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Abstract

Some reactions which use the activated form of methionine (Met), S-adenosylmethionine
(SAM), as a substrate produce the by-product methylthioadenosine (MTA). In the plant
Arabidopsis thaliana (Arabidopsis), these reactions include the biosynthesis of nicotianamine
(NA), 1-aminocyclopropane-1-carboxylic acid (ACC; the precursor to ethylene), spermidine
(Spd), spermine (Spm), and thermospermine (Tspm). MTA is recycled back to Met in the
Met salvage cycle. MTA is converted to methylthioribose (MTR) by MTA nucleosidase
(MTN) which is encoded for by two genes, MTN1 (AT4G38800) and MTN2 (AT4G34840).
The Met salvage cycle is not essential for Arabidopsis grown in sulfur-sufficient conditions.
Despite this, the accumulation of MTA is very toxic. The double mutant mtni-1mtn2-1
(which has 14.9% residual MTN activity) has a severe pleiotropic phenotype including altered
vasculature, delayed bolting, fasciation, interveinal chlorosis, and both male and female
sterility. Amazingly, fertility can be restored to minl-1mtn2-1 plants transgenerationally
by feeding Spd for two weeks at the seedling stage. This restored fertility is sparse in the

first generation, and increases over subsequent generations.

An understanding of the underlying physiological impacts of MTA accumulation and
Spd restoration was sought by studying the metabolite profile and transcriptome of un-
opened buds from wild-type (WT), mitni-1mitn2-1 and a later generation of Spd-restored
mitnl-1min2-1 (generation 3, or G3). The minI-1min2-1 mutant accumulates over ten-times
WT levels of MTA in unopened buds, making this an ideal system for the study of the
impacts of MTA accumulation. These findings confirmed previous research suggesting that
NA biosynthesis is very sensitive to feedback inhibition by MTA. It was also revealed that
MTA accumulation in mini-Imitn2-1 unopened buds is accompanied with reduced sulfur

assimilation through cysteine (Cys), which results in decreased Met and SAM. Furthermore,



these observations hint at changes in the epigenome of mini-1min2-1 plants, which may be

partially reversed in G3.

Single mutant mini-1 grow a short root when exposed to high concentrations of
MTA exogenously. This phenotype was exploited to perform a suppressor screen and
several putative mtar (MTA RESISTANT) mutants were discovered. A mapping-by-
sequencing approach suggests the suppressor mutant mtar2 has a non-synonymous amino
acid substitution in Nitrile Specifier Protein 1 (NSP1; AT3G16400). NSP1 drives the
formation of the auxin pre-cursor indole-3-acetonitrile from indole glucosinolates (GLS).
This finding implicates reduced auxin biosynthesis as a the key factor in suppressing the

short root phenotype of mtni-1 seedlings fed high concentrations of exogenous MTA.

The results presented in this thesis come together to build a model which attempts to
explain the effects of MTA accumulation. In this model, MTA diverts sulfur assimilation
away from Cys and Met towards GLS biosynthesis, and excess GLS leads to increased auxin

biosynthesis.
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Chapter 1

Introduction

1.1 Universal methionine metabolism

1.1.1 The SAM cycle

Methionine (Met) is a universally essential sulfur-containing proteinogenic amino acid which
may also play roles as an anti-oxidant and in gene regulation (Tesseraud et al., 2009). The
active form S-adenosylmethionine (SAM) of Met is produced after the addition of ATP
via SAM synthetase activity (SAMS; EC 2.5.1.6; as part of the SAM cycle; Figure 1.1).
SAM is used as a methyl donor in SAM-dependent methyltransferase (EC 2.1.1) reactions
including that of proteins, DNA, and lipids (Bhagavan and Ha, 2015). The by-product of
these methylation reactions is S-adenosylhomocysteine (SAH), which is hydrated by SAH
hydrolase (SAHH; EC 3.3.1.1) to form adenosine and homocysteine (Hcy). Finally, Hey can
regain a methyl group from methionine synthase (METS; EC 2.1.1.13) using methylated
tetrahydrofolate (THF') as donor to finally regenerate Met.


https://enzyme.expasy.org/EC/2.1.1.-

NH;

-OOC/L\/“S+
MTHF
Hcy

THF %TS Sﬁ% H20

NH; _OOC\V/\\//\S/\\QOJf‘Ade
-OOC/L\/”\S/ NH; —

Met SAH

ATP + H20 §\S«AMS tranlg/%g:sye; /é X-CHs
X
P; + PP; + H* _OOC\/\/\JSF,/\@/Ade
NH; B

HO  OH
SAM

Figure 1.1: The SAM cycle.

The SAM cycle describes the formation of SAM from Met and ATP by SAMS, which is used
as a methyl donor by various methyltransferases. The by-product of these reactions, SAH,
is regenerated back to Met by the formation of Hcy by SAHH, and finally Met is formed
using a methylated THF as methyl donor by METS. Ade, adenine; Ado, adenosine; Hcy,
homocysteine; Met, methionine; METS, methionine synthase; MTHF, methyltetrahydrofolate;
SAH, S-adenosylhomocysteine; SAHH, SAH hydrolase; SAM, S-adenosylmethionine; SAMS,
SAM synthetase; THF, tetrahydrofolate.



From this point, one of the major differences between organisms is the trans-sulfuration
pathway; the interconversion of Hey and cysteine (Cys), another sulfur-containing proteino-
genic amino acid. In animals, this can only occur in the forward direction, or towards Cys,
by first forming cystathionine from Hcy and serine via cystathionine S-synthase (CBS; EC
4.2.1.22), and finally to Cys via cystathionine y-lyase (CGS; EC 4.4.1.1) (Finkelstein and
Martin, 2000). In microorganisms and plants, the reverse direction is also possible via
cystathionine f-lyase (CBL; EC 4.4.1.8), allowing for de novo Met biosynthesis (Ferla and
Patrick, 2014; Ravanel et al., 1998). The lack of this enzyme in non-plant higher eukaryotes
makes Met a dietary necessity (Womack and Rose, 1941). Met contains a sulfur atom, and
as such, under sulfur limiting conditions salvage can be critical even to those capable of de

novo Met biosynthesis (Sekowska et al., 2000a; Thomas and Surdin-Kerjan, 1997).

1.1.2 The methionine salvage cycle

As described previously, SAM is used as a methyl donor in methyltransferase reactions.
Additionally, SAM is also used in a subset of reactions which, instead of SAH, produce
5’-methylthioadenosine (MTA) as a by-product. One of these reactions, nearly ubiquitous
in all organisms, is the biosynthesis of polyamines (PAs). PAs are compounds which
have critical roles in cell growth (Pegg and McCann, 1982). SAM is first decarboxylated
by SAM decarboxylase (SAMDC; EC 4.1.1.50) before it is used by PA synthases as a
substrate. Decarboxylation also prevents the SAM molecule from becoming a methyl donor
in SAM-dependent methyltranferase reactions, provide a pool SAM which can only be used
by PA synthases (Pegg et al., 1998). Spermidine (Spd) and Spermine (Spm) are the two
most common PAs which generate MTA as a byproduct, catalyzed by Spd synthase (SPDS;
EC 2.5.1.16) and catalyzed by Spm synthase (SPMS; EC 2.5.1.22) respectively.



There are a series of reactions in the Met salvage cycle before Met can be regenerated.
The individual elements of this pathway vary greatly among organism: some first act
upon MTA using a MTA phosphorylase (MTAP; EC 2.4.2.28), whilst others use a MTA
nucleosidase (MTN; EC 3.2.2.16) instead (Albers, 2009). The enzymes further in the
pathway have also gained additional functions in certain organisms; for example in humans,
acireductone dioxygenase (ADI1) has been linked with mRNA processing (Gotoh et al.,
2007), apoptosis, and cell growth (Oram et al., 2007). The Met salvage cycle may also be an
important source of oxygen radical scavenging (Sekowska et al., 2000b) via the incorporation

of oxygen by acidoreductone dioxygenase (ARD).

1.1.3 PAs: ubiquitous and essential compounds

PAs are nearly ubiquitous compounds essential for cellular proliferation. The most common
amongst them are Putrescine (Put), Spd, and Spm (Miller-Fleming et al., 2015; Pegg,
2009). One of their most significant involvements in cellular physiology is in regulating
gene expression. They work at the transcriptional level by directly associating with DNA
to alter its conformation, associating with chromatin-remodeling enzymes (Childs et al.,
2003), and binding to RNA to regulate mRNA elongation (Pegg, 2009; Yoshida et al., 2002).
They also work at the translational level by association with ribosomes to influence tRNA
binding (Igarashi and Kashiwagi, 2006; Terui et al., 2007; Yoshida et al., 1999), translation
of the inefficient initiation codons UUG and GUG (Igarashi and Kashiwagi, 2006, 2010;
Yoshida et al., 2001), and translation efficiency of transcripts with 5 UTR regions which
normally impeded translation (Yueh and Schneider, 1996).

With such a central involvement in gene expression regulation, it is no surprise that

PA depletion leads to severe, and at times complete, decrease in cellular proliferation in



both prokaryotes and eukaryotes (Cunningham-Rundles and Maas, 1975; Odenlund et al.,
2009; Ray et al., 1999; Xie et al., 1993). PAs have been found to be required for non-gene
expression related process; for example, PA-depleted mammalian and yeast cells are more
vulnerable to oxidative stress. Previous studies suggest that PAs have a direct role in
reactive oxygen species (ROS) scavenging to protect DNA, membranes, and proteins from
oxidative damage in a mechanism independent of glutathione (GSH), the most significant
ROS scavenger Das and Misra, 2004; Fujisawa and Kadoma, 2005; Ha et al., 1998; Rider
et al., 2007; Sava et al., 2006. PAs are also needed to regulate metabolite movement across
membranes, where they directly affect the activities of enzymes which transport ions during
osmotic (Groppa, 2008) and pH related stresses (Samartzidou et al., 2003; Watson et al.,
1992).

Of the PAs, Spd is also required for the hypusination of eukaryotic Initiation Factor
5A (eIF5A), a protein which is also essential for cellular proliferation (Park et al., 1997).
Though eIF5A was first identified and named as a translation initiation factor (Benne and
Hershey, 1978; Kemper et al., 1976; Schreier et al., 1977), this characterization has been
found to be incorrect as it is in fact an elongation factor (Gregio et al., 2009; Henderson
and Hershey, 2011; Saini et al., 2009). Yeast cells lacking eI[F5A show global ribosome
stalling at certain amino acid motifs such as proline stretches, at stop codons and at the 3’
UTR of mRNA, suggesting that e[F5A plays an essential role in translation elongation and
termination (Schuller et al., 2017).



1.2 MTA and MTAP in mammalian systems

1.2.1 Deletion of the MTAP gene in cancers

In humans, approximately 15% of cancers arise as a result from deletions in chromosome 9p21,
a region which contains the tumour suppressor genes Cyclin Dependent Kinase Inhibitor 2A
(CDKN2A) and Cyclin Dependent Kinase Inhibitor 2B (CDKN2B) (Beroukhim et al., 2010;
Schmid et al., 2000). Also in this region is the gene encoding MTAP, which in 80%-90%
of these cancers is found to be co-deleted (Schmid et al., 2000; Zhang et al., 1996). Since
humans are incapable of de novo Met biosynthesis, MTAP is needed to regenerate the Met
used for PA biosynthesis. As a potential therapeutic target, the effects of MTAP deletion
and the subsequent MTA accumulation have been avidly studied in mammalian model

systems.

1.2.2 Determining the effects of MTA accumulation

Mammalian cells with functional MTAP normally accumulate MTA in the sub-micromolar
levels (Pegg et al., 1981; Seidenfeld et al., 1980). Negative effects on cellular proliferation
are quickly seen when exposed to higher concentrations. Mouse cell lines show a significant
decrease in cellular proliferation at 25 pM, and near complete inhibition at 100 pM (Pegg
et al., 1981). Human cell lines show a 50% decrease when exposed to 200 pM MTA (Tisdale,
1983). In order for this negative effect to be exploited in MTAP-depleted cells, a great

effort has been undertaken to understand the basis for this growth inhibition.

