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Abstract

Superconducting devices as quantum bits (qubits) are one of the most promising can-

didates for implementing a practical quantum computer. Over the last decade, quantum

coherence times of superconducting qubits have been continuously improved. Operating

qubits in noise insensitive points, eliminating the participation of the lossy materials, and

better isolation from environment increased the decoherence times from nanoseconds to

tens of microseconds. One recent approach on the qubit design is to shunt the Josephson

junctions with large capacitors to reduce the sensitivity to noise and to redistribute the

stored electromagnetic energy in a well-engineered area. This approach was first applied

on charge qubits and later adopted to other types of superconducting qubits.

In this thesis, we present the design and the characterization of a three-Josephson

junction superconducting circuit with three large shunt capacitors. We present experiments

on decoherence in the circuit used as a qubit. The qubit relaxation time T1 is reaching

as high as 47µs and the spin-echo dephasing time T2E = 9.4µs. In addition, we present

spectroscopy experiments and decoherence characterization in the qutrit subspace formed

by the lowest three energy levels. The spectroscopy data is in excellent agreement with

the complete circuit model based on the system capacitance matrix. At the flux symmetry

point, the circuit has a large anharmonicity, defined as the difference between the 1-2 and

0-1 transition frequencies, approaching 2π × 3.7 GHz, which is enabling fast single qubit

operations. We performed randomized benchmarking with the qubit gates with a duration

of 1.62 ns and an average gate fidelity of 99.9%.

Moreover, we present experiments with multi-level control in qutrit subspace, formed

by the lowest three energy levels. We demonstrate a single step experimental implemen-

tation of a generalized Walsh-Hadamard gate. We use a decomposition of the quantum

gate into two unitary operations, one implemented by an off-diagonal Hamiltonian and the

other implemented by a diagonal Hamiltonian. The off-diagonal Hamiltonian is obtained

by the simultaneous driving of the transitions between levels 0-1, 1-2, and 0-2, with the

latter being a two-photon process. The diagonal Hamiltonian is effectively implemented
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by appropriately shifting the phases of adjacent pulses. The gate is characterized using to-

mography process and the average fidelity exceeds 90%, in good agreement with numerical

simulations that take into account the multi-level structure of the system.
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Chapter 1

Introduction

Quantum computers, as an emerging technology, promise breakthroughs in many aspects

of our daily lives such as computation, communication, and security. Compared to the

classical computers they harness the quantum nature of physical systems and offer speed up

in certain algorithms, secure communication, better encryption protocols , and simulations

of natural quantum system [1].

The basic unit of a quantum computer is a quantum bit (qubit) which is essentially a

two level system. Similar to classical bits, qubits can be in state 0 or 1. On the contrary

to their classical counterpart, qubits can be in a superposition of these two states. When

a measurement is performed, the qubit superposed state collapses to either state 0 or 1.

However, certain algorithms and quantum gates can act on the superposed state acting on

all superposed states simultaneously, offering a speed up on computation tasks. In 1994

Peter Shor demonstrated that the factorization of large numbers into prime factors could

be exponentially faster then the best known classical algorithms [2].

There are several types of physical implementations of qubits. The most evident quan-

tum systems are the microscopic natural systems such as single atoms [3, 4], ions [5, 6, 7] or

spins [8, 9, 10]. Such qubits are well established and studied in literature [11]. In addition

to the microscopic systems, a quantum system can be engineered in macroscopic scales
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using superconducting circuits [12, 13, 14, 15, 16]. The main component of the super-

conducting qubits is the Josephson junction. Superconducting qubits are often called as

artificial atom since they mimic microscopic quantum objects in macroscopic scales. Due

to the relatively large sizes, on-chip superconducting qubits fully utilizes the advancements

in micro- and nano-fabrication methods leading to more reproducible devices and scalable

architectures.

One of the major challenges in superconducting devices is to increase the quantum

information storage life times. One disadvantage with on-chip superconductors is that

they can couple to their environment strongly due to their macroscopic size. Therefore,

the noise channels can induce significant decoherence on the stored information. Reducing

the sensitivity of the qubit to noise channels is a key aspect to implement a practical fault

tolerant quantum computer.

There are two characteristic energy scales defining superconducting qubit states, namely

the charging energy EC and the Josephson energy EJ of the junctions. In the charge regime

(EJ < EC), the quantum states are defined by the well defined charges whereas in the flux

regime (EJ > EC) the states are defined by the well defined phase or the flux. The charge

qubit is operated in charge regime, however the qubit is sensitive to charge fluctuations.

The coherence time of the charge qubit can be improved by reducing the sensitivity to

charge noise. One of the recent achievements in design of a charge qubit is the capacitive

shunting of qubit Josephson junctions. This approach reduces the sensitivity to charge

fluctuations. In addition, capacitive shunting allows for storing the electromagnetic energy

in an engineered area, effectively removing the participation of lossy environment around

qubit and suppressing the dielectric loss. This modification of the charge qubit increased

the coherence times significantly [17].

The superconducting flux qubit is formed by interrupting a superconducting loop with

typically one [18] or three [19] Josephson junctions. The two quantum basis states are

persistent supercurrents in the loop circulating in clockwise and anticlockwise directions.

The flux qubit is insensitive to charge fluctuations as it is operated in the large EJ/EC
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regime. On the other hand, the fluctuations in flux can induce significant decoherence

especially away from the flux symmetry point. Over the years flux qubits demonstrated

relatively high coherence with flexibility in terms of quantum control and integration in

other circuits. However, until recently the coherence were improved marginally. Capaci-

tive shunting of the flux qubit is proposed to reduce the charge noise [20] and recently a

systematic study of flux qubit with single shunt pads demonstrated high coherence with

moderate anharmonicity of 0.8 GHz in optimized samples [21].

1.1 Objective of the thesis

The objective of this thesis is to present a design for a three junction flux qubit by intro-

ducing shunt capacitors to all three qubit junctions to uniformly redistribute the electric

fields in an engineered area. The aim is to reduce the participation of the lossy materials

in the vicinity of the qubit affecting qubit coherence. In addition, this work proposes a

model for the design to investigate the design space and to determine the circuit charac-

teristics with fabrication parameters. This works also proposes to investigate the device

characteristic in multi-level structure and explore single-qubit and qutrit gates.

1.2 Outline of this thesis

In this thesis, we present the design and a model for the capacitively shunted flux device

coupled to a superconducting coplanar waveguide (CPW) resonator. The device is formed

of three Josephson junctions shunted by three large capacitor pads, creating a loop circuit.

We perform spectroscopy experiments and demonstrate multi-level structure of the device.

In addition, we characterize coherence in qubit and qutrit space and investigate the possible

sources of decoherence. We show fast and high-fidelity single qubit gates and benchmark

the gate fidelities with a randomized benchmarking protocol. We also demonstrate multi-

level control of the device in qutrit subspace and utilize state tomography process for
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fidelity analyses of qutrit gates.

In Chapter 2, first, the basic building blocks of superconducting devices including copla-

nar waveguide resonators, Josephson junctions, and qubits are introduced. Next, qubit

control and qubit resonator interactions in circuit quantum electrodynamics picture are

discussed. Last, the decoherence with master equation formalism and dephasing with low

frequency flux noise are discussed.

In Chapter 3, the design and the model for capacitively shunted flux qubits are given.

The design consist of a coplanar waveguide resonator and flux qubits with all three junctions

shunted by large capacitor pads. The model is based on the complete capacitive structure

of the design. The electromagnetic (EM) response of the coupled resonator-qubit system

and the capacitance matrix of the system is simulated with EM simulation tools. The

qubit characteristics are then calculated with the circuit model using EM simulation results

and fabrication parameters as input parameters. Lastly, device fabrication methods and

procedures are discussed.

In Chapter 4, the experimental characterization of the shunted flux qubit is given.

First, transmission spectrum of the coupled qubit resonator system is presented and the

readout characteristics are discussed. Next, the energy level spectrum of the qubit is de-

termined by spectroscopy experiments and the transition frequencies are shown for a range

of magnetic flux. Next, driven Rabi oscillations on the states identified by spectroscopy

are demonstrated at various flux bias points. Last, a method for determining the state

populations is discussed.

In Chapter 5, coherence characterization for the qubit system including energy relax-

ation and dephasing analysis with Ramsey, spin-echo, and dynamical decoupling methods

are presented at various flux bias points. In addition, decoherence rates are determined

for the multi-level system formed by the lowest three energy levels. Next, fast and high

fidelity single qubit gates are demonstrated and the fidelity of the gates are studied with

randomized benchmarking protocol.

In Chapter 6, quantum state tomography and multi-level control are presented. Multi-
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level control utilizes resonant transitions and two photon transition from ground state to

second excited state. Therefore, Rabi oscillations between states 0 and 2 with two-photon

process are presented in this chapter. In addition, the experimental implementation of a

generalized Walsh-Hadamard gate is demonstrated. The gate Hamiltonian is decomposed

into two unitary operators. The unitary operators are implemented by simultaneous driving

of the qutrit transitions and adjusting the drive phases. Last, numerical simulations of the

gate is compared to the experimental results and potential limitations are discussed.

In Chapter 7, the concluding remarks of the thesis and the future work are discussed.
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Chapter 2

Theoretical background

In this chapter, the general theoretical background for the experiments with capacitively

shunted flux qubits is given. In the first section, a brief introduction to superconducting

microwave resonators is presented. In the second section, Josephson junctions,the building

blocks of superconducting qubits, are discussed. In the third section, superconducting

qubit types are introduced with a focus on flux qubits. In the fourth section, a general

introduction to qubit control is given. In the fifth section, the coupled resonator and qubit

system is studied with circuit quantum electrodynamics approach. In the last section, the

decoherence of superconducting qubits are discussed.

2.1 Superconducting microwave resonators

Superconducting resonators play a significant role in quantum computation and infor-

mation and they are used in many applications such as radiation detection [22, 23] and

parametric amplification [24]. In quantum computation, superconducting resonators are

mainly used for qubit state readout [25], qubit control [26], and qubit-qubit coupling mech-

anisms [27]. In this section, we first introduce lumped element resonators. Next, the basics
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of the transmission lines and distributed resonators are given. Finally, coplanar microwave

resonators are discussed.

2.1.1 Lumped element resonators

A simple resonator can be built by lumped circuit elements, consisting of resistors, in-

ductors, and capacitors, placed in series or in parallel. Figure 2.1 depicts the series and

parallel RLC circuits. The complex impedance of the serial circuit is expressed as

C CLR

(a) (b)

V

LR

V

Figure 2.1: Circuit representations of lumped element resonators. a) Series RLC circuit. b)
Parallel RLC circuit

Z(iω) = R + iωL+
1

iωC
, (2.1)

where R, L, and C are resistor, inductor and capacitor respectively and ω is the angular

frequency of the input signal. The impedance expression for parallel circuit is similarly

expressed as

Z(iω) =

(
1

R
+

1

iωL
+ iωC

)−1

. (2.2)

The resonance occurs when the time average energies of the stored electric and magnetic

field are equal to each other. This condition is satisfied when ω = ω0 = 1/
√
LC, leading

to complex impedance Z to be real. The average stored energies when on resonance are

WC = WL,
1

4
CV 2

C =
1

4
LI2

L. (2.3)
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In a resonator, the loss is associated with the resistive element R and the corresponding

energy is given as

WR =
1

2
RI2

R. (2.4)

One important measure of a resonator is called quality factor Q. Basically, the quality

factor describes the life time of the stored energy in the resonator. The simple form of the

Q is given as [28],

Q = ω
Average energy stored in the resonator

Energy loss per cycle
. (2.5)

For the series RLC circuit, the Q is found as

Q =
ω0L

R
. (2.6)

Similarly for the parallel RLC circuits,

Q = ω0RC. (2.7)

Quantization of LC resonator

In this section the quantum LC resonator is discussed. The classical Hamiltonian of the

lumped element LC resonator can be expressed as

H =
1

2
CV 2 +

1

2
LI2, (2.8)

where V is the voltage on the capacitor C and I is the current on the inductor. Using gen-

eralized coordinates and replacing the terms in the Hamiltonian as charge on the capacitor

q = CV and the flux on the inductor φ = LI, the Hamiltonian can be written as

H =
q2

2C
+
φ2

2L
. (2.9)
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In quantum picture, the classical quantities of charge and flux are replaced by their

corresponding quantum operators q → q̂ and φ → φ̂. The quantum Hamiltonian is then

expressed as

Ĥ =
q̂2

2C
+
φ̂2

2L
. (2.10)

The operators q̂ and φ̂ have a commutation relation [q̂, φ̂] = i2e~ and are canonically

conjugated. We introduce the dimensionless annihilation and creation operators as,

â =
1√

2~ω0C
(q̂ + iCω0φ̂) (2.11)

â† =
1√

2~ω0C
(q̂ − iCω0φ̂). (2.12)

The annihilation and creation operator have the commutation relation [â, â†] = 1. We can

rewrite the Hamiltonian as

Ĥ = ~ω0(â†â+
1

2
). (2.13)

This is the Hamiltonian of a harmonic oscillator. The non-Hermitian annihilation and

creation operators do not correspond to measurable quantities however they are useful in

operations on photon number states |n〉, where n = n̂|n〉 represents the number of photons

stored in the resonator with the number operator n̂ = â†â. The action of the annihilation

and creation operators on number states are

â|n〉 =
√
n|n− 1〉,

â†|n〉 =
√
n+ 1|n+ 1〉. (2.14)

2.1.2 Transmission lines

Microwave resonators are quite useful tools to probe any circuitry they are coupled to.

Typically, a resonator can be implemented by using either lumped circuit elements or
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distributed elements in the form of transmission lines. Unlike the circuit theory, the trans-

mission line theory deals with devices having dimensions comparable to the wavelength

of the frequency of interest. In this case, voltage and current can vary significantly over

the device dimensions. Therefore, transmission lines are modeled as systems consisting of

distributed elements of capacitors, inductors, resistors, and conductors. For infinitely small

lengths, transmission lines can be treated as circuits with lumped unit elements. Figure 2.2

shows a section of a typical transmission line having two conductors with length ∆z.

I(z+Δz,t)

V(z+Δz,t)V(z,t)

I(z,t) r Δz l Δz

g Δz c Δz

ΔzΔz

I(z,t)

V(z,t)

(a) (b)

~ ~ 

~ ~ 

Figure 2.2: a) Infinitely small part of a two conductor transmission line. b) Lumped element
model of the transmission line shown in (a).

Here, r̃ is the series resistance per unit length. Similarly l̃, g̃, and c̃ are series inductance,

shunt conductance and shunt capacitance per unit length respectively. When Kirchhoff‘s

voltage and current laws are applied to circuit shown in Fig. 2.2(b), corresponding wave

equations for the voltage and the current can be found as [28]

V (z) = V +
0 e
−γpz + V −0 e

γpz (2.15)

I(z) = I+
0 e
−γpz + I−0 e

γpz, (2.16)

where γp = α+ iβ =
√

(r̃ + iωl̃)(g̃ + iωc̃) is the propagation constant and ω is the angular

frequency. The real part of the propagation constant governs the dissipative loss of the

resistive and conductive elements where the imaginary part associates with electromagnetic

radiation. If the loss on the line is neglected, propagation constant becomes γp = iβ, β =

10



ω
√
l̃c̃. Introducing Z0 =

V +
0

I+
0

=
V −0
I−0

as characteristic impedance and reflection coefficient

Γ(l) = Γe(−2γpl), the wave equations are then expressed as [28]

V (z) = V +
0 (e−γpz + Γeγpz) (2.17)

I(z) =
V +

0

Z0

(e−γpz − Γeγpz). (2.18)

The input impedance at distance l away from the load is given as [28]

Zin = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
, (2.19)

where ZL is the load terminates the transmission line.

We are interested in a special case of transmission lines. In this case both ends of the

finite transmission line of length l is open ended. The boundary conditions are I(0) =

I(l) = 0 and the load impedance ZL → ∞. In this case we have reflection coefficient

Γ = 1. Using Eq. 2.18 and the boundary conditions,

sin(βl) = 0 (2.20)

β =
mπ

l
, m ∈ N. (2.21)

The phase velocity νp = 1/
√
l̃c̃ and with ω = 2πλ−1νp we find that

λm =
2l

m
. (2.22)

Equation 2.22 indicates that the wavelength of the standing wave in the resonator is related

to the length of this finite transmission line. For m = 1, we have the fundamental resonance

mode, with frequency ω0. Around its resonance frequency ω = ω0 + ∆ω, βl can be written

as βl = π(1 + ∆ω
ω0

). Assuming the losses are negligible, the input impedance for the open
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ended transmission line can we written as

Zin ≈
Z0

αl + iπ∆ω
ω0

. (2.23)

This equation is analogous to a lumped element parallel RLC oscillator. Therefore, around

the resonance frequency, open ended transmission line can be approximated by a parallel

RLC resonator.

2.1.3 Coplanar waveguide resonators

A typical coplanar waveguide resonator(CPW) section is shown in Fig. 2.3. It consists of a

center signal conductor line and two ground conductor planes sitting on top of a substrate.

Since all the conductors are in the same plane, it makes it easier to fabricate coplanar

structures of desired parameters.

S 
W 

S 

t 

ϵ 

l 

Figure 2.3: A sketch of a coplanar waveguide structure. Capacitances are formed between the
central signal line and the ground planes. The geometric inductance is dependent on the geometry
of the CPW structure.

Electrical dynamics of CPW resonators with transverse electric and magnetic mode are

explained well by transmission line theory. In order to find the circuit elements such as

capacitance per unit length and inductance per unit length, conformal mapping techniques
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can be applied and they are given as [29]

l̃ =
µ0

4

K(k′0)

K(k0)
(2.24)

c̃ = 4ε0εeff
K(k0)

K(k′0)
, (2.25)

where εeff = ((ε + 1)/2) is the effective dielectric constant. The arguments for complete

elliptic integral of first kind K are given as

k0 =
w

w + 2s
(2.26)

k′0 =
√

1− k2
0, (2.27)

where w and s are the CPW resonator center line width and the gap between center line

and ground planes, shown in Fig. 2.3.

In order to realize the half-wavelength resonators described in the previous section, cou-

pling capacitors are placed at each end of the transmission line. These capacitors, leaving

the transmission line open ended, can couple the resonator to other circuits such as mea-

surement tools. For the case of the quarter wavelength resonators, the center conductor

line is shorted to ground planes at one end of the line whereas the other end is terminated

by a capacitor. Figure 2.4 depicts these two basic CPW resonators. The resonance fre-

quencies for mode m of half-wavelength resonator is given by fm = m
2π2l
√
LC

and for quarter

wavelength resonators, fm = m
2π4l
√
LC

.

For the case of superconducting electrodes, it is expected to have high quality factor

resonators because the loss associated with the resistive elements are negligible. Supercon-

ductor CPW resonators are reported to have quality factors around 106 [30, 31, 32]. When

dealing with superconductor CPW resonators, the total inductance should also accommo-

date for the inertia of the moving Cooper pairs since they have large relaxation times.

This kinetic inductance of Cooper pairs is temperature dependent contributes to the total

inductance of the superconducting CPW resonator.
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CK 

CK 

CK 

Shorted 

(a) (b) 

Figure 2.4: Sketch of terminated transmission lines. a) Coupling capacitors CK at both ends
defines a half-wavelength resonator for the fundamental mode. b) Shorting one end and placing a
capacitor on the other end defines a quarter-wavelength resonator. Dimensions are not to scale.

Quantization of CPW resonator

A half-wavelength CPW resonator is treated as a transmission line with open-circuit bound-

ary conditions at both ends of the line. The transmission line can be considered as a chain

of lumped element LC resonators [28] ( Fig. 2.5 ). The Lagrangian of the system can be

written as

Δz

N21

Figure 2.5: Schematic diagram of a transmission line modeled as chain of LC resonators.

L =
N∑
i=1

1

2
c̃∆zφ̇2

i −
N−1∑
i=1

1

2

(φi+1 − φi)2

2l̃∆z
, (2.28)
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where c̃ and l̃ are the capacitance and inductance per unit length. For N → ∞ Eq.2.28

becomes

L =

∫ l

0

[
c̃φ̇(z, t)2

2
− 1

2l̃

(
∂φ(z, t)

∂z

)2]
dz. (2.29)

For this case the Euler-Lagrange equation is

ν2
p

∂2φ(z, t)

∂t2
=
∂2φ(z, t)

∂z2
. (2.30)

Where νp = 1/
√
l̃c̃. The general solution for the wave equation is

φ(z, t) =
∞∑
m=1

Am cos(kmz + αm) cos(kmνpt+ βm). (2.31)

Remembering the boundary conditions I(0, t) = I(l, t) = 0, substituting the solution into

Eq.2.29 and carrying out the integrations, the Lagrangian is found as

L =
∑
m=1

c̃lφ̇(t)2
m

4
− m2π2φ(t)2

m

4l̃
(2.32)

where φ(t)m = Am cos(mπt
l

+ βm). The Lagrangian takes a familiar form of a system of LC

resonators with Cm = Cl/2 and Lm = 2lL/m2π2 as

L =
∑
m=1

Cmφ̇(t)2
m

2
− φ(t)2

m

2Lm
. (2.33)

Carrying out the Legendre transformation, the Hamiltonian of the CPW structure is ob-

tained as [33]

H =
∑
m=1

~ωm
(
a†mam +

1

2

)
, (2.34)

where ωm = mνpπ/l is the mode resonance frequencies. For fundamental mode (m = 0),

the Hamiltonian simplifies to Eq. 2.13 in quantum picture.
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Transmission measurement of CPW resonators

When a half-wavelength resonator is biased by an external microwave source, the signal

transmitted through the resonator depends on the frequency of the bias. The transmitted

signal is maximum when the drive frequency is equal to the resonance frequency, and it

is diminished away from the resonance. The behavior of the transmitted signal has a

Lorentzian shape and can be fitted by [34]

F (f) = A0
δf

(f − f0)2 + (δf/2)2
, (2.35)

where f is the frequency of the signal with 2πf = ω, δf is the full width half-maximum,

and A0 is the transmission amplitude. The corresponding quality factor of the resonator

is QL = f0/δf .

The transmission and reflection characterization of the CPW resonators can be analyzed

with the scattering matrix of the circuit. It describes the relations of the incident and

outgoing signals on the ports of the circuit. For a two port circuit, the scattering matrix

is expressed as

[
V −1

V −2

]
=

[
S11 S12

S21 S22

][
V +

1

V +
2

]
. (2.36)

In this expression, the incident wave on a port is indicated with a (+) sign whereas wave

leaving the port is indicated by a (-) sign. The S matrix elements are found by biasing one

of the ports and measuring the signal on the port of interest while no bias is applied on the

other ports. For example, the S12 element of the scattering matrix relates how much of the

input signal on port 1(V −1 ) ends up on the port 2 (V +
2 ). From circuit and transmission line

theory, the impedance matrix of a two-port network matrix can be constructed and the

scattering matrix of the network related to the impedance matrix can be calculated [28].
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2.2 The Josephson junction

Josephson junctions play a significant role in superconducting quantum devices. A Joseph-

son junction is formed by interrupting two superconductors by a thin tunnel barrier. The

barrier material is typically an insulator however normal metals and constrictions on ge-

ometry can be used as a barrier.

S SI S SN S S

(a) (b) (c)

Figure 2.6: Implementations of Josephson junctions. Illustrations of a) superconductor-
insulator-superconductor, b) superconductor-metal-superconductor, and c) superconductor-
bridge-superconductor junctions.

In 1962, Brian Josephson predicted that a dissipationless current can flow between

superconducting electrodes separated by a barrier in the form of Cooper pair tunneling [35].

The superconducting island can be described by a macroscopic wave function Ψ = Ψ0e
iϕ ,

where ϕ is the superconducting phase and ψ0 is the amplitude associated with the Cooper

pair density. This tunneling current is given by

Is = Ic sin γ, (2.37)

where Ic is the junction critical current above which the supercurrent vanishes, and γ is the

gauge invariant phase difference between the wave functions of the two superconducting

electrodes (γ = ϕ1−ϕ2). This equation is known as the first Josephson relation. Josephson

also predicted that the phase evolves in time with a voltage bias across the junction as

V =
~
2e

d(γ)

dt
. (2.38)
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When the time derivative of the Eq. 2.37 is considered and with the help of second

Josephson relation
dIs
dt

= Ic cos (γ)
2e

~
V (2.39)

is obtained. This equation relates the time derivative of the current to voltage indicating an

inductive element behaviour. With V = LdI
dt

, the Josephson inductance can be expressed

as

LJ =
ϕ0

Ic cos γ
. (2.40)

where ϕ0 is the reduced magnetic flux quantum ϕ0 = Φ0/2π = ~/2e. Equation 2.40 suggest

that the inductance value is non-linear due to the cosine term and it depends on the phase

difference γ. This non-linear inductance plays a significant role in practical applications of

superconductors.

The RCSJ model

R C J 

IB 

Figure 2.7: Schematic diagram of the RCSJ model of a Josephson junction. The junction is
represented by a cross and it is shunted by a resistor R and a capacitor C. The bias current is
denoted with IB.

A Josephson junction can be modeled as a resistively capacitively shunted junction

(Fig 2.7) [36]. In practice, apart from Cooper pair tunneling there are other contributions

to the current due to resistive and capacitive channels. Since the junction itself forms a

capacitance, a displacement current can contribute to the current. The resistive channel
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represents the tunneling of excited quasiparticles in superconductor. The shunting of the

junction can be explicit as well by adding external circuit elements. The total current can

be written as

IB = Ic sin γ + C
dV

dt
+
V

R
, (2.41)

where IB is the bias current. With the help of Josephson relations, the above equation can

be rewritten as

IB = Ic sin γ +
Φ0C

2π

d2γ

dt2
+

Φ0

2πR

dγ

dt
. (2.42)

The Lagrangian of a system is quite useful to find the equations of motion describing the

circuit. The Lagrange equation with the gauge invariant phase difference γ as a generalized

coordinate is
d

dt

(
∂L
∂γ̇

)
− ∂L
∂γ

= 0. (2.43)

Ignoring the resistive channel, the Lagrangian L, can be guessed as

L =
1

2
C

(
Φ0

2π

)2

γ̇2 +
Φ0

2π
(Ic cos γ + IBγ). (2.44)

The corresponding conjugate momentum is found as

pγ =
∂L
∂γ̇

= C(
Φ0

2π
)2γ̇. (2.45)

The Hamiltonian of the driven Josephson junction can be found by applying the Legendre

transformation

H(pγ, γ) = pγ γ̇ − L(γ, γ̇). (2.46)

After the transformation the Hamiltonian is found as

H(pγ, γ) =
1

2C

(2π

Φ0

)2
p2
γ −

Φ0

2π
(Ic cos γ + IBγ). (2.47)
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Quantum Hamiltonian of a Josephson junction

To treat the system quantum mechanically, conjugate variables γ and pγ in Hamiltonian

2.46 are replaced with operators γ̂ and p̂γ respectively. It can be shown that γ̂ and p̂γ have

the commutation relation [γ̂, p̂γ] = i~. Introducing the charging energy of the junction as

EC = (2e)2

2C
and Josephson energy as EJ = Φ0

2π
Ic and assuming the bias current IB = 0, the

Josephson junction Hamiltonian in phase basis is expressed as

Ĥ =
EC
~2
p̂γ

2 − EJ cos γ̂. (2.48)

It is often useful to the express the Hamiltonian in the charge basis. The momentum

operator in Eq. 2.48 can be expressed in terms of the charge operator q̂. The charge is

associated with the number of Cooper pairs on the capacitor, q̂ = 2en̂ where n̂ is the

number operator. Therefore,

p̂γ =
Φ0

2π
q̂ =

~
2e

2en̂ = ~n̂. (2.49)

It is also useful to express the potential term in exponential form

EJ cos γ̂ = EJ
eiγ̂ + e−iγ̂

2
. (2.50)

In the charge representation e±iγ̂ is expressed as

e±iγ̂ =
∑
n

e±iγ̂|n〉〈n| =
∑
n

|n∓ 1〉〈n|. (2.51)

As a result, the Hamiltonian in the charge representation is

Ĥ = EC n̂
2 +

EJ
2

∑
n

|n− 1〉〈n|+ |n+ 1〉〈n|. (2.52)

It can be shown that γ̂ and n̂ do not commute as [γ̂, n̂] = i. They obey the uncertainty
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relation and they can not be known exactly simultaneously. If the ratio of EJ
EC
� 1 than

the fluctuations in charge are big and phase variance is small. The phase value is well

defined. On the other hand, if EJ
EC
� 1 then the phase variation is large and charge is well

defined. Both EC and EJ are tunable parameters and can be adjusted during fabrication.

The potential energy of the Josephson junction is due to nonlinear inductive element.

However, for small γ values in the cosine term, the expression is approximated as cos γ ≈
1 − γ2

2
. For this case the potential is parabolic and the Hamiltonian of the Josephson

junction is analogous to LC harmonic oscillator. For a harmonic oscillator, subsequent

energy level differences are equal to each other. The Josephson junction potential energy

consists of nonlinear element and the energy levels in this potential are anharmonic. This

anharmonic energy level property plays an important role in superconducting quantum

devices.

𝐸0
𝐻𝑂

𝐸1
𝐻𝑂

𝐸2
𝐻𝑂

𝐸3
𝐻𝑂

𝐸0
𝐽𝐽

𝐸1
𝐽𝐽

𝐸2
𝐽𝐽

Figure 2.8: Energy level representation of a LC harmonic oscillator (dashed lines) and a Joseph-
son junction (solid lines).
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Ambegaokar-Baratoff relation

The Ambegaokar-Baratoff formula relates the critical current of a Josephson junction to

the BCS energy gap ∆BCS [37] and the normal state conduction of the Josephson junction.

This is a very useful relation because, for known superconductor gap ∆BCS, one can find

the EJ of the Josephson junction just by measuring the resistance of the junction Rn at

room temperature. Assuming the junction consisting of only one type of superconductor,

For any temperature T , the Ambegaokar-Baratoff relation is given as [38]

IcRn = (
π∆BCS

2e
) tanh(

∆BCS

2kT
). (2.53)

This relation is useful to determine the relation between the critical current and resistance,

with the latter easily characterized during the fabrication process.

2.3 Superconducting qubits

In order for a system to be considered as a practical qubit, it is expected to satisfy certain

conditions. According to DiVincenzo [39], first, the qubit has to have the ability to be

initialized to a known state. Second, there must exist single qubit operators to manipulate

the state of the qubit. Third, to realize universal set of quantum gates, the qubit has to

be applicable for two qubit operations. Fourth, the system should exhibit long coherence

times in which the quantum algorithm or protocol finishes successfully. Lastly, the system

should allow for a qubit-specific measurement.

Superconducting qubits are based on Josephson junctions and have an important share

in quantum computation. They are macroscopic objects demonstrating quantum effects

on large scales. As investigated in the previous sections, Josephson junctions have anhar-

monic energy states. For instance, the two lowest states can be candidates for a qubit

implementation. Being macroscopic objects, it is easy to utilize the fabrication methods in

micro- and nano-technology to realize the Josephson junctions of desired parameters and it
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is also quite flexible to couple to the external circuits for state manipulation and readout.

In the next subsections, specific types of Josephson junctions, namely the phase qubit,

the charge qubit, and the flux qubit are discussed, respectively.

VB IB 

Cg 

(a) (b) 

Figure 2.9: The phase and the charge qubit. a) Circuit representation of a the phase qubit.
The Josephson junction (illustrated as cross) is biased with a DC current source. b) Circuit
representation of a the charge qubit. The Josephson junction is isolated by a gate capacitor Cg
and biased by a gate voltage VB.

2.3.1 The phase qubit

The phase qubit is basically a Josephson junction biased with a current IB < Ic as shown on

Fig. 2.9(a). The Hamiltonian of a driven junction is derived in Eq. 2.46. The potential term

in the Hamiltonian is nonlinear and it resembles a particle moving in the tilted washboard

potential. The tilting of the potential is controlled by the bias current and the number of

energy levels in the local potential depends on the value of the IB.

Phase qubits are typically biased very close to the critical current of the junction (IB ≈
99%Ic) which leads to few energy levels in the potential well. Bias current modifies the

potential well structure and affects the anharmonicity of the energy levels. As the potential

gets tilted the anharmonicity increases. Considering two energy levels in the well, after

some waiting time quantum tunneling occurs if the qubit is in the excited state and no

tunneling observed for the ground state. This is because the excited state sees a smaller
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U  

Figure 2.10: Potential energy of the phase qubit. The first few energy states are localized in
the potential well. The energy level splitting and the barrier height is determined by the biased
current IB. The tunneling probability is higher for the higher energy levels.

potential barrier than the ground state. This builds the basic idea of the state read-out of

the phase qubit.

2.3.2 The charge qubit

The charge qubit circuit is shown in Fig. 2.9(b). It consists of a superconducting island

isolated from a voltage source by a gate capacitor and from a gate electrode through a

junction. The Hamiltonian of the charge qubit is similar to Hamiltonian of a Josephson

junction expressed in Eq. 2.52. However, one needs to include the charges on the gate

capacitor. Introducing ng = −CgVB
2|e| as gate charge and CΣ = Cg +C, the Hamiltonian of a

charge qubit in charge basis is expressed as

H = EC(n− ng)2 − Ej

2

∑
n

|n− 1〉〈n|+ |n+ 1〉〈n|, (2.54)

where EC = (2e)2

2CΣ
. The energy levels of the charge qubit can be calculated for two cases.

For the first case, where EC � EJ , the Hamiltonian is dominated by the first term and the
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Josephson energy can be considered as small perturbation. As seen form Fig. 2.11(a), the

energy levels are strongly dependent on gate charge. Fluctuations in the charge are very

important in this regime. For the reverse case, where EJ � EC , the energy levels of the

charge qubit become less dependent on the gate charge. On the contrary, the anharmonicity

is reduced. Overall the change in the anharmonicity is lower than the change in the charge

dependency of the qubit [17]. A simple way to change the ratio of EJ/EC is to add a

shunting capacitor to the junction which modifies charging energy EC .
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Figure 2.11: Charge qubit energy level structure. The first four energy levels with varying
EJ/EC ratios for a) EJ/EC = 1, and b) EJ/EC = 50. In the regime EJ/EC = 1, the energy
levels are strongly dependent on the gate charge compared to the case where EJ/EC = 50. The
anharmonicity is decreasing with the increasing EJ/EC .

2.3.3 The flux qubit

The flux qubit contains a superconducting loop interrupted by at least one Josephson

junction [18]. The qubit is operated close to an applied magnetic flux of half a flux

quantum, and at this point, the potential energy has two wells separated by a tunneling
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barrier. In the quantum picture, the tunneling can occur between the wells and this lifts

the degeneracy between two lowest state of each potential wells. This design is prone to

the dephasing due to the flux fluctuations since the loop inductance is high and it strongly

couples the qubit to the environment. This problem is solved by using Josephson junctions

to replace loop inductance to realize flux qubits with smaller loops. Therefore, flux qubit

with three junction design [40] is quite common.

The circuit analysis of a persistent current qubit

J1,γ1 J2,γ2

J3,γ3

C1 C2

C3

f

Figure 2.12: A schematic circuit representation of the persistent current qubit. The supercon-
ducting loop is interrupted by three Josephson junctions. One of the junctions, J3 is called the
α junction and it has EC3 = α−1EC1 and EJ3 = αEJ1 where typically 0.5 < α < 1.

The persistent current qubit circuit is shown in Fig. 2.12. The small inductance loop

is interrupted by three Josephson junctions. The Hamiltonian of the system has three

phase degree of freedoms. However, since the macroscopic wave function must be single

valued, the phase along the loop must be an integer multiple of 2π. This imposes a flux

quantization condition ∑
i

γi + 2πf = 2πn, n ∈ N (2.55)

where γi is the phase difference across junction Ji and f = Φext
Φ0

is the external magnetic

frustration. The junction sizes are selected such that the small junction is α times smaller
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than the two identical junctions. The characteristic energies of the smaller junction is

rescaled by α since the junction critical current scales with the area. The potential energy

is then expressed as

UJ = −EJ(cos γ1 + cos γ2 + α cos γ3). (2.56)

By applying the flux quantization condition, the number of degrees of freedom reduced to

two and the potential energy can be expressed as

UJ = −EJ(cos γ1 + cos γ2 + α cos (2πf + γ1 + γ2)). (2.57)

The applied external flux modifies the shape of the potential well. Figure 2.13 depicts the

potential energy of a PCQ under three external flux values of f = 0.485, f = 0.5, and

f = 0.515. The two potential minima (darkest regions) along γ1 = γ2, and the induced

asymmetry by the applied flux can be clearly seen.

(a) (b) (c)

-5.7

-1.3

(E/EJ)

Figure 2.13: Potential energy of the flux qubit. The energy is plotted with phase differences
γ1 and γ2 for a) f = 0.485 b) f = 0.5 and c) f = 0.515. Darker regions corresponds potential
minima.

The flux qubit is operated near half a flux quantum. Classically, the lowest energy

states of the persistent current qubit are located at the minima of these potential wells

and they are degenerate at the symmetry point, f = 0.5. If the potential energy equation

is further inspected, it can be found that the potential barrier between two well along the
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line γ1 = γ2 depends on the α junction, which can be defined by the geometry during

fabrication. The modulation of the barrier can be seen on Fig. 2.14.
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 α=1

U J/E
J

γ∗

Figure 2.14: Modulation of the potential barrier of the flux qubit between two potential wells
along the line γ∗ = γ1 = γ2 for α = 0.5, 0.75, and 1.

Away from the symmetry point, the double potential well is tilted. In this case, the

energy associated with the persistent current is given as

ε = 2Ic(Φext −
Φ0

2
). (2.58)

To describe the dynamics of the persistent current qubit, the kinetic energy of the

system should be considered. It is due to the electrostatic energy stored in the capacitive

elements of the circuit. The kinetic energy for the three-junction flux qubit can be found

as

T =
1

2

∑
i

CiV
2
i . (2.59)

Using the second Josephson relation, the kinetic energy can be expressed as [40]

T =
1

2

Φ0

2π

2 (
γ̇1 γ̇2

)
C

(
γ̇1

γ̇2

)
(2.60)
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The classical Hamiltonian of the three-junction flux qubit can be found by applying the

Legendre transformation to the Lagrangian of the system. The Hamiltonian of the system

can be quantized similarly to the Josephson junction Hamiltonian quantization described in

the previous sections. The conjugate coordinates are replaced by the quantum operators.

The finite barrier between the wells allows a quantum tunneling process which lifts the

degeneracy in potential well states. This hybridization process creates the energy levels for

the persistent current qubit. The first few numerically calculated energy levels are shown

in Fig 2.15 for a typical flux qubit.
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-200 
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f 

Figure 2.15: The first four energy levels of a typical persistent current qubit with external flux
f and EJ/EC = 42.

Two-level model

In Fig. 2.15, it can be seen that the anharmonicity is large around f = 0.5. Therefore, the

first two levels of the quantum system can be used to approximate the system dynamics as

a qubit. The Hamiltonian of the two-level flux qubit can be expressed using the minimum

energy separation between the ground and excited state ∆, the asymmetry parameter ε,

and Pauli matrices as

H2S = −1

2
∆σx −

1

2
εσz. (2.61)
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The Hamiltonian H2S can be diagonalized by a unitary rotation with an angle tan Θ = ∆/ε.

U = e−iΘσy =

(
cos Θ

2
− sin Θ

2

sin Θ
2

cos Θ
2

)
(2.62)

and it can be expressed as

Hqb = −
√
ε2 + ∆2

2
σz = −~ωqb

2
σz. (2.63)

The qubit ground and excites states (|g〉 and |e〉) are then expressed as

|g〉 = cos
Θ

2
|l〉+ sin

Θ

2
|r〉 (2.64)

|e〉 = cos
Θ

2
|l〉 − sin

Θ

2
|r〉. (2.65)

in relation to persistent current states (|l〉 and |r〉). At the symmetry point, Θ = π/2 and

both qubit states are superpositions of clockwise and counterclockwise persistent current

states |l〉 and |e〉 with equal probability amplitudes. The net average current flowing in

the ring for this case is zero.

2.4 Qubit state control

The state of any two-level system can be expressed as a vector in a unit sphere known as

the Bloch sphere. With the help of Fig. 2.16, an arbitrary qubit state |ψ〉 = α|0〉+ β|1〉 is

expressed as

|ψ〉 =
(

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)
. (2.66)

The control of the qubit can be understood by rotations on the Bloch sphere. A way to

control the phase φ of the qubit is to wait for its free precession of the state at a rate of
√

∆2 + ε2/~.
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Figure 2.16: The Bloch sphere. An arbitrary qubit state |ψ〉 = cos(θ)|0〉 + eiϕ sin(θ)|1〉 is
represented on the Bloch sphere.

An external microwave signal is used to implement a rotation which includes control

of the angle θ. The signal imposes oscillating magnetic field to the loop and perturbs

the asymmetry of the double well potential. Therefore, it can be regarded as an operator

proportional to σz operator. An external drive Hamiltonian is typically in the form of

Hd = A cos (ωdt+ φ)σz, (2.67)

where A is the driving amplitude and φ is the drive phase. The driving Hamiltonian can

be rotated into the qubit eigenbasis using Eq. 2.62.

H ′d = A cos (ωdt+ φ)
( ∆

~ωqb
σx −

ε

~ωqb
σz
)
. (2.68)

The total Hamiltonian (H = Hqb + Hd′) of the system can be simplified by a unitary

transformation U = exp(iωdtσz/2) which transforms into a frame rotating with the drive.

31



The total Hamiltonian in the rotating frame is

HRF = −1

2
(ωqb − ωd)σz + A

ε

ωqb
cos(ωdt+ φ)σz (2.69)

+
A

2

∆

ωqb

(
cos(2ωdt+ φ)σx − sin(2ωdt+ φ)σy

)
+
A

2

∆

ωqb

(
cos(φ)σx + sin(φ)σy

)
When the driving amplitude is weak compared to the drive frequency, the fast oscillating

terms with ωd and 2ωd average out during slow time scales of the qubit dynamics. This

assumption is called rotating wave approximation (RWA) and this simplifies the Eq. 2.70

into

HRWA = −1

2
(ωqb − ωd)σz +

A

2

∆

ωqb
[cos(φ)σx + sin(φ)σy]. (2.70)

When ωd = ωqb, the Hamiltonian corresponds to an operator which rotates the qubit

around x or y axis depending on the φ with a Rabi frequency ΩR = A∆/(2ωqb). When

drive is off-resonant (ωd 6= ωqb), the rotation frequency is Ω =
√

Ω2
R + (ωqb − ωd)2.

2.5 Circuit quantum electrodynamics

Cavity quantum electrodynamics (QED) investigates the interaction of matter with light

confined in a cavity. The cavity imposes discrete modes for the light which can interact with

a trapped atom. The properties of the coupled system can be studied by the Hamiltonian

known as Jaynes-Cummings Hamiltonian [41]. The Jaynes-Cummings Hamiltonian depicts

the atom (qubit) as a two-level system and the cavity as a mode of the electric field. Circuit

QED (cQED) is analogous to cavity-QED. In cQED, a microwave resonator replaces the

cavity and hosts qubits acting as artificial atoms. cQED is quite useful to describe the

superconducting flux qubit coupled to a CPW resonator. Equation 2.71 describes the JC
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Hamiltonian of a qubit in a resonator

HJC = Hr +Hqb +Hint, (2.71)

where Hr is the Hamiltonian describing the CPW resonator, Hqb is the qubit Hamiltonian

and Hint is Hamiltonian describing the interaction representing a dipole coupling between

the qubit and the electromagnetic field in its vicinity. The individual Hamiltonians are

Hr = ~ωr(a†a+
1

2
) (2.72)

Hqb =
1

2
~ωqbσz (2.73)

Hint = ~g(aσ+ − aσ− − a†σ+ + a†σ−), (2.74)

where σ+ and σ− are qubit raising and lowering operators given by 1
2
(σx± iσy) and g is the

coupling strength between the qubit and resonator. The interaction part contains terms

which do not conserve energy since it both adds or removes energy to the resonator and

the qubit at the same time. Invoking the rotating wave approximation and ignoring the

energy non-conserving terms (a†σ+, aσ−), the Hamiltonian can be written as

HJC =
1

2
~ωqbσz + ~ωr(a†a+

1

2
) + ~g(aσ+ + a†σ−). (2.75)

The interaction term now only allows for a quanta of energy exchange between the resonator

states and the qubit states. Figure 2.17 depicts the energy spectrum of the coupled system

with changing qubit frequency ωqb. On resonance (ωqb = ωr), the degeneracy is lifted by the

coupling term g and the energies differ by 2g. In this case eigenstates are the superpositions

of qubit and resonator states. The energy is swapped back and forth between the resonator

and the qubit at a rate 2g. This phenomenon is known as vacuum Rabi oscillations. When

far detuned (|ωqb − ωr| � g), the eigenstates of the JC Hamiltonian approximates to the

case where qubit and resonator are decoupled.
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Figure 2.17: Energy level structure of the coupled resonator qubit system. a) The lowest two
eigenstates of the Jaynes-Cummings Hamiltonian for a typical qubit and resonator parameters.
b) The interaction term creating a splitting(2g) in the energy levels when the qubit and the
resonator are in resonance. Away from this point, the eigenstates are well approximated by
uncoupled qubit and resonator system.

2.5.1 Dispersive regime

The dispersive regime describes far detuning of the qubit and resonator (∆ω = |ωqb −
ωr| � g). The interaction in this regime is negligible and no energy exchange between the

qubit and the cavity occurs. In the interaction picture, since the qubit Hamiltonian and

interaction Hamiltonian commute with σz, the Hamiltonian can be expressed as

HD =
1

2
~(ωqb +

g2

∆ω
)σz + ~

(
ωr +

g2

∆ω
σz
)
(a†a+

1

2
). (2.76)

Here it can be concluded that the interaction does not alter the qubit Hamiltonian but

imposes a shift on the resonance frequency of the CPW resonator. Thus by measuring the

transmission spectrum of the resonator, the qubit state can be determined. The difference

in the resonance frequency corresponding to qubit states |0〉 and |1〉 is 2χ with χ = g2

∆ω
.

2.6 Decoherence

The coherence time of a quantum system is an important metric in quantum computation.

It describes the characteristic life-time of a stored information on the quantum system. The
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Figure 2.18: Resonator transmission spectrum with qubit states. The shift on the resonance
frequency of the resonator due to the qubit state can be observed on the a) amplitude and b) on
the phase of resonance. The red and blue lines correspond to the transmission due to the qubit
states |0〉 and |1〉.

number of operations on the system depends on the gate duration and coherence time. In

the quantum picture, a qubit system tend to lose its coherence due to environment its

coupled to. In order to realize a useful quantum system, the qubit coherence times need to

be long enough for successful quantum operations. Therefore, the characteristics life times

of a quantum system is a crucial metric.

There are two different processes which leads to loss of coherence. First, the quantum

system can emit its energy to the surrounding resonant systems and undergo a relaxation

process into another state. If the system is in contact with an environment at finite

temperature, the thermal energy can induce excitations in the system. These processes

cause the system to lose its coherence due to the energy exchange. The characteristic

decay time for this decoherence process is known as T1. Second, due to the fluctuations

in the environmental parameters effecting the system Hamiltonian, the system frequencies

fluctuate leading to random evolution of the phase.

In the following subsection, the decoherence is analyzed in more details with master

equation formalism. The expressions for the energy relaxation and dephasing processes are

derived.
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2.6.1 Master equation

Any qubit state can be represented by a vector on a Bloch sphere. A useful description of

a quantum system is the density matrix formalism. It can be constructed by

ρ =
∑
n

pn|ψn〉〈ψn|. (2.77)

The evolution of the system in Schrödinger picture is expressed as,

i~ρ̇ = [H, ρ] (2.78)

Schrödinger‘s equations describes well the evolution of a closed quantum systems. Deco-

herence process can be analyzed by assuming the qubit is interacting with an environment

and undergoing relaxation and dephasing processes. The environment can be treated as a

quantum system and the whole system of qubit, environment, and the interaction forms a

closed system and can be treated with Schrödinger equation for its evolution. The Hamil-

tonian of this joined system is given by

H = HS +HSB +HB, (2.79)

HS = ~
∑
i

ωi|i〉〈i|, (2.80)

HSB = Af, (2.81)

where HS, HB, and HSB are the system, environment, and the interaction Hamiltonians

respectively. The interaction Hamiltonian is built by the qubit operator A and the envi-

ronment operator f . In the interaction picture with respect to system and environment

Hamiltonian(HS+HB), the Schrödinger equation becomes i~ ˙̃ρ = [H̃, ρ̃]. The evolution of

the ρ̃ is given as [42],

˙̃ρ(t) = − i
~

[H̃(t), ρ̃(t)]− 1

~2

∫ t

0

[H̃(t), [H̃(t′), ρ̃(t′)]]dt′. (2.82)
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Here two approximations can be applied to further simplify the Eq.2.82. First, we

assume that the interaction between the environment and the system is weak compared

to the system and the environment. This approximation is known as Born approximation.

Additionally, the environment is assumed to be a large system in which the interaction does

not affect the environment. This allows to express the density matrix as ρ̃(t) = ρ̃S ⊗ ρ̃B.

Second, it is assumed that the system density matrix operator ρ̃(t) is independent of ρ̃(t′).

This approximation is known as Markov approximation. With these approximations the

Born-Markov master equation is given by [42]

ρ̇(t) =
1

2~2

∑
j,k

|Ajk|2S(ωjk)[2|k〉〈j|ρ(t)|j〉〈k| − ρ(t)|j〉〈j|)− |j〉〈j|ρ(t)] (2.83)

where ωjk = ωj − ωk, and S(ω) =
∫∞
−∞ e

iωτ 〈f̃(τ)f̃(0)〉 is the power spectral density of the

environment operator. Here, j, k represent the states of the system HS.

Relaxation and dephasing

In the relaxation process, the quantum system moves from one state to another. For the

two-level qubit case, where j, k = 0, 1, Eq.2.83 becomes

ρ̇(t) = Γ10[σ̂−ρ(t)σ̂+ −
1

2
σ̂+σ̂−ρ(t)− 1

2
ρ(t)σ̂+σ̂−]

+Γ01[σ̂+ρ(t)σ̂− −
1

2
σ̂−σ̂+ρ(t)− 1

2
ρ(t)σ̂−σ̂+] (2.84)

while j 6= k. Equation 2.84 can be expressed by superoperators with L[σ̂]ρ(t) = σ̂ρ(t)σ̂† −
1
2
σ̂†σ̂ρ(t)− 1

2
ρ(t)σ†σ as:

˙ρ(t) = Γ10L[σ̂−]ρ(t) + Γ01L[σ̂+]ρ(t). (2.85)
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The transition rates Γ01 and Γ10 (transition from |0〉 to |1〉 and |1〉 to |0〉, respectively) are

given as:

Γ10 =
1

~2
|A10|2S(ω10) (2.86)

Γ01 =
1

~2
|A10|2S(ω01). (2.87)

(2.88)

For the case of j = k, we find the Eq.2.83 for the dephasing process. Again for the qubit

case, the evolution of the density matrix operator is given as

ρ̇(t) = ΓϕL[σ̂z]ρ(t), (2.89)

and the qubit dephases with a rate

Γϕ =
1

2~2
(|A11|2 − |A00|2)S(0) (2.90)

2.6.2 Dephasing with 1/|ω| flux noise

Low frequency noise is the most common noise observed superconducting flux qubits. The

power spectral density of the low frequency noise is in the form of

Sξ(w) =
A

|ω|α
(2.91)

where α is a positive number and A is a constant. Assuming a classical noise, the qubit

Hamiltonian with the noise is given by

Hqb = −~ωqb + ξ(t)

2
σz, (2.92)

where ξ(t) is the stochastic process describing the noise. The superposition of states

acquires additional phase due to the presence of the random noise term as ∆ϕ(τ) =
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−
∫ τ

0
ξ(t)dt. For a Gaussian noise with zero average, the average of the term exp(i∆ϕ(τ)),

describing the decay of the coherence of the density matrix, is given by

〈e−i
∫ τ
0 dtξ(t)〉 = e−

1
2

∫ τ
0 dt1

∫ τ
0 dt2〈ξ(t1)ξ(t2)〉. (2.93)

The correlation function 〈ξ(t1)ξ(t2)〉 is expressed in terms of power spectral density Sξ(ω)

with Fourier transformations as

〈ξ(t1)ξ(t2)〉 =
1

2π

∫ ∞
−∞

dωe−iωτSξ(ω). (2.94)

Equation 2.93 becomes

〈e−i
∫ τ
0 dtξ(t)〉 = e−

τ2

2
1
2

∫
dωSξ(ω)sinc2(ωτ

2
) (2.95)

Following Ithier et al. [43], with the noise with power spectral density in the form of 1/|ω|
with low-frequency ωir and high-frequency cut-offs for the power spectral density, the decay

function is expressed as

〈e−i
∫ τ
0 dtξ(t)〉 = exp

[
− t2A(ln

1

ωirt
) +O(1)

]
(2.96)

The coherence function has a Gaussian decay characteristics for 1/|ω| noise.

2.6.3 Noise sources in superconducting qubits

Charge noise is the most commonly observed noise in solid state devices. Trapped charges

or impurities in the vicinity of the qubit can induce charge fluctuations in the junction

islands. Charge noise follows a 1/ω power spectral density [44] and induces significant

decoherence for superconducting devices that are in charge regime EJ < EC. The source

for the charge noise is typically the two-level systems(TLS), in which the electron hops

between available states affecting the electrical environment of the qubit. TLS can also
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induce relaxation in qubits and resonators. The electric fields inside the resonator or

the qubit can couple to TLS present around. The characteristic energy of the TLS are

broad in frequency, therefore a resonant TLS can absorb energy from the qubit, inducing

decoherence [45].

Magnetic flux noise can cause significant decoherence for the superconducting qubits

having large EJ. The study of the source of the flux noise remains highly relevant topic.

One source of the flux noise is the trapped fluxoids that can hop between trap sites [46].

In addition, TLS can also generate flux noise with 1/ω power spectral density due to the

magnetic moments of the hopping electron. Recently it has been suggested the unpaired

surface spins gives 1/ω flux noise [47].

Flux qubits are in the flux regime and the dependency of the transition frequency

on charge fluctuations is low. Therefore, dephasing due to the charge noise is relatively

negligible. On the other hand, the qubit frequency depends strongly on the flux. Flux

fluctuations, especially away from the symmetry point induce decoherence with high rates.

To mitigate this problem, flux qubits are operated at the symmetry point. The measured
√
A for the power spectral density of A/ωα is typically in the order of 1× 10−6Φ0 [48].
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Chapter 3

Design and modeling of capacitively

shunted flux qubits

Superconducting qubits are promising candidates for implementing scalable fault toler-

ant quantum computers. Over the years, superconducting qubits have showed significant

improvements on their performances. Improved fabrication methods and designs lead to

long-coherence quantum devices. One particular example is the evolution of the charge

qubit. The charge qubit first exhibited coherence times of few nanoseconds [49]. Introduc-

ing shunt capacitors to qubit Josephson junctions resulted in several orders of magnitudes

increase in the coherence times of the charge qubit; this design is known as transmon

qubit [17].

Capacitive shunting of the qubit junction reduces the charging energy since the total

capacitance across the junction increases. The EJ/EC ratio becomes larger and the sen-

sitivity of the charge qubit to charge fluctuations is reduced, as seen in previous chapter.

Compared to a typical Josephson junction, relatively large size of the shunting capacitors

allows for a more reproducible fabrication as typically they are in several hundreds of mi-

crometers range. This not only enhances the reproducibility but also allows one to control

the participation of the materials in the vicinity of the electric fields. The capacitance
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across the superconducting islands is dominated by the shunt capacitor. The confined

electric field in the Josephson junction is distributed over the junction and the shunt ca-

pacitor. The effect of the less controllable lossy oxide barrier of Josephson junction is

consequently reduced. This approach raised the coherence times of the charge qubit to the

10-100 µs range [17, 50]. However, the anharmonicity of the charge qubit energy levels is

reduced.

The flux qubit distinguishes itself from the other Josephson junction based qubits by

having a large anharmonicity in energy levels and flexible coupling mechanisms [51, 52].

The superconducting loop of the flux qubit is utilized to implement direct and tunable

qubit-qubit coupling [53, 54, 55]. The flux qubit is also useful to probe the light matter

interactions in the ultra-strong coupling regime where the coupling strength is comparable

to the artificial atom and cavity frequency [56, 57]. The strong coupling between the qubit

and a resonator is achieved by galvanically connecting the qubit to the resonator.

The flux qubit is in the EJ/EC � 1 regime. It is insensitive to charge noise, however,

the frequency of the qubit is sensitive to flux fluctuations especially when it is away from

the flux-symmetry point. If it is in the charge regime, the charge fluctuations becomes

important and can contribute significantly to the decoherence process. On the contrary,

the sensitivity to flux noise is reduced. The sensitivity of the qubit to the charge noise can

be improved by adding shunt capacitors and reducing the charging energy of the junction.

The sensitivity to the flux fluctuations can be reduced by reducing the Josephson energy

of the qubit by adjusting the junction critical currents.

In this chapter, first, we introduce the design and the model for the capacitively shunted

three-junction flux qubit. Next, we discuss the electromagnetic(EM) simulations of the

CPW resonators and the total capacitance matrix of the system. The qubit parameters

are then simulated based on the introduced model with the results from EM simulations

and nominal fabrication parameters. Last, we discuss the fabrication methods.
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3.1 The shunted flux qubit

In this section, a modified version of a regular three-junction persistent current qubit [40] is

considered. It consist of a superconducting loop containing three Josephson junctions. The

modification is done by adding coplanar shunt capacitors across each junction. Figure 3.1

shows a cartoon sketch of the device. The junctions, illustrated as crosses, are placed in

between the superconducting capacitor pads (islands) 1, 2, and 3. The superconducting

(a) (b)
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Ground

Resonator Signal Line

Qubit Control

Line d
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1

2 3

0Vg2

Vg1

Vg3

Figure 3.1: Design and circuit model of the capacitively shunted flux qubit.a) Circuit diagram
of the design shown in (b). The node 0 corresponds to the CPW ground plane and the nodes 1,2
and 3 correspond to the capacitor pads. b) A sketch of the 3 junction flux qubit with the shunt
capacitor pads labeled as 1, 2, and 3. The resonator electrode and the drive pad are labeled as b
and d, respectively. Drak gray areas represent the superconductor metal layers where light gray
is the substrate.

phase difference across the junctions are γ21, γ32, and γ13 respectively and γ01 is the asso-

ciated branch flux between nodes 0 and 1. Applying the flux quantization condition, the

phase on junction between node 2 and 3 can be rewritten as γ32 = γ21 + γ13 + 2πf , with

external magnetic frustration f . The capacitors C12, C23, and C13 correspond to the total

capacitance across the junctions consisting of the junction self capacitances and the shunt

capacitor. In the circuit, the ground is represented by the node 0. The islands are coupled
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to the CPW resonator ground planes through the capacitors C01, C02, and C03. The gate

electrodes can be explicit for biasing the circuit through the capacitors C1g, C2g, and C3g

with corresponding voltages Vg1, Vg2, and Vg3. The gate capacitors can also be used to

model trapped charges.

The kinetic energy of the circuit consists of the electrostatic energy stored in the ca-

pacitors and it is dominated by the shunt capacitances. Following Orlando et al. [40] and

ignoring the offset energies, the kinetic energy term is expressed as

T =
ϕ2

0

2
γ̇TC ′γ̇ + ϕ0γ̇

TDQg (3.1)

where ϕ0 is reduced magnetic flux quantum and

γ̇ =


γ̇21

γ̇31

γ̇10

 , Qg =


Cg1Vg1

Cg2Vg2

Cg3Vg3

 . (3.2)

The capacitance matrix C ′ is

C ′ =


C12 + C23 + C2g + C02 −C23 C2g + C02

−C23 C13 + C23 + C3g + C03 C3g + C03

C2g + C02 C3g + C03
C1g+C2g+C3g

+C01+C02+C01

 . (3.3)

The above capacitance matrix C ′ is for the floating circuit case where coupling to the drive

line and the to the resonator has not been included yet. The matrix D is given as

D =


0 −1 0

0 0 −1

−1 −1 −1

 . (3.4)

The potential energy of the system is due the Josephson junctions and it is expressed
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as

U = −ϕ0[IC12 cos(γ12) + IC13 cos(γ13) + IC23 cos(γ21 + γ13 + 2πf)], (3.5)

where IC12 , IC13 , and IC23 are the junction critical currents. The design consists of two

identical junctions of same area and a third junction having a smaller area, rescaled by

the factor α. Since all three junctions are fabricated at the same time, the critical currents

IC12 = IC13 = IC23/α.

We select the Lagrangian of the system as L = T − U . The Euler-Lagrange equation

is given by
d

dt

(∂L
∂γ̇

)
=
∂L
∂γ

. (3.6)

For the node 2 and γ21, Eq. 3.6 becomes

ϕ2
0

[
C12γ̈21 + C23(γ̈21 − γ̈31) + C2g(γ̈21 − γ̈10) + C02(γ̈21 + γ̈10)

]
= ϕ0

[
− IC12 sin(γ21)− IC23 sin(γ21 + γ13 + 2πf)

]
. (3.7)

The left hand side of the Eq. 3.7 represents the current leaving node 2 through capacitors

and the right hand side represents the current entering the node through the Josephson

junctions. Similar approach holds for node 3. For node 0 we have d
dt

(
∂L
∂γ̇10

)
= 0. The

equation of motions satisfies the Euler-Lagrange equation in Eq. 3.6. The Hamiltonian of

the system is then obtained by the Legendre transformation and expressed as

H =
1

2

(
p

ϕ0

−DQg

)T
C ′
−1

(
p

ϕ0

−DQg

)
+ U(γ), (3.8)

where the conjugate momentum vector p = (pγ21 , pγ31 , pγ10) is

p = ∇γT = ϕ2
0C
′γ̇ + ϕ0DQg. (3.9)

The momentum vector is related to the total charges on the nodes. pγ21/ϕ0 represents the

total charges on the plates of the capacitors on the side of node 2 with pγ21/ϕ0 = 2e× n2
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where e is the electronic charge and n2 is the number of cooper pairs on the island 2.

Similarly, pγ31/ϕ0 = 2e × n3 is the total charge on island 3. We note that pγ10/ϕ0 is a

constant of motion.

3.1.1 Coupling to a CPW resonator

In the following sections, we consider the cases where the capacitively shunted flux qubit

is capacitively coupled to a CPW resonator for dispersive readout and a drive pad for

quantum control. Figure 3.1(b) illustrates the qubit-resonator coupled system. The center

conductor and the superconducting islands form capacitances denoted as C1b, C2b, and

C3b. The total kinetic energy of the circuit needs to include these added capacitances. The

CPW signal electrode is considered to be at voltage Vb and the kinetic energy in this case

is then given by

T =
ϕ2

0

2
γ̇TC ′′γ̇ + ϕ0γ̇

TDQg + ϕ0γ̇
TDQb, (3.10)

where

Qb = CbVb =


C1b

C2b

C3b

Vb. (3.11)

The addition of this signal electrode modifies the capacitance matrix as C ′′ = C ′+C+
b and

C+
b is given by

C+
b =


C2b 0 C2b

0 C3b C3b

C2b C3b C1b + C2b + C3b

 . (3.12)

The kinetic energy term in the Hamiltonian is then expressed as

TH =
1

2ϕ2
0

(
p− ϕ0DQg − ϕ0DQb

)T
C ′′
−1(

p− ϕ0DQg − ϕ0DQb

)
. (3.13)
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In the Jaynes-Cummings treatment, the interaction between the coupled qubit and

resonator is governed by the interaction Hamiltonian Hint = gσx(a + a†). The interaction

could be modeled by system Hamiltonian dependency on the control parameter. In this

case, the interaction Hamiltonian can be expressed as

Hint =
∂TH
∂Vb

Vb, (3.14)

with

∂TH
∂Vb

=
1

2ϕ2
0

2(−ϕ0)(DQb)
TC ′′−1(p− ϕ0DQg)

+
1

2
2Vb(DQb)

TC ′′−1(DQb) (3.15)

The degrees of freedom in momentum vector can be reduced since pγ01 is constant of motion

and could be considered as an offset charge and simply added to other gate charges. The

interaction term can be expressed in charge operators as

∂TH
∂Vb

= −2e
([

(DCb)
TC−1

]
1

(n2 − n2g) +
[
(DCb)

TC−1
]

2
(n3 − n3g)

)
, (3.16)

where [(DCb)
TC−1

]
1(2)

is the first(second) element of the product (DCb)
TC−1 and n2g and

n3g are the gate charges.

The average energy of the resonator when it is in ground state 〈E〉 = ~ωr
4

= 1
2
c̃lV 2

0 ,

where c̃ is the capacitance per unit length of the CPW resonator, l is the length of the

resonator, and V0 is the quantum zero point voltage of the resonator expressed as

V0 =

√
~ωr
2c̃l

. (3.17)

Expressing the off-diagonal part of ∂TH/∂Vb in the form of αb × σx(assuming no σy com-

ponent) with the voltage on the signal electrode Vb = V0(a + a†), the coupling strength
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between the resonator and the qubit is found as

g = αb ×
√

~ωr
2c̃l

. (3.18)

3.1.2 Coupling to the drive line

The device design includes a capacitive drive line for qubit control. Figure 3.1 illustrates

the drive line capacitively coupled to the shunted qubit. Similar to resonator signal line,

the drive line electrode and the superconducting islands form capacitors denoted by C1d,

C2d, and C3d. The total kinetic energy term is given by

T =
ϕ2

0

2
γ̇TCγ̇ + ϕ0γ̇

TDQg + ϕ0γ̇
TDQb + ϕ0γ̇

TDQd. (3.19)

The charges in the capacitors associated with the drive electrode are given by

Qd = CdVd =


C1d

C2d

C3d

Vd. (3.20)

The addition of the drive line modifies the capacitance matrix by C = C ′′+C+
d and C+

d is

given by

C+
d =


C2d 0 C2d

0 C3d C3d

C2d C3d C1d + C2d + C3d

 . (3.21)

In order to consider the effect of the driving, we assume the time dependent drive to

be in the form of Vd(t) = Vd0 cos(ωdt + ϕd) where Vd0 is the drive amplitude, ωd is the

drive frequency, and ϕd is the phase of the drive signal. The drive Hamiltonian then can

be expressed as

Hd(t) =
∂TH
∂Vd

Vd0 cos(ωdt+ ϕd). (3.22)
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The system Hamiltonian sensitivity on the drive voltage is given as

∂TH
∂Vd

= −2e
([

(DCd)
TC−1

]
1

(n2 − n2g) +
[
(DCd)

TC−1
]

2
(n3 − n3g)

)
. (3.23)

For a two level system case, Eq. 3.23 can be represented in the qubit subspace as.

∂TH
∂Vd

=

(
〈0|∂TH

∂Vd
|0〉 〈0|∂TH

∂Vd
|1〉

〈1|∂TH
∂Vd
|0〉 〈1|∂TH

∂Vd
|1〉

)
(3.24)

where |0〉 and |1〉 are the ground and excited states of the qubit. The off-diagonal terms

in the Eq. 3.24 describe the transition strengths between qubit states. Equation 3.24 can

be expressed more generally with Pauli matrices as

∂TH
∂Vd

= g01 cos(ϕ01)σx + g01 sin(ϕ01)σy

= g01σϕ01 , (3.25)

where g01 is the transition strength between states 0 and 1. The drive Hamiltonian in

Eq. 3.22 is then expressed as

Hd(t) = g01Vd0 cos(ωdt+ ϕd)σϕ01 . (3.26)

This drive Hamiltonian describes rotations on the Bloch sphere. The rotation axis is

determined by the phase of the drive ϕd. The rotations are easier to illustrate in a rotating

frame resonant with the drive. The details of the qubit drive is given in the previous

chapter. For the drive in Eq. 3.26, the Rabi oscillation frequency is given by

ΩR01 = Vd0α01. (3.27)
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3.2 Device simulations

Device simulations play important role in determining the final device design and fabri-

cation procedures. In this section we discuss several numerical simulations performed to

confirm device characteristics. First, the electromagnetic response of the CPW resonator

is discussed. Second, the qubit circuit capacitors including shunt pads are simulated to

construct the system capacitance matrix. Third, qubit characteristics such as energy level

structures and transition strengths are simulated based on the capacitance matrix and

resonator simulations.

EM simulations

The capacitively shunted flux qubit is coupled to a half-wavelength resonator defined by

interrupting a co-planar transmission line by coupling capacitors at both ends. The mi-

crowave response of the coupled resonator qubit system is simulated with Sonnet EM Suite

and ANSYS HFSS software tools. In the simulations, the transmission spectrum and the

current distribution in the resonator are simulated with frequency sweeps. The resonance

frequency and the resonance modes are checked against any unwanted resonances and the

geometry is adjusted to remove these spurious modes.

The CPW resonator is coupled to external circuitry for qubit state readout and the

external coupling strength is found by assuming the internal loss of the resonator to be

negligible (Q0 →∞) and simulating transmission spectrum. In this case, the loaded quality

factor QL will be limited by the external coupling as 1
QL

= 1
Q0

+ 1
Qext
≈ 1

Qext
. Alternatively,

coupling capacitors of the CPW half-wavelength resonator can be simulated in EM tools

and the external quality factor can be calculated numerically.

With EM simulations, the resonance frequency of the CPW is designed to be at 6.7

GHz with Qext = 2 × 105. The resonator width/gap ratio is 16 µm/ 8.4 µm, leading to

a characteristic impedance of 50 Ω. The inductance and capacitance per unit length are

4.232× 10−8 H/m and 1.708× 10−10 F/m.
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The capacitance simulations

The capacitance structure of the device is shown in Fig. 3.1. The capacitance matrix used in

the model (Eq. 3.3) is constructed from the capacitance simulations performed in Sonnet

EM Suite, ANSYS Q3D Extractor, and COMSOL Multi-physics softwares to compare

simulation accuracy. The extracted capacitance values agree well in all simulations tools.

The size of the pads and the gap dimensions between the pads and the ground plane are

parametrized for optimizations. A set of parameters that are used in the device fabrication

are given in Table 3.1.

Table 3.1: Set of parameters used in the capacitance simulations for the device geometry shown
in Fig. 3.1.

Parameter Value
Size of capacitor pad 1 100 µm × 300 µm
Size of capacitor pad 2 100 µm × 146 µm
Size of capacitor pad 3 100 µm × 146 µm
Gap between capacitor pads 8 µm
Gap between CPW ground plane
and capacitor pads

10 µm

Distance between the drive line
and capacitor pads

135 µm

Distance between the resonator
and the capacitor pads

26.4 µm

In order to eliminate the loss associated with the amorphous junction oxide layers,

the electric field across the qubit junctions are dispersed on these large shunt capacitors.

The value shunt capacitances are designed to be at least factor of five higher than the

junction self capacitances assuming the capacitance density of the Josephson junctions are

approximately 80 fF/µm2. Table 3.2 summarizes the simulated capacitance values with

the geometry defined in Table 3.1.

51



Table 3.2: The simulated capacitances of the geometry defined in Table 3.1.

Capacitor Value Capacitor Value
C13 14.52 fF C21 14.74 fF
C32 8.51 fF C01 62.9 fF
C02 30.4 fF C03 32.9 fF
C1b 2.60 fF C2b 2.61 fF
C3b 0.21 fF C1d 0.15 fF
C2d 0.02 fF C3d 0.11 fF

Qubit simulations

In this section, we present the circuit properties numerically calculated by the model pre-

sented in previous sections. In the simulations, the full circuit capacitance matrix, CPW

resonator properties such as capacitance per unit length and resonance frequency, and

junction critical currents are used as input parameters. The simulated capacitances cor-

responding to faricated device geometry are listed in Table 3.2. The model predicts the

energy level structure with various flux frustration and gate charges as well as the sen-

sitivities to flux and charge fluctuations. The model also predicts the coupling strengths

of the qubit to the resonator and the drive line. The simulations are performed with the

junction critical current density of 3.96 µA/µm2. The area of the qubit reference junc-

tions are 0.043 µm2. The simulated energy level spectrum of the shunted circuit for the

first five levels versus external magnetic flux φ is shown on Fig. 3.2. At flux-symmetry

point(Φ = 0.5 Φ0), the minimum energy splitting for the qubit space, formed by the lowest

two energy levels, is ω01 = ∆ = 2π × 1.708 GHz. Away from the symmetry point, the

transition frequency between the states 0 and 1 is well approximated by the two level model

in Eq. 2.63. At the symmetry point, the higher level transitions are ω12 = 2π × 5.4 GHz,

ω23 = 2π × 5.553 GHz, and ω34 = 2π × 4.8 GHz. The anharmonicity between 0-1 and 1-2

transition is ω12 − ω01 = 2π × 3.69 GHz. The simulated energy spectrum is compared to

the experiments in the next chapter.

The coupling strength between the qubit and the CPW resonator is calculated to be
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2π × 8 MHz. At symmetry point, the transition strengths are 1.45 × 1012 Hz/V, 3.75 ×
1012 Hz/V, and 3.3× 10−2 Hz/V for 0-1, 1-2, and 0-2 transitions respectively. Due to the

symmetry of the potential energy at this flux point, the 0-2 transition is forbidden [58].

Away from the symmetry point, the double well potential structure becomes asymmetric

and all three transition are allowed. The transition strengths at 0.501 mΦ0 are 1.45 ×
1012 Hz/V, 3.71× 1012 Hz/V, and 5.22× 1011 Hz/V respectively.
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Figure 3.2: Numerically simulated first five levels of the capacitively shunted flux qubit.

Similar to the transmon qubits, the capacitively shunted flux qubit also shows negligible

sensitivity to the gate charges. Figure 3.3 shows the energy level dependency on the gate

charges ng2 and ng3 for 0-1, 1-2, and 0-2 transitions respectively. The maximum difference

in the transition frequencies is 2π × 133, 2π × 626, and 2π × 493 Hz respectively.

3.3 Fabrication of capacitively shunted flux qubits

In this section, the fabrication procedures of the capacitively shunted flux qubits are dis-

cussed. This section is categorized into three parts. In the first part, the fabrication of the
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Figure 3.3: Gate charge dependency of the transition frequencies a) 0-1, b) 1-2, and c) 0-2
transition. The maximum frequency differences ∆ω are 133, 626, and 493 Hz respectively.

marker layer is discussed. In the second part, the fabrication of the circuit layer, consisting

of CPW resonator and qubit shunt capacitors, is discussed. In the last part, the details of

the qubit junction fabrication are given.

3.3.1 The marker layer

The fabrication starts with chemical cleaning of high resistivity(10 kΩ.cm) 4” Si wafers.

Si is one of the low loss materials for cQED applications [59] and it has been reported to

yield high quality devices [60]. Figure 3.4 depicts the fabrication process for the circuit

layer. The wafer is cleaned in ultrasonic bath of Acetone and isopropyl alcohol(IPA). The

substrate is then rinsed with de-ionized water and vacuum baked for dehydration. For

better resist adhesion, the substrate is coated with HMDS by vapor priming in 150 0C

oven.

For alignment of the subsequent fabrication layers, we use the etched markers as refer-

ence points. The markers are fabricated by first applying a positive photo resist(Shipley

s1811) on the substrate. After UV exposure and development in MF319, the exposed Si is

etched with Bosch process to create vertical profile with 2 µm depth. These etched mark-

ers provide good contrast for optical lithography and especially for high energy e-beam
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Figure 3.4: Sketch of the fabrication steps for (a)-(e) marker layer and (f)-(g) circuit layer.

imaging during the alignment step in the lithography. The substrate is then cleaned in an

ultrasonic bath of remover PG at 80 ◦C followed by Acetone and IPA cleaning.

3.3.2 The circuit layer

The CPW resonator and the qubit shunt capacitor pads are fabricated in the same process.

The substrate is coated with thin layer of HMDS for better resist adhesion. It is coated

with 1.3 µm thick negative photoresist ma-N 1410. The photoresist is then exposed with

Heidelberg MLA150 direct write lithography tool to pattern the circuit layer. After the

exposure, the substrate is developed in ma-D 533/S developer for 90 secs. This results

in a negative undercut profile for a better lift-off process. After the development of the

ma-N 1410 resist, the substrate is treated with an oxygen descumming process. This is

to remove any resist residues left on the surface of the Si. It is reported that, optical

and e-beam lithography resists leave residues on the surface [60]. These residual layers

can contribute to the loss directly or react with superconducting metal to form lossy

regions. Next, the superconducting aluminum layer is evaporated in an e-beam evaporator
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tool(Plassys MEB550S) to obtain 100nm of layer thickness with a rate of 0.3 nm/s. During

the evaporation, the substrate is tilted to +5◦,0◦,-5◦ to create a tapered profile for better

contact between the circuit layer and the subsequent layers. After evaporation, the lift-off

process is carried out in a bath of Remover PG at 80◦C. The bath is stirred to help the

lift-off process. The substrate is further cleaned with Acetone and IPA baths

(a) (b) (c)

Qubit 1

Qubit 2

150µm

Qubit Control

Qubit Control

Resonator 

Input

Resonator 

Output

Figure 3.5: Images of the CPW resonator including shunt capacitors. a) The illustration of the
3mm x 7mm CPW resonator chip fabricated for the experiments. b) Microscope image of the
qubit 1 shunt capacitors. c) Microscope image of qubit 2 shunt capacitors. The scale is 150 µm
for (b) and (c).

Figure 3.5 shows the illustration of the fabricated CPW resonators and microscope

images of the fabricated shunt capacitors for qubits. The half wavelength CPW resonator

hosts up to two capacitively shunted flux qubit.

3.3.3 The qubit layer

The qubit is formed when the qubit junctions are placed in between the shunt capacitors.

Fabrication of the qubit layer is depicted in Fig. 3.6. First, The chip is coated with poly-

methylglutarimide (PMGI) and polymethylmethacrylate (PMMA)electron beam resists for
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a bi-layer lift-off process. PMGI SF7 is dispensed on the chip through a filter. It is spread

at 2800 rpm/s for 90 seconds then baked at 200oC for 20 minutes. Next, PMMA 950K A3

is dispensed on the chip through a filter and it is spin coated at 6000 rpm/s for 90 seconds.

The chip is baked at 180oC for 20 minutes. The resulting stack layer is around 520 nm.

The resist stack is exposed with high energy electron beam lithography tool(JEOL JBX-

6300FS). Sub-micron features are written on the resist stack with 100 KeV acceleration

voltage and with a beam current of 1 nA. The required dose for fine resolution structures are

1200 µC/cm2. After the exposure, PMMA layer is developed in MIBK:IPA (1:3) solution

for 70 seconds. Next, PMGI layer is developed in Microprosit developer concentrate for 40

seconds. This process creates an undercut profile of easier lift-off.

Before the evaporation step, the developed chip is again subjected to oxygen descumm

process to remove any residual e-beam resist. The sample is transferred to the evaporation

chamber. In order to remove the AlOx from the contact area of the capacitor pads, an argon

milling process is done at angles 20◦ and -20◦. This also helps to create a tapered profile

for better contact between the capacitor pads and junction wires. Next, the evaporation

angle is set to +20◦ and the first Al layer with thickness 40 nm is evaporated with a

rate of 0.3 nm/s. After, the Al layer is oxidized (in-situ) in an oxygen environment of

0.012 mBar for 7 minutes. Changing the oxidation pressure and duration change the oxide

thickness, therefore, the critical current of the final junction can be modified during this

process. With typical oxidation parameters, it yields to junctions with critical current

densities of 4 − 20µA/µm2. After oxidation step, second 65 nm of Al layer is evaporated

at an angle of -20◦ with a rate of 0.3 nm/s. Finally, the chip is cleaned in Remover PG

bath at 80◦C for 40 minutes It is further cleaned by Acetone and IPA baths. This type

of fabrication yields good junctions since both superconducting electrodes and the barrier

material are fabricated in-situ and in a single process. After the cleaning step, the chip

is diced into 3mm×7mm dies. Individual devices are then wire-bonded and placed in

microwave packaging for low temperature measurements.
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Figure 3.6: Fabrication steps of a Josephson junction. a) Substrate with resonator and capacitor
layer is cleaned. b) It is spin coated with bilayer e-beam resists. c) The resist stack exposed with
high keV EBL system (JEOL JBX-6300FS). d) Selective developing allows for fine structures
on PMMA layer and undercut profile in PMGI layer. e) Argon milling and e-beam assisted
directional evaporation of 40 nm Al at an angle of +20o to the normal of the surface defines the
first Al layer. f) The first Al layer is oxidized for 7 minutes in an oxygen atmosphere. g) Second
65 nm thick Al layer is evaporated at an angle of -20o. h) The device is cleaned and wire-bonded
into microwave packaging for measurements.

58



3.4 Conclusions

In this chapter, the design and model for the capacitively shunted flux qubit are introduced.

The resonator characteristics are determined by microwave simulation tools and the circuit

capacitances are performed in EM simulation tools. With the fabrication parameters such

as critical currents of the junctions and the complete capacitance matrix as input param-

eters, the qubit characteristics such as transition frequencies, charge and flux dependency,

and transition rates are numerically calculated. This approach allows for a fine tuning of

the design and fabrication parameters. Next, the fabrication methods are discussed. The

design has large shunt capacitors which consists of the majority of the electrostatic energy

stored in the qubit. The relatively large size of the pad offers reproducible and reliable

fabrication with standard micro- and nano-fabrication steps.
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Chapter 4

Characterization of capacitively

shunted flux qubit

4.1 Introduction

In this chapter, we present experiments on the capacitively shunted flux qubit to determine

the properties such as energy level structure and transitions. The experiments presented

in this chapter are preliminary characterization of the device and serve as a basis for the

experiments demonstrated in Chapter 5 and 6. In this chapter, first, the transmission

spectrum of the coupled system is investigated. Second, the qubit transition frequencies

are identified for the first three levels. The spectroscopy data is then compared to the

numerical simulations performed in the previous chapter. Third, the coherent driven oscil-

lations between the states of the qutrit space are shown. Last, the method for population

extraction and determination of qubit effective temperature are presented.
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4.2 Device configuration

The experiments are done with a superconducting flux qubit coupled to a coplanar wave-

guide (CPW) resonator, shown in Fig. 4.1(a). The qubit is formed of three large pads

connected in a loop by three Josephson junctions, shown in Fig. 4.1(c). Two junctions are

of equal size and the third is smaller by a factor α = 0.61. The use of three large capacitive

pads is intended to effectively reduce the participation ratio of electric fields in Josephson

junctions and at metal surfaces and interfaces, as demonstrated in transmons [17] and

then adapted to other types of superconducting qubits [61, 21]. The qubit is biased with

Figure 4.1: Image of the device used in the experiments. a) Photograph of the capacitively
shunted flux qubit capacitively coupled to a CPW resonator. The dashed rectangle indicates the
qubit with shunt capacitors used in the experiments b) Microscope image of the qubit shunting
capacitors. The dashed rectangle indicates the position of the qubit loop and junctions. c) SEM
image of the qubit loop and junctions placed in between the capacitor pads.

a magnetic flux Φ generated by an external coil. Transmission through the resonator is
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used to measure the state of the qubit, based on dispersive-regime circuit-QED [25]. A

coplanar waveguide terminated by a capacitive pad is used to drive transitions between

different energy levels. The qubit is placed inside a sample holder at the mixing chamber

of a dilution refrigerator. All transmission lines contain attenuators, low-pass filters, and

infrared filters.

4.3 Transmission spectrum

We first present the transmission measurements of the coupled resonator and qubit system

with applied external magnetic flux. The spectrum in Fig. 4.2 shows that the fundamental

resonance frequency of the half wavelength CPW resonator is ωr = 2π × 6.719 GHz. The

quality factor of the resonator is determined by fitting the transmission spectrum with a

Lorentzian function [62]. At low power, the internal quality factor of the resonator Qi is

saturating at 1.6× 105 and the external quality factor Qe is 1.7× 105.
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Figure 4.2: Transmission spectrum of the coupled qubit resonator system. The transmitted
amplitude reaches maximum value when it is on resonance with the coupled system.
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The transition frequencies of the flux qubit are tuned by the applied magnetic field.

When the CPW resonator and the qubit energies are resonant, the degeneracy of the

coupled system is lifted by the interaction term in the Hamiltonian in Eq. 2.75. The

energy splitting depends on the coupling strength g. The avoided crossings in Fig 4.2

demonstrates a coupling strength g= 11.8 MHz, determined by the Jaynes-Cummings

model in dispersive regime.

4.4 Qubit spectroscopy
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Figure 4.3: Readout homodyne voltage versus the spectroscopy pulse frequency. The spec-
troscopy peaks correspond to a) the 0-1 transition at the symmetry point and at 0.5018 Φ0, b)
the 0-2 two-photon transition at the symmetry point, c) the 1-2 transition at the symmetry point
and at 0.5018 Φ0, and d) the 0-2 transition at 0.5018 Φ0. Solid lines represents Lorentzian fits.

To identify the qubit transitions frequencies, we next present the spectroscopy exper-

iments. The qubit is driven by weak spectroscopy pulses with varying drive frequency at
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various flux bias points. The readout of the qubit is done by homodyne voltage measure-

ments in the dispersive regime. The readout setup is reported on previous work [48]. The

readout pulse duration for spectroscopy experiments were 10 µs long and the correspond-

ing state voltages are averaged over this period. In Fig. 4.3 we show the readout result,

given by the average homodyne voltage, versus frequency of an applied spectroscopy pulse,

for two values of the applied magnetic flux, Φ = 0.5 Φ0 (the flux symmetry point) and

Φ = 0.5018 Φ0. At the symmetry point, we observe a peak at the transition frequency

ω01 = 2π× 1.708 GHz between states 0 and 1 and a peak at ωtp
02 = 2π× 3.553 GHz, a two-

photon transition between states 0 and 2. At Φ = 0.5018 Φ0, we observe the 0-1 transition

as well as the 0-2 transition, with the latter absent at the symmetry point due to selection

rules [58]. The 1-2 transition can be observed after applying a 0-1 pumping tone. The
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Figure 4.4: Transition frequencies of the shunted qubit versus the external magnetic flux. a)
0-1 transition, b) 0-2 two-photon transition, c) 1-2 transition, and d) 0-2 transitions. Solid lines
represents fits based on two-level model.

transition frequencies ω01, ωtp
02 ω12, and ω02, for a range of applied magnetic flux, are shown

in Fig. 4.4. The spectroscopy data is in excellent agreement with a model of the qubit

based on the complete capacitance matrix extracted from electromagnetic simulations and
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the critical currents of the junctions used as the only fit parameters (see Chp. 3). The best

fit corresponds to a critical current Ic = 3.96 µA for the large junctions with area 0.042

µm2 and α = 0.61, which are in very good agreement with the device fabrication nominal

parameters.

At the symmetry point, the qubit energy levels have large anharmonic structure. The

anharmonicity, defined as A = ω12 − ω01, is found to be 2π × 3.682 GHz. The large

anharmonicity allows one to assume the two level approximated Hamiltonian HTLS =

−~∆/2σx− ε/2σz where ∆ is the minimum energy difference between the qubit states and

ε = 2Ip(Φ− Φ0/2) with the persistent current Ip. From the ω01 transition versus external

flux Φ, the persistent current is found to be Ip = 75.4 nA. Similarly the two level model can

be applied to the 1-2 and 0-2 transition separately. The corresponding persistent currents

for the 1-2 and 0-2 transitions are found to be 86.6 nA and 103.5 nA, respectively.

4.5 Readout histograms

In this section, the readout voltages for the corresponding states are shown. The control

pulses used in state preparation are indicated as rotations on the Bloch sphere and denoted

by Rij
n (θ) where n is rotation axis, i and j are the transition levels, and θ is the rotation

angle which is determined by the Rabi oscillations. The readout homodyne voltage is

averaged over number of measurements. Figure 4.5 shows the readout histogram at flux-

symmetry point for the states g, e, and f with 8192 measurements. The states g, e, and f

are prepared by waiting for thermalization, applying a R01
x (π) pulse, and applying a R01

x (π)

followed by a R12
x (π) pulse on the thermalized state, respectively. The pulses denoted by

R01
x (π) and R12

x (π) are rotations around the x axis in the Bloch sphere for 0-1 and 1-2

subspace, respectively. Throughout the experiments, the population on state 0 in the

thermal state is found to be 0.95± 0.02.

At the symmetry point, the state contrast is 88% and it is mainly limited by the errors

in the initial state preparations associated with the non-zero populations of the excited
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Figure 4.5: Readout histograms of three-level system. Number of counts of the measured
voltage bins for prepared states g, e, and f are shown for total of 8192 measurements.

states due to thermalization. The qubit thermalized state includes populations from the

state 0 and state 1 with a proportion which depends on the temperature and the transition

frequency. The contrast between states e and f is poor, therefore the data of the experiments

including state e and f are mapped to states g and e.

4.6 Rabi oscillations

In this section we present the Rabi oscillations in the transitions identified in the spec-

troscopy experiments. The experiment sequence includes repetitions of state reset, qubit

control, and state readout protocols. The state reset is done by waiting at least ten times

the qubit relaxation time to for qubit to relax and reach the thermal equilibrium state.

The qubit control pulses are shaped cosine waveforms with a cosine rise and fall of the

envelope. The Rabi pulses used in the experiments are generated with a Tektronix 70001A
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arbitrary waveform generator which has a sampling rate of 50 GS/s. The rise and fall

times in the Rabi drive pulses are 1 ns.
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Figure 4.6: Rabi oscillations at the symmetry point. The oscillations are observed between
states a) 0 and 1, and c) 1 and 2. Solid lines represent the sinusoidal fits. The linear dependency
of the Rabi frequency on the drive amplitude is shown for b) 0-1 and d) 1-2 transitions. Solid
lines represent the linear fits.

The Rabi experiments are performed between the first three energy levels. For oscilla-

tions between states 0 and 1, after the state reset, a Rabi drive resonant with 0-1 transition

frequency is applied. This drive moves the qubit population from 0 towards 1 and vice

versa. The state readout is performed and the homodyne voltage is measured by repeating

the experiment with increased pulse duration. Figure 4.6(a) shows the oscillations be-

tween state 0 and 1 versus the pulse duration indicating that the qubit population swaps.

With the maximum drive amplitude available in the experimental setup, we observe an

oscillation frequency of 2π × 292 MHz. Figure 4.6(b) shows the linear dependency of the

oscillation frequency on the driving amplitude.

For oscillations between states 1 and 2, after qubit reset, a R01
x (π) pulse is applied to
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move the qubit to state 1. Next, a Rabi drive resonant with the 1-2 transition is applied.

Figure 4.6(c) shows the Rabi oscillations between state 1 and 2 versus pulse duration and

the oscillation frequency shows a linear dependency on the drive amplitude, as shown in

Fig. 4.6.(d).
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Figure 4.7: Rabi oscillations at Φ = 0.501Φ0. (a),(c), and (e) shows sinusoidal oscillations
between states 0-1, 1-2, and 0-2, respectively. Solid lines represents sinusoidal fits. (b),(d), and
(f) shows the linear dependency of the Rabi frequency to the drive amplitude. Solid lines represent
linear fits.

Away from the symmetry point, all three transition are allowed. Figure 4.7 shows the

Rabi oscillations between states 0-1, 1-2, and 0-2 at Φ = 0.501Φ0. In addition, the readout

histograms show good contrast between all three states.

4.7 Population extraction and effective temperature

In the steady state, where the qutrit relaxes and reaches a thermal equilibrium, the pop-

ulations of the states 0, 1, and 2 depends on the transition frequencies and temperature
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of the bath coupled to qubit. It is assumed that the population of state 2 is negligible

as the energy gap for this transition is large (ω02 = 2π × 7.107 GHz). The steady state

populations Pss0 and Pss1 of state 0 and 1 respectively are determined by performing Rabi

oscillations on two different prepared states. The first state preparation is done by waiting

long enough for the qutrit to thermalize. The second state preparation is done by applying

a π01
x pulse followed by a π12

x pulse to a thermalized state. This method is similar to the

approach used in Jin et al. [63], with the difference that the preparations are chosen such

that Rabi oscillations for the 0-1 transition are compared, where the readout contrast is

optimized for this qubit. The steady state population Pss0 can be found as

Pss0 =
A0

A1 + A0

, (4.1)

where A0 and A1 are Rabi oscillation amplitudes corresponding to the two preparations

described above. In the coarse of the experiments Pss0 is found to be 0.95±0.02 indicating

an effective temperature, calculated based on Pss1/Pss0 = exp(−~ω01/KBT ), of 27-32 mK.

The effective temperature is very close to the cryostat temperature of 27 mK, in contrast

to other reported results on long coherence time superconducting qubits, where larger

differences between effective temperature and cryostat temperature were observed [64, 65].

For experiments including the higher levels, it is important to understand the properties

of the readout. For a qutrit, formed by the lowest three energy levels, we model the

homodyne voltage as Vh = Vh0P0+Vh1P1+Vh2P2, where P0, P1, and P2 are the probabilities

and Vh0, Vh1, and Vh2 are the signal levels corresponding to states 0, 1, and 2, respectively.

To determine the signal levels, we measure Vh for three preparations. The first preparation

is the qutrit thermalized state, obtained after a sufficiently long waiting time, for which

P0 = Pss0, P1 = Pss1, and P2 = 0. The second preparation consists of applying a π01
x

pulse after thermalization, which results in P0 = Pss1, P1 = Pss0, and P2 = 0. The third

preparation is done by applying π01
x and π12

x pulses after thermalization, for which P0 = Pss1,
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P0 = 0, and P2 = Pss0. The state voltage levels can be calculated by
Vh0

Vh1

Vh2

 =


Pss0 Pss1 Pss2

Pss1 Pss0 Pss2

Pss1 Pss2 Pss0


−1

V0

V1

V2

 , (4.2)

where V0, V1, and V2 are the measured homodyne voltages for the prepared states above.

4.8 Conclusions

In this chapter we presented the transmission spectrum of the coupled qubit resonator

system where the readout is done by dispersive methods. We presented the energy level

spectrum of the qubit which is in excellent agreement with the qubit simulations based on

the circuit model with the complete capacitance matrix of the system and nominal fabrica-

tion parameters. We also showed that the device is driven coherently in the qutrit subspace.

We presented a method to determine the steady state populations of the thermalized state.
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Chapter 5

Characterization of multi-level

dynamics and decoherence in a

high-anharmonicity capacitively

shunted flux qubit

In this Chapter, we present the design and characterization of a three-Josephson junction

superconducting loop circuit with three large capacitive shunting pads. This circuit is

coupled capacitively to a resonator used for dispersive readout and to a capacitive driving

pad for resonant control. We first discuss detailed experiments on this circuit used as a

qubit, formed by the circuit lowest energy states 0 and 1. At the flux symmetry point

the qubit relaxation time reaches as high as T1 = 47µs and the spin-echo dephasing time

T2E = 9.4µs. The coherence time is increased with dynamical decoupling, reaching 26.5µs

with N = 100 Carr-Purcell-Meiboom-Gill pulses applied. We discuss in detail possible

mechanisms for decoherence at the symmetry point. The dephasing time away from the

flux symmetry point is proportional with coupling to flux fluctuations. We performed

detailed spectroscopy and coherence experiments of this circuit used as a qutrit, involving
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the lowest three levels 0, 1, and 2. The dependence of the transition frequencies and

selection rules on magnetic flux is in excellent agreement with a complete circuit model

based on the system capacitance matrix. We performed coherence experiments for the

qutrit at the flux insensitive point, allowing to extract the energy relaxation and excitation

rates, as well as the Ramsey coherence rates for all the three pairs of states involved. At

the flux symmetry point, the circuit has a large anharmonicity, defined as the difference

between the 1-2 and 0-1 transition frequencies, approaching 2π × 3.69 GHz, enabling fast

single qubit operations. We performed randomized benchmarking with qubit gates with

a duration of 2.64 ns, and an average gate fidelity of 99.9 %. These results demonstrate

interesting potential for use of these circuits to implement fast two-qubit gates, enabled by

the high anharmonicity, and for multi-level quantum logic.

5.1 Introduction

Recent years were marked by major progress in gate-model quantum computing imple-

mentations, leading to the development of small prototypes with sizes reaching tens of

qubits [66, 67, 68, 69, 70]. Superconducting quantum bits in particular received attention

as one of the most promising platforms from the perspective of scalability [71, 72]. De-

spite these advances, research on the fundamental building blocks of a superconducting

quantum computer, quantum bits and methods for implementation of elementary single

and two-qubit gates, remain a highly relevant research topic. Single- and two-qubit gate

fidelities have only approached or marginally exceeded the error tolerance threshold for

the surface code [73, 74]. Reducing gate errors has the potential to lead to a dramatic

reduction in fault tolerant operation overhead [75] and is relevant for non-error-corrected

near-term quantum devices [76]. Gate errors are impacted by both qubit coherence times

and gate speed, and more generally by architecture details; this complete design space has

been only partially explored in superconducting devices.

The spectroscopy experiments and population analysis discussed in the previous chapter
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serve as a basis for the experiments presented in this chapter. We present experimental

results on a superconducting qubit design that combines long coherence times, of 40µs

for energy relexation and 9.4µs for spin-echo dephasing, with high level anharmonicity,

approaching 2π × 3.69 GHz. Level anharmonicity is the difference between the first two

transition frequencies, ω12 and ω01, with 0 and 1 the first two energy eigenstates, used as

qubit computational states, and 2 the second excited state. Anharmonicity has a direct

impact on the speed of single qubit gates [77, 78] and identified to be a limiting factor

for the speed of two-qubit gate implementations [79]. We demonstrate fast single-qubit

gates, with duration of 1.62 ns for a π/2 pulse and 2.64 ns for a π pulse, and a high

fidelity, characterized using randomized benchmarking, reaching 99.9 %. We expect the

large anharmonicity of this design, combined with the long coherence times, to lead in the

future to fast and high-fidelity gates. Moreover, we performed experiments in which we

characterized decoherence and controlled this device in the qutrit space (formed by states

0, 1, and 2). Qutrit control and coherence bear relevance for qubit gates that make use of

the properties of higher levels and is more broadly relevant for quantum protocols based

on multi-level logic [80, 81, 82]. These results are enabled by a flux-type qubit design

with three junctions with large planar capacitive shunts. Previous work on capacitively

shunted flux qubit circuits focused on single shunt designs and dynamics and properties of

the lowest two levels. You et al. proposed using capacitive shunting to reduce charge noise

induced decoherence [20, 61]. More recently Yan et al. [21] performed a systematic study of

flux qubits with single capacitive shunts, and demonstrated high coherence and a moderate

anharmonicity of the order of 0.5 GHz in optimized samples. Stern et al. [83] demonstrated

relatively long energy relaxation times in flux qubits coupled to three-dimensional cavities,

suitable for hybrid experiments.
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5.2 Qubit coherence at the symmetry point

We next discuss the qubit coherence characterization at the symmetry point (Φ = 0.5 Φ0).

Fig. 5.1(a) shows an energy relaxation time measurement, with the qubit excited with a π01
x

rotation, resonant with the 0-1 transition. The measured T1 had systematic fluctuations in

the course of experiments, with typical values in the 40± 5µs range, as observed in other

experiments with superconducting qubits [84, 85, 86]. In the course of the experiments,

T1 reached as high as T1 = 47.1 ± 2.0µs, which is comparable to the best result reported

previously on a capacitively shunted flux qubit design with moderate anharmonicity [21].

The Ramsey and spin-echo coherence times were found to be T2R = 4.7µs and T2E = 9.4µs.
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Figure 5.1: Coherence times at the flux symmetry point. a) Readout voltage versus delay time
after a π01 pulse is applied to the qubit thermalized state. The solid line is an exponential fit,
leading to a relaxation time T1 = 47.1µs. b) Coherence time versus the number of pulses N in
CPMG sequence. c) Homodyne voltage versus CPMG time for N=1 (black squares) and N=100
(red dots). Solid lines represent exponential fits.

For both type of measurements, exponential decay as opposed to Gaussian decay led to a

better fit in general. We performed dephasing measurements with dynamical decoupling
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based on Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences with π pulse duration of

11.9 µs. The coherence time versus the number of pulses is shown in Fig. 5.1(b). The

coherence time reaches TCPMG = 26.5µs for N = 100 pulses.

5.3 Multi-level relaxation and dephasing

We performed experiments addressing coherence in the qutrit space. In Fig. 5.2(a), we show

the result of a multilevel relaxation experiment. Two pulses, π01
x and π12

x , are applied to

excite the system to state 2 and the populations are measured versus time. The continuous

lines are fits with a multi-level relaxation model (see Appendix A). In the fit, the 0-1

relaxation (Γ10) and excitation (Γ01) rates are set based on the measurements of the qubit

relaxation time and thermal populations. The ratios Γ12/Γ21 and Γ02/Γ20 are set equal

to the corresponding Boltzmann factors, assuming the temperature Tqb extracted from

qubit thermalization experiments, and Γ21 and Γ20 are free parameters. We note that the

constraints on the ratios of the 1-2 and 0-2 rates does not significantly impact the values

of the relaxation rates. Based on a fit of the variation of the populations with time, we

extract the following relaxation rates: Γ21 = 124.3 kHz and Γ20 = 27.8 kHz. We performed

similar multi-level relaxation experiments away from the symmetry point, at Φ = 0.501 Φ0,

and we found comparable energy relaxation times of the order of 10µs (see Appendix A).

We also performed multi-level coherence experiments for the three pairs of levels involved.

Figure 5.2(b) shows Ramsey oscillations for coherent superpositions of states at the flux

symmetry point. The decay curves are in excellent agreement with a model that includes

state preparation, the interlevel relaxation and excitation rates, and low frequency noise

modeled as a classical Gaussian stochastic process (see Appendix A).
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Figure 5.2: Multi-level decoherence. a) Population versus delay time after a π01
x and a π12

x

pulse are applied to qutrit thermal state for levels 0 (blue squares), 1 (red dots), and 2 (green
triangles). (b-d) Ramsey oscillations with time for coherent superposition of states b) 0 and 1,
c) 1 and 2, and d) 0 and 2, with Ramsey coherence times 4.7, 3.4, and 5.4 µs, respectively.

5.4 Qubit coherence away from the symmetry point

We measured the qubit coherence time for a range of magnetic fluxes. The spin-echo

rate is shown as a function of the flux sensitivity coefficient ∂ω01

∂Φ
in Fig. 5.3. The nearly

linear dependence is in line with other experiments and indicative of low frequency flux

noise [87, 48]. Detailed measurements of coherence with CPMG pulse sequences were done

at a flux Φ = 0.501 Φ0, for various pulse sequence lengths N . The dephasing rate changes

from 1.4µs for N = 1 to 6.8µs for N = 100, with approximately a N0.42 dependence. At

Φ = 0.501 Φ0, we have measured in addition the Ramsey dephasing times for superpositions

of states 0-1 and 0-2; we obtained the dephasing rates 2.7 MHz and 0.9 MHz respectively.

5.5 Discussion of coherence

We now discuss the results obtained for qubit coherence, starting with pure dephasing. The

nearly linear dependence of the Ramsey and spin-echo dephasing rates on the flux coupling

coefficient ∂ω01

∂Φ
(see Fig. 5.3) demonstrates that dephasing away from the symmetry point
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Figure 5.3: a) Ramsey and b) Spin-echo decay rates versus the flux sensitivity coefficient.

is dominated by flux noise, and is indicative of flux noise with a power spectral density

(PSD) of the form A/|ω|α, where ω is the frequency, A characterizes the strength of the

noise, and α ≈ 1 [87, 48]. At Φ = 0.501 Φ0, the coherence rate with CPMG pulses changes

as N−β. This is indicative of low-frequency noise with a power density A/|ω|α, where

α = β/(1−β) (see Appendix A). This allows extracting A = 1.8× 10−14 (rad/s)α−1Φ2
0 and

α = 0.68; note that these values hold over the frequency range where the CPMG pulses

are sensitive to flux noise, corresponding approximately to 3.1 − 46.3 MHz. The Ramsey

dephasing rates for 0-1 and 0-2 coherences at Φ = 0.501 Φ0 are in a ratio proportional

to the flux sensitivity coefficients, suggesting that flux noise is the dominant dephasing

source for higher levels as well. At the symmetry point, we considered various possible

explanations for the observed coherence times. Photon dephasing is expected to be weak,

due to the weak coupling to the cavity, with a dispersive shift χ = 0.5 MHz. However,

with numerical simulations we found that with nth = 0.15 the observed decay times in

simulations are close to experimental values for up to 10 CPMG pulses, but become up to

a factor of two longer for larger numbers of CPMG pulses. The value nth = 0.15 corresponds

to an effective temperature of 160 mK, which is much larger than expected. This value

could be due to ineffectively suppressed excess noise or possibly to coherent leakage of

radiation leading to a comparable average photon number. We next considered the role
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of charge noise. With the qubit parameters determined from experiment, the modulation

of the transition frequencies 0-1, 1-2, and 0-2 over the full charge periodicity interval is

2π × 133 Hz, 2π × 626 Hz, and 2π × 493 Hz respectively, which should induce a negligible

contribution to dephasing. Finally, we considered flux noise. The role of flux noise at sweet

spots has been considered theoretically in the past for particular types of noise [88]. We

resorted to a numerical simulation of dephasing induced by randomly generated noise. If

we assume that the PSD of flux noise is A/|ω|α, with A and α as determined based on

the CPMG measurements at Φ = 0.501 Φ0, but extrapolated to a a very broad frequency

interval, beyond the noise spectroscopy range of range 0.1 − 46 MHz, then the numerical

simulations give negligibly low coherence rates, of the order of 1 kHz. We cannot exclude

the possibility that significant departures of the flux noise PSD from the dependence in the

CPMG spectroscopy range would explain the observed coherence time at the symmetry

point. Finally, we comment briefly on energy relaxation. The long energy relaxation times

are comparable to the longest observed for planar qubits, indicating that dielectric loss

contributions are effectively suppressed.

5.6 Randomized benchmarking of single-qubit gates

We performed the randomized benchmarking protocol [89, 90] to measure the average

fidelity of the gates. The gates used in the experiments are implemented by shaped pulses

which have an envelope that has cosine-shaped rise and fall parts and a flat top. The

duration of the π/2 and π pulses are 1.62 and 2.64 ns long, respectively with 0.6 ns of

rise and fall times. In the benchmarking experiments, a random sequence of gates with

length 2N+1 is generated and the sequence is applied on the thermalized state with known

populations. The generation is done by selecting a random gate from the Clifford group

and a random gate from Pauli group and repeating this selection N times. A final gate

from either group is appended to project the resulting state to initial state. At the end of

each sequence, the average homodyne voltage is measured. For a given length 2N + 1, 32
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random sequences are generated. Figure 5.4 shows the average measured homodyne voltage
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Figure 5.4: Homodyne voltage after randomized benchmarking sequence is applied to qubit
thermal state versus the sequence length N . Black circles represent the measured voltage for
each randomization of the sequence and black dots represents the sequence averages. The solid
curve represents the fit with the decay function.

for each sequence (black circles) and for the averages of 32 sequences (black dots) versus the

sequence length N . The average of sequences is fitted with a function F = A0p
N+B0 where

A0 and B0 are fit parameters corresponding to the errors associated with state preparation

and measurement and p is related to the average error rate [90]. The average fidelity

Fave = p+ (1−p)/2 is found to be 99.92±0.003%. We performed numerical simulations of

the benchmarking protocol in qubit subspace including decoherence characteristics of the

qubit in the lab frame. The simulations agree well with the experiments. We expect that

the main limitation to average fidelity is the relatively strong drive strength of 2π × 260

MHz and shaping of the pulses. Experiments with optimized pulse shaping will be explored

in future work.
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5.7 Conclusions

In conclusion, we presented experimental results on a capacitively shunted flux qubit that

combines high anharmonicity with long coherence times. The energy level structure and

flux dependency of the transition frequencies agree well with the model based on the

system capacitance matrix. Coherence experiments performed in qubit space show high

energy relaxation time and indicates that the dephasing time is mainly limited by the low

frequency flux fluctuations. We also demonstrated experiments with the multi-level control

of the circuit and measured multi-level coherence in qutrit space. The experimental results

are in good agreement with the multi-level decoherence models. We also demonstrated

fast and high fidelity single qubit gates with randomized benchmarking protocol. The

experimental results indicate a prospective use of the shunted flux qubits to implement

fast two-qubit gates, enabled by the high anharmonicity and long coherence, and proves a

potential use multi-level quantum logic.
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Chapter 6

Implementation of a

Walsh-Hadamard gate in a

superconducting qutrit

We have implemented a Walsh-Hadamard gate, which performs a quantum Fourier trans-

form, in a superconducting qutrit. The qutrit is encoded in the lowest three energy levels

of a capacitively-shunted flux device, operated at the optimal flux-symmetry point. We

use an efficient decomposition of the Walsh-Hadamard gate into two unitaries, generated

by off-diagonal and diagonal Hamiltonians respectively. The gate implementation utilizes

simultaneous driving of all three transitions between the three pairs of energy levels of the

qutrit, one of which is implemented with a two-photon process. The gate has a duration

of 36 ns and an average fidelity, including preparation and tomography errors, of 91%,

characterized with quantum state tomography. We identify incomplete compensation of

ac-Stark shifts as one of the primary limitations to the gate fidelity, and we show that

significantly higher fidelities can be obtained using optimal pulse parameters.
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6.1 Introduction

In recent years significant progress has been made towards the implementation of quantum

computers. Current efforts are mainly focused on encoding quantum information using two-

state systems, or qubits. Using multi-level systems, or qudits, instead of qubits to perform

quantum information processing is a developing field that promises advantages in a number

of areas of quantum information. Universal quantum control of qudits and quantum error

correction approaches have been explored theoretically [81, 91, 92]. Recent theoretical work

suggests that quantum error correction with qudits has potential advantages over qubit-

based schemes [93, 80, 94, 95]. The experimental implementation of quantum computing

based on qudits is still largely unexplored. Besides quantum computing, qudits have been

explored as alternatives to qubits in other areas of quantum information, as an improved

platform for quantum metrology [96] and quantum communication [97].

In this chapter, we report the implementation of the generalized Walsh-Hadamard gate

in a superconducting three-state qudit, or qutrit. The Walsh-Hadamard gate is one of the

elementary gates in qudit control, relevant for error correction [81, 91] and the implemen-

tation of the quantum Fourier transform in single- and many-qudit systems [98]. We use a

fast single-pulse implementation of the gate based on a single rotation in the qutrit space.

We note that superconducting devices provide a natural platform for the exploration of

the physics of qutrits, with work to date including basic control and tomography [99], the

use of the third level of a qutrit to facilitate two-qubit gates [100], wave mixing [101], holo-

nomic gates [102], electromagnetic induced transparency [103], demonstration of quantum

contextuality [104], and adiabatic state transfer protocols [105].

There have been several studies in the literature on decomposing qudit gates into se-

quences of simple steps, e.g. into a sequence of gates that each operates on two quantum
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states [106, 107]. We use an implementation of the Walsh-Hadamard gate

UWH =
1√
3


1 1 1

1 ei
2π
3 e−i

2π
3

1 e−i
2π
3 ei

2π
3

 . (6.1)

that can be implemented in just two steps. Specifically, UWH = Ud Uo, with Uo =

exp(−Got) and Ud = exp(−Gdt). The generators Go =
(∑

0≤j<k≤3mjk|j〉〈k|
)

+ h.c.

and Gd = diag (φ0, φ1, φ2). This type of decomposition is well suited for superconducting

qubits where the microwave based control allows for the application of broadband signals

containing multiple frequency tones that can simultaneously drive transitions between dif-

ferent levels, allowing to readily implement Go. The effect of the diagonal unitary Ud can

be implemented without applying any additional pulses, but rather by shifting the phases

of the drive fields in the next resonant control pulses. In our experiment, these phase shifts

are applied to the tomography pulses. We found several decompositions of this type with

different values of the complex numbers m01, m02, and m12 and real numbers φ0, φ1, and

φ2 and chose the decomposition which results in the shortest pulse duration for a given

drive amplitude.

6.2 Device configuration

The device used in our experiments, shown in Fig. 4.1, is formed by a loop with three

Josephson junctions with three large capacitor pads. The device is capacitively coupled to a

co-planar waveguide half-wavelength resonator for dispersive readout and to a transmission

line terminated by a capacitor pad for control. Similar devices, based on three Josephson

junction loops with capacitive shunts, were employed as qubits encoded in the lowest two

energy levels [20, 61, 21]. The control pulses are generated using direct synthesis by a fast

arbitrary waveform generator (AWG TEK70001A) with a sampling rate of 50 GS/s. The

pulses consist of single- and multi-tone signals with an envelope that has cosine-shaped
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rise and fall parts and a flat top.

6.3 Quantum state tomography

To reconstruct the density matrix ρ of the qutrit, we use a quantum state tomography

procedure, where the readout of the homodyne voltage is preceded by one of the 9 tomog-

raphy pulses shown in Table 6.1. We choose the tomography pulses to optimize readout
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Figure 6.1: Density matrix elements reconstructed with tomography process. a) Real and
b) elements of ρ for the state preparation with R(π/2)12

y R(π)01
x and c) real and d) imaginary

elements of ρ for state preparation with R(π/2)01
x .

based on the large difference between Vh1 and Vh0; this set of pulses is different from the

experiment by Bianchetti et al. [99], where contrast is maximum between states 1 and

2. The tomography pulses consist of combinations of rotations around the x and y axes

of the Bloch sphere for the 0-1 (1-2) transitions, denoted by R
01(12)
α (θ) where α = x, y is

the rotation axis and θ is the rotation angle. Figure 6.1 shows the density matrices for
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Table 6.1: Set of pulses used in state preparation and state tomography experiments.

State Rotations Tomog. Rotations
Prep. Pulses

p0 I u0 R01
x (π)

p1 R01
x (π) u1 R01

x (π/2)
p2 R12

x (π)R01
x (π) u2 R01

y (π/2)
p3 R01

x (π/2) u3 I
p4 R01

y (π/2) u4 R01
x (π)R12

x (π/2)
p5 R12

x (π/2)R01
x (π) u5 R01

x (π)R12
y (π/2)

p6 R12
y (π/2)R01

x (π) u6 R01
x (π)R12

x (π/2)R01
x (π)

p7 R12
x (π)R01

x (π/2) u7 R01
x (π)R12

y (π/2)R01
x (π)

p8 R12
x (π)R01

y (π/2) u8 R01
x (π)R12

x (π)R01
x (π)

two states. The first state is prepared by applying a R01
x (π) pulse followed by a R12

y (π/2)

rotation and the second state is prepared by applying a R01
x (π/2) on the thermal state.

The measured fidelity between the reconstructed density matrix and the expected state is

99.2% for both preparations.

6.4 Rabi oscillations on 0-2 two-photon transition

The implementation of the Walsh-Hadamard gate discussed above requires the simultane-

ous driving of all three qutrit transitions such that the effective Hamiltonian in the rotating

frame has non-zero values for all off-diagonal matrix elements. While the 0-1 and 1-2 tran-

sitions are allowed and can be implemented by standard resonant driving, the 0-2 transition

is forbidden at the symmetry point, and is therefore implemented as a two-photon process.

Figure 6.2(a) shows the Rabi frequency of the two-photon oscillations between states 0

and 2 versus the detuning δtp02 = (ω01 +ω12)/2−ωtp
d,02, where ωtp

d,02 is the driving frequency.

The Rabi oscillations have a minimum frequency at a detuning δtp02 = 2π × 3.06 MHz, due

to ac-Stark shifting of the resonance. On resonance, the frequency of the Rabi oscillations

depends quadratically on the drive amplitude (Fig. 6.2(b)), characteristic of a two-photon
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Figure 6.2: Rabi oscillations on 0-2 two-photon transition with populations. a) Frequency of
the Rabi oscillations versus the detuning δ between the driving frequency and the two-photon
resonance frequency (ω01 + ω12)/2. The line is a quadratic fit. b) The two-photon resonant-
driving Rabi frequency versus the drive amplitude. The line is a quadratic fit. c,d) Results of
the tomography experiments. Panel (c) shows the population of states 0 (blue squares), 1 (red
disks), 2 (green triangles), versus the Rabi pulse duration, with oscillation frequency of 2π × 7.1
MHz. Panel (d) is the phase of the 0-2 component of the density matrix for two values of the
phase of the driving field: 0 (triangles) and π/4 (rhombuses).

process. With driving resonant to the ac-Stark shifted transitions, we performed tomogra-

phy experiments for various durations of the 0-2 Rabi pulse, shown in Fig. 6.2(c,d). The

population oscillates between states 0 and 2, while the population of state 1 remains rel-

atively constant at the level of the thermal state. The argument of the 〈0|ρ|2〉 element of

the density matrix ρ, shown in Fig. 6.2(d), is constant during each half-oscillation period,
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indicating rotation around a constant axis in the {|0〉, |2〉} subspace. The two data sets in

Fig. 6.2(d) correspond to two values of the phase of the two-photon driving tone, different

by π/4. The phase of 〈0|ρ|2〉 changes by twice the driving tone phase, which is another in-

dication that the transition is a two-photon process. The results of the two-photon driving

tomography experiment agree with numerical simulations based on the multi-level Hamil-

tonian, with the amplitude of the driving voltage at the qutrit being the only adjustable

parameter. We note that in the numerical simulations we only obtained good agreement

when taking into account at least the lowest five energy levels, underscoring the importance

of ac-Stark shifts in the experiment.

6.5 Characterization of the Walsh-Hadamard gate

We next present the characterization of the generalized Walsh-Hadamard gate. We use a

decomposition where the off-diagonal generator has coefficients m01 = 0.3491 + 0.6046i,

m12 = −0.6981, and m02 = 0.3491 + 0.6046i and the diagonal generator has elements φ0 =

6.1086, φ1 = 4.0143, and φ2 = 4.0143. As mentioned above, the off-diagonal Hamiltonian

that generates Uo is obtained by the simultaneous driving of the transitions 0-1, 1-2, and

0-2, with the latter being a two-photon process. The Rabi frequencies are Ω01 = Ω12 =

Ω02 = 2π×7.1 MHz. These Rabi frequencies are chosen proportional to m01, m02, and m12

and maximized to reach the maximum microwave amplitude available in our setup. We

note that the control signal amplitude is not limited by the qutrit properties and larger

driving amplitudes could in principle be reached by increasing signal transmission and

the coupling to the capacitive driving line. In the experiments, the 0-2 two-photon drive

frequency is detuned to be on resonance with the ac-Stark shifted 0-2 two-photon frequency

and the 0-1 drive frequency is adjusted by twice the detuning. The diagonal Hamiltonian

that generates Ud is effectively embedded in the tomography pulses by shifting the phases

of the driving fields. The new tomography analyzer pulses are given by ūi = U †duiUd.

The pulse sequence is shown in Fig. 6.3(a). The off-diagonal Hamiltonian is applied on
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Figure 6.3: a) Pulse sequence used in the experiments. b) Real and c) imaginary parts of the
reconstructed density matrix after the gate is applied on the thermalized state shows a 92.5%
gate fidelity. The differences between the reconstructed and the expected density matrices are
shown for the real and imaginary parts in panels (d) and (e), respectively.

the prepared states pi followed by the phase-shifted tomography pulses ūi to complete the

Walsh-Hadamard gate and to reconstruct the density matrix ρ of the state after the gate.

The gate fidelity is measured with respect to the ideal evolution of the prepared state

under the gate Hamiltonian in Eq. 6.1. Figure 6.3 shows the real (b) and imaginary (c)

elements of ρ where the gate is applied on the qutrit thermal state. The fidelity of the gate

in this case is 92.5%. The difference between the reconstructed and the expected density

matrices are shown in Fig. 6.3(d) and (e) for the real and imaginary parts, respectively.

Table 6.2 shows the fidelity values of the gate applied on 9 different prepared states. The

state preparation pulses pi and tomography analyzer pulses ūi are on resonance with the
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drives in Uo. On average, the gate fidelity at the end of the sequence is observed to be

90.85%.

Table 6.2: Set of pulses used to prepare different states to which the Walsh-Hadamard gate is
applied and measured fidelities.

State preparation (pi) Fidelity
I 92.5%

R01
x (π) 91.5%

R12
x (π) R01

x (π) 92.9%
R01
x (π/2) 91.1%

R01
y (π/2) 89.1%

R12
x (π/2) R01

x (π) 94.4%
R12
y (π/2) R01

x (π) 88.6%
R12
x (π) R01

x (π/2) 88.4%
R12
y (π) R01

x (π/2) 89.1%

Average 90.85%

6.6 Simulations

We next show the results of numerical simulations of the complete pulse sequence for all

preparations listed in Table 6.2. The simulations are based on the system Hamiltonian

with driving including the lowest five energy levels of the system which is given by

H(t) =
n∑
i=1

~ω0i|i〉〈i|+
n∑

i,j=0
i 6=j

A(t)gij|i〉〈j|, (6.2)

where n is the number of energy levels. The transition matrix elements gij for the qutrit

are determined from the circuit model. The voltage waveform A(t) for the pulse sequence

including the state preparation, the off-diagonal part of the Walsh-Hadamard gate, and

tomography pulses is generated by the drive frequencies, phases and amplitudes used in

the experiments. The simulation parameters are confirmed by the frequency dependent
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transmission of the experimental setup and individual Rabi oscillation simulations. The

ac-Stark shifted 0-2 two photon frequency is determined by sweeping the drive frequency

to obtain resonant Rabi oscillations. The 0-1(1-2) shifted frequency are determined by

applying a detuned 0-2 two-photon drive (30 MHz) such that the oscillations are suppressed

but the drive field is kept on. Next, the 0-1(1-2) is driven with frequency sweeps to observe

resonant Rabi oscillations. The fidelities of the different operations are checked at various

stages during the simulation1 including multi-level decoherence. Average fidelity drops are

1.3%, 2.56%, and 1.23% during the application of state preparation, off-diagonal part of

the Walsh-Hadamard gate, and tomography pulses(points f1, f2, and f3 in Fig. 6.3(a)).

The average fidelity drops 0.38% due to the decoherence processes including higher levels

and 0.98% due to the detuned drive of 0-1 transition throughout the experiments. We

additionally performed numerical simulations of the gate applied on the qutrit thermal

state with varying 0-2 drive phases and compare it to the experimentally observed values.

Figure 6.4 shows the measured fidelities (black squares) versus the 0-2 two photon drive

phase relative to the nominal value. In these experiments, the 0-1 and 1-2 drive frequencies

1Some of the simulations are performed in Quantum ToolBox in Pyhton(QuTiP) [108]
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are adjusted by the detuning on 0-2 two-photon drive frequency. The simulations with these

parameters (Figure 6.4 blue dashed line) agree with the experimentally observed fidelities.

We note that if the drive frequencies are adjusted to be on resonance with the ac-Stark

shifted transition frequencies for the all qutrit transitions, the simulations result in fidelities

reaching above 99% (Figure 6.4 red line).

6.7 Conclusions

In conclusion, we have implemented a Walsh-Hadamard gate in a superconducting qutrit.

The implementation of the gate relied on a two-step decomposition, which only required the

application of a single microwave pulse with three tones coupling the three pairs of qutrit

energy levels. The experimentally characterized gate fidelity is 91%, whereas numerical

modelling indicated that with proper compensation of ac-Stark shifts the gate fidelity would

exceed 99%. This work demonstrates the potential of multi-tone multi-level control in

superconducting devices and opens interesting avenues for exploration of superconducting

qudits in quantum computing and other areas of quantum science.
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Chapter 7

Conclusion

In this thesis, we have presented the design, modeling and characterization of a three-

Josephson junction superconducting loop circuit with three large shunt capacitors. The

capacitive shunting of the all three junctions of the flux qubit offers flexibility in device

design. The use of shunt capacitors was not only to uniformly redistribute the electric

fields and effectively reduce the participation ratio lossy materials in the vicinity of the

Josephson junctions and interfaces but also to realize reliable and reproducible device

fabrication. We demonstrated full control of the device in qubit and qutrit space and per-

formed device characterization. At the flux-symmetry point, the spectroscopy experiments

showed large anharmonicity in energy level structure. The circuit model based on the

complete capacitance structure of the device is in perfect agreement with the spectroscopic

characterization.

Coherence experiments showed that qubit energy relaxation time is comparable to the

best results reported previously on a capacitively shunted flux qubit design with moderate

anharmonicity [21] and approaching to high coherence transmons which has poor anhar-

monicity. Our design of capacitive shunting of flux qubits offers high-relaxation time and

large-anharmonicity combined together. We considered several dephasing channels and

found that 1/f flux noise and the photon number fluctuations in the resonator to be the
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possible limiting factors. Coherence experiments in qutrit space show similar results to

coherence in qubit space, indicating that the shunted design is applicable to multi-level

computational applications.

Anharmonicity affects the speed and performance of single-qubit gates. The large

anharmonic structure of the device allows to implement fast and high-fidelity single-qubit

gates. We demonstrated high-fidelity gates characterized with randomized benchmarking

protocol, exceeding the threshold for the fault tolerant computation. We also performed

numerical simulations of the randomized benchmarking protocol and identify the main

limiting factors for the average gate fidelity to be the relatively strong drive strength and

the long time gap between pulses.

We also demonstrated the implementation of a Walsh-Hadamard gate in qutrit space.

The gate is decomposed into diagonal and off-diagonal unitary operations which include

simultaneous drive of single and two photon transitions and phase shift of adjacent pulses.

This unique decomposition allows for a simple implementation of the gate. The density

matrix during the state evolution is reconstructed by utilizing quantum state tomography.

The gate is applied on several prepared states and the gate fidelity is measured against

expected results. We performed numerical simulations of the gate and found that the gate

fidelity can be improved significantly with optimal control parameters and by compensating

for the ac-Stark shifts.

In summary, our design of capacitive shunting of the flux qubit yields large-anhar-

monicity and high-coherence devices with multi-level structure, applicable for gate based

quantum computation and has prospects for quantum protocols utilizing multi-level struc-

ture.

7.1 Future work

In this work, we demonstrated that capacitively shunted flux qubits offer high coherence

with large anharmonicity offering fast implementation of high fidelity quantum gates. The
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circuit model predicts the qubit characteristics well and can be further used to explore

the full device design space. The study of coherence remains a highly relevant topic.

Experimental results suggest that the work on capacitively shunted flux qubit would be

expanded on to probe the limitations on the coherence. The qubit dephasing due the flux

fluctuations could be further improved by reducing the sensitivity to flux. In addition, any

noise contribution from photon fluctuations in the microwave resonator could be mitigated

by utilizing better isolation of the device and filtering of the signal lines.

In future, this work would also benefit from the study of the fixed and tunable two-qubit

coupling mechanisms. Two-qubit gates are essential for universal computation, therefore,

utilizing the large-anharmonic structure of the capacitively shunted flux qubits to investi-

gate high fidelity fast two-qubit gates is a very important direction for future work. The

capacitively shunted flux qubit design already offers flexible capacitive and inductive cou-

pling mechanisms

The multi-level structure of the device would promise an essential use in the field of

quantum computation, communication, error correction and potentially in reducing the

scalability complexity with increased number of computational space. Therefore, investi-

gating the shunted devices in multi-level structure, developing couplers, and studying fast

and high fidelity multi-level gates is another interesting research avenue.
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Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a

51-atom quantum simulator. Nature, 551(7682):579–584, November 2017.

[71] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,

J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,

C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,

A. N. Cleland, and John M. Martinis. State preservation by repetitive error detection

in a superconducting quantum circuit. Nature, 519(7541):66–69, March 2015.

103



[72] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits

in a superconducting quantum computing system. npj Quantum Information, 3(1),

December 2017.

[73] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White,

J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,

C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N.

Cleland, and John M. Martinis. Superconducting quantum circuits at the surface

code threshold for fault tolerance. Nature, 508(7497):500–503, April 2014.

[74] Jerry M. Chow, Jay M. Gambetta, A. D. Córcoles, Seth T. Merkel, John A. Smolin,
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Appendix A

Multi-level decoherence models

A.1 Multi-level relaxation

In multi-level relaxation experiments, the qutrit is prepared into state 2 by applying a π01
x

and a π12
x pulse sequentially to the qutrit thermal equilibrium state of known steady state

populations. The total relaxation from state 2 depends on the relaxation and excitation

rates from states 0, 1, and 2. For population analysis at a given time during relaxation,

we follow Zizak et al. [109]. The time-dependent populations for states 1 and 2 are given

by

P1(t) = c0e
(−ξ0t) + c1e

(−ξ1t) +
Q1

B
(A.1)

P2(t) = c0
(R1 − ξ0)

R∗21

e(−ξ0t) + c1
(R1 − ξ1)

R∗21

e(−ξ1t)

+
Q2

B
, (A.2)

with P0(t) + P1(t) + P2(t) = 1. The measured state populations are fitted with the model

with Γ21 and Γ20 as free fit parameters and the ratios Γ12/Γ21 and Γ02/Γ20 are constricted

to corresponding Boltzmann factors. The rates Γ10 and Γ01 are determined with qubit
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relaxation experiment prior to the multi-level relaxation experiments. Table A.1 shows the

extracted relaxation and excitation rates at 0.5 Φ0 and 0.501 Φ0.

Table A.1: Multi-level relaxation and excitation rates

Rate Value at 0.5 Φ0 Value at 0.501 Φ0

Γ01 1.4 kHz 1.2 kHz
Γ10 29.5 kHz 63.4 kHz
Γ12 8.8 Hz 0.4 Hz
Γ21 124.3 kHz 78.1 Hz
Γ02 0.1 Hz 0.01 Hz
Γ20 27.8 kHz 61.1 kHz

A.2 Multilevel dephasing

In this section, we discuss the interplay of energy relaxation and pure dephasing in multi-

level decoherence. For a two-level system, a Ramsey experiment is used to characterize the

decay of the off-diagonal matrix element ρ01 of the density matrix. In a frame resonant

with the transition frequency, this decay is given by ρ01(t) = C(t)e−t/2T1 , where T1 is the

energy relaxation time and C(t) is the coherence function. If noise is modelled as a classical

stochastic process ξ(t) contributing a term to the Hamiltonian Hqb,r = −~ξ(t)σz/2, which

is diagonal in the energy eigenbasis, the coherence function is given by

C(t) = 〈exp(−i
∫ t

0

ξ(t′)dt′)〉, (A.3)

where 〈..〉 is an average over noise realizations.

In this section we discuss the generalization of this situation to a n-level system. We

assume the noise couples diagonally, as a term to the system Hamiltonian

Hr(t) = −~
n−1∑
j=0

ξj(t)|j〉〈j|, (A.4)
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where |j〉, j = 0, n− 1, are the energy eigenstates and ξj(t) are random noise processes. We

analyze the dynamics of the multi-level system under simulatanous coupling to a Markovian

bath and coupling to a noise source described by Eq. A.4. In a rotating frame given by the

qubit nominal Hamiltonian, the evolution of the off-diagonal terms of the density matrix

ρjk(t) is given by

ρjk(t) = exp(i

∫ t

0

[ξj(t
′)− ξk(t′)]dt′)ρ̃jk(t), (A.5)

where ρ̃(t) is the density matrix in the rotating frame in the absence of noise terms (Hr(t) =

0). When averaging is done over different realizations of the noise, we obtain

ρjk(t) = Cjk(t)ρ̃jk(t), (A.6)

where the generalized coherence function is

Cjk(t) = 〈exp(i

∫ t

0

[ξj(t
′)− ξk(t′)]dt′)〉. (A.7)

Formally we can write the transformation of the density matrix in the rotating frame

from initial time ti to final time tf as

ρ(tf ) = D[R[ρ(ti)]], (A.8)

where R is an operator that describes Markovian relaxation and D is an operator that

acts on the off-diagonal elements of the density matrix elements according to Eq. A.6.

This equation is most conveniently expressed by using the density matrix in column form

(see e.g. Ref [110]). To characterize multi-level dephasing in experiments, we proceed as

follows. First, multi-level relaxation is characterized in an experiment where we prepare

an excited state and we measure the decay of populations versus time. Next, we prepare

a superposition of states |j〉 and |k〉, and monitor the decay of ρjk in a Ramsey type

experiment. After factoring out energy relaxation terms based on Eq. A.8, the coherence

function Cij(t) is obtained.
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A.3 Decoherence with A/|ω|α noise

In this section, we discuss qubit coherence measurements using CPMG sequences [111, 48].

With Gaussian noise, the coherence function for a CPMG sequence with N pulses is given

by

CN(τ) = exp

[ ∫ ∞
−∞

dωS(ω)F (ω,N, τ)

]
, (A.9)

where S(ω) is the double sided noise PSD of fluctuations in qubit angular transition fre-

quency. The filter function F (ω,N, τ) is given by

F (ω,N, τ) =
1

2

∣∣∣∣∫ τ

0

dtζ(N, t)eiωt
∣∣∣∣2, (A.10)

where ζ(N, t) ∈ {−1, 1} is the CPMG sign multiplier for the noise after each refocusing π

rotation. Using dimensionless parameter X = ωτ , Eq. A.10 is expressed as

F (X,N, τ) =


τ 2 8

X2 sin4( X
4N

) cos2(X/2)
cos2(X/2N)

, if N is odd,

τ 2 8
X2 sin4( X

4N
) cos2(X/2)

sin2(X/2N)
, if N is even.

(A.11)

We note that the filter function is peaked at X ≈ Nπ with a peak width of the order

1. In the integral in Eq. A.9, we assume we can neglect the variations of the noise PSD

S(ω) over the peak of the filter function. Defining the integrals I =
∫
dXF (X,N, τ) and

X∗ = (1/I)
∫
dXF (X,N, τ)X, the coherence function can be approximated as

CN(τ) ≈ exp

[
− 2τIS

(X∗
τ

)]
. (A.12)

We note that I ≈ 1.24 and X∗ ≈ π × N are good approximations for 1 < N < 200.

Eq. A.12 allows for finding the noise PSD directly from the measurement of the coherence

function. We next discuss the case when S(ω) = A/ωα. In this case Eq. A.12 becomes

CN(τ) = exp
[
− (ΓNτ)(α+1)

]
, (A.13)
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with

ΓN = (2.48A)1/(α+1)(πN)(−α/α+1). (A.14)

At 0.501 Φ0, we performed CPMG experiments with N = 1, 5, 10, 20, 40, and 100 and

determined ΓN for each N using the coherence function in Eq. A.13. The ΓN dependency

on N is fitted with Eq. A.14 and the noise PSD parameters are determined as A = 1.8×
10−14/|ω|α(rad/s)α−1Φ2

0 with α = 0.68.

A.4 Decoherence due to photon noise

We consider dephasing of the qubit at the symmetry point due to fluctuations of the photon

number in the cavity. We use numerical simulations to predict dephasing due to this source.

Specifically, the photon population of the cavity is modeled using a random telegraph

noise with states n = 0 (empty cavity) and n = 1 (cavity occupied by one photon). The

transition rates between two states are γ0→1 = ωr/Q × nth and γ1→0 = ωr/Q × (1 + nth),

with ωr the cavity resonance frequency, Q the cavity quality factor, and nth the thermal

photon number [112]. The effect of photon number fluctuations on the qubit is determined

by the dispersive shift. Based on numerical simulations of the spectrum of the coupled

qubit/cavity system, we find that the dispersive shift for the 0− 1 transition is 0.55 MHz.

To obtain this number we use the first several levels of the qubit and one level of the

cavity. We note that in experiments we observed in certain cases, when the repetition

time of experiments was too short, beating patterns in Ramsey oscillations with a beating

frequency of 0.5 MHz, which we attribute to photon number fluctuations. This value of the

beating frequency is in reasonable agreement with the numerically determined dispersive

shift.

115



Appendix B

Pulses in randomized benchmarking

sequence
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Figure B.1: a) A section of the randomized benchmarking pulse sequence measured with an
oscilloscope. b) An example single shaped pulse showing the rise time tr and the fall time tf.

The pulses in randomized benchmarking experiments, corresponding to the unitary

operators from the Clifford group and the Pauli group, are π/2 and π rotations around the

x(y) axis and denoted by Rx(y)(θ) where θ is the rotation angle. A section of the waveform

of the sequence pulse used in the experiments is measured with an oscilloscope and shown

in Fig. B.1. The pulses have a driving strength of 2π× 260 MHz and rise and fall times of
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0.6 ns. The duration of the π/2 and π pulses are 1.62 and 2.64 ns respectively. The time

gap between each pulse in the sequence is 0.5 ns. Oscilloscope measurements indicate a

good control of pulse shaping with the Tektronix AWG70001A.
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Appendix C

Tomography and density matrix

reconstruction

C.1 Qutrit tomography

To perform a tomography process on any prepared qutrit state, a set of tomography an-

alyzer pulses are applied just prior to the qubit state readout. In dispersive regime, the

homodyne voltage detection method is used for the qutrit state readout and the measured

voltage is expressed as

Vh = Vh0P0 + Vh1P1 + Vh2P2, (C.1)

The tomography sequence first starts with state preparation. Next, the analyzer to-

mography pulses are applied and the qutrit state read out is performed. The average

measured voltage is expressed as Vk = Tr [ρ.ukVhu
†
k] [99], where ρ is the density matrix

of the state and ukVhu
†
k corresponds to voltage measurement after the tomography pulse

uk. Any qutrit density matrix or hermitian operator can be constructed by traceless SU(3)
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generators and a (3×3) identity operator [113] as,

ρ =
1

3

8∑
m=0

rmλm. (C.2)

The average homodyne voltage in this case can be written as

Vk =
8∑

m=0

1

3
Tr[λmukVhu

†
k]rm (C.3)

=
8∑

m=0

Amk rm (C.4)

The coefficients Amk can be calculated and the qutrit density matrix can be reconstructed

by

ρ =
8∑

k,m=0

(Amk )−1Vkλm. (C.5)

The A matrix depends on the tomography pulses and the pulses are selected to form a

complete set while maintaining A to be invertible.
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C.2 SU(3) generators and rotation operators

The SU(3) group is given as

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 .

(C.6)

The ideal unitary rotation operators in qutrit subspace are given by

R01
x (π) =


0 −i 0

i 0 0

0 0 1

 , R01
x (π/2) = 1√

2


1 −i 0

−i 1 0

0 0
√

2

 , R01
y (π/2) = 1√

2


1 −1 0

1 1 0

0 0
√

2

 ,

R12
x (π) =


1 0 0

0 0 −i
0 −i 0

 , R12
x (π/2) = 1√

2


√

2 0 0

0 1 −i
0 −i 1

 , R12
y (π/2) = 1√

2


√

2 0 0

0 1 −1

0 1 1

 .

(C.7)
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C.3 Maximum likelihood estimation

We employ the maximum likelihood estimation (MLE) method for reconstructing the den-

sity matrix following James et al. [114]. The approach is to generate an expression for a

physical density matrix satisfying the normalization, Hermiticity and the positivity prop-

erties. A likelihood function is introduced that measures the closeness of the generated

density matrix to the experimentally measured one and perform optimization around this

closeness. For a qutrit, we adopt similar approach.

T (t) =


t1 0 0

t4 + it5 t2 0

t8 + it9 t6 + it7 t3

 (C.8)

The expression for the density matrix satisfying the aforementioned properties is given as

ρp(t) =
T †(t)T (t)

Tr[T †(t)T (t)]
. (C.9)

Next we define a function L as

L =
∑
k

|Vk − Tr[ρpukVhu
†
k]|

2, (C.10)

and find the minimum of this function to determine t1 . . . t9. The density matrix is recov-

ered by Eq. C.9
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Appendix D

Decomposition of Walsh-Hadamard

gate

We seek a decomposition of the Walsh-Hadamard gate of the form

UWH = UdUo, (D.1)

where Ud = exp(−iGd) and Uo = exp(−iGo). The generators Gd and Go are given by

Gd =


φ0 0 0

0 φ1 0

0 0 φ2

 ,

Go =


0 m01 m02

m∗01 0 m12

m∗02 m∗12 0

 . (D.2)

We perform a numerical search where we sweep the phases φ0, φ1, φ2 between 0 and 2π

and look for values that result in a valid decomposition as described in Eqs. (D.1,D.2).

We find five decompositions listed in Table D.1. Any of these five decompositions can

122



Table D.1: Numerically determined matrix elements of Walsh-Hadamard gate generators when
the gate is decomposed into two unitary operators as explained in the text.

Decomp. m01 m12 m02 φ0 φ1 φ2

1 −0.9672− 0.2365i 1.9345 −0.9672− 0.2365i 0.8434 0.3637 0.3637
2 −0.6982− 1.2092i 1.3962 −0.6981− 1.2092i 1.9199 6.1087 6.1086
3 −0.9672− 1.6753i 0.6885 + 0.7194i 0.2788− 0.9559i 2.4581 0.3637 5.0322
4 0.2788− 0.9559i 0.6885− 0.7194i −0.9672− 1.6753i 2.4581 5.0322 0.3637
5 0.3491 + 0.6046i −0.6981 0.3491 + 0.6046i 6.1086 4.0143 4.0143

be used to construct the WH gate in the experiment. We note, however, that the Rabi

frequencies of the driven gate dynamics will be proportional to |mij|. In other words, if we

fix the WH gate pulse duration, the Rabi frequencies will be proportional to |mij|. The

driving field amplitude will in turn depend on |mij|, linearly for the 0-1 and 1-2 transitions

and quadratically for the 0-2 transition, because we drive the 0-2 transition using a two-

photon process. Because the two-photon transition requires stronger driving fields than

those required for the other two transitions, and we would like to obtain the fastest gate

for a given drive power, we choose the decomposition that has the smallest value of |m02|,
which is fifth decomposition in Table D.1.

D.1 Tomography pulses with shifted phases

The diagonal part of the gate UWH can be embedded in to the tomography pulses and it

can be treated as new set of tomography analyzer pulses ūi as

ūi = U †duiUd, (D.3)

with Ud 
e−iϕ0 0 0

0 e−iϕ1 0

0 0 e−iϕ2

 . (D.4)
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The tomography pulses are based on the rotation on the Bloch sphere and a generic

rotation is defined as R
01(12)
~n (θ), where ~n is the rotation axis and 01(12) correspond to the

transitions between levels 0-1(1-2), the tomography pulses with Ud embedded are found as

R̄
01(12)
~n (θ) = U †dR

01(12)
~n (θ)Ud. (D.5)

Considering only 0-1 rotations, Eq. D.5 becomes

R̄01
~n (θ) =

(
eiϕ0 0

0 eiϕ1

)
R01
~n (θ)

(
e−iϕ0 0

0 e−iϕ1

)
= ei

ϕ0−ϕ1
2

σz R(θ)~n01 e
−iϕ0−ϕ1

2
σz (D.6)

The general expression for the rotation operator is R01
~n (θ) = cos ( θ

2
)I − i sin ( θ

2
)(~n~σ). If

Eq. D.6 is investigated for the σx and σy parts of the rotation operator, it is found that

ei
ϕ0−ϕ1

2
σz σx e

−iϕ0−ϕ1
2

σz = cos(ϕ0 − ϕ1)σx − sin(ϕ0 − ϕ1)σy (D.7)

ei
ϕ0−ϕ1

2
σz σy e

−iϕ0−ϕ1
2

σz = cos(ϕ0 − ϕ1)σy + sin(ϕ0 − ϕ1)σx. (D.8)

With the above equations, the effect of the diagonal part of the Walsh-Hadamard gate on

the pulses ui can be interpreted as adjustments on the rotation axis as R̄01
~n (θ) = R01

~n′ (θ).

The relation between the rotation axes n and n′ is given as

~n′ = ~n

(
cos(ϕ0 − ϕ1) − sin(ϕ0 − ϕ1)

sin(ϕ0 − ϕ1) cos(ϕ0 − ϕ1)

)
(D.9)

A resonant drive on 0-1 transition in the general form of A cos(ω01t+ϕ)σx is expressed

in the rotating frame as

Hrf =
A cos(ϕ)

2
σx −

A sin(ϕ)

2
σy, (D.10)

where A is the amplitude and ϕ is the phase of the drive. For this drive in rotating frame,

the rotation axis is ~n = (cos(ϕ), sin(ϕ)) and the rotation angle is proportional to the drive
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amplitude and the pulse duration as θ = A∆t. Assuming the phase of the tomography

pulses to be ϕ and the rotation axis to be ~n , the addition of the diagonal component Ud to

the tomography pulses results in new rotation axis ~n′ = (cos(ϕ+ϕ0−ϕ1), sin(ϕ+ϕ0−ϕ1)).

This can also be interpreted as a phase shift in the tomography pulses by ϕ0−ϕ1. Similar

approach holds for 0-2 transitions.
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Appendix E

AC-Stark shift modeling

We use a two-photon process to drive the 0-2 transition, the ac-Stark shift must be taken

into account in our implementation of the gate. If 0-2 transition is driven resonantly using

a two-photon process with a given drive power and driving field frequency ωd the resulting

Rabi oscillation frequency is given by

ΩRabi,tp =
|Ω01Ω12|

2(ωd − ω01)
, (E.1)

where |Ω01| is the Rabi frequency of 0-1 oscillations if the same drive power is applied

resonantly with the 0-1 transition, |Ω12| is the Rabi frequency of 1-2 oscillations if the

same drive power is applied resonantly with the 0-1 transition, and ω01 is the resonance

frequency of the 0-1 transition.

The drive of the 0-2 two-photon transition can be seen as an off-resonant drive field for

the 0-1 and 1-2 transitions. As a result, all of these energy levels will experience ac-Stark

shifts. For 0-1 transition, and considering that ωd > ω01, the ac-Stark shift will bring levels

0 and 1 closer to each other by

δω01 = − |Ω01|2

2(ωd − ω01)
. (E.2)
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A similar expression can be obtained for the ac-Stark shift of the 1-2 transition:

δω12 =
|Ω12|2

2(ωd − ω01)
. (E.3)

Since Ω01 and Ω12 are comparable to each other, both ac-Stark shifts are comparable to

the two-photon Rabi frequency. And since in our implementation of the gate all transitions

are driven simultaneously with comparable Rabi frequencies for all pairs of transitions (as

will be discussed in more detail below), the fields used to resonantly drive the 0-1 and

1-2 transitions will have Rabi frequencies that are comparable to the Rabi frequency of

the two-photon transition and hence comparable to the 0-1 and 1-2 ac-Stark shifts. If the

detuning from exact resonance is comparable to the resonant Rabi frequency, the Rabi

oscillation amplitude will be reduced significantly from its resonant value, which is one

(i.e. full population transfer between the energy level pair that is being driven). For this

reason, the ac-Stark shifts must be taken into account and the drive field frequencies must

all be shifted to correct for the ac-Stark shifts.

The device contains higher energy levels that contribute additional ac-Stark shifts com-

parable to those given above and can therefore lead to significant changes from the situation

described above. For example, because |Ω12| > |Ω01|, the three-level approximation would

suggest that the 0-2 transition frequency should be ac-Stark shifted to a larger value, but in

the experiment we find that it is shifted in the opposite direction. By gradually increasing

the number of energy levels in the theoretical model, we find that we must keep at least five

energy levels to obtain good agreement between the theoretical model and experimental

data.
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Appendix F

Experimental setup

The experiments are performed in a dilution refrigerator at 27 mK. The sample is enclosed

in a copper package hosting superconducting coils for local magnetic flux bias. For shield-

ing, the package is placed inside high magnetic permeability metal shields. The sample is

connected to readout and control equipment in room temperature with coaxial cables and

the pulses are attenuated and filtered at different temperature stages of the fridge.

The qubit control pulses are generated in two ways. First, they are directly generated

by Tektronix AWG70001A arbitrary waveform generator. The AWG has a sampling rate

of 50 GS/s and a bandwidth of 15 GHZ with 10 bit amplitude resolution. Majority of the

experiments are performed with this setup. Second, the pulses are generated by standard

microwave synthesizers and shaped with IQ mixers. Similarly, the readout pulses are

generated by synthesizers and mixers. The resonator output signal is amplified by HEMT

low temperature amplifier and demodulated quadratures are sampled with a digitizer [48].
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Appendix G

Pulse calibrations

The calibration procedure for the R01
x(y)(π/2) pulses is done by applying [R01

x(y)(θ)]
2N+1

pulses. For large number of repetitions the accumulated error is projected on the measure-

ment basis and the error is minimized by adjustments on θ. Similarly, R01
x (π) rotations are

calibrated by applying R01
x (π/2)[R01

x (θ)](2N+1). The pulses on the subspace formed by state

1 and 2 are calibrated similarly. R12
x(y)(π/2) pulses are calibrated by the pulse sequence

R01
x (π)[R12

x(y)(θ)]
(2N+1) and R12

x (π) pulse is calibrated by R01
x (π/2)[R12

x (θ)](2N+1). Pulses are

calibrated up to N=300.

The error on the orthogonality of the rotation axes x and y is determined by the se-

quence R01
y′ (π/2)

{
[R01

x (π/2)]2[R01
y′ (π/2)]2

}N
R01
x (π/2) where the rotation axis y′ is calibrated

against x axis. The error on the angle is find to be 0.002 rad with N=10.
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