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Abstract

Time synchronization and a common understanding of the concept of time is an essential
and important aspect of modern computing. Among the drawbacks of current and popular
methods, such as the Network Time Protocol, (NTP), or the Precision Time Protocol,
(PTP), are the need for live synchronization, and the use of a central reference clock.

While these methods are ideal in an environment with constant, uninterruptible, and
reliable internet connection, they may prove impracticable in a number of scenarios includ-
ing Internet of Things (IoT) devices. In cases where the is no access to a central clock, or
where the accuracy of two clocks is paramount yet there exists no reliable network access,
new methods for synchronization are needed.

Our proposed method utilizes existing hardware, without the need for onerous algo-
rithms, in order to establish time-accuracy between two devices. The method effectively
establishes a master-slave relationship between two computers, and endeavors to find the
difference in time between the two devices, over a period of time. This reduces the reliance
on constant, and on-going connection to a central clock. Further, in cases where methods
such as NTP, or PTP may be preferred, our proposed solution can bolster those protocols.

iii



Acknowledgements

I would like to extend my thanks to my supervisor, Dr. Amir Keyvan Khandani, for
providing me with the opportunity to be part of the CST group, and for his support and
guidance prior to, and throughout, my time as a graduate student I would also like to thank
my readers, Drs. Omar Ramahi and Catherine Rosenberg, for their time, and dedication.

I would also like to thank Ms. Neda Mohammadizadeh and Ali Nik-Akhtari for their
contributions, assistance, and guidance in all stages of my research.

This research would not have been possible, without the PlanetLab architecture in
place. The many nodes and servers associated with the PlanetLab, be it in the University
of Monash in Victoria, Australia, ETH servers in Zurich, Switzerland, or here at the
University of Waterloo. As such, I wish to extend my appreciation to Dr Ian Goldberg as
the administrator for the University of Waterloo’s PlanetLab node.

Further, I wish to extend my thanks and gratitude to Drs. Vincent Gaudet, Slim
Boumaiza, David Nairn, and Jessica Rossi, Susan Widdifield, Jackie Leach, Lisa Habel,
and Karina Gaxiola, and the the reset of Electrical and Computer Engineering Graduate
team,for their help, encouragement, and support from the very beginning to the very end
of my graduate career. I also thank Dr. Jeff Casello, Rose Vogt, and Chris Read, for their
care, and dedication to making graduate students’ lives a little easier.

I am grateful for, and forever indebted to, my colleagues, friends, and family, for their
support, encouragement, and their overall da sein, in every sense of the phrase. I wish
to extend specials, and my very humble thanks to Maliheh Ahamdi, Mehrnaz Tabibi,
Mozhgan Tabibi, Lily Tarba, Jamie Lyn Stevenson Waugh, Adam Daniel Gomes, Amalia
Stavropoulou, Andrea Marrocco, Stanley Ituah, Joshua O’Connell, Wael Mohammad Ali,
Eric Schwartz, Nicholas Pham, Nima Abbasi, John Rinehart, Yiling Xu, Alireza Hossein-
zadeh, Seyi Gamu, and Laura McCrackin.

iv



Dedication

I dedicate this thesis to my grandmother, my mother, my family, and my friends.

v



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background & Literature Review 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1.1 Partial Ordering . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1.2 Logical Clocks and Total Ordering . . . . . . . . . . . . . 6

2.1.1.3 Physical Clock . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Network Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Requirements & Approaches . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Time Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 The Network Time Protocol . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4.1 Time and Frequency . . . . . . . . . . . . . . . . . . . . . 14

2.2.4.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . 16

2.2.4.3 State Variables and Procedures . . . . . . . . . . . . . . . 16

2.2.5 Filtering and Selection Algorithms . . . . . . . . . . . . . . . . . . 18

2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



3 Methodology 20

3.1 Planet Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Architectural Components . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 PlanetLab Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Lab Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Test-bed Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Method 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results & Findings 31

4.1 Delay over PlanetLab Network . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Establishing Time Accuracy using Direct Connection . . . . . . . . . . . . 32

4.2.1 Similar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Dissimilar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Establishing Time Accuracy Over the Network: UW Network . . . . . . . 46

4.3.1 Similar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Dissimilar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Establishing Time Accuracy Over the PlanetLab Network with 1 Node:
University of Oregon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Similar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Dissimilar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Establishing Time Accuracy Over the PlanetLab Network with 2 Nodes:
University of Oregon, Monash Universty . . . . . . . . . . . . . . . . . . . 66

4.5.1 Similar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Dissimilar Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



5 Discussion and Conclusion 78

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Contribution and Proposed Implementation . . . . . . . . . . . . . . . . . 80

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Future Work 82

References 84

Glossary 87

Abbreviations 89

List of Symbols 90

APPENDICES 91

A Additional Results 92

B Trace Route Results 98

B.1 Traceroute from PC9 to UW PlanetLab Server . . . . . . . . . . . . . . . . 98

B.2 Traceroute from plink in UW→ ETH . . . . . . . . . . . . . . . . . . . . . 99

B.3 Traceroute from plink in UW→ Monash . . . . . . . . . . . . . . . . . . . 100

B.4 Traceroute from plink in UW→ UOregon . . . . . . . . . . . . . . . . . . . 102

B.5 Traceroute from UOregon → Monash . . . . . . . . . . . . . . . . . . . . . 103

B.6 Traceroute from UOregon → plink in UW . . . . . . . . . . . . . . . . . . 104

B.7 Traceroute from Monash → plink in UW . . . . . . . . . . . . . . . . . . . 105

viii



List of Tables

2.1 NTP Packet Header [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Summary of the Specification of Test Computers . . . . . . . . . . . . . . . 28

4.1 Summary of normalized values in difference between the Test PCs in per
second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



List of Figures

2.1 Example of Space-Time Diagram[20] . . . . . . . . . . . . . . . . . . . . . 7

2.2 Subnet Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Network Time Protocol Flowchart [26] . . . . . . . . . . . . . . . . . . . . 14

2.4 Measuring Delay and Offset [26] . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Test Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 PlanetLab Delay Figures captured on May 22 and May 28 . . . . . . . . . 33

4.2 PlanetLab Delay Figures captured on May 28 and May June 11 . . . . . . 34

4.3 Similar Computers: 2012 Direct Connection aklinux5→aklinux4 . . . . . . 36

4.4 Similar Computers: 2012 Samples normalized average Corrected (last-first)
aklinux5→aklinux4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Similar Computers: 2012 Samples Fluctuations Corrected (i − (i − 1))
aklinux5→aklinux4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Reversed Similar Computers: 3602 Samples normalized average (last-first)
aklinux4→aklinux5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Reversed Similar Computers: 3602 Samples Fluctuations (i−(i−1)) aklinux4→aaklinux5 40

4.8 Dissimilar Computers: 2557 Samples normalized average (last-first) NS→akkpc9 42

4.9 Dissimilar Computers: 2557 Samples Fluctuations (i− (i− 1)) NS→akkpc9 43

4.10 Reversed Dissimilar Computers: 3972 Samples normalized average (last-
first) akkpc9→NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Reversed Dissimilar Computers: 3972 Samples Fluctuations (i − (i − 1))
akkpc9→NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



4.12 Similar Computers Over the UW Network: 1509 Samples normalized aver-
age (last-first) aklinux4→aklinux5 . . . . . . . . . . . . . . . . . . . . . . . 47

4.13 Similar Computers Over the UW Network: 1509 Samples Fluctuations (i−
(i− 1)) aklinux4→aklinux5 . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.14 Similar Computers Over the UW Network Reversed: 400 Samples normal-
ized average (last-first) aklinux5→aklinux4 . . . . . . . . . . . . . . . . . . 49

4.15 Similar Computers Over the UW Network Reversed: 400 Samples Fluctua-
tions (i− (i− 1)) aklinux5→aaklinux4 . . . . . . . . . . . . . . . . . . . . 50

4.16 Dissimilar Computers Over the UW Network: 1526 Samples normalized
average (last-first) akkpc9→NS . . . . . . . . . . . . . . . . . . . . . . . . 52

4.17 Dissimilar Computers Over the UW Network: 1526 Samples Fluctuations
(i− (i− 1)) akkpc9→NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.18 Dissimilar Computers Over the UW Network Reversed: 280 Samples nor-
malized average (last-first) akkpc8→akkpc9 . . . . . . . . . . . . . . . . . 54

4.19 Dissimilar Computers Over the UW Network Reversed: 280 Samples Fluc-
tuations (i− (i− 1)) akkpc8→akkpc9 . . . . . . . . . . . . . . . . . . . . . 55

4.20 Similar Computers Over the PL Network: 292 Samples normalized average
(last-first) aklinux5→UOregon→UW→aklinux4 . . . . . . . . . . . . . . . 57

4.21 Similar Computers Over the PL Network: 292 Samples Fluctuations (i −
(i− 1)) aklinux5→UOregon→UW→aklinux4 . . . . . . . . . . . . . . . . . 58

4.22 Similar Computers Over the PL Network Reversed: 333 Samples normalized
average (last-first) aklinux4→UOregon→UW→aklinux5 . . . . . . . . . . . 59

4.23 Similar Computers Over the PL Network Reversed: 333 Samples Fluctua-
tions (i− (i− 1)) aklinux4→UOregon→UW→aklinux5 . . . . . . . . . . . 60

4.24 Dissimilar Computers Over the PL Network: 280 Samples normalized aver-
age (last-first) akkpc8→UOregon→UW→akkpc9 . . . . . . . . . . . . . . 62

4.25 Dissimilar Computers Over the PL Network: 280 Samples Fluctuations (i−
(i− 1)) akkpc8→UOregon→UW→akkpc9 . . . . . . . . . . . . . . . . . . 63

4.26 Dissimilar Computers Over the PL Network Reversed: 342 Samples normal-
ized average (last-first) akkpc9→UOregon→UW→akkpc8 . . . . . . . . . . 64

4.27 Dissimilar Computers Over the PL Network Reversed: 342 Samples Fluctu-
ations (i− (i− 1)) akkpc9→UOregon→UW→akkpc8 . . . . . . . . . . . . 65

xi



4.28 Similar Computers Over the PL Network: 211 Samples normalized average
(last-first) aklinux4→Monash→UOregon→UW→aklinux5 . . . . . . . . . . 68

4.29 Similar Computers Over the PL Network: 211 Samples Fluctuations (i −
(i− 1)) aklinux4→Monash→UOregon→UW→aklinux5 . . . . . . . . . . . 69

4.30 Similar Computers Over the PL Network Reversed: 573 Samples normalized
average (last-first) akkpc5→UOregon→Monash→UW→akkpc4 . . . . . . . 70

4.31 Similar Computers Over the PL Network Reversed: 573 Samples Fluctua-
tions (i− (i− 1)) akkpc5→UOregon→Monash→UW→akkpc4 . . . . . . . 71

4.32 Dissimilar Computers Over the PL Network: 217 Samples normalized aver-
age (last-first) akkpc9→Monash→UOregon→UW→akkpc8 . . . . . . . . . 73

4.33 Dissimilar Computers Over the PL Network: 217 Samples Fluctuations (i−
(i− 1)) akkpc9→Monash→UOregon→UW→akkpc8 . . . . . . . . . . . . . 74

4.34 Dissimilar Computers Over the PL Network Reversed: 531 Samples normal-
ized average (last-first) akkpc8→UOregon→Monash→UW→akkpc9 . . . . 76

4.35 Dissimilar Computers Over the PL Network Reversed: 531 Samples Fluctu-
ations (i− (i− 1)) akkpc8→UOregon→Monash→UW→akkpc9 . . . . . . 77

A.1 The Time Accuracy between two Similar Test Computers . . . . . . . . . . 93

A.2 The Close up of Time Accuracy between two Similar Test Computers in A.1 94

A.3 The Fluctuation in Time Accuracy between two Similar Test Computers in
A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.4 Simple moving average with 60 sample window applied to A.1 . . . . . . . 96

A.5 Simple moving average with 120 sample window applied to A.1 . . . . . . . 97

xii



Chapter 1

Introduction

Time is defined to make motion
look simple.

John Wheeler

Time, as a concept, is not very useful if not used in relation to another action. Absolute
time measurements are not very useful on their own. When an individual asks another,
”What time is it?”, the answer would not be very useful, or even interesting, if the stated
time was not associated with something else, a pending appointment, a measure of the
duration of an activity undertaken, or even in relation to the passage of time in relation
to the start of the day. Only when used in conjunction with external events do time
measurements, and time in general, become pertinent to our everyday lives.

The act of timekeeping, or the measurement of the passage of time, itself is only of
significance when taken in relation to another timekeeping event, method, or reference. In
totality, it is the passage of time that is of interest to most individuals, not merely the
series of numbers. In fact, the numbers that indicate the current time to most people, are
only intelligible, because there is a common, universally agreed upon point of reference.

For example, while completing a form for a catering order in advance of an event, if the
only response to the field for time of delivery is the notation 12:43, it would be considered
rather meaningless. There will undoubtedly be follow up questions: A.M. or P.M.?, on
what date?, and perhaps even where and in what time zone? (the order might be for
sushi from Japan). Similarly, 1544834997 is unintelligible and meaningless to the average
individual, where it, in fact, tells you the exact date and time on a computer. The average
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human will not understand this, but a computer will. To a computer the above numbers
mean Friday, December 14, 2018 7:49:57 PM GMT-05:00, because to a computer those
digits indicate the number of elapsed seconds since midnight January 1, 1970, or Epoch,
not counting leap seconds.

Another matter of interest is the method by which the time has been measured. Let us
consider the catering order once more. If a catering order has indeed been placed for sushi
from Japan, we are now dealing with two sources of time. The customer, having placed
the order with a specified time of delivery, and the shop having accepted the order, will
have a common expectation and understanding of the time of delivery. Though, what if
the shopkeeper has an incorrect, or perhaps even a different, concept of time relative to the
customer’s? Once again, the expected delivery time and date would be quite meaningless
if the shopkeeper’s watch runs too slow, or if the customer’s watch runs too fast.

Above examples may come across as rudimentary and uncomplicated. However, they
illustrate the importance of good and proper time-keeping. Many standards and proposals
have dealt with the nature of time synchronization including [21], [4] [29], [20], [27], [24],
just to name a few. Network Time Protocol is one of the major standards developed to
address the challenges involved with time synchronization. When the issue became more
acute, and a need for more precise and specialized synchronization methods was called for,
a hardware dependent method, the Precision Time Protocol (PTP), was introduced.

This thesis presents a method for time synchronization, which, especially when applied
in specific and specialized settings, can be of great benefit. The method may also prove
to be supplementary and may be used in conjunction with existing methods. The main
contribution of this thesis is as follows. We have proposed a method that will essentially find
the difference in time-progression between two computers with sufficient accuracy. This
difference in time progression can then be used to predict the time in another computer or
to retroactively correct the time on another computer. Devices with limited resources and
placed in areas with no or poor connectivity to a reference clock, such as in distributed
data-collection efforts, shopping malls, etc. can benefit greatly from this implementation.

Further, time-critical, network-dependent activities could also benefit from this. The
measured difference time-progression can be used to interpolate another computer’s local
time at the time of the critical event, especially in conditions where time-synchronization
using traditional means is not feasible, not possible, or not-accessible.
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The remainder of this thesis is organized as follows:

Chapter 2 provides the necessary background on topics including time synchronization,
and network time synchronization. It also delves into the nature of network synchroniza-
tion. There is also a summary of the thought process behind the design of the Network
Time Protocol. An overview of the pertinent information available in the literature is also
provided.

Chapter 3 provides an overview of the processes used in the implementation of the
required test. There is also a breakdown of the equipment used for this study.

Chapter 4 introduces the results gathered from the studies. The studies have been
conducted using different equipment and computers, and the gathered results from each
pertinent results are enclosed.

Chapter 5 summarizes the discoveries and expands on the results obtained from the
studies. It also outlines the contributions achieved as a result of this study. It goes on
to expand on the implications of these obtained results, and presents potential real-world
implementation scenarios.

Finally, Chapter 6 discusses the requisite studies in order to form a complete protocol
that has real-world application. It provides an outline for future areas of expansion.
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Chapter 2

Background & Literature Review

Communication networks use a variety of tools and methods to ensure the accuracy and
fidelity of the data. Such a process is achieved by various methods including, but not limited
to, a variety of time synchronization techniques, and comparing and limiting the number
of dropped packets. In this section, some pertinent methods and topics are introduced
to provide the necessary background. First, some background information is provided,
followed by a brief overview of the research done on this topic.

2.1 Background

A brief overview of Time Synchronization, dropped packets, and packet delay is covered
in the following section.

2.1.1 Time Synchronization

Time synchronization is a vital component of computer networks. In order for various com-
puters, and/or their dependent peripherals, to communicate with each other, particularly
over a synchronous telecommunications network consisting of packet-switched technolo-
gies, the individual computers, and their respective peripherals need to ensure that they
are synchronized to a common notion of time. Ensuring that all members of a computer
network conform to, or at least understand, a uniform notion of time is even more impor-
tant in any wireless network, for examples Wireless Sensory Network. Sensor Networks
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are specialized sensor networks that can be set up without an existing infrastructure, and
as such need to communicate using a common notion of time [29].

Distributed networks are a collection of distinct entities which are spatially separated,
and which communicate with one another through a communication network, such as
exchanging messages [20]. A system is distributed if the message transmission delay is
not negligible compared to the time between events in a single process [20]. Further,
distributed systems tend not to have access to a central clock. Imagine hundreds of servers
placed across the world and communicating with one another. It is, therefore, and quite
frequently in other distributed systems, to obtain a common notion of time, where time
can mean ”either an approximation to real time or simply an integer-valued counter”[30].
Multitudes of real-time systems, from Google Docs’ ability to maintain a revision control
system to security softwares to simple communication mechanisms, rely on the ability to
time-stamp events and determine what event took place first [30]. In a distributed system,
it may sometimes be impossible to determine whether event a occurred prior to event b.
The “relation ‘happened before’ is therefore only a Partial ordering” of the events in a
system [20].

2.1.1.1 Partial Ordering

As mentioned, if we say that b followed a, then it is believed that a occurred prior to b.
If we are to say that the events in the system in which such events are defined have taken
place in a correct fashion, then the events must be done in accordance with specifications
that are observable within, and relative to, that system [20]. We can define these events
free from the constraints of a strict definition of real clock and physical time since it is
sufficient to identify events on their own, as real clocks are not necessarily accurate and
may not keep precise physical time [20].

Let us assume that each system is a collection of processes, and each process consists
of a sequence of events, regardless of how one defines processes or events. If a sends a
message to b, one may define the entire act of sending a message, from the moment a
request to send is made by a to the final act of b rendering the message as one process,
and the intermediary actions as events. Conversely, we can continuously break down each
action into subgroups to the point of triviality where, for instance, the interrupt request
issued by a is considered an event. Regardless of how, or how finely an event is defined,
the necessary assumption made is that “the events of a process form a sequence”, where
a is before b if a occurs before b [20]. In other words “a process is defined to be a set of
events with an a priori total ordering” [20].
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Lamport, in [20], defines the happened before relation, indicated using “→”, “on the set
of events of a system as the smallest relation” which satisfies the following three conditions:

1. if a and b are events in the same process, and a a comes before b, then
a→ b

2. If a is the sending of a message by one process and b is the receipt of the
same message by another process, then a→ b.

3. If a → b and b → c then a → c. Two distinct events a and b are said to
be concurrent if a 6→ b and b 6→ a.

It is further assumed that a 6→ a, for any event a, implying that“→” is an irreflexive Partial
ordering on the set of all events in a system.

Let us demonstrate with the aid of a space-time diagram in Fig. 2.1. Space is given
in the horizontal direction, and time is given in the vertical direction, with the time pro-
gression indicated from the bottom to the top. Further note that the dots are events in a
process (indicated by vertical lines) and messages are described using the curly lines inter-
secting the vertical lines (processes). In demonstrating the definition, as shown in Fig 2.1,
messages can be sent from one process but can be received out of order on the receiving
process, e.g. in q1 → r4. Further, if a→ b then a can causally affect b, and if one doesn’t
affect causally the other, then they can be considered concurrent. Therefore, q3 and p3
are concurrent. While q3 occurs before p3, since it’s placed lower in the diagram, p3 is not
aware of q3’s actions and outcomes until it hears from Process Q at p4.

2.1.1.2 Logical Clocks and Total Ordering

The notional of a clock need not complicate the discussion on order of precedence, and
as previously mentioned, need not involve a discussion on physical time. Lamport in
[20] states that it can simply be assumed that a clock is merely a means of indicating
precedence between causally linked events; a numbering system for assigning which events
precede which other events. Therefore, the numbers assigned can be the time at which an
event takes place. Defined more formally, let us designate clock Ci for each process Pi. Ci

here is a function that renders a numbers (or time) Ci 〈a〉 to any event a. Similarly, any
function C which assigns a number for any event b, is defined as C 〈b〉 = Cj 〈b〉 if for any
b in any process Pj.
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Figure 2.1: Example of Space-Time Diagram[20]

Further, it can naturally be stated that any event a comes before b, then a has occurred
in the past, relative to b. Therefore the Clock Condition can be defined as:

Clock Condition. For any events a, b: if a→ b, then C 〈a〉 < C 〈b〉.

We further need to stipulate two conditions in order to ensure that the Clock Condition is
met.

C1. If a and b are events in Process Pi, and a comes before b,
then Ci 〈a〉 < Ci 〈b〉 [20].
C2. If a is the sending of a message by process Pi, and b is the receipt of that
message by process Pj, then Ci 〈a〉 < Cj 〈b〉 [20]

Now, by assuming that processes are algorithms, and events are actions taken, commanded,
or executed by such algorithms, clocks can be introduced without violating the Clock
Condition. Let Ci be the clock for process Pi, where it holds a value during event a
representing Ci 〈a〉 [20]. Note that while Ci may change between events, a change in Ci
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does not necessarily indicate a new event. in other words, a conceptual logical clock’s time
may progress without indicating a change in event status for a particular process. Two
rules are proposed in order to ensure that C1 and C2 conditions are met. While ensuring
that C1 is met requires no further introductions, meeting the C2 condition requires the
introduction of a timestamp Tm, representing the time a message m is sent. Each m will
contain said timestamp. As a result, the implementation rules are as follows:

IR1. Each process Pi increments Ci between any two successive events. [20].
IR2. a) if event a is the sending of a message m by process Pi then the message
m contains a timestamp Tm = Ci 〈a〉. b)Upon receiving a message m, process
Pj sets Cj greater than or equal to its present value and greater than Tm [20].

We can further expand the definition of Partial ordering. Ties and anomalies will
undoubtedly occur, and in order to avoid such occurrences, a total ordering is defined,
indicated by “⇒”. The definition is as follows:
“if a, is an event in the process Pi and b is an event in the process Pj , then a⇒ b if and
only if either i) Ci 〈a〉 < Cj 〈b〉 or ii) Ci 〈a〉 = Cj 〈b〉 andPi ≺ Pj” [20]. The ”≺” merely
enables a priority system.

2.1.1.3 Physical Clock

Assume the following. If Person1 issues command com1 on computer A to a central server,
calls Person2 and instructs her to issue command com2 on computer B to the same central
server, it is possible for the command com2 to reach the server, and be executed before
com1.

In introducing a physical clock Lamport[20] first defines a number of things:

• I : set of all system events

• I : set of all events including I , and all other relevant external events.

• ⇀: the “happened before” relation for all I . In the above example, the com1⇀
com2, but com1 6→ com2

We can now define a Strong Clock Condition:

Strong Clock Condition. For any event a, b, in I : if a ⇀ b then C 〈a〉 < C 〈b〉 .
Note that ⇀ is stronger than →.
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Using the above, we can define a Physical Clock, where assuming that Ci(t) is a contin-
uous differentiable function of t – with the exception of isolated discontinuities indicating
a clock reset – dCi(t)/dt is the a rate at which the clock is running at time t [20].

Further, in order to ensure the accuracy of Physical Clocks lets us introduce two con-
ditions necessary to guarantee accuracy:

PC1. There exists a constant κ << 1 such that for all i : |dCi(t)/dt − 1| < κ
[20].
PC2. For all i, j : |Ci(t)− Cj(t)| < ε [20].

In other words, physical clocks need to run approximately at the same rate, i.e.
dCi(t)/dt ≈ 1, and also need to be synchronized, meaning Ci(t) ≈ Cj(t).

The Implementation rules can be further specialized in order to address the concerns
of the physical clocks.

IR1’. For each i, if Pi, does not receive a message at physical time t, then Ci

is differentiable at t, and dCi(t)/dt > 0 [20].
IR2’. a)if Pi sends a message m at physical time t, then m contains a timestamp
Tm = Ci(t). b)Upon receiving a message m at time t’, process Pj sets Cj(t

′)
equal to maximum (Cj(t

′ − 0.Tm + µm)[20],

where, µm is defined as the minimum delay of message m that was sent at time t and
received at time t’. It is further stated that while the rules are formal specifications
relating to physical time, each process is only required to know its own clock reading and
the timestamp of the messages it has received[20].

Finally, Lamport offers the Clock Synchronization theorem. It is offered here verbatim
from [20].

Theorem 2.1. Assume a strongly connected graph of processes with diameter d which
always obeys rules IR1’ and IR2. Assume that for any message m,µm ≤ µ for some
constant µ, and that for all t ≥ t0:

a) PC1 holds

b) There are constants τ and ξ such that every τ seconds a message with an unpre-
dictable delay less than ξ is sent over every arc. Then PC2 is satisfied with ε ≈ d(2κτ + ξ)
for all t ' t0 + τd, where the approximations assume µ+ ξ � τ .

A message total delay is defined as vm = t′− t, and minimum delay is defined as µ ≤ 0,
s.t. µm ≥ vm. Finally, unpredictable delay of a message, as used in the theorem, is defined
as ξm = vm − µm.
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2.2 The Network Time Protocol

As previously noted, there are several, commonly accepted methodologies used in clock and
time synchronization. Network Time Protocol is one such method, and it is very prevalent
in today’s network architectures, and commonly used in most networking systems as a way
of ensuring the fidelity of the time on several connected computer node [26].

2.2.1 Definitions

Let us define the elements used to measure, and evaluate the effectiveness and value of the
protocol [24].

• Stability : Maintaining a constant frequency.

• Accuracy : How well a clock time compares with national standards.

• Precision: How finely time can be resolved in a particular timekeeping system.

• Offset : The time difference between two clocks.

• Skew : The frequency difference between two clocks.

• Reliability : The fraction of time a timekeeping system can be kept operating and
connected in a network.

• Synchronization subnet : Series of servers capable of each measuring offset between
their own local clocks neighboring servers.

• Peer : A neighboring server.

• Time servers : Timekeeping systems belonging to a synchronization subnet where
local clocks are maintained.

• Time Synchronization: To set two cocks to agree at a particular epoch with respect
to the Coordinated Universal Time.

• Frequency Synchronization: To adjust clocks on a subnet to run at the same fre-
quency.

• Clock synchronization: To synchronize two clocks in both frequency and time.

10



2.2.2 Requirements & Approaches

The internet traffic may be susceptible to routing and load variations, making distributed
synchronization a challenging task, since stable local-clock oscillators and multiple offset
comparisons over relatively long periods are required in order to establish stable frequency
synchronization [26]. Frequency synchronization is a particularly challenging task when
compared with time synchronization, which requires resource redundancies and proper use
of selection algorithms.

As such, a set of requirements are prescribed for the NTP protocol [26]. There should be
a set of primary reference sources, such as clocks based on atomic clocks or various Global
Navigation Satellite System (GNSS), and synchronized according to national standards,
need should continuously deliver local time based on UTC. Time delivered based on GNSS
will be discussed in greater detail. The continuous modifier is of note since one of the
requirements also calls for the synchronization to occur without interruption in order for
the client to receive updated information at a reliable rate to compensate for expected
wanders in the local clock.

Further, the time servers are required to provide the time with accuracy and precision,
regardless of delay variations [26]. The synchronization subnet must be “reliable and
survival”, regardless of network conditions. The software requirements of this protocol
should not strain the resources of the host system at any level (minimal), and the software
must be Portable. Lastly, the protocol should allow a mechanism for authentication and
to prevent security breaches.

At the time of NTP’s creation, there were several ways through which it was possible to
disseminate and synchronize time to different systems. Using timecode receivers for each
system requiring time synchronization is an option, though it is one of the rather more
expensive options.

Building on this option, it is also possible to use timecode rebroadcast centers, where
the dedicated FM or TV subcarriers rebroadcast the time. The U.S. National Institute of
Standards and Technology (NIST) provides the time to public users through the telephone
lines using the Automated Computer Time Service (ACTS). The system is only available
to users who use an analog mode, which essentially renders the method outdated, and
effectively unusable. The system is only capable of providing the date and general time of
day. It should not, however, be used for precise measurements.

Further, multiple protocols have been proposed, tested, and used over the years, among
them the Daytime Protocol, Time Protocol, ICMP Timestamp message, and IP Timestamp
[26]. Unix based systems may have used the timed daemon, where a master measures the
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offsets of a number of slave hosts and sends periodic corrections to each slave [26] [8].
One of the important aspects of NTP is its compensation of effects of statistical delay
variations in a network. The aforementioned methods do not have such a mechanism, and
which makes precision time distribution in a network environment difficult. This would be
in contravention of one of the requirements set out.

Mills in [26], in introducing the NTP, claims that accurate and reliable time synchro-
nization in a network environment can only be achieved through an integrated design. It
is further stated that the protocol is hierarchical, and made up of loosely coupled “time
servers which exchange periodic update messages maintaining precision timestamps to ad-
just local oscillator phase and frequency” [26].

2.2.3 Time Standards

Coordinated Universal Time, UTC, and International Atomic Time, TAI, are two insepa-
rable standards, which effectively make up the foundation of all units of time around the
globe. They are also the pillars of NTP. In 1967 a second was defined as the period totaling
9,192,631,770 cycles of the radiation, which is the transition of two energy levels from the
ground state of the Cesium 133 atom [4]. The TAI is calculated by tabulating a weighted
average of more than 300 atomic clocks.

In 1970, the Coordinated Universal Time was designed, by an international group of
scientists within the International Telecommunication Union. In 1972, adjustments were
made to the clock so that at midnight on the first day of the year, TAI was exactly 10
seconds ahead of UTC. This was done to ensure that the time difference between the
two was consistent, and accounted for in whole numbers (including accounting for leap
seconds). Further, the UTC was changed so that the tick rate would be consistent with
TAI.

The NTP data is based on time 0h on January 1, 1900, without an assumption of
prior leap seconds, making the start of UTC at midnight of January 1, 1972, equal to
2,272,060,8000.0 [26]. This is the NTP representation of time using 64-bit unsigned fixed-
point numbers, with the first 32 bits indicating the integer part of time, and the last 32
representing the decimal part. The precision of this system is approximately 232 picosec-
onds,
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2.2.4 The Network Time Protocol

The system is composed of various primary and secondary time servers, connected to
clients. There also exists various redundancies which allow multiple paths between each
node, at different levels. Primary time servers are directly connected to, and synced with,
primary time sources [26]. There exists a hierarchical configuration, whereby secondary
servers derive their time from primary servers, and so forth, with decreasing accuracy as
the node level increases with the primary time server at the root of a spanning tree. Each
layer, in which the depth increases of the tree increases is called a stratum [25].

Using the existing timecode receivers, and architecture, with the use of propagation-
delay corrections, synchronization with the primary server on the order of tens of microsec-
onds can be achieved [25]. The distance metric in the synchronization subnet is determined
by, first the stratum, then total round trip path delay to the root, synchronization distance,
and a variant of the Bellman-Ford distributed routing to determine the minimum-weight
spanning tree [26]. Dispersion, or the timekeeping quality of a peer, is calculated by a sun
of weight offset differences. NTP requires that at least one, and preferably several primary
servers be directly connected to external primary time sources. As mentioned, the primary
sources are connected to secondary sources, and the secondary sources are connected to
the synchronization subnets. Figure 2.2 shows an example of a 6 member subnet.

1

2 2

3 3 3

(a)

1

2 3

3 3 3

(b)

Figure 2.2: Subnet Synchronization
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As can be seen in Figure 2.2a, a typical subnet of the NTP synchronization scheme.
Each node is a server, with each stratum number indicating the number of hops to the
external source. In Figure 2.2a, there are 3 strata present, and as a result, the 3rd stratum,
for example, requires 3 hops before reaching the reference time. The darker lines in the
figure indicate the synchronization path between the nodes. The lighter lines indicate
active exchange of timing and synchronization information, though they are not used.
These lines also indicate the possible backup paths.

In Figure 2.2b, we see the case where the connection between two nodes fails. The
backup paths are activated. The paths are automatically reconfigured, and the required
back up paths are activated. As can be seen, the right-side node 2 is demoted to a stratum
3, and the backup path between the left-side stratum 2, and the right-side stratum 3 is
activated, allowing that node to remain a stratum 3, and not be demoted to a stratum 4.

Figures 2.3 and 2.4 show the the organization of the NTP time-server model, as well
as the measurement of delay and offset. These topics are discussed in the following section
2.2.4.1

Network

Data Filter

Data Filter

Data Filter

Peer 
Selection

Clock 
Combining

Loop Filter

VCO

Figure 2.3: Network Time Protocol Flowchart [26]

2.2.4.1 Time and Frequency

A series of packets containing time-stamps are exchange between he various nodes, in order
to establish accuracy, error estimates, round-trip delays, and clock offsets [26]. Figure 2.3
shows the overall behavior of the NTP time-server model [26]. How these calculations are
determined are as follows. Let there be two nodes A and B.

Let Ti, Ti−1, Ti−2, Ti−3, be the time-stamps for the two nodes, and a = Ti−2 − Ti−3,
b = Ti−1−T1 which represent the delay in the travel path and the return path. As a result
we have:
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Ti-2 Ti-1

Ti-3 T

Figure 2.4: Measuring Delay and Offset [26]

δi = a− b and θi =
(a+ b)

2
,

where δi is defined as the round-trip delay, and θi is the offset of the two nodes. As seen
in Figure 2.4, θ is true offset, whose calculation is not difficult. If a ≡ x + θ, where x,
is a positive value indicating the delay transmission delay between two nodes, where a
transmission delay is measured from the moment a packet is transmitted by a node, and
received by the other, the relationship between b, and θ will similarly need to be defined
as b ≤ θ. An inequality, then, can be defined as follows:

b =
a+ b

2
− a− b

2
≤ θ ≤ a+ b

2
+
a− b

2
= a,

which, when simplified, is

θi −
θi
2
≤ θi +

θi
2
.

Put another way, “the true clock offset must lie in the interval of size equal to the measured
delay and centered about the measured offset”[26].

The NTP messages are received on all nodes containing Ti−1, Ti−2, Ti−2 while the Ti is
always readily available as the packet capture time. This way all members of the subnet
can calculate and verify delay and offset measurements, independently. This allows the
architecture to be unconcerned with the order of packet arrivals (all the necessary informa-
tion are readily available in the packets). The system is also, to a degree, unconcerned with
reliable delivery [26]. In the older version, the data filters processed the delays and offsets
to increase accuracy and reduce timing noise, while the updated protocol allows clusters
to establish these values [26][25]. The filtering and selection algorithms allow the PLL to
manage the required phase-corrections. These are processed by the loop filter to control
the local clock, acting here as a Voltage-Controlled Oscillator, VCO. It is the VCO that
provides the phase and time references necessary, to produce the required time-stamps.
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2.2.4.2 Modes of Operation

The protocol entities can operate in five general modes of operation, and three service
classes. These classes are Multicast, Procedure-call, and Symmetric. The modes of opera-
tion are Symmetric Active, Symmetric Passive, Client, Server, Broadcast [25]. The classes
vary based on the number of peers, the direction of synchronization, and retention of state
information [26].

In multicast class allows for high-speed networks, with many clients attached. It is
also intended to be used in an environment where accuracy is not the highest priority.
In the multicast mode, the server announces that it is willing to provide synchronization
to many, but refuses to be synchronized by others, and therefore blocks incoming NTP
messages. The computer willing to provide synchronization announces its readiness to
provide synchronization, and other computers in client mode can determine to evaluate,
and select their source, and receive NTP packets from this source.

In environments where accuracy is of the highest priority, including the use of file-
servers, the procedure-call class is used. This class is also used in the case of multicast
failure. This class increases the priority of the synchronization process, as the client sends
an NTP request packet to a peer, and the server then returns the message with the nec-
essary time-stamps. Again, a client is indicating that it will be accepting synchronization
messages, while a server only provides synchronization but blocks NTP synchronization
messages from others.

The symmetric class allows for simultaneous synchronization, i.e. receiving and pro-
viding synchronization messages from various peers, in accordance with the peer-selection
algorithm. The symmetric active is intended for high-stratum nodes in the subnet, whereas
the symmetric passive mode is for low-stratum nodes, with many peers associated with it.
The association – a loosely coupled connection – is dissolved if the sending node doesn’t
hear back from the other node, however, the association remains if the sender receives at
least one reply message from the recipient [25].

There also exist protocol state variables whose purpose is to preserve time-stamps data.

2.2.4.3 State Variables and Procedures

In the symmetric modes, state variables are persistent and are maintained for each as-
sociation [26]. In modes other than ones in the symmetric class, the state variables are
destroyed as they are not necessary: the state variables are kept until a reply has been
sent.
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Table 2.1 provides a visual representation of the NTP packet-header. While a complete
description of of each field is provided in protocol standard in [25], select fields are described
below as outlined in [26], [24], and [25].

Table 2.1: NTP Packet Header [25]

L1 VN Mode Stratum Poll Precision
Root Delay

Root Dispersion
Reference ID

Reference Timestamp (64 bits)
Originate Timestamp (64 bits)
Receive Timestamp (64 bits)

Transmit Timestamp
Extension Field 1 (variable)
Extension Field 2 (variable)

Key Identifier
dgst (128)

Mode, Stratum, Precision. Indicate current operation mode stratum and local clock
Precision.

Poll Interval. Maximum interval between NTP messages.

Reference Cock Identifier, Reference Time-stamp. Identifies the type of reference clock,
and time of the last update.

Originate Time-stamp. The peer time the last NTP message was originated, copied
from the transmit time-stamp field or (Ti−3).

Receive Time-stamp. The local time when the latest NTP message was received, or
Ti−1.

Transmit Time-stamp. The local time when NTP message was transmitted or Ti−1.

Root Delay, Root Dispersion. Total round-trip delay and dispersion, respectively, to
the reference clock.

The protocol machine maintains the state variables for the above fields, and other state
variables such as Filter Register, used by the data-filtering algorithm, Peer time, used to
control intervals, and Synchronization Source, among other things.
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There are events of note following the expiration of the peer timer. Operator command,
or detected system fault, and NTP message transmission are among events that occur
following the peer timer expiration. For instance, when the peer timer reaches zero the
transmit procedure is initiated, where the peer timer is reset, and the NTP message is sent
[26].

When an NTP message is received, the receive procedure is initiated. The association is
determined, and established, which may result in a persistent association or a transient one
depending on the mode. The raw round-trip delay and clock offset are calculated. Following
a series of calculations, and the best peer in a sequence of raw samples is determined using
a weighted voting procedure, along with an error estimator, otherwise known as filter
dispersion [26].

There also exists an update procedure, which is called when a new set of estimates
become available [26]. Again, similar to before, a weighted voting procedure determines the
best peer. If the best peer is new or has an improved accuracy, a new synchronization source
may be recognized. The new error estimator is called select dispersion. If there exists a
large difference between the local clock and that the time received from the synchronization
source, the local clock is reset, all timing information is removed, and the local PC re-selects
the synchronization source if required [26].

2.2.5 Filtering and Selection Algorithms

Filtering and selection algorithms are integral to the NTP protocol, which acts to improve
the accuracy of estimated delays and offsets between the servers. The complexity of the
algorithms depends on the required accuracy, precision, and the statistical properties of the
transmission path [24]. It is well known that when dealing with the internet “something
somewhere in the system is broken at any given time”. There is also virtually no way
to guarantee that the connection between one standard location to another will involve
a direct path, and a connection will involve multiple hops that can widely vary from one
transmission to the next. Hence the algorithms are not one-size-fits-all, and similarly
cannot be designed for any particular travel path.

There also exist convergence algorithms ‘that reduce the statistical outliers, where NTP
data-filtering algorithm is an example. Then there are consistency algorithms, such as the
peer-selection algorithm, whose task it is to find trusted clock subnet.

In the data-filtering algorithm, assuming that the skew between the server and peer
clocks is relatively small, we let (δ, θ), where δandθ, represent round-trip delay, and clock
offset, respectively, when the path is relatively idle. There is no assumption about the delay
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distribution due to packet queuing. It is our intention to find an estimator from a sample
population over a path with a predetermined interval under normal traffic conditions [26].
The estimator and sample populations are represented as (δ̂, θ̂)and, (δi, θi), respectively.

Described in [26], observations of packet-switching networks indicated that operations
tend to be below the knew of the throughput-delay curve, meaning packet queues are
“small with mostly infrequent surges”. Further, the probability that packet find a busy
path is low due to routing algorithms, and the probability that packets find a busy path
in two directions even lower. An observation can be made that the best offset samples
can be collected with the lowest delays. By designing a minimum filter, where n most
recent samples are selected, namely (δi, θi), ..., (δi−n+1, θi−n+1). As a result, the lowest
delay sample the estimator.

The minimum filter was tested in various conditions, and using several paths, and it
consistently produced lower errors, and, most importantly, the filter lowered maximum
error in high network traffic conditions.

2.2.6 Summary

The principles of the NTP design can be summarized as follows, based on the topics
covered [26]. There is a hierarchical structure which, based on factors such as precision,
accuracy, and robustness, creates a method used for synchronizing multiple computers.
The protocol uses connection-less modes (namely User Datagram Protocol (UDP)), to
minimize latencies. There exists a method for synchronization that is tolerant of inherent
in internet traffic such as dropped packets, and packet re-ordering, among other things, an
uses algorithms based on maximum-likelihood principles, for selection, and source filtering.
There exist redundancies in order to ensure there are back paths, clocks, and sources in
the event failures, and selection algorithm for the selection of said sources for reliability
and accuracy using a weighted-voting process.
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Chapter 3

Methodology

The following is a discussion on the methodologies, and test patterns, and test equipment
used for this thesis.

3.1 Planet Lab

The PlanetLab, operated under the PlanetLab Consortium, is a collection of academic,
industrial, and government institutions cooperating to support and enhance the PlanetLab
overlay network [1]. The Planet-Lab system is made up of a series of computers and servers,
located in various locations around the world, which allow researchers to be connected, and
have access, to computer systems around the world. This empowers these researchers to
conduct live, long-distance experiments, in a real-world environment over the internet.
This allows the researchers to observe how their intended, or envisioned, theories and
experiments behave in real-time outside of a controlled lab environment, and without the
use of simulators.

Further, the motivation for this initiative was to conduct planetary-scale tests on net-
work traffic, and also to allow it to be done by various entities as a community. It is
important to emphasize the community aspect of this, as it allows any member entity
to conduct as many experiments necessary, and as extensively as desired, throughout the
network. This allows for truly planetary-scale experiments to be done on a system that is
nearly fully customizable, and virtually private.

The Planet-Lab network is motivated by, and based on three overarching organizational
principles: Distributed Virtualization, Unbundled Management, Chain of Responsibility
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[28].

A brief description of each description is as follows:

• Unbundled Management:: There are servers that conform to a set of minimum guide-
lines, but which are operated independently of one another, by the various partici-
pating entities.

• Chain of Responsibility: The PlanetLab Consortium does not directly own anything,
neither the servers, the participants, or the nodes. However, there needs to be a chain
of succession, through which, when something goes wrong, errors can be managed,
and corrective action taken. Hence, for each slice there are Principal Investigators,
who are ultimately responsible for the researchers working for them, and whose con-
duct is indirectly supervised by individuals by node owners.

• Distributed Virtualization: The researchers benefit from the ability to have “multiple
points-of-presence”. However, in order to prevent interference between the services
run by each research group, each group is assigned a slice, whose activities are siloed
from others’. When interacting with other nodes, each slice is able to connect to their
own virtual machine, without impacting others’ activities.

The PlanetLab structure is very simple. Here we define and outline the structure and
major components of the PlanetLab. The topics covered will be pertinent, and limited
to, the user-facing environment, and as such, topics and capabilities such as slice creation
service, or the node management service, will not be discussed, though it bears mentioning
that these topics are essential to the proper conduct of the PlanetLab environment as a
whole, and the adequate and proper function of the various nodes and services outlined
hereinafter.

3.1.1 Architectural Components

A slice is a layer of abstraction, allowing the creation of a Virtual machine. Each member of
the PlanetLab – where the term member, narrowly defined in this context, is an individual,
research group, lab, and/or organization, undertaking a research initiative whose works can
collectively be thought of as one isolated entity, and without the need for segregated access
for the sub-divided constituents – can only gain access to the PlanetLab network through
the creation of a slice.
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Essentially, a slice is an account, through which one may gain entry to the PlanetLab
network. Individual researchers participating on the same topic can each have their own
individual accounts on the PlanetLab network, however, they will gain access through one.
Think of a slice as a shared lab computer, where every account holder has administrative
rights; the computer access is restricted to the account holder, however, once access is
granted, the account holders can view, edit, modify, and delete each others’ files. Slice
creations need to be approved by the Principal Investigator. The research outlined in this
thesis was conducted under uwaterloocst.

The PlanetLab is made up of node, which are one or more servers, capable of hosting
one or more Virtual machine. Nodes are located at sites, which are the physical location of
where nodes are. There is no need to delve too deeply into the network requirements of a
node, however, suffice to say that there needs to be a way for external clients to reach the
node. The node can be just one computer, or a cluster of computers, capable of routing
traffic, with enough available physical memory to host a number of virtual machines. The
nodes need also be able to store a prescribed amount of data on their hard-drives. Since
each slice will need to be able to store its data, and develop, run and install applications
on each node, the nodes must have enough space allocated for each slice that resides on it.
In reality, there is enough space to upload, and

Since each slice on the node needs isolated access to the node, therefore, as previously
stated, the node needs to be capable of instantiating a session by creating a Virtual machine
on said machine. Virtual machines are the execution environment in which slices are run
in a node [28]. As outlined, Virtual machines are isolate from each other such that:

• the resources used by one Virtual machine does not impact the performance of an-
other Virtual machine

• one Virtual machine cannot eavesdrop on the activities of another Virtual machine.

• one Virtual machine does not have access to the data of another Virtual machine.

Users are able to remotely access the virtual machine and have the ability to run pro-
grams, scripts, etc. when logging in. The isolation of the virtual machines, allows the
various machines to, as mentioned, create, install, execute, and remove packages and pro-
grams, as necessary, without interfering with others’. However, it should be noted that
the requirement that there exists an ability to isolate two slices – or two virtual machines,
rather – from each other, is not synonymous with blocking all access between the virtual
machines. The virtual machines may, in certain scenarios, need to be able to connect to
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another, a capability that may be provided, if required. This ability extends to all ar-
eas of resource allocation, including dynamic memory, and allocated processing power, or
network bandwidth.

Each virtual machine is capable of using, managing, and maintaining the required re-
sources of a particular slice, and extend the limitations on a particular slice when necessary,
while also ensuring that unused resources are reclaimed, and properly distributed to other
slices. On the servers used by during our experiments, for example, it is shown that

/proc/sys/vm/overcommit_memory: 0

/proc/sys/vm/overcommit_ratio: 50

indicating that it is able to commit up to 50% more memory if necessary. However since
the overcommit_memory options is set to 0 the kernel is able to allocate memory as it

sees fit. However, if the virtual machine overcommit_ratio option was set to 2 , for

example, the memory overcommit ability would have been capped at 50% .

Each node’s capabilities differ from another’s. This is evident by how much Random
Access Memory is available to our slice on different nodes. For example, on University
of Waterloo’s own PlanetLab node, plink, the uwaterloo cst slice was allocated 4,146,704
KiB, or approximately 4 GB, of physical memory. By contrast, the University of ETH
Zürich’s planet2 node, provided our slice with 15,839,832 KiB, or approximately, 16 GB
of physical memory.

The virtual machines are implemented using Linux-Vserver, which provides virtualiza-
tion capability for GNU/Linux-based system, by providing isolation at the kernel-level.
The users can access the nodes by connecting via a UNIX shell. Each user must have an
SSH key pair in order to gain authenticated access. The keys must be in OpenSSH format.
The users upload their public keys to their respective slices on the PlanetLab website, and
can subsequently gain authenticated access to the node UNIX shell.

3.1.2 PlanetLab Equipment

The list of nodes affiliated with the uwaterloo cst are as follows:

• University of Waterloo:
plink.cs.uwaterloo.ca

• Swiss Federal Institute of Technology in Zurich (ETH Zurich):
planetlab2.inf.ethz.ch
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• University of Nevada, Reno (UNR):
planetlab1.unr.edu

• University of Oregon:
planetlab1.cs.uoregon.edu
planetlab2.cs.uoregon.edu
planetlab3.cs.uoregon.edu
planetlab4.cs.uoregon.edu

• Shanghai Jiao Tong University
planetlab-1.sjtu.edu.cn
planetlab-2.sjtu.edu.cn

• National Education and Research Network (RNP):
planetlab2.pop-pa.rnp.br

• Information Sciences Institute, University of Southern California (Postel USC):
planetlab4.postel.org

• Monash University:
pl1.eng.monash.edu.au

It is important to note that there are over 900 nodes presently available on the Planet-
Lab’s Nodes directory. However, not all of these nodes are available all the time (vindicating
Mill’s claim that ”something somewhere in the system is broken at any given time” [26]).
The nodes may fail, be taken offline for maintenance, or simply be unreachable for a variety
of other reasons. Unfortunately, and as a result, the capabilities of the servers, as outlined
below, are limited to the ones that were reachable at the time of writing this thesis.

On average, all servers which were used for test purposes provided the uwaterloo cst
slice with 10 GB of disk quota (hard drive space).

The University of Waterloo’s plink servers use the 64-bit Intel Xeon Processor E5420s,
which have 4 cores, with a base frequency of 2.50 GHz, and 12 MB of L2 cache. As
mentioned, plink also provide ∼ 4 GB of physical memory.

The ETH Zurich’s planetlab2 servers, in comparison, provide up to ∼ 16 GB of physical
memory. The ETH Zurich servers run on 64-bit Intel Xeon Processor E5620s, which have 4
cores and are capable of multithreading, allowing a total of 8 threads per core. The E5620s
have a base frequency of 2.40 GHz, with a maximum Turbo Frequency of 2.66 GHz, 12
MB of SmartCache.
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The University of Oregon’s planetlab1-4 servers run with approximately 4 GB of phys-
ical memory. These nodes utilize the Intel Xeon Processor X3210s, which have a base
frequency of 2.13 GHz with 4 cores, and 8 MB of L2 cache. These processors are not
capable of hyper-threading. They have 64-bit instruction sets.

The Shanghai Jiao Tong University’s planetlab-1&2 nodes offer approximately 4 GB of
physical memory. The servers run on Intel Xeon Processor E5405s, which are similar to
the E5420s, and lie on the same socket type. The E5405s have a base frequency of 2.00
GHz, with 12 MB of L2 cache. They have 4 cores, utilize a capable of 64-bit instruction
set, and do not support hyper-threading, or Turbo Boost.

The Monash University’s pl1 servers are powered by Intel Xeon Processor X3330s,
with 6 MB of L2 cache. Running at 2.66 GHz base frequency, the X3330s have a 64-bit
instruction set, and offer 4 Cores, without hyper-threading technology.

USC’s planetlab4 node offers approximately 4 GB of physical memory. The processor
used is 64-bit Intel Core2 Duo Processor E6550. It has 2.33 GHz of processors base
frequency, with a 4 MB L2 cache, and 2 cores. It is unable to do perform hyper-threading.

Finally, the RNP’s planetlab2 servers provide the users with nearly 4 GBs of physical
memory. The node uses 64-bit Intel Xeon Processor X3323, which has a base frequency of
2.50 GHz. The processor has 6 MBs of L2 cache. The processors do not provide hyper-
threading.

Unfortunately, the UNR servers, which were heavily used in the tests performed dur-
ing our research, were unreachable at the time of the writing of this document. All the
node, with the exception of the Shanghai Jiao Tong University’s node, had a skeleton, or
”thin” version of Fedora Werewolf, release version 8. The kernel is Linux version 2.6.32-
20.planetlab.i686. The Jiao Tong node runs on CentOS, release 6.10. The kernel is version
2.6.32-131.vs230.web10027.xidmask.2.mlab.i686.

3.2 Lab Equipment

The computers on the originating end, i.e. the Test PCs, consist of 4 desktop PCs. The
PCs are named as follows: aklinux4.eng, aklinux5.eng, akkpc8.eng, akkpc9.eng. Henceforth,
these computers, when identification is required, will be referred to as Test PCs[1-4].

All four computers have the Intel Core2 Duo Processor E6850 as their respective Central
Processing Units (CPU). These processors run at 3.00 GHz base frequency, with 4 MB L2
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cache. The processors have 2 cores. They have 64-bit instruction sets. They are not able
to use hyper-threading,

All computers have ASUSTek P5K-VM motherboards. The computers have 4 GiB
of physical memory (using 4 memory modules each). The physical memory is clocked
at 667MHz, and are 64-bit addressable. Each computer is equipped with two Network
Interface Components. One network interface is an onboard Marvell 88E8056 Gigabit
Ethernet Controller with Integrated PHY. The network card supports up to 1 Gbits/s
data rate, and is clocked at 33 MHz.

The second network interface is the 82574L Gigabit Network Connection manufactured
by Intel. The network card is connected via the Peripheral Component Interconnect –
due to Motherboard limitations, the Peripheral Component Interconnect-Express variant
could not be used. This compromise did not come at the cost of compromised results. This
network card supports a data rate of up to 1 Gbits/s. These network cards are IEEE 1588
(also known as Precision Time Protocol) compliant. This enables us to capture the most
accurate time possible when sending and receiving data packets. The Precision Time Pro-
tocol also provides sub-microseconds accuracy. While regular network cards allow only an
accuracy within microseconds (the PlanetLab servers are accurate to only microseconds),
this protocol allows synchronization to within hundreds, if not tens of nanoseconds.

The computers have Ubuntu version 17.10 (Artful Aardvark) as their operating system.
The kernel is Linux version 4.13.0-46-generic. The gcc version on these computers was gcc
version 7.2.0.

Additionally, a fifth computer is used that is not similar to the other four computers.
This is done in order to ensure that we gain a comprehensive and broad understanding of
the results. This PC will henceforth be referred to as Test PC5. The Test PC5 has an
ASUSTek CM6731 CM6431 CM6331 motherboard. The Test PC has an Intel Core i7-3770
Processor as its Central Processing Unit, with 4 cores. The processor has a base frequency
of 3.40 GHz, with a maximum Turbo frequency of 3.90 GHz, with 8 MBs of SmartCache.
The processor has is Intel Turbo Boost Technology 2.0 enabled, and is capable of Hyper-
Threading. It also has 64-bit instruction set.

The computer has 8 GiB of physical memory, using 2 memory modules. The physical
memory is clocked at 1600MHz, and are 64-bit addressable. Again the computer has two
Network Interface Components. One network interface is the onboard RealTek RTL8111
PCI Express Gigabit Controller. The Network card supports up to 1 Gbits/s clocked
at 33 MHz. The other network card is again the 82574L Gigabit Network Connection
manufactured by Intel, as described in the description for the Test PCs[1-4], above. The
operating system, kernel version, and the gcc versions are also the same as outlined above.
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The summary of the above specifications is provided in 3.1.

3.3 Test-bed Set-up

The computers are connected to the University of Waterloo’s network, as administered
by the Information Systems and Technology services, via standard Cat5 or Cat6 Ethernet
(patch) cables. Each Ethernet cable is no more than 30 feet ( ∼<10 meters). Due to
the packet travel distance between our Devices Under Test (the test computers), and the
intended destinations, situated all around the world, the length of the Ethernet cables are
negligible.

The computers are assigned MAC address specific static IPs. The computers connect
to the outside computers by passing transmitting packets within through the internal
intranet. There are about 6-7 hops (typically routers) between each test computer, and
the first external traceroute hop. The average packet round trip delay time, according to
the traceroute, 8.596 ms, however, it is possible for the round trip delay figure to be much
higher, or much lower at the extrema.

Traceroute is a Linux application which traces the number of hops a packet travels
before reaching a destination. Each hop, represents a Network Layer (layer 3) endpoint,
such as a router, or a firewall. As a result, the Data Link Layer (layer 2) stages according
to the Open Systems Interconnection (OSI) model – the Link Layer in TCP/IP model–
do not show up on traceroute. Switches are an example of layer 2 devices. There are
examples of high-performance switches which act as layer 3 devices and can be discovered.
Also, there are certain vendors that allow MAC address probing for intermediary devices,
which can, in fact, discover so-called transparent devices. However, these tend to only be
applicable to proprietary, and vendor-specific devices.

3.3.1 Method 1

Fig. 3.1 shows the overall description and layout of the test-bed. As can be seen in the
figure, the PCs are the starting and the finishing nodes, and traffic is routed through one
or multiple nodes, before being sent back to one of the local Test PCs. The intermediary
nodes can be one, or multiple PlanetLab nodes. The purpose of the multiple nodes was
to ensure that the packets had traveled a substantial distance before having been routed
back. This packet-exchange may have happened in three possible ways: PC 1 to PC 2,
PC 2 to PC 1, or simultaneous exchange of packets between PC 1 and PC 2.
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Figure 3.1: Test Environment Setup

The tests involved in this setup, included, but were not limited to, exchange of packets
with random or predetermined Payloads (data), and varied payload sizes. The predeter-
mined payloads typically involved a series of incrementally increasing packet identifiers in
order to ensure that the sent packets had not been reordered upon receipt.

3.3.2 Method 2

The Method 2 is similar to the previous method, as outlined in 3.3.1. One of the local
Test PCs begins to send packets to one of the PlanetLab servers. The packets are sent
through multiple intermediary nodes. The destination of these data packets is one of the
PlanetLab servers. At the same time, the destination PC is also initiating the transmission
of similarly formed packets and sending them to the same local Test PC.

The payloads, similar to the one outlined in 3.3.1, can be varied, or predetermined,
and used to either make the packets easily identifiable and to remove ambiguity, or can be
random packets simply use to vary the size of the packets.

The purpose of this method was to see whether simultaneous traffic can significantly
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impair the transmission process, in the form of dropped or delayed packets. Further, it was
also envisioned to measure how, and in what manner the travel time would be different
depending on the source of the transmission.

3.3.3 Method 3

The most simple test is perhaps the most crucial of the tests. This method does not
involve any external routes and is very simple in terms of the transmission set up. A Test
PC is connected to another Test PC via an Ethernet Crossover cable. The method of
connection is not very important. The crossover cable does not play a significant role. In
fact, depending on the type of Network Interface Controller, the network card may be able
to handle direct connection between two computers itself using a simple Ethernet cable.
The intention is to connect two computers together, directly.

This enables us to measure how the time difference, and/or the delay between the
packets change.

3.3.4 Method 4

Understanding time differences and time synchronization is crucial. As a result, one of
the tests conducted included two sets of computers. One set consists of two similar test
computers, in terms of processing power, memory, and networking capabilities. The other
set consists of two personal computers that are not similar in processing power. The point
of this method is to ensure that the obtained results were not due to the similarity in the
test equipment. Put another way, it is important to verify that the obtained results are
reproducible, consistent, and transferable.

By transferable here, it is meant that the individual results cannot be result dependant.
Not to exhaust the explanation, though it is crucial to point out that the achieved result
should, ideally, be reproducible not only in an academic setting, but a real-world setting,
and should be commercially applicable.
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Chapter 4

Results & Findings

This chapter presents the findings of selective experiments discussed in 3. The main ob-
jective has been to study and find the most important aspect of the time phenomenon
in network communication, and whether we are able to establish relative time accuracy
without the usage of a central clock.

Additional findings are presented in the A, however, they were discounted from the dis-
cussions in this thesis, since they were not thought to be central to the narrative presented
here.

4.1 Delay over PlanetLab Network

The delay times between various test computers were studied and observed for many
months. Presented in Figures 4.1 and 4.2 are only but a selection of a rich collection
of delay times collected. Beginning with Figure 4.1a, various packets of various sizes are
sent from a local test computer, over the PlanetLab network, and received again at one
of the local Test PCs. The path of the majority of the figures demonstrated here are as
follows:

ak8→ plink.cs.uwaterloo.ca→ planetlab2.inf.ethz.ch→ plink.cs.uwaterloo.ca→ ak5,

or the reverse of this path.

As can be seen, these tests are done at various times, and different days. Further, it is
also observed that the delay times tend to vary depending on the day, or time.
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Also of interest is the delay times through these PlanetLab servers. Figures 4.2f and 4.2e
show the delay times between the ETH servers in Zurich, and Test PC5. Approximately
ten thousand (10000) packets are exchanged between the computer and the server every 10
minutes over 2 days. The two devices simultaneously begin sending packets to the other,
where it is received at the point of destination, and its time of arrival is registered. The
difference between these two clocks gives us the delay. As is evident from the figure, the
delay times tend to change greatly. It further goes to solidify the claim that “errors due
to stochastic network delays dominate; however, it is not usually possible to characterize
network delays as a stationary random process since network queues can grow and shrink
in a chaotic fashion and arriving customer traffic is frequently bursty. [26].”

4.2 Establishing Time Accuracy using Direct Connec-

tion

Presented here are the findings where the two computers are connected directly using a
cross-over cable without the assistance of a switch, hub, or router. The following subsec-
tions will discuss the results between two computers of similar specifications, and dissimilar
specifications.

The figures shown are representative of the average of the difference between the latest
sample point in time and the first capture point, over the span of each sample point.

If M is the collection of all the times sent by the master to the slave, and S is the
collection of all the corresponding local times on the slave, then

Clockdifference =
(si − s1)− (mi −m1)

Ti
,

Ti = Ti.

Unless indicated otherwise, T, for the purposes of these tests is 30 seconds.

The figures will also show the fluctuations between each sample point, i.e.:

fluctuations =
(si − si−1)− (mi −mi− 1)

T
,

over the same T.
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4.2.1 Similar Computers

Presented here are the findings for two similar test computers. Similar test computers are
defined here as two of the 4 primary test computers as outlined in 3.2.

Figure 4.3a shows the results of the experiment conducted with two computers of the
same specifications connected directly together. However, it is obvious that this is not the
intended result. On closer inspection of Figure 4.3b, which shows the fluctuations between
each packet, it is clear that there are 5 dropped packets. Meaning, the receiver never
received the packets for whatever reason. The dropped packets have skewed our results,
even though the underlying foundation is sound.

Figures 4.4 and 4.5 show the result of the experiment, when the dropped packets are
replaced with the average elapsed time between each packet, approximately 30 seconds.
The fluctuations shown in 4.5 confirm that the method is consistent with the overall trend
and does not have a significant, distorting impact on our results.

In Figure 4.4, the normalized difference over 1 second based on the last measurement
is 3.824e-7. The calculated mean of the normalized difference of the difference clocks (i.e.
mean of the fluctuations) is 3.8224e-7, with the variance of the same figures being 2.7389e-
12. Further, the results are collected over 2012 sample points, with the period between
each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The duration of the
experiment is approximately 16 hours and 46 minutes

Figure 4.6 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.7 renders the fluctuations between
each sent packet. In Figure 4.4, the normalized difference over 1 second based on the last
measurement is -5.545e-7.

The results are collected over 3602 sample points, with the period between each sam-
ple being 30 seconds. The duration of the experiment is approximately 30 hours. The
calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is -5.543e-7, with the variance of the same figure being 1.9272e-12.
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4.2.2 Dissimilar Computers

Presented here are the findings for two dissimilar test computers. Dissimilar test computers
are defined here as one of the 4 primary test computers as outlined in 3.2, connected to
the computer outlined in 3.2, which does not have the same hardware components as the
4 primary test computers. The dissimilar computer, in comparison to the other 4 primary
test computers will, henceforth, be referred to as the Non-Standard (NS) computer.

Figure 4.8 shows the results of the experiment conducted with two computers that are
connected together using a direct connection with the help of a cross-over cable. Figure
4.9 displays the fluctuations in delay between each packet exchange.

In Figure 4.8, the normalized difference over 1 second based on the last measurement
is -1.703e-5. The calculated mean of the normalized difference of the difference clocks (i.e.
mean of the fluctuations) is -1.702e-5, with the variance of the same figures being 7.2919e-
13. Further, the results are collected over 2557 sample points, with the period between
each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The duration of the
experiment is approximately 21 hours and 18 minutes.

Figure 4.10 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.11 renders the fluctuations be-
tween each sent packet. In Figure 4.10, the normalized difference over 1 second based on
the last measurement is 1.723e-5.

The results are collected over 3972 sample points, with the period between each sam-
ple being 30 seconds. The duration of the experiment is approximately 33 hours. The
calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is 1.722e-05, with the variance of the same figure being 3.255e-12.
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4.3 Establishing Time Accuracy Over the Network:

UW Network

The following tests were completed within the University of Waterloo network. As dis-
cussed previously, the tests are varied between two similar computers, and also two dis-
similar computers. Further, a simple traceroute was used to see how many hops the
computers needed to make, and it was indicated that the two computers encountered no
significant delay in their traffic. This means the traffic would have only traveled through
level-2 devices under the OSI model, such as network switches.

4.3.1 Similar Computers

The following are the results of similar Test PCs connected over the UW network, starting
with Figure 4.12, which displays the difference of the difference between the slave’s last
received packet and its first, and the master’s last sent packet and its first, average and
normalized over 1 second, and traced over time, as described in 4.2.1. Figure 4.13 displays
the fluctuations in delay between each packet exchange.

As can be seen in Figure 4.12, the normalized difference over 1 second based on the
last measurement is -6.544e-7. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is -6.539e-7, with the variance of the same
figures being 5.538e-17. Further, the results are collected over 1509 sample points, with
the period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME .
The duration of the experiment is approximately 12 hours and 35 minutes.

Figure 4.14 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.15 renders the fluctuations be-
tween each sent packet. In Figure 4.14, the normalized difference over 1 second based on
the last measurement is 6.55e-7.

The results are collected over 400 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 3 hours and 20 minutes.
The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is 6.533e-7, with the variance of the same figure being 5.701e-13.
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4.3.2 Dissimilar Computers

The following are the results of dissimilar Test PCs connected over the UW network,
starting with Figure 4.16, per the method outlined in 4.2.1. Figure 4.17 displays the
fluctuations in delay between each packet exchange.

As can be seen in Figure 4.16, the normalized difference over 1 second based on the
last measurement is 1.748e-5. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is 1.747e-5, with the variance of the same
figures being 4.174e-13. Further, the results are collected over 1526 sample points, with
the period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME .
The duration of the experiment is approximately 12 hours and 40 minutes.

Figure 4.18 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.19 renders the fluctuations be-
tween each sent packet. In Figure 4.18, the normalized difference over 1 second based on
the last measurement is -1.731e-5.

The results are collected over 280 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 2 hours and 20 minutes.
The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is -1.725e-4, with the variance of the same figure being 1.717e-12.
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4.4 Establishing Time Accuracy Over the PlanetLab

Network with 1 Node: University of Oregon

This section presents the experiments conducted using the PlanetLab network to connect
to the PlanetLab servers at the University of Oregon in Eugene, OR. The tests are varied
between two similar computers, and also two dissimilar computers. Further, a simple
traceroute was used to see how many hops the computers needed to make, and there
are about 30 hops between Test PCs, and their destination. The two routes are also
different. The breakdown of these paths are shown in B

4.4.1 Similar Computers

The following are the results of similar Test PCs connected over the PlanetLab network,
starting with Figure 4.20, which displays the difference of the difference between the slave’s
last received packet and its first, and the master’s last sent packet and its first, average and
normalized over 1 second, and traced over time, as described in 4.2.1. Figure 4.21 displays
the fluctuations in delay between each packet exchange.

As can be seen in Figure 4.20, the normalized difference over 1 second based on the
last measurement is 3.802e-7. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is -3.789e-7, with the variance of the same
figures being 1.064e-9. Further, the results are collected over 292 sample points, with the
period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The
duration of the experiment is approximately 2 hours and 25 minutes.

Figure 4.22 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.23 renders the fluctuations be-
tween each sent packet. In Figure 4.22, the normalized difference over 1 second based on
the last measurement is -6.381e-7.

The results are collected over 333 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 2 hours and 45 minutes.
The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is -6.362e-7, with the variance of the same figure being 9.483e-10.
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4.4.2 Dissimilar Computers

Continuing the experiments over the PlanetLab network Figure 4.24 shows the results
of the first of experiments involving the dissimilar computers with a connection to the
University of Oregon PlanetLab servers, and calculated per the method outlined in 4.2.1.
Figure 4.25 displays the fluctuations in delay between each packet exchange.

As can be seen in Figure 4.24, the normalized difference over 1 second based on the
last measurement is -1.755e-5. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is -1.748e-5, with the variance of the same
figures being 1.105e-9. Further, the results are collected over 280 sample points, with the
period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The
duration of the experiment is approximately 2 hours and 20 minutes.

Figure 4.26 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.27 renders the fluctuations be-
tween each sent packet. In Figure 4.26, the normalized difference over 1 second based on
the last measurement is 1.725e-5.

The results are collected over 342 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 2 hours and 20 minutes.
The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is 1.720e-5, with the variance of the same figure being 8.272e-10.
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4.5 Establishing Time Accuracy Over the PlanetLab

Network with 2 Nodes: University of Oregon,

Monash Universty

This section, similar to Section 4.4, presents the experiments conducted using the Planet-
Lab network. Here we are utilizing the PlanetLab servers at the University of Oregon in
Eugene, OR., and Monash University in Melbourne, Australia. The computers are con-
nected to the servers at one of the two locations and then rerouted to other location, in
order to extend the travel time. Essentially, all packets that arrive at one of the servers, are
forwarded to the subsequent server. The tests are varied between two similar computers,
and also two dissimilar computers. Further, a simple traceroute was used to see how
many hops the computers needed to make, and there are nearly 46 hops between Test PCs,
and their destination. The paths taken by each computer are different from one another.
The breakdown of these paths are shown in B

4.5.1 Similar Computers

The following are the results of similar Test PCs connected over the PlanetLab network,
starting with Figure 4.28, which displays the difference of the difference between the slave’s
last received packet and its first, and the master’s last sent packet and its first, average and
normalized over 1 second, and traced over time, as described in 4.2.1. Figure 4.29 displays
the fluctuations in delay between each packet exchange.

As can be seen in Figure 4.28, the normalized difference over 1 second based on the
last measurement is -7.226e-07. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is -7.191e-7, with the variance of the same
figures being 1.268e-9. Further, the results are collected over 211 sample points, with the
period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The
duration of the experiment is approximately 1 hour and 45 minutes.

Figure 4.30 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.31 renders the fluctuations be-
tween each sent packet. In Figure 4.30, the normalized difference over 1 second based on
the last measurement is 6.155e-7.

The results are collected over 573 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 4 hours and 50 minutes.
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The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is 6.144e-7, with the variance of the same figure being 1.88e-9.
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4.5.2 Dissimilar Computers

The following are the results of similar Test PCs connected over the PlanetLab network,
starting with Figure 4.28, which displays the difference of the difference between the slave’s
last received packet and its first, and the master’s last sent packet and its first, average and
normalized over 1 second, and traced over time, as described in 4.2.1. Figure 4.29 displays
the fluctuations in delay between each packet exchange.

Continuing the experiments over the PlanetLab network Figure 4.32 shows the results
of experiments as outlined in 4.5 though involving the dissimilar computers, and calculated
per the method outlined in 4.2.1. Figure 4.33 displays the fluctuations in delay between
each packet exchange.

As can be seen in Figure 4.32, the normalized difference over 1 second based on the
last measurement is 1.715e-5. The calculated mean of the normalized difference of the
difference clocks (i.e. mean of the fluctuations) is 1.707e-5, with the variance of the same
figures being 1.604e-9. Further, the results are collected over 217 sample points, with the
period between each sample being 30 seconds, as calculated by the CLOCK_REALTIME . The
duration of the experiment is approximately 1 hour and 50 minutes.

Figure 4.34 show the results of the same experiment, however, with the master-slave
relationship reversed between the Test PCs. Here we have the previously transmitting
computer receiving the packets, and vice-versa. Figure 4.35 renders the fluctuations be-
tween each sent packet. In Figure 4.34, the normalized difference over 1 second based on
the last measurement is 1.725e-5.

The results are collected over 531 sample points, with the period between each sample
being 30 seconds. The duration of the experiment is approximately 2 hours and 20 minutes.
The calculated mean of the normalized difference of the difference clocks (i.e. mean of the
fluctuations) is 1.720e-5, with the variance of the same figure being 8.272e-10.
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4.6 Summary

Table 4.1 provides a summary of the values differences between test computers normalized
to 1 second. Further, provides a breakdown of the number of samples gathered per exper-
iment. The table summarizes the Normalized Difference (ND) between the difference of
the master’s first and last samples, and slave’s.

Table 4.1: Summary of normalized values in difference between the Test PCs in per second

Test
Similar DUTs Dissmilar DUTs

ND (/sec) Samples ND (/sec) Samples
Direct 3.824e-7 2012 -1.703e-5 2557
Direct Reverse -5.545e-7 3602 1.723e-5 3972
UW -6.544e-7 1509 1.748e-5 1526
UW Reverse 6.55e-7 400 -1.731e-5 280
PLab: 1 Node 3.802e-7 292 -1.755e-5 280
Plab: 1 Node
Rev

-6.381e-7 333 1.725e-5 342

PLab: 2 Nodes -7.191e-7 211 1.715e-5 217
PLab: 2 Nodes
Rev

6.155e-7 573 1.725e-5 531
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Chapter 5

Discussion and Conclusion

This section will provide a discussion on the results rendered hereinbefore.

5.1 Discussion

Network Time Protocol, is a comprehensive clock-synchronization method, complete with
an Internet Engineering Taskforce standard, and multiple open-source implementations,
including, but not limited to chrony, and a Request For Comments proposal already pend-
ing for an extension to the 4th version of the NTP [27]. The protocol’s strengths reside
in its ability for multiple fall-backs and contingency time-servers, security considerations
and authentication protocols, and, above all, simplicity in implantation. The design can
also be described as highly resilient against errors. While it is generally true that as the
stratum level increases so does the degree of inaccuracy of the local clock compared to the
reference clock, the lower-stratum clients can synchronize against multiple same or lower
strata servers, and choose the most stable time source.

The setup procedure is highly simplified, especially if there exists unrestricted access
to the Internet. The client need simply install the client software, provide the necessary
administrative privileges, and the entire process becomes, essentially, Plug and Play (PnP).
In specialized settings, or where modifications are of necessity, the adjustments are simple
and objectively straightforward; the system administrator need only enter the sources of
time, as required or desired, within a given framework or intranet.

In cases where a central reference clock is unavailable, or where the infrastructure is
required to be siloed, or perhaps segregated from an external network, there is a protocol
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in place to appoint one time-server as the reference point and to create the subsequent
strata. This allows for the intranet to be synchronized within their own framework, and
allow for external correction once connected to a true external reference clock. This ability
is desired in cases where there is an intermittent or non-ideal connection between the
stratum 1 time-servers, and the reference clocks.

The centralized synchronization with the explicit use of a reference clock, and its inher-
ent hierarchical design, while considered as strengths in design considerations, may, in fact,
prove to be the Achilles heel of this protocol in certain specialized implementations. While,
all things considered, these implementation scenarios are not the true, intended purpose of
this, and other similar protocols, especially with their inherent centralized synchronization
mechanism, it does leave room for improvement and further research.

Let us consider some scenarios where a centralized synchronization method may not be
ideal, or practicable. There are many examples, from the highly integrated and intercon-
nected, to the sparse and decentralized applications, where a centralized and hierarchical
time-synchronization method can be undesirable, or at times outright impractical. In ap-
plications that involve monetary transactions, ranging from the mundane, such as in a
shopping mall, to to the sophisticated such as High-Frequency Trading (HFT), timing is
crucial, if not critical, in the execution of a transaction or a trade. While a common un-
derstanding or definition of time is a shared necessity in all scenarios involving monetary
transactions, real-time time-synchronization is not the only way to achieve this common
understanding of shared time.

If we consider the example of High-Frequency Trading for instance, there are numerous
clients feeding into a centralized clearinghouse. The clearinghouses, then, prioritize the
trades and resolve discrepancies between their clients, and, in turn, process their trades
through their pertinent trading exchanges. While it is presumably true that most clients,
and indeed most clearing houses have sophisticated mechanisms, and the network traffic
bandwidth for processing these transactions, network delays, time-synchronization break-
downs, and dropped packets are a reality of Internet network traffic. As a result of such
scenarios, it would be prudent to institute other means of reaching a common understand-
ing of shared time.

As an example for decentralized applications, let us consider Internet of Things (IoT)
devices. IoT devices, especially those used for data collection in research, may go days,
weeks, or even months and years without being synchronized with a central time server.
This may be due to a plethora of reasons; energy conservation in sparsely situated minia-
ture probes is an issue of concern in large, real-world data collection efforts. Another
reason may be the remoteness of these devices. Lack of access to active, continuous time-
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synchronization is a legitimate concern and may prove detrimental in research.

5.2 Contribution and Proposed Implementation

System time, used here in a general system and architecture agnostic manner, can be
derived from several sources, including the Time Stamp Counter, crystal oscillator on a
Real Time Clock (RTC) Integrated Circuit (IC), and the High Precision Event Timers.
Therefore, the progression of time, and time-keeping in general, can vary from device
to device, depending on hardware limitations, and software implementations, as well as
fall-back procedures in place in cases of failure. As a result, time progresses in a non-
universal method, especially if used in cross-platform settings, with non-uniform, non-
standard hardware.

We have shown here that a reasonable and credible drift factor can be attained. We
have succeeded in demonstrating that two computers can establish how fast one’s clock
progresses compared with another’s. While it has long been clear that it is difficult to
synchronize two system clocks, we have been able to demonstrate that the drift factor
itself can be measured to a reliable degree, and utilized in synchronizing the two systems
absent a reliable connection between the two. While modern systems do utilize the wander
factor, it is not actively used in synchronization.

The implementation of this method enables users of this method to calculate the correct
time at the time of time-stamping (or after the operation has completed) relative to another
computer. The idea can be described thus: two computers can measure their relative
time progression differences. Both systems will retain these measured time wander. The
non-primary system, or slave system, synchronizes its local time with the primary, or
master, system. The systems are subsequently disconnected from one another. The master
can check in with the slave from time to time to re-synchronize, collect the data, etc.
However, the point remains that at this point both the master and the slave is capable
of approximating, with good accuracy, the local time of the other computer. If the slave
computer is collecting data and wishes to time-stamp the data based on the local time of
the master system, it can find out the elapsed time since disconnection, and apply the drift
factor based on the measurement. Similarly, the master computer can, at time of data
collection or upon successful reestablishing connection with the slave, ex post facto.
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5.3 Conclusion

In this thesis, we have studied the behavior of the local clocks of different computers and
established that the local times of two systems can vary. We have further established that
the factor by which two computer’s local times varies can be measured with great accuracy.
Finally, we have shown that this factor is relatively stable. We have hypothesized that
these methods can be utilized to predict, and subsequently correct, with a high degree of
reliability, the time of an associated computer. It should be noted that while the benefits
of this method may be minimal on the small scale, when applied on large scales, can be of
great worth.

Active time-synchronization of hundreds, if not thousands, of systems, is difficult and
arduous work. Since in the applications envisioned, there are many systems in need of
time-synchronization relative to a central system, with scant or no active connectivity, and
where active-synchronization may fail or be delayed to many factors, this method can be
of great benefit. The method offered here also shows that the devices that would use this
method can benefit from lower system overhead. The lower system over-head, then frees
up the limited resources, be it bandwidth, memory, energy, to be used where they would
be of greater use.
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Chapter 6

Future Work

The method, and the underlying research, presented here create a solid foundation for
expansion and further development. Here we outline the recommended work for any further
research and development.

First, the methods outlined here need to be tested further on different platforms in
order to ensure that the method would be functional in a cross-platform setting. It is
important to note that, especially if specialized field testing settings are to be considered,
the available hardware may not permit for the presence of an RTC on the platform. The
same tends to apply to hand-held devices.

As a corollary of the above, any test much also factor in newer processor architectures.
As an example, the impact of multi-core devices with turbo boost functionalists must be
tested in order to see if any difference can be seen in the performance. These factors may
skew the results.

Second, further research needs to be conducted on the impact of the surrounding en-
vironment on the outcome of such methods. Temperature, humidity, and other environ-
mental factors can have detrimental consequences on the operation of a computer system,
regardless of the presence of piezoelectric elements such as those used in RTC oscillator
circuits.

Third, any real-world implementation of this method needs to consider network travel
time, and factor this delay into the calculation. The method will further need to be
tested within broader, more complex, network structures. Any robust time synchronization
method must be robust enough to handle issues such as dropped packets, packet reordering,
network path failures, and further tested on varied network load and usage conditions.
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Lastly, a cost-benefit analysis should be conducted with respect to the system over-
head, and performance impacts in comparison to such implementations as Network Time
Protocol, and Precision Time Protocol. This should be tested in real-time time-stamp
correction, as well as corrections.
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Glossary

Clock Condition If any event a comes before b, then a has occurred in the past, relative
to b. Therefore, for any events a, b: if a→ b, then C 〈a〉 < C 〈b〉. 7

Coordinated Universal Time The universal time agreed upon and implemented in
1970 and 1972, respectively, and currently defined by ITU Recommendation ITU-
R TF.460-6. It is not adjusted for daylight savings time 12

Crossover cable A simple patch cable where the bi-directional data wires are switches on
either side in order to facilitate the direct connection between two Network Cards.
These cables were required in order network cards, however, the new generation
of NICs are typically capable of handling direct connections without the need for
specialized cables. 30

Distributed networks A collection of distinct entities which are spatially separated, and
which communicate with one another through a communication network, 5

Epoch Universally agreed upon start of time in all computing systems beginning at mid-
night January 1, 1970. 2

High-Frequency Trading High speed securities trades that are effectuated using highly
complex computer algorithms, and are often associated with high-speed computers,
high volumes, and high securities turn-over rates, etc. 79

International Atomic Time In 1967 a second was defined as the period totaling 9,192,631,770
cycles of the radiation, which is the transition of two energy levels from the ground
state of the Cesium 133 atom. The TAI is calculated by tabulating a weighted average
of more than 300 atomic clocks. 12
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Network Time Protocol A major standards developed to address the challenges in-
volved with time synchronization. 2, 10, 78, 83

node one or more servers, capable of hosting one or more virtual machine 22

Partial ordering It is sometimes not possible to determine whether a happened before
b, due to a number of externalities. As a result, in relation to an event, it is possible
to determine that some events did indeed take place prior to another, though the
rest are indeterminable. 5, 6, 8

Payload The data portion a sent packet, with the header section, or other meta-data
excluded 29

PlanetLab A collection of computers, and servers, located in various locations around the
world which enable researchers in academic, industrial, and government institutions
to be connected, and have access, to systems around the world in order to conduct
research on the nature of the internet, and connectivity. 20

Portable Portability is ability to transfer a computer program from one system to another
without a need for modification. A program that is system, or OS agnostic is portable.
11

Sensor Network Specialized sensor networks that can be set up without an existing
infrastructure, and as such need to communicate using a common notion of time. 4

slice A slice is a layer of abstraction, allowing the creation of a Virtual machine. 21

Virtual machine The emulation of a computer architecture which provides complete us-
ability, and functionality. It further enables several environments to exist on one
machine without interfering with one another, essentially placing the different envi-
ronments into silos. 21, 22

Voltage-Controlled Oscillator An electronic oscillator whose oscillation frequency is
controlled by a voltage input. 15

Wireless Sensory Network Similar to the Sensory Network, though connected without
the use of hard connections, such as ethernet 4

88



Abbreviations

ACTS Automated Computer Time Service 11

GNSS Global Navigation Satellite System 11

IC Integrated Circuit 80

IoT Internet of Things 79

RTC Real Time Clock 80, 82

UDP User Datagram Protocol 19
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List of Symbols

I set of all events including I , and all other relevant external events 8

I set of all system events 8

⇀ the “happened before” relation for all I 8

→ the happened before relation on the set of events of a system as the smallest relation
which satisfies the 6

⇒ total ordering 8
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Appendix A

Additional Results

Here we are presenting the results of additional testing for similar test computers conducted
over the network.
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Figure A.1: The Time Accuracy between two Similar Test Computers
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Figure A.2: The Close up of Time Accuracy between two Similar Test Computers in A.1
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Figure A.4: Simple moving average with 60 sample window applied to A.1
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Figure A.5: Simple moving average with 120 sample window applied to A.1
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Appendix B

Trace Route Results

Here, we present the result of traceroute measurements to see how many hops exist between
nodes of importance.

B.1 Traceroute from PC9 to UW PlanetLab Server

traceroute to plink.cs.uwaterloo.ca (129.97.74.12), 30 hops max, 60 byte

packets↪→

1 ceit-exsw01-ecenet.uwaterloo.ca (129.97.90.1) 0.885 ms 0.935 ms

0.926 ms↪→

2 v490-eng-rt-e2.ns.uwaterloo.ca (172.16.32.193) 4.116 ms 4.145 ms

4.170 ms↪→

3 te4-3-dist-rt-mc.ns.uwaterloo.ca (172.18.7.17) 0.621 ms 0.705 ms

0.794 ms↪→

4 v490-mc-cs2.ns.uwaterloo.ca (172.16.15.2) 4.898 ms 4.924 ms 4.932

ms↪→

5 v490-dc-cs2.ns.uwaterloo.ca (172.16.3.6) 7.436 ms 7.423 ms 7.442

ms↪→

6 plink.cs.uwaterloo.ca (129.97.74.12) 0.218 ms 0.231 ms 0.296 ms
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B.2 Traceroute from plink in UW→ ETH

traceroute to planetlab2.inf.ethz.ch (192.33.90.67), 30 hops max, 60 byte

packets

1 dc3558-cs2-csnet.uwaterloo.ca (129.97.74.1) 6.243 ms 6.240 ms

6.227 ms↪→

2 te2-7-dist-rt-phy.ns.uwaterloo.ca (172.16.3.5) 0.693 ms 0.680 ms

0.896 ms↪→

3 xe1-0-0-u11-dist-sa-mc-trust.ns.uwaterloo.ca (172.31.0.149) 0.643 ms

0.612 ms 0.606 ms↪→

4 te2-12-dist-rt-mc-global.ns.uwaterloo.ca (172.31.0.161) 1.590 ms

1.577 ms 1.310 ms↪→

5 te2-16-cn-rt-mc.ns.uwaterloo.ca (172.16.31.117) 0.791 ms 0.770 ms

0.993 ms↪→

6 gi0-0-1-ext-rt-rac.ns.uwaterloo.ca (172.16.31.109) 1.476 ms 3.750

ms 3.927 ms↪→

7 216.191.167.37 (216.191.167.37) 2.410 ms 2.626 ms 2.666 ms

8 199.212.160.218 (199.212.160.218) 2.956 ms 2.949 ms 2.932 ms

9 ae2.zayo.mpr2.tor1.ca.zip.zayo.com (64.125.14.230) 2.975 ms 2.961

ms 2.981 ms↪→

10 ae13.cr1.lga5.us.zip.zayo.com (64.125.30.208) 84.372 ms 84.342 ms

84.181 ms↪→

11 ae5.cs1.lhr11.uk.eth.zayo.com (64.125.29.127) 84.166 ms 84.137 ms

84.168 ms↪→

12 ae0.cs1.lhr15.uk.eth.zayo.com (64.125.29.119) 84.404 ms 84.145 ms

84.431 ms↪→

13 ae2.cs1.ams10.nl.eth.zayo.com (64.125.29.16) 84.425 ms 84.364 ms

84.206 ms↪→

14 ae3.er1.ams1.nl.zip.zayo.com (64.125.31.105) 84.162 ms 84.128 ms

88.907 ms↪→

15 swiCE1-100GE-0-3-0-1.switch.ch (80.249.208.33) 97.135 ms 97.660 ms

97.133 ms↪→

16 swiCE4-100GE-0-0-0-0.switch.ch (130.59.36.6) 97.416 ms 97.390 ms

97.387 ms↪→

17 swiBE3-100GE-0-1-0-1.switch.ch (130.59.37.145) 99.637 ms 99.610 ms

99.326 ms↪→
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18 swiBF1-100GE-0-0-0-1.switch.ch (130.59.39.78) 99.570 ms 99.558 ms

99.530 ms↪→

19 swiEZ3-100GE-0-1-0-0.switch.ch (130.59.37.6) 101.263 ms 101.259 ms

101.220 ms↪→

20 swiEZ1-P3.switch.ch (130.59.36.33) 100.947 ms 136.371 ms *

21 rou-open-net-switch.ethz.ch (192.33.92.161) 101.654 ms 101.650 ms

101.094 ms↪→

22 planetlab2.ethz.ch (192.33.90.67) 100.877 ms 100.818 ms 100.846 ms

B.3 Traceroute from plink in UW→ Monash

traceroute to pl1.eng.monash.edu.au (130.194.252.8), 30 hops max, 60 byte

packets↪→

1 dc3558-cs2-csnet.uwaterloo.ca (129.97.74.1) 4.602 ms 4.614 ms

4.602 ms↪→

2 te2-7-dist-rt-phy.ns.uwaterloo.ca (172.16.3.5) 0.829 ms 0.816 ms

0.804 ms↪→

3 * xe1-0-0-u11-dist-sa-mc-trust.ns.uwaterloo.ca (172.31.0.149) 0.720

ms *↪→

4 te2-12-dist-rt-mc-global.ns.uwaterloo.ca (172.31.0.161) 1.447 ms

1.386 ms 1.377 ms↪→

5 te2-16-cn-rt-mc.ns.uwaterloo.ca (172.16.31.117) 1.117 ms 1.104 ms

1.080 ms↪→

6 te0-0-2-0-ext-rt-mc.ns.uwaterloo.ca (172.16.32.149) 1.556 ms 1.439

ms 3.703 ms↪→

7 (66.97.28.65) 1.642 ms 1.635 ms 1.451 ms

8 (66.97.16.109) 4.934 ms 4.930 ms 4.739 ms

9 (66.97.16.26) 4.705 ms 4.702 ms 4.941 ms

10 toro1rtr1.canarie.ca (205.189.32.41) 4.480 ms 4.480 ms 4.455 ms

11 wnpg1rtr1.canarie.ca (205.189.32.180) 25.708 ms 25.705 ms 25.678

ms↪→

12 wnpg2rtr1.canarie.ca (205.189.32.60) 25.924 ms 25.901 ms 25.864 ms

13 clgr2rtr1.canarie.ca (205.189.32.176) 40.111 ms 40.064 ms 40.086

ms↪→
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14 vncv1rtr1.canarie.ca (205.189.32.174) 51.029 ms 51.031 ms 50.994

ms↪→

15 vctr3rtr1.canarie.ca (205.189.32.198) 52.715 ms 52.709 ms 52.681

ms↪→

16 sttl1rtr1.canarie.ca (205.189.32.182) 54.698 ms 54.670 ms 54.699

ms↪→

17 aarnet-1-is-jmb-776.lsanca.pacificwave.net (207.231.241.149) 79.230

ms 79.145 ms 79.140 ms↪→

18 et-1-2-1.pe1.a.koa.aarnet.net.au (113.197.15.86) 125.099 ms 125.100

ms 142.142 ms↪→

19 et-1-0-0.pe1.tkpa.akl.aarnet.net.au (113.197.15.84) 213.301 ms

213.301 ms 213.110 ms↪→

20 et-0-1-0.199.pe1.wnpa.akl.aarnet.net.au (113.197.15.70) 213.123 ms

213.097 ms 213.102 ms↪→

21 et-2-1-0.pe1.sxt.alxd.nsw.aarnet.net.au (113.197.15.76) 213.828 ms

213.618 ms 213.301 ms↪→

22 113.197.15.158 (113.197.15.158) 213.308 ms 213.347 ms 213.340 ms

23 xe-1-1-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.199) 214.310 ms

216.095 ms 214.336 ms↪→

24 et-5-3-0.pe1.wmlb.vic.aarnet.net.au (113.197.15.9) 225.808 ms

225.830 ms 225.795 ms↪→

25 et-0-1-0.pe1.nbpk.vic.aarnet.net.au (113.197.15.27) 226.030 ms

226.098 ms 226.095 ms↪→

26 xe-5-0-6-211.pe1.nbpk.vic.aarnet.net.au (138.44.64.221) 226.323 ms

226.361 ms 226.322 ms↪→

27 * * *

28 * * *

29 pl1.eng.monash.edu.au (130.194.252.8) 226.379 ms 226.307 ms

226.340 ms↪→

101



B.4 Traceroute from plink in UW→ UOregon

traceroute to planetlab4.cs.uoregon.edu (128.223.8.114), 30 hops max, 60

byte packets↪→

1 dc3558-cs2-csnet.uwaterloo.ca (129.97.74.1) 5.603 ms 5.580 ms

5.566 ms↪→

2 te2-7-dist-rt-phy.ns.uwaterloo.ca (172.16.3.5) 0.543 ms 0.772 ms

0.779 ms↪→

3 xe1-0-0-u11-dist-sa-mc-trust.ns.uwaterloo.ca (172.31.0.149) 0.503 ms

0.488 ms 0.457 ms↪→

4 te2-12-dist-rt-mc-global.ns.uwaterloo.ca (172.31.0.161) 1.440 ms

1.429 ms 1.649 ms↪→

5 te2-16-cn-rt-mc.ns.uwaterloo.ca (172.16.31.117) 0.914 ms 0.862 ms

0.883 ms↪→

6 te0-0-2-0-ext-rt-mc.ns.uwaterloo.ca (172.16.32.149) 1.572 ms 1.689

ms 4.196 ms↪→

7 unallocated-static.rogers.com (72.142.108.181) 1.693 ms 1.890 ms

2.223 ms↪→

8 24.156.146.189 (24.156.146.189) 7.947 ms 7.693 ms 7.668 ms

9 9044-cgw01.wlfdle.rmgt.net.rogers.com (209.148.230.45) 4.895 ms

4.932 ms 4.922 ms↪→

10 209.148.230.26 (209.148.230.26) 24.721 ms 64.71.241.110

(64.71.241.110) 24.691 ms (209.148.237.5) 20.143 ms↪→

11 eeq-exchange.tr01-asbnva01.transitrail.net (206.126.236.45) 20.128

ms 20.190 ms 20.181 ms↪→

12 ae-20.4079.rtsw.clev.net.internet2.edu (162.252.70.129) 25.906 ms

25.920 ms 25.891 ms↪→

13 ae-1.4079.rtsw.eqch.net.internet2.edu (162.252.70.131) 25.885 ms

25.959 ms 25.935 ms↪→

14 ae-2.4079.rtsw.chic.net.internet2.edu (162.252.70.132) 26.172 ms

26.164 ms 25.904 ms↪→

15 ae-3.4079.rtsw.kans.net.internet2.edu (162.252.70.141) 36.871 ms

36.954 ms 36.918 ms↪→

16 ae-5.4079.rtsw.salt.net.internet2.edu (162.252.70.145) 56.724 ms

56.692 ms 56.692 ms↪→

17 lo-0.8.rtsw.sunn.net.internet2.edu (64.57.20.225) 71.838 ms 71.632

ms 71.621 ms↪→
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18 198.32.165.200 (198.32.165.200) 82.605 ms 82.594 ms 82.554 ms

19 * * *

20 * * *

21 * * *

22 planetlab4.cs.uoregon.edu (128.223.8.114) 82.871 ms 82.667 ms

82.653 ms↪→

B.5 Traceroute from UOregon → Monash

traceroute to pl1.eng.monash.edu.au (130.194.252.8), 30 hops max, 60 byte

packets↪→

1 vl-8.uonet2-gw.uoregon.edu (128.223.8.3) 0.319 ms 0.288 ms 0.273

ms↪→

2 * * *

3 10.252.10.250 (10.252.10.250) 0.651 ms * *

4 10.252.253.130 (10.252.253.130) 0.962 ms 10.252.253.129

(10.252.253.129) 1.407 ms 198.32.165.125 (198.32.165.125) 12.042

ms

↪→

↪→

5 198.32.165.125 (198.32.165.125) 12.800 ms 12.450 ms 12.434 ms

6 aarnet-2-is-jmb-776.sttlwa.pacificwave.net (207.231.241.4) 43.743 ms

198.32.165.125 (198.32.165.125) 11.998 ms

aarnet-2-is-jmb-776.sttlwa.pacificwave.net (207.231.241.4) 43.101

ms

↪→

↪→

↪→

7 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 95.247 ms 95.986

ms aarnet-2-is-jmb-776.sttlwa.pacificwave.net (207.231.241.4)

43.608 ms

↪→

↪→

8 et-2-1-0.4070.rtsw.losa.net.internet2.edu (162.252.70.71) 19.325 ms

et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 188.319 ms

188.406 ms

↪→

↪→

9 aarnet-2-is-jmb-776.sttlwa.pacificwave.net (207.231.241.4) 43.688 ms

43.255 ms et-2-3-0.pe1.mcqp.nsw.aarnet.net.au (113.197.15.144)

191.587 ms

↪→

↪→

10 et-0-3-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.3) 189.831 ms

189.882 ms et-2-3-0.pe1.mcqp.nsw.aarnet.net.au (113.197.15.144)

188.724 ms

↪→

↪→
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11 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 188.326 ms

et-0-3-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.3) 189.870 ms

et-2-3-0.pe1.mcqp.nsw.aarnet.net.au (113.197.15.144) 188.792 ms

↪→

↪→

12 et-0-3-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.3) 190.154 ms

189.857 ms et-0-1-0.pe1.nbpk.vic.aarnet.net.au (113.197.15.27)

201.905 ms

↪→

↪→

13 et-5-3-0.pe1.wmlb.vic.aarnet.net.au (113.197.15.9) 201.284 ms

et-0-3-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.3) 190.698 ms

et-0-1-0.pe1.nbpk.vic.aarnet.net.au (113.197.15.27) 201.490 ms

↪→

↪→

14 * * *

15 * xe-5-0-6-211.pe1.nbpk.vic.aarnet.net.au (138.44.64.221) 201.908 ms

et-0-1-0.pe1.nbpk.vic.aarnet.net.au (113.197.15.27) 201.554 ms↪→

16 xe-5-0-6-211.pe1.nbpk.vic.aarnet.net.au (138.44.64.221) 202.099 ms *

*↪→

17 * * *

18 pl1.eng.monash.edu.au (130.194.252.8) 201.934 ms 201.915 ms

201.892 ms↪→

B.6 Traceroute from UOregon → plink in UW

traceroute to plink.cs.uwaterloo.ca (129.97.74.12), 30 hops max, 60 byte

packets↪→

1 vl-8.uonet1-gw.uoregon.edu (128.223.8.2) 0.352 ms 0.347 ms 0.341

ms↪→

2 * * *

3 10.252.9.246 (10.252.9.246) 0.374 ms * *

4 10.252.253.129 (10.252.253.129) 1.643 ms 10.252.10.254

(10.252.10.254) 0.985 ms 0.976 ms↪→

5 198.32.165.253 (198.32.165.253) 11.984 ms 10.252.9.246

(10.252.9.246) 0.916 ms 10.252.10.246 (10.252.10.246) 0.863 ms↪→

6 ae-2.4079.rtsw.salt.net.internet2.edu (162.252.70.154) 26.138 ms

26.125 ms 10.252.10.254 (10.252.10.254) 1.043 ms↪→

7 ae-2.4079.rtsw.salt.net.internet2.edu (162.252.70.154) 26.391 ms

26.350 ms ae-3.4079.rtsw.chic.net.internet2.edu (162.252.70.140)

56.925 ms

↪→

↪→
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8 ae-3.4079.rtsw.chic.net.internet2.edu (162.252.70.140) 57.242 ms

ae-5.4079.rtsw.kans.net.internet2.edu (162.252.70.144) 45.881 ms

ae-3.4079.rtsw.chic.net.internet2.edu (162.252.70.140) 57.173 ms

↪→

↪→

9 * ae-5.4079.rtsw.kans.net.internet2.edu (162.252.70.144) 45.836 ms

lo-0.8.rtsw2.eqch.net.internet2.edu (64.57.29.130) 57.093 ms↪→

10 * ae-3.4079.rtsw.chic.net.internet2.edu (162.252.70.140) 56.902 ms

57.081 ms↪→

11 45-cgw01.ym.rmgt.net.rogers.com (209.148.235.90) 67.536 ms

209.148.233.89 (209.148.233.89) 79.783 ms 79.779 ms↪→

12 * 44-cgw01.ym.rmgt.net.rogers.com (209.148.235.106) 67.553 ms

209.148.230.54 (209.148.230.54) 81.545 ms↪→

13 24.156.146.198 (24.156.146.198) 82.549 ms 209.148.233.89

(209.148.233.89) 79.646 ms 80.130 ms↪→

14 24.156.146.198 (24.156.146.198) 82.722 ms 82.407 ms 209.148.233.89

(209.148.233.89) 79.753 ms↪→

15 209.148.230.54 (209.148.230.54) 79.976 ms 82.216 ms 24.156.146.218

(24.156.146.218) 82.693 ms↪→

16 24.156.146.198 (24.156.146.198) 82.573 ms 82.893 ms 82.509 ms

17 * * 24.156.146.218 (24.156.146.218) 82.514 ms

18 * * *

19 * * *

20 * * *

21 * * *

22 plink.cs.uwaterloo.ca (129.97.74.12) 83.232 ms 83.186 ms 83.186 ms

B.7 Traceroute from Monash → plink in UW

traceroute to plink.cs.uwaterloo.ca (129.97.74.12), 30 hops max, 60 byte

packets↪→

1 west-gw1-v252.net.monash.edu.au (130.194.252.253) 0.914 ms 0.912 ms

1.140 ms↪→

2 core-gw1-e2-2.net.monash.edu.au (130.194.29.111) 0.789 ms 0.866 ms

0.838 ms↪→

3 * * *
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4 gw1.xe-5-0-6-211.pe1.nbpk.vic.aarnet.net.au (138.44.64.220) 0.764 ms

0.754 ms 0.738 ms↪→

5 et-7-1-0.pe1.wmlb.vic.aarnet.net.au (113.197.15.26) 1.478 ms 1.467

ms 1.457 ms↪→

6 et-1-3-0.pe1.eskp.nsw.aarnet.net.au (113.197.15.8) 12.877 ms 12.789

ms 12.782 ms↪→

7 et-0-1-0.pe1.mcqp.nsw.aarnet.net.au (113.197.15.2) 14.015 ms 14.029

ms 14.019 ms↪→

8 et-1-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.145) 14.647 ms

14.641 ms 14.615 ms↪→

9 et-0-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.99) 107.619 ms 107.646

ms 107.638 ms↪→

10 et-2-1-0.bdr1.a.sea.aarnet.net.au (113.197.15.201) 158.964 ms

158.975 ms 158.959 ms↪→

11 207.231.240.21 (207.231.240.21) 172.149 ms 173.762 ms 173.743 ms

12 vctr3rtr1.canarie.ca (205.189.32.183) 173.732 ms 173.896 ms

173.884 ms↪→

13 vncv1rtr1.canarie.ca (205.189.32.199) 175.819 ms 175.651 ms

175.644 ms↪→

14 clgr2rtr1.canarie.ca (205.189.32.175) 186.523 ms 186.542 ms

186.440 ms↪→

15 wnpg2rtr1.canarie.ca (205.189.32.177) 200.870 ms 200.859 ms

201.026 ms↪→

16 wnpg1rtr1.canarie.ca (205.189.32.61) 201.008 ms 201.003 ms 200.931

ms↪→

17 toro1rtr1.canarie.ca (205.189.32.181) 222.184 ms 222.239 ms

222.326 ms↪→

18 205.189.32.40 (205.189.32.40) 222.642 ms 222.780 ms 222.701 ms

19 (66.97.16.25) 223.334 ms 223.238 ms 223.253 ms

20 (66.97.16.110) 226.254 ms 226.258 ms 226.491 ms

21 (66.97.28.66) 226.064 ms 226.116 ms 226.141 ms

22 * * *

23 * * *

24 * * *

25 plink.cs.uwaterloo.ca (129.97.74.12) 226.508 ms 226.472 ms 226.484

ms↪→
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