
Implementation Analysis of

Strassen-Like Matrix Multiplication

Algorithms Based on Block

Decomposition

by

Chongchong Liu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

©Chongchong Liu 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Matrix multiplication is one of the most widely used operations in all computa-

tional fields of linear algebra. The complexity of the naive method for multiplying two n×n

matrices requires O(n3) arithmetic operations over the ring in which the matrix entries lie.

In 1969, Strassen proposed the first sub-cubic complexity algorithm for matrix multipli-

cation. Strassen’s algorithm (SA) multiplies two 2 × 2 matrices using 7 multiplications

and 18 additions over the ring. Later Winograd proposed a variant of SA that requires

7 multiplications, but 15 additions over the ring. Algorithms that multiply two 2 × 2

matrices using 7 multiplications over the ring are called Strassen-like algorithms and have

a complexity of O(n2.81). Although asymptotically better algorithms exist, Strassen-like

algorithms are considered to be most widely used sub-cubic complexity algorithm.

Recently, Cenk and Hasan proposed techniques to reduce the arithmetic cost of

Strassen-like algorithms. The main technique is to decompose Strassen-like algorithms

into three blocks, namely, component matrix formation (CMF), component multiplication

(CM), and reconstruction (R). Each block is a recursive operation. In this thesis, we study

these building blocks and investigate three optimization methods: the linearity property

of CMF and R, limited recursion, and block recombination.

In this thesis, software implementation and hardware simulation are also per-

formed to support the theoretical analysis. For software implementation, experiment re-

sults show that WV is approximately 15% faster than SA. Cenk and Hasan’s techniques

yield an improved WV (IWV) that considerably reduces the matrix multiplication time

in software. For hardware simulation, we conclude from the synthesis results that WV

consumes about 7.5% less logic elements than SA. IWV for different matrix sizes are also

tested to successfully reduce resource utilization and timing cost.

iii

Acknowledgements

First and foremost, I would like to thank Professor Anwar Hasan for giving me

endless support and precious guidance that helped me to succeed. The research of this

thesis was completed under his supervision. I am so lucky to have a supervisor who cared

so much about my work, and who responded to my queries so promptly. It was his encour-

agement and patience to help me overcome all the difficulties that I met during studies.

I am also indebted to Natural Sciences and Engineering Research Council of Canada for

their generous financial support and to Electrical and Computer Engineering Department,

University of Waterloo for the teaching assistantships during my MASc program.

I sincerely thank all the professors who taught me, expecially Professors Guang

Gong, Nachiket Kapre, Andrew Morton, and Mahesh Tripunitara. I am grateful to Mason,

Amiee and Ethan for their support and encouragement. I would like to express my heartfelt

appreciation to all current and previous group members: Mohannad, Tanushree, Arshee,

Crystal, Xiaolin for their insights and suggestions. I would also like to thank my friend

Di Sang, Sigeng Chen, Jian, Rui Hong, Yuxuan Liu and Mier Ta for encouraging and

motivating me a lot throughout this period.

Finally, I must express my profound gratitude to my family and to my best friend

Jiling Luo for providing me with infinite love and encouragement in research and writing

this thesis. This accomplishment would not have been possible without their support.

Thank you all.

iv

Dedication

This thesis is dedicated to my parents, Suoping Liu and Huanjun Liu, and my

brother, Shuo Shuo Liu for their endless love, support and encouragement that motivated

me to achieve this success. I love you all.

v

Table of Contents

List of Tables x

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Previous Work . 3

1.2.1 Software Implementation of Matrix Multiplication 3

1.2.2 Hardware Implementation of Matrix Multiplication 3

1.3 Background . 4

1.3.1 Naive Matrix Multiplication . 5

1.3.2 Block Matrix Multiplication . 6

1.3.3 Divide and Conquer . 7

1.4 Scope of Work . 8

vi

1.5 Thesis Organization . 9

2 Overview of Strassen-like Algorithms for Matrix Multiplication 11

2.1 Two Strassen-like Algorithms . 12

2.1.1 Strassen’s Algorithm . 12

2.1.2 Winograd’s Variant . 13

2.2 Block Decomposition of Strassen’s Algorithm 14

2.2.1 SA’s Component Matrix Formation 15

2.2.2 SA’s Component Multiplication . 16

2.2.3 SA’s Reconstruction . 17

2.3 Block Decomposition of Winograd’s Variant 17

2.3.1 WV’s Component Matrix Formation 18

2.3.2 WV’s Reconstruction . 20

2.4 Complexity Comparison . 22

3 Recent Methods to Improve Strassen-like Algorithms 23

3.1 Linearity Property of CMF and R Operations 24

3.1.1 SA’s CMF Block based on Linearity 25

3.1.2 WV’s CMF Block based on Linearity 28

3.1.3 WV’s R Block based on Linearity 30

3.1.4 Complexity Comparison . 32

vii

3.2 Block Recombination of Improved Winograd’s Variant 33

3.2.1 Block Recombination Method . 33

3.2.2 Block Recombination with Limited Recursion 35

3.3 Conclusion . 38

4 Software Implementation 39

4.1 Implementation Analysis . 40

4.1.1 Matrix Construction . 40

4.1.2 Programming Language . 40

4.1.3 Requirement Analysis . 41

4.2 Strassen’s Algorithm . 41

4.2.1 Pseudocode of SA’s Component Matrix Formation 42

4.2.2 Pseudocode of SA’s Reconstruction 44

4.3 Winograd’s Variant . 45

4.3.1 Pseudocode of WV’s Component Matrix Formation 45

4.3.2 Pseudocode of WV’s Reconstruction 47

4.4 Improved Winograd’s Variant . 48

4.4.1 Pseudocode of IWV’s Component Matrix Formation 48

4.4.2 Pseudocode of IWV’s Reconstruction 50

4.5 Performance Analysis . 51

viii

5 Hardware Simulation 53

5.1 System Design . 54

5.1.1 System’s Overall Architecture . 54

5.1.2 Module Instantiation . 55

5.2 System Parameter Setting . 56

5.2.1 Cyclone IV devices . 56

5.2.2 Logic Elements . 56

5.2.3 Input/Output Format . 58

5.3 Sytem Circuit . 58

5.3.1 Block Decomposition Circuit of SA 59

5.3.2 Block Decomposition Circuit of WV 60

5.3.3 Block Decomposition Circuit of IWV 61

5.4 Performance Evaluation . 62

5.4.1 Performance Comparison . 62

5.4.2 Performance Optimization . 63

6 Concluding Remarks 66

6.1 Summary . 66

6.2 Future Work . 67

References 69

ix

List of Tables

2.1 Complexity of various blocks of Strassen’s algorithm and its Winograd’s

variant . 22

3.1 Complexity Comparison . 32

3.2 Complexity Comparison of OBO and BR 35

3.3 Complexities for IWV with Different Limited Recursion Values 37

4.1 Timing Cost of Implementing Matrix Multiplication Methods on Macbook

Pro . 51

4.2 Timing Cost of Implementing Matrix Multiplication Methods on Macbook

Air . 52

5.1 Resource of Cyclone IV E Device Family 56

5.2 Performance Metrics of SA, WV and IWV Based on Block Decomposition 63

5.3 Performance Metrics of IWV Based on Block Decomposition for 16 × 16

Matrix . 64

5.4 Performance Metrics of IWV Based on Block Decomposition for 32 × 32

Matrix . 65

x

List of Figures

1.1 Naive Matrix Multiplication Method . 6

1.2 Naive Block Matrix Multiplication Method 7

1.3 Divide and Conquer Algorithm . 8

2.1 Architecture of Block Decompostion . 14

2.2 Architecture of Component Multiplicationn 16

3.1 Architecture of Block Recombination . 34

4.1 Growth Rate of Multiple Matrix Multiplication Methods’ Timing Cost . . 52

5.1 System’s Overall Architecture of Matrix Multiplication Algorithms Based

on Block Decomposition . 54

5.2 Lower Level Module Instantiation of CMF 4×4
A 55

5.3 Cyclone IV Device LEs . 57

5.4 Block Decomposition Circuit of SA for n = 2 59

5.5 Block Decomposition Circuit of WV for n = 2 60

xi

5.6 Block Decomposition Circuit of Improved WV for n = 2 61

xii

List of Abbreviations

BR Block Recombination

CM Component Multiplication

CMF Component Matrix Formation

IDE Integrated Development Environment

IWV Improved Winograd’s Variant

LE Logic Elements

LUT Look-Up Table

OBO Original Block Organization

R Reconstruction

SA Strassen’s Algorithm

WV Winograd’s Variant

xiii

Chapter 1

Introduction

Linear algebra is an area of study on vectors and linear functions, broadly applied to com-

puter applications, ranging from games to business [8]. It plays a principal role in all fields

of mathematics. In this thesis, we will focus on the arithmetic operations of one kind of

linear functions, namely matrix. In general terms, it is considered as the arrangement of

information related to linear functions. The applications of matrix multiplications in en-

gineering include digital image processing, electrical circuits, software engineering, graph

problem solving, data mining, and security [25]. Over the past few decades, there has been

a lot of research towards efficient matrix multiplication [27].

1

1.1 Motivation

In mathematics, matrix multiplication is an operation that generates a matrix by

implementing linear computations on two matrices with entries in a certain ring [4]. Matrix

multiplication plays a fundamental role in solving algorithmic linear algebra problems [10].

The computation time and resource cost of matrix multiplications have a great influence

on the performance of variety of applications.

The naive method for multiplying two n× n matrices, as stated in the following

section, costs n3 multiplications and n3 − n2 additions over the ring in which the matrix

entries lie. Thus it results in a complexity of O(n3) [20].

In 1969, Strassen [34] described an algorithm to improve matrix multiplication. It

costs 7 multiplications and 18 additions over the ring while multiplying two 2×2 matrices.

When we extend Strassen’s algorithm to n× n matrix multiplication and use recursion, it

takes 7n2.81−6n2 arithmetic operations (multiplications and additions combined). In 1971,

Winograd [38] proposed a variant of the Strassen’s algorithm. For multiplying two 2 × 2

matrices, Wingrad’s variant requires 7 multiplications but 15 additions, yielding a total of

6n2.81 − 5n2 arithmetic operations for multiplying two n × n matrices. Any method that

requires 7 multiplications to multiply two 2 × 2 matrices is called Strassen-like algorithm

and has an asymptotic complexity of O(n2.81) [7].

The first work reporting asymptotically better than Strassen’s method is V.Y.

Pan’s O(n2.781) [26] algorithm that uses trilinear aggregating techniques. Since then, other

methods that are asymptotically better have been proposed, e.g., Winograd and Cop-

persmith’s O(n2.376) [11], Sothers’ O(n2.374) [35] and Williams’ O(n2.373) [37] algorithms.

These algorithms are rarely used in practice because of the large constant factors in real

implementations [15] [32].

2

In this thesis, we consider Strassen-like algorithms as they are more efficient in

practice for large size n used in cryptographic applications. In order to further improve the

computational complexity, Cenk and Hasan [7] proposed an improved Winograd’s variant

using block recombination and limited recursion.

1.2 Previous Work

1.2.1 Software Implementation of Matrix Multiplication

In [12], the authors presented a new fast matrix multiplication algorithm which

is a hybrid combination of Strassen’s algorithm and its Winograd’s variant and showed

the performance of this novel algorithm by implementing it on single and multi cores

processors. It was concluded that the hybrid algorithm performed better than the naive

matrix multiplication algorithm when matrix size is larger than 3000× 3000.

In [22], Kouya outlined the performance of Strassen’s algorithm, and Winograd’s

variant through benchmark tests. Winograd’s variant was more efficient than Strassen’s

algorithm in time complexity.

In [30], the authors succeeded to implement matrix multiplication of Strassen’s

algorithm on NVIDIA GPU using CUDA. The recursion limit of Strassen’s algorithm

implemented on CPU was smaller than that of implementing it on GPU.

1.2.2 Hardware Implementation of Matrix Multiplication

In [21], Khayyat designed a flexible implementation of parallel matrix multiplica-

tion for FPGA devices by exploiting the use of blocks and parallelization. The experiment

3

was implemented using VHDL to verify correctness of design and tested on the Altera

DE4 board, featuring a Stratix IV EP4SGX530C2 FPGA device. The experiment result

showed that design scaled with respect to consumed resources. Increasing system size

reduced maximum operating frequency, but improved system performance.

In [13], the authors introduced a design of 64-bit floating-point matrix multiplier

optimized for FPGA implementations. Taking I/O bandwidth and memory limitation into

consideration, an optimum scheme was proposed for better data locality and reusability.

They implemented a scalable linear array of processing elements supporting proposed de-

sign using the Xilinx Virtex II pro technology. Better performance-area ratio was reported

in comparison with previous work.

In [23], the authors talked about the implementation of Four Russians of Multi-

plication (M4RM), which is one of most efficient algorithms for dense matrix multiplication

over the binary field. They reported an efficient tile-based hardware/software implemen-

tation of M4RM. The design of 64 × 64 and 128 × 128 block matrix multiplication was

targeted to fit for FPGAs using System Verilog.