The first of these causes appears to be as a result of feed-back inhibition by MTA on

MTA-producing processes. In the case of mammalian systems the documented targets are



Spd and Spm biosynthesis (Chattopadhyay et al., 2005; Hibasami et al., 1980; Kubota
et al., 1985; Raina et al., 1984). Nearly complete inhibition of SPDS and SPMS activity
can be achieved in human cells exposed to 100 pM MTA. As reviewed earlier, PAs are
indispensable to many cellular processes, and as such Spm and Spd (and by extension
elF5A) depletion likely contribute to the reduction in cellular proliferation in the presence
of excess MTA. That being said, simply providing these PAs exogenously to cells exposed
to MTA does not completely restore regular cellular function, suggesting other factors are

also involved (Pegg et al., 1981).

The second possible cause of the negative effects of MTA accumulation on cellular
proliferation is the inhibitory effects of MTA on protein methyltransferases. This was first
noted as increased MTA levels correlate with a global reduction in asymmetric protein
methylation (Blanchet et al., 2005; Henrich et al., 2016; Zappia et al., 1969). More
recently, this has been specifically linked to the direct physical inhibition of protein arginine
methyltransferase 5 (PRMT5; EC 2.1.1.3202) activity by MTA (Kryukov et al., 2016; Marjon
et al., 2016; Mavrakis et al., 2016). Human PRMT5 knockdown cell lines show a decrease
in cellular proliferation when exposed to 25 uM MTA (Mavrakis et al., 2016). PRMT5 has
been associated with a host of vital cellular functions such as histone methylation, cell cycle,
cell growth, translation, and other regulatory pathways (Andreu-Pérez et al., 2011; Chung
et al., 2013; Friesen et al., 2001; Hsu et al., 2011; Ren et al., 2010). With the importance of
PRMTS5 in cell proliferation, reduced PRMT5 activity likely contributes significantly to the

reduced cell proliferation effect caused by excess MTA.



1.3 Plant-specific methionine metabolism

1.3.1 De novo methionine biosynthesis in plants

In plants, de novo Met biosynthesis is tightly linked with sulfur assimilation (Figure
1.2). Sulfur is first be transported into the plant in the form of sulfate, where it is
initially converted to adenosine 5'-phosphosulfate (APS). From this point APS can either
be converted to 3'-phosphoadenylyl sulfate (PAPS) and used by sulfotransferases (EC 2.8.2)
in sulfuration reactions to be directly incorporated into metabolites, or after several more
steps converted to Cys. From this point, Cys can be used to generate either GSH, an
important regulator of cellular oxidation state, or cystathionine, where it can be used to
generate the Met precursor Hey in the transulfuration pathway. Though both forward and
reverse transulfuration reactions are theoretically possible, evidence for the reverse reaction

(towards the biosynthesis of Cys) is limited in comparison (Hildebrandt et al., 2015).

Sulfate taken into plant cells is stored in vacuoles and subsequently transported into
chloroplasts for the pathways shown in Figure 1.2 to occur (Gigolashvili and Kopriva, 2014).
SAM is also produced in chloroplasts, after which it is transported into the cytoplasm
(Gigolashvili and Kopriva, 2014). Met and SAM regeneration (Figures 1.1, 1.5) then occur
in the cytoplasm (Gigolashvili and Kopriva, 2014).

1.3.2 Methionine salvage in plants

There are various MTA-producing reactions which feed into the Met salvage cycle. These
processes can be classified as SAM-utilizing (Figure 1.3) and decarboxylated SAM (dcSAM)-

utilizing reactions (Figure 1.4). Of the former class are two MTA-generating enzymes:
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Figure 1.2: Plant sulfur assimilation and methionine biosynthesis.



Figure 1.2: Plant sulfur assimilation and methionine biosynthesis. (Cont)

Sulfur first enters the plant as sulfate, where it is incorporated into APS. At this point it
can be converted to PAPS for use by sulfotransferases (i), or it can be used to generate
Cys (ii). Cys can be used for the biosynthesis of GSH or Met. APS, adenylylsulfate.
APK, APS kinase. APR, APS reductase. ATPS, ATP sulfurylase. CBL, cystathionine
B-lyase. CGS, cystathionine y-synthetase. Cys, cysteine. GCL, glutamate-cysteine ligase.
gEC, v-glutamylcysteine. Gly, glycine. GS, glutathione synthetase. GSH, glutathione. Hcy,
homocysteine. Met, methionine. METS, Met synthase. MTHF, methyl-THF. OASTL, O-
acetylserine thiolyase. PAPS, 3-phospho-5-adenylylsulfate. SiR, sulfite reductase. THF,
tetrahydrofolate.

(i) nicotianamine synthase (NAS; EC 2.5.1.43), producing nicotianamine (NA), and (%)
l-aminocyclopropane-1-carboxylic acid synthase (ACS; EC 4.4.1.14), producing the ethylene
precursor l-aminocyclopropane-1-carboxylic acid (ACC). The MTA-generating enzymes
which utilize deSAM, produce PAs: (i) the Spd-producing SPDS, (i) the Spm-producing
SPMS, as discussed previously, as well as (7i) the thermospermine (Tspm)-producing
ACAULIS 5 (ACL5; EC 2.5.1.79). In plants, these PAs play important roles related
to moderating growth, reducing oxidative stresses, and promoting vascular development

(Tiburcio et al., 2014).

The Met salvage cycle in plants (Figure 1.5) is also known as the Yang cycle (see Figure
1.6 for an illustration of how it connects with the SAM cycle and sulfur assimilation). When
initially characterized as such, this cycle was believed to be vital for sustaining elevated
rates of ethylene biosynthesis during fruit ripening in apple trees (Miyazaki and Yang, 1987).
However, a requirement for high sustained ethylene biosynthesis is not present in all plants.
For example in Arabidopsis some mutants which cannot complete Met regeneration still have
wild type (WT) phenotypes when grown under sulfur-sufficient conditions (Biirstenbinder
et al., 2007; Zierer et al., 2016).

With ethylene, NA and PAs all originating from SAM and dcSAM-utilizing reactions,
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Figure 1.3: Ethylene and NA biosynthesis from SAM.

NAS uses three SAM molecules to form one molecule of the iron chelator NA, producing
three MTA molecules as by-product. SAM is also used by ACS to form ACC and an
MTA by-product, which is oxidized by ACO to form the gaseous phytohormone ethylene.
ACC, 1-aminocyclopropane-1-carboxylic acid; ACO, 1-aminocyclopropane-1-carboxylic acid
oxidase; ACS, 1-aminocyclopropane-1-carboxylic acid synthase; NA, nicotianamine; NAS,
nicotianamine synthase.
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Figure 1.4: PA biosynthesis from dcSAM.

SAM is decarboxylated by SAMDC to form dcSAM (a). This makes the transformed SAM
molecule available to SPD, SPMS, and ACL5, to produce Spd, Spm, and Tspm (all generating
MTA by-products) respectively (b). Spd is generated from the addition of a methyl group from
SAM to Put, whereas Spm and Tspm are created from the addition of that SAM methyl group
to Spd. ACLS, ACAULIS 5; dcSAM, decarboxylated S-adenosylmethionine; MTA, methylth-
toadenosine; Put, putrescine; SAM, S-adenosylmethionine; SAMDC, S-adenosylmethionine
decarbozylase; Spd, spermidine; SPDS, spermidine synthase; Spm, spermine; SPMS, spermine
synthase; Tspm, thermospermine.
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there is evidence of connecting biosynthetic regulation between these processes, as well as
with the Met salvage itself; though this varies between plant species. In the latter case,
it has been shown that the expression of some of the genes encoding enzymes in the Met
salvage pathway in rice are induced by ethylene, whereas these same genes show no such
response in Arabidopsis (Biirstenbinder et al., 2007). In some species, regulatory links
between nicotianamine and ethylene biosynthesis have been found (Wu et al., 2011), as well
as between ethylene and PA biosynthesis (Gil-Amado and Gomez-Jimenez, 2012; Icekson
et al., 1986; Pandey et al., 2000; Sauter et al., 2013).

1.3.3 Plant ethylene, NA, and PAs

The product of ACS is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylic oxidase
(ACO; EC 1.14.17.4) to produce the plant hormone ethylene (Figure 1.3). This occurs
in the cytosol and at the plasma membrane (de Poel and Straeten, 2014). Ethylene has
important roles in plant growth, senescence and stress responses (Dubois et al., 2018). NA
biosynthesis catalyzed by NAS (Figure 1.3), occurs in the cytosol and in plastids (Mizuno
et al., 2003). NA is secreted from roots to chelate soil-bound iron, which allows it to be
absorbed into the plant (Higuchi et al., 1999). In winter squash fruit ACS, and to a lesser
extent ACO, have been found to be sensitive to feedback inhibition by MTA (Hyodo and
Tanaka, 1986). While one molecule of MTA is produced for every molecule of ethylene,
three molecules of MTA are produced for every molecule of NA produced by NAS. Similar
to ACS, NAS in barley has also been shown to be sensitive to feedback inhibition by MTA
(Herbik, 1997).

The biosynthesis of the PAs Spd, Spm and Tspm each generate one molecule of MTA
(Figure 1.4). SPDS is localized predominately in the nucleus, and weakly in chloroplasts
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Figure 1.5: Plant methionine salvage reactions.

This series of reactions details the regeneration of Met from SAM-utilizing reactions (1)
which produce MTA as a by-product instead of SAH. Ade, adenine. ARD, acireduc-
tone dioxygenase. DEP, dehydratase-enolase-phosphatase. DHKMP, acireductone. KMTB,
2-keto-4-methylthiobutyrate. Met, methionine. MTA, methylthioadenosine. MTI, MTR-
P isomerase. MTN, MTA nucleosidase. MTK, MTR kinase. MTR, methylthioribose.
MTR-P, methylthioribose-1-phosphate. MTRu-P, methylthioribulose-1-phosphate. SAM,
S-adenosylmethionine. SAMS, SAM synthetase.
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Figure 1.6: Overview of sulfur assimilation, the SAM cycle and Met salvage
in Arabidopsis.

Simplified summary figure incorporating key sulfur assimilation steps (Figure 1.2), the SAM
cycle (Figure 1.1), and Met salvage (Figure 1.5). Also shown are ethylene and NA biosynthesis
from SAM (Figure 1.3), as well as polyamine biosynthesis from dcSAM (Figure 1.4). Dashed
arrows indicate hidden steps. Note that the position of Met salvage within the overall pathway
is prioritized, resulting in the production of ethylene, NA, Spd, Spm and Tspm to appear
as by-products of MTA biosynthesis when in fact the inverse is true. APS, adenylylsulfate.
Cys, cysteine. dcSAM, decarboxylated S-adenosylmethionine. ET, ethylene. GSH, glutathione.
Hcy, homocysteine. Met, methionine. NA, nicotianamine. MTA, methylthioadenosine. PAPS,
3-phospho-5-adenylylsulfate. SAH, S-adenosylhomocysteine. SAM, S-adenosylmethionine.
Spd, spermidine. Spm, spermine. Tspm, thermospermine.
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(Belda-Palazén et al., 2012). SPMS is localized primarily in the cytosol (Belda-Palazén
et al., 2012). The subcellular localization of ACL5 has yet to be described, but its presence
in multiple cellular compartments including the cytosol, mitochondria, nucleus, peroxisome,
and plasma membrane is predicted (retrieved from the Cell eFP Browser, November 15,
2018; Winter et al., 2007). Of the three PAs only Spd is essential in plants, being the only
PA where depletion leads to embryo arrest (Imai et al., 2004). Both Spm and Tspm on
the other hand are not essential, as evidenced by the survival of double mutants lacking
SPMS and ACL5 (Yamaguchi et al., 2006). Spm plays a role in some stress responses and
Tspm has a vital role in the proper development of plant vasculature (Tiburcio et al., 2014).
While there is in silico evidence for the physical interaction between SPDS and ACL5 with
MTA, there is thus far no experimental work to support this (Waduwara-Jayabahu et al.,
2012).

PAs are also conjugated to various PA derivatives by PA oxidases, of which there are
five (PAO1, PAO2, PAO3, PAO/, and PAO5). These conjugates contribute significantly
to the total PA pool within some organs in the plant (Imai et al., 2004). They are also
believed to have various physiological functions including cell division, cell wall loosening,

defence, flowering and sexual differentiation (Facchini et al., 2002; Tiburcio et al., 2014).

