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Abstract

Hydraulic fracturing (HF) is an effective technique for permeability enhancement of
conventional and unconventional reservoirs. HF is performed by injecting a fluid (usually
water-based), sand, and chemicals into a formation under high pressure in order to induce
damage and improve the interconnectivity of the fracture network through reopening of
natural fractures and generation of new fractures. Hydraulic fracturing is a complex multi-
physics process that involves the coupling of several physical phenomena, such as rock
deformation, fluid flow, fracture propagation, etc.

The simulation of HF is complex due to its coupled multi-physics nature. Despite recent
advancements in HF simulations, relatively little attention has been given to improving
the coupling algorithms used in these simulations. In many cases, sequential coupling
algorithms are preferred over the monolithic approach due to the availability of independent
solvers for each subproblem (e.g., independent deformable solid and fluid flow models), and
the costliness of the monolithic approach. However, the available sequential algorithms
widely used in the simulation of hydraulic fractures are known to lack robustness and
encounter stability and/or convergence issues. The unavailability of efficient and effective
sequential algorithms for the simulation of hydraulic fractures is currently one of the major
gaps in the literature.

The majority of hydraulic fracture models use quasi-static analysis, which neglects the
inertial effects that are important when injection rates are very high or vary quickly in
time, as during stimulation by pressure pulsing. The application of the dynamic models
currently available in the literature is mainly limited to the dynamic simulations of acoustic
wave emissions in porous media. Very few studies, until now, have considered dynamic
simulation of fluid driven fractures. Hence, the unavailability of reliable dynamic hydraulic
fracture models is another major gap in the hydraulic fracture literature.

This thesis has three objectives. The first objective is to develop a stable sequential
coupling algorithm for enforcing the hydro-mechanical coupling in the simulation of hy-
draulic fractures. The focus of the first objective is on the sequential algorithms that solve
the mechanics subproblem first, in each iteration. This objective is realized in Chapter 2
of the thesis. The split is derived using the analogy of the undrained split in poromechan-
ics; hence the new algorithm is named the undrained HF split. The undrained HF split
converges to the solution of the fully coupled (monolithic) approach. It’s also shown to be
stable and convergent in applications in which the conventional coupling strategies fail to
converge due to oscillations. The convergence of the undrained HF split is generally slower
than the fully coupled model.
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The second objective of the thesis is to develop a stable sequential coupling algorithm
that solves the fluid flow subproblem first, in each iteration. This objective is addressed
in Chapter 3 of the thesis. This algorithm is derived using the analogy of the fixed stress
split in poromechanics and, therefore, named the fixed stress HF split. The fixed stress
HF split is stable and shown to converge to the solution of the fully coupled model. The
algorithm is shown to successfully simulate nonplanar hydraulic fracture trajectories in
flow rate controlled hydraulic fracture simulations.

The third objective of the thesis is to develop a dynamic hydraulic fracture model for
investigating the effect of rapidly changing loads, such as those caused by pressure pulses,
on the dynamic propagation of hydraulic fractures. Chapter 4 of the thesis addresses this
objective. A dynamic HF model with leak-off is developed in Chapter 4. The dynamic
HF model is used to study wellbore stimulation by high rate and high amplitude pressure
pulses and investigate the effect of formation porosity and permeability on the dynamic
response of the system. It is observed that generally, formations with higher porosity
and permeability generate shorter and wider hydraulic fractures. The dynamic response of
hydraulic fractures is found to contain a phase lag with respect to the applied pressure pulse,
which slightly increases with an increase in the porosity and permeability of the formation.
Fracture closure mechanism is directly affected by the rate of fluid leak-off from hydraulic
fractures, which also depends on the porosity and permeability of the formation. Unique
acoustic wave emission patterns are observed from the response of hydraulic fracture and
wellbore system to the pressure pulse at each stage of the stimulation.
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Introduction
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1.1 An Introduction to Hydraulic Fracture Simula-

tions

The oil and gas industry has significantly changed during the recent decades due to the

availability of the technology which enables economic exploitation of unconventional reser-

voirs. Unconventional resources are known to be the future of oil and gas supply in North

America and all around the world [5]. A study by Hartley and Medlock in 2010 [112] has

predicted a rapid increase of production from unconventional resources, shale gas in par-

ticular, for a period of thirty years until 2040. Their model suggests that the production

from shale gas in North America increases from about 2.3 tcf in 2010 to about 3.0 tcf in

2015 and to more than 14 tcf in 2040. It is important to know that the actual natural gas

production from shale gas only in the United States has been about 13.6 tcf (37.4 Bcf/d)

in 2015 [34], which is about three times more than the amount predicted by Hartley and

Medlock for 2015 in North America. The Annual Energy Outlook 2016 predicts U.S. nat-

ural gas production from shale gas to be about 29.2 tcf (80 Bcf/d) in 2040. U.S. tight

oil production is also predicted to increase from about 4.8 million b/d in 2015 to more

than 7.0 million b/d in 2040 [34]. Such a significant increase in production indicates the

important role of unconventional resources in the future of oil and gas industry.

Production of natural gas from shale gas is one of the major types of production from

unconventional reservoirs in North America [4]. In a shale gas reservoir, natural gas is

trapped in relatively low permeability shales. Low permeability of the shale formation

is a barrier against free migration of natural gas towards production wells. Hydraulic

fracturing is an effective technique for enhancing the permeability of shale gas reservoirs
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and maximizing the production rate.

The development of analytical models for hydraulic fracturing dates back to the 1950s

when analytical solutions were presented for propagation of simple pressure-driven frac-

tures (e.g. [28, 59, 66, 156]). The problem of hydraulically induced fracture propagation

can only be analytically solved for a limited range of simple cases, such as the propa-

gation of planar fractures in homogeneous media, which are unable to describe complex

practical problems. The emergence of powerful computers in the 1970s encouraged devel-

opment of semi-analytical and numerical models for the simulation of hydraulic fractures

(e.g [102, 31]). Today, computer simulators are capable of modeling a geomechanical pro-

cess in different scales from molecular scale to the scale of a reservoir. Such simulators

are employed to present a more realistic understanding of geomechanical processes, which

cannot be replicated in laboratory, and problems that are too complicated to be solved

analytically. It is worth mentioning that there is always uncertainty associated with the

input data fed to the simulators. The output data also contain uncertainty associated with

the simplifying assumptions made in the model. Hence, the outcome of such computer

simulations should also be used carefully.

Hydraulic fracturing is a coupled multi-physics problem. In its simplest form, hydraulic

fracturing involves the interaction of the following three major processes[2]:

1. Mechanical deformation of the solid matrix

2. Fluid flow inside the fracture network and porous matrix

3. Propagation of hydraulic fractures (induced and natural fractures)

3



1.2 Hydraulic Fracture Models

In this section, a brief review of the existing solutions to the problem of hydraulically

induced fracture propagation is presented. We discuss a number of analytical solutions

which are useful in designing hydraulic fracture treatments as a first order estimate of

the actual solution. A brief discussion of numerical models of hydraulic fracture is also

presented and corresponding limitations in simulating a realistic hydraulic fracture model

are elaborated. Finally, coupling strategies for the numerical solution of the coupled hydro-

mechanical problem are presented followed by a short discussion about hydraulic fracture

propagation.

1.2.1 Analytical and semi-analytical models of the hydraulic frac-

ture

The first theoretical models of hydraulically induced fracture propagation were introduced

in 1950s [2] when Sneddon’s plain strain solution [130] for the opening of a stationary

fracture under internal pressure forces was employed to develop simplified hydraulic frac-

ture models. Such models were used to study mechanics of hydraulic fracturing [2, 59, 66]

and effect of fluid properties on fracture aperture and propagation [64, 156]. The work

by Perkins and Kern [110] followed by Nordgren’s works [102] resulted in a model which

accounts for fluid leak-off from fracture surfaces and is known as the PKN model. The

independent work of Khristianoric and Zheltov [156] and Greetsma and De Klerk [47] de-

veloped the so-called KGD model. Sneddon also presented an analytical solution for the

4



problem of a radial fracture under constant pressure [129].

Figure 1.1: Analytical models of hydraulic fracture

Schematics of the PKN, KGD, and radial fracture models are illustrated in Figure 1.1.

The PKN model assumes that each vertical cross section of the fracture is an ellipse of

fixed height under plain strain conditions. Hence, the PKN model is applicable to long

fractures whose length is considerably greater than their height [150].

In the KGD model, the horizontal cross section is assumed to be a half-ellipse under

plane strain condition. Such an assumption makes the KGD model applicable to short

fractures whose height is considerably greater than their length. Fracture aperture in a

KGD model is independent of its height [150].

The radical fracture model is applicable to fractures initiated by injection from a point

source in a homogeneous medium [150]. Later studies improved the KGD and PKN models,

5



for example, by taking into account the effect of non-linear fluid constitutive models [31]

and fracture toughness [133].

The Barenblatt condition [12] is applied as the tip boundary condition in derivation

of the KGD model in order to remove the stress singularity and develop a more realistic

model. Barenblatt condition suggests that fracture aperture vanishes smoothly at the tip

with slope of zero in oppose to the infinite slope of the fracture opening in an elliptical

crack. Therefore,

dw

dx

∣∣∣∣
x=l

= 0 (1.1)

where w, x and l are shown in Figure 1.1. Figure 1.2 compares the shape of the fracture

tip for an elliptical fracture and a fracture with Barenblatt condition (cohesive crack).

Figure 1.2: Shape of the crack tip for an elliptical crack (a) and a cohesive crack (b)

Hydraulic fracturing treatments were initially used for testing wellbore integrity or

breaking the formation. In the 1970s, however, the rise in the price of oil and gas en-
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couraged production from unconventional reservoirs which required far larger treatments

compare to the initial applications of hydraulic fracturing [2]. Relatively high cost of such

large treatments inspired new researches to develop more efficient models for hydraulic

fracturing.

Development of pseudo three-dimensional (P3D) models was a simple, yet effective,

attempt to extend the PKN model to simulate planer three-dimensional fractures propa-

gating in layered media.

Figure 1.3: Pseudo 3D models of hydraulic fracture: Lumped elliptical model (a) and
cell-based model (b) (redrawn after Adachi et al. [2])

There are two types of P3D models, as presented in [86] and illustrated in Figure 1.3:

• The lumped elliptical model in which fracture plane at each time step is represented

by two half-ellipses of different heights joined along their major axis.
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• The cell-based model in which fracture plane is represented at each time step by

means of a number of discrete constant height PKN fracture cells.

In both types of the P3D model, fluid flow is considered to be one-dimensional along the

fracture length [31]. Pseudo three-dimensional models are acceptable when propagation of

planer fractures in a layered median with smoothly and monotonically varying properties is

concerned [2]. For fractures with irregular shapes, e.g. hour-glass shaped fractures, or non-

planar fractures propagating in highly heterogeneous media, such as naturally fractured

rock formations, P3D models become deficient.

Availability of powerful computational resources facilitates employment of a number

of robust computational methods to simulate hydraulic fractures under more complex

conditions. In what follows, a review of the most important computational models of

hydraulic fracturing is presented.

1.2.2 Computational models of hydraulic fracture

Boundary element models

The Boundary Element Method (BEM) is a numerical method commonly used for simu-

lating fracture propagation (especially dynamic propagation). The BEM is attractive for

simulation of long-term fracture propagation (such as hydraulic fracture propagation) due

to its relatively lower computational cost compared to domain-based methods. This is

because BEM discritizes only the crack boundary of the domain and the solution at each
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point, x, of the domain is computed by numerically integrating the effect of each point of

the boundary on point x over the discretized boundary.

Such an approach requires derivation of analytical Green’s functions which are hard

to derive, if not impossible, for nonlinear problems or problems containing heterogeneity.

BEM, therefore, has limitation in presenting realistic models of hydraulic fracturing, for

example, with cohesive fractures or highly heterogeneous domains.

A number of recent studies on simulating hydraulically induced fractures using BEM

have presented models to simulate arbitrary propagation of pressure driven fractures around

a wellbore [97, 98], propagation of three-dimensional interface hydraulic fractures in layered

media [152], arbitrary propagation of pressure driven fractures under non-uniform pressure

and non-homogeneous stress fields [6], and interaction of multiple non-planer hydraulic

fractures [146, 116, 117].

Finite element family of models

Finite Element (FEM) models, unlike BEM models, have no limitation in solving nonlinear

problems. Finite elements models are capable of dealing with multiple nonlinearities, local

or global, and are one of the most efficient numerical methods for modeling heterogeneous

domains. In the conventional finite element method, a discontinuity is considered as an

internal boundary of the domain and the space domain is discretized in accordance with all

boundaries including the discontinuity. Evolution of a discontinuity is a moving boundary

problem. A finite element model may deal with a moving boundary problem using either

of the following two strategies:
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1. Re-generating the mesh in accordance with the updated configuration of the moving

boundary

2. Allowing the moving boundary to evolve only along the boundaries of the existing

mesh

The first strategy is more accurate in terms of predicting the actual fracture trajec-

tory, however, it is computationally far more expensive. The second strategy is the most

commonly used technique in finite element models of hydraulic fracture propagation (e.g.

[87]). The second technique is of lower accuracy in determining the fracture footprint and

is highly mesh dependent. A sufficiently fine finite element mesh may lead to a sufficiently

accurate fracture path; yet, with a considerable rise in the computational cost.

The finite element method is also weak in simulating the singular fracture tip. A

dense mesh of singular elements is usually required in order to reproduce the singular

stress field at the fracture tip [117]. Conversely, simulation of cohesive fracture tip is

simply performed by employing cohesive elements, i.e. elements connected by means of

a cohesive surface, which act as the potential fracture path in the model [103, 25]. The

weakness of such an approach is that fracture path must be presumed a priori in order

to determine the location of cohesive elements in the model. To address this issue, the

cohesive traction-separation law is applied along all element boundaries in the domain

[87]. As fracture propagates, using the second evolution strategy discussed above, cohesive

surfaces located on the fracture path are activated and a smooth fracture evolution is

achieved. The strategy, nevertheless, increases the computational cost as the cohesive law

is applied globally along all element boundaries.
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Conventional finite element models are also deficient in properly reproducing dynamic

response of an elastic system to a high-frequency dynamic excitation [58] (for example the

dynamic response to a shock wave). Such deficiency stems from employment of polynomial

shape functions which are not capable of reproducing high-frequency oscillations under any

circumstances [58]. Such a limitation becomes problematic in hydraulic fracture modeling

when simulations of microseismic events induced by hydraulic fracturing operations are

concerned.

Finite element simulators of hydraulic fracturing have commonly been used since the

1980s for simulating three-dimensional planar hydraulic fractures in homogeneous [26, 27,

141] and heterogeneous layered reservoirs [3], as well as three-dimensional non-planar hy-

draulic fractures [20].

Enriched partition of unity finite element methods (XFEM/GFEM) are sometimes

employed to address limitations of FEM models in simulating propagating singular [96, 135]

and cohesive [157] fractures as well as wave propagation in elastic media [58].

In an XFEM model, cohesive fractures are modeled by means of a cohesive traction-

separation law applied only on a limited length of the fracture at its tip (i.e., cohesive

zone). Hence, the computationally expensive process of applying the cohesive model to all

element boundaries is avoided. Moreover, fracture propagation in an XFEM model is mesh

independent; therefore, arbitrary fracture trajectories are modeled without any limitation.

These are the two key functions of XFEM in simulating fracture propagation which make

it an outstanding option for hydraulic fracture modeling.

An enriched approximation may also be used for fluid pressure if a discontinuity exists
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in the pressure field (e.g., across the fracture in a fractured porous medium [115, 67, 11]) or

when the asymptotic behavior of the pressure field is modeled (e.g, the pressure singularity

at a singular fracture tip without a fluid gap [54]).

Application of XFEM/GFEM for simulating hydraulic fracture propagation is very

new; however, a few advanced models for simulating hydraulic fracture propagation under

complex conditions are developed recently. Mohammadnejad and Khoei [101, 99] used

XFEM models for both fluid and solid matrix to present a fully coupled model of co-

hesive hydraulic fracture propagation in partially saturated porous media. Gordeliy and

Peirce [54, 52] presented novel enrichment functions based on the asymptotic behavior of

fluid pressure and fracture aperture in order to come up with an accurate model of singular

hydraulic fractures propagating under a viscosity dominated regime. The enrichment func-

tions are derived by means of an asymptotic analysis in order to achieve O(h2) convergence

rate in their novel sequential coupling strategy [53, 52].

Other researchers have employed XFEM/GFEM models to study propagation of mul-

tiple hydraulic fractures [109, 1], or to develop non-planar three-dimensional [56, 57], and

multi-scale models [37, 106] of hydraulic fracture.

Discrete Models

Discrete models, in general, are models which consider the domain of analysis as an assem-

bly of separate blocks. Discrete models are instrumental when solution to problems with

multiple discontinuities are concerned. In a hydraulic fracture simulation, discrete models

are employed to simulate parting of granular media (e.g. [136]) and preconditioning of
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naturally fractured rocks (e.g [111]) or to model generation of a new fracture network in

a continuum (e.g. [87]). A discrete model should possess the following two capabilities in

order to be qualified for simulation of hydraulic fractures [29]:

1. The capability to compute all displacements of discrete blocks (including rotations)

2. The capability to detect contact detachments and the formation of new contacts

Discrete models may either use explicit time-domain integration (e.g. [29]) or implicit

time integration (e.g. [65]).

The most common discrete methods in simulating geomechanical processes are Discrete

element methods and Hybrid finite-discrete element methods [85].

Discrete element methods (DEM) In a discrete element method, the space domain

is discretized into a finite number of blocks. Each block is also internally discretized and

a finite element (FEM), finite difference (FDM), or finite volume (FVM) method is used

to compute internal deformations of the block. External interactions of the blocks are

modeled using unilateral and frictional contact conditions. When contact forces between

two blocks surpass a threshold value, the contact breaks and the link between the blocks

is removed. A fracture is assumed to be initiated when a contact link is broken. Fracture

propagation is represented by coalescence of a number of broken contacts [85]. A schematic

of the contact mechanism between two discrete elements is illustrated in Figure 1.4.

Hybrid finite-discrete element methods (FDEM) In hybrid finite-discrete element

method, the domain is discretized as a continuum using, for example, FEM discretization.
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Figure 1.4: DEM contact between two blocks

The FEM model, solves the continuum problem for solid deformations and stresses. When

the fracture criterion detects initiation of a new discontinuity, a discontinuous surface is

formed between the elements. Interaction between the newly formed contacts is identical

to block contacts in the DEM model [85]. A schematic of the FDEM model is presented

in Figure 1.5.

Figure 1.5: Formation of a discontinuity in an FDEM model (redrawn after Lisjak and
Graselli [85])

Discrete models are commonly used for simulating the interaction between hydraulic

fractures and existing fracture network in a fractured medium. Lisjak and Graselli [85],
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have presented a comprehensive review of available discrete models for simulating a variety

of geomechanical processes. A review of numerical models for simulating the interaction

between hydraulic fractures and natural fracture network is presented in [30].

1.2.3 Hydro-mechanical coupling

The coupled hydro-mechanical problem can be numerically solved using either a fully

coupled or an iterative scheme. The fully coupled approach solves the solid and fluid

equations simultaneously, using an implicit time integration scheme. Although the fully

coupled approach is the most robust [71], it involves the computation and inversion of

big Jacobian matrices. Both tasks are nontrivial and computationally expensive. It also

requires a unified hydro-mechanical solver which is costly to develop in most cases.

Numerous fully coupled hydraulic fracture models have been developed by means of

the finite difference method (e.g [33]), the boundary element method (e.g. [131]), and the

finite element family of methods (FEM/XFEM/GFEM)(e.g. [16, 100, 69, 57]).

Alternatively, one may choose to solve the coupled problem sequentially by solving

either of the fluid or solid equations first, during each time step. The other equation is then

solved using the solution of the first equation. Sequential coupling provides the advantage

that each of the subproblem (solid or fluid) can be solved separately using robust specialized

solvers tailored for their specific requirements. The process is iterated for each time step

until convergence is achieved for the coupled system. Sequential coupling is, however,

subject to stability and convergence problems regardless of stability and convergence of

the scheme employed for each of the individual sub-systems.
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Depending upon which subproblem is solved first, the sequential coupling approach is

categorized under either of the following mapping families [52, 54]:

Dirichlet to Neumann (DN) mapping which solves the flow equation for fluid pressure

first given the fracture aperture.

Neumann to Drichlet (ND) mapping which solves the solid equation first to determine

solid deformations (and fracture aperture) given the fluid pressure.

Gordeliy and Peirce [52, 54] have shown that for an XFEM approximation with appro-

priate enrichment functions, the ND mapping converges with O(h2) while DN mapping

converges with O(h). Therefore, an ND mapping is strongly recommended by Gordeliy

and Peirce [54] when XFEM is employed.

In order to separate the hydro-mechanically coupled system of equation, an operator

splitting technique is required. In the context of poromechanics, four different operator

splitting techniques have been introduced in the literature depending on the mapping (DN

or ND) employed [70, 71, 92]. When the solid equation is solved first (ND mapping), the

coupled system of equations can be separated using either a drained or an undrained split.

In a drained split, which is the most intuitive, solid equation is solved at each time step

given a fixed fluid pressure distribution (δp = 0) calculated at the previous time step.

The fluid pressure is then updated for the current time step by fixing solid displacements

(δu = 0). Conversely, in an undrained split, it is suggested that fluid mass content inside

the porous matrix be conserved (δξ = 0) when solid equation is solved at each iteration.

The fluid pressure is then updated identical to the drained split at each iteration.

If fluid equation is solved first (DN mapping), either the fixed-strain or the fixed-stress
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splits may be employed. In the fixed-strain split, the change in the volumetric strain of the

solid matrix is assumed to be fixed (δεv = 0). The volumetric stress is assumed to remain

unchanged in a fixed-stress split (δσv = 0).

