution, explained in further sections (4.2, 4.3)
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4.2 The Riemann problem
As we know that the Euler equations are a non-linear system of hyperbolic partial differen-
tial equations representing the conservation laws, obtaining an exact solution is a complex
task, yet Godunov [23] proposed a scheme to obtain exact solutions to such governing
equations using the Riemann problem, which can be defined as an Initial Value Problem
for the hyperbolic conservation laws 4.1

Ut +
(
F (U)

)
x
= 0 (4.8)

where,

U =

 ρ
ρu
ρE

 F (U) =

 ρu
ρuu+ p
ρuE + up

 (4.9)

with initial conditions,

U(x, t = 0) =

{
Ul x < 0

Ur x > 0
(4.10)

i− 1/2

Qi

Qi−1

Figure 4.2: At time t = 0. (set from initial condition)

Figure 4.3: At time t > 0
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After time t > 0, if we look at the solution along the red line highlighted in figure,
due to the initial condition assumed, the solution Q∗ will be constant for a small finite
amount of time ∆t. We use this Q∗ to evaluate the numerical flux at the interface, i.e.,
Fi−1/2 = f(Q∗). This process is known as the classical Godunov [23] approach to solve the
hyperbolic conservation law. Although it may be able to resolve shocks and rarefactions,
it does so by solving conservation law at each and every cell’s interface causing huge
computational overhead. So, a typical CFD code doesn’t employ Godunov’s approach to
solve Riemann problem.

i i+ 1qi+1/2

λ1 = u− c λ2 = u λ3 = u + c

L

L∗ R∗

R

Figure 4.4: Representation of three wave patterns (λ(+), λ(o), λ(−)) of approximate Riemann
solution, 4 different regions. Where x-axis represents space and the y-axis represents time.
[Figure reproduced based on [68]]

The Riemann problem has three waves as shown in the figure 4.4, corresponding to
the three eigenvalues of the matrix λ1, λ2, λ3 and the these waves separate four constant
states namely L,L∗, R∗, R. The region between two non-linear waves (L,R) is known as
”Star Region” [68], which contains the contact discontinuity. If the flow is supersonic, the
two non-linear acoustic waves can be either shocks or rarefactions leading to four possible
combinations of wave patterns as shown in figure 4.6.
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R

rarefaction-contact-shock

L

L ∗ R ∗

R

shock-contact-rarefaction

L

L ∗ R ∗

R

rarefaction-c-rarefaction

L

L ∗ R ∗

R

shock-contact-shock

Figure 4.5: The possible wave pattern combinations to the solution of Riemann problem.
(Figure reproduced from [68])

4.3 Riemann solvers with real fluid thermodynamics

At the heart of many finite volume compressible CFD codes is a Riemann solver, using
which the numerical inviscid fluxes are computed. The Riemann problem described in 4.9
with suitable boundary conditions 4.10, can be solved by an explicit conservative method
as in equation 4.3. In which the flux terms F n

i+1/2 is classified into two types based on
the approach in which the wave propagation information is being used, either explicitly or
implicitly. They are Godunov or Upwind type fluxes and non-upwind or centered fluxes.
In the Godunov type fluxes we use the prior wave propagation information explicitly.
Although we know how to obtain an exact solution to the Riemann problem using Godunov
method, the reason why we introduce an approximate Riemann solver is because of the
requirement to solve the conservation law at every cell interface over each iteration thereby
making the solution computationally expensive. According to Toro[68], there are two ways
to get an approximate solution to the Riemann problem, the first one involves obtaining an
”approximation to the numerical flux” and the second is to obtain an approximate interface
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state and solve for the flux function at that state. The methods HLL, HLLC solvers are
categorized in this manner.

4.3.1 HLL Riemann solver

Proposed by Harten, Lax, Van Leer[29], this solution method involves a direct approxima-
tion of the flux at the interface state (single state in between two cells). The solution is
assumed to be in a wave configuration consisting of two waves separating three constant
states. The approximating numerical interface flux is given [68] as,

Qi+ 1
2
=


QL 0 ≤ SL

Qhll SL ≤ 0 ≤ SR

QR 0 ≥ SR

(4.11)

Here SL, SR are the wave speeds of two regions that separate star region denoted in figure
4.4. QL, QR are left, right fluxes and Qhll is the HLL intercell flux calculated as,

Qhll =
SRFL − SLFR + SLSR(QR −QL))

SR − SL

(4.12)

4.3.2 HLLC Riemann solver

By restoring the absent contact and shear waves in the Euler equations, the HLLC scheme
(’C’ refers to Contact) is a modification of HLL scheme, and it is a three wave model
consisting of SL, S∗, SR. The solution in the star region consists of two intermediate fluxes
Q∗L, Q∗R. Thereby, the HLLC intercell flux is calculated [68] as,

Qi+ 1
2
=


QL 0 ≤ SL

Q∗L SL ≤ 0 ≤ S∗

Q∗R S∗ ≤ 0 ≤ SR

QR 0 ≥ SR

(4.13)

The Q∗L, Q∗R fluxes are calculated as,

Q∗L = QL + SL(U∗L − UL) (4.14)
Q∗R = QR + SR(U∗R − UR) (4.15)
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Here, the U∗L, U∗R denotes the two separate regions of star state. From equation 4.15

U∗ω =

 ρ∗ω
ρ∗ωu∗ω
ρ∗ωE∗ω

 = ρω

(
Sω − uω

Sω − S∗

) 1
S∗

(Eω

ρω
+ (S∗ − uω)[S∗ +

ρω
ρω(Sω−uω)

])

 (4.16)

Here, ω ∈ L,R and for a given star region pressure, velocity u∗, p∗, the wave speeds (SL,
SR, S∗) are computed as follows,

SL =

{
uL − cL pL ≥ p∗

uL + pL−p∗
ρL(uL−u∗)

pL ≤ p∗
(4.17)

S∗ = u∗ (4.18)

SR =

{
uL + cL pR ≥ p∗

uR + pR−p∗
ρL(uR−u∗)

pR ≤ p∗
(4.19)

4.3.3 Pressure oscillations in Supercritical flows

Supercritical fluids have non-linear variation of thermophysical properties near the critical
point, the simulations associated with such sort of phase transition from the sub-critical
to super-critical, the so called ’Transcritical’ simulations always experience spurious pres-
sure oscillations that inhibit the ease of modelling the fluid flow in these thermodynamic
conditions. In the past decade there has been a significant improvement in tackling this
problem especially from the numerical scheme perspective. Outlined below are some of
those approaches.

Double flux method: The double flux method was first proposed by Abgrall[3] for a
simple numerical scheme with perfect gas assumption, later this was extended into the
real fluid simulations[43],[44]. In the context of these real fluid simulations, the spurious
pressure oscillations appear when the specific heat ratio (γ) and internal energy is not
constant over the cell, therefore by keeping this specifc heat constant in both space and
time during the time integration over each time step and each individual cell we can restrain
these oscillations. Also, in the primitive variables have to be updated in each sub-step of
the time integration.

Additional transport equations: When simulating reacting compressible flows or mul-
tifluid flows, the pressure oscillations are frequent at the contact interfaces, even though
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with the help of high order accurate Riemann solvers we can capture the shocks and be able
to resolve the discontinuities in the case of single phase fluid. Johnsen and Colonius[34]
presented a novel way of oscillation suppressing interface-capture methods based on Roe
solver reconstruction of the primitive variables (ρ, u, p) so as to preserve the continuity and
thereby eliminate the pressure imbalance in each cell. They extended these methods to the
higher-order accurate Weighted Essentially Non-Oscillatory (WENO) schemes and HLLC
approximate Riemann solver[34]. They also included a stiffened equation of state to model
the individual components of the multiphase fluid. Shyue[57] used a quasi-conservative
formulation of specific-heat ration (γ) model (conservative, primitive equations that are
rewritten in terms of the specific heat) and volume-fraction models (fraction of each liquid,
gaseous component in each cell) to model multiphase fluids with a high resolution wave
propagation method.

Baer-Nunziato type models: Contrary to the belief that having a strong non-linear
variation in thermodynamic properties would lead to pressure oscillations Pantano [47]
claims that the convexity of the equation of state is not the source of oscillations but
rather the discontinuities that present across various interfaces cause these oscillations
and no matter how non-linear the density due to the equation of state, these pressure
oscillations are not easy to eliminate not even under the grid refinement. Thus causing a
”violation of mechanical equilibrium”. In their work, using a conservative formulation of
the compressible Euler equations, an extra evolution equation[47] is added to the govern-
ing equations in order to carry the nonlinearity of the equation of state. Entropy stable
hybrid scheme: Aiming at the transcritical turbulent flows, this method[44] uses double
flux method[3, 44, 43] for the flux reconstruction and adaptively couples the higher-order
non-dissipative and lower-order dissipative finite volume schemes with the help of a relative
solution sensor, that flags the cells, usually that are characterized by large density gradi-
ents. Non-conservative pressure formulation: In order to maintain the pressure equilibrium
across the fluid interfaces in the case of mixing, Terashima and Koshi[63, 64] proposed a
pressure evolution based governing equation that will reconstruct the pressure and veloc-
ity across the interfaces instead as in the fully conservative method of evolving the total
energy. Their approach[63, 64] also employed consistent numerical diffusion terms as their
scheme was based on finite-difference formulation. Matheis and Hickel[45] addressed this
oscillations problem in transcritical and supercritical fluid mixing in the case of a high
pressure liquid-fuel injection[45]. They replaced the quasi-conservative, total energy based
governing equations to non conservative pressure evolution equation[64]. They compared
the both formats i.e., quasi-conservative and fully conservative simulations including the
effect of diffusion induced pressure variation[45] solving for energy and pressure evolution
equations respectively.
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Ghost fluid methods: This particular method[20] focus heavily towards the oscillations
at the material interfaces, by dividing the computational domain into individual fluids the
Ghost fluid method[20] is developed based on a Eulerian scheme that treats the material
interfaces in a Lagrangian format they used a level set function[20] to track the material
interface along with the ghost cells keeping a constant pressure and velocity across the
fluid interfaces as they remain constant irrespective of type of fluid. Thus, the scheme[20]
is non-conservative at the material interface.