Spd is also used in the hypusination of plant elF5A (Wang et al., 2001). Plants lacking
elF5A have severe developmental defects such as reduced organ size and number, defective
sporogenesis, as as well abnormal cell division and growth (Feng et al., 2007). It has also
been shown to negatively regulate cytokinin signalling by forming a protein complex with
the cytokinin receptor cytokinin responsel (CRE1), which prevents defective protoxylem

development in roots by an overabundance of cytokinin signalling (Ren et al., 2013).
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1.3.4 Past characterization of plant MTN

In all cases where the kinetics of plant MTN have been measured, the results have been
relatively similar. The MTN assay using extract from Lupinus [uteus seeds was found
to have a K, of 0.41uM for MTA (Guranowski et al., 1981); recombinant MTN from
Oryza sativa L. to have a K, of 2.1 uM (Rzewuski et al., 2007); and recombinant MTN
from Arabidopsis to have a K,, of 7.1 pM and a K,, of 3.4uM for the first and second
isoforms (Siu et al., 2011). These enzymes however are not all similar in terms of their
ability to hydrolyze SAH. While the MTN from Lupinus luteus and the first of the isoforms
from Arabidopsis (MTN1) possess no detectable affinity to hydrolyze SAH (Guranowski
et al., 1981; Siu et al., 2011), the MTN from Oryza sativa L. and the second isoform from
Arabidopsis (MTN2) can hydrolyze SAH at 16% and 14% the rate of MTA (Rzewuski et al.,
2007; Siu et al., 2011).

Furthermore, plant MTN has been shown to be associated with different regulatory
processes. In Robinia pseudoacacia L. transcript levels were shown to increase in root
cuttings exposed to indole-3-butyric acid (IBA), an assay to promote adventitious root
formation (Quan et al., 2014). In Oryza sativa L., transcript levels and activity rates
of MTN were shown to increase during submergence, a process which enhances ethylene
production (Rzewuski et al., 2007). In Arabidopsis, MTN activity was shown to be induced
in seedlings which were grown on media containing 500 pM MTA as a sulfur source and on

sulfur-deficient media (Biirstenbinder et al., 2010).

MTN has phloem-specific expression in both Plantago and Arabidopsis, alongside
other Yang cycle-related genes (Pommerrenig et al., 2011). In Arabidopsis METHYLTH-
IOADENOSINE NUCLEOSIDASE 1 (MTN1) is transcribed in all tissues, with the highest

expression in flowers, followed by roots, leaves, and stems (Oh et al., 2008). Transcripts of
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METHYLTHIOADENOSINE NUCLEOSIDASE 2 (MTN2) on the other hand have the
highest abundance in pollen grains, with low levels of expression in all other tissues (Ok

et al., 2015).

From in vitro assays of Arabidopsis, it was observed that MTN activity was sensitive
to inhibition in a calcium-dependent manner by Calcineurin B-like 3 (CBL3), a calcium
sensor which activates in response to calcium released during periods of stress, allowing
for downstream signalling (Oh et al., 2008; Ok et al., 2015). It was shown that these
proteins associate in a manner dependent on calcium in vivo (Oh et al., 2008; Ok et al.,
2015). This association occurs mainly at the plasma membrane of plant cells (Oh et al.,
2008; Ok et al., 2015). Currently there is no proposed physiological benefit for CBL3
inhibiting MTN activity during periods of stress. In fact, this finding contradicts a previous
study which discussed that Arabidopsis plants can be made more susceptible to pathogen
infection by inhibiting MTN activity, thus reducing production of ethylene and decreasing
ethylene-induced stress response (Washington et al., 2016).

1.3.5 Arabidopsis MTN-deficient mutants

Arabidopsis has two isoforms of MTN, MTN1 and MTNZ2. These are responsible for
approximately 80% and 20%, respectively, of the overall MTN activity in unopened buds
(Biirstenbinder et al., 2010). Under sulfur-suficient conditions, only a fraction of the total
amount of MTN activity is required; this can be seen in the fact that both mitni-1 and
mitn2-1 single mutants exhibit WT phenotypes, seemingly unaffected by the loss in MTN
activity (Biirstenbinder et al., 2010). However when seedlings of these mutants are exposed
to 500 pM MTA as a sulfur source, changes in the phenotype can be seen (Biirstenbinder
et al., 2010). This includes accumulation of SAM, decSAM, Put, and Spm, as well as
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decreased root and shoot tissue growth (Biirstenbinder et al., 2010). These changes are
likely due to the mutants’ inability to properly replenish the plants’ supply of sulfur,

resulting in severe growth rate reduction.

In the double mutant mini-1mitn2-1 however, phenotypic changes become apparent
even under sulfur-suficient conditions. This mutant is both male and female sterile, and
shows a number of abnormal phenotypes such as delayed bolting, increased vasculature, and
interveinal chlorosis (Waduwara-Jayabahu et al., 2012). Whereas the single mutants show
no MTA accumulation under sulfur-suficient conditions, a large accumulation of MTA can
be detected (Waduwara-Jayabahu et al., 2012) in the double mutant; this accumulation is
instead likely the causal factor of the mutant phenotype. Since ACS and NAS are sensitive
to feedback inhibition by MTA (Herbik, 1997; Hyodo and Tanaka, 1986), and plant SPDS
and ACL5 have been shown in silico to be sensitive to feedback inhibition by MTA, it has
been proposed that the mutant phenotype seen in the mini-1mitn2-1 plant is likely due to
the feedback inhibition of MTA-producing processes (Waduwara-Jayabahu et al., 2012).

The evidence for this is however not conclusive, as while NA levels decrease significantly
no changes in Spd and Spm are seen (Waduwara-Jayabahu et al., 2012). Even when the
single mutants are externally exposed to high levels of MTA no decrease in Spd and Spm
are detected (Biirstenbinder et al., 2010). This suggests that while perhaps some of the
MTA-producing enzymes undergoing feedback inhibition under high MTA in vivo, not all
are (ethylene and Tspm have not been quantified in the mini-Imitn2-1 mutant). While
the interveinal chlorosis phenotype clearly supports the decrease in NA levels (Waduwara-
Jayabahu et al., 2012), this leaves open possible explanations for the other detected abnormal
phenotypes. While Arabidopsis also has its own PRMT5, at this point it is unknown if it
has the same sensitivity to MTA as seen in the human PRMTS5 (see above).

One interesting aspect of the minl-1min2-1 phenotype lies in the male and female
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sterility. It was discovered that this could be partially reversed by the application of
100 pM Spd in the media on which mutant seedlings germinate and grow for the first
two weeks (Waduwara-Jayabahu et al., 2012). Furthermore, this fertility is maintained
transgenerationally, suggesting an epigenetic mechanism to be at play, as the plant maintains
its fertility despite the lack of MTN activity and even after any Spd is made available
(exogenously) (Waduwara-Jayabahu et al., 2012). While most of the abnormal phenotypes
are still present in the restored line, those related to chlorosis, flowering time, and vascular

development show recovery towards WT (Waduwara-Jayabahu, 2011).
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1.4 Arabidopsis as a model organism

This thesis focuses on the study of plant MTN. The plant of choice for this effort was
Arabidopsis; not only are there available mutant lines which have been previously studied
(Biirstenbinder et al., 2010; Waduwara-Jayabahu, 2011; Waduwara-Jayabahu et al., 2012),
Arabidopsis itself offers many advantages as a model system. Currently this is due to
several reasons: there is a vast amount of Arabidopsis-related literature already, it has
a comparatively small genome which can be relatively easily genetically engineered, it is
small in size and has a short generation time, it both can self-fertilize and be used for
out-crossing, and has large seed yields (Koornneef and Meinke, 2010; Meinke et al., 1998;
Norman and Benfey, 2009).
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1.5 Research Objectives

The first four research objectives focus on refining our current understanding of MTA
toxicity. These are investigated in Chapter 2. The last research objective seeks to discover
previously unknown pathways affected by MTA. This is investigated in Chapter 3. The

research objectives are:
1. Increase our understanding of the pathways affected by MTA accumulation in MTN-
deficient mutants.

2. Determine which pathways affected by MTA accumulation in minl-1mitn2-1 are

restored in G3.
3. Investigate the heritable epigenome of mtni-Imtn2-1 plants.

4. Investigate whether Arabidopsis PRMT5 activity is affected by MTA accumulation
in MTN-deficient mutants.

5. Use a forward genetics approach to identify which pathways significantly contribute
to the mutant phenotypes.

22



Chapter 2

Methylthioadenosine accumulation in
Arabidopsis inflorescences alters the
transcriptome and drives sulfur
assimilation away from cysteine and

methionine biosynthesis

2.1 Introduction

In Arabidopsis, Met biosynthesis occurs de novo via the transsulfuration pathway, using
the sulfur-containing amino acid Cys as a precursor. Met is converted to the active methyl
donor SAM by SAMS, using ATP as a cofactor. Methyltransferases use SAM as a substrate
in methylation reactions, leaving behind the byproduct SAH. SAH is hydrolyzed to the

23



Met precursor Hcy, allowing for the regeneration of Met. This cycle is known as the SAM
cycle. In Arabidopsis SAM can also be used by an alternate set of reactions, which include
the biosynthesis of NA and the ethylene precursor ACC. SAM can also be decarboxylated,
which in Arabidopsis allows it to be used for the biosynthesis of the PAs Spd, Spm and
Tspm. All of these alternate SAM-utilizing reactions produce MTA as a byproduct. Similar
to SAH, Met is regenerated from MTA. This occurs via the methionine salvage cycle, where

MTA goes through a number of transformations before Met is formed.

All of the metabolites produced by these alternate SAM-utilizing reactions have impor-
tant roles in plant physiology. NA acts as an iron chelator to dissolve soil-bound iron for
transport into the root system (Higuchi et al., 1999). Ethylene is a gaseous plant hormone
involved in plant development and stress responses (Dubois et al., 2018). Among the three
PAs, Spd is the most significant, being the only essential PA: SPDS-knockout Arabidopsis
are embryo lethal (Imai et al., 2004). Spd has various roles including regulation of gene
expression, growth, ROS scavenging, and stress responses (Tiburcio et al., 2014). Spd is
also used for the hypusination of eIF5A, a factor involved in translation elongation and
termination (Schuller et al., 2017). Spm is believed to play a role in stress responses, but
SPMS-knockout Arabidopsis grown in control conditions are otherwise unaffected (Yam-
aguchi et al.,; 2006). Tspm has a key role in vascular development, with ACL5-knockout
Arabidopsis exhibiting a severe dwarf phenotype with thicker veins (Clay and Nelson, 2005;
Imai et al., 2006).

Under low-sulfur conditions in Arabidopsis, the Met salvage cycle is crucial for the
maintenance of the Met pool (Biirstenbinder et al., 2007; Zierer et al., 2016). Conversely
under sulfur-sufficient conditions the Met salvage cycle is non-essential, evidenced as
even knockout mutants of Met salvage cycle enzymes exhibit no mutant phenotypes

(Biirstenbinder et al., 2007; Zierer et al., 2016). There is only one exception to this: MTA
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accumulation in Arabidopsis lacking the enzyme MTN (which catalyzes the formation of
methylthioribose (MTR) from MTA) is very toxic (Biirstenbinder et al., 2010; Waduwara-
Jayabahu et al., 2012). The exact reason for this toxicity is not known, but previous studies
have suggested the feedback inhibition by MTA of the alternate SAM-utilizing reactions to

be a major culprit (Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012).

There is in vitro evidence of the sensitivity of NAS and ACS enzymes to MTA (Herbik,
1997; Hyodo and Tanaka, 1986), and in silico evidence of an interaction between MTA and
the PA biosynthesis enzymes SPDS and ACL5 (Waduwara-Jayabahu et al., 2012). The
corresponding in vivo evidence is mixed however. Reductions in NA levels in the male and
female sterile MTN-deficient double mutant mtnI-Imin2-1 have been shown (Waduwara-
Jayabahu et al., 2012), but not for ethylene, Spd and Spm (Waduwara-Jayabahu et al.,
2012; Washington et al., 2016). Although Tspm has not been measured, there is an obvious
lack of a severe dwarfism phenotype in mitnI-1mitn2-1 mutants (Waduwara-Jayabahu et al.,

2012) normally seen in acld mutants (Clay and Nelson, 2005).

Interestingly, Waduwara-Jayabahu et al. (2012) found that fertility in min1-Imitn2-1
plants could be restored by feeding Spd at the seedling stage. Furthermore this restoration
is maintained transgenerationally, suggesting the mechanism driving restoration to be
epigenetic (Waduwara-Jayabahu et al., 2012). This epigenetic mechanism likely involves
changes in DNA methylation, which are inheritable (Budhavarapu et al., 2013). Fertility
restoration in the first generation is limited to the occasional individual branches, though

fertility increases over subsequent generations (Waduwara-Jayabahu et al., 2012).

