
Improving Software Dependability
through Documentation Analysis

by

Edmund Wong

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Engineering

Waterloo, Ontario, Canada, 2019

© Edmund Wong 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Internal-External Examiner: Meiyappan Nagappan
Assistant Professor, Dept. of Computer Science,
University of Waterloo

Supervisor: Lin Tan
Associate Professor, Dept. of Electrical and Com-
puter Engineering, University of Waterloo

Internal Member: Arie Gurfinkel
Associate Professor, Dept. of Electrical and Com-
puter Engineering, University of Waterloo

Internal Member: Mahesh Tripunitara
Associate Professor, Dept. of Electrical and Com-
puter Engineering, University of Waterloo

External Member: Nicholas A. Kraft
Software Researcher, ABB Corporate Research

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Software documentation contains critical information that describes a system’s func-
tionality and requirements. Documentation exists in several forms, including code com-
ments, test plans, manual pages, and user manuals. The lack of documentation in existing
software systems is an issue that impacts software maintainability and programmer pro-
ductivity. Since some code bases contain a large amount of documentation, we want to
leverage these existing documentation to improve software dependability. Specifically, we
utilize documentation to help detect software bugs and repair corrupted files, which can
reduce the number of software error and failure to improve a system’s reliability (e.g.,
continuity of correct service). We also generate documentation (e.g., code comment) auto-
matically to help developers understand the source code, which helps improve a system’s
maintainability (e.g., ability to undergo repairs and modifications).

In this thesis, we analyze software documentation and propose two branches of work,
which focuses on three types of documentation including manual pages, code comments,
and user manuals. The first branch of work focuses on documentation analysis because doc-
umentation contains valuable information that describes the behavior of the program. We
automatically extract constraints from documentation and apply them on a dynamic anal-
ysis symbolic execution tool to find bugs in the target software, and we extract constraints
manually from documentation and apply them on a structured-file parsing application to
repair corrupted PDF files. The second branch of work focuses on automatic code comment
generation to improve software documentation.

For documentation analysis, we propose and implement DASE and DocRepair. DASE
leverages automatically extracted constraints from documentation to improve a dynamic
analysis symbolic execution tool. DASE guides symbolic execution to focus the testing
on execution paths that execute a program’s core functionalities using constraints learned
from the documentation. We evaluated DASE on 88 programs from five mature real-world
software suites to detect software bugs. DASE detects 12 previously unknown bugs that
symbolic execution would fail to detect when given no input constraints, 6 of which have
been confirmed by the developers.

In DocRepair we perform an empirical study to study and repair corrupted PDF files.
We create the first dataset of 319 corrupted PDF files and conduct an empirical study on
119 real-world corrupted PDF files to study the common types of file corruption. Based on
the result of the empirical study we propose a technique called DocRepair. DocRepair’s re-
pair algorithm includes seven repair operators that utilizes manually extracted constraints
from documentation to repair corrupted files. We evaluate DocRepair against three com-
mon PDF repair tools. Amongst the 1,827 collected corrupted files from over two corpora

iv

of PDF files, DocRepair can successfully repair 354 files compared to Mutool, PDFtk, and
GhostScript which repair 508, 41 and 84 respectively. We also propose a technique to
combine multiple repair tools called DocRepair+, which can successfully repair 751 files.

In the case where there is a lack of documentation, DASE and DocRepair+ would not
work. Therefore, we propose automated documentation generation to address the issue.
We propose and implement CloCom+ to generate code comments by mining both existing
software repositories in GitHub and a Question and Answer site, Stack Overflow. CloCom+
generated 442 unique comments for 16 Java projects. Although CloCom+ improves on
previous work, SumSlice, on automatic comment generation, the quality (evaluated on
completeness, conciseness, expressiveness, and usefulness) and yield (number of generated
comments) are still rather low which makes the technique not ready for real-world usage.

In the future, it may be possible to combine the two proposed branches of work (doc-
umentation analysis and documentation generation) to further improve software depend-
ability. For example, we can extract constraints from the automatically generated docu-
mentation (e.g., code comments).

v

Acknowledgements

I would like to thank all the little people who made this possible.

vi

Dedication

This is dedicated to the one I love.

vii

Table of Contents

List of Tables xiii

List of Figures xvi

1 Introduction 1

1.1 Automatic Documentation Analysis . 2

1.1.1 General Symbolic Execution-Based Software Testing 3

1.1.2 Automatic File Repair . 4

1.2 Automatic Documentation Generation . 5

1.2.1 Mining Question and Answer Sites 6

1.2.2 Mining Code Repositories . 7

1.3 Contributions . 7

1.4 Overview of Thesis . 8

2 Related Work 9

2.1 Symbolic Execution . 9

2.2 Automatic File Repair . 11

2.3 Automatic Comment Generation . 13

2.4 Source Code Summarization . 15

2.5 Mining Descriptions for Code Artifact . 16

2.6 Code Clone Detection . 17

viii

2.7 Fuzz Testing . 17

2.8 Documentation Analysis . 18

3 Documentation Analysis: Symbolic Execution-Based Software Testing
using Documentation Constraints 20

3.1 Motivation . 20

3.2 Overview . 22

3.3 Background . 27

3.4 Design and Implementation . 27

3.4.1 Extracting File Format Constraints 27

3.4.2 Adding File Layout Constraints . 30

3.4.3 Extracting Valid Options . 31

3.4.4 Using Options to Flatten Symbolic Execution 32

3.5 Evaluation Method . 32

3.5.1 Evaluated Programs . 32

3.5.2 Experimental Setup . 33

3.6 Evaluation Results . 34

3.6.1 Detected Bugs . 34

3.6.2 Code Coverage . 37

3.6.3 DASE Complements Developer Tests 39

3.6.4 Constraint Extraction Results . 40

3.7 Threats to Validity . 41

3.7.1 Internal Validity . 41

3.7.2 External Validity . 41

3.7.3 Construct Validity . 42

3.7.4 Conclusion Validity . 42

3.8 Summary . 42

ix

4 Documentation Analysis: Automatic File Repair 43

4.1 Motivation . 43

4.2 Background . 48

4.2.1 PDF File Format . 48

4.2.2 Existing Repair Approaches . 49

4.3 Definitions . 50

4.4 A Study of Corrupted PDF Files . 50

4.4.1 Collecting Corrupted PDF Files . 51

4.4.2 Identifying Corrupted PDF Files 52

4.4.3 PDF Repair Tools and Viewers . 53

4.4.4 Empirical Study Findings . 53

4.5 Design and Implementation . 62

4.5.1 Data Parsing and Collection . 62

4.5.2 Repair Operators . 62

4.6 Evaluation Method and Results . 69

4.7 Threats to Validity . 73

4.7.1 Internal Validity . 73

4.7.2 External Validity . 73

4.7.3 Construct Validity . 74

4.7.4 Conclusion Validity . 74

4.8 Summary . 75

5 Automatic Documentation Generation: Crowd Sourced Comment Gen-
eration 76

5.1 Motivation . 76

5.2 Examples and Challenges . 79

5.2.1 Example One . 79

5.2.2 Example Two . 82

x

5.2.3 Example Three . 84

5.3 Design and Implementation . 85

5.3.1 Code-Description Mapping Extraction from Stack Overflow 86

5.3.2 Description Refinement . 87

5.3.3 Code Clone Detection . 93

5.3.4 Code Clone Pruning . 96

5.3.5 Comment Selection . 97

5.4 Evaluation Method . 98

5.4.1 Experimental Settings . 102

5.4.2 Human Participants . 102

5.4.3 Questionnaire Generation . 104

5.4.4 Study Procedure . 104

5.4.5 Post Study Questions . 105

5.4.6 Replication Package . 106

5.5 Evaluation Results . 106

5.5.1 Participant Ratings . 106

5.5.2 Execution Time . 112

5.6 Qualitative Analysis and Discussion . 114

5.6.1 Properties of the Automatically Generated Comments 114

5.6.2 Properties of Developer-written Comments 115

5.6.3 Properties of Participant-written Comments 119

5.6.4 Yield Analysis . 120

5.6.5 Limitations . 121

5.7 Threats to Validity . 122

5.7.1 External Validity . 122

5.7.2 Internal Validity . 123

5.7.3 Construct Validity . 124

5.7.4 Conclusion Validity . 125

5.8 Summary . 125

xi

6 Future Work 126

6.1 Detecting Bugs using Documentation Constraints 126

6.1.1 Automated Constraint Extraction using Regular Expressions 130

6.1.2 Automated Constraint Extraction using Natural Language Analysis 132

6.1.3 Applying File Format Constraints to a File Parser 135

7 Conclusion 139

References 140

xii

List of Tables

3.1 New bugs detected by KLEE and DASE. “X” denotes a bug is found by a
tool. “IU” means “Integer Underflow.” “DBZ” is “Divide By Zero.” “IL” is
“Infinite Loop.” “NPD” means “NULL Pointer Dereference.” “POB” stands
for “Pointer Out of Bounds.” “ME” is “Memory Exhausted.” 35

3.2 Coverage results with KLEE’s default search strategy. “Line”, “BR”, and
“Call” show the total number of executable lines of code (ELOC), branches,
and calls for each program, reported by gcov. “K” stands for KLEE and “D”
is DASE. “∆” is the improvement in percentage points of DASE over KLEE. 37

3.3 Number of instructions of generated test cases, showing that DASE explored
deeper than KLEE. “K-” stands for KLEE and “D-” stands for DASE. “AVG-
I” and “MAX-I” is the average and maximum number of instructions for
the generated test cases respectively. Since Coreutils includes multiple
programs, a range (the minimum and the maximum) is shown. 38

3.4 Coverage of combining DASE with developer test cases, showing that DASE
complements developer tests. “V” is developer tests. “D” is DASE combined
with developer tests. Do note that readelf(e) has no developer test cases
hence is missing. 39

4.1 List of evaluated repair tools and PDF viewers. 53

4.2 RQ1—A breakdown of the number of PDF files that are crawled from
the bug trackers (‘crawled’), the number of remaining files after applying
SanityCheck (‘Filtered’), the number of automatically detected corrupted
files (‘Corr’), the number of manually identified real-world corrupted files
(‘Real’), and the number of manually identified files that cause security vul-
nerabilities (‘Sec’). 55

xiii

4.3 RQ1—Classification of the impact of all 119 real-world corrupted PDF files
on the end user and target software based on previous work’s classification
labels [1]. 56

4.4 RQ2—Number of corrupted files (‘Corr.’) that existing tools (Mutool, PDFtk,
and GhostScript) cannot repair (‘None rep.’). We also show the number of
files, amongst the ones that nobody can repair, that are real-world corrupted
(‘None Rep. Real.’) and triggers security vulnerabilities in the target soft-
ware (‘None Rep. Sec.’). 57

4.5 RQ3—Causes of file corruption (Type Coor.) on the 119 real-world cor-
rupted files. The table shows the number of files for each cause of cor-
ruption (T.); the number of files that that cannot be repaired by existing
repair tools including Mutool, PDFtk, and GhostScript (F.); the number of
files that can be repaired by the proposed technique, DocRepair, which is
described in Section 4.5 (R.); and the corresponding repair operator that
is implemented in DocRepair to address the different causes of corruption
(RO). 58

4.6 A list of proposed and existing repair operators (RO) and whether existing
repair tools support them (* means the repair operator is unique to DocRe-
pair). ‘Repaired’ shows the usage frequency of each repair operator over
the 354 corrupted files that are repaired by DocRepair. ‘Uniquely Repaired’
shows the usage frequency over the 10 corrupted files that are uniquely re-
paired by DocRepair. 64

4.7 RQ4—A summary of the automated screenshot evaluation results over 319
corrupted files (including real-world corrupted and purposely corrupted files)
and 1,508 fuzzed corrupted files. The table shows the number of repaired
files by each specific repair tool (Mutool, PDFtk, GS and DocRepair). The
number in bracket refers to the number of files that are uniquely repaired.
‘All’ includes the number of real-world corrupted and purposely corrupted
files. ‘RC’ only includes real-world corrupted files. 70

5.1 List of terms for sentence filtering. 88

5.2 Explanation for Equation (5.1), VP-NP. 91

5.3 Explanation for Equation (5.2), NP-VP. 92

5.4 Results of the six SumSlice projects by CloCom+. 103

xiv

5.5 List of the 16 evaluated projects by CloCom+. CloCom+ generated 442
comments for 780 code locations in the target project. The numbers in
bracket represent the result of CloCom. 103

5.6 Human participant judgments on the generated comments by CloCom+.
CP: completeness; CS: conciseness; EP: expressiveness; US: usefulness. . . 107

5.7 Human participant judgments on the generated comments by SumSlice. CP:
completeness; CS: conciseness; EP: expressiveness; US: usefulness. 112

5.8 Human participant’s opinion on the CloCom+ and SumSlice. PA stands for
participant. 113

5.9 Reasons that an automatically generated comment is not applicable to the
new code segment. The percentage is calculated over the 40 comments that
describe the code segment. 116

5.10 Distribution of the developer-written comments in project Jajuk. LCode—
lines of code; LCom—lines of comment. LCode and LCom are reported
using CLOC. We also show the number of manually identified JavaDoc,
single line and block comments. 117

5.11 The number of comments (obtained from AST parser) and the comment
ratio in brackets (lines of code per comment) of ten randomly sampled Java
projects. 118

5.12 Manual classification of 135 participant-written comments’ unique proper-
ties. Percentage is calculated over 113 comments because 22 of the comments
received no answer. 119

6.1 Trailer dictionary’s table from the ISO 32000 documentation specification.
The trailer dictionary’s table contains the caption, “Table 15 - Entries in the
file trailer dictionary.” . 132

6.2 Syntactic categories examples for the production rules in the CFG. 133

xv

List of Figures

1.1 Example on how DASE leverages constraints to discover bugs. 4

1.2 Stack Overflow Post #32215979 . 6

2.1 Code from Java project—Freecol . 15

3.1 Motivating example on how input constraints help symbolic execution find
more bugs. 23

3.2 The runtime to find the bug in line 11 decreases exponentially as we supply
more input constraints. The runtime when no constraint is supplied is not
depicted because the bug was not detected after 10 hours when we stopped
the execution. 24

3.3 Abstract view of execution trees for command-line options. Clouds are execu-
tion subtrees related to valid command-line options. Ovals are other execution
subtrees. Deep options such as -o are more likely to be tested with DASE. . . . 25

3.4 DASE’s ELF layout. SH is Section Header, and PH is Program Header. Numbers
in brackets are array indices. 30

3.5 Buggy code in readelf.c from Binutils. 36

3.6 Branch coverage on readelf(b) over time. 38

4.1 Corrupted and repaired versions of the corrupted file opened on Chrome
21.0.1180.89 (Chromium bug #134551). The corrupted version of the file
crashes the browser tab. 47

4.2 PDF body’s document tree structure where each node represents an object. 48

4.3 Overview of the empirical study and evaluation. 51

xvi

4.4 Hierarchy of the ‘Page Tree’ structure. The tree contains intermediate nodes
called ‘page tree’ and leaf nodes called ‘page object’. The arrows represent
an indirect reference between the objects. 67

5.1 Code from Java project—Eclipse (PluginsView.java). 80

5.2 Stack Overflow Post #11501418 . 81

5.3 Top code from Java project—Jabref (Month.java) matched against the bot-
tom code from open source project—mdrill from GitHub (CustomPeriod-
icTest.java). 83

5.4 Top code from Java project—Vuze (UnchokerFactory.java) matched against
bottom code from GitHub project spring-framework (ServletContextProp-
ertyUtils.java). 85

5.5 An overview of CloCom+. 86

5.6 A Score Distribution of the 800,744 Android-tagged Stack Overflow ques-
tions. We do not show the distribution where a question has a score of more
than ten (1602 in total) or less than negative ten (two in total). 87

5.7 Parse tree for the sentence “You can use this method to capture the stacktrace
in a String.” The matched Tregex patterns are labeled in bold. 90

5.8 Top code segment from Java project Freemind matched against the bottom
code segment from Stack Overflow (post #35109636) depict the highlighted
missing statement between the two code segments. CloCom+ generated
“Check if a string is a floating point number.” to describe the source code
comment. 95

5.9 Code clones’ size distribution in Stack Overflow. 96

5.10 Example of a repetitive clone. 97

5.11 Code segment from Hibernate project for the classloader comment. 108

5.12 Code segment from project Vuze. 109

5.13 Code segment from project mdrill. 109

5.14 Code segment for the comment “remove query string part.” 110

5.15 Code segment for the comment “Splitting a string at a particular position in
java.” . 111

xvii

5.16 Two pieces of code segment that contain the same computation but are
expressed with a different set of syntax. 121

6.1 Data field layout details of the ELF Header. 127

6.2 An example of where the constraint cannot be applied directly on a static
byte offset due to the extra white space between character ‘0’ and ’R.’ . . . 128

6.3 Context-free grammar that describes the valid structure of the dictionary
string. 129

6.4 The first regular expression for matching table captions. 131

6.5 The second regular expression for decompiling table entries. 132

6.6 Parse tree for the sentence: “An integer shall be written as one or more
decimal digits optionally preceded by a sign.” 135

6.7 CFG for extracting constraints from natural language sentences. One of the
production rules, OBJECT, is omitted since it contains a full list of object
related english terms. 136

xviii

Chapter 1

Introduction

Software documentation is written text or illustration that describes a software system. It
contains information that describes a system’s requirements and specifications and exists
in several forms, including code comments, test plans, manual pages (also known as man
pages), and user manuals (e.g., file format specification). Software maintainers rely on
source code and code comment as two of the most important documentation artifacts to
understand software systems [2]. Documentation had also been previously shown to im-
prove software maintainability [3] and programmer productivity [4]. Since documentation
contains informal information that describes a software system, this thesis attempts to
formalize the information to obtain constraints that describe the behavior of the system.
The constraints that are extracted from documentation can be used to improve a system’s
dependability [5], which is defined as a measure of a system’s reliability, maintainability,
safety, confidentiality, integrity, and availability. Specifically, this thesis focuses on utilizing
documentation to detect software bugs and repair corrupted files to improve a system’s
reliability (e.g., continuity of correct service), and automatically generate documentation
to improve a system’s maintainability (e.g., ability to undergo repairs and modifications).

Code bases often contain a vast amount of documents. For example, GitHub [6] con-
tains a total of 17 million lines of Java comments and 42 million lines of code in 1,005 Java
projects [7]. Documentation contains valuable information that describes the behavior of
the program. Previous work had utilized code comments for inconsistency detection be-
tween comment and code [8], and inferring method specifications from natural language
API descriptions [9]. For example, a code comment from the Linux Kernel, “This function
must not be called from interrupt context,” specifies that the target function that the com-
ment is describing must not be called from interrupt context [8]. Therefore, the first goal of
this thesis is to analyze software documentation (including manual pages, code comments,

1

and user manuals) to improve software reliability. Specifically, we want to minimize the
number of failures in a software system by detecting software bugs and repairing corrupted
files through the use of documentation constraints. This thesis examines three types of soft-
ware documentation, including manual pages (help text for Linux/Unix commands, system
calls, file format etc.), source code comments, and user manuals (a technical document can
contain text, images, tables, etc.). We extract constraints from the documentation, and
we utilize them to perform automated bug detection and automated file repair.

Many software projects often do not contain sufficient documentation in practice [10].
Documentation can be scarce, incorrect [11], or outdated in practice [2, 12]. Therefore,
the second goal of this thesis is to generate documentation automatically. Specifically,
it leverages two sources of information including software repositories and question and
answer (Q&A) sites for automatic documentation generation.

The theme of this thesis considers both documentation analysis and documentation
generation as the two main goals. Documentation analysis relies on the existence of high-
quality documentation. However, high-quality documentation may not always be available,
which motivates us to propose techniques to generate them automatically. This thesis
proposes techniques to improve both areas. In the future, it may be possible to take the
automatically generated comments as the input for documentation analysis.

1.1 Automatic Documentation Analysis

Documentation analysis focuses on improving software reliability. We propose and imple-
ment two pieces of work for automatic documentation analysis.

First, we propose DASE to automatically detect software bugs. Software bugs can
cause severe issues to the end user such as program crashes and incorrect behavior. DASE
can detect software bugs automatically which helps developers to discover and fix software
bugs early during the software development cycle and reduce the number of software errors
and failures.

Second, we propose DocRepair to study corrupted PDF files and use that knowledge
to repair corrupted PDF files with manually extracted documentation constraints. Since
corrupted PDF files can cause error and failures on the target application (e.g., inability to
open and display the content of the file), DocRepair repairs the corrupted files to mitigate
the software failure, which helps improve software reliability.

2

1.1.1 General Symbolic Execution-Based Software Testing

We implement DASE to leverage documentation to help improve automated test genera-
tion and bug detection. Real world programs contain an enormous number of execution
paths. Given a limited amount of time, testing tools have to prioritize the execution paths
to ensure effective testing. We want to automate the process by extracting input con-
straints from the documentation. DASE extracts and applies grammar-based constraints
on complex program inputs to help find bugs in structured-file parsing applications.

DASE guides symbolic execution to focus testing execution paths that implement pro-
gram’s core functionalities using constraints learned from the documentation. It analyzes
two types of documentation, source code comments, and manual pages. It extracts two
types of constraints, file format constraints, and valid-option constraints.

Since input constraints commonly exist in documents, symbolic execution techniques
can potentially take advantage of the constraints automatically. For example, rm (version
6.10) only accepts 11 options including -r and -f, and readelf requires its input files to
follow Executable and Linkable Format (ELF). Focusing on the valid and close-to-valid
inputs can help test the core functionalities of the program, which should improve testing
coverage and effectiveness as shown by previous techniques [13, 14].

Figure 1.1 shows code from a program (readELF) that accepts ELF files as an input.
The code segment processes an ELF file’s header, and it contains a bug that is located at
a deeper location of the code segment. DASE can locate the bug because there is a branch
condition at line 2 that checks if the magic number of the file is valid, which has to return
false to reach the bug. DASE can infer the magic number by extracting constraints about
the ELF file format’s header from the documentation. DASE prunes away the execution
path that contains an invalid file format, which helps the symbolic execution engine to
reach the buggy location faster.

Challenges Since documentation are often written in natural language, it requires
the utilization of natural language processing techniques and heuristics to extract the
input constraints. The extraction of constraints from the documentation is a challenging
process. First, English sentences may express the same information using a wide variety
of terms and sentence structure. Therefore, we propose the usage of grammar rules to
extract key information within each sentence. Second, source code comments and manual
pages are semi-structured. They do not formally link the constraints back to the formally
defined data structure, which requires static analysis and heuristics to link the data field
constraints.

3

1 static int process_file_header(void) {
2 if (elf _header.e_ident[EI_MAG0] != ELFMAG0
3 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4 || elf_header.e_ident[EI_MAG2] != ELFMAG2
5 || elf_header.e_ident[EI_MAG3] != ELFMAG3){
6 return 0;
7 }
8 ...
9 // An integer underflow bug in deeper location of the code

.
10 }

Figure 1.1: Example on how DASE leverages constraints to discover bugs.

1.1.2 Automatic File Repair

We implement DocRepair to leverage documentation to help assist document recovery
tools to repair corrupted files. Corrupted files cause many software failures. Specifically,
file corruption causes software crashes [15], security issues [16, 17, 18, 19, 20], users unable
to access valuable data, etc. For example, a corrupted PDF file triggered a null pointer
bug in the Google Chromium browser, which caused the browser to crash [15]. Files often
become corrupted due to problems such as file system bugs [21, 22], network transfer
errors [23], malicious modifications of a file [24], and buggy software [25].

It is important to repair corrupted files to mitigate the resulting software failures.
However, this task is challenging [26, 27]. File viewers often fail to display corrupted files
because corrupted files do not follow PDF specifications and cannot always be parsed by
the viewer. Thus, practical techniques to repair corrupted files are in high demand.

Challenges The extraction of file format constraints for document repair tools is chal-
lenging because it requires a good understanding of the corrupted file problem. It is
important to understand the number of real-world corrupted files in the wild; the causes of
file corruption (e.g., corrupted base structure and corrupted font); the impact of file cor-
ruption (e.g., incorrect functionality, crash, and performance degradation); and whether
existing techniques can repair them. All these questions need to be investigated to design
a solution for repairing corrupted PDF files.

There is neither a comprehensive study to quantify the existence of corrupted files in the
real world nor a study to understand their impact, despite some anecdotal evidence [26] and
previous work that analyzed the impact of data corruption in storage systems [28, 29, 30].

4

Therefore, we performed an empirical study to study corrupted files. Based on the results
of the study, we implement a list of repair operations to repair the common causes of file
corruption.

1.2 Automatic Documentation Generation

We propose and implement a new technique for automatic documentation generation. The
purpose is to generate code comments automatically since code comments are scarce in
practice. Code comment is a form of documentation that is written in natural language
that contains information to help developers understand the source code. A better un-
derstanding of the source code helps developers to perform modifications to the target
application and thus improves the software maintainability.

We implement CloCom+ to generate code comments by mining from two sources.
CloCom+ mines code comments from existing software repositories in GitHub [6] and a
Question and Answer site called StackOverflow [31].

CloCom+ has a similar design compared to our previously published work, AutoCom-
ment [32] and CloCom [7]. The main difference is that CloCom+ extracts code comments
from both GitHub projects and Stack Overflow posts, instead of extracting comments from
only one of the sources. CloCom+ adds a comparision against a previous work [33] with a
user study, and performs an empirical study on the properties of automatically generated
and human-written comments.

Figure 1.2 shows an example of automatic comment generation, where CloCom+ lever-
ages a Stack Overflow post to generate comments automatically. The figure shows the
title of the post, code snippet, and a paragraph that describes the code snippet from the
answer. Since a similar piece of code segment also exists in the Java project—Vuze (not
shown here), CloCom+ can extract the sentence from the post’s answer, apply natural lan-
guage processing techniques on the sentence, and generate following comment to explain
the code segment in Vuze: “Build this value in java using Calendar.”

The underlined term in the code segment represents the text similarity term between the
sentence and the code segment, and we applied natural language processing techniques [34,
35] to refine the sentence into a source code comment.

5

Stack Overflow Question (Title):
How to manage dates in Android sqLite database when I care only about the date (which
is to be unique) and not the time?
Stack Overflow Answer:
Alternatively, you can build this value in java using Calendar:
1 Calendar calendar = Calendar.getInstance ();
2 calendar.set(Calendar.HOUR_OF_DAY , 0);
3 calendar.set(Calendar.MINUTE , 0);
4 calendar.set(Calendar.SECOND , 0);
5 calendar.set(Calendar.MILLISECOND , 0);
6 long time = calendar.getTimeInMillis ();

Figure 1.2: Stack Overflow Post #32215979

1.2.1 Mining Question and Answer Sites

Stack Overflow contains code segments together with their descriptions, which we refer to
as code-description mappings. We extract such mappings and leverage them to generate
comments automatically for similar code segments matched in open source projects.

We mine source code comment from Q&A sites because they naturally contain code
descriptions written by developers that can be used for automatic comment generation.
For example, a user asked, “Can I know if a given method exists? ” (Stack Overflow post
#28069121). The question received a Java code snippet that checks if a given method had
been declared in the class. We can use the statement form of the question “Know if a given
method exists.” as an explanatory description of the code snippet.

Challenges It is a challenging task to select the correct sentence that describes the
source code. First, a piece of code segment may have several sentences describing it.
We have to select the sentence that best describes the code segment by leveraging text
similarity heuristics. Second, the sentences that we mine from Stack Overflow cannot
be directly utilized as a source code comment. We have to leverage natural language
processing techniques to refine the sentence because a sentence can be in question form or
contain unneeded information. Third, we have to detect for similar code segments between
Stack Overflow and the input project. Since code segments in Stack Overflow are often
not compilable. We apply refinements to the code segments before the application of the
code clone detection process.

6

1.2.2 Mining Code Repositories

Existing software repositories contain source code comments that can be extracted for
automatic comment generation. For example, previous work had shown that GitHub [6]
contains 17 million lines of Java comments and 42 million lines of code across 1,005 projects
(based on CLOC) [7]. Mining from existing code repositories brings a new set of unique
challenges compared to the mining from Q&A sites.

Challenges Mining human-written comments from existing software repositories have
four main challenges. First, since we mine code comments from a large pool of software
repositories, a code segment is often similar to many other code segments that contain code
comments because software reuse is common. Therefore, it requires a comment selection
technique that works with a large set of candidates. Second, it is challenging to parse code
comments from the source code. The reason is that code comments from existing software
repositories are often not written in full sentences, which means a natural language parser
cannot process the sentences accurately. Third, code comments mined from source code are
more likely to contain project-specific information compared to human-written sentences
on Q&A sites. Fourth, we require a highly scalable code clone detection tool [36, 37] that
allows us to extract fine-grained code information such as type information and variable
scope level. Therefore, we built a code clone detection tool that leverages an abstract
syntax tree parser to improve the accuracy of the code clone detection technique.

1.3 Contributions

This thesis includes the following contributions:

• We propose and implement DASE for automated documentation analysis to auto-
matically find bugs in the target software. DASE leverages documentation to help
guide a symbolic execution engine to utilize constraints to focus the testing on ex-
ecution paths that are semantically more important. We propose a new technique
that combines natural language processing techniques and heuristics to extract the
required constraints from manual pages and source code comments.

• We propose and implement DocRepair to leverage documentation to guide document
recovery tools to repair corrupted files. We create the first dataset of real-world
corrupted files and performed an empirical study to study their causes and impact
on the end user and target application. Based on the result of the empirical study

7

we propose seven repair operators that utilize documentation constraints to repair
corrupted files.

• We propose and implement CloCom+ for automatic documentation generation. Clo-
Com+ generates source code comments through mining both existing software repos-
itories from GitHub and a large scale Q&A site, Stack Overflow. It leverages natural
language processing techniques to map sentences against code segments to generate a
code-description mapping database for automatic comment generation, and it lever-
ages information from an abstract syntax tree parser to perform text similarity for
selecting the code comment that best describes the target code. Although CloCom+
improves on previous work, SumSlice, on automatic comment generation, the quality
(evaluated on completeness, conciseness, expressiveness, and usefulness) and yield
(number of generated comments) are still rather low which makes the technique far
from ready for real-world usage.

• We propose future work to improve symbolic execution-based software testing on
structured-file parsing applications such as XML and PDF, which requires a more
expressive way (e.g., context-free grammar) to describe the file format. We describe a
preliminary approach to extract file format constraints automatically from documen-
tation using regular expressions and natural language processing techniques, where
the extracted constraints can be applied on a file parser to help detect constraint
violations on the target file.

1.4 Overview of Thesis

The following is an overview of the thesis. Chapter 2 discusses the related work and back-
ground information. We describe the two techniques for documentation analysis. Specif-
ically, we utilize documentation to improve a symbolic execution tool (Chapter 3) and a
document recovery tool (Chapter 4). Chapter 5 describes a technique that is used for doc-
umentation generation. Specifically, we generate source code comments by mining both
GitHub projects and a Q&A site called Stack Overflow. Chapter 6 discusses the future
work on automatically extracting documentation constraints using regular expressions and
natural language processing techniques for bug detection. Chapter ?? provides an overview
of my research publications.

8

Chapter 2

Related Work

This chapter introduces the background material and related work that are related to this
thesis.

2.1 Symbolic Execution

Symbolic execution is a software testing technique that generates test cases automatically
to expose bugs in a program. Instead of executing programs with concrete inputs, symbolic
execution represents inputs as symbolic values. Upon exploring a branch whose condition
involves symbolic values, two paths are created, and the corresponding constraints are
added to each path. Once the execution of a path terminates, the collection of constraints
along that execution path is used to generate concrete inputs to exercise the path.

Symbolic execution [38, 39] (alone or with concrete execution) has been widely used
for automated testing [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. However, it suf-
fers from the fundamental problem of path explosion. To alleviate the path explosion
problem, many strategies have been proposed [52, 40, 53, 46, 54, 55, 56, 57, 58, 59].
Veritesting [53] leverages static symbolic execution to guide and improve dynamic sym-
bolic execution. CUTE [46] and CREST [55] both use a bounded depth-first search (DFS)
strategy. ZESTI [60] uses developer generated tests as “seeds” and explore paths similar
to the seeds’ paths. ZESTI’s performance is affected by existing tests. Differently, we
propose DASE to utilize input constraints as a “filter” to aid search strategies to focus on
both valid and close-to-valid inputs (e.g., boundary cases) to explore deeper in a program’s
core functionality.

9

DASE complements ZESTI: DASE detected two previously unknown bugs in Core-
utils that were not detected by ZESTI (the same version of Coreutils was used by
DASE and ZESTI). Input space partitioning [61] has been used to improve symbolic exe-
cution [62, 63, 64]. For example, FlowTest [62] partitions the inputs into “non-interfering”
blocks by analyzing the dependency among inputs.

Recent work by Trabish et al. proposed chopped symbolic execution, which allows the
user to manually specify uninteresting parts of the code (list of functions along with specific
call sites) to skip to improve the performance of symbolic execution [65]. Their proposed
technique, Chopper, lazily executes the code that user specified to skip. The evaluation
is conducted on GNU libtasn1 which is a library that serializes and deserializes data in
Abstract Syntax Notation One syntax. The authors manually created an execution driver
for the library and manually specified a set of functions to skip. Our proposed technique,
DASE, differs from Chopper in two ways in terms of the way it specifies the uninteresting
parts of the code. First, DASE specify the interesting parts of the code by constraining the
standard input of the program whereas Chopper specifies them through annotation of the
source code. Second, DASE automatically extracts the constraints from the source code
using natural language processing techniques and heuristics, whereas Chopper requires
manual annotation on the functions.

One of the issues with symbolic execution is that it would fail to locate bugs that are
within the deeper parts of the code when the bug requires a complex input to trigger.
Concolic execution is a technique that is used to help symbolic execution explore deeper
parts of a program by providing the symbolic execution engine with a concrete execution
path. However, concolic execution still suffers from the path explosion issue due to the
large number of execution paths in a program which limits the scalability. Previous work
proposed hybrid fuzzing which combines fuzzing and concolic execution [66, 67].

Previous work by Stephens et al. proposed Driller [67] which combines concolic exe-
cution with fuzzing to reach deeper parts of the code by using fuzzing to alleviate path
explosion. Driller utilizes the fuzzer to explore the initial compartment of the program
(defined as checks for particular values of a specific input), and when the fuzzer is un-
able to identify inputs to reach new compartments of the program, it invokes the concolic
execution component to determine the specific input that is needed to reach new paths.
The new possible input that is determined by the concolic execution component is then
once again passed back to the fuzzer to explore the input for the new component. DASE
also attempts to infer the valid input from the documentation to reach new compartments
of the program. Specifically, the inferred input from DASE is utilized to reach beyond
the compartment that process the command line options and the compartment that pro-
cesses the program’s input file. One of the main advantages of Driller over DASE is that

10

Driller does not necessarily require an input test case to operate, where DASE requires
the standard input of the program to be constrained with file format constraints. Driller
is also capable of obtaining new constraints that are required to explore deeper parts of
the program dynamically during concolic execution as more code is covered, where DASE
determines all the required constraints prior to the execution of the symbolic execution
tool.

Previous work by Yun et al. proposed QSYM [66] which also combines fuzzing with
concolic execution. The main focus of QSYM contains several performance improvements
and optimizations. QSYM contains optimizations including the removal of the IR transla-
tion layer from the symbolic emulation, removal of the snapshot mechanism from hybrid
fuzzing, and the collection of an incomplete set of constraints for efficiency. The optimiza-
tions enabled QSYM to become much more scalable. The evaluation of QSYM shows that
it is able to outperform Driller in terms of code coverage for 104 out of the 126 DARPA
CGC binaries.

The previous techniques rely on information from the code logic to guide the path
exploration process. Differently, DASE automatically extracts input constraints from doc-
uments and uses the constraints to prune execution paths. Also, DASE focuses on valid
and close-to-valid inputs while the above techniques have no knowledge about whether an
execution path corresponds to valid or invalid input.

Symbolic execution by default is an exhaustive testing approach that attempts to ex-
plore the entire input space on the target software, which is the reason that it is not
scalable. Previous work proposed Directed random testing [68], where it combines random
input generation with a heuristic pruning technique that discards illegal and equivalent
inputs to reduce the input space. Directed random testing is more scalable compared
to symbolic execution, but it also lacks a meaningful stopping criterion since it does not
systematically explore the program.

2.2 Automatic File Repair

Much work focused on automatic file repair. The first branch of work relies on manually
written constraints. Demsky et al. detect and repair violations on data structures using
manually-written constraints [69], and Endignoux et al. proposed manually written formal
grammar rules to validate the PDF file format [70]. The second branch of work repairs the
corrupted file without knowledge of the file format. Docovery [26] uses symbolic execution
to modify potentially corrupted bytes of a file and avoid program paths that will lead to

11

a crash. SOAP [71, 72] automatically learns the constraints of a file format from training
inputs, but the extracted constraints are based on the patterns observed in the input
examples and can potentially be incorrect. The third branch of work repairs a corrupted
file by modifying the execution path of the file viewer, which does not modify the corrupted
file. Wüsta et al. proposed Force Open [27] to repair corrupted files with a black box
approach using binary instrumentation. The fourth branch of work is the specialized
repair tools. In the area of the PDF file format, it includes repair tools (e.g., MuPDF [73],
PDFtk [74], PDF Repair Tool [75] and PDF Repair Toolbox [76]) and parsing libraries
(e.g., Poppler [77] and GhostScript [78]). These tools are developed by experts to parse
and repair specific file formats. In this work, we propose DocRepair, as a specialized repair
tool since we rely on expert knowledge from the study.

Rinard [72] proposed a manually defined rectifier to transform program input into
a constrained input format for email messages. The purpose is to avoid unanticipated
errors and vulnerabilities during the program execution. A follow-up work, SOAP [71],
automatically infers constraints based on a set of training inputs. SOAP learns a set of
constraints such as the upper bound and constraints of integer fields (i.e., sign of the value).
However, the learned constraints are dependent on the training set of the program, which
can be incorrect if all the input files have the same value in specific fields.

Kuchta et al. proposed Docovery [26], a document recovery technique based on symbolic
execution that is independent of the input file format. The technique first identifies the
input bytes that cause the program to crash using dynamic taint tracking. Then, it executes
the program concolically [79], and upon reaching a point where the program would crash,
it forces the program to follow a different execution path by modifying only the bytes in
the document that are related to the crash. The technique works well for less complicated
document formats. However, PDF proved to be a challenging target due to the complexity
of the file format.

Docovery technically can theoretically repair any corrupted given an unlimited amount
of time to allow the symbolic execution engine to reach the exit of the program without
any errors. However, existing symbolic execution tools still have scalability issues beyond
small applications. On the other hand, DocRepair’s repair capability is limited towards
the defined list of repair operators. Docovery generates a large number of repair candidates
(that may or may not be repaired) since it creates a candidate file for each execution path
that leads to a crash, which differs from traditional repair tools (e.g., DocRepair, Mutool,
PDFtk, and GhostScript) that generates a single repaired file. Since Docovery generates
multiple repair candidates, it would require a tool to select the best candidate from the
list of files.

12

Wüsta et al. proposed Force Open [27] to automatically repair file formats including
PNG, JPG, and PDF files with a black box approach that relies on binary instrumentation.
Unlike existing approaches that repair a file by modifying bytes of the corrupted file, it
modifies the execution of the file viewer to force it to open a corrupted file. Force Open
learns the behavior of a file viewer on valid files and modifies the program to follow learned
behavior to force open a corrupted file. They compared their repair capability against
a PDF repair tool called PDFtk [74], and their technique achieved a repair rate of 4.9%
compared to PDFtk’s 13.4%.

Rinard et al. proposed a technique to detect and repair errors in data structures for
several applications (e.g., a Linux file system and Microsoft Office files) [80]. It allows
manual specification of the data structure’s constraints, which are represented by a set of
object and relation declarations.

Brown et al. proposed the reconstruction of corrupt files that utilize the DEFLATE
compression algorithm (e.g., ZIP archives, Microsoft Office 2007 and OpenDocument doc-
uments) [81, 82].

2.3 Automatic Comment Generation

Code commenting is an integral part of software development. It helps improve software
maintainability [83] and programming productivity by helping developers understand the
source code.

Several automatic comment generation techniques generate source code comments auto-
matically for certain code structures, such as failed test cases [84], the context surrounding
a method [33], exceptions [85], APIs [86], code changes [87] and function parameters [88].
Sridhara et al. proposed an approach to generate comments automatically from source code
for Java methods [89], high-level actions within methods [90], and Java classes [91]. These
techniques rely on the source code to contain high-quality identifier name and method
signatures to generate a comment. For example, when grouping method calls [90] such as
buildGameMenu and buildViewMenu, all the method names have to contain the same verb,
build. It would then synthesize build menus or build different menus as the output.
These techniques [89, 90, 91] all leverage the Software Word Usage Model [92], which is
responsible for capturing the action, theme, and secondary arguments for a method. Their
technique [90] works on statement sequences that are conditional blocks, perform similar
actions, or follow specific templates. Differently, we propose AutoComment and CloCom,
which can generate a high-level comment for multiple statements that perform different
actions, and it is not limited to the grouping strategy.

13

Previous work generates comments for software concerns [93] and MPI programs [94].
These techniques do not solve the problem of grouping statements that perform different
sub-actions into a high-level action. Recently, Wang et al. [95] proposed a grouping strategy
that segments method code into meaningful blocks. The grouping strategy can potentially
improve the previous technique [90], but it is still difficult to generate comments for a group
of statements with different sub-actions. Differently, AutoComment can naturally group
the statements based on the code segments from Stack Overflow written by developers,
and CloCom does not require grouping of the statements.

Recent work by Hu et al. proposed a technique called DeepCom to generate code com-
ments for Java methods automatically by analyzing the structural information of the code,
which utilizes machine translation techniques to convert source code to natural language
sentences [96]. DeepCom treats comment generation as a Neural Machine Translation
(NMT) problem, and it builds a language model for both the source code and comments.
They proposed a unique way to translate the abstract syntax tree (AST) of the code to a
specially formatted sequence to ensure the code representation is lossless for the language
model. The evaluation of their work is compared against an existing technique called
CODE-NN [97] which utilizes recurrent neural network (RNN) with attention to generate
summarizes, and they utilize the BLEU score to measure the performance. Our proposed
technique, CloCom+, generates code comment for code segments within a Java method,
as opposed to DeepCom which generates code comment for Java method.

The evaluation of code comments and code summaries commonly involves recruiting
multiple human participants to judge the generated comment and summary. Moreno et al.
evaluated Java class summaries using criteria including content adequacy, conciseness, and
expressiveness [91], and Sridhara et al. evaluated Java method summaries using accuracy,
content adequacy and conciseness [89]. However, these criteria all focus on the intrinsic
evaluation instead of the extrinsic evaluation. An intrinsic evaluation focuses on evaluating
the content of the summary (e.g., accuracy, adequacy and conciseness), whereas an extrinsic
evaluation focuses on the usefulness of the summary (e.g., impact on the developers). For
example, an extrinsic evaluation can measure how much faster a developer can perform a
coding task while given additional resources such as code summaries.

Figure 2.1 shows a code segment from the Java project—Freecol. Previous work from
[90] generates comments for high-level actions within methods. Their work generates com-
ments for three types of statement groups. The first type involves sequences of statements
that can be grouped into a high-level action (same verb phrase with a common headword).
The second type involves conditional blocks that contain integrable sequences of state-
ments along the branches (if ... else if ... else ... or switch). The third type
involves specific common high-level code patterns that are based on loop constructs. Their

14

1 while(wNew*2 <= w && hNew*2 <= h) {
2 w = (w+1)/2;
3 h = (h+1)/2;
4 BufferedImage halved = new BufferedImage(w, h,

BufferedImage.TYPE_INT_ARGB);
5 Graphics2D g = halved.createGraphics ();
6 // For halving bilinear should most correctly average 2x2

pixels.
7 g.setRenderingHint(RenderingHints.KEY_INTERPOLATION ,

RenderingHints.VALUE_INTERPOLATION_BILINEAR);
8 g.drawImage(im, 0, 0, w, h, null);
9 g.dispose ();
10 }

Figure 2.1: Code from Java project—Freecol

work cannot generate a comment for this code segment. The code contains no sequences
of statements that can be grouped together. For example, method setRenderingHint()
and drawImage() contain different actions, set and draw. The code also does not contain
any conditionals or loop constructs.

Previous work from [89] generates summaries for Java methods, which are leading
comments that occur before a method. For example, it can generate a summary for the
method, scaleImageTo, under Figure 5.2. Their technique first selects important lines of
code that are important to a method summary. It selects the return statement on line 12
because it is the exiting point of a method; selects line 7, 10 and 11 because they contain
method calls that do not have a return value; and selects line 6 because the return value,
g, is not in the return statement. It then performs filtering and removes line 6 because the
method, createGraphics, contains an object creation operation. In the end, it synthesizes
natural language sentences for line 7, 10, 11 and 12 using their Software Word Usage Model,
which then becomes the method summary. Our work focuses on synthesizing comments for
high-level actions within methods instead of synthesizing comments for the entire method.

2.4 Source Code Summarization

Source code summarization presents the set of important keywords that best represents
the source code. It differs from automatic comment generation, where comment generation
requires the generated sentences to describe the functionality of the source code.

15

Previous work utilizes text retrieval (TR) techniques (e.g., Vector Space Model, Latent
Semantic Indexing and hierarchical PAM) to summarize source code [98, 99, 100, 101].
McBurney et al. [102] proposed a technique that utilizes topic modeling technique to select
keywords to represent the source code. The approach is similar to the traditional field of
automated text summarization. A source code summary contains terms that are extracted
from the identifiers and comments in the source code. TR technique selects terms based
on the weight of each term in the source code document, and the terms with the highest
similarity against the document are captured in the summary. These source code sum-
marization techniques do not generate natural language sentence summaries, where they
choose the top K terms to represent the source code.

Moreno et al. [103] performed an analysis of human-written and automatic summaries.
The result shows that developers create longer natural language summaries of code se-
quences that involve sequences of method calls, and that term-based summary is less
informative compared to a sentence-based summary. They also showed the key structural
elements that should be included in a summary. This thesis proposed CloCom+ which
specifically generates sentence-based summaries.

2.5 Mining Descriptions for Code Artifact

Many studies mine descriptions or documentation for code artifacts from developers’ com-
munications, such as bug reports [104], forum posts [105], issue trackers [106] and the
web [107]. These studies focus on project-specific descriptions. For example, they extract
descriptions for Eclipse code artifacts from the mailing list and bug tracking system of
Eclipse. Thus, such descriptions are more likely to benefit Eclipse.

Differ from previous work we propose AutoComment to mine descriptions that are
general for each domain. AutoComment extracts source code comments that directly de-
scribes the functionality of the code segment, whereas previous work mines information
that is specific to the project. AutoComment is not limited to generating descriptions for
methods, and we adapt NLP techniques to improve the comment quality. Also, previous
work leverages heuristics (e.g., text similarity) to link descriptions and code. AutoCom-
ment combines clone code detection and heuristics to improve accuracy. Some work helps
improve code extraction from unstructured data, such as emails and documents [108, 109].
In the future, AutoComment can leverage these techniques to mine more descriptions from
emails and documents, not only from Q&A sites.

Recent previous work by Chatterjee et al. [110] performed an exploratory study to
learn the different kinds of information (e.g., testing, efficiency, erroneous, design, etc.)

16

that are embedded in different types of software documents (e.g., Q&A sites, bug reports,
documentation, etc.). Chatterjee et al. [111] also proposed a technique to automatically
identify code segments, along with the corresponding descriptions, from research articles.

2.6 Code Clone Detection

There are three major types of code clone detection techniques: token-based [112, 113, 114],
AST-based [115, 116], and semantics-based [117]. Roy et al. performed a comprehensive
comparison and evaluation of the current state-of-the-art in clone detection tools [118]. In
our proposed work, AutoComment and CloCom, we developed a token-based code clone
detection tool to address both the scalability and adaptability of the code clone detection
process. It supports the compilation of partial code segments in Stack Overflow. Its clone
matching algorithm provides better support for detecting code clones that contain inserted
and deleted statements.

CloCom [7] utilized a code clone detection tool with a matching algorithm similar
to that of existing work, DuDe [119]. CloCom utilized an abstract syntax tree parser
for tokenization of the code elements because the source code can be compiled, where
SIM [112] used a custom tokenizer written in Lex. CloCom’s code clone detection tool is
more scalable compared to SIM [112], and its clone matching algorithm provides better
support for detecting code clones that contain inserted and deleted statements.

Previous work from Wang et al. proposed a token-based large-gap clone detector called
CCAligner [120]. CCFinderX [114]. Sajnani et al. proposed a token-based clone detector
called SourcererCC that utilizes a similarity overlap threshold to detect type-3 clones [37].
Svajlenko et al. addressed the scalability issue of code clone detection tools. They devel-
oped a shuffling framework [121] to scale classical code clone detection tools to ultra-large
datasets for tools such as Deckard [115], NiCad [122], iClones [123] and CCFinderX [114].

2.7 Fuzz Testing

Fuzz testing is a software testing technique that inserts random, invalid or unexpected data
into a program to locate bugs [13, 124, 125]. Blackbox fuzzing provides a program with
either random inputs or invalid inputs that had been mutated from a well-formed input.
Whitebox fuzzing [13] utilizes symbolic execution to collect constraints on the program
input, which allows mutation of the input such that it impacts the execution path of the
program.

17

Godefroid et al. proposed SAGE [124] as a whitebox fuzzing technique for security
testing. It utilizes symbolic execution to gather constraints of the program input to help
find defects in structured-file parsing applications. It first runs the program in concrete
with a well-formed input, which allows the collection of branch constraints on the individual
input bytes. SAGE then negates the constraints one at a time to yield new inputs that
can exercise different parts of a program.

Majumdar et al. proposed CESE [126] that combines grammar-based blackbox fuzz
testing with symbolic execution. CESE relies on converting context-free grammar of the
program input into symbolic grammar, enumerating a set of valid symbolic strings from
the symbolic grammar, and performs concolic symbolic execution on the symbolic strings,
where unbounded parts such as variable names and numbers are replaced with a symbolic
constant.

Godefroid et al. extended SAGE and proposed a grammar-based whitebox fuzzing
technique [13] that enhances whitebox fuzzing with a grammar specification of the valid
input. The grammar specification is translated into higher-level symbolic constraints, which
restricts the symbolic tokens that are returned by the lexer to valid inputs. Their approach
differs from traditional techniques which marks input bytes as symbolic [127, 43, 124].
Instead, they constraint individual tokens as symbolic, which are marked by a lexer.

However, the above techniques require input grammar to be given manually, Therefore,
we propose future work to extract context-free grammar that describes the program input
automatically. A recent work by Lemieux et al. [128] proposed to automatically gener-
ate inputs with feedback-directed mutational fuzzing, which does not require any domain
knowledge about the program.

2.8 Documentation Analysis

Many techniques analyze documents such as manual pages to check for undocumented
error codes [129], and code comments [8, 130, 131] and API documentation [132] for bug
detection. Much work focused on analyzing software documentation using NLP techniques.
Our previous work, DASE [133], extracts constraints from documentation to guide symbolic
execution to focus testing execution paths that implement program’s core functionalities.
The valid input of a program, which can be expressed using a set of input constraints,
reduces the size of the search space of execution paths. This thesis attempts to utilize
constraints from the documentation to repair corrupted files and detect bugs in programs.

Zhong et al. proposed work to inference resource specifications from API documentation

18

for bug detection [134]. The work extracts the action that the method takes and the
resource that the method interacts against. Zhong et al. also have a follow up work that
infers method specifications from API descriptions [135]. The former work utilized Hidden
Markov Model for building the action-resource pairs, where the ladder utilized semantic
templates.

Rubio-González et al. proposed work to detect inaccurate documentation by comparing
Linux system calls against their respective manual pages [136]. Tan et al. utilized NLP
techniques to detect inconsistencies between source code and code comments to detect
software bugs [8, 130].

19

Chapter 3

Documentation Analysis: Symbolic
Execution-Based Software Testing using
Documentation Constraints

3.1 Motivation

Software testing is an essential part of software development. Many automated test
generation techniques are proposed and used to improve testing effectiveness and effi-
ciency [52, 137, 138, 40, 124, 139].

Symbolic execution [38, 39] has been leveraged to automatically generate high code
coverage test suites to detect bugs [53, 140, 141, 142, 143, 60, 144]. Symbolic execution
represents inputs as symbolic values instead of concrete values. Upon exploring a branch
whose condition involves symbolic values, two paths are created, and the corresponding
constraints are added to each path. Once the execution of a path terminates, the collection
of constraints along that execution path is used to generate concrete inputs to exercise
the path. Symbolic execution suffers from the fundamental problem of path explosion.
In practice, one needs to use search heuristics and other techniques to guide symbolic
execution [52, 55, 124, 62, 60].

Although symbolic execution has been successful in improving testing effectiveness,
existing techniques do not take full advantage of programs’ input constraints expressed in
documents. Valid program inputs typically need to follow certain constraints. For example,
rm (version 6.10) only accepts 11 options including -r and -f, and readelf requires its

20

input files to follow Executable and Linkable Format (ELF). Focusing on the valid and
close-to-valid inputs can help test the core functionalities of the program, which should
improve testing coverage and effectiveness as shown by previous techniques [145, 126].
It allows symbolic execution to devote more resources on testing code that implements
program’s core functionalities, as opposed to code for input sanity check and error handling.
Fortunately, information about input constraints commonly exists in software documents,
such as programs’ manual pages (e.g., the output of man rm) and the comments of header
files (e.g., elf.h).

Thus, we propose a general approach, Document-Assisted Symbolic Execution (DASE),
to enhance the effectiveness of symbolic execution for automatic test generation and bug
detection. DASE automatically extracts input constraints from documents, and uses these
constraints as a “filter" to favor execution paths that execute the core functionalities of
the program. DASE, as a path pruning strategy, can be used on top of existing search
strategies to further improve symbolic execution (Section 3.6 shows that DASE can find
more bugs and improve testing coverage on top of different search strategies).

This automation is novel because existing symbolic execution techniques [145, 126] do
not analyze documents automatically and require input constraints to be given. Previous
work has shown that constraint extraction from documentation [146, 147] is important yet
challenging. Since this automation can reduce manual effort, DASE could make it easier for
practitioners to adopt these symbolic execution techniques [145, 126] and other techniques
that require input constraints [138, 148, 149] such as constraint verification.

DASE considers two categories of input constraints: the format of an input file (e.g.,
ELF and tar), and valid values of a command-line option (e.g., -r for rm). These two
types are sufficient for a wide spectrum of programs. This work makes the following
contributions:

• We propose a novel approach, DASE, to improve automated test generation. By
leveraging input constraints automatically extracted from documents, DASE enables
symbolic execution to automatically distinguish the semantic importance of different
execution paths to focus on programs’ core functionalities to find more bugs and test
more code.

• We propose a new technique that combines natural language processing (NLP) tech-
niques, i.e., grammar relationships and heuristics, to automatically extract input
constraints from documents. The technique is general and should be able to ex-
tract input constraints for purposes other than symbolic execution such as program

21

comprehension and constraint verification. We study two types of documents, i.e.,
manual pages and code comments, and extract input constraints from both.

• Our evaluation shows that DASE finds more bugs and has higher code coverage than
KLEE [40] (a symbolic execution tool without input constraints from documents).
We evaluated DASE on 88 programs from 5 widely-used software suites—GNU
Coreutils, GNU findutils, GNU grep, GNU Binutils, and elftoolchain,
most of which have been thoroughly tested by many symbolic execution tools [40, 53,
60, 41]. DASE detected 12 previously unknown bugs1 that KLEE failed to detect, 6
of which have already been confirmed by the developers, and KLEE only detected 2
previously unknown bugs that DASE failed to detect. Compared to KLEE, DASE
increases line coverage, branch coverage, and call coverage by 14.2–120.3%, 2.3–
167.7%, and 16.9–135.2% respectively, which are 6.0–21.1 percentage points (pp),
1.6–18.9 pp, and 2.8–20.1 pp increases. The input constraint extraction of three files
formats—ELF, tar, and the Common Object File Format (COFF)—has accuracies
of 97.8–100%.

3.2 Overview

A real-world program typically contains numerous or even infinite number of execution
paths. Given limited time, it is crucial for testing to prioritize the paths effectively.
Researchers have proposed approaches to guide the path exploration of symbolic execu-
tion [52, 55, 124, 62, 60] to find more bugs and improve code coverage.

Path pruning, which applies a “filter” to prune “uninteresting” paths before employing
a search strategy, can further address the path explosion problem. Path pruning signifi-
cantly reduces the size of the search space for a search strategy, which allows the symbolic
execution engine to devote more time to test the “interesting” paths that would not have
been tested due to time constraints.

We propose using input constraints as a “filter” to aid search strategies to focus on both
valid and close-to-valid inputs (e.g., boundary cases) to explore deeper in a program’s core
functionality. The core functionality of a program is typically related to processing valid
inputs. For example, a C compiler’s core functionality is parsing and compiling valid C
programs. Valid C programs are only a small portion of all strings (the input space of a C
compiler).

1We do not count bugs that are already reported in the KLEE paper. Those bugs, which can also be
found by DASE, are not counted as newly detected ones by DASE either.

22

1 int counter = 0;
2 for (int i = 0; i < 30; i++) {
3 if (input[i] == ’A’) {
4 counter ++;
5 foo();
6 }
7 }
8 if (counter == 30) {
9 process_boundary_cases (); // bug!
10 if (input [30] == ’B’)
11 process_valid_input (); // bug!
12 }

Figure 3.1: Motivating example on how input constraints help symbolic execution find
more bugs.

Randomly generated inputs can cover many invalid inputs, but miss valid and close-to-
valid ones. While symbolic execution addresses this issue by exploring paths systematically,
it is unaware of which branch (the “then” branch or the “else” branch) leads to valid inputs
upon a conditional statement. Input constraints that define valid inputs can guide symbolic
execution to focus on paths corresponding to valid inputs. The constraints can be slightly
relaxed (e.g., relaxing a constraint “x must be between 0 to 10 (inclusive)” to “x must be
between -1 and 10 (inclusive)") to exercise paths corresponding to close-to-valid inputs to
test boundary cases.

These paths (for valid and close-to-valid inputs) can pass the trivial part of input
sanity check to go deeper and are more likely to uncover bugs [145, 126] for two main
reasons. First, keeping invalid inputs in the search space hurts the effectiveness of symbolic
execution based test generation. The reason is that exploring invalid inputs takes up time
and memory, which can be used for testing valid and close-to-valid inputs instead. Second,
some constraints are solved or simplified (e.g., the ones related to the concrete valid option),
which reduces the computation time of the constraint solver.

Next we (1) illustrate why input constraints can help symbolic execution find more
bugs and improve testing coverage and (2) summarize how DASE extracts these types of
constraints automatically from two sources of documents.

Why can input constraints help symbolic execution find more bugs and test
more code? We will use the code snippet in Figure 3.1 to answer this question, while real

23

0 4 8 12 16 20 24 28
0

25

50

75

100

125

Number of Supplied Input Constraints

R
un

ti
m
e
(m

in
ut
es
)

Figure 3.2: The runtime to find the bug in line 11 decreases exponentially as we supply
more input constraints. The runtime when no constraint is supplied is not depicted because
the bug was not detected after 10 hours when we stopped the execution.

code from Binutils is shown later in Figure 3.5 to explain how the automatically extracted
input constraints help DASE detect previously unknown bugs and improve coverage. The
code snippet in Figure 3.1 has 32 branches (30 from line 2 and 3, one from lines 8 and
one from line 10), indicating 232 possible paths to explore. Without knowing which paths
execute the core logic, it is hard to expose the bug deep in line 11 because only 1 out of the
232 paths leads to that line. DASE automatically extracts constraints from documents and
find that the first 30 characters of a valid input must be ‘A’, and the next character must
be ‘B’. These constraints will guide the execution to line 11. If the document is incomplete,
e.g., only mentioning that the first 30 characters of a valid input must be ‘A’, we can still
hit the bug in line 9 that is triggered by close-to-valid inputs. In addition, it increases the
chance to detect the bug in line 11 (1

232
to 1

2
). In either case, DASE can cover more code

(lines 9–10 and possibly 11), which is hard for standard symbolic execution to cover, in
addition to detecting more bugs.

We run KLEE on this example for 10 hours, and KLEE detects neither of the bugs.
In contrast, DASE detects both bugs in 0.1 seconds. In practice, one may not have all
constraints to define the entire input. In order to understand the effect of the number
of constraints, we plot how the time to discover the bug in line 11 changes as the num-
ber of given constraints changes in Figure 3.2. The runtime to find the bug decreases
exponentially as we supply more input constraints, suggesting that input constraints can
dramatically improve the efficiency of finding bugs, i.e., finding more bugs given the same
amount of time.

How to flatten symbolic execution to find more bugs and test more code?
Command-line options are a special type of input. Therefore, we propose a new way
to leverage their constraints to improve testing effectiveness. Command-line options are

24

bash$ program -a -b ... -o

...

... -o

-b

-a

...

(a) Without DASE

-a -b ... -o ...

(b) With DASE

Figure 3.3: Abstract view of execution trees for command-line options. Clouds are execution
subtrees related to valid command-line options. Ovals are other execution subtrees. Deep options
such as -o are more likely to be tested with DASE.

used to invoke certain functionalities of programs or tune parameters. For example, the
option -r tells rm to perform a recursive deletion. A program typically uses nested if-else
statements or a switch-case statement to check the input argument against all valid options
until it finds a match, and then invokes the corresponding functionality.

DASE extracts valid options by analyzing programs’ documentation and use them as
input constraints. For example, DASE finds that among the 256m possibilities2 for rm (m is
the maximum number of characters allowed in an option), only 11 values are valid options.
With n valid options (n = 11 in the example above), DASE “forks” the execution state n
times, with each child execution state taking a valid option3. In this way, DASE creates n
execution branches for a program with n valid options (one for each valid option).

The concretization moves all valid options at the same depth of the execution tree,
indicating that all valid options are treated equally (Figure 3.3b). Figure 3.3a illustrates
the dynamic execution tree of symbolic execution without DASE. Clouds are subtrees
related to valid command-line options. If a program has 15 valid options a–o, and o is the
deepest valid option as shown in Figure 3.3a, the time spent on testing code related to

2There are 256 possibilities for a single 8-bit character option.
3We have additional child execution states for an invalid option and a null option for completeness.

But the execution time for these two options should be less than the circles in Figure 3.3a combined.

25

option -o could be 1
215

of the total testing time without DASE4. The reason is there are 15
branches from the nested if–else or switch-case statements, one for each valid option. Such
a small fraction often means option -o would not be tested at all in practice. With DASE,
the time of testing option -o would be much longer—about 1

15
as in Figure 3.3b. This way,

a bug in the code that processes option -o will be more likely to be exposed with DASE.
On the other hand, the probability of hitting a bug in a shallower option (e.g., b) would be
reduced from 1

22
to 1

15
, but the difference is much smaller, and it is still highly likely that

the option b will be tested given that the probability is 1
15
. In addition to finding more

bugs, since each option has about 1
15

chance to be explored, more options are likely to be
tested, improving testing coverage (Section 3.6.2 shows that DASE covers more options
than KLEE).

Although this approach may appear to be similar to breadth-first search (BFS), it is
very different from BFS. Without DASE, BFS would explore paths in Figure 3.3a, which
would still waste time on shallow paths and are less likely to explore deeper paths. In fact,
our evaluation shows that DASE outperforms KLEE even if BFS is used as the underlying
search strategy (Section 3.6.2).

What documents to analyze and how to extract input constraints from them
automatically? Many types of software documents are available: manual pages, code
comments, API documentation, requirement documents, etc. This work studies and ana-
lyzes two popular types for constraint extraction, i.e., manual pages and code comments,
since they describe whole program constraints (as opposed to API documentation that de-
scribes method level constrains), and they contain more code-level constraints (compared
to requirement documents). We conduct an informal qualitative study of 82 manual pages
from Coreutils and code comments of 3 header files (ELF, tar and COFF). Manual
pages typically have higher English quality (e.g., grammatically correct full English sen-
tences) since they are meant to be read by more than just the developers. On the other
hand, it is easier to link constraints from code comments to code artifacts since com-
ments are embedded in the code (e.g., a comment typically describes the code segment
right below it).

Valid options are typically described in a well-structured manner in manual pages.
Therefore, we use simple regular expression matching to extract them (Section 3.4.3). In-
put file formats are described in both manual pages and code comments. We use regular
expression matching to analyze the manual pages. Since code comments are less structured,
we use NLP techniques, i.e., grammar relationships, for extraction (Section 3.4.1). Gram-

4The actual time depends on the search strategy, but the time spent on testing -o would be much
smaller than that of testing -a.

26

mar relationships can help identify relevant sentence structures for constraint extraction.
It can tolerate different word orders and paraphrases, thus more general than hard-coded
heuristics.

3.3 Background

KLEE is a symbolic execution engine based on LLVM. Programs are compiled into LLVM
bytecode, and then interpreted by KLEE. KLEE models the programs’ running states.
It checks for dangerous operations (e.g., pointer dereferences and assertions) that can
cause the program to fail. In addition, KLEE maintains path constraints that drive the
execution to the current state. KLEE provides a function klee_make_symbolic() to make
the memory symbolic, whose usages are tracked and constraints are collected. KLEE can
also intercept the startup of programs and insert logic to make them support options
for symbolic execution by using function klee_init_env(). Supported options include
(1) --sym-args MIN MAX N, which expands to at least MIN and at most MAX symbolic
arguments, each with a maximum length of N; and (2) --sym-files NUM N, which makes
stdin and up to NUM files symbolic, each with a maximum size of N.

KLEE’s default search strategy consists of two atom search strategies that are inter-
leaved in round-robin fashion to prevent one atom strategy from getting stuck. The first
atom strategy, coverage-optimized search, uses heuristics to choose a state that is most
likely to cover new code in the immediate future. The second atom strategy, random path
selection, randomly selects a branch to follow at a branch point, which helps alleviate
starvation.

3.4 Design and Implementation

This section describes how DASE extracts and utilizes input constraints for file formats
(Section 3.4.1 and Section 3.4.2) and options (Section 3.4.3 and Section 3.4.4).

3.4.1 Extracting File Format Constraints

DASE automatically extracts input constraints regarding file formats from both code com-
ments and manual pages. As discussed in Section 3.2, code comments and manual pages
have different characteristics, so different techniques are used to extract constraints from

27

them: NLP techniques for code comments, and regular expressions for manual pages. The
same techniques are used for all three file formats—ELF, tar, and COFF.

We apply NLP techniques to analyze the comments and code in header files to extract
constraints automatically. The header file contains a large number of comments that
describe the constraints for the struct data fields (i.e., each comment is followed by a list
of macros representing the valid values). One example is:

/* Fields in the e_ident array. The EI_* macros are
indices into the array. The macros under each
EI_* macro are the values the byte may have. */

#define EI_MAG0 0
#define ELFMAG0 0x7f
#define EI_MAG1 1
#define ELFMAG1 ’E’

DASE automatically generates two constraints regarding array index-value pairs from
the comments and code:

assume(Elf32_Ehdr->e_ident[EI_MAG0] == ELFMAG0);
assume(Elf32_Ehdr->e_ident[EI_MAG1] == ELFMAG1);

where assume() is a KLEE function for putting constraints onto the current path. The
rest of this section explains the NLP techniques to generate the constraints.

Our technique extracts two types of value constraints: array index-value pairs and struct
field values (e.g., assume(Elf32_Shdr->e_type == 0|...);). Since comments are written
in natural language, developers can use different forms to express the same meaning. For
example, they may use “Fields in the e_ident array", “Fields of the e_ident array", “The
e_ident array’s fields", or “The array e_ident’s fields" to start the listing of fields. These
sentences use different sentence structures and words to express the same meaning, which
are difficult to analyze automatically. Simple regular expression matching will fail to
accommodate all these and other variants.

We propose to use Stanford typed dependency [150] to analyze the dependencies and
grammatical relations among words and phrases in a sentence to handle these variants.
Our technique is different from prior work [8, 151].

DASE uses four grammar rules (GR) to identify relevant comments and extract con-
straints from them. All four rules are used as main rules to identify relevant comments—if
a sentence contains the typed dependency defined by a GR, it is considered relevant and

28

remains for further analysis. GR1 and GR2 can also act as a supporting rule for any main
rule. For example, GR1 can help identify the parameters in a rule, e.g., array and field
names. The four GRs are listed below:

• GR1: Noun or Adjectival Modifier (main/support rule) Noun or Adjectival
modifier is a noun or adjectival phrase that modifies a noun phrase [152]. For example,
in the comment “Fields in the e_ident array”, the noun phrase “e_ident” modifies
the noun “array”. DASE applies this grammar relationship to retrieve data structure
names and index names.

• GR2: Prepositional Modifier (main/support rule) Prepositional Modifier
is a prepositional phrase that modifies the meaning of a verb, adjective, noun or
preposition [152]. For example, in the comment “Legal values for sh_type field of
Elf32_Shdr”, the prepositional phrase “for ... Elf32_Shdr” modifies the noun “val-
ues”. DASE applies this grammar on modifiers (i.e., “for”, “of”, “in” and “under”) to
locate specific nouns (i.e., “value” and “field”) or specific word in the prepositional
phrase (i.e., “field”).

After locating the prepositional modifier the dependency tree links “values” to the
content word “field”. If the content word is being modified by an adjectival modifier,
DASE applies GR1 to resolve the properties. In this example, GR1 will return
“sh_type” as the property of “field”, and GR2 will flag the macros as the legal values
for that data field.

• GR3: Nominal subject (main rule) Nominal subject is a noun phrase that is the
syntactic subject of a clause [152]. For example, in the comment “The EI_* macros
are indices into the array”. The noun, “macros”, is the subject of the clause, “indices
into the array”. DASE applies this grammar to locate specific clauses (i.e., “indices
...” and “values ...”).

After locating the nominal subject, DASE applies GR1 to resolve the properties.
In this example, GR1 will return the regular expression “EI_*” as the property of
“macros”, and GR3 will flag the macros named under this regular expression as the
indices of an array.

• GR4: Possession modifier (main rule) Possession modifier holds the relation
between the head of a noun phrase and its possessive determiner [152]. For exam-
ple, in the comment “sh_type field’s legal values”. The head noun is “field” and
the possessive determiner is “values”. DASE applies this grammar to locate specific
possessive determiners (i.e., “value”).

29

SH [0] SH [1] SH [2] SH [3] SH [4]ELF Header PH

......
[0]

Null

Section

[1]

Section Header
String Table

[2]

Symbol

Table

[3]

Dynamic

Section

[4]

Random

Section

Section Header Table Program Header Table

Section

Figure 3.4: DASE’s ELF layout. SH is Section Header, and PH is Program Header. Numbers in
brackets are array indices.

After locating the possession modifier, DASE applies GR1 to resolve the properties
of the head noun. In this example, GR1 will return the field name “sh_type” as the
property of “field”.

If a comment only specifies a partial field name, DASE will resolve the name into a
fully qualified name. For example, the comment “Legal values for e_type” specifies a field
name “e_type” without the struct name. DASE maps this field name to structs that
contain this field name and generates the fully qualified names, “Elf32_Ehdr→e_type”
and “Elf64_Ehdr→e_type”.

In addition, DASE extracts constraints from manual pages using regular expressions.
Manual pages often show a struct declaration, followed by the constraints (if available) for
each field in the struct. The valid values for each struct field can be identified based on
the indentation of the manual page. Based on this layout, DASE first locates the name of
the struct, and maps it to each of the constraints that are listed below it. The output of
this analysis is also a list of constraints that can be directly used by the symbolic execution
part of DASE.

3.4.2 Adding File Layout Constraints

ELF files follow a certain layout, which also defines valid ELF files. Therefore, in addition
to extracting the file format constraints as described in Section 3.4.1, we add file layout

30

constraints for ELF by reading the ELF specification [153]. Our results show that both
the file format and file layout constraints contribute to the improvement of DASE.

An ELF file always starts with an ELF header followed by the two header tables, section
header table (SHT) and the program header table (PHT). SHT contains an array of section
headers, PHT contains an array of program headers, and object files’ real data are in the
sections. In order to reduce the workload of the constraint solver and focus on important
parts of ELF, we adopt a rigid layout as shown in Figure 3.4. SHT is set to have five
section headers. The first section (at index 0) is a null section, followed by a string table,
symbol table, dynamic section, and random section. The second and fifth section are set
with a size of 8 bytes, and the third and fourth section are set with a size that is enough
to hold two symbols. PHT is set to contain one random program header.

Note that our ELF layout is incomplete. We retain this incompleteness to give DASE
the ability to explore close-to-valid inputs to explore boundary cases. In addition, input
constraints can be slightly relaxed to include more close-to-valid inputs, which remains as
our future work.

3.4.3 Extracting Valid Options

We automatically extract valid options only from manual pages because we find that code
comments do not describe valid options. Since manual pages list the valid options in a
standardized format, our parsers perform simple regular expression matching, which is
effective and accurate. DASE takes a manual page as input and outputs a list of valid
command line options. It uses two regular expressions, one for short options (a single
dash followed by a single letter), and one for long options (two dashes followed by multiple
letters). If a short option has a long option equivalent, DASE keeps only the short option.

We also explored the extraction of valid options directly from the source code using
Clang tools [154]. However, since Clang often undergoes frequent version changes that
break the API compatibility of the Clang tools and applications may contain different
parser code, we decide to utilize manual pages to extract the constraints. Although manual
pages might not always contain the most update-to-date information, the extraction code
can extract valid options from a wider range of programs with less effort which makes it a
better choice.

31

3.4.4 Using Options to Flatten Symbolic Execution

DASE takes the options extracted in Section 3.4.3 to trim and reorganize the dynamic
symbolic execution tree as shown in Figure 3.3. Specifically, instead of having s symbolic
arguments, DASE runs the program with s − 1 symbolic arguments and a concrete valid
option, which forms one execution branch. In this way, DASE creates n execution branches
for a program with n valid options (one for each valid option). The aim is to balance
the testing effort on each option (and the corresponding functionality), which should be
of the similar semantic importance (at least not as skewed as 1

2
versus 1

2n
as shown in

Section 3.2). The generated branches are then prioritized by search strategies. We can
consider this technique as a “partition” of the execution tree. The s− 1 arguments remain
symbolic, which can expand to any concrete options. Therefore, it is possible to cover
combinations of command-line options such as “-r -f” (of rm) in our approach. To ensure
the completeness of this “partition”, we add a branch for an invalid option and a branch
for a null option.

3.5 Evaluation Method

We use three coverage criteria reported by gcov, i.e., line, branch, and call coverage (% of
executed function calls), as our main coverage metrics. The coverage criteria and gcov are
widely used in literature [40, 53, 41, 54].

3.5.1 Evaluated Programs

We evaluate DASE on the following 88 programs from 5 popular and mature fundamental
software suites for Unix-like systems. The sizes of these programs are at the same scale as
the ones evaluated by previous work [53, 60, 41, 54].

Coreutils 6.10. Coreutils, also evaluated by KLEE, is a package of GNU pro-
grams that consists of basic file, shell, and text manipulation utilities.

diff 3.3. diff compares files line by line and outputs the differences.

grep 2.18. grep searches files for given patterns.

objdump & readelf(b) 2.24. objdump and readelf are used for displaying the con-
tents of ELF files. Since both Binutils and elftoolchain contain a readelf program,
we use readelf(b) to denote the readelf program in Binutils and readelf(e) to denote
the one in elftoolchain.

32

elfdump & readelf(e) r2983. In order to test our ELF model more thoroughly, we
select elftoolchain’s counterparts for the above two programs. elftoolchain provides
similar tools as Binutils, but favors well-separated and well-documented libraries.

3.5.2 Experimental Setup

All automatically extracted file format constraints and valid options (without manual ex-
amination for zero manual effort) are used as input constraints for all programs when
applicable. DASE extracts file format constraints for ELF and uses them for the 4 ELF
processing programs (objdump, readelf(b), elfdump, and readelf(e)) for path pruning.
ELF is a boardly used main standard for binaries in Unix-like systems. One can use the
ELF model that we build to potentially improve test generation for all programs that read
or write ELF binaries on a Unix-like platform. In addition, DASE extracts valid options
for the rest of the programs automatically and uses them to guide the symbolic execution
on them.

To show the generality of our techniques of automatically extracting file format con-
straints, DASE extracts file format constraints for two additional standard file formats—
Tar from tar.h, and the Common Object File Format (COFF) from coff/internal.h.

We run KLEE and DASE on each program until no new instructions are covered in a
certain amount of time: 15 minutes for Coreutils programs and 30 minutes for the rest
due to their larger sizes. This stop criterion allows both DASE and KLEE to run until
they cannot make progress in coverage in a fixed time period, which is similar to that of
the previous paper [54], but different from that of KLEE [40], in which each program is
only allowed to run for one hour. In our experiments, the actual run time of each program
varies from 6 seconds to 11.5 hours. We have also conducted experiments using the stop
criterion from the KLEE paper, and DASE still achieves a similar amount of improvement
over KLEE.

The other parameters are set by following the instructions from KLEE’s authors [155].
The key parameters are:

k l e e PROG −sym−args 0 1 10 −sym−args 0 2 2
−sym− f i l e s 1 8 −sym−stdout

where PROG is a program in Coreutils. While for DASE, we keep all the parameters
the same as for KLEE, except for replacing a symbolic argument with a list of valid options.

33

For diff and grep, we set the symbolic file size to 100 bytes because they are meant to
process textual files.

For the ELF processing programs, we use the following parameters respectively for
KLEE and DASE:

k l e e −sym−args 0 2 2 −sym− f i l e s 1 640
k l e e −sym−args 0 2 2 −sym−e l f s 1 640

where -sym-elfs holds our ELF model described in Section 3.4.2.

We conduct our experiments on an Intel Core i5-2400 3.10GHz CPU machine running
Ubuntu 13.10. KLEE is built from git revision a45df61 with LLVM 2.9.

3.6 Evaluation Results

This section shows that DASE finds more previously unknown bugs, improves code cover-
age on top of different search strategies, complements developer tests, and extracts input
constraints automatically. We also show that our results are statistically significant.

3.6.1 Detected Bugs

Using the constraints automatically inferred from documents (without any manual veri-
fication), DASE finds more bugs than KLEE. KLEE detects 3 previously unknown bugs
from the 88 programs while DASE can uncover 13 previously unknown bugs (KLEE failed
to detect 12 of them). Table 3.1 lists all of the detected previously unknown bugs.

DASE found 2 previously unknown bugs in Coreutils and 3 in Binutils (objdump &
readelf(b)), both of which have already been thoroughly tested by many symbolic execu-
tion tools. For example, Coreutils has been tested by Veritesting [53], ZESTI [60] and
KLEE [40], and Binutils has been tested by Veritesting [53], ZESTI [60], and KATCH [41].
Finding 5 new bugs in those extensively-tested suites demonstrates DASE’s ability in find-
ing new bugs and improving symbolic execution.

readelf(b) fails with segmentation fault when the input file contains malformed at-
tribute sections (of type SHT_ARM_ATTRIBUTES) [156]. The bug exists in the function process_attributes(),
which is shown in Figure 3.5. Pointer p walks through the whole section. At line 19, 4

34

Table 3.1: New bugs detected by KLEE and DASE. “X” denotes a bug is found by a tool.
“IU” means “Integer Underflow.” “DBZ” is “Divide By Zero.” “IL” is “Infinite Loop.” “NPD”
means “NULL Pointer Dereference.” “POB” stands for “Pointer Out of Bounds.” “ME” is
“Memory Exhausted.”

No Program Location Problem KLEE DASE
1 readelf(b) readelf.c:12202 IU X
2 objdump elf-attrs.c:463 IU X
3 objdump elf.c:1351 POB X
4 readelf(e) readelf.c:4015 DBZ X
5 readelf(e) readlef.c:2862 DBZ X
6 readelf(e) readelf.c:3680 DBZ X
7 readelf(e) readelf.c:3930 IU X
8 readelf(e) readelf.c:3961 IL X
9 readelf(e) readelf.c:4102 IL X
10 readelf(e) readelf.c:2662 NPD X
11 readelf(e) readelf.c:2426 POB X
12 elfdump elfdump.c:1509 POB X X
13 elfdump elf_scn.c:87 POB X
14 head head.c:207 ME X
15 split split.c:333 ME X

bytes are read and interpreted as the length (section_len) of the subsequent data struc-
ture. Directly after that, the program expects to read a string and assign its length to
namelen. However, section_len can be a number smaller than namelen + 4, which causes
an integer underflow at line 24. The variable section_len, which becomes an extremely
big number after underflow, is later used as the stop condition of a continuing reading of
the following memory, which eventually causes a segmentation fault.

Five other functions are ahead of process_attributes() in the call stack, namely,
main(), process_file(), process_object(), process_arch_specific(), and process_arm_specific().
Each function reads and processes specific parts of the input ELF file. For example, to cor-
rectly invoke process_attributes(), the condition for the if statement at lines 2–5 must
evaluate to false. The automatically extracted ELF constraints guide DASE to generate
an ELF file that satisfies all these constraints to reach process_attributes() and expose
the bug. This close-to-valid ELF file helps DASE detect this bug. readelf(e) contains a
similar bug.

35

1 stat ic int process_file_header (void) {
2 i f (e l f_header . e_ident [EI_MAG0] != ELFMAG0
3 | | elf_header . e_ident [EI_MAG1] != ELFMAG1
4 | | elf_header . e_ident [EI_MAG2] != ELFMAG2
5 | | elf_header . e_ident [EI_MAG3] != ELFMAG3) {
6 e r r o r (_("Not␣an␣ELF␣ f i l e ␣−␣ . . . ")) ;
7 return 0 ;
8 } . . .
9 }

10 . . .
11 stat ic int proces s_object (. . .) { . . .
12 i f (! process_file_header ())
13 return 1 ; . . .
14 process_arch_specific (f i l e) ; /∗ ca l l s
15 process_attributes () indirectly ∗/ . . .
16 }
17 . . .
18 stat ic int process_attributes (. . .) { . . .
19 sec t i on_len = byte_get (p , 4) ;
20 p += 4 ;
21 . . .
22 namelen = s t r l e n ((char ∗)p) + 1 ;
23 p += namelen ;
24 sec t i on_len −= namelen + 4 ;
25
26 while (s ec t i on_len > 0)
27 . . .
28 }

Figure 3.5: Buggy code in readelf.c from Binutils.

The head program fails with memory exhaustion when invoked with options -c -1P,
which tells head to print all but the last 1P bytes of the input file. Since P is a large
unit of 10245, head tries to allocate a large amount of memory, which exceeds the total
amount of available memory. According to the comment, head is not expected to “fail
(out of memory) when asked to elide a ridiculous amount”. For bigger units (e.g., Z and
Y), head exits with the correct error message—“number of bytes is so large that it is not
representable”. Neither developers’ hand-written tests nor KLEE generated tests detect
this bug.

Two bugs can be found by KLEE but not by DASE due to the following reason. The
ELF file to trigger the bugs has a very large e_shoff value (SHT’s offset from the beginning
of the EFL file), which is incompatible with our ELF model. As shown in Section 3.4.2,
we manually fixed the offset to layout the SHT. Missing these two bugs shows the tradeoff
involved in designing the ELF model. DASE focused on those more valid inputs to test
the core logic.

36

Table 3.2: Coverage results with KLEE’s default search strategy. “Line”, “BR”, and “Call”
show the total number of executable lines of code (ELOC), branches, and calls for each
program, reported by gcov. “K” stands for KLEE and “D” is DASE. “∆” is the improvement
in percentage points of DASE over KLEE.

Program Line K D ∆ BR K D ∆ Call K D ∆
% % pp % % pp % % pp

Coreutils 18329 66.2 75.6 +9.4 12674 69.9 77.3 +7.4 7008 56.6 67.5 +10.9
diff 526 59.1 67.9 +8.8 489 68.1 69.7 +1.6 150 46.6 59.3 +12.7
grep 932 37.3 58.4 +21.1 786 40.3 59.2 +18.9 266 33.5 53.6 +20.1
objdump 1687 19.4 25.6 +6.2 1270 16.9 22.8 +5.9 463 16.6 19.4 +2.8
readelf(b) 6998 6.9 15.2 +8.3 5410 6.2 16.6 +10.4 1959 6.9 13.5 +6.6
elfdump 1539 16.1 22.1 +6.0 1157 20.4 30.7 +10.3 533 16.5 23.6 +7.1
readelf(e) 3571 13.0 28.0 +15.0 2550 18.5 34.5 +16.0 1126 10.8 25.4 +14.6

Our results clearly demonstrate the benefits of our design choice: DASE finds 10 more
bugs than KLEE. One can relax the constraints to explore fewer valid inputs and potentially
cover these two bugs. Running KLEE and DASE together to gain benefits from both is
also a good solution.

3.6.2 Code Coverage

Table 3.2 shows the overall code coverage achieved by KLEE and DASE. DASE outperforms
KLEE on the 88 programs: it increases the line coverage, branch coverage, and call coverage
by 14.2–120.3%, 2.3–167.7%, and 16.9–135.2% respectively, which are 6.0–21.1 pp, 1.6–18.9
pp, and 2.8–20.1 pp increases. For example, the line coverage boost on grep is 21.1 pp.
Programs readelf(b), objdump, readelf(e), and elfdump are difficult to test because their
inputs involve the complex ELF format. Despite the lower coverage, DASE detected new
bugs in them that existing techniques did not detect as shown earlier. Figure 3.6 shows
the coverage improvement of DASE over KLEE on readelf(b) over time. It shows that
the improvement increases as time proceeds.

The coverage percentages for Coreutils are different from those of the KLEE pa-
per [40]. The difference is inevitable because the KLEE tool has evolved significantly since
then, including major code changes of KLEE (e.g., removals of special tweaks), and an
architecture change from 32-bit to 64-bit. We choose the latest version of KLEE at the
time of the experiment because the original version used in the KLEE paper is not publicly
available. For a fair comparison, the configurations for KLEE and DASE are identical.

DASE explored deeper than KLEE. Since DASE filters out “uninteresting" paths, we

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

5

10

15

Time (seconds)

B
r.

C
ov
er
a
ge

(%
)

DASE
KLEE

Figure 3.6: Branch coverage on readelf(b) over time.

Table 3.3: Number of instructions of generated test cases, showing that DASE explored
deeper than KLEE. “K-” stands for KLEE and “D-” stands for DASE. “AVG-I” and “MAX-
I” is the average and maximum number of instructions for the generated test cases re-
spectively. Since Coreutils includes multiple programs, a range (the minimum and the
maximum) is shown.

Program K-AVG-I D-AVG-I K-MAX-I D-MAX-I
Coreutils 7132 8170 11682 13200
(82 programs) 49688 55672 320138 1189470
diff 18483 22427 35432 35976
grep 25942 26231 43424 53081
objdump 45915 62236 104479 206874
readelf(b) 11570 17800 24884 36196
elfdump 13827 28560 24433 319744
readelf(e) 18009 30069 29140 61233

expect it to explore deeper. We count the number of executed instructions for each test
case generated by KLEE and DASE to approximate the depth of the corresponding paths.
The average and maximum numbers are shown in Table 3.3, which shows that DASE
generates test cases with much more instructions executed, indicating that DASE goes
much deeper into the execution tree than KLEE. For the ELF processing programs, both
the averages and maximums almost double their counterparts of KLEE. The difference is
expected because while KLEE is still exploring at the early stage of the ELF sanity check,
DASE has already penetrated through that part with the help of our ELF model.

DASE covered more functionalities and options than KLEE. To investigate DASE’s
coverage gain in detail, we manually check the coverage difference of KLEE and DASE on

38

Table 3.4: Coverage of combining DASE with developer test cases, showing that DASE
complements developer tests. “V” is developer tests. “D” is DASE combined with developer
tests. Do note that readelf(e) has no developer test cases hence is missing.

Program Line V D ∆ BR V D ∆ Call V D ∆
% % pp % % pp % % pp

Coreutils 18332 66.1 84.4 +18.3 12670 73.2 87.2 +14.0 7008 53.2 73.5 +20.3
diff 526 57.0 81.0 +24.0 489 72.2 87.3 +15.1 150 50.7 71.3 +20.6
grep 932 82.0 86.5 +4.5 786 87.0 89.8 +2.8 266 73.7 81.2 +7.5
objdump 1687 58.6 64.3 +5.7 1270 66.9 68.9 +2.0 463 51.2 57.2 +6.0
readelf(b) 7038 28.8 33.5 +4.7 5424 43.5 46.5 +3.0 1964 28.6 33.2 +4.6
elfdump 1084 71.6 75.0 +3.4 813 86.5 86.5 +0.0 264 46.2 52.9 +6.7

diff. KLEE explores only 27 out of the 55 distinct options5, which are the shallower
options, while DASE covers 46 options. The result agrees with our analysis in Figure 3.3.
We have similar observations for the ELF processing programs. We manually examine the
coverage difference on readelf.c (Binutils). For the three functions related to dynamic
section, *_dynamic_section(), in which * means get_32bit, get_64bit, or process,
KLEE fails to cover any of them, while DASE naturally tests them all because our ELF
model has a dynamic section. In addition, many other functions, such as print_symbol(),
are missed by KLEE but covered by DASE.

3.6.3 DASE Complements Developer Tests

Since automated test generation aims to complement developer generated tests, we evaluate
whether DASE finds bugs that developer tests cannot detect, and improves code coverage
on top of developer tests. DASE detected a total of 13 bugs on the evaluated programs
that developer generated tests fail to detect (Section 3.6.1). Table 3.4 shows the coverage
comparison. We can see that by adding DASE generated tests, the line coverage is improved
by 3.4–24.0 pp. Together with Table 3.2, we can see that for Coreutils and diff, DASE
alone can generate tests to achieve comparable code coverage as developer generated ones.
Although the coverage improvement on objdump, readelf(b), and elfdump is relatively
small, the DASE generated tests detected previously unknown bugs for all of them. The
results demonstrate that DASE can be used by developers to find more bugs and further
improve testing coverage even if manual tests exist.

5We count options that invoke the same code segment as one option.

39

3.6.4 Constraint Extraction Results

DASE automatically extracted input constraints from manual pages and comments for
command line options and three file formats with accuracies of 97.8–100%.

Specifically, for command-line options, DASE automatically extracted 776 valid options
from manual pages: 683 from the 82 Coreutils programs, 46 from grep, and 47 from
diff. The accuracy is 100%.

For ELF processing programs, we manually enforced 63 constraints to form the layout
of our ELF model shown in Figure 3.4. By analyzing the ELF header file and ELF manual
page, DASE automatically extracts 60 values for 16 constraints regarding array index-
value pairs, and 312 values for 20 constraints regarding valid field values. For example, the
constraint “assume(Elf32_Shdr→e_type == 0 | Elf32_Shdr→e_type == 1);” is one
constraint with two values (0 and 1). In the case where a constraint exists from both the
header file and manual page, DASE combines all the values within both documents and
creates a single new constraint with all the merged values. The ELF header file constraints
is a superset of the manual page constraints except for two constraints, which specify valid
values for the EI_VERSION indices of the e_ident arrays. The accuracy of the extracted
constraints is 97.8%.

The breakdown of the constraints extracted from the header file and the manual page is
as follows. From the manual page, DASE automatically extracts 46 values for 16 constraints
regarding array index-value pairs, and 72 values for 8 constraints regarding valid field
values. The accuracy is 100%.

From the header file, DASE extracted 56 values for 14 constraints regarding array
index-value pairs, and 312 values for 20 constraints regarding valid field values. Among
the 312 values for 20 constraints regarding valid field values, 8 values are invalid, which
affect 8 constraints. The accuracy is 97.8%. The inaccuracy results from a special kind of
macro, *_NUM, in elf.h. This macro represents the total number of valid values, which is
not a valid value. Among all the constraints, 10 constraints (consisting of 56 values) on
special section types are not used because they are not applicable to our model. We can
incorporate them when we improve our ELF model in the future.

DASE also extracted constraints from Tar and COFF’s header files. It extracted 23
values for 2 constraints for the Tar file format, and 18 values for 2 constraints for the COFF
file format. All of the extracted constraints are correct.

Impact of Incorrect Constraints. To understand the impact of incorrect constraints,
we ran DASE with only the correct constraints (our main evaluation applies all constraints

40

to minimize manual effort). The coverage and bug finding results are almost identical,
suggesting that DASE is robust when a few incorrect constraints are provided.

Potential Effort Savings. Automated constraint extraction is important yet challeng-
ing [146, 147], and much work has been proposed to infer constraints from source code
and execution traces automatically [157, 158, 159]. The proposed automated constraint
extraction technique (takes 10–60 seconds to run) can save the effort of manually writing
constraints. It is beneficial to automate the constraint extraction process to keep the con-
straints up to date since ELF, Tar and COFF file formats all have many revisions since
their standardization.

DASE extracted almost all constraints in the header files and manual pages. This
can be expanded by analyzing more comprehensive file specifications such as the ELF
specification [153]. In the future, we would like to extend the proposed NLP techniques to
analyze other formats, e.g., TCP/IP packets and XML format.

3.7 Threats to Validity

We discuss the different threats to validity to our experiments.

3.7.1 Internal Validity

Internal validity concerns the extent where one can claim the cause and effect between
variables in the experimental design.

Our evaluation currently does not distinguish between the contribution of the two
categories of input constraints. Therefore, it is not possible to have a deeper understanding
of the impact of these two variables on the results.

3.7.2 External Validity

External validity concerns if the conclusions can be generalized outside of the study.

The evaluation currently only includes five software suites. Although Binutils and ELF
toolchain are included to test the ELF file format, additional software suites should be
included to ensure the results are generalizable to other file formats.

41

While the natural language processing techniques are effective on the three evaluated file
formats, the techniques may not generalize to other types of documentation. New grammar
rules may be needed to support new types of sentence structures. In addition, the accuracy
and quality of the extracted constraints depend on the quality of the documentation.

3.7.3 Construct Validity

Construct validity concerns if a test measures the intended construct of the study.

The evaluation measures how deep the symbolic execution tool had explored based on
the number of instructions that are covered by the generated test cases. There may be
other more accurate ways to measure the value.

3.7.4 Conclusion Validity

Conclusion validity concerns the if the reached conclusions about the relationships in the
data are reasonable.

The evaluation concluded that there are potential effort savings from the automated
constraint extraction tool. Although the constraint extraction process is automated, we
still have to define the file layout constraints which requires manual effort from reading and
understanding the ELF specifications. A more controlled study may be needed to factor
in the amount of time that it takes to learn a file format.

3.8 Summary

This work presents Document-Assisted Symbolic Execution (DASE)—a novel and general
approach to extract input constraints from documents automatically to improve symbolic
execution for automated bug detection and test generation. DASE prunes and flattens
paths based on their semantic importance to help search strategies prioritize execution
paths more effectively. DASE detected 12 previously unknown bugs that KLEE fails to
detect, 6 of which have been confirmed by the developers on 88 mature programs. Com-
pared to KLEE, DASE increases line coverage, branch coverage, call coverage by 6.0–21.1
pp, 1.6–18.9 pp, 2.8–20.1 pp, respectively. In the future, it would be promising to negate
the input constraints to focus on testing error handling code.

42

Chapter 4

Documentation Analysis: Automatic
File Repair

4.1 Motivation

Corrupted files cause many software failures which impacts software reliability. Specifically,
file corruption causes software crashes [15], security issues [16, 17, 18, 19, 20], users unable
to access valuable data, etc. For example, a corrupted PDF file triggered a null pointer
bug in the Google Chromium browser, which caused the browser to crash [15]. Files often
become corrupted due to problems such as file system bugs [21, 22], network transfer
errors [23], malicious modifications of a file [24], and buggy software [25].

It is important to repair corrupted files to mitigate the resulting software failures. We
propose to utilize documentation constraints that are extracted from the user manual for
the repair of corrupted PDF files. The repair of corrupted files is challenging [26, 27].
File viewers often fail to display corrupted files because corrupted files do not follow PDF
specifications and cannot always be parsed by the viewer. Thus, practical techniques to
repair corrupted files are in high demand.

Designing a repair tool requires a good understanding of the corrupted file problem.
It is important to understand the number of real-world corrupted files in the wild; the
causes of file corruption (e.g., corrupted base structure and corrupted font); the impact
of file corruption (e.g., incorrect functionality, crash, and performance degradation); and
whether existing techniques can repair them. All these questions need to be investigated
to design a solution for repairing corrupted PDF files.

43

There is neither a comprehensive study to quantify the existence of corrupted files in
the real world, nor a study to understand their impact. There are some anecdotal evidence
on the existance of corrupted files in the real world [26], and previous work analyzed the
impact of data corruption in storage systems [28, 29, 30]. Force Open [27] generated a large
corpus of corrupted PDF files using a testing technique called fuzzing [160, 145, 161, 162] to
test their PDF file repair technique. However, the fuzzing technique generates corrupted
files by overwriting a small number of bytes with random data until the file cannot be
opened by a PDF reader, pdftotext [163], which may not be representative of real-world
corrupted files.

In general, there are two types of corrupted files:

(1) Real-world corrupted files: these documents became corrupted unintentionally,
e.g., due to network transfer errors, bugs in file creators or file processing software. These
documents contain valuable content.

(2) Purposely corrupted files: these documents were corrupted on purpose, e.g., ma-
licious modification to expose bugs and security vulnerabilities in a file viewer. Typically,
users do not care about the content of these documents.

It is beneficial to repair both types of documents to avoid failures of file viewer and file
creator software including crashes and security vulnerabilities. For real-world corrupted
files, file repair has an additional benefit of allowing users to view valuable content in the
file such as medical prescriptions, tax documents, etc.

While we study and repair both types of files in this work, our focus is on real-world
corrupted files as they have not been studied before and contain important content to
recover. Specifically, we conduct a case study to understand and repair corrupted PDF
files, since the PDF file format is one of the most popular electronic file formats [164, 165].
First, we collect the first dataset of real-world corrupted PDF files, understand the causes
and impact of corrupted PDF files, and study the repair capabilities of existing PDF repair
tools. Second, based on the findings from the empirical study, we present a white-box
approach, DocRepair, for repairing corrupted PDF files.

A fundamental problem of existing file repair tools is that they only use hardcoded
heuristics to validate the correctness of a corrupted file. For example, Listing 4.1 shows
the corrupted part of a PDF file that causes Google Chrome browser to crash [15], where
the file cannot be repaired by existing tools. The corrupted value, -406081386, on line 4
refers to an object number in the PDF file format. The PDF file format specification [166]
specifies that the value is an indirect reference and it must be a positive integer object
number. The corrupted value, -406081386, is not a valid object number that exists inside

44

1 trailer
2 <<
3 /Size 38
4 /Root -406081386 1631658500 R <- invalid
5 /Prev 33749
6 >>

Listing 4.1: Corrupted part of a PDF file causing a crash in Chromium bug #134551 [15].

the PDF file, which eventually leads to a null pointer crash in the PDF viewer because the
Chrome browser parses the PDF file without validating the data field’s correctness.

There are several common PDF repair tools for repairing corrupted PDF files such as
Mutool [73], PDFtk [74], and GhostScript [78]. A repair tool accepts a corrupted PDF file
as the input and produces a repaired file as the output. A corrupted file is defined to be
successfully repaired by the repair tool if a PDF viewer can open and display the content
of the repaired file. Existing PDF repair tools [73, 74, 78] failed to recover the content of
the file because none of the existing repair tools check if the corrupted data field contains
an object number that points to a valid object in the PDF file.

Learning from our study of real-world corrupted PDF files, we designed DocRepair to
mitigate the crash and recover the content of the file with a set of new repair operators. The
repair operators detect missing and invalid objects for specific components within the PDF
file, which is done by analyzing the references between objects (i.e., object numbers) and the
validity of the data structure (i.e., values). If an issue is detected on a specific component
of the file, the repair operator attempts to recover the object and data structure, which
enables PDF viewers to open the repaired file and display the file’s content successfully
after the repair.

Given the corrupted file described in Listing 4.1, which triggers a bug in Chrome, we
applied three existing repair tools (Mutool [73], PDFtk [74], and GhostScript [78]) and
DocRepair to attempt to repair it. Figure 4.1 shows the screenshots of PDF files when
opened with the buggy version of Chrome. Figure 4.1a shows the original corrupted file
from the bug report, and Figure 4.1b, Figure 4.1c, and Figure 4.1d show the repaired
version of the corrupted file by Mutool, GhostScript and DocRepair. Mutool generated a
repaired file that triggers an error message, “Failed to load PDF document,” in Chrome
(Figure 4.1b). PDFtk failed to generate a repaired file. GhostScript generated an empty
PDF file that contains no content (Figure 4.1c). Although existing tools can prevent the
crash of the Chrome tab, DocRepair generated a better repair by recovering the valuable

45

content (Figure 4.1d). After the developers fixed the bug in Chrome, while, the corrupted
file does not crash Chrome anymore, DocRepair is still the only tool that produces a
repaired file that can be correctly displayed.

This work answers four research questions (RQ), where RQ1–RQ3 are part of our
empirical study of real-world corrupted PDF files, and RQ4 evaluates the effectiveness of
DocRepair against existing work.

RQ1: How many real-world corrupted PDF files exist and what is their impact?

Corrupted PDF files can have a negative impact on end users such as program crashes
and security vulnerabilities. Therefore, we want to understand (1) how many real-world
corrupted files exist in the wild, (2) if these files contain any security threats to the end
user, and (3) if these files have an impact to the end user and target software.

RQ2: Can existing repair tools repair corrupted PDF files?

The question attempts to understand the repair capability of existing file recovery tools.
The demand for a new repair tool exists if many corrupted PDF files cannot be repaired
by any existing tools.

RQ3: What types of real-world file corruption exist?

The question identifies the causes of corrupted files such that we can incorporate the
common scenarios into the proposed repair algorithm.

RQ4: How does DocRepair compare to existing file recovery tools?

We evaluate the ability of our new repair technique, DocRepair, at repairing both
real-world and purposely corrupted files that existing tools cannot repair.

This work makes the following contributions:

• We created the first dataset of 119 real-world corrupted PDF files. We complement the
dataset with 198 purposely corrupted files that trigger bugs and vulnerabilities in PDF
readers. This dataset will help researchers to better understand real-world file corruption
and practitioners to further develop PDF repair tools.

46

(a) Corrupted file that crashes
Chrome tab.

(b) File repaired by Mutool. No
content is recovered.

(c) GhostScript output an empty
page.

(d) File successfully repaired by
DocRepair.

Figure 4.1: Corrupted and repaired versions of the corrupted file opened on Chrome
21.0.1180.89 (Chromium bug #134551). The corrupted version of the file crashes the
browser tab.

47

Document Catalog

Interactive Form Outline Hierarchy

Outline
Entry

... Outline
Entry

Pages Tree

Page

Content Stream Thumbnail Image Annotations

... Page

...

Figure 4.2: PDF body’s document tree structure where each node represents an object.

• We perform an empirical study on the repair capability of existing repair tools and
the common causes of PDF file corruption. Our results show that 63 of the real-world
corrupted files and 105 of the purposely corrupted files cannot be repaired by existing
tools. A manual inspection of real-world corrupted files revealed that the most common
causes of PDF file corruption include corruption in base structure, data stream, font
resource, page tree structure, and data field value.

• We propose DocRepair, a new automatic file repair technique which uses a two-stage
algorithm that contains seven repair operators. DocRepair repaired a total of 30 of the
119 real-world corrupted PDF files, 7 of which cannot be repaired by existing tools.
We also propose to combine multiple repair tools as DocRepair+ and show that the
combined tool can repair 63 of the 119 real-world corrupted files. Existing repair tools
including Mutool, PDFtk, and GhostScript repaired a total of 38, 16 and 45 of the 119
real-world corrupted files respectively.

4.2 Background

4.2.1 PDF File Format

PDF is a file format that was created to share documents across platforms. It was opened
up as ISO standard 32000-1 in 2008 [167]. The PDF file format contains four major
components: header, body, cross-reference table, and a file trailer.

• The header consists of the keyword, %PDF- followed by a version number between 1.0
and 1.7, and at least four high bit ASCII characters.

48

1 trailer
2 <</Size 38/ Root -406081386 1631658500 R>>
3 ====
4 trailer
5 <</Root 36 0 R /Size 38>>

Listing 4.2: An incorrect repair generated by Mutool (top) and correct repair generated
by DocRepair (bottom).

• The body contains a list of objects that represent the contents of the file. Figure 4.2
shows the body as a document tree structure, where each node represents an object. For
example, the pages tree object references a list of page objects, and each page object
has a reference to a content stream object that stores the text and layout of the page.

• The cross-reference table contains a list of pointers (positional offsets) that point to the
location of each object in the file.

• The file trailer is the entry point for parsing a PDF document, which allows a reader to
locate the cross-reference table and the key objects to parse the PDF file.

4.2.2 Existing Repair Approaches

Existing tools including Mutool [73], PDFtk [74], and GhostScript [78] repair PDF files
through a rewriting process. They would parse the corrupted file into memory (if the
corrupted bytes do not cause cascading parsing failure) and write the parsed content back
out with a new syntax as the repaired file. The approach allows existing repair tool to detect
corruption that impacts the syntactical of the file and discard them, and detect missing
components within the PDF file structure (Section 4.2.1) for reconstruction. However,
existing tools do not perform deep validation on the parsed data values. For example, in
the motivating example (Listing 4.1), Mutool failed to detect file corruption because it only
checks if the file trailer is syntactically correct. Since the file trailer is syntactically correct,
Mutool copied the semantically incorrect values to the output PDF file that is supposed
to be repaired. DocRepair is the only repair tool that is able to detect the incorrect value
and infer the correct value to repair the file (Listing 4.2).

49

4.3 Definitions

In this work, a file is corrupted if it does not conform to the standard file format specifica-
tion. Existing repair tools attempt to detect violations of the file specification and repair
them using repair operators (RO). A repair operator’s purpose is to address specific issues
of the PDF file. For example, most repair tools deploy repair operators for the malformed
file header, file trailer and cross-reference table (Section 4.2).

For any corrupted file where the ground truth (correct file) is available, we consider a
file fully repaired if the generated file from a repair tool is identical to the correct file. Since
the corresponding correct files for most real-world corrupted PDF files are unavailable,
following prior work on PDF file inconsistency detection [168] and black box file repair [27],
we define a file as repaired if no more than one PDF viewer fails to display some content
from the PDF file. For example, if only one viewer fails to display the contents of a PDF
file, but all other PDF viewers (six for this study) displays it successfully, we consider the
PDF not corrupted to accommodate cases where the one viewer contains a bug which is
common as shown in prior work [168].

4.4 A Study of Corrupted PDF Files

While the problem of real-world corrupted PDF files is known, there has only been anecdo-
tal evidence of its existence [26]. Therefore, a study to better understand the extent of the
problem and the most common causes and impact of file corruption is needed. The purpose
of the study is threefold: (1) obtaining empirical evidence of how many documents in the
wild are corrupted and their impact (RQ1), (2) checking if existing repair tools can repair
real-world corrupted PDF files (RQ2), and (3) understanding the causes of file corruption
(RQ3).

We start the empirical study by collecting potentially corrupted PDF files from multiple
bug tracking systems (Section 4.4.1). Since bug tracking systems contain a large number of
files, many of which are not corrupted, we develop an automated tool—CorruptCheck—
to identify corrupted PDF files automatically (Section 4.4.2), which are then manually
inspected. We present the PDF repair tools and viewers used by CorruptCheck (Sec-
tion 4.4.3) and show the findings from our empirical study (Section 4.4.4).

50

(1) Crawled PDF Files
from Bug Trackers
(2) Force Open Fuzzed
PDF Corpus

1. Sanity
Check

2. Corrupt
Check

3. Repair
PDF Files

PDF Recovery Tools

4. Corrupt
Check

Study Findings
(RQ1–RQ4)

PDF Viewers PDF Viewers

Remove Invalid Files Identify Corrupted Files Analyze Repair Capability

Corrupt
PDF Files

Repaired
PDF Files

Filtered
PDF Files

Figure 4.3: Overview of the empirical study and evaluation.

4.4.1 Collecting Corrupted PDF Files

Real-World Corrupted PDF Files To find real-world corrupted PDF files in the real
world, we crawl files from existing software bug tracking systems. We focus on bug trackers
because they often have corrupted files attached to bug reports to help reproduce bugs.
Although we only collect PDF files from eight bug trackers, the bug trackers cover a large
number of software applications that processes PDF files. Therefore, we developed a web
scraper using a web-crawling framework called Scrapy [169] to extract PDF files from bug
report attachments. We also attempted to use an existing government document dataset
crawled by previous work [170], but the previous investigation seems to indicate that it
does not contain corrupted PDF files [168]. Therefore, we do not use the government
document dataset in the study. The web scraper returns a list of PDF files, which we later
manually inspect in the empirical study to identify the real-world corrupted PDF files.

The study collected PDF files from eight bug trackers including GNOME, Mozilla,
Chromium, LaunchPad, GhostScript, KDE, Apache and Freedesktop (Table 4.2). Al-
though we only collect PDF files from eight bug trackers, the bug trackers cover a large
number of software applications that process PDF files. We selected these bug tracking
system based on two criteria. (1) We include all the evaluated PDF viewers’ bug tracker
whenever available (Launchpad tracker for Evince, Qpdfview and Xpdf viewer; Chromium’s
tracker for Chromium viewer; and Mozilla’s tracker for Firefox viewer). (2) We include
bug trackers that contain software that either generates or handles PDF files (GNOME
tracker contains Documents [171]; GhostScript tracker handles PDF files [78]; KDE tracker
contains Okular [172]; Apache tracker contains FOP [173]; Freedesktop tracker contains
LibreOffice [174], pdftohtml [175], and Poppler [77]).

Our scraper supports three tracking systems including Bugzilla [176], Monorail [177],
and LaunchPad [178]. For Bugzilla, we searched for the keyword ‘pdf’ and required an
attachment of type pdf, zip or tar. For LaunchPad, since it does not support searching
for bugs reports that contain attachments, we simply searched for the keyword ‘pdf.’ For
Monorail, since it does not support the search for specific attachment types, we searched

51

for bug reports that contain at least one attachment file. The scraper downloads all the
PDF attachments from the search results. If the result contains zip or tar compressed
files, it decompresses the files and searches for PDF files.

Fuzzed Corrupted PDF Files Previous work by Force Open [27] released a dataset
that contains corrupted PDF files that are generated using fuzzing. It contains 1,723 fuzzed
corrupted PDF files containing research papers and PDF books with randomly modified
bytes.

4.4.2 Identifying Corrupted PDF Files

The empirical study requires an automated tool to identify corrupted PDF files automati-
cally that are crawled from the bug tracker dataset because (1) there are too many crawled
files for manual inspection (6,903 in Table 4.2), and (2) not all the collected files are cor-
rupted. Although there existing tools such as Acrobat Pro DC [179] that can validate PDF
files, (1) it is a proprietary GUI tool that does not support automation to scale towards
validating thousands of files, (2) previous work [168] had shown that Acrobat Reader con-
tains bugs on the implementation of the PDF specification. Therefore, the automated tool
uses seven popular PDF viewers to decide if a PDF file is corrupted by opening the files
automatically. Figure 4.3 shows an overview of the empirical study.

The tool first filters out files that are not corrupted because not all crawled files from the
bug trackers are corrupted (SanityCheck in Figure 4.3). The tool (1) removes password
protected PDF files by detecting them using Mutool’s info utility [73], (2) removes any
files that are smaller than 300 bytes (we chose a lower threshold to be conservative since
a minimal “Hello World” PDF file contains 739 bytes [180]), and (3) removes files that do
not start with the magic number, %PDF, in the header.

We identify corrupted PDF files by applying screenshot analysis on PDF viewers (San-
ityCheck in Figure 4.3). A PDF file is considered corrupted if more than one PDF viewer
fails to open the PDF file. We select this criterion since previous work had shown cases
where one viewer contains a bug [168]. A PDF viewer is considered to have failed to open
the PDF file if it displays a blank screen based on the histogram analysis, where the screen
only contains pixels of a single color. The primary challenge in the screenshot analysis
is that corrupted files often cause unexpected behavior on the PDF viewer and operating
system (e.g., crashes and error messages). We utilize optical character recognition (OCR)
to detect and close on-screen messages (e.g., informational and error messages) before the
screenshot analysis because they interfere against the histogram analysis at identifying

52

Table 4.1: List of evaluated repair tools and PDF viewers.

Repair Tool Version Build Date PDF Library
mutool [73] 1.12.0 December 2017 Built-in
PDFtk [74] 2.02-4 July 2013 Built-in
GhostScript [181] 9.18 September 2015 Built-in
PDF Viewer Version Build Date PDF Library
Evince [182] 3.18.2 July 2017 GhostScript
Xpdf [183] 3.04 May 2014 Poppler [77]
MuPDF [73] 1.12.0 December 2017 Built-in
Chromium [184] 65.0.3325.18 March 2018 PDFium [185]
Firefox [186] 59.0.2 Match 2018 PDF.js [187]
Acrobat Reader DC [188] 2018.011

(Win. 10)
2018 Built-in

Qpdfview [189] 0.4.17 December 2016 Poppler [77]

content on the screen. The reason to utilize OCR for detecting error messages as opposed
to image comparison is that OCR is more reliable at detecting error messages from the
user interface. For example, image comparison would fail to recognize a message box if the
error message text is different between PDF files. OCR also allows us to adapt to different
screen resolutions quickly if needed.

4.4.3 PDF Repair Tools and Viewers

Since the goal of the study is to understand the impact of corrupted PDF files and the repair
capability of existing repair tools, we include three common PDF repair tools (Mutool,
PDFtk, and GhostScript) and seven PDF viewers (Table 4.1). All software executes on the
latest available version on two computers installed with Ubuntu 16.04 LTS and Windows
10 (Acrobat Reader DC). Both computers contain an Intel i5-2400 CPU and 6GB of RAM.

4.4.4 Empirical Study Findings

RQ1: How many real-world corrupted PDF files exist and what is their impact?

Procedure (RQ1): Corrupted PDF files can have a negative impact on the end user
such as program crashes and security vulnerabilities. Therefore, we want to understand

53

(1) how many real-world corrupted files exist, (2) if the real-world corrupted files cause
severe consequences including security vulnerabilities, and (3) if the real-world corrupted
files have an impact to the end user and target software.

To locate real-world corrupted PDF files, we apply screenshot analysis (Section 4.4.2)
over the 6,903 crawled files from existing bug trackers (Table 4.2) and automatically iden-
tified a list of corrupted PDF files. Since the automated tool is not perfect, we manually
inspected the 396 corrupted files. Our manual inspection identified and removed 77 false
positives, resulting in a total of 319 corrupted files. There are two primary sources of false
positive. The two types of false positive includes (1) the case where the tool failed to take
a screenshot using macros, and (2) the crawled file does not contain any content (e.g., the
PDF contains no text or images which is impossible to detect). We perform three classifi-
cations over the 319 corrupted files (excludes the false positives) to answer RQ1. The first
two labels are done independently by two graduate students, and the disagreements are
discussed until they are resolved, and the third label is done by a graduate student.

The first classification labels PDF files as either real-world corrupted or purposely
corrupted. The goal is to obtain the first set of real-world corrupted PDF files for further
studying in RQ3 of this work. For example, a PDF file that is modified manually by hand
or modified automatically by fuzzing tools to expose a bug in a viewer would be considered
a purposely corrupted file, but a PDF file that is generated by a real-world application
(e.g., Microsoft Word) but later corrupted when sent as an email attachment is considered
a real-world corrupted file. The labeling process involves manually inspecting the bug
report and the corrupted file.

The second classification labels if the PDF file triggers security vulnerabilities in the
target software such as PDF applications. For example, a PDF file that triggers an integer
overflow vulnerability in a specific PDF viewer or library is labeled as a file that tiggers
security vulnerabilities. The labeling process involves manually checking if the bug report
is tagged as a security bug and if the developer comments indicate that the PDF file
contains security vulnerabilities.

The third classification labels the types of impact that are caused by the corrupted
PDF file to the end user and target software. The classification is based on the labels from
a previous work that studied bug characteristics [1]. The label list includes program hang,
program crashes, data corruption, performance degradation, incorrect functionality, and
others. The labeling process involves manually inspecting the bug report and the corrupted
file.

Results (RQ1): Table 4.2 shows the number of real-world corrupted PDF files and their
classifications. We found a total of 319 corrupted PDF files where 119 of which (37.9%)

54

Table 4.2: RQ1—A breakdown of the number of PDF files that are crawled from the bug
trackers (‘crawled’), the number of remaining files after applying SanityCheck (‘Filtered’),
the number of automatically detected corrupted files (‘Corr’), the number of manually
identified real-world corrupted files (‘Real’), and the number of manually identified files
that cause security vulnerabilities (‘Sec’).

Bug
Repo.

Crawled Filtered Corr. Real. Sec.

GNOME 439 437 21 18 2
Mozilla 157 157 2 2 0
hromium 2,306 2,276 205 25 117
LaunchPad 2,411 2,374 52 48 0
GhostScript 63 62 6 5 0
KDE 332 323 2 2 0
Apache 256 256 0 0 0
Freedesktop 939 930 31 19 0
Total 6,903 6,815 319 119 119

are real-world corrupted files, while the remaining 198 are purposely corrupted files that
causes PDF applications to fail. Real-world corrupted files often come from bad PDF
file generators such as cups-pdf [190] that generate a file that does not conform to the
specification. The results suggest that there is a significant amount of real-world corrupted
PDF files whose content is vital to the user, which motivates the need to repair the file
content. Also, these files have not been systematically studied before, which motivates the
need to study them.

Amongst these 319 corrupted files, 119 files (30.8%) expose security vulnerabilities in
PDF application. It is still important to repair files with vulnerabilities because it can
cause severe consequences to the user and help developers localize faults (Section 4.1).
And amongst the 119 corrupted files that can trigger security vulnerabilities, 116 of which
(99.1%) are purposely corrupted files. The one real-world corrupted file that triggers a
security vulnerability triggers an out-of-bounds write error in Chromium’s built-in PDF
reader (bug #124182 [191]). The bug report contains a reference in the security vulnera-
bility database (CVE-2011-3097), which is confirmed to be a security bug and fixed by the
developers.

The classification on the impact of corrupted PDF files is shown in Table 4.3. Corrupted
files can commonly cause incorrect functionality on the target software that is unexpected

55

Table 4.3: RQ1—Classification of the impact of all 119 real-world corrupted PDF files on
the end user and target software based on previous work’s classification labels [1].

Incorrect
Functionality

Crash Performance
Degradation

Hang

94 16 6 3

to the user (94 instances). For example, the target software may not be able to display the
content of the corrupted file or have issues at processing the corrupted file. Other common
issues include software crashes (18 instances), performance degradation (6 instances), and
software hangs (3 instances).

Findings (RQ1): We identified a total of 119 real-world corrupted files from the 319
corrupted files, and identified 119 files that triggers security vulnerabilities from the 319
corrupted files. The PDF file corruption problem is a real problem that often impacts the
user with incorrect functionality or even software crashes.

RQ2: Can existing repair tools repair corrupted PDF files?

Procedure (RQ2): To check if corrupted PDF files can be repaired by existing tools,
we apply existing repair tools (Mutool, PDFtk, and GhostScript) on 1,827 corrupted files
(Table 4.2), consisting of both corrupted PDF files from bug trackers (319 files) and fuzzed
PDF files from Force Open’s fuzzed dataset (1,508 files). We include fuzzed PDF files in
the evaluation because it simulates the case of file system errors in the real world, which
can corrupt raw bytes of the file. The 1,508 files from Force Open’s fuzzed dataset are
obtained by applying CorruptCheck on the Force Open dataset of 1,723 files. For RQ2, we
study both real-world corrupted PDF files and purposely corrupted PDF files because it is
beneficial to repair both types as discussed in the introduction. We apply existing repair
tools to repair the corrupted files, and then verify if the corrupted files had been repaired
successfully by the repair tools (Figure 4.3).

Results (RQ2): Table 4.4 presents the repair result: 1,267 of the 1,827 corrupted files
cannot be repaired by any existing repair tools (Mutool, PDFtk, and GhostScript). Specif-
ically, 231 of the 319 corrupted real-world files cannot be repaired by any existing repair
tools, while 1,036 of the 1,508 corrupted fuzzed files cannot be repaired by any existing
repair tools.

As discussed in RQ1, the 319 corrupted files contain 119 real-world corrupted files and
119 files that cause security vulnerabilities respectively. Table 4.4 shows that amongst the

56

Table 4.4: RQ2—Number of corrupted files (‘Corr.’) that existing tools (Mutool, PDFtk,
and GhostScript) cannot repair (‘None rep.’). We also show the number of files, amongst
the ones that nobody can repair, that are real-world corrupted (‘None Rep. Real.’) and
triggers security vulnerabilities in the target software (‘None Rep. Sec.’).

Set Source Corr. None
Rep.

None Rep.
Real.

None
Rep. Sec.

1 GNOME 21 12 9 2
Mozilla 2 2 2 0
Chromium 205 162 11 103
LaunchPad 52 32 29 0
GhostScript 6 5 4 0
KDE 2 0 0 0
Apache 0 0 0 0
Freedesktop 31 18 8 0
Set 1 Total 319 231 63 105

2 Force Open 1,508 1,036 0 n/a
TOTAL 1,827 1,267 63 105

119 real-world corrupted files, 63 of which cannot be repaired by existing tools; and from
the 119 files that cause security vulnerabilities, 105 of which cannot be repaired by existing
tools.

Findings (RQ2): There is a need for a better repair technique since 1,267 of the
1,827 corrupted files cannot be repaired by any existing repair tools (Mutool, PDFtk, and
GhostScript).

RQ3: What types of real-world file corruption exist?

Procedure (RQ3): To study the impact of file corruption, we perform a classification
over the 119 real-world corrupted files to discover the causes of corruption. The classi-
fication requires inspecting the raw bytes of a PDF file, the file’s associated bug report,
and the output of PDF viewers. The initial step discovers the full list of topics (causes of
corruption), which is used for open card sorting [192]. Open card sorting is a technique
for organizing items into categories. The purpose is to identify high-level causes of corrup-
tion from detailed corruption causes. We follow the open sorting process digitally using
xSort [193]. We first enter a unique list of corruption causes into the xSort software for

57

Table 4.5: RQ3—Causes of file corruption (Type Coor.) on the 119 real-world corrupted
files. The table shows the number of files for each cause of corruption (T.); the number
of files that that cannot be repaired by existing repair tools including Mutool, PDFtk,
and GhostScript (F.); the number of files that can be repaired by the proposed technique,
DocRepair, which is described in Section 4.5 (R.); and the corresponding repair operator
that is implemented in DocRepair to address the different causes of corruption (RO).

Type Corr. T. F. R. RO Type Corr. T. F. R. RO
Base Structure 14 9 10 RO1, RO3,

RO5
Corrupted
Data Stream

10 4 0

Font Resource 9 2 0 RO3 Page Tree
Structure

6 3 2 RO4

Bad Data
Field Value

5 3 1 RO3–RO6 File Trailer 5 1 3 RO6

Image 4 3 0 Form 4 0 3
Colorspace 4 1 0 Cross-

Reference
Table

3 1 1 RO7

File Encryp-
tion

3 2 0 Graphics Gra-
dient

3 3 0

Embedded
Javascript

1 1 0 Unknown 48 30 6

sorting. The presentation of the cards is randomized by the xSort, and we create subcate-
gories during the sorting process. The goal is to sort the topics into categories and assign
a name that best describes the content of each category.

A total of 119 topics (causes of corruption) are discovered before the initial classification
of the 119 real-world corrupted files. Since multiple corrupted files may have the same
topic, we perform string matching to obtain a list of unique topics for the open card
sorting process. The unique list of topics are entered into the card sorting software, and
the user sorts the topics into categories (Table 4.5).

Results (RQ3): Table 4.5 shows the causes of file corruption from the 119 real-world
corrupted files. We explain the identified types of file corruption below.

‘Base structure’ contains files that are corrupted due to file transfer or file-system bugs,
where a large chunk of the PDF file is missing and thus destroying the base structure of
the file. For example, the PDF objects (nodes in Figure 4.2) can be missing from the file

58

1 7 0 obj
2 << /Type /Font
3 /Subtype /TrueType
4 /BaseFont /DejaVuSans <− i n v a l i d font r e f e r e n c e
5 /FirstChar 0
6 /LastChar 5
7 /FontDescr iptor 6 0 R <− i n v a l i d font d e s c r i p t o r r e f e r e n c e
8 /Widths [1178 1253 1300 842 0]
9 >>
10 endobj

Listing 4.3: Example of an invalid font object where the embedded font cannot be loaded
by PDF viewers [194].

which can cause parsing issues. Therefore, it is important for repair tools to take into
consideration the situation where multiple objects are missing during a repair.

‘Corrupted data stream’ contains files that contain compressed content (e.g., with en-
coders such as Flate, LZW and ASCIIHex) that had been corrupted, which causes the
encoded content to be unrecoverable. However, it may be possible to recover other parts
of the PDF file if the corrupted encoded data does not impact too many parts of the file.
It may not be advisable to encode all data into a single data stream since a single byte
corruption in the encoded data can potentially corrupt the entire data stream.

‘Font Resource’ contains files with corrupted file resource, which is required to display
the text. When a file does not include the needed font embedding in the file, it can cause
PDf viewer issues at displaying the content. It is also the reason that other PDF format
extensions such as PDF/A specify the requirement to embed all fonts in a PDF file for
long-term preservation purposes. An invalid font component of a PDF file generated by
GTK+ is shown in Listing 4.3 where the PDF file references a front that is not loadable
by Evince and other viewers [194]. The font (DejaVuSans) is invalid because the viewer
cannot load the embedded font. There are also other cases where a font is not embedded in
the PDF file. For example, LibreOffice [174] generated a corrupted PDF file that requests
a font that is not embedded in the PDF file [195].

‘Page tree structure’ contains files with an invalid page tree structure. The page tree
structure is responsible for organizing the display of pages within the PDF file. Common
real-world corruption scenarios include cases where a part of the page tree of a PDF file
is missing causing PDF viewers to fail to open the file [196, 197]. Listing 4.4 contains
an example of a corrupted page tree [198], where the page tree structure is missing an

59

1 11 0 obj
2 <</Metadata 2 0 R
3 /PageLabels 6 0 R
4 /Pages 8 0 R <− i n v a l i d ob j e c t r e f e r e n c e
5 /Type/Catalog>>
6 endobj
7
8 12 0 obj
9 <</Contents 14 0 R
10 /CropBox [0 0 612 792]
11 /MediaBox [0 0 612 792]
12 /Parent 8 0 R
13 /Resources 19 0 R
14 /Rotate 0
15 /Type/Page>>
16 endobj

Listing 4.4: Example of a corrupted page tree structure where the ‘Pages’ object (object
number 8 which is referenced on line 4) is missing [198].

important object (8 0 R) called the ‘Pages’ object. The ‘Pages’ object is responsible for
letting the PDF viewers know the full list of available displayable pages in the PDF file
(e.g., object number 12 at the bottom of the listing).

‘Bad data field value’ contains files with specific issues in the key-value pairs within
an object. For example, Launchpad’s Evince PDF viewer fails to print a PDF file due to
an invalid value [199] for the key Encoding in Listing 4.5. Based on the PDF documen-
tation [166], the value should be a name object that starts with the character ‘\’. For
example, ‘\WinAnsiEncoding’ is a potential valid value.

‘File Trailer’ contains files with invalid file trailers. An invalid file trailer is shown in
Listing 4.1 where it contains a reference to an invalid object number (-406081386). The
value should be a valid object number that exists in the PDF file. There are also cases
where a file trailer is missing from the file due to bad applications. For example, scanner
application Simple Scan [200] generates corrupted PDF files that do not contain a file
trailer at all [201, 202].

‘Image’ contains files with embedded images and graphics that are invalid. The issue
can be caused by the corrupted binary pixel data, the color profile of the image data, or
the image encoding algorithm. A common issue is that the image parser can fail while
parsing the input image stream. For example, Launchpad’s Evince PDF viewer crashes

60

1 1 0 obj
2 <</BaseFont /Cour ier
3 /Subtype /Type1
4 /Name /F1
5 /Type /Font
6 /Encoding WinAnsiEncoding <− i n v a l i d va lue for the key , Encoding
7 >>

Listing 4.5: Example of an invalid data field value for the key Encoding [199], where the
key Encoding has an invalid value.

when opening a PDF that contains an embedded image that is compressed using JBIG2
algorithm [203].

‘Form’ contains files with invalid fillable forms. It can relate to issues such as the
inability to save the data entries and bad text characters within the forms.

‘Colorspace’ contains files with invalid Colorspace, which is a color profile that define the
format of the embedded image pixel data [204]. It is important to understand that the PDF
file format does not store images as a specific file format (e.g., PNG or JPG), but instead
stored images as a binary pixel data that is defined by its color profile called Colorspace.
While the ‘Image’ category contains PDF files with issues with image embedding, the
‘Colorspace’ category contains PDF files that have issues that are directly caused by the
color profile.

‘Cross-reference table’ refers to a specific part of the PDF file that is used by PDF
applications to speed up the loading speed.

‘File Encryption’ refers to the encryption functionality that protects the content of a
PDF file.

‘Graphics gradient’ refers to a drawing component within the PDF file format, which
are shading patterns that defines a smooth color transition between on point to another.
The PDF file format defines a list of such shading patterns to allow a wide range of coloring
patterns.

‘Embedded Javascript’ refers to the Javascript code that is embedded within the PDF
file which allows for interactive content.

‘Unknown’ refers to corrupted files that we cannot locate the cause of corruption. The
identification of the cause of corruption is a challenging task since bug reports may not
document the cause of the file corruption.

61

Findings (RQ3): The findings on the causes of corruption in Table 4.5 inspired us to im-
plement seven repair operators to address them. Specifically, the proposed repair operators
focus the repair over the most frequent causes of corruption including base structure, font
resource, page tree structure, bad data field value, file trailer, and cross-reference table.

4.5 Design and Implementation

DocRepair repairs PDF files with two main steps as shown in Algorithm 1. First, it
parses the corrupted file and collects data for specific objects in the file (Section 4.5.1).
Second, it applies modifications to the file using a list of repair operators in a specific order
(Section 4.5.2), where the repair operators are designed based on the identified causes of
file corruption from the empirical study in RQ3 (Table 4.5).

4.5.1 Data Parsing and Collection

The first step in the repair algorithm (line 1 of Algorithm 1) parses a PDF file and collects
data from specific objects in the file. The collected data is used in later stages by the repair
operators (Section 4.5.2).

The function parse() in line 1 of Algorithm 1 collects information needed for detecting
and repairing potential bugs in the PDF file (line 1). Its purpose is to collect structural
information of important objects (i.e., trailer, catalog, page tree) and the relationship
between these objects (i.e., parent and child relationship). The function also performs
validation over the parsed data to ensure they are semantically correct (i.e., ensure objects
and references are valid).

While several PDF parsing libraries exist, we re-implemented a parser (adapted from
Mutool’s PDF parsing library [73]) to overcome limitations of existing libraries. Since
parsing libraries are designed to parse correctly formed PDF files, existing parsers would
stop the parsing and return an error if the PDF file is too corrupted. To overcome this
issue, DocRepair parses one object at a time (an object can be a boolean, a number, a
dictionary, a data stream, etc.) to confine the propagation of parsing errors.

4.5.2 Repair Operators

The second step of the repair algorithm (line 2—20 of Algorithm 1) contains a list of repair
operators to repair the PDF file. The repair operators analyzes the collected data to flag

62

Algorithm 1: Algorithm for repairing PDF files. RO1–RO7 denotes the seven repair
operators.
Input : input PDF file buffer - inputFile
Output : repaired PDF file buffer - parsedPDF

1 parsedPDF ← parse(inputF ile)
/* RO1 - Object spacing */

2 parsedPDF ← removeBadSpacing(parsedPDF)
/* RO2 - Header */

3 parsedPDF ← repairHeader(parsedPDF)
/* RO3* - Font Resource */

4 for font ∈ parsedPDF.fontReferences do
5 if !existObject(parsedPDF, font) then
6 parsedPDF ← parsedPDF + genTemplate(“font”, font.id)
7 end
8 end

/* RO4* - Page Tree Structure */
9 if parsedPDF.pageTree.repair then

10 parsedPDF ← parsedPDF + genTemplate(“page”, parsedPDF.pageTree.id)
11 parsedPDF ← updateReference(parsedPDF, “page”)

12 end
/* RO5* - Catalog */

/* Check if catalog is missing or the child (page node) is missing
*/

13 if parsedPDF.catalog.id = ∅ or parsedPDF.trailer.child = ∅ then
14 parsedPDF ← parsedPDF + genTemplate(‘catalog′, parsedPDF.catalog.id)
15 parsedPDF ← updateReference(parsedPDF, “catalog”)

16 end
/* RO6 - Trailer */

17 parsedPDF ← remove(parsedPDF, “trailer”)
18 parsedPDF ← parsedPDF + genTemplate(“trailer”, parsedPDF.catalog.id)

/* RO7 - xRef table */
19 parsedPDF ← remove(parsedPDF, “xRef”)
20 parsedPDF ← parsedPDF + genTemplate(“xRef”, parsedPDF)
21 return parsedPDF

63

Table 4.6: A list of proposed and existing repair operators (RO) and whether existing repair
tools support them (* means the repair operator is unique to DocRepair). ‘Repaired’ shows
the usage frequency of each repair operator over the 354 corrupted files that are repaired
by DocRepair. ‘Uniquely Repaired’ shows the usage frequency over the 10 corrupted files
that are uniquely repaired by DocRepair.

Repair
Tool

RO1,
Object
Spac-
ing

RO2,
Header

RO3*,
Font
Re-
source

RO4*,
Page
Tree
Struc-
ture

RO5*,
Cat-
alog
Object

RO6,
File
Trailer

RO7,
Refer-
ence
Table

MuPDF Yes Yes No No No Yes Yes
PDFtk Yes Yes No No No No Yes
GhostScript Yes Yes No No No No Yes
DocRepair Yes Yes Yes Yes Yes Yes Yes
Repaired 92 5 12 198 218 354 354
Uniquely
Repaired

6 2 5 9 9 10 10

bugs in the PDF file, and modifies the PDF file to address the flagged bugs. DocRepair
includes both (1) newly proposed repair operators and (2) repair operators from existing
repair tools. Table 4.6 shows a summary of the designed and implemented repair operators.

Amongst the seven repair operators, DocRepair contains three that no existing tools
have, which are designed based on the findings from our empirical study in Section 4.4.4.
Table 4.5 shows the mapping between the causes of corruption against the implemented
repair operators in column ‘RO.’ We do not propose repair operators for two of the causes
of corruption (‘Corrupted data stream’ and ‘Image’), and we discuss the reasoning at the
end of this section.

The main causes of corruption are covered by different repair operators (RO1–RO7) in
Table 4.6. A repair operator may address multiple causes of file corruption. For example,
when the base structure of a PDF file is corrupted (a cause of corruption) it may affect
both the font and header of the file, which means it would require two repair operators to
fully repair the file.

The mapping between the cause of corruption and the corresponding repair operator is
discussed below. ‘Base Structure’ is covered by RO1 (object spacing), RO3 (font resource),
and RO5 (catalog object). ‘Font Resource’ is being addressed by RO3 (font resource).

64

‘Page Tree Structure’ is addressed by RO4 (page tree structure). ‘Bad data field value’
is addressed by applying multiple repair operators (RO3—RO6) through detecting for
invalid object number or references. ‘File Trailer’ is directly addressed by RO6 (file trailer).
‘Reference table’ is directly addressed by RO7 (cross-reference table). We do not propose
repair operators for the remaining causes of corruption that are in Table 4.6 due to their
low impact.

The seven implemented repair operators (RO) are annotated as a comment on the right
of the algorithm (Algorithm 1). Five of the seven proposed repair operators invoke the
function genTemplate() which generates a new object using templates for components
such as the cross-reference table and font object. The function genTemplate() generates
the repair with the name of the object passed as the argument of the function.

We describe the seven repair operators below. Three of the repair operators are new
and have not been used in previous document repair tools. Repair operators that have not
been implemented by existing repair techniques (RO3, RO4, and RO5) are annotated with
a star symbol (e.g., RO3*).

RO1: Object Spacing

Line 2 in Algorithm 1 checks the spacing between PDF objects and ensures that it only
contains valid spacing characters between PDF objects, as defined in the file format speci-
fication [166]. RO1 is performed first since a corrupted file may contain invalid characters
that can lead to parsing failures to stop the rendering of PDF files.

RO2: Header

Line 3 checks if the file header is correct because PDF applications may utilize the header
to determine the file type. RO2 ensures that the magic number is correct, and the bytes
after the magic number contain only ‘high bit’ ASCII characters of value 128 or higher.
The ASCII characters can be used by file transfer applications to determine if the file’s
content contains binary or text data.

RO3*: Font Resource

Repairing font objects is important because a missing or corrupted font object often causes
the text that is within the document to be undisplayable, even if the text is embedded in
the file and not corrupted.

65

1 FONT_ID 0 obj
2 << /Type /Font /Subtype /Type1
3 /BaseFont /FONT_NAME>>
4 endobj

Listing 4.6: Template for the font object.

Lines 4 to 8 of Algorithm 1 iterate through font resources and detect any missing
or corrupted fonts. If any of the font resources are missing or corrupted, RO3 invokes
genTemplate() to generate a new font object to replace the missing resources.

Listing 4.6 shows the template for generating a font object, which is a dictionary object
that consists of key-value pairs (i.e., the key ‘Type’ contains the value ‘Font’). In this
example, the template’s object number FONT_ID has to be substituted with the correct
object number. The variable FONT_NAME has to be substituted with the correct name of
the missing font. These two values are extracted during the parsing step in Section 4.5.1.

RO4*: Page Tree Structure

The page tree structure represents the page layout of a PDF file. The page tree hierarchy
is shown in Figure 4.4. A ‘page tree’ is responsible for organizing ‘page’ objects, where
a ‘page’ object defines the content of a single page. Both ‘page tree’ and ‘page’ objects
contain pointers (arrows in Figure 4.4) that connect objects. RO4 utilizes the parent-child
pointer relationship between these objects that are extracted during the parsing process
(line 1).

Lines 9 to 12 fix the page layout of a PDF file. Two pieces of information are necessary
for this repair: the object ID of the top-level ‘page tree’ object and a list of ‘page’ object
references. The top-level ‘page tree’ object is located by tracing through the pointers until
it can locate the top-level ‘page tree’ object (root node in Figure 4.4). The list of ‘page’
object references is obtained by checking the type of the objects (leaf nodes in Figure 4.4).

If the page tree structure is corrupted (there may be multiple page trees within a PDF
file), RO4 generates a new page tree template (line 10) as the new root node. Although
a PDF file may contain multiple page tree objects, the proposed repair operator only
generates a single page tree object. The new page tree object aggregates all the available
‘page’ objects that are responsible for holding the actual page content under the new top-
level ‘page tree’ object. RO4 also updates the pointer references of the page objects since
a new ‘page tree’ object is generated (line 11).

66

Figure 4.4: Hierarchy of the ‘Page Tree’ structure. The tree contains intermediate nodes
called ‘page tree’ and leaf nodes called ‘page object’. The arrows represent an indirect
reference between the objects.

1 PAGE_TREE_ID 0 obj
2 <</Type /Pages /Kids PAGE_OBJECT_LIST
3 /Count PAGE_OBJECT_LIST.LENGTH>>
4 endobj

Listing 4.7: Template for the page tree object.

An example is shown in Listing 4.7, where PAGE_TREE_ID is the new top-level ‘page
tree’ object, and PAGE_OBJECT_LIST is the referenced list of ‘page’ objects that represents
the content of the file.

Although RO4 will repair the page tree structure, the current implementation does
not analyze the order of the pages, and hence the final PDF file may contain randomized
page order. The repair operator is unique to DocRepair, and it is essential for recovering
displayable content. Amongst the 354 successfully repaired PDF files by DocRepair, 198
of which utilized this repair operator (Table 4.7).

RO5*: Catalog Object

The catalog object represents the root of the PDF tree structure (Figure 4.2), which con-
tains references to other core parts of the PDF file. Lines 13–16 fix the document catalog
object. It performs a repair if a catalog object cannot be found or if the catalog object
cannot be located from the file trailer. The generated template (line 14) is shown in List-
ing 4.8, where CATALOG_ID and PAGE_TREE_ID have to be inferred similarly to RO4. RO5
has to be applied after the RO4 because RO5 uses the repaired PAGE_TREE_ID from RO4

67

1 CATALOG_ID 0 obj
2 <</Type /Catalog /Pages PAGE_TREE_ID 0 R>>
3 endobj

Listing 4.8: Template for the catalog object.

1 CATALOG_ID 0 obj
2 <</Root CATALOG_ID 0 R / S i z e TOTAL_NUM_OBJECTS>>
3 endobj

Listing 4.9: Template for the trailer object.

if the page tree structure is corrupted. Similar to RO4, RO5 invokes updateReference()
to update the external reference from the trailer object (line 15).

RO6: Trailer Object

The trailer object is the entry reading point for applications that process PDF files. Lines
17 to 18 fix the trailer object. Existing techniques only regenerate the trailer object if
the trailer object cannot be found or cannot be parsed correctly in the PDF file, whereas
DocRepair validates the correctness of the trailer data and triggers a repair upon detecting
invalid values. For example, the trailer object requires a reference to the catalog object,
but existing tools do not check if the existing reference actually points to a catalog object.

The object template is shown in Listing 4.9. RO6 has to be applied at the end of
the repair because the previous repair operators (RO3 and RO4) modify the total number
of objects within a PDF file (TOTAL_NUM_OBJECTS). In addition, RO6 uses the variable
CATALOG_ID from RO5.

RO7: Cross-reference Table (xRef)

The cross-reference table stores a pointer reference to each PDF object. The cross-reference
table is often used by PDF readers to fetch information quickly without reading the entire
PDF file. Lines 19 to 20 reconstruct the cross-reference table of the PDF file. RO7 is a
common repair operator that is deployed by all PDF viewers and repair tools.

68

Excluded Categories

We do not include a repair operator for two causes of file corruption, ‘Corrupted data
stream’ and ‘Image,’ for three reasons. The decision is made based on a manual inspection
of all the corrupted files that cannot be repaired by any existing tool in Table 4.5.

The first reason is that the files are too corrupted and are beyond repair. The six
files in the ‘Corrupted data stream’ category that can be repaired by existing tools have a
corrupted data stream that only affects a minor part of the PDF file. However, the four
files that cannot be repaired by existing tools contains too many corrupted components.
For example, two of the files from Chromium bug #444446 are damaged beyond repair,
with hundreds of corrupted objects. In another example, one of the files from Freedesktop
bug #14098 is created by a 2D graphics library with incorrectly embedded images, and
since the only content within the file is an image and the image data is corrupted, it is
impossible to recover any content from the file.

The second reason is that the files require the design of a repair operator that is too
specific to the file and are not generalizable. For example, Freedesktop bug #6688 contains
a file that is corrupted with a unique pattern that is unlikely to occur in another corrupted
file. While this file could be repaired, the RO used to repair this file would be very unlikely
to generalize to other corrupted files.

Third, the files in the ‘Image’ category require the support for image analysis techniques
which is beyond the scope of this work. For example, a corrupted image data within a
PDF file can affect the binary pixel data, the color profile of the image data (also known
as the colorspace which has its own category), or image encoding algorithm (also known
as filters). Since there are many color profile configurations and ten different encoding
algorithms supported by the PDF file format, we do not propose new repair operators
to address these files. For example, Freedesktop bug #6500 contains an image that is
encoded using the JBIG2 filter, where the decoded data contains a byte that causes the
PDF rendering library, Poppler, to fail to render the image since Poppler’s implementation
does not expect the extra NULL byte in the binary data. Since the repair requires a change
to the JBIG2 filter’s algorithm, we do not implement a repair operator for this file.

4.6 Evaluation Method and Results

RQ4: How does DocRepair compare to existing file recovery tools?

69

Table 4.7: RQ4—A summary of the automated screenshot evaluation results over 319
corrupted files (including real-world corrupted and purposely corrupted files) and 1,508
fuzzed corrupted files. The table shows the number of repaired files by each specific repair
tool (Mutool, PDFtk, GS and DocRepair). The number in bracket refers to the number
of files that are uniquely repaired. ‘All’ includes the number of real-world corrupted and
purposely corrupted files. ‘RC’ only includes real-world corrupted files.

Source Num.
Corr.

Num.
Corr.

Mutool Mutool PDFtk PDFtk GS GS Doc Doc Doc+ Doc+

All RC All RC All RC All RC All RC All RC

GNOME 21 18 8 (0) 8 (0) 1 (0) 1 (0) 9 (1) 9 (1) 4 (1) 4 (1) 10 10
Mozilla 2 2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0
Chromium 205 25 17 (5) 9 (1) 20 (3) 6 (0) 29 (13) 10 (3) 18 (6) 11 (3) 49 17
LaunchPad 52 48 14 (1) 13 (1) 4 (0) 4 (0) 14 (5) 13 (5) 9 (2) 9 (2) 22 21
GhostScript 6 5 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0 (0) 0 (0) 1 1
KDE 2 2 2 (0) 2 (0) 0 (0) 2 (0) 2 (0) 2 (0) 1 (0) 1 (0) 2 2
Apache 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0
Freedesktop 31 19 7 (2) 5 (1) 3 (0) 2 (0) 11 (6) 10 (6) 6 (1) 5 (1) 14 12

319 119 49 (8) 38 (3) 29 (3) 16 (0) 66 (25) 45 (15) 38 (10) 30 (7) 98 63

Force
Open

1,508 none 459
(347)

none 12 (0) none 18 (3) none 316
(201)

none 673 none

Total 1,827 508
(355)

41 (3) 84 (28) 354
(211)

751

Procedure (RQ4): To compare our proposed technique, DocRepair, against existing file
recovery tools (Mutool, PDFtk, and Ghostscript), we perform an evaluation over both real-
world and fuzzed corrupted PDF files that are identified in the empirical study (Table 4.2).

Each PDF repair tool is executed on the corrupted PDF file to generate a new PDF
file that represents the potentially repaired version. To verify if the repaired file is in-
deed successfully repaired, we utilize CorruptCheck to check if the repair is successful
(Section 4.4.2).

In addition, we propose and evaluate a technique called DocRepair+ that evaluates
the result of multiple repair tools and returns the PDF file(s) that represents the best
repair amongst a list of repair candidates. To measure the quality of a repair, we use
a simple metric that determines the quality of a repaired file based on the total number
of PDF viewers that can successfully open and display the file’s content. DocRepair+
measures the repair quality of the four repair tools’ generated PDF file by locating the
repaired candidate(s) that contains the lowest number of failure amongst seven different
PDF viewers.

Results (RQ4): The result of the comparison against existing repair tools’ repair capabil-
ity is shown in Table 4.7. For the real-world corrupted and purposely corrupted files (‘All’
column in Table 4.7), amongst the 1,827 corrupted files from the two corpora, DocRepair
is capable of repairing 354 files while Mutool, PDFtk, and GhostScript repaired 508, 41
and 84 respectively. The number in brackets shows the number of uniquely repaired files

70

by each tool. Although Mutool uniquely repaired 355 in total, DocRepair can complement
existing repair tools by repairing 211 additional files that none of the existing repair tools
can repair.

We also show the data for real-world corrupted files (‘RC’ column in Table 4.7). DocRe-
pair repaired a total of 30 real-world corrupted files where 7 of which cannot be repaired
by any existing repair tools. Mutool, PDFtk, and GhostScript repaired 38, 16 and 45
real-world corrupted files respectively.

To understand each repair operator’s contribution towards a successful repair, we mea-
sured the repair operator’s usage frequency over the 354 corrupted PDF files that had been
successfully repaired by DocRepair (Table 4.6). The data shows that RO6 (file trailer) and
RO7 (cross-reference Table) are always applied during a repair. RO1 (object spacing), RO4
(page tree structure) and RO5 (catalog object) are also frequency used. RO2 (header) and
RO3 (font resource) are infrequently used since it is less common for these two components
to be corrupted. A median of four operators are used to repair the 354 corrupted files.

We show an example of a PDF file that requires the application of multiple repair
operators. Chromium bug #70440 contains a PDF file that is corrupted when it is saved
using the Chrome browser [205], where six of the seven repair operators are utilized to
repair the file. A diff of the changes are shown in Listing 4.10. RO1 (object spacing) is
applied because the file contains trailing garbage at the end of the file. RO3 (font resource)
is applied because the referenced font object, T1_2, is missing from the file, so it generated
a temporary font as a substitution. RO4 (page tree structure) and RO5 (catalog object)
are applied because the ‘page tree’ object and catalog object are both missing due to file
corruption. RO6 (file trailer) and RO7 (reference table) are always applied during a file
repair.

The repair capability of the combined repair technique, DocRepair+, is shown in the
last column of Table 4.7. DocRepair+ repaired 751 corrupted files, which is far more than
any individual tool is capable of repairing. It shows that the proposed metric is effective
at determining the quality of the file repair.

Findings (RQ4): The result shows that the proposed technique, DocRepair, is effective
at repairing corrupted PDF files (contributing 211 unique repairs among the 1,827 cor-
rupted files). The proposed combined technique, DocRepair+, which relies on screenshot
analysis to determine the best repair is also shown to be effective (repairing 751 of the
1,827 corrupted files). The proposed repair operators are capable of contributing to unique
file repairs (e.g., RO4 helped DocRepair repair 218 of the 354 corrupted files and a median
of four repair operators is used to repair corrupted files).

71

1 // removed garbage data using RO1
2
3 // RO3
4 80 0 obj
5 << /Type /Font /Subtype /Type1 /BaseFont
6 /Times -Roman >>
7 endobj
8
9 // RO4
10 82 0 obj
11 <</Type /Pages /Kids [17 0 R]
12 /Count 1>>
13 endobj
14
15 // RO5
16 83 0 obj
17 <</Type /Catalog /Pages 82 0 R>>
18 endobj
19
20 // RO7
21 xref
22 0 5
23 0000000000 65535 f
24 0000021329 00000 n
25 0000021733 00000 n
26 0000021867 00000 n
27 0000022595 00000 n
28 15 1
29 0000000016 00000 n
30 17 16
31 0000000477 00000 n
32 0000000936 00000 n
33 ...
34
35 // RO6
36 trailer
37 <</Root 83 0 R /Size 84>>
38 startxref
39 23361
40 %%EOF

Listing 4.10: An example of DocRepair applying multiple repair operators on the corrupted
PDF file in Chromium bug #70440.

72

4.7 Threats to Validity

We discuss the different threats to validity to our experiments.

4.7.1 Internal Validity

Internal validity concerns the extent where one can claim the cause and effect between
variables in the experimental design.

The empirical study may contain external variables that can influence the authors’
analysis of the PDF files. A person’s experience with the PDF file format may impact the
classification of the different causes and impact of corrupted files. We mitigate the effect by
having multiple authors to perform the analysis for parts of the classifications that heavily
depends on the knowledge of the inspector.

4.7.2 External Validity

External validity concerns if the conclusions can be generalized outside of the study.

The empirical study currently only contains files that are crawled from existing bug
trackers which can cause a selection bias towards files that are corrupted due to specific
software. For example, files that are corrupted due to file system bugs or network transfer
bugs (ones that are not associated with a specific software application) may be less repre-
sented in the dataset. To mitigate the bias one may collect PDF files directly from existing
web pages instead of only focusing on bug trackers. However, the collection of PDF files
from existing web pages can be a very challenging task.

The detection of corrupted PDF files is done using seven specific PDF viewers including
Evince, Xpdf, MuPDF, Chromium, Firefox, Adobe Reader DC, and Qpdfview. There are
other popular PDF viewers from Windows and Linux that may be used to help determine
if a file is corrupted. The current selection of PDF viewers consists of mostly Linux PDF
viewers which are a potential bias. However, some of the PDF viewers such as MuPDF,
Chromium, and Firefox are cross-platform which mitigates the threat.

The evaluation of the proposed technique is only being evaluated against three existing
PDF repair tools including Mutool, PDFtk, and GhostScript. While these are the most
popular PDF repair tools, there may be other better repair tools to further expand the
generality of the conclusions.

73

4.7.3 Construct Validity

Construct validity concerns if a test measures the intended construct of the study.

The effectiveness of a PDF repair tool is measured based on the number of PDF viewers
that can successfully open and display the content of the corrupted file after the repair.
It might not be the best way to measure the effectiveness of a repair tool as it does not
measure the amount of content that is recovered by the proposed repair technique. Previous
work from Force Open proposed to utilize Levenshtein distance to measure the amount of
content that can be recovered by the PDF repair tools [27]. However, their evaluation
result shows that the corrupted files from their dataset are either completely repaired or
not at all. We analyzed Force Open’s dataset and is able to attribute this to the approach
that they create their fuzzy dataset, where a file is only considered to be corrupted if it
cannot be opened by a PDF processing tool called pdftotext.

4.7.4 Conclusion Validity

Conclusion validity concerns the if the reached conclusions about the relationships in the
data are reasonable.

The empirical study relies on the observer’s knowledge on the PDF file format. Al-
though the observer who analyzed the corrupted files had a year of experience working
with the PDF file format and had spent much time to understand the corrupted files, the
conclusions about the corrupted PDF files may still not be accurate because the PDF file
format is complex.

The analysis in the empirical study relies on studying the bug reports for the corrupted
PDF files. Since each corrupted PDF can be mapped to a bug report, it helps the ob-
server to analyze the corrupted PDF files. However, bug reports may contain inaccurate
information about the corrupted PDF file.

Another threat concerns the ability of an observer to determine if a corrupted file is
fully recovered. The reason is that the observer does not have a non-corrupted version of
the file. The observer can only judge the correctness of the file structure based on manual
inspection of the raw data, the bug report associated with the corrupted file, and the
output from PDF viewers and recovery tools.

74

4.8 Summary

Data corruption is one of the most common issues that impact the availability of user’s
data and causes software failure. This work proposed the first comprehensive dataset of
119 real-world corrupted files. We conducted an empirical study to understand the number
of real-world corrupted files in the wild, the causes causes and impact of file corruption,
and the repair capability of existing repair tools. The study findings motivated the design
of three unique repair operators to help repair corrupted files. We proposed DocRepair and
performed an evaluation against three common PDF recovery tools including Mutool [73],
PDFtk [74] and GhostScript [78]. We also proposed DocRepair+ which repairs corrupted
files through the combination of multiple repair tools. The result shows that DocRepair is
capable of complementing existing repair tools by repairing 211 additional corrupted files
that none of the existing repair tools can repair.

75

Chapter 5

Automatic Documentation Generation:
Crowd Sourced Comment Generation

5.1 Motivation

Code commenting has been an integral part of software development and standard practice
in the industry. Code comments improve software maintainability [83] and programming
productivity [4] by helping developers understand the source code. Also, they improve
software reliability through assisting in detecting software defects [8]. Despite the need and
importance of commenting code, many code bases are not commented or not adequately
commented [2].

Therefore, it would be beneficial to generate comments automatically when possible
to improve software maintainability and reliability. Also, since it is time-consuming for
developers to write comments, automatic comment generation can save developers’ time in
writing comments so that developers can spend their valuable time on other tasks, which
helps to keep the source code up-to-date against the code comments. Previous work had
shown that newly added code barely gets commented and that when code gets commentated
it is mostly done on class and method declarations instead of method calls [206]. Therefore,
an automatic comment generation technique at the code fragment level, as opposed to class
and method level, would be beneficial to the developers.

Researchers have proposed techniques to generate comments from source code automat-
ically. Sridhara et al. automatically generate a summary comment for a Java method [89].
They leverage the code structure and linguistic information from identifiers using the Soft-

76

ware Word Usage Model (SWUM) [92], and generates one comment sentence for each cho-
sen statement from the method. After that, they concatenate the comment sentences to
form a summary comment for the method. In a follow-up project, they identify statements
with similar structures and topics to generate comments for groups of statements [90].
While these techniques are successful initial steps toward automatic comment generation,
they have two main limitations. First, the techniques can only generate comments for
particular code structures. For example, they can generate comments for one method
body [89], groups of method calls [90], groups of if-else statements [90], method parame-
ters [88], or classes [91]. Second, the performance of their work depends on high-quality
identifier names and method signatures. For example, when grouping method calls, it
requires that all method names contain the same verb [90]. If the identifiers and meth-
ods have poor names, then the approach may fail to generate accurate comments or any
comments at all.

Recent state-of-the-art by McMillan et al. proposed to generate documentation that
includes context information for Java methods [207]. They collect contextual data about
the methods from the source code (e.g., statement which called the method, statements
which supplied the method’s input, and the method that uses the method’s output) and
use the keywords from the context of the methods to describe them. Their work labels
method signatures using SWUM [92] to generate a natural language sentence to describe
the functionality of the method, and extracts the contextual information of the method
using PageRank to generate additional sentences as a part of the summary. The differ-
ences between their technique and our proposed technique are that their work performs
summarization on the method level whereas our work focuses on generating code comment
for code segments inside a method, and their summary includes the context of the method.
Although their work relies on SWUM, their technique is capable of generating comments
for any method since the technique is only dependent on SWUM’s ability at identifying
the parts-of-speech from the method signature. Our work is less dependent on the quality
of the identifier names because it only requires at least one text similarity term between
the code comment and the code segment to establish a link, and it utilizes a crowdsourced
approach for automatic comment generation where it selects the best comment amongst a
range of candidates from Stack Overflow and code sources such as GitHub.

We propose a new approach to generate comments automatically to address the above
limitations. We observe that Question and Answer (Q&A) sites such as Stack Overflow [31]
naturally contain code descriptions and open-source projects contain code comments writ-
ten by developers. Therefore, we can extract code comments from the two available sources
for automatic comment generation. Specifically, Stack Overflow is widely used to ask ques-
tions such as code development and debugging. The questions on Stack Overflow often

77

receive high-quality answers due to the large user base. For example, a user asked, “Can
I know if a given method exists? ” (Stack Overflow post #28069121) to check if a specific
method exists within a class. The question received a Java code snippet that checks if
a given method had been declared in the class. We can use the statement form of the
question “Know if a given method exists." as an explanatory description of the code snip-
pet. We refer to the code snippet and description as a code-description mapping. If a
code segment in a software project is identical or similar to the above code snippet, then
the corresponding description can be an explanatory comment for the code segment in the
software project.

Stack Overflow [31] contains a wealth of information, which makes it a feasible and
valuable data source for extracting code-description mappings for automated comment
generation [208]. Previous work had shown that Stack Overflow contains a total number
of 42 million questions as of March 2017. Previous work had shown that at least 49% of
the Java and Android questions in Stack Overflow have at least one code example in the
accepted answer [209]. Android code snippets have a mean size of 16.4 lines of code (LOC)
and a median of 9 LOC [210].

The idea is to generate comments automatically by mining Q&A sites and open-source
projects. The prototype, CloCom+, searches for similar code segments between the two
sources against the target software project. Once CloCom+ finds an identical or simi-
lar code segment, it presents the corresponding description as a comment to explain the
matched code segment. One key benefit of CloCom+ is that the description is what a
developer uses to describe the code segment, which is likely to be accurate and useful for
developers to understand code (compared to descriptions generated from variable names
and method names). However, our evaluation shows that CloCom+ is limited by the num-
ber of comments that it can generate since it relies on discovering a similar piece of the
code segment that contains a natural language description. Lastly, our user study shows
that the quality of the automatically generated code comments by CloCom+ is not good
enough to be directly applied as a source code comment. The 20 participants could not
reach a good agreement on the quality of the code comments. Although CloCom+ improves
on SumSlice, it still requires improvement before it can be applied in the real world. We
studied the automatically generated code comments and proposed several future directions
for automatic comment generation.

The paper makes the following contributions:

• We proposed and built our tool, CloCom+, as an open source tool shared on our
website [211], that is capable of generating code comments at a code fragment level
where the code segment contains an average of 3—4 statements.

78

• We evaluated CloCom+ on 16 open source projects, and it successfully generated 442
groups of unique comments for 780 code locations. We performed a user study with
20 participants to evaluate the quality of the automatically generated comments
by CloCom+ and compared it against the latest state of the art. Although the
result shows that the majority of the participants found the automatically generated
comments are complete, concise, expressive and useful, the statistical test shows
little agreement between the participants. The technique is shown to be not ready
for real-world usage and still require much improvement.

• Our comparison against previous work, SumSlice, shows that the natural language
summary that previous work generates from the method signature greatly improves
the natural language summary’s completeness. However, certain sentences that are
included in their generated summary caused their technique to be overall less concise
compared to CloCom+.

5.2 Examples and Challenges

In this section, we present three examples to illustrate how CloCom+ generates comments
automatically. We describe the challenges, summarize our solutions, and show comparisons
against previous work by Sridhara et al. and McMillan et al.

5.2.1 Example One

Figure 5.1 shows a code segment from the Java project—Eclipse. CloCom+ generates the
following comment to explain the code segment between line 13—15: “Create a temp file
first.”

Figure 5.2 shows the Stack Overflow post that CloCom+ leverages to generate the
comment. It shows the title of the post, the code snippet, and one paragraph immediately
before the code snippet in the answer.

Challenges in Comment Selection: Figure 5.2 shows two textual descriptions that
can be leveraged to describe the code segment in the answer. One is the title of the
post, which describes the question. The other is the paragraph immediately before the
code segment, which consists of a single sentence. Among the two sentences in the title
and the answer paragraph, only the sentence in the answer describes the code snippet in
Figure 5.2. CloCom+ needs to select this relevant sentence from the two sentences to
generate the comment automatically, which is challenging.

79

1 private File getLocalCopy(File file) throws IOException {
2 String fileName = file.getName ();
3 String prefix;
4 String suffix = null;
5 int dotLoc = fileName.indexOf(’.’);
6 if (dotLoc = -1) {
7 prefix = fileName.substring (0, dotLoc);
8 suffix = fileName.substring(dotLoc);
9 } else {
10 prefix = fileName;
11 }
12
13 File tmp File = File.create Temp File(prefix , suffix);
14 tmp File.deleteOnExit ();
15 File OutputStream fos = new File OutputStream(tmp File);
16 File InputStream fis = new File InputStream(file);
17 byte[] cbuffer = new byte [1024];
18 int read = 0;
19
20 while (read = -1) {
21 read = fis.read(cbuffer);
22 if (read = -1)
23 fos.write(cbuffer , 0, read);
24 }
25 fos.flush();
26 fos.close();
27 fis.close();
28 tmpFile.setReadOnly ();
29 return tmpFile;
30 }

Figure 5.1: Code from Java project—Eclipse (PluginsView.java).

80

Stack Overflow Question (Title):
Is it possible to create a File object from InputStream
Stack Overflow Answer:
Create a temp file first.
1 File temp File = File.createTemp File(prefix , suffix);
2 tempFile.deleteOnExit ();
3 File OutputStream out = new File OutputStream(temp File);
4 IOUtils.copy(in, out);
5 return temp File;

Figure 5.2: Stack Overflow Post #11501418

CloCom+ uses a text similarity technique to address this comment selection challenge.
Some sentences extracted from Stack Overflow do not actually describe the code segment
and has to be modified. CloCom+ leverages the text similarity between each sentence and
the code segment to identify the most relevant sentences (Section 5.3.5). In Figure 5.2,
the shared words between the text and code are in bold—create, file and temp, which
results in a text similarity score of two in the title of the post, and a score of three in
the answer’s sentence. CloCom+ discards the title of the post because it has a lower text
similarity score.

Previous work generates comments for high-level actions within methods [90]. Their
work generates comments for three types of statement groups. The first type involves
sequences of statements that can be grouped into a high-level action (same verb phrase
with a common headword). The second type involves conditional blocks that contain
integrable sequences of statements along the branches (if ... else if ... else ...
or switch). The third type involves specific common high-level code patterns that are
based on loop constructs. Their work cannot generate a comment for this code segment.
The code contains no sequences of statements that can be grouped together. For example,
method createTempFile() from line 13 and deleteOnExit() from line 14 contain different
actions, create and delete. The code also does not contain any supported conditionals
or loop constructs. For example, the if ... else condition and while loop are both
not supported.

Previous work generates summaries for Java methods [89], which are leading comments
that occur before a method. For example, it can generate a summary for the method,
getLocalCopy, under Figure 5.2. Their technique first selects important lines of code
that are important to a method summary through their S_unit selection process. It
selects the return statement on line 29 because it is the exiting point of a method; selects

81

line 14, 23, 25, 26, 27 and 28 because they contain method calls that do not have a
return value; it selects line 2 because the method, getName, contains the same action as
method, getLocalCopy; and selects line 22 because the if-statement controls a previously
selected S_unit at line 23. It then performs filtering and removes line 26 and 27 because
they contain the keyword, close. In the end, it synthesizes natural language sentences
for line 14, 23, 25, 28 using their Software Word Usage Model, which then becomes the
method summary. Our work focuses on synthesizing comments for high-level actions within
methods instead of synthesizing comments for the entire method.

Recent previous state-of-the-art by McMillan et al. generates a summary for Java
methods [207]. It breaks down the method signature using SWUM and first generates
a sentence that describes the purpose of the method (“This method gets a local copy of
the file”). It then attempts to generate a sentence that describes the usage of the return
value (e.g., “That file is used in methods that...”), and generates a sentence that describes
the caller of the method (e.g., “Called from method that...”). Lastly, it utilizes PageRank
algorithm to determine the importance of the sentence (e.g., “getLocalCopy() seems far
more important than average because it is called by X methods”). Their work focuses on
providing information about the context of the method, whereas CloCom+ focuses on
generating code comments for the statements inside a method.

Existing text retrieval techniques on code summarization [98, 99, 100, 101] can detect
important terms such as file, temp, create, stream and delete. However, they only
generate top K terms to describe the code as opposed to natural language sentences.

Challenges in Comment Refinement: The sentences from question titles and the
answers are often in a question form (e.g., “How to ...?", “Is it possible to ...?") or contain
unneeded information (e.g., “You can ..."). The direct use of these sentences will lead to
low-quality comments.

To address this challenge, we deploy natural language processing (NLP) techniques to
extract the core parts of a sentence. CloCom+ looks for a subtree that contains a verb
phrase (VP) and a noun phrase (NP) from the parse tree of a sentence. In Figure 5.2,
CloCom+ extracts “Create a File object from InputStream” from the title. It removed “Is
it possible to” from the beginning of the sentence because the leading verb is “create.” It also
removes personal pronouns from the leading part of the sentence if it exists (Section 5.3.2).

5.2.2 Example Two

Figure 5.3 shows a code segment from the Java project—JabRef. CloCom+ generates
the following comment for the top code segment between line 3—6: “try parsing as a

82

1 public static Optional <Month > parse(String value) {
2 ...
3 try {
4 int number = Integer.parseInt(value);
5 return Month.getMonthByNumber(number);
6 } catch (NumberFormatException e) {
7 return Optional.empty();
8 }
9 }

1 private int parseMonth(String month) throws
IllegalArgumentException {

2 // try parsing as a number
3 try {
4 int result = Integer.parseInt(month);
5 return result;
6 } catch (NumberFormatException e) {}
7
8 // try parsing as a word
9 month = month.toLowerCase ();
10 if (month.equals("january") || month.equals ("jan")) {
11 ...
12 }

Figure 5.3: Top code from Java project—Jabref (Month.java) matched against the bottom
code from open source project—mdrill from GitHub (CustomPeriodicTest.java).

number.” The code is matched against the bottom code segment between line 3—6.
CloCom+ detects that the two code segments match.

Challenges in Code Matching: Finding similar code segments between the (1) input
projects and (2) Stack Overflow and open-source projects requires code clone detection
techniques (Section 5.3.3) that are scalable [36]. The detection of code clones is challenging
because the code segments from Stack Overflow are often incomplete and uncompilable.
To alleviate this problem, CloCom+ appends the code with dummy wrapper code (e.g.,
placing statements inside a main function or class) to make the code segments compilable.
If the compilation is successful, it tokenizes the abstract syntax tree (AST) for code clone
detection.

The two code segments in Figure 5.3 are slightly different regarding the variable names.

83

The renamed variables had been underlined (e.g., number vs. value). The code clone
detection tool also has to capture the fact that the variable number is an int and value is
a string during the matching process. On top of that, the two code segments in Figure 5.3
have a different structure, where line 5 in the top code segment does not match line 5 in
the bottom code segment.

However, such small differences do not affect the semantic similarity of the two pieces
of code. Therefore, the code clone detection tool ignores such differences and reports it as
a code clone.

Previous work by Pollock et al. [90] cannot generate a comment for this code segment.
The code contains variable declarations along with a try block and a catch block. Since
there is only a single statement within each block, try block and catch block, the state-
ments cannot be grouped together. The code also does not have any conditional or loop
constructs.

Recent previous work by McMillan et al. [207] can generate a natural language summary
for this Java method. However, it cannot generate a code comment for the statements
within the method.

5.2.3 Example Three

Figure 5.4 shows a code segment from the Java project—Vuze. CloCom+ generates the
following comment for the lines between line 3—6: “Fall back to system properties.” The
bottom code segment in Figure 5.4 shows the post that CloCom+ leverages to generate
the comment.

Benefits of CloCom+: CloCom+ generates a comment to provide valuable information
that is not explicitly in the code, e.g., the code is falling back to a value. Also, CloCom+
can naturally group the three statements into a semantic unit for comment generation
because developers have already grouped the statements in the Stack Overflow post. Such
grouping is general because it does not rely on the quality of the method names or the
structure of the methods, which is different from previous work [90].

Previous work cannot generate a comment for this code segment [90]. The code contains
no statements that can be grouped or conditional blocks. Lastly, the if-statements do not
satisfy any of the supported loop patterns.

84

1 private static UnchokerFactory getSingleton(String
explicit_implementation) {

2 String impl = explicit_implementation;
3 if (impl == null){
4 impl = System.getProperty(DEFAULT_MANAGER);
5 }
6 if (impl == null){
7 impl = DEFAULT_MANAGER;
8 }
9 ...

1 public String resolvePlaceholder(String placeholderName) {
2 try {
3 String propVal = this.servletContext.

getInitParameter(placeholderName);
4 if (propVal == null) {
5 // Fall back to system properties.
6 propVal = System.getProperty(placeholderName);
7 if (propVal == null) {
8 // Fall back to searching the system

environment.
9 propVal = System.getenv(placeholderName);
10 }
11 }
12 ...

Figure 5.4: Top code from Java project—Vuze (UnchokerFactory.java) matched against
bottom code from GitHub project spring-framework (ServletContextPropertyUtils.java).

5.3 Design and Implementation

Figure 5.5 shows an overview of CloCom+. CloCom+ takes two inputs: (1) a Stack
Overflow database and/or GitHub projects; and (2) source code of the target project that
user wants to generate comments on. The output is a list of generated comments.

CloCom+ consists of two major components. The first component generates databases
of code-description mappings (Section 5.3.1) and leverages natural language processing
(NLP) techniques to refine the descriptions (Section 5.3.2) that are from Stack Overflow.
The second component generates comments for the target software. It applies a code
clone detection techniques to identify matched code between the database and the target
software (Section 5.3.3). It then prunes the bad matches (Section 5.3.4). Lastly, it selects

85

the best comment for the matched code (Section 5.3.5).

5.3.1 Code-Description Mapping Extraction from Stack Overflow

To build databases of code-description mappings from Question and Answer sites, we
choose a programming website called Stack Overflow [31] as the data source. We uti-
lize Stack Overflow’s public data dump [212] to build the database. Previous work by
Ponzanelli et al. presented a dataset that models each post in the Stack Overflow data
dump [213]. However, we do not utilize their dataset because we can access all the required
information directly from the public data dump. Stack Overflow contains questions from
diverse software domains such as Java, Android, and C++. Each domain is associated
with its respective tag. We built a code-description mapping database for Java projects by
locating questions that are tagged with either “java” or “android.” The two tags returned
a total of 257,504 code-description mappings in our evaluation.

Stack Overflow contains invalid and low-quality questions and answers. Previous work
by Ponzanelli et al. [214] proposed a technique to identify low-quality posts by using both
the content of a post and community-related aspects. To ensure the quality of extracted
code-description mappings, CloCom+ selects questions and answers based on the score
it received from the voting system in Stack Overflow. For each post, CloCom+ extracts
code-description mappings from all questions and answers that had received a positive (one
or more) score. Figure 5.6 shows the frequency distribution of the score for all 800,744
Android tagged questions in 2016, which has a mean of 1.6 and a median of 0. We observe
that 644,575 (80.5%) of the Android questions have a score between zero and two, and
only 48,289 (7.5%) of the Java questions have a negative score.

The paragraph before a code segment is not the only description for the code segment

Stack Overflow
Database Dump

Code-
Description

Mapping
Extraction

Description
Refinement

GitHub Projects

Code
Clone

Detection

Target Code

Code
Clone

Pruning

Comment
Selection

Comments

Database Generation Comment Generation

Mapping
Databases

Figure 5.5: An overview of CloCom+.

86

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

1

2

3

·104

Received Score

#
A
nd

ro
id

Ta
gg

ed
Q
ue
st
io
ns

Android Tagged Stack Overflow Question -
Score Distribution

Figure 5.6: A Score Distribution of the 800,744 Android-tagged Stack Overflow questions.
We do not show the distribution where a question has a score of more than ten (1602 in
total) or less than negative ten (two in total).

(Figure 5.2). Since it is common for people to summarize the problem using the title
of a post, we also extract the title as a comment candidate. We attempted to extract
description sentences from other parts of a post. The initial theory was that analyzing more
sentences will help generate more comments. Therefore, instead of only extracting from the
paragraph immediately before the code segment, we tried to include description sentences
from 1) two paragraphs before the code segment, 2) one paragraph after the code segment
(only if there are no code segments following the paragraph), and 3) one paragraph before
and one paragraph after the code segment (only if there are no code segments following
the paragraph). The inclusion of additional paragraphs into the analysis can improve the
yield, but the majority of the description sentences from the additional paragraphs are not
describing the code segment.

Based on the above experiment, we generate the mappings by including natural lan-
guage sentences from (1) one paragraph before the code segment and (2) the title of the
post, which provided 257,504 code-description mappings for Java in the evaluation.

5.3.2 Description Refinement

The description sentences of the code segments are often in a question form (e.g., “How
can I ...? ”) or contain unnecessary information (e.g., “You can try ...”). To improve the
quality of descriptions, CloCom+ leverages NLP techniques to perform refinements. It

87

Table 5.1: List of terms for sentence filtering.

no, not, cannot, but, or, bad, fail, error, errors, exception, fix, bug, miss-
ing, help, wrong, problem, efficient, expensive, slow, incorrect, instead, likely,
maybe, seems, perhaps, probably, think, where, why, crash, defect, patch, how,
just, really

performs filtering of invalid descriptions and extraction of core parts of the descriptions.
CloCom+ refines the descriptions using techniques in the following order.

Description Filtering: As discussed in Section 5.2.1, sentences that ask and answer how
to troubleshoot code often do not describe the code segment. For example, “Why this
code does not work? ” and “Android: problem retrieving bitmap from database.” CloCom+
filters out such sentences based on the manually collected terms in Table 5.1. This list
was collected through manual inspection of the extracted sentences from Section 5.3.1. We
attempt to generalize this list through expanding the terms with synonyms (e.g., “maybe”
to “perhaps”). We use the same list for filtering both the Java and Android databases.
CloCom+ removes a sentence from being a potential comment candidate if any of the
terms in the list appears in the sentence.

We tried to apply Stanford’s sentiment analysis tool to detect negative sentences, but
most of the sentences were being classified incorrectly and hence the idea had been dis-
carded. In the future, it may be interesting to determine if a sentence contains negative
or troubleshooting information using techniques such as semantic role labeling to retrieve
high-level information associated with the verb (action) of a sentence.

Main Subtree Extraction: Sentences that are in a question form or contain personal
pronouns (e.g., “you") are not suitable as comments. Therefore, we adapt NLP techniques
with two objectives: 1) to convert the sentences in a question form to a statement form,
and 2) to extract the core parts of the sentences. We achieve them by identifying and
extracting the main subtree of a sentence.

There are three steps to extract the main subtree of a sentence:

1. Generate a parse tree from the input sentence.

2. Obtain all the subtrees that match the specified patterns.

3. Merge all the matched subtrees together to form a refined sentence.

88

Step one generates a parse tree using the latest version of Stanford CoreNLP1 (v3.6.0).
CloCom+ first uses CoreNLP’s part-of-speech (POS) tagger [34] to label the part of speech
of the words in each sentence. It then uses the statistical parser [35] to generate the parse
tree. Figure 5.7 shows the parse tree for a sentence in a Stack Overflow post. The leaf
nodes represent the words of the sentence, and the parent of each leaf node represents the
POS tag of the word.

Since sentences in the Stack Overflow post are from the software domain, it is very
common for them to contain code artifacts (e.g., ClassName.methodName()). Code arti-
facts cause CoreNLP’s POS tagger to fail at tokenizing sentences correctly. To mitigate
this issue, we identify such code artifacts using simple regular expressions and correct them
as a noun before the tokenization process.

Step two extracts the main subtrees from the parse tree. The idea is to obtain sub-
tree(s) that contain at least one verb phrase (VP) and one noun phrase (NP). It ensures
each extracted phrase contains a verb and a subject/object. We define two patterns, Equa-
tion (5.1) and Equation (5.2), in Stanford’s Tregex2 format to extract the main subtree(s)
of a parse tree. Table 5.2 and Table 5.3 explain these two patterns respectively. We for-
mulated the two patterns based on manual inspection of hundreds of natural language
sentences in Stack Overflow to ensure the generality of the two patterns. Since the two
patterns are only defined on a verb/noun phrase level, they have a high compatibility
towards a wide range of sentences.

We require the definition of two different Tregex patterns for two reasons. First, each
pattern contains a unique set of constraints on top of requiring having at least one VP
and NP. For example, the VP-NP (a verb phrase followed by a noun phrase) pattern in
Table 5.2 contains the following two constraints. 1) The NP inside the VP must not only
contain a personal pronoun, and 2) the VP must not only contain a modal verb. Second,
each pattern defines the unique grammatical structure layout of the verb/noun phrase
(e.g., ancestor and sister relationship in the parse tree), which cannot be defined using
traditional regular expression matching.

VP-NP : V P << (NP < /NN.?/) < /V B.?/ (5.1)

NP-VP : NP ! < PRP [<< V P | $ V P] (5.2)

The NP-VP pattern excludes noun phrases that begin with a personal pronoun (PRP).
Personal pronouns typically contribute no value in a code comment, so it is safe to remove

1http://stanfordnlp.github.io/CoreNLP/
2http://nlp.stanford.edu/software/tregex.shtml

89

http://stanfordnlp.github.io/CoreNLP/
http://nlp.stanford.edu/software/tregex.shtml

Figure 5.7: Parse tree for the sentence “You can use this method to capture the stacktrace
in a String.” The matched Tregex patterns are labeled in bold.

90

Table 5.2: Explanation for Equation (5.1), VP-NP.

Regular Expres-
sion

Explanation Rationale

VP << (NP <
/NN.?/)

Verb phrase (VP) that
is an ancestor of a noun
phrase (NP).

Ensures the sentence starts with a
VP that includes an NP.

NP < /NN.?/ Noun phrase (NP) that
is the parent of the basic
category of a noun (NN).

Ensures the NP has at least one
noun that is not a personal pronoun
(PRP), but the NP will be allowed
to contain personal pronouns.

VP < /VB.?/ Verb phrase (VP) that is
the parent of the basic
category of a verb (VB).

Ensures the VP has at least one verb
that is not a modal verb (e.g., can,
must, should, will).

them. Penn Treebank tag guideline [215] defines PRPs to include personal pronouns proper
(i.e., “I", “me", “you", “he", “him", etc.), reflexive pronouns ending in -self or -selves, and
nominal possessive pronouns (e.g., “mine", “yours", “his", “ours" and “theirs").

We show how to remove “You can” from the sentence in Figure 5.7 using the two
patterns. CloCom+ finds three subtrees that are matched by the patterns, and then
merges them (step three), which produces a sentence without “You can.” We label the
matched VP-NP and NP-VP patterns on the right-hand side of the figure. The conditions
that each matched subtree have satisfied are as follows:
VP-NP #1: “use this method to capture the stacktrace in a String"

1. The VP (highlighted as [VP]) is an ancestor of the NP, “this method to capture the
stacktrace in a String.”

2. The NP is the parent of a noun, “method.”

3. The VP is the parent of a verb, “use.”

NP-VP #1: “this method to capture the stacktrace in a String”

1. The NP (highlighted as [NP]) is not the parent of a personal pronoun.

2. The NP is an ancestor of the VP, “to capture the stacktrace in a String.”

91

Table 5.3: Explanation for Equation (5.2), NP-VP.

Regular Expres-
sion

Explanation Rationale

NP !<PRP Noun phrase (NP) that is
not the parent of a per-
sonal pronoun (PRP).

NP that is a personal pronoun offers
no value to the comment, thus ex-
cluded.

NP [<< VP | $ VP] Noun phrase (NP) that is
either the ancestor or sis-
ter of a verb phrase (VP).

Ensures the sentence starts with an
NP followed by a VP. VP that ap-
pears after an NP often appear on
the same level in a parse tree.

VP-NP #2: “capture the stacktrace in a String"

1. The VP (highlighted as [VP]) is an ancestor of the NP, “the stacktrace in a String.”

2. The NP is the parent of a noun, “stacktrace.”

3. The VP is the parent of a verb, “capture.”

For the other sentence in the motivating example, “Is it possible in Java’s MessageFor-
mat to receive a stack trace?", CloCom+ extracts the main subtree as “Receive a stack
trace" because it matches with Equation (5.1).

Step three performs merging on the extracted subtrees in the case where there is more
than one subtree and outputs a single sentence. For example, the parse tree in Figure 5.7
contains three matched subtrees (VP-NP #1, NP-VP #1, and VP-NP #2). To generate a
single sentence from the multiple matched subtrees, CloCom+ calls a method from Stanford
NLP’s tree class, “join node,” on all the subtrees which performs the following: Given two
subtrees, locate node j such that j dominates both subtrees, and return a tree with node j as
the root of the tree. In other words, we locate an English phrase that contains both of the
matched phrases (or matched subtrees). In this example, since the first subtree dominates
the second and third subtrees, the “join node” operation returns the first subtree as the
generated comment.

The persudo code for merging the sub-trees is shown in Listing 5.1. To generate a single
sentence from the matched subtrees in step two (NP-VP and VP-NP phrases), CloCom+
merges all the subtrees by calling an existing method “joinNode.” The method locates a
node in the given parse tree that dominates the given two subtrees, and it returns the
dominate node of the two subtrees as the merged tree.

92

1 // Obtain the parse tree of the input sentence
2 parseTree = getParseTree (inputSentence) ;
3 // Locate VP−NP and NP−VP patterns in the tree
4 vpnp = getTrees (parseTree , "VP<<(NP</NN.?/)</VB.?/ ") ;
5 npvp = getTrees (parseTree , "NP!<PRP[<<VP|\$VP] ") ;
6 // merge the found sub−trees
7 mergedTree = nu l l ;
8 while (vpnp . found ()) {
9 mergedTree = parseTree . joinNode (mergedTree , vpnp . getTree ()) ;
10 }
11 while (npvp . found ()) {
12 mergedTree = parseTree . joinNode (mergedTree , npvp . getTree ()) ;
13 }
14 mergedSentence = mergedTree . toSentence () ;
15 return mergedSentence ;

Listing 5.1: Natural language tree merging algorithm.

5.3.3 Code Clone Detection

We utilized an existing token-based clone detection tool that was implemented in our
previous work, CloCom [7], to detect matched code segments between Stack Overflow
and GitHub projects, against the target project from the user. However, other existing
code clone detection tools that perform subtree analysis on abstract syntax trees (ASTs),
or control and data flow analysis on program dependence graphs (PDGs) can also be
utilized for clone detection. Previous work summarized the differences between the existing
tools [118]. CloCom’s code clone detection algorithm is based on DuDe’s algorithm [119],
which is a code clone detection tool based on the scatter plot algorithm. CloCom compiles
the input source code into an AST and transforms the AST into tokens to detect code
clones.

Listing 5.2 shows the pseudo-code of the code clone detection algorithm. The algorithm
first obtains a list of methods from each file, and all the hashed statements within each
method. The scatter plot is then populated based on the hash numbers. The remainder
of the algorithm is the same as DuDe’s algorithm where it detects non-gapped clones and
the gap locations, and builds the longest chain of code clone that does not exceed the
maximum gap size. Lastly, it adds the clone chains that satisfies the minimum length as a
code clone.

CloCom provides a simple set of low-level AST tokenization rules for code clone detec-
tion. These rules provide a tradeoff between accuracy and yield of the tool. For example,

93

1 for method1 in f i l e 1 :
2 for method2 in f i l e 2
3 statements1 = method1 . getStatements () ;
4 statements2 = method2 . getStatements () ;
5 for statement1 in statements1 :
6 for statement2 in statements2 :
7 i f statement1 . hashNumber () == statement2 . hashNumber () :
8 popu la t eSca t t e rP lo t () ;
9 end
10 end
11 end
12 end
13 cha inL i s t = detectNonGappedCloneChains (s c a t t e rP l o t) ;
14 gapMap = buildGapMap (cha inL i s t) ;
15 l i s tCha i n s = bui ldLongestChain (cha inL i s t , gapMap , maxGapSize) ;
16 for chain in l i s tCha i n s :
17 i f chain . l ength () > minLength :
18 recordAsClone () ;
19 end
20 end

Listing 5.2: Clode clone detection tool’s algorithm.

allowing variable name differences between code clones significantly increases the yield
while having a negligible impact on the accuracy.

CloCom requires the code segment to be compilable by the Eclipse Java compiler to
extract the AST of the code. Most clone detection tools, except for token-based clone
detection tools that do not rely on the AST for tokenization (e.g., SIM [112]), require
compilable code. Stack Overflow contains code segments that are not wrapped inside a
class or method, which makes them uncompilable. Therefore, we implemented a simple
heuristic similar to previous work [216], which wraps the code segment with a method
or class to ensure it is compilable. CloCom+ attempts to repair a code segment if it
fails to compile. It checks for import statement, package statement, class signature,
and method signature in the code segment. If the code is missing a method signature, it
appends “public class A {public static void main(String[] args) {” and “}” to
the front and back of the code segment respectively. Similarly, if the code is missing a class
signature, it appends “public class A {” and “}” to the code segment. It can repair the
majority of the code segments into a compilable state for compilation.

In the matching algorithm, CloCom supports clones that contain gaps [217]. Figure 5.8

94

1 double d2;
2 try {
3 d2 = Double.parseDouble(conditionValue);
4 } catch (NumberFormatException fne) {

1 double result;
2 try {
3 result = Double.parseDouble(testString);
4 System.out.println (" Success !")
5 }
6 catch (NumberFormatException nfe) {

Figure 5.8: Top code segment from Java project Freemind matched against the bottom code
segment from Stack Overflow (post #35109636) depict the highlighted missing statement
between the two code segments. CloCom+ generated “Check if a string is a floating point
number.” to describe the source code comment.

shows a code segment from project FreeMind that is matched against Stack Overflow post
#35109636, where four statements had been matched between the two code segments. The
two code segments contain one gap. Statement 1-3 from the Stack Overflow code segment
is connected to statement six with a gap in line four. The gap in the Stack Overflow
code segment contains an extra statement that invokes println(). We configured the
matching algorithm to allow a maximum gap size of two for each code clone pair, which
allows a maximum of one modified or deleted (or equivalently inserted) statement at each
gap location.

We configured the gap size threshold to be as high as possible without sacrificing the
quality of the obtained code clones. A gap size that is too high can render the comment
from Stack Overflow invalid due to the additional statements. We limit the number of
altered statements to one statement at each gap point.

We configure CloCom to report clones that contain a minimum of four matched state-
ments. The threshold that controls the code clone’s size is minCloneSize. A smaller clone
size requirement increases the number of detected code clones, but it also increases the
number of false positives the clones will contain less content. We studied the impact of
having different values of minCloneSize on the yield. Figure 5.9 shows an experiment
when the size of all the returned code segments when minCloneSize is configured to three
statements. Since a large number of the code segments (2,220) contain a size of three
statements, we selected a clone size of three as the threshold for the evaluation in this

95

3 4 5 6 7 8 9 10

0

1,000

2,000

Size of the Code Segments (# Statements)

#
C
od

e
Se
gm

en
ts

Code Clone Size Distribution

Figure 5.9: Code clones’ size distribution in Stack Overflow.

work.

5.3.4 Code Clone Pruning

The output of the code clone detection tool consists of pairs of code segments that have a
similar syntactical structure. It is important to ensure a high level of semantic matching
to generate accurate and useful comments.

Line Percentage Matching (Stack Overflow only): To ensure the extracted descrip-
tion sentence applies to the matched code segment in the target software, we have to ensure
a high proportion of the Stack Overflow code segment is matched against the code in the
target project. Therefore, CloCom+ calculates the percentage matching score as a filtering
metric.

Specifically, for each Stack Overflow code segment, we count the number of lines in
the extracted code segment (cTotal) and the number of lines that had been matched by
the code clone detection tool (cMatched). CloCom+ calculates the percentage matching
score (PMS) using Equation 5.3 with a 60% threshold. At least 60% of the effective lines
have to match. We select this threshold because it allows toleration between 1-2 lines of
content for small code segments. For example, if a Stack Overflow code segment contains
five lines of code, the threshold would require the matching of at least three lines of code.
We configure this threshold based on our observation that matching less than 60% of the
effective lines of code often renders the source code comment invalid. The reason is that a

96

1 int i ;
2 int j ;
3 int k ;

Figure 5.10: Example of a repetitive clone.

lower threshold means more code is not matched during the code clone detection process.

PMS =
cMatched
cTotal

(5.3)

We varied the threshold with different values (40%, 60%, and 80%) on a Java project,
GanttProject, which generated 12, 8 and 5 unique clone groups respectively. We manually
classified the generated comments within each clone group and determined that 60% pro-
vides the best tradeoff between yield and quality. At 40%, 8 out of the 12 comments do
not describe the code; at 60%, 4 of the 8 comments do not describe the code; at 80%, 1 of
the 5 comments do not describe the code.

Repetitive Clone Pruning:

CloCom+ removes code clones that contain repeated statements, which commonly oc-
cur in variable declaration code. Such code is not useful as a code clone and is often heavily
reported by the code clone detection tool. The pruning algorithm checks the hash value
of the statement to determine if two statements are the same. It removes code clones that
contain repeated statements. Statements that are the same in structure but differs in the
variable names are the only code that will be removed from this heuristic. In Figure 5.10,
since our code clone detection tool tolerates variations on the variable name, the three
statements are considered to be the same. Therefore, CloCom+ removes the code clone.

Other Filters: To ensure high semantic matching, CloCom+ requires the matched code
segment to contain at least one statement that performs a method invocation. Furthermore,
CloCom+ prunes code matches that contain over ten source code statements because they
often contain multiple semantic units, and Stack Overflow is unlikely to contain detailed
enough descriptions.

5.3.5 Comment Selection

For each remaining match, there can be one or more description sentences from the title
and body of the post available as a comment candidate. If the code from the target

97

project matches with multiple Stack Overflow code segments, CloCom+ considers all of
the description sentences of each Stack Overflow code segment as a candidate and selects
the best comment. Do note that if an automatically generated comment already exists in
the target project, CloCom+ automatically removes it from the candidate pool.

Text Similarity: To select the best description sentences from the remaining sentences,
CloCom+ measures the text similarity between each candidate description sentence against
the code segment in the target software. Algorithm 2 describes the steps to perform text
similarity for each clone group. A clone group refers to a group of code segments that
contain a similar structure identified by the code clone detection tool. The goal is to
obtain a list of comment candidate that satisfies the text similarity requirement (having at
least one common term between the sentence and code segment). Line 2—3 first obtains
the list of master clones (clones from the target project) and the list of database clones
(clones from Stack Overflow and GitHub). Line 4 iterates through each database clone.
Line 5 extracts a list of terms from the code segment of the database clone. Specifically,
it retrieves all the identifiers (e.g., variable names and method names) within the method
that surrounds the code segment. Line 6 obtains the list of comments in the current
database clone and proceeds to obtain a list of stemmed words of the sentence in line 8.
Text similarity relies on obtaining a list of common terms between the code segment and
the words in the code comment (line 9). The common terms between the two must exist on
each master clone (line 11) to ensure the comment candidate is not specific to the database
clone. If the common terms exist in all of the master clones (line 19), then the comment
is added to the candidate list (line 20).

5.4 Evaluation Method

We conducted a user study3 with externally recruited participants (engineering students
and industrial programmers) to evaluate the quality of the comments generated by Clo-
Com+ and a recent previous work, SumSlice [207].

RQ1: Are the automatically generated comments by CloCom+ complete, con-
cise, expressive, and useful in describing the code?

The research question evaluates the baseline quality of the automatically generated com-
ments similar to a recent previous work on automatic unit test case documentation [218].

3This research has received ethics clearance approval (#18754) from University of Waterloo’s Office of
Research Ethics.

98

Algorithm 2: Algorithm for text similarity.
Input : cloneGroup
Output : commentCandidateList

1 commentCandidateList← null
2 masterCloneList← masterClonesInCloneGroup(cloneGroup)
3 databaseCloneList← databaseClonesInCloneGroup(cloneGroup)
4 for databaseCloneList ∈ databaseCloneList do
5 DC_terms← getSimpleTerms(databaseCloneList)
6 listComments← getListComments(databaseCloneList)
7 for sentence ∈ listComments do
8 wordList← getListStemmedWords(sentence)
9 mustExistTerms← getCommonTerms(DC_terms, wordList)

10 satisfiedRequirement← true
11 for masterClone ∈ masterCloneList do
12 MC_terms← getSimpleTerms(masterClone)
13 status← allTermsExists(mustExistTerms,MC_terms)
14 if status = false then
15 satisfiedRequirement← true
16 break

17 end
18 end
19 if satisfiedRequirement = true then
20 commentCandidateList← add(sentence)
21 end
22 end
23 end

99

It rates a comment based on its completeness (i.e., does not miss important informa-
tion), conciseness (i.e., not containing redundant or useless information), expressiveness
(i.e., readability), and usefulness (i.e., helps developers understand the code). We added
the usefulness criteria which the previous work did not evaluate. The usefulness criterion
refers to the value of having the comment present to understand the source code. We eval-
uate the usefulness criterion because a comment can be complete, concise, and expressive,
but does not help developers understand the code.

Majority of the participants rated strong agree or weakly agree on the completeness,
conciseness, expressiveness, and usefulness of the generated comments. However, the
statistical tests failed to show agreement between the participants. The automatically
generated comments are not ready for real-world usage due to the lack of quality
consistency.

RQ2: Are the automatically generated comments by SumSlice complete, con-
cise, expressive, and useful in describing the code?

The research question allows us to contrast our work against a recent previous work,
SumSlice [207]. SumSlice generates code summaries for Java methods, which is the closest
piece of work against CloCom+. The evaluation approach follows RQ1’s criteria and steps.

SumSlice is capable of generating method summaries that are more complete at
describing the code segment. Specifically, the natural language summary that is gener-
ated based on the method signature provides a clear explanation of the code segment.
However, the generated summary is not as concise as CloCom+ since the summary
includes additional sentences that are not as useful to the participants (i.e., sentences
that describes the importance of a method using PageRank).

RQ3: What are the participants’ opinion on the advantages and shortcomings
of CloCom+ and SumSlice?

The research question is conducted as a post-study to understand the pros and cons
between CloCom+ and SumSlice. Unlike RQ1 and RQ2 which are formulated as a quanti-
tative study based on a 4-point Likert scale, we study the participants’ qualitative response.

100

For CloCom+, the majority of the participants expressed concerns about its consis-
tency at generating quality code comments. However, they seem to welcome the ability
to link a Stack Overflow post against the target code segment. For SumSlice, the ma-
jority of the participants agree that the method summaries are clear and complete at
describing the code. Specifically, the ability to generate a natural language sentence
from the method signature. Several had expressed concerns of the summary being a
pure rephrase of the code and that the summary is not very concise.

RQ4: What are the reasons that the automatically generated code comment is
not applicable to the code segment?

The research question attempts to understand the reason that causes a weak rating on
the completeness, conciseness, expressiveness, and usefulness criteria.

In term of completeness, the weak score is due to the comment containing missing
or useless information. Specifically, CloCom+ fails to generate comments that contain
contextual information. In conciseness, the weak score is due to the sentence being
informally written. In expressiveness, it is due to the sentence being hard to understand
or contain wrong information. In usefulness, it is due to the failure to filter out trivial
comments.

RQ5: What are the properties of the developer-written and participant-written
comments?

The research question attempts to understand the properties of human-written com-
ments (from developers and participants in the study). The purpose is to guide designs of
future automatic comment generation tools.

The result shows that amongst the manually inspected 110 JavaDoc and 17 single
line developer-written comments, they all contain a maximum of two sentences. The
code comments’ often simply provide information about the action or purpose of the
source code, and that they rarely directly reuse the identifier name. The manually
inspected 135 participant-written comments have three properties. They are often a
natural rephrase of the source code (84.4%), only contains a single sentence (97%), and
the sentence often starts with a verb (84.4%).

101

5.4.1 Experimental Settings

For CloCom+, We apply it to analyze Stack Overflow questions that contain the Java or
Android tag to create a code-description mapping database for a total of 257,504 code-
description mappings. After applying the techniques, we had generated a total of 442
unique comments (clone groups). Table 5.5 shows the total number of lines of code calcu-
lated using CLOC [219]. For each of the evaluated open source Java projects. It also shows
the number of uniquely generated comments (clone groups) per project. A clone group
represents a group of code segments that are structurally similar to each other, which can
all be described with the same code comment (see Section 5.3.5 for further details). We
run the 16 Java projects against the Java database. Sridhara et al. evaluated a total
of 15 Java projects in their work. In our evaluation, the 16 Java projects include the
same 15 Java projects that were evaluated by previous work [90], and one additional Java
project—Eclipse.

For the comparison against SumSlice [220], we downloaded the evaluation package of
SumSlice from their website, which contains the generated code summary for all the meth-
ods for the Java project, NanoXML (286 summaries in total). Do note that SumSlice only
generates comments for Java methods as opposed to CloCom+ which generates comments
for code segments. We attempted to run CloCom+ on NanoXML, but we were not able
to generate any code comments due to the limited yield of our tool. Therefore, we do
not attempt to perform a direct comparison of CloCom+ against SumSlice over the same
piece of source code. Instead, the comparison will be indirect since we cannot generate
comments over the same code. However, we ran CloCom+ on all the Java projects that
SumSlice [207] had evaluated, which includes NanoXML, Siena, JTopas, Jajuk, JEdit and
JHotdraw, and show the result of these projects in Table 5.4.

5.4.2 Human Participants

The study includes 20 human participants to rate the comments generated by CloCom+.
We recruited student participants from University of Waterloo’s Computer Science, Soft-
ware Engineering and Electrical and Computer Engineering department using the school’s
internal mailing list. The evaluator group includes nine graduate students, nine undergrad-
uate students and three industrial programmers. All participants are specified to require
a minimum of one year of industry programming experience. The participants have an
average of four years of industrial programming experience (between 1—10 years). We
remunerate each participant with a prize of 15 Canadian dollars for the completion of the
study.

102

Table 5.4: Results of the six SumSlice projects by CloCom+.

Java Project Lines of
Code

Generated
Comments
(Clone Groups)

Commented
Locations

Exec.
Time
(min)

JHotDraw 32,122 7 8 21
Jajuk 68,767 11 19 42
NanoXML 5,051 0 0 7
Siena 52,751 8 15 35
JTopas 9,037 0 0 10
JEdit 123,399 15 15 61
Total 291,127 41 57 176

Table 5.5: List of the 16 evaluated projects by CloCom+. CloCom+ generated 442 com-
ments for 780 code locations in the target project. The numbers in bracket represent the
result of CloCom.

Java Project Lines of
Code

Generated
Comments
(Clone Groups)

Commented
Locations

Exec.
Time
(min)

Eclipse SDK 3,488,835 235 (84) 447 (96) 1,100
FreeCol 133,637 3 (9) 4 (15) 37
FreeMind 68,677 6 (6) 6 (9) 23
GanttProject 62,409 8 (2) 8 (4) 31
Hibernate 581,642 28 (9) 50 (12) 214
HSQLDB 168,239 43 (27) 60 (35) 80
JabRef 93,685 7 (18) 9 (20) 38
Jajuk 68,767 11 (5) 19 (8) 42
JavaHMO 25,631 8 (3) 22 (5) 18
JBidWatcher 28,357 15 (11) 17 (16) 23
JFtp 22,394 2 (2) 10 (2) 17
JHotDraw 32,122 7 (6) 8 (7) 21
MegaMek 295,412 19 (8) 31 (13) 138
Planeta 13,574 1 (1) 1 (1) 11
Sweet Home 3D 97,210 12 (9) 14 (15) 51
Vuze 613,557 37 (15) 74 (19) 257
Total 5,794,148 422 (215) 780 (277) 2101

103

5.4.3 Questionnaire Generation

We provide each participant with a digital questionnaire generated using Google Forms.
Each questionnaire contains 15 questions. Since we require 15 opinions for each question, we
recruited 15 participants for each questionnaire. In order to increase the sample size of the
population, we created two questionnaires and performed the study with 20 participants.
The participants are separated into two groups each with 15 participants. Group one
answers the first questionnaire and group two answers the second questionnaire. Each
group evaluates the same set of questions. The two questionnaires are shared on our
website. Each questionnaire contains 15 generated comments (12 questions for evaluating
CloCom+ and 3 questions for evaluating SumSlice [207]. We document the questionnaire
generation process below. Each participant within the group receive the same 15 questions
(one comment per question) to ensure we can obtain multiple opinions (10) per question.
The multiple opinions allow us to measure the level of agreement between the participants
with statistical tests. We randomly sample 24 comments from the 422 unique comments
from CloCom+, and sample 6 comments from the 286 unique comments from SumSlice
for the evaluation. Each group evaluates 12 comments for CloCom+ and 3 comments for
SumSlice.

5.4.4 Study Procedure

To ensure the format of the user study is clear and easy to understand, we asked two
undergrad students to perform a pilot study. At the end of the study, we collected the
feedback from the students about the study. The feedback reported that all the questions
and steps were easy to complete and comprehensible.

In the main study, we show the code segment and ask the participants to write a
comment for the code. Asking participants to write down a comment can help them
understand the code segment before rating the automatically generated comment. Since a
code segment can be hard to understand without context, we show the surrounding code of
the code segment to help participants understand the code segment. Participants may give
up on writing a comment if they find it difficult. To avoid overwhelming the participants
with an excessive amount of information, we show an average of 20 surrounding code lines
per code segment. Second, we ask participants to rate the comments with a four-point
Likert scale [221] on the completeness, conciseness, expressiveness, and usefulness criteria
similar to previous work [222]. Following Moreno et al.’s recent work [223], we asked
developers to rate the answers using a 4-point Likert scale instead of a 5-point Likert scale
to avoid neutral answers. We use the following four-point Likert scale: (1) Strongly Agree,

104

(2) Weakly Agree, (3) Weakly Disagree, and (4) Strongly Disagree. Since CloCom+ is
capable of linking a code segment to the related Stack Overflow post, we show the link
to the related Stack Overflow post and ask the user to rate its usefulness whenever it is
available.

Previous work by Papineni et al. [224] proposed the usage of BLEU score to evaluate
the predictions that are made by automatic machine translation (MT) systems. Existing
work on commit message generation [225] and automatic comment generation [96] also
utilize the metric to measure the quality of the generated text. The BLEU score measures
the number of matching n-grams between the candidate and reference translation. The
BLEU score relies on the existence of a reference code comment as a baseline for the
measurement. Since CloCom+ generates code comment for code segments within a Java
method instead of generating code comment for Java methods, a reference code comment
may not be always available for the calculation of the BLEU score. Therefore, we decided
to use an evaluation that involves human participants [222] with a four-point Likert scale
to rate the generated comments. An advantage of human participants is that they are
able to help rate the usefulness of the comments, which cannot be measured by the BLEU
score.

5.4.5 Post Study Questions

After the study, we reveal to the user that the first 12 questions are generated using
CloCom+ (tool #1), and the last three questions are generated using SumSlice (tool #2).
We asked two post study questions after the participant had completed the questionnaire
to understand the utility of the technique.

PQ1: Which tool do you prefer more?

The participants may choose an answer either “Tool #1”, “Tool #2”, “I don’t like any
of them” or “I like both of them.”

PQ2: Please leave a comment on your thoughts on tool #1 and tool #2 (e.g., pros and
cons):

The question allows the participant to enter a free-form answer.

105

5.4.6 Replication Package

The source code, code-description mapping database, evaluation output of the tool, and
user study data are available on our website4.

5.5 Evaluation Results

In this section, we show the results from the user study. Our tool generated a total number
of 442 comments (maps to 782 code locations) for the 16 Java projects. A breakdown of
the number of generated comments is shown in Table 5.5. We also show the number of
generated comments from a previous work, CloCom [7], on the same 16 Java projects in
Table 5.5 for comparison.

5.5.1 Participant Ratings

We show the human judgment results from the user study in Table 5.6. In the design
of our study (Section 5.4.4), we ask participants to write down a comment to describe
the given code segment. We collected 240 answers over the 20 participants (12 questions
from each group). Participants had given up on writing a comment on 19 (group 1) and
33 (group 2) of the 240 questions because they did not feel that they fully understand
the code segment. Amongst all the results, 23 (group 1) and 20 (group 2) of the 240
responses contain a rating of strongly agree on all four criteria (completeness, conciseness,
expressiveness, and usefulness).

The result shows that CloCom+ is not able to generate high-quality code comments
consistently for code segments. Based on the 240 responses, the majority of the participants
(more than 50%) strongly agree or weakly agree that the generated comments are complete,
concise, expressive and useful in helping them understand the code segments. Compared
to our previous work [208], the yield and quality had improved, but it is still not good
enough for direct usage.

We summarized the agreement between the participants using a statistical measure
called Fleiss’ kappa [226]—κ in Table 5.6, which allows us to measure the interrater agree-
ment of three or more raters. A κ value of less than 0 means poor agreement where a
value of 1 means perfect agreement. We applied the test to the two groups, where each

4http://asset.uwaterloo.ca/AutoComment2/

106

Table 5.6: Human participant judgments on the generated comments by CloCom+. CP:
completeness; CS: conciseness; EP: expressiveness; US: usefulness.

Human Participant Responses
Responses (set 1) CP CS EP US
Strongly Agree 37 (30.8%) 69 (57.5%) 53 (44.2%) 47 (39.2%)
Weakly Agree 33 (27.5%) 29 (24.2%) 40 (33.3%) 33 (27.5%)
Disagree 29 (24.2%) 17 (14.2%) 21 (17.5%) 24 (20%)
Strongly Disagree 29 (17.5%) 17 (4.2%) 21 (5%) 24 (13.3%)
Total 120 (100%) 120 (100%) 120 (100%) 120 (100%)
Fleiss’ Kappa -0.01 -0.01 -0.04 -0.01

Responses (set 2) CP CS EP US
Strongly Agree 74 (30.8%) 111 (46.3%) 99 (41.3%) 85 (35.4%)
Weakly Agree 61 (25.4%) 70 (29.2%) 68 (28.3%) 68 (28.3%)
Disagree 68 (28.3%) 39 (16.3%) 53 (22.1%) 61 (25.4%)
Strongly Disagree 37 (15.4%) 20 (8.3%) 20 (8.3%) 26 (10.8%)
Total 120 (100%) 120 (100%) 120 (100%) 120 (100%)
Fleiss’ Kappa 0.13 0.08 0.02 0.04

107

1 if (url == null) {
2 final ClassLoad er standard Classload er = Thread.

current Thread ().get Context ClassLoad er();
3 if (standard Classload er != null) {
4 url = standard Classload er.getResource(

configurationResourceName);
5 }
6 if (url == null) {

Figure 5.11: Code segment from Hibernate project for the classloader comment.

group contains 10 participants. The test is done on four categories (i.e., completeness, con-
ciseness, expressiveness and usefulness) on a four-point Likert scale over twelve subjects
(questions). In the first group, we obtained κ values of -0.01 for completeness, -0.01 for
adequacy, -0.04 for conciseness, and -0.01 for usefulness. The result shows poor agreement
overall. In the second group, we obtained κ values of 0.13 for completeness, 0.08 for ad-
equacy, 0.02 for conciseness, and 0.04 for usefulness. The κ values indicate little to no
agreement between the participants.

Criterion 1: Completeness

For the completeness criterion, 30.8% and 30.8% of the participants strongly agree that the
generated comments are complete from the two groups. The main cause of disagreement is
that CloCom+ cannot extract comments that contain correct project-specific information,
which usually includes important information. CloCom+ determines the fitness of a sen-
tence based on the posts’ score and the calculated text similarity score. While in general
using the above metrics are more likely to generate a good code comment, it is not al-
ways true. For example, our tool generated the comment, “Try the current Thread context
classloader” for the code segment from the Hibernate project in Figure 5.11. It selected
this sentence because the code segment has text similarity terms, “current,” “context,”
“classload,” and “thread” against the automatically generated comment (Section 5.3.5).

The automatically generated a comment that describes the threading code, but it does
not describe the semantics of the URL variable in line one, which contains project-specific
information. This is a limitation of the crowd-sourced approach for automatic comment
generation, where the generated comment either contains project-specific information that
is likely to be incorrect or contain no project-specific information.

108

1 } else {
2 File dir = file.getParentFile ();
3 if (!dir.exists ()) {

Figure 5.12: Code segment from project Vuze.

1 if (bytesLeft >= length) {
2 // we add the data to the end of the buffer
3 System.arraycopy(b, offset , buffer , bufferPosition , length

);
4 bufferPosition += length;

Figure 5.13: Code segment from project mdrill.

Criterion 2: Conciseness

57.5% and 46.3% of the participants strongly agree that the generated comments are concise
from the two groups. The main cause of disagreement on conciseness is that CloCom+
is usually describing generic code segments with generalized text. For example, our tool
generated the comment (Stack Overflow post #3693152), “Sometimes the directory entries
aren’t already created ” for the code segment from the Vuze project in Figure 5.12.

The code only requires information about creating a file if it does not exist. The
problem is that Stack Overflow sentences by default are written for people who want a
descriptive explanation about the code’s functionality, which is the reason that it can be
not concise. In this example, words such as “sometimes” makes the sentence less formal
and less concise.

CloCom+ also extracts code comment from existing source code (i.e., GitHub). How-
ever, code comments from existing code also can suffer the same issue. For example, our
tool generated the comment “we add the data to the end of the buffer ” for the Vuze project
by extracting it from code in the GitHub project, mdrill, in Figure 5.13.

Criterion 3: Expressiveness

44.2% and 41.3% of the participants strongly agree that the generated comments are ex-
pressive from the two groups. The main cause of disagreement on expressiveness is due
to the automatically generated comment containing wrong information. However, there

109

1 String get_line = lines.get (0);
2 get_line = get_line.substring(get_line.indexOf(’ ’) + 1)

.trim();
3 get_line = get_line.substring(0, get_line.indexOf(’ ’)).

trim();
4 int x_pos = get_line.indexOf(’?’);
5 if (x_pos != -1){
6 get_line = get_line.substring(0, x_pos);
7 }
8 x_pos = get_line.lastIndexOf(’/’);

Figure 5.14: Code segment for the comment “remove query string part.”

are also some instances where the user interpreted the code in a different way that causes
disagreement. For example, CloCom+ generated “remove query string part” for line 4—6
for the code segment in Figure 5.14.

One of the participants wrote the comment, “Get line up to first question mark ” for the
code segment and rated the automatically generated comment as strongly not expressive
even though both comments are technically correct.

Criterion 4: Usefulness

39.2% and 35.4% of the participants strongly agree that the generated comments are useful
to developers from the two groups. The main cause of disagreement on usefulness is that
the code is easy-to-understand (so that no comment is needed to help comprehension),
or the comment is too trivial. CloCom+ generated the comment, “Splitting a string at
a particular position in java.” for the code segment (Stack Overflow post #28419586) in
Figure 5.15. It is considered not useful by the participants because the code is performing
a rather simple operation.

To improve the usefulness of the comments that are generated automatically by Clo-
Com+, we may design code and comment complexity metrics to filter out simple comments
and simple code segments in future evaluations. Another way to tackle this issue is to utilize
a different data source.

110

1 int c= arg.indexOf(" "); //$NON -NLS -1$
2 int t= arg.indexOf(" ", c+1); //$NON -NLS -1$
3 String className= arg.substring(0, c);
4 String testName= arg.substring(c+1, t);
5 String status= arg.substring(t+1);
6 String testId = className+testName;

Figure 5.15: Code segment for the comment “Splitting a string at a particular position in
java.”

SumSlice Results

We summarized the results of SumSlice in Table 5.7. Do note that we only assigned each
participant with three SWUM generated code comment for evaluation (the evaluation of
CloCom+ has twelve) to limit the total number of questions to fifteen per participant. The
distribution of the responses is slightly different compared to CloCom+. Their technique
achieved a much higher completeness rating than CloCom+ because it can generate a
natural language sentence that describes the entire method signature (e.g., return variable,
method name and input arguments), where participants had also pointed out during the
post-study.

The interesting thing to note is the conciseness, which performs worse compared to Clo-
Com+. The reason is that SumSlice generates a second sentence that rates the method’s
importance based on the PageRank algorithm. For example, SumSlice generated most
comments with a similar structure as the following: “This method gets the full name and
returns a String. GetFullName() seems less important than average because it is not called
by any methods. Another possible explanation for the conciseness rating is that the par-
ticipants are used to the short comments that are generated by CloCom+ during the
evaluation, which causes a sudden change in expectation when they encounter comments
generated by SumSlice.

Post Study

PQ1 asks the participant’s preference on CloCom+ and SumSlice. Five participants like
both tools (25%), seven participants like CloCom+ more (35%), five participants like
SumSlice more (25%), and three participants don’t like either of them (15%).

PQ2 asks for participant’s open opinion on the pros and cons of the two tools. We
randomly sampled eight participants and displayed their opinion in Table 5.8.

111

Table 5.7: Human participant judgments on the generated comments by SumSlice. CP:
completeness; CS: conciseness; EP: expressiveness; US: usefulness.

Human Participant Responses
Responses (Set 2) CP CS EP US
Strongly Agree 22 (73.3%) 6 (20%) 14 (46.7%) 15 (50%)
Weakly Agree 4 (13.3%) 6 (20%) 10 (33.3%) 8 (26.7%)
Disagree 4 (13.3%) 5 (16.7%) 6 (20%) 4 (13.3%)
Strongly Disagree 0 (0%) 13 (43.3%) 0 (0%) 3 (10%)
Total 30 (100%) 30 (100%) 30 (100%) 30 (100%)
Responses (Set 2) CP CS EP US
Strongly Agree 8 (26.7%) 3 (10%) 7 (23.3%) 7 (23.3%)
Weakly Agree 8 (26.7%) 10 (33.3%) 12 (40%) 9 (30%)
Disagree 8 (26.7%) 9 (30%) 7 (23.3%) 8 (26.7%)
Strongly Disagree 6 (20%) 8 (26.7%) 4 (13.3%) 6 (20%)
Total 30 (100%) 30 (100%) 30 (100%) 30 (100%)

An analysis through the post-study comments shows that there are no clear answer
as to which tool is better (35% for CloCom+ and 25% for SumSlice). Majority of the
participants had stated that CloCom+ has the issue of not generating quality comments
consistently (participant 1, 2, 3, 5 and 7). There are also issues where CloCom+ fails to
generate a code comment that takes the context into account (participant 8). Several of the
participants expressed concerns about SumSlice simply rephrasing the method signature
(participant 6, 7 and 8). However, SumSlice is able to generate a much more concise and
clean summary in comparison (participant 1, 2, 3, 4 and 5).

5.5.2 Execution Time

We executed CloCom+ on an Intel Core i5-3470 CPU with 16GB of RAM. The database
generation (Section 5.3.1) took roughly half an hour to execute. The clone detection tool
(Section 5.3.3), NLP (Section 5.3.2), code clone pruning (Section 5.3.4) and comment
selection (Section 5.3.5) on each project’s execution time is shown in Table 5.5, which took
2,101 minutes in total (between 11—1,100 minutes per project).

112

Table 5.8: Human participant’s opinion on the CloCom+ and SumSlice. PA stands for
participant.

PA CloCom+ SumSlice
P1 Tool 1 considers more answers and ideally

chooses the one with the best answer. How-
ever it may not be relevant to the code in ques-
tion.

Tool 2 ensures that documentation is clear and
concise, but may be harder to implement.

P2 Tool 1 had a couple of hiccups in it, that didn’t
make me particularly like it if all of those were
from the same tool.

Tool 2 kind of makes it seem like the comments
were written by a snarky co-worker. While
amusing, it’s not super useful.

P3 The possibility of reviweing a Stack Overflow
question with a similar issue the comment is
refering is the best feature of this tool. Some-
times the comment generated did not add
any new information, was practically the same
method/english written in english (especially
for simple functions), in other cases for these
same type of functions the comment added
content that wasn’t really neccesary due to the
simplicity of the function/method

Pros: The comments generated where quite
concise, but in most of the cases they really
communicate fully the intetion of the method
or function they were commenting. I’d prefer
a bit larger comment but that will provide a
better understanding of the problem

P4 I think that is more descriptive and useful I think this is more concise and less expressive
P5 It seems to be useful at times and not so much

at other times.
I really liked how the comments were very
consistent. However, I don’t think it is fair
to compare the 2 methods since the latter
was very easy cases consisting of getter/setter
methods while the first method had to solve a
lot of harder comments.

P6 Tool 1 seems to produce more accurate and
concise comments, however, if it is going to be
including stack overflow links in source code
comments, the result will be very messy, es-
pecially if irrelevant stack overflow links are
used.

Tool 2 seems to be a lot more verbose, sim-
ply repeating what you already know from the
function name. It also includes useless info
that may later be irrelevant once those meth-
ods are used more.

P7 I think on average this generated more use-
ful comments that explain what a code snip-
pet does in the context of the larger program,
although sometimes it does generate useless,
redundant information.

This tool doesn’t really provide anything use-
ful beyond what’s already obvious to the de-
veloper.

P8 Inaccurate but sometimes can provide info.
Lack of context negatively affects results.

Already had comments. Comments generated
seem much more clean and accurate but some-
times just repeat of original comment.

113

5.6 Qualitative Analysis and Discussion

In this section, we analyze the automatically generated comments by CloCom+ (Sec-
tion 5.6.1); analyze the comments that are written by developers (Section 5.6.2); analyze
the properties of the comments that are written by the participants in the user study (Sec-
tion 5.6.3), and analyze the impact of each design component on the yield of the generated
comments (Section 5.6.4).

5.6.1 Properties of the Automatically Generated Comments

To understand the quality issues of the automatically generated comments, we manually
studied the 43 automatically generated comments on a large scale Java project, HSQLDB
project, produced by CloCom+.

The first step of the analysis involves the removal of comments that are not describing
the target project’s source code. These comments are selected by CloCom+ despite be-
ing not being related to the target project’s code segment due to the comment selection
technique, which will enable us to understand how to improve other aspects of a comment
given that the comment selection component can select relevant comments. In total, three
out of the 43 comments are not describing the target project’s code segment. The com-
mon reason that CloCom+ selects irrelevant sentence is that comment selection technique
simply relies on shared terms between the sentences and code segment as a heuristic for
selection. For example, CloCom+ generated “Skip comments and blank lines” for Java
project because the text similarity component detected a shared term, “line,” between the
target project’s code and the GitHub project CloudStack-archive. The problem is that the
extracted comment is explaining the code outside of the matched lines. Even though the
target code is reading a file line by line, it is not skipping comments or blank lines.

The second step classifies the remaining 40 sentences that describe the code segment.
The process involves iterating through the list of comments and creating a label for each
identified issue with the automatically generated comment. We iterated through the la-
bels and identified four major issues. We mapped the issues back to the completeness,
conciseness, expressiveness and usefulness criteria as shown in Table 5.9. A comment can
be labeled as invalid for multiple reasons. The total number of comments that contains at
least one of the four reasons is 14 (35%), where the rest of the comments do not belong
to any of the reasons. The result shows similar findings as the user study (Section 5.5),
where the presented comment does not contain adequate contextual information on the
code segment. For example, a code segment may be reading an audio file, but our tool

114

generates a generic comment that describes the file reading operation instead of the au-
dio file reading operation. While it is possible to generate comments that do not contain
information about the context of the code, the usefulness of such comments may not be
useful since it is more generic.

We located five comments that contain a grammar mistake (e.g., “Are called Maps (see
implementations of java.util.Map)”), and three comments with an incomplete sentence (e.g.,
“Always English collation”), which require future work in the natural language processing
component for correction. CloCom+ currently only extracts phrases from a sentence, and
it does not attempt to detect incomplete sentences, which can cause issues.

Regarding the size of the generated comments. All comments in HSQLDB project
consist of a single sentence, where each sentence contains an average of 10 words.

The automatically generated comments by CloCom+ contains missing and useless informa-
tion. Since the generated comments are mined from existing natural language sentences,
they can be wordy or informally written. The natural language processing technique that
is used to refine the English sentences can cause the code comment to be harder to under-
stand. There is also a need for a way to detect if the code is too trivial because not all
code would require a code comment.

5.6.2 Properties of Developer-written Comments

To analyze the properties of developer-written comments, we manually inspected seven
source code files5 from a mature Java project—Jajuk. The seven files contain 618 lines
of code and 765 lines of comment (inflated due to copyright blocks) as reported using
CLOC. We first extract all the comments from the source code file, and then classify the
comments by their type. We show the comment type distribution of the seven source code
files in Table 5.10. We manually excluded compiler related comments (i.e., $NON-NLS-1$),
templated messages (i.e., //nothing to do here), automated block comments that contain
no content and copyright comments. We also manually aggregate multiple lines of single
line comments that are in the same paragraph as one single line comment.

The results in the comment distribution table show that the majority of the source
code comments belong to JavaDoc comments, block comments have a low utilization rate,
and single line comments occur occasionally. All of the Java classes and methods contain
a JavaDoc comment that is written by the developers.

5/jajuk-src-1.10.3/src/main/java/org/qdwizard/

115

Table 5.9: Reasons that an automatically generated comment is not applicable to the new
code segment. The percentage is calculated over the 40 comments that describe the code
segment.

Reason Example Freq.
(%)

1- Completeness : The comment
contains missing information
that are critical as a source
code comment or contains use-
less information that are not
needed. These can be information
that are specific to the context of
the code.

“Converts a value to this type.” is miss-
ing information about the type of the object
that it is converting towards (HSQLDB—
NumberType.java).

6 (15%)

2- Conciseness : The comment is
wordy or informally written.

“Eg, if you were using Calendar and the cur-
rent day.” is an informal sentence that was
extracted from Stack Overflow (#14542336).

7
(17.5%)

3- Expressiveness : The comment
is hard to read or understand,
or it is expressing the wrong in-
formatin.

“autocommit true should never throw.”,
is hard to understand as a sentence
(HSQLDB—DatabaseManager.java). It
does not express the intent of the code in
a natural manner.

7
(17.5%)

4- Usefulness : The comment is
not useful or too trivial. The
comment is not needed to under-
stand the code, or it is a direct
paraphrase of the code.

“Sleep for a long time” is a relatively
trivial comment that many partici-
pants rated as not useful (HSQLDB—
DatabaseManagerSwing.java).

10
(25%)

116

Table 5.10: Distribution of the developer-written comments in project Jajuk. LCode—
lines of code; LCom—lines of comment. LCode and LCom are reported using CLOC. We
also show the number of manually identified JavaDoc, single line and block comments.

File (.java) LCode LCom #
JavaDoc

Single
Line

Block

ActionsPanel 105 71 10 3 0
ClearPoint 3 26 1 0 0
Header 60 57 7 0 0
Langpack 39 44 6 2 0
Screen 77 147 23 5 0
ScreenState 50 95 17 0 0
Wizard 284 325 46 7 0
Total 618 765 110 17 0

We also investigated the contents of the 110 JavaDoc and 17 single line developer-
written comments through manual inspection. We observe that all comments contain a
maximum of two sentences, which means the comments are relatively concise. There are
two main types of comments that we observed.

The first type simply provides information about the action or purpose of the source
code. Here are some examples of the source code. “Set the header title text.” and “Con-
struct a screen.” are method-level comments that describe the action of the source code.
“Contains a wizard title, a subtitle used to display the name” describes the purpose of the
source code. “Screens needing to clear wizard cache ... should implement this interface.”
provides the context as to when to use the Java interface.

The second type simply states the full name of an object in a more meaningful manner,
where an object can be a method or variable. Here are some examples of the source code.
“Associated action listener.” is a paraphrase of type name ActionListener. “UI creation.”
is a paraphrase of the method name initUI(). “Problem panel ” provides the full name of
the variable jlProblem.

We performed a manual classification and found that 52 of the comments are of type
one and 22 of the comments are of type two. A source code comment is not always
necessarily meaningful. In the manually inspected source code files, all of the classes and
methods contain a JavaDoc comment. We found that nearly all the type two comments
are a paraphrase of the source code, For example, “Can go previous.” is a paraphrase of

117

Table 5.11: The number of comments (obtained from AST parser) and the comment ratio
in brackets (lines of code per comment) of ten randomly sampled Java projects.

Project Lines of
Code

Block Com-
ments

JavaDoc Com-
ments

Single Line
Comments

Eclipse 3,488,835 5,932 (588) 26,263 (132) 30,950 (113)
FreeCol 68,767 82 (839) 11,696 (6) 8,175 (8)
Jajuk 133,637 1,626 (82) 6,291 (21) 7,611 (18)
Hibernate 581,642 8,376 (69) 17,010 (34) 21,029 (28)
Vuze 613,557 5,172 (119) 8,520 (72) 21,176 (29)
HSQLDB 168,239 956 (176) 4,341 (39) 8,913 (19)
Sweet Home
3D

97,210 250 (389) 4,752 (20) 5,625 (17)

FreeMind 68,677 1,603 (43) 2,154 (32) 4,994 (14)
JavaHMO 25,631 399 (64) 131 (196) 1,352 (19)
JBidWatcher 28,357 193 (147) 710 (40) 1,518 (19)

the name canGoPrevious(). Although developers of Jajuk had written a formal JavaDoc
comment for most of the Java methods, a lot of the comments are a simple paraphrase of
the source code.

We also show the comment ratio of 10 randomly selected Java projects in Figure 5.11.
The result shows that projects such as FreeMind and Hibernate have a high comment ratio
compared to the other projects (e.g., FreeMind has a JavaDoc comment for every 32 lines
of code). Projects such as FreeCol and Sweet Home 3D utilizes a high number of JavaDoc
comments over block comments, but upon a manual inspection, we observed that many of
the JavaDoc comments were generated automatically and contained no comments inside
the block.
The study on developer-written comments shows that block comment is rarely used in
practice compared to JavaDoc comment and single line comment. The JavaDoc and single
line comment both contain a maximum of two sentences. The developer-written comments
either states the purpose of the code or provide a rephrase of the code in a more meaningful
manner.

118

Table 5.12: Manual classification of 135 participant-written comments’ unique properties.
Percentage is calculated over 113 comments because 22 of the comments received no answer.

Property Example Total #
Comment is a natural rephrase of the
source code (code elements names are
broken down correctly)

“get inSampleSize
based on outWidth and
outHeight” (negative
example)

114
(84.4%)

Comment only consists of a single con-
cise sentence.

“Reads in properties from a
file”

131 (97%)

Comment starts the sentence with a
verb.

“Update the text of icon
with the given position”

114
(84.4%)

5.6.3 Properties of Participant-written Comments

We performed a manual inspection of the 135 participant-written comments (15 ques-
tions over nine randomly selected participants) in the evaluation of positive properties of
participant-written comments. The process involves iterating through the list of comments
and creating a label for each identified positive property with the written comment. Once
we have a list of labels, we attempt to merge the labels that contain overlapping properties.
For example, we merged “Comment does not contain directly copied code artifacts (e.g.,
variable name and method name) in the comment” into “Comment is a natural rephrase of
the source code (code elements names are broken down correctly).” We repeat this process
until a non-overlapping list of label is discovered.

We identified three labels that may guide future techniques to improve automated
comment generation under Table 5.12.

First, only in rare cases that our participants included the name of the code artifacts
(e.g., variable names and method names) in their code comment. For example, a partic-
ipant wrote, “FileReader is closed in the try segment, if some exception arises there is a
catch segment defined for the same,” which contains the class name, FileReader, in the
comment. In the majority of the cases, participants will break down the variable into
smaller parts. For example, another participant wrote the following comment for the same
code segment, “Cleanup file reader.” Our tool generated the following comment, “try to
close the reader.” In the future, we may supplement automatically generated comments
with textual information (variable names and method names) from the source code ([90]).
The inferencing of contextual information remains a challenging task, which may require

119

information from the control or data path of the program to inference information.

Second, participant-written comments are in general very concise, where 97% of the
comments consist of a single concise sentence.

Third, most of the sentences start with a verb phrase (e.g., “Get ...” and “Create ...”)
followed by a noun phrase (e.g., “the bounds of ...” and “a StringWriter ...”). Such pattern
seems to be a standard convention that is consistently utilized by most participants. We
also note that the Java language specification ([227]) suggests that method names should
be verbs or verb phrases. Previous work ([90]) relies on detecting verbs in the source code
to generate comments.

The study on participant-written comments shows three main properties. First, the com-
ments are often a natural rephrase of the source code with a better explanation for the
names of the identifiers. Second, almost all comments are concise containing only a single
sentence. Third, the majority of the sentences starts with a verb.

5.6.4 Yield Analysis

Since each proposed component has an impact on the number of the generated comments,
we conducted an analysis of each component using the Java project—GanttProject to
illustrate their impact on the yield.

To start the comment generation, CloCom+ first requires a database. Since GanttPro-
ject is a Java project, CloCom+ extracted from Stack Overflow using the java tag and
extracted 309,593 code-description mappings. The next step involves performing natural
language analysis on the extracted mappings to filter out invalid sentences (Section 5.3.2).

The next step performs code clone detection (Section 5.3.3) between the database and
input source code from GanttProject (62 KLOC). After applying the heuristic, line per-
centage matching, text similarity on the detected clones, it reduces the number of code
clone match groups to 93. A clone group represents a group of code segments that are
similar to each other, which contains one or more code segment from the target project and
one or more code segment from Stack Overflow. However, not all clone groups contain a
comment candidate. Amongst the 93 clone groups, only 8 contains a comment candidate.

Disabling percentage matching pruning technique introduces 8 new comments on top
of the 8 existing clone groups, bringing the total number of clone groups to 14 (do note
that a new comment does not necessarily introduce a new clone group). Upon manual
inspection, amongst the 8 new unique comments, 6 of which are not describing the target
code segment correctly.

120

1 for (int i = 1; i < 5; i++) {
2 ...
3 }

1 int i = 1;
2 while (i < 5) {
3 ...
4 i++;
5 }

Figure 5.16: Two pieces of code segment that contain the same computation but are
expressed with a different set of syntax.

Disabling repetitive clone pruning heuristic does not impact the yield. It means that the
code clone did not match low-level code between the target project against the database.

Disabling text similarity does not impact the yield because all the code comments
already contain similar terms against the target source code.

The yield is controlled mostly by the parameters configured on the code clone detection
tool and text similarity component, In the code clone detection tool, the minimum clone
size threshold (four statements) and gap size (two) directly affects the amount of content in
the matched code segments. In the text similarity component, the minimum text similarity
term threshold impacts the similarity between the selected comment and the matched code
segment. We did not observe any components or heuristics that can be removed to simplify
the design.

A potential factor for the low yield comes from the code clone detection tool. The code
clone detection tool may not be able to detect more complicated types of code clones. For
example, the statement, c = xx(yy(b)); can be expressed with a different syntax, a =
yy(b); c = xx(a);. Such type of code clones cannot be detected by the current code
clone detection tool. Another example would be a loop that is expressed with two different
syntaxes as shown in Figure 5.16.

5.6.5 Limitations

We discuss the major types of general limitations that can affect the practical application
of the technique.

121

First, the results (Section 5.5) show that only 21 of the 105 responses strongly agreed
or agreed that the generated comments are both accurate, adequate, concise and useful
at the same time. Although most heuristics can be tuned to reduce the number of false
positives, they often would further reduce the yield. For example, the natural language
processing technique that we use to extract the core part of a sentence is very reliable, but
it is clear that more sophisticated natural language processing techniques are needed to
understand the semantic meaning of the sentence for a more consistent result.

Second, the yield issue remains an issue with the technique. Our recent work, Clo-
Com [7], attempted to tackle this issue by mining existing software repositories such as
GitHub for automatic comment generation. It is interesting to see that CloCom also suf-
fers from the yield issue despite having a much larger code base. Based on the same 15
evaluated Java projects as previous work [90] which do not include Eclipse and Android
projects, CloCom generated comments for 197 clone groups whereas CloCom+ generated
comments for 100 clone groups. Additionally, previous work [228] had shown that API
usage patterns do exist and can be mined from the source code. Therefore, we believe that
common code patterns do exist, but these patterns do not necessarily contain a source
code comment.

5.7 Threats to Validity

Several threats limit the validity of our experiments. We now discuss these potential threats
and how we control or mitigate them.

5.7.1 External Validity

The external validity of the study relates to the extent that we can generalize its results.
CloCom+ mines Q&A sites for generating the code-description mapping database. If the
Q&A site does not discuss a code segment, then CloCom+ cannot generate a comment for
it. It is a limitation that impacts the generalizability, which impacts the yield (number of
generated comments). It may be possible to combine our approach with previous techniques
([89, 90]) to determine the important terms in a code segment for the comment selection
process.

The current technique only generated 442 comments for the 16 evaluated projects,
which means the yield is still rather low. It can limit the generalizability of our technique.

122

In the future, it is possible to expand the natural language analysis to analyze different
parts of a Stack Overflow post to help improve the yield.

In our user study, we randomly sampled code segments during the generation of each
questionnaire (Section 5.4.3). We generated a total number of seven questionnaires, where
the same questionnaire had been evaluated by every participant in RQ1 of the user study.
The advantage is that we can obtain multiple opinions over the same set of questions. The
problem with this approach is that we can only cover a subset of the generated comments.
Our previous work ([208]) randomly samples code segments from the question set until all
code segments had been evaluated, which means each participant will receive a different
set of question. Since human opinion is subjective, we chose to have multiple participants
to evaluate the same set of code segments for a higher confidence in the results.

5.7.2 Internal Validity

The internal validity of the study is the extent to which a treatment affects a change in
the dependent variables. The current code clone detection tool is only capable of detecting
code clones that are semantically different if the difference is due to statement reordering or
deletion. Since we had implemented heuristics to make the Stack Overflow code segments
compilable (Section 5.3.3) to extract the AST, it is now possible to apply other AST-based
code clone detection tools to detect more advanced types of code clones.

CloCom+ applied an off-the-shelf natural language processing model to the software
domain, which can affect the correctness of the natural language processing technique.
Most natural language models, including the Stanford CoreNLP parser, can fall short
on interpreting technical terms in the software domain. The reason is that the natural
language model was trained on well-written text such as the Wall Street Journal. For
example, “file directory” is a noun phrase in the software domain, but most natural language
parsers would treat it as a verb phrase. The Stanford parser that we used in this work
has worked well in our experiments, which was able to generate a correct parse tree by
analyzing the entire sentence. For example, a full sentence, “Open the file directory,” is
reliably interpreted by the parser to contain a verb followed by a noun phrase. For sentences
in Stack Overflow posts that are not full sentences, we mitigated this issue by applying the
main subtree extraction technique to filter them out.

In RQ2 of the user study, each question contains two comments, including a participant-
written comment and an automatically-generated comment. The participants were un-
aware of the source of each comment, but when we generate the questionnaire, the order of
the two comments is always the same. The participant-written comment is always labeled

123

as the first comment, and the automatically-generated comment is always labeled as the
second comment. The ordering might cause a learning threat to our user study.

The subjects of our user study consist of graduate and undergraduate students, which
might not be representative of real developers. Also, subjects have different programming
language experience. Therefore, their judgment could differ based on their programming
language experience. The subjects in our study have an average of 5.4 years of programming
experience (between 3-9 years), and all participants have industry programming experience.

The qualitative study contains multiple manual evaluations of the source code segments
and comments. Our opinion might not be representative of real developers, but we tried
our best to be objective during the evaluation. In the evaluation of automatically generated
comments (Section 5.6.1), we extracted the classification labels from the user study results
(Section 5.5) to ensure the labels are not just the author’s opinion. In developer-written
comments (Section 5.6.2), we added automated analysis on the code comment ratio to
support the manual analysis.

5.7.3 Construct Validity

Construct validity concerns the relation between theory and observations. In our evalu-
ation, we proposed metrics to evaluate the quality of the comments based on the com-
pleteness, conciseness, expressiveness and usefulness criteria. A potential threat from the
criteria is that it does not directly indicate the quality of the comment. For example,
a comment can be accurate, adequate, concise but not useful, which makes it unclear
as to whether the comment is still applicable to the source code. In our evaluation, we
mitigate this threat by showing that 21 out of the 105 responses satisfied all four crite-
ria with a rating of strongly agree or agree. Previous work by [89] used a similar set of
metrics, with the difference that they did not evaluate the comments using the usefulness
criterion. Therefore, we believe that these metrics are valid for evaluation. Also, several
parts of the qualitative study rely on the observations from the authors, which may not be
representative of the actual theory.

The usefulness criterion may not be a practical measure on the generated comments
because the usefulness of a comment depends on the context of the code, background of
the participant, and the summarization task that is given to the participant. Previous
work ([229]) performed a pilot study on how a target task can impact the content of the
software summary. In their study, they considered two summarization tasks, a summary
directed towards the code tester and another summary directed towards the code reuse.
The results show that when a specific target task is given to the user, the summaries

124

would contain words that are specific towards testing and words that are specific towards
software reuse. They also show that summarization of unfamiliar code is challenging to the
participants and having dynamic information related to the code would be useful (e.g., GUI
code can have the running GUI shown to the user). We attempted to mitigate this threat
by training the participants to understand that the code summaries are code comments
that a programmer will write for other developers to read (Section 5.4.4).

5.7.4 Conclusion Validity

Conclusion validity threats deal with the relation between the treatment for/on the out-
come. We only concluded that our tool works Java and Android projects, but our technique
should apply to other similar compiled languages such as C and C# because the proposed
techniques and tools are language independent. CloCom+ is designed to extract code
comments from a particular data source, Stack Overflow, which may impact the design
thresholds that are utilized in CloCom+.

5.8 Summary

We presented an approach for automatic comment generation using Q&A sites. Our ap-
proach leverages natural language processing, code clone detection, and text similarity
analysis techniques to map a natural language sentence into a source code comment.

A user study with 20 participants evaluated the 442 comments that are generated by
CloCom+. The number of generated comments from CloCom+ is still rather low and
the quality still requires improvement. Future possible paths include the extension of our
tool to analyze other parts of a sentence or use more advanced code clone detection tools
that can detect code insertion and reordering. Our user study shows that the majority of
the participants consider the automatically generated comments to be complete, concise,
expressive and useful. However, the statistical tests had shown that there is little agreement
between the participants. We compared our work against previous work, SumSlice. The
result shows that their work can generate more complete summary compared to CloCom+,
but the generated summary is not very concise.

125

Chapter 6

Future Work

In the future, it may be possible to combine two proposed branches of work (documen-
tation analysis and documentation generation) to further improve software dependability.
However, automated documentation generation is still a rather new area of research that
requires more time to mature. Our proposed technique on automated comment genera-
tion (CloCom+) still needs further work to improve the completeness and usefulness of
the generated comments. Also, CloCom+ currently generates code comments to describe
the general source code, which is not applicable to DASE which relies on analyzing code
comments from the header files that describes the data structure.

We present additional work to complete my thesis, which expands upon other ways
to automate the constraint extraction process. We propose an approach to automatically
extract file format constraints from documentation, and discuss on how to potentially apply
the extracted file format constraints to a file parser.

6.1 Detecting Bugs using Documentation Constraints

Applications that accept input files of a specific structure are called structured-file parsing
applications. Some file formats contain a rigid structure, where each data field can be
directly accessed at a defined offset (e.g., ELF, PNG, JPEG, and mp3). There are also file
formats that contain a loose structure (e.g., PDF, XML and programming source code),
which requires a lexer to tokenize the input, and a parser to analyze the tokens based on
the grammar of the input. Our previous work, DASE [133], analyzed the ELF file format,
which has a mostly rigid structure as shown in Figure 3.4. The ELF header, section header

126

1 typedef struct {
2 unsigned char e_ident[EI_NIDENT];
3 uint16_t e_type;
4 uint16_t e_machine;
5 uint32_t e_version;
6 ElfN_Addr e_entry;
7 ElfN_Off e_phoff;
8 ElfN_Off e_shoff;
9 uint32_t e_flags;
10 uint16_t e_ehsize;
11 uint16_t e_phentsize;
12 uint16_t e_phnum;
13 uint16_t e_shentsize;
14 uint16_t e_shnum;
15 uint16_t e_shstrndx;
16 } ElfN_Ehdr;

Figure 6.1: Data field layout details of the ELF Header.

table, and program header table each contain a list of positional offsets for each data
field, which makes it a rigid structure. Figure 6.1 shows the struct definition of the file
header, which defines the positional offset of each field. For example, the header starts
with a char byte (e_ident) that describes how to interpret the file, followed by an unsigned
int (e_type) that indicates the object file type. Structured-file parsing applications are
difficult to test because they contain a large number of execution paths to test.

Existing symbolic execution testing tools such as KLEE [40] do not scale on structured-
file parsing applications because the lexer and parser of a program often generate a large
number of execution paths. Suppose we have a program that processes a string input from a
file (e.g., “int i = 1;”), where the string input does not have a rigid structure. The token
separator between “int” and “i” may be replaced by one or more white space, line break, or
tab character. Each possible combination of the token separator generates a new execution
path, and the separator can have any possible length. Without an understanding of the
input file’s structure or grammar, given a symbolic input, the symbolic execution engine
may fork many execution states for each possible combination of the token separator, which
leads to the path explosion problem. Our previous work, DASE [133], attempted to bound
the input of a program with file format constraints. However, due to limitations on the
expressiveness of the constraint system, DASE can only specify constraints on file formats
that have a rigid structure. For example, suppose we want to constraint the following
dictionary string from a PDF file that defines a list of key-value pairs, where there are two

127

<<
/Type /Catalog <- order of the key/value fields cannot be assumed
/Pages 2 0 R <- extra token spacing that affects the byte offset
>>

Figure 6.2: An example of where the constraint cannot be applied directly on a static byte
offset due to the extra white space between character ‘0’ and ’R.’

keys, Type and Pages, that contain the value, /Catalog and 2 0 R, respectively.

<</Type /Catalog /Pages 2 0 R>>

KLEE [40] and DASE [133] are not scalable to programs that process the above type
of input because the lexer and parser of the application will cause the symbolic execution
engine to keep forking branches that contain an invalid input. While it is possible to
constrain the dictionary string by assuming the position of the key/value fields using DASE,
it also prunes away many of the other valid input forms such as the string below, where the
content of the dictionary string is reversed, and the spacing is different. Figure 6.2 shows
an example where the positional offset of the data inside a PDF file cannot be assumed
due to two reasons. First, we cannot assume the order of the two keys, ‘Pages’ and ‘Type,’
to always be the same. Second, there may be variations on the syntax of the data (e.g.,
token spacing). Both issues can only be addressed with a parser that understands the file
format.

If we configure DASE to assume that the first value, /Catalog, will always start at
byte position 9, such constraint will be invalid if applied to the following string.

Therefore, we propose to address the challenges of modeling structured-file inputs to
help improve symbolic execution. We believe the utilization of a string solver is a promising
direction to model the input file format to avoid forking execution states that contain
an invalid input. Figure 6.3 shows the context-free grammar that represents the valid
structure of the dictionary string, which can be converted into a constraint using existing
string solvers such as HAMPI [230].

The grammar allows the symbolic execution tool to be aware of the following list of
symbolic tokens and the collection of high-level constraints (as opposed to the traditional
byte-level constraints) during symbolic execution.

1. «

128

dictStr := "<<" keyValuePair + ">>";
keyValuePair := "/" + keyName + space + value | keyValuePair +
space + keyValuePair;
value := keyName | reference;
reference := numbers + space + numbers + space + "R";
keyName := "/" + (letter)+;
letter := [a-z];
numbers := (number)+;
number := [0-9];
space := ("\s"|"\n")+;

Figure 6.3: Context-free grammar that describes the valid structure of the dictionary string.

2. keyName
3. value
4. keyName
5. value
6. »

We discuss two possible directions for exploration. The first direction is to explore
the combination of symbolic execution with fuzzing [124, 126, 13]. Previous work [13]
had shown that it is possible to leverage grammar-based constraints to help generate well-
formed inputs for fuzzy testing. Their technique first utilizes a lexer to tokenize the input,
which allows the utilization of grammar-based constraints for the specification of high-
level constraints. We would like to explore the extraction of grammar-based constraints
automatically from documentation to model file formats.

The second direction is the learning of file formats automatically. For example, the
dictionary string discussed above contains a key, Pages, that connects to object number
two. It may be possible to capture this semantic relation between objects through analysis
on the collected constraints during symbolic execution. One potential downside of this
approach is that the learned constraints will depend on the correctness of the input files.

Challenges The challenge comes from the automatic extraction of the file format
constraints from the documentation. We require file format constraints that describe the
lexical (i.e., tokens) and grammatical part of the file format, which differs from our previous
work in DASE [133] where we focused on extracting value constraints. We describe two
approaches to automatically extract constraints for the PDF file format [166], and an
approach to apply the constraints on a PDF parser.

129

6.1.1 Automated Constraint Extraction using Regular Expressions

Since documentations contain constraints that describes the file format of structured file
formats, we demonstrate an approach to extract file format constraints automatically from
the ISO documentation of the PDF file format [166].

There are many types constraints in a documentation that describe a PDF file format,
such as the general layout of the file format, specification of the supported data types (e.g.,
integer numbers, real numbers, strings and booleans), special characters (e.g., list of valid
whitespace characters and delimiters) and dictionary constraints (e.g., formatting of the
key-value pairs). We implemented a constraint extractor to extract dictionary constraints
because dictionary constraints help validation on the data’s correctness, which is important
for file recovery because it prevents the parser from extracting incorrect data.

Extracting Dictionary Constraints

A dictionary is an associative array data structure. It consists of a list of key-value pairs,
where each key must only appear at most once in the collection. Dictionary constraints
are documented inside tables in the PDF documentation. Since all the tables in the
documentation follow a consistent format, we utilize regular expressions to extract the
constraints.

The PDF file format contains many types of dictionaries (e.g., trailer, pages, page,
and root). Each dictionary contains key-value pair entries that define the properties of an
object. Dictionary constraints can be used to understand each key-value pair’s expected
format and value. Below is an example of a trailer dictionary, which contains two key-
value pairs, “Root” and “Size.”

1 <</Root 1 0 R /Size 5 >>

This trailer dictionary contains a list of valid key-value entries which are specified in
the documentation (Table 6.1). We extract the following constraints for the key, “Root,”
which is defined for the trailer dictionary in the documentation:

• Value format: dictionary

• Is it a mandatory key: yes

• Is it inheritable: not defined

130

(entries\sin\s(a|an|the)|
entries\scommon\sto\sall|
entries\sspecific\sto\sa|
required\sentries\sin\sa)
\s(.+)\s
(dictionary|object|stream|root|node|[a-zA-Z]+)

Figure 6.4: The first regular expression for matching table captions.

• Does it have to be an indirect reference: yes

• Dictionary type: catalog

• Dictionary location: Section 7.7.2 in the documentation [166]

The key, Root, contains the value, 1 0 R. The extracted constraints allow us to validate
the correctness of the value. The constraint stated that the value has to be an indirect
reference, which means it has to be written in the format of two numbers followed by the
keyword “R,” where the formatting of an indirect reference is defined in a different part of
the documentation.

We automatically parsed 137 tables that contain constraints related to the dictionaries
from the PDF documentation by defining two regular expressions. The two regular expres-
sions are written manually after we identified the patterns that are common between the
tables in the documentation.

The first regular expression, presented in Figure 6.4 (“\s” refers to spaces), identifies
tables that are related to dictionary parsing by matching against table captions.

The table caption for Table 6.1, “Table 15 - Entries in the file trailer dictionary.”,
satisfies regular expression #1. We extract match groups from the regular expression to
identify properties of the table. For example, the first match group (first four lines) matches
“Entries in the”. The second and third match group identifies the type of the dictionary
(e.g., pages object and stream dictionary), which is “file trailer” in this example.

The second regular expression, shown in Figure 6.5, decompiles the table entries of
Table 6.1 into three parts, including a “Key,” “Type” and “Value” table entry. For example,
Table 6.1 has an entry where the “Key” is “Root,” “Type” is “dictionary,” and “Value” is
“(Required; shall be an ...)”.

131

([a-zA-Z]+)\s
(integer|boolean|dictionary|
array|name|stream|number|
real|string|text\sstring|
rectangle|date|name\stree|
[a-z]\sor\s[a-z])
\s(.+)

Figure 6.5: The second regular expression for decompiling table entries.

Table 6.1: Trailer dictionary’s table from the ISO 32000 documentation specification. The
trailer dictionary’s table contains the caption, “Table 15 - Entries in the file trailer dictio-
nary.”

Key Type Value
Prev integer (Present only if the file has more than one cross-reference

section; shall be an indirect reference) The byte offset in the
decoded stream from the beginning of the file to the beginning
of the previous cross-reference section.

Root dictionary (Required; shall be an indirect reference) The catalog dictio-
nary for the PDF document contained in the file (see 7.7.2,
"Document Catalog").

Encrypt dictionary (Required if document is encrypted; PDF 1.1) The docu-
ment’s encryption dictionary (see 7.6, "Encryption").

...

6.1.2 Automated Constraint Extraction using Natural Language
Analysis

The PDF file format supports eight basic object formats, including boolean values, in-
teger/real numbers, strings, names, arrays, dictionaries, streams, and the null object.
The descriptions of the object formats are written in English in a free-form instead of
a structured table format. Thus, it is ineffective to process them with regular expressions.
Therefore, we adapt and apply natural language processing techniques to process them.
The PDF documentation contains dedicated chapters that describe each object format.
We manually identified the chapters that describe the object format constraints (chapters
7.3.2 to 7.3.9) and supplied all the English sentences to the constraint extraction tool.

132

Table 6.2: Syntactic categories examples for the production rules in the CFG.

Symbol Meaning Example
S sentence an integer shall be written as one or more decimal

digits optionally preceded by a sign
PP prepositional

phrase
as one or more

VP verb phrase shall be written as one of the following two ways
SBAR subordinating

conjunction
clause

when writing an name in a PDF file

REQUIREMENT requirement one of the following two ways
ACTION action writing a name in a PDF file
...

Object format constraint limits an object’s appearance. For example, an integer
number object has to contain one or more decimal digits optionally preceded by a sign
(e.g., “+17”). Since the dictionary constraints (Section 6.1.1) specify the expected object
format for each key-value pair, we can use object format constraints to validate if an object
conforms to the format. For example, Table 6.1 contains the key, “Prev,” that requires an
“integer” object format. Thus, we can use the integer object format constraints to validate
if a “Prev" value is an integer object.

To parse the English sentences, we defined a domain-specific context-free grammar
(CFG) to extract object format constraints (Figure 6.7). The purpose is to use formal
grammar to describe and label the high-level parts of a sentence. The CFG in Figure 6.7
contains a starting symbol, ‘S,’ that represents the input sentence. Each production rule
contains a non-terminal symbol (e.g., PP, VP, NP, SBAR, etc.) that can be replaced by a
pattern consisted of terminals and non-terminals. The syntactic category of each symbol
is shown in Table 6.2. Terminals are words in a sentence. For example, the non-terminal
symbol, ‘DT’ (determiner), can be represented by two words, ‘a’ or ‘an’.

Consider the sentence from the PDF documentation that describes the integer object,
“An integer shall be written as one or more decimal digits optionally preceded by a sign.”
The production rule, ‘REQUIREMENT,’ defines the syntactic structure of the string, “shall
be written as one or more decimal digits optionally preceded by a sign.”

We defined a CFG to focus the parsing on three different categories of sentence struc-
tures (production rule ‘S’ in Figure 6.7 contains three structures). The first category starts

133

with a noun phrase (NP) followed by a verb phrase (VP). The second category is a prepo-
sitional phrase (PP). The third category starts with a subordinating conjunction clause
(SBAR) followed by a noun phrase (NP) and a verb phrase (VP). Our approach is similar
to a natural language parser, but our approach includes custom part-of-speech tags (e.g.,
REQUIREMENT, ACTION, APPEARANCE) for the production rules. The reason is
that we wanted to label specific high-level phrases such as the requirement phrases (e.g.,
“shall consist of ...”) or format phrases (e.g., “a sequence of ...”), and be able to retrieve
them as a constraint later on.

The output of the parser is the parse tree of the sentence. Figure 6.6 shows the labeled
parse tree of the following sentence: “An integer shall be written as one or more decimal
digits optionally preceded by a sign.” The nodes of the tree represent the terminals in the
grammar, and the leaf nodes represent the non-terminals (words) in the sentence. For
example, we can extract from the sentence that the object (“an integer ”) contains the
requirement (“shall be written as ...”). The requirement contains a format specification
(“one or more decimal digits ...”).

After obtaining the parse tree of a sentence, we applied three templates to extract
constraint from the parse trees:

The first template focuses on sentences that describe an object’s format. It detects
such sentences by checking for the existence of a ‘REQUIREMENT’ and ‘FORMAT’ node.
It extracts the value of specific nodes including ‘VALUE,’ ‘OBJECT,’ ‘FORMAT,’ and
‘KEYWORD,’ and returns either 1) a string that can be a keyword or regex or 2) a list
that contains the identified tokens. Based on the previous example, “An integer shall
be written as one or more decimal digits optionally preceded by a sign.” contains the
‘REQUIREMENT’ node, ‘shall be written as xxx,’ and the ‘FORMAT’ node, ‘one or more
decimal xxx.’ It statically maps the format string into a regular expression. The template
can also return a list. For example, “A stream shall consist of a dictionary followed by
zero or more bytes bracketed between the keywords stream and endstream.” contains a
‘REQUIREMENT’ node and ‘FORMAT’ node. The template extracts the ‘KEYWORD’
nodes that exist within the ‘FORMAT’ node and returns a list containing two keywords,
stream, and endstream.

The second template focuses on sentences that describe the valid enclosure format of
an object. It detects such sentences by checking for the existence of a ‘FORMAT’ and ‘PP’
node. Once detected, it extracts the value of the ‘ENCLOSE’ node and returns a list of
valid tokens. For example, “As a sequence of literal characters enclosed in parentheses (
).” will return a list containing two characters, ‘(’ and ‘).’

The third template focuses on sentences that describe how an object should appear in

134

S

VP

REQUIREMENT

FORMAT

OPTIONAL

OBJECT

signa

byprecededoptionally

OBJECT

digitsdecimal

COUNT

moreorone

IN

as

writtenbeshall

NP

OBJECT

integeran

Figure 6.6: Parse tree for the sentence: “An integer shall be written as one or more decimal
digits optionally preceded by a sign.”

a PDF file. It detects such sentences by checking for the existence of an ‘APPEARANCE’
and ‘REQUIREMENT’ node. Once detected, it extracts the value of the ‘FORMAT’ node
and returns a list of tokens. “They appear in PDF files using the keywords true and false.”
will return a list containing two keywords, true and false.

6.1.3 Applying File Format Constraints to a File Parser

We build a constraint-based parser that utilizes file format constraints (dictionary con-
straints) to (1) enable fault-tolerant parsing of the data and (2) validate the semantic
correctness of the parsed data. A parser is critical towards the recovery process since it
is responsible for extracting data from the objects. Existing recovery tools such as mu-
tool [73] Poppler [77] do not utilize dictionary constraints to validate the key-value pairs
in their PDF parser. Previous work by Endignoux et al. performs constraint validation
on dictionary constraints [70]. However, our proposed approach differs in two ways. First,
their algorithm rejects the entire PDF file upon detecting constraint violations, whereas
our proposed approach discards the part that violates the constraint to allow a parser to re-
cover from the error. Second, their constraints are manually written whereas our proposed
approach extracts them automatically from the documentation.

Th following shows an example where a constraint-based parser can identify and avoid
the parsing of invalid values, where the parser’s job is to return a list of key-value pairs:

135

〈S 〉 ::= 〈NP〉 〈VP〉 〈ENDING〉
| 〈PP〉 〈ENDING〉
| 〈SBAR〉 ‘,’ 〈REQUIREMENT 〉 〈ENDING〉

〈PP〉 ::= ‘as’ 〈FORMAT 〉
〈VP〉 ::= 〈REQUIREMENT 〉

| 〈ACTION 〉
〈NP〉 ::= 〈OBJECT 〉
〈SBAR〉 ::= ‘when’ 〈VP〉
〈MULTI-OBJECT 〉 ::= 〈DT 〉 〈POSITION 〉 ‘,’ 〈POSITION 〉 ‘,’ ‘or’ 〈POSITION 〉 〈OBJECT 〉

| 〈OBJECT 〉 ‘and’ 〈OBJECT 〉
〈REQUIREMENT 〉 ::= ‘shall’ ‘be’ ‘written’ 〈IN 〉 〈FORMAT 〉

| ‘shall’ ‘consist’ ‘of’ 〈OBJECT 〉 〈FORMAT 〉
| ‘shall’ ‘be’ ‘only’ 〈NUM 〉 〈OBJECT 〉 ‘,’ ‘denoted’ ‘by’ 〈OBJECT 〉
| 〈FORMAT 〉
| 〈APPEARANCE 〉

〈APPEARANCE 〉 ::= ‘appear’ ‘in’ 〈OBJECT 〉 〈FORMAT 〉
〈ACTION 〉 ::= ‘writing’ 〈OBJECT 〉 〈IN 〉 〈OBJECT 〉
〈FORMAT 〉 ::= 〈COUNT 〉 〈OBJECT 〉 ‘with’ 〈OPTIONAL〉

| ‘one’ ‘of’ ‘the’ ‘following’ ‘two’ ‘ways’
| 〈COUNT 〉 〈OBJECT 〉 〈OPTIONAL〉
| ‘a’ ‘sequence’ ‘of’ 〈OBJECT 〉 〈ENCLOSE 〉
| 〈OBJECT 〉 〈ENCLOSE 〉
| ‘followed’ ‘by’ 〈COUNT 〉 〈OBJECT 〉 〈ENCLOSE 〉
| 〈KEYWORD〉 ‘shall’ ‘be’ ‘used’ ‘to’ ‘introduce’ 〈OBJECT 〉
| ‘using’ 〈KEYWORD〉

〈KEYWORD〉 ::= ‘the’ ‘keywords’ 〈VALUE 〉 ‘and’ 〈VALUE 〉
| 〈DT 〉 ‘solidus’

〈ENCLOSE 〉 ::= ‘enclosed’ ‘in’ 〈OBJECT 〉
| ‘bracketed’ ‘between’ 〈KEYWORD〉

〈OPTIONAL〉 ::= ‘optionally’ ‘preceded’ ‘by’ 〈OBJECT 〉
| 〈DT 〉 ‘optional’ 〈OBJECT 〉 ‘and’ 〈MULTI-OBJECT 〉

〈COUNT 〉 ::= ‘one’ ‘or’ ‘more’ | ‘zero’ ‘or’ ‘more’
〈ENDING〉 ::= ‘.’ | ‘:’ | ‘;’
〈VALUE 〉 ::= ‘true’ | ‘false’ | ‘stream’

| ‘endstream’
〈NUM 〉 ::= ‘one’
〈POSITION 〉 ::= ‘leading’ | ‘trailing’ | ‘embedded’
〈IN 〉 ::= ‘as’ | ‘in’
〈DT 〉 ::= ‘a’ | ‘an’

Figure 6.7: CFG for extracting constraints from natural language sentences. One of the
production rules, OBJECT, is omitted since it contains a full list of object related english
terms. 136

1 trailer
2 <</Root 1 0 R /Size 5>>
3 endobj

Listing 6.1: Example of a constraint-based parser at identifying invalid values

• Root, 1 0 R

• Size, 5

Existing recovery tools [73, 77] assumes a value must follow a key, but they do not vali-
date the format of the value. Suppose the value of the key, Root, becomes a numeric value,
‘1’, instead of an indirect reference, “1 0 R”. Since mutool does not know the expected
format of the value, it will accept ‘1’ as the value for Root if “0 R” is corrupted or missing.
The acceptance of values that violate the constraints causes mutool to fail to generate a
correct PDF file. For example, mutool generates the following trailer fix because it does
not validate the correctness of the key-value pairs:

trailer
<</Size 5/Root 1>>

On the other hand, our constraint-based parser recognizes the violation of the constraint
and rejects the value, which forces the repair operator to generate a new trailer as shown
below. Do note that the value of “size” had increased because the repair operators added
new objects to the PDF file during the repair process.

trailer
<</Root 6 0 R /Size 7>>

Existing recovery tools attempt to detect invalid syntax during the parsing process,
but they do not validate the syntax during the parsing stage. The above trailer example
shows that such basic heuristic is not sufficient. For example, the reason that the value ‘1’
is accepted as a valid value by their parser is that it conforms to the syntax of a numeric
object. Although the syntax is correct, it is not semantically correct which prevented the
repair operators from triggering to repair the incorrect file trailer.

Another advantage of validating the semantics of the parsed data is it allows fault-
tolerant parsing of the data. Existing parsers attempts to recover from parsing error by

137

skipping over tokens (from the tokenizer). They generally give up after a certain number
of attempts due to the possibility of introducing parsing error. A constraint-based parser
reduces the chances of a parsing error since it validates all the key-value pairs within
each dictionary. Therefore, our proposed constraint-based parser does not have a limit on
parsing attempts.

In order for a constraint-based parser to validate an object, it must know the type of the
object it is dealing with. We can achieve this by analyzing the file format’s tree structure
starting from the root of the document tree (Figure 4.2), and recursively parses the child
objects in the tree with guidance from the constraints. For example, the trailer dictionary
contains the key, “Root,” and the constraints of the child object is documented in chapter
7.7.2 of the documentation (Table 6.1). In the case where it fails to locate the dictionary
constraint, it attempts to guess the type of the object by locating the dictionary constraint
table that can parse the highest number of key-value pairs.

We implemented the backend tokenizer and parser based on mutool’s [73] implementa-
tion by mapping the C code into Python. While mutool’s tokenizer and parser validate the
syntactical correctness of the data, our proposed technique utilizes constraints to validate
the semantical correctness of the data.

138

Chapter 7

Conclusion

This thesis demonstrated several techniques to utilize documentation to improve software
dependability. Specifically, we improve both a system’s reliability (e.g., failure-free opera-
tion) and maintainability (e.g., ease of understanding) using documentation. We propose
and implement three pieces of work to support the claim.

Chapter 3 focuses on improving software reliability. The proposed technique, DASE,
automatically extracts and applies input constraints from documentation to improve a
symbolic execution tool for automated bug detection and test generation.

Chapter 4 focuses on improving software reliability. The work contains an empirical
study to study and repair corrupted PDF files. The proposed technique, DocRepair, utilizes
manually extracted constraints from documentation to repair corrupted files automatically.

Chapter 5 focuses on improving software maintainability. The proposed technique,
CloCom+, improves software documentation by generating source code comments auto-
matically. CloCom+ generates code comments by mining existing software repositories in
GitHub and a Question and Answer site, Stack Overflow.

Lastly, we include a future work discussion in Chapter 6 to demonstrate how to extract
file format constraints from documentation automatically to improve a symbolic execution
tool for bug detection.

139

References

[1] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. Bug characteristics in open source software. Empirical Software Engineering,
19(6):1665–1705, December 2014.

[2] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A study
of the documentation essential to software maintenance. In International Conference
on Design of Communication, pages 68–75, 2005.

[3] K. K. Aggarwal, Y. Singh, and J. K. Chhabra. An integrated measure of software
maintainability. In Reliability and Maintainability Symposium, pages 235–241, 2002.

[4] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy. Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Transactions on Software Engineering, 28(6):595–606, 2002.

[5] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts
of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[6] GitHub. https://github.com/, 2018.

[7] E. Wong, Taiyue Liu, and Lin Tan. Clocom: Mining existing source code for au-
tomatic comment generation. In Software Analysis, Evolution, and Reengineering,
pages 380–389, 2015.

[8] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment: Bugs or
bad comments?*/. In ACM SIGOPS Symposium on Operating Systems Principles,
pages 145–158, 2007.

[9] R. Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, S. Oney, and A. Paradkar. Infer-
ring method specifications from natural language api descriptions. In International
Conference on Software Engineering, pages 815–825, 2012.

140

[10] Mira Kajko-Mattsson. A survey of documentation practice within corrective main-
tenance. Empirical Software Engineering, 10(1):31–55, 2005.

[11] Hao Zhong and Zhendong Su. Detecting api documentation errors. In Object Oriented
Programming Systems Languages & Applications, pages 803–816, 2013.

[12] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. An empirical study on evolution
of api documentation. In Fundamental Approaches to Software Engineering, pages
416–431, 2011.

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox
fuzzing. Programming Language Design and Implementation, 43(6):206–215, 2008.

[14] Rupak Majumdar and Ru-Gang Xu. Directed test generation using symbolic gram-
mars. In Automated Software Engineering, pages 134–143, 2007.

[15] Chromium. 134551 - pdf: Null ptr crash trying to open (corrupt?) document
with two trailers. https://bugs.chromium.org/p/chromium/issues/detail?id=
134551, 2012.

[16] National Vulnerability Database. Cve-2018-3924 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-3924, 2018.

[17] National Vulnerability Database. Cve-2018-3939 detail. https://nvd.nist.gov/
vuln/detail/CVE-2018-3939, 2018.

[18] National Vulnerability Database. Cve-2017-14458 detail. https://nvd.nist.gov/
vuln/detail/CVE-2017-14458, 2017.

[19] Zero Day Initiative. Foxit reader combobox format event use-after-free remote
code execution vulnerability. https://www.zerodayinitiative.com/advisories/
ZDI-18-694/, 2018.

[20] Zero Day Initiative. Foxit reader resetform use-after-free remote code execution
vulnerability. https://www.zerodayinitiative.com/advisories/ZDI-18-695/,
2018.

[21] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Improving file system reliability with i/o
shepherding. In ACM SIGOPS Symposium on Operating Systems Principles, pages
293–306, 2007.

141

https://bugs.chromium.org/p/chromium/issues/detail?id=134551
https://bugs.chromium.org/p/chromium/issues/detail?id=134551
https://nvd.nist.gov/vuln/detail/CVE-2018-3924
https://nvd.nist.gov/vuln/detail/CVE-2018-3924
https://nvd.nist.gov/vuln/detail/CVE-2018-3939
https://nvd.nist.gov/vuln/detail/CVE-2018-3939
https://nvd.nist.gov/vuln/detail/CVE-2017-14458
https://nvd.nist.gov/vuln/detail/CVE-2017-14458
https://www.zerodayinitiative.com/advisories/ZDI-18-694/
https://www.zerodayinitiative.com/advisories/ZDI-18-694/
https://www.zerodayinitiative.com/advisories/ZDI-18-695/

[22] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using model
checking to find serious file system errors. Transactions on Computer Systems,
24(4):393–423, 2006.

[23] Mozilla. Bug 560346 - pdf attachments corrupt when downloaded through imap.
https://bugzilla.mozilla.org/show_bug.cgi?id=560346, 2016.

[24] US-CERT/NIST. Vulnerability summary for cve-2009-3608. https://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2009-3608, 2017.

[25] Launchpad. Bug #713325 "save as pdf produces broken pdf with blurred paths".
https://bugs.launchpad.net/inkscape/+bug/713325, 2011.

[26] Tomasz Kuchta, Cristian Cadar, Miguel Castro, and Manuel Costa. Docovery: To-
ward generic automatic document recovery. In Automated Software Engineering,
pages 563–574, 9 2014.

[27] Karl Wüst, Petar Tsankov, Saša Radomirović, and Mohammad Torabi Dashti. Force
open: Lightweight black box file repair. In DFRWS Europe, pages S75–S82, 2017.

[28] Sumit Narayan, John A. Chandy, Samuel Lang, Philip Carns, and Robert Ross.
Uncovering errors: The cost of detecting silent data corruption. In Workshop on
Petascale Data Storage, pages 37–41, 2009.

[29] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri
Schindler. An analysis of latent sector errors in disk drives. In ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pages
289–300, 2007.

[30] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis of data corruption
in the storage stack. Trans. Storage, 4(3):8:1–8:28, November 2008.

[31] Joel Spolsky and Jeff Atwood. StackOverflow. http://stackoverflow.com, 2018.

[32] E. Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question and answer
sites for automatic comment generation. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, pages 562–567, Nov 2013.

[33] Paul W. McBurney and Collin McMillan. Automatic documentation generation via
source code summarization of method context. In International Conference on Pro-
gram Comprehension, pages 279–290, 2014.

142

https://bugzilla.mozilla.org/show_bug.cgi?id=560346
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3608
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3608
https://bugs.launchpad.net/inkscape/+bug/713325
http://stackoverflow.com

[34] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In North American
Chapter of the Association for Computational Linguistics on Human Language Tech-
nology - Volume 1, pages 173–180, 2003.

[35] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceed-
ings of Annual Meeting on Association for Computational Linguistics - Volume 1,
pages 423–430, 2003.

[36] Manziba Akanda Nishi and Kostadin Damevski. Scalable code clone detection and
search based on adaptive prefix filtering. Journal of Systems and Software, 137:130
– 142, 2018.

[37] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. Sourcerercc: Scaling code clone detection to big-code. In International Con-
ference on Software Engineering, pages 1157–1168, 2016.

[38] L.A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering, SE-2(3):215–222, 1976.

[39] James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[40] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In USENIX conference on
Operating systems design and implementation, pages 209–224, 2008.

[41] P. D. Marinescu and C. Cadar. KATCH: High-coverage testing of software patches.
In Joint Meeting on Foundations of Software Engineering, pages 235–245, 2013.

[42] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-path
analysis of software systems. In Architectural Support for Programming Languages
and Operating Systems, pages 265–278, 2011.

[43] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing.
In ACM SIGPLAN conference on Programming language design and implementation,
pages 213–223, 2005.

[44] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and N. Rungta.
Symbolic pathfinder: Integrating symbolic execution with model checking for java
bytecode analysis. Automated Software Engineering, 20(3):391–425, 2013.

143

[45] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A sym-
bolic execution framework for javascript. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 513–528, 2010.

[46] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
Foundations of Software Engineering, pages 263–272, 2005.

[47] Nikolai Tillmann and Jonathan De Halleux. Pex–white box test generation for. net.
In Tests and Proofs, pages 134–153. 2008.

[48] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen. Directed test suite
augmentation: Techniques and tradeoffs. In Foundations of Software Engineering,
pages 257–266, 2010.

[49] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. Directed
symbolic execution. In International Conference on Static Analysis, pages 95–111.
2011.

[50] David M. Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. Accelerat-
ing array constraints in symbolic execution. In International Symposium on Software
Testing and Analysis, pages 68–78, 2017.

[51] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise: Multi-path
symbolic execution using value summaries. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 842–853,
New York, NY, USA, 2015. ACM.

[52] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic
automated test generation. In International Symposium on Software Testing and
Analysis, pages 12–22, 2011.

[53] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhanc-
ing symbolic execution with veritesting. In International Conference on Software
Engineering, pages 1083–1094, 2014.

[54] Y. Li, Z. Su, L. Wang, and X. Li. Steering symbolic execution to less traveled paths.
In International Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 19–32, 2013.

[55] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Interna-
tional Conference on Automated Software Engineering, pages 443–446, 2008.

144

[56] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. MACE:
Model-inference-assisted concolic exploration for protocol and vulnerability discovery.
In USENIX conference on Security, pages 10–10, 2011.

[57] K. Krishnamoorthy, M. S. Hsiao, and L. Lingappan. Strategies for scalable symbolic
execution-driven test generation for programs. Science China Information Sciences,
54(9):1797–1812, 2011.

[58] R. Santelices and M. J. Harrold. Exploiting program dependencies for scalable
multiple-path symbolic execution. In International Symposium on Software Test-
ing and Analysis, pages 195–206, 2010.

[59] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner, Mark
Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. Carfast: Achieving higher state-
ment coverage faster. In International Symposium on the Foundations of Software
Engineering, pages 35:1–35:11, 2012.

[60] P. D. Marinescu and C. Cadar. Make test-zesti: A symbolic execution solution for
improving regression testing. In International Conference on Software Engineering,
pages 716–726, 2012.

[61] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the application
of revealing subdomains. Transactions on Software Engineering, SE-6(3):236–246,
1980.

[62] R. Majumdar and R. Xu. Reducing test inputs using information partitions. In
International Conference on Computer Aided Verification, pages 555–569, 2009.

[63] M. Staats and C. Păsăreanu. Parallel symbolic execution for structural test gener-
ation. In International symposium on Software testing and analysis, pages 183–194,
2010.

[64] D. Qi, H. D.T. Nguyen, and A. Roychoudhury. Path exploration based on symbolic
output. In ACM Transactions on Software Engineering and Methodology, pages 278–
288, 2011.

[65] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. Chopped
symbolic execution. In International Conference on Software Engineering, pages
350–360, 2018.

145

[66] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM: A Prac-
tical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX Security
Symposium, 2018.

[67] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic execution. In Network and
Distributed System Security Symposium, 2016.

[68] Carlos Pacheco. Directed Random Testing. Ph.D., MIT Department of Electrical
Engineering and Computer Science, Cambridge, Massachusetts, 2009.

[69] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data
structures. In ACM SIGPLAN Conference on Object-oriented Programing, Systems,
Languages, and Applications, OOPSLA ’03, pages 78–95, 2003.

[70] G. Endignoux, O. Levillain, and J. Y. Migeon. Caradoc: A pragmatic approach to
pdf parsing and validation. In IEEE Security and Privacy Workshops, pages 126–139,
2016.

[71] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard.
Automatic input rectification. In International Conference on Software Engineering,
pages 80–90, 2012.

[72] Martin C. Rinard. Living in the comfort zone. In ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, pages 611–622, 2007.

[73] Artifex Software. Mupdf. http://mupdf.com/news, 2016.

[74] PDF Labs. Pdftk - the pdf toolkit. https://www.pdflabs.com/tools/
pdftk-the-pdf-toolkit/, 2016.

[75] SysInfoTools Software. Pdf recovery tool. https://gallery.technet.microsoft.
com/PDF-Repair-Tool-to-Restore-f21703c9.

[76] Inc Repair Toolbox. Pdf repair toolbox. https://gallery.technet.microsoft.
com/PDF-Repair-Tool-to-Restore-f21703c9.

[77] Freedesktop. Poppler. https://poppler.freedesktop.org/, 2017.

[78] GhostScript. Bugzilla – main page. http://bugs.ghostscript.com/, 2016.

146

http://mupdf.com/news
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://gallery.technet.microsoft.com/PDF-Repair-Tool-to-Restore-f21703c9
https://gallery.technet.microsoft.com/PDF-Repair-Tool-to-Restore-f21703c9
https://gallery.technet.microsoft.com/PDF-Repair-Tool-to-Restore-f21703c9
https://gallery.technet.microsoft.com/PDF-Repair-Tool-to-Restore-f21703c9
https://poppler.freedesktop.org/
http://bugs.ghostscript.com/

[79] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine
for c. In Foundations of Software Engineering, pages 263–272, 2005.

[80] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in
data structures. ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, 38(11):78–95, 2003.

[81] Ralf D. Brown. Reconstructing corrupt deflated files. Digital Investigation: The
International Journal of Digital Forensics & Incident Response, 8:S125–S131, 2011.

[82] Ralf D. Brown. Improved recovery and reconstruction of deflated files. DFRWS
Conference, 10:S21–S29, 2013.

[83] K.K. Aggarwal, Y. Singh, and J.K. Chhabra. An integrated measure of software
maintainability. In Proceedings of Annual Reliability and Maintainability Symposium,
pages 235–241, 2002.

[84] S. Zhang, C. Zhang, and M. D. Ernst. Automated documentation inference to explain
failed tests. In Automated Software Engineering, pages 63–72, 2011.

[85] Raymond P. L. Buse and Westley R. Weimer. Automatic documentation inference
for exceptions. In International Symposium on Software Testing and Analysis, pages
273–282, 2008.

[86] F. Long, X. Wang, and Y. Cai. Api hyperlinking via structural overlap. In Founda-
tions of Software Engineering, pages 203–212, 2009.

[87] R. P. L. Buse and W. Weimer. Automatically documenting program changes. In
Automated Software Engineering, pages 33–42, 2010.

[88] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Generating parameter comments
and integrating with method summaries. In International Conference on Program
Comprehension, pages 71–80, 2011.

[89] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments for java methods.
In Automated Software Engineering, pages 43–52, 2010.

[90] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically detecting and de-
scribing high level actions within methods. In International Conference on Software
Engineering, pages 101–110, 2011.

147

[91] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker.
Automatic generation of natural language summaries for java classes. In International
Conference on Program Comprehension, pages 23–32, 2013.

[92] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing source code
context of nl-queries for software maintenance and reuse. In International Conference
on Software Engineering, pages 232–242, 2009.

[93] S. Rastkar, G. C. Murphy, and A. W. J. Bradley. Generating natural language
summaries for crosscutting source code concerns. In International Conference on
Software Maintenance, pages 103–112, 2011.

[94] Suparna Gundagathi Manjunath. Towards comment generation for mpi programs.
Master’s thesis, University of Delaware, 2011.

[95] X. Wang, L. Pollock, and K. Vijay-Shanker. Automatic segmentation of method code
into meaningful blocks to improve readability. In Working Conference on Reverse
Engineering, pages 35 –44, 2011.

[96] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation.
In International Conference on Program Comprehension, ICPC ’18, pages 200–210,
2018.

[97] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke S. Zettlemoyer. Summa-
rizing source code using a neural attention model. In ACL, 2016.

[98] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of automated text
summarization techniques for summarizing source code. In Working Conference on
Reverse Engineering, pages 35–44, 2010.

[99] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella. Using
ir methods for labeling source code artifacts: Is it worthwhile? In International
Conference on Program Comprehension, pages 193–202, 2012.

[100] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program compre-
hension with source code summarization. In International Conference on Software
Engineering, pages 223–226, 2010.

[101] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver. Evaluating source code
summarization techniques: Replication and expansion. In International Conference
on Program Comprehension, pages 13–22, 2013.

148

[102] Paul W. McBurney, Cheng Liu, Collin McMillan, and Tim Weninger. Improving
topic model source code summarization. In International Conference on Program
Comprehension, pages 291–294, 2014.

[103] Laura Moreno and Jairo Aponte. On the analysis of human and automatic summaries
of source code. CLEI Electronic Journal, 15(2), 2012.

[104] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora. Mining source
code descriptions from developer communications. In International Conference on
Program Comprehension, pages 63–72, 2012.

[105] B. Dagenais and M. P. Robillard. Recovering traceability links between an api and
its learning resources. In International Conference on Software Engineering, pages
47–57, 2012.

[106] Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, and Gerardo Can-
fora. Codes: Mining source code descriptions from developers discussions. In Inter-
national Conference on Program Comprehension, pages 106–109, 2014.

[107] J. Kim, S. Lee, S. Hwang, and S. Kim. Enriching documents with examples: A corpus
mining approach. ACM Transactions on Information Systems, pages 1:1–1:27, 2013.

[108] A. Bacchelli, M. D’Ambros, and M. Lanza. Extracting source code from e-mails. In
International Conference on Program Comprehension, pages 24 –33, 2010.

[109] Nicolas Bettenburg, Bram Adams, Ahmed E. Hassan, and Michel Smidt. A
lightweight approach to uncover technical artifacts in unstructured data. In In-
ternational Conference on Program Comprehension, pages 185–188, 2011.

[110] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and N. A. Kraft.
What information about code snippets is available in different software-related doc-
uments? an exploratory study. In International Conference on Software Analysis,
Evolution and Reengineering, pages 382–386, 2017.

[111] P. Chatterjee, B. Gause, H. Hedinger, and L. Pollock. Extracting code segments
and their descriptions from research articles. In International Conference on Mining
Software Repositories, pages 91–101, 2017.

[112] Dick Grune. The software and text similarity tester SIM. http://dickgrune.com/
Programs/similarity_tester/, 2015.

149

http://dickgrune.com/Programs/similarity_tester/
http://dickgrune.com/Programs/similarity_tester/

[113] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on Software Engineering, pages
176 – 192, 2006.

[114] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering, pages 654–670, 2002.

[115] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In International Conference on Software Engineering,
pages 96–105, 2007.

[116] I.D. Baxter, C. Pidgeon, and M. Mehlich. Dms®: Program transformations for
practical scalable software evolution. In International Conference on Software Engi-
neering, pages 625–634, 2004.

[117] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In International Symposium on Static Analysis, pages 40–56, 2001.

[118] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Science of
Computer Programming, pages 470–495, 2009.

[119] R. Wettel and R. Marinescu. Archeology of code duplication: recovering duplication
chains from small duplication fragments. In International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pages 8 pp.–, 2005.

[120] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy.
Ccaligner: A token based large-gap clone detector. In International Conference on
Software Engineering, pages 1066–1077, 2018.

[121] I. Keivanloo, C.K. Roy, J. Rilling, and P. Charland. Shuffling and randomization for
scalable source code clone detection. In International Workshop on Software Clones,
pages 82–83, 2012.

[122] C.K. Roy and J.R. Cordy. Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In International Conference
on Program Comprehension, pages 172–181, 2008.

[123] N. Gode and R. Koschke. Incremental clone detection. In European Conference on
Software Maintenance and Reengineering, pages 219–228, 2009.

150

[124] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, January 2012.

[125] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnera-
bility Discovery. Addison-Wesley Professional, 2007.

[126] R. Majumda and R. Xu. Directed test generation using symbolic grammars. In
International Conference on Automated Software Engineering, pages 134–143, 2007.

[127] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. Exe: Automatically generating inputs of death. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS ’06, pages 322–
335, New York, NY, USA, 2006. ACM.

[128] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Auto-
matically generating pathological inputs. In International Symposium on Software
Testing and Analysis, pages 254–265, 2018.

[129] C. Rubio-González and B. Liblit. Expect the unexpected: Error code mismatches
between documentation and the real world. In ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, pages 73–80, 2010.

[130] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining annotations from comments
and code to detect interrupt-related concurrency bugs. In International Conference
on Software Engineering, pages 11–20, 2011.

[131] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tComment: Testing javadoc
comments to detect comment-code inconsistencies. In International Conference on
Software Testing, Verification and Validation, pages 260–269, 2012.

[132] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring specifications for resources from
natural language api documentation. Automated Software Engineering Journal, 18(3-
4):227–261, 2011.

[133] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. Dase: Document-
assisted symbolic execution for improving automated software testing. In Interna-
tional Conference on Software Engineering - Volume 1, pages 620–631, 2015.

[134] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring resource specifications from
natural language api documentation. In Automated Software Engineering, pages 307–
318, 2009.

151

[135] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Parad-
kar. Inferring method specifications from natural language api descriptions. In In-
ternational Conference on Software Engineering, pages 815–825, 2012.

[136] Cindy Rubio-González and Ben Liblit. Expect the unexpected: Error code mis-
matches between documentation and the real world. In ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, pages 73–80,
2010.

[137] L. C. Briand and A. Wolf. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering, pages 85–103, 2007.

[138] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on java
predicates. SIGSOFT Software Engineering Notes, 27(4):123–133, 2002.

[139] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra. Guided
test generation for web applications. In International Conference on Software Engi-
neering, pages 162–171, 2013.

[140] A. Avancini and M. Ceccato. Comparison and integration of genetic algorithms and
dynamic symbolic execution for security testing of cross-site scripting vulnerabilities.
Information and Software Technology, 55(12):2209–2222, 2013.

[141] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and
W. Visser. Symbolic execution for software testing in practice: Preliminary assess-
ment. In International Conference on Software Engineering, pages 1066–1071, 2011.

[142] M. K. Ganai, N. Arora, C. Wang, A. Gupta, and G. Balakrishnan. BEST: A sym-
bolic testing tool for predicting multi-threaded program failures. In International
Conference on Automated Software Engineering, pages 596–599, 2011.

[143] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and C. Csallner. SEDGE: Symbolic
example data generation for dataflow programs. In International Conference on
Automated Software Engineering, pages 235–245, 2013.

[144] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic generation of load tests. In
Automated Software Engineering, pages 43–52, 2011.

[145] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In
Proceedings of the ACM SIGPLAN conference on Programming language design and
implementation, pages 206–215, 2008.

152

[146] David McClosky and Christopher D. Manning. Learning constraints for consistent
timeline extraction. In Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 873–882, 2012.

[147] Katsumasa Yoshikawa, Sebastian Riedel, Masayuki Asahara, and Yuji Matsumoto.
Jointly identifying temporal relations with markov logic. In Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 1 - Volume 1, pages 405–413,
2009.

[148] Achim D Brucker, Matthias P Krieger, Delphine Longuet, and Burkhart Wolff. A
specification-based test case generation method for uml/ocl. In Models in Software
Engineering, pages 334–348. 2011.

[149] J. Offutt and A. Abdurazik. Generating tests from uml specifications. In Interna-
tional Conference on The Unified Modeling Language: Beyond the Standard, pages
416–429, 1999.

[150] Sourceware Bugzilla. The Stanford natural language processing dependencies. http:
//nlp.stanford.edu/software/stanford-dependencies.shtml, 2015.

[151] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications from
natural language api documentation. In Automated Software Engineering, pages
307–318, 2009.

[152] Marie-Catherine de Marneffe and Christopher D. Manning. Stanford typed de-
pendencies manual. http://nlp.stanford.edu/software/dependencies_manual.
pdf, 2013.

[153] Tool Interface Standards. Executable and linkable format. http://www.skyfree.
org/linux/references/ELF_Format.pdf, 2015.

[154] The Clang Team. Clang 8 documentation. https://clang.llvm.org/docs/
ClangTools.html, 2018.

[155] The KLEE Team. OSDI’08 Coreutils Experiments. http://klee.github.io/docs/
coreutils-experiments/, 2015.

[156] Sourceware Bugzilla. Readelf bug 16664 - Segmentation fault in process_attributes()
of readelf.c. https://sourceware.org/bugzilla/show_bug.cgi?id=16664, 2014.

153

http://nlp.stanford.edu/software/stanford-dependencies.shtml
http://nlp.stanford.edu/software/stanford-dependencies.shtml
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://clang.llvm.org/docs/ClangTools.html
https://clang.llvm.org/docs/ClangTools.html
http://klee.github.io/docs/coreutils-experiments/
http://klee.github.io/docs/coreutils-experiments/
https://sourceware.org/bugzilla/show_bug.cgi?id=16664

[157] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. Science of Computer Programming, 69(1-3):35–45,
2007.

[158] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using au-
tomatic anomaly detection. In International Conference on Software Engineering,
pages 291–301, 2002.

[159] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code. In
ACM Symposium on Operating Systems Principles, pages 57–72, 2001.

[160] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox fuzzing.
In International Conference on Software Engineering, pages 474–484, 2009.

[161] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. Scheduling
black-box mutational fuzzing. In ACM Conference on Computer and Communica-
tions Security, pages 511–522, 2013.

[162] American fuzzy lop. http://lcamtuf.coredump.cx/afl/, 2018.

[163] Glyph & Cog. pdftotext. https://www.xpdfreader.com/pdftotext-man.html,
2018.

[164] F. Zhao. On choosing the digital document’s file format for long-term preservation. In
International Conference on Communication Software and Networks, pages 370–372,
2011.

[165] M. Y. B. Masod and R. Ahmad. Digital data exchange in digital prepress technology:
The adoption of a new standards. In IEEE Business Engineering and Industrial
Applications Colloquium, pages 410–414, 2013.

[166] Adobe Systems Incorporated. Pdf reference and adobe extensions to the pdf specifi-
cation, 2016.

[167] Adobe Systems Incorporated. Document management - portable document format -
part 1: Pdf 1.7. http://www.adobe.com/devnet/pdf/pdf_reference.html, 2017.

[168] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian Cadar.
On the correctness of electronic documents: studying, finding, and localizing incon-
sistency bugs in pdf readers and files. Empirical Software Engineering, 2018.

154

http://lcamtuf.coredump.cx/afl/
https://www.xpdfreader.com/pdftotext-man.html
http://www.adobe.com/devnet/pdf/pdf_reference.html

[169] Scrapinghub. Scrapy. http://scrapy.org/, 2016.

[170] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing sci-
ence to digital forensics with standardized forensic corpora. In The Digital Forensic
Research Conference, 2009.

[171] GNOME. Documents - document manager. https://wiki.gnome.org/Apps/
Documents, 2018.

[172] Okular developers. Okukar. https://okular.kde.org/, 2016.

[173] Apache. The apache fop project. https://xmlgraphics.apache.org/fop/, 2018.

[174] LibreOffice. Bugzilla main page. https://bugs.documentfoundation.org/, 2016.

[175] Lincoln. Pdftohtml conversion program. http://pdftohtml.sourceforge.net/,
2018.

[176] Mozilla Foundation. Bugzilla. https://www.bugzilla.org/, 2016.

[177] Google. Monorail issue tracker. https://chromium.googlesource.com/infra/
infra/+/master/appengine/monorail, 2016.

[178] Canonical Group Ltd. Launchpad. https://launchpad.net/, 2016.

[179] Adobe. Adobe acrobat pro dc. https://acrobat.adobe.com/us/en/acrobat/
acrobat-pro.html, 2018.

[180] Brendan Zagaeski. Minimal pdf - contents. http://brendanzagaeski.appspot.
com/0004.html, 2018.

[181] Artifex Software. Ghostscript. http://www.ghostscript.com/, 2016.

[182] The GNOME Project. Apps/evince. https://wiki.gnome.org/Apps/Evince, 2016.

[183] Glyph & Cog. Xpdf: A pdf viewer for x. https://wiki.gnome.org/Apps/Evince,
2016.

[184] Google. The chromium projects. https://www.chromium.org/Home, 2016.

[185] Google. Pdfium. https://pdfium.googlesource.com/pdfium/, 2017.

[186] Mozilla. Firefox. http://mupdf.com/news, 2016.

155

http://scrapy.org/
https://wiki.gnome.org/Apps/Documents
https://wiki.gnome.org/Apps/Documents
https://okular.kde.org/
https://xmlgraphics.apache.org/fop/
https://bugs.documentfoundation.org/
http://pdftohtml.sourceforge.net/
https://www.bugzilla.org/
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail
https://launchpad.net/
https://acrobat.adobe.com/us/en/acrobat/acrobat-pro.html
https://acrobat.adobe.com/us/en/acrobat/acrobat-pro.html
http://brendanzagaeski.appspot.com/0004.html
http://brendanzagaeski.appspot.com/0004.html
http://www.ghostscript.com/
https://wiki.gnome.org/Apps/Evince
https://wiki.gnome.org/Apps/Evince
https://www.chromium.org/Home
https://pdfium.googlesource.com/pdfium/
http://mupdf.com/news

[187] Mozilla. Pdf.js. https://mozilla.github.io/pdf.js/, 2017.

[188] Adobe Systems Incorporated. Adobe acrobat reader dc. https://get.adobe.com/
reader/, 2016.

[189] Adam Reichold. qpdfview. https://launchpad.net/qpdfview, 2016.

[190] Volker C. Behr. Cups-pdf. https://www.cups-pdf.de/, 2015.

[191] Chromium. Bug # "out of bounds write in pdf with sample function with lots
of inputs". https://bugs.chromium.org/p/chromium/issues/detail?id=124182,
2012.

[192] Gavriel Salvendy. Book review understanding your users: A practical guide to user
requirements by catherine courage and kathy baxter. International Journal of Hu-
man–Computer Interaction, 19(1):155–156, 2005.

[193] Enough Pepper. xsort - free card sorting application for mac. https://xsortapp.
com/, 2018.

[194] GNOME. Bug #349826 "gtk+ produces invalid pdf on amd64". https://bugzilla.
gnome.org/show_bug.cgi?id=349826, 2006.

[195] Document Foundation. Bug 39946 - different appearance while printing or exporting
to pdf. https://bugs.documentfoundation.org/show_bug.cgi?id=39946, 2011.

[196] Freedesktop. Bug 43646 - downloaded pdf w/forms will not open when uploaded to
adobe. https://bugs.freedesktop.org/show_bug.cgi?id=43646, 2011.

[197] Launchpad. Bug 518230 - some pdf forms don’t save entered information. https:
//bugs.launchpad.net/ubuntu/+source/evince/+bug/518230, 2010.

[198] Chromium. Bug 179013 - print blank page on chrome. https://bugs.chromium.
org/p/chromium/issues/detail?id=179013, 2013.

[199] Launchpad. Bug #423630 "lists the right application but failt to run it when
mimetype wrongly set on server". https://bugs.launchpad.net/ubuntu/+source/
firefox/+bug/423630, 2010.

[200] Launchpad. Simple scan. https://launchpad.net/simple-scan, 2018.

156

https://mozilla.github.io/pdf.js/
https://get.adobe.com/reader/
https://get.adobe.com/reader/
https://launchpad.net/qpdfview
https://www.cups-pdf.de/
https://bugs.chromium.org/p/chromium/issues/detail?id=124182
https://xsortapp.com/
https://xsortapp.com/
https://bugzilla.gnome.org/show_bug.cgi?id=349826
https://bugzilla.gnome.org/show_bug.cgi?id=349826
https://bugs.documentfoundation.org/show_bug.cgi?id=39946
https://bugs.freedesktop.org/show_bug.cgi?id=43646
https://bugs.launchpad.net/ubuntu/+source/evince/+bug/518230
https://bugs.launchpad.net/ubuntu/+source/evince/+bug/518230
https://bugs.chromium.org/p/chromium/issues/detail?id=179013
https://bugs.chromium.org/p/chromium/issues/detail?id=179013
https://bugs.launchpad.net/ubuntu/+source/firefox/+bug/423630
https://bugs.launchpad.net/ubuntu/+source/firefox/+bug/423630
https://launchpad.net/simple-scan

[201] Launchpad. Bug 760967 - simple scan creates corrupt file and freezes when saving
pdf. https://bugs.launchpad.net/ubuntu/+source/simple-scan/+bug/760967,
2011.

[202] Launchpad. Bug 789906 - crash when saving pdf. https://bugs.launchpad.net/
ubuntu/+source/simple-scan/+bug/789906, 2011.

[203] Launchpad. Bug #537331 "evince crashed with sigsegv in __memset_sse2() when
opening a pdf". https://bugs.launchpad.net/ubuntu/+source/poppler/+bug/
537331, 2010.

[204] ICC. International color consortium. http://www.color.org/index.xalter, 2018.

[205] Chromium. saving pdfs results in damaged file. https://bugs.chromium.org/p/
chromium/issues/detail?id=70440, 2011.

[206] Beat Fluri, Michael Wursch, and Harald C. Gall. Do code and comments co-evolve?
on the relation between source code and comment changes. In Working Conference
on Reverse Engineering, pages 70–79, 2007.

[207] Paul W. McBurney and Collin McMillan. Automatic documentation generation via
source code summarization of method context. In International Conference on Pro-
gram Comprehension, pages 279–290, 2014.

[208] E. Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question and answer
sites for automatic comment generation. In Automated Software Engineering, pages
562–567, 2013.

[209] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne D. Storey.
Crowd documentation: Exploring the coverage and the dynamics of api discussions
on stack overflow. Technical Report GIT-CS-12-05, Georgia Tech, 2012.

[210] S. Subramanian and R. Holmes. Making sense of online code snippets. In Mining
Software Repositories, pages 85–88, 2013.

[211] Edmund Wong, Jinqiu Yang, Nasir Ali, and Lin Tan. Autocomment: Crowd sourced
comment generation. http://asset.uwaterloo.ca/AutoComment2/, 2018.

[212] Inc. Stack Exchange. Stack exchange data dump. https://archive.org/details/
stackexchange, 2018.

157

https://bugs.launchpad.net/ubuntu/+source/simple-scan/+bug/760967
https://bugs.launchpad.net/ubuntu/+source/simple-scan/+bug/789906
https://bugs.launchpad.net/ubuntu/+source/simple-scan/+bug/789906
https://bugs.launchpad.net/ubuntu/+source/poppler/+bug/537331
https://bugs.launchpad.net/ubuntu/+source/poppler/+bug/537331
http://www.color.org/index.xalter
https://bugs.chromium.org/p/chromium/issues/detail?id=70440
https://bugs.chromium.org/p/chromium/issues/detail?id=70440
http://asset.uwaterloo.ca/AutoComment2/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange

[213] L. Ponzanelli, A. Mocci, and M. Lanza. Stormed: Stack overflow ready made data.
In Working Conference on Mining Software Repositories, pages 474–477, 2015.

[214] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. Improving low
quality stack overflow post detection. In International Conference on Software Main-
tenance and Evolution, pages 541–544, 2014.

[215] Beatrice Santorini. Part-of-speech tagging guidelines for the penn treebank project
(3rd revision, 2nd printing). Technical report, Department of Linguistics, University
of Pennsylvania, 1990.

[216] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to usable code:
An analysis of stack overflow code snippets. In Mining Software Repositories, pages
391–402, 2016.

[217] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones
using gap locations. In Software Engineering Conference, pages 327–336, 2002.

[218] B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. A. Kraft. Automat-
ically documenting unit test cases. In International Conference on Software Testing,
Verification and Validation, pages 341–352, 2016.

[219] Al Danial. CLOC – count lines of code. https://github.com/AlDanial/cloc, 2016.

[220] B. D. Cruz, P. W. McBurney, and C. McMillan. Tracelab components for reproducing
source code summarization experiments. In International Conference on Software
Maintenance and Evolution, pages 610–610, 2016.

[221] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.

[222] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys Poshy-
vanyk. On automatically generating commit messages via summarization of source
code changes. In International Working Conference on Source Code Analysis and
Manipulation, pages 275–284, 2014.

[223] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. Automatic generation of release notes. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 484–495, New York, NY, USA, 2014. ACM.

158

https://github.com/AlDanial/cloc

[224] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method
for automatic evaluation of machine translation. In Association for Computational
Linguistics, pages 311–318, 2002.

[225] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating com-
mit messages from diffs using neural machine translation. CoRR, 2017.

[226] J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psycho-
logical Bulletin, 76(5):378–382, 1971.

[227] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The java
language specification java se 7 edition. https://docs.oracle.com/javase/specs/
jls/se7/jls7.pdf, 2013.

[228] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei Zhang.
Mining succinct and high-coverage api usage patterns from source code. In Mining
Software Repositories, 2013.

[229] Dave Binkley, Dawn Lawrie, Emily Hill, Janet Burge, Ian Harris, Regina Hebig,
Oliver Keszocze, Karl Reed, and John Slankas. Task-driven software summarization.
In International Conference on Software Maintenance, pages 432–435, 2013.

[230] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.
Hampi: A solver for string constraints. In International Symposium on Software
Testing and Analysis, pages 105–116, 2009.

159

https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

	List of Tables
	List of Figures
	Introduction
	Automatic Documentation Analysis
	General Symbolic Execution-Based Software Testing
	Automatic File Repair

	Automatic Documentation Generation
	Mining Question and Answer Sites
	Mining Code Repositories

	Contributions
	Overview of Thesis

	Related Work
	Symbolic Execution
	Automatic File Repair
	Automatic Comment Generation
	Source Code Summarization
	Mining Descriptions for Code Artifact
	Code Clone Detection
	Fuzz Testing
	Documentation Analysis

	Documentation Analysis: Symbolic Execution-Based Software Testing using Documentation Constraints
	Motivation
	Overview
	Background
	Design and Implementation
	Extracting File Format Constraints
	Adding File Layout Constraints
	Extracting Valid Options
	Using Options to Flatten Symbolic Execution

	Evaluation Method
	Evaluated Programs
	Experimental Setup

	Evaluation Results
	Detected Bugs
	Code Coverage
	DASE Complements Developer Tests
	Constraint Extraction Results

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Summary

	Documentation Analysis: Automatic File Repair
	Motivation
	Background
	PDF File Format
	Existing Repair Approaches

	Definitions
	A Study of Corrupted PDF Files
	Collecting Corrupted PDF Files
	Identifying Corrupted PDF Files
	PDF Repair Tools and Viewers
	Empirical Study Findings

	Design and Implementation
	Data Parsing and Collection
	Repair Operators

	Evaluation Method and Results
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Summary

	Automatic Documentation Generation: Crowd Sourced Comment Generation
	Motivation
	Examples and Challenges
	Example One
	Example Two
	Example Three

	Design and Implementation
	Code-Description Mapping Extraction from Stack Overflow
	Description Refinement
	Code Clone Detection
	Code Clone Pruning
	Comment Selection

	Evaluation Method
	Experimental Settings
	Human Participants
	Questionnaire Generation
	Study Procedure
	Post Study Questions
	Replication Package

	Evaluation Results
	Participant Ratings
	Execution Time

	Qualitative Analysis and Discussion
	Properties of the Automatically Generated Comments
	Properties of Developer-written Comments
	Properties of Participant-written Comments
	Yield Analysis
	Limitations

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity
	Conclusion Validity

	Summary

	Future Work
	Detecting Bugs using Documentation Constraints
	Automated Constraint Extraction using Regular Expressions
	Automated Constraint Extraction using Natural Language Analysis
	Applying File Format Constraints to a File Parser

	Conclusion
	References