Kim et al. [70] have shown that stability of the drained split is conditional while the

undrained split can be unconditionally stable. Moreover, the drained split may not conver-

gent when the number of iterations are fixed while an undrained split is always convergent

when a compressible system is solved. As compressibility of the system decreases, the

undrained split losses accuracy and becomes non convergent for an incompressible system

[70]. The fixed-strain split is also conditionally stable whereas the fixed-stress split is un-

conditionally stable [71]. Kim et al. [71] also suggest that the fixed-stress split converges

faster than the undrained split and remains convergent when incompressible systems are

considered.

Sequential coupling strategies are more common in simulating hydraulic fractures as

they are computationally less expensive compared to the fully coupled simulators. Exam-

ples of sequential coupling strategies are presented in [136, 53, 52, 9]. In the context of

hydraulic fracture simulations, the split analogous to the drained split is labelled P → W ,

and the one analogous to the fixed-strain is labelled W → P [52]. Splits analogous to

the undrained split and fixed-stress split do not conventionally exist for the simulation of

hydraulic fractures.
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1.2.4 A brief discussion on hydraulic fracture propagation

In a fractured medium, hydraulic fractures tend to propagate in the direction of local weak

planes (e.g. natural fractures) in order to minimize the work done against the local stress

field. In large scale, however, the global orientation of the fracture tends to align with

the orientation of maximum in-situ stress (perpendicular to the minimum in-situ stress)

[39]. Figure 1.6 illustrates a schematic of the propagation path of a hydraulic fracture

initiated from a wellbore in a rock formation containing natural fracture sets. As it is

seen, small segments of the fracture conform the local orientation of natural fractures,

while the hydraulic fracture in general aligns with the far field in-situ stress. Propagation

of hydraulic fractures in a fractured medium mostly occurs in the form of re-opening of

existing fractures. In a hydraulic fracture model, fracture propagation can be directly

obtained from the solution of the hydro-mechanically coupled problem.

In a continuum model, the stress field at fracture front should be compared against

a propagation criterion which determines whether and in which direction the fracture

evolves. Propagation criterion should also estimate the length of fracture growth in order

to fully determine the new configuration of fracture. In a quasi-static analysis, crack front

is normally evolved in the direction defined by the propagation criterion to the point where

fracture remains stable under the current state of stress. A dynamic model, requires the

propagation criterion to determine the evolution velocity vector at the fracture front, vf ,

which shows the orientation and evolution length of the fracture during each time step.

The maximum hoop stress criterion is a common and widely accepted criterion in con-

tinuum based geomechanical models for brittle fracture propagation [134]. The fracture is
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Figure 1.6: Propagation of hydraulic fracture: local vs global (redrawn after Dusseault
[39])

allowed to propagate, based on this criterion, when the local maximum principal stress,

σ1, at the crack front reaches the tensile strength of the rock. The direction of propagation

is the one in which hoop stress, σθθ, reaches its absolute maximum.

1.3 Motivations

The fully coupled (monolithic) approach for enforcing the coupling is known to be the most

robust coupling strategy. However, the fully coupled approach is computationally expensive

as it contains the computation and inversion of a big Jacobian matrix, which are nontrivial
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and computationally expensive tasks. Additionally, the availability of independent solvers

for each of the engaged subproblems (e.g., independent deformable solid and fluid flow

models), for many problems, inspires using the available solvers and enforcing the coupling

through sequential algorithms.

The conventional sequential algorithms for the simulation of hydraulic fractures (the so-

called W → P and P → W ) have been reported to be problematic [52]. The W → P and

P → W algorithms are analogous to the fixed strain and drained splits in poromechanics

analysis which are also known to lack robustness [71, 70, 91].

Contrary to the fixed strain and drained splits, in the context of poromechanics, the

undrained and fixed stress splits are known to be robust splits with unconditional stability

and good convergence [71, 70, 91]. Previous hydraulic fracture models, however, suffer from

the lack of such robust sequential coupling algorithms. The robustness of the undrained

and fixed stress splits in the poromechanics context motivates the attempt to develop

analogous sequential coupling strategies for the simulation of hydraulic fractures.

The majority of the available hydraulic fracture models in the literature use quasi-static

analysis in the simulation of hydraulic fractures. Quasi-static models are deficient in cap-

turing the inertial effects generated by the rapidly changing loads, such as pressure pulses

or impact. The induced seismicity due to fracture/fault reactivation and the propagation of

hydraulic fractures cannot also be captured by quasi-static models of hydraulic fracturing.

A limited number of works within the literature (e.g.[75, 74]) have considered dynamic

simulation of fractured porous media; however, the majority of them have not considered

modeling fluid flow within the fractures. Fractures have been treated only as discontinuities
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in both solid and fluid domains in these models.

Very few studies in the literature [144, 67, 18, 62] have considered using dynamic hy-

draulic fracture models to investigate the dynamic aspects of hydraulic fracture propa-

gation, such as the induced seismicity. The limited number of available studies on the

dynamic simulations of hydraulic fracturing motivates the research on the development of

a dynamic hydraulic fracture model and further investigation of the inertial effects that

are missing by the available quasi-static model.

1.4 Research Objectives and Methodologies

In this section, the objectives of the research and the methodologies employed to accomplish

each objective are presented.

1: Develop a stable sequential coupling algorithm for hydraulic fracture

simulations using the analogy of the undrained split in poromechanics

The extended finite element method is used to model the evolving fractures in the

solid domain. The transient flow of a viscous fluid within the fractures is simulated using

standard finite elements. A cohesive fracture tip model is used to simulate quasi-brittle

fracture propagation. For the purpose of deriving the new sequential coupling strategy,

the fracture is assumed to be replaced by an Analogous Porous Medium (APM), and the

undrained HF split is developed using the local conservation of mass in the APM. The

nonlinear system is solved using the Newton-Raphson method. This objective is fulfilled

in Chapter 2 of the thesis which is based on the following article:
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Parchei-Esfahani M., and Gracie R., On the Undrained and Drained Hydraulic Fracture

Splits, submitted to the International Journal for Numerical Methods in Engineering

2: Develop a stable sequential coupling algorithm for hydraulic fracture

simulations using the analogy of the fixed stress split in poromechanics

To derive the new sequential coupling algorithm, the fracture is substituted with an

APM. The relation between fluid pressure and fracture aperture is derived within the

APM using the theory of poroelasticity. The resulting nonlinear system is solved using the

Newton-Raphson method. Flow partitioning between the fractures connected to a wellbore

is performed by enforcing the global conservation of mass in the wellbore and fractures.

This objective is realized in Chapter 3 of the thesis.

3: Develop a dynamic hydraulic fracture model with leak-off for the simu-

lation of dynamic wellbore stimulation using pressure pulses

To develop a dynamic fracture model, the conservation of momentum is numerically

solved over the discontinuous domain using the eXtended Finite Element Method (XFEM).

A cohesive tip model with a non-recoverable damage flag is implemented to model fracture

propagation under dynamic loading. To capture fracture closure, a linear contact model

is applied to the fracture surfaces. The inertial terms in the fluid equation are neglected.

A one-dimensional leak-off term, based on Carter’s leak-off model, is implemented in the

fluid equation to account for the volume of fluid leaking off from the fracture due to

the permeability of the formation. The fully coupled solution strategy was used in the

development of the dynamic hydraulic fracture model. Dynamic wellbore stimulation is

investigated through the application of cyclic pressure pulses to the wellbore. This objective
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is fulfilled in Chapter 4 of the thesis.
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Chapter 2

Sequential Enforcement of

Hydro-Mechanical Coupling:

Undrained and Drained HF Splits
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2.1 Introduction

The simulation of hydraulically induced fracture propagation involves coupling the physics

of fluid flow in the fracture, the mechanical deformation of the fracture and surrounding

domain, and the propagation of the fracture itself [2]. Hydraulic fracture simulations

are governed by a hydro-mechanically coupled system of partial differential equations.

Discretization of the governing equations in space and time leads to a system of coupled

nonlinear algebraic equations that must be solved at each time step. In this chapter, we

present a new and effective sequential iterative scheme, called the undrained HF scheme, for

solving the resulting discrete system of equations and demonstrate that the most commonly

used sequential scheme in HF simulation is unstable in many practical problems. The

undrained HF scheme is introduced in the context of two-dimensional eXtended Finite

Element Method (XFEM) simulations of hydraulic fracturing in impermeable domains.

Recent studies on hydraulic fracture modelling have mainly followed one of the two

major trends [79]. The first trend focuses on improving the computational aspects of

the models by employing state-of-the-art numerical techniques to develop models that

overcome the limitations of their existing counterparts. Examples are studies that employed

different variations of the boundary integral method [128, 147, 81, 51, 143, 155, 153, 116,

24], finite element method [120, 149, 19, 123, 124], extended/generalized finite elements

[52, 53, 54, 78, 68, 40, 101, 100, 99, 119, 88, 56, 57, 61], phase field methods [93, 90,

89, 83, 145, 121], and hybrid Finite Element/eXtended Finite Element-Distinct Element

techniques (FEM-DEM or XFEM-DEM) [113, 114, 148, 50] to develop 2D and 3D hydraulic

fracture models. Additionally, some recent studies have coupled boundary integral or

25



extended finite element methods with fracture tip asymptotes and presented efficient multi-

scale models of hydraulic fractures under different propagation regimes [108, 53, 82, 80,

106, 37]. The second trend focuses on enhancing the physical aspects of the models by

incorporating more physics. Examples are studies that considered nonlinear fluid rheology

and proppant transport [22, 36], hydraulic fracture propagation in porous media [15, 19],

Acoustic Emissions [73], solid nonlinearity due to bulk plasticity and cohesive fractures

[105, 104, 123], and non-local plasticity and damage models [94, 125]. For a detailed

review of recent advances in the simulation of hydraulic fractures, the reader is referred to

[79, 2, 85, 107, 60]. The focus of this chapter is on the first area of improving the numerical

techniques used in HF models.

Despite many advances in the numerical models of hydraulic fractures, relatively little

attention has been given to improving the solution algorithms, especially in the context

of impermeable media. The many of published articles on the simulation of HF in imper-

meable media use a simple sequential iterative coupling scheme, which has been labelled

the P → W scheme by Gordeliy and Peirce [52], will be referred to here as the drained

HF split. In the sequential solution scheme that uses the drained HF split, the the equi-

librium equation is solved first for the displacement and crack opening, assuming that the

pressure is fixed, and then, fluid equation is solved for the fluid pressure, assuming that

the fracture aperture is fixed [68, 52, 142, 137, 138, 15, 63]. Alternatively, coupling can be

imposed through an approach labelled W → P by Gordeliy and Peirce [52]. This sequen-

tial approach solves the fluid equation under the assumption of a fixed fracture aperture.

Subsequently, solid displacement and fracture aperture are updated by solving the solid

equilibrium equation using the pressure obtained from the solution of the fluid equation.
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Gordeliy and Peirce [52] have shown that XFEM is O(h2) accurate with the P → W

scheme and only O(h) accurate with the W → P scheme.

While previous articles have shown reasonable results using the drained HF split for

some problems, our observations suggest that the scheme lacks robustness and fails to

converge in some other applications. Specifically, our observations show convergence issues

when simulating cohesive hydraulic fractures with moderate to low fracture energy (fracture

toughness).

Gordeliy and Peirce [52] in their study (perhaps the only previous one) of HF coupling

schemes described the drained HF split, which they labelled the P → W scheme, along

with its counterpart, the W → P scheme, as being problematic. Here we will demonstrate

again that the P → W scheme is unstable for non-toughness dominated HF. Gordeliy and

Peirce [52] introduced a stable hybrid P&W scheme for linear elastic fracture mechanics

HF models. In this chapter, we will present a new coupling scheme, the undrained HF

split, which is applicable to non-linear fracture mechanics HF models with cohesive crack

tips.

The most robust solution schemes for coupled systems (generally expected to have

the highest convergence rate) are concurrent schemes and are often termed fully coupled

schemes [159]. Despite the robustness of fully coupled models, sequential schemes based

on operator splitting are preferable in many cases. For one thing, solving a fully coupled

system often requires the development of an independent solver tailored to a specific cou-

pled problem. In the case of nonlinear systems solved by Newton-Raphson, this involves

both the derivation and implementation of a tangent stiffness (Jacobian) matrix (e.g.,
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[57, 88, 99, 100]) - both tasks are non-trivial for complex systems. Moreover, fully cou-

pled solvers (when compared to sequential solvers) require the computation, storage, and

inversion of larger matrices which is computationally expensive, especially when the mem-

ory available is small compared to the needs of the analysis. Iterative sequential coupling

schemes are particularly attractive when robust preexisting models are available for each

of the processes to be coupled. In such cases, the coupled problem is split into individual

subproblems that are then solved using the available software codes [159].

Methods for the simulation of poromechanics problems, e.g., consolidation of saturated

porous media, offer useful analogies for HF simulation. In both cases, conservation of mass

of the fluid and equilibrium of the solid must be simultaneously enforced. The simple

sequential coupling algorithms in poromechanics are known as the drained and fixed-strain

splits; these are respectively analogous to the P → W and W → P scheme used in some

HF simulations. Both the drained and fixed-strain splits have been proven to encounter

stability and convergence issues in poromechanics problems [71, 70]. Therefore, it is not

surprising that the P → W and W → P splits used in HF simulation are also described

in the literature as problematic [52].

To overcome the limitations of the drained and fixed-strain split used in poromechnics

simulation, the undrained and fixed-stress splits were developed, which have been shown to

be more robust than the drained and fixed-strain splits in terms of stability and convergence

[71, 70, 92, 91]. In the undrained split of poromechanics, the displacement of the solid

matrix is updated assuming that the fluid mass content within the solid matrix is fixed

(instead of assuming that the pore pressure is fixed, leading to a drained split) [70].

28



In this chapter, we use the analogy of a porous media to introduce an efficient splitting

scheme for HF simulation, which will be referred to as the undrained HF split. For the

purpose of defining a sequential solution scheme, the fracture is assumed to be replaced by

a virtual Analogous Porous Medium (APM), and a unique undrained HF split is derived

for the first time for simulating hydraulic fractures in an impermeable medium.

The undrained HF split is implemented within a two-dimensional extended finite ele-

ment method (XFEM) model of HF in an elastic solid. The continuity equation and the

cubic law are used in a finite element framework to model fluid flow within the fractures.

We use a cohesive fracture tip model to take into account the energy dissipated at the

fracture tip when it propagates. Such energy dissipation is due to the development of a

damaged region ahead of the fracture tip when the fracture is loaded by the fluid. We

also account for the permeability enhancement within this damaged region by applying a

minimum hydraulic aperture to the cubic law in the cohesive zone.

In what follows, we first explain the mathematical formulation of the hydro-mechanically

coupled system along with the numerical discretization used for each of the domains of the

problem. Next, we discuss the solution strategies and introduce the undrained HF split

using the concept of an analogous porous medium. The numerical examples, in Section

4, demonstrate the effectiveness of the undrained HF split through comparison with fully-

coupled and the drained HF split (P → W ) commonly used in the literature. A discussion

and summary conclude the chapter.
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2.2 Mathematical Model

2.2.1 Governing equations

Consider the solid domain, Ωs, as illustrated in Figure 4.1. The domain is bounded by Γ,

defined as Γ = Γu ∪ Γt ∪ Γc, such that Γu ∩ (Γt ∪ Γc) = ∅, in which Γu and Γt represent

the Dirichlet and Neumann boundary of the domain, respectively, and Γc is its internal

fracture boundary. The positive and negative faces of the fracture boundary are denoted

by Γ+
c and Γ−c [95].

Static equilibrium of the system is governed by

∇ · σ + ρsb = 0 (2.1)

in which σ is the Cauchy stress tensor, ρs is the mass density of the solid and b is the vector

of body force per unit mass density of the solid. Conservation of the angular momentum

requires the symmetry of the Cauchy stress tensor, i.e., σ = σ>.

Assuming linear elasticity, small deformations, and that the domain is initially sub-

jected to an in situ stress field, σ0, the constitutive equation of the solid (rock mass) is

taken to be

σ − σ0 = C : ε (2.2)

in which C is the fourth order elasticity tensor, and ε is the linear strain tensor. The linear
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part of the strain tensor is defined by

ε =
1

2

(
∇u + ∇u>

)
(2.3)

with u being the solid displacement field.

A bilinear cohesive model similar to the one presented in [49] is used in this study with

the traction-separation law defined as

tcoh(w) =



fu
w

ww
if w ≤ ww

fu
wc − w
wc − ww

if ww < w ≤ wc

0 if wc < w

(2.4)

where tcoh is the magnitude of the cohesive traction, fu is the tensile strength of the solid,

w is the fracture aperture, wc is the critical aperture, and ww is the weakening aperture,

which defines the beginning of the weakening branch of the traction-separation law.

The assumption of an impermeable solid suggests that the interaction between the solid

and fluid occurs exclusively along the fracture boundary; therefore, the fracture represents

the fluid domain, Ωf . The fluid domain and its Neumann and Dirichlet boundaries, Γq and

Γp, are shown in Figure 4.1.

The one-dimensional flow of an incompressible viscous fluid within the fractures of an
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Figure 2.1: Domains of the problem: solid domain (left) and fluid domain (right)

impermeable solid is governed by the conservation of the fluid mass:

∂w

∂t
+

∂

∂s
q = f (2.5)

in which w is the fracture aperture, q is the fluid flux, f is the sink/source term, and s

denotes the local fracture coordinate measured from its inlet boundary. The assumption

of an impermeable solid also requires that the amount of fluid leaking off to the solid from

the fracture surfaces be negligible. Therefore, no leak-off term is considered in (3.5). The

fluid flux is given by the Cubic law as

q = −k(w)
∂

∂s
p with k(w) =

w3

12µ
,∀w > wc, else k = kc (2.6)

where µ is the dynamic viscosity of the fluid. Zhang et al. [154] suggested application of

a minimum hydraulic permeability to the fluid model in the regions of closure along the
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fracture. In this chapter, we employ a similar minimum permeability, kc, in the cohesive

zone of the fracture where the aperture smoothly vanishes. Since the cohesive zone is

representative of the crack tip plasticity/damage in which the induced permeability would

be non-zero, this approximation seems reasonable.

The solid domain is subjected to a prescribed traction, t̄, on its Neumann boundary

and a prescribed displacement, ū, on its Dirichlet boundary. Assuming that fluid pressure

and cohesive tractions are the only tractions applied to the solid domain along its fracture

boundary, the set of boundary conditions of the solid domain are

u = ū on Γu

σ · nΓt = t̄ on Γt

σ · nΓ+
c

= −pI · nΓ+
c

+ tcohI · nΓ+
c

on Γ+
c

σ · nΓ−c
= −pI · nΓ−c

+ tcohI · nΓ−c
on Γ−c

(2.7)

in which I is the second order identity tensor, nΓt is the outward-facing unit normal vector

on the traction boundary, and nΓ+
c

and nΓ−c
are the outward-facing unit normal vectors

on the positive and negative faces of the fracture boundary respectively. The Dirichlet

boundary of the fluid domain, Γp, is subjected to the prescribed pressure, p̄, and the

prescribed flux, q̄, is applied on the flux boundary, Γq. The boundary conditions of the

fluid domain are, therefore, defined as

p = p̄ on Γp

−k (w)
∂

∂s
p · nΓq = q̄ on Γq

(2.8)
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where nΓq = 1 at the fracture tip and nΓq = −1 at the wellbore (inlet) boundary.

Neglecting the body force term in (3.1) and the sink/source term in (3.5), the weak

forms of the governing equations are derived by multiplying (3.1) and (3.5) by the test

functions, δu ∈ U0 and δp ∈ P0, respectively, and integrating over the corresponding

domains. Hence, the coupled problem is to find u ∈ U and p ∈ P such that

∫
Ωs

∇δu : C : εdΩ−
∫

Γt

δu · t̄dΓ +

∫
Γc

JδuK · tcohI · nΓcdΓ−
∫

Γc

JδuK · pI · nΓcdΓ = 0

(2.9)

and

∫
Ωf

δp
∂w

∂t
dΩ +

∫
Ωf

∂

∂s
δpk(w)

∂

∂s
pdΩ +

∫
Γq

δpq̄dΩ = 0 (2.10)

in which nΓc = nΓ−c
= −nΓ+

c
, and JδuK =

(
δu |Γ+

c
− δu |Γ−c

)
denotes the jump in the

displacement test function on the fracture boundary. The sets of admissible trial and test

functions, U and U0, for the displacement field are defined as

U =
{
u | u ∈ H1 ×H1, u = ū on Γu, u is discontinuous on Γc

}
U0 =

{
δu | δu ∈ H1 ×H1, δu = 0 on Γu, δu is discontinuous on Γc

} (2.11)

where H1 is the space of functions whose derivatives are square integrable. Similarly, for
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the pressure field, the sets of admissible trial and test functions, P and P0, are defined as

P =
{
p | p ∈ H1, p = p̄ on Γp

}
P0 =

{
δp | δp ∈ H1, δp = 0 on Γp

} (2.12)

Note that the domain is initially in equilibrium under the in situ stress field, σ0, i.e.,

∇ · σ0 = 0. Hence, the terms containing σ0 vanish from the weak form of the solid

equation.

2.2.2 Discretization

The solid domain is discretized by means of quadrilateral elements, as depicted in Figure

4.1. The fracture is discretized by linear segments, passing edge to edge through solid

elements, such that the fracture tip is always located at the edge of a solid element.

A discontinuous approximation, without tip enrichments, similar to the one proposed in

[43] is used to approximate the solid displacement field. The approximated displacement,

uh, at point x ∈ Ωs and time t is defined as

uh(x, t) =
∑
I

NI(x)duI (t) +
∑
J

NJ(x) [Hc(x)−Hc(xJ)] daJ(t)

≡ Nu(x)du(t) + Na(x)da(t) ≡ N(x)d(t)

(2.13)

in which I is the set of all nodes of the mesh and J is the set of enriched nodes. The term

NI(x) denotes the standard finite element shape functions. The standard and enriched

degrees of freedom are denoted respectively by duI (t) and daJ(t). In matrix form, du(t) and
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da(t) are the vectors of the standard and enriched degrees of freedom, Nu(x) is a matrix

of standard shape functions of the element, and Na(x) is a the matrix of enriched shape

functions. The total N-matrix and degrees of freedom vector for the solid are defined as

N(x) = {Nu(x) Na(x)} and d(t) = {du(t) da(t)}> respectively.

The generalized Heaviside function, Hc(x), is defined as

Hc(x) =


−1

2
if x ∈ Ω−s

1
2

if x ∈ Ω+
s

(2.14)

in which Ω+
s and Ω−s respectively represent parts of the domain located on the positive and

negative sides of the fracture.

The fluid domain is discretized into linear elements at its intersections with the solid

mesh, as shown in Figure 4.3. A finite element approximation is used for the pressure field.

The approximated pressure at point s ∈ Ωf and time t is presented by

ph(s, t) =
∑
L

ψL(s)pL(t) ≡ ψ(s)p(t) (2.15)

where L is the set of all nodes of the fluid mesh. The finite element approximation functions

and the nodal values of fluid pressure are denoted, respectively, by ψL(s) and pL(t). In

the matrix form, the matrix of approximation functions and the vector of nodal pressures

are represented by ψ(s) and p(t) respectively. Similar approximations are used for time

derivatives of the displacement and pressure fields.

Referring to (3.18) and (3.23), the spatial derivatives of the displacement and pressure
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Figure 2.2: Discretization of solid (left) and fluid (right) domains

fields are approximated by

εh(x, t) =
∑
I

∇sNI(x)duI (t) +
∑
J

∇sNJ(x) [Hc(x)−Hc(xJ)] daJ(t)

≡ Bu(x)du(t) + Ba(x)da(t) ≡ B(x)d(t)

(2.16)

and

∂

∂s
ph(s, t) =

∑
L

∇ψL(s)pL(t) ≡∇ψ(s)p(t) (2.17)

in which ∇s denotes the symmetric gradient operator. Bu(x), Ba(x), and ∇ψ(s) contain

the space derivatives of Nu(x), Na(x), and ψ(s) and B(x) = {Bu(x) Ba(x)}.

Similarly, the jump in the displacement and strain fields across the fracture boundary
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are approximated as

JuhK = uh |Γ+
c
− uh |Γ−c =

(
N |Γ+

c
−N |Γ−c

)
d = JNKd (2.18)

and

JεhK =
(
B |Γ+

c
−B |Γ−c

)
d = JBKd (2.19)

Using approximations of similar form to (3.18) and (3.23) for the test functions, δu and

δp, the semi-discrete form of the coupled system is written so

Ru

Rp

 =

Kuud−Kupp + Fcoh − FΓt

K>upḋ + Fq − FΓq

 = 0 (2.20)

in which

Kuu =

∫
Ωs

B>CBdΩ (2.21a)

Kup =

∫
Γc

JNK>nΓcψdΓ (2.21b)

Fcoh =

∫
Γc

JNK>tcoh (w) nΓcdΓ (2.21c)

Fq =

∫
Ωf

∇ψ>k (w)
∂

∂s
pdΩ (2.21d)

FΓq =

∫
Γq

ψ>q̄dΓ (2.21e)

FΓt =

∫
Γt

N>t̄dΓ (2.21f)
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The fourth order elasticity tensor, C, is represented in the matrix form by C. The

vector ḋ denotes the time derivative of the solid degrees of freedom vector, d, and the

fracture aperture, w, is defined as

w = n>Γc
JNKd (2.22)

The time domain is discretized using unevenly distributed time increments, ∆tn, such

that tn = tn−1 + ∆tn, where the subscript n indicates the nth discrete time step. The

magnitude of the time increment, ∆tn, is controlled by the stability and convergence re-

quirements of the numerical algorithm at each time step. For the purpose of simplicity, a

Backward Euler scheme is used to calculate the time derivative of the displacement field.

If the vector of nodal displacements at time t = tn is represented by dn, the vector of nodal

velocities at the same time step, ḋn, is approximated by a Backward Euler scheme as

ḋn ≡ ḋ(t = tn) =
1

∆tn
(dn − dn−1) (2.23)

Substituting (3.27) into (3.25), the discrete form of the hydro-mechanically coupled system

at time t = tn is written as

Rn
u

Rn
p

 =

 Kn
uud

n −Kn
upp

n + Fn
coh − Fn

Γt

1
∆tn

Kn>
up (dn − dn−1) + Fn

q − Fn
Γq

 = 0 (2.24)

39



2.3 Solution strategies

In this section, we use three different solution strategies to solve the hydro-mechanically

coupled system of equations (3.28). First, a fully coupled solution strategy based on the

Newton-Raphson method is discussed and, subsequently, two sequential coupling strategies

are presented. The sequential strategies are developed based on an analogy with the

available splitting techniques used for analysis of fluid flow in deformable porous media.

In both of the sequential coupling strategies, the solid equation is solved first, at each

iteration, given an initial prediction of fluid pressure from the solution of the previous

iteration.

2.3.1 Fully coupled solution

To develop a fully coupled strategy for (3.28), we use the Newton-Raphson iterative method

to linearize the nonlinear system of equations. The Jacobian of the coupled system for the

ith iteration at time t = tn is defined as

Jni =


∂Ru

∂d

∂Ru

∂p

∂Rp

∂d

∂Rp

∂p


n

i

=

 Kuu + Kcoh −Kup

1
∆t

K>up + Kpu Kpp


n

i

(2.25)
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in which

Kn
coh =

∂Fn
coh

∂dn
=

∫
Γc

JNK>nΓc

∂tcoh

∂wn
∂wn

∂dn
dΓ

=

∫
Γc

JNK>nΓc

∂tcoh

∂wn
n>Γc

JNKdΓ

(2.26a)

Kn
pu =

∂Fn
q

∂dn
=

∫
Ωf

∇ψ> ∂
∂s
pn

∂k

∂wn
∂wn

∂dn
dΩ

=

∫
Ωf

∇ψ> ∂
∂s
pn

∂k

∂wn
n>Γc

JNKdΩ

(2.26b)

Kn
pp =

∂Fn
q

∂pn
=

∫
Ωf

∇ψ>k (wn)∇ψdΩ (2.26c)

and
∂wn

∂dn
is obtained from (2.22). Therefore, the increments of the primary variables, ∆d

and ∆p, at the ith iteration of time t = tn, are determined from the linear system

 Kuu + Kcoh −Kup

1
∆t

K>up + Kpu Kpp


n

i

∆d

∆p


n

i

+

Ru

Rp


n

i

= 0 (2.27)

and the primary variables are updated by

d

p


n

i+1

=

d

p


n

i

+

∆d

∆p


n

i

(2.28)

Table 2.1 summarizes the algorithm for performing the fully coupled solution for the hydro-

mechanically coupled system.
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Table 2.1: Fully coupled solution algorithm

1. Set i = 0, d = dni , and p = pni

2. Compute Rn
i =

{
Rn
u Rn

p

}>
i

from (3.28)

3. If
||Rn

i ||L2

||Rn
0 ||L2

< τ ∗, go to step 9

4. Construct Jni from (3.31)

5. Calculate ∆dni and ∆pni from (3.30)

6. Update dni+1 and pni+1 from (2.28)

7. i←− i+ 1

8. Go to step 2

9. End

* τ is the admissible error of the Newton-Raphson iteration

2.3.2 Sequential solutions

In the analysis of fluid flow in porous media, the hydro-mechanically coupled system can be

split into two equations (sub-systems), which are then solved sequentially. In this section,

we use the analogy with porous media to split and sequentially solve the coupled system of

equations (3.28) for hydraulic fracture propagation in an impermeable medium. The focus

of this chapter is on the sequential schemes for the simulation of hydraulic fractures that

solve the mechanical subproblem first (i.e., drained and undrained splits).

Drained HF split

The term drained split, in the analysis of fluid flow in porous media, refers to the iterative

process in which, at each iteration, solid deformations are determined through solving
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Figure 2.3: Schematic of the drained HF split for a hydraulic fracture in an impermeable
medium. Quantities shown in red are solved for in each step and quantities shown in black
are frozen during that step.

the mechanical problem with the assumption that fluid pressure within the solid matrix

remains unchanged. Once solid displacements are updated, the fluid equation is solved

given the updated solid displacements. The assumption that solid deforms under a fixed

fluid pressure requires that fluid be flowed into or out of the solid matrix as the matrix

deforms. The term drained stems from this physical interpretation.

In this section, we summarize the drained HF split. A schematic of the drained HF

split iterative scheme for a pressure driven fracture in an impermeable medium is shown

in Figure 2.3.

At each iteration of every time step, first the solid displacements are estimated given

that the fluid nodal pressure are pni . So the increment in the solid displacement at iteration

i is
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∆dni = −
(
Kn
uu + Kn

cohi

)−1
Rn
ui

(2.29)

and the vector of the solid degrees of freedom is updated as

dni+1 = dni + ∆dni (2.30)

Next, the nodal values of fluid pressure are directly updated using the fluid equation

given displacements dni+1:

Kn
ppp

n
i+1 = Fn

Γq
− 1

∆tn
Kn>

up

(
dni+1 − dn−1

)
(2.31)

The drained HF split presented above is identical to the P → W algorithm for the

simulation of hydraulic fractures in impermeable media. The algorithm for performing the

drained HF split is summarized in Table 2.2.

Figure 2.4: Substitution of the fracture with its analogous porous medium
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Table 2.2: Drained HF split algorithm

1. Set i = 0 and initialize d = dni and p = pni

2. Construct Kn
uu from (3.26a) and Kn

up from (3.26b)

3. Construct Kn
cohi

from (3.32a) and Kn
ppi

from (3.32c)

4. Compute Rn
ui

from (3.28)

5. If

∣∣∣∣Rn
ui

∣∣∣∣
L2∣∣∣∣Rn

u0

∣∣∣∣
L2

< τ ∗, go to step 11

6. Calculate ∆dni from (2.29)

7. Update dni+1 = dni + ∆dni

8. Calculate pni+1 from (2.31) using dni+1 from step 7

9. i←− i+ 1

10. Go to step 3

11. End

* τ is the admissible error of the Newton-Raphson iteration

Undrained HF split

In this subsection the undrained HF split is introduced and is developed based upon an

analogy to analogous splits used in poromechanics. As will be demonstrated, the drained

HF split previously described lacks robustness and often fails to converge. It is therefore

desirable to establish a basis for an improved set of nodal pressures to be used when solving

the solid equations.

In the analysis of fluid flow in a deformable porous medium, the undrained split refers

to an iterative coupling scheme in which the mechanical problem is solved first with the

assumption that the fluid mass content in the porous matrix remains unchanged as the solid
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matrix deforms. In other words, fluid is not allowed to flow in or out of each point in the

porous matrix when the mechanics problem is solved–leading to an undrained condition.

After solving the solid equation and updating the solid deformations, fluid pressure is

updated through solving the fluid equation, given the updated solid deformations.

To develop the undrained HF split which will provide a more robust prediction of the

nodal fluid pressures, assume that the fracture is replaced by an Analogous Porous Medium

(APM) with a given Biot coefficient, b, and Biot Modulus, M , as illustrated in Figure 2.4.

Figure 2.5: Schematic of the undrained HF split for a hydraulic fracture in an impermeable
medium. Quantities shown in red are solved for in each step and quantities shown in black
are frozen during that step.

Figure 2.5 illustrates the undrained HF iterative scheme for a hydraulic fracture.

Conservation of the fluid mass content in the APM relates the rate of change in the fluid

mass content, ξ, at a point along the fracture to the rate of change in the fluid pressure
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and the rate of change in the unit volume of the APM via

ξ̇ = bε̇(APM)
v +

1

M
ṗ (0 ≤ b ≤ 1) (2.32)

in which ε
(APM)
v is the volumetric strain in the APM. Enforcing the undrained condition,

ξ̇ = 0, will lead to a relationship

bε̇(APM)
v +

1

M
ṗ = 0 (2.33)

The weak form of (2.33) is derived by multiplying (2.33) by the test function, δp ∈ P0, and

integrating over the fluid domain, Ωf , as

∫
Ωf

δpbε̇(APM)
v dΩ +

∫
Ωf

δp
1

M
ṗdΩ = 0 (2.34)

To discretize (2.34) in space, the test function, δp, is taken to be of the same form as (3.23).

Space discretization of (2.34) also requires an approximation for the volumetric strain in

the APM. An intuitive definition for the strain in the APM is:

ε(APM) =
JNK∆d

JNKd
(2.35)

While this may seem a natural choice, it causes significant numerical difficulties. Specifi-

cally, when fracture closure is considered or in the vicinity of the cohesive zone (tip) where

fracture aperture is relatively small, (2.35) will result in an ill-conditioned coefficient matrix

(due to division by zero or a very small value).
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Let the deformation of the APM at each point along the fracture be taken as the crack

opening displacement, i.e.,

u(APM) = JNKd (2.36)

So the strain and volumetric strain of the APM are

ε(APM) = JBKd (2.37)

ε(APM)
v = mε(APM) = mJBKd (2.38)

in which m = {n2
1 n2

2 n1n2}, for a two-dimensional problem, with ni being the components

of the unit normal vector, nΓc . The assumed definition for the strain of the APM, (2.37),

is equivalent to the jump in strain across the fracture, which is always finite and well

defined. The volumetric strain, εAPMv , is a one-dimensional measure of aperture strain in

the direction of fracture opening. The component of strain in the tangential direction is

neglected in this formulation as the tangential component of aperture does not cause any

change in the volume of the APM.

The semi-discrete form of (2.34) after substituting (2.38) into (2.34) is written so

bSpuḋ +
1

M
Sppṗ = 0 (2.39)

where

Spu =

∫
Ωf

ψ>mJBKdΩ (2.40a)
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Spp =

∫
Ωf

ψ>ψdΩ (2.40b)

By means of a differencing scheme, (2.39) is written in discrete form, as

bSpu
(
dn − dn−1

)
+

1

M
Spp
(
p(UD) − pn−1

)
= 0 (2.41)

where p(UD) is the vector of nodal undrained pressures in the APM.

Solving (2.41) for p(UD) in the ith iteration at time t = tn, the undrained pressures are

p
(UD)
i = pn−1 − bMS−1

pp Spu
(
dni − dn−1

)
(2.42)

Equation (2.42) introduces a relationship between the pressure applied to the crack surfaces

and the crack opening displacements for the purpose of updating the displacements. This

equation can also be viewed as a predictor step for the nodal fluid pressures.

Substitution of (2.42) for pn into the residual for the solid equation (3.28) yields

Rn
ui

= Kuud
n
i −Kn

up

(
pn−1 − bMS−1

pp Spu
(
dni − dn−1

))
+ Fn

cohi
− Fn

Γt
= 0 (2.43)

Solution of (2.43) at time t = tn using a Newton-Raphson method yields a linear system

for the i-th iteration increment of the nodal displacements

(
Kn(UD)

uu + Kn
cohi

)
∆dni = −Rn

ui
(2.44)

in which Kn(UD)

uu = Kn
uu + bMKn

upS
−1
pp Spu is the undrained stiffness matrix of the imperme-

49



able solid. The vector, dni+1, is then updated by (2.30). Once the displacement is updated,

fluid pressure is determined by solving the set of fluid equations (2.31) using the updated

displacement vector.

Table 2.3 summarizes the algorithm for performing the undrained HF split. The con-

vergence criteria presented in Tables 2.1-2.3 are all based on the L2 norm of the residual

of the coupled system, Ri = {Ru Rp}>. However, since the sequential schemes each result

in a linear fluid equation (i.e., ||Rp||L2 = 0), the convergence criterion in Tables 2 and 3

are given in terms of Ru. It is worth mentioning that matrix, Spp, is formulated in the

form of a mass matrix. Therefore, one can use a lumped representation of Spp to simplify

and accelerate computations. It is also noteworthy that the constants b and M may be

replaced by a single constant α = bM .

The undrained HF split proposed in this chapter can be formulated also as a local

approach. The local approach will use the discrete form of the volumetric strain, (2.38),

in (2.33) and approximates the time derivative using a backward Euler scheme, ε̇nv =

(εnv − εn−1
v ) /∆t, to come up with an expression similar to (2.42) for the undrained pressure.

The global version of the undrained scheme is made computationally efficient through the

lumping of Spp.

2.4 Numerical Examples

In this section we provide numerical examples to demonstrate the capabilities of the

undrained HF split in the simulation of hydraulic fractures in impermeable media. First,
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Table 2.3: Undrained HF split algorithm

0. Assign values of b and M

1. Set i = 0 and initialize d = dni and p = pni

2. Construct Kn
uu and Kn

up from (3.26), Spu and Spp from (2.40)

and Kn(UD)

uu = Kn
uu + bMKn

upS
−1
pp Spu

3. Construct Kn
cohi

from (3.32a) and Kn
ppi

from (3.32c)

4. Update p
(UD)
i from (2.42)

5. Compute Rn
ui

from (2.43)

6. If

∣∣∣∣Rn
ui

∣∣∣∣
L2∣∣∣∣Rn

u0

∣∣∣∣
L2

< τ ∗, go to step 12

7. Calculate ∆dni from (2.44)

8. Update dni+1 = dni + ∆dni

9. Calculate pni+1 from (2.31) using dni+1 from step 8

10. i←− i+ 1

11. Go to step 3

12. End

* τ is the admissible error of the Newton-Raphson iteration

we simulate the self-similar propagation of a plane strain hydraulic fracture. The results

of the undrained HF split for this problem are compared with the results of the KGD

hydraulic fracture model. Subsequently, the application of both drained and undrained

HF splits for simulating the propagation of hydraulic fractures from a pressurized wellbore

under anisotropic in situ stress conditions is examined. The two algorithms are compared

in terms of stability. Finally, the convergence of the undrained HF split is investigated

through a comparison with the fully coupled model for the second numerical example.
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Figure 2.6: Propagation of a planar hydraulic fracture: schematic of the problem (left)
and numerical mesh (right)

2.4.1 Propagation of a planar hydraulic fracture

The propagation of a hydraulic fracture initiated at the edge of a 40m × 20m domain,

as illustrated in Figure 2.6, is simulated using the undrained HF split algorithm. In a

symmetric domain, the fracture tends to propagate planarly under plane strain conditions

from a point injection at its inlet on the domain edge (see Figure 2.6). The domain is

assumed to remain elastic with the fracture process zone modeled using a cohesive law.

The solid has an elasticity modulus of E = 16 GPa and Poisson’s ratio of ν = 0.2. The

fluid has a dynamic viscosity of µ = 10−3Pa ·s, and the fluid flow is assumed to be laminar.

The Biot constants of the APM are chosen such that bM = 0.05E in this example. We
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choose a convergence tolerance of τ = 10−12 for the normalized L2 norm of the residual

of the coupled system. We also assume that the in situ stress field and the initial fluid

pressure inside the fracture are zero in this example.

The solid domain is discretized by means of bilinear quadrilateral elements using the

structured mesh shown in Figure 2.6. The mesh size is constant in the x-direction and

increases exponentially in the y-direction from the fracture plane. The effective size of the

mesh is he = 0.050 m, along the fracture, and he = 0.26 m at the top and bottom edges

of the domain. The fracture starts to propagate from its initial length, l0 = 0.1m, as a

result of an injection at the rate of Qinj = 10−4 m3

s·m at the left edge of the domain. The

solid domain is fixed in the x-direction on its left and right edges and in the y-direction on

its top and bottom edges. A no-flow boundary condition is assumed at the tip boundary

of the fluid domain, i.e., qtip = 0.

The conservation equation (3.5) requires at least one essential boundary condition on

the fluid pressure. Since the fluid flux at an essential boundary is a part of the solution

of the fluid model, it is not directly controllable. So we introduce an additional global

continuity constraint and iterate on the prescribed inlet pressure p̄ = pinj until the volume

of the fluid in the fracture is equal to the total volume of fluid injected.

The global continuity constraint is given by

Qinj =

∫
Ωf

ẇdΩ (2.45)

The satisfaction of the global continuity constraint dictates the value of the fluid pres-

sure at the fracture inlet, pinj; therefore, the fluid pressure at the fracture inlet is a part
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of the numerical solution. A tolerance of η = 10−2 is chosen for the relative error in the

satisfaction of the global continuity constraint in this example.

Figure 2.7: Illustration of the change in λ = Lcoh

Lf
vs fracture length, Lf , for different values

of Gc, simulated using the undrained HF split

A solution for the problem of a planar hydraulic fracture that propagates under plane

strain condition, presented by Geertsma and De Klerk in [48], is known as the KGD

hydraulic fracture model. The KGD solution, however, cannot be directly compared with

the results of a cohesive hydraulic fracture model. The solution presented for fracture

aperture and fluid pressure in [48] are independent of the fracture energy (or equivalently,

fracture toughness), whereas the solution of a cohesive hydraulic fracture model strongly

depends on the value of the fracture energy and the length of the cohesive zone. In other

words, the KGD solution represents the propagation of a plane strain hydraulic fracture

in a viscosity dominated regime, whereas the solution of a cohesive hydraulic fracture gets

close to a viscosity dominated regime only when its cohesive zone vanishes (or when the

fracture toughness tends to zero). The effect of the fracture energy on the global solution of
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a cohesive fracture is significant when the fracture is relatively short and, hence, the ratio

of the cohesive zone to the total length of the fracture is not negligible. For sufficiently long

fractures, the effect of the damaged region ahead of the fracture tip, represented by the

cohesive zone, can be assumed to remain limited to the local solution around the fracture

tip. Therefore, the KGD and cohesive models are only comparable when the fracture

propagates to such an extent that the cohesive zone is a negligible portion of the total

fracture length, or when the fracture energy (fracture toughness) tends to zero. With these

limitations in mind, a comparison of the KGD solution with that of the cohesive fracture

model is presented as a means of qualitative validation and of studying the behaviour of

the nonlinear HF model.

To investigate the effect of fracture energy (fracture toughness) on the solution, let

us consider three different values of fracture energy, Gc = 30 J/m2, Gc = 15 J/m2,

and Gc = 10 J/m2, respectively corresponding to the values of fracture toughness, K =

0.71 MPa
√
m, K = 0.50 MPa

√
m, and K = 0.41 MPa

√
m through Irwin’s relationship,

Gc = K2
IC(1− ν2)/E, under plane strain conditions. Using the undrained HF split, Figure

2.7 illustrates the trend by which the ratio of the length of the cohesive zone to the actual

length of the fracture, λ = Lcoh

Lf
, decreases as the fracture evolves. The figure shows that for

the models with larger fracture energy, the cohesive zone initially covers the whole length

of the fracture and, therefore, comparison of the results with the toughness-independent

KGD solution is impractical. Even when the fracture propagates to a length of about

12m, the ratio, λ, is about 0.2 for the model with Gc = 30 J/m2, and 0.08 for the one

with Gc = 15 J/m2, and the effect of the cohesive zone on the global solution is still

not negligible. For the model with Gc = 10 J/m2, the initial value of λ is 0.6, which
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Figure 2.8: Illustrations of time variation of fracture length (a), wellbore pressure (b), and
fracture aperture at the wellbore (c) for the new undrained HF split. Solid lines in (a)
indicate the location of the mathematical tip and dashed lines indicate the location of the
physical tip of the cohesive hydraulic fracture.

means that the cohesive zone does not cover the whole length of the fracture initially. A

slight increase of λ is seen for this model between the fracture lengths of about 0.5 m and
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1.0 m. This increase can be due to the slightly faster propagation of the mathematical tip

in comparison with the physical tip of the fracture, which increases the numerator of the

ratio more than its denominator. As the fracture evolves, λ continuously decreases to a

value of about 0.05 at the length of 12 m.

It should be noted that the solution of the undrained HF split converges to the same

solution as those of the fully coupled model. Therefore, in what follows, we present only the

undrained HF split solutions in the graphs. It is also notable that the maximum deviations

from the total injected volume after 40 seconds of injection are 0.18%, 0.32%, and 0.25%

for the models with Gc = 30 J/m2, Gc = 15 J/m2, and Gc = 10 J/m2, respectively.

Therefore, the global continuity constraint is well satisfied for all the three models in this

example.

The time-variation of wellbore pressure, fracture aperture at the wellbore, and fracture

length for different values of fracture energy are compared with those from the KGD model

in Figure 2.8. All curves are smooth, and there is no evidence of spurious oscillations.

Figure 2.8a shows the location of both mathematical and physical tips of the fracture. It

is evident from the figure that the fracture tip of the KGD model lies between the physical

and mathematical tips of the cohesive hydraulic fracture. As the fracture energy decreases,

the cohesive zone vanishes and the physical tip of the cohesive model converges to the KGD

solution for the location of the fracture tip. The cohesive fracture model yields a slightly

higher injection pressure (≈ 0.15 MPa) than the wellbore pressure estimated by the KGD

model. The slight discrepancy between the results of a cohesive hydraulic fracture and the

KGD model can be explained through the difference between the assumptions that each

model makes for material behavior at the fracture tip. Cohesive tractions acting at the
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tip region of a cohesive hydraulic fracture stiffen the fracture at the tip. This additional

stiffness requires a slightly higher driving pressure at the fracture inlet to propagate the

fracture. Higher wellbore pressure results in a slightly larger fracture aperture (≈ 0.06 mm)

at the wellbore as illustrated in Figure 2.8c. Similar discrepancies between the results of a

cohesive plane strain hydraulic fracture and those of a non-cohesive hydraulic fracture has

also been reported in [68]. It is noted that the discrepancies shown here are smaller.

Figure 2.9: Profiles of cohesive HFs with Gc = 30 J/m2 (left) and Gc = 10J/m2 (right) at
various fracture lengths, simulated using the new undrained HF split

The fracture profiles and distributions of fluid pressure along the fracture are respec-

tively shown in Figures 2.9 and 2.10 for the models with Gc = 30 J/m2 and Gc = 10 J/m2.

For higher values of fracture energy, fluid pressure maintains a distribution close to a

uniform pressure (i.e., low pressure gradient) along the fracture. The pressure gradient

increases near the fracture tip and pressure drops to a value close to zero within a small

region behind the mathematical tip of the fracture. For the model with low fracture en-
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Figure 2.10: Distribution of fluid pressure along the fracture for cohesive HFs with Gc =
30 J/m2 (left) and Gc = 10J/m2 (right) at various fracture lengths, simulated using the
new undrained HF split

ergy, the pressure distribution deviates from uniform (i.e., higher pressure gradient), and

a small negative-pressure region develops in the cohesive zone behind the mathematical

tip, as observed in asymptotic solutions of plane-strain HF models. Figure 2.10 also shows

that the values of pressure at the tip are finite in both models and no pressure singularity

is observed at the fracture tip in the solution of the cohesive hydraulic fracture model.This

stems from the finite non-zero permeability used to model fluid flow in the cohesive zone

and the no-flux boundary condition at the tip. The length of the region near the fracture

tip in which fluid pressure drops steeply, and the value of pressure gradient in this region

depend on the length of the cohesive zone of the fracture. Therefore, for the model with a

lower fracture energy, the drop in the pressure near the fracture tip is sharper than that

of the model with a higher fracture energy, as seen in Figure 2.10. Hence, one can assume

that for an ultimate case in which the cohesive zone vanishes (i.e., Gc → 0), pressure drops
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with an infinite slope at the fracture tip, and fluid pressure becomes singular. The effect

of the cohesive zone can also be seen on fracture profiles in Figure 2.9. For a given fracture

length, the model with higher fracture energy generally yields a smaller aperture near the

fracture tip and a larger aperture at the wellbore.

2.4.2 Propagation of hydraulic fractures from a wellbore

The propagation of pressurized fractures from a wellbore has been investigated by Mogilevskaya

et al. [98]. The study has used a Complex Hypersingular Equation (CHSIE) to simulate

a fracture propagating from a circular wellbore in a two-dimensional homogeneous do-

main. The model has been developed in the Linear Elastic Fracture Mechanics (LEFM)

framework and considered two different cases 1) slow pressurization of fractures in which a

uniform pressure distribution is assumed within the fractures and 2) fast pressurization of

fractures in which tractions due to the fluid pressure are applied only at the fracture inlet.

Hence, despite meaningful results in terms of fracture trajectories, the study has not con-

sidered real hydro-mechanical coupling in the simulation of pressurized fractures. A more

complex model for the problem has been developed by Zhang et al. [154] in which a fully

coupled scheme has been employed for the simulation of hydraulically induced fractures

propagating from a wellbore. This model is also developed in the LEFM framework and

uses lateral and frictional contact models to capture fracture closure and shearing deforma-

tions. The model has been applied to multiple fracture problems with various inclination

angles.

In this section, the application of the undrained HF split for simulating the propagation
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of a hydraulic fracture from a pressurized wellbore is investigated. A hydraulic fracture

is assumed to initiate, from a pre-existing flaw, at the wall of a wellbore. The flaw may

be due to the existence of micro-fractures in the rock or an intentional perforation for

controlling the initiation of hydraulic fractures. The wellbore is drilled in the direction

of the intermediate component of the in situ stress field, in an elastic and impermeable

formation. The diameter of the wellbore is 12.7 cm (5 in). The impermeable rock is

assumed to have an elastic modulus of E = 16GPa, Poisson’s ratio of ν = 0.2, tensile

strength of T = 0.5 MPa, and fracture energy of Gc = 50 J/m2 (or equivalently, a

fracture toughness of KIC = 0.91 MPa
√
m).

Figure 2.11: Numerical mesh of the wellbore problem

The propagation of hydraulic fractures from the wellbore under anisotropic in situ
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stress condition is investigated. Fractures are assumed to initiate from a point on the

wellbore wall at two initiation angles, θ = 38◦ and θ = 85◦. Each case is simulated under

in situ stress differences of ∆σ = 5 MPa, ∆σ = 15 MPa, and ∆σ = 25 MPa, where

∆σ is the difference between the maximum (σH) and minimum (σh) in situ stresses acting

perpendicular to the wellbore. The initial fluid pressure for the three stress differences are

assumed to be p0 = 24.96 MPa, p0 = 34.88 MPa, and p0 = 44.81 MPa respectively. The

value of minimum horizontal stress is σh = 20 MPa in all cases.

The numerical mesh used for this example is illustrated in Figure 2.11. A structured

mesh is used for a region with a radius of 5Rw from the center of the wellbore. The rest of

the domain is discretized using an unstructured mesh. The structured section of the mesh

has a minimum effective size of he = 0.003 m, at the wellbore, and a maximum effective

size of he = 0.011 m, at 5Rw. The average effective size of the mesh in the unstructured

section varies from he = 0.024 m at 5Rw to he = 1.621 m at the outer boundaries of the

domain. A constant time increment of ∆t = 0.02 s is used for all analyses. The mesh size

and time step increment are small enough to ensure the the results presented are converged.

We also assume bM = 0.08E for the APM in the undrained HF split. Fluid is assumed to

be injected at a rate of Qinj = 10−4 m3

s·m . The admissible tolerance of error is τ = 10−12 for

the normalized L2 norm of the coupling residual, and η = 10−2 for the satisfaction of the

global continuity constraint.

The final trajectories of both the 38◦ and 85◦ fractures are illustrated in Figure 2.12

under different values of in situ stress difference. The fracture is expected to propagate

without kinking under an isotropic stress state, i.e., ∆σ = 0. Hence, the fracture plane

for the isotropic stress condition is shown as a reference in this figure. As expected, the
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fracture trajectories deviate from the reference path to align with the orientation of the

minimum in situ stress as the stress state deviates from isotropic. An increase in the stress

difference enforces a sharper kink in the fracture path and a faster alignment with the

direction of the minimum in situ stress. Hence, the fracture path with the smallest ∆σ lies

above all other trajectories, with the smallest deviation from the reference path. Results

for the drained HF split are not show since they failed to converge early on in the analysis.

Results for the fully coupled model are not shown, as they are indistinguishable from those

of the undrained split.

Figure 2.12: Simulated fracture trajectories, using the undrained HF split, of fractures
initiated from a wellbore at angles 38◦ (left) and 85◦ (right) from the maximum in situ
stress under anisotropic stress conditions

Figure 2.13 depicts the wellbore pressure of the 38◦ fracture under in situ stress dif-

ference ∆σ = 25 MPa for both undrained and drained HF splits. For an analysis with

constant time increments, ∆t = 0.02 s, the undrained HF split yields a relatively smooth
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pressure curve, which initially rises to a peak value and then gradually decreases to a min-

imum asymptotic value, i.e., the local value of in situ stress in the direction perpendicular

to the fracture. The drained HF split, however, exhibits a numerical instability after the

peak pressure is reached. Amplified oscillations in the injection pressure appear prior to a

complete failure to converge. The oscillatory pressure results in similar oscillations in the

wellbore fracture aperture, as seen in Figure 2.13. It is clear from this example the the

new undrained HF split proposed here is more robust to the drained HF split (P → W

scheme) previously used in HF models. In the scale of Figure 2.13 for fracture aperture

and wellbore pressure, the fully coupled solution is indistinguishable from the undrained

HF split solution and so not shown.

Figure 2.13: Fluid pressure and fracture aperture at the wellbore for traditional drained
and new undrained HF splits using constant time increments, ∆t = 0.02 s. The drained HF
split is interrupted as the global continuity condition has not been met after 100 iterations.

Figures 2.14 and 2.15 depict the change in the local stress field due to the propagation

of the 38◦ and 85◦ fractures from the pressurized wellbore. The stress contours highlight

three regions of stress concentrations. As expected there are stress concentrations at both
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the wellbore and the fracture tip. There is also a third stress concentration in σx and σy

mid-way along the fracture path which is caused by a combination of the in-situ stresses,

the small radius of curvature of the fracture path, and the fluid pressure applied normal to

the fracture surface. It is interesting to note that the drained HF split breaks down near

the point in the simulation where the radius of curvature in the fracture path becomes

small.

Figure 2.14: Contours of stress, σx (top) and σy (bottom), around the wellbore, simulated
using the new undrained HF split, for propagation of a hydraulic fracture initiated at an
angle 38◦ from σmax under anisotropic stress conditions with ∆σ = 25 MPa

Figure 2.16 shows the normalized L2 norm of the residual, r̄, for the fully coupled

and undrained HF models at various times. Convergence curves are shown for models

with ∆σ = 25 MPa. As seen in the figure, at the initial time steps (t = 0.04 s), the
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Figure 2.15: Contours of stress, σx (top) and σy (bottom), around the wellbore, simulated
using the new undrained HF split, for propagation of a hydraulic fracture initiated at an
angle 85◦ from σmax under anisotropic stress conditions with ∆σ = 25 MPa

two algorithms converge almost similarly with the undrained HF split converging slightly

faster than the fully coupled model. As time passes, the fully coupled model shows better

convergence than its undrained counterpart, as would be expected. Convergence graphs

resemble bilinear curves in the semi-logarithmic space with an initially flatter segment

followed by a sharper drop of the residual norm. Convergence behavior is almost similar

for both the fully coupled and undrained HF algorithms in the initial segment of the

convergence curves. However, the fully coupled algorithm converges faster in the second

segment. Generally, the fully coupled model converges faster than the undrained HF split.

The maximum number of iterations during these simulations was 11 for the fully coupled
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model and 17 for the undrained HF split. The convergence curves are smooth for both

algorithms and no evidence of oscillations are detected.

To compare the computational cost of the two schemes, the CPU time required for

one iteration of the fully coupled and undrained HF schemes are measured. The average

CPU time for one iteration is titerCPU = 0.587 s for the fully coupled and titerCPU = 0.604 s for

the undrained HF scheme. The comparison of the CPU times indicates that the relative

cost per iteration for the two schemes are comparable. Therefore, the total computational

cost depends on the number of iterations that each of the two schemes require in order to

achieve convergence. Generally, the undrained HF split is slightly costlier than the fully

coupled scheme as it requires more iterations to converge.

The convergence/robustness of the drained HF split with a smaller time increment,

∆t = 0.001 s (20 times smaller) was also investigated. The spurious oscillations persist

and do not attenuate when the time increment is decreased. Therefore, one is unlikely to

achieve a stable solution for the problem by employing the drained HF split with sufficiently

small time increments. The results presented here are consistent with those presented

by Gordeliy and Peirce [52] in which they characterized the P → W scheme (i.e., the

drained HF split) as being problematic. The lack of robustness of the drained HF split

was foreshadowed by Kim et al. [71], who demonstrated the unconditional instability of

the drained split in poromechanics.

Hydraulic fracturing is a particular case of fluid-solid interaction. In fluid-solid interac-

tion problems, numerical oscillations (instability) in the solution are often observed when

equal-order approximations are used for both fluid pressure and solid displacements (LBB
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condition [77, 10, 42, 13]). In this study, however, we did not detect any oscillatory be-

haviour in the solution of neither the fully coupled model nor the undrained HF splits, even

when using similar orders of approximation for the displacement of the solid (bilinear) and

the fluid pressure (linear). This was a surprising outcome, as it would be expected that

oscillation free results would required different orders of approximation.

Only the drained HF split exhibits oscillations of the fluid pressure field, similar to those

observed due to a violation of the LBB condition. Since these oscillations do not exist in

the fully coupled nor undrained solutions, we attribute these oscillations to deficiencies in

the drained split scheme rather than solely phenomena from the LBB conditions.

2.5 Conclusions

In this chapter a new sequential coupling scheme, the undrained HF split, for the simula-

tion of hydraulic fractures (HF) in impermeable media was presented and compared to the

simple P → W scheme and a fully coupled scheme. The new splitting scheme (undrained

HF split) was developed using an analogy to the undrained split developed in poromechan-

ics. It was also found that the P → W scheme used in HF simulation is analogous to the

drained split for poromechanics (known to be unstable), leading to it being labeled the

drained HF split.

The undrained HF split was implemented in the context of the extended finite element

method; however, it can be applied more generally. The implementation was first qualita-

tively verified by a comparison with the KGD solution. It was observed that the fracture
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Figure 2.16: Comparison of convergence curves of the fully coupled model (black circles)
and the undrained HF split (blue triangles) for 1 s of simulation with ∆σ = 25 MPa
(Dashed lines indicate the admissible tolerance of error, τ = 10−12)

tip in the KGD model is between the physical and mathematical tips of the cohesive HF

models and that the physical tip tends to that of the KGD model as the fracture energy

tends to zero, as expected. Next, it was demonstrated that the undrained HF split can

successfully model the non-planar trajectories of hydraulic fractures initiated from a well-

bore under various in-situ stress state. The trajectories are shown to be mainly affected by

the orientation of the initial fracture and the intensity of stress anisotropy. The fractures

propagates in a way to orient themselves perpendicular to the minimal principal stress, as

expected. Material properties such as fracture toughness and fluid viscosity where found

to affect the distribution of fracture aperture and fluid pressure, but have minor effects on
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the fracture trajectories.

In these applications the results from the new undrained HF split are stable, converge

with few iterations, and converge to the same solution as the full-coupled scheme. The

undrained HF split was generally found to converge slower than the fully coupled model.

The undrained HF split results show no evidence of oscillations. In contrast, the drained

HF split (the P → W scheme), the most commonly reported iterative scheme in the

literature, is shown to be unstable and fails to converge even when very small time step

sizes are used. It was not possible to successfully simulate the propagation of HFs from a

wellbore using the drained HF split.
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Chapter 3

Sequential Enforcement of

Hydro-Mechanical Coupling: Fixed

Stress and Fixed Strain HF Splits
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3.1 Introduction

This chapter focuses on the derivation and implementation of a new iterative coupling

strategy that, at each iteration, solves the fluid flow subproblem first. A robust iterative

algorithm for automatic fluid partitioning in the simulation of multiple fracture domains

is also presented in this chapter.

In the poromechanics context, the splits that solve the fluid subproblem first are the

fixed stress and fixed strain splits. While the fixed stress split is one of most robust

iterative schemes in poromechanics [71, 92, 91], the fixed strain split is known to be only

conditionally stable and non-convergent with a fixed number of iterations (i.e., the number

of iterations required for convergence grows with time without an upper limit) [71, 91].

Very few research works have used the fixed strain split for the simulation of fluid flow in

deformable porous media [17, 151].

In the simulation of hydraulic fractures, the so called W → P scheme is analogous

to the fixed strain split in poromechanics. The W → P algorithm first solves the fluid

equation under the assumption of a fixed fracture aperture. Next, the solid displacement

and fracture aperture are updated by solving the solid equilibrium equation, assuming

that the fluid pressure is fixed. Gordeliy and Pierce have shown that W → P scheme is

the least accurate scheme in the simulation of hydraulic fractures. The available iterative

coupling schemes in the context of hydraulic fracture modeling are generally known to lack

robustness [52]. Therefore, developing an alternative iterative algorithm for the simulation

of hydraulic fractures, based on the fixed stress split in poromechanics is desirable.

The fixed stress split is a robust iterative algorithm that solves the fluid subprob-
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lem under the assumption that the volumetric stress in the porous matrix is fixed. This

assumption suggests that the porous matrix may deform when the fluid subproblem is

solved; however, the deformation is constrained to yield a fixed volumetric stress in the

solid matrix. Kim et al. have shown that the fixed stress split, in porous media analysis,

is unconditionally stable. They have also shown that the split is convergent with a fixed

number of iterations [71]. Convergence rates are calculated for the first time by Mikelic et

al. [92]. The fixed stress split has been used in many research works for the analysis of

deformable porous media [7, 8, 151].

In this chapter, we introduce, for the first time, an efficient sequential coupling algo-

rithm based on the analogy of the fixed stress split for simulating HF propagation. The

algorithm is named the fixed stress HF split. For the purpose of deriving the fixed stress

split formulation, the fracture is assumed to be replaced by an Analogous Porous Medium

(APM) and the fixed stress HF split is derived using the poromechanics analogy.

The new fixed stress HF split is implemented in a two-dimensional model for the simula-

tion of HFs in an impermeable elastic medium. The model uses the extended finite element

method (XFEM) to simulate cohesive hydraulic fracture propagation and the standard fi-

nite element method (FEM) is used to simulate transient fluid flow within the fractures.

We also present an iterative automatic flow partitioning algorithm for splitting flow be-

tween fractures when flow rate controlled hydraulic fracturing is simulated. The algorithm

is developed based on the satisfaction of the global mass conservation for the wellbore and

the fractures connected to it.

In what follows, we first present the mathematical formulation of the fully coupled
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hydro-mechanical problem. Next, the numerical discretization of the solid and fluid space

domains are discussed followed by a brief discussion of the time domain discretization,

and the discrete form of the hydro-mechanically coupled system of equations. Solution

strategies for solving the coupled system are explained in section 3.3, and the fixed stress

split is derived in section 3.3.2. The automatic partitioning algorithm is introduced in

section 3.4. Finally, the efficiency of the fixed stress HF split is demonstrated through

numerical examples comparing the solution of the proposed split with those of the fully

coupled and conventional fixed strain HF splits (W → P ). We conclude the chapter by a

discussion and summary.

3.2 Mathematical model

This section provides the mathematical formulation of the hydro-mechanical coupling prob-

lem, and the numerical discretization of the time and space domains. The discrete form

of the coupled hydro-mechanical problem is derived at the end of this chapter. The HF

model consists of a deformable body containing a number of fractures. The fractures are

fluid filled. Additional fluid is injected directly into the fractures, causing them to open

and propagate. This model is realized using the following mathematical model.

3.2.1 Governing equations

Consider the solid domain, Ωs, illustrated in Figure 4.1. The solid domain boundary, Γ,

is comprised of three mutually exclusive sets, Γu, Γt, and Γc, such that Γ = Γu ∪ Γt ∪ Γc
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and Γu ∩ (Γt ∪ Γc) = ∅, where Γu, Γt, and Γc denote the displacement boundary, traction

boundary, and fracture boundary of the domain, respectively. The fracture boundary is

also decomposed into its positive and negative faces, Γ+
c and Γ−c , such that Γc = Γ+

c ∪ Γ−c

[95].

Figure 3.1: Domains of the problem: solid domain (left) and fluid domain (right)

The solid domain is initially in equilibrium under the in situ stress field, σ0, and is

assumed to remain elastic under the applied stresses during the analysis. For a quasi-static

problem, the static equilibrium of the system is defined by neglecting the inertia terms from

the conservation of momentum equation:

∇ · σ + ρsb = 0 (3.1)

where σ is the Cauchy stress tensor, ρs is the solid mass density, b is the vector of body

force per unit mass density, and ∇ denotes the gradient operator, in which x and y are the

cartesian coordinates in two dimensions. The conservation of angular momentum enforces
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the symmetry of the Cauchy stress tensor, i.e., σ = σ>. With the assumption of linear

elasticity and infinitesimal strains, the constitutive equation of the solid under initial in

situ stress field, σ0 is defined by Hooke’s law:

σ − σ0 = C : ε (3.2)

where C is the fourth order elasticity tensor, and ε is the linear symmetric strain tensor

defined by

ε =
1

2

(
∇u + ∇u>

)
(3.3)

in which u is the solid displacement vector. We employ a cohesive fracture model to

represent the damaged/plastic region ahead of the fracture tip. In this study, we use a

quasi-linear traction-separation law similar to the model presented in [49]. The quasi-linear

traction-separation law defines the magnitude of cohesive traction, tcoh, as a function of

the fracture aperture, w, through

tcoh(w) =



fu
w

ww
if w ≤ ww

fu
wc − w
wc − ww

if ww < w ≤ wc

0 if wc < w

(3.4)

where fu is the tensile strength of the solid, wc is the critical aperture, and ww is known

as the weakening aperture, which is the value of aperture corresponding to the maximum

value of cohesive traction.
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When the solid domain is impermeable, the solid-fluid interaction solely occurs at the

fracture surfaces. Hence the fluid domain, Ωf , is defined by the mid-surface between

fractures of the solid domain as illustrated in Figure 4.1. For a quasi-static problem, flow

of a viscous fluid within the fractures is governed by the conservation of fluid mass:

∂w

∂t
+

∂

∂s
q = f (3.5)

in which w is the fracture aperture, q is the fluid flux, f is the sink/source term, t is the

time variable, and s denotes the local fracture coordinate measured from its inlet boundary.

The amount of fluid leaking off from the fracture into the solid domain is negligible for an

impermeable solid domain. Therefore, the leak-off terms in (3.5) are neglected.

Assuming that fluid flow remains laminar within the fractures and that the fracture

faces remain parallel (both are only simplifying assumptions), the relation between flow,

q, and pressure, p, along hydraulically driven fractures is given by the flow law:

q = −k(w)
∂

∂s
p (3.6)

where k(w) is the hydraulic conductivity of the fracture. A discussion on the use of the

cubic law in determining k(w) in a cohesive hydraulic fracture model will be presented in

section 3.2.2.

A prescribed displacement, ū, is enforced on the displacement boundary, Γu, of the

solid domain. The domain is subjected to an external traction, t̄, on its traction boundary,

Γt. On the fracture boundary, Γc, the solid domain is also subjected to tractions due to
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fluid pressure and cohesive forces acting perpendicular to the fracture faces. Hence, the

set of boundary conditions for the solid equation are taken to be

u = ū on Γu

σ · nΓt = t̄ on Γt

σ · nΓ+
c

= − (pI + σ0) · nΓ+
c

+ tcohI · nΓ+
c

on Γ+
c

σ · nΓ−c
= − (pI + σ0) · nΓ−c

+ tcohI · nΓ−c
on Γ−c

(3.7)

where I is the second order identity tensor, nΓt denotes the outward-facing unit normal

vector on the traction boundary, and nΓ+
c

and nΓ−c
are the outward-facing unit normal

vectors on the positive and negative faces of the fracture boundary respectively. It should

be noted that it’s the difference between the fluid pressure and the in situ stresses that

causes any fracture opening after the initial equilibrium state. This difference is accounted

for in (3.7) by superimposing the effect of the fluid pressure and the in situ stress field on

the fracture boundary/surfaces.

The assumption of an impermeable solid requires that fluid leak-off at any point along

the fracture, including the fracture tip, be zero. Therefore, application of the no-flow

boundary condition at the fracture tip is necessary. At the inlet boundary, an in-flow

rate equal to the prescribed injection rate, Qinj, is prescribed. However, for a given frac-

ture aperture, the conservation equation (3.5) is an elliptic PDE with respect to the fluid

pressure, p. Therefore, it is not solvable without an essential boundary condition. To

address the solvability issue of (3.5) while accounting for the prescribed injection rate at

the inlet and the fracture tip, an additional constraint, the global continuity constraint, is
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introduced to augment the problem. The global continuity constraint for an impermeable

medium with no fluid leak-off is expressed as [35]

Qinj =

∫
Ωf

ẇdΩ (3.8)

with ẇ denoting the time-derivative of the aperture. Hence, the set of fluid boundary

conditions is defined as

−k (w)
∂

∂s
p · nΓq = 0 at s = Lf

p = p̄ at s = 0 subject to: Qinj =

∫
Ωf

ẇdΩ
(3.9)

in which Lf is the fracture length, p̄ is fluid pressure at the fracture inlet which is also an

unknown of the problem, and nΓq = 1 at the flux boundary (i.e., tip) of the fracture.

The mass conservation equation (3.5) also requires an initial condition on the fracture

aperture (or equivalently on the solid displacement). Since the solid domain is initially in

an equilibrium state under the in situ stress field, one can assume the initial displacement

field, u0, as the reference displacement and express any displacement in the solid domain

as an increment to u0. For the purpose of simplicity, and without loss of generality, we set

the initial reference displacement to zero. Therefore, an initial condition for (3.5) can be

w0 = w (t = 0) = 0 (3.10)

This assumption is completely consistent with the solid constitutive equation (4.2), which

yields a zero strain when σ = σ0.
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Neglecting the body force term in (3.1), the weak form of the solid governing equation

is derived by substituting the stress tensor, σ, from (4.2) into the equilibrium equation

(3.1), multiplying the resultant governing equation by the test function, δu ∈ U0, and

integrating over the solid domain, Ωs:∫
Ωs

∇δu : C : εdΩ +

∫
Ωs

∇δu : σ0dΩ−
∫

Γt

δu · t̄dΓ−
∫

Γt

δu · σ0 · nΓT
dΓ+∫

Γc

JδuK · tcohI · nΓcdΓ−
∫

Γc

JδuK · (pI + σ0) · nΓcdΓ +

∫
Γc

JδuK · σ · nΓcdΓ = 0

(3.11)

where U0 = {δu | δu ∈ H1 ×H1, δu = 0 on Γu, δu is discontinuous on Γc} is the set of

admissible displacement test functions with H1 being the space of functions whose deriva-

tives are square integrable. The jump in the displacement test functions on the fracture

boundary is denoted by JδuK =
(
δu |Γ+

c
− δu |Γ−c

)
, and nΓc = nΓ−c

= −nΓ+
c

. The weak

form of the initial equilibrium of the system suggests that the terms containing σ0 in

(3.11) should add up to zero, i.e.,

∫
Ωs

∇δu : σ0dΩ−
∫

Γt

δu · σ0 · nΓT
dΓ +

∫
Γc

JδuK · σ · nΓcdΓ = 0 (3.12)

Hence, the weak form (3.11) is reduced to

∫
Ωs

∇δu : C : εdΩ−
∫

Γt

δu · t̄dΓ +

∫
Γc

JδuK · tcohI · nΓcdΓ−
∫

Γc

JδuK · (pI + σ0) · nΓcdΓ = 0

(3.13)

If we also neglect the sink/source term in (3.5), the weak form of the fluid governing

equation is constructed by substituting fluid flux, q, from (3.6) into the conservation equa-
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tion (3.5), multiplying the resultant equation by the test function, δp ∈ P0, and integrating

over the fluid domain, Ωf :

∫
Ωf

δp
∂w

∂t
dΩ +

∫
Ωf

∂

∂s
δpk(w)

∂

∂s
pdΩ +

∫
Γq

δpq̄dΩ = 0 (3.14)

where the set of admissible pressure test functions is defined as P0 = {δp | δp ∈ H1, δp = 0 on Γp}

Hence, the coupled problem to be solved is to determine u ∈ U and p ∈ P such that,

∀δu ∈ U0 and δp ∈ P0,



∫
Ωs

∇δu : C : εdΩ−
∫

Γt

δu · t̄dΓ +

∫
Γc

JδuK · tcohI · nΓcdΓ−
∫

Γc

JδuK · (pI + σ0) · nΓcdΓ = 0

∫
Ωf

δp
∂w

∂t
dΩ +

∫
Ωf

∂

∂s
δpk(w)

∂

∂s
pdΩ +

∫
Γq

δpq̄dΩ = 0

(3.15)

where

U =
{
u | u ∈ H1 ×H1, u = ū on Γu, u is discontinuous on Γc

}
and

P =
{
p | p ∈ H1, p = p̄ on Γp

}
are the sets of admissible displacement and pressure trial functions respectively. The sets of

admissible test functions for solid displacement and fluid pressure are defined respectively

as

U0 =
{
δu | δu ∈ H1 ×H1, δu = 0 on Γu, δu is discontinuous on Γc

}
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and

P0 =
{
δp | δp ∈ H1, δp = 0 on Γp

}

3.2.2 Modified cubic law: elimination of the unphysical singular

tip pressure

The cohesive fracture model removes the unphysical singular stresses at the fracture tip;

however, a pressure singularity still exists at the tip of a cohesive hydraulic fracture. The

reason for such a singularity in the fluid pressure is the dependence of the fracture con-

ductivity, k(w), on the fracture aperture, which, in a cohesive fracture model, vanishes

smoothly in the vicinity of the fracture tip.

Consider the cubic law (3.6) as the fluid constitutive model. In the vicinity of the

fracture tip, s → Lf , the cubic law suggests that flux, q, must vanish, with cube of the

aperture (q ∝ w3). Hence, unphysical singular fluid pressures can exist at the tip of a

hydraulic fracture even with a cohesive fracture model.

In order to treat the fluid pressure singularity, we use an approach similar to the cohesive

fracture model by enforcing a slightly modified version of the fluid constitutive model in

the cohesive zone of the fracture, where smooth fracture closure becomes problematic for

the fluid model.

A simple treatment for the singular pressure in a cohesive hydraulic fracture model

is to modify the fluid constitutive law in a way that the fracture hydraulic conductivity,

k(w), tends to a very small value, kc, instead of zero in the vicinity of the fracture tip, i.e,

lims→Lf
k(w) = kc > 0. With this assumption, applying a zero flux boundary condition,
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q = 0, leads to the enforcement of ∂
∂s
p = 0 at the tip, and hence prevents pressure

singularity at the fracture tip.

The minimum fracture conductivity, kc, is physically interpreted as the conductivity of

the damaged region ahead of the fracture tip. The near-tip damaged region develops micro

fractures that remain open, under the applied stresses, due to the dilation of the damaged

zone. Such dilation is caused by the interaction of asperities along the micro fractures under

a combination of shearing and compressional deformations. Hence, if we assume that the

damaged zone is locally lumped to a region along the fracture ahead of its physical tip, i.e.,

cohesive zone, it is reasonable to also assume that the enhanced permeability, due to the

dilation of micro fractures in the damaged zone, is lumped along the same region in the

form of a minimum fracture hydraulic conductivity. Similar assumptions have been made

in some other research work for simulating hydraulic fracture closure [154].

The minimum hydraulic conductivity can equivalently be represented by a minimum

fracture aperture using the cubic law:

kc =
w3
c

12µ
(3.16)

where wc is the minimum hydraulic aperture. To account for the minimum hydraulic

conductivity, the cubic law is modified as

k(w) =



w3

12µ
if w > wc

w3
c

12µ
= kc if w ≤ wc

(3.17)
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The modified cubic law is applied along the cohesive zone of the fracture; hence, we simply

assume that the minimum hydraulic aperture is equal to the critical aperture of the cohesive

traction-separation law (3.4).

Figure 3.2: Discretization of solid (left) and fluid (right) domains

3.2.3 Discretization

A numerical mesh of quadrilateral elements, as illustrated in Figure 4.3, is used for the

discretization of the solid domain, Ωs. The fracture boundary, Γc, is discretized at its

intersection with the solid mesh with the fracture tip always located on a solid element

edge.

An enriched approximation, with only the Heaviside enrichment functions, is used for

the discontinuous solid displacement field. To avoid the use of blending elements, we

84



employed a shifted enrichment approach [14]. The XFEM approximation, uh, of the dis-

placement field at point x ∈ Ωs and time t is defined as

uh(x, t) =
∑
I

NI(x)duI (t) +
∑
J

NJ(x) [Hc(x)−Hc(xJ)] daJ(t)

≡ Nu(x)du(t) + Na(x)da(t) ≡ N(x)d(t)

(3.18)

where I and J are, respectively, the set of all nodes and the set of enriched nodes of the

solid mesh. The standard finite element shape functions are denoted by NI(x), and the

terms duI (t) and duJ(t) refer to the standard and enriched degrees of freedom, respectively.

The discontinuous enrichment function, Hc(x), is defined so

Hc(x) =


−1

2
if x ∈ Ω−s

1
2

if x ∈ Ω+
s

(3.19)

in which Ω+
s and Ω−s denote the set of points belonging to the solid domain, Ωs, that are

located, respectively, on the positive and negative sides of the fracture (see Figure 4.1).

The standard and enriched degrees of freedom can be compiled into matrices denoted

by du(t) and da(t) respectively. Similarly, the standard and enriched shape function

matrices are denoted respectively as Nu(x), and Na(x). Finally, combining the stan-

dard and enriched matrices of the same type into a single matrix, the total N-matrix

and degree-of-freedom vector of the solid are defined as N(x) = {Nu(x) Na(x)} and

d(t) = {du(t) da(t)}> respectively.
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Considering the spatial derivatives of uh, the approximated strain in Voigt form is

εh(x, t) =
∑
I

∇sNI(x)duI (t) +
∑
J

∇sNJ(x) [Hc(x)−Hc(xJ)] daJ(t)

≡ Bu(x)du(t) + Ba(x)da(t) ≡ B(x)d(t)

(3.20)

where Bu(x) and Ba(x) respectively contain the derivatives of Nu(x) and Na(x). Hence,

the total B-matrix of the solid is defined as B (x) = {Bu(x) Ba(x)}. Moreover, ∇s

denotes the symmetric gradient operator.

The jump in the displacement across the fracture, JuK = u |Γ+
c
− u |Γ−c , can be approx-

imated by substituting uh from (3.18) as

JuKh ≡ JuhK = uh |Γ+
c
− uh |Γ−c =

(
N |Γ+

c
−N |Γ−c

)
d = JNKd (3.21)

Fracture aperture, w, is the normal component of the jump, JuK, with respect to the

fracture and, hence, is approximated by

wh = JuhK · nΓc = n>Γc
JNKd (3.22)

The fluid domain is discretized at its intersection with the solid mesh, as illustrated in

Figure 4.3. Using a standard linear finite element approximation for the pressure field, the

approximated fluid pressure, ph, at point s ∈ Ωf and time t is defined as

ph(s, t) =
∑
L

ψL(s)pL(t) ≡ ψ(s)p(t) (3.23)
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where L is the set of all nodes of the fluid mesh, ψL(s) are the finite element approximation

functions, and pL(t) are the nodal values of fluid pressure, i.e., fluid degrees of freedom.

The approximation functions and the degrees of freedom are denoted in matrix form by

ψ(s) and p(t), respectively. The spatial derivative of ph(s, t) is approximated by

∂

∂s
ph(s, t) =

∑
L

∇ψL(s)pL(t) ≡∇ψ(s)p(t) (3.24)

in which ∇ψ(s) is the matrix containing the spatial derivatives of the pressure approxi-

mation functions, ∇ψL(s).

Substituting (3.18)-(3.24) into (3.15), the coupled system is presented in its semi-

discrete form as Ru

Rp

 =

Kuud−Kupp + Fcoh − FΓt − FΓc0

K>upḋ + Fq − FΓq

 = 0 (3.25)

in which

Kuu =

∫
Ωs

B>CBdΩ (3.26a)

Kup =

∫
Γc

JNK>nΓcψdΓ (3.26b)

Fcoh =

∫
Γc

JNK>tcoh (w) nΓcdΓ (3.26c)

Fq =

∫
Ωf

∇ψ>k (w)
∂

∂s
pdΓ (3.26d)

FΓq =

∫
Γq

ψ>q̄dΓ (3.26e)
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FΓt =

∫
Γt

N>t̄dΓ (3.26f)

FΓc0 =

∫
Γc

JNK>t̄c0dΓ (3.26g)

The time derivative of d is denoted by ḋ, and C is the matrix representation of the fourth

order elasticity tensor, C. Moreover, t̄c0 = σ0 · nΓc is the traction acting on the fracture

boundary due to the in situ stress field. Note that similar approximations are used for test

and trial functions in the derivation of (3.25).

We use unevenly distributed time increments, ∆tn = tn − tn−1, for the time domain

discretization, where tn represents the nth discrete time step. Using a Backward Euler

scheme at time at time t = tn, the time derivative of the solid degree-of-freedom matrix is

approximated by

ḋn ≡ ḋ(t = tn) =
1

∆tn
(dn − dn−1) (3.27)

where dn = d (t = tn).

Substitution of (3.27) into (3.25) yields the discrete form of the coupled system at time

t = tn: Rn
u

Rn
p

 =

Kn
uud

n −Kn
upp

n + Fn
coh − Fn

Γt
− Fn

Γc0

1
∆tn

Kn>
up (dn − dn−1) + Fn

q − Fn
Γq

 = 0 (3.28)

In the next section, we discuss in detail the solution strategies for numerically solving the

coupled system of ODEs (3.28).

88



3.3 Solution strategies

In this section, we explain the coupling strategies for solving the coupled system (3.28).

First, a monolithic, also known as fully coupled, strategy based on the Newton-Raphson

iterative algorithm is presented. The solution of the fully coupled approach is used as a

reference solution in this chapter. Subsequently, the poromechanics analogy is used to in-

troduce two sequential algorithms for the simulation of hydraulic fractures in impermeable

media.

3.3.1 Fully coupled solution

The fully coupled approach is known to have the highest convergence rates and minimum

stability issues compared to its staggered counterparts and, therefore, is the most robust

approach [159, 71]. In this approach, the nonlinear coupled system (3.28) is linearized,

using the Newton-Raphson or alike iterative algorithm, and solved implicitly without being

staggered into individual subproblems.

Let the residual vector of the coupled problem in the ith iteration at time t = tn be

Rn
i (X) = {Ru (X) Rp (X)}ni and the total degree of freedom vector of the coupled system

at the same iteration be Xn
i = {d p}ni . The objective is to find Xn

i+1 such that

Rn
i+1

(
Xn
i+1

)
= 0 (3.29)

Substituting Rn
i+1 with a first-order approximation from its Taylor expansion, the linearized
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coupled system becomes

Rn
i+1 ≈ Jni ∆Xn

i + Rn
i = 0 (3.30)

where ∆Xn
i = Xn

i+1 −Xn
i , and the Jacobian of the coupled system in the ith iteration at

time t = tn is

Jni =
∂Rn

i

∂Xn
i

=


∂Ru

∂d

∂Ru

∂p

∂Rp

∂d

∂Rp

∂p


n

i

=

 Kuu + Kcoh −Kup

1
∆t

K>up + Kpu Kpp


n

i

(3.31)

in which

Kn
coh =

∂Fn
coh

∂dn
=

∫
Γc

JNK>nΓc

∂tcoh

∂wn
n>Γc

JNKdΓ (3.32a)

Kn
pu =

∂Fn
q

∂dn
=

∫
Γc

∇ψ> ∂
∂s
pn

∂k

∂wn
n>Γc

JNKdΓ (3.32b)

Kn
pp =

∂Fn
q

∂pn
=

∫
Γc

∇ψ>k (wn)∇ψdΓ (3.32c)

The increment of the primary variables is then calculated by ∆Xn
i = − (Jni )−1 Rn

i , and

the primary variables are updated by Xn
i+1 = Xn

i + ∆Xn
i . Iterations continue until the

residual, Rn
i+1, gets sufficiently close to zero, i.e.,

∣∣∣∣Rn
i+1

∣∣∣∣
L2
< τ , where

∣∣∣∣Rn
i+1

∣∣∣∣
L2

is the

L2 norm of the residual and τ is the admissible tolerance of error.
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3.3.2 Sequential solutions

In what follows, a poromechanics analogy is used to develop sequential coupling algorithms

in which the fluid subproblem is solved first. The presented sequential algorithms are

derived based on the fixed strain and fixed stress splits in poromechanics analysis.

Figure 3.3: Schematic of the fixed strain HF split for a hydraulic fracture in an impermeable
medium. Quantities shown in red are solved for in each step and quantities shown in black
are frozen during that step

Fixed Strain HF split

The fixed strain sequential approach in the poromechanics analysis is the analogous to the

W → P split in the hydraulic fracture simulations. The fixed strain approach assumes that

the volumetric strain, εv, in the porous matrix is fixed when the fluid equation is solved.

In other words, the volume of the porous matrix remains unchanged during the solution
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of the fluid subproblem. Similarly, one can assume that in a hydraulic fracture simulation,

using the fixed strain HF split, the fluid subproblem is solved by fixing the volume of

the fracture. This assumption is equivalent to assuming a fixed fracture aperture in the

conservation of mass equation, (3.5). The fixed strain HF split is schematically shown in

Figure 3.3.

Let i be the iteration counter at time t = tn. The solution of the fluid equation for

iteration i+ 1 is computed directly from the second discrete equation in (3.28) as

pni+1 = K−1
pp

{
Fn

Γq
− 1

∆tn
Kn>

up

(
dni − dn−1

)}
(3.33)

in which, Fn
qi

= Kn
pppn

i is substituted from (3.32)c. In the next step, solid displacement

is updated by

dni+1 = dni +
(
Kn
uu + Kn

cohi

)−1
Rn
ui

(3.34)

after substituting the solution of the fluid subproblem in (3.28). Table 3.1 summarizes

the algorithm for performing the fixed strain HF split.

Fixed Stress HF split

The fixed strain HF split, discussed in section 3.3.2 has been shown to lack robustness and

fails to converge in many cases [52].

In the context of poromechanics analysis, the fixed stress split is one of the most ro-

bust splits. The fixed stress split is an iterative process in which the volumetric stress in
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Table 3.1: Fixed strain HF split algorithm

1. Set i = 0 and initialize d = dni

2. Construct Kn
uu from (3.26a) and Kn

up from (3.26b)

3. Construct Kn
cohi

from (3.32a) and Kn
ppi

from (3.32c)

4. Calculate pni+1 from (3.33)

5. Compute Rn
ui

from (3.28)

6. If

∣∣∣∣Rn
ui

∣∣∣∣
L2∣∣∣∣Rn

u0

∣∣∣∣
L2

< τ ∗, go to step 10

7. Update dni+1 from (3.34)

8. i←− i+ 1

9. Go to step 3

10. End

* τ is the admissible error of the Newton-Raphson iteration

the porous matrix is assumed to remain unchanged when the fluid subproblem is solved.

In other words, the porous matrix is allowed to change volume under the applied pres-

sure; however, the matrix deforms such that its volumetric stress does not change. The

application of the fixed stress split to hydraulic fracture simulations may initially be coun-

terintuitive. In this section, we use an analogy to the deformable porous media to introduce

a robust sequential algorithm, referred to as the fixed stress HF split, for the simulation of

hydraulic fractures in impermeable media.

Let’s assume that the fluid domain in the fracture is replaced by an Analogous Porous

Medium (APM) as illustrated in Figure 3.4. The APM has a Biot coefficient, b, and Biot

modulus, M . A schematic of the fixed stress HF split is shown in Figure 3.5.
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Table 3.2: Fixed stress HF split algorithm

0. Assign values of β

1. Set i = 0 and initialize d = dni and p = pni

2. Construct Kn
uu and Kn

up from (3.26) and Spp from (3.43)

3. Construct Kn
cohi

from (3.32a) and K
n(SS)
ppi from (3.45)

4. Construct Rn
i =

{
Rn
u Rn

p

}>
i

by computing Rn
pi

from (3.42)

and Rn
ui

from (3.28)

5. if
||Rn

i ||L2

||Rn
0 ||L2

< τ ∗, go to step 8

4. Update pni+1 from (3.46)

5. Update dni+1 from (3.34)

6. i←− i+ 1

7. Go to step 3

8. End

* τ is the admissible error of the Newton-Raphson iteration

The rate of the total stress in the APM, σ̇(APM), is given by the Biot equation in terms

of the effective stress rate , σ′(APM), and rate of change of fluid pressure, ṗ, as:

σ̇(APM) = σ̇′(APM) − bṗ (3.35)

Decomposing the total and effective stress tensors in terms of their volumetric and

deviatoric components, the total volumetric stress in the APM, σ(APM)v , is given by

σ̇(APM)
v = σ̇′(APM)

v − bṗ = Kwε̇
(APM)
v − bṗ (3.36)
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Figure 3.4: Schematic of the hydraulic fracture (bottom) and its Analogous Porous Medium
(top)

where σ
′(APM)
v is the effective volumetric stress of the APM, ε

(APM)
v is the volumetric

strain of the APM, and Kw is the APM bulk modulus. The fixed stress HF split requires

that the volumetric stress in the APM, σ
(APM)
v , remain unchanged while the conservation

of mass is solved for the fluid pressure , i.e., σ
(APM)
v = 0. Substituting this condition in

(3.36), the volumetric strain rate can be written in terms of the rate of change in pressure

as:

ε̇(APM)
v =

b

Kw

ṗ (3.37)

Moreover, the rate of change in the fluid mass content of the APM, ξ̇, is given by

ξ̇ = bε̇(APM)
v +

1

M
ṗ (3.38)

The change in the fluid mass content of the fracture and that of the APM has to be

the same; therefore, for a unit width of the fracture perpendicular to the plane of analysis,
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the following equality has to be satisfied:

∂w

∂t
= ξ̇ = bε̇(APM)

v +
1

M
ṗ (3.39)

Substituting (3.37) into (3.39), the rate of change in the fluid mass content of the

fracture is rewritten as

∂w

∂t
= βṗ with β =

b2

Kw

+
1

M
(3.40)

where β is the APM coefficient for the fixed stress HF split, which accounts for both fluid

compressibility and fracture compliance.

Substituting (3.40) into the weak form of fluid mass conservation equation leads to the

weak form of the fluid equation under fixed stress condition takes the form

β

∫
Ωf

δp
∂p

∂t
dΩ +

∫
Ωf

∂

∂s
δpk(w)

∂

∂s
pdΩ +

∫
Γq

δpq̄dΩ = 0 (3.41)

Using a backward Euler differentiation scheme, the discrete form of (3.41) for iteration

i at time t = tn is written as

Rn
pi

=
β

∆tn
Snpp
(
pni − pn−1

)
+ Fn

qi
− Fn

Γq
= 0 (3.42)

where
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Snpp =

∫
Ωf

ψ>ψdΩ (3.43)

Contrary to (3.33), the fixed stress condition, (3.37), makes the fluid equation nonlinear

in p, hence an iterative scheme, such as Newton-Raphson, is required for the solution of

(3.42). The Jacobian of the Newton-Raphson scheme for the fluid subproblem at iteration

i of time t = tn is derived as:

∂Rn
pi

∂pni
=

β

∆tn
Snpp +

∂Fn
qi

∂pni
(3.44)

where

∂Fn
qi

∂pni
=

∫
Ωf

∇ψ>∂p
n
i

∂s

∂k (w)

∂pni
dΩ +

∫
Ωf

∇ψ>k (w)
∂

∂pni

(
∂pni
∂s

)
dΩ

= β

∫
Ωf

∇ψ> ∂
∂s
pni
∂k (w)

∂w
ψdΩ +

∫
Ωf

∇ψ>k (w)∇ψdΩ = Kn(SS)

ppi

(3.45)

with Kn(SS)

ppi
denoting the fixed stress fluid tangent stiffness matrix, and

∂w

∂p
= β being

inferred from (3.40). The solution of the fluid subproblem is updated by

pni+1 = pni +

(
β

∆tn
Snpp + Kn(SS)

ppi

)−1

Rn
pi

(3.46)

Once fluid pressure is calculated, solid displacement is updated by (3.34). The algorithm

for performing the fixed stress HF split is presented in Tabel 3.2.
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Figure 3.5: Schematic of the fixed stress HF split for a hydraulic fracture in an impermeable
medium. Quantities shown in red are solved for in each step and quantities shown in black
are frozen during that step

3.4 Automatic Fluid Partitioning using Global Con-

servation of Mass

In this section, we discuss an iterative algorithm, based on the global conservation of mass,

for the automatic partitioning of wellbore fluid between fractures connected to the wellbore.

The algorithm can be used for multiple-wellbore problems as well.

The boundary conditions, (3.7) and (3.9), were incorporated into the weak forms of the

governing equations. However, the global continuity constraint is yet to be enforced. In

what follows, we present an iterative algorithm that implicitly satisfies the global continuity

constraint, instead of enforcing it explicitly to the hydro-mechanically coupled system of

equation.
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The mass conservation equation (3.5) with the flow law (3.6) is a partial differential

equation of the elliptic type with respect to fluid pressure, p. Therefore, for a given fracture

aperture, w, at least one essential boundary condition for fluid pressure is required to make

(3.5) solvable. On the Dirichlet boundary, the fluid flow is a part of the solution of the fluid

model and cannot be controlled externally. In other words, one cannot guarantee that the

amount of fluid flowing into or out of the fracture from the the Dirichlet boundary satisfies

(3.8). To ensure mass conservation, a global continuity constraint needs to be enforced in

the coupled system of equations [35]. The global continuity constraint for a problem with

constant inlet and leak-off flow rates can be introduced as

(Qinj −Qleak−off ) t =

∫
Ωf

wdΩ (3.47)

where Qinj and Qleak−off are the injection and leak-off flow rates respectively. When the

inlet flow and/or the leak-off flow are not constant, (3.47) can be written in the incremental

form as (
Qn
inj −Qn

leak−off
)

∆tn =

∫
Ωf

(
wn − wn−1

)
dΩ (3.48)

which can be modified as

(
Qn
inj −Qn

leak−off
)

=

∫
Ωf

ẇndΩ (3.49)

where the superscript, n, denotes the nth discrete time step. The leak-off flow rate is
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calculated by summing up the leak-off flux, ql, along the fracture, i.e.,

Qn
leak−off =

∫
Ωf

qnl dΩ (3.50)

To enforce the global continuity constraint to the discrete form of the hydro-mechanically

coupled system (3.28), Khoei et al. [68] suggested employing an external loop that adjusts

the inlet pressure in accordance with the required change in the fracture volume at each

time step. The study used the analytical solution presented by Geertsma and de Klerk [48]

to introduce a power-law ratio that relates the inlet pressure to the instantaneous change

in the fracture volume (i.e., the instantaneous injection rate). The injection pressure was,

therefore, adjusted according to the required correction to the injection rate in order to

satisfy the global continuity constraint. The proposed approach was shown to converge

quickly for the self-similar plane strain hydraulic fracture problem [68]; however, tests of

this algorithm for smaller values of fracture toughness (e.g., KIc = 0.5 MPa
√
m) did not

converge. Therefore, a new algorithm has been developed which is more robust.

The idea of enforcing the global continuity constraint through an external loop is still

used. A simple adjustable linear algorithm, instead of the power-law ratio presented in [68]

is used, that can be applied to a variety of hydraulic fracture problems. In all problems

solved reasonable convergence rates are obtained.

When no-flow boundary condition is enforced at the fracture tip, i.e., qtip = 0, the

boundary condition at the inlet has to be a prescribed pressure, i.e., pinlet = p̄. To ensure

that the volume of the fracture under the imposed inlet pressure can accommodate the

injected fluid volume, we assume that the required increment in the injection pressure, ∆p̄,
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in the kth iteration at time t = tn is related to the required change in the inlet flow rate,

∆Q, through a linear relation

∆p̄nk = −λnk∆Qn
k (3.51)

where ∆Qn
k = Qn

k −Qn
inj and ∆p̄nk = p̄nk+1 − p̄nk . The coefficient λnk is a positive coefficient

with unit
[
Pa·s
m2

]
, and the negative sign denotes that pressure decreases if the flow rate at

the inlet is greater than the required injection rate and increases when Qn
k is less than Qn

inj.

In order to come up with an estimate for the coefficient λnk , one can approximate λnk by

the slope of the tangent line to the p−Q curve at time t = tn as

− ∆p̄nk
∆Qn

k

= λnk ≈
∂p̄nk
∂Qn

k

(3.52)

Let us neglect the leak-off term and assume that an expression similar to the one

introduced in [48], defines the inlet pressure, p̄, as a function of the instantaneous flow

rate, Q, in the kth iteration at time t = tn. Hence,

p̄nk = σmin + 0.96

(
2G3µ

(1− ν)3

) 1
4

(Qn
k)

1
4 (Ln)−

1
2 (3.53)

With this assumption, the coefficient λnk is approximated by

λnk ≈
∂p̄nk
∂Qn

k

=
∂

∂Qn
k

(
0.96

(
2G3µ

(1− ν)3

) 1
4

(Qn
k)

1
4 (Ln)−

1
2

)
= 0.24

(
2G3µ

(1− ν)3

) 1
4

(Qn
k)−

3
4 (Ln)−

1
2

(3.54)

where G is the shear modulus of the solid, ν is its Poisson’s ratio, µ is the dynamic viscosity

of the fluid, and Ln denotes the length of the fracture at time t = tn.
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Alternatively, one can keep the coefficient λ constant at each time step, without up-

dating it in each iteration, by substituting the target value of flow rate, Qn = Qn
inj. In this

case, the coefficient, λn, is approximated by

λn ≈ 0.24

(
2G3µ

(1− ν)3

) 1
4 (
Qn
inj

)− 3
4 (Ln)−

1
2 (3.55)

It is evident from (3.55) that the coefficient, λn, at each time step is only a function

of the fracture length, Ln, and the injection rate, Qn
inj. Once the initial value of λ is

calculated, one can reduce the value of λ at each time step to maintain the convergence

rate, using

λn+1 = λn

(
Qn+1
inj

Qn
inj

)− 3
4 (

Ln+1

Ln

)− 1
2

(3.56)

Substituting λ into (3.51), the inlet pressure is updated by

p̄nk+1 = p̄nk + ∆p̄nk (3.57)

The iterations are continued until the inlet pressure and deformations satisfies the global

continuity constraint, (3.49) within a satisfactory tolerance of error.

When fluid leak-off is not negligible, the KGD solution with leak-off can be used in

(3.53) to approximate the appropriate correction to the inlet pressure at each iteration. It

should be noted that (3.53) only provides the initial predictor of the inlet pressure in the

iterative process. When a better estimate of the relation between the inlet pressure and the

injection rate is available, one can substitute (3.53) by the available relation and accelerate
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the convergence of the iterative process. As will be seen, the inlet pressure update is robust

even with multiple cracks propagating in complex ways are simulated.

The fixed stress HF split discussed in section 3.3.2 converts the fluid equation to a

parabolic PDE with respect to the fluid pressure, p. Therefore, solution of the fluid sub-

problem under the fixed stress condition does not require an essential boundary condition.

Therefore, enforcing the global continuity constraint through the iterative process discussed

in this section seems unnecessary when using the fixed stress HF split. While this argument

is true for simulating only one hydraulic fracture, a problem with multiple hydraulic frac-

ture connected to a wellbore cannot be directly solved without an algorithm that partitions

the injected flow rate between the fractures.

3.4.1 Fluid Partitioning Algorithm

The iterative algorithm introduced in this section can effectively serve as an automatic

partitioning algorithm for the simulation of multiple hydraulic fractures.

Let nf be the number of fractures connected to the wellbore. The global continuity

constraint, (3.49), can be generalized for a domain with nf fractures as

Qn
inj =

nf∑
j

∫
Ωj

f

ẇndΩ +

nf∑
j

∫
Ωj

f

qnl dΩ (3.58)

where Ωj
f denotes the fluid domain of the jth hydraulic fracture. Equation (3.53)

describes the relationship between the wellbore pressure and injection rate for one hydraulic

fracture propagating under plane strain conditions. In order to come up with an initial
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prediction for λn in the multi-fracture problem, we use a weighted average length, L̄n, of

all fractures in (3.54)-(3.56), with the weights being the ratio of the current length of each

fracture to its initial length:

L̄n =

nf∑
j

wjL
n
j

nf∑
j

wj

(3.59)

where wj =
Ln
j

L0
j

is the weight of the jth fracture. The coefficient, λn is updated at each

time steps using the average length obtained form (3.59) in (3.57).

3.5 Numerical Examples

In this section, the application of the proposed fixed stress HF split for simulating hydraulic

fracture propagation in impermeable media is demonstrated through several numerical

examples. The propagation of hydraulic fractures from a wellbore with multiple initial

fractures is simulated. The simulations are carried out using the fully coupled model and

the new fixed stress HF split. First, we consider the simulation of three hydraulic fractures

oriented at different angles from a wellbore. The results of the fixed stress HF split are

compared against those of the fully coupled model, taken as the reference solution in this

example. The convergence of the fixed stress split is investigated through a comparison with

the fully coupled model. Next, we use the fixed stress HF split to model a wellbore with

four initial fractures. The efficiency of the automatic partitioning algorithm in partitioning
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Figure 3.6: Orientation of initial fractures from the wellbore: (a) three fractures and (b)
four fractures

flow between the fractures is also demonstrated for both of the examples.

3.5.1 Simulation of a Wellbore with Three Hydraulic Fractures

Consider a wellbore with the diameter of 2Rw = Dw = 24.4 cm (≈ 9 in) drilled in the

direction of the intermediate principal in situ stress. The initial fractures at the wellbore

wall have a length of 4 cm and orientations shown in Figure 3.6a. The formation is assumed

to be impermeable with the elastic modulus of E = 16 GPa, Poisson’s ratio of ν = 0.2,

tensile strength of T = 0.5MPa, and fracture energy of Gc = 90J/m2 (fracture toughness

of KIC = 1.22 MPa
√
m). The components of principal in situ stress perpendicular to the

wellbore are assumed to be σH = 20MPa and σh = 15MPa. The initial fluid pressure in
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Figure 3.7: The numerical mesh for a 20 m× 20 m domain with a Dw = 24.4 cm wellbore

the wellbore is p0 = 15.1 MPa.

A 20 m × 20 m domain is simulated. Figure 3.7 illustrates the numerical mesh of the

problem. The domain is divided into two regions. The region from the wellbore wall to

a radius of 10Rw is discretized with a radially structured mesh of four-node quadrilateral

elements. The rest of the domain is discretized using an unstructured mesh of similar type.

The minimum and maximum effective element size of the structured mesh are, respectively,

he = 0.013 m and he = 0.042 m. The unstructured section of the mesh has an average

effective element size of he = 0.046 m at 10Rw and he = 1.49 m at the external boundary.

The time domain is discretized by means of constant time increments, ∆t = 0.02 s. The

mesh size and the time increment are sufficiently small to ensure the convergence of the

presented results. Fluid is injected at the wellbore at a rate of Qinj = 10−4 m3/s ·m. The
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tolerance of normalized error is chosen to be τ = 10−12 for the coupling and η = 10−2 for

the partitioning algorithms. The value of β is chosen to be 4 × 10−10 Pa−1, equal to the

compressibility of water, for the fixed stress HF split in this example. The penalty stiffness

for enforcing interface contact on the fracture interfaces is set to kn =
fu
ww

= 0.1 GPa.

Figure 3.8 illustrates fracture trajectory and contours of stress, σxx and σyy, around

the wellbore, estimated by the fixed stress HF split. The predicted trajectories by the

fully coupled model and the fixed stress HF split are almost identical. The predicted

trajectory is smooth, indicating that the solution is converged using the mesh of Figure

3.7. As expected, only the fracture with the minimum inclination from the direction of the

maximum in situ stress (crack #2) propagates. The fracture trajectory smoothly aligns

with the direction of maximum in situ stress.

At the initial time, t = 0.0 s, the wellbore and fractures are in a static equilibrium state

under the in situ stress field and the initial wellbore pressure. Regions around the wellbore

with high compressive stress concentrations are evident. The stress concentration is smaller

in the direction of the maximum in situ stress; hence, the initial compressive stress acting

normal to crack #2 is less than the compressive stress acting normal to the other two

cracks. Upon pressurization, the compressive stress concentration at all three fracture tips

weakens. Tensile stress develops at the fracture tips, as pressure increases. The tensile

stress concentration at the tip of crack #2 reaches the tensile strength of the formation

and the fracture propagates. Crack #2 propagates to align itself with the maximum in

situ stress.

Figure 3.8 shows that a region of tensile stress develops at the wellbore wall, oppo-
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Figure 3.8: Fracture trajectory and contours of stress, σxx (top) and σyy (bottom), around
the wellbore

site crack #2, when the wellbore pressure reaches the breakdown pressure of crack #2.

This tensile stress concentration indicates that, in reality, another fracture initiates at the

wellbore at this point.

The wellbore pressure estimated by both the fully coupled and fixed stress HF models

are plotted in Figure 3.9. Wellbore pressure monotonically increases from its initial value

to a peak pressure equal to the breakdown pressure of crack #2. The pressure then starts

to decline as the fracture propagates. Since the breakdown pressure of cracks #1 and #3

are greater than that of crack #2, the other two fractures will not propagate after crack

#2 starts growing. When crack #2 temporarily stops propagating (at about t = 0.2s,
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Figure 3.9: Change of wellbore pressure over time estimated by the fully coupled (FC) and
the fixed stress HF split (FSS) using constant time increments, ∆t = 0.02 s
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Figure 3.10: Change of fracture aperture at wellbore over time estimated by the fully
coupled (FC) and the fixed stress HF split (FSS) using constant time increments, ∆t =
0.02 s

t = 0.6s, and t = 1.2s), pressure builds up again in the wellbore. The small jumps

observed in the pressure curves in Figure 3.9 indicate this pressure build-up. The pressure
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builds for a short while until crack #2 starts to propagate again. The required pressure for

propagating crack #2 gets smaller as the fracture grows, hence the pressure curve declines

smoothly over time. No evidence of numerical instability (oscillations) is observed in the

pressure curves.
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Figure 3.11: Partitioning of the injected fluid, Qinj = 10−4m3/s ·m

Fracture aperture at the wellbore for all three fractures are illustrated in Figure 3.10.

The figure shows that the aperture of crack #2 increases over time. The wellbore apertures

of cracks #1 and #3 increase until the time at which crack #2 starts propagation, and

decrease thereafter. Small jumps in the aperture of cracks #1 and #3 are observed and

corresponds to the short periods during which crack #2 is not propagating and the wellbore

pressure increases suddenly. No spurious oscillation, indicating a numerical instability, is

also seen in aperture curves. Figures 3.9 and 3.10 demonstrate convergence of the Fixed

stress HF split results to the results of the fully-coupled model.
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Figure 3.12: Comparison of flow partitioning for ∆t = 0.02s and ∆t = 0.005s with Qinj =
10−4m3/s ·m

To demonstrate the flow efficiency of the partitioning algorithm, the normalized par-

titioned flow rates are plotted over time in Figure 3.11. Flow rates are normalized to the

total injection rate, Qinj. Crack #2 initially gets most of the injected flow due to its orien-

tation with respect to the in situ stress field. When pressure goes up and the compressive

stress concentration at the wellbore weakens, the other two fractures receive a comparable

portion of the injected fluid. Eventually, as crack #2 evolves, the flow rate in cracks #1
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and #3 decreases to a very small portion of the total injection rate and crack #2 takes

most of the injected fluid. The small jumps due to fracture propagation are also seen in

flow rate curves. When crack #2 stops propagation, more fluid is directed to the other

two crack. Figure 3.11 shows that the fluid lost by crack #2 is gained by the other two

cracks. When pressure builds up, crack #2 recovers the required propagation flow rate and

propagates again.

Figure 3.12 depicts the results of the flow partitioning algorithm for two different time

discretizations. The model with smaller time increments (∆t = 0.005 s) shows multiple

stages of fracture propagation and stoppage, whereas the model with larger time increments

can only capture the propagation stages.

While there seems to be a physical basis for the jumps in flow rates into each crack

and the resulting crack paths appear reasonable, it was not possible for this problem

to demonstrate strong convergence with decreasing time increments, due to computational

cost. Therefore, future research should aim to demonstrate convergence to a greater degree

and to further verify the stability of the fluid partitioning algorithm.

3.5.2 Simulation of a Wellbore with Four Hydraulic Fractures

A wellbore with four initial hydraulic fractures as depicted in Figure 3.6b is simulated

using the fixed stress HF split. All mechanical and numerical parameters are identical to

the three fracture problem presented in Section 3.5.1.

HF trajectories and contours of stress, σxx and σyy, for this example are illustrated in

Figure 3.13. Due to the symmetry of the problem, cracks #2 and #3 propagate simultane-
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Figure 3.13: Contours of stress, σxx (top) and σyy (bottom), around the wellbore

ously when the tensile stress at their tip reaches the tensile strength of the solid. No region

with tensile stress concentration is seen around the wellbore in this simulation. Instead,

high compressive stress regions are evident near the wellbore where hydraulic fractures are

located close to each other.

Figures 3.14 and 3.15, respectively illustrate the change of wellbore pressure and frac-

ture aperture at the wellbore over time. Due to the symmetry of the problem, only aper-

tures of crack #1 and #2 are plotted in Figure 3.15. The trends are similar to those

observed in Section 3.5.1, and are as expected.

For the purpose of comparison, the results obtained from a simulation using the fixed
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Figure 3.14: Change of wellbore pressure over time estimated by the fixed stress HF split
(FSS) and the fixed strain HF split (FSN) using constant time increments, ∆t = 0.02 s.
The fixed strain HF split is interrupted as the global continuity condition has not been
met after 100 iterations.

strain HF split are also depicted in Figures 3.14 and 3.15. The fixed strain split exhibits

a numerical instability (oscillations) in estimating the fluid pressure and fracture aperture

and fails to complete the simulations. Both fracture aperture and fracture pressure results

obtained by the fixed strain HF algorithm are oscillatory, but the oscillations are more

intense in the estimation of wellbore pressure. The fixed stress HF split, however, is stable

and, as shown in Section 3.5.1, converge to the results of the fully coupled model.

Figure 3.16 illustrated the partitioning of fluid between the four fractures. The two

propagating fractures, cracks #2 and #3 take most of the fluid injected to the wellbore.

The figure demonstrates the efficiency of the automatic partitioning algorithm in this

application.
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Figure 3.15: Change of wellbore pressure over time estimated by the fixed stress HF split
(FSS) and the fixed strain HF split (FSN) using constant time increments, ∆t = 0.02 s.
The fixed strain HF split is interrupted as the global continuity condition has not been
met after 100 iterations.

3.6 Conclusions

In this chapter, a new iterative coupling algorithm was developed for the simulation of

hydraulic fractures in impermeable media. The new algorithm was derived based on the

analogy of the fixed stress split in poromehcanics, and was compared with the fully coupled

model. The W → P scheme used in HF simulation was found to be analogous to the fixed

strain algorithm in poromechanics (known to be conditionally stable) and, therefore, named

the fixed strain HF split in this research.

The fixed stress HF split was developed in the extended finite element framework.

The algorithm was used to simulate the propagation of multiple hydraulic fractures from

a wellbore. It was demonstrated that the fixed stress HF split can successfully model
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Figure 3.16: Partitioning of the injected fluid, Qinj = 2× 10−4m3/s ·m

nonplanar hydraulic fracture trajectories. The numerical examples also demonstrated that

the solution of the fixed stress HF split converges to the solution of the fully coupled model.

The new algorithm also successfully captured the declining wellbore pressure and fracture

aperture curves. The fixed strain HF split (W → P ) was shown to exhibit numerical

instability and, therefore failed to successfully complete the simulations.

An iterative automatic fluid partitioning algorithm was also presented in this chapter.

The algorithm was developed based on the enforcement of the global conservation of mass,

and was shown, through numerical examples, to work efficiently with the fully coupled

model and the fixed stress HF split.
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Chapter 4

Dynamic Hydraulic Stimulation of a

Wellbore
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4.1 Introduction

Large amplitude and high rate fluid pressure pulses have been shown to be an effective

means of stimulating a wellbore [132]. Application of this technology has been particularly

effective in increasing production rates of heavy oil wells by enhancing the permeability of

the formation around the wellbore [132, 144]. While hydraulic fracture (HF) simulation

has become a well-developed topic, especially since the large scale deployment of hydraulic

fracturing from horizontal wells [78, 68, 57, 120, 50]; the vast majority of the simulators

developed have assumed quasi-static conditions for the rock mass. The assumption of a

quasi-static rock mass is well-suited for traditional hydraulic fracturing operations; how-

ever, this assumption is not valid for stimulation by high-rate pressure pulsing [132]. A

wellbore may be dynamically stimulated by other high-rate processes, such as impact,

explosion, combustion, etc., in which loads are applied rapidly. High-rate loading can

trigger fracture patterns which are different from the normal patterns observed in regular

hydraulic fracturing [62, 144]. In a normal hydraulic fracturing process, fractures tend to

propagate in the direction of maximum local stress. In most cases only one set of domi-

nant fractures can overcome the stress barrier and propagate away from the wellbore. This

effect limits the permeability enhancement that can be achieved from hydraulic fracture

propagation. Dynamic stimulation can stimulate the propagation of fractures oriented in

multiple directions from the wellbore [144].

Dynamic stimulation, if not properly controlled, can result in a damaged wellbore,

decreased permeability, or the creation of a stress cage around the wellbore and, therefore,

negatively affect production [144]. The stimulation technology used in practice for dynamic

118



wellbore stimulation control the dynamic loading through restricting the peak pressure

applied to the wellbore (i.e., the amplitude of the pulse) and the rate by which kinetic

energy is transferred to the system (i.e., the period of the pulse) [144].

In the context of computer simulation, efforts in modeling hydraulically induced frac-

tures has been mainly limited to quasi-static models. The quasi-static hydraulic fracture

simulation have been performed with various numerical methods including the finite el-

ement method [120, 149, 19, 123, 124], the boundary element method [128, 147, 81, 51,

143, 155, 153, 116, 24], the extended finite element method [52, 53, 54, 78, 68, 40, 101,

100, 99, 119, 88, 61], and phase-field method [93, 90, 89, 83, 145, 121]. Other models

have been performed which considered hydraulic fracture simulation using non-local dam-

age/plasticity [94, 125, 126], interaction of hydraulic fractures with the natural fracture

network [68, 50, 44], and fracture branching [122, 84, 41]. Analytical and semi-analytical

HF models have been exclusively focused on quasi-static analysis [48, 38, 46, 45]

There are relatively few major contributions on the dynamic simulation of hydraulically

induced fractures presented in the literature. White et al. [144] studied dynamic initiation

and propagation of fractures due to the combustion and explosion loading using a discrete

fracture network (DFN) model. Dynamic simulation of hydraulic fractures in porous media

was first presented in an article by Khoei et al. [67]. They presented an XFEM model

for the dynamic propagation of cohesive hydraulic fractures in a saturated porous medium

under constant injection rates, in which dynamics effects were limited to only the start

up effect of fluid injection and did not evaluate the effect of high rate pulsing. Cao et al.

[18] investigated the propagation patterns in lab-scale specimens loaded mechanically and

hydraulically, in which wave reflections cause the non-steady propagation of a single edge
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crack in a saturated porous medium. He and Duan [62] investigated the dynamic stress

perturbation induced by hydraulic fracturing and provided a comparison with quasi-static

stress change under plane strain conditions, in which they demonstrated that the stress

perturbation from inertia effects can exceed that of a static model. It is worth mentioning

that all the aforementioned studies have accounted for inertial effects only in the mechanical

subproblem, but have neglected inertial effect in the fluid.

The analysis of the dynamics of porous medium, in which the inertial effect of both

the fluid and the matrix are considered, share many similarities with dynamic simulation

of hydraulic fracturing. The notable theories are the traditional extension of Biot’s theory

and the more thermodynamically rigorous theory by Spanos [32]. The application of the

more rigorous theory of Spanos has been limited, due in part to its complexity; examples

include [132, 118]. The application of dynamic porous media models based on the simple

extension of Biot’s theory are mainly limited to the simulation of acoustic wave emissions

in porous media (e.g.[75, 74]); however, such models do not simulate fluid flow inside the

fractures nor fracture propagation in porous media.

Dynamic stimulation using pressure pulsing results in multiple loading and unloading

stages during which hydraulic fractures undergo cycles of opening, closing, and propa-

gation. Based upon the stimulation frequency and the mechanical characteristics of the

formation (e.g., permeability and stiffness), the response of the fracture to the applied

stimulation will vary. The response determined by the dynamic compliance of the forma-

tion, the fluid viscosity, and leak-off rate, and fracture propagation. Dynamic HF models

are quite different than quasi-static models. In quasi-static models, the work done by

the fluid pressure is stored as internal energy or dissipated by the creation of new frac-
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ture surfaces or dissipated by viscous damping mechanisms [35]. From quasi-static HF

models the concepts of toughness dominated, viscous dominated, and leak-off dominated

fracture propagation have been developed [35]. In a dynamic model, the work done by the

fluid pressure is transformed into internal energy, but also kinetic energy; energy is still

dissipated by fracture propagation and viscous damping, but energy is also transported

away from the process zone by wave propagation. The conversion of kinetic energy into

internal energy as waves propagate induces a complex time dependence into the compe-

tition between toughness dominated, viscous dominated, and leak-off dominated fracture

propagation mechanisms.

The purpose of this chapter is to investigate the response of a hydraulic fractures to

dynamic stimulation by cyclic pulsing in the context of a plane strain model of a pressurized

wellbore and a bi-wing fracture. The propagation of pressure and inertia driven fractures

from a wellbore and the behavior of the induced fractures are also investigated. Finally, the

unique wave emission patterns corresponding to different stages of wellbore and fracture

response are discussed. The mathematical model used in this study takes into account

the inertial effects in the solid subproblem but neglects the inertial terms in the transient

viscous fluid flow model. A one-dimensional leak-off model is implemented to account for

fluid leak-off from fractures into the formation. We use a fully coupled hydro-elastodynamic

solver and employ the extended finite element method to simulate fracture propagation in

the solid. The standard finite element method is employed to model the transient viscous

flow within fractures. A cohesive zone model, with non-recoverable damage, is used to

simulate quasi-brittle fracture propagation, and a linear contact model is used to capture

fracture closure.
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The mathematical formulation for the simulation of fracture growth from a perforated

wellbore is discussed in Section 4.2. This section includes a description of the governing

equations of the solid rock mass and fracture fluid, as well as the spatial and temporal

discretization and implicit solution strategy for the coupled system. Numerical results

for the dynamic stimulation of a wellbore using pressure pulses are provided in Section

4.3. The results show the effect of the permeability and porosity of the formation on the

resulting fracture geometry during propagation and the closure mechanisms observed after

the pressure pulse ends. Major wave emission patterns generated during the stimulation

of the wellbore and fractures are discussed.

4.2 Mathematical Formulation

In this section, the mathematical formulation for the coupled hydro-elastodynamic problem

is explained. Subsequently, the numerical approach and the discrete form of the mathemat-

ical model are discussed. Lastly, the strategy for solving the coupled problem is presented.

4.2.1 Equation of Motion

The solid domain of the problem, Ωs ∈ R2, is shown in Figure 4.1(a). The solid domain is

bounded by its boundary, Γs = Γt ∪ Γc ∪ Γu, in which Γt is the Neumann boundary where

external traction is prescribed, Γc is the internal fracture boundary where the traction due

to fluid pressure is applied, and Γu is the Dirichlet boundary where displacement or its

temporal derivatives (velocity or acceleration) are prescribed. The sets of boundaries Γt,
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Figure 4.1: Schematic of the domains of the problem: (a) solid domain and (b) fluid domain

Γc, and Γu must be chosen such that (Γt ∪ Γc) ∩ Γu = ∅.

The mechanical response of the solid domain at point x ∈ Ωs and time t > 0 is governed

by conservation of linear momentum, which in the absence of body forces, reads

ρsü (x, t) = ∇ · σ (x, t) (4.1)

in which ρs is the mass density of the solid, ü is the second temporal derivative of the solid

displacements vector u, σ is the Cauchy stress tensor.

The stress in the solid domain is related to the strain in the domain, ε, through

σ − σ0 = C : ε (4.2)

where C is the fourth order elasticity tensor and σ0 is the initial state of stress in the
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domain (i.e., in situ stress field).

A schematic of the traction separation law for the fracture contact-cohesive law is

illustrated in Figure 4.2. Using a cohesive fracture model similar to the one used in Chapter

2 [49] and a lateral contact model, the interface traction-separation law for point x ∈ Γc

located on the fracture boundary of the solid domain is given by

tcr(w,whis) =



1
ww
fuw w < 0

(1−D)
ww

fuw 0 < w ≤ ww

(1−D)
ww−wc

fu (w − wc) ww < whis < w < wc

(1−D)(1−wc)
whis(ww−wc)

fuw ww < w < whis < wc

0 wc < w

(4.3)

Here, w = w(x, t) is the fracture aperture at point x and time t, the weakening aperture

of the cohesive model is represented by ww, and wc = 2Gc/fu is the critical aperture of

the cohesive model with Gc being the fracture energy of the solid. The maximum aperture

experienced in the history of point x is denoted by whis = whis (x), and D is the non-

recoverable damage flag defined as

D =


0 whis ≤ wc

1 whis > wc

(4.4)
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Figure 4.2: Schematic of the traction separation law on the fracture boundary

The boundary conditions on the solid model are

u = ū on Γu

σ · nΓt = t̄ on Γt

σ · nΓc = (tcrI− pI− σ0) · nΓc on Γc

(4.5)

in which nΓt and nΓc denote the unit outward normal vector to the traction boundary, Γt,

and the fracture boundary, Γc, respectively.
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4.2.2 Continuity Equation

The fluid domain of the problem, Ωf ∈ R, is illustrated in Figure 4.1(b). The domain, Ωf ,

is bounded by Dirichlet boundary, Γp, on which fluid pressure is prescribed, and Neumann

boundary, Γq, over which fluid mass flux is prescribed.

Fluid flow within the fractures is governed by conservation of mass. Assuming an

incompressible flow of a Newtonian fluid within the fractures, conservation of mass at

point s ∈ Ωf and time t > 0 is

∂w(s, t)

∂t
+

∂

∂s
q(s, t) + vl(s, t) = 0 (4.6)

in which w is the fracture aperture, q is the fluid volume flux along the fracture, and vl is

the velocity by which fluid leaks off from the fracture into the formation in the direction

normal to the fracture.

Neglecting the fluid inertial effects and using the cubic law to define the volume flux,

q, the conservation of mass equation for point s ∈ Ωf of the fluid domain at time t > t0

takes the form

∂w(s, t)

∂t
− ∂

∂s

[
w3

12µ

∂

∂s
p(s, t)

]
+

2c̄l√
t− t0(s)

[p(s, t)− p∞] = 0 (4.7)

in which µ is the dynamic viscosity of the fluid, c̄l is the leak-off coefficient, t0 denotes the

time at which leak-off from point s starts (taken as the time of fracture initiation at point

s), and p∞ is the original (far field) formation pressure.

The leak-off coefficient, c̄l is defined as [64]
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c̄l =

√
kφct
µπ

(4.8)

in which k is the permeability of the formation, φ is the formation porosity, and ct is the

bulk compressibility of the porous formation calculated from the compressibility of the

solid matrix, cs, and the compressibility of the fluid, cf , as ct = cs + cf .

Carter leak-off model assumes that fluid leak-off from each point, s ∈ Ωf , along the

fracture is one-dimensional and that the leak-off velocity vector is perpendicular to the

fracture. The leak-off formulation is derived also under the assumption of uniform pres-

sure distribution along the fracture [64]. Generally, the validity of the linear leak-off model

is known to be a function of the ratio of the fracture propagation rate to the rate of fluid

leak-off from the fracture. The model provides a good estimate of the fluid leak-off when

the rate of hydraulic fracture propagation is considerably larger than the rate by which

fluid leaks off from the fracture [140]. Therefore, when hydraulic fractures are propagating

under low rates (i.e., quasi-static propagation), the linear leak-off model yields a reasonable

estimate of the fluid leak-off only in low permeability formations, in which diffusion rates

are small. Carter leak-off model was shown to underestimate the leak-off rate in moderate

to high permeability formations under quasi-static propagation conditions [127, 76]. When

hydraulic fracture propagation rates are high (i.e., dynamic propagation), the range of va-

lidity of the linear leak-off model can be further extended to higher permeability formations

with higher leak-off rates. In the present study, dynamic wellbore stimulation generates

rapidly propagating fractures; therefore, Carter leak-off model can still be considered valid

over a wide range of formation permeability.
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When the ratio of propagation to leak-off rates is low (Carter leak-off is not valid),

other models such as radial [139] and pseudo-radial [76] leak-off models are employed.

Two-dimensional leak-off models that can be applied to both early and late time leak-off

are also available in the literature [55, 127, 140].

Using only one leak-off term, as used in (4.7), is a simple way of incorporating fluid

leak-off in the continuity equation. While similar single-term leak-off has been used in

many researches [2, 64, 140], a more robust way to account for leak-off in the continuity

equation is in the form of a convolution integral. The leak-off term, then, is an integral

over time of a time-dependent kernel similar to the leak-off term in (4.7). The convolution

integral form, however, requires the storage of fracture pressure time history, and therefore,

may not be the most effective and practical application of the leak-off model.

Finally, the boundary conditions of the fluid model are given by

p = p̄ on Γp

q = q̄ = −
(
w3

12µ

∂

∂s
p

)
nq(s) on Γq

(4.9)

in which nq(s = 0) = −1 and nq(s = Lf ) = 1 and Lf is the fracture length.

4.2.3 Numerical Model and Solution Strategy

We use an XFEM framework to develop the numerical model for the fractured solid, and

a standard FEM framework for the fluid numerical model. The FEM/XFEM formulations
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use the weak form of the governing equations to come up with the discrete equations for

the hydro-elastodynamic problem discussed above.

Weak Form of the Governing Equations

The weak forms of the governing equations, (4.1) and (4.7) are:

∫
Ωs

δu · ρsüdΩ +

∫
Ωs

∇δu : C : εdΩ−
∫

Γt

δu · t̄dΓ

+

∫
Γc

JδuK · (tcrI− pI− σ0) · nΓcdΓ = 0

(4.10)

∫
Ωf

δp
∂w

∂t
dΩ−

∫
Ωf

∂

∂s
δp

(
w3

12µ

)
∂

∂s
pdΩ +

∫
Γq

δpq̄dΩ

+

∫
Ωf

δp
2c̄l√
t− t0

(p− p∞) dΩ = 0

(4.11)

in which δu ∈ U0 and δp ∈ P0 are respectively the displacement and pressure test func-

tions. The sets U0 and P0 denote the spaces of admissible displacement and pressure test

functions, respectively. For more details the XFEM discretization and dynamic fracture

simulation with XFEM, the reader is referred to [158].

Space and Time Domain Discretizations

Solid displacement, u(x, t) and fluid pressure p(s, t) are respectively approximated as
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uh(x, t) =
∑
∀I∈Su

NI(x)duI (t)

+
∑
∀J∈Sa

NJ(x) [Hc(x)−Hc(xJ)] daJ(t) ≡ N(x)d(t)

ph(s, t) =
∑
∀I∈Sp

ψI(s)pI(t) ≡ ψ(s)p(t)

(4.12)

in which NI and ψI are respectively the shape functions for solid displacement and fluid

pressure, duI and pI are the standard degrees of freedom for displacement and pressure,

dua represents the enriched degrees of freedom for solid displacement, and Hc denotes the

discontinuous enrichment function. Moreover, the set of all nodes of the solid mesh, the set

of all nodes of the fluid mesh and the set of enriched nodes of the solid mesh are denoted by

Su, Sa, and Sp respectively (see Figure 4.3). In the matrix form, matrices N(x) and ψ(s)

are respectively the shape function matrices of displacement and pressure approximations.

The degrees of freedom matrices of displacement and pressure are respectively denoted by

d(t) and p(t).

Using a similar approximation, the displacement jump across the fracture is approxi-

mated by

Juh(x, t)K = JN(x)Kd(t) (4.13)

Fracture aperture is defined as the normal component of the jump with respect to the
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Figure 4.3: Schematic of different node sets in the numerical mesh
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fracture and is approximated as wh(x, t) = n>Γc
JN(x)Kd(t).

The first and second temporal derivatives of displacement at time t = tn are approxi-

mated as

ḋn = ḋ(t = tn) =
1

∆tn

(
dn − dn−1

)
d̈n = d̈(t = tn) =

1

∆tn

(
ḋn − ḋn−1

) (4.14)

where ∆tn is the time increment.

Coupled Problem

Substituting the approximations, (4.12) and (4.13), into the governing equations, (4.1)

and (4.7), the fully coupled hydro-elastodynamic problem is described by the following

nonlinear system of equations:

Ru (u,p) =

∫
Ωs

N>ρsNdΩd̈ +

∫
Ωs

B>CBdΩd−
∫

Γt

N>t̄dΓ

+

∫
Γc

JNK> (tcrnΓc − pnΓc − tc0) dΓ

Rp (u,p) =

∫
Ωf

ψ>n>Γc
JNKdΩḋ−

∫
Ωf

∇ψ>
(
w3

12µ

)
∇ψdΩp

+

∫
Ωf

ψ>
2c̄l√
t− t0

(p− p∞) dΩ + ψ|Γq
q̄

(4.15)
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where B and ∇ψ are the matrices of space derivatives of displacement and pressure shape

functions respectively, C is the matrix representation of the fourth order elasticity tensor,

and tc0 = σ0 · nΓc .

The Newton-Raphson iterative scheme is used to solve the nonlinear system (4.15),

after substituting (4.14) into (4.15).

Let the vector of total unknowns of the coupled system at iteration i of time t = tn and

its increment be denoted respectively by Xn
i = {dni ,pni }

> and ∆Xn
i = {∆dni ,∆pni }

>. Let

also the residual of the coupled system be Rn
i =

{
Rn
ui
,Rn

pi

}>
. The solution of (4.15) at

iteration i+ 1 of time t = tn is calculated by Xn
i+1 = Xn

i + ∆Xn
i where ∆Xn

i is the solution

of the linearized system

Jni ∆Xn
i + Rn

i = 0 (4.16)

The terms of the Jacobian matrix, Jni , are defined as

Juu =
1

∆t2

∫
Ωs

N>ρsNdΩ +

∫
Ωs

B>CBdΩ

+

∫
Γc

JNK>nΓc

∂tcr

∂w
n>Γc

JNKdΓ

Jup =−
∫

Γc

JNK>nΓcψdΓ

Jpu =
1

∆t

∫
Γc

ψ>n>Γc
JNKdΓ−

∫
Ωf

∇ψ> ∂
∂s
p

(
w2

4µ

)
n>Γc

JNKdΩ

Jpp =−
∫

Ωf

∇ψ>
(
w3

12µ

)
∇ψdΩ +

∫
Ωf

ψ>
2c̄l√
t− t0

ψdΩ

(4.17)
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4.3 Dynamic Stimulation of a Wellbore

In this section, we study the numerical simulation for the dynamic stimulation of a vertical

well containing two initial 4 cm fractures. Stimulation is assumed to create a bi-wing

vertical fracture, which is modeled using a plane-strain assumption, as depicted in Figure

4.4. Stimulation occurs at an average depth of 2400 m. The wellbore diameter is Dw =

2Rw = 0.24 m (' 9.625 in). The sandstone reservoir has properties given in Table 4.1.

Fluid pressure in the reservoir before injection is assumed to be equal to the hydro-static

pressure. The stress regime is assumed to be a normal faulting regime (i.e., σmax = σv)

with the components of the in situ stress field being σv = 55 MPa, σh = 40 MPa, and

σH = 50MPa. Hence, vertical hydraulic fractures are expected to initiate and propagate

in the formation. σh is assumed to act parallel to the y-axis of the simulated domain.

Simulations are carried out for a unit thickness of the reservoir.

The mechanical properties of sandstone can vary depending upon its porosity, clay

content, and other components. Chang et al. [21] provided a comprehensive discussion

of published correlations between the material properties of sandstone and its porosity.

Nonetheless, using the presented correlations to estimate all the material properties re-

quired in this study was not feasible. For example, for properties such as fracture tough-

ness, multiple correlations would have to be evoked and this lead to unphysical values

and unexpected trends. To simplify this study, we have introduced simple linear correla-

tions with porosity, which lead to material properties falling within reasonable bounds, as

observed in experiments by Chen et al. [23].

In this study, we consider sandstone with three different sets of mechanical properties as
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Figure 4.4: Schematic of the reservoir and the plane of analysis

presented in Table 4.2. For all cases, we assumed a Poisson’s ratio of ν = 0.2. To estimate

other material properties, the porosity of the sandstone is presumed for each case and

the mechanical properties are calculated through simple correlations to the porosity. We

assumed an exponential relationship between porosity and permeability of the sandstone.

Other properties are derived through linear approximations. The correlation used for each

mechanical property is presented in Table 4.2.

Simulations are carried out on a 20 m × 20 m domain centered at the wellbore, as

illustrated in Figure 4.5. The domain mesh is divided into two subdomains: 1) the near-

wellbore region, which is a circular area centered on the wellbore and has a radius of

10Rw. 2) the far-field region, which covers the rest of the domain from 10Rw to the outer

boundaries (see Figure 4.5).
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Figure 4.5: Domain of the problem with the corresponding subdomains and the numerical
mesh

The near-wellbore region is discretized using a radially structured mesh of bilinear

quadrilateral elements. The mesh in the near-wellbore area is finer than that used for

the rest of the domain, as hydraulic fracture propagation is expected to occur mainly in

this area. An unstructured mesh of the same type of elements is used at the far-field

region. The effective mesh size of the near-wellbore region varies from he = 0.013 m, at

the wellbore, to he = 0.042 m at 10Rw. The far-field region has an average effective mesh

size of he = 0.046 m at 10Rw and he = 1.49 m at the outer boundary. We also use fixed

time increments of ∆t = 2.5 × 10−5 s in all simulations, which was sufficiently small to

obtain convergence.
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4.3.1 Stimulation by Pressure Pulses

The wellbore is assumed to contain two initial 4cm fracture aligned with the maximum

horizontal stress.

Dynamic stimulation of the wellbore is performed through application of a sequence of

pressure pulses. Each pulse takes Tpulse = 1 ms and has an amplitude of pmax = 40 MPa

over the hydro-static pressure. For the purpose of simplicity, we approximate each pulse

with a sinusoidal function with the same amplitude and period as

pw(t) =


pmax sin

(
πt

Tpulse

)
0 < t ≤ Tpulse

0 t > Tpulse

(4.18)

A rest period is assumed between each pulse, sufficiently long for the simulation domain

to dissipate dynamic effects and return to a static equilibrium state. This is a reasonable

assumption consistent with pressure pulsing achieved with current field technologies [144].

Dynamic simulation is carried out for the period of the pulse followed by an addition

1.5 ms of the rest period (total time of 2.5 ms). After this time, the dynamic effect of

the wellbore and fracture have sufficiently dissipated and the fracture has returned to a

status close to its static equilibrium. No further significant dynamic effects are expected

at this stage; hence, a quasi-static steady-state analysis is performed to re-establish a state

of equilibrium prior to the next pulse.
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Fracture Aperture and Length

Figure 4.6(a) shows the variation of fracture aperture at the wellbore over time during the

first cycle of stimulation in each of the three cases. The figure shows that the maximum

wellbore aperture observed in time for each case, increases with porosity and permeability.

Therefore, case 1 and 3 respectively produce the narrowest and widest hydraulic fractures,

respectively. The behavior seen in Figure 4.6(a) can be explained by considering the

effect of porosity on the elasticity and bulk moduli of sandstone. Table 4.2 indicates

that sandstone formations with higher porosity are generally softer than those with lower

porosity. Therefore, under a specific wellbore pressure, fractures in case 3 tend to open

wider than fractures in cases 1 and 2, as the formation of 3 shows less resistance to opening.

The shape of the aperture vs time curves in Figure 4.6(a) show a phase lag when

compared to the loading pressure pulse. In the early response time (t < 0.2 ms) the lag

is due to inertia resistance to fracture opening and in later times (t > 1.0 ms) the lag is

due to momentum driven opening. This dynamic response can be contrasted with that

of a quasi-static HF model, in which there is no phase lag between injection pressure and

wellbore aperture. Figure 4.6(a) also shows non-sinusoidal response to a sinusoidal pressure

pulse. It is notable that the time at which the peak wellbore aperture is observed does

not correspond to the peak well-bore pressure. This behavior is quite different from that

of the quasi-static case in which the peak wellbore aperture and pressure coincide. Lastly,

it can be observed in Figure 4.6(a) that the period of the wellbore aperture response is

different for each case, with the φ = 15% case having the shortest period of response. This

action is again different for that of the quasi-static case in which the period of response of
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Figure 4.6: Time variation of (a) fracture aperture at the wellbore and (b) fracture length,
for the first cycle of stimulation

the wellbore aperture would not depend upon the properties of the formation. Lastly, it

is interesting to note that the fractures close smoothly (no bouncing) due to the damping

effect of the fluid in the fracture.

The fracture extension in each case is directly affected by the leak-off rate. Figure

4.6(b) illustrates the evolution of hydraulic fractures over time during the first stimulation

cycle in each of the three cases. The figure demonstrates that hydraulic fractures in case

1 (smallest porosity and permeability) are the longest. Final fracture length after the first

pulse increases in a non-linear way with porosity and permeability. From Figure 4.6(b)

is can be observed that no fracture propagation occurs during about the first 40% of the

pulse; however, the rate of fracture propagation is nearly constant for the during of the

second half of the pulse. The complex competition between energy dissipation mechanisms

is also seem in Figure 4.6(b). In case 1, φ = 15%, fracture energy, tensile strength, and

toughness are largest, yet case 1 yields the longest final fracture length. This occurs because

permeability and porosity (and also leak-off velocity) are also largest for case 1. Lastly, a

comparison of Figure 4.6(a) and (b) illustrates an inverse relationship between maximum
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aperture and fracture length.

Figure 4.7 depicts the variation of fracture aperture at the wellbore and fracture length

over time. The curves are plotted for three different time increments spanning two orders

of magnitude from ∆t = 2.5 × 10−5 s to ∆t = 2.5 × 10−7 s. As seen in the figure, the

solution of the two smaller time increments are indistinguishable from each other which

indicates that the solution is converged for sufficiently small time increments.

The dynamic propagation of hydraulically induced fractures is a complex process af-

fected by several competing time dependent dissipation mechanisms. Therefore, trends

other than the ones illustrated in Figure 4.6 may be expected if different material prop-

erties corelations are introduced. For instance, if a higher viscosity fluid was considered

(µ = 1 Pa · s), leak-off would be significantly reduced, the trends between porosity and

fracture length could be inverted.

Multiple Cyclic Pressure Pulses

Consider a four-cycle pressure pulse stimulation using the pulse given in (4.18). The

evolution of fracture length during multiple pulses is depicted in Figure 4.8. The figure

shows that the fracture length increment decreases from the first cycle to the fourth cycle.

This behavior is expected because (i) more energy is viscously dissipated when flowing a

fluid down a longer crack than a shorter crack; (ii) more fluid will leak-off from a longer

fracture than a shorter crack, since more fluid is exposed to the permeable formation; and

(iii) more fluid is stored in longer fractures. Hence, the increment in fracture decreases

with each fixed amplitude pressure pulse.
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Figure 4.7: Time variation of (a) fracture aperture at the wellbore and (b) fracture length,
for the first cycle of stimulation in case 2
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Figure 4.8: Final fracture length at the end of each cycle of stimulation
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Near-wellbore Stress and Fracture Closure Mechanism

In this section the evolution of the component of the total stress normal to the fracture

plane, σyy, the fracture aperture, and fracture fluid pressure during the course of a single

pressure pulse are discussed. The second stimulation cycle for case 2 is illustrated in

Figure 4.9, in which the distribution of pressure along the fracture is also depicted by color

contours on the fracture, the aperture of the fracture is magnified by a factor of 50, and the

rock mass is colored by contours of σyy. The following states of stress are observed during

the evolution of the hydraulic fractures due to a pressure pulse. a) Initial stress state:

Figure 4.9(a) illustrates the stress concentration at the wellbore due to the interaction of

the in-situ stresses and the well. Prior to the stimulation, the fracture is closed and the

wellbore is in an equilibrium state with the in situ stress field and hydro-static pressure.

The interaction of the wellbore with the in situ stress field generates a concentration of

compressive stress around the wellbore. The fluid pressure has to overcome this stress

concentration in order to open and propagate the fracture, as would be expected from the

Kirsch equations [72].

b) Pressurization of the initial fracture: When the wellbore is pressurized, fluid pressure

starts to develop along the fracture and the fracture opens from the wellbore towards the

tip (Figure 4.9(b)). A tensile stress concentration develops at the physical tip and the

cohesive zone develops. The physical tip moves towards the mathematical tip, leading to

a smaller cohesive zone.

c) Pre-pressure Peak Fracture Propagation: Once the stress concentration at the frac-

ture tip overcomes the tensile strength of the formation, hydraulic fracture propagates
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(Figure 4.9(c)). During the fracture opening and propagation stages of the stimulation

cycle, the region around the wellbore is under high compressive stresses (see Figure 4.9(b)

and (c)).

d) Post-pressure Peak Fracture Propagation: Propagation continues after the pressure

pulse reaches its maximum amplitude pmax (Figure 4.9(d)). The pressure in the fracture

towards the fracture tip remains higher than the wellbore pressure and continues to drive

fracture propagation. However, this reversal of the pressure gradient in the fracture, also

leads to flow of fluid from the fracture back into the well. Due to leak-off, flow-back to the

well, and fracture extension, the pressure everywhere in the fracture reduces over time and

propagation stops.

e) Fracture Closure: At the onset of closure, high compressive stresses have built up

along the fracture (Figure 4.9(e&f)). The fracture closes first at the wellbore; closure then

propagates from the wellbore towards the tip. This occurs due to the initial compressive

stress concentration at the well. Once closure at the wellbore occurs, flow-back of fluid

into the well is significantly reduced, the impact of which is a rapid increase in the fluid

pressure in the fracture. This increase in fluid pressure in the fracture accelerates fluid leak-

off. Once the fracture is pinched-off at the well, the rate of fracture closure is controlled

by the rate at which fluid leaks-off into the formation. The final drainage and complete

closure of the fracture occurs under quasi-static equilibrium conditions. Once the fracture

is completely closes equilibrium and the compressive stress concentrations at the wellbore

are re-established.

A slightly different closure mechanism can be observed in a highly permeable formation
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with very low bulk modulus. When wellbore pressure decreases, fluid leaks from the

fracture into the formation at a very high rate that is almost uniformly along the whole

length of the fracture. This results in closure initiating from the tip towards the wellbore.

At a later times when pressure sufficiently decreases in the tip region due to the leak-off, a

pinch point is seen at a location close to the wellbore (but not in its immediate vicinity).

This pinch point is the point with the highest leak-off rate along the fracture. Closure

extends from the pinch point towards the fracture tip and the wellbore, as time passes.

Wave Emission and Propagation

The stimulation of a wellbore with pressure pulses results in acoustic wave emissions. The

emitted waves depend upon the response of the wellbore and the fractures.

Figure 4.10 illustrates the magnitude of solid velocity, for the second stimulation cycle

of Case 2. For a complete stimulation cycle with the pressure pulse (4.18), six different

emission patterns are observed.

a) Initial wellbore expansion: Upon pressurizing the wellbore, a radial wave front prop-

agates away from the wellbore (Figure 4.10(a)). The emissions consist of dilation waves

due to the expansion of the wellbore under fluid pressure.

b) Fracture opening: When pressure builds up in the wellbore, fluid flows into the

fractures and opens them. Fracture deformation generates a wave front propagating from

the fracture and causes the radial wave form to change. In the case shown in Figure

4.10(b), the fracture is aligned with the orientation of the maximum horizontal stress.

Therefore, the dominant emission is a dilation wave resulted from the fracture opening. If
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the fracture was inclined with respect to the in situ stress field, emissions from the fracture

could contain a mix of dilation and shear waves.

c) Fracture propagation: The second wave pattern detected during the stimulation is

the wave emitted from the fracture tip when it propagates (Figure 4.10(c)). Fracture

propagation creates new fracture surfaces whose deformation generates new wave fronts.

The pattern observed from these waves is similar to the one detected during fracture

opening with the exception that this wave emits only from the fracture tip (i.e., from the

new surfaces created as the fracture propagates).

d) Wellbore and fracture unloading: When pressure decreases, fluid starts to leak off

from the fracture. Both wellbore and fracture deformations reverse and the system deforms

to reach its equilibrium state. In this stage, fracture aperture is continuously decreasing,

but the fracture is still open (Figure 4.10(d)).

e) Fracture closure and pressure rebuild in the fracture: When fracture closes at the

wellbore, the contact between fracture surfaces on the closed portion of the fracture also

generates wave emissions from the fracture. In addition, since the fluid pressure in the

fracture goes up in the open portion of the fracture, the fracture is reloaded and slightly

re-opens it. This mechanism generates a wave front propagating away from the fracture,

which decays as fluid leaks off into the formation (Figure 4.10(e)).

f) Return to the equilibrium state: When sufficient time passes from the stimulation

cycle (about 1 ms in the above simulations) The wellbore and pressure return to the

equilibrium state and the emitted waves propagate away from the wellbore. No significant

emissions from the wellbore is detected after this stage (Figure 4.10(f)).
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Figure 4.10: Contours of particle velocity magnitude indicating acoustic emissions from (a)
Initial wellbore expansion, (b) Fracture opening, (c) Fracture propagation, (d) Wellbore
and fracture unloading, (e) Fracture closure and pressure rebuild in the fracture, and (f)
Return to the equilibrium state

4.4 Conclusions

The dynamic stimulation of a perforated wellbore drilled in a layered formation with a

wide range of permeability and stiffness was investigated. The propagation of hydraulic

fractures from the wellbore in different layers is also studied. The numerical model for
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the fracture evolution was presented in the framework of the XFEM. The flow model was

presented in the standard FEM framework. Wellbore stimulation was simulated under

cyclic pressure-controlled and conditions.

Numerical simulations showed that the physical characteristics of hydraulic fractures

are impacted by permeability and stiffness of the formation. High permeability formations

develop short and wide fractures, whereas long narrow fractures are developed in low

permeability formations.

The fracture closure mechanism is also affected by the formation permeability. In low

permeability layers, fracture closure starts with a pinching at the wellbore and fracture

closes from the wellbore to the tip. In high permeability layers, the fracture closes from

the tip to the wellbore followed by a late time pinching in the middle of the fracture close

to the wellbore.

The response of the wellbore and hydraulic fractures to the stimulation is detectable

from the wave patterns emitted from the stimulated wellbore. Recognition of the emitted

wave patterns can assist in the interpretation of recorded seismicity and recognition of the

mechanisms involved in more complex hydraulic fracturing processes.
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Chapter 5

Conclusions and Future Work
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5.1 Conclusions

This PhD thesis had three objectives. The first objective of the thesis was to develop a

stable sequential coupling algorithm for hydraulic fracture simulations using the analogy

of the undrained split in poromechanics. The second objective of the thesis was to develop

a stable sequential coupling algorithm for hydraulic fracture simulations using the analogy

of the fixed stress split in poromechanics. The third objective of the thesis was to develop

a dynamic hydraulic fracture model with leak-off for the simulation of dynamic wellbore

stimulation using pressure pulses.

Chapter 1 presented an introduction to the hydraulic fracturing and reviewed hydraulic

fracture models available in the literature. An overview of the available coupling algorithms

for hydraulic fracture simulation was provided. A brief discussion of some of the current

challenges in hydraulic fracture simulation and the objectives of this research to overcome

these challenges was also provided. The methodologies used for fulfilling each of the ob-

jectives are also briefly discussed.

The first objective was realized in Chapter 2, in which a new sequential coupling al-

gorithm for the simulation of hydraulically induced fractures was presented. The fracture

was assumed to be replaced by an analogous porous medium, and the Biot’s poroelasticity

theory was employed to develop an iterative coupling algorithm that, at each iteration,

solves the solid equation first. The algorithm was developed assuming an APM under

undrained conditions and, hence, was named the undrained HF split. The developed cou-

pling strategy was shown, through numerical examples, to be stable in the applications

that the conventional drained HF coupling algorithm (P → W ) exhibits numerical insta-
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bility. Solution of the undrained HF split converges to the solution of the fully coupled

model; however, the undrained HF split was shown to require more iterations to converge.

The second objective was realized in Chapter 3, in which the derivation of a second new

iterative coupling algorithm for the simulation of hydraulic fractures was elaborated. The

algorithm was developed based on the analogy of the fixed stress split in poromechanics,

which at each iteration, solves the fluid subproblem first. Similar to the undrained HF

split, the hydraulic fracture was assumed to be replaced by an APM and the fixed stress

HF split was developed using Biot theory. Through numerical examples, the fixed stress

HF split was shown to be stable and to converge to the solution of the fully coupled model.

Chapter 3 also presented an algorithm for the automatic partitioning of the injected fluid

between fractures. The algorithm was developed based on the satisfaction of the global

conservation of mass. The efficiency of the automatic partitioning algorithm was also

demonstrated through numerical examples in Chapter 3.

The third objective was realized in Chapter 4, in which, a dynamic hydraulic fracture

model was developed using the fully coupled solution strategy. A one dimensional leak-off

model was implemented to account for fluid leak-off from the fractures. The model was used

to investigate the effects of formation porosity and permeability on the response of wellbore

and hydraulic fractures to short-period pressure pulses. Fracture closure mechanisms, stress

perturbation near the wellbore and the alteration of fluid pressure within fractures were

explained. Propagation of the emitted waves from the wellbore and hydraulic fractures

were also discussed.

In addition to the rapidly changing hydraulic loads, such as short-period pressure pulses,
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the dynamic hydraulic fracture model developed in this research is capable of simulating

dynamic mechanical loads, such as impact. Rapidly changing mechanical loads are gener-

ated, for example, during wellbore perforation or when nearby wellbores are dynamically

stimulated. The emitted wave patterns, near wellbore stress perturbation due to dynamic

mechanical loads, and the dynamic response of hydraulically induced fractures can be stud-

ied using the dynamic hydraulic fracture model presented in Chapter 4. Stress shadowing

and the effect of pressurized fractures on the propagation of adjacent hydraulic fractures

can also be investigated using the hydraulic fracture model developed in this research.
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5.2 Future Work

The following potential topics are suggested for the extension of the research performed in

this PhD dissertation.

• A complementary study on the convergence and stability of the proposed undrained

and fixed stress HF splits and a parametric study of the two algorithms by comparing

the results of the undrained HF split and the fixed stress HF split

• Optimization of the flow partitioning algorithm by implementing an optimization

algorithm that automatically calculates the optimum correction coefficient

• Verification of the results obtained by the proposed numerical algorithms in this

research with similar numerical simulations and available semi-analytical models

• The coupling algorithms provided in this research are capable of being extended to

incorporate the coupling of other physical processes, such as proppant transport, and

thermal and chemical processes involved in hydraulic fracturing

• Extending the dynamic/quasi-static models presented in this research to two- and

three-dimensional poromechanics

• Extending the fluid model to a dynamic model that accounts for the inertial effects

in the fluid would be a challenging but valuable contribution
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