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Abstract

Real-time systems are a significant class of applications, poised to grow even further as au-
tonomous vehicles and the Internet of Things (IoT) become a reality. The computation and
communication tasks of the underlying embedded systems must comply with strict timing and
safety requirements as undetected defects in these systems may lead to catastrophic failures. The
runtime behavior of these systems is prone to uncertainties arising from dynamic workloads and
extra-functional conditions that affect both the software and hardware over the course of their de-
ployment, e.g., unscheduled firmware updates, communication channel saturation, power-saving
mode switches, or external malicious attacks. The operation in such unpredictable environments
prevents the detection of anomalous behavior using traditional formal modeling and analysis
techniques as they generally consider worst-case analysis and tend to be overly conservative.

To overcome these limitations, and primarily motivated by the increasing availability of
generated traces from real-time embedded systems, this thesis presents TRACMIN - Trace Mining
using Arrival Curves - which is an anomaly detection approach that empirically constructs arrival
curves from event traces to capture the recurrent behavior and intrinsic features of a given real-time
system. The thesis uses TRACMIN to fill the gap between formal analysis techniques of real-time
systems and trace mining approaches that lack expressive, human-readable, and scalable methods.
The thesis presents definitions, metrics, and tools to employ statistical learning techniques to
cluster and classify traces generated from different modes of normal operation versus anomalous
traces. Experimenting with multiple datasets from deployed real-time embedded systems facing
performance degradation and hardware misconfiguration anomalies demonstrates the feasibility
and viability of our approaches on timestamped event traces generated from an industrial real-time
operating system.

Acknowledging the high computation expense for constructing empirical arrival curves, the
thesis provides a rapid algorithm to achieve desirable scalability on lengthy traces paving the way
for adoption in research and industry. Finally, the thesis presents a robustness analysis for the
arrival curves models by employing theories of demand-bound functions from the scheduling
domain. The analysis provides bounds on how much disruption a real-time system modeled using
our approach can tolerate before being declared anomalous, which is crucial for specification and
certification purposes. In conclusion, TRACMIN combines empirical and theoretical methods to
provide a concrete anomaly detection framework that uses robust models of arrival curves scalably
constructed from event traces to detect anomalies that affect the recurrent behavior of a real-time
system.
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Chapter 1

Introduction

The introduction of the Internet-of-Things (IoT) in industrial settings is accelerating innovation
towards complex Cyber-Physical Systems (CPS) such as advanced driving assistance systems
(ADAS), connected and unmanned vehicles, smart process control, among others [5,29]. Many
of these applications rely on distributed embedded systems that perform real-time operations,
and thus they must be carefully designed and validated to comply with strict timing and safety
specifications [54,77].

Even for well-tested deployed systems, undetected errors may lead to catastrophic failures
similar to the failures of Therac-25 device [48] and Ariane 5 flight [51]. Making it more challeng-
ing, modern real-time systems are becoming increasingly complex, and their runtime behavior is
prone to uncertainties arising from dynamic workloads and changes in their underlying software
and hardware over the course of their deployment. For example, a platform executing a real-time
application may suffer a degradation in processor performance when switching to a low-power
mode, or it may sporadically increase its processor demand when accommodating for running
some failure scenario. Therefore, embedded systems typically used in safety-critical domains re-
quire compliance with standards that recommend the use of software monitors to detect anomalies
in the development and production phases (e.g., [SO-26262 [1] for automotive functional safety
and DO-178C [2] for airborne systems).

The ever-increasing complexity and inter-connectivity of modern embedded systems are
setting major challenges for the verification of their functional and non-functional properties (e.g.,
timing constraints). For decades, designers have used mathematical models of systems and formal
methods to reason about real-time performance metrics at early design phases. Traditional formal
approaches work well for simple closed systems whose worst-case behavior can be mapped
to generic mathematical representations, but they are inadequate for characterizing complex



interconnected systems whose behavior depends on unpredictable interactions between highly-
heterogeneous components. The limitations of formal methods have triggered a renewed interest
in techniques based on runtime empirical analysis, which rely on the collection and processing of
actual execution traces to capture non-trivial recurrent behavioral patterns that cannot be predicted
at design time. As it becomes clearer that verification of modern real-time systems cannot purely
rely on broad generic abstractions and theoretical analysis, it is more important than ever to
promote evidence-based discussions and drive new research towards novel data-driven techniques
for analyzing more representative system-specific data.

Traditional formal methods for exhaustive analysis are relatively mature and have become a
standard practice in the industry; however, as they only target worst-case analysis, they tend to be
overly conservative and do not provide information about the robustness of the system to specific
variations in the parameters of composing task sets. As modern real-time systems become more
heterogeneous and interconnected, it is important to understand in more detail how variations
in individual system parameters affect the demand and timing behavior of the system, in order
to guarantee correctness while maximizing utilization and performance. An extensive body of
research discussed formal analytical approaches to model and inspect real-time systems before
deployment. However, these methods tend to be pessimistic and can not capture the evolving
design changes that a system would encounter.

To overcome this problem, trace mining approaches offer a solution as it provides a non-
invasive method that analyzes the traces readily generated during the repeating executions of the
systems. In such systems, trace-based anomaly detection can act as a monitoring mechanism and
invoke modules responsible for prevention and recovery from failures. Trace mining as a subfield
of data mining has been of research interest because the problems facing that techniques have
its solutions using statistical and computational approaches [26,89]. Massive datasets generated
continuously motivated the use of data mining techniques to extract useful information for a wide
range of applications. In essence, trace-based anomaly detection aims at detecting execution
patterns that do not conform to the normal functioning of the system. Detection of anomalous
patterns can indicate software bugs or malfunctions which is convenient, as such an analysis treats
the system under scrutiny as a black box and does not require knowledge of its internals. The
approach leverages the computational power of computer processors to distinguish anomalous
traces from normal traces and therefore can help in reducing the likelihood of catastrophic failures.
Detection of anomalies can be done both, online (during runtime) or offline (once the program has
finished execution). The offline approach considers an entire trace of a system execution scenario
for analysis, while the online approach can only work on streams of execution events collected
during program runs to detect anomalies on-the-fly.

Bespoke real-time embedded devices have intrinsic properties that make generic anomaly
detection approaches ill-suited for this domain [92]. On the contrary, fine-grained models capture
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the specific behavior of a given cyber-physical system by using domain-specific knowledge to
improve classification and root-cause analysis. Most trace mining approaches are not specific to
real-time systems as they do not capture the recurrent nature of the bespoke real-time systems. Our
work aims to find tools or develop methodologies that are best suited for the traces of real-time
systems. Also, the features extracted should allow for human interpretation to make it easier to
comprehend the system behavior, because trace analysis techniques consider the system under
scrutiny as a black box without much knowledge of its complex internals. Hence, the need
for methods to extract features specific to real-time systems allowing for efficient and effective
reasoning about these systems behavior.

Several challenges face the trace analysis approach. One main challenge of trace-based
anomaly detection is how to identify an incorrect behavior without raising too many false alarms.
Anomaly detection tends to reduce false positives. However a false negative is a serious problem
because it would imply that a fault might go without inspection. Related work in a comprehensive
survey [18] measures the effectiveness of detection mechanisms through false positives, where the
detector incorrectly raises an alarm for a normal execution behavior, and false negatives, where
the detector overlooks an anomaly. High false alarm rates diminish the value of the mechanism
because the users stop trusting it. Although the empirical evaluation of the model is the common
technique to evaluate the accuracy of the model, statistical measures that provide confidence in
the evaluation results are crucial for the industrial adoption of anomaly detection, however, there
is a gap in the research work on this measures. Also, a common challenge for trace analysis
approaches is the high computational expense of the analysis of large amounts of data within an
event trace [19].

4 bits

—
v !
W

bits

R(t) time

Figure 1.1: Example for an arrival curve [45]



Our conjecture that arrival curves are suited to mine recurrent behavior from generated event
streams from real-time systems. Arrival curves have been widely used in service-level agreements
to characterize the arrival of data streams in the networks domain. Figure 1.1 shows an example
for an arrival curve as defined in [45] to constrain the arrival of bits for a given network setting.
The right-hand side figure shows a bound that should be continuously enforced to the cumulative
function R(t). In the context of event streams, arrival curves can be described as functions of the
interval time domain that provide upper and lower limits to the number of events that can occur in
a system within any given time interval of length At [75].

In our work, we consider arrival curves as high-level summarization for the recurrent behavior
of a real-time system computed using event traces. Through statistical learning approaches, i.e.,
classification and clustering, to classify normal and anomalous traces after separating them based
on the underlying modes of operation. We validate our approach by experimenting with multiple
datasets from real-time systems having recurrent behavior.

Thesis Statement

The thesis aims to quantitatively evaluate whether arrival curves constructed from event traces
provide good features for trace mining to effectively and efficiently characterize the recurrent
behavior of real-time systems for anomaly detection purposes.

Thesis Contribution

We summarize the thesis contributions in the main following points:

e The thesis introduces empirical arrival curves to fill the gap between formal analysis of
real-time systems and trace mining approaches that do not capture the intrinsic features
within event traces generated by those systems.

e Using the definitions and metrics of empirical arrival curves, we introduce TRACMIN
framework that employs statistical learning techniques to the trace-based curves.

e We assess whether empirical arrival curves employed in TRACMIN can achieve accurate
trace classification for the different modes of operation for a given real-time system and
can perform anomaly detection within the recurrent behavior captured by event traces.
Additionally, we show how TRACMIN can be extended to on-the-fly anomaly detection
purposes.



e To ensure the deployment of our methods, a robustness analysis for the offline arrival curves
models which employs theories of demand-bound functions from the scheduling domain.
The analysis provides bounds on how much disruption real-time systems modeled using
empirical arrival curves can tolerate before being declared anomalous. Examining the
bounds on permissible system variations would allow designers to asses the robustness of a
real-time system model to dynamic operational conditions.

e We overcome the expensive computation of empirical arrival curves by providing a rapid
algorithm for their construction and presenting the necessary analysis to demonstrate the
scalability of the algorithm on lengthy traces paving the way for the work in this thesis to
be fully adopted in research and industry.

Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides an overview of the related work
on trace mining approaches for anomaly detection, in addition to, the background of arrival curves
and how it relates to real-time systems. Chapter 3 defines empirical arrival curves constructed
from timestamped event data along with metrics that characterize the curves. We also discuss the
semantics of those curves and metrics in reality. Chapter 4 introduces TRACMIN which is the
anomaly detection framework we use to exploit the definitions of empirical arrival curves. The
chapter provides evaluation methods for TRACMIN using an industrial case-study. Chapter 4
extends the application of the framework to clustering traces originating from different modes
of operation, to the deployment in a streaming framework for on-the-fly anomaly detection, and
mining recurrent patterns from real-time systems traces. Chapter 6 provides a novel method
for robustness assessment to the models obtained by TRACMIN providing a quantitative model
evaluation and bounds on accuracy. Chapter 7 discusses the traditional algorithms used to construct
empirical arrival curves and presents a scalable implementation for a rapid algorithm that enables
the wider adoption of the framework into research and industry. Finally, Chapter 8 concludes the
thesis by discussing the contributions, limitations, and possible extensions of TRACMIN.



Chapter 2

Related Work

First, it is important to differentiate between anomaly detection which aims to detect a change
in behavior for a given system, and intrusion detection which is a common approach for finding
an instance or more of unexpected events within an execution trace. The main objective of the
framework and approaches presented in this thesis is to accurately and efficiently detect anomalous
behavior in real-time systems by processing event data generated during execution.

2.1 Anomaly Detection using Event Data

To be able to well-define the scope of the work presented in this thesis, we summarize the main
points of a widely used comprehensive review on anomaly detection [19].

1- Nature of Input Data: The data used in an anomaly detection procedure can be binary,
categorical, or continuous. These data instances can have one of many relations, such as being
sequence data, spatial data, spatio-temporal, etc. The thesis is mainly concerned with timestamped
event data from real-time operating systems which can be classified as categorical sequence data.
We note that sequential data streams and time series are both sequence data, i.e., a sequence of
ordered events. However, a time series can relate different observations to time and observe the
trend and seasonality. According to this definition, we cannot consider the event traces generated
from real-time systems as time series where the time cannot present an intrinsic feature as defined
by Box and Jenkins [10].

2- Types of Anomaly: We already mentioned that our work is concerned with anomalies; the
survey mentions three main types of anomalies: point, contextual, and collective anomalies. Point
anomaly is an individual data instance that does not conform to the rest of the data. Contextual
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anomalies are defined over a specific context, i.e., fraud in credit card activity. The collective
anomalies are the types of interest in this thesis, which is defined as a collection of data that are
anomalous with respect to some normal data.

3- Availability of Data Labels: The choice of a specific method of anomaly detection is
influenced by the availability of labels. Supervised anomaly detection techniques build models
using data labels for both normal and anomalous data points, semi-supervised anomaly detection
build model for the normal data labels and aim to detect anomalies in unknown datasets, and
unsupervised anomaly detection techniques make an assumption about the normal data as labels
are not readily available. The work presented in this thesis assumes the normal data labels are
available in order to build the model that describes the nominal behavior, then aims to classify
unknown traces. The labels for anomalous data are only used for evaluating the accuracy of
the approaches. We note that the labeling process is an error-prone task that might require
human-knowledge in the case that such anomalies are easily achievable, e.g., not rare like traces
originating from catastrophic failures.

4- Output of Anomaly Detection: Upon performing anomaly detection, we obtain a label
for the trace either to be normal or anomalous. Optionally, an anomaly score can be provided
to describe how it conforms to the normal behavior. A survey [28] categorizes the output of an
anomaly detector as either a single-class or multi-class assignment, where for the single-class the
classification of the data stream yields a result of being normal or not normal. For a multi-class
approach, the data stream can be classified to one of many normal sub-classes or one of many
anomalous sub-classes. The authors highlight the existence of techniques that classify some data
streams as unknown, then later perform offline classification with human-aided support from a
domain specialist to label such streams as either normal or anomalous. In our work, we use the
single-class approach where a trace can be declared either normal or anomalous.

The rest of the survey paper is beyond the scope of the work presented in this thesis; however,
the survey briefly discusses how sequential anomalies, similar to our interest, can be handled.
One of the methods is to model the sequences, 1.e., traces. Techniques to modeling traces include
Markovian modeling [90] to study the probabilistic characteristics of event transitions. The
work extends from first-order to higher-order Markov Models and some equivalent methods as
probabilistic suffix trees (PST), and sparse Markov trees (SMT). The second approach models the
event transition states through Finite State Automata (FSA) and Hidden Markov Models (HMM)
methods. Our work can put in the category of the sequence or trace modeling approaches, also
called Trace Mining; We provide a detailed overview of its state-of-the-art.



2.2 Trace Mining Overview

Trace mining makes use of the increasing availability of system-specific execution traces as it
offers new opportunities for capturing, modeling, and analyzing non-trivial behavioral patterns
that cannot be predicted at design time. For trace mining, an entity introduced to the existing
infrastructure processes the data blindly in order to build profiles and flag anomalous behavior to
the end user. Related works report successful applications of data-driven modeling techniques
in anomaly detection [32, 33, 55], security [91], resource management [43, 63], among other
applications. However, there is still work to do on validating the effectiveness of data-driven
analysis methods in real-world scenarios.

A related review [26] categorizes the approaches for offline mining of data streams, which
correspond to event traces in our work. The authors categorize mining data streams techniques
from the perspective of data handling into two categories; either by processing a subset of the
data stream or by summarizing the whole stream. The former approach uses techniques such as
sampling and load shedding. The later one uses synopsis of data structure or trace aggregation
which fits our work since we summarize the trace data for analysis, i.e., represent a trace into
some form before analysis. Traditional basic summarization techniques include histograms or
frequency analysis; alternatively, trace sampling uses probabilistic functions to process data points
selectively. Similarly to trace sampling, load shedding drops sequences of data streams entirely.
Such approaches for sampling and shedding might not be a good choice for anomaly detection as
the process of data elimination should be aware of anomalies.

A survey [20] summarized the research on mining data streams for anomaly detection. The
main related research work uses hidden markov models (HMM) [70], rule inference [49] to build
finite state automata (FSA) [79]. We discuss the basics of our trace mining approach in Chapter 3
which fits into the category of sliding window-based anomaly detection techniques. Related to the
sliding window technique used by our work, episode mining [58] extracts collections of events
that are partially ordered and occurring relatively close to each other within a defined window.
Episode mining is used for anomaly detection [53] and software specification [85].

Online detection of anomalies in data streams using models extracted offline is one of the
actively researched problems [19]. A survey [97] on anomaly detection for wireless sensor
networks, which is related to our work, discusses problems similar to what we tackle in this thesis.
They highlight the problem of online anomaly detection as one of the currently required research
problems in the field. One example mentions the need for online techniques that meet the general
requirements of scalability, being unsupervised, and allowing automatic parameter configuration.

As we discuss later in Chapter 5 an online variant of our anomaly detection work, one
advantage of online anomaly detection is allowing to employ corrective measures right after an



anomaly is detected. The survey highlights the suitability of sequence-based techniques for online
anomaly detection, as it allows for the assignment of scores to windows of data on arrival. For
example, in contrast to the work presented in this thesis, trace similarity and frequency-based
approaches are not applicable because as they need an entire trace for analysis.

The authors in [65] on data stream clustering and classification discusses how the traditional
data mining algorithms can be adapted for the problem data stream mining. They highlight
examples for the constraints of data stream mining as the necessity of being a single-pass algorithm
having a real-time response. Single-pass constraint comes from the fact of expensiveness of the
I/0 operations with respect to the memory operation, however, as we propose later, the constraint
can be relaxed by having a short-term memory that can be utilized when needed to improve the
analysis. Another related constraint is the bounded memory available, which comes from the fact
that the data generated can be considered infinite.

2.3 Arrival Curves & Real-time Systems

Arrival curves, originally introduced in Network-Calculus [45], are used to analyze Quality-
of-Service (QoS) in packet-switched networks with the focus on modeling arrival traffic and
deriving performance guarantees. The curves are widely used as part of service-level agreements
(SLA) [71], which are contracts between a user and a provider to specify the expected behavior for
a provided service. A variant of network calculus, named Real-Time Calculus (RTC), uses arrival
curves for modeling temporal workloads and performing an exhaustive analysis of traditional
real-time systems [75, 88].

Arrival curves are functions of interval time domain that provide upper and lower limits to
the number of events that can occur in a system within any given time interval of length At [41].
We could conceptually obtain arrival curves from a timestamped trace by sliding a window of
arbitrary length At over the time axis, keeping track of the maximum and the minimum number
of events enclosed within the window while scanning the entire trace. However, for traditional
analytical methods, designers do not construct arrival curves from finite traces but rather derive
them from high-level mathematical models of the target system.

The underlying idea is to obtain guaranteed performance metrics by analyzing generic behav-
ioral patterns that will bound any possible curve that could be observed during operation. [16]
describes how an upper-bound arrival curve can be constructed analytically by extracting pa-
rameters such as the largest packet or long-term arrival rate from packets trace. Similarly, a
lower-bound arrival curve can be constructed by analyzing the gaps in the packets trace.



To describe such curves, a commonly used form of arrival curves is affine arrival curves [22],
where an arrival curve can be represented as a burst b and arrival rate . The burst b represents
the size of the maximum amount of network data that can arrive at once, while r represents
the long-term arrival rate of the data. Another specification called TSpec [81] bounds arrival
curves using a combination of two affine arrival curves boundaries. One boundary represents the
maximum traffic behavior while the other boundary maps the long-term or the average behavior.
In this case, the TSpec is the minimum of both boundaries. We expand on these definitions as
we employ both characterizations in Chapter 3 and Chapter 5 to describe the arrival curves for
anomaly detection purposes.

In traditional real-time systems, designers can assume that events occur following an appli-
cation model with a known period, jitter, and delay (PJD models) [30]. Designers then map
these models to generic templates of arrival curves representing worst-case scenarios, which
facilitates derivation of guaranteed performance metrics using formal methods even before system
deployment [75]. As such, designers approximate extreme scenarios using simple event patterns
whose equations are amenable for formal analysis. This approach is ill-suited for characterizing
complex real-time systems since such templates are abstract by definition.

Closely related to this thesis work, Event Count Curves (ECC) introduced in [67] describes the
occurrence of event types in a structured event stream. In other words, the curves are constructed
through computation of events counts rather than inferring parameters about the trace. We refer to
that kind of arrival curves as empirical arrival curves. We conjecture that the mentioned body of
work on arrival curves can be adopted to empirically constructed curves that would describe the
behavior of real-time systems.

Authors in [13] acknowledge the lack of applications that deploy bounding approaches like
empirical arrival curves for real-time analysis problems despite the similarities they share with
SLA problems. This thesis considers the similarity between a system behaving normally as a
provider who is meeting with some specified service-level agreement, where we characterize the
system specifications from event traces collected under normal behavior and assess the conformity
of the system to these specifications during deployment. We use the approach of modeling arrival
traffic but through the characterization of event traces for anomaly detection.
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Chapter 3

Defining Empirical Arrival Curves From
Event Traces

In this chapter, we introduce the definitions and metrics for empirical arrival curves. The pre-
sented metrics along with their semantics will provide the basis needed to exploit the curves for
characterizing the recurrent behavior of real-time systems throughout the thesis.

3.1 Definitions

Definition 1. (Event) An event e is a tuple of system-defined values, denoted as e = (v1,vs, . . .).
An event type, denoted as €, belongs to a finite set of unique values generated by a given system.

Definition 2. (Trace) A trace T is an ordered sequence of timestamped events e;, generated by a
given system, where t; is a unique timestamp having an associated index i within the sequence.
Formally, T = {ey,, e, . .. 2. }, where |T| is the length of the trace.

We refer to a trace that follows Definition 2 as a timestamped trace, however, if a timestamp
associated with an event represents the index or the event position within a trace, we refer to this
trace as an Indexed trace. To generalize our definitions, the following definitions and metrics
consider a trace to be timestamped.

To compute arrival curves for a specified event type €, we extract the trace events e;, that
match ¢ using Definition 3.

11



Definition 3. (Trace Extraction Operator) The operator 1 takes a subset of trace T' from Defini-
tion 2 to create a trace T of an event type ¢ as follows:

T T e T, where'lT, C TA" such thate = ¢, Ve € T (3.1

Example 1. (Timestamped Trace Example) Consider the following trace example T = {a(t1),
a(tz), b(ts), c(ts), alts), alts), b(tr), b(ts), c(te), a(tio), a(tir), altiz), b(ti3), b(t1a), altys),

-~

c(tig), c(t17), c(tis), a(tg), a(teo)}, there exists |T'| = 20 events of event types ¢ € {a,b, c}.

Example 2. (Indexed Trace Example) The indexed trace corresponding to the trace in Example 1
is as follows T = {ay, az, b3, ca, as, ag, bz, bg, cg, ar0, @11, @12, b3, bia, a1, C16, C17, C18; 19, A0}

Given the sample trace from Example 1, the corresponding mapped timestamped trace 7, for an
event type a as a result of applying the mapping operation " 1 a is T, = {a(t1), a(t2), a(ts), alts),
a(tio), a(tn), altia), altrs), altie), alt)}. Similarly for Example 2, T = {a, as, as, ag, ao, a1,
a12, ais, a1g, Ao }- A trace T, contains a stream of indexed or timestamped events of a unique type
€ making it analogous to a timestamped stream of bits on a network channel, where the timestamp
is either an actual clock time associated with the event or its index in the trace. Consequently, we
adapt the concepts of network calculus to real-time systems by defining empirical arrival curves.

Definition 4. (Empirical Arrival Curve for ) An arrival curve calculation for an event type
denoted by C; (1., At) — R applies a specified function f to the occurrence count C' of events of
type & within all sliding windows of time interval At € R contained in the time interval [t;, tm]
and positioned to start at ey,.

We highlight that for indexed traces, the sliding window interval is an interval of event counts
instead of a time interval. Now, we use Definition 4 to define two specific curves of interest which
define the lower and upper bounds on the arrival behavior of an event type e.

Definition 5. (Max/Min Arrival Curves) A maximum arrival curve C,,,, uses a function f that
provides the maximum counts for occurrences of € within the sliding windows described by Defini-
tion 4. Similarly, a minimum arrival curve C,;, uses a function f that provides the corresponding
minimum counts.

Applying Definition 5 to a given trace 7. using a range of At values yields the maximum and
minimum arrival curves of an event type €. Throughout the thesis, the function f in Definition 5
uses the widely known SymTA/S [75] assumptions for computing the maximum and minimum
event counts within a window, where the minimum computation considers the interval (0, A¢] and
the maximum computation considers the interval [0, At). We discuss the details of computation
in Chapter 7.
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The curves Ci,x and Cp,;, form an envelope that characterizes the arrival behavior of an event
type within a trace which is analogous to the envelope used in SLA agreements for constraining
the arrival of bit streams in a given network. We demonstrate the use of the previous definitions
given the sample trace from Example 1, the corresponding mapped trace 7, for an event type a
as a result of applying the mapping operation 7" 1 a is shown in Figure 3.1. The dotted window
represents an incomplete sliding window for which we discard the C\,;, computation. Figure 3.2
shows both Cpx and Cpyi, curves computed on the full range of At € (0,47, — t1] fore = a
using the indexed trace T of Example 1. We note that the red and green curves in Figure 3.2 are

for visualization purposes, since the computation of Cy,.x and Cy;, yields discrete points specified
at the defined window sizes on the x-axis.

T={aabcaabbcaaabbacccaa}
T ={€cc€cecceEEececceEEecEEcEce
Figure 3.1: Trace mapping example
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Figure 3.2: Min-Max curves for e = a
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The definitions of C',,x and C,;, leads to two observations that can be used to characterize the
behavior of a system, the first observation:

Theorem 1. C,,,. and C,,;, are monotonically increasing with respect to window duration At.

Proof: Maximum and minimum arrival curves use cumulative computations over increasing
window durations A, the corresponding C.x (7, A) and Chin (7', A) values are either the same or
increasing. Only given the assumption that C's(T, At) < C¢(T, At + At) which is valid for f
being max and min functions.

Now we define a plateau or steady interval of an arrival curve as an interval of successive At
values having the same C'(T', At). The definition of the plateau leads to the second observation:

Theorem 2. Longest plateau of a min-curve C',;, exists at the beginning of the curve starting by
point (0,0) and ending at the point having smallest At satisfying C, (T, At) = 1.

In other words, we can use the x-axis to indicate the maximum window of separation between
any two events ¢ within a mapped trace 7.

Definition 6. (Difference Arrival Curve Cyy) We define a third curve of interest, denoted as Cyy,
whose values represent the difference between C.,.. and C,,;, at similar window durations At for
a given trace T’ as follows:

Cdlﬁ(Ta At) = Cmax(Ta At) - C(min (T7 At) (32)

The Cyr curve has some points of interest. For example, for any Cyg curve we have
Cgig = 0 at both At = 0 and At = b — b since Ciax(7,0) = Cpin(T7,0) = 0 and
Cnax (T, Appazt) = Choin(T, Apaat) = |T| respectively. Otherwise, the curve values belong to
N>, because Ciux (T, At) > Chuin(T', At) for all values of At. Formally,

0, ifAt=0
Cdiff = Nzo, if0 < At < tﬁ:l — 1t (33)
0,  ifAL= Ayt

We use this observation to describe the recurrent behaviors captured in the event traces
generated by real-time systems in Chapter 5.
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3.2 Metrics

The previous definitions allow us to introduce a couple of metrics that characterize the shape of
arrival curves obtained from timestamped event streams in addition to existing metrics from the
literature. In the later chapters, we exploit those metrics to provide explanatory power for defining
higher-level features which analyze the behavior of real-time systems.

3.2.1 Steadiness of an Arrival Curve

As discussed in Chapter 2, there exists different approaches to specify the bounds on traffic profiles
in arrival curves. We use two of the common characterizations which are the (burst, rate)-model
and the TSpec-model. Figure 3.3 presents a visualization to both approaches on an empirical
arrival curves example.

C(A s LA
1(8) 2 L)
A M+PA o bHrA
/7 -
T e
/ / - - I
) -
/7 _- /
/ -
/
/
A A
(a) Affine parameters visualization (b) TSPEC parameters visualization

Figure 3.3: Visualization for affine and TSpec specs of arrival curves

For the (burst, rate)-model, an arrival curve can be bounded by a curve having a burst b
and a long-term rate 7, i.e., represented by a function b + rA as shown in Figure 3.3a. In practice,
the arbitrary choice of an affine curve can favor over-approximation or under-approximation of an
arrival curve through controlling the burst b and the rate » parameters. In the thesis, we use affine
curves that start at the origin (0, 0). As a result, in this thesis, we use a (burst, rate)-model that is
equivalent to defining the long term rate  with b = 0.

The TSpec-model is a widely known characterization which uses a couple of (burst, rate)-
models. One to describe the initial arrival behavior of the flow while the second describes the
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average behavior. As shown in Figure 3.3b, the arrival curve can be bounded by the minimum of
both curves M + pA and b + rA, where p is the peak rate and M is the maximum burst. In this
thesis, we employ a TSpec-model whose initial (burst, rate)-model passes by the origin.

In this thesis, we define a third metric Steadiness Slope S that describes how C' £ Increases
with the increase of At by studying all the steady intervals or plateaus of that curve. We relate the
metric to the previously discussed (burst, rate)-model and TSpec-model in Chapter 5 where the
metrics are used for anomaly detection purposes.

The steadiness slope S calculates the mean of the slopes of all virtual lines L; that connects
the last point of each two successive plateaus where j refers to the index of the plateau considered
for calculation. The slope of a single virtual line L;, denoted as Sy, having the start point at A,
and the end point at At, where At. > At can be calculated using the following equation:

C4(Tz, At,) - Cf(T, Aty)
Sy, =

4
! At, — At S

To calculate the mean of slopes S of all virtual lines L; defined over n plateaus, we use
Equation 3.5:
Z S L;

S=-"—" whereSe (0,1). (3.5)

n

The value of S for event ¢ = a in Example 1 can be obtained by applying Equations 3.4
and 3.5 as follows: S = £« {2+ 3+ 1 + 1} =0.42.

The steadiness slope S describes the occurrence behavior of the system events over an interval
by describing the density of the occurrence, i.e., count of event ¢ relative to the window duration
At. For example, a higher value for mean slope S refers to a higher increase in the count C' (T, A)
as At increases. This indicates a higher event density within a trace as the length of the sliding
window increases. The steadiness slope metric enables the comparison of arrival curves calculated
for different events within the same trace or calculated for the same event using different traces.

3.2.2 Proximity of Multiple Arrival Curves

The next metric calculates the area under an arrival curve C'y, denoted as A. However, our work
does not use absolute values of A as a single-curve metric. Instead, the A metric allows us to relate
multiple curves to each other by defining the following multiple-curve metrics whose calculation
involves more than one curve. Therefore, we define a metric P that calculates the proximity of
two arrival curves to each other by calculating the ratio of their area under curve values. Formally,
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(0,0)
Figure 3.4: Steadiness slope metric visualization
A (T
po 2T e A7) = / O (T) d(At) (3.6)
Ap(T2)

Equation 3.6 defines a generic proximity metric between two arrival curves obtained from
two arbitrary traces. We employ multiple variants of this metric. One calculates the proximity of
curves C'y which use the same function f, i.e. either Cy,x or Cin obtained from different traces, to
reason about the conformance of a system with the expected real-time behavior in Chapter 4. The
other variant of [P can be used to characterize the variation between the C\,,x and C,,;, obtained
using the same trace 7. for clustering purposes in Chapter 5 as follows:

A(Cmin)
m s Prox € (0, 1] (37)

Proxmin/max =

Proxmin/ma: describes the variation of arrival behavior of a given event in a trace by monitor-
ing the variation between the minimum and maximum counts of events obtained using instances
of sliding windows of different durations. For the example shown in Figure 3.2, Proz,,in /mas can
quantify the proximity of both curves to each other, where a higher ratio that tends to 1 indicates a
minimum curve that is closer to the maximum curve. The more variation in the event occurrence
in the trace, the lower the ratio will be as the min- and max-curves diverge away from each other.
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Conclusion

In this chapter, we presented the basic definitions that enabled the first adaptation of network
calculus concepts to timestamped event streams instead of network streams. We defined a set of
metrics which presents novel characterizations that we conjecture would enable anomaly detection
for cyber-physical systems analogously to the well-known application of defining service-level
agreements in networks domain. We highlight that the definitions and metrics used in this section
serve the purpose of tackling the thesis statement; however, the curves can be further described
using more functions and metrics for different purposes.
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Chapter 4

Anomaly Detection using Arrival Curves:
TRACMIN

This chapter presents novel characterizations using the definitions and metrics of empirical arrival
curves to enable anomaly detection for cyber-physical systems. The events arrival from these
systems turns out to be analogous to the arrival of network data in the well-known application of
defining service-level agreements for networks domain.

4.1 Approach

Behavioral anomalies can cause changes to either Cyx, Chin, Or both of them. Anomalies that
cause generation of more events of type ¢ within similar trace intervals will probably lead to
higher values for Cy,.x of that event type compared to a normal trace. An example of such an
anomaly can be caused by running into a failure scenario for an embedded system. Another type
of anomaly are ones that affect events of another type than ¢ leading to fewer counts in C,,. In
other words, the density of events of type £ within sliding windows might decrease due to the
increased occurrence of other event types within these windows. A practical example resulting in
this anomaly can be due to the occurrence of unexpected event types in a trace (e.g., interrupts
due to faults, error message events, or new user events). Lastly, anomalies might disrupt the
distribution of multiple event types within the entire trace altogether and as a result, will affect
both Cy,;, and Cyax curves for these event types.
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We introduce a classification framework in Figure 4.1 which exploits arrival curves as high-
level features suited for describing the behavior of real-time systems. We conjecture that behavioral
anomalies in an event trace would affect any of the metrics described in Chapter 3, i.e., change
the steadiness slopes or the proximity of Cy,;, and Ch.x. Therefore, we use these metrics to detect
and quantify such anomalies for the purposes of anomaly detection.

We adopt a generic semi-supervised classification framework as described in [19]. The
framework builds a model using a set of event traces for a known expected behavior, and then
inspects a set of unknown traces for being either anomalous or not to that model. Within the
classification framework, we incorporate a novel clustering engine, that can also be used as a
standalone framework that will be discussed in Chapter 5. The clustering framework employs
arrival curves for the detection of operational modes by abstracting the generated traces from a
real-time system. Figure 4.1 shows the building blocks for the framework as follows:

Calculating Arrival Curves

During the training phase, the output from this building block is a set of pairs of min- and max-
curve, i.e., Cpin and C,y, for each event type e per each trace in the known traces set. For more
robust results, we only calculate the curves for event types that contribute more than a defined
percentage of events within a trace. This threshold is a tunable framework parameter discussed in
later in the chapter.

Building the Training Model

The second block shown in Figure 4.1 builds a model using the input pairs of C\,;, and Chax
computed per each event type € using traces of the training set. To achieve this, we aggregate the
similar arrival curves calculated using the same function f applied to the same event type ¢ to
obtain a corresponding aggregated curve. The followed approach allows for incremental update
of the model, where having new normal traces can add to the model by aggregating the curves
obtained with the previously calculated model.

We experimented with various aggregation methods; The method that best represented the set
of min- and max-curves was calculating a mean curve C +) and confidence intervals for Ciy;, and
Chax independently. One main advantage of this technique is that it is robust against outliers, e.g.,
arrival curves being unexpectedly different from the corresponding curves calculated using traces
from the same traces set. We denote the mean curve as C + and the confidence interval curves
as C; and C;{ where we compute a student’s t-test confidence interval [84] using a window-by-
window computation. The data sample for confidence interval calculation consists of all counts

21



of events obtained from the training traces using the same function f corresponding to the same
window duration A.

The output from the second block in the framework is a model composed of six arrival curves
per each event type ¢ as follows: the mean curves Crin and Cus along with the corresponding
confidence interval curves as C. . Ct ~C ~and CJ .. Figure 4.2 shows an example of the
arrival curve model from a case study that we discuss later in the Chapter that uses timestamped
traces, this is indicated by having the window size in nanoseconds on the x-axis of the figure.

THREAD THRUNNING proc/boot/devc-seromap Training Model
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Figure 4.2: Arrival curves model - Aggregate of Ci.x and Cyy;n With confidence interval curves. [timestamped traces]

Trace Classification

Using arrival curves allows pinpointing the specific events that caused the anomalous behavior by
specifying events € whose Ci, and C,, curves deviate from the built model. To achieve this,
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the last building block in the framework involves a binary classifier which evaluates whether the
features obtained from the unknown trace conforms to the corresponding features obtained from
the set of known traces. If the curve fails the test, the classifier then quantifies the deviation of
that curve from the model for further classification stage.

Figure 4.3 shows an example from a case study that uses indexed event traces as indicated
by the window size in events count on the x-axis. The figure visualizes the curves that represent
the aggregated model for an event type ¢ along with the corresponding curves calculated using
two unknown traces. The visualization in Figure 4.3a, opposed to Figure 4.3b, shows that curves
conform to the obtained model, as the testing curves are close to the corresponding curves in the
aggregated training model. Note that in our work, we consider an event behavior to be anomalous
to the model as long as one or more curves, i.e., Ciyax Or Chip, are anomalous.

Stage I: Detecting Curve Deviation.

As aresult of Theorem 1 in Chapter 3, the technique in Example 3 shows how to represent the
arrival curves as a frequency distribution to describe the curve shape for statistical testing.

Example 3. Consider a max curve with values C,,. = {1,2,2,3,4,4} calculated using A,
of 6 time units. We partition the curve to a set of intervals of unique C,,, € {1,2,3,4} with
corresponding At intervals € {1,2,1,2}.

To automate the curve similarity procedure, we apply the Wilcoxon-Mann-Whitney test, also
known as the Mann-Whitney U test [57], which is a non-parametric statistical similarity test with
a null hypothesis that two samples come from the same population. In our work, the test checks
whether an arrival curve C; of an event type ¢ obtained from an unknown trace has the same
distribution of a corresponding curve obtained from the aggregate model.

Stage II: Measuring Deviation from Training Model.

To quantify a detected deviation in Stage I, we use the Prox metric to quantify the proximity of
an arrival curve calculated using a test trace to a corresponding curve from the aggregate model.
The corresponding curve from the model can either be the mean curve C/, the confidence interval
curve C';, or C;{.To choose that corresponding curve, we perform the Prox metric calculation
using the three curves and pick the nearest curve to C', i.e., picking the highest Prox value to C.
To finalize the analysis, a tunable threshold on the Prox metric controls the classifier decision as
will be discussed in the evaluation section.

23



The arrival curve of an event type will be considered normal, if it passes the second stage of
classification even if it failed the statistical test of first stage. Otherwise, the curve is declared to
be anomalous by both stages. As the second stage requires more tuning parameters, we make
this sufficient stage optional in our work. However, this stage can be essential when the model is
over-fitting the training set of known traces.
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Figure 4.3: Normal vs anomalous arrival curves for THREAD_THRUNNING [indexed traces]

Figure 4.3a shows Prox values of 0.06 and 0.02 for max- and min-curves respectively,
hence the trace is declared normal using a Prox threshold of 0.10. Curves of Figure 4.3b show
Prox values of 0.48 and 0.42 for max- and min-curves respectively, hence the trace is declared
anomalous using the same threshold. We highlight that the curves shown in Figure 4.3 consider
the indices of the events within a trace not their actual timestamps, this is a more abstracted use
for the definitions in Chapter 3, we expand on this in the evaluation section.
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To obtain the final analysis result for the unknown trace, we use a straightforward voting
technique that uses the classifier results obtained using a defined set of event types ¢ within that
trace. In the next section, we discuss the significance of using different values for the tunable
framework parameters on experiments results as we deploy the anomaly detection framework on
indexed and timestamped traces for evaluation purposes.

4.2 Evaluation Method

We evaluate the classification performance using the receiver operating characteristic (ROC)
curve [25]. A given ROC curve plots the True Positive Rate (TPR) values on the y-axis versus the
False Positive Rate (FPR) values on the x-axis which are obtained by varying the binary classifier
threshold values. The TPR and FPR are calculated using the following equations:

TPR — True Positives Detected by Classifer

4.1
Actual Positives in Testing Set “.D

FPR — False Positives Flagged by Classifier

4.2
Actual Negatives in Testing Set 4.2)

A ROC with a higher area under the curve indicates a better classifier where the point on the top-
left corner (0%, 100%) indicates a perfect classification result. The line TPR = FPR corresponds
to a classifier which is as good as a random classifier. Whenever the perfect classification result
cannot be achieved, a better classifier will have a higher area under the ROC curve.

In practice, the application of the anomaly detector dictates whether false positives or false
negatives can be tolerated. For example, a medical device that generates many false alarms results
in the patient stopping to trust the device, which is known as alarm fatigue [21]. In such systems,
a lower false positive rate is more desirable. On the contrary, a lower false negative is desirable
when a negative case can be fatal. For example, a false detection for an anomaly might be costly,
but a false classifier miss might be catastrophic with fatalities.

Tuning Framework Parameters.

The implemented framework has some tuning parameters that can be used to achieve better
classification results. Such tuning operation also ensures that the model does not overfit the set
of normal traces. We explain how to use the prior knowledge to tune the following framework
parameters along with experiments that show their effect on the classification results: voting
threshold on anomalous curves count denoted as v,, the significance percentage of an event type
within a trace denoted as Sy, and the maximum events window duration denoted as A, 4.
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The voting threshold v,

The threshold specifies the minimum number of anomalous arrival curves computed using a trace
so that the binary classifier declares the trace as anomalous. Tuning the threshold controls how
strict the classification is. For example, a strict classifier with v, = 1 will consider a trace to be
anomalous if only a single arrival curve turned out to be anomalous. In practice, this setting would
lead to high false alarms as some event types within a normal trace might still yield inconsistent
arrival curves, so a low value for v, would raise more false alarms and lead to a higher false
positive rate.

The significance percentage parameter Sy,

The parameter specifies the minimum proportion of events of the same type in a trace before that
type is considered significant. Choosing a value for Sy, requires preliminary analysis of training
traces to study the occurrence frequency of the different event types, that is to choose S¢; values
that yield an appropriate count of event types contributing to the classification procedure in the
framework. We want a value of S¢, high enough to capture just enough significant event types to
accurately distinguish traces with fundamental differences using their arrival curves. However,
using more event types ¢ in the training model might overfit the training data and hence degrade
the classifier performance.

Maximum sliding window size A,

Increasing A, might allow detection of anomalies whose disruption effect might go undetected
using shorter window sizes. The deviation in Figure 4.3b between the result obtained using
a testing trace with respect to the training model is significant after A 2> 200 units, so using
a A, = 200 units will classify the curve of that event type to be normal however using a
Apaz = 1000 units will correctly classify it as anomalous. It is important to note that such
detection comes at higher computation cost. That is why we consider it to be the last resort
while tuning parameters for better classification results. However, increasing A, might have an
over-fitting effect on the training model which raises the FPR during testing. The units of A,
can be number of events or number of timeunits as we discuss using the presented case studies.
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4.3 Experimental Evaluation

In this section, we use event traces generated from deployed real-time systems of two industrial
case studies. One we use to demonstrate the applicability of the approach on indexed traces, while
the other case study uses timestamped event traces.

4.3.1 Indexed Traces: UAV Case Study

We use kernel event traces generated from an unmanned aerial vehicle (UAV) running the real-time
operating system QNX Neutrino 6.4. The UAV was developed at the University of Waterloo,
received the Special Flight Operating Certificate (SFOC), and flew real mapping and payload-drop
missions in Nova Scotia and Ontario. The trace snippet in Figure 4.4 shows the event attributes
used in our experiments.

Index, class ,event , pname

1 , PROCESS , PROCCREATE_NAME , proc/boot/procnto-instr
2 , THREAD , THREADY ,proc/boot/procnto—instr
3 , INT_ENTR , 0x00000044 , NA

4 , INT_HANDLER_ENTR, 0x00000044 , NA

5 , INT_HANDLER EXIT, 0x00000044 , NA

6 , INT_EXTIT , 0x00000044 , NA

7 , COMM , SND_MESSAGE ,proc/boot/gconn

8 , COMM , REC_MESSAGE ,proc/boot/gconn

9 , THREAD , THSIGWAITINFO ,proc/boot/devc-pty

Figure 4.4: Indexed QNX trace snippet

The snippet is generated using the tracelogger and traceprinter utilities available in QNX
Neutrino. In the experiments, an event type < has a unique value that combines the values from
the three attributes described in the snippet as an event from an event class that is generated
by the kernel while running a specific process pname. We generated 254 UAV traces where
each trace consists of a stream of roughly 10K events. These traces are generated from four
anomalous execution scenarios. One scenario implements a task that interferes with system tasks
by running a while-loop to consume CPU time, two scenarios implement a job executed every
few seconds where the task is scheduled using two different scheduling algorithms (e.g., FIFO
and sporadic scheduling), and the last scenario corresponds to a normal execution behavior but
does not conform to the training traces.
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To evaluate the anomaly detection framework discussed in this chapter, we use a modeling
set of roughly 100 known traces of an expected behavior from the UAV and a set of roughly 40
unknown traces divided equally between normal and anomalous traces for each experiment. The
normal traces used in the testing phase were different from the ones used in the training phase.

Table 4.1 shows the best classification results obtained for the different anomalous scenarios
after tuning the previously mentioned parameters. Since results of scenarios fifo-Is and different-
normal achieved only less than perfect classification results, we show the best classification results
indicated by the ROC curves in Figure 4.5. The values in the figure corresponds to the tuned A,
and Sy, while varying v, over a range of [2,5]. Using other values for the tunable parameters
yielded poor classification results, i.e., ROC having less area under the curve.

Scenario \ TPR FPR \ Framework Parameters Values

Sfull-while 100% 0% Az = 500, Sy = 3, v, = 3
different-normal | 100% 0% Az =500, Sy =1, 0, =4
sporadic-ls 97% 0% Aar = 500, Sy =3, v, =5
fifo-ls 94% 0% Az = 500, Sy = 3, v, = 3

Table 4.1: Indexed Traces Classification Results

The results in Table 4.1 and Figure 4.5 show the feasibility of the proposed framework on
indexed traces, we now discuss another case study where we consider the timestamps of the events
as originally proposed in the definitions of Chapter 3.

4.3.2 Timestamped Traces: SSPS Dataset

We generate traces using a device under test (DUT) that mimics a data collection system which
executes recurrent processes that sequentially sense, process, and send some sensor information
over a communication network. The Sequential Sense Process Send Dataset (SSPS) dataset
comprises a set of event traces generated using the QNX tracelogger utility. The dataset involves
variants of data generation hardware, data storage media, and different configuration for the
underlying DUT operations. The experiment architecture uses computational servers with CPU
and GPU capabilities to process the SSPS dataset traces stored in a PostgreSQL database.

The SSPS dataset specified data collection configuration generates traces from the BeagleBone
hardware platform for the three modes of operations. We select traces that represents multiple
runs from the Beaglebone board collecting 5000 data blocks from the pseudo-device hd0. The
objective of the anomaly detection framework is to correctly classify a given trace as normal
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Figure 4.5: Effect of tuning the count threshold v, on indexed traces classification

or anomalous, in addition to providing a quantifiable anomaly score. To represent performance
anomalies, we deploy the data collection system on two embedded boards with distinguishable
hardware capabilities which are BeagleboneBlack and ARM SabreLite embedded boards. System
configuration anomalies vary the source of data from hd0 and random pseudo-devices and the
count of data blocks processed.

In this dataset, we use the timestamps associated with the events in the QNX trace. So as
we discussed in Chapter 3, the A parameter is measured in time units instead of window counts,
which also applies to the tunable parameter A, .

The classification results in Table 4.2 and Table 4.3 show one dataset to be more challenging
than the other. This can be verified by domain knowledge, where the difference between the
hardware capabilities of the Beaglebone and Sabrelite makes the classification using timing
information a less challenging task, i.e., (TPR,FPR) = (100%,3%), compared to classifying the
different configurations within the same BeagleBone board, i.e.,(TPR,FPR) = (85%,45%). The
results in both tables are not as good as the results obtained in the UAV case study even for the best
tuning parameters used; We improve this result by introducing a multi-mode clustering approach
in Chapter 5 which builds a mode-specific model to better describe the underlying behavior of the
system.
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Hardware Variants: BeagleBone vs SabreLite

H Trace Count: (Train, Normal, Anomalous) ‘ (TPR,FPR)

Without Clustering || (132,67.69) | (100%,3%)

Table 4.2: Timestamped Traces Classification Results: Hardware Variants

H Misconfiguration: hd0 2500 vs random 5000

H Trace Count: (Train, Normal, Anomalous) ‘ (TPR,FPR)

Without Clustering || (57,55,55) | (85%.,45%)

Table 4.3: Timestamped Traces Classification Results: Hardware Misconfiguration

4.4 Conclusion

In this chapter, we used arrival curves as high-level features in a framework that use multi-
dimensional features to allow reasoning about the conformity of the behavior expressed by
an unknown trace to a system behavior defined by a previously collected set of known traces.
Experimenting with multiple datasets from a real-time system demonstrates the feasibility and
viability of our approaches on both indexed and timestamped traces generated from an industrial
real-time operating system experiencing anomalous behavior.
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Chapter 5

Extending the Applications of TRACMIN

In this chapter, we introduce more applications for empirical arrival curves. First, we improve
the classification results obtained in Chapter 4 for the SSPS case-study. We achieve this through
a novel clustering approach that translates empirical arrival curves into a set of strings before
performing traditional string distance evaluation. Second, we extend the application of TRACMIN
to the domain of streaming traces, i.e., on-the-fly anomaly detection. Finally, we build on some of
the definitions introduced in Chapter 3 to use arrival curves for mining recurrent behavior which
is intrinsic to real-time systems.

5.1 Multi-Mode Clustering in TRACMIN

The observation we encountered when evaluating the traces that involved multiple modes of
operation when using a single-mode based approach for classification aligns with the discussion
in a recent survey [65]. The survey presents some techniques that compose a normal behavior of a
given system as a set of normal classes. For example, having a set of features that describe some
distinct system behaviors all corresponding to an expected or normal behavior, i.e., an aggregate
curve for system startup, others for different execution phases such as communication, file transfer,
sleep, etc. Combining all normal behaviors into an aggregate curve can compromise the accuracy
of the model when classifying unknown behavior as we experienced in Chapter 4.

The framework in Figure 5.1 shows the main building blocks for a mode-clustering approach
using arrival curves. For a given anomaly detector, the primary goal is to correctly classify a given
trace to be either normal or anomalous; however, the clustering engine makes sure that the traces
that undergo the classification process originate from the same mode of operation. The reasoning
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behind this approach is to minimize the number of traces which might be misclassified because
they belong to a mode of operation that is not well represented in the normal model. In other
words, having a clustering framework allows for building normal profiles for the different modes
of operation so an unknown trace can be classified against the model corresponding to its mode of
operation.

5.1.1 Approach

The proposed approach aims to cluster the arrival envelope enclosed between C,.x and C'y,;, based
on one of the slope metrics applied to Cy,.x and the proximity P of C;, to Chax. Given these two
metrics, we can intuitively automate the process of differentiating between the arrival envelopes of
an event €. Specifically, we apply a choice from the multiple methods for computing a slope-based
metric of a given curve discussed in Chapter 3, and we employ a variant of the proximity metric PP
which computes the ratio of the area under the C',;, curve to the area under the C',,, curve. This
variant of P ranges between 0% and 100%.

We employ the Hierarchical Clustering method since it does not require specifying the number
of clusters beforehand. In specific, we apply the function hclust in R [72]. The function applies
the complete linkage clustering approach which is updated iteratively using the Lance—Williams
dissimilarity formula [60]

A straightforward approach is to measure the edit distance between the traces themselves as
performed in [24] where the authors apply distance measures to quantify the data loss within
a trace compared to a normal trace by relying on hierarchical clustering for anomaly detection
purposes. However, this approach can be challenging for traces of variable lengths and is
not directly applicable to timestamped traces. We propose an approach which transforms the
proximity curve [P of C\;, to Ch, as a fixed-length character string using Symbolic Aggregation
Approximation (SAX) [50].

The edit distance between those character strings serves as the input to the hierarchical
clustering approach. The reason behind using SAX is that Euclidean distance between the
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obtained two strings is a lower bound to the Euclidean distance between their corresponding
proximity curves [50].
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Figure 5.2: Applying SAX to proximity curve of Cpin to Chax

Example 4 demonstrates how SAX obtains a character string that symbolically represents
the proximity curve. SAX applies Piecewise Aggregate Approximation (PAA) to the proximity
curve P and assigns characters based on a Gaussian distribution of thresholds on the arrival counts
(y-axis) for specified At interval values (x-axis). The selection of suitable threshold levels and
At intervals can be performed throughout an iterative process for best results. Example 4 defines
SAX breakpoints in the range [0,1] for an alphabet of 5 characters to describe the proximity levels
on the y-axis. The length of the character string corresponds to an arbitrary number of 9 PAA
segments.

Consequently, the proximity curve can be represented as a fixed-length character string using
a defined alphabet. To build a distance matrix, we use the Levenshtein distance [47] to compute
the edit distances between the SAX strings of the different proximity curves P. The Levenshtein
distance represents the edit distance between two character strings by counting the numbers of
characters to be replaced until two strings are matched.

Example 4. Figure 5.2 shows the arrival curves C,, and C;, along with the corresponding
proximity curve P for a defined set of window intervals At. Applying SAX to the proximity curve
P with the mentioned settings for alphabet size and PAA segments yields the character string
eabacddcd. Assume we obtain another string eaaaccddd for another proximity curve, then the
Levenshtein distance between the two strings is 3.
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Figure 5.3: Visualization of the different slope metrics

To fully characterize the arrival curves envelope, we build another distance matrix using
Euclidean distance between a the values of a chosen slope metric. Figure 5.3 visualizes the slope
metrics discussed in Chapter 3. The affine curves of the TSpec-model that upper bounds Ci,ax
curve - in blue - are obtained using Quantile Regression from the R package quantreg [40]. The
figure also shows the steadiness slope metric S - in black - which averages the slopes between the
steady plateaus to encapsulate the overall shape of the arrival curve C .

The aggregate distance matrix used for clustering a set of arrival curves is a weighted sum
of the two distance matrices obtained for the slope-based metric and the proximity strings
where the distance matrices are normalized because of their different scales. Finally, we apply
the hierarchical clustering technique to the aggregate distance matrix to obtain a bottom-up
dendrogram, which is a tree diagram structure whose height shows the distance between the
desired number of clusters. We show the feasibility of the approach by presenting a dendrogram
that successfully clusters traces arising from different modes of operations of a real-time system.
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5.1.2 Experimental Evaluation

To evaluate the clustering framework, we use the SSPS dataset introduced in Chapter 4. We apply
the framework in Figure 5.1 to compute arrival curves using a At resolution of 1e6(nsecs) and
maximum trace interval of 2.5¢6(nsecs) before splitting into € which corresponds to a given
process name, QNX class, and QNX event combined. The SAX method translates the proximity
curve P of C, to Chax using settings similar to the ones discussed in Example 4. We obtain
a distance matrix that represents the Levenshtein distance between the SAX strings which is
aggregated with the distance matrix that represents the Euclidean distance between the slope-based
metric — the steadiness slope S in this case — using a weighted sum. Applying the hierarchical
clustering method, we obtain the dendrogram in Figure 5.4 which correctly clusters the different
modes of operations since there exists a separation that can produce three clusters, each having
a single mode of operation. The y-axis of the dendrogram shows the aggregate distance as a
percentage of the string length.

The experiment shows a standalone application for the proposed clustering framework. For
anomaly detection purposes, the clustering approach might be sufficient to cluster normal traces
against anomalous traces for less challenging datasets. However, for more challenging anomaly
detection tasks, we now demonstrate the capability of the proposed anomaly detection framework
for capturing behavioral anomalies within the same mode of operation.
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In this case, the clustering framework can serve as a preprocessing engine that enables building
mode-specific arrival curves models for classification purposes. We demonstrate how classification
results can significantly improve by splitting the arrival curves models by modes of operation.

The SSPS dataset involves anomalous behavior such as device misconfiguration and perfor-
mance degradation. By comparing different hardware setups executing a given workload or under
different configuration, we can evaluate whether clustering the modes of operation would improve
anomaly detection results. In a deployed system, an attacker would substitute a storage media
device or alter the system configuration which should be sufficient for our anomaly detection
platform to flag the anomaly by inspecting the logs using abstract arrival curves. As mentioned,
the SSPS dataset naturally provides different modes of operations, i.e., sense, process, and send.
Within a trace, a marker event indicates the start of each mode of operation which acts as the
ground truth for evaluation.

H Hardware Variants: BeagleBone vs SabreLite

H Trace Count: (Train, Normal, Anomalous) ‘ (TPR,FPR)

Without Clustering || (132,67,69) | (100%,3%)
Sense Cluster || (39,23.23) | (100%,0%)
Process Cluster || (46,22,24) | (100%,7%)
Send Cluster || (47,22,22) | (100%,0%)

Table 5.1: Effect of Clustering on Classification: Hardware Variants

H Misconfiguration: Ad0 2500 vs random 5000
H Trace Count: (Train, Normal, Anomalous) ‘ (TPR,FPR)

Without Clustering || (57,55,55) | (85%.45%)
Sense Cluster || (14,13,15) | (100%,0%)
Process Cluster H (21,20,20) ‘ (100%,14%)
Send Cluster || (22,22,20) | (100%,0%)

Table 5.2: Effect of Clustering on Classification: Hardware Misconfiguration
Table 5.1 and Table 5.2 shows the results of the classifcation when splitting the traces based

on the modes of operation obtained using the framework in Figure 5.1. The tables show the results
of the classification obtained in Chapter 4 versus the results using the clustering engine which
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clearly demonstrates its benefit. We significantly improves the classification results, i.e., achieving
perfect TPR =(100%) and lower FPR for all scenarios for both datasets, i.e., 14% and 0% instead
of 45%. The reasoning behind such an improvement arises from the fact that a generic model that
considers a wide range of behaviors originating from different operational modes is less capable
to detect the slightest anomalous deviations to the normal model. In other words, a model with a
wide confidence interval shown in Figure 4.2 would consider deviations from the mean curve to
be always normal, however, a mode-specific model will have a confidence interval that is capable
of picking up those slight deviations.

Semantics of Different Slope Metrics

The evaluation in this section applies the steadiness slope metric S for distance computation,
however, similar classification results were achieved using the widely known (burst, rate)-model
and TSpec-models. The nature of the anomalies introduced in the SSPS dataset had similar
effects on the different slopes metrics visualized in Figure 5.3. In this thesis, the chosen affine
curve models introduce an upper bound (over-approximation) on the arrival curve C',,, under the
assumption that the average rate of Cy,,x can be linearly approximated by some rate r with the
choice of an initial affine curve that passes through the origin.

However, the SSPS evaluation platform presented cases for empirical arrival curves Cyax
whose long-term behaviour can be represented by multiple slopes. As a result, the representation
using an affine curve model whose initial segment passes through the origin and a single long-term
rate introduces a significant error that is not suited for anomaly detection purposes. We visualize
examples for these cases in Figure 5.5.

Figure 5.5a shows a limitation to the variant of TSpec-model used in the thesis. Although the
long-term rate can be defined accurately, the initial burst introduced an over-approximation error.
Choosing a different 7Spec-model to better represent the bursty arrival behaviour is possible, yet,
an algorithm to automate such decision-making procedure would be necessary. On the contrary,
Figure 5.5b showcases another Cy,,x that is accurately represented by the employed TSpec-model
while an unacceptable approximation error is introduced by the steadiness slope S.
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5.1.3 Clustering Beyond Modes of Operations

We further demonstrate the benefit of the clustering engine, by presenting two examples for the
introduced case-studies:

Clustering Anomalous Traces in the UAV Case Study

The first example targets the use of the proposed clustering approach for an easier task, which
is to cluster anomalous traces versus normal traces. The original approach already got optimal
classification results for this task. Figure 5.7 shows the clustering results from the hexacopter
dataset. As expected, the clustering results separate the normal and anomalous traces where the
height of the dendrogram shows the distance between them. The anomalous traces are the ones
having full-while, half-while, fifo-Is terms in the file name. The traces having terms baseline,
clean, faultinj show similar behavior with respect to each other.

Clustering Configuration Settings

The second example uses the traces that correspond to the same mode of operation from different
configurations to see whether the approach can classify them as well. Figure 5.6 shows the
configuration of using different storage media hd0 vs random where the clustering shows perfect
separation as indicated by the file names.

38



5.1.4 Discussion

The clustering approach presented in this section completes the building blocks of the framework
introduced in Chapter 4. The clustering engine serves as an optional block that would improve the
classification accuracy when separate models are needed to separate normal scenarios. The exten-
sion to clustering using SAX demonstrate the applicability of arrival curves as characterization
features to describe event traces that, in our case, originates from real-time systems.
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Figure 5.6: Dendrogram of SSPS hd0 vs random scenario clustering
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Figure 5.7: Dendrogram of UAV clustering results
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5.2 TRACMIN in PALISADE Streaming Framework

Trace mining for online anomaly detection has become of recent research interest. One main
reason is the availability of minimally intrusive hardware for tracing like [56]. The traces are
generated as part of the normal operation of such devices making it suitable for inspecting
unpredictable failures. These traces can be streamed into files or over the network when the target
devices operate in remote locations. Interestingly, streaming the trace content over the network in
online fashion eliminates the need for the storage required to keep the entire trace of an operating
session that might reach terabytes of data making it an overwhelming process to retrieve that
information at once for offline analysis which might delay the corrective action in case of an
anomalous behavior. As a result, the problem of having an efficient online anomaly detection
technique on the list of the current research problems [19].

We presented an offline anomaly detection framework that builds an offline model using entire
traces for post-mortem analysis on complete traces. In this section, we deploy arrival curves in a
streaming anomaly detection framework. The streaming approach faces two main challenges with
respect to offline anomaly detection:

Single-Pass Requirement

Streaming anomaly detection frameworks require a single-pass approach for data processing. In
other words, the data will be discarded after processing. As a result, the computational approach
of the online anomaly detection technique affects the analysis efficiency. For example, consider
an online anomaly detector using a non-overlapping sliding window, the processing of an input
stream should be at least as fast as the generation of data having a length equal to the defined
window length. In other words, data within the sliding window should be processed before another
window of data replaces it. The requirement can be relaxed depending on the available memory.

Parameters Suited for Online Analysis

Based on our prior offline anomaly detector in Chapter 4, the primary parameter we need to
choose for an online anomaly detection is A,,,,. The parameter controls the maximum number of
events or time units considered in the sliding window for observing the maximum and minimum
occurrence count. The objective is to minimize A,,,, in a way that achieves an acceptable ROC
curve [25] as this would allow for lower computation time. However, for a streaming approach,
it is desirable to have smaller A,,,, basically to minimize the stream size needed to accurately
detect faults or anomalies on-the-fly.
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Figure 5.8: TRACMIN integrated in PALISADE streaming framework

5.2.1 Modifying TRACMIN for Streaming Anomaly Detection

We tackle the problem of online anomaly detection using traces generated by real-time systems
in a streaming fashion. Although the problem looks similar to the traditional problem of mining
traces for anomaly detection, there are two main differences: First, the entire trace is not available
for inspection where the inspected data is not stored after analysis in a typical case. Second, online
anomaly detection requires having fast monitoring tools that enable corrective actions during the
execution of real-time systems. Typically, the analysis time by the online monitors should be
negligible compared to the generation rate of data streams. In other words, the monitor should
handle the streaming trace events in a bounded time with respect to the generation rate or amount
of data processed.

The offline anomaly detection approach discussed in Chapter 4 provides a confidence interval
on both the maximum and the minimum arrival curves, upon which the classification is performed
by evaluating the proximity of a new curve to those regions. The intuition behind this approach is
that traces of approximately same length would exhibit a behavior that can be described using
similar minimum and maximum curves, however for streaming traces, this approach is not valid,
as the only guarantee that can be obtained is that some stream of a trace would generate counts
that are between the minimum and maximum arrival curves described by the model. However,
further streams could push the counts towards the minimum and maximum curves as an entire
trace streaming is performed. As a result, the evaluation method used in Chapter 4 for offline
anomaly detection is not applicable to the streaming approach.

For streaming anomaly detection approach, we define the normal behavior by the region
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bounded by the upper confidence interval of the maximum arrival curve and the lower confidence
interval of the minimum arrival curve. The arrival curves constructed over the streaming data
is considered normal as it falls in this region or within some defined proximity threshold from
those two boundary curves. Figure 5.11 shows a snapshot of normal arrives curves that meet this
criterion. We discuss the details of the snapshot later in this section.

5.2.2 Overview on PALISADE

PALISADE is a streaming anomaly detection framework for embedded systems developed by
the Real-time Embedded Software Group at the University of Waterloo. The framework uses
Redis in-memory database where the different processor nodes use a publish-subscribe interface
on Redis channels to receive data from a database and output anomaly flags in addition to relevant
information, i.e., anomaly scores.

Figure 5.8 shows a subset of the PALISADE framework to demonstrate how TRACMIN can
be integrated. The objective for the framework is to facilitate the streaming of traces collected
from real-time systems to evaluate the capabilities of different anomaly detection techniques
simultaneously. The framework contains a data source which can be a database, a trace file, or
a system running online. The Redis channels are the pathway for the data to the publishers and
subscribers, where the processor node receives the data for processing and output the anomaly
flags and relevant information on the channels. We evaluate TRACMIN for streaming anomaly
detection on a case study that is integrated as a data source for PALISADE.

5.2.3 Integrating TRACMIN with PALISADE

The objective is to integrate TRACMIN as a processor node in PALISADE, and as a result, be able
to process the streaming events in the framework. As discussed, PALISADE provides commands
to load and save an offline model, and since TRACMIN already perform the anomaly detection
using offline models. The models, in this case, will be an arrival curve model similar to the models
discussed in Chapter 4. PALISADE then monitors the events streamed to specific channels, and
as a result, registering TRACMIN as one those channels, the data can be streamed for processing
from the data source to the processor node.

At this stage, the arrival curves are constructed using data buffered in the processor node
and compared to the loaded model. The result of the anomaly detection is streamed on the
corresponding channels. In this case, it will be an anomaly flag corresponding to the behavior of
the data within the buffer, in addition to any scores that quantify the classification results. We
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Figure 5.9: Demonstrator conveyor belt with two remotely-controlled cars

highlight that the objective of the anomaly detection approach for TRACMIN is to flag anomalous
traces after processing an entire trace. However, for the streaming approach, the scope of the
detection is limited to the buffered data from the stream.

5.2.4 Evaluation: Treadmill Case Study

The Treadmill platform is a conveyor belt that simulates an infinite path for remotely controlled
cars. The cars are tracked by a top mounted camera where an electric motor controls the conveyor
system using throttle set points sent over Ethernet from a PC. Custom circuit boards connected to
the cars through XBee interface receives the throttle and steering commands from a base station in
Robot Operating System (ROS) format. The traces of interest are the timestamped throttle values.
Figure 5.9 shows the platform during operation using two cars. A normal behavior describes two
cars moving steadily with a fixed distance separating them. An anomaly is injecting a change to
the controller settings attempting to crash the front car from behind.

The objective of our evaluation is to detect the attack as the car in the back starts to attempt to
crash the one in the front. A set of traces that describe the normal behavior of the two cars, using
which we create a normal arrival curves model as discussed in Chapter 4. In deployment, the
throttle commands are streamed to Redis as discussed in Figure 5.8 and the TRACMIN processor
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Figure 5.10: ROS commands for car throttle

nodes construct the arrival curves on-the-fly and assess the curves against the offline model.
Figure 5.10 shows a sample of throttle commands plot versus time, while Figure 5.11 shows how
an arrival curve can model the arrival of those throttle command versus a normal model obtained
offline. The figure shows how the assessment in the online demo differs from the classification
procedure in Chapter 4 where the shaded region bound between the C;f, . and C is considered
the normal region.

5.2.5 Discussion

In this section, we show how arrival curves can be used as features to describe streams of events
in addition to entire traces processed offline as discussed in the previous chapters. Online trace
mining is a topic that is gaining research interest as Internet-of-Things and cloud computing start
to prevail. With the efficient implementation and parameter consideration in building training
model, the classification of streams allows for pinpointing anomalous sub-traces on-the-fly during
system execution. Combined with post-mortem analysis, the online and offline approaches of
using arrival curves in TRACMIN provide valuable insights to the domain expert when analyzing
failures and monitoring real-time systems.
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Figure 5.11: Arrival-curves model for throttle command

5.3 Recurrent Pattern Mining using Arrival Curves

Real-time systems can have periodic, aperiodic, and sporadic behavior. The term recurrent refers
to a behavior that mixes between periodic and sporadic where we expect the traces collected
from such systems to represent a repeating behavior within some flexible timing intervals [68].
Specifically for real-time systems, an analyst would require knowing the best-case and the worst-
case execution behavior that can be considered normal. Using this information, one can detect the
deviation to raise flags of anomalous behavior. Our work uses arrival curves as the main approach
for targeting our research problems because of the ability to represent such best and worst cases
defined by system execution, not the analytical bounds.

The detection of recurrence period is crucial for abstracting the behavior of a process using
empirical arrival curves, as the arrival curves described by window sizes up to the recurrence
period can be sufficient for the analysis as we discuss in Chapter 6 for robustness assessment. The
recurrence period can indicate the frequency of the repeating pattern observed by event generation,
for example, detecting core switching when considering traces originating from a specific CPU
core.

47



5.3.1 Approach

To reason about the existence of recurrent behavior of a real-time system, our approach aims to
extract intervals of repeating modes of operation and characterize the arrival behavior of events
within those intervals. For example, an application that can be described to have a recurrent
single-mode of operation is a coffee machine having a ’brewing’ mode and otherwise an ’idle’
mode. We conjecture that finding points having approximately same Clifr Or Cpax—Chin S€parated
by roughly the same distance, denoted as A, indicates that the event trace has a specific pattern
where sliding windows of duration A, yield roughly the same C; counts. For example, our
conjecture is that a low variance o of distances A separating points of Cy ~ 0 signifies such
applications having recurrent single-mode of operation. The following set of Equations 5.1 shows
how to calculate that variance o of distances in this case:

Ca = {A'|Carr(A", T) ~ 0N A" € Ny}
diff(Ca) =
{0]0 = A} — A}, A} = inf{(x > Aj}orallA] € (a}

n o 2
o2 — i1 (i — 1) with z = diff(Ca), pt as mean of x (5.1)
n

Following this conjecture, we employ the auto-correlation function (acf) [11] to reason about
the existence of recurrent patterns within some Cgyir curve. Auto-correlation is widely used in
signal processing to detect repeating patterns [44]. The auto-correlation function when applied to
a curve shows the mutual relation of the curve with itself versus increasing time lag, where finding
statistically significant auto-correlation values separated by approximately equal lag distances
indicates a repeating pattern [61].

In our work, the auto-correlation function shows the correlation of the Cy curve versus
increasing window duration A to detect repeating patterns within the set (x, where a Cyir curve
having similar values of Cgi at distances ~ A, of low variance o is expected to yield an
autocorrelation curve of statistically significant values separated by distances ~ A,. We use the
autocorrelation function acf implemented in R [72] which uses the definitions from [76]. The
plots from the mentioned function provides a confidence interval based on uncorrelated series
which can be used to determine the existence of patterns.

Example S. Consider a trace T'1 composed of a repeating pattern RPT'1 of 19 events, RPT'1 =
{abbbbbbabbbbbbabbaa} and trace T2 composed of a recurrent pattern RPT?2 of 29 events which
have an additional mode of operation, RPT2 = {aaaababbba abbbbbbabbbbbbabbaa}.

Figure 5.12a and Figure 5.12b show the corresponding C'y;n, Chnax curves for traces 7'1, T2
and the auto-correlation of the corresponding Cgi¢r curves. The auto-correlation result in RP7T'1
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shows a decaying sinusoidal-like curve, which indicates the existence of a repeating pattern within
the Cyier curve with a cycle A, ~ 20, i.e., the length of pattern RPT'1. For RPT?2, there exists a
cycle of Ap ~ 30 as pattern R P72 which has more events than the pattern R P7T'1. In practice, a
change in the length of the recurrent pattern might indicate that a system repeats a different mode
of operation or repeats a sequential order of several modes.

To show the result of applying our approach to traces whose events do not have recurrent
behavior, we randomly introduce events to disturb the patterns R P71 and RPT2. As a result, the
auto-correlation result shown in Figure 5.12a for the third trace did not have statistically significant
values, i.e., NORPT. The significance is indicated by the horizontal confidence intervals around
40.2, where having autocorrelation values only within these bounds indicate that Cy shows no
correlation versus increasing lag [61]. Note that the choice of max window size A, is crucial to
detect the recurrence period A, e.g., A,,,, must be at least a multiple of A,,.

5.3.2 Evaluation: UAV Case Study

The results obtained using the synthetic trace of Example 5 shows how arrival curves are potentially
good features for describing recurrent behavior within event traces. We show how this approach
can be applied to event traces generated from deployed real-time systems.

Indexed Traces

The aim of this case study is to validate our conjecture on traces known to exhibit recurrent
behavior. As the UAV case study uses QNX event traces generated by a real-time system, we
expect the traces to show signs of recurrent behavior. We use a subset of roughly 60 traces which
consist of a stream of 10K events each to represent the three different execution scenarios: normal,
full-while, and fifo-Is. The normal execution scenario shows that 19 out of 22 event types have
recurrent behavior in the generated traces. The fifo-Is scenario shows similar numbers of event
types having recurrent behavior; however, such behavior occurred at different intervals A,,. The
full-while scenario shows on average of 7 event types to have recurrent behavior meaning that
several events lost the recurrent behavior due to the highly utilized CPU behavior affecting the
behavioral patterns of the system. The number of events that showed recurrent behavior in both
case studies highlights the applicability of using arrival curves for the purpose of characterizing
the recurrent behavior of real-time systems using their event traces. The promising technique can
be applied similarly to generic streams of recorded events as function calls, system tasks, etc.

Figure 5.13 provides a sample of the result of autocorrelation function applied to the Cl
curves obtained from the case study. The curve corresponds to a QNX event THREAD THREPLY
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Figure 5.13: Mining UAV recurrent pattern [indexed traces]

and shows the recurrent behavior within the generated trace that can be characterized using the
recurrence windows A, events.

Timestamped Traces

Now we use timing information to demonstrate the generality of our approach to both traces with
and without timing. In this case, we show event the describes the kernel event associated with
communication message reply within the operating system. Figure 5.14 shows the behavior of the
specified event within the UAV case study along with the autocorrelation obtained that indicates a
recurrence interval.

As we mentioned earlier in this chapter, it is important to know the least window size needed
for streaming purposes. The section discussed a way to quantify that size through ROC curves
by inspecting the smallest window size that yields good enough classification result. Another
method to achieve this is through recurrent pattern mining approach described in this section.
Using the recurrence period detected by the autocorrelation method, we can strict the analysis to
that recurrence pattern.
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5.3.3 Discussion

The presented approach for recurrent pattern mining using arrival curves extends the applications
to better characterize the recurrent behavior of real-time systems that they often exhibit for the
purposes of better understanding to the systems. Also, the absence of recurrent behavior or the
change in recurrence period can be also used for anomaly detection.

5.4 Conclusion

We conclude this chapter by emphasizing on the possibilities expanded by defining empirical
arrival curves for real-time systems in Chapter 3. This chapter demonstrated the arrival curves
can be used in clustering traces originating from different modes of operations or anomalous
behaviors. We also showed how the TRACMIN framework can be extended to process the
traces in a streaming fashion, demonstrated by the successful integration with the PALISADE
streaming platform, exploiting the efficient implementation constructing arrival curves and the
ability to detect recurrent patterns. The recurrent patterns in a real-time system can be detected
using empirical arrival curves when combined with the concepts of autocorrelation applied to the
defined metrics and definitions.
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Chapter 6

Robustness Evaluation of Arrival Curves
Model

We introduced empirical arrival curves and tackled the thesis statement by evaluating their
feasibility for characterizing real-time systems having recurrent behavior. However, one problem
with empirical models is the lack of guarantees to their performance after deployment. In this
chapter, we evaluate the robustness of models based on arrival curves in order to provide bounds
on the variation captured by the statistical bounds discussed in Chapter 4.

6.1 Motivation

One main challenge to empirical models constructed from tracing data is how they are evaluated.
For example, surveys [14,59, 86] categorize the evaluation of empirical models used for anomaly
detection either by their ability to classify normal versus anomalous behavior or by measuring the
time needed to construct a model for a given behavior. Concerning classification accuracy, the
current research work shows a lack in the methods that derive robustness bounds on the acceptable
behavior of a given system using margins provided by the empirical models. In this context,
the authors in [37] acknowledge the problem that empirical models for anomaly detection are
generally tuned in an ad-hoc manner without guidance by well-found theoretical framework or
analysis. As a result, the authors claim that there are no guarantees on the effectiveness of the
empirical models after deployment.

To overcome this problem, we aim to assess the robustness of arrival-curves models used
to characterize the ranges of tolerable behavioral variations of a given real-time system, i.e.,
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hardware degradation, external attack, etc. The general problem addressed can be stated as: Given
an arrival-curve model that represents the normal behavior of a real-time system, how much
behavioral variation the underlying system would exhibit before the generated traces can no
longer be represented using such model

6.2 Problem Formulation and Approach

In the previous chapters, we show the feasibility of arrival curves as high-level features in a trace
mining approach in modeling the recurrent behavior of a real-time system through computing
arrival curves from event traces. We hypothesize that an empirical arrival-curves model which
incorporates statistical bounds for acceptable variation in events arrival within a trace can be
represented by the demand-bound function of some task load under a defined scheduler with a
specified demand variation. Representing the statistical boundaries obtained from the empirical
models as some variation of a given demand-bound function enables the use of well-established
mathematical foundations to derive bounds on the variation of task parameters that can be yet
accepted by such deviation in the demand-bound function.

Under this hypothesis, the general problem statement transforms to the following: Given the
demand-bound function (dbf) for sporadic task-set having implicit deadlines scheduled by an
EDF scheduler with associated upper and lower bounds for allowed variations in the dbf, obtain
a range of values for the task parameters (period, execution time) such that the system stays
operational within the provided demand boundary. We now discuss the mentioned task model.

6.3 Overview on Demand-Bound Functions for the Assumed
Task Model

In this section, we review some basic definitions and present the assumed task model that provides
the basis for our theoretical analysis.

Definition 7. A task T (p, e, d) is a dispatchable entity in the system where the period p is the
number of time units between successive dispatches, e is the execution time (in time units) required
to complete the work, and the deadline d is the maximum time available to complete the work
after dispatching.

The established mathematical foundations for the demand-bound functions motivates the
theoretical analysis. A demand-bound function (dbf) models the maximum processor demand by
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a task over any interval of length ¢ [8]. The dbf of a given sporadic task under EDF assumption is
defined as:

6.1)

dbt(t) = {MJ ’

p

We will also consider that the sporadic task has an implicit deadline (d = p) and there are no
overloads, restricting the possible values of e to the range |0, p|, with p € R.

t

dbf(t) = H (6.2)

p

Due to the empirical nature of the target arrival-curves model, the purpose of the chosen task
model is to provide a reasonable approximation to the arrival curve that describes an increasing
events count versus an increasing sliding window interval as we discuss in Chapter 7. Hence,
we choose the specified sporadic task model with implicit deadline under EDF scheduler which
yields an increasing step-wise function that steps e units every p time units. From the properties
of step-wise functions [39], this increasing function can be approximated with a straight line
with slope ﬁ. We evaluate the choice of this task model and the arrival curves approximation in
Section 6.6.

dbf(t)
e - —
'II'< ____________
p P dof'(t;)--—--~-=- - -
t t
P N dbf(t)}- - - CEUE f)___l o(ta)
0] (ta)
7I-<’1 T ——
|
|
el--- l
|
Te :
p-o 2(p-a) 3-a) t p ta t

Figure 6.1: Graphical representation of variations in the nominal task parameters and dbf

Variations in the nominal task parameters can either increase or decrease the task demand. In
practical settings, changes in the task parameters may arise from changing operational conditions.
For example, activating a low-power system mode may increment the period of a given task,
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while adapting to aging hardware might result in an increment of the execution time of a task. We
formalize the range of possible values of the altered task parameters in terms of decrements in the
nominal period and increments in the nominal execution time as follows:

Definition 8. Decreasing the period of a task. « is defined as the reduction of the task period p
in time units, therefore « € (-0, p|.

Definition 9. Increasing the execution time of a task. 3 is defined as the increase of the task
execution time e in time units, therefore €| -e, (p —a) —e|.

We define « as a decrement and 3 as an increment for mathematical convenience. But to
generalize our analysis, we highlight that both Definition 8 and Definition 9 allow negative values
for both « and 3, i.e., increase of task period and decrease of task execution time, respectively.

Considering the definitions for « and 3, we now introduce general model for an altered task
T} (p—«, e+ ), which incorporates the variations in period and execution time from Definitions 8
and 9 while maintaining the condition of implicit deadlines but for the altered period in this case,
i.e., (d — a = p— «). We can obtain a corresponding altered dbf as follows:

t
dbf'(t) = | —— 6.3
(t) LJ_OZJ@HB) 6.3)

Let us now consider that for each interval length ¢, we define arbitrary bounds on allowed
variations in the nominal dbf from Equation 6.2 (with a = § = 0), restricting the valid values of
dbf’ for a given application.

Definition 10. Variation Bound on Task Demand. We denote the allowed variations of the dbf at
time interval t as o(t) = dbf'(t) — dbf(t), where o(t) € [0y(t), 0. (t)], and o;(t), o, (t) € R.

The restriction in the allowed values of o(¢) can be either set by the system designer according
to some specific operational requirement or can represent some uncertainty in the specifications.
Note that Definition 10 permits describing deviations above and below the nominal demand. This
is a key difference of our analysis with respect to related work on sensitivity analysis from the
scheduling domain [69, 87,94-96], which focuses on verifying that the demand stays below a
certain limit such that the system remains schedulable. We contrast our work with sensitivity
analysis in Section 6.7.

Figure 6.1 illustrates the previous definitions for the variations in the nominal task parameters
and the corresponding dbf. The diagram on the left shows the timeline for the execution of a
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task T with period p and execution time e, and also the execution of tasks T}{I and T;@ that
include variations in the nominal parameters. In specific, T[’(1 increments the nominal execution
time by 3 time units (represented in the shaded green box), and 77, aggregates a reduction in the
period. Both 7%, and T}, generate a demand above the nominal value. The diagram to the right
shows the step-wise nominal dbf together with the terms defined earlier for allowed variations at
a certain point t,,. In this case, the demand of the altered task dbf’ (t,) is above the nominal value,
but within the specified boundaries of allowed variations o;(t,) and o, (t,).

Considering the previous definitions, the problem of interest can be tackled by finding the
region of allowed values of a and 3, such that the value of o(t), representing the deviation in the
demand of the altered task dbf’(¢) with respect to the nominal demand dbf(t) stays within the
predefined range [0;(t), 0, (t)]. We acknowledge that under the assumed task model presented
in this section, utilization-based approaches might be the typical solution to evaluate timing
properties of a given real-time system. However, we use the demand-bound function as we
hypothesize its possible abstraction to empirical arrival curves as we demonstrate in Section 6.6.

6.4 Computing Bounds on Task Alteration

In this section, we relate the demand deviation bound to a feasibility region for the parameters «
and g of the altered task model T};. The mathematical foundations assume a specified demand
variation bound for a given task. However, the analysis presented in this section can be directly
extended to specified demand variation bounds for multiple independent tasks, i.e., a task 7',
has a specified demand variation bound o; where ) . 0; = o. Such problem breaks down into
multiple sub-problems that can be solved by finding the feasible region for each «; and ; for
each task Tk, separately.

Substituting Equation 6.2 and Equation 6.3 in Definition 10, we can derive a relationship
between « and (3 values that alter a nominal task model 7 while meeting a deviation demand
o(t,) for a given time interval ¢, as follows:

s (oo
=

The allowed deviation from the nominal dbf will be bounded by [0;(t,), 0.(t.)]. By replacing
o(t,) by 0y(t,) in Equation 6.4, we can establish a relationship between a lower bound for the
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Figure 6.2: Illustration of the feasibility region for a and 3

parameter (;, and the possible values of «. In a similar manner, we can replace o (t,) by o,(t,) to
obtain the upper bound f,.

Figure 6.2 illustrates how we can use the relationships described above to obtain a feasibility
region for the values of o and (3 given a certain o (¢, ). The figure shows a plot of 5 as a function
of «, in addition to the resulting 5; and 3,. The figure also includes dashed lines to illustrate the
valid intervals for « and 3 according to Definition 8 and Definition 9, respectively. The lines
for 3 and f3, intersect at the point («, 5) = (p, —e). Considering the limits 5, and 3, and the
restrictions over the parameters, we can obtain a feasibility region (shown in shaded green) for
the valid combinations of o and (3 that will allow to keep the altered demand within predefined
boundaries.

To further illustrate the theoretical foundations, we present the following example with
concrete task parameters that we will use throughout the rest of the analysis.

Example 6. Consider a sporadic task with parameters ¢ = 0.375 and p = d = 0.5. Find the
feasibility region for o and 3 such that the demand of the altered task at t, = 30 remains within a
range of +=10% of the nominal demand as shown in Figure 6.3.

Figure 6.4 shows the computed upper bound 3, and lower bound S; with respect to valid
values for o by applying Equation 6.4 to the demand of the task described in Example 6. We
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Figure 6.3: dbf(t), 0, (ts), and o;(t,) of Example 6

restrict the lower bound of « to —p, so the range of allowed « values according to Definition 8
changes to [—p, p]. The resulting feasibility region for the variations in parameters is shown in
shaded green. When drawing a vertical for a given value of «, any value of 5 within that region
will ensure that the resulting demand from the altered system will remain within the specified
variations.

Section 6.4 defined the feasibility region for o and /3 by defining a specific time interval of
variation t,. We analyze the effect of increasing time intervals ¢ on the variation of task parameters
« and [ in Section 6.5.
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Figure 6.4: Task parameters feasibility region for Example 6

6.5 Asymptotic Analysis for Task Parameters Variation

The analysis in this section shows how variations in parameters « and 3 change over increasing
time intervals ¢ to meet the specified demand bounds. To achieve this, we use Equation 6.4 which
defines the relation between [ and time interval ¢ for a given «. Similarly, for a given [, the
equation defines the relation between « and time interval ¢. Analyzing the change of S and « as
the time interval ¢ increases gives us an insight about the change of permissible system parameters
alteration over different time intervals.

We consider the cases where the bounds to demand variation o are defined both as constant
values and as relative values with respect to the nominal demand dbf(¢). In practice, a real-time
system designer will specify a requirement mandating that a given task should not exceed its
demand by some amount of time units at any time interval. For this case, we study when the
variation of the demand is constrained by a given range [0y, 0], where o, and o, are constant
values that remain unchanged for all time intervals ¢. Alternatively, a designer could choose a
demand variation bound that changes with the time interval ¢. In this case, the variation of the
demand is constrained by a given range [0y, 0,] that changes over ¢, i.e., deviations in period and
execution time are relative to the nominal demand at time interval ¢.
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6.5.1 Asymptotic Analysis for Variation in Execution Time

To compute the asymptotic bounds of /3, and /3;, we apply a transformation to Equation 6.4 using
some approximations that are valid for asymptotic values of time intervals .

First, we relate the decrease in period « to the period p using a variable k, where « = k£ X p
such that k& € (—oo, 1[. In other words, the variable k is a ratio of the decrease in period «
with respect to the nominal period p. Second, we relate ¢ to both p and « by defining ¢ where
t =~ ¢ (p — «) assuming c is some factor much larger than (p — «). Hence, t ~ ¢ p (1 — k) as well.

We evaluate these approximation as ¢ goes to oo. To compute the limit of the floor operator,
we apply the Squeeze Theorem of Limits [38] which can be used to find lim,_,, f(x) where f(z)
is bounded by g(z) and h(z), g(z) < f(x) < h(x) as follows:

lim g(z) < lim f(z) < lim A(x) (6.5)

T—00 T—00 T—00

Applying Equation 6.5 to the definition of floor function, ¢ — 1 < |¢| < ¢, we deduce that
lim., o c—1=candlim., . c=c, and as a result:

lim [c] =¢ (6.6)
c—+00
Similarly, since (1 — k) is a constant. We obtain the following result:
lim [c(1—k)] =c(l—k) (6.7)

c——+00

Equation 6.6 and Equation 6.7 allows for transforming Equation 6.4 to obtain f3.

Case 1: Constant demand variation bound o

We now consider the case where ¢ is a constant value irrespective of the nominal demand dbf
and time intervals ¢. Given that the dbf is an increasing function, a constant o bound provides
a decreasing margin for demand variation as time interval ¢ increases. Consequently, as dbf
increases, the o represents a smaller fraction from dbf, until it can be negligible with respect to
the factor c. We can approximate the asymptotic value of 3 using the following expression:
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Equation 6.8 shows that the asymptotic value is independent of o, and o;. In other words, the
boundaries 3, and (; should asymptotically converge to each other as ¢ increases.

62



One way to confirm this finding is that the altered dbf’ can be approximated to the nominal
dbf as t increases. As a result, the slope e/p of dbf is equal to the slope (e + /3)/(p — «), which
is the same result as 5 = —(«a/p) e. Defining this asymptotic value for 5 bounds serves an
example for an extreme case scenario where the boundaries do not provide flexibility for a range
of permissible 3 values as ¢ increases indefinitely.

Figure 6.5 shows the feasible 3 values bounded by f; and j3, as a function of ¢, obtained from
applying Equation 6.4 to Example 6 with an arbitrary value of « = 0.04 and 0, = —0; = 2.25.
Using Equation 6.8, it can be shown that the bounds /3,, and 3; converges to —(a/p) e = —0.03.

Case 2: Demand variation bound o as a function of nominal demand

We consider o(t) values that can be defined relatively to the nominal demand dbf(t). Let us define
o as a fraction f of the nominal demand dbf(¢). For example, the demand variation bound can be
set to be +£10% of the nominal demand at any given time interval ¢. In this case, to compute the
asymptotic values we use Equation 6.9 as follows:

o(t) = f dbi(t) = f BJ ’ 6.9)

Using o (t) from Equation 6.9 to compute the asymptotic values of /5 can be derived as follows:

lim AB(t) = lim d -iJ ° ih’L]J B BJ) €
o 1R () - [
e L] 6.10)
o Flet—R)e—(le] - [ - B)])e
e ]
_ i L= R)e—(e—c(l — ke
= c—k‘eoo-i— f(l—k)e )

We observe that the asymptotic value [ is a function of f that relates the demand bound to the
nominal demand dbf. As a result, the 5 bounds /3, and 5; will not converge to the same value as

63



B versus t (a =0.04)

0.04 + W

0.02 +

- /UV\/]N\/\[V\A/M«/\JWMW
—0.02 . Bl

—0.04 4 —‘

—0.06 1 /\J\A/W\/\f\l\/\/‘(\]\/\f\,/\—\/’\/\/\[\,/\—mj\—

—0.08 4

B [time units]

-0.10

0 10 20 30 40 50 60
t [time units]

Figure 6.6: Asymptotic analysis of 3 using relative o

it was the case for constant ¢ value. Figure 6.6 shows the boundaries /3, and 3, when defining
o(t) € [0.9 x dbf(t), 1.1 % dbf(¢)] in Example 6. Using Equation 6.10, we find the asymptotic
values for the boundaries are 3, ~ —0.064 and 3, ~ 0.0045.

6.5.2 Asymptotic Analysis for Variation in Period o

For a given value of 3, we study how « changes over time interval ¢ by obtaining the relation
between « and ¢ from Equation 6.4 as follows:

o+ {EJ e
t p
7 = { J = (6.11)
p

—
Unlike the analysis for the values of 3, defining a precise relation between « and ¢ for a given

B is not a straightforward operation. Since the inverse of the floor operator is undefined, we cannot
obtain a closed formula for «. Instead, we restrict the analysis to obtain conservative bounds for
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the range of « values that satisfy Equation 6.11. To do this, we can apply the range property of
the floor operator [39], which states the following:

lz] =m <= m<z<m+1 (6.12)

Using the property in Equation 6.12, we can describe a range for the values of « as:

t
o+ |[—]e
t t : L)J

<a<p———,with = ————— (6.13)

P=7z = Z+1 (e+5)

Substituting o for the specified demand variation bounds o; and o, in the obtained inequality,
we can obtain the relation of the corresponding boundaries for o versus time interval ¢ for a given
5. Note that each boundary for ¢ leads to a feasible range of «, so we define Z,, and Z;, which we
obtain replacing o, and o; in the term Z defined in Equation 6.11, respectively. Substituting Z by
Z, and Z; in Equation 6.13 yields two inequalities with four boundaries which can be bounded by
the o in Equation 6.14. Now, we show the asymptotic values for all four boundaries when the
demand variation bound o is defined as a constant and as a function of nominal demand and we
visualize these results in Figure 6.7 and Figure 6.8.

(6.14)

Case 3: Constant demand variation bound o
Considering constant values for o; and o, we analyze the change of the approximate region of «

defined by Equation 6.14 over time interval ¢ for a given 5. We apply the same transformations
used in Section 6.5.1 as follows:

o+ {—J e
7 — Pl otc—Fke 6.15)
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Figure 6.7: Asymptotic analysis of «c using constant o

As discussed, the constant value of o becomes negligible to the factor c as ¢ increases. We
obtain the asymptotic value of « in the case of constant demand bound by applying Equation 6.15
to the boundaries in Equation 6.14. For the right-hand side of the inequality we can compute the
asymptotic value as follows: — Note that we can deduce the asymptotic bound similarly for the
left-hand side which will obtain the same result — :

t cp(1—k) cp(l—=kK)(e+p5)
o S /A 6.16
P=zx177? %&’“)64_1 b o+c(l—k)e+(e+p) (0.10)

Taking the limit to the previous equations lead to the asymptotic value for « in our case:
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cp(1—Fk)(e+p) p(1—Fk)(e+p)

. _ _ B
oot ot+c(l—k)e+(e+p) s %4_(1_]{;)6_1_%5)
_, pleth)
e (6.17)
e

--5(2)

We observe that the approximate boundaries of « range «; and «,, converge to the same value
irrespective of o. The asymptotic value for bounds in « serves as an example for an extreme case
scenario as time interval ¢ increases indefinitely.

Figure 6.7 shows the feasible o values bounded by «; and «,, as a function of time intervals

t, obtained by applying Equation 6.17 to Example 6 with an arbitrary value of 5 = 0.01 and

0y = —o; = 2.25. It can be shown that the bounds «,, and «; converge to —/3 <Z—9> = —0.013.
e

Case 4: Demand variation bound o as a function of nominal demand

Similar to the asymptotic analysis in Case 2 for /3, we consider o(t) values that are relative to the
nominal demand dbf(¢) where the variation of the demand is constrained by a given range [0y, 0,,]
that changes over time intervals ¢. Using the transformation from Equation 6.9, the asymptotic
values for o can be computed using the boundaries in Equation 6.13 again as follows starting with
the left-hand side in Equation 6.18 then the right-hand size in Equation 6.19:

ot ep-=k) _ cp(l-K)e+pf) _ ple+f
p 7 =P fC(l_k)ee_:_;(l_k)e =p c(l—k)e(l—i—f) =P 6(1+ f) (618)
t cp(1 — k) ep(l —k)(e+ 5)
Pz =P T=ReTEH55) =P ket )t et B (6.19)

Then taking the limit as ¢ goes to oo for Equation 6.18 yields the same equation, however, for
Equation 6.19, we obtain the asymptotic value as follows:
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(=K L pl-ke+h) _pl+f)

lim = lim = 6.20
o0 c(1—k)e(ig)+(e+5) emtoo e(1 — k) (1+ f) + @ e(1+ f) (6.20)

Thus, we conclude that asymptotically, both sides of the « inequality will converge to the
same limit. According to the Squeeze Theorem, « can be defined asymptotically in this case as:

(6.21)

From Equation 6.21, we observe that the o asymptotic value is function of f, which relates
the demand bound to the nominal demand dbf. As a result, the approximate « bounds «,,
and o; will not converge to the same value as it was the case for constant o value. Figure 6.8
shows the approximate boundaries «,, and «; when defining o (t) = £10% dbf(¢) in Example 6.
Using Equation 6.21, we find that the asymptotic values for the boundaries are a; ~ —0.07 and
oy, ~ 0.03 can be computed.
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Figure 6.9 presents an asymptotic analysis for the feasibility region of o and /3 values for
Example 6. Figure 6.9a shows the analysis for o with a constant value, and Figure 6.9b shows the
analysis for o with a relative value to the nominal demand dbf, in this case +10%of dbf(t). The
figures show a plane that defines the difference between (3, and 3; corresponding to valid o range
as time interval ¢ increases. Both Figures 6.9a and 6.9b visualize the inversely proportional relation
between [ and « discussed in Section 6.4. However, Figure 6.9a shows the observation from
Equation 6.8 where the boundaries 3; and 3, converge to a fixed value, i.e., the difference between
5, and (3, converges to zero. On the contrary, for the case where ¢ bounds are defined relative to
the nominal demand dbf(¢), Figure 6.9b shows that the difference between the boundaries 3, and
B; converges to a constant value as defined by Equation 6.10.

6.6 Robustness Assessment for Arrival-Curves Models

In Chapter 4, we used arrival curves through statistical learning approaches that process execution
traces to obtain upper and lower bounds for the arrival of trace events while the system executes
normally under different operational conditions. The normal model is typically used in anomaly
detection assessing the compliance of arrival curves obtained from new traces to specified bounds.

Now, we evaluate the hypothesis that an arrival curve can be represented as linear demand-
bound functions of the assumed task model, and as a result, we perform robustness evaluation for
the arrival-curves models using the presented theoretical foundations. Figure 6.10 summarizes the
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building blocks of the proposed framework.

The procedure for robustness assessment for the empirical arrival curves follows these steps:
a) abstract an arrival-curves model to a task model as in Section 6.3, b) obtain the relation that
describes the feasibility region of the allowed alteration for the task model which corresponds
to a variation in the arrival behavior shown by the empirical model as in Section 6.4, c) evaluate
the approach feasibility by quantifying the effect of approximating the curves to a linear demand-
bound function of a sporadic task under an EDF scheduler which we demonstrate in this section.

6.6.1 Representing Arrival Curves as Demand-Bound Functions

In Section 6.3, the mathematical foundation assumes a task model of a sporadic task using the
dbf under an EDF scheduler. The result of this assumption is obtaining a step-wise function
for the demand, which we can approximate by a line passing through the origin. Similarly, an
empirical arrival curve representing a maximum count is a function whose non-decreasing curve
starts at the origin [78]. We introduce the methodology that relates both the arrival curve and the
demand-bound function.

We apply Linear Regression [62] to obtain the line that best fits an empirical arrival curve. We
offset the fitted line to pass by the origin, and as a result, it can be analogous to a demand-bound
function. Later in this section, we quantify the negligible error introduced by this process. For
example, Figure 6.11b shows the fitted regression lines for the mean arrival curve and the two
confidence interval curves after being offset to pass by the origin. The linearity of the curves
makes them a good pick for our demonstration.

The regression lines in Figure 6.11b are now analogous to a nominal dbf(¢) with a upper and
lower variation bound to the demand o; and o, respectively which are both functions of ¢. In other
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words, we can define a sporadic task which demands e execution time units every p time interval
whose demand-bound function can be approximated by an empirical arrival curve counting a
maximum of e instances of an event in a trace every sliding window of p time units.

6.6.2 Robustness Assessment using Task Alteration Parameters

In order to enable the analysis presented in the work on demand-bound functions to the robustness
assessment of empirical arrival curves, we use the task model assumed in Section 6.3 to map the
task parameters and its variations to the slopes of the regression lines obtained in Figure 6.11b.
We denote these slopes as, S for the slope of the regression line for the mean curve, S, and 5; for
the slopes of the regression lines for both confidence interval curves. We compute these slopes as
follows:

S O A (6.22)

e
S = - ) l
p P =0y p—O

Equation 6.22 defines the relation between task parameters e and p and the regression slopes.
We obtain the relations between the variation of parameters « and /3 from Equation 6.4 using the

definitions of S,, and \S; as follows:
(6.23)
Sy

e o
WJ

ta Si ta S
o e+ 05 B e ‘
B = (6.24)
ta S
3]

The above equations provide the relation between bounds on 3 versus execution time e. To
define the relation between « and the period p, we substitute e by S x p from Equation 6.22:
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Figure 6.11: Fitting empirical arrival-curves model to demand-bound functions
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(6.25)

The above set of equations provide the relations between the parameters e and p, and the
corresponding alterations 5 and a. The relations evaluates the alteration that would cause a
deviation o to the dbfs obtained by approximating the fitted regression lines of the empirical
arrival-curves model. Analogously, 5 and a now describe the permissible variation to the arrival-
curves model, i.e., the count of events of the corresponding sliding window interval of observance.

Now we provide an example to demonstrate how to use these relations to assess the robustness
of a model for a real-time system. We exploit the proposed approach by obtaining the feasibility
region for the permissible task parameter variations of the mapped task model through the
approximation of the empirical arrival curves to demand-bound functions.

6.6.3 Evaluation on UAV Dataset

As discussed in Chapter 4, the UAV dataset traces are generated by a cyber-physical system
running a real-time operating system QNX Neutrino 6.4. The traces are collected using the tracing
facility tracelogger. A trace entry is a timestamped kernel event that shows the type of an event
generated while running a specific process on a single CPU core. For the example in Figure 6.11a,
we represent an arrival-curves model for a specific QNX event THREAD THRUNNING that marks
every start of a thread execution for a specified process proc/boot/procnto-instr.

To evaluate the robustness of the example model in Figure 6.11a, we perform the following:

Compute Regression Slopes. We obtain the slopes of the fitted regression lines for the mean
arrival curve and its confidence interval. It is advisable to assess the adjusted R squared of the
regression model. The metric measures the goodness of the linear fit to evaluate whether the
assumption that the model is linear was a valid [62].

In our example, the slopes of the lines in Figure 6.11b can be obtained as S = 6.76 x 1075,
S, = 7.01 x 107°, and S; = 6.52 x 107°. The adjusted R squared is 98% indicating a good
linear fit.

Choose Task Parameters. Next step is specify the task parameters e and p in order to obtain
the relation between « and 3 from Equation 6.23, Equation 6.24, and Equation 6.25. However,
the provided empirical arrival-curves model cannot be used to obtain the e and p values. This
comes from the fact that the slopes of fitted regression lines can represent any underlying task
model satisfying the relation S = § from Equation 6.22.
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Therefore, to obtain reasonable values for e and p, we need to choose p that is a small fraction
of ¢, to obtain the asymptotic values for a and 3, in other words, we aim to maximize the factor
c defined in Section 6.5. Additionally, the choice of p or e can be arbitrarily guided by domain
knowledge of the system under scrutiny. The other parameter can be estimated using the relation

S = g from Equation 6.22 upon deciding on the value of p or e.

In our example for ¢, = 4 x 10, we choose p = 0.001 x ¢, = 400, and as a result, we can
compute e = S x p = 0.027.

Obtain Demand Variation Bound. The last parameters needed to obtain the relation between
« and [ are o, and 0;. The o parameter defines the difference between the fitted confidence
interval curves after offsetting them to pass by the origin (0,0). Note that o optimally can be
expressed as 0 = (dbf’ +intercept’) — (dbf +intercept), but we discard the difference between
both intercepts as the error resulting from that approximation is negligible.

For the shown example in Figure 6.11b, we define 0, = —0; = ¢’ where ¢/ = 0.957 at
t, = 4 x 10°, which is the interval length of the window where we bound the fitted curve
deviation.

Apply Feasibility Region Formulas. To obtain the estimated feasibility region for o and j3,
we plot the values of (3, and ; corresponding to a valid range of « values using the slopes of
fitted regression lines from Equation 6.23 and Equation 6.24. For the actual feasibility region, we
plot the values of 3, and f3; versus the same « range using Equation 6.4.

Figure 6.12 shows the overlay of both feasibility regions using the arrival-curves model and
the actual task model which, similarly to the illustration in Figure 6.4, describe the permissible
values of « and the corresponding bounds on (5. The negligible error between both the actual and
estimated feasibility regions validates that the approximation of a linear empirical arrival-curves
model to the assumed demand-bound function is reasonable.

The case study shows an example of an arrival-curves model that characterizes the behavior
of QNX kernel event on a real-time system. Following the procedure presented in this section,
the empirical model can now be represented as the demand-bound function of an equivalent task
model whose parameters alteration can be bounded. The boundaries describe the robustness of the
model since it quantifies the variation captured in the underlying normal behavior of the system,
and as a result, giving valuable insights on how robust the model is and allowing for comparing
different models.

One application for using the presented robustness assessment approach is the iterative model
evaluation using arrival curves. In anomaly detection, it is important to evaluate whether the
model is good enough during the training process. Our approach provides a way to quantify a
feasibility region which can be integrated in the model training procedure, and as a result, the
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Figure 6.12: Feasibility region for representative parameters 3, o

model is evaluated iteratively as new traces are added. This enables the tuning of models to meet
industrial demands, i.e., certification purposes, where the domain expert specifies some robustness
criteria based on these feasibility regions. In other words, to limit the tolerance of the model
to given criteria, the specification can mention a relation between « and /3 as represented in the
feasibility region, and the certification procedure can quantify the overlap between the specified
region and the obtained feasibility region.

6.7 Related Work: Sensitivity Analysis in Scheduling

The work presented in this chapter fills the gap between the empirical evaluation of real-time
systems and formal analysis that uses theoretical models to describe a given system. We provide a
short overview on the closely related topic of sensitivity analysis from the scheduling domain.

In the presented analysis, we assume that the demand boundaries of a given task are defined
and we aim to find the feasible task parameters that would not exceed such demand. Contrarily,
research work in the domain of schedulability analysis aims to study whether a given set of tasks
can be scheduled, i.e., meet the task demand without exceeding a given deadline, using different
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scheduling methods [8, 52, 83] under various conditions such as, for example, permissible task
overload [7]. Similarly, response time analysis (RTA) [6,36] studies the worst case time for a task
to meet a specified demand. For example, [27] studies the horizontal distance to the demand-bound
function defining the time point at which a specific demand is achieved. In summary, existing
works in schedulability analysis assume that task parameters are defined to study problems like
worst-case execution time (WCET) for a given workload. However, in the domain of scheduling,
our proposed analysis can be closely related to sensitivity analysis.

Sensitivity analysis [69,73,94,96] studies how much change to task parameters, i.e., execution
time or task period, will not violate scheduling constraints. Such analysis becomes relevant
when constraints and specifications are not accurate. The early work on sensitivity analysis [46]
computed the maximum variation of all execution time for a given set of tasks that keep a system
schedulable for a rate-monotonic scheduler. Further work considered parameters other than
execution time, for example, the authors in [9] presents a feasibility space for task deadlines to
meet the constraint of schedulability. Authors in [94,96] study the sensitivity analysis for EDF
scheduling through the computation of optimal task parameters such that a given system remains
schedulable. The authors exploit the Quick convergence Processor-demand Analysis (QPA) [93]
algorithm which tests the schedulability of a task-set by a single iterative process. Particularly, [94]
applied sensitivity analysis considering a varying task execution and [95] considered the case when
the task period can be varied, while [96] assumed a fixed ratio between relative deadline and period.
Our work considers a novel scope by obtaining feasibility regions for the permissible variation of
task parameters, without restricting such variation to a single task variation parameter, to meet
defined constraints on the increase and decrease to task demand rather than the schedulability
condition.

6.8 Discussion

Linearity Assumption for Arrival Curves

The task model presented in Section 6.3 studies linear demand-bound functions by considering
sporadic tasks with implicit deadlines under an EDF scheduler. We showed in Section 6.6 that
having an empirical model that can be best approximated by a regression line minimizes the error
between the actual and the estimated feasibility region as in Figure 6.12. However, the linearity
assumption might not hold for other arrival-curves models [64], i.e., arrival curves describing a
system with multiple modes.

Mode-switching yields an arrival curve that is increasing with positive slopes but with some
horizontal gaps that correspond to the mode switches [64] because of the lack of events arrival
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versus the increasing sliding window size. We conjecture that studying the increasing portion
of the arrival curve is sufficient to study the behavior of the system under a specific mode of
operation, i.e, discarding the horizontal gaps that do not belong to that specific mode.

Compositionality and Empirical Arrival Curves

Compositionality [17,82] obtains a single timing requirement for a given real-time system from
multiple timing requirements of the different system sub-components. Exploiting compositionality
would translate multiple demand-variation bounds of different sub-components to a single demand
variation bound for a given task model. Similarly, empirical evaluation using arrival curves allows
for controlling the granularity of the analysis from system level to component level by controlling
the source of trace events.

In Section 6.6, we presented an arrival-curves model that corresponds to a single QNX
event, however, our work can be extended by using compositionality to combine the task models
describing empirical arrival curves originating from multiple events into a system-level task model.
This unified task specification can be compared against an empirical model constructed from
traces that involves these events at once. In this case, the robustness evaluation can be performed
on a system-level in contrast to the evaluation on event-level.

Handling Task Parameter Dependencies

Finding the feasibility region for the permissible task variation becomes a more complex problem
if the parameters o; and 3; of different tasks are dependent. In this case, translating such a complex
relationship into a single demand-bound function, for example, using compositionality, might be
a solution as we mentioned. The mathematical foundation presented in our work assumes that
the variation of nominal parameters of multiple tasks is independent, but in practice, the tasks
of a given real-time system might encounter the same alteration meaning that all tasks T, are
affected by the same variation o and 3. To provide an example for this case, consider a system that
has two independent tasks 7%, , Tk, with different execution time e;, e, and period p;, po. The
system is prone to uncertainty affecting its demand-bound function, where the designer bounds
the permissible variation to o; and o5 respectively. However, the system tasks are affected by the
same variation of execution time [ and variation of period « respectively. This problem can be
described as finding the feasibility region of o and [ that satisfies Equation 6.4 for both Tasks
Tk,, Tk, simultaneously. In other words, the feasibility region for o and 3 in the given system is
defined by the intersection of both feasibility regions, where a valid o and  must satisfy both
demand variation bounds for 7%, and Tk, .
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6.9 Conclusion

This chapter presents an approach to evaluate the robustness of empirical arrival-curves models
that characterize the behavior of real-time systems. We derive theoretical bounds on task parameter
alteration permissible by the demand variation represented in the demand-bound function of a
sporadic task with an implicit deadline under an EDF scheduler. We demonstrate the feasibility
of the approach through an abstraction of an empirical arrival-curves model to a demand-bound
function of the assumed task model. We evaluate the approach on the arrival-curves models
constructed from QNX operating system events that describe the behavior of a real-time system.
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Chapter 7

Methods for Constructing Empirical
Arrival Curves

In this chapter, we discuss the implementations used to construct empirical arrival curves defined
in Chapter 3. The algorithms evolved based on the applications discussed in this thesis. First, we
discuss the basic approach of constructing arrival curves using a sliding window computation.
Then, we discuss an efficient approach using Cartesian product mapping of a given trace which
was shown not to be scalable enough in terms of memory usage. Finally, we present an algorithm
implemented for parallel platforms that is scalable and efficient for longer traces.

|

o 1 2 3 4 &5 6 7 8 910 1 12 13 14 15 16 17 18

[ Max=3,Min=2 ] [Max=1,Min=1 ]
[ Max=2,Min=1]
[Max=1,Min=0 |

Figure 7.1: Example of Algorithm 1 execution
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7.1 Variant # 1: Sliding Window Approach

The basic approach of constructing arrival curves from event traces gives a better understanding to
the nature of the curves and their properties. For a given trace that can be described as a sequence
of timestamps, we slide an overlapping window of a set of given time intervals throughout the
time interval of the first and last trace element. The sliding windows are positioned to always start
at the timestamp of an event.

During the process, the counts of the event occurrences within the sliding windows are
recorded following the SymTA/S assumptions [75] where the maximum count considers the event
at the beginning of the sliding window while discarding any event that would align with the end
of the window, and vice versa for the minimum count. Repeating this procedure, the minimum
and maximum counts corresponding to each window interval are obtained yielding the C},,x and
Chnin as discussed in Chapter 3. Note that we discard incomplete windows, i.e., the windows that
do not align with the end of the trace.

Algorithm 1 Sliding window algorithm to construct empirical arrival curves

Input: 7', A,,.., and res

// Loop on all window sizes
1: for A <~ 0to A4, With step A,,,;,, do
// initialize counts to zero.
maxa, mina =0
/I wdx is the window index for current sliding window
3 for wdx < 1to Aim do
4 tstart = wdx * Amin
5 tend = WAX * Apin + A
6: wdxr_mazx = number of events in wdx with ¢t > {4 and t < t.,q4
7
8
9

»

wdx_min = number of events in wdx with ¢ > {4+ and t < t g
if (wdx_max > maxp) then mara = wdr_max

end if
10: if (wdx_min < mina) then miny = wdx_min
11: end if
12:  end for
13: end for

We consider an example to show the construction using a trace 7" of timestamps 3, 5, 6, 12, 16,
18 and we consider a resolution, i.e., A,,;,, of 1 and the maximum window size, i.e, A, of 16.
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To give an example for the computation, consider the window size A of 4, the obtained counts
from sliding a window of size 4 time units on the timeline in Figure 7.1 will result in max counts
of 1,2, 3 events yielding a Cy,.x of 3 and min counts of 0, 1,2 which gets a C;;, of 0 for A = 4.
Similarly, executing the operation for different window sizes yields the maximum and minimum
arrival curves.

Algorithm 1 shows a pseudocode for the illustrated computation in Figure 7.1. Obviously,
the approach is exhaustive as the timestamps increase and resolution decrease. The algorithm is
comprised of two loops that means for a long trace with all possible window sizes, the computation
will be proportional to the square size of the trace. However, the purpose of introducing the
algorithm is to show the basic idea of empirical arrival curves computation. Now, we show a more
intuitive approach that has better efficiency.

7.2 Variant # 2: Cartesian Product Approach

To overcome the scalability issue mentioned in the previous section, empirical arrival curves can
be constructed in a more intuitive way which does not require iterating on each time point away
from a given event reducing the computation time needed by the sliding window algorithm.

We summarize Algorithm 2 as follows: The algorithm constructs a Cartesian product of the
timestamps represented as two columns. The time difference between the two columns can be
then reduced to the values less than the maximum window size defined in the input. An associated
sequence number is combined with the difference in timestamps whose values are mapped to
the corresponding window sizes. For a given window size, the counts are recorded and similar
to the previous algorithm, the C\;,, and C,,x values of that A can be computed through some
aggregation method.

In the same example as before, we consider the trace 3, 5,6, 12, 16, 18 and the resolution 1
and a maximum window size of 16. The Cartesian product of the trace can be shown in Figure 7.2,
we limit our analysis to the A = 4, one column corresponds to the start time and the other to the
end time. Subtracting both, we now convert the first column to the difference between start and
end timestamps. We replace column two with an index that resets when the time difference is 0 in
case of Cy, and 1 for Cy,¢ case. We map the time difference to the resolution of interest, which
is not a necessary step in our example as the resolution is 1. At this point, every window size in
column one has a corresponding count in the second column. Performing a cumulative maximum
and minimum analysis as shown in Figure 7.2, we can obtain C,,x and Cy;,. Algorithm 2 shows
pseudocode to perform this procedure.
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Algorithm 2 Cartesian product algorithm to construct approximate empirical arrival curves

Input: 7', Apue, and Ay

1:

crtpdt = Cartesian product of 7" x T’
// limit the result to the maximum window size of interest

2: crtpdt = crtpdt[(crtpdt[, 1] >= crtpdt[, 2]),]

. crtpdt = crtpdt[(crtpdt[, 1] < (crtpdt[, 2] + Asaz)s]

// Obtain the difference between events

4: crtpdtmin = crtpdt — crtpdt[, 2]

10:

11:

: crtpdtmax = crtpdt — crtpdt[, 2] + 1

// Cut the time series into separate sub-series at difference of zero

. seriesseps = which(crtpdt[, 1] == 0)

/l In case the resolution is higher than the timestamp differences

. serieswnds = (crtpdt[, 1] % A,in ) * Apin

/I Assign counts for each subseries of serieswnds

. seriescntsmin = a list of sub-series ranging from O to seriesseps length
. seriescntsmax = a list of sub-series ranging from 1 to seriesseps lengths

// Cumulative minimum in reverse order for each subseries of serieswnds
Cmin = cummin(reverse(seriescntsmin))

// Cumulative maximum for each subseries of serieswnds

Cmax = cummax(seriescntsmax)

Although the algorithm is computationally more efficient than the sliding window algorithm,
it becomes memory infeasible as traces grow due to the required storage of the Cartesian product
of the trace. Fortunately, we partially overcome this problem through the breakdown of the
Cartesian product into independent data blocks. And as a result, we modify the algorithm to
perform computations limited to the available memory block size. The operation is performed
block by block and then the maximum and minimum count is performed after all the grid has

been processed.

However, the mentioned breakdown approach now faces another problem which is the trade-
off between the memory size and the computation power needed to execute the algorithm. As the
efficiency starts to degrade as the Cartesian product of the trace goes much beyond the available
memory size. The iterations needed to process the entire Cartesian product increase which opposes

the intuition of the original algorithm.
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Figure 7.2: Example of Algorithm 2 execution

7.3 Scalable Implementation of Arrival Curves

In this section, we present an algorithm that was used throughout the thesis for constructing
empirical arrival curves. The algorithm uses a quantization technique that enables having a highly
parallelizable algorithm capable of running on CPU and GPU platforms and be scalable for longer
traces. We discuss the definitions and experiments that are relevant to the work presented in this
thesis, however, a detailed discussion for the algorithm and the acceleration approach can be
found in [15,74].

7.3.1 Definitions

We revisit some of the definitions introduced in Chapter 3, as we extend the definitions to a variant
of arrival curves used by the algorithm.
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As we discussed throughout the thesis, a trace registers chronological sequences of events
occurring while the system operates. A trace will include information such as an index, timestamp,
and additional parameters that depend on the application environment. In this section, we will
consider a reduced representation where the index and timestamp of each event are the only
parameters of interest in what we call a trace sequence.

Definition 11. (Event source) An event source generates elements ts;, k > 0, representing the
timestamp of an event measured in an absolute time domain t. Timestamps are multiples of an
atomic time unit (ts, € N), and events are generated as time progresses (tsy < tspi1).

Definition 12. (Trace Sequence) A trace sequence T'S = [tso, ts1, ..., tSn_1] is a finite sequence
of N timestamps collected from an event source.

Definition 13. (Actual Empirical arrival curve) The pair of curves (¢'(T'S, At); ¢p*(T'S, At))
provide an actual lower and upper bound on the number of events seen in any time interval of
length At in a trace sequence T'S.

We now formalize quantized arrival curves as approximations of actual empirical curves based
on discrete buckets (or bins) of width r atomic time units. Discrete buckets provide a coarser
representation of the time intervals used to construct the actual curve. The following section
describes a rule to map events observed within a range of time intervals to a single bucket.

Definition 14. (Quantized arrival curves) Given a set of discrete buckets AtP of width r atomic
time units (r > 1), with bucket AtP enclosing all intervals At in the range ir < At < (i + 1)r,
with i € N°. Quantized lower ¢' (T'S, At,r) and upper &“(TS , At, r) arrival curves will provide
a unique representative value for all intervals At enclosed in a bucket. Quantized curves must
comply with the following property:

Vr > 1:¢Y(TS, At r) < ¢ (TS, At)A

; (7.1)
(TS, At,r) > ¢*(TS, At)

]

Requirement (7.1) states that upper curves should be approximated from above and lower
curves from below [42].

For notational simplicity, we will assume that all curves come from the same generic trace
and omit the argument 7'S. We also consider the equivalence ¢!'(At,r = 1) = ¢!(At), and use
the notation ggl(AtZB ,7) to represent the quantized value of the lower curve in all intervals At in
the bucket 7. The same applies to the corresponding upper curves.
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7.3.2 Intuitive Overview

To model arrival patterns from a trace, we do not need to check for all possible intervals within the
trace, but only for intervals aligned to the occurrence of events [63,75]. Based on this observation,
we propose an iterative method to construct empirical curves by aggregating the information
observed in intervals of certain length measured from a pivot event.

For example, let us consider the sample trace sequence discussed throughout this chapter
TS =[3,5,6,12, 16, 18], with each element representing the timestamp of an event. Figure 7.3
shows a representation of 7'S over the absolute time axis ¢, where vertical arrows indicate the time
of occurrence of an event. For constructing arrival curves, we map each ts; from the absolute
time domain ¢ to the interval time domain At using a reference pivot ¢s,, with p € [0, N —1],
according to a function M : ¢t — At:

M (tsy, tsy) = tsp —ts,,withp <k < N —1 (7.2)

We perform the mapping iteratively, generating on each iteration p a new distribution of events
in the At domain, for which we obtain a local lower gzgfn(Atf ,7) and a local upper gzgg(AtlB ,T)
curve associated with the pivot. To obtain local curves, we find a lower and upper bound for the
number of events observed in intervals measured from the origin of the interval time domain
(At = 0), where the pivot is located, to the extremes of each interval bucket AtzB . After finishing
iteration p, the current pivot does not provide more information, and then we start a new iteration
placing the next timestamp at the origin.

When r» = 1 (i.e., no quantization), we obtain the local curves according to the following
rules [75]:

e The local lower value d)é(At) corresponds to the number of events in the interval (0, At| in
the current iteration.

e The local upper value ¢7;(At) corresponds to the number of events in the interval [0, At) in
the current iteration.

According to Definition 14, when r > 1, we must assign a unique value to all interval lengths

enclosed in a bucket, ensuring that the quantized lower (upper) curve approximates the curves
obtained with » = 1 from below (above). The following rules accomplish this requirement:

e The local value QEIID(AQB ,7 > 1) corresponds to the number of events in the interval (0, ir)
in the current iteration.
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Figure 7.3: Overview of an intuitive processing flow for computing arrival curves. [15]
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e The local value QASI“)(AtZB ,7 > 1) corresponds to the number of events in the interval
[0, (¢ + 1)r) in the current iteration.

Figure 7.3 illustrates the application of the method to the sample trace, with a bucket width of
r = 4 time units. The argument At,,.x specifies the maximum timespan of interest and the number
of buckets in the resulting curves. In the example, the curves consider three buckets (At = 37).
In general, At < (tsy_1 — tso). The vertical dashed lines delimit the range of intervals that
map to a single bucket. The pair of numbers below the At axes represent the local lower and the
upper number of events obtained for each bucket following the previous rules for r > 1. After
iterating over all pivots, we get the global lower and upper curves by finding the minimum and
the maximum number of events seen in all local curves for each bucket At?, respectively. The
frayed regions in the latest local curves indicate that no events occur in those buckets, and we
omit them when computing the global value. The last plot shows the global curve for r = 4,
which properly bounds the curve that would be obtained from the same trace using a bucket width
r = 1. Intuitively, we construct the curve by sliding the trace events over the axis representing the
interval domain. The curves are only defined for integer values of At, and the staircase plots are
just included to facilitate visualization. Also, the value of the curve exactly at the origin (At = 0)
is zero [75].

7.3.3 Algorithmic Formulation

Algorithm 3 shows a pseudo-code for constructing empirical curves given the arguments At .«
and » > 1. The algorithm first computes the number of buckets and initializes variables and
vectors (Lines 1-4). The i-th element of vectors LowLoc and UppLoc will store the local lower
and upper value for bucket AtP on each iteration. Similarly, LowGlob and UppGlob will store the
aggregated global curves.

The main loop starting at Line 5 iterates over the timestamps, each time constructing a local
curve with respect to the pivot ¢s,. After initializing the local vectors to a negative value, a first
inner loop maps each timestamp ¢s;, > ts, to a bucket based on its distance from the pivot. The
resulting vector IntervalToBucket contains a sequence of elements with value 7 for all timestamps
within the range ir < At < (i + 1)r in the interval domain. Note that IV sets the length of
IntervalToBucket, which must store all events that lie in the timespan At,,,x. For example, if the
minimum delay d,,,;, between consecutive events is known, then an adequate estimation would be
14 Z (Atmax/dmin)'

The algorithm gets the local upper value for bucket At? by searching elements with value 7 in
IntervalToBucket. If there is any, then UppLoc|i] will store the number of elements until bucket ¢
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Algorithm 3 Get quantized arrival curve from trace TS

Input: 7S, Atyax, 7, W

1:
2:
3:
4:

AN

10:
11:
12:
13:

14:
15:
16:
17:
18:

19:
20:
21:
22:
23:

24:
25:
26:
27:

W

nBuckets = | Atmax /7|

LowLoc [nBuckets], UppLoc [nBuckets]

LowGlob [nBuckets] = N+1, UppGlob [nBuckets] =0
IntervalToBucket [W/]

forp< O0to N —1do

h = 0, LowLocl[all] = -1, UppLoc[all]= -1

/I Loop 1: Compute quantized values of intervals

for k< pto N —1do
IntervalToBucket[h] = | (T'S[k] — T'S[p])/r]
h=h+1
if (h > W or IntervalToBucket[h] > nBuckets) then

break;

end if

end for

// Loop 2: Find local upper value for each bucket At?
for i < 1to nBuckets do
if ¢ € IntervalToBucket then
UppLoc[i] = (index of last element equal to );
end if
end for

/I Loop 3: Fill gaps in local upper curve
for i < 1 to nBuckets do
if UppLoc[i] < 0 then
UppLocli] = UppLoc|i — 1];
end if
end for

/I Loop 4: Update global upper curve
for : < 1to nBuckets do
UppGlob|i] = max(UppLoc|i], UppGlob][i])
end for
end for
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Figure 7.4: Illustration of steps to construct curves using the first two iterations over an example trace.

ends, i.e., the index of the last element with value ¢ in IntervalToBucket (Loop 2). If the trace has
consecutive timestamps separated by more than r time units, then some indexes may not appear
during some iterations, and the corresponding element UppLoc[i] will hold a negative value. Loop
3 fills the gaps in UppLoc, replacing all negative values with the value of the previous bucket that
had at least one event mapped in the current iteration. Finally, Loop 4 performs a point to point
comparison between UppLoc and UppGilob, keeping in UppGlob the maximum between the upper
local curve and the upper global curve constructed from previous iterations.

Algorithm 3 omits the steps for the lower curves, which are similar to the ones in Loops 2
to 4 with some few straightforward modifications. The difference with respect to Loop 2 is that
LowLoc[:] will store the number of events until bucket 7 starts, i.e., the index of the first element
with value ¢ decremented by one. An equivalent Loop 3 fills the potential gaps (negative values)
in the local lower curve, in this case replacing negative values with the value of the next bucket
with a positive value. Finally, a similar processing to Loop 4 updates the global lower curve
keeping the minimum between the current local curve and the aggregated global curve. Figure 7.4
illustrates the processing steps performed during the first two iterations.

Loops 1 and 4 operate on independent elements of the corresponding vectors, exposing a high-
degree of data-level parallelism that is straightforward to exploit using simple kernels for parallel
devices. Loops 2 and 3 exhibit a more complex data dependency in their operations, but we can
still accelerate them using advanced libraries and custom kernels. For example, Loop 2 performs
a form of stream compaction (given a sparse input vector, pack a subset of this vector into a dense
output vector), for which there exist multiple libraries targeting parallel processing [23,66].
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7.3.4 Performance Evaluation

We use the traces from the SSPS dataset introduced in Chapter 4. Using the tracelogger utility, we
register transitions in kernel states using a timestamp (in nanoseconds) and identifiers for the type
of event. We collect these transitions in master traces, each one containing 19 type of events. We
then split each master trace into 19 sub-traces, one per each event type. Under normal operation,
each sub-trace should map to arrival curves that conform to the model of recurrent behavior for
the corresponding event type as discussed in Chapter 3. We also include traces for anomalous
operation scenarios, obtained by inserting sporadic tasks that interfere with the normal flow of the
SSPS application. We implemented Algorithm 3 using two configurations:

e A sequential version in C running on a machine with four 8-core Intel Xeon E2360 v3 and
128GB of RAM.

e An OpenCL version targeting GPUs, using custom kernels that parallelize the inner loops.
This version runs on a machine with a 4-core Intel 17-3820, 32GB of RAM and AMD
Firepro W9100 GPU.

We evaluate the effects of the trace length in the classification performance of TRACMIN,
we generated different sets of master traces that consider only the first NV events of the original
traces, with N = [0.5, 1, 1.5, 2.5] x 10°. For each N, we obtained sub-traces for each event type
whose lengths range between 20 x 10% and 160 x 10° events. We constructed empirical arrival
curves for each sub-trace and used these curves to test the classification performance. We also
evaluated the effect of the bucket width argument required to construct the curves. Although
using a small bucket width(measured in time units of the timestamps) would allow us to capture
fine-grained details from the dataset, this is not always desirable from a classification perspective
as it may lead to over-fitting of the data. Besides, the separation between consecutive events
may vary along the traces and have a coarser granularity than the timestamps. For example, the
minimum and maximum distance between events in the experimental set move around 15 x 103
and 120 x 10? time units, respectively. In this case, bucket widths smaller than the minimum
separation between events will lead to unnecessary buckets in the global curve. Therefore, the
bucket width offers a tunable parameter to find the best trade-off between resource utilization and
classification performance.

Figure 7.6 shows the computation time spent on constructing curves for each sub-trace in the
experimental set. The plot includes a set of shorter sub-traces (not used for classification tests) to
emphasize the effects of the different implementations. The sequential CPU version runs faster for
low values of NV, but the benefits of the parallel GPU version become evident as N > 10 x 103,
For N ~ 160 x 103 the GPU version runs about 18X faster than the CPU one.
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An additional experiment reports that the GPU version runs around 67X faster than the CPU
one for N ~ 2.5 x 10°. Figure 7.5a shows the computation time for both platforms versus the
increasing number of samples using event sub-traces mentioned earlier. The max performance
gain achieved is 15x and the mean speedup is 7x. The computation time of the CPU platform
despite being much slower than the GPU version was still feasible to achieve the accuracy results
of Table 7.1, as we mentioned the computation was not feasible using the existing algorithms.

Using entire traces from the SSPS dataset without separating similar event types, the trace
lengths reach 2M samples as mentioned earlier. We make use of the lengthy traces to compute the
speedup in Figure 7.5b which shows max performance gain of 67x and mean performance gain of
56x. Both plots in Figure 7.5 show that the CPU timing versus the trace lengths curve show an
exponential trend, however the GPU timing versus the trace lengths show a low slope linear trend.
Hence the scalability of the GPU implementation versus the trace length.
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Figure 7.5: Effect of trace length on performance

Table 7.1 summarizes the main results for the classification performance, including the best
TPR and FPR obtained for each length of the master traces and the computation time for con-
structing the curves for all sub-traces in the set. The table shows that a perfect classification score
is possible only when using large traces, which justify the need of having efficient computational
tools. The table also indicates that the bucket width argument can affect the classification.
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Figure 7.6: Elapsed wall-clock time spent on constructing the arrival curves

Table 7.1: Summary of Classification Performance for Different Trace Sets.

Trace length Bucket width [ns] TPR FPR Comp. time (GPU) [s]

5x10° 100x108 70%  45% 1551.37
1x10° 100x108 5%  25% 2447.26
1.5x10° 10x10° 100% 0% 3545.79
1.5x10° 100x10° 100% 0% 3439.17
2.5x10° 10x10° 100% 4% 3722.37
2.5x106 100x108 100% 0% 3620.57

Figure 7.7 illustrates the effect of using different resolutions when constructing a particular
curve. We see that the curve with larger bucket width correctly bounds the one with lower bucket
width. Again, calculating these curves was infeasible with the basic algorithms of sliding window

and Cartesian product.
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Figure 7.7: Arrival curves for the same trace with different bucket widths

7.4 Conclusion

In this chapter, we presented three algorithms that can be used to construct arrival curves from
event traces. The sliding window approach provides a clear understanding of the approach
but can be used for demonstration on short traces. The Cartesian product algorithm provided
an intermediate step in achieving efficient performance, however, it can serve the purpose on
general-use machines. Finally, we presented a more complex algorithm to construct the curves.
The algorithm exposes a high-degree of data-level parallelism, we showed an implementation
using a commodity GPU that outperforms equivalent non-parallel reference implementations and
demonstrated its utility using a case-study that uses lengthy traces.
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Chapter 8

Conclusion

With the rise of Industry 4.0 and digital twin concepts [35, 80], data collected from non-invasive
tracing tools are used to improve diagnostics and prognostics of real-time systems. Event traces
collected from a given system provide valuable information for performing runtime analysis
when formal methods become complicated and infeasible [3]. Although trace mining to model
the behavior of a given system is not novel, most of the applications targeted non-real time
domains [4]. The combination of trace mining with the advanced modeling and statistical learning
techniques over runtime data provides a powerful tool for performing postmortem analysis or
audits of modern CPS [32,33,55,91].

Identifying anomalous behavior in event traces is a step towards improving the resilience
of complex real-time systems through the development of graceful degradation techniques and
countermeasures for preventing faults. As it becomes clearer that verification of modern real-time
systems cannot purely rely on broad generic abstractions and theoretical analysis, it is more
important than ever to promote evidence-based discussions and drive new research towards novel
data-driven techniques for analyzing more representative system-specific data.

The thesis answers the question of whether arrival curves, widely used in the formal analysis
of real-time systems, can be constructed from event traces and provide good high-level features to
describe the behavior of such systems for anomaly detection purposes. Throughout the thesis, we
evaluated the feasibility of arrival curves in this context through a trace mining framework that
used a set of metrics and properties applied to real-world case studies. The evaluation methods
demonstrate the viability of empirical arrival curves in abstracting the behavior of real-time
systems using indexed and timestamped event data. More specifically, we summarize the thesis
contributions as follows:
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e Defining empirical arrival curves and exploiting the widely-used concepts of arrival curves
to a variant computed over both indexed and timestamped event data generated from
real-time systems. In Chapter 3, we introduced a set of properties and metrics that allow
reasoning about the characteristics of empirical curves for feature extraction purposes.
We relate our work to the domains of Network Calculus and Real-time Calculus as we
reuse a couple of shape-based metrics that are typically used to define the curve slope and
burstiness.

e Introducing a trace mining framework, TRACMIN, in Chapter 4. The framework builds
offline models based on empirical arrival curves, then employs statistical learning techniques
for anomaly detection purposes. The classification accuracy achieved by TRACMIN in
labeling normal and anomalous traces while experimenting with multiple datasets from a
real-time system demonstrated the feasibility of the approach. For the presented case study
that uses indexed event traces, TRACMIN achieved a true positive rate of at least 94%
while having a false positive rate of 0%. For another case study on a single-mode real-time
system having timestamped traces, TRACMIN achieved a classification result of 100% true
positive rate and a 3% false positive rate.

e Extending the TRACMIN framework in Chapter 5 as follows: First, Section 5.1 introduced
a clustering approach that uses SAX method for representing arrival curves as strings of
characters on which we perform an edit-distance computation. Building offline arrival-
curves models specific to modes of operations improved the classification results in a
case study that uses a real-time system having multiple modes of operation from a true
positive rate and false positive rate of 85% and 45% to 100% and 14% respectively. Second,
we deployed TRACMIN in a trace streaming framework PALISADE in Section 5.2, and
evaluated its on-the-fly anomaly detection on ROS operating system traces streaming from
remote vehicles in a lab demonstrator. Third, we used TRACMIN framework in Section 5.3
to successfully mine and visualize the existing recurrent patterns using auto-correlation
computations on a variant of empirical arrival curves.

e Evaluating the robustness of arrival-curves based models in Chapter 6 fills a gap in the
research methods of evaluating empirical anomaly detection techniques. We derived theo-
retical bounds on the statistical variations obtained in TRACMIN offline models. Through
a novel mapping between empirical arrival curves and demand-bound functions from the
scheduling domain, arrival-curves model can be abstracted to some task model whose
parameters variation boundaries can be obtained. We demonstrated how the arrival curves
model for a given trace event from a real-time system can be represented as a sporadic
task with implicit deadlines under an EDF scheduler, the feasibility region obtained for the
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variation of the task parameters allow for comparing different arrival-curves models and
enabling for the certification and standardization purposes in the industry.

e Introducing a rapid and scalable algorithm suited for parallel platforms to construct what is
called quantized arrival curves in Chapter 7. The quantized curves bound the maximum and
minimum empirical arrival curves used throughout the thesis in the TRACMIN framework.
As aresult, we overcome the scalability issues for constructing empirical arrival curves. We
relate our work to the existing arrival curves computation methods by constructing the curves
using the SymTA/S assumptions [75]. The presented algorithm in the chapter achieves
mean speedup of 7x on typical traces in our case studies when running on GPU platform
compared to CPU platforms. However, mean speedup of 58x can be achieved on lengthy
traces used for performance measurement purposes. The implementation ensures the ability
to construct empirical arrival curves from timestamped traces in order to obtain offline
models and classify traces in both offline and online fashions with reasonable performance.
We highlight that such scalability is not achievable using the existing algorithms in the
literature.

The contributions of this thesis pave the way for more research to be done. Either on exploring
means that better characterizes the empirical curves for even more complex tasks or extending
the applications of the curves beyond real-time systems. We facilitate these possibilities by
highlighting some possible research problems revealed throughout the thesis:

e Anomaly Localization within Traces. The purpose of anomaly detection in the thesis was
to classify an entire trace either as normal or anomalous. Using the entire trace ensures
that all the information is considered for analysis. Since arrival curves proved to be useful
for this kind of post-mortem analysis, a challenging line of research would be to study the
suitability of arrival curves for localizing anomalies within a given trace. For example, the
streaming framework presented in this thesis can be adapted to locate anomalous windows
(or sub-traces) within a trace. However, one main issue with handling sub-traces will be
defining the splitting points within a trace without affecting the recurrence characteristics
captured in the trace.

e Machine Learning using Arrival Curves. The statistical approaches used in this thesis
rely on reasoning about the shape of the curve defined by slope-based metrics of a single
curve, the area under that curve, the proximity of multiple curves, etc. One main advantage
of shape-based metrics is the engineerability of the obtained results. For example, the
change in slope-based metrics can be interpreted as a change in the rate of arrival of events
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within a trace. Similarly, the proximity of maximum and minimum arrival curves describes
an envelope of the normal behavior change during execution.

Since arrival curves abstract the behavior captured in a given trace as a multi-dimensional
set of features, it would be interesting to apply sophisticated machine learning approaches to
arrival curves. The methods would allow for less control on the interpretability of the results,
however, the results from these techniques might allow for better feature abstractions than
the shape-based metrics used throughout the thesis. Examples on the machine learning-
based approaches include Autoencoders [31] for predicting the arrival behavior using the
curves, and Random Forests [12] for classifying a bigger set of traces while pinpointing
anomalous window intervals contributing to a specific fault.

Modeling Behavioral Trends and Correlations. Real-time systems would exhibit chang-
ing trends throughout their execution, for example, the software would need to accommodate
for a decaying battery performance. It is crucial to account for these trends in the empirically
computed models through incremental updates. Building an arrival-curves model allows for
such ongoing modeling that incorporates benign variations in the arrival behavior of events.

In addition, since the events generated by a real-time system are naturally related, studying
the behavior captured by a given arrival curve of an event as it changes with the behavior of
another event would reveal more insights on the execution dynamics of the target system.
One way to achieve this is by studying the correlation of arrival curves corresponding to the
events of different processes.

Statistical Learning and Worst-Case Analysis. The TRACMIN framework presented in
Chapter 4 builds a normal behavioral profile for the target system. However, the employed
statistical learning approach is not directly applicable to worst-case analysis purposes.

For trace mining approaches, the accuracy of the training model improves with the quality of
the available data [34]. To account for worst-case scenarios, the training phase must consider
traces collected during the execution of such scenarios in contrast to the experiments
presented in the thesis where the traces represent the typical behavior of the system. In
addition, as discussed in the thesis, TRACMIN aggregates the arrival curves using the mean
with confidence intervals to suppress the effect of outliers during training. As a result,
another aggregation methods should be employed for the purpose of worst-case analysis to
consider the points of arrival curves that characterize the extreme scenarios and incorporate
their effect in the trace mining procedure.
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Formulas

107



# The following is a machine-proof using Maple software to the presented derivations in Chapter 6.

# For the task-model used in Chapter 6, we consider a sporadic task with no overloads, so execution
time cant exceed the period of the task which is by definition a positive value.

p>0

0<p @
0<e<p

0<e<lp 2

# In addition, we assume the task model has implicit deadlines which means the deadline of the task
aligns with its period.

d=p
d=p 3

# First, we define a nominal demand-bound function as follows:

dbf=ﬂoor((t—+%d)) e
dbfﬂi;’;dj e @

# We define alpha as the decrease of the period of a task as in Definition 8
-infinity < alpha <p
—o < a<p Q)

# we define beta as the increase in execution time as in Definition 9
-e <beta< ((p - alpha) - e)

-e<B<p—a-—e (6)

# We define the altered task model which still considers implicit deadlines and no overload. The
demand-bound function
can be defined as follows :

dbfalt =ﬂoor( U+p- aIII;h:a ;lpii_ alpha ) ) )'(e + beta)
dbfalz=[%{%j (e+B) ™

# Now we define sigma as the variation in the demand due to the change in the task parameters as in
Definition 10

sigma = dbfalt - dbf
o =dbfalt — dbf ®)

#Using the above definitions, we obtain the realtion of beta with the other task variation parameters and
time.

108



subs({(4), (7)}, (8))

G:

p—Oo p

subs((3), (9))

G:

e (G vt

#To obtain the equation for beta as in Equation 6.4:
solve((10), [beta])[1][1]

i

B:_

ﬁuj(ﬁﬁ) _{ﬁuje

~ t
-pto
# We validate the results of Example 5:
eval((11), {t=30,p=0.5,e=0.375})
0.375|- _ 30| 22.500 — o
B=- -05+a
30
-05+a

with( plots, implicitplot)

®

(10

1n

(12)

implicitplot( [ eval((12), sigma=2.25), eval((12), sigma= -2.25) ], alpha=-0.5..0.5, beta= -0.5 ..0.5,

color = [ blue, red])

0.4
0.31
0.21

Limplicitplot]

"N
-0.17
-0.21
-0.31

0.5 =02

# We now verify the proofs in Section 6.5 as follows:

0203 0.4

#Asymptotic analysis for beta: in other words for a given alpha , we study the relation between beta and

time

#First, we define the relation at a given value of alpha which is the input of Equation 6.8

eval((11), alpha=alphaconst)
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4
B=- { -p + alphaconst

#Using maple , you can obtain the result of Equation 6.8 directly using limits as follows: ( the

gl

t
{ -p + alphaconst

asymptotic analysis as the limit of beta as t approaches infinity. )

Basympt = limit(rhs((13)), t = infinity)

# Here we follow the mathematical approach presented in Equation 6.8 to verify the result as well.

#Add first replacement term

e alphaconst

Basympt = -
P

eval((13),t=c-( p - alphaconst))

“p

{_ ¢ (p — alphaconst)

_{ ¢ (p — alphaconst)
p

+ alphaconst

—O0

{_ ¢ (p — alphaconst)
-p + alphaconst

#Add second replacement term

eval((15), alphaconst=k-p)

N

simplify((16))

_ciﬁ{?ﬁje_r(%5+pwe_c
{_ c(—kg-l—g)j
kp—p

#add the floor operation approximations

eval((17), {beta= Basympt , floor(-c-(k—1))=-c-(k—1) +0O(1), floor(c) =c + O(1) })

Basympt =
simplify((18), eliminate)

-(c+O(l))e+ (-c(k—1)+0O(1))e+o

#The result of Case 1 can be obtained as follows:

Basympt = lim_rhs((17))

c+0(1)
-cek+o
Basympt=="76(1)
Basympt=-ek
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14

135

(16)

amn

(18)

19

(20)



#Consider Case 2 where sigma can be defined as a function of the nominal dbf as in Equation 6.9
sigmafract= f- dbf
sigmafract =f dbf 21

subs((3), subs((4), (21)))
sigmafract —f{ﬁj e 22)

eval((22), {t=c-(p - alphaconst) })

sigmafract =f { clp= alﬁhaconst) (23)
eval((23), alphaconst=rk-p)
sigmafract If{ c( kp +p) j e 24)
simplify((24))
sigmafract=f1-c (k—1)]e (25)
#now we return to the case where we got asymptotic value of beta
eval((19), sigma = sigmafract)
-c e k + sigmafract
B =
asympt c+0(1) (26)
subs ((25), (26))
_ —cek+fl-c(k—=1)]e
Basympt c+0(1) 27
subs( {beta= Basympt, floor(-c-(k—1))=(-c-(k—1) +0(1))}, (27))
_ —cek+f(-c(k=1)+0())e
Basympt c+0(1) (28)
simplify((28))
__e(-0() fte((k=1)f+k))
Basympt c10(1) (29)
#We obtain the result in Equation 6.10 as follows:
Basympt = limit (rhs((29)), ¢ = infinity)
Basympt=-efk+ef—ek 30)
#We apply the results to the example shown earlier
eval((13), {alphaconst=0.04, p=0.5,¢=0.375})
B=- 0.375]2.173913043 ¢] — 0.375 [2.000000000 {] — & 31)
[2.173913043 1]
eval((14), {alphaconst=0.04, p=0.5,¢=0.375})
Basympt = —0.03000000000 32)

with( plots, implicitplot)
implicitplot([eval((31), sigma=2.25), eval((31), sigma= -2.25), subs((32), Basympt =beta) ], t=0
.. 100, beta=-0.4..0.1, color = [blue, red, green], numpoints =1000)
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[implicitplot] -0.19
B 0.2
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#We verify the example on the second case where we say that the fraction of sigma up is 1.1 and the
fraction of sigma down is 0.9 of the nominal demand

eval((13), sigma = sigmafract)

e— {Lj e — sigmafract
p

t
B=- { -p + alphaconst

; (33)
{_ -p +alphaconst
subs((22), (33))
! t !
B e e e P
B=- t (34)
) -p + alphaconst
eval((34), {alphaconst=0.04,p=0.5,¢=0.375})
B=- 0.375]2.173913043 ¢] — 0.3752.000000000 ¢] — 0.375 £12.000000000 ¢| (35)
[2.173913043 ¢
eval((29), {k= alghc;const })
e(-0(1) f+e (( alphc;const _ 1)f+ alphc;const ))
B = _
asympt c10(1) (36)
limit((36), ¢ = infinity)
Basympt = efp — efalphaconst — e alphaconst 37)

P
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eval((37), {alphaconst=0.04,p=0.5,e=0.375})
Basympt =0.3450000000 £ — 0.03000000000 (38)

with( plots, implicitplot)

implicitplot([eval((35), f=0.1), eval((35), f= -0.1), eval((38), {Basympt =beta, f=0.1}), eval((38),
{Basympt=beta, f=-0.1})], t=0..100, beta=-0.4..0.4, color = [blue, red, green, green],
numpoints =1000)

0.021

/\ AN AN P~ .

01—\ o , b

20 40 60 80 100
[implicitplot] t

implicitplo 0001
P _0.041

_0‘06- /\ NN S VN — e

V

#Section 6.5.2 Asymptotic analysis for alpha: for a given beta , how alpha changes over time

# The issue here is the floor operator as the inverse does not exist.

t _
ﬂoor( —p ~alpha ) =
[ t j:Z (39)
p—a
eval((10), (39))
o=z(e+5)—me (40)
solve((40), [Z])[1][1]
{—je-ﬁ-c
z-lpl (41)
e+
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#adding the floor property
#if floor(x) =m thenm < x <m + 1 end if

#the greater than part
N
~ p - alpha
z< ! (42)
p—o
map( -, (42), p — alpha) assuming p # alpha
Z(p—a) <t 43)
solve((43), alpha) assuming ¢ : posztzve p # alpha
o< —L Z<0
[{a=a}] Z=0 (44)
(22t <ol o<z
#the less than part
— L <z+1
p — alpha
L <z41 (45)
p—o
map( -, (45), p — alpha) assuming p # alpha
<(Z+1D (p—a) (46)
solve((46), alpha) assuming ¢ :: positive, p # alpha
ZpFp—t _ } 7 < 1
{ Z+1 ¢
[] Z=-1 7
{a < ZLJFL} 1<z
Z+1
#Find aysmptotic value for alpha at constant beta
eval((11), beta = betaconst)
t t
- _ije—{;je—c
betaconst= - 14 48)

e

#To workaround the floor operator, we first define both floor terms into new variables then we find the
values asymptotically.
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ﬂoor( - ) =fll
a—p
b
-p +o
subs ((49), (48))
flle— {LJ e—0
betaconst= - ﬂl;
solve((50), f11)
t
{—je +0o

e + betaconst
asympt((51), ¢ )
et
p (e + betaconst)

O(1)

asympt(lhs((49)), t)
t
-p +ao

+0(1)

# Using the asymptotes of both sides, we can obtain the asymptote value as follows:

simplify((52)=(53)) assuming ¢ :: positive
et t

p (e + betaconst) +O(1):p_(x +0()

#We obtain the result in Equation 6.17 of Case 3:
Aasympt = solve((54), alpha)

p betaconst

A t=-
asymp .

#Case 4 where the demand variation sigma is function of nominal demand.
#Again, we work on both sides of the inequality describing the boundary

{—Je-l—c Zp—1
alphal =subs| Z= P P

e + betaconst °  Z

(5] +2)

e + betaconst

— tJ (e + betaconst)

ol =

Lje+6
p

e

Zp+p—t]

Ipha2 =subs| Z=
@:pha sus[ e + betaconst > Z+1
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(33)

(36)



[z]e+e)r

+p—t
o0 = e+ btetaconst (57)
{—Je—i—c
2 +1

e + betaconst

eval((56), sigma = sigmafract)

[ Qéje +sigmafract) P

—t| (e + betaconst)

e + betaconst

ol = (58

P%J e + sigmafract
eval((57), sigma = sigmafract)
Qij e+ sigmafract) p
3 e + betaconst Tt

o2 = ; (59)
{;j e + sigmafract

+1

e + betaconst

subs((22), (58))

ol +A5le)
P T bet P ; —t| (e + betaconst)
ol = e + be aco;as t (60)
i)
ol
subs((22), (59))
[zl
+p—t
o0 = e -|t- betaconit (61)
{—j e+f —J e
pl Pl
e + betaconst 1
#Now, we use the asymptotes of both sides to obtain the results as in Equations 6.18 and 6.19:
alphalasympt = asympt(rhs((60)), t)
alphalasympt = (fe = betaconst) p + O( 1 ) (62)
prasaymp e (f+1) t
alpha2asympt = asympt(rhs((61)), t)
_ (f'e = betaconst) p 1 )
alpha2asympt e /+1) + O( ; (63)

#both boundaries upper and lower and approximation will reach same asymptotic value as shown in
Equation 6.2
limit((62), t =infinity)
e fp — p betaconst
fet+e

alphalasympt = (64)
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limit ((63), t = infinity)
efp — p betaconst

alpha2asympt = Tete (65)
#Applying the results of Section 6.5 to the example as previous:
eval((48), {betaconst=0.01,p=0.5,e=0.375})
0.375 l— 0 SZ j —0.3751]2.000000000 {| — ©
0.01 - e (66)
[_ 0.5+ ocJ

eval((55), {betaconst=0.01,p=0.5,e=0.375})
Aasympt = —0.01333333333 67

eval((56), {betaconst=0.01,p=0.5,e=0.375})
al = 0.385 (0.4870129868 [2.000000000 #] + 1.298701298 ¢ — ¢) 68)

0.37512.000000000 ¢| + ©
eval((57), {betaconst=0.01,p=0.5,e=0.375})
487012 2. f+1.2 12 5=

o0 = 0.4870129868 [2.000000000 7| + 1.298701298 ¢ + 0.5 — ¢ ©9)

0.9740259739 [2.000000000 #] + 2.597402597 ¢ + 1
with( plots, implicitplot)
implicitplot( [ eval((66), sigma=2.25), eval((68), {alphal = alpha, sigma=2.25}), eval((66), sigma=
-2.25), eval((69), {alpha2 = alpha, sigma= -2.25}), subs((67), Aasympt =alpha) ], t=5.. 100,
alpha=-0.6 ..0.6, color = [ blue, blue, red, red, green ], numpoints =1000)

0.4
1 10 20 40—50—60—70— 80 90 100
-0.1 t

limplicitplot] ¢ = 0.2
03
-0.4
05
0.6

eval((60), {betaconst=0.01,p=0.5,e=0.375})
ol = 0.385 (0.4870129868]2.000000000 ¢] + 0.4870129868 £12.000000000 ¢ — ¢)
0.375[2.000000000 ¢| + 0.375 £12.000000000 ¢|
eval((61), {betaconst=0.01,p=0.5,e=0.375})

(70)
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_ 0.4870129868 [2.000000000 7] 4 0.4870129868 /12.000000000 ¢/ + 0.5 — ¢

71
0.9740259739 (2.000000000 ¢| + 0.9740259739 £12.000000000 z] + 1 71
eval((64), {betaconst=0.01,p=0.5,e=0.375})
_ 0.1875 —0.005
alphalasympt == 0 8 0,375 (72)
eval((65), {betaconst=0.01,p=0.5,e=0.375})
alpha2asympt = 0.1875 f—0.005 73)

0.375 f+0.375

with( plots, implicitplot)

implicitplot( [ eval((70), {alphal =alpha, f=0.1}), eval((71), {alpha2 =alpha, f=0.1}), eval((70),
{ alphal =alpha, f=-0.1}), eval((71), {alpha2 =alpha, f= -0.1}), eval((72), {alphalasympt

=alpha, f=0.1}), eval((73), {alpha2asympt =alpha, f=-0.1})], t=10.. 100, alpha=-0.6..0.6,
color = [ blue, blue, red, red, green, green ], numpoints =1000)

[implicitplot ]
0.04

0.02;

od$f
| 20 30 40 50 60 70 80 90 100
% 0.0 t

~0.04

-0.067

-0.081 ;; ;;
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