4.3.4 Freezing the specific heat capacity ratio (γ)

The original HLLC approximate Riemann solvers is formulated based on a constant specific
heat ratio (γ), as we know that the thermodynamic properties vary rapidly as we approach
the near critical temperature, pressure making the perfect gas assumption invalid. Also,
there is a fundamental assumption[68] that the wave speed estimates that are based on
speed of sound are valid for a given equation of state. Hence, the equation of state would
only be needed to compute the speed of sound thereby the wave speeds (both left &
right). In order to incorporate the real fluid effects into the HLLC solver, there are two
solutions, one[4] is carrying thermodynamic index γe using an evolution equation and
another is to carry ρe which is calculated at the interface states in addition to the primitive
variables ρ, u, p. Although this approach overfits the thermodynamics, it prevents the need
to calculate γe as described in the first method. In the current project, the Colella and
Glaz method[18] is used and the effective thermodynamic index is written as,

γe =
p

ρe
+ 1 (4.20)

And then the characteristics for the Euler equations are solved where the speed of sound
is calculate using the above mentioned thermodynamic index in perfect gas assumption
for a given cell. A 1D advection simulation is setup to validate the significance of this
alternative numerical technique, Note that the Euler system is solved for all test cases in
this subsection, which enables a direct comparison with exact analytical solutions. The
test case involves nitrogen as the working fluid. The pressure is set to 5 MPa, which is
above the critical pressure of nitrogen. The computational domain is x ∈ [0, 1] m and a
uniform mesh with 512 grid points is used. Periodic boundary conditions are applied. The
initial conditions involve a sharp jump of density, given as

ρ =

{
800 0.25 ≤ x < 0.75

144.3, otherwise
(4.21)
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Figure 4.6: Density plot for the 1D real fluid Nitrogen advection case with initial condition
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Figure 4.8: Plots of Density, velocity, temperature, total, internal energy for the 1D real
fluid Nitrogen advection case with initial condition as a sharp jump. Mesh size = 512.
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4.4 Fourth-order Runge-Kutta scheme (RK4)

The time advancement method is followed from [44], and implemented as described below.

• Compute the frozen γ, total energy across all the cells in mesh and store it to keep
it as a constant over the entire timestep, across each cell.

• Starting with a defined conservative state, evaluate a single substep by reconstructing
the fluxes and solving the Riemann problem with HLLC solver (adapted to real fluid
thermodynamics by carrying the pre-computed gamma, total energy in above step).

• The RK substages are evaluated (k1, k2, k3, k4) during which the conservative vari-
ables are updated and after all stages of time integration are completed, a final
update where all the substages are summed i.e., (k1 + 2k2 + 2k3 + k4/6) and yt+1 is
computed, primitive variables are updated from the conservative variables.

Here’s the code snippet, that implements the above mentioned steps.
1 sos = myd.get_var("soundspeed")
2 rho = myd.get_var("density")
3 pres = myd.get_var("pressure")
4 gammaf = (sos**2)*rho/pres
5 e = eos.rhoe(rho, pres)/rho
6 e = e - (pres/(rho*(gammaf - 1.0)))
7 for s in range(4):
8 ytmp = rk.get_stage_start(s)
9 ytmp.fill_BC_all()

10 k = self.substep(ytmp , gammaf , e0S)
11 self.cons_to_prim()
12 rk.store_increment(s, k)
13 rk.compute_final_update()

Listing 4.1: RK4 with frozen specific heat ratio
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4.5 Integration with tabulated thermodynamic equa-
tion of state

As we discussed in section 2.1 the governing equations are closed by an EOS (a function
that maps the thermodynamic variables (rho, e) → (P, T) or vice versa). Here, in the
current CFD solver, EOS is used in context of transforming conservative variables (ρ, e)
that are obtained by solving the flux vectors of conserved quantities (ρ, ρu⃗, ρE) to primitive
variables (P, T), which are necessary to calculate the flux. The code is implemented with
both CoolProp, tabular EOS, for the latter the table generation and lookup process is
described in chapter 2. It covers the super-critical, near-critical regime except the thermally
equilibrium wet-region. In this thesis, for the transformation of conservative (ρ, e) →
primitive (P, T) and vice versa, we proceed with following method.

• During the solution initialization, to initialize conserved variables (ρ, e) based on (P,
T) we use a multi-variate Newton-Raphson method with initial guess values (E.g; T
= 300 K, P = 101325 Pa) to iterate and obtain corresponding density, internal energy
values. This method is robust and efficient. Since, we run this iterative method only
during the initialization, there is not much of an effort in terms of computation.
Although we can use another table to lookup, i.e., (ρ, e) tabulated in (P, T), storing
it in cache memory during runtime would make it ill-efficient.

• As we know that for a typical conservative finite volume method of Godunov type,
once we set the conservative variables based on initial conditions at time, t= 0, we
need not to transform (P, T) → (ρ, e) at any point later on in the simulation, since
the (ρ, e) pair is directly evolved from the numerical method thereby always known.
So, we directly lookup in the pre-loaded EOS tabulated in (ρ, e)

Although this method is robust and accurate, a relatively simpler approach is to use ther-
modynamic database (CoolProp NIST) functions directly. But, this can cause severe
bottleneck when executed thousands of times during the higher order schemes. It is im-
portant to mention here that the previously mentioned inversion i.e., (ρ, e) → (P, T)
using multi-variate Newton method is not valid in the wet-steam region due to the fact
that the pressure and temperature become dependent variables and coupled by a relation.
p = psaturation(T ), here psaturation(T ) is saturation pressure at a given temperature T.
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Chapter 5

Evaluation of tabulated supercritical
thermodynamics

5.1 Real fluid thermodynamics significance in shock
tube flow at supercritical conditions

Shock tube problems are of great use when it comes to validating numerical codes/schemes
for various characteristics like shock capturing, dissipation, preventing oscillations etc. A
fluid is said to be in a supercritical state, if its thermodynamic temperature and pressure
are above its critical point. Since it is difficult to use experiments to validate the super-
critical flow behaviour, often times simulations are widely used. Especially in the cases of
supercritical fuel injection in diesel engines, mixing and injection of cryogenic propellants
in rocket engines, or organic Rankine cycle turbines. The present chapter aims at under-
standing the influence of supercritical, near-critical, subcritical thermodynamic conditions
on the shock tube problem and more specifically the shock wave, expansion fan locations
in each case. It is well known that supercritical fluids have special thermodynamic prop-
erties by having a liquid like high density and gas like high diffusivity. In the proximity of
critical point, specific heat increases drastically as shown in the figure 1.2 which causes a
large expansion even for small increase in temperature. A perfect gas law cannot capture
such non-linear variation thereby an accurate calculation of thermodynamic properties is
required.There have been several attempts at studying shock tube flows in supercritical
and nearcritical conditions. Near the critical point, the compression due to shock intro-
duces a phase transition causing subsequent thermo-physical property changes resulting in
an occurrence of non-classical waves [6]. The application of accurate equation of states to
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the gas dynamics simulation revealed the formation of non-classical supersonic wave[27].
Arina [7] developed a numerical method for investigating supercritical fluid flow in nozzles,
shock tube using cubic equation of states. Terashima[63],[64] presented a high resolution
numerical method for simulating supercritical flows with large density variations and was
able to resolve the flow interfaces over a wide range of scales. There have been several
extensions of Riemann solvers to the real fluid thermodynamic conditions, specifically for
van der Waals EOS [47],[6], stiff-gas EOS[4], cubic EOS[51].

5.1.1 Fundamental derivative of gas dynamics

In the process of understanding the key implications of using a real fluid thermodynamic
equation of state for gas dynamics problems, we need to discuss about an important variable
known as the ”fundamental derivative of gas dynamics”[65, 46] which governs the non-linear
dynamics of compressible fluids. It relates the change in speed of sound with reference to
the change in density [65] at a given constant entropy, it is mathematically expressed as,

τ(ρ, c) ≡ 1 +
ρ

c

(∂c
∂ρ

)
s
=

ν3

2c2

(∂2P

∂ν2

)
s

(5.1)

where, ρ is the density, c is the speed of sound, ν = 1
ρ

is the specific volume and P is the
pressure.
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Figure 5.1: Fundamental derivative of gas dynamics evaluated using different equations of
state for n-decane (C10H22)
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This property denotes the direction in which the non-linearity propagates, when τ > 0
the non-linearity propagates in a conventional direction i.e., disturbances travel forward
leading to compression shocks and when τ < 0, the disturbances travel backward leading
to rarefactions [65] and it is also been suggested [38] that this is required in order to satisfy
the second law of thermodynamics. The fluids that fall into this category of negative non-
linearity[46] are mainly comprised of dense gases, Bethe-Zel’dovich-Thompson fluids[38],
complex organic compounds and the term ”dense” here refers to the region close to its
thermodynamic critical point or liquid-vapour curve.

τ Change in
(

∂c
∂ρ

)
Behaviour Remark

τ > 1
(

∂c
∂ρ

)
> 0 Speed of sound increases with pressure Ideal

τ = 1
(

∂c
∂ρ

)
= 0

Speed of sound is constant and pressure
varies linearly with density (ρ)

0 < τ < 1 ρ
c
<

(
∂c
∂ρ

)
< 0 Speed of sound decreases with pressure Real

τ < 0
(

∂c
∂ρ

)
< ρ

c
Unusual non-classical[40]

Table 5.1: Description of fundamental derivative of gas dynamics behaviour for different
values [40, 65]

If we use a perfect gas EOS to compute this fundamental derivative (τ) where c =√
γRT we obtain, τ = (γ + 1)/2, which is a constant for a given specific heat ratio

(γ). Which means, there is no chance for us to observe negative fundamental derivative
(τ < 0) for any given fluid with perfect gas EOS assumption. This warrants the use of
multiparametric EOS for such evaluations however as we discussed in chapter 2 with regard
to the error associated with cubic EOS, using such equations to compute speed of sound
and density would lead to further amplification of erroneous values. As can be seen in the
figure 5.1 there is a significant difference in the fundamental derivative (τ) values computed
using cubic EOS and tabular EOS

Before simulating such non-classical gas dynamics problems with real fluid EOS we try
to obtain a validation for the CFD solver with the help of established testcases that employ
a higher order accurate spatial and temporal schemes with real fluid EOS. The next two
sections discuss the validation cases in two such test cases namely; Sod shock tube and
Shu-Osher shock tube problems.
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5.1.2 Sod Shock Tube Real gas validation case

Previously Terashima[64] carried out a 1D shock tube simulation under supercritical ther-
modynamic conditions, for this problem carbon dioxide is considered as the working fluid
whose critical pressure, temperature and density [?] are Tcrit = 304.22K , pcrit = 7.37 MPa,
ρcrit = 348.8 kg

m3 .
The initial conditions for this Sod shocktube simulation are

(ρ, u, p) =

{
(ρ0, 0.0, 10p0) 0 ≤ x ≤ 0.5 m,

(0.01ρ0, 0.0, 0.1p0) 0.5 ≤ x ≤ 1.0 m

Here, ρ0 = ρcrit = 348.8Kg
m3 , and p0 = pcrit = 7.37MPa, the grid consists of 2001 x 4

uniformly distributed cells.
The below plot is taken at t = 2.745E-04 s. There is a good agreement in between the

present solver and the reference simulation data obtained from the paper[63], no spurious
pressure oscillations are found mainly due to the fact that the initial conditions are in su-
percritical regime. However, the transcritical case showed significant pressure oscillations.

Figure 5.2: Sod Shock tube problem with real fluid thermodynamics Terashima validation
case[63], Normalized Density

(
ρ

ρcritical

)
vs distance plot taken at t = 2.745E − 04 s, CFL

= 0.4, Mesh size = 201, working fluid = Carbon dioxide.
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Figure 5.3: Sod Shock tube with real fluid thermodynamics compared with Ideal gas law

From the above figure on density distribution plot comparing real, ideal thermodynam-
ics, we can see tat the real gas case predicts the faster expansion fan when compared to
the perfect gas case’s expansion fan.

Figure 5.4: Sod Shock tube with real fluid thermodynamics compared with Ideal gas law
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5.1.3 Shu-Osher shock tube real gas validation case

Another case used for reference is the Shu-Osher problem[64] that is modified to the su-
percritical regime (initial conditions). The purpose of testing with this case is to validate
the code’s dissipation characteristics. This test case is taken from Terashima[64], nitrogen
is used as working fluid for this case and the initial conditions are,

(ρ, u, p) =

{
(3.857ρ0,Mref , 10.333p0) −0.5 ≤ x ≤ −0.4 m,

((1.0 + 0.2sin5x)ρ0, 0.0, p0) −0.4 ≤ x ≤ 0.5 m

Here, ρ0 = 50.0Kg
m3 , p0 = 4.0MPa and Mref is the reference sound speed on the left side.

Similarly as previous case, the grid consists of 2001 uniformly distributed cells. The below
plot is taken at 5.903E-04 s.
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Figure 5.5: Shu-Osher shocktube problem with real fluid thermodynamics validation
case[63], Normalized density ( ρ

ρcritical
) vs distance (x) plot

Figure 5.5 shows the normalized density ( ρ
ρcrit

) plot for the current real fluid modified
solver vs the reference case. It is important to mention here that the reference case was
obtained by smoothening the initial interface with an adjustable free parameter cϵ = 3.0.
This could be a reason for slight mismatch in the density profiles.
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Figure 5.6: Shu-Osher shock tube problem comparison between real fluid thermodynamics
and perfect gas assumption, density (ρ) , velocity plots vs distance. Mesh size (N) = 201,
working fluid is Nitrogen.
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Figure 5.8: Mesh Independence density profile plot of Shu-Osher shock tube problem with
real fluid thermodynamics, taken at t = 2.745E − 04 s,CFL = 0.4 Mesh sizes (N) = 501,
1001, 2001,

5.1.4 Accurate real-fluid thermodynamics significance in shock
tube problem

In order to study the real-fluid effects on shock tube wave propagation, three cases are
simulated at supercritical, near-critical and the subcritical thermodynamic conditions. The
initial conditions are shown in the table 5.2 for each case, in all the cases the left to right
pressure ratios (

pleft
pright

) are set to 2 with an initial temperature (T ) of 310 K. Figure 5.10

Table 5.2: Initial conditions for Sod-problem.

Pleft Pright Pleft/Pright T, K ρleft ρright
Supercritical 4pcr 2pcr 2 310 845 696
Nearcritical 1.5pcr 0.75pcr 2 310 610 134
Subcritical 0.5pcr 0.25pcr 2 310 76.9 34.4

shows the pressure, temperature, density distribution plots, in which the variables (ρ, P,
T) are non-dimensionalized with respect to the initial values on left side. For the case of
nearcritical, comparatively smaller pressure, temperature jump ( p

pleft
) is observed at the
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contact interface, while the density jump is largest. This can be attributed to the strong
non-linear variation of thermodynamic properties in the proximity of critical point.

Figure 5.10: Plots of non-dimensionalized pressure, density, temperature and time histories
of temperature profile for the near critical case . Here the variables are non-dimensionalized
using the initial left side values.
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A small temperature overshoot can be observed next to the contact discontinuity. We
have discussed in section 4.3.4 on various numerical techniques to overcome this oscillations.

Figure 5.11: Sod shocktube problem with three different real fluid thermodynamics cases,
plot of time histories of shock wave (—) , expansion fan (+++) locations.

Figure 5.11 showcases the shows time histories of the wave positions, in the real fluid
supercritical case, both the shock and the expansion fan propagate faster than in the ideal
gas assumption. Though, we couldn’t verify whether this is purely due to the calculation
mismatch in speed of sound or there is really a certain physical significance.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Paving way towards accurate real-fluid CFD simulations, this thesis provides improvised
method in a key area, real fluid thermodynamic property evaluation using an adaptive
tabulation, given the fact that the CFD simulations with complex thermodynamic systems
involve expensive simulations due to the non-linear variation of thermodynamic proper-
ties and numerical scheme to model large density gradients. CFD solvers require EOS
to transform the conservative variables to their primitive state. Typically in case of cu-
bic EOS such as Peng-Robinson this is accomplished through an iterative algorithm to
find the correct (P, T) primitive pair for given conservative pair (ρ, e). The emphasis in
obtaining such accurate thermodynamic information is due to the strong non-linear ther-
modynamic property gradients observed in the vicinity of critical point i.e., any minute
changes in temperature or pressure drastically changes the density. As an alternative to
such iterative algorithm, this thesis presented a detailed framework on Tabulated real fluid
thermodynamics, starting from the simplest form of tabulation i.e., homogeneous or loga-
rithmic tabulation to various other forms of tabulation such as Block structured adaptive
mesh refinement AMR and Cubic Bezier surface based adaptive mesh refinement AMR
are described and implemented in detail. When compared to the homogeneous tabulation,
adaptive tabulation gives efficient memory storage according for a given user defined error
tolerance, generating a homogeneous EOS table with very low error tolerances generates
large sized storage files thereby limits the physical and thermodynamic range within which
the table is going to support. When the tabular EOS is compared with the cubic equations
in terms of accuracy, evaluation (look-up) speed there was a significant improvement. To
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observe the speedup, the tabular EOS is implemented into to a 1D CFD code and the grid
size is scaled incrementally. The cubic EOS based simulations increased the computational
cost non-linearly with respect to the grid size. To further investigate the significance of
using real fluid thermodynamics in a gas dynamics simulation, a CFD code with higher
order spatial and temporal schemes is developed and its numerical schemes were discussed
in chapter 4 In order to overcome the oscillations at the sharp interfaces, a method in
which the specific heat ratio is kept constant over a time step across each cell is discussed
and implemented. It helped in damping the oscillations and enabled to obtain stable sim-
ulations. Later the process through which the adaptive tabular EOS is integrated into this
CFD code is described. The relevance of computing accurate thermodynamic properties
in gasdynamics problems is described in chapter 5 coupling both the tabulated thermody-
namic equation of state framework and the CFD solver together, two test cases are used
for this study, sod-shock tube and the shu-osher shock tube. A validation result is ob-
tained by simulating a near critical testcase taken from Terashima [64]. Three different
thermodynamic initial conditions namely subcritical, supercritical and near critical regions
are simulated. It was found that the accurate thermodynamics evaluation resulted in a
faster expansion fan compared to the perfect gas assumption. In the test case where three
different thermodynamic conditions where tested, among them the nearcritical case had
a significantly smaller temperature, pressure jumps, whereas the density jump was the
largest among all the three cases. Also, the expansion fan was faster while using real fluid
thermodynamics than perfect gas assumption.

6.2 Future Work

There are two aspects to which the current thesis can be extended, in terms of tabular
EOS in present work there is no consideration of the region below the vapour dome (wet-
steam region). Also, the present tabulation is limited to single phase, pseudo-pure fluids.
Most of the industrial applications involve the use of mixtures, hence this current two
dimensional tabulation can be extended into three dimensions, where the third dimension
can be mixture fraction.

The second aspect is the uncertainty quantification, as with every EOS there will be
an uncertainty associated within the output values, in the case of tabular EOS apart
from a parametric uncertainty derived from the underlying empirical EOS there will be
an additional model uncertainty due to the interpolation, tabulation. Understanding and
quantifying this tabulation uncertainty is key to have a reliable simulation. In terms of
test cases, the tabular EOS can be tested with Large Eddy Simulation (LES) softwares,
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Appendix A

A.1 Code repositories

The adaptive tabulation based thermodynamic equation of state code is available in git
repository https://github.com/spmuppar/Adaptive-Tabulated-real-fluid-thermo and
the cfd code developed for this thesis is available at https://github.com/spmuppar/
TwoDThermoCode

A.2 HLLC Riemann solver adapted for Real fluid ther-
modynamics module

1

2 SUBROUTINE riemann_HLLC_real(idir , qx, qy, ng, &
3 nvar , idens , ixmom , iymom , iener , &
4 lower_solid , upper_solid , &
5 real_gamma , pres , U_l, U_r, F)
6

7 !implicit none
8 EXTERNAL real_gamma
9 EXTERNAL pres

10

11 integer , intent(in) :: idir
12 integer , intent(in) :: qx, qy, ng
13 integer , intent(in) :: nvar , idens , ixmom , iymom , iener
14 integer , intent(in) :: lower_solid , upper_solid
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15

16 double precision , intent(inout) :: U_l(0:qx-1,0:qy-1,0:nvar -1)
17 double precision , intent(inout) :: U_r(0:qx-1,0:qy-1,0:nvar -1)
18 double precision , intent( out) :: F(0:qx-1,0:qy-1,0:nvar -1)
19 !F2PY (CALLBACK) real_gamma
20 !F2PY (CALLBACK) pres
21 !f2py depend(qx, qy, nvar) :: U_l, U_r
22 !f2py intent(in) :: U_l, U_r
23 !f2py intent(out) :: F
24

25

26 integer :: ilo, ihi, jlo, jhi
27 integer :: nx, ny
28 integer :: i, j
29

30 double precision , parameter :: smallc = 1.e-10
31 double precision , parameter :: smallrho = 1.e-10
32 double precision , parameter :: smallp = 1.e-10
33 double precision , dimension(0:1) :: temp
34 real :: temp1
35

36 double precision :: rho_l , un_l , ut_l , rhoe_l , p_l
37 double precision :: rho_r , un_r , ut_r , rhoe_r , p_r
38

39 double precision :: rhostar_l , rhostar_r , rhoestar_l ,
rhoestar_r

40 double precision :: ustar , pstar , cstar_l , cstar_r
41 double precision :: lambda_l , lambdastar_l , lambda_r ,

lambdastar_r
42 double precision :: W_l, W_r, c_l, c_r, sigma
43 double precision :: alpha
44 double precision :: eint_l , eint_r
45

46 double precision :: rho_state , un_state , ut_state , p_state ,
rhoe_state

47 double precision :: rho_avg
48 double precision :: Q, p_min , p_max , p_lr , p_guess
49 double precision :: factor , factor2
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50 double precision :: g_l, g_r, A_l, B_l, A_r, B_r, z
51 double precision :: S_l, S_r, S_c
52 double precision :: c_avg
53

54 double precision :: U_state(0:nvar -1)
55 double precision :: HLLCfactor
56

57 nx = qx - 2*ng; ny = qy - 2*ng
58 ilo = ng; ihi = ng+nx-1; jlo = ng; jhi = ng+ny-1
59

60 do j = jlo-1, jhi+1
61 do i = ilo-1, ihi+1
62 ! primitive variable states
63 rho_l = U_l(i,j,idens)
64

65 ! un = normal velocity; ut = transverse velocity
66 if (idir == 1) then
67 un_l = U_l(i,j,ixmom)/rho_l
68 ut_l = U_l(i,j,iymom)/rho_l
69 else
70 un_l = U_l(i,j,iymom)/rho_l
71 ut_l = U_l(i,j,ixmom)/rho_l
72 endif
73

74 rhoe_l = U_l(i,j,iener) - 0.5*rho_l*(un_l**2 + ut_l**2)
75 eint_l = rhoe_l/rho_l !this will be negative
76

77 temp = [rho_l , eint_l]
78 temp1 = 0.0d0 + pres(temp)
79 p_l = temp1
80 !p_l = rhoe_l*(gamma - 1.0d0)
81 p_l = max(p_l, smallp)
82

83 rho_r = U_r(i,j,idens)
84

85 if (idir == 1) then
86 un_r = U_r(i,j,ixmom)/rho_r
87 ut_r = U_r(i,j,iymom)/rho_r
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88 else
89 un_r = U_r(i,j,iymom)/rho_r
90 ut_r = U_r(i,j,ixmom)/rho_r
91 endif
92

93 rhoe_r = U_r(i,j,iener) - 0.5*rho_r*(un_r**2 + ut_r**2)
94 eint_r = rhoe_r/rho_r
95

96 temp = [rho_r , eint_r]
97 temp1 = 0.0d0 + pres(temp)
98 p_r = temp1
99 !p_r = rhoe_r*(gamma - 1.0d0)

100 p_r = max(p_r, smallp)
101

102 ! define the Lagrangian sound speed
103 temp = [rho_l , p_l]
104 temp1 = 0.0d0 + real_gamma(temp)
105 gamma_l = temp1
106

107 temp = [rho_r , p_r]
108 temp1 = 0.0d0 + real_gamma(temp)
109 gamma_r = temp1
110

111 W_l = max(smallrho*smallc , sqrt(gamma_l*p_l*rho_l))
112 W_r = max(smallrho*smallc , sqrt(gamma_r*p_r*rho_r))
113

114 ! and the regular sound speeds
115 c_l = max(smallc , sqrt(gamma_l*p_l/rho_l))
116 c_r = max(smallc , sqrt(gamma_r*p_r/rho_r))
117

118 ! define the star states
119 pstar = (W_l*p_r + W_r*p_l + W_l*W_r*(un_l - un_r))/(W_l +

W_r)
120 pstar = max(pstar , smallp)
121 ustar = (W_l*un_l + W_r*un_r + (p_l - p_r))/(W_l + W_r)
122

123 ! now compute the remaining state to the left and right
124 ! of the contact (in the star region)
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125 rhostar_l = rho_l + (pstar - p_l)/c_l**2
126 rhostar_r = rho_r + (pstar - p_r)/c_r**2
127

128 ! step II: wave speed estimate
129 ! estimate the nonlinear wave speeds
130

131 ! use the simplest estimates of the wave speeds
132 S_l = min(un_l - sqrt(gamma_l*p_l/rho_l),
133 un_r - sqrt(gamma_r*p_r/rho_r))
134 S_r = max(un_l + sqrt(gamma_l*p_l/rho_l),
135 un_r + sqrt(gamma_r*p_r/rho_r))
136

137 ! Eqn 10.70 in Toro
138 S_c = (p_r - p_l + rho_l*un_l*(S_l - un_l) -
139 rho_r*un_r*(S_r - un_r))/ &
140 (rho_l*(S_l - un_l) - rho_r*(S_r - un_r))
141

142 ! step III: Compute the HLLC flux
143 ! figure out which region we are in and compute the state

and
144 ! the interface fluxes using the HLLC Riemann solver
145 if (S_r <= 0.0d0) then
146 ! R region
147 U_state(:) = U_r(i,j,:)
148 call consFlux(idir , pres , idens , ixmom , iymom ,
149 iener , nvar , U_state , F(i,j,:))
150 else if (S_r > 0.0d0 .and. S_c <= 0) then
151 ! R* region
152 HLLCfactor = rho_r*(S_r - un_r)/(S_r - S_c)
153 U_state(idens) = HLLCfactor
154 if (idir == 1) then
155 U_state(ixmom) = HLLCfactor*S_c
156 U_state(iymom) = HLLCfactor*ut_r
157 else
158 U_state(ixmom) = HLLCfactor*ut_r
159 U_state(iymom) = HLLCfactor*S_c
160 endif
161 U_state(iener) = HLLCfactor*(U_r(i,j,iener)/rho_r + &
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162 (S_c - un_r)*(S_c + p_r/(rho_r*(S_r - un_r))))
163 ! find the flux on the right interface
164 call consFlux(idir , pres , idens , ixmom , iymom ,
165 iener , nvar , U_r(i,j,:), F(i,j,:))
166 ! correct the flux
167 F(i,j,:) = F(i,j,:) + S_r*(U_state(:) - U_r(i,j,:))
168 else if (S_c > 0.0d0 .and. S_l < 0.0) then
169 ! L* region
170 HLLCfactor = rho_l*(S_l - un_l)/(S_l - S_c)
171 U_state(idens) = HLLCfactor
172 if (idir == 1) then
173 U_state(ixmom) = HLLCfactor*S_c
174 U_state(iymom) = HLLCfactor*ut_l
175 else
176 U_state(ixmom) = HLLCfactor*ut_l
177 U_state(iymom) = HLLCfactor*S_c
178 endif
179 U_state(iener) = HLLCfactor*(U_l(i,j,iener)/rho_l + &
180 (S_c - un_l)*(S_c + p_l/(rho_l*(S_l - un_l))))
181

182 ! find the flux on the left interface
183 call consFlux(idir , pres , idens , ixmom , iymom , iener ,

nvar , &
184 U_l(i,j,:), F(i,j,:))
185 ! correct the flux
186 F(i,j,:) = F(i,j,:) + S_l*(U_state(:) - U_l(i,j,:))
187 else
188 ! L region
189 U_state(:) = U_l(i,j,:)
190

191 call consFlux(idir , pres , idens , ixmom , iymom , iener ,
nvar , &

192 U_state , F(i,j,:))
193 endif
194 enddo
195 enddo
196 end subroutine riemann_HLLC
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A.3 CFD code development git history for this study
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