1.3 Background

In mathematics, a matrix is a set of symbols, numbers, or expressions arranged

in horizontal and vertical lines within a rectangular array [19]. It originates from square

arrays formed by coefficients and constants of an equation set [14].

The size of a matrix is defined by the number of rows and columns in the matrix.

If a matrix has m rows and n columns, then it is called an m×n matrix [36]. It is denoted

4

as:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 = (aij) ∈ Rm×n,

where the entry aij is in the i-th row and j-th column.

1.3.1 Naive Matrix Multiplication

Matrix multiplication refers to the product of two matrices with entries in a certain

ring [28]. More specifically, assume that A is an m× p matrix and B is an p× n matrix:

A =


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
. . .

...

am1 am2 · · · amp

 and B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bp1 bp2 · · · bpn

 ,

the matrix multiplication will produce a result matrix C with size of m× n, denoted as:

C = A×B =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...

cm1 cm2 · · · cmn

 ,

such that

cij = ai1b1j + · · ·+ aipbpj =

p∑
k=1

aikbkj,

where i = 1, · · · , m and j = 1, · · · , n [33]. That is to say: cij is the multiply-and-add

of the i-th row of A and j-th column of B as in Figure 1.1. The definition of matrix

multiplication also determines the properties that it follows [16]:

5

• Non-Commutative Law. Given two matrices A and B of size m × n and n × m

respectively, the size of matrix product AB is m×m, and the size of matrix product

BA is n×n. In the case that m 6= n, clearly AB is not the same as BA. Even, when

m = n, the two products AB and BA are not generally the same.

• Distributive Law. With respect to matrix addition/subtraction, it follows that matrix

multiplication is distributive. i.e.,

A(B + C) = AB + AC and (B − C)A = BA− CA.

• Associative Law. Assume that A = (aij)m×n, B = (bij)p×q, and C = (cij)r×s, in

which case that n = p and q = r, (AB)C = A(BC) will hold.

Figure 1.1: Naive Matrix Multiplication Method

1.3.2 Block Matrix Multiplication

To improve the performance of matrix multiplication, we can partition a matrix

into several sub-matrices or blocks of smaller sizes. A block matrix multiplication refers to

multiplying two matrices block by block.

For example, in the simplest case, A is an M × N matrix, and B is an N ×M

matrix. Consider A as a column matrix of m blocks where each block is a row vector, and

6

consider B as a row matrix of m blocks where each block is a column vector. Note that

for the purpose of successfully implementing block matrix multiplication, the number of

columns in A should be equal to the number of rows in B [5]. The commonly applied block

matrix multiplication methodology is to fix block size as shown in Figure 1.2.

Figure 1.2: Naive Block Matrix Multiplication Method

Block matrix multiplication is facilitated for improving computing system perfor-

mance. However, it greatly increases the communication complexity to be O(n3) because

it takes plentiful time to process matrix into blocks. Therefore, it is necessary to optimize

the computation and communication costs in terms of design and implementation [29].

1.3.3 Divide and Conquer

Recursion is a basic structure to construct data flow with repeatedly executing

the body of a procedure. Recursion unrolling is a complicated methodology to optimize

recursive procedures [31]. Divide and Conquer algorithm is a kind of recursion unrolling

methods. It works by recursively dividing the main problem into two or more sub-problems,

until these sub-problems could be small enough to be easily solved. It could help solve

complex problems with a reduced degree of difficulty, but it also delays program execution.

As shown in Figure 1.3, a typical divide-and-conquer algorithm is divided into 3 steps [9]:

7

• Divide. Split the main problem into several sub-problems.

• Conquer. Resolve these sub-problems recursively.

• Combine. Combine these solutions to produce the final result.

Figure 1.3: Divide and Conquer Algorithm

1.4 Scope of Work

In this thesis, we will discuss two Strassen-like algorithms, namely Strassen’s al-

gorithm and its Winograd’s variant. The idea of Strassen-like algorithms is based on

the divide-and-conquer rule in the sense that it also splits matrices into sub-matrices for

sub-problems. We will make a detailed analysis and summarization of Cenk and Hasan’s

proposal of decomposing algorithm into three blocks. Several examples are introduced for

instantiation and verification of each block operation. More techniques are investigated

8

to improve algorithm complexity including: the linearity property of two building blocks

called CMF and R, limited recursion, and block recombination [7].

All realizations are carried out in software using C++ and simulated in hardware

using Verilog. For software implementation, we will consider matrix multiplication with

matrix dimension 27, 28 and 29. Experiments will show the timing result for each method.

For hardware simulation, we implement it using Quartus II with Cyclone IV E family. Ma-

trix size is chosen to be size 2i, for i = 1, · · · , 5. Logic elements, memory usage, maximum

frequency, and clock cycles are considered as experiment metrics. We will combine the

experimental results of both software implementation and hardware simulation to prove

that improved Strassen-like algotihms are likely to provide better performance.

1.5 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 provides the details of Strassen-like matrix multiplication algorithms.

It presents the use of block decomposition to divide Strasesn’s algorithm and Winograd’s

variant into three blocks. The computation complexity is also listed.

In Chapter 3, we review relevant known ideas to improve Strassen-like algorithms.

The ideas for improving computation complexity include observing the linearity property

of CMF and R, limited recursion and block recombination. They will be explained in

details.

In Chapter 4 and 5, we present performance analysis of software implementation

and hardware simulation. For software implementation, we demonstrate the pseudocode of

each block and regard timing cost as the parameter to measure algorithms’ performance.

9

For hardware simulation, the logic elements, memory, clock cycles, and maximum frequency

are considered.

Chapter 6 includes a summary of this thesis work and future research scopes on

improving and implementing Strassen-like matrix multiplication algorithms.

10

Chapter 2

Overview of Strassen-like Algorithms

for Matrix Multiplication

Matrix multiplication is an operation widely used in scientific computing. A lot of research

has been devoted to improve the efficiency of matrix multiplication. The work described

in this thesis focuses on the widely used Strassen-like algorithms. To this end, this chap-

ter describes the block decomposition of Strassen’s algorithm and its Winograd’s variant.

Each block’s arithmetic complexity will be provided in details. Unless stated otherwise,

all the matrices considered in the rest of this thesis are defined with size of n = 2k where

k is a positive integer.

11

2.1 Two Strassen-like Algorithms

2.1.1 Strassen’s Algorithm

In 1969, Strassen made a great improvement on matrix multiplication by reporting

an algorithm of complexity O(n2.81). In the case of multiplying two 2× 2 matrices, it only

needs 7 multiplications and 18 additions instead of 8 multiplications and 4 additions in the

naive method [18]. The flow of computation in the Strassen’s algorithm (SA) is as follows.

Assume two 2× 2 matrices for multiplication and write:

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 , C = A×B.

• The first step is to perform additions/subtractions:

U1 = a11 + a22, U2 = a21 + a22, U3 = a11 + a12, U4 = a21 − a11, U5 = a12 − a22,

V1 = b11 + b22, V2 = b12 − b22, V3 = b21 − b11, V4 = b11 + b12, V5 = b21 + b22.

• The second step is to produce the products P1, P2, · · · , P7:

P1 = U1V1, P2 = U2b11, P3 = a11V2, P4 = a22V3,

P5 = U3b22, P6 = U4V4, P7 = U5V5.

• The final step is to compute:

c11 = P1 + P4 − P5 + P7, c12 = P2 + P4,

c21 = P3 + P5, c22 = P1 + P3 − P2 + P6.

• The four expressions immediately above lead to the output matrix:

C =

 c11 c12

c21 c22

 .

12

2.1.2 Winograd’s Variant

For further improvement on matrix multiplication, Winograd [38] proposed a mod-

ification that requires 3 less additions than SA. This algorithm is constructed in the same

manner as in SA. The flow of WV is given below.

Let us consider two 2× 2 matrices and write:

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 , C = A×B.

• The first step is to perform additions/subtractions:

V1 = b22−b12, V2 = V1 +b11 = b11 +(b22−b12), V3 = V2−b21 = (b11−b12 +b22)−b21,

U1 = a11 − a21, U2 = a21 + a22, V4 = b12 − b11,

U3 = U1 − a22 = (a11 − a21)− a22, U4 = U3 + a12 = (a11 − a21 − a22) + a12.

• The second step is to produce the products P1, P2, · · · , P7:

P1 = a11b11, P2 = a12b21, P3 = a22V3, P4 = U1V1,

P5 = U2V4, P6 = U4b22, P7 = U3V2.

• The final step is to compute:

c11 = P1 + P2, c12 = ((P1 − P7) + P5) + P6,

c21 = (P1 − P7)− P3 + P4, c22 = (P1 − P7 + P5) + P4.

• The four expressions immediately above lead to the output matrix:

C =

 c11 c12

c21 c22

 .

13

It is important to be aware of the reuse of some expressions in WV . (a11 − a21)

is used both in U1 and U3, and (b22 − b12) is used both in V1 and V2. (a11 − a21 − a22) is

used both in U3 and U4. (b11− b12 + b22) is used both in V2 and V3. (P1−P7) in c12 is also

used in c21. (P1 − P7 + P5) in c12 is also used in c22. Therefore, following the rule of no

repeating operations with same parameters, it’s easy to find out that it only needs 8 and

7 additions/subtractions to obtain Pi’s and cij’s respectively. The total arithmetic cost for

implementing WV is 7 multiplications and 15 additions [6].

2.2 Block Decomposition of Strassen’s Algorithm

In [17], the authors decompose the recursive algorithm into a couple of independent

blocks. Based on this idea, Cenk and Hasan [7] provide a detailed decomposition of SA and

WV into three main blocks as shown in Figure 2.1: component matrix formation (CMF),

component multiplication (CM), and reconstruction (R).

Figure 2.1: Architecture of Block Decompostion

14

The first step, CMF, is to deal with the input matrix A and B, and compute all

needed linear combinations of entries in A and B. The size of output of CMF is determined

by input matrix dimension n. Since CMF splits the input into 7 blocks in each recursion,

the size will be 7k = nlog2 7 while it needs k recursions to unroll. The next step is to

component-wise multiply those linear combinations of A and B. It is called CM, which

yields the products P1, · · · , P7. The size of CM’s output is 7k as well. The final step, called

R, is to reconstruct these products with linear combinations in order to generate the final

results c11, c12, c21, and c22.

2.2.1 SA’s Component Matrix Formation

For two n× n matrices A and B, recursive CMF SA
A and CMF SA

B are defined as

follows:

U1 = a11 + a22, U2 = a21 + a22, U3 = a11 + a12, U4 = a21 − a11, U5 = a12 − a22

CMF SA
A (A) = a11 for n = 1

CMF SA
A (A) =

 CMF SA
A (U1), CMF SA

A (U2), CMF SA
A (a11), CMF SA

A (a22),

CMF SA
A (U3), CMF SA

A (U4), CMF SA
A (U5)

 for n ≥ 2

(2.1)

V1 = b11 + b22, V2 = b12 − b22, V3 = b21 − b11, V4 = b11 + b12, V5 = b21 + b22

CMF SA
B (B) = b11 for n = 1

CMF SA
B (B) =

 CMF SA
B (V1), CMF SA

B (b11), CMF SA
B (V2), CMF SA

B (V3),

CMF SA
B (b22), CMF SA

B (V4), CMF SA
B (V5)

 for n ≥ 2

(2.2)

In this case, CMF applied to n×n matrix is unrolled into seven CMFs applied on

half size matrices and it needs five additions/subtractions applied on n
2
× n

2
sub-matrices to

compute U1, · · · , U5 or V1, · · · , V5. Thus, we can conclude that Strassen’s CMF complexity

15

is:

MSA
CMF (n) ≤ 7MSA

CMF

(n
2

)
+ 5

(n
2

)2
, MSA

CMF (1) = 0 =⇒MSA
CMF (n) =

5

3
nlog2 7 − 5

3
n2.

2.2.2 SA’s Component Multiplication

As shown in Figure 2.2, Component Multiplication is an operation where the

corresponding component matrices, such as CMFA1 and CMFB1 formed from A and B,

are multiplied. Since an n × n matrix leads to seven half size component matrices, SA’s

CM complexity is:

MSA
CM (n) ≤ 7MSA

CM

(n
2

)
, MSA

CM (1) = 1 =⇒MSA
CM (n) = nlog2 7.

Figure 2.2: Architecture of Component Multiplicationn

16

2.2.3 SA’s Reconstruction

Let C = (C1, C2, · · · , C7) be the 7-tuple obtained after a CM operation. C is the

input of the Reconstruction block. Its output is a matrix with size n × n. The recursive

Reconstruction algorithm is defined as follows:
RSA(C) = C1 for n = 1

RSA(C) =

 RSA(C1)⊕RSA(C4)	RSA(C5)⊕RSA(C7), R
SA(C3)⊕RSA(C5),

RSA(C2)⊕RSA(C4), R
SA(C1)	RSA(C2)⊕RSA(C3)⊕RSA(C6)

 for n ≥ 2

(2.3)

It is important to note that the length of Ci’s for i = 1, · · · , 7 is nlog2 7/7 = 7k−1

and the size of R(C) is n2 = 4k. Clearly, there are 7 R’s applied on vectors of length 7k−1

and 8 additions/subtractions applied on matrices with size of n
2
× n

2
. Thus, the complexity

is:

MSA
R (n) ≤ 7MSA

R

(n
2

)
+ 8

(n
2

)2
, MSA

R (1) = 0 =⇒MSA
R (n) =

8

3
nlog2 7 − 8

3
n2.

2.3 Block Decomposition of Winograd’s Variant

Using block decomposition proposed by Cenk and Hasan, Winograd’s variant is also divided

into three blocks: CMF, CM, and R. Below, we give the complexities of the CMF and R

blocks. The CM block of Winograd’s variant is the same as that discussed in the previous

section for Strassen’s algorithm and hence it is not repeated here.

17

2.3.1 WV’s Component Matrix Formation

For Component Matrix Formation, WV only needs in total 8 additions rather

than 10 additions in SA. That’s a considerable improvement on arithmetic cost reduction.

Consider two n× n matrices A and B as before. Then their CMFs for WV are defined as:

U1 = a11 − a21, U2 = a21 + a22, U3 = U1 − a22, U4 = U3 + a12,

CMFWV
A (A) = a11 for n = 1

CMFWV
A (A) =

 CMFWV
A (a11), CMFWV

A (a12), CMFWV
A (a22), CMFWV

A (U1),

CMFWV
A (U2), CMFWV

A (U4), CMFWV
A (U3)

 for n ≥ 2

(2.4)

V1 = b22 − b12, V2 = b12 − b11, V3 = b22 − V2, V4 = V3 − b21,

CMFWV
B (B) = b11 for n = 1

CMFWV
B (B) =

 CMFWV
B (b11), CMFWV

B (b21), CMFWV
B (V4), CMFWV

B (V1),

CMFWV
B (V2), CMFWV

B (b22), CMFWV
B (V3)

 for n ≥ 2

(2.5)

For an n × n matrix, WV’s CMF is unrolled into 7 CMFs applied on half size

matrices and it costs 4 additions of matrices of size n
2
× n

2
. The complexity of CMF for

WV is then:

MWV
CMF (n) ≤ 7MWV

CMF

(n
2

)
+ 4

(n
2

)2
, MWV

CMF (1) = 0 =⇒MWV
CMF (n) =

4

3
nlog2 7 − 4

3
n2.

Example 1. Consider an example when n = 4. We can split the matrix into four 2 × 2

sub-matrices as follows:

B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 =

 B11 B12

B21 B22

 ,

18

where

B11 =

 b11 b12

b21 b22

 , B12 =

 b13 b14

b23 b24

 , B21 =

 b31 b32

b41 b42

 , B22 =

 b33 b34

b43 b44


In order to obtain V1, V2, V3, V4, we do linear combinations as:

V1 = B22 −B12 =


b33 − b13︸ ︷︷ ︸

s1

b34 − b14︸ ︷︷ ︸
s2

b43 − b23︸ ︷︷ ︸
s3

b44 − b24︸ ︷︷ ︸
s4

 , V2 = B12 −B11 =


b13 − b11︸ ︷︷ ︸

s5

b14 − b12︸ ︷︷ ︸
s6

b23 − b21︸ ︷︷ ︸
s7

b24 − b22︸ ︷︷ ︸
s8



V3 = B22 − V2 =


b33 − s5︸ ︷︷ ︸

s9

b34 − s6︸ ︷︷ ︸
s10

b43 − s7︸ ︷︷ ︸
s11

b44 − s8︸ ︷︷ ︸
s12

 , V4 = V3 −B21 =


s9 − b31︸ ︷︷ ︸

s13

s10 − b32︸ ︷︷ ︸
s14

s11 − b41︸ ︷︷ ︸
s15

s12 − b42︸ ︷︷ ︸
s16


Clearly, we can see that the total cost for obtaining Vi’s and sj’s is 16 subtractions.

The next step is component matrix formation on these sub-matrices:

CMFWV
B11

= (b11, b21, r3 − b21︸ ︷︷ ︸
r4

, b22 − b12︸ ︷︷ ︸
r1

, b12 − b11︸ ︷︷ ︸
r2

, b22, b22 − r2︸ ︷︷ ︸
r3

),

CMFWV
B21

= (b31, b41, r7 − b41︸ ︷︷ ︸
r8

, b42 − b32︸ ︷︷ ︸
r5

, b32 − b31︸ ︷︷ ︸
r6

, b42, b42 − r6︸ ︷︷ ︸
r7

),

CMFWV
B22

= (b33, b43, r11 − b43︸ ︷︷ ︸
r12

, b44 − b34︸ ︷︷ ︸
r9

, b34 − b33︸ ︷︷ ︸
r10

, b44, b44 − r10︸ ︷︷ ︸
r11

),

CMFWV
V1

= (s1, s3, r15 − s3︸ ︷︷ ︸
r16

, s4 − s2︸ ︷︷ ︸
r13

, s2 − s1︸ ︷︷ ︸
r14

, s4, s4 − r14︸ ︷︷ ︸
r15

),

CMFWV
V2

= (s5, s7, r19 − s7︸ ︷︷ ︸
r20

, s8 − s6︸ ︷︷ ︸
r17

, s6 − s5︸ ︷︷ ︸
r18

, s8, s8 − r18︸ ︷︷ ︸
r19

),

CMFWV
V3

= (s9, s11, r23 − s11︸ ︷︷ ︸
r24

, s12 − s10︸ ︷︷ ︸
r21

, s10 − s9︸ ︷︷ ︸
r22

, s12, s12 − r22︸ ︷︷ ︸
r23

),

CMFWV
V4

= (s13, s15, r27 − s15︸ ︷︷ ︸
r28

, s16 − s14︸ ︷︷ ︸
r25

, s14 − s13︸ ︷︷ ︸
r26

, s16, s16 − r26︸ ︷︷ ︸
r27

).

19

What calls for special attention is that there are 28 subtractions needed to com-

pute CMFWV
B11

, CMFWV
B21

, CMFWV
B22

, CMFWV
V1

, CMFWV
V2

, CMFWV
V3

, CMFWV
V4

. Therefore,

it requires 44 subtractions or additions to obtain original CMFWV
B . It is 11 additions or

subtractions less than that to obtain CMF SA
B .

2.3.2 WV’s Reconstruction

Following the component multiplication CM(CMFWV
A , CMFWV

B), it will gener-

ate a 7-tuple C = (C1, C2, C3, C4, C5, C6, C7) as input to the R block, which is defined

below.

RWV (C) = C1 for n = 1

RWV (C) =


RWV (C1)⊕RWV (C2), S1 ⊕RWV (C5)︸ ︷︷ ︸

S2

⊕RWV (C6),

RWV (C1)	RWV (C7)︸ ︷︷ ︸
S1

	RWV (C3)⊕RWV (C4), S2 ⊕RWV (C4)

 for n ≥ 2

(2.6)

In the definition, there are 7 component additions or subtractions. Thus, we can

calculate WV’s Reconstruction complexity as:

MWV
R (n) ≤ 7MWV

R

(n
2

)
+ 7

(n
2

)2
, MWV

R (1) = 0 =⇒MWV
R (n) =

7

3
nlog2 7 − 7

3
n2.

Example 2. Consider the case where matrix dimension is 4. After component multipli-

cation at the end of two rounds of recursion, the length of C will be 49. Here, we denote

C as (C1, C2, C3, C4, C5, C6, C7) where Ci = (P7i−6, P7i−5, · · · , P7i), i = 1, 2, · · · , 7. In

order to obtain RWV (C), the first step is to compute RWV (Ci) as follows:

RWV (C1) = (P1 + P2, r1 + P5︸ ︷︷ ︸
r2

+P6, P1 − P7︸ ︷︷ ︸
r1

−P3 + P4, r2 + P4),

20

RWV (C2) = (P8 + P9, r3 + P12︸ ︷︷ ︸
r4

+P13, P8 − P14︸ ︷︷ ︸
r3

−P10 + P11, r4 + P11),

RWV (C3) = (P15 + P16, r5 + P19︸ ︷︷ ︸
r6

+P20, P15 − P21︸ ︷︷ ︸
r5

−P17 + P18, r6 + P18),

RWV (C4) = (P22 + P23, r7 + P26︸ ︷︷ ︸
r8

+P27, P22 − P28︸ ︷︷ ︸
r7

−P24 + P25, r8 + P25),

RWV (C5) = (P29 + P30, r9 + P33︸ ︷︷ ︸
r10

+P34, P29 − P35︸ ︷︷ ︸
r9

−P31 + P32, r10 + P32),

RWV (C6) = (P36 + P37, r11 + P40︸ ︷︷ ︸
r12

+P41, P36 − P42︸ ︷︷ ︸
r11

−P38 + P39, r12 + P39),

RWV (C7) = (P43 + P44, r13 + P47︸ ︷︷ ︸
r14

+P48, P43 − P49︸ ︷︷ ︸
r13

−P45 + P46, r14 + P46).

The above expressions cost 49 additions/subtractions. Furthermore, we need

extra additions to compute Li’s:

L1 = RWV (C1)⊕RWV (C2),

L2 = S1 ⊕RWV (C5)︸ ︷︷ ︸
S2

⊕RWV (C6),

L3 = RWV (C1)	RWV (C7)︸ ︷︷ ︸
S1

	RWV (C3)⊕RWV (C4),

L4 = S2 ⊕RWV (C4).

Clearly, there are 7 component operations in the above formula. As the size of

RWV (Ci), S1 and S2 is 2 × 2, it will take 4 additions to do ⊕ or 	. Therefore, it takes

28 additions/subtractions in total to finally get Li’s where i = 1, · · · , 4. As a result,

computation of WV’s R(C) requires 49 + 28 = 77 additions/subtractions.

21

Table 2.1: Complexity of various blocks of Strassen’s algorithm and its Winograd’s variant

Method Operation Recursive Formula Complexity

Strassen’s algorithm

CMF 7MSA
CMF

(
n
2

)
+ 5

(
n
2

)2
MSA

CMF (1) = 0 5
3
nlog2 7 − 5

3
n2

CM 7MSA
CM

(
n
2

)
MSA

CM (1) = 1 nlog2 7

R 7MSA
R

(
n
2

)
+ 8

(
n
2

)2
MSA

R (1) = 0 8
3
nlog2 7 − 8

3
n2

Winograd’s variant

CMF 7MWV
CMF

(
n
2

)
+ 4

(
n
2

)2
MWV

CMF (1) = 0 4
3
nlog2 7 − 4

3
n2

CM 7MWV
CM

(
n
2

)
MWV

CM (1) = 1 nlog2 7

R 7MWV
R

(
n
2

)
+ 7

(
n
2

)2
MWV

R (1) = 0 7
3
nlog2 7 − 7

3
n2

2.4 Complexity Comparison

As discussed above, the decomposition method divides Strassen-like algorithms

into four sub-blocks: M1 = CMFA (A), M2 = CMFB (B), M3 = CM (M1,M2), M4 =

R (M3). From the above Table 2.1, we can write the total complexity of SA and WV as

follows:

MSA(n) = 2MSA
CMF (n) + MSA

CM (n) + MSA
R (n)

= 2

(
5

3
nlog2 7 − 5

3
n2

)
+ nlog2 7 +

8

3
nlog2 7 − 8

3
n2

= 7nlog2 7 − 6n2

(2.7)

MWV (n) = 2MWV
CMF (n) + MWV

CM (n) + MWV
R (n)

= 2

(
4

3
nlog2 7 − 4

3
n2

)
+ nlog2 7 +

7

3
nlog2 7 − 7

3
n2

= 6nlog2 7 − 5n2

(2.8)

22

Chapter 3

Recent Methods to Improve

Strassen-like Algorithms

Recently, arithmetic complexities of SA and WV have been reduced by Cenk and Hasan [7].

Their approach is based on the linearity property of CMF and R operations, block recom-

bination, and limited recursion. The linearity property of CMF and R operations refers to

the superposition principle for reducing the number of addition operations. Limited recur-

sion means the hybrid use of Strassen-like algorithms and the naive method with different

cut-off values. It exploits to discover best performance by the trade-off of multiplications

and additions. Block recombination is a method to explore the effect of rearranging of

blocks. Reordering the data flow between two blocks could reduce the number of operation

blocks.

23

3.1 Linearity Property of CMF and R Operations

As discussed in the previous chapter, to multiply two matrices A and B of size

n × n, the CMF operation computes all the necessary linear combinations of Aij’s and

Bij’s, and the R operation linearly combines the vector products produced from CM.

For the case of n = 1, we have A = a11, B = b11. It is easy to see that:

CMF (A + B) = CMF (a11 + b11)

= a11 + b11

= CMF (a11) + CMF (b11)

= CMF (A) + CMF (B)

(3.1)

For the case of n = N , we have A =

 A11 A12

A21 A22

 and B =

 B11 B12

B21 B22

,

where Aij and Bij are sub-matrices of size N
2
× N

2
. It is easy to see that:

CMF (A + B) = CMF

 A11 + B11 A12 + B12

A21 + B21 A22 + B22


= (CMF (A11 + B11), · · · , CMF (A22 + B22)︸ ︷︷ ︸

7 CMFs

)

= (CMF (A11), · · · , CMF (A22)︸ ︷︷ ︸
7 CMFs

) + (CMF (B11), · · · , CMF (B22)︸ ︷︷ ︸
7 CMFs

)

= CMF (A) + CMF (B)

(3.2)

It clearly proves the linearity property of the CMF operation. The same induction

method could also be used to prove that linearity property holds for the R operation.

24

3.1.1 SA’s CMF Block based on Linearity

Based on the linearity property, SA’s improved CMFs are illustrated as follows:

U1 = a11 + a22, U2 = a21 + a22, U3 = a11 + a12

CMF SA
A (A) = a11 for n = 1

CMF SA
A (A) =



CMF SA
A (U1), CMF SA

A (U2), CMF SA
A (a11),

CMF SA
A (a22), CMF SA

A (U3),

CMF SA
A (U2)	 CMF SA

A (U1)︸ ︷︷ ︸
Q1

,

CMF SA
A (U3)	 CMF SA

A (U1)︸ ︷︷ ︸
Q2


for n ≥ 2

(3.3)



V1 = b11 + b22, V2 = b12 − b22, V3 = b21 − b11

CMF SA
B (B) = b11 for n = 1

CMF SA
B (B) =



CMF SA
B (V1), CMF SA

B (b11), CMF SA
B (V2),

CMF SA
B (V3), CMF SA

B (b22),

CMF SA
B (V1)⊕ CMF SA

B (V2)︸ ︷︷ ︸
Q3

CMF SA
B (V1)⊕ CMF SA

B (V3)︸ ︷︷ ︸
Q4


for n ≥ 2

(3.4)

It is a fact that:

CMF SA
A (U2)	 CMF SA

A (U1) = CMF SA
A (U2 − U1) = CMF SA

A (a21 − a11)

CMF SA
A (U3)	 CMF SA

A (U1) = CMF SA
A (U3 − U1) = CMF SA

A (a12 − a22)

CMF SA
B (V1)⊕ CMF SA

B (V2) = CMF SA
B (V1 + V2) = CMF SA

B (b11 + b12)

CMF SA
B (V1)⊕ CMF SA

B (V3) = CMF SA
B (V1 + V3) = CMF SA

B (b21 + b22)

25

Compared to SA’s original CMF given in subsection 2.2.1, the new CMF given

here requires fewer numbers of Ui’s, Vi’s, and CMF s, but it introduces Qi’s. In order

to determine the complexity of the new CMF, one can note that the cost of ⊕ or 	 is

7(log2 n)−1, since the length of vector Qi is 1
7
nlog2 7. It is also important to note that CMF

applied on an n × n matrix is only unrolled into 5 CMFs applied on n
2
× n

2
matrices. So

the complexity of the new CMF can be expressed as: MSA
CMF (n) = 0 for n = 1

MSA
CMF (n) ≤ 5MSA

CMF

(
n
2

)
+ 2

7
nlog2 7 + 3

(
n
2

)2
for n ≥ 2

=⇒MSA
CMF (n) = nlog2 7+2nlog2 5−3n2

(3.5)

Example 3. This example will introduce the process to generate improved CMF operation

on matrix A for SA when n = 4. Let A, and its sub-matrices Aij’s be:

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =

 A11 A12

A21 A22

 ,

U1 = A11 + A22 =


a11 + a33︸ ︷︷ ︸

s1

a12 + a34︸ ︷︷ ︸
s2

a21 + a43︸ ︷︷ ︸
s3

a22 + a44︸ ︷︷ ︸
s4

 ,

U2 = A21 + A22 =


a31 + a33︸ ︷︷ ︸

s5

a32 + a34︸ ︷︷ ︸
s6

a41 + a43︸ ︷︷ ︸
s7

a42 + a44︸ ︷︷ ︸
s8

 ,

U3 = A11 + A12 =


a11 + a13︸ ︷︷ ︸

s9

a12 + a14︸ ︷︷ ︸
s10

a21 + a23︸ ︷︷ ︸
s11

a22 + a24︸ ︷︷ ︸
s12

 .

26

It should be noted that in order to obtain U1, U2 and U3, we need to perform

12 additions/subtractions since each sub-matrix has 4 entries. Thus, the next step is to

compute the CMFs applied on A’s sub-matrices with size of 2× 2:

CMF SA
A (U1) = (s1 + s4︸ ︷︷ ︸

r1

, s3 + s4︸ ︷︷ ︸
r2

, s1, s4, s1 + s2︸ ︷︷ ︸
r3

, r2 − r1︸ ︷︷ ︸
r16

, r3 − r1︸ ︷︷ ︸
r17

),

CMF SA
A (U2) = (s5 + s8︸ ︷︷ ︸

r4

, s7 + s8︸ ︷︷ ︸
r5

, s5, s8, s5 + s6︸ ︷︷ ︸
r6

, r5 − r4︸ ︷︷ ︸
r18

, r6 − r4︸ ︷︷ ︸
r19

),

CMF SA
A (A11) = (a11 + a22︸ ︷︷ ︸

r7

, a21 + a22︸ ︷︷ ︸
r8

, a11, a22, a11 + a12︸ ︷︷ ︸
r9

, r8 − r7︸ ︷︷ ︸
r20

, r9 − r7︸ ︷︷ ︸
r21

),

CMF SA
A (A22) = (a33 + a44︸ ︷︷ ︸

r10

, a43 + a44︸ ︷︷ ︸
r11

, a33, a44, a33 − a34︸ ︷︷ ︸
r12

, r11 − r10︸ ︷︷ ︸
r22

, r12 − r10︸ ︷︷ ︸
r23

),

CMF SA
A (U3) = (s9 + s12︸ ︷︷ ︸

r13

, s11 + s12︸ ︷︷ ︸
r14

, s9, s12, s9 + s10︸ ︷︷ ︸
r15

, r14 − r13︸ ︷︷ ︸
r24

, r15 − r13︸ ︷︷ ︸
r25

),

Q1 = (r4 + r1︸ ︷︷ ︸
r26

, r5 − r2︸ ︷︷ ︸
r27

, s5 − s1︸ ︷︷ ︸
r28

, s8 − s4︸ ︷︷ ︸
r29

, r6 − r3︸ ︷︷ ︸
r30

, r18 − r16︸ ︷︷ ︸
r31

, r19 − r17︸ ︷︷ ︸
r32

),

Q2 = (r13 − r1︸ ︷︷ ︸
r33

, r14 − r2︸ ︷︷ ︸
r34

, s9 − s1︸ ︷︷ ︸
r35

, s12 − s4︸ ︷︷ ︸
r36

, r15 − r3︸ ︷︷ ︸
r37

, r20 − r16︸ ︷︷ ︸
r38

, r21 − r17︸ ︷︷ ︸
r39

).

As clearly shown above, it takes 39 additions/subtractions to compute ri’s, for i

= 1, · · · , 39 and 12 additions/subtractions to compute sj’s, for j = 1, · · · , 12. Thus, it in

total needs 51 additions/subtractions which is 4 less than the original SA’s CMF.

27

3.1.2 WV’s CMF Block based on Linearity

Applying the linearity property to WV’s CMFs, we can write:

U1 = a11 − a21, U2 = a21 + a22

CMFWV
A (A) = a11 for n = 1

CMFWV
A (A) =



CMFWV
A (a11), CMFWV

A (a12), CMFWV
A (a22),

CMFWV
A (U1), CMFWV

A (U2), T1 ⊕ CMFWV
A (a12)︸ ︷︷ ︸

T2

,

CMFWV
A (U1)	 CMFWV

A (a22)︸ ︷︷ ︸
T1


for n ≥ 2

(3.6)

V1 = b22 − b12, V2 = b12 − b11

CMFWV
B (B) = b11 for n = 1

CMFWV
B (B) =



CMFWV
B (b11), CMFWV

B (b21), T3 	 CMFWV
B (b21)︸ ︷︷ ︸

T4

,

CMFWV
B (V1), CMFWV

B (V2), CMFWV
B (b22)

CMFWV
B (b22)	 CMFWV

B (V2)︸ ︷︷ ︸
T3


for n ≥ 2

(3.7)

It should be noted that:

T1 = CMFWV
A (U1)	 CMFWV

A (a22) = CMFWV
A (a11 − a21 − a22)

T2 = T1 ⊕ CMFWV
A (a12) = CMFWV

A (a11 − a21 − a22 + a12)

T3 = CMFWV
B (b22)	 CMFWV

B (V2) = CMFWV
B (b22 − b12 + b11)

T4 = T3 	 CMFWV
B (b21) = CMFWV

B (b22 − b12 + b11 − b21)

The CMF applied on n × n matrix is unrolled into 5 CMFs applied on half size

matrices. It only needs 2 component matrix additions to compute Ui’s or Vi’s, respectively.

28

Also it costs 1
7
nlog2 7 additions/subtractions to obtain T1, T2, T3 and T4, respectively. So

the complexity of the new CMF for WV is: MWV
CMF (n) = 0 for n = 1

MWV
CMF (n) ≤ 5MWV

CMF

(
n
2

)
+ 2

7
nlog2 7 + 2

(
n
2

)2
for n ≥ 2

=⇒MWV
CMF (n) = nlog2 7+nlog2 5−2n2

(3.8)

Example 4. Consider A and its sub-matrices Aij’s as:

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =

 A11 A12

A21 A22

 ,

U1 = A11−A21 =


a11 − a31︸ ︷︷ ︸

s1

a12 − a32︸ ︷︷ ︸
s2

a21 − a41︸ ︷︷ ︸
s3

a22 − a42︸ ︷︷ ︸
s4

 , U2 = A21+A22 =


a31 + a33︸ ︷︷ ︸

s5

a32 + a34︸ ︷︷ ︸
s6

a41 + a43︸ ︷︷ ︸
s7

a42 + a44︸ ︷︷ ︸
s8

 .

It costs 8 additions/subtractions in total to obtain s1, s2, · · · , s8. The computa-

tion of CMFs applied to A’s sub-matrices with size of 2× 2 is shown as follows:

CMFWV
A (A11) = (a11, a12, a22, a11 − a21︸ ︷︷ ︸

r1

, a21 + a22︸ ︷︷ ︸
r2

, r3 + a12︸ ︷︷ ︸
r4

, r1 − a22︸ ︷︷ ︸
r3

),

CMFWV
A (A12) = (a13, a14, a24, a13 − a23︸ ︷︷ ︸

r5

, a23 + a24︸ ︷︷ ︸
r6

, r7 + a14︸ ︷︷ ︸
r8

, r5 − a24︸ ︷︷ ︸
r7

),

CMFWV
A (A22) = (a33, a34, a44, a33 − a43︸ ︷︷ ︸

r9

, a43 + a44︸ ︷︷ ︸
r10

, r11 + a34︸ ︷︷ ︸
r12

, r9 − a44︸ ︷︷ ︸
r11

),

CMFWV
A (U1) = (s1, s2, s4, s1 − s3︸ ︷︷ ︸

r13

, s3 + s4︸ ︷︷ ︸
r14

, r15 + s2︸ ︷︷ ︸
r16

, r13 − s4︸ ︷︷ ︸
r15

),

CMFWV
A (U2) = (s5, s6, s8, s5 − s7︸ ︷︷ ︸

r17

, s7 + s8︸ ︷︷ ︸
r18

, r19 + s6︸ ︷︷ ︸
r20

, r17 − s8︸ ︷︷ ︸
r19

),

29

T1 = (s1 − a33︸ ︷︷ ︸
r21

, s2 − a34︸ ︷︷ ︸
r22

, s4 − a44︸ ︷︷ ︸
r23

, r13 − r9︸ ︷︷ ︸
r24

, r14 − r10︸ ︷︷ ︸
r25

, r16 − r12︸ ︷︷ ︸
r26

, r15 − r11︸ ︷︷ ︸
r27

),

T2 = (r21 + a13︸ ︷︷ ︸
r28

, r22 + a14︸ ︷︷ ︸
r29

, r23 + a24︸ ︷︷ ︸
r30

, r24 + r5︸ ︷︷ ︸
r31

, r25 + r6︸ ︷︷ ︸
r32

, r26 + r8︸ ︷︷ ︸
r33

, r27 + r7︸ ︷︷ ︸
r34

).

Thus, it needs 42 additions/subtractions in total. Clearly, the number of addi-

tions/subtractions is now 2 less than that in the original CMF for WV.

3.1.3 WV’s R Block based on Linearity

As linearity property holds for R operation, it is important to investigate its effect

on the complexity of R. Assume that C = (C1, C2, C3, C4, C5, C6, C7) where the length of

each Ci is 1
7
nlog2 7 for i = 1, · · · , 7. Applying the linearity property, R can be re-stated as:

R(C) = C1 for n = 1

R1 = C1 + C2, R2 = R(R1), R3 = C1 − C7, R4 = R(R3), R5 = R(C5)

R6 = R4 + R5, R7 = R(C6), R8 = R6 + R7, R9 = R(C3)

R10 = R(C4), R11 = R10 −R9, R12 = R4 + R11, R13 = R6 + R10,

R(C) = (R2, R8, R12, R13) for n ≥ 2

(3.9)

Below is a verification of the correctness of R operation given in Equation (3.9).

R(C) = (R2, R8, R12, R13)

= (R(C1 + C2), R6 + R7, R4 + R11, R6 + R10)

= (R(C1 + C2), R4 + R5 + R7, R4 + R10 −R9, R4 + R5 + R(C4))

= (R(C1 + C2), R(C1 − C7) + R(C5) + R(C6),

R(C1 − C7) + R(C4)−R(C3), R(C1 − C7) + R(C5) + R(C4))

= (R(C1) + R(C2), R(C1)−R(C7) + R(C5) + R(C6),

R(C1)−R(C7) + R(C4)−R(C3), R(C1)−R(C7) + R(C5) + R(C4))

(3.10)

30

Thus, the result is the same as that in Equation (2.6). But the cost of implement-

ing Equation (3.9) is less than that of Equation (2.6). This can be explained as follows.

In Equation (3.9), R(C) is the output from block Reconstruction, whose size is n× n, and

R(Ci) or R(Ri) is of size n
2
× n

2
. R1 and R3 are each simply the result of addition/sub-

traction involving two Ci’s. So the arithmetic cost to obtain R1 and R3 is 2
7
nlog2 7. R2,

R4, R5, R7, R9 and R10 are 6 R(n
2
)’s. Computation of R6, R8, R11, R12 and R13 is matrix

addition/subtraction on matrices of size n
2
× n

2
. Thus the cost is 5(n

2
)2. Therefore, we have

a conclusion that: MWV
R (n) = 0 for n = 1

MWV
R (n) ≤ 6MWV

R

(
n
2

)
+ 2

7
nlog2 7 + 5

(
n
2

)2
for n ≥ 2

=⇒MWV
R (n) = 2nlog2 7+

n

2
nlog2 6−5

2
n2.

(3.11)

Example 5. Consider the case n = 4. The length of R’s input is 49, which is also the

output of CM . Consider it as C = (C1, C2, C3, C4, C5, C6, C7) where Ci = (P7i−6, · · · ,

P7i). The R’s computing process is as follows:

R1 = C1 + C2 = (P1 + P8︸ ︷︷ ︸
r1

, P2 + P9︸ ︷︷ ︸
r2

, P3 + P10︸ ︷︷ ︸
r3

, P4 + P11︸ ︷︷ ︸
r4

, P5 + P12︸ ︷︷ ︸
r5

, P6 + P13︸ ︷︷ ︸
r6

, P7 + P14︸ ︷︷ ︸
r7

),

R2 = R(R1) = (r1 + r2, r8 + r5︸ ︷︷ ︸
r9

+r6, r1 − r7︸ ︷︷ ︸
r8

−r3 + r4, r9 + r4),

R3 = C1 − C7 = (P1 − P43︸ ︷︷ ︸
r10

, P2 − P44︸ ︷︷ ︸
r11

, P3 − P45︸ ︷︷ ︸
r12

, P4 − P46︸ ︷︷ ︸
r13

, P5 − P47︸ ︷︷ ︸
r14

, P6 − P48︸ ︷︷ ︸
r15

, P7 − P49︸ ︷︷ ︸
r16

),

R4 = R(R3) = (r10 + r11, r17 + r14︸ ︷︷ ︸
r18

+r15, r10 − r16︸ ︷︷ ︸
r17

−r12 + r13, r18 + r13),

R5 = R(C5) = (P29 + P30, r19 + P33︸ ︷︷ ︸
r20

+P34, P29 − P35︸ ︷︷ ︸
r19

−P31 + P32, r20 + P32),

R6 = R4 + R5 = (s1, s2, s3, s4), R8 = R6 + R7 = (s5, s6, s7, s8,)

R7 = R(C6) = (P36 + P37, r21 + P40︸ ︷︷ ︸
r22

+P41, P36 − P42︸ ︷︷ ︸
r21

−P38 + P39, r22 + P39),

31

R9 = R(C3) = (P15 + P16, r23 + P19︸ ︷︷ ︸
r24

+P20, P15 − P21︸ ︷︷ ︸
r23

−P17 + P18, r24 + P18),

R10 = R(C4) = (P22 + P23, r25 + P26︸ ︷︷ ︸
r26

+P27, P22 − P28︸ ︷︷ ︸
r25

−P24 + P25, r26 + P25),

R11 = R10 −R9 = (s9, s10, s11, s12), R12 = R4 + R11 = (s13, s14, s15, s16)

R13 = R6 + R10 = (s17, s18, s19, s20)

In the computation process, it requires 7 additions/subtractions in order to get

R1, R2, R3, R4, R5, R7, R9, R10 respectively and 4 additions/subtractions to get R6, R8,

R11, R12, R13 respectively. The total arithmetic operation cost is therefore 76, which is 1

less than the original WV’s Reconstruction algorithm.

3.1.4 Complexity Comparison

Table 3.1 lists the complexities of each block operation in its original form and

after applying the linearity property. As it can be seen in the table, the application of the

linearity property lowers the complexity of each block operation.

Table 3.1: Complexity Comparison

Operation Original form After linearity property applied

SA’s CMF 5
3
nlog2 7 − 5

3
n2 nlog2 7 + 2nlog2 5 − 3n2

WV’s CMF 4
3
nlog2 7 − 4

3
n2 nlog2 7 + nlog2 5 − 2n2

WV’s R 7
3
nlog2 7 − 7

3
n2 2nlog2 7 + 1

2
nlog2 6 − 5

2
n2

32

3.2 Block Recombination of ImprovedWinograd’s Vari-

ant

Block recombination means to reorganize the block decomposition of Strassen-like algo-

rithms. It usually associates with limited recursion to achieve better performance.

3.2.1 Block Recombination Method

Let matrices A2n×2n, B2n×2n, and C2n×2n be: c11 c12

c21 c22

 =

 a11 a12

a21 a22

×
 b11 b12

b21 b22

 =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 .

We know that the matrix multiplication is reduced to the computation of four

separate instances of multiply-and-add, i.e., a11b11 + a12b21, a11b12 + a12b22, a21b11 + a22b21,

and a21b12+a22b22. Applying a Strassen-like algorithm to an instance, for example: a11b11+

a12b21, the original block organization (OBO) computation flow is:

Q1 = CMFA(a11), Q2 = CMFB(b11), Q3 = CMFA(a12),

Q4 = CMFB(b21), Q5 = CM(Q1, Q2), Q6 = CM(Q3, Q4),

Q7 = R(Q5), Q8 = R(Q6), Q9 = Q7 + Q8.

There are 9 block operations in the computation process which determines the

arithmetic cost. Note that Q9 requires a matrix addition (MA), whose complexity is n2.

Thus, the total arithmetic cost to compute a11b11 + a12b21 is:

M(n) = 4MCMF + 2MCM + 2MR + MMA.

33

The further improvement of block recombination is built on the operation: Q9 =

Q7 + Q8. Since Q7 = R(Q5) and Q8 = R(Q6), we have: Q9 = R(Q5) + R(Q6). It is the

linearity property of R that: R(Q5) + R(Q6) = R(Q5 + Q6). Since vectors Q5 and Q6

are each of length nlog2 7, the cost to compute R(Q5 + Q6) is MR + nlog2 7. The improved

computation flow, denoted as Block Recombination (BR), is shown in Figure 3.1, where

blocks MA and VA are for matrix and vector addition and their arithmetic costs are n2

and log2 7, respectively.

Figure 3.1: Architecture of Block Recombination

So the arithmetic cost of the improved architecture is: M(n) = 4MCMF +2MCM +

MV A + MR.

Detailed complexities of original block organization (OBO) and block recombina-

34

tion (BR) used with different Strassen-like methods to compute a11b11 + a12b21 are shown

in Table 3.2. Each complexity could be derived from Table 2.1 and 3.1. Improved SA is

to apply linearity property of CMF on Strassen’s algorithm and Improved WV is to apply

linearity property of CMF and R on Winograd’s variant.

Table 3.2: Complexity Comparison of OBO and BR

Algorithm Complexity of OBO Complexity of BR

SA 14nlog2 7 − 11n2 37
3
nlog2 7 − 28

3
n2

Improved SA 34
3
nlog2 7 + 8nlog2 5 − 49

3
n2 29

3
nlog2 7 + 8nlog2 5 − 22n2

WV 12nlog2 7 − 9n2 32
3
nlog2 7 − 23

3
n2

Improved WV 10nlog2 7 + nlog2 6 + 4nlog2 5 − 12n2 9nlog2 7 + 1
2
nlog2 6 + 4nlog2 5 − 21

2
n2

3.2.2 Block Recombination with Limited Recursion

The way to combine block recombination and limited recursion gives the best

arithmetic complexity. For the case when limited recursion value is m = 2, the input

matrices A and B are initially formed into 2× 2 blocked matrices, so we can write: a11 a12

a21 a22

×
 b11 b12

b21 b22

 =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 .

Thus, the matrix multiplication of n × n matrices is transformed into eight ma-

trix multiplications: a11b11, a12b21, a11b12, a12b22, a21b11, a22b21, a21b12 and a22b22, and four

n
2
× n

2
matrix additions. Then we apply Strassen-like algorithms on the sub-matrix mul-

tiplications. The first step is to obtain: CMF (a11), CMF (a12), CMF (a21), CMF (a22),

CMF (b11), CMF (b12), CMF (b21), CMF (b22) and therefore the total cost is 8MCMF

(
n
2

)
.

35

The next step is to do component multiplications on those CMFs, and its costs is 8MCM

(
n
2

)
.

After getting those vector products, we put the VA in front of R. It needs 4 VAs. The cost

will be 4
(
n
2

)log2 7. The last step is to implement R operations on those four sums. The

cost is 4MR

(
n
2

)
. The total cost in recursive format is:

M(n) = 8MCMF

(n
2

)
+ 8MCM

(n
2

)
+ 4MV A

(n
2

)
+ 4MR

(n
2

)
.

Since Winograd’s variant always gives better arithmetic complexity, in the follow-

ing sections we only discuss the hybrid use of limited recursion and block recombination

applied on improved Winograd’s variant. We can refer to the complexity of each block

in Table 2.1 and 3.1. So when the limited recursion value is m = 2, the improved WV

algorithm obtains a better complexity:

M(n) = 4nlog2 7 +
1

3
nlog2 6 +

8

5
nlog2 5 − 13

2
n2.

In order to make a general instance, if the initially formed blocked matrices are

of size 2i × 2i, the authors of [7] concluded the improved arithmetic complexity as:

M(n) = 22i+1MCMF

(n
2i

)
+ 23iMCM

(n
2i

)
+
(
23i − 22i

)
MV A

(n
2i

)
+ 22iMR

(n
2i

)
.

Table 3.3 shows the complexities with different limited recursion values. From

the table, we see that when i = 3, i.e., m = 8, the matrices are initially divided into 23×23

blocked matrices, the IWV would provide the best arithmetic complexity.

36

T
ab

le
3.

3:
C

om
p
le

x
it

ie
s

fo
r

IW
V

w
it

h
D

iff
er

en
t

L
im

it
ed

R
ec

u
rs

io
n

V
al

u
es

i
1

2
3

4

C
M

F
8 7
n
lo
g
2
7
+

8 5
n
lo
g
2
5
-4
n
2

3
2

4
9
n
lo
g
2
7
+

3
2

2
5
n
lo
g
2
5
-4
n
2

1
2
8

3
4
3
n
lo
g
2
7
+

1
2
8

1
2
5
n
lo
g
2
5
-4
n
2

5
1
2

2
4
0
1
n
lo
g
2
7
+

5
1
2

6
2
5
n
lo
g
2
5
-4
n
2

C
M

8 7
n
lo
g
2
7

6
4

4
9
n
lo
g
2
7

5
1
2

3
4
3
n
lo
g
2
7

4
0
9
6

2
4
0
1
n
lo
g
2
7

V
A

4 7
n
lo
g
2
7

4
8

4
9
n
lo
g
2
7

4
4
8

3
4
3
n
lo
g
2
7

3
8
4
0

2
4
0
1
n
lo
g
2
7

R
8 7
n
lo
g
2
7
+

1 3
n
lo
g
2
6
-5 2
n
2

3
2

4
9
n
lo
g
2
7
+

8 3
6
n
lo
g
2
6
-5 2
n
2

1
2
8

3
4
3
n
lo
g
2
7
+

3
2

2
1
6
n
lo
g
2
6
-5 2
n
2

5
1
2

2
4
0
1
n
lo
g
2
7
+

1
2
8

1
2
9
6
n
lo
g
2
6
-5 2
n
2

T
ot

al
4n

lo
g
2
7
+

1 3
n
lo
g
2
6
+

1
7
6

4
9
n
lo
g
2
7
+

8 3
6
n
lo
g
2
6
+

1
2
1
6

3
4
3
n
lo
g
2
7
+

3
2

2
1
6
n
lo
g
2
6
+

8
9
6
0

2
4
0
1
n
lo
g
2
7
+

1
2
8

1
2
9
6
n
lo
g
2
6
+

8 5
n
lo
g
2
5
-1

3 2
n
2

3
2

2
5
n
lo
g
2
5
-1

3 2
n
2

1
2
8

1
2
5
n
lo
g
2
5
-1

3 2
n
2

5
1
2

6
2
5
n
lo
g
2
5
-1

3 2
n
2

37

3.3 Conclusion

Observing the linearity property of R and CMF operations brings benefits on the

arithmetic complexity. It reduces the arithmetic cost from 6nlog2 7−5n2 to 5nlog2 7+ 1
2
nlog2 6+

2nlog2 5 − 13
2
n2 over the binary field. When we combine the use of limited recursion and

block recombination on the improved Winograd’s variant, we can get the least arithmetic

complexity among Strassen-like algorithms for matrix multiplication as:

1216

343
nlog2 7 +

32

216
nlog2 6 +

128

125
nlog2 5 − 13

2
n2.

38

Chapter 4

Software Implementation

For software implementation of Strassen-like algorithms, all algorithms are coded in C++

and compiled using Xcode which is an integrated development environment (IDE). A per-

formance comparison based on timing is made amongst various algorithms implemented

on two different machines for matrix dimension 27, 28 and 29. The improved design us-

ing the linearity property of CMF and R operations discussed in the previous chapter is

implemented. Our implementation also incorporates the block recombination and limited

recursion techniques. In order to simplify design in software realization and hardware sim-

ulation, all the matrices are defined over the binary field GF (2) of two elements: {0, 1},

where addition and multiplication are simply logical XOR and AND operations, respec-

tively.

The main purpose of this chapter is to investigate relative performance of software imple-

mentations of SA, WV and IWV. Our implementations are not intended to match timing

results achieved by commercial or open-source software.

39

4.1 Implementation Analysis

Strassen-like algorithms use the divide-and-conquer technique to perform matrix

multiplication. In theory, it is much faster than the naive method. However, in practice

some features of the divide-and-conquer approach limits its own performance. Firstly,

Strassen-like algorithms recursively split the input matrices until the dimension reaches 1,

which requires a great amount of temporary memory to store intermediate data. Secondly,

recursion is slower due to the overhead of maintaining the stack.

4.1.1 Matrix Construction

Assume that C = A × B, where A, B, C are each an n × n matrix. The input

matrix A is assumed to be divided into four sub-matrices with dimension n
2
: A11, A12, A21

and A22, and input matrix B is also divided into four sub-matrices with dimension n
2
: B11,

B12, B21 and B22. We define a bernoulli distribution class u(e) to produce bool values,

where e is a default random engine class that generates pseudo-random numbers. These

bool values are generated as entries of the input matrices, each of which is 8 bits.

4.1.2 Programming Language

C++, a kind of object-oriented programming (OOP) language, has been used to

develop the program since OOP provides code reusability. Inheritance, a feature of OOP,

makes it possible for the subclasses of data object sharing some characteristics from the

main class. It ensures more accurate coding and thorough analysis on data. It is easy to

maintain and modify existing code by removing and creating new objects.

40

Enterprises are likely to use C++ instead of Java to develop applications that

heavily depend on speed and resource usage. The most important reason is that C++

code runs faster, since the first job of Java during run-time is to be interpreted, while C++

is to be compiled to be binaries and implemented instantly. C++ succeeds to achieve a

tradeoff between programming abstractions and implementation details.

4.1.3 Requirement Analysis

The main objective is to carry out matrix multiplication using Strassen-like algo-

rithms. Execution time is to compare the algorithms. For example, the procedure of IWV

with limited recursion value m = 2 is as follows:

• Generate and divide each of input matrices into four block sub-matrices.

• Use naive block matrix multiplication to generate four sub-matrix multiply-and-add.

• For each sub-matrix multiply-and-add, use block recombination to call blocks CMF,

CM, VA, R to generate final products.

4.2 Strassen’s Algorithm

This section discusses the pseudocode of realizing Strassen’s matrix multiplication algo-

rithm based on block decomposition. The first part provides the pseudocode for Component

Matrix Formation of input matrix A and B. The second part provides the pseudocode for

block Reconstruction.

41

4.2.1 Pseudocode of SA’s Component Matrix Formation

Algorithms 1 and 2 are component matrix formation methods to linearly combine

the sub-matrices, call itself on half-sized matrices, and produce result vector K1 and K2

with length of nlog2 7. Clearly, we can see that in each CMF block, it uses 5 component

additions/subtractions to generate U , T , Q, R and V . The whole recursion is unrolled into

seven sub-recursions. Each sub-recursion returns a vector with length of 7log2 n−1. These

returned vectors are formed to be the output vector.

Algorithm 1 SA’s Component Matrix Formation of Input Matrix A

Require: Matrix Dimension N , Matrix A

Ensure: Output Vector K1

1: function CMF SA
A (N,A)

2: if N = 1 then

3: return A

4: else

5: n← N
2

6: U ← A11 +A22, T ← A21 +A22, Q← A11 +A12, R← A21−A11, V ← A12−A22

7: V1 ← CMF SA
A (n, U), V2 ← CMF SA

A (n, T)

8: V3 ← CMF SA
A (n,A11), V4 ← CMF SA

A (n,A22)

9: V5 ← CMF SA
A (n,Q), V6 ← CMF SA

A (n,R), V7 ← CMF SA
A (n, V)

10: K1← (V1, V2, V3, V4, V5, V6, V7)

11: end if

12: Free U, T,Q,R, V

13: return K1

14: end function

42

Algorithm 2 SA’s Component Matrix Formation of Input Matrix B

Require: Matrix Dimension N , Matrix B

Ensure: Output Vector K2

1: function CMF SA
B (N,B)

2: if N = 1 then

3: return B

4: else

5: n← N
2

6: U ← B11 + B22, T ← B12 −B22, Q← B21 −B11

7: R← B11 + B12, V ← B21 + B22

8: V1 ← CMF SA
B (n, U), V2 ← CMF SA

B (n,B11)

9: V3 ← CMF SA
B (n, T), V4 ← CMF SA

B (n,Q)

10: V5 ← CMF SA
B (n,B22), V6 ← CMF SA

B (n,R)

11: V7 ← CMF SA
B (n, V)

12: K2← (V1, V2, V3, V4, V5, V6, V7)

13: end if

14: Free U, T,Q,R, V

15: return K2

16: end function

43

4.2.2 Pseudocode of SA’s Reconstruction

Assume that K = (K1, K2, K3, K4, K5, K6, K7). Algorithm 3, SA’s Reconstruc-

tion shows the procedure how to linearly reconstruct the input vector K, which is the

vector product of K1 and K2, into an output matrix C with size of n× n. It needs 3, 1,

1 and 3 component additions/subtractions, respectively, to compute U , T , Q and R. The

total cost is 8. Clearly, U = C11, T = C12, Q = C21 and R = C22.

Algorithm 3 SA’s Reconstruction

Require: Vector Length N , Vector K

Ensure: Output Matrix C

1: function RSA(N,K)

2: if N = 1 then

3: return K

4: else

5: n← N
7

6: Vi ← RSA(n,Ki), i = 1, · · · , 7

7: U ← V1 + V4 − V5 + V7

8: T ← V3 + V5

9: Q← V2 + V4

10: R← V1 − V2 + V3 + V6

11: C ← (U, T,Q,R)

12: end if

13: Free V1, V2, V3, V4, V5, V6, V7

14: return C

15: end function

44

4.3 Winograd’s Variant

4.3.1 Pseudocode of WV’s Component Matrix Formation

WV’s Component Matrix Formation, Algorithms 4 or 5, consumes 1 less compu-

tations on sub-matrices. However, it results in the dependency relationship between U and

Q, R and T . In function CMFWV
A (N , A), Q is the subtraction between U and A22, and

R is the addition of Q and A12.

Algorithm 4 WV’s Component Matrix Formation of Input Matrix A

Require: Matrix Dimension N , Matrix A

Ensure: Output Vector K1

1: function CMFWV
A (N,A)

2: if N = 1 then

3: return A

4: else

5: n← N
2

6: U ← A11 − A21, T ← A21 + A22, Q← U − A22, R← Q + A12

7: V1 ← CMFWV
A (n,A11), V2 ← CMFWV

A (n,A12)

8: V3 ← CMFWV
A (n,A22), V4 ← CMFWV

A (n, U)

9: V5 ← CMFWV
A (n, T), V6 ← CMFWV

A (n,R), V7 ← CMFWV
A (n,Q)

10: K1← (V1, V2, V3, V4, V5, V6, V7)

11: end if

12: Free U, T,Q,R

13: return K1

14: end function

45

Algorithm 5 WV’s Component Matrix Formation of Input Matrix B

Require: Matrix Dimension N , Matrix B

Ensure: Output Vector K2

1: function CMFWV
B (N,B)

2: if N = 1 then

3: return B

4: else

5: n← N
2

6: U ← B22 −B12, T ← B12 −B11

7: Q← T + B22, R← Q−B21

8: V1 ← CMFWV
B (n,B11), V2 ← CMFWV

B (n,B21)

9: V3 ← CMFWV
B (n,R), V4 ← CMFWV

B (n, U)

10: V5 ← CMFWV
B (n, T), V6 ← CMFWV

B (n,B22)

11: V7 ← CMFWV
B (n,Q)

12: K2← (V1, V2, V3, V4, V5, V6, V7)

13: end if

14: Free U, T,Q,R

15: return K2

16: end function

46

4.3.2 Pseudocode of WV’s Reconstruction

Assume that K is divided into 7 sub-vectors: K1, K2, K3, K4, K5, K6 and K7.

Algorithm 6, WV’s Reconstruction, is unrolled into 7 recursive subroutines. The algorithm

then performs 7 linear component additions/subtractions based on those sub-matrix prod-

ucts. It needs 1, 3, 2 and 1 component additions/subtractions, respectively, to compute U ,

T , Q and R. The total number of operations is 7, which is 1 less than SA’s Reconstruction.

Algorithm 6 WV’s Reconstruction

Require: Vector Length N , Vector K

Ensure: Output Matrix C

1: function RWV (N,K)

2: if N = 1 then

3: return K

4: else

5: Vi ← RWV (N
7
, Ki), i = 1, · · · , 7

6: U ← V1 + V2

7: Q← V1 − V7︸ ︷︷ ︸
S1

−V3 + V4

8: T ← S1 + V5︸ ︷︷ ︸
S2

+V6

9: R← S2 + V4

10: C ← (U, T,Q,R)

11: end if

12: Free V1, V2, V3, V4, V5, V6, V7

13: return C

14: end function

47

4.4 Improved Winograd’s Variant

4.4.1 Pseudocode of IWV’s Component Matrix Formation

For IWV’s CMF, as shown in Algorithms 7 and 8, it is only unrolled into 5 sub-

recursions, which is 2 less than the original WV’s CMF. It significantly improves this

block’s performance. Furthermore, this block costs 2 less computations on sub-matrices

and 2 more computations on produced vectors to obtain V6 and V7.

Algorithm 7 Improved WV’s Component Matrix Formation of Input Matrix A

Require: Matrix Dimension N , Matrix A

Ensure: Output Vector K1

1: function CMF IWV
A (N,A)

2: if N = 1 then

3: return A

4: else

5: n← N
2

6: U ← A11 − A21, T ← A21 + A22

7: V1 ← CMF IWV
A (n,A11), V2 ← CMF IWV

A (n,A12)

8: V3 ← CMF IWV
A (n,A22), V4 ← CMF IWV

A (n, U), V5 ← CMF IWV
A (n, T)

9: V7 ← V4 − V3, V6 ← V7 + V2

10: K1← (V1, V2, V3, V4, V5, V6, V7)

11: end if

12: Free U, T,Q,R

13: return K1

14: end function

48

Algorithm 8 Improved WV’s Component Matrix Formation of Input Matrix B

Require: Matrix Dimension N , Matrix B

Ensure: Output Vector K2

1: function CMF IWV
B (N,B)

2: if N = 1 then

3: return B

4: else

5: n← N
2

6: U ← B22 −B12, T ← B12 −B11

7: V1 ← CMF IWV
B (n,B11), V2 ← CMF IWV

B (n,B21)

8: V4 ← CMF IWV
B (n, U), V5 ← CMF IWV

B (n, T)

9: V6 ← CMF IWV
B (n,B22)

10: V7 ← V6 − V5

11: V3 ← V7 − V2

12: K2← (V1, V2, V3, V4, V5, V6, V7)

13: end if

14: Free U, T,Q,R, V

15: return K2

16: end function

49

4.4.2 Pseudocode of IWV’s Reconstruction

The improved Reconstruction block calls itself fewer times and use less matrix

additions/subtractions on n
2
× n

2
matrices. It costs 2 additions/subtractions based on

sub-vectors to produce U and T . Most importantly, this block is only unrolled into

6 recursive subroutines to get R1, R2, R3, R5, R7, and R8. Furthermore, it needs 5

extra additions/subtractions on sub-matrices to compute R4, R6, R9 and R10, as shown in

Algorithm 9.

Algorithm 9 Improved WV’s Reconstruction

Require: Vector Length N , Vector K

Ensure: Output Matrix C

1: function RIWV (N,K)

2: if N = 1 then

3: return K

4: else

5: n← N
7

6: U ← K1 + K2, T ← K1 −K7

7: R1 ← R(n, U), R2 ← R(n, T), R3 ← R(n,K5)

8: R4 ← R2 + R3, R5 ← R(n,K6), R6 ← R4 + R5

9: R7 ← R(n,K3), R8 ← R(n,K4)

10: R9 ← R8 −R7 + R2, R10 ← R4 + R8

11: C ← (R1, R6, R9, R10)

12: end if

13: return C

14: end function

50

4.5 Performance Analysis

In this section, we present the implementation performance of naive matrix mul-

tiplication method and Strssen-like algorithms based on block decomposition. The imple-

mentation is for matrix size 2i × 2i, for i = 7, 8, 9. All timing values in milliseconds are

obtained by averaging results from 100 experiments for each of three matrix dimensions.

Table 4.1 lists the time consumption of implementing different matrix multipli-

cation methods on Macbook Pro with Intel Core i5 processor and 16 GB memory. We

should note that IWV2, IWV4 and IWV8 means that IWV is block recombined with dif-

ferent limited recursion values for m = 2, 4, 8, respectively.

Table 4.1: Timing Cost of Implementing Matrix Multiplication Methods on Macbook Pro

Matrix Size SA WV IWV IWV2 IWV4 IWV8 Naive Method

128× 128 1009 859 324 224 155 108 8

256× 256 7118 5988 1895 1293 944 672 69

512× 512 50043 42226 11314 7684 5282 3735 570

From Table 4.1, we can conclude that WV has better performance than SA, and

the optimization techniques greatly reduce WV’s time consumption. For example, when

matrix dimension n = 256, SA takes 7188 ms, WV takes 5988 ms, IWV takes 1895 ms.

With the limited recursion value of m, the timing for IWV improves to 1293 ms, 944

ms and 672 ms for m = 2, 4 and 8, respectively. As shown in Figure 4.1, with matrix

dimension increasing from 128 to 256 to 512, the average growth rate is approximately

7.04, 7.01, 5.91, 5.86, 5.95, 5.89, 8.45, respectively, for SA, WV, IWV, IWV2, IWV4, IWV8

and the naive method. It concludes that Strassen-like matrix multiplication algorithms

51

have relatively lower timing growth than the naive method. Therefore, we expect that at

this growth rate, IWV8 outperforms the naive method before the dimension reaches 215.

Figure 4.1: Growth Rate of Multiple Matrix Multiplication Methods’ Timing Cost

Table 4.2 shows the timing performance of impelementing various matrix multi-

plication methods on Macbook Air with Intel Core i5 processor and 8 GB memory.

Table 4.2: Timing Cost of Implementing Matrix Multiplication Methods on Macbook Air

Matrix Size SA WV IWV IWV2 IWV4 IWV8 Naive Method

128× 128 1352 1107 485 285 204 141 8

256× 256 9382 7826 2486 1700 1154 845 76

512× 512 68884 58289 14718 9945 6840 4826 667

From Table 4.1 and 4.2, we can conclude that machines with more computing

resources can considerably reduce the methods’ running time.

52

Chapter 5

Hardware Simulation

For hardware simulation, we use Altera Quartus II Prime 18.0, which is a programmable

logic device design software by Intel, to compile design, perform timing analysis, simulate,

and synthesis. In order to verify the correctness of computation results, we write test-

bench applied in ModelSim (Intel FPGA Starter Edition 10.5b) to check register status

and output data. All these algorithms are programmed in Verilog [1]. The fitted device

is Cyclone IV E. All Strassen-like algorithms are implemented for matrix size 2i × 2i, for

i = 1, 2, · · · , 5. For IWV implementation, we also consider the application of block re-

combination and different limited recursion values.

53

5.1 System Design

5.1.1 System’s Overall Architecture

The basic idea of implementing Strassen-like algorithms is based on block decom-

position. When the size of the matrix under consideration becomes big, a matrix cannot

be sent into the central unit for computation within a single clock cycle. Thus, registers

for temporarily storing these input data are necessary.

Take 16 × 16 matrix multiplication as example. It needs three registers of size

256 bits each, one CMFA
16×16, one CMFB

16×16, one CM16×16, and one R16×16. Figure 5.1

shows the system’s overall structure.

Figure 5.1: System’s Overall Architecture of Matrix Multiplication Algorithms Based on

Block Decomposition

54

5.1.2 Module Instantiation

Verilog module, like functions in C++, is a piece of code that can be reused

within a program. It provides the template where we can build actual objects. Module

can be invoked from other modules, which is denoted as module instantiation. When we

instantiate a module, we need to specify the connections to ports of the module. The

simplest way to instantiate a module in top module is to wire the ordered ports up within

a named instance. We need to keep the ports mapping.

Module instantiation enables hierarchical design in Verilog. Hierarchical design

usually includes a top level module and several lower level modules. It enlightens the

realization design of recursive algorithms. For example, CMF 4×4
A is a module realizing

component matrix formation of input matrix A with size 4 × 4. In IWV, it needs to

instantiate five CMF 2×2
A with different names, as shown in Figure 5.2.

Figure 5.2: Lower Level Module Instantiation of CMF 4×4
A

55

5.2 System Parameter Setting

5.2.1 Cyclone IV devices

Altera’s new Cyclone IV FPGA device family extends the feature of Cyclone FPGA

series. Especially, Cyclone IV E devices are best used for low-cost, small-form-factor

applications widely applied in wireless, wireline, broadcast, industrial, and communication

industries. The voltages that Cyclone IV E device family offers are of 1.0V and 2.0V. The

device family usually provides 6K to 115K logic blocks, 94 to 535 user I/Os, and up to

4 Mb of embedded memory, which is considered as low-cost and low-power FPGA fabric.

Table 5.1 lists the device resources limit of part of Cyclone IV E device family [2].

Table 5.1: Resource of Cyclone IV E Device Family

Resources EP4CE40 EP4CE55 EP4CE75 EP4CE115

Logic Elements 39600 55856 75408 114480

Embedded Memory(Kbits) 1134 2340 2745 3888

Embedded 18× 18 multipliers 116 154 200 266

General-purpose PLLs 4 4 4 4

Global Clock Network 20 20 20 20

Maximum User I/O 532 374 426 528

5.2.2 Logic Elements

Logic elements (LE) are considered as the smallest units of logic in the Cyclone IV

device architecture. LEs are put packed firmly and offer high-performance specifications

56

with reasonable logic usage. As shown in Figure 5.3, each LE should include:

• A four-input look-up table(LUT). LUT is used to implement any functions with four

variables.

• Programmable Register.

• Carry Chain Connection and Register Chain Connection

• Register Packing Support

Figure 5.3: Cyclone IV Device LEs

57

5.2.3 Input/Output Format

For 16 × 16 and 32 × 32 modules, the width of data input and output ports is

customized to be 128 bits for better timing performance. Take 32×32 matrix multiplication

module as an example, for input matrix A, the total 1024 bits from A[0][0] to A[31][31] are

packed as a vector with length of 1024 bits. Therefore, it totally needs 8 clock cycles to

subsequently store all input data into register. It should be noted that in the 8 clock cycles,

input matrix B is also successfully transmitted to a register at the same time. Thus, the

input is sent over 8 cycles. When all arithmetic operations are done, the product matrix

is ready to be sent out. The product is in the form 1-dimension vector with length of 1024

bits. The timing cost for output is also 8 cycles [23].

5.3 Sytem Circuit

For the realization of recursions, we adopt nested module instantiation methodol-

ogy. We first design modules for smaller matrices or vectors, and then instantiate them in

the top module. For example, the CMF module of SA for n = 4 needs to instantiate 7 CMF

modules of SA for n = 2. In order to specifically explain the hardware implementation,

we illustrate the circuit with diagrams respectively for each method. It is easy to find out

how many logic component operations are used in the circuit.

58

5.3.1 Block Decomposition Circuit of SA

In Figure 5.4, block decomposition circuit of SA, the SA is divided into 3 clusters

of blocks: CMF =⇒ CM =⇒ R. It instantiates 14 CMFs, 7 CMs, and 7 Rs. In this case,

it totally takes 10 XORs to compute the input of CMFs and 8 XORs to reconstruct these

vectors Ri’s (i = 1, · · · , 7). The cluster of CMs require 7 AND gates, since each CM is a

bit level multiplication over GF (2).

Figure 5.4: Block Decomposition Circuit of SA for n = 2

59

5.3.2 Block Decomposition Circuit of WV

In Figure 5.5, block decomposition circuit of WV, there are 2 less XORs to compute

the input of CMFs and 1 less XOR to reconstruct these vectors Ri’s (i = 1, · · · , 7) than

SA. The number of AND gates are the same with that in SA.

Figure 5.5: Block Decomposition Circuit of WV for n = 2

60

5.3.3 Block Decomposition Circuit of IWV

In Figure 5.6, block decomposition circuit of IWV, it only instantiates 10 CMFs,

7 CMs, and 6 Rs. Furthermore, it totally takes 4 XORs to compute the input of CMFs, 4

XORs to compute the input of CMs, 2 XORs to compute the output of CMs, and 5 XORs

to reconstruct these vectors Ri’s (i = 1, · · · , 7). A total of 7 AND gates are needed in

CMs.

Figure 5.6: Block Decomposition Circuit of Improved WV for n = 2

61

5.4 Performance Evaluation

5.4.1 Performance Comparison

Table 5.2 summarizes the details of performance metrics of SA, WV, and IWV

based on block decomposition. IWV is based on observing the linearity property of WV’s

CMF and R.

For physical resource utilization, we can see that the usage of logic elements in

WV is reduced around 7% than SA for matrix dimension ranging from 22 to 25. On the

other hand, IWV tends to use more logic elements than WV, and for the matrix dimensions

used in our hardware simulation the differences are 51%, 51%, 54% and 58%, respectively.

However, the memory bits are reduced by 59.2%, 74.1%, 62.5% and 69.4%, respectively.

In terms of clock rate, maximum frequency is higher by 5.6%, 28.5% and 76.7%

compared to those of WV for matrix sizes 4× 4, 8× 8, 16× 16. In Table 5.2, we also list

the number of clock cycles needed by the three methods. By dividing these clock cycle

counts by the maximum frequency, we get computation time. From the data in the table,

we can conclude that the computation time required by IWV is less than that by WV. We

also note that with the increase of matrix dimension from 2 to 16, the rate of reduction in

computation time by IWV tends to be larger.

62

Table 5.2: Performance Metrics of SA, WV and IWV Based on Block Decomposition

Metrics 2× 2 4× 4 8× 8 16× 16 32× 32

SA

Logic Elements 58 291 2038 14320 106691

Pins (total) 13 49 193 385 385

Total Memory Bits 0 441 2744 16807 168070

Clock Cycles 7 12 15 21 *

Max Frequency (MHz) 675.22 358.68 274.5 113.9 *

Computation Time (ns) 10.37 33.46 54.64 184.37 *

WV

Logic Elements 58 269 1884 13242 99314

Pins (total) 13 49 193 385 385

Total Memory Bits 0 441 2744 16807 168070

Clock Cycles 7 12 15 21 *

Max Frequency (MHz) 654.88 339.67 260.62 115.04 *

Computation Time (ns) 10.69 35.33 57.56 182.55 *

IWV

Logic Elements 58 406 2839 20426 157293

Pins (total) 13 49 193 385 385

Total Memory Bits 0 180 712 6308 51428

Clock Cycles 7 12 15 21 *

Max Frequency (MHz) 654.88 358.68 334.78 203.29 *

Computation Time (ns) 10.69 33.46 44.81 103.30 *

5.4.2 Performance Optimization

In order to further improve the resource utilization, we exploit the use of block

recombination and limited recursion. For accurate analysis, we only employ these methods

63

on matrix size of 16 × 16 and 32 × 32. Table 5.3 summarizes the details of performance

metrics of IWV based on block decomposition with different limited recursion values m

when matrix size is 16× 16. From the table, we see that the size of initially formed matrix

has a big influence on the overall performance. The logic element usage is reduced from

14826 to 10322 to 8686. The total memory bits are reduced from 2416 to 1644 to 1116.

The number of clock cycles is reduced from 21 to 15 to 11.

Table 5.3: Performance Metrics of IWV Based on Block Decomposition for 16× 16 Matrix

Metrics
Matrix Size 16× 16

m = 2 m = 4 m = 8

Logic Elements 14826 10322 8686

Total Memory Bits 2416 1644 1116

Clock Cycles 21 15 11

Max Frequency (MHz) 99.26 134.37 103.56

Computation Time (ns) 211.16 111.63 106.22

Table 5.4 provides the details of performance metrics of IWV based on block

decomposition with different limited recursion values when matrix size is 32×32. The logic

element usage is reduced from 105873 to 70152 to 59639. The total amount of memory

bits is reduced from 18816 to 9644 to 6912. The number of clock cycles is reduced from 35

to 30 to 27. Maximum clock frequency increases from 39.73 MHz to 55.32 MHz to 72.24

MHz. Computation time is reduced from 880.95 ns to 542.30 ns to 373.35 ns.

64

Table 5.4: Performance Metrics of IWV Based on Block Decomposition for 32× 32 Matrix

Metrics
Matrix Size 32× 32

m = 2 m = 4 m = 8

Logic Elements 105873 70152 59639

Total Memory Bits 18816 9664 6912

Clock Cycles 35 30 27

Max Frequency (MHz) 39.73 55.32 72.24

Computation Time (ns) 880.95 542.30 373.35

65

Chapter 6

Concluding Remarks

6.1 Summary

In this thesis, we have considered Strassen-like algorithms for matrix multiplica-

tions, specifically Strassen’s algorithm and its variant by Winograd. These two algorithms

extend the idea of block matrix multiplication, divide-and-conquer, to reduce the algorithm

complexity from O(n3) to O(n2.81).

In order to make analysis of these two fast matrix multiplication methods, we have

reviewed Cenk and Hasan’s idea to divide the whole algorithm into four blocks: CMFA,

CMFB, CM , and R. Each block is considered as a recursive function. Several examples

were instantiated to verify the correctness of these blocks. We have also investigated

three methodology: linearity property of CMF and R, block recombination, and limited

recursion, to improve Winograd’s variant for better performance. Complexities of improved

methods have also been listed for comparisons.

Software implementation and hardware simulation have both been performed to

66

support the theoretical analysis. For software implementation, we adopted C++ as pro-

gramming language and realized matrix multiplications for dimensions 128, 256 and 512.

In our software realizations, WV is about 15% faster than SA. Observing the linearity

property of CMF and R operations improves WV by 66%. The combined use of block

recombination and limited recursion reduces the timing by up to 67%.

For hardware simulation, we have used Verilog to realize it. Due to the limit of

hardware resources, we have restricted our matrix size to 2i× 2i, for i = 1, 2, · · · , 5. From

the synthesis results, we have concluded that WV consumed about 7.5% less logic elements

than SA. A number of optimization techniques have been employed to considerably reduce

the number of logic elements, the total amount of storage (i.e., memory bits) and the

running time.

Above all, we are able to make conclusions that WV is better than SA both in

software implementation and hardware simulation. The optimization methods introduced

by Cenk and Hasan have been tested to considerably improve WV’s performance with

regard to execution time and resource utilization.

6.2 Future Work

As can be seen from the previous chapters, Strassen-like algorithms have asymp-

totically lower complexities than the naive method. But in real experiment, Strassen-like

algorithms are not efficient enough when they are applied on smaller size matrices. They

incur a huge amount of extra time to realize the recursion unrolled to a certain level.

For larger matrices, they require massive memory storage and hence it is worth to try

implementing them on a computer system with a huge amount of high-speed storage [24].

67

For hardware simulation analysis, it is easy to exceed FPGA device resource lim-

itations if we directly unroll all recursions and compute them. Therefore, it would be

interesting to try implementing Strassen-like algorithms using Application Specific Inte-

grated Circuits (ASIC).

68

References

[1] Ambika, Anuradha S. High Speed UART Design Using Verilog. International Journal

of Advanced Research in Computer and Communication Engineering, Pages 140-142,

Vol.5, Issue 2, February 2016.

[2] Altera-corporation. Cyclone IV Device Handbook. Volume 1, April 2014 avail-

able at https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/hb/cyclone-iv/cyclone4-handbook.pdf?language=en_US. Accessed

1 November 2018.

[3] Andris Ambainis, Yuval Filmus, François Le Gall. Fast Matrix Multiplication: Lim-

itations of the Laser Method, arXiv:1411.5414. Technical Report, 2014 available at

https://arxiv.org/pdf/1411.5414.pdf. Accessed October 12, 2018.

[4] Howard Anton, Chris Rorres. Elementary Linear Algebra, 11th Edition. John Wiley

& Sons. November 2013.

[5] Jeff A. Bilmes, Krste Asanovic, Chee-Whye Chin, James Demmel. Optimizing Matrix

Multiply Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodol-

ogy. ICS ’97 Proceedings of the 11th International Conference on Supercomputing,

Pages 340-347, July 1997.

69

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-iv/cyclone4-handbook.pdf?language=en_US
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-iv/cyclone4-handbook.pdf?language=en_US
https://arxiv.org/pdf/1411.5414.pdf

[6] Brice Boyer, Jean-Guillaume Dumas, Clément Pernet, Wei Zhou. Memory Efficient

Scheduling of Strassen-Winograd’s Matrix Multiplication Algorithm. International

Symposium on Symbolic and Algebraic Computation, Pages 55-62, July 2009.

[7] Murat Cenk, M. Anwar Hasan. On the arithmetic complexity of Strassen-like matrix

multiplications. Journal of Symbolic Computation, Pages 484-501, Volume: 80, Part

2, May-June 2017.

[8] Davis Cherney, Tom Denton, Rohit Thomas, Andrew Waldron. Linear Algebra.

First Edition. Davis California, 2013 available at https://www.math.ucdavis.edu/

~linear/linear-guest.pdf. Accessed 10 October 2018.

[9] Vineet Choudhary. Introduction to Divide and Conquer (D&C) Al-

gorithm Design Paradigm. Available at https://developerinsider.co/

introduction-to-divide-and-conquer-algorithm-design-paradigm. Accessed

November 20 2018.

[10] Henry Cohn, Robert Kleinberg, Balazs Szegedy, Christopher Umans. Group-theoretic

Algorithms for Matrix Multiplication. Proceedings of the 46th Annual Symposium

on Foundations of Computer Science, IEEE Computer Society, Pages 379-388, 23-25

October, 2005.

[11] Don Coppersmith, Shmuel Winograd. Matrix Multiplication via Arithmetic Progres-

sions. Journal of Symbolic Computation, Volume 9, Issue 3, Pages 251-280, March

1990.

[12] Paolo D’Alberto, Alexandru Nicolau. Adaptive Winograd’s matrix multiplications.

ACM Transactions on Mathematical Software, Pages 3:11-3:23, Volume: 36, Issue:

1, March 2009.

70

https://www.math.ucdavis.edu/~linear/linear-guest.pdf
https://www.math.ucdavis.edu/~linear/linear-guest.pdf
https://developerinsider.co/introduction-to-divide-and-conquer-algorithm-design-paradigm
https://developerinsider.co/introduction-to-divide-and-conquer-algorithm-design-paradigm

[13] Yong Dou, S. Vassiliadis, G. K. Kuzmanov, G. N. Gaydadjiev. 64-bit Floating-

Point FPGA Matrix Multiplication. Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays, Pages 86-95, February

20-22, 2005.

[14] The Editors of Encyclopaedia Britannica. Matrix Mathematics. Available at

https://www.britannica.com/science/matrix-mathematics. Accessed 2 Novem-

ber 2018.

[15] François Le Gall. Faster Algorithms for Rectangular Matrix Multiplication. Pro-

ceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2012), pp. 514-523, arXiv:1204.1111, doi:10.1109/FOCS.2012.80.

[16] Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. The MIT Press,

Nov. 18 2016.

[17] M. Anwar Hasan, Nicolas Meloni, Ashkan Hosseinzadeh Namin, Christophe Negre.

Block Recombination Approach for Subquadratic Space Complexity Binary Field

Multiplication Based on Toeplitz Matrix-Vector Product. IEEE TRANSACTIONS

ON COMPUTERS, Pages 151-163, Volume: 61, NO. 2, FEBRUARY 2012.

[18] Ivo Hedtke. Strassen’s Matrix Multiplication Algorithm for Matrices of Arbitrary

Order. Bulletin of Mathematical Analysis and Applications, Pages 269-277, Volume:

3, Issue: 2, 2011.

[19] Roger A. Horn, Charles R. Johnson. Matrix Analysis. Cambridge University Press,

1985.

71

https://www.britannica.com/science/matrix-mathematics

[20] Ayaz Khan, Optimizing the Matrix Multiplication Using Strassen and Winograd

Algorithms with Limited Recursions on Many-Core International Journal of Parallel

Programming, Pages 801-830, Volume: 44, Issue: 4, August 2016.

[21] Ahmad Khayyat. Analysis-Driven Design of Parallel Floating-Point Matrix Multipli-

cation for Implementation in Reconfigurable Logic. PhD thesis, Queen’s University,

Canada, 2013.

[22] Tomonori Kouya. Accelerated Multiple Precision Matrix Multiplication using

Strassen’s Algorithm and Winograd’s Variant. JSIAM Letters, Volume: 6, Octo-

ber 2014.

[23] Vivek Kumar, Vinary B. Y. Kumar, Sachin B. Patkar. FPGA-based Implementation

of M4RM for Matrix Multiplication over GF(2). 18th International Symposium on

VLSI Design and Test, Pages 1-2, 2014.

[24] Juby Mathew, Dr. R Vijaya Kumar. Comparative Study of Strassen’s Matrix Mul-

tiplication Algorithm. International Journal of Computer Science and Technology,

Pages 749-754, Volume: 3, Issue: 1, January-March 2012.

[25] Khaled Matrouk, Abdullah Al-Hasanat, Haitham Alasha’ary, Ziad Al-Qadi, Hasan

Al-Shalabi. Analysis of Matrix Multiplication Computational Methods. European

Journal of Scientific Research, Pages 258-266, Volume: 121, No.3, 2014.

[26] V. Ya. Pan. New Fast Algorithms for Matrix Operations. SIAM J. Comput., 9(2):

321-342, 1980.

[27] V. Ya. Pan. Fast Matrix Multiplication and its Algebraic Neighbourhood. SB MATH,

208(11), Pages 1661-1704, 2017.

72

[28] Kaare Brandt Petersen, Michael Syskind Pedersen. The Matrix Cookbook. Version:

November 15, 2012.

[29] Jean-No.̇el Quintin, Khalid Hasanov, Alexey Lastovetsky. Hierarchical Parallel Ma-

trix Multiplication on Large-Scale Distributed Memory Platforms. 42nd International

Conference on Parallel Processing, Pages: 754-762, October 1-4 2013.

[30] Utsab Ray, Tapan Kumar Hazra, Utpal Kumar Ray. Matrix Multiplication using

Strassen’s Algorithm on CPU & GPU. International Journal of Computer Sciences

and Engineering, Pages 98-105, Volume: 4, Issue: 10, 2016.

[31] Radu Rugina, Martin Rinard. Recursion Unrolling for Divide and Conquer Programs.

Proceedings of the 13th International Workshop on Languages and Compilers for

Parallel Computing-Revised Papers, Pages: 34-48, August 10-12 2000.

[32] Sara Robinson. Toward an Optimal Algorithm for Matrix Multiplication. SIAM

News, Volume 38, Number 9, November 2005.

[33] A.K. Sharma. Text Book of Matrix. Discovery Publishing House, India, 2004.

[34] Volker Strassen. Gaussian Elimination is not Optimal. Numer. Math. 13: 354-356,

1969.

[35] Andrew Stothers. On the Complexity of Matrix Multiplication. PhD thesis, Univer-

sity of Edinburgh, 2010.

[36] Gilbert Strang. Linear Algebra and Its Applications, Foutth Edition. Thomson

Brooks/Cole, 2006.

73

[37] Virginia Vassilevska Williams, Multiplying Matrices Faster Than Coppersmith-

Winograd. STOC ’12 Proceedings of the forty-fourth annual ACM symposium on

Theory of computing, Pages 887-898, 2012.

[38] S. Winograd. On Multiplication of 2× 2 Matrices. Linear Algebra and Application,

4: 381-388, 1971.

74

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Previous Work
	Software Implementation of Matrix Multiplication
	Hardware Implementation of Matrix Multiplication

	Background
	Naive Matrix Multiplication
	Block Matrix Multiplication
	Divide and Conquer

	Scope of Work
	Thesis Organization

	Overview of Strassen-like Algorithms for Matrix Multiplication
	Two Strassen-like Algorithms
	Strassen's Algorithm
	Winograd's Variant

	Block Decomposition of Strassen's Algorithm
	SA's Component Matrix Formation
	SA's Component Multiplication
	SA's Reconstruction

	Block Decomposition of Winograd's Variant
	WV's Component Matrix Formation
	WV's Reconstruction

	Complexity Comparison

	Recent Methods to Improve Strassen-like Algorithms
	Linearity Property of CMF and R Operations
	SA's CMF Block based on Linearity
	WV's CMF Block based on Linearity
	WV's R Block based on Linearity
	Complexity Comparison

	Block Recombination of Improved Winograd's Variant
	Block Recombination Method
	Block Recombination with Limited Recursion

	Conclusion

	Software Implementation
	Implementation Analysis
	Matrix Construction
	Programming Language
	Requirement Analysis

	Strassen's Algorithm
	Pseudocode of SA's Component Matrix Formation
	Pseudocode of SA's Reconstruction

	Winograd's Variant
	Pseudocode of WV's Component Matrix Formation
	Pseudocode of WV's Reconstruction

	Improved Winograd's Variant
	Pseudocode of IWV's Component Matrix Formation
	Pseudocode of IWV's Reconstruction

	Performance Analysis

	Hardware Simulation
	System Design
	System's Overall Architecture
	Module Instantiation

	System Parameter Setting
	Cyclone IV devices
	Logic Elements
	Input/Output Format

	Sytem Circuit
	Block Decomposition Circuit of SA
	Block Decomposition Circuit of WV
	Block Decomposition Circuit of IWV

	Performance Evaluation
	Performance Comparison
	Performance Optimization

	Concluding Remarks
	Summary
	Future Work

	References