The goal of this study was three fold. First, investigate which alternate SAM-utilizing
biosynthesis pathways are affected by MTA accumulation in MTN-deficient mutants. Second,
identify potentially unknown pathways affected by MTA. Third, identify which MTA-

affected pathways in minl-1min2-1 plants are altered by Spd restoration. This was done by
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combining metabolite measurements of key MTA-related metabolites and RNAseq analyses.
The results of these experiments helped clarify the impact of MTA accumulation on NA
and PA biosynthesis and revealed a new previously unappreciated relationship between

sulfur assimilation and MTA.
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2.2 Materials and methods

2.2.1 Plant materials and growth conditions

Germination and seedling growth

Arabidopsis thaliana (Col-0 ecotype) seeds were surface sterilized using chlorine gas generated
by mixing 100 mL bleach and 4 mL hydrochloric acid in a sterilization chamber. Seeds
were left in the chamber for a minimum of 1h (Lindsey et al., 2017). Sterilized seeds
were then sown on half-strength MS media with 0.8 % (w/v) agar and 1% (w/v) sucrose
(Murashige and Skoog, 1962). For treatment-related seedling experiments, supplements
were added directly to the molten medium (chemicals were obtained from Sigma-Aldrich
Canada Co., Oakville, ON, Canada). After stratification in the dark at 4°C for 2d, seeds
plated on media were placed in a growth chamber (TC7, Conviron, Winnipeg, Canada)

with continuous light from fluorescent bulbs set to 100 pEm=2s~! for 14 d.

Adult plant growth

Seedlings were transplanted into individual pots of soil with equal amounts Sunshine LC1
mix and Sunshine LG3 germination mix (SunGro Horticulture Inc., Washington, USA).
Plants were maintained in growth chambers with a 16 h daily light cycle from fluorescent
bulbs with light levels set to ~150pEm™2s~!. The plants were watered every two or
three days and fertilized weekly using 1.5gL~"! of a 20:20:20 (N:P:K) fertilizer mix (Plant
Products Co. Ltd., Brampton, Canada).
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Plant lines

Aside from WT plants, mutant plants containing the following T-DNA insertions at
the MTN1 and MTN2 loci (obtained from the Arabidopsis Biological Resource Center,
Ohio State University, USA) were also studied: SALK_085385 (mini-1), SALK_ 071127
(mtn2-1), and SALK_022510 (mtn2-5). From these, the double mutants mtnI-Imtn2-1 and
minl-1min2-5 were generated (Waduwara-Jayabahu et al., 2012). The following transgenes
were introgressed into the mitni-1mitn2-1 mutant: pCYCB1;1-GFP (Ubeda-Tomaés et al.,
2009) and roGFP2 (Schwarzlédnder et al., 2008). Transgenic plant lines were genotyped with
PCR as described by Biirstenbinder et al. (2010) and Waduwara-Jayabahu et al. (2012),
using the primers listed in Table 2.1.

2.2.2 Confocal microscopy

Seedlings used for confocal microscopy analyses were grown vertically for 5d as described in
subsection 2.2.1. GFP-expressing roots were pre-stained with 100 mg L~! propidium idodide
(PI) for 30s. Plant samples were imaged using a Zeiss 700 confocal microscope (Carl Zeiss
Inc., Toronto, Canada) with a plan-apochromat 20x/0.8 objective. The following solid state
lasers were used for excitation: 405 nm for the oxidized form of roGFP2; and 488 nm for
GFP, the reduced form of roGFP2, and PI. GFP and PI fluorescence was separated using
a 555 nm single-pass filter and a 560 nm long-pass filter, respectively. Fluorescence from
the oxidized and reduced forms of roGFP2 was separated by setting the variable secondary

dichroic splitter to 492 nm.
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Table 2.1: Primers used for genotyping.

Primer name  Sequence (5 to 3)

minl-1F TGACGGAGACCAACTCCATAC
minl-1R GAGGCTCTTCCTTTGGTCAAC
mitn2-1F CCTTGCTTACGTGGCATAAAC
min2-1R GGAAAGGGCAAAAATATATGG
min2-5F ACTGTGCCAACACTCTCAACC
min2-5R AAGATTTCCGCTTCCTGAAAG
LBb1.3 ATTTTGCCGATTTCGGAAC

AT3TE60430F TAAATTGCCCTGCTGCTTCT
AT3TE60430R AGCGCTCATCCCTCACTCTA
AT1G67105F  ACGAGTTGGAGTTAAGTGGTT
AT1G671056R  CAATTTTGCAGTTGTGTTTGTGT
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2.2.3 Chop PCR

Genomic DNA was extracted from ~50mg pools of unopened floral buds (buds) using a
DNeasy Plant Mini Kit (Qiagen Inc., Toronto, ON, Canada). 500 ng genomic DNA was
digested overnight with 20 units of the restriction enzyme McrBe (New England Biolabs,
Whitby, ON, Canada) in a 50 uL. reaction volume at 37 °C, and inactivated by incubation at
65 °C for 20 min. An undigested control using 2 pl. glycerol instead of McrBe was performed
simultaneously. Digested and undigested DNA was amplified with PCR using the following
program: 5min at 94 °C; followed by 35 cycles of 94 °C for 30s, 58 °C for 30s, and 72°C

for 1 min; and a final 10 min at 72°C.

2.2.4 HPLC metabolite measurements

Sample collection and extraction

Seedlings (14 d) and unopened buds were collected and flash frozen using liquid nitrogen,
then weighed to ~100 mg in 1.5 mL microcentrifuge tubes. The plant material was ground
to a fine powder using a homogenizer and stored indefinitely at —80°C. To extract, 1 mL
of 0.1 M HCI was added to the tubes, and vortexed every ~30s for 15 min. The tubes were
subsequently centrifuged at 16 000 RCF, 4°C, for 5 min. The supernatants were transferred
to new tubes and stored indefinitely at —80 °C.

Derivatisation and quantification of thiols

The thiol-containing compounds were measured as described by Wirtz et al. (2004). The
thiol-containing compounds Cys and GSH were first reduced by mixing 10 uL. of sample
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extract with 190 pL. of water, 20 pLh of 1 M tris (pH 8.3), 10 uLL of 10 mM DTT, and 25 nL
of 0.08 M NaOH. This mixture was incubated in the dark at room temperature (RT) for 1h.
The reduced thiols were derivatized by adding 25 uL of 10mM (dissolved in acetonitrile)
of the fluorescent conjugate monobromobimane (Mbb) and mixing by inversion, before
incubating in the dark at RT for 15min. Derivatization was halted by the addition of
705 uL acetic acid (5 %). To remove any precipitates, tubes were centrifuged at 16 000 RCF,
4°C, for 45 min. The prepared samples were either stored at —80°C for later use or 900 pL
of the sample transferred into high-performance liquid chromatography (HPLC) vials for

immediate quantification.

HPLC vials loaded with derivatised sample extracts were loaded into a Waters 717plus
Autosampler (Waters GmbH, Eschborn, Germany) and 10 pL of the sample injected by a
Waters 600E pump (Waters GmbH, Eschborn, Germany) through a Nova-Pak C18 (60 A,
4pum, 4.6 mm x 250 mm) column (Waters GmbH, Eschborn, Germany) kept at a constant
37°C. The flow-through was pumped into a Jasco 920 Intelligent Fluorescent Detector
(Jasco Deutschland GmbH, Pfungstadt, Germany) set to 380 nm excitation, 480 nm emission,
FST response, Norm mode, gain of 1000, and attenuation of 1. Thiols were eluted from
the column using gradient amounts of buffer A (100 mM potassium acetate, pH 5.3 with
acetic acid) and buffer B (100 % methanol) in the following program: 12.5min of 91 %
buffer A and 9% buffer B; 3 min of 100 % buffer B; and 8.5 min of 91 % buffer A and 9%
buffer B. Absolute quantification was performed using Empower Pro (Waters GmbH,
Eschborn, Germany) after generating standard curves from 1, 5, and 10 pmol amounts of

Cys, 7-glutamylcysteine (gEC), cysteinyl-glycine (CysGly), and GSH.
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Derivatisation and quantification of adenosines

Adenosine-containing compounds were measured as described by Rzewuski et al. (2007). The
derivatisation of adenosine-containing compounds SAM, SAH, and MTA was performed
by mixing 300 nL of the sample extract with 620 pL. CP-buffer (620mM citric acid-1-
hydrate, 760 mM di-sodium hydrogen phosphate di-hydrate, pH 4 with NaOH) and 80 pL
chloroacetaldehyde (45 %). This mixture was incubated at 80 °C for 10 min and subsequently
cooled on ice until the sample reached RT. The samples were centrifuged at 16 000 RCF,

20°C, for 45min. The supernatants were transferred to HPLC vials for immediate use.

Quantification was performed as described above, with the following modifications.
The detector emission was set to 280 nm, and excitation to 410 nm. The adenosines were
selectively eluted from the column using varying gradient amounts of buffer A (50 mM tri-
sodium phosphate dodecahydrate, 10 mM sodium 1-heptanesulfonic acid, 4 % acetonitrile,
pH 3.2 with phosphoric acid) and buffer B (100 % acetonitrile) in the following program:
5min of 100 % buffer A; 15min of 85 % buffer A and 15 % buffer B; 10 min of 10 % buffer A
and 90 % buffer B; and 20 min of 100 % buffer A. Absolute quantification was performed
using Empower Pro (Waters GmbH, Eschborn, Germany) after generating standard curves

from 1, 5, and 10 pmol amounts of SAM, SAH, and MTA.

Derivatisation and quantification of nicotianamine

The metabolite NA was measured as described by Klatte et al. (2009). The derivatisation of
NA was performed by first mixing 25 nL of the sample extract with 75 pL. of a 0.5 M borate
buffer (pH 7.7 with NaOH and added 5 mM EDTA). This mixture was derivatised by adding
50 uL. of 12mM FMOC-CI (9-fluorenylmethyl chloroformate 9-fluorenylmothoxycarbonyl

chloride; dissolved in acetone), vortexing, and incubating for 45s at RT. Subsequently, the
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reaction was deactivated by the addition of 50 pL,. ADAM (adamantan-1-amine amantadine
hydrochloride; dissolved in 75 % acetone) and incubating for 45s at RT. The samples were
centrifuged at 16 000 RCF, 4°C, for 20 min and the supernatants transferred to new tubes.
The centrifugation was repeated for 40 min and 100 uL of the supernatants transferred to

HPLC vials for immediate quantification.

Quantification was performed as described above, with the following modifications. The
samples were passed through a Phenomenex C18 (4mm x 3mm) column (Phenomenex
Inc., Aschaffenburg, Germany) and eluted using two buffers containing 50 mM Na-acetate
buffer (ph 4.2) and acetonitrile: buffer A (80 % Na-acetate buffer and 20 % acetonitrile)
and buffer B (20 % Na-acetate buffer and 80 % acetonitrile). The elution program was
as follows: 15min of 100 % buffer A; 5min of 80 % buffer A and 20 % buffer B; 3 min of
100 % buffer B; and 7min of 100 % buffer A. The flow-through passed through the detector
with the following settings: 263 nm excitation, 313 nm emission, and gain of 100. Absolute
quantification was performed using Empower Pro (Waters GmbH, Eschborn, Germany)

after generating a standard curve from 1, 2, 4, and 8 pmol amounts of NA.

Derivatisation and quantification of amino acids and polyamines

Amino acids and polyamines were measured as described by Heeg et al. (2008). The amino
acids alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine,
isoleucine, lysine, Met, phenylalanine, proline, serine, threonine, tyrosine, valine, and the
polyamines Put, Spd were derivatised in the following manner. First, 5 uL of sample was
combined with 35uL of 0.2 M boric acid buffer (pH 8.8 with NaOH). To this mixture was
applied 20 pL of a AccQ Taq reagent (3mgmL~! in acetonitrile; Waters GmbH, Eschborn,
Germany) and incubated at RT for 5min. Following this samples were incubated at 55°C

for 10 min, and afterwards 440 nL of water was added. The samples were centrifuged at
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16 000 RCF, 4°C, for 15min. The samples were either stored at —80°C for later use or

transferred into HPLC vials for immediate use.

HPLC vials were loaded into a Acquity H-class UPLC with Acquity FLR-Detector
(Waters GmbH, Eschborn, Germany). 2 pL of sample was injected and pumped through a
Acquity BEH C18 (1.7 pm, 150 mm X 2.1 mm) column (Waters GmbH, Eschborn, Germany)
kept at 42°C. Metabolites were eluted from the column by varying gradient of a buffer A
(140 mM sodium acetate, 7mM tri-ethanolamine, pH 6.3 with NaOH) and a buffer B (100 %
acetonitrile). The elution program was as follows: 7min of 92% buffer A and 8 % buffer B;
0.3min of 91 % buffer A and 9 % buffer B; 5min of 85 % buffer A and 15 % buffer B; 4.1 min
of 82% buffer A and 18 % buffer B; 2.3 min of 60 % buffer A and 40 % buffer B; 3 min of
20 % buffer A and 80 % buffer B; and 2.5 min of 92 % buffer A and 8 % of buffer B. The
elutes were passed through the detector with the following settings: excitation of 250 nm,

emission of 395nm, data rate of 10 ptss™!

, and gain of 20. Absolute quantification was
performed using Empower Pro (Waters GmbH, Eschborn, Germany) after generating a
standard curve from 5, 10, 25, and 50 pmol amounts of all the standard amino acids, and

the polyamines Put, Spd, and Spm.

Quantification of anions

Anions were measured as described by Wirtz and Hell (2007). To quantify the anions nitrate
(NO3), phosphate (PO} ™), and sulfate (SO3™), sample extracts were diluted ten-fold with
water and centrifuged at 16 000 RCF, 4 °C, for 45 min. The supernatants were transferred
into Dionex vials (Thermo Fisher Scientific GmbH, Dreieich, Germany) and loaded into a
Dionex AS-50 autosampler (Thermo Fisher Scientific GmbH, Dreieich, Germany). A Dionex
ICS-1000 pump/detector (Thermo Fisher Scientific GmbH, Dreieich, Germany) was used to
inject 25 nL of the sample through a Ion-PAC AS 9HC 2x250 mm column (Thermo Fisher
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Scientific GmbH, Dreieich, Germany). Anions were eluted using a 0.3 mL min~"! isocratic
run gradient. Absolute quantification was performed by generating standard curves using
Chromeleon (Thermo Fisher GmbH, Dreieich, Germany) after 1, 5, and 10 nmol amounts

of NO3, PO3~, and SO~

2.2.5 RNA sequencing

Sample collection and RNA extraction

Unopened buds from adult plants were collected and pooled to ~50 mg in 1.5 mL microcen-
trifuge tubes and frozen in liquid nitrogen. The tissue was ground to a fine powder with a
homogenizer and RNA extracted with an RNeasy Plant Mini Kit (Qiagen Inc., Toronto, ON,
Canada). RNA was DNase-treated with a RNase-Free DNase Set (Qiagen Inc., Toronto,
ON, Canada). RNA integrity was confirmed using an Agilent 2100 Bioanalyzer System
(Agilent Technologies Inc., Mississauga, ON, Canada) at the Farncombe Metagenomics

Facility, McMaster University, Canada.

Sequencing and transcript quantification

For RNA sequencing, mRNA 250-300 bp insert cDNA library preparation was performed by
Novogene Corporation (Sacramento, CA, USA) and sequenced on a NovaSeq 6000 platform
(lumina Inc., San Diego, CA, USA) with paired-end 150 bp sequencing strategy and 20 M
reads per sample. FastQ files were quality filtered and adapter-trimmed using Trim Galore!
v0.4.5 (Krueger, 2012), then mapped onto the TAIR10 release of the Arabidopsis thaliana
genome (Lamesch et al., 2012) with STAR v2.5.4b (Dobin et al., 2013). The resulting
SAM files were sorted and converted to BAM with SAMtools v1.3.1 (Li et al., 2009).
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Transcript quantification based on the Araportll genome annotations (Cheng et al., 2017)
was performed with StringTie v1.3.4d (Pertea et al., 2015).

2.2.6 Data analysis

All statistical analysis in this chapter was performed within the R language (R Core Team,
2018). One way ANOVA tests, Tukey’s honest significant difference (HSD) tests, principle
component analysis (PCA), and Fisher’s Exact Test analyses were done using the base R
package stats (R Core Team, 2018). The R package edgeR (Robinson et al., 2010) was used
to analyze gene expression levels and perform pairwise comparisons; as well as perform
statistical contrasts as described by Lun et al. (2016). Clustering analysis was done using

the R package WGCNA (Langfelder and Horvath, 2008, 2012).
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2.3 Results

2.3.1 Metabolite analysis

Overview of metabolite measurements of MTN-deficient mutants

The impact of MTN-deficiency on neighbouring Met-related pathways (Figures 1.1-1.5) was
examined, as well as how these possible effects were changed in the restored generations.
Since there are extensive data on minl-1min2-1 mutant seedlings (Biirstenbinder et al.,
2010; Waduwara-Jayabahu, 2011; Waduwara-Jayabahu et al., 2012), it was an obvious
choice to extend this knowledge base with a metabolite analysis of seedlings. However, a
major focus of this research concerns the Spd restoration of fertility (which is intrinsically
linked to the reproductive tissues of the plant), examining the metabolite profile of buds

was also determined to be a priority.

Metabolites were monitored in W'T', mtni-1mtn2-5, mini-Imin2-1, G2, and G3 geno-
types, and compared under control conditions and after treatment with 100 pM Spd, in

both seedlings (14 d) and unopened buds. The mini-1mtn2-1 genotype was separated

MTN1 = min2-1 and mini-1 =~ MTN2
minli-1 min2-1 minl-1 min2-1

based on the parent genotype (both are possible) in order
to factor out any possible effects of embryonic exposure to differential levels of maternal
MTN. A total of 29 different metabolites were measured using HPLC, with three to five
replicates per sample. In order to visualize the overall profile separation between genotypes

and treatments, the data were collated and PCA performed on a per tissue basis (Figure

2.1).

As seen in Figure 2.1, it is apparent that the treatment conditions do not cluster discretely

within genotypes. For example this can also be seen consistently in the individual metabolite
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Figure 2.1: PCA of metabolite measurements.

All HPLC metabolite measurements were summarised in a PCA. The PCA in (a) is comprised
of measurements from 14 d seedlings, and the PCA in (b) for unopened buds. Measurements
were grouped based on genotype and treatment. For the mini-Imin2-1 genotype, measure-
ments were divided based on the genotype of the parent plant: mA for having a parent with
a WT copy of MTN1, and mB for having a parent with a WT copy of MTNZ2.
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Figure 2.2: SAM, SAH, and MTA metabolite measurements.

HPLC metabolite measurements of 14d seedlings (a—c) and unopened buds (d—f) for S-
adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and methylthioadenosine (MTA).
Measurements were grouped based on genotype and treatment. Letters represent significant
difference from a Tukey’s HSD post-hoc test after a one-way ANOVA (p < 0.05), n = 5. Boxes
which do no share any common letters are significantly different. ms, mini-imtn2-5. mA,
minl-1min2-1 (parent with a WT copy of MTN1). mB, mtni-1mtn2-1 (parent with a WT

copy of MTN2).
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measurements in Figures 2.2-2.5. Furthermore the discrete clustering of genotypes between
the first two principle components of each tissue differs greatly. Although there is a
loose clustering in the seedling data between WT and mitni-1min2-5, the mtni-1min2-1,
G2, and G3 genotypes are nearly intermingled (Figure 2.1a). This observation is more
or less consistent with previous seedling data of both the single mutants mini-1 and
mitn2-1 (Biirstenbinder et al., 2010), as well as leaf tissue measurements of the double
mutant mitni-1min2-1 (Waduwara-Jayabahu et al., 2012). There, only small differences
were observed relative to WT. Interestingly, the levels of metabolites of buds cluster very
distinctly (Figure 2.1b). This is consistent with the strong significant decreases observed
between metabolite levels of WT and mini-Imitn2-1 inflorescences recorded previously

(Waduwara-Jayabahu et al., 2012).

Metabolite analysis of mtni-1mitn2-1

Looking at the metabolite levels of mitni-1min2-1 seedlings grown with or without Spd
(Figures 2.2a—c, 2.3a—c, 2.4a—c, 2.5a—c), a few general observations can be made regarding
these: (i) they are not significantly affected by the treatment; (ii) they are not significantly
affected by the genotype of the parent plant; and (7i) the absolute difference of metabolites

in non-W'T samples relative to WT is not more than two fold.

NA is the only metabolite significantly different in mtni-1mtn2-1 relative to WT (Figure
2.3a). The NA result is consistent with the strong NA-driven chlorosis observed previously
(Waduwara-Jayabahu et al., 2012). Though the other metabolites do not appear to be
significantly different relative to WT, it is important to note that this does not necessarily

mean the other metabolites are not relevant to the phenotype of mitni-1mitn2-1.

Looking at the metabolite results for mtni-1min2-1 buds, the only metabolites which
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Figure 2.3: NA, Put and Spd metabolite measurements.

HPLC metabolite measurements of 14 d seedlings (a—c) and unopened buds (d—f) for nico-
tianamine (NA), putrescine (Put), and spermidine (Spd). Measurements were grouped based
on genotype and treatment. Letters represent significant differenceTukey’s a Tukey’s HSD
post-hoc test after a one-way ANOVA (p < 0.05), n = 5. Boxes which do no share any
common letters are significantly different. m5, mini-1min2-5. mA, mitni-1mtn2-1 (parent

with a WT copy of MTN1). mB, mtni-1mitn2-1 (parent with a WT copy of MTN2).
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do not show any consistent significant changes compared to WT are Spd (Figure 2.3f),
GSH (Figure 2.4¢), and the anions shown in Figure 2.5d-f. Of the metabolites which are
consistently significantly different, SAM (Figure 2.2d), NA (Figure 2.3d), Cys (Figure
2.4d), and Met (Figure 2.4f) are lower than WT. On the other hand, SAH (Figure 2.2¢),
MTA (Figure 2.2f) and Put (Figure 2.3¢) are higher than WT. From these results the
increased levels of MTA and Put, and the decreased levels of NA are consistent with
previous measurements of minl-Imitn2-1 inflorescences (Waduwara-Jayabahu et al., 2012).
Spd was also measured by Waduwara-Jayabahu et al. (2012) and a slight but not significant

decrease was observed, which is not in agreement with the WT-levels observed here (Figure

2.3f).

Metabolite analysis of mtni-1min2-5

Consistent with the seedling data of mitni-Imitn2-1, there is a large amount of variation in
the metabolite levels of mtni-1min2-5 seedlings. For buds however, where large differences
between minl-1min2-1 and WT were observed, in contrast the minl-1mitn2-5 samples are
much more closely aligned with the WT samples. Though previous data on this genotype
are much sparser than mtnl-1mitn2-1, it has been considered as a moderate form of the
MTN-deficient phenotype (Waduwara-Jayabahu, 2011). Of course, on one hand, it is logical
for the metabolite profile of this genotype to be more so similar to that of WT: unlike
minl-1min2-1, these plants are completely fertile (Waduwara-Jayabahu, 2011).

Metabolite analysis of G2 and G3

Measuring these metabolites in mtni-1min2-1 plants having been fertility-restored by Spd

provided an opportunity to observe which processes likely remain unchanged. Due to
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Figure 2.4: Cys, GSH and Met metabolite measurements.

HPLC metabolite measurements of 14 d seedlings (a—c) and unopened buds (d—f) for cysteine
(Cys), glutathione (GSH), and methionine (Met). Measurements were grouped based on
genotype and treatment. Letters represent significant difference from a Tukey’s HSD post-hoc
test after a one-way ANOVA (p < 0.05), n = 5. Boxes which do no share any common letters
are significantly different. md, mtni-1min2-5. mA, minl-1min2-1 (parent with a WT copy of
MTN1). mB, mtnl-Imtn2-1 (parent with a WT copy of MTN2).
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variation in the data, the metabolite profiles of seedlings is likely not very informative in
this regard. The exception to this in seedlings is NA levels which show no recovery (Figure
2.3a). The metabolite profiles of G2 and G3 unopened buds are much more revealing.
For G2 buds, the levels of SAH (Figure 2.2¢), MTA (Figure 2.2f), NA (Figure 2.3d), Put
(Figure 2.3¢), and Met (Figure 2.4f) remain both significantly different compared to WT
and similar to minI-1min2-1. Interestingly in G3 buds, SAH (Figure 2.2¢), MTA (Figure
2.2f) and Put (Figure 2.3¢) are in fact significantly different from mini1-1mtn2-1, moving
towards (but not quite at) WT levels. This is consistent with previous observations that the

degree of restoration improves over subsequent generations (Waduwara-Jayabahu, 2011).

The metabolites which begin to show recovery even in G2 buds are SAM (Figure 2.2d)
and Cys (Figure 2.4d). Of these, SAM (Figure 2.2d) continues to increase further in G3
buds — to the point of surpassing WT levels. One metabolite which is present at WT
levels in mtni-1mtn2-1 buds is GSH (Figure 2.4e); yet despite this GSH levels increase
significantly in G2, and begin to decrease back to WT levels in G3. Possibly this bump in
G2 buds is as a result of the increase in Cys levels (Figure 2.4d), as GSH production is
dependent on Cys as a precursor (Figure 1.2); and the subsequent decrease in G3 a result

of the generational improvement of the restoration phenotype.

Intriguingly, while SAM (Figure 2.2d), SAH (Figure 2.2¢), MTA (Figure 2.2f) and
Cys (Figure 2.4d) show recovery, Met (Figure 2.4f) levels only remain similar to those in

minl-Imin2-1.
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Figure 2.5: NO;, PO} and SO}™ metabolite measurements.

HPLC metabolite measurements of 14 d seedlings (a—c) and unopened buds (d—f) for nitrate
(NO3 ), phosphate (PO37), and sulfate (SO3~). Measurements were grouped based on genotype
and treatment. Letters represent significant difference from a Tukey’s HSD post-hoc test
after a one-way ANOVA (p < 0.05), n = 5. Boxes which do no share any common letters are
significantly different. ma, mini-1mitn2-5. mA, mtni-1min2-1 (parent with a WT copy of
MTN1). mB, mtni-1mitn2-1 (parent with a WT copy of MTN2).
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2.3.2 Transcriptomics analysis

Extending our metabolic understanding of restoration

Using the metabolite data as a foundation, transcriptomic analysis of mutant and restored
buds by RNAseq was the next step taken in this research. The choice of an RNAseq
experimental approach came from a desire to understand the underlying regulation of
the pathways controlling metabolite output. As for the tissue, when comparing the large
intra-genotypic variation noted in Figure 2.1 it becomes clear that buds have more potential
to offer meaningful results. Finally, in order to simplify and focus the experimental scope,

only WT, mini-1mtn2-1, and G3 were selected.

In order to maximize the impact of the RNAseq results, integrating the final data with
the metabolite data presented here was paramount. This could only really be useful for
genotypes which showed distinct metabolic profiles; thus mini-1min2-5 and G2 genotypes
were left out. Seeing as the parent of the mitnI-1min2-1 had little effect on the metabolic

mini-1 = MTN2
minl-1 mtn2-1"°

profile, only one parent was chosen, This parent was selected so that it would
provide a maternal environment with the least amount of possible MTN activity (as MTN2
provides less than half of the overall MTN activity; Waduwara-Jayabahu et al., 2012) in

case this could affect the phenotype of progeny.

As seen in Figure 2.6, the intra-genotypic variation was quite low. All three genotypes
cluster very distinctly as well and both plotted principle components demonstrates inter-
esting relationships between the genotypes. Along the X-axis (PC1), WT is very distinct.
Furthermore, G3 actually is plotted further away from WT and quite close to mtni1-1mtn2-1.
As for the Y-axis (PC2), WT appears to be in between G3 and mitni-Imin2-1. This

could suggest a dual response: on one hand, the Spd-induced changes in G3 cause the
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Figure 2.6: PCA from RNAseq data of unopened buds.

Gene expression data from an RNAseq experiment of unopened buds were summarised in a
PCA. Each point represents an individual sample. The samples are split evenly between WT,
minl-1min2-1 and G3 genotypes. Each genotype is split between control (MS) and treated
(Spd) samples.
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mitnl-1mtn2-1 transcriptional profile to move further away from WT; however on the other
hand another distinct subset of the G3 transcriptome has moved away from mini-1min2-1

itself, in the direction of the W'T transcriptome.

Additionally, it must be noted that the treatments have little impact on the inter-
genotype samples. Despite this, an interesting pattern can be seen for all genotypes: the
Spd samples almost always cluster towards the bottom right diagonal, suggesting the

treatment is having a subtle, but constant, effect on the transcriptomes.

Overview of gene expression differences

Another method to compare the gene expression profiles of the samples is to look at the
number of differentially expressed genes, as well as common differentially expressed genes.
This can help show, on a large scale, to what extent the treatments and genotypes have
affected the transcriptomes away from WT. Looking at Figure 2.7a, the Spd treatment is
having a very subtle effect on the transcriptomes. When comparing MS and Spd, both
WT and minl-1mtn2-1 genotypes have fewer than 100 genes which are above the two-fold
differential expression threshold. G3, which appears to be the most affected by Spd, still
has less than 200 genes above the threshold. Interestingly, though the effect is obviously
subtle, the majority of these genes are up-regulated by Spd. This concerted change is

consistent with the modest Spd-induced changes noted in Figure 2.6.

When looking at the inter-genotype comparisons in Figure 2.7a, a couple observations
are clear: (i) MTN-deficiency correlates with relatively more down-regulated genes, and
(11) G3 buds have fewer differentially regulated genes relative to WT than when compared
to mtnl-1min2-1. The increased number of down-regulated genes is consistent with Figure

2.7b: when looking for differentially expressed genes which are in common between the
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Figure 2.7: Comparisons of differentially expressed genes.

Gene expression differences between genotypes and treatments of an RNAseq experiment are
summarised. The number of differentially expressed genes (with a two-fold difference cutoff
and Q < 0.1) between WT, minI-Imitn2-1 (mtn) and G3 genotypes (separated by treatment)
are shown in (a). Commonly differentially expressed genes between comparisons shown in (a)
are shown in (b).
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comparisons in Figure 2.7a, the majority are down-regulated. Furthermore the difference
between the transcriptomes of G3 and mitni-1mtn2-1 can also be seen here, as only
804 genes are in common between the WT-—G3 and WT-—m¢ini-1min2-1 comparisons.
This is opposed to the 1529 and 1835 genes which are differentially expressed in G3 and
minl-1mtn2-1 relative to WT (MS), respectively.

Using clustering to find biologically relevant gene groups

A gene clustering approach was used in order to explore the impacts of MTN-deficiency
and Spd on plant regulatory processes using the RNAseq data. This works by assuming
that similarly regulated genes are co-expressed. Using this assumption, one can build co-
expression networks and associate functions to genes using a guilt-by-association approach
(Carpenter and Sabatini, 2004; Parikshak et al., 2015). Afterwards, by examining the
changes in expression of clusters between samples, the effects of phenotypic variation on
gene regulation can be deduced. The gene clustering was done using the R package WGCNA
(Langfelder and Horvath, 2008, 2012). Genes from the RNAseq were assigned into clusters
based on relative expression. Clusters of genes which showed no significant gene expression
variation between genotypes or treatments were discarded. The remaining clusters were

loosely subdivided into four types, shown in Figure 2.8.

Type I gene clusters contain genes that differ in expression across all three genotypes.
Two clusters were assigned as type I, clusters A and B. The genes in cluster A were more
highly expressed in the G3 samples, had low expression in the WT samples, and the
mitnl-1min2-1 samples exhibit expression levels between the two. The inverse was seen in
cluster B; WT samples had the highest expression, with G3 the lowest. These were both

large clusters, with cluster A having 2535 genes and cluster B with 1406 genes.
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Figure 2.8: Gene expression clusters.

Genes from an RNAseq experiment were clustered based on expression. Clusters which showed
sufficient variation between groups are shown. These are represented as the relative expression
of the cluster genes between samples. Furthermore clusters were subdivided into types: type
I clusters where genes are differently expressed between all genotypes (A, B), type II clusters
were genes in WT and G3 samples are similarly expressed (C, D, E, G), type III clusters
where mitn1-1mitn2-1 and G3 samples are similarly expressed (F, H), and type IV clusters

where genes are differently expressed between treatments (I).
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In type II clusters, the expression level of genes in the WT samples were more similar
to the G3 samples rather than the mtni-1min2-1 samples. The largest number of clusters
were assigned as type II clusters: from C to G. The number of genes in these clusters
varied quite significantly: C had 41 genes, D had 312, E had 863, and G had 1170. Of
these clusters, in C and E the genes in the G3 samples had relatively lower expression; the

opposite was true for D and G.

Both type IIT and TV had the fewest clusters, with F (originally classified as a type
IT cluster) and H belonging to type III, and I to type IV. Type III represented genes
which were similarly expressed between the G3 and mini-1mtn2-1 samples; and type IV
represented genes whose expression differed between treatments. For clusters F and H
the relative expression level of genes in the WT samples were lower; and for cluster I the
relative expression of genes in the Spd-treated samples were higher. Cluster F had 2360
genes and cluster H had 1758 genes, whereas cluster I was a comparably smaller cluster

with 207 genes.

Gene ontology analysis of gene expression clusters

To assign functions to the gene clusters in Figure 2.8, Gene Ontology (GO) enrichment was
used (The Gene Ontology Consortium et al., 2000), specifically the Biological Process (BP)
category of GO. For each cluster, enriched terms were tested for significance using Fisher’s
Exact Test with a cutoff of Q < 0.01. From these several terms with high Fold Enrichment
(FE) were selected and shown in Table 2.2. In this table, all clusters (with the exception of

cluster C) had significantly enriched terms.

When comparing the enriched terms between clusters, those in A and H have the biggest

overlap. Both clusters have the ribosome biogenesis, RNA methylation, and translation
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terms. Though these clusters are from different types (A is type I cluster where all genotypes
expressed differently, H is type III cluster where mitni-1mitn2-1 and G3 samples are similarly
expressed), they are similar in that the relative expression of the cluster genes is lower in
the WT samples (Figure 2.7). Cluster A has a few additional terms which are not present
in H, such as chloroplast organization and sulfur compound metabolic process. The other

type III cluster F had a term for nucleotide-sugar biosynthetic process.

The other type I cluster (where all genotypes are differently expressed) with enriched
terms, B, has mostly terms related to light and photosynthesis. The only exception is the
term myo-inositol hexakisphosphate biosynthesis process. This term is actually among the

most highly enriched, with a FE of 11.20.

The clusters D, E, and G generally have different terms despite all being type II clusters
(where WT and G3 samples are similarly expressed). Cluster D has two terms with very
high FE: proteasome assembly and response to misfolded protein. The term with the
highest FE in cluster E is root hair elongation; and for cluster G, proteasome-mediated
ubiquitin-dependent protein catabolic process. Considering that this was an RNAseq of
buds, the root hair elongation term from cluster E does show that even if these GO terms
are significantly enriched, they may not be necessarily accurate. Though these genes may
be associated with root development, this does not prevent them from having additional

functions relevant to the current tissue.

Finally cluster I has several enriched terms with very high FE: regulation of defence
response, regulation of cell death, plant-type hypersensitive response, and protein targeting
to membrane. Cluster I is part of the Spd-responsive type IV clusters. Spd in plants has
been described as an anti-stressor and is involved in negating cell death (Moschou and
Roubelakis-Angelakis, 2013). Though the relative expression of the genes within this cluster

is increased in the Spd-treated samples (Figure 2.7), this does not necessarily contradict
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the enriched GO terms. These terms can be quite vague; for example the genes represented
by the regulation of cell death term are just as likely to be genes which induce cell death as

those which suppress cell death.

Comparing treatments via statistical contrast

In Figure 2.6, all Spd-treated samples were slightly moved in the same direction compared
to untreated samples. In order to find which genes are driving the consistent changes from
Spd, the data was fitted using the generalized linear model approach of edgeR (Lun et al.,
2016). This analysis allows for the creation of an experimental design in which specified
variables (in this case genotypes) are factored out. Seeing as the possible Spd-driven
changes seen in Figure 2.6 are quite subtle, the number of genes which drive this concerted
movement of Spd-treated samples are accordingly few. These genes are described in Table
2.3. It is immediately apparent that the majority of the differentially expressed genes are

up-regulated by Spd, consistent with the effect being across all genotypes.

With this approach a total of 49 genes were found to the significantly differentially
regulated by Spd (Table 2.3). Despite this being a low number relative to the inter-genotypic
numbers seen in Figure 2.7a, some of the fold changes are quite large, ranging from —5.81
(logoFC) to 5.22 (logeFC). These are approximately equivalent to 56—fold down-regulated
and 37—fold up-regulated, respectively. Perhaps as a result of the size of the gene list
(Table 2.3), a GO overrepresentation test of the list as a whole yielded few BP terms. To
compensate, for each gene the most descriptive GO BP term was instead selected and
included in Table 2.3. From these a few processes can be seen repeatedly: namely terms
related to the cell wall and stress. These two terms may in fact be related however; a

previous study has shown a link between increased water stress and increased cell wall-bound

Spd (Hura et al., 2015).
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Table 2.2: Enriched GO terms from gene expression clusters.

Genes from the gene expression clusters were used in a GO enrichment analysis. Those GO
terms with Q values lower than 0.1 were included. Only cluster C did not have any
significantly enriched GO terms.

Type Cluster Select GO BP* FEf P-value Q-value

I A RNA modification 3.37 5.32-10731 7.89.107%

I A organophosphate biosynthetic ~ 2.28 3.06-107%° 2.27.10"%"
process

I A nucleotide metabolic process 2.50 5.40-10730 2.67-10"%7

I A RNA methylation 411 3.65-107% 4.16-10"*

I A ncRNA metabolic process 3.00 8.51-107%6 7.01-10"*

I A ribosome biogenesis 3.05 1.92-107% 1.50-10"%

I A carbohydrate derivative biosyn- 2.02 5.12-107% 2.81-10"%7
thetic process

I A translation 220 4.16-107Y 2.20-1071

I A peptide biosynthetic process 220 7.42-107Y 3.80-10"1°

I A chloroplast organization 295 1.03-107% 5.07-1071°

I A sulfur compound metabolic pro- 1.95 1.03-107% 4.02-10°13
cess

I A generation of precursor metabo-  2.01 3.70-10"* 1.41-10712
lites and energy

I B myo-inositol hexakisphosphate 11.20 3.66-1073% 2.64-10"%°
biosynthetic process

I B alcohol biosynthetic process 7.04 2.57-107% 6.18-10"%

I B photosynthesis, light reaction 3.12 1.29-107% 1.86-1071!

95



Table 2.2 continued

Type Cluster Select GO BP* FEf P-value Q-value
I B chlorophyll metabolic process 3.75 1.22-107%2 1.46-1071°
I B response to red light 4.85 4.28-107'2 4.41-1071°
I B response to blue light 3.65 1.59-107% 7.38-107"
I B cellular response to light stim-  4.25 1.41-1077 4.96-107
ulus
11 D macromolecular complex as- 5.77 1.27-10722 9.92.10720
sembly
11 D proteasome assembly 11.17 6.61-1072° 9.14-10718
11 D response to misfolded protein ~ 11.17 6.61-1072° 9.14-10718
IT D generation of precursor metabo-  4.70 4.56-1071% 252.10713
lites and energy
IT D cellular metabolic compound  9.02 2.17-107'* 1.13-107!2
salvage
IT D response to cadmium ion 449 830-1071t 265-107°
IT E root hair elongation 401 752-107° 5.30-107C
II E cell growth 222 950-1078 4.35-107°
II E steroid metabolic process 3.22 295-1077 8.11-107°
111 F nucleotide-sugar biosynthetic ~ 6.70 7.62-10"% 1.25-10~*
process
111 F monosaccharide metabolic pro- 1.96 7.54-1077 4.17-107%
cess
111 F response to UV 2.06 3.07-107% 1.01-1073
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Table 2.2 continued

Type Cluster Select GO BP* FEf P-value Q-value
I11 pollination 1.79 237-107° 5551073
I1I reactive oxygen species biosyn- 2.59 9.35-107° 7.30-1073
thetic process
IT G small molecule catabolic pro- 2.05 6.19-1077 8.32-10~*
cess
II G proteasome-mediated 3.59 1.33-107% 877-107*
ubiquitin-dependent pro-
tein catabolic process
IT G response to misfolded protein 298 292-107% 877-107*
I1 G DNA metabolic process 1.75 2.54-107° 2.84-1073
I1 G protein catabolic process 1.99 3.13-107° 3.23-1073
11 G cell cycle 1.75  3.75-10° 3.60-1073
111 H translation 5.06 3.74-107% 5.63-107%2
11 H peptide biosynthetic process 5.02 1.59-1078% 1.20-107%!
I11 H RNA methylation 6.86 4.59-107* 1.15-10~%
111 H methylation 3.60 5.37-107% 1.01-1073¢
11 H macromolecule methylation 3.60 5.37-107% 1.01-1073¢
11 H ribosome biogenesis 4.34 3.97-1073 6.63-10736
1\ I regulation of defense response ~ 9.79 9.49-107%° 7.92.10~%
I\Y% I regulation of cell death 11.27 1.35-1072" 2.26-1072°
v I plant-type hypersensitive re- 11.07 1.48-10726 1.68-10"%*

sponse
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Table 2.2 continued

Type Cluster Select GO BP* FEf P-value Q-value

I\Y I protein targeting to membrane 11.16 3.66-1072° 3.05-10723

*A selection of Gene Ontology Biological Process terms with low Q values.

tFold enriched.
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Table 2.3: RN Aseq statistical contrast of treatments across genotypes.

The RNAseq data were used to extract genes differentially expressed between treatments,
regardless of their expression between genotypes. This type of comparison is known as a
statistical contrast. The RNAseq data was fitted to generalized linear model which takes into
account genotypic and treatment gene expression changes, after which specific variables (such
as genotype) can be subtracted out from the data. This leaves only the desired data for

comparison: in this case, only changes between control and Spd treatments.

Gene 1D Symbol Select GO BP* logoFCT P-value  Q-value

AT1G08930 ERDG6 Response to water de- 1.5 885-107° 0.0303
privation

AT1G09950 RAS1 Transcription 1.83 1.10-1073 0.0898

AT1G16130 WAKL2 Cell surface receptor 1.23 2.56-107% 0.0467
signaling pathway

AT1G35140 PHI-1 Response to hypoxia 149 1.91-107* 0.0423

AT1G48000 MYB112 Response to salt —1.28 9.01-1077 0.0063
stress

AT1G50040 112 1.28-107*  0.0951

AT1G51800 I0S1 Defense response 1 3.40-1074 0.0549

AT1G52830 TAAG6 Response to auxin 14 992-10 0.0845

AT1G55450 Methylation 1.22 1.37-1073 0.0975

AT1G73805 SARD1 Defense response 1.6 6.46-107° 0.0261

AT1G78410 Response to oxidative 1.92 1.44-1073 0.0991
stress

AT2G18690 1.06 1.25-107%  0.0943

AT2G20142 Signal transduction 1.63 5.10-1074 0.0650

AT2G24600 Signal transduction 1.23 9.46-1074 0.0825
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Table 2.3 continued

Gene 1D Symbol Select GO BP* log,FCT P-value  Q-value
AT2G27080 1.53 1.27-1074 0.0333
AT2G32140 Defense response 1.01 7.47-107% 0.0744
AT2G32210 Developmental pro- 1.35 3.53-107* 0.0564

cess involved in repro-
duction
AT2G34600 JAZT Response to jasmonic 1.02 1.35-1074 0.0345
acid
AT2G39200 MLO12 Cell death 1.58 2.39-107° 0.0210
AT2G41100 TCH3 Response to tempera- 1.48 4.39-107° 0.0225
ture
AT2G45220 Cell wall modification —49 1.33-107° 0.0151
AT2G46400 WRKY46 Response to chitin 1.03 9.06-107° 0.0305
AT3G02790 Cellular response to —5.07 824-107° 0.0301
singlet oxygen
AT3G04210 Defense response 1.12 5.62-107° 0.0252
AT3G12910 Transcription 2.19 1.94-107* 0.0423
AT3G16530 Response to chitin 2.34 6.55-107* 0.0727
AT3G19680 1.21 1.38-1073 0.0975
AT3G44300 NIT2 Indoleacetic acid —1.58 8.73-107* 0.0804
biosynthetic process
AT3G50930 BCS1 Cell death 1.1 1.22-10°° 0.0151
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Table 2.3 continued

Gene 1D Symbol Select GO BP* log,FCT P-value  Q-value

AT4G01950 GPATS3 Cutin  biosynthetic 1.05 3.15-1074 0.0534
process

AT4G02330 ATPMEPCRB Cell wall modification 1.18 3.51-107° 0.0225

AT4G13340 LRX3 Cell wall organization 1.03 2.64-1074 0.0477

AT4G14365 XBAT34 Protein  ubiquitina- 1.3 1.10-107* 0.0325
tion

AT4G16820 PLA-152 Lipid metabolic pro- 1.55 6.41-1074 0.0722
cess

AT4G18253 1.72 4.00-1075 0.0225

AT4G30280 XTHI18 Cell wall biogenesis 1.97 9.07-1074 0.0810

AT4G31540 EXO70G1 Exocytosis —5.81 1.49-10~* 0.0372

AT4G31800 WRKY18 Defense response 1.32 9.96-1077 0.0063

AT5G19230 1.32 9.20-1074 0.0822

AT5G24110 WRKY30 Response to salicylic 2.33 1.15-1073 0.0912
acid

AT5G25240 1.08 6.24-1074 0.0718

AT5G25930 Protein phosporyla- 1.14 2.82-107° 0.0210
tion

AT5G52750 Metal ion transport 1.8 5.47-107° 0.0251

AT5GH2760 Metal ion transport 1.82 2.15-1074 0.0442

AT5G5H4710 Signal transduction 1.85 1.17-107° 0.0151

AT5G54720 1.64 5.13-1074 0.0650

61



Table 2.3 continued

Gene 1D Symbol Select GO BP* log,FCT P-value  Q-value
AT5G56960 Response to chitin 5.22 4.39-107° 0.0225
AT5GH7560 TCH4 Cell wall biogenesis 1.65 2.55-1074 0.0467
AT5G64120 Response to oxidative 1.07 8.82-107° 0.0303

stress

*Low order Gene Ontology Biological Process term which best describes gene function.

TLogg Fold change. Positive values represent higher expression in Spd-treated samples
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2.3.3 Combining the metabolite and transcriptomics datasets

Finding gene cluster-metabolite associations

As both metabolite measurements and transcript quantification data were available for the
same tissue, genotypes and treatments, this provided an opportunity to combine these and
gain new insights into the effects of MTA accumulation and fertility restoration by Spd
feeding. This data combination process was done by correlating the profile of metabolite
and transcript levels of WT, mtn1-1mitn2-1, and G3 samples, for MS and Spd treatments.
The transcript profiles used were the clusters shown in Figure 2.8. The metabolites used
for comparison are those from Figures 2.2, 2.3, 2.4, and 2.5. The correlation scores are
shown as a heatmap in Figure 2.9, where the strength of the colour at intersection between

metabolites and clusters represents how closely their profiles are matched.

Regarding the correlation scores, it is important to note that these are based on the
‘shape’ of the metabolite and gene expression profiles between samples — not the direction.
For example, the score between cluster F and MTA is above 0.9 despite the fact that in
Figure 2.8 cluster F shows a decreased expression in the mitni-1mtn2-1 and G3 samples,
whereas in Figure 2.2 MTA levels are increased in these samples. Of course, the direction of
relative gene expression change for the clusters does not necessarily have any implications
regarding the overall function of the cluster genes, since they can have either activating or

suppressing functions.

From Figure 2.9, two type II clusters and one type III cluster have very high correlation
scores with several metabolites. The first is cluster F' (type II), which has scores above
0.8 with Met, MTA, NA, Put, and SAH. This cluster, along with these metabolites, are

interesting due to the fact that most of these show a large difference between WT and
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minl-1mtn2-1, and a minor recovery in G3 towards W'T. The only exceptions are NA

(Figure 2.3d) and Met (Figure 2.4f), where G3 levels stay similar to mtni-1mitn2-1.

Cluster H (type III) is slightly similar to F, having scores above 0.8 with Met, MTA,
and NA. Looking at the gene expression profile of cluster H (Figure 2.8) reveals that unlike
cluster F, G3 levels do not recover towards WT. This is also the case for Met (Figure 2.4f)
and NA (Figure 2.3d), and though MTA does show some recovery it is still quite modest
(Figure 2.2f).

Finally cluster G (type II) has scores above 0.8 with Cys, Put, SAH, and SAM (Figure
2.9). Looking at Figure 2.8, this cluster is particularly interesting since while mtn1-1min2-1
levels are quite different from WT, G3 levels have completely recovered back to WT. Among
the high scoring metabolites, SAM (Figure 2.2d) and Cys (Figure 2.4d) also follow this
trend. As for the other metabolites, SAH (Figure 2.2¢) and Put (Figure 2.3¢) show a near

complete recovery, and MTA (Figure 2.2f) shows a modest recovery in G3.

Examining sulfur usage in the combined data

To examine the effects of MTA accumulation on sulfur-related processes, and more specifi-
cally, SAM-utilizing reactions, metabolite and transcript quantification data from unopened
buds for mitn1-1mitn2-1 and G3 were combined and shown on a map of the relevant pathways
(Figure 2.10). Since generally the Spd treatment did not greatly affect metabolite and

transcript levels intra-genotypically, only samples untreated were considered.

When looking at changes only concerning mtni-1min2-1 in Figure 2.10, generally there
appears to be a decrease in the levels of sulfur-containing metabolites. Among the quantified
metabolites, Cys, Met, SAM and NA all decrease, with GSH and Spd being unchanged.
This is supported by a decrease in several key transcripts such as MS2, SAM1 and SAM2.
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Figure 2.9: Correlating gene cluster expression and metabolite levels.

The relative gene expression profiles of the clusters were correlated with the metabolite profiles
of unopened bud samples. The Pearson Correlation Coefficient (PCC) correlation score is
represented in the heatmap by colour strength. This was done for the WT, mini-1min2-1,
and G3 genotypes; and for MS and Spd treatments.
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Interestingly the SAMDC transcripts SAMDC1, SAMDC2 and SAMDC} all show increases,
alongside SPDS transcripts SPDS1 and SPDS2. Taken together, alongside increased Put

levels, these increases suggest the plant may be attempting to offset decreased SAM to

buffer Spd levels.

As for G3 levels of sulfur-containing metabolites, a partial recovery can be seen in Figure
2.10. Both Cys and SAM levels recover in G3, though interestingly this is not accompanied
by increases in the transcript abundances of MS2, SAM1 and SAM2. Furthermore while
Spd levels remain unchanged, Put levels are recovered. Curiously, SPDSI and SPDS2

transcript abundances increase yet again in G3.

2.3.4 Investigating DN A methylation

Changes in the methylation index

As it is hypothesized that the trans-generational fertility observed in G3 is linked to
epigenetic inheritance of a certain DNA methylation profile, it was important to look for
evidence of epigenome changes. This was first made possible using existing data: namely,
SAM and SAH levels. These metabolites can be used to calculate the methylation index,
shown in Figure 2.11. This particular index can be used as a predictor of the state of global
DNA methylation (Caudill et al., 2001). Decreases in the ratio correspond with global DNA
hypomethylation, though only when SAH levels are increased (Caudill et al., 2001). This
means that a lower ratio from solely a reduction in SAM does not correspond with global

DNA hypomethylation.

Looking at both seedlings and unopened buds in Figure 2.11, no conclusion can be

drawn regarding the state of global DNA methylation of seedlings (Figure 2.11a). Rather,

66



ATPS1¥

ATPS23 APKI1+
4+ APK.
SO Y APS %, PAPS

APR1
APR2 [ APR3

805 g~ §°

Yi / OAS-TL A1+
OAS-TL Bt4
GSH « %t ogc « Y cys” oasTLC
. CGS
® Change in min1-1mtn2-1
relative to WT Cystathionine
B Change in G3 relative to
minl-Imin2-1 CBL44
MS1¥
MS24 SAHH1
1S9 Hey < SAHH24
/ AY
Y Met SAHAY Put
. SPDS14+
YSAMI AM PDS2+
+SAMzZ S SAMDC1t+ SPpsett
w SAMDC24
YTNA dcSAM —_Spd
NAS1 NASS SAMDCS+4+
NAS2 NAS) SAMDCY44 SPMS+
Aco1t ACL5 %
ACO24¥
ACS1 ACS7
Ethylene ﬁgg‘?l"ACC +ACS2 ACSS Spm/Tspm
4ot 44 ACS) ACS9
ACS5 ACS11

++ACS6

Figure 2.10: Metabolite and gene expression levels in sulfur usage.

Gene expression and metabolite data from unopened buds mapped onto sulfur usage and
MTA-related pathways. Metabolites which were measured in this thesis are in bold. Gene
expression data is from an RNAseq experiment. Metabolites and genes which changed
significantly in minI-1mtn2-1 relatively to WT have green arrows, and those which changed
significantly in G3 relative to mitni-Imin2-1 have blue arrows. Since generally MS and Spd
samples for the metabolite and RNAseq experiments were similar, only differences between
MS samples are shown. For changes to be significant, p < 0.05 was used as a threshold for
the metabolite data (Tukey HSD post-hoc test after one-way ANOVA) and FDR < 0.1 for
the RNAseq data.
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it is clear that the methylation index is much more stable in buds (Figure 2.11b). Here it
can be seen that there is a much lower ratio in mitnl-Imtn2-1, and a partial recovery in G3.
This is accompanied by a similar pattern of increased SAH levels in mini1-1mitn2-1 with
partial recovery for G3 (Figure 2.2¢). Taken together, these observations suggest a state of

global hypomethylation in mtni-1min2-1, with a slight recovery in G3.

Examination of differentially expressed methylated genes

The RNAseq data from unopened buds were further investigated to explore the possibility
of changes in the DNA methylation profile of mitni-1mtn2-1 and G3. Since transcription
is heavily affected by methylation (Zhu et al., 2016), changes in the methylation of the
genome may perhaps be reflected in the transcriptome. A previous study characterized the
DNA methylome of unopened buds (Lister et al., 2008). This dataset was obtained for a

more accurate comparison of transcription (from the RNAseq) and DNA methylation.

Using this DNA methylation data from unopened buds, genes were labelled as having
high CpG, CHG, or CHH methylation. Genes were further classified based on whether these
methylation marks were enriched in the promoter or within the gene body. These categories
were the basis of an overrepresentation analysis of the differentially expressed genes in the
RNAseq presented here, as seen in Figure 2.12. Based on this analysis, genes with gene body
CpG methylation are overrepresented in the up-regulated genes of mtni-1mtn2-1 and G3
relative to WT. Interestingly, gene body CpG methylation is associated with constitutively
transcribed genes in Arabidopsis (To et al., 2015). Based on the findigs of To et al. (2015),
MTN-deficiency is correlated with the methylation state of actively transcribed genes.
Furthermore it appears that there are a significant number of genes down-regulated in G3
compared to mtni-1min2-1 which have gene body CpG methylation, perhaps indicating a
slight reversal of the gene body CpG methylated genes’ up-regulation by MTN-deficiency.
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Figure 2.11: Quantifying changes in the methylation index.

HPLC measurements of S-adenosylmethionine (SAM) and S-adenosylhomocysteine for 14d
seedlings (a) and buds (b) were used to calculate the methylation index. For each individual
sample, the observed SAM levels were divided by the observed SAH levels. A reduction
in the ratio has been shown to correlate with DNA hypomethylation (Caudill et al., 2001).
Measurements were grouped based on genotype and treatment. Letters represent significant
difference results from a Tukey HSD post-hoc test after a one-way ANOVA (p < 0.05), n = 5.
Boxes which do no share any common letters are significantly different. md, mitni-1min2-5.
mA, minl-1mtn2-1 (parent with a WT copy of MTN1). mB, mini-1mitn2-1 (parent with a

WT copy of MTN2).

69



WT MS — WT Spd (Up) |
WT MS - WT Spd (Down) |
WT MS — mtn MS (Up
WT MS — mtn MS (Down) |
WT MS - G3 MS (Up
WT MS - G3 MS (Down)
WT Spd - G3 Spd (Up
WT Spd - G3 Spd (Down) -
WT Spd — mtn Spd (Up
WT Spd — mtn Spd (Down) |
mtn MS — G3 MS (Up) |
mtn MS — G3 MS (Down)
mitn MS — mitn Spd (Up)
mitn MS — min Spd (Down) |
mitn MS — G3 MS (Up)
min MS — G3 MS (Down)

M v Y Y Y T Y Y Y N Y ~— ~— ~—

Figure 2.12: Testing for overrepresentation of methylated genes.
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Bisulfite sequencing data from W'T unopened buds was used to categorize genes based on their
gene methylation profiles. Methylation type was divided as being gene body or promoter, and
furthermore by cytosine context (CpG, CHG, and CHH). Categorized genes were used as the
basis for an overrepresentation test of genes from an RNAseq experiment of unopened buds.
Significance was tested for using Fisher’s Exact Test. The number in each square represents
the number of differentially expressed genes between the sample comparison in each particular

methylation catergory.
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Chop PCR analysis

siRNAs in the Arabidopsis genome can associate with chromatin and guide DNA methylation
in a process called RNA-directed DNA Methylation (RADM) in order to silence transposons
and genes (Chapman and Carrington, 2007). A previous study found several loci to be under
RdDM regulation, including AT3TE60430 and AT1G67105, which were hypomethylated
in RdDM-deficient mutants (Kurihara et al., 2008). The general methylation status of
these loci can be tested using an assay known as Chop PCR, where methylated DNA is
digested using a methylation-specific enzyme before the target regions are amplified with
PCR (Zhang et al., 2014). If the target regions amplify, then this suggests the region was
free of methylation. This assay was done for mtnl-1mitn2-1 and G3 plants using genomic

DNA from unopened buds.

As seen in Figure 2.13, both of the tested loci appear to be mostly methylated in WT.
For AT3TEG60430, mtni-1min2-1 and G3 are also methylated. This is not the case for
AT1G67105, where fairly strong bands from the digested samples are seen (though these
are not as strong as the bands from the undigested controls). One interesting aspect is that
the G3 fragments appear stronger than the mitni-1min2-1 bands. Furthermore, one of the

minl-1mtn2-1 fragments is quite weak.

2.3.5 Investigating PRMT5 in mini-1mitn2-1

Comparing the mini1-1mitn2-1 mRNA splicing profile to prmt5

It was recently shown that MTA accumulation has a strong inhibitory effect on human
PRMT5, which is believed to lead to strong anti-proliferative effects in human cell lines

(Kryukov et al., 2016; Marjon et al., 2016; Mavrakis et al., 2016). To evaluate the possibility
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Figure 2.13: Chop PCR DNA methylation analysis.

Genomic DNA from unopened buds was digested using the methylated DN A-specific McrBe
endonuclease. Primers were used to amplify regions known to be methylated by the RNA-
directed DNA methylation pathway (AT3TE60430 and AT1G67105). The undigested samples
serve as PCR controls. Fragments appearing in the digested samples represent successful
amplification of unmethylated DNA.
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of PRMTS5 as a candidate target of MTA inhibition in Arabidopsis, an easy first step was
to look for commonalities between the phenotypes of PRMT5 and MTN mutants. One
available way to use the RNAseq data presented here is to look for the irregular alternative
splicing phenotype described in prmt5 mutant plants (Hernando et al., 2015). Arabidopsis
prmt5 mutant seedlings have alterations in alternative splicing, such as intron retention
(Hernando et al., 2015). The alternative splicing profile of prmt5 seedlings was compared
to that of mitni-1mtn2-1 and G3 unopened buds in Figure 2.14. Here it can be confirmed
that prmt5 mutant plants have a large increase in the number of events related to intron
gain and exon loss (as opposed to intron loss and exon gain) as discussed in the original
study (Hernando et al., 2015). When comparing these changes to G3 and min1-1mitn2-1
buds, this effect is not observed. Intron gain and exon loss events are in fact not favoured

but observed at lower rates than intron loss and exon gain.

Disruption of the cell cycle by MTA

Another phenotype of prmt5 mutant plants is cell cycle arrest at the G2 phase in root
meristems (Li et al., 2016a). This can be investigated by monitoring the expression of the
G2 phase cell cycle gene CYCBI1;1. Mutants plants lacking PRMT5 accumulate pCYCB1;1-
GUS and increasing CYCB1;1 transcript abundance as root meristem cells fail to move to
the M phase of the cell cycle (Li et al., 2016a). The presence of G2 phase cell cycle arrