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Abstract	

In	recent	years,	greenhouse	gas	(GHG)	emissions	is	a	global	concern	due	to	high	concentrations	

of	these	gases	in	the	atmosphere.	Carbon	capture	and	storage	(CCS)	has	been	suggested	as	an	

attractive	alternative	to	curb	intensive	CO2	emissions	and	reduce	its	impact	to	the	environment.	

CCS	technologies	provide	a	direct	alternative	to	reducing	the	emissions	from	coal	and	gas-fired	

power	generation	plants.	However,	in	order	to	implement	commercial-scale	CO2	capture	plants,	

further	studies	are	needed	to	mitigate	all	possible	costs	of	this	technology	such	as	high	energy	

consumption.	

This	work	presents	a	study	on	a	robust	design	optimization	framework	for	a	pilot-scale	absorber	

column	in	post-combustion	CO2	capture.	A	mechanistic	model	describing	the	behaviour	of	a	post-

combustion	CO2	absorber	column	is	explicitly	considered.	The	proposed	formulation	takes	into	

account	uncertainty	that	will	impact	the	absorber	column	due	to	seasonal	or	unexpected	changes	

in	the	operating	policies	of	a	fossil-fired	power	plant,	e.g.,	changes	in	the	flue	gas	stream,	as	well	

as	uncertainty	associated	with	the	physical	thermodynamic	properties	of	the	species	involved	in	

the	absorption	process.	Furthermore,	in	addition	to	the	presence	of	model	uncertainty,	a	multi-

objective	 optimization	 in	 a	 multi-period	 scenario	 explicitly	 describing	 year-long	 seasonal	

changes	in	flue	gas	has	been	considered.				

Different	scenarios	were	assessed	in	order	to	evaluate	the	impact	of	uncertainty	and	multi-period	

changes	on	the	optimal	multi-objective	process	design.	Optimal	design	specifications	between	

different	number	of	uncertain	realizations	and	periodical	changes	were	studied.	However,	higher	

computational	demands	were	observed	under	extensive	evaluations	of	uncertainty.	

Results	 from	 this	 study	 suggest	 that	 larger	 dimensions	 in	 design	 are	 required	 when	 the	

optimization	was	evaluated	under	uncertainty	and	under	multi-periods	scenarios	considering	
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uncertainty.	 The	 results	 show	 that	 the	 optimal	 design	 considering	 uncertainty	 and	 seasonal	

changes	will	be	able	to	comply	with	the	CO2	capture	policies.	Thus,	post-combustion	CO2	capture	

systems	must	be	designed	under	 these	 conditions	 to	ensure	 feasibility	of	 these	plants	during	

operation.		
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Chapter	1	

Introduction	

The	increased	concentration	of	major	greenhouse	gases	(GHG)	such	as	carbon	dioxide	(CO2)	are	

a	direct	consequence	of	anthropogenic	activities.	The	ultimate	objective	of	the	U.N.	Framework	

Convention	on	Climate	Change	(UNFCCC)	is	to	stabilize	GHG	concentrations	in	the	atmosphere	at	

a	 level	 that	 would	 prevent	 dangerous	 anthropogenic	 interference	 with	 the	 climate	 system	

(Quadrelli	and	Peterson,	2007).	The	energy	sector	is	largely	dominated	by	the	direct	combustion	

of	 fuels,	a	process	 leading	to	 large	emissions	of	CO2.	Responsible	of	about	95%	of	the	energy-

related	emissions,	CO2	from	energy	represents	approximately	80%	of	the	global	anthropogenic	

GHG	emissions	(Quadrelli	and	Peterson,	2007).	

Carbon	capture	and	storage	(CCS)	provides	a	solution	to	these	CO2	intensive	emissions,	reducing	

the	emissions	from	coal	and	gas-fired	power	generation	plants.	Current	studies	have	focused	on	

adjusting	CCS	technologies	in	order	to	make	them	economically	feasible	since	nowadays	these	

technologies	consume	significant	amounts	of	energy.	In	order	to	improve	CO2	capture	from	gas	

or	coal	power	generation,	three	main	processes	have	been	proposed:	post-combustion	capture,	

pre-combustion	capture,	and	oxy-combustion.	In	post-combustion	capture,	CO2	is	separated	from	

the	 power	 plant’s	 flue	 gas	 produced	 from	 the	 combustion	 of	 fossil	 fuels.	 In	 pre-combustion	

capture,	carbon	is	removed	from	the	fuel	before	combustion,	whereas	in	oxy-combustion,	the	fuel	

is	 burned	 in	 an	 environment	 of	 nearly	 pure	 O2	 (>95%)	mixed	with	 traces	 of	 nitrogen.	 Post-

combustion	capture	offers	some	advantages	as	existing	combustion	technologies	can	still	be	used	

without	 major	 changes	 on	 their	 design	 and	 operating	 policies.	 Several	 techniques	 for	 post-

combustion	have	been	developed:	chemical	absorption,	adsorption,	membranes	and	cryogenic	

separation.	Since	the	thermodynamic	driving	force	for	CO2	capture	from	flue	gas	is	low,	chemical	
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absorption	seems	to	be	the	most	promising	CCS	alternative.	Amines	are	able	to	capture	CO2	from	

streams	with	a	 low	CO2	partial	pressure;	 this	 is	because	amines	react	with	CO2	to	 form	water	

soluble	compounds.		

Amine-based	CO2	 capture	 is	one	of	 the	most	 studied	 technologies	 for	CCS	 (Liang	et	 al.,	 2015;	

Nwaoha	et	al.,	2017;	Tan	et	al.,	2012;	Wang	et	al.,	2011).	The	amine	based	post-combustion	basic	

process	is	shown	in	Figure 1.	In	this	process,	CO2	is	absorbed	from	a	fuel	gas	or	combustion	gas	

near	ambient	temperature	into	an	aqueous	solution	of	amine	with	low	volatility.	The	amine	is	

regenerated	in	a	stripping	unit	where	the	amine	is	separated	from	the	CO2	with	water	vapor	at	

100-120	°C;	the	amine	is	condensed	from	the	stripper,	leaving	an	almost	pure	CO2	stream	that	

can	be	compressed	to	100	-	150	bar	 for	geologic	sequestration	or	CO2	reutilization	(Rochelle,	

2009).	

	

Lean solvent 

Vent gas 

Flue gas 

Rich solvent Reboiler 

Stripper 

Condenser 

CO2 product 

Cross Heat- 

Exchanger 

Make up H2O Make up MEA 

Figure 1 MEA post-combustion CO2 capture process flowsheet 
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Since	post-combustion	CO2	capture	process	was	first	introduced	as	a	viable	CCS	technology,	the	

energy	penalty	has	been	reduced	by	almost	50%	(McCulloch	et	al.,	2016).	Hence,	experimental	

research	has	been	performed	in	order	to	evaluate	process	performance.	While	this	approach	will	

provide	actual	information	about	the	system’s	behaviour,	it	may	be	costly	and	time	consuming.	

In	contrast,	software	and	model	simulation	provides	a	low-cost	and	time-efficient	alternative	for	

post-combustion	 CO2	 research.	 Studies	 proposing	 mechanistic	 post-combustion	 CO2	 capture	

models	have	been	previously	reported	in	the	literature	(Harun	et	al.,	2011;	Kvamsdal	et	al.,	2009;	

Mac	 Dowell	 and	 Shah,	 2013;	 Nittaya	 et	 al.,	 2014;	 Prölß	 et	 al.,	 2011).	 Moreover,	 model	

development	has	advanced	the	study	of	optimal	design	and	operations	management	policies	for	

post-combustion	systems.	In	most	of	those	works,		single-objective	design	optimization	has	been	

considered	 (Chu	 et	 al.,	 2016;	 Gaspar	 and	 Loldrup,	 2016;	 Mores	 et	 al.,	 2012,	 2018;	

Thouchprasitchai	et	al.,	2018).	Furthermore,	efforts	to	establish	a	more	flexible	though	efficient	

CO2	 capture	 process	 have	 been	 addressed	 through	 the	 formulation	 of	 multi-objective	

optimization	 problems	 	 (Bernier	 et	 al.,	 2010;	 Cristóbal	 et	 al.,	 2012;	 Eslick	 and	 Miller,	 2011;	

Fazlollahi	and	Maréchal,	2013;	Haghpanah	et	al.,	2013;	Harkin	et	al.,	2012;	Li	et	al.,	2006)	.	Despite	

the	efforts	of	optimizing	the	operating	conditions	for	this	process,	the	impact	of	uncertainty	and	

external	perturbations	that	may	impact	this	process	during	operation	can	have	a	significant	effect	

on	 process	 optimality	 and	 feasibility.	 Thus,	 optimization	 at	 nominal	 conditions,	 i.e.	 uncertain	

parameters	set	at	their	nominal	values,	may	lead	to	suboptimal	(or	even	inoperable)	conditions	

when	they	are	subject	to	parameter	uncertainty	and	process	disturbances.	To	this	regard,	 the	

only	study	available	is	that	of	Bahakim	and	Ricardez-Sandoval,	(2015)	who	developed	a	single-

objective	 design	 optimization	 under	 uncertainty	 formulation	 for	 this	 process.	 Furthermore,	

previous	design	optimization	studies	have	not	considered	of	seasonal	changes	in	the	operation	

of	the	power	plants.		
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Additionally,	 the	 implementation	 of	 the	 CO2	 capture	 process	 on	 conventional	 chemical	

engineering	software	programs	such	as	Aspen	HYSYS	may	be	a	straightforward	alternative	to	

simulate	chemical	systems;	however,	performing	optimization	of	these	systems	while	using	that	

software	may	result	in	convergence	problems,	particularly	when	equipment	sizing	decisions	are	

part	 of	 the	 degrees	 of	 freedom	 in	 the	 optimization	 formulation.	 Consequently,	 direct	

implementation	of	mechanistic	process	models	in	an	optimization-oriented	modelling	language,	

e.g.,	PYOMO	or	GAMS,	can	improve	model	convergence	if	good	initial	conditions	are	provided.	

1.1 Research	Objectives	

The	objective	of	this	study	is	to	present	a	robust	design	optimization	framework	for	an	absorber	

column	of	a	post-combustion	CO2	capture	process.	The	novelty	of	this	work	is	that	it	explicitly	

considers	 a	 mechanistic	 model	 describing	 the	 dynamic	 behaviour	 of	 a	 post-combustion	 CO2	

absorber	 column,	uncertainty	 in	both	 the	process	 inputs	and	model	parameters,	 and	a	multi-

objective	analysis.	The	robust	multi-objective	problem	will	be	evaluated	within	a	seasonal	multi-

period	 scenario	 performance	 of	 the	 CO2	 absorber	 in	 order	 to	 determine	 the	 optimal	 design	

conditions	 that	will	 compensate	 for	 these	 changes.	 The	 expected	 contributions	 of	 addressing	

process	 uncertainty,	 multi-objective	 optimization	 and	 multi-period	 scenario	 to	 the	 design	

optimization	 framework	 is	 to	 guarantee	 that	 the	 proposed	 solutions	 will	 accommodate	 the	

possible	scenarios	that	a	real-life	process	can	experience.	

1.2 Structure	of	Thesis	

This	thesis	is	organized	as	follows:	Chapter	2	provides	a	detailed	literature	review,	outlining	

the	 previous	works	 addressing	 post-combustion	 CO2	 capture	 process	 optimization,	 i.e.	 single	

objective	 optimization	 and	multiobjective	 optimization.	Moreover,	 a	 description	 of	 the	multi-
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objective	method	considered	in	this	work,	as	well	as	previous	contributions	on	multi-objective	

optimization	of	post	combustion	CO2	capture	are	described	in	this	section	of	the	thesis.		

Chapter	3	presents	a	robust	design	and	operability	optimization	of	a	CO2	capture	mechanistic	

absorber	model	under	uncertainty.	A	detailed	mechanistic	model	describing	the	CO2	absorber	

model	 is	presented.	Robust	design	optimization	where	uncertainty	 is	considered	 in	key	 input	

variables	 and	 model	 parameters	 is	 addressed	 to	 the	 CO2	 capture	 process.	 A	 study	 of	 the	

sensitivity	of	key	process	parameters	to	the	optimal	solution	is	also	presented	in	this	section	of	

the	thesis.		

Chapter	4	presents	a	multi-objective	optimization	framework	to	a	multi-period	scenario	of	the	

CO2	 capture	 absorber	 column.	 The	 CO2	 capture	 absorber	 model	 described	 in	 section	 3	 is	

embedded	within	a	multi-period	scenario	under	uncertainty	formulation	where	a	robust	multi-

objective	optimization	formulation	is	considered.	The	aim	of	this	study	is	to	obtain	the	optimal	

design	 and	 operating	 conditions	 in	 order	 for	 the	 absorber	 column	 to	 recover	 the	 most	 CO2	

possible	 at	 low	 cost.	 This	 optimal	 design	 is	 evaluated	with	 a	 specific	 technique	 to	 obtain	 the	

optimal	solution	between	the	two	compromising	objectives.		

Chapter	5	summarizes	 the	results	of	 this	 thesis	and	presents	 the	conclusions.	Based	on	 the	

scope	considered	for	this	present	research,	recommendations	are	provided	for	future	work	in	the	

area	of	design	optimization	under	uncertainty	for	CO2	capture	plants.	
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Chapter	2	

Literature	Review		

Solvent-based	post-combustion	CO2	capture	is	considered	the	most	mature	CO2	technology;	thus,	

control	and	optimization	of	this	process	has	been	extensively	studied	in	the	 literature.	Design	

optimization	of	 this	process	has	been	 recurrently	 studied,	 since	 it	 is	 crucial	 to	determine	 the	

optimal	 design	 specifications	 and	 operating	 conditions	 that	 would	 make	 this	 technology	

economically	 viable	 and	 attractive.	 In	 this	 chapter,	 a	 review	 on	 the	 recent	 studies	 in	 design	

optimization	 for	 post-combustion	 CO2	 capture	 system	 is	 discussed.	 Also,	 a	 review	 on	 multi-

objective	optimization	studies	on	the	CO2	capture	process	is	presented.	Furthermore,	the	multi-

objective	decision	maker	technique	considered	in	this	study	is	described	in	this	section.		

2.1 Post-combustion	CO2	capture	

 

Post-combustion	CO2	capture	modeling	has	been	extensively	studied	in	the	literature;	numerous	

approaches	have	been	considered	in	order	to	determine	the	most	effective	way	to	describe	the	

behaviour	of	this	process.	

In	 recent	 years,	 researchers	 have	 proposed	 dynamic	models	 for	MEA	 CO2	 capture	 processes,	

which	makes	dynamic	models	 the	 latest	emerging	approach	 in	 this	area.	 	Lawal	et	al.,	 (2009)	

presented	a	dynamic	modelling	study	of	the	post	combustion	CO2	capture	absorber	process.	Two	

different	approaches	commonly	studied	for	this	process	were	compared	to	gain	insight	on	the	

dynamic	 behavior	 of	 the	 absorber	 (i.e.	 the	 equilibrium-based	 approach	 and	 the	 rate-based	

approach).	Results	indicated	that	the	rate-based	model	gives	a	better	prediction	of	the	chemical	

absorption	process	than	the	equilibrium-based	model.		
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	Gáspár	 and	 Cormoş,	 (2011)	 and	Harun	 et	 al.,	 (2012)	 presented	 detailed	mechanistic	models	

describing	 the	complete	process	proposed	as	partial	differential	algebraic	equations	(PDAEs).	

Kvamsdal	et	al.,	(2009)	proposed	a	similar	detailed	description	for	the	packed	column	units,	i.e.	

the	absorber	and	stripper	units.	Details	on	how	model	parameters	and	physical	properties	were	

calculated	were	described	in	that	work.	The	overall	mass	transfer	coefficient	including	reactions	

of	CO2	is	expressed	only	as	a	function	of	the	enhancement	factor. Those	models	were	validated	

using	 steady-state	 pilot-plant	 data.	 To	 represent	 the	 actual	 operation	 of	 a	 power	 plant,	 the	

dynamic	 response	 of	 the	 MEA	 absorption	 processes	 were	 subjected	 to	 changes	 in	 the	 inlet	

flowrate	similar	to	the	actual	process	disturbances.	

N.	Mac	Dowell,	N.J.	Samsatli,	(2013)	proposed	a	different	approach	to	address	a	dynamic,	non-

equilibrium	model	of	the	absorption	of	CO2	in	an	aqueous	MEA	solution.	In	order	to	account	for	

all	of	 the	 inter-species	 interactions	 in	 the	 fluid,	 including	reactions,	 the	SAFT-VR	equation-of-

state	was	 considered.	 Steady	 state	validation	of	 the	proposed	model	 is	performed	using	pilot	

plant	data.	The	dynamic	simulation	was	evaluated	under	the	effect	of	changing	the	lean	solvent	

flowrate	and	thermodynamic	conditions	of	the	lean	solvent	stream.			

2.2 Design	optimization	of	Post-combustion	CO2	capture	units	

 

Optimization	 of	 chemical	 and	 related	 processes	 requires	 a	 mathematical	 model	 that	 clearly	

describes	and	predict	process	behavior.	In	recent	years,	numerous	studies	have	been	published	

addressing	 the	 optimization	 of	 the	 post-combustion	 CO2	 capture	 process.	 In	 particular,	 the	

continuous	interest	for	post-combustion	CO2	capture	process	using	amine-based	solvents	has	led	

to	a	number	of	research	studies	addressing	the	optimal	design	of	these	systems.		

Mores	et	al.,	(2012)	proposed	a	simultaneous	optimization	of	operating	conditions	and	the	size	



 

 8 

of	 the	 amine	 regeneration	 unit	 in	 the	 post-	 combustion	 CO2	 capture	 process.	 Three	 different	

concentrations	of	rich	amine	solution	were	considered	by	varying	the	CO2	 loading	 factor.	The	

optimal	solutions	presented	for	three	optimization	problems	clearly	show	that	the	functionalities	

of	the	most	important	process	variables	(operating	conditions	and	dimensions)	with	CO2	loading	

factor	are	smooth	(linear,	polynomial,	exponential	decay,	exponential	growth)	and	therefore	can	

be	accurately	approximated	using	simple	correlations,	 i.e.	without	 the	need	of	highly	detailed	

models.		

An	industrial-scale	CO2	capture	absorption	column	was	investigated	by	Chu	et	al.,	(2016);	in	that	

work,	 the	 impact	of	 the	height,	operating	pressure	and	 the	packing	materials	of	an	absorbing	

column	on	the	mass	transfer	performance	and	energy	consumption	was	presented.	The	results	

show	that	the	optimal	operating	pressure	is	the	atmospheric	pressure	and	the	optimal	height	of	

the	absorbing	columns	is	about	8	m.	For	the	minimum	energy	consumption,	that	study	reported	

that	the	surface	area	per	unit	volume	and	the	porosity	of	the	packing	materials	should	be	as	large	

as	possible.	Kang	et	al.,	(2016)	performed	a	bi-objective	optimization	study	for	maximization	of	

the	net	present	value	(NPV)	and	minimization	of	the	total	capital	requirement	(TCR)	subject	to	a	

maximum	CO2	emission	intensity	constraint.	Three	solvent-based	post-combustion	CO2	capture	

processes	 were	 evaluated,	 i.e.	 piperazine,	 mixed-salt	 and	 MEA.	 The	 results	 from	 that	 study	

indicate	 that,	 under	 equal	 capital	 cost	 scaling	 parameters,	 the	 piperazine	 and	 mixed-salt	

processes	outperform	 the	MEA	process,	 and	 that	 the	mixed-salt	process	 in	particular	 is	quite	

promising.	Mac	Dowell	and	Shah,	(2013)	presented	an	optimization	study	aimed	at	identifying	

the	cost-optimal	degree	of	CO2	capture	using	post-combustion	amine-scrubbing	integrated	with	

a	 660	MWe	 sub-critical	 coal	 fired	 power	 station.	 A	 non-equilibrium	model	 of	 an	 absorption	

process	was	used	 in	 that	 study	and	 implemented	 in	gPROMS,	which	explicitly	 considered	 the	

trade-off	associated	with	the	cost	of	CO2	emissions	to	the	atmosphere	against	the	opportunity	
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cost	associated	with	reducing	the	electricity	output	of	the	power	plant.	That	study	reported	that	

a	95%	rate	of	CO2	capture	seems	to	be	optimal.		

Mores	et	al.,	 (2018)	proposed	an	optimization	study	of	 the	decoupling	between	a	natural	gas	

combined	 cycle	 (NGCC)	 plant	 and	 a	 post-combustion	 CO2	 capture	 process	 by	minimizing	 the	

mitigation	cost	defined	as	the	ratio	between	the	cost	of	electric	power	generation	and	the	amount	

of	 CO2	 emitted	 per	 unit	 of	 total	 net	 electric	 power	 generated	 while	 satisfying	 design	

specifications,	i.e.	electric	power	generation	capacity	and	CO2	capture	level.	The	results	indicate	

that	a	fraction	of	the	steam	required	in	the	reboiler	of	the	amine	regeneration	process	of	the	CO2	

capture	plant	has	to	be	provided	by	steam	turbines	operating	at	an	intermediate	pressure	level,	

whereas	the	other	fraction	needs	to	be	provided	by	two	evaporators	of	the	heat	recovery	steam	

generators	HRSGs.		

In	another	study	conducted	by	Rezazadeh	et	al.,	(2016),	they	proposed	a	rate-based	model	of	the	

post	 combustion	 CO2	 capture	 process	 using	 an	 aqueous	 solution	 of	 30	 wt.%	 MEA	 as	 a	

representative	pilot-scale	capture	plant.	Those	authors	also	performed	a	parametric	sensitivity	

study.	 Several	 parameters	were	 identified	 and	 varied	 over	 a	 given	 range	 of	 lean	 solvent	 CO2	

loading	to	evaluate	their	effects	on	the	pilot	plant	energy	requirement.	The	optimum	lean	solvent	

CO2	 loading	was	determined	using	the	total	equivalent	work	concept.	Results	show	that,	 for	a	

given	packing	material	 type,	 the	majority	of	energy	savings	can	be	realized	by	optimizing	 the	

stripper	operating	pressure.	To	some	extent,	a	higher	solvent	temperature	at	the	stripper	inlet	

has	the	potential	to	reduce	the	regeneration	energy	requirement.	That	study	also	showed	that	a	

more	 efficient	 packing	material	 can	 greatly	 improve	 the	 pilot	 plant	 overall	 energy	 and	mass	

transfer	efficiency.	

Mac	Dowell	and	Shah,	(2015)	used	a	model	of	a	super-critical	coal-fired	power	plant	integrated	
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with	an	amine-based	CO2	capture	process	to	solve	a	multi-period	dynamic	optimization	problem	

aimed	at	decoupling	the	operation	of	the	power	plant	from	the	efficiency	penalty	imposed	by	the	

CO2	 capture	 plant.	 The	 objective	was	 to	maximize	 the	 decarbonized	 power	 plant’s	 short	 run	

marginal	cost	profitability	under	four	distinct	scenarios:	load	following,	solvent	storage,	exhaust	

gas	by-pass	and	 time-varying	 solvent	 regeneration.	The	 study	 showed	 that,	while	 the	 solvent	

storage	 option	 provides	 a	marginal	 improvement	 of	 4%	 in	 comparison	 to	 the	 load	 following	

scenario,	the	exhaust	gas	bypass	scenario	results	in	a	profit	reduction	of	17%;	nevertheless,	the	

time-varying	solvent	regeneration	option	increases	the	profitability	of	the	power	plant	by	16%	

in	comparison	to	load	following	scenario.	

Despite	these	efforts	on	identifying	the	optimal	operating	process	parameters	under	constraints	

such	as	CO2	capture	policies,	the	effect	of	uncertainties	on	the	optimal	design	for	post-combustion	

CO2	 capture	 plants	 has	 not	 been	 extensively	 studied	 in	 the	 literature.	Uncertainty	may	 cause	

process	designs,	deemed	to	be	optimal,	to	fail	to	achieve	specific	process	design	goals	or	even	

become	inoperable	in	the	presence	of	unexpected	and	sudden	changes	in	the	system.		

To	the	author’s	knowledge,	Bahakim	and	Ricardez-Sandoval,	(2015)	is	the	only	study	that	has	

addressed	the	optimal	design	of	large-scale	CO2	capture	plant	process	under	uncertainty.	In	that	

work,	 power	 series	 expansion	 (PSE)	 approximations	were	 embedded	within	 an	 optimization	

formulation	 to	 quantify	 process	 variability	 in	 a	 post-combustion	 CO2	 capture	 plant	 due	 to	

stochastic-based	uncertainty.	The	plant	model	was	implemented	in	Aspen	HYSYS	whereas	the	

optimization	framework	was	implemented	in	MATLAB.	The	results	of	that	study	showed	that,	to	

ensure	a	desired	target	CO2	removal	rate	in	the	presence	of	process	uncertainties,	larger	sizes	for	

both	the	absorber	and	stripper	towers	as	well	as	a	higher	reboiler	heat	duty	are	required.	Based	

on	the	above,	there	is	a	motivation	to	study	the	optimal	design	of	post-combustion	CO2	capture	

systems	in	the	presence	of	uncertainty.		
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2.3 Optimization	under	uncertainty	

 

The	rapid	development	of	computer	science	have	enabled	the	solution	of	complex	optimization	

problems	 in	 	 science	 and	 engineering	 (Sahinidis,	 2004).	 In	 addition,	 events	 that	 cannot	 be	

explicitly	 predicted	 can	 be	 taken	 into	 account	 while	 performing	 optimization	 for	 various	

engineering	 applications.	 Stochastic	 programming	 is	 a	 popular	 method	 that	 considers	

uncertainty	 in	 the	process	by	evaluating	multiple	 realizations	of	 the	uncertain	parameters	by	

performing	 extensive	 simulations	 of	 the	 actual	 plant’s	model.	 In	 this	 approach,	 the	 uncertain	

parameters	are	often	described	using	probability	distribution	 functions	 (Birge	and	Louveaux,	

1997).	Different	approaches	addressing	stochastic	programming	are	available	in	the	literature.	

In	the	multi-scenario	method,		the	possible	realizations	of	the	uncertain	model	parameters	are	

approximated	into	a	set	of	discrete	scenarios,	each	having	a	specific	probability	of	occurrence	or	

weight	 (Gomes	 et	 al.,	 2014).	 The	 constraints	 in	 the	 stochastic	 optimization	 problem	 are	

formulated	 such	 that	 they	 comply	with	 the	process	 specifications	 at	 a	 given	probability	 limit	

(Bahakim	and	Ricardez-Sandoval,	2014;	Rafiei	and	Ricardez-Sandoval,	2018;	Ricardez-Sandoval,	

2012).	Another	conventional	stochastic	optimization	method	widely	used	in	engineering	is	two-

stage	optimization.	 In	 this	approach,	 the	decision	variables	of	an	optimization	problem	under	

uncertainty	are	partitioned	into	two	sets.	The	first-	stage	decision	variables	are	those	that	have	

to	be	decided	before	the	actual	realization	of	the	uncertain	parameters.	Subsequently,	once	the	

uncertain	parameters	have	been	realized,	further	design	or	operational	policy	improvements	can	

be	 made	 by	 selecting,	 at	 a	 certain	 cost,	 the	 values	 of	 the	 second-stage	 variables.	 Due	 to	

uncertainty,	 the	 second-stage	 cost	 is	 a	 random	variable	 (Biegler	et	 al.,	 1997;	Ostrovsky	et	 al.,	

2013).	The	objective	is	to	choose	the	first-stage	variables	in	a	way	that	the	addition	of	the	first-

stage	costs	and	the	expected	value	of	the	random	second-stage	costs	are	minimized	(Sahinidis,	
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2004).		

In	general,	the	more	uncertain	realizations	included	in	the	optimization,	the	more	accurate	the	

results	 are	 expected	 to	 be	 at	 the	 expense	 of	 higher	 computational	 costs.	 However,	 accurate	

estimation	of	the	expected	objective	function	is	computationally	expensive	as	integration	over	a	

multi-dimensional	space	of	uncertainty	is	required	(Pintarič	and	Kravanja,	2004).	Nevertheless,	

efforts	have	been	made	to	alleviate	such	problems.	For	instance,	different	integration	schemes	

have	 been	 presented	 in	 literature,	 e.g.	 the	 Gaussian	 quadrature	 formula	 and	 Monte	 Carlo	

simulation	(Acevedo	and	Pistikopoulos,	1998).	Similarly,	Ostrovsky	et	al.,	(2011)	developed	an	

approximate	method	 for	 solving	 the	 two-stage	 optimization	 problems	where	 the	 constraints	

must	be	satisfied	with	some	probability,	i.e.	chance	constraints	optimization	(Arellano-Garcia	and	

Wozny,	2009;	Li	et	al.,	2008).	

While	 stochastic	 programming	 aims	 to	 identify	 solutions	 that	 will	 comply	 with	 the	 process	

constraints	at	a	certain	(user-defined)	probability	limit,	there	are	some	engineering	applications	

that	 are	 required	 to	 be	 immune	 against	model	 uncertainty,	 i.e.,	 they	 are	 required	 to	 remain	

feasible	 for	all	 the	possible	uncertain	realizations	at	minimum	cost.	Another	approach	 for	 the	

scenario-based	optimization	is	robust	optimization.	In	this	approach,	the	process	constraints	are	

expected	 to	 be	 fully	 satisfied	 for	 every	 realization	 (i.e.	 scenario)	 considered	 in	 the	 uncertain	

parameters.	 Hence,	 robust	 optimization	 does	 not	 require	 information	 about	 the	 probability	

distribution	of	the	uncertainty	data.	Nevertheless,	the	problem	size	will	increase	exponentially	

with	the	number	of	uncertain	parameters,	which	restricts	its	application	in	solving	problems	with	

multiple	uncertain	parameters.	Robust	optimization	promises	to	ensure	robustness	by	enforcing	

the	 feasibility	 of	 an	 optimization	 problem	 for	 the	 entire	 given	 uncertainty	 space	 (Li	 and	

Ierapetritou,	2008;	Lin	et	al.,	2004).	However,	larger	and	more	expensive	designs	and	operating	

specifications	are	 required	 in	order	 to	 comply	with	all	process	 constraints	 in	 the	presence	of	
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uncertainty.	While	robust	optimization	aims	to	ensure	feasibility	under	process	uncertainty,	it	

may	 sometimes	be	more	economical	 to	 comply	all	 the	 time	with	key	process	 constraints	and	

allow	violation	of	less	critical	constraints	under	uncertainty.	In	order	to	account	for	this	penalty	

in	process	constraints,	a	ranking-based	design	approach	that	ensures	 feasibility	of	 the	critical	

higher	ranked	constraints	at	all	times	but	allows	less	penalized	constraints	was	proposed	in	the	

literature	 (Bahakim	et	al.,	2014).	 In	 that	method,	 the	objective	 function	aims	 to	minimize	 the	

expected	 value	 and	 variance	 of	 the	 cost	 function	 whereas	 the	 constraints	 are	 redefined	 as	

minimum	probability	of	satisfaction	(or	shape)	in	the	presence	of	uncertainty	(Bahakim	et	al.,	

2014).	To	the	author’s	knowledge,	studies	involving	the	optimization	under	uncertainty	for	the	

optimal	design	of	post-combustion	plants	are	limited.	As	was	mentioned	in	Section	2.2,	Bahakim	

and	Ricardez-Sandoval,	(2015)	is	the	only	study	that	has	addressed	optimal	design	of	large-scale	

CO2	capture	plant	process	under	stochastic-based	uncertainty.	 	Thus,	there	is	a	lack	of	studies	

addressing	the	optimal	design	of	post-combustion	CO2	capture	systems	under	uncertainty.	In	the	

current	study,	a	robust	optimization	approach	is	considered	to	ensure	that	process	constraints	

remain	feasible	under	uncertainty.		

	

2.4 Multi-objective	optimization		

	

Optimization	of	chemical	processes	is	essential	for	reducing	material	and	energy	requirements	

as	well	as	the	harmful	environmental	impact.	It	leads	to	better	design	and	operation	of	chemical	

processes	 as	 well	 as	 to	 sustainable	 processes.	 However,	 many	 applications	 involving	

optimization	 can	 consider	multiple	objectives,	 some	of	which	are	 conflicting	with	each	other.	

Multi-objective	optimization	 is	 required	 to	 solve	 the	 resulting	problems	 in	 these	 applications	

(Rangaiah,	 2009).	 Post-combustion	 CO2	 process	 has	 been	 extensively	 studied	 using	 single	
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objective	optimization	formulations;	however,	efforts	in	addressing	multi-objective	optimization	

in	this	process	have	also	been	addressed	in	the	literature.		

2.4.1 Multi-objective	optimization:	CO2	capture	processes		

 

The	 relevance	 of	 multi-objective	 optimization	 in	 chemical	 engineering,	 particularly	 in	 CO2	

capture	systems,	is	continuously	growing.	This	has	been	partially	motivated	by	the	availability	of	

new	 and	 effective	 methods	 for	 solving	 multi-objective	 problems	 as	 well	 as	 increased	

computational	resources.		

Bernier	et	al.,	 (2010)	presented	a	multi-objective	optimization	by	 iterative	simulation	 in	an	

integration	of	a	CO2	capture	process	using	monoethanolamine	(MEA)	in	a	natural	gas-combined	

cycle	 power	 plant,	 simultaneously	 optimizing	 column	 dimensions,	 heat	 exchangers,	 and	

absorbent	flow	configuration.	Two	optimization	objectives	were	considered:	the	levelized	cost	of	

electricity	and	its	life	cycle	global-warming	potential.	After	optimization,	the	results	showed	that	

increasing	 the	diameter	of	 the	absorber	and	generating	near-atmospheric	pressure	steam	are	

cost-effective	options;	in	particular,	complex	stripper	configurations	such	as	split-flow	and	multi-

pressure	are	less	attractive	when	very	low	pressure	steam	is	recovered	by	heat	exchange	and	

expanded	in	the	condensing	turbine.	In	another	study,		Eslick	and	Miller,	(2011)	examined	the	

multi-objective	optimization	of	a	combined	system	of a coal	power	plant	coupled	with	models	of	

an	MEA-based	carbon	capture	system	and	a	CO2	compression	system.	The	design	optimization	

seeks	 to	 minimize	 freshwater	 consumption	 and	 levelized	 cost	 of	 electricity,	 so	 the	 trade-off	

between	decreased	water	consumption	and	cost	of	electricity	can	be	obtained	under	different	

design	and	operating	parameters.	The	optimization	of	the	combined	system	showed	a	wide	range	

of	potential	Pareto-optimal	designs	meeting	the	design	specifications	of	90%	capture.		
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	Harkin	 et	 al.,	 (2012)	 presented	 a	 model	 of	 an	 existing	 power	 station	 with	 a	 potassium	

carbonate-based	carbon	capture	plant	including	CO2	compression.	The	aim	of	that	study	was	to	

optimise	the	net	power	output	of	the	power	station	and	amount	of	CO2	captured	for	a	range	of	

solvent	 flowrates,	 lean	 loading	 and	 stripper	 pressures.	 After	 a	 Pareto	 analysis	 of	 the	 multi-

objective	 optimization	 of	 the	 process	 it	was	 identified	 that	 lean	 solvent	 loading	 and	 stripper	

pressure	will	have	a	large	impact	on	the	net	power	output	and	amount	of	CO2	captured.		

Lee	 et	 al.,	 (2013),	 presented	 a	 multi-objective	 analysis	 for	 three	 amine	 solvents:	

monoethanolamine	(MEA),	diethanolamine	(DEA),	and	2-amino-2-	methyl-1-propanol	(AMP)	in	

a	90%	CO2	capture	process	from	a	550	MW	coal	fired	power	plant.	The	aim	of	that	work	was	to	

determine	sets	of	conditions	that	were	best	suited	for	each	solvent	to	meet	design	objectives	that	

maximize	net	power	output	of	the	power	plant	and	minimize	the	capital	cost	investment	of	the	

CO2	capture	process.	An	analysis	of	the	Pareto	front	for	each	amine	trade-offs	between	the	two	

conflicting	objectives	showed	that	best	process	specifications	are	solvent-dependent.		

Li	Yuen	Fong	et	al.,	 (2016),	performed	a	multi-objective	optimization	 technique,	 i.e.,	pareto	

analysis,	in	combination	with	heat	integration	to	optimise	the	total	shaft	work	and	the	overall	

CO2	 recovery	 rate	 in	 a	 hybrid	 capture	 system	 that	 combined	 both	 the	 capture	 and	 the	

compression	units.	The	multi-objective	optimisation	provided	a	range	of	optimal	solutions	where	

the	total	shaft	work	increased	with	the	total	CO2	being	recovered	by	the	hybrid	process.	However,	

a	minimum	optimum	was	determined	 for	 the	 total	 specific	 shaft	work	 required	 at	 an	overall	

recovery	rate	of	88.9%,	which	required	1.40	GJ/(t	CO2	captured).	

Despite	these	efforts	of	implementing	multi-objective	optimal	solutions	to	this	process,	there	

is	still	a	limited	focus	on	the	decision	maker	techniques	on	choosing	the	optimal	solution	between	

the	trade-off	results	in	the	presence	of	uncertainty.		
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2.4.2 Multi-objective	Optimization:	Solution	strategies	

 

There	are	two	main	types	of	methods	to	dealing	with	multi-objective	optimization	problems,	a	

priori	and	a	posteriori	methods.	A	posteriori	methods	aim	to	provide	a	decision	maker	(DM)	with	

efficient	trade-off	solutions	called	Pareto	solutions.	The	decision	maker	can	then	afterwards	look	

at	the	set	of	Pareto	solutions	provided	and	select	one	that	complies	with	the	process	needs.	In	

contrast	to	a	posteriori	methods,	the	decision	maker’s	preferences	are	selected	in	advance	in	a	

priori	methods;	hence,	a	single	trade-off	solution	is	obtained	after	a	unique	search,	rather	than	a	

having	access	to	a	set	of	solutions.	Different	multi-objective	methods	are	then	classified	between	

these	categories;	 comprehensive	reviews	on	multi-objective	methods	can	be	 found	elsewhere	

(Collette	and	Siarry,	2003;	Marler	and	Arora,	2007;	Rangaiah,	2009).		Thus,	in	order	to	determine	

an	 optimal	 solution	 in	 the	 present	work,	 it	 is	 considered	 that	 a	 priori	methods	will	 be	more	

suitable	as	they	are	considered	practical	methods	for	this	matter.		

In	general,	a	multi-objective	problem	will	have	two	or	more	objectives	involving	many	decision	

variables	and	constraints.	Consider	a	multi-objective	problem	with	two	objectives:	f1(x)	and	f2(x),	

and	several	decision	variables	(d).	This	problem,	also	referred	 to	as	bi-objective	optimization	

problem,	can	be	formulated	as	follows	(Rangaiah,	2009):	

Maximize
𝐝

	 									𝑓7	(𝐱)	

Minimize
𝐝

	 									𝑓9	(𝐱)		

s.t.	 	 h	(x)	=	0		

g	(x)	≤	0	

x	∈	X	

dL		≤	d	≤	dU	 	 	 	 	 	 ( 1 ) 
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Bi-objective	optimization	problems	generate	an	infinite	set	of	noninferior	solutions	which	will	

define	a	trade-off	curve	(Figure	2).	Thus,	it	is	not	possible	to	obtain	a	solution	that	simultaneously	

improves	in	the	two	objectives	(Grossmann	et	al.,	1982).	

 

		

	

	

	

	

	

	

Figure 2.  1-norm minimum trade-off solution on trade-off surface 

 

Assume	problem	(1)	has	a	series	of	noninferior	solutions,	i.e.,	solutions	where	it	is	not	possible	

to	obtain	a	simultaneous	improvement	in	the	two	objectives;	in	order	to	determine	the	optimal	

solution,	 two	 solution	 strategies	 can	 be	 considered.	 In	 the	 first	method,	 a	 set	 of	 noninferior	

solutions	 are	 generated,	 next	 a	 decision	maker	will	 select	 an	 optimal	 solution.	 In	 the	 second	

strategy,	a	single	solution	compromising	the	two	conflicting	objectives	is	determined.	

The	first	method,	referred	to	as	the	e-constraint	method,	is	a	common	technique	for	generating	

noninferior	solutions	in	which	one	of	the	objectives	is	optimized	whereas	the	other	objective	is	

constrained	to	a	threshold	criterion	e,	i.e.	

	

 p = 1  Trade-off curve 

1NM Point 

 Utopia Point 

f1 

f 2  

UB (f2) 

LB (f2) 

LB (f1) UB (f1) 

 d1 
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Minimize
𝐝

	 									𝑓9	(𝐱)	

s.t.	 	 	f1	(x)	³	e	

h	(x)	=	0	

x	∈	X	

	 	 	 	 	 dL		≤	d	≤	dU	 	 	 	 	 ( 2 ) 

By	selecting	different	values	of	e	and	solving	problem	(2),	a	set	of	noninferior	configurations	

can	be	generated.	This	procedure	will	aid	the	decision	maker	in	selecting	an	optimal	trade-off	

solution.		

The	second	method	is	an	alternative	strategy	for	solving	bi-objective	optimization	problems	

by	searching	for	an	ideal	compromised	solution,	in	which	both	objectives	sacrifice	the	least	that	

is	possible	with	respect	to	their	maximum	attainable	benefit.	This	method	is	referred	to	as	p	norm	

method.	(Grossmann	et	al.,	1982).		

In	 this	 approach,	 a	 reference	 point	 named	 utopia	 point	will	 represent	 the	 output	 space	 of	

coordinates	(UB	(f	1),	LB	(f2))	as	illustrated	in	Figure	2.	Assume	that	UB	(f	1)	and	LB	(f2)	are	the	

values	of	f	1	and	f2	when	optimized	respectively	over	the	constraint	set	X.	This	utopia	point	since	

it	lies	outside	the	feasible	output	space	X.	The	ideal	solution	will	be	determined	by	the	noninferior	

solution	which	is	closest	to	the	utopia	point.	This	requires	that	the	distance	between	the	utopia	

point	and	the	noninferior	solution	be	at	a	minimum.	This	distance	dp,	 is	determined	by	the	p-

norm	from	the	utopia	point.	Since	1	<	p	<	∞,	it	is	often	considered	the	two	extreme	norms	when	

minimizing	 the	 distance	 between	 the	 noninferior	 solution	 and	 the	 utopia	 point	 (i.e.,	 p=1	 and	

p=∞).	Therefore,		

p=1:		 	 min	
𝐝

	(1	 −	𝑓78(𝐱)) 	+	𝑓98 (𝐱)	 	

s.t.	 	 h	(x)	=	0		

g	(x)	≤	0	
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x	∈	X	

dL		≤	d	≤	dU	 	 	 	 	 ( 3 )	

	p=∞:	 	 min
𝐝
		max 	gh1	 −	𝑓78 (𝐱)i , 𝑓98 (𝐱)j							

s.t.	 	 h	(x)	=	0		

g	(x)	≤	0	

x	∈	X	

xL		≤	x	≤	xU	 	 	 	 	 ( 4 ) 

	

where	𝑓78(𝐱)	and	𝑓98 (𝐱)	are	normalizations	of	f1	(x)	and	f2	(x)	:	

	

𝒇𝟏m(𝐱) = 𝒇𝟏(𝐱)o𝑳𝑩(𝒇𝟏)
𝑼𝑩(𝒇𝟏)	o𝑳𝑩(𝒇𝟏)

																							𝒇𝟐m(𝐱) = 𝒇𝟐(𝐱)o𝑳𝑩(𝒇𝟐)
𝑼𝑩(𝒇𝟐)	o𝑳𝑩(𝒇𝟐)

		 	 	 	 ( 5 )	

 

While	 norm	 p=1	 will	 always	 correspond	 to	 a	 noninferior	 point	 even	 if	 the	 output	 space	 is	

nonconvex,	the	solution	may	not	necessarily	be	a	noninferior	point	for	the	nonconvex	case	when	

p=∞.	Therefore,	in	this	work	we	will	consider	norm	p=1	method	(1NM)	since	it	is	an	efficient	and	

practical	approach	to	obtain	a	compromise	solution.	

2.5 Summary		

	

The	optimization	of	solvent	based	post-combustion	CO2	capture	has	received	attention	in	the	last	

decades	since	it	is	critical	to	seek	for	the	optimal	design	specifications	and	operating	conditions	

under	 which	 this	 process	 will	 be	 attractive	 to	 the	 energy	 sector.	 The	 most	 commonly	 used	

approach	for	process	design	optimization	is	by	optimizing	a	steady	state	model	under	one	single	

objective	and	under	the	assumption	of	nominal	conditions.	However,	this	approach	might	result	

in	sub-optimal	conditions	that	can	fail	 in	the	presence	of	process	disturbances	or	uncertainty.	
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Efforts	 to	 consider	 uncertainty	 in	 design	 optimization	 studies	 have	 formally	 considered	 the	

formulation	and	optimization	of	design	problems	 in	order	 to	obtain	 robust	designs	where	all	

process	constraints	and	uncertain	parameters	will	remain	feasible.	However,	in	order	to	ensure	

a	robust	though	optimal	process	design,	high	computational	costs	are	expected	and	the	efforts	to	

reduce	these	costs	is	still	an	active	area	of	research.		

Current	 studies	 in	 post-combustion	 CO2	 capture	 focus	 in	 the	 optimization	 of	 this	 process;	

however,	 there	 is	 a	 lack	 of	 research	 on	 the	 impact	 that	 process	 disturbances	 and	 process	

uncertainty	 may	 have	 on	 the	 optimal	 process	 design	 of	 post-combustion	 CO2	 capture	 units.	

Likewise,	as	in	any	other	process,	the	presence	of	different	conflicting	optimal	targets	is	also	an	

important	 factor	 to	 consider.	 Hence,	 multi-objective	 optimization	 formulations	 have	 been	

studied	previously	for	the	post-combustion	CO2	capture	process.	Despite	these	efforts,	no	specific	

optimal	solutions	are	given	to	obtain	a	single	trade-off	solution	under	the	conflicting	objectives.		

Moreover,	 there	 is	 a	 lack	 of	 studies	 addressing	 uncertainty	 for	 a	 multi-objective	 design	

optimization	of	a	post-combustion	CO2	capture	process.	

There	are	several	methods	that	can	be	used	by	the	decision	maker	to	obtain	an	optimal	solution	

under	a	set	of	Pareto	optimal	points	for	multi-objective	optimization.	However,	the	present	study	

will	consider	the	two	methods	described	in	the	previous	section	(e-constraint	and	1NM	method).	

These	methods	provide	adequate	optimal	solutions	to	the	problem	of	interest.	This	thesis	will	

take	 into	 account	 process	 disturbances,	 process	 model	 uncertainty	 and	 multi-objective	

optimization	for	a	multi-period	post-combustion	CO2	absorber	mechanistic	model.		
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Chapter	3	

Robust	Design	Optimization	of	a	Post-combustion	CO2	Capture	

Absorber	Column	under	Process	Uncertainty	

A	conventional	 approach	 to	address	process	uncertainty	 consist	of	 accounting	 for	overdesign	

factors;	 however,	 this	 method	 has	 shown	 to	 be	 sub-optimal	 (Koller	 et	 al.,	 2018;	 Rafiei	 and	

Ricardez-Sandoval,	2018).	Recent	studies	have	accounted	for	design,	control	and	optimization	

under	 uncertainty	 through	 different	 strategies	 in	 other	 processes	 different	 to	 CO2	 capture	

process	(Cignitti	et	al.,	2018;	GarciÌa-Herreros	et	al.,	2011;	Giannakoudis	et	al.,	2010;	Gomes	et	

al.,	2014;	Li	and	Floudas,	2016;	Mansouri	et	al.,	2016;	Patil	et	al.,	2015;	Ricardez-Sandoval	et	al.,	

2009;	Yuan	et	al.,	2016).		

This	section	presents	a	robust	design	optimization	framework	for	a	pilot-scale	absorber	column	

in	 post-combustion	 CO2	 capture.	 A	 mechanistic	 model	 describing	 the	 behaviour	 of	 a	 post-

combustion	 CO2	 absorber	 column	 is	 explicitly	 considered	 in	 the	 present	 robust	 design	

optimization	 formulation.	 Moreover,	 this	 work	 accounts	 for	 uncertainty	 that	 will	 impact	 the	

absorber	column	due	to	seasonal	or	unexpected	changes	in	the	operating	policies	of	a	fossil-fired	

power	 plant,	 e.g.	 changes	 in	 the	 flue	 gas	 stream,	 as	 well	 as	 uncertainty	 associated	 with	 the	

physical	 thermodynamic	properties	 of	 the	 species	 involved	 in	 the	 absorption	process.	 First	 a	

detailed	description	of	the	pilot-scale	mechanistic	CO2	capture	absorber	model	employed	in	this	

study	is	presented.	This	is	followed	by	the	robust	design	optimization	formulation	proposed	in	

this	work.	Next,	the	model	validation	and	the	robust	designs	obtained	under	different	scenarios	

are	presented.	A	summary	of	the	major	outcomes	obtained	from	this	study	is	provided	at	the	end.	
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3.1 Pilot-scale	CO2	capture	absorber	model		

The	process	studied	consist	of	a	packed	bed	absorber	column	operating	at	atmospheric	pressure,	

where	the	 flue	gas	stream	coming	from	a	 fossil	power	plant	passes	through	 it.	The	 flue	gas	 is	

contacted	directly	with	the	lean	amine	solution	(30%	w/w	MEA)	in	the	unit.	A	gas	with	reduced	

CO2	content	leaves	the	top	of	the	absorber	while	the	rich	amine	solution	loaded	with	CO2	leaves	

the	unit	from	the	bottom	of	the	tower	(Figure 3).	

	

	

	

	

	

	

	

	

Figure 3 Process flow diagram of an MEA absorption process	

The	mathematical	 model	 describing	 this	 process	 was	 adapted	 from	 the	model	 presented	 by	

Harun	et	al.,	(2012).	The	current	model	consists	of	a	set	of	differential	equations	describing	the	

spatial	changes	in	the	mass	balance	in	the	liquid	and	gas	phase	of	each	component	involved	in	

the	process	(i.e.,	MEA,	CO2,	H2O,	N2),	as	well	as	the	energy	balance	of	liquid	and	gas	phases.	The	

assumptions	considered	for	this	model	are	as	follows:		

1. The	fluid	within	the	column	is	turbulent	flow	and	is	approximated	as	a	plug	flow.		

2. One-dimensional	(axial	domain)	differential	mass	and	energy	balances	for	both	gas	and	

liquid	phases.		

3. Linear	pressure	drop	(fixed	outlet	pressure).	

 

CO2 rich amine solution 

Lean amine solution: 

MEA 

H2O 

CO2    

Flue gas: 

CO2 

H2O 

N2 

Vented gas 

Flue gas temperature (Tg0) = 319 K 

Flue gas flowrate (Fg0) = 4.013 mol/s 
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4. Ideal	gas	phase	due	to	low	pressure.		

5. No	accumulation	in	gas	and	liquid	films.		

6. Fluxes	of	CO2,	H2O	and	MEA	between	the	gas	and	liquid	phase	are	allowed	in	both	ways.		

7. Thermal	equilibrium	is	assumed	between	the	liquid	and	the	gas	phase.		

3.1.1 Mass	and	heat	balance	

The	mass	component	balances	for	the	gas	and	liquid	phases	are	as	follows:	

	

	 	 	 		 	 	 	 (	6	)	

−𝑢$
t.u

v

tw
+ 𝑎"/$𝑁( 	= 0	 	 	 	 	 	 	 	 	 (	7	)	

	

where	𝐶(
"	(mol/m3)	and	𝐶($ 	(mol/m3)	are	the	molar	concentrations	of	component	i	in	the	gas	and	

liquid	phase,	respectively;	𝑢"	(m/s)	and	𝑢$ 	(m/s)	are	the	gas	and	liquid	velocities,	respectively;	

𝑎"/$ 	 (m2/m3)	 is	 the	 specific	 gas-liquid	 interfacial	 area.	 To	 account	 for	 the	 interfacial	 mass	

transport	in	the	column,	the	molar	flux,	Ni	(mol/m2/s),	defined	as	the	net	loss	of	component	i	in	

the	gas	phase	and	the	gain	of	the	same	component	in	the	liquid	phase,	is	included	in	the	model.	

The	 components	 i	 considered	 in	 the	 present	 absorber	 column	model	 are	monoethanolamine	

(MEA),	nitrogen	(N2),	carbon	dioxide	(CO2)	and	water	(H2O);	and	z	is	the	space	domain.	Note	that	

nitrogen	is	not	involved	in	the	reaction	and	was	not	considered	to	be	transferred	between	the	

two	phases.		

The	 total	mass	 balance	 considers	 that	 the	 velocity	 of	 the	 gas	 phase	 changes	 across	 the	 axial	

domain	of	the	column.	This	balance	is	as	follows:		

	

−"#$
%&$
%' − &$

%"#$
%' − ($/*+# = 0 
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tz{
tw

= −z{
|
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tw
+ z{

}{

t}{
	tw

− J{/v
.~�~
{ ∑𝑁( 	 	 	 	 	 	 	 (	8	)	

	

where	𝑃	(bar)	is	the	pressure	in	the	column,	𝑇"	(K)	is	the	temperature	of	the	gas	phase	and	𝐶&'&
" 	

(mol/m3)	is	the	total	molar	concentration	defined	as	follows:	

	

𝐶&'&
" = 𝐶./0

" + 𝐶)*+
" + 𝐶X0/

" + 𝐶�0
" 		 	 	 	 	 	 	 (	9	)	

	

The	energy	balance	equations	for	the	gas	and	liquid	phases	are	as	follows:	

	

−𝑢"
�}{
�w
+ J{/v

∑(.u
{.4u)

ℎ"/$�𝑇$ − 𝑇"� = 0	 	 	 	 	 	 	 (	10	)	

−𝑢$
�}v
�w
− J{/v

∑(.u
v.4u)

�ℎ"/$�𝑇$ − 𝑇"� − ∆𝐻�𝑁./0 − ∆𝐻HJ4𝑁X0/ − ℎ'z&(𝑇$ − 𝑇JKL)� 	= 0	 (	11	)	

	

where	 Cpi	 (J/mol/K)	 is	 the	 heat	 capacity	 and	 hg/l	 (W/m2/K)	 is	 the	 interfacial	 heat	 transfer	

coefficient.	The	heat	transfer	film	coefficient	(hg/l)	is	estimated	using	the	Chilton-Colburn	analogy	

between	heat	and	mass	transfer	(C.	J.	Geankoplis,	1993).	DHr	(J/mol)	is	the	heat	of	reaction	per	

mol	of	CO2,	DHvap	(J/mol)	is	the	heat	of	vaporization	of	H2O	and	hout	(W/m2/K)	is	the	heat	transfer	

coefficient	for	heat	transferred	from	the	absorber	to	the	surroundings.	The	heat	of	reaction	(DHr)	

and	the	heat	from	the	absorber	to	the	surroundings	(hout)	values	were	obtained	from	Kvamsdal	

and	Rochelle,	(2008);	𝑇JKL	(K)	is	the	ambient	temperature.	

3.1.2 Rate	of	mass	transfer	

The	species’	mass	transfer	coefficients	at	the	gas-liquid	interface	is	estimated	using	the	following	

film	model	equations:		
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𝑁( = 𝐾",((𝑝( − 𝑝(∗)	 	 	 i={MEA,	N2,	CO2,	H2O}	 	 	 	 (	12	)	

7
�{,u

= 7
�{,u

+ X�u
�v,u*���

	 	 	 	 	 	 	 	 	 (	13	)	

	

where	𝐾",( 	is	the	overall	mass	transfer	coefficient	in	the	gas	phase	whereas	𝑘",( 	and	𝑘$,( 	are	the	

binary	mass	transfer	coefficients	in	the	gas	and	the	liquid	phases,	respectively;	𝑝( 	represents	the	

partial	pressure	of	 	each	component	and	is	a	 function	of	the	total	pressure	 in	the	column	(P);	

similarly,	𝑝(∗	represents	the	equilibrium	pressure	in	the	gas-liquid	phase;	Eabs	is	the	enhancement	

factor	 and	𝐻𝑒( 	 is	 the	 Henry’s	 constant	 of	 each	 species.	 The	 use	 of	 an	 overall	 mass	 transfer	

coefficient	 for	 each	 species	 (𝑁()	 eliminates	 the	 need	 to	 calculate	 the	 concentrations	 at	 the	

interface.	The	direction	from	the	gas	to	the	liquid	phase	was	taken	as	the	positive	direction	for	

mass	transfer.	The	present	model	assumes	that	the	resistance	to	mass	transfer	for	both	H2O	and	

MEA	in	the	liquid	phases	is	negligible,	i.e.	for	components	that	have	higher	solubility	such	as	H2O	

and	MEA,	the	major	resistance	for	mass	transfer	occurs	in	the	gas	phase.		

The	 chemical	 reactions	 that	 occurs	 in	 the	MEA	 absorption	 process	 increases	 the	 rate	 of	 CO2	

absorption	in	the	liquid	phase.	The	present	model	considers	chemical	equilibrium	in	the	bulk	of	

the	 liquid	phase	 to	provide	 liquid	phase	compositions.	The	 following	reactions	describing	 the	

species	distribution	are	established	(Austgen	et	al.,	1989):		

Carbamate	reversion	to	bicarbonate:		

MEACOO+ +	H2O	
									
�� 	MEA	+	HCO3- 	

MEA	deprotonation:		

MEAH++	H2O	
									
�� 	MEA	+		H3O+ 	

Bicarbonate	formulation:		
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CO2	+	2H2O	
									
�� 	HCO3- +	H3O+	

Carbonate	formulation:		

HCO3- +	H2O	
									
�� 	CO3-2	+	H3O+	

Dissociation	of	water:		

2H2O	
									
�� 	OH-	+	H3O+	 	 	 	 (	14	)	

The	overall	effect	of	these	reactions	is	considered	in	the	liquid	phase	mass	transfer	through	an	

enhancement	 factor	 (Eabs).	 This	 factor	 represents	 an	 approximated	 analytical	 solution	 of	 the	

differential	equations	governing	the	simultaneous	diffusion	mass	transfer	and	chemical	reactions	

in	the	liquid	film.	The	enhancement	factor	is	valid	only	in	the	pseudo	first-order	reaction	regime	

with	respect	to	the	concentration	of	CO2	(Kvamsdal	et	al.,	2009).	This	condition	is	typically	valid	

in	a	packed	column	absorbing	CO2	in	an	alkanolamine	solution,	due	to	the	effective	liquid	mixing	

provided	by	the	packing	material.	The	pseudo	first-order	regime	is	facilitated	by	the	combination	

of	 low	CO2	partial	pressure,	high	reactant	concentration	and	short	contact	 time	between	each	

liquid	mixing	point.	The	volume	of	amine	is	considered	to	be	constant	throughout	the	liquid	film	

and	equal	to	the	liquid	volume	in	the	bulk	phase.	Therefore,	the	enhancement	factor	(𝐸JL�)	for	

the	absorber	is	estimated	as	follows:	

	

𝐸JL� =
��0.���

∗ ���0

�v,��0
		 	 	 	 	 	 	 	 	 (	15	)	

	

where	𝑘9	is	the	second-order	overall	reaction	rate,	𝐶)*+∗ 	is	the	liquid	molar	concentration	of	free	

MEA,	calculated	from	the	equilibrium	model	proposed	by	Hoff	et	al.,	(2004),	𝐷./0 	is	the	diffusivity	

of	CO2	in	the	aqueous	MEA	solution	(te	Riele	et	al.,	1995),	and	𝑘$,./0 	is	the	liquid	mass	transfer	

coefficient	of	CO2	(Onda	et	al.,	1968).		
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The	 equilibrium	 model	 considered	 in	 this	 study	 is	 based	 on	 the	 coupling	 between	 phase	

equilibrium	 and	 chemical	 equilibrium.	 Phase	 equilibrium,	 which	 exists	 at	 the	 gas-liquid	

interphase,	dominates	the	distribution	of	the	molecular	species	between	the	vapour	and	liquid	

phases	 whereas	 chemical	 equilibrium	 describes	 the	 distribution	 of	 the	 molecular	 and	 ionic	

species	 in	 the	 liquid	 phase.	 For	 the	H2O	 and	MEA,	 the	 equilibrium	pressure	 in	 the	 gas-liquid	

interface	is	calculated	as	follows:	

	

𝑝(∗ = 𝑥(𝛾(𝑃(H		 	 	 	 	 	 	 	 	 	 (	16	)	

	

where	𝑥( 	is	the	fraction	in	the	liquid	phase	of	species	i	and	𝑃(H	is	the	species’	vapour	pressure.	In	

the	case	of	CO2,	the	temperature	of	the	system	exceeds	its	supercritical	temperature,	i.e.,	CO2	does	

not	exist	as	a	liquid	at	that	temperature.	Therefore,	Eq.	(16)	cannot	be	applied	to	model	the	partial	

pressure	of	CO2.	Instead,	the	equilibrium	partial	pressure	of	the	CO2,	which	is	related	to	the	free	

CO2	concentration	on	the	solution	through	Henry’s	law,	is	calculated	as	follows:	

	

𝑝./0
∗ = 𝐻𝑒./0𝐶./0

∗ 𝛾./0 			 	 	 	 	 	 	 	 (	17	)	

	

where	𝐻𝑒./0 	is	the	CO2	Henry	constant	and	𝛾./0 	is	the	activity	coefficient	of	CO2.		

3.1.3 Physical	properties	

The	Henry	 constant	 (𝐻𝑒./0)	of	CO2	 in	MEA	solution	was	 calculated	using	 the	N2O	correlation	

(Haimour	and	Sandall,	1984).	The	species’	gas	and	the	liquid	mass	transfer	coefficients	(kg,i	and	

kl,i)	and	gas-liquid	interfacial	area	(ag/l)	were	estimated	using	the	correlation	reported	in	Onda	et	
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al.,	(1968)	and	it	is	not	shown	here	for	brevity.	In	this	study,	the	empirical	correlation	proposed	

by	Hikita	et	al.,	(1977)	was	used	to	estimate	the	second	order	overall	reaction	rate	(k2).			

3.2 Optimal	process	design	under	uncertainty	

The	robust	optimization	framework	considered	in	this	work	aims	to	search	for	the	optimal	design	

of	the	CO2	capture	absorber	column	in	the	presence	of	uncertainty.	This	formulation	is	as	follows:	

	

min
𝐝,𝐮

	 =	�𝑤O	�𝛷..�𝐝, k�, 𝐱�, 𝐱�̇, 𝐮, d��	�
�

O�7

	

s.t.	

f	(d,	kj,	𝐱�̇ ,	xj,	u,	dj)	=	0	 	 ∀j = 1, 2, … J	

h	(d,	kj,	𝐱�̇,	xj,	u,	dj)	£	0		 	 ∀j = 1, 2, … J	 	 	 	

dl	£	d	£	du	

ul	£	u	£	uu			 	 	 	 	 	 (	18	)	

	

where	the	objective	function	presented	in	(18)	is	described	in	terms	of	the	capital	and	operating	

costs	for	the	absorption	column;	f	represents	the	absorption	column	equality	constraints,	i.e.	the	

absorption	 column	 model	 presented	 in	 the	 previous	 section,	 whereas	 h	 represents	 the	

operational	 or	 environmental	 constrains	 considered	 in	 the	 formulation.	 Similarly,	 d	 are	 the	

process	design	variables,	k	are	the	model	parameters,	x	represents	the	state	variables	whereas	𝐱̇	

represent	the	changes	of	the	state	variables	with	respect	to	the	axial	domain	(z).	The	operating	

variables	that	can	be	adjusted	during	operation	are	denoted	by	u	whereas	d	represents	the	set	of	

uncertain	 parameters.	𝑤O	represents	 a	 weight	 assigned	 for	 each	 realization	 in	 the	 uncertain	
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parameters,	i.e.,	∑ 𝑤O = 1�
O�7 .	These	weights	can	be	estimated	using	a	probabilistic	distribution	

function	for	the	uncertain	parameters.		

As	 shown	 in	problem	 (18),	 a	multi-scenario	 approach	has	been	 implemented	 in	 this	work	 to	

address	 the	 optimal	 design	 and	 operation	 of	 the	 absorber	 column	 under	 uncertainty.	 This	

approach	was	selected	because	it	is	the	most-widely	used	technique	employed	in	the	academia	

and	the	industry	to	account	for	uncertainty	(Gomes	et	al.,	2014;	Karuppiah	and	Grossmann,	2006;	

Laird	and	Biegler,	2008;	Wiecek	et	al.,	2009;	Zhu	et	al.,	2010).	The	term	J	represents	the	set	of	

discrete	realizations	or	scenarios	considered	for	the	uncertain	model	parameters;	accordingly,	

the	cost	function	(Φ;;),	the	process	model	equations	and	constraints	(i.e.	f	and	g)	need	to	account	

for	each	realization	(j)	considered	for	the	uncertain	parameter	set	d.	 In	the	present	work,	 the	

height	 and	 diameter	 of	 the	 absorber	 column	 (i.e.	 Habs	 and	 Dabs)	 are	 the	main	 process	 design	

parameters	d	whereas	the	inlet	flowrate	(FlMEA)	is	most	important	operating	condition	that	can	

be	adjusted	during	operation.	Therefore,	these	are	the	main	variables	used	for	optimization	in	

the	present	formulation.	The	economic	cost	function	considered	for	the	absorber	model	is	has	

been	formulated	based	on	Guthrie’s	(Guthrie,	1969)	correlation	and	is	as	follows:	

	 	 	

	 	 	 	 (	19	)	

	

where	 CMEA	denotes	 the	MEA	 degradation	 cost	 due	 to	 the	MEA	 loses	 in	 the	 post	 combustion	

process	(5.38E-5	$/mol_MEA)	(Huertas	et	al.,	2015;	Singh	et	al.,	2003).	A	and	B	represent	the	

Guthrie’s	 correlation	 parameters,	 i.e.	 290.82	 and	 280,	 respectively.	 The	 present	 economic	

function	is	annualized	using	a	20%	rate	of	return	(ROR	=	0.2).	CEPCI	represents	the	Chemical	

Engineering	Plant	Cost	Index	(723.5	for	May	of	2018)	(Engineering	and	Cost,	2018).		

Φ"" = A ∗ ROR	 )CEPCIB / D123						4.677H123						6.9: + Fl>?@C>?@ 
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A	CO2	capture	process	is	known	to	be	efficient	based	on	its	ability	to	capture	CO2	for	the	flue	gas	

stream.	The	percentage	of	CO2	capture	(j)	can	be	defined	as	a	function	of	the	molar	flowrate	of	

CO2	in	the	flue	gas	(Fg;§0
? )	and	the	molar	flowrate	of	CO2	in	the	vent	gas	(Fg;§0

¨ )		:	

	

φ	=	1	-	
©ª«¬0

­

©ª«¬0
® 				 	 	 	 	 	 	 	 	 	 (	20	)	

	

In	this	work,	this	metric	will	be	added	as	a	constraint	to	ensure	that	the	proposed	absorber	

column	design	will	meet	a	specific	CO2	capture	target	(CO2*)	in	the	presence	of	uncertainty,	i.e.	

	

jj	(d,	kj,	xj,	u,	dj)	³		CO2*	 	 ∀j = 1, 2, … J	 	 	 	 	 (	21	)	

	

As	 shown	 in	 (21),	 this	 inequality	needs	 to	 be	 assessed	 for	 each	 realization	 considered	 in	 the	

uncertain	parameters.	

3.3 Results	and	discussion		

 

The	robust	optimization	formulation	presented	in	the	previous	section	was	implemented	in	the	

Pyomo	environment,	 an	optimization	 library	 in	PYTHON.	The	 resulting	 set	of	differential	 and	

algebraic	equations	describing	 the	absorber	 column	model	presented	 in	 section	3.1	was	 fully	

discretized	 using	 the	 backward	 finite-difference	 method.	 The	 interior-point	 optimization	

algorithm	was	used	 to	search	 for	 local	optimal	solutions	of	 the	proposed	robust	optimization	

formulation	presented	in	problem	(18).	The	studies	presented	in	this	section	were	performed	on	

an	Intel	Core	i7-3770	CPU	@	3.4	GHz.	
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3.3.1 Model	validation	

In	the	present	study,	the	data	reported	by	Harun	et	al.,	(2011),	which	describes	the	behaviour	of	

a	pilot-scale	CO2	capture	unit,	was	used	to	validate	the	implementation	of	the	present	absorption	

column	model.	A	summary	of	the	design	parameters	and	base-case	operating	conditions	used	to	

perform	the	model	validation	are	presented	 in	Tables	1,	2	and	3.	Note	 that	 the	only	constant	

physical	properties	used	in	the	present	model	are	those	presented	in	Table	3.	As	discussed	in	

section	3.1,	 the	rest	of	 the	 thermodynamic	properties	and	kinetic	parameters	were	estimated	

from	 correlations,	 which	 have	 been	 explicitly	 considered	 in	 the	 present	 column	 model,	 and	

therefore	in	the	robust	optimization	formulation.	To	the	authors’	knowledge,	this	is	the	first	study	

that	performs	robust	optimization	while	using	a	detailed	mechanistic	process	model	 for	post-

combustion	CO2	capture.	As	a	result,	the	discretized	absorption	column	model	consisted	on	6,963	

nonlinear	algebraic	equations	and	6,963	optimization	(unknown)	variables	that	were	solved	to	

local	optimality	in	1.6	s.	

	

Table	1	Absorber	column	design	and	packing	material	

Packed	column	characteristic	 	

Column	internal	diameter	(m)	 0.43	

Packing	height	(m)	 6.1	

Packing	type	 IMTP	#40	

Nominal	packing	size	(m)	 0.038	

Specific	area	(m2/m3)	 143.9	
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Table	2	Base	case	operating	conditions,	absorber	column	

Flue	gas	temperature	(Tg0)	 319.71	K	

Flue	gas	molar	flowrate	(Fg0)	 4.013	mol/s	

Mole	fraction		 	

CO2	 0.175	

H2O	 0.025	

MEA	 0	

N2	 0.8	

	

Table	3	Constant	physical	properties	

Properties	 Source	

𝑇JKL	=	297.6	K	 Harun	et	al.,	(2011)	

hout	=	430	W/m2K	 Kvamsdal	and	Rochelle	(2008)	

DHvap	=	48	kJ/mol	 Reid	et	al.,	(1977)	

DHrxn	=	82	kJ/mol	 Kvamsdal	and	Rochelle	(2008)	

𝛾./0 	=	0.381	 Aspen	Property	Package	

𝛾X0/	=	0.974	 Smith	et	al.,	(2005)	

𝛾)*+	=	0.381	 Smith	et	al.,	(2005)	

	

Table	4	 shows	a	 comparison	between	 the	 results	obtained	with	 the	 current	model	 and	 those	

reported	by	Harun	et	al.,	(2011).	The	stream	properties	of	the	vent	gas	and	the	rich	amine	streams	

are	used	for	validation	(see	Figure	3).	As	shown	in	Table	4,	 the	vented	gas	contains	a	slightly	

larger	amount	of	CO2	than	what	was	reported	by	Harun	et	al.,	(2011).	However,	the	CO2	vented	

meets	the	minimum	requirements	for	the	process	to	be	acceptable.	The	composition	of	the	other	

components	 in	 both	 streams	 are	 within	 acceptable	 limits.	 Also,	 the	 flowrates	 and	 outlet	

temperatures	of	the	outlet	streams	are	within	99%	in	agreement.	Based	on	the	above,	the	present	
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absorption	column	model	is	in	reasonable	agreement	with	the	data	reported	in	the	literature	and	

captures	the	behaviour	of	the	post-combustion	CO2	capture	absorption	process.	

Table	4	Model	validation	

	 Vent	gas	stream	 Rich	amine	stream	

	 Current	

model	

Harun	 et	 al.,	

(2011)	

Current	

model	

Harun	 et	 al.,	

(2011)	

Temperature	(K)	 314.78														 314.15	 328.04	 327.76	

Total	 molar	 flow	 rate	

(mol/s)		

3.53	 3.47	 31.68	 30.51	

Mole	fraction	 	 	 	 	

CO2	 0.0108	 0.0085	 0.0502	 0.0503	

H2O	 0.0761	 0.0651	 0.8452	 0.8475	

MEA	 0	 0	 0.1044	 0.1021	

N2	 0.9066	 0.9264	 0	 0	

	

3.3.2 Scenario	A:	Optimal	process	design		

The	aim	of	 this	scenario	 is	 to	compare	 the	design	of	 the	pilot-scale	plant	used	 to	validate	 the	

present	model	(Harun	et	al.,	2011)	and	that	obtained	from	optimization.	In	the	present	analysis,	

all	the	thermodynamic,	kinetic	and	operating	parameters	of	the	absorber	column	were	assumed	

to	be	perfectly	known,	i.e.	this	scenario	does	not	consider	parameter	uncertainty.	Therefore,	the	

formulation	presented	in	(18)	has	been	limited	to	one	scenario	(i.e.	J=1).		
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Table	5	Base-case	plant	design	and	optimal	plant	design	(Scenario	A).	

	 Harun	et	al.,	(2011)	 Scenario	A	

Decision	variables	 	 	

Absorber	diameter	(m)	 0.43	 0.406	

Absorber	height	(m)	 6.1	 5.9	

Solvent	flowrate	(mol/s)	 3.4	 3.2	

Capital	costs	($/year)	 572	 247	

Operating	costs	($/year)	 5,698	 5,432	

Total	costs	($/year)	 6,270 5,679	

	

As	 shown	 in	 Table	 5,	 the	 optimal	 design	 is	 4%	 smaller	 than	 the	 original	 base-case	 design	

specification	reported	in	Harun	et	al.,	(2011).	The	optimal	MEA	flowrate	also	decreases	from	the	

nominal	condition.	Similarly,	a	reduction	of	5%	in	the	overall	costs	of	the	column	is	observed.	As	

shown	in	Table	5,	almost	90%	of	the	annualized	total	costs	are	due	to	the	MEA	consumption	in	

the	absorber	unit,	i.e.	operating	costs.	This	optimized	design	and	operating	condition	meet	the	

minimum	CO2	capture	(CO2*)	required,	which	for	the	present	scenario	was	set	to	90%.		

3.3.3 Scenario	B:	Uncertainty	in	flue	gas	stream		

 

This	scenario	aims	to	search	for	the	optimal	design	and	operating	conditions	for	the	absorber	

column	 model	 under	 uncertainty.	 For	 this	 scenario,	 two	 key	 input	 parameters	

(i. e. , FgCO2 	and	FgN2)	were	considered	to	be	uncertain	in	order	to	approximate	the	best	and	worst	

scenario	of	flue	gas	concentration.	These	parameters	are	expected	to	change	during	operation	

due	 to	 sudden	 or	 scheduled	 changes	 in	 fossil-fired	 power	 plants.	 The	 robust	 optimization	

formulation	presented	in	(18)	was	used	to	perform	this	study.	For	the	present	scenario,	the	CO2	

capture	 target	 rate	 (CO2*)	 was	 set	 to	 90%.	 The	 upper	 and	 lower	 bounds	 for	 the	 uncertain	
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parameters	were	set	to	0.60	and	0.75	mol/s	for	FgCO2	and	3.21	and	3.1	mol/s	for	FgN2.	Also,	the	

uncertain	 parameters	 were	 assumed	 to	 be	 uniformly	 distributed	within	 their	 corresponding	

uncertain	 space	 domain;	 hence,	𝑤O =
7
�
.	 One	 limitation	 of	 the	 proposed	 robust	 optimization	

formulation	 presented	 in	 problem	 (18)	 is	 that	 it	 highly	 depends	 on	 the	 number	 of	 uncertain	

realizations	considered	in	the	formulation.	A	limited	number	of	realizations	may	return,	in	short	

computational	times,	solutions	that	may	not	be	optimal	or	even	inoperable	for	the	entire	range	

of	space	in	the	uncertain	parameters	set;	conversely,	an	overly	large	number	of	realizations	may	

improve	the	robustness	of	 the	design	at	 the	expense	of	significantly	 large	or	even	prohibitive	

computational	 costs.	 In	 order	 to	 determine	 the	 minimum	 number	 of	 realizations	 needed	 to	

determine	an	optimal	design	and	operating	condition	that	remains	operable	(feasible)	 for	 the	

uncertain	realizations	in	FgCO2	and	FgN2,	the	present	scenario	estimated	the	optimal	design	and	

operation	of	 the	absorption	column	under	a	different	number	of	 realizations	 in	 the	uncertain	

parameters.	 That	 is,	 for	 each	 optimization	 run,	 the	 total	 number	 of	 realizations	 (J)	 was	

determined	 based	 on	 all	 the	 possible	 combinations	 between	 the	 individual	 realizations	

considered	for	each	uncertain	parameter.		

Table	6	Optimal	Steady-State	Plant	Design	under	uncertainty	(Scenario	B).	

J=	 100	 81	 64	 49	 36	 25	 16	 9	 4	

Height	(m)	 6.023	 6.023	 6.010	 6.001	 5.998	 5.998	 5.998	 5.987	 5.986	

Diameter	(m)	 0.410	 0.410	 0.410	 0.410	 0.410	 0.410	 0.410	 0.410	 0.409	

FlMEA	(mol/s)	 3.21	 3.21	 3.209	 3.209	 3.209	 3.209	 3.2089	 3.2089	 3.208	

CAP($/year)	 253	 253	 253	 252	 252	 252	 252	 252	 252	

OP	($/year)	 5,447	 5,447	 5,446	 5,446	 5,446	 5,447	 5,446	 5,446	 5,444	

Total	($/year)	 5,700	 5,700	 5,698	 5,698	 5,698	 5,698	 5,698	 5.697	 5,696	

CPU	time	(s)	 154.53	 93.08	 62.36	 42.80	 26.07	 16.37	 11.46	 5.71	 3.41	

Optimization	variables	 354,205	 286,904	 226,693	 173,563	 127,517	 88,555	 56,677	 31,883	 14,173	

Number	of	equations	and	

constraints	
354,202	 286,901	 226,690	 173,560	 127,514	 88,552	 56,674	 31,880	 14,170	
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As	shown	in	Table	6,	for	a	short	number	of	realizations,	i.e.,	when	the	number	of	realizations	(J)	

is	between	4	and	25,	the	optimal	operating	conditions	are	1%	smaller	than	when	a	larger	set	of	

uncertainty	is	considered	(J	³	81).	Additionally,	larger	computational	times	were	obtained	when	

a	larger	number	of	realizations	was	considered,	i.e.,	the	CPU	time	for	J=81	is	96%	more	than	that	

needed	when	J=4.	These	large	differences	in	computational	costs	are	a	direct	result	of	the	size	of	

the	optimization	problems	considered,	i.e.	the	number	of	equations	and	constraints	when	J=100	

are	25	times	more	than	that	specified	when	J=4.	As	shown	in	Table	6,	increasing	J	from	81	to	100	

did	not	improve	the	quality	of	the	solution	but	it	increased	the	CPU	costs	by	approximately	40%.	

Thus,	 the	present	 analysis	 assumes	 that	 J=81	 are	 sufficient	 to	 capture	 the	 absorber	 column’s	

behaviour	under	uncertainty.		

As	discussed	above,	the	results	presented	in	Table	6	may	indicate	that	differences	in	the	process	

economics	between	the	solutions	found	when	using	a	small	and	large	number	of	realizations	are	

not	significant	(approximately	1%).	However,	these	small	changes	in	the	design	and	operating	

conditions	are	critical	and	necessary	to	ensure	feasibility	and	operability	of	the	absorber	column	

under	a	larger	domain	of	uncertain	scenarios.		
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Figure	4	Effect	of	constraint	violations	under	different	uncertain	horizon	optimization	

Figure	4	compares	the	performance	of	the	two	process	designs	obtained	from	J=4	and	J=81	when	

multiple	 realizations	 in	 the	 uncertain	 parameters	 were	 randomly	 selected.	 As	 shown	 in	 this	

figure,	over	10	violations	of	the	CO2*	capture	target	constraint	were	observed	when	the	optimal	

design	and	operating	conditions	specified	by	J=4	is	employed.	On	the	other	hand,	no	constraint	

violations	were	observed	when	the	design	and	operating	conditions	specified	by	J=81	were	used.	

This	 result	 clearly	 demonstrates	 the	 impact	 of	 process	 uncertainty	 on	 the	 operability	 of	 the	

column	 and	 how	 small	 changes	 in	 the	 design	 and	 operating	 conditions	 can	 impact	 process	

performance.	

 

3.3.4 Scenario	C:	Optimal	design	under	different	CO2	capture	rates	

The	aim	of	 this	 scenario	 is	 to	assess	 the	 impact	different	CO2	 capture	 rate	 levels	have	on	 the	

absorber	 column’s	 design	 under	 uncertainty	 in	 the	 flue	 gas	 stream.	 As	 in	 Scenario	 B,	
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FgCO2 	and	FgN2	were	 considered	 as	 the	uncertain	parameters	 and	under	 the	 same	 conditions.	

Thus,	on	the	results	presented	in	Table	6,	81	realizations	 in	these	uncertain	parameters	were	

considered	 for	 the	present	scenario.	This	scenario	was	evaluated	under	different	CO2	capture	

target	levels	(CO2*)	that	spans	from	89%	to	95%.		

Table	7	Optimal	Steady-State	Plant	Design	under	uncertainty:	Scenario	C.	

CO2*	 89%	 	90%	 92%	 93%	 94%	 95%	

Height	(m)	 6.000	 6.023	 6.120	 6.250	 6.280	 6.350	

Diameter	(m)	 0.401	 0.410	 0.430	 0.434	 0.446	 0.460	

FlMEA	(mol/s)	 3.205	 3.210	 3.210	 3.240	 3.310	 3.330	

CAP($/year)	 	246		 	253		 	270		 	277		 	287		 	299		

OP	($/year)	 	5,439		 	5,447		 	5,447		 	5,498		 	5,617		 	5,651		

Total	($/year)	 	5,685		 	5,700		 	5,717		 	5,775		 	5,904		 	5,950		

	 	 	 	 	

As	shown	in	Table	7,	the	robust	optimization	formulation	under	uncertainty	returned	sizes	and	

operating	conditions	for	the	column	that	are	9%	and	3%	larger	when	the	minimum	CO2	capture	

rate	level	was	increased	from	89%	to	95%,	respectively.	This	demonstrates	that	process	design	

and	operating	conditions	are	directly	affected	by	the	minimum	CO2	capture	rate	level.	Therefore,	

the	CO2	target	must	 be	 carefully	 chosen	when	 specifying	 the	 optimal	 design	 for	 the	 absorber	

column.	 The	 results	 obtained	 from	 the	 present	 scenario	 were	 compared	 against	 the	 results	

obtained	 for	Scenario	A	 (no	uncertainty	considered)	using	 the	same	CO2	capture	 target	 levels	

(CO2*)	shown	in	Table	7.	Figure	5	shows	the	total	costs	obtained	from	each	scenario.	In	order	to	

compensate	 uncertainty,	 larger	 dimensions	 of	 the	 absorber	 are	 observed	 for	 the	 robust	

optimization	scenario.	Conversely,	a	smaller	design	is	specified	for	the	case	when	no	uncertainty	

is	considered	in	the	analysis	(Scenario	A).	Furthermore,	for	a	relatively	low	CO2	capture	rate	level	

(i.e.,	 CO2*	 =	 89%),	 the	 difference	 in	 the	 absorber	 costs	 between	 Scenario	 A	 and	 the	 present	

scenario	is	less	than	1%.	However,	the	difference	in	cost	for	a	higher	CO2	capture	target	(CO2*	>	
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95%)	can	be	up	to	3%	annually.	This	result	indicates	that	uncertainty	play	a	more	significant	role	

when	higher	CO2	capture	rate	levels	are	specified.	In	addition,	higher	plant	costs	are	expected	

when	more	stringent	environmental	constraints,	e.g.	high	CO2	capture	rate	levels,	are	considered	

when	performing	the	optimal	design	of	a	CO2	capture	absorber	unit	under	uncertainty.	

	

	

Figure	5	Economics	of	the	absorber	column	under	uncertainty	in	the	flue	gas	stream.	

 

3.3.5 Scenario	D:	Multiple	process	uncertainties	

	

In	 this	 scenario,	 uncertainty	 was	 considered	 in	 three	 flue	 gas	 stream	 variables,	 i.e.	 flue	 gas	

flowrate	of	CO2	and	N2	(FgCO2,	FgN2)	and	temperature	of	the	flue	gas	(Tg
0);	in	addition,	uncertainty	

in	the	activity	coefficient	parameter	(gMEA)	in	the	gas-liquid	interface	was	considered.	Preliminary	

simulation	 studies	 showed	 that	 this	 parameter	 that	 has	 a	 significant	 effect	 on	 the	 system’s	

pressure,	as	shown	in	equation	(17).	The	upper	and	lower	bounds	for	the	uncertain	parameters	
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were	set	to	0.6	and	0.76	mol/s	for,	3.1	and	3.21	mol/s	for,	316	and	319	K	for	Tg	and	0.677	and	

0.77	for	gMEA.	Also,	the	uncertain	parameters	were	assumed	to	be	uniformly	distributed	within	

their	 corresponding	 uncertain	 space	 domain;	 hence,	𝑤O =
7
�
	.	 As	 in	Scenario	B,	 a	 study	 on	 the	

number	 of	 realizations	 needed	 to	 accommodate	 the	 expected	 realizations	 in	 the	 uncertain	

parameters	was	conducted.	For	the	present	analysis,	the	minimum	CO2	capture	rate	level	was	set	

as	to	90%.		

Table	8	Optimal	Steady-State	Plant	Design	under	uncertainty	(Scenario	D).	

J	 162	 135	 108	 81	 54	 36	 24	

Height	(m)	 6.028	 6.028	 6.028	 6.028	 6.018	 6.008	 5.987	

Diameter	(m)	 0.411	 0.411	 0.411	 0.410	 0.410	 0.409	 0.409	

FlMEA	(mol/s)	 3.260	 3.260	 3.257	 3.257	 3.257	 3.257	 3.257	

CAP($/year)		 	254		 	254		 	254		 	253		 	253		 	252		 	251		

OP	($/year)		 	5,532		 	5,532		 	5,527		 	5,527		 	5,527		 	5,527		 	5,527		

Total	($/year)	 5,786	 5,786	 5,781	 5,780	 5,780	 5,779	 5,778	

CPU	time	(s)	 235.12	 142.36	 100.91	 71.02	 54.36	 23.65	 18.44	

	

As	shown	in	Table	8,	a	larger	number	of	realizations	were	needed	to	obtain	an	optimal	design	

and	 operating	 scheme	 that	 can	 accommodate	 all	 the	 expected	 realizations	 in	 the	 uncertain	

variables’	space	search.	For	the	highest	number	of	realizations	(J=162),	the	optimal	plant	design	

for	this	scenario	show	sizes	for	both	the	column’s	height	and	diameter	that	are	2%	higher	than	

those	reported	for	Scenario	A.	This	increase	in	sizing	is	needed	to	accommodate	the	additional	

uncertain	 parameters	 considered	 in	 the	 present	 scenario.	 Similarly,	 larger	 computational	

demands	are	required	for	the	present	scenario	since	a	significantly	larger	set	of	equations	and	

variables	 need	 to	 be	 solved	 simultaneously.	 For	 instance,	 a	 total	 of	 573,806	 constraints	 and	
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573,809	variables	are	solved	when	J=162,	which	are	50%	more	equations	than	that	required	for	

Scenario	B	(J=81).		

To	further	demonstrate	the	impact	of	parameter	uncertainty	on	the	absorber	column’s	design,	

the	optimal	design	and	operating	conditions	obtained	for	Scenario	A	(i.e.	no	uncertainty	in	the	

formulation)	were	evaluated	under	different	random	realizations	 in	the	uncertain	parameters	

considered	for	the	present	scenario.		

	

Figure	6	Effect	of	parameter	uncertainty	on	Scenario	A’s	design	

 

As	shown	in	Figure	6,	Scenario	A’s	design	is	not	able	to	comply	with	the	minimum	CO2	capture	

rate	 level	 (90%)	80%	of	 the	 time.	Although	 the	difference	 in	sizes	obtained	 from	the	present	

scenario	and	that	obtained	 in	Scenario	A	 is	not	significant	(i.e.	approximately	2%),	 this	result	

suggests	 that	optimal	design	and	operating	conditions	can	 fail	 to	comply	with	process	design	

goals	if	uncertainty	is	not	explicitly	modelled	in	the	optimization	formulation.	
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3.3.6 Scenario	E:	Uncertainty	in	solubility	and	additional	process	constraints	

The	aim	of	the	present	scenario	is	to	consider	additional	uncertain	parameters	to	those	involved	

in	Scenario	D	and	to	account	for	additional	operational	constraints	that	may	impact	the	operation	

of	the	post-combustion	unit.	 In	the	present	analysis,	 the	set	of	parameters	that	determine	the	

solubility	 in	 the	present	 adsorption	 column	model	were	 considered	as	uncertain	parameters.	

These	are	the	activity	coefficient	of	CO2,	H2O	and	MEA,	i.e.	γ±0§,	γ;§0 	and	gMEA.	Note	that	the	later	

was	 already	 considered	 as	 uncertain	 parameter	 in	 the	 previous	 scenario.	 Thus,	 a	 total	 of	 6	

uncertain	 parameters	 were	 involved	 in	 the	 present	 scenario.	 Moreover,	 two	 additional	

operational	 constraints	 were	 considered.	 The	 liquid-to-gas	 ratio	 L/G	 is	 considered	 to	 be	 an	

important	operational	parameter	since	it	is	related	to	process	absorption	capacity(Kvamsdal	et	

al.,	2009)(Kvamsdal	et	al.,	2009)(Kvamsdal	et	al.,	2009)(Kvamsdal	et	al.,	2009)(Kvamsdal	et	al.,	

2009)(Kvamsdal	 et	 al.,	 2009)(Kvamsdal	 et	 al.,	 2009)(Kvamsdal	 et	 al.,	 2009)(Kvamsdal	 et	 al.,	

2009)(Kvamsdal	 et	 al.,	 2009).	 High	 L/G	 ratios	 are	 often	 required	 for	 this	 process	 to	 achieve	

acceptable	 CO2	 capture	 levels.	 In	 addition,	 this	 ratio	 also	 has	 a	 significant	 impact	 on	 the	

operability	and	design	specifications	of	the	absorber	column	(Kvamsdal	et	al.,	2009).	The	liquid-

to-gas	ratio	(L/G)	can	be	defined	as	a	function	of	the	molar	flowrate	of	the	liquid	phase	(Fl)	and	

the	molar	flowrate	of	the	gas	phase	(Fg),	i.e.	

	

L/G= ©³
©ª
			 	 	 	 	 	 	 	 	 	 (	22	)	

	

In	this	study,	a	constraint	of	this	ratio	will	be	added	to	ensure	that	the	proposed	absorber	column	

design	will	meet	a	specific	L/G	ratio	(L/G*)	in	the	presence	of	uncertainty,	i.e.,		
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L/G	(d,	kj,	xj,	u,	dj)	³		L/G*	 	 ∀j = 1, 2, … J	 	 	 	 	 (	23	)	

	

Moreover,	effective	mass	transfer	is	another	key	factor	for	the	absorption	process.	To	this	regard,	

the	wetted	surface	area	(aª/³)	(m2/m3)	is	key	for	development	of	effective	mass	transfer	rates	

since	it	represents	the	specific	gas-liquid	interfacial	area	that	is	available	for	the	mass	transfer	to	

occur.	Hence,	this	variable	is	a	dominant	factor	that	impacts	mass	transfer	operations	in	liquid-

gas	systems;	the	higher	the	value,	the	more	mass	transfer	area	available	for	absorption	(Onda	et	

al.,	1968).	Therefore,	a	constraint	on	a	minimum	wetted	surface	(aª/³ ∗)	will	be	considered	in	the	

present	scenario	to	ensure	acceptable	mass	transfer	operations	under	uncertainty,	i.e.	

	

aª/³	(d,	kj,	xj,	u,	dj)	³		aª/³ ∗	 	 ∀j = 1, 2, … J	 	 	 	 	 (	24	)	

	

For	the	present	analysis,	L/G*	and	the	aª/³ ∗	were	set	to	7	mol/mol	and	130	m2/m3,	respectively.	

Also,	the	minimum	CO2	capture	rate	level	(CO2*)	was	set	to	90%.	The	upper	and	lower	bounds	for	

γ±0§	were	set	to	0.877	and	1.071;	similarly,	upper	and	lower	bounds	for	γ;§0 	were	set	to	0.343	

and	0.420.	The	descriptions	for	the	remaining	uncertain	parameters,	i.e.	FgCO2,	FgN2,	Tg
0	and	gMEA	

remained	the	same	as	those	specified	in	Scenario	D.		the	resulting	set	of	uncertain	parameters	

were	assumed	to	be	uniformly	distributed	within	their	corresponding	uncertain	space	domain;	

hence,	w� =
7
µ
	.	Table	9	summarizes	the	results	obtained	for	the	present	scenario.	As	shown	in	this	

table,	larger	equipment	sizes	were	obtained	for	the	present	scenario	when	compared	to	Scenario	

D.	 Consequently,	 high	 annualized	 costs	 were	 obtained	 for	 this	 scenario;	 for	 example,	 the	

annualized	costs	for	this	scenario	is	2%	larger	than	that	obtained	for	Scenario	A.	Given	that	two	

additional	uncertain	parameters	are	considered,	a	larger	number	of	realizations	were	considered	
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for	the	present	scenario	(J=288),	which	is	43%	larger	than	the	maximum	number	of	realizations	

considered	 in	Scenario	D	 (J=162).	Accordingly,	 the	 resulting	optimization	problem	 involved	a	

total	of	1,032,192	equations	and	1,032,195	variables,	which	are	45%	more	than	that	specified	for	

Scenario	D.	Hence,	the	computational	time	required	to	obtain	a	solution	for	the	present	scenario	

increased	 2	 orders	 of	 magnitude	 when	 compared	 to	 that	 required	 by	 the	 optimization	

formulation	specified	for	Scenario	D.	These	results	show	that	more	real	process	designs	involving	

multiple	 uncertain	 parameters	 and	 process	 operational	 constraints	 can	 be	 obtained	with	 the	

proposed	optimization	formulation	at	the	expense	of	higher	computational	costs.		

	

Table  9 Optimal	Plant	Design	(Scenario	E)	

J=	 288	

Height	(m)	 6.0301	

Diameter	(m)	 0.421	

FlMEA	(mol/s)	 3.262	

	CAP($/year)		 	261		

	OP	($/year)		 	5,536		

Total	($/year)	 5,796	

CPU	time	(s)	 482.3	

	

	

Note	that	the	original	plant	design	used	by	Harun	et	al.,	(2012)	(Table	5)	is	over	specified	for	a	

CO2	capture	of	90%.	Accordingly,	the	annualized	costs	of	this	over	specified	design	are	14%	larger	

when	compared	with	the	optimal	design	of	the	present	scenario	(Table	9).		
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3.4 Chapter	Summary	

	

The	optimal	process	design	of	a	CO2	capture	absorber	column	under	uncertainty	was	presented.	

A	robust	optimization	framework	based	on	the	multi-scenario	approach	was	employed	in	this	

study	to	 identify	optimal	design	and	operating	schemes	that	comply	with	process	operational	

constraints	in	the	presence	of	uncertainty.	Different	scenarios	were	assessed	in	order	to	evaluate	

the	impact	of	uncertainty	on	the	optimal	process	design.	In	order	to	accommodate	uncertainty,	

the	 process	 economics	 of	 the	 absorber	 column	 increases.	 This	 enlargement	 in	 the	 absorber	

specifications	under	robust	optimization	was	greater	for	mores	strict	CO2	capture	policies,	i.e.,	a	

higher	CO2	capture	rate.	Moreover,	the	differences	in	optimal	design	specifications	in	between	

different	number	of	realizations	may	not	be	significant,	however,	the	optimization	under	the	right	

number	of	realizations	is	important	in	order	to	meet	the	environmental	constraint	of	the	process.	

However,	the	escalation	in	the	annual	costs	may	also	lead	to	significant	savings	as	this	design	will	

be	 able	 to	 comply	 with	 process	 constraints	 since	 uncertainty	 is	 explicitly	 considered	 in	 the	

process	design	stage	calculation.		
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Chapter	4	

Multi-objective	Multi-period	Optimization	of	a	Post-combustion	CO2	

Capture	Absorber	Column	Under	Uncertainty	

The	aim	of	this	section	is	to	present	a	study	that	considers	multiple	incentives	while	performing	

the	optimal	design	and	operations	management	of	a	CO2	post-combustion	absorption	column.	

The	central	idea	is	to	consider	at	the	process	design	stage	multiple	variations	that	are	expected	

to	occur	during	plant	operation	such	as	seasonal	changes	in	the	power	plant’s	demands	as	well	

as	sudden	or	unexpected	changes	in	the	column’s	operation	due	to	disturbances	or	uncertainty	

in	the	model	parameters.	In	this	chapter,	a	bi-objective	optimization	formulation	was	evaluated	

under	uncertainty	 in	 the	CO2	 flue	gas	composition	and	 in	physical	and	thermodynamic	model	

parameters.	In	addition,	a	multi-scenario	formulation	is	considered	to	account	for	the	monthly	

changes	in	electricity	demands	in	the	province	of	Alberta,	Canada	in	2017	(AESO,	2017).		

The	 organization	 of	 this	 chapter	 is	 as	 follows:	 the	multi-period	 scenario	 for	 the	 CO2	 capture	

absorber	column	as	well	as	the	multi-objective	formulation	are	described	in	section	4.1.	Results	

from	the	proposed	optimization	formulations	under	uncertainty	are	presented	and	discussed	in	

section	4.2.	A	summary	of	the	results	is	presented	in	Section	4.3.		

4.1 Introduction	

	

Optimization	 under	 a	 single	 scenario	where	 process	 inputs	 are	 assumed	 to	 remain	 constant	

during	 the	 entire	 period	 of	 operation	 may	 return	 inoperable	 or	 low	 economically	 attractive	

scenarios	 when	 these	 inputs	 change	 due	 to	 seasonal	 variations	 or	 sudden	 or	 unexpected	

disturbances.	In	order	to	determine	optimal	design	and	operations	management	conditions	that	
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will	 be	 feasible	 under	 seasonal	 changes	 in	 the	 post-combustion	 CO2	 capture	 absorber,	

optimization	should	be	evaluated	under	these	variations.	The	operability	of	a	post-combustion	

CO2	capture	process	heavily	relies	on	the	changes	that	may	be	expected	to	occur	in	the	inlet	flue	

gas	stream.	Consequently,	the	flue	gas	stream	coming	from	a	combustion	process	from	a	power	

plant	mainly	depends	on	the	energy	demands	and	production	which	may	change	seasonally.	In	

order	 to	 account	 for	 that	 condition,	multiple	 scenarios	 representing	monthly	 average	 energy	

loads	will	be	considered	in	the	present	 formulation.	This	work	assumes	that	these	changes	 in	

energy	demands	are	directly	proportional	to	the	expected	seasonal	changes	in	the	power	plant’s	

flue	gas	stream.		

Canada	is	listed	as	one	of	the	ten	countries	with	the	highest	CO2	emissions	worldwide	with	almost	

11%	of	those	emissions	are	produced	from	electricity	generation	(Boden	et	al.,	2017;	UNFCCC,	

2018;	BP,	2018;	National	Energy	Board,	2017).	According	to	the	National	Energy	Board,	(2017),	

the	Canadian	province	with	more	greenhouse	gas	intensity	of	electricity	generation	is	Alberta.	

Furthermore,	 approximately	 87%	of	 the	 electricity	 in	 Alberta	 is	 produced	 from	 fossil	 fuels	 –	

approximately	47%	from	coal	and	40%	from	natural	gas.	The	remaining	13%	is	produced	from	

renewables,	such	as	wind,	hydro,	and	biomass	(National	Energy	Board,	2017).	Since	more	than	

half	of	electricity	in	Alberta	is	produced	by	the	combustion	of	fossil	fuels,	a	scenario	of	monthly	

average	energy	loads	in	Alberta	will	be	considered	in	this	work.	Moreover,	the	monthly	energy	

loads	will	be	assumed	to	be	directly	proportional	to	seasonal	changes	expected	in	the	operation	

of	a	CO2	capture	plant.	The	monthly	profile	of	the	energy	load	in	the	province	of	Alberta	in	the	

year	2017	is	illustrated	in	Figure	7.	The	column	absorption	model	described	in	Chapter	3.1	was	

evaluated	for	12	periods	with	each	period	representing	a	month	of	the	year.	In	order	to	account	

for	the	energy	load	variations	in	the	present	multi-period	study	for	the	CO2	capture	plant,	the	

variability	in	the	flue	gas	flow-rate	were	proportionally	adjusted	with	respect	to	that	observed	in	
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the	monthly	energy	loads	in	the	province	of	Alberta,	i.e.		

𝐹𝑔4? = h*¶·
*¶3333
i 𝐹𝑔?	 	 	 	 	 	 	 	 	( 25 )	

	

where	𝐸𝐿3333	represents	the	mean	annual	energy	load	in	the	province	of	Alberta	estimated	from	data	

reported	in	the	open	literature	and	shown	in	Figure	7	(9,393	MW)	whereas	𝐹𝑔?	represents	the	

mean	flue	gas	flow	rate	considered	in	the	present	study	for	the	CO2	capture	plant.	This	value	was	

obtained	from	data	reported	in	the	literature	(see	Table	2).	𝐸𝐿4	represents	the	monthly	energy	

load	in	the	period	p	whereas	𝐹𝑔4?	represents	the	monthly	flue	gas	flowrate	considered	in	each	

period	p.	The	resulting	multi-period	scenario	of	the	absorber	column	where	each	period	of	time	

had	a	different	flue	gas	stream	proportional	to	the	seasonal	energy	load	is	shown	Figure	7.	

	

	

Figure	7	Monthly	average	load	in	2017	(AESO,	2017)	

 

This	multi-period	scenario	aims	to	approximate	real	power	plant’s	behaviour	under	this	type	of	

seasonal	changes	in	the	flue	gas	stream.	Moreover,	the	multi-period	scenario	will	also	consider	
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input	 and	model	parameter	uncertainty	 to	 consider	 a	more	 realistic	 condition	of	 a	 real	 post-

combustion	 CO2	 capture	 process	 during	 operation.	 Furthermore,	 this	 study	will	 seek	 for	 the	

optimal	 process	 design	 and	 operations	management	 conditions	 of	 the	 CO2	 capture	 absorber	

process	under	two	conflicting	objectives.	That	is,	the	present	multi-scenario	analysis	described	

above	 will	 be	 evaluated	 under	 a	 multi-objective	 optimization	 framework	 that	 will	 explicitly	

consider	uncertainty	 in	 the	CO2	 absorber	unit.	 This	 optimization	 framework	will	most	 surely	

guarantee	that	the	proposed	solutions	will	accommodate	the	possible	scenarios	that	a	real-life	

process	 can	experience.	To	 the	 author’s	 knowledge,	 studies	 similar	 to	 that	 considered	 in	 this	

work	have	not	been	presented	in	the	open	literature.	

4.1.1 Mathematical	Framework	

	

This	 section	 presents	 the	 conceptual	 formulation	 of	 the	 multi-objective	 multi-scenario	

optimization	under	uncertainty.	The	two	objective	functions	that	were	considered	for	the	present	

formulation	 are:	minimization	 of	 the	 capital	 and	operating	 costs	 of	 the	 absorber	 column	and	

maximization	of	the	CO2	capture	of	the	absorber	tower.	Since	the	single	absorber	unit	has	been	

considered	 under	 this	 study,	 these	 two	 objectives	 are	 the	most	 appropriate	 functions	 in	 the	

decision	 to	 determine	 the	 optimal	 design	 for	 the	 absorber	 unit	 because	 of	 their	 impact	 and	

implications	in	post-combustion	CO2	capture	plants.		The	bi-objective	multi-period	optimization	

formulation	considered	 is	 explicitly	described	as	a	 function	of	 the	uncertainty	 in	 the	process.	

Hence,	the	conceptual	mathematical	formulation	considered	in	this	study	is	as	follows:	

max
𝐝,𝐮𝐩

	 𝑓7	=	�𝑤O	�𝛩KJU�𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º�	�
�

O�7
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min
𝐝,𝐮𝐩

	 𝑓9	=	�𝑤O	�𝛩K(T�𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º�	�
�

O�7

	

s.t.	

g	(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	=	0,										 ∀j = 1, 2, … J		 ∀p = 1, 2, …P	

h	(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	³	0,		 	 ∀j = 1, 2, … J	 ∀p = 1, 2, …P	

dl	£	d	£	du	

upl	£	up	£	upu			 	 	 	 	 	 	 (	26	)	

	

where	g	is	the	equality	constraints	representing	the	complete	mechanistic	absorption	column’s	

model	 presented	 in	 Equations	 (6)	 to	 (17).	 Moreover,	 h	 represents	 the	 operational	 or	

environmental	 inequality	constrains	considered	 in	 the	 formulation.	Similarly,	d	 is	 the	process	

design	variables,	k		represents	the	model	parameters,	x	represents	the	state	variables	(i.e.,	molar	

concentrations	of	each	component	or	temperature	of	gas	or	liquid	phase)	whereas	𝐱̇	represent	

the	changes	of	 the	process	state	variables	with	respect	 to	the	axial	domain	(z).	The	operating	

variables	that	can	be	adjusted	during	operation	are	denoted	by	u	whereas	d	represents	the	set	of	

uncertain	 parameters	 considered	 in	 the	 optimization	 formulation.	 Moreover,	𝑤O	represents	 a	

weight	assigned	for	each	realization	j	in	the	uncertain	parameters,	i.e.,	∑ 𝑤O = 1�
O�7 .	These	weights	

may	be	estimated	using	a	probabilistic	distribution	function	for	the	uncertain	parameters	that	is	

known	a	priori	from	process	experience	or	experimental	observations.	The	term	J	represents	the	

set	 of	 discrete	 realizations	 or	 scenarios	 considered	 for	 the	 uncertain	 model	 parameters;	

accordingly,	the	cost	function	(𝛩K(T, 𝛩KJU),	the	process	model	equations	and	constraints	(i.e.	g	

and	 h)	 are	 described	 for	 each	 realization	 (j)	 considered	 for	 the	 uncertain	 parameter	 set	 d.	

Moreover,	the	index	p	represents	the	time-periods	considered	in	the	formulation.		
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The	decision	variables	considered	for	the	bi-objective	optimization	are	the	height	and	diameter	

of	the	absorber	column	(i.e.	Habs	and	Dabs)	which	are	the	main	process	design	parameters	d	in	the	

absorber	column.	Similarly,	 the	 inlet	 flowrate	 (FlMEA)	 is	assumed	 to	be	a	variable	 that	 can	be	

adjusted	during	operation,	i.e.	during	each	period	p;	accordingly,	this	variable	is	represented	as	

up.		

The	 minimization	 cost	 function	 considered	 in	 the	 present	 analysis	 is	 the	 same	 correlation	

considered	in	economic	cost	function	in	Equation	(27).	However,	the	operating	cost	will	now	be	

considered	to	be	in	function	of	the	periods	p,	i.e.	

	

𝛩K(T = A ∗ RORh;ÀÁ;Â
Ã
i DÅÆÇ

						7.?ÈHÅÆÇ
						?.Ê9 + ∑ wº(FlËÀÌ,ºCËÀÌ)Á

º�7 														 											(	27	)	

	

where	𝑤4	represents	a	weight	assigned	for	each	period	p.	In	the	present	study,	the	rate	of	CO2	

capture	(jj,p)	will	be	estimated	for	every	period	(p)	and	every	uncertain	realization	(j).	As	shown	

in	(27),	this	variable	is	a	function	of	the	molar	flowrate	of	CO2	in	the	flue	gas	(Fg;§0,�,º
? )	and	the	

molar	flowrate	of	CO2	in	the	vent	gas	(Fg;§0,�,º
¨ ).	

	

j�,º		=	 Î1	 − 	
Ï"��0,Ð,Ñ

Ò

Ï"��0,Ð,Ñ
® Ó × 100		 	 ∀j = 1, 2, … J	 	 ∀p = 1, 2, …P	 	 (	28	)	

Thus,	jj,p	 	 is	 used	 here	 to	 specify	 an	 environmental	 constraint	 that	 enforces	 a	minimum	CO2	

capture	target	(CO2*)	that	the	proposed	absorber	column	design	is	required	to	satisfy	for	every	

uncertain	realization	j	and	period	p	,	i.e.	

	

jj,p	(d,	kj,p,	xj,p,	up,	dj,p)	³		CO2*	 	 ∀j = 1, 2, … J	 	 ∀p = 1, 2, …P	 	 (	29	)	
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While	 a	CO2	 capture	 target	 constraint	 is	needed	 to	 ensure	 that	 this	 environmental	 constraint	

meets	a	minimum	threshold	during	operation;	it	may	also	be	needed	to	maximize	the	overall	rate	

of	CO2	captured	on	an	annual	basis	such	that	the	design	goals	of	post-combustion	CO2	capture	

plants	may	be	satisfied.	Therefore,	in	addition	to	ensuring	a	minimum	CO2	capture	rate	for	every	

j	and	p	as	shown	in	(29),	the	present	study	aims	to	maximize	the	CO2	capture	rate	(jj,p)	at	every	

period	 of	 operation	 of	 the	 absorber	 column,	 and	 for	 every	 realization	 in	 the	 uncertain	

parameters,	i.e.		

	

𝛩KJU = ∑ 𝑤4(∑ jO,4)
�
O�7

|
4�7 		 	 ∀j = 1, 2, … J	 	 ∀p = 1, 2, …P	 	 (	30	)	

	

Based	on	the	above,	the	present	formulation	involves	two	objective	functions	shown	in	equations	

(27)	and	(30),	which	are	usually	conflicting	in	nature.	In	order	to	determine	the	optimal	solution	

of	a	multi-objective	problem,	a	specific	solution	strategy	must	be	deployed.	 	Given	that	the	bi-

objective	optimization	methods	described	 in	 section	2.4.2.	 provide	 a	direct	 solution	 to	multi-

objective	 formulations;	 these	 methods	 were	 considered	 to	 solve	 the	 present	 multi-objective	

optimization	problem.	First,	 the	optimal	design	and	operations	management	 for	 the	absorber	

column	between	the	two	objectives	shown	in	equations	(27)	and	(30)	was	estimated	using	the	

1NM	method	described	in	equation	(3).	The	trade-off	surface	or	Pareto	front	was	generated	to	

validate	the	solution	from	the	1NM	method.	The	corresponding	trade	off	surfaces	were	calculated	

using	the	e-constraint	method	illustrated	in	section	2.4.2	and	shown	in	Equation	(2).	Based	on	

the	above,	problem	(26)	can	be	 reformulated	 in	 terms	of	 the	e-constrained	method	and	1NM	

method	as	follows:	
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• e-constraint	method	

Minimize
𝐝,𝐮·

	 𝑓9_.. 	=	�𝑤O	�𝛩K(T�𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º�	�
�

O�7

	

s.t.	 	 	 	

𝛩KJU�𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º�	£	e	 ∀j = 1, 2, … J		 ∀p = 1, 2, …P	

h(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	³	CO2*		 ∀j = 1, 2, … J	 ∀p = 1, 2, …P	

g(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	=	0										 ∀j = 1, 2, … J	 ∀p = 1, 2, …P	

dl	£	d	£	du	

upl	£	up	£	upu			 	 	 	 	 	 	 	 ( 31 )	

	

• 1NM	method:	

Minimize
𝐝,𝐮·

						(1	 −	𝑓7��0
<(𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º)) 	+	𝑓9��m (𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º)

	 	

s.t.	 	 	

g(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	=	0										 ∀j = 1, 2, … J		 ∀p = 1, 2, …P	

h(d,	kj,p,	𝐱�,º̇ ,	xj,p,	up,	dj,p)	³	CO2*		 ∀j = 1, 2, … J	 ∀p = 1, 2, …P	

dl	£	d	£	du	

upl	£	up	£	upu			 	 	 	 	 	 	 	 ( 32 )	

	

where:		

𝑓7_./0< �𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º� =
ÕÖ_��0�𝐝,k×,·,𝐱×,·,𝐱Ø,·̇ ,𝐮·,d×,·�o¶Ù�ÕÖ_��0�

ÚÙ�ÕÖ_��0�	o¶Ù�ÕÖ_��0�
; 					∀j = 1, 2, … J			∀p =

1, 2, …P	

𝑓9_..<�𝐝, k�,º, 𝐱�,º, 𝐱�,º̇ , 𝐮º, d�,º� =
Õ0_««�𝐝,k×,·,𝐱×,·,𝐱Ø,·̇ ,𝐮·,d×,·�o¶Ù(Õ0_««)

ÚÙ�Õ0_���	o¶Ù(Õ0_««)	
	;							∀j = 1, 2, … J					∀p = 1, 2, …P	
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	 	 	 	 	 	 	 	 	 	 	 ( 33 )	

where	UB	(𝑓7_./0)	and	LB	(𝑓9_;;)	are	the	values	of	𝑓7_./0and	𝑓9_.. 	when	optimized	respectively,	

over	the	constraint	set;	similarly,	𝑓7_./0< 	and	𝑓9_..< 	are	the	normalized	functions	of	𝑓7_./0 	and	𝑓9_.. ,	

respectively.	In	addition,		𝑓7_;§0 	represents	the	CO2	capture	rate	function	to	be	maximized	given	

by	equation	(30)	whereas	𝑓9_.. 	represents	the	capital	and	operating	costs	function	that	will	be	

minimized	and	that	is	shown	in	Equation	(27).	

	

4.2 Results	and	discussion	

	

The	 multi-objective	 optimization	 formulation	 presented	 in	 the	 previous	 section	 was	

implemented	in	the	Pyomo	environment,	an	optimization	library	in	PYTHON.	The	resulting	set	of	

differential	 and	 algebraic	 equations	 describing	 the	 absorber	 column	 model	 presented	 in	

Equations	(6)	to	(16)	in	a	multi-period	scenario	were	fully	discretized	using	the	backward	finite	

difference	 method.	 The	 interior-point	 optimization	 algorithm	 was	 used	 to	 search	 for	 local	

optimal	solutions	of	the	proposed	robust	optimization	formulation	presented	in	problems	(31)-

(32).	The	studies	presented	in	this	section	were	performed	on	an	Intel	Core	i7-3770	CPU	@	3.4	

GHz.	The	proposed	multi-objective	multi-period	formulations	shown	in	(28)-(29)	were	solved	

under	different	scenarios,	which	are	discussed	next.	

4.2.1 Scenario	A:	Single	period	multi-objective	optimization		

 

The	first	scenario	considers	a	multi-objective	design	optimization	of	 the	post-combustion	CO2	

capture	 absorber	 under	 a	 single	 period	 scenario.	 The	 model	 parameters	 and	 process	

specifications	 presented	 in	 Tables	 1,	 2	 and	 3	 in	 Section	 3.3.1	 were	 used	 in	 the	 present	
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formulation.	Moreover,	the	present	scenario	assumes	that	all	the	model	parameters	and	inputs	

remain	constant	and	equal	to	a	nominal	value.	Therefore,	the	formulation	presented	in	problem	

(31)-(32)	 has	 been	 limited	 to	 one	 scenario	 and	 one	 period	 (i.e.	 J=1,	 P=1).	 For	 the	 1NM	

optimization	method	the	minimum	CO2	capture	(CO2*)	was	set	to	85%.		

In	 order	 to	determine	 if	 the	1NM	optimal	 result	was	 a	 suitable	 trade-off	 solution,	 the	Pareto	

surface	was	constructed	under	the	e-constraint	formulation	presented	(31).	

	

	

Figure 8 Single period trade-off surface 

 

Figure 8	 shows	 the	1NM	solution	point	and	 the	 trade-off	or	Pareto	surface	of	 the	bi-objective	

results	of	this	scenario.	In	order	to	build	the	Pareto	surface,	optimization	was	carried	out	under	

e-constraint	bi-optimization,	e	was	subjected	to	CO2	capture	target	 levels	constraint.	Likewise,	
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the	optimized	designs	and	operating	conditions	obtained	for	each	e	problem	were	solved	under	

the	same	CO2	capture	(CO2*)	rate	(i.e.	85%).		

The	upper	bound	of	the	Pareto	surface	was	determined	by	optimizing	exclusively	equation	(30),	

whereas	the	lower	bound	was	obtained	from	the	solution	of	Equation	(27).	Between	the	upper	

and	 lower	bounds,	9	uniformly	distributed	points	were	used	 to	build	 the	Pareto	 surface;	 this	

number	of	pareto	points	was	needed	to	generate	a	smooth	Pareto	surface,	as	shown	in	Figure 8.	

A	 total	 of	 5,238	 constraints	 and	 5,239	 variables	 were	 generated	 for	 each	 e-constraint	

optimization	problem	with	an	average	CPU	solution	time	of	9.05	seconds.	On	the	other	hand,	the	

1NM	optimization	produced	an	optimization	problem	with	5,237	constraints	and	5,239	variables	

that	was	solved	 in	2.19	seconds	(CPU	time).	Note	 that	 the	additional	constraint	 in	 the	 former	

method	 involves	 the	e-constraint	 that	 limits	 the	CO2	 capture	 rate	 as	 shown	 in	 equation	 (31).	

Figure 8	shows	that	the	trade-off	surface	follows	a	linear	behaviour	of	the	Pareto	optimal	points.	

Moreover,	this	figure	also	shows	that	the	optimal	trade-off	point	obtained	from	the	1NM	method	

lies	near	the	trade-off	surface.	Table	9	shows	the	design	parameters	obtained	from	the	1NM	bi-

objective	optimization	calculation.	As	shown	in	this	table,	a	high	CO2	capture	rate	was	obtained	

as	the	optimal	solution	of	the	upper	bound;	however,	this	target	also	shows	the	highest	annual	

costs	 for	 this	process.	The	opposite	was	observed	 for	 the	 lower	bound	solution.	On	 the	other	

hand,	the	1NM	point	presents	a	suitable	trade-off	solution.	That	is,	the	CO2	capture	from	the	1NM	

point	 is	only	2.71%	smaller	than	the	upper	bound	and	8.8%	larger	than	the	 lower	bound	CO2	

capture.	Similarly,	 the	annualized	costs	reflect	an	 increase	 in	 the	design	specifications	 for	 the	

upper	bound,	where	it	is	2%	more	expensive	to	operate	the	plant	at	the	maximum	CO2	capture	

target	than	at	the	optimal	1NM	design.		
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Table 10 Scenario A: Multi-objective design specifications 

	 Lower	Bound	 Upper	Bound	 1NM	point	

Height	(m)	 5.50	 6.35	 6.15	

Diameter	(m)	 0.38	 0.456	 0.43	

MEA	flowrate	(mol/sec)	 3.23	 3.23	 3.23	

Capital	Cost	($/year)	 885	 1,204	 1,097	

Operating	Cost	($/year)	 5,481	 5,481	 5,480	

𝛩K(T	[Annual	Cost	($/year)]	 6,366	 6,685	 6,577	

𝛩KJU	[%	CO2	capture]	 85	%	 95.13	%	 92.55	%	

 

4.2.2 Scenario	B:	Multi-objective	multi-period	optimization		

 

The	aim	of	this	scenario	was	to	determine	the	optimal	design	and	operating	conditions	under	

seasonal	changes	in	the	operation	of	the	absorber	tower.	Accordingly,	the	fluctuations	in	the	flue	

gas	 flowrate	 described	 in	 Figure	 7	 were	 considered	 using	 the	 multi-objective	 multi-period	

formulation	 presented	 in	 problems	 (31)-(31).	 As	 in	 the	 previous	 scenario,	 all	 the	 model	

parameters	of	the	absorber	column	were	assumed	to	be	perfectly	know,	i.e.	uncertainty	is	not	

considered	in	the	present	scenario.	Thus,	the	formulation	presented	in	problems	(31)-(32)	has	

been	limited	to	one	scenario	and	twelve	periods	(i.e.,	J=1,	P=12).		Also,	the	periods	were	assumed	

to	be	uniformly	distributed	within	their	corresponding	period,	 i.e.	𝑤4 =
7
|
	 .	The	minimum	CO2	

capture	(CO2*)	were	defined	as	in	Scenario	A,	i.e.	CO2*=85%.	

	A	total	of	96,954	variables	and	96,967	constraints	were	evaluated	with	an	average	CPU	time	of	

82.51	 seconds	 for	 each	 instance	 under	 the	 e-constraint	 method	 whereas	 the	 1NM	 method	

generated	problems	with	96,954	variables	and	96,954	constraints	that	required	a	CPU	time	of	

63.07	seconds.			
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Figure	9	shows	the	Pareto	solutions	of	the	present	scenario	as	well	as	the	1NM	optimal	point.	

Between	the	upper	and	lower	bounds,	8	uniformly	distributed	points	were	required	to	build	a	

smooth	Pareto	surface.	Figure	9	shows	that	the	optimal	trade-off	1NM	point	is	not	trivial	since	it	

does	not	lie	at	the	mid-point	of	the	Pareto	front	surface.		

	

		

Figure 9 Trade-off surface for multi-period scenario at nominal conditions (J=1, P=12) 

	

Table	 10	 shows	 the	 design	 specifications	 obtained	 from	 the	 multi-period	 1NM	 bi-objective	

optimization.	In	order	to	compensate	for	the	changes	in	the	flue	gas	flowrate	during	the	multi-

period	scenario,	a	reduction	of	1.5%	in	the	CO2	capture	is	obtained	as	the	upper	bound	of	the	

trade-off	 surface	when	compared	 to	 the	upper	bound	of	CO2	capture	presented	 in	Scenario	A	

(Table	11).	This	reduction	in	the	upper	bound	for	the	multi-period	scenario	leads	to	a	slightly	

smaller	CO2	capture	rate	and	process	design	(approximately	1	%	in	both	diameter	and	height)	
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from	the	1NM	point	compared	to	the	1NM	solution	obtained	from	Scenario	A.	Although	a	smaller	

optimal	CO2	capture	is	observed	in	this	scenario	than	in	scenario	A,	these	results	consider	a	more	

realistic	operation	since	they	account	for	seasonal	fluctuations	in	the	flue	gas	flowrate.		

	

Table 11 Scenario B: Multi-period Multi-objective design specifications	

	 Lower	Bound	 Upper	Bound	 1NM	point	

Height	(m)	 5.77	 6.34	 6.09	

Diameter	(m)	 0.38	 0.45	 0.428	

Capital	Cost	($/year)	 																										933		 													1,182		 	1,095		

Operating	Cost	($/year)	 																						5,481		 													5,481		 	5,479		

𝛩K(T	[Annual	Cost	($/year)]	 6,414	 6,663	 6,575	

𝛩KJU	[%	CO2	capture]	 85	%	 93.70	%	 91.52	%	

	

	

	

Figure 10 MEA inlet flowrate profile for multi-period optimization 
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Figure	10	illustrates	the	profile	in	the	MEA	flowrate	obtained	under	the	1NM	point	optimal	design	

specifications.	This	profile	is	compared	against	periodical	changes	in	the	flue	gas	mass	flowrate.	

As	shown	in	this	Figure	10,	there	is	a	direct	correlation	between	MEA	consumption	and	flue	gas	

flow	rate,	e.g.	less	MEA	is	required	when	there	is	a	decrease	in	the	flue	gas	flow	rate.		

Figure	11	shows	the	periodic	changes	in	the	CO2	capture	rate	related	to	the	changes	in	flue	gas	

flow	rate.	As	shown	in	this	figure,	the	1NM	solution	point	is	able	to	maintain	a	low	MEA	flowrate	

and	 relatively	 high	 CO2	 capture	 rate	 when	 less	 flue	 gas	 is	 fed	 to	 the	 absorber	 column.	 This	

confirms	that	the	1NM	solution	point	is	indeed	a	trade-off	solution	since	it	balances	annual	costs	

(reflected	in	the	MEA	consumption)	and	CO2	emissions.		

	

Figure 11 CO2 capture profile for multi-period optimization 

 

Moreover,	1NM	design	 specifications	 from	Scenario	B	were	 simulated	maintaining	a	 constant	

mean	value	of	the	MEA	flowrate	obtained	from	the	1NM	solution	point.	Figure	12	illustrates	how	

this	constant	MEA	flowrate	will	perform	along	the	seasonal	changes	affecting	the	CO2	capture.	
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The	average	of	CO2	capture	rate	obtained	from	this	simulation	(91.50%)	is	slightly	smaller	than	

that	obtained	when	periodic	changes	in	MEA	flowrate	are	considered	(91.51%).	However,	the	

standard	deviation	(i.e.	the	variability)	in	the	CO2	capture	rate	for	the	case	of	a	constant	(mean)	

MEA	flowrate	shown	in	Figure	12	is	40%	larger	than	that	obtained	when	the	MEA	flowrate	is	

adjusted	for	each	period	(Figure	11).	These	results	indicate	the	need	to	adjust	the	MEA	flowrate	

according	 to	 the	 flue	gas	 stream	conditions	 to	 improve	 the	operability	 and	economics	of	 this	

process.	

	

	

Figure 12 CO2 Capture profile with constant MEA flowrate 
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4.2.3 Scenario	C:	Multi-objective	multi-period	optimization	under	uncertainty	

	

In	this	scenario,	uncertainty	was	considered	in	the	flue	gas	composition	of	the	CO2	(𝑦./0),	in	the	

equilibrium	pressure	parameter	(gMEA)	and	in	the	heat	of	reaction	(DHrxn).	The	upper	and	lower	

bounds	for	these	uncertain	parameters	were	set	to	0.667	and	0.677	for	gMEA,	-8,0000	and	-8,4000	

for	DHrxn	and	0.12	and	0.19	for	𝑦./0 ,	respectively.	Also,	the	uncertain	parameters	were	assumed	

to	be	uniformly	distributed	within	their	corresponding	uncertain	space	domain,	i.e.	𝑤O =
7
�
.	The	

number	of	realizations	J	was	determined	based	on	a	balance	between	the	range	of	space	in	the	

uncertain	parameters	and	computational	costs.	The	objective	of	this	scenario	is	to	evaluate	the	

multi-period	scenario	for	a	multi-objective	optimization	under	process	uncertainty	and	seasonal	

changes	in	the	flue	gas	flowrate,	an	aspect	that	has	never	been	previously	studied	for	this	process.	

A	total	of	16	uncertain	scenarios	(J=16)	and	12	periods	(P=12)	where	considered	in	the	analysis.	

As	 in	 Scenario	 B,	 the	 periods	 were	 assumed	 to	 be	 uniformly	 distributed	 within	 their	

corresponding	space	domain,	i.e.	𝑤4 =
7
|
	.	The	optimization	technique	was	the	same	used	for	the	

previous	scenarios,	i.e.,	1NM	method	to	obtain	the	optimal	design	under	bi-objective	problem	and	

e-constraint	method	to	build	the	trade-off	surface.	CO2	capture	constraints	were	set	as	stated	in	

the	previous	scenario,	i.e.	the	minimum	CO2	capture	(CO2*)	was	set	to	85%.		

The	e-constraint	optimization	problems	consisted	of	a	 total	of	604,595	variables	and	604,996	

constraints	 that	 were	 solved	 in	 an	 average	 CPU	 time	 of	 4,688	 seconds.	 Similarly,	 the	 1NM	

optimization	problem	involved	604,595	variables	and	604,788	constraints	that	were	solved	in	a	

CPU	time	of	2,130	seconds.	As	a	result	of	the	additional	constraints	considered	in	the	e-constraint	

problems	 due	 to	 the	 multiple	 uncertainty	 realizations	 considered	 in	 this	 scenario,	 higher	

computational	 times	 were	 observed	 for	 this	 solution	 method.	 Moreover,	 the	 number	 of	
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uncertainty	realizations	under	a	multi	period	scenario	will	impact	the	computational	costs.	For	

the	e-constraint	method,	the	CPU	times	reported	for	the	present	scenario	are	approximately	972	

and	34	times	higher	than	those	obtained	for	scenario	A	and	scenario	B,	respectively.	Similarly,	

the	CPU	 times	 reported	 for	 the	1NM	method	 are	518	 and	57	higher	 than	 those	observed	 for	

Scenario	A	and	B,	respectively.		

	

Figure	13	Comparison	of	Scenarios	B	and	C	

 

Figure	13	shows	a	comparison	between	the	Trade-off	solutions	under	nominal	conditions	(J=1)	

and	under	uncertainty	(J=16).	Hence,	optimal	Pareto	points	for	optimization	under	uncertainty	

show	larger	annualized	costs	compared	to	the	Pareto	optimal	points	for	nominal	conditions	in	an	

order	of	0.5	-	1%.			Likewise,	optimal	1NM	point	under	uncertainty	showed	a	slight	increase	of	

0.3%	in	the	annualized	costs	compared	to	those	reported	for	the	nominal	case	(Scenario	B).	Table	

12	presents	 the	design	 specifications	and	annual	 costs	of	 the	bi-objective	optimization	under	
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uncertainty	using	the	1NM	method.	As	shown	in	Table	12,	the	optimal	CO2	capture	rate	is	smaller	

than	 that	obtained	 for	scenario	B	giving	a	value	of	91.16%	CO2	capture,	 this	reduction	 in	CO2	

capture	is	mostly	due	to	the	consideration	of	uncertainty	in	the	present	scenario.	

 

Table 12 Multi-objective multi-period optimization under uncertainty design specifications 

	 Lower	Bound	 Upper	Bound	 1NM	point	

Height	(m)	 5.84	 6.41	 6.0997	

Diameter	(m)	 0.39	 0.46	 0.44	

Capital	Cost	($/year) 																					957		 																	1,233		 																	1,117		

Operating	Cost	($/year) 																	5,481		 																	5,481		 																	5,479		

𝛩K(T	[Annual	Cost	($/year)]	 6,438	 6,714	 6,596	

𝛩KJU	[%	CO2	capture]	 85	%	 93.70	%	 91.16	%	

 

Table	12	also	shows	that	the	absorber	dimensions	(i.e.,	diameter	and	height)	at	the	lower	bound	

are	1.4%	larger	for	the	optimization	under	uncertainty	than	that	reported	for	scenario	B’s	lower	

bound.	On	the	other	hand,	the	difference	in	dimensions	for	the	upper	bound	problem	solved	in	

the	present	scenario	is	2.5%	larger	than	those	obtained	for	Scenario	B.	This	nonlinear	effect	was	

also	observed	for	the	case	of	robust	optimal	design	under	uncertainty;	that	is,	larger	equipment	

sizes	are	needed	at	higher	(stricter)	CO2	capture	rates	under	process	uncertainty.		

Figure	14	shows	the	effects	of	simulating	scenario	B’s	design	specifications	in	the	presence	of	

uncertainty.	As	shown	in	this	figure,	the	average	CO2	capture	under	Scenario	B’s	design	is	90.87%,	

which	 is	 only	 0.3%	 lower	 than	 that	 obtained	 from	 the	 1NM	 solution	 point	 for	 the	 present	

scenario.	Although	this	difference	in	CO2	capture	between	Scenario	B	and	Scenario	C	is	relatively	

small,	an	additional	3.4	tonnes	of	annual	CO2	are	captured	using	Scenario	C’s	design	when	the	

realizations	in	the	uncertain	parameters	are	set	to	the	worst-case	scenario	(lowest	possible	CO2	
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capture	rate).	Similarly,	an	o	from	Scenario	C’s	design	when	the	uncertain	parameters	are	set	to	

the	more	optimistic	scenario	(i.e.	the	combination	in	the	uncertain	parameters	that	produces	the	

highest	CO2	capture	rate).	These	results	indicate	the	significance	of	taking	uncertainty	and	multi-

period	 changes	 into	 account	 while	 selecting	 the	 optimal	 design	 specifications	 and	 operating	

policies	for	a	post-combustion	CO2	capture	absorber	column.		

 

 

Figure 14	Effect	of	process	uncertainty	on	the	design	obtained	for	Scenario	B	and	C	

 

Considering	the	actual	carbon	pricing	of	40	$/tonCO2	(The	World	Bank,	2019),	the	annual	costs	

of	CO2	emissions	 in	 the	 flue	gas	 stream	estimated	 from	 the	present	model	are	approximately	

38,000	$/year.	 If	a	post-combustion	CO2	capture	process	with	a	minimum	CO2	capture	rate	of	

90%	were	installed,	then	the	annualized	capital	and	operating	costs	of	the	absorber	unit	for	the	

present	scenario	would	only	represent	27%	of	the	original	carbon	costs,	i.e.	without	a	CO2	capture	
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process.	Note	that	the	annualized	costs	of	the	additional	post-combustion	CO2	capture	units	(e.g.	

stripper	 and	 reboiler)	 and	 the	 corresponding	 plant	 energy	 requirements	 have	 not	 been	

considered	and	will	be	the	subject	of	future	work.	

	

4.3 Chapter	Summary		

	

In	 this	 chapter	 the	optimal	design	and	operations	management	conditions	of	 the	CO2	capture	

absorber	 column	were	 studied	 under	 a	multi-period	 scenario	where	 seasonal	 changes	 in	 the	

flowrate	 of	 the	 flue	 gas	 entering	 the	 CO2	 capture	 absorber	 column	 were	 considered.	 The	

optimization	was	 also	 evaluated	 under	 uncertainty	 in	 the	 composition	 of	 the	 flue	 gas,	 in	 the	

equilibrium	 pressure	 parameter	 and	 in	 the	 heat	 of	 reaction.	 A	 bi-objective	 approach	 was	

considered	where	the	aim	was	to	maximize	the	CO2	capture	and	to	minimize	the	column	annual	

costs.	 An	 optimal	 solution	 under	 this	 bi-objective	 problem	 was	 evaluated	 under	 different	

scenarios.	 The	 results	 show	 that,	 in	 order	 to	 accommodate	process	 uncertainty	 and	 seasonal	

changes	in	the	power	plant’s	operating	conditions,	larger	annualized	costs	and	lower	CO2	capture	

rates	than	those	obtained	under	nominal	conditions	are	expected.		

The	quantitative	differences	between	the	optimal	solutions	of	the	scenarios	considered	in	this	

work	may	not	be	relevant;	however,	those	small	changes	in	the	design	and	operating	policies	are	

critical	 to	 guarantee	 a	 feasible	 operation	 of	 this	 process	 under	 uncertainty	 and	 seasonal	

variations	in	the	flue	gas	stream.		
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Chapter	5	

Conclusions	and	Recommendations		

5.1 Conclusions		

	

The	aim	of	this	thesis	was	to	develop	studies	that	consider	the	optimal	design	and	operations	

management	of	a	post-combustion	CO2	capture	absorber	column	under	process	uncertainty.	In	

particular,	 two	 studies	 involving	 the	 robust	 design	 of	 the	 absorber	 model	 under	 static	 and	

seasonal	changes	in	the	flue	gas	flowrate	were	considered	in	this	research.		In	addition,	a	multi-

objective	formulation	was	formulated	with	the	aim	to	evaluate	the	optimal	design	and	operations	

management	under	two	of	the	most	important	objectives	for	this	process,	i.e.	maximize	the	CO2	

capture	rate	and	minimize	the	annualized	capital	and	operating	costs	of	the	absorber	column.	

Model	parameter	uncertainty	as	well	as	uncertainty	in	the	input	variables	were	considered	in	this	

work.		The	number	of	uncertain	realizations	considered	in	the	optimization	formulation	is	key	to	

most	surely	ensure	a	robust	optimal	process	design.	Moreover,	a	more	extensive	evaluation	of	

the	uncertainty	effects	will	also	lead	to	higher	computational	costs.			

Results	 from	 this	 study	 suggest	 that	 larger	 dimensions	 in	 design	 are	 required	 when	 the	

optimization	was	evaluated	under	uncertainty,	which	 is	expected	since	the	design	requires	 to	

accommodate	all	the	possible	uncertainty	realizations	considered	in	the	formulation.		The	model	

was	also	optimized	under	nominal	conditions,	i.e.,	no	uncertainty	in	the	process.	The	optimization	

studies	showed	that	the	optimal	design	under	nominal	conditions	was	smaller	for	both	single-

objective	 and	multi-objective	 approaches	 than	 those	obtained	 from	 the	optimal	design	under	

uncertainty.		Nevertheless,	when	the	optimal	design	under	nominal	conditions	was	evaluated	for	

potential	realizations	of	the	uncertain	scenarios;	the	results	showed	that	those	designs	may	not	



 

 68 

comply	with	the	CO2	emissions	targets	considered	in	the	optimization	formulation.	Those	results	

showed	that	those	designs	and	operation	policies	may	not	be	suitable	for	a	real-life	operation	

since	 the	 design	 may	 not	 satisfy	 the	 process	 design	 goals,	 e.g.	 cannot	 meet	 environmental	

constraints	imposed	on	the	plant.	Additionally,	larger	designs	were	observed	in	the	presence	of	

a	large	process	uncertainty	and	the	design	was	even	larger	when	more	strict	CO2	capture	policies	

were	considered.	Moreover,	when	the	formulation	under	uncertainty	was	optimized	for	a	multi-

period	 scenario	 under	 two	 objectives,	 the	 equipment	 dimensions	 and	 annualized	 costs	were	

larger	than	the	cases	where	a	single	period	was	optimized. 	

The	results	from	the	latter	study	showed	that	quantification	between	optimal	dimensions	under	

nominal	conditions	and	under	uncertainty	may	seem	not	be	significant;	however,	 the	optimal	

design	considering	uncertainty	and	seasonal	changes	will	be	able	to	comply	with	the	CO2	capture	

policies.	Larger	dimensions	may	lead	to	higher	annualized	costs;	however,	this	design	will	most	

surely	guarantee	that	the	environmental	constraints	will	be	met,	thus	improving	the	long	term	

process	economics	and	performance	for	this	process.		

	

5.2 Recommendations	

 

The	research	presented	in	this	work	can	be	extended	to	further	advance	the	development	and	

implementation	of	CO2	capture	technologies.	The	recommendations	considered	for	this	research	

are	as	follows:		

• In	the	present	work,	design	optimization	under	uncertainty	was	performed	using	steady-

state	models.	However,	in	order	to	simulate	the	process	performance	under	a	period	of	

time,	a	multi-period	approach	was	established.	Furthermore,	accounting	for	the	dynamic	

behaviour	 of	 the	 process	 will	 provide	 new	 insight	 into	 the	 optimal	 operation	 of	 this	
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process	 under	 uncertainty	 though	 high	 computational	 demands	 may	 be	 expected.	

Accordingly,	 new	 solution	 strategies	 may	 need	 to	 be	 implemented	 to	 alleviate	 the	

computational	 costs	 associated	 with	 the	 solution	 of	 those	 dynamic	 optimization	

problems.	

• A	single	unit	of	the	process	was	optimized	in	this	study,	i.e.	the	absorber	column.	This	unit	

plays	a	crucial	 role	 in	 the	process.	However,	 considering	other	units	 in	 the	process	 in	

order	 to	 establish	 optimal	 design	 and	 operating	 conditions	 for	 the	 complete	 process	

flowsheet	 is	essential	 for	process	 improvement.	Furthermore,	considering	 the	optimal	

solution	of	the	complete	CO2	capture	process	under	uncertainty	while	using	a	mechanistic	

process	 model	 will	 need	 a	 specific	 strategy	 given	 the	 significantly	 large	 number	 of	

equations	 that	 would	 need	 to	 be	 solved	 simultaneously.	 Studies	 accounting	 for	

uncertainty	 in	 the	 complete	 process	 will	 also	 provide	 new	 insight	 into	 the	 optimal	

operation	of	this	process.		

• The	multi-scenario	method	considered	for	robust	optimization	in	this	study	will	 likely	

guarantee	 that	 the	 optimal	 design	may	 always	 be	 feasible	 for	 the	 possible	 uncertain	

scenarios	selected.	While	this	is	acceptable,	the	addition	of	more	uncertain	parameters	in	

the	analysis	may	 lead	 to	 the	specification	of	overly	conservative	solutions.	Alternative	

optimization	 strategies	 considering	 probabilistic	 distributions	 in	 the	 uncertain	

parameters	such	as	stochastic	programming	or	chance	constraint	optimization	may	be	

explored	to	produce	attractive	solutions	that	can	comply	with	the	process	constraints	at	

specific	(user-defined)	probability	limits.		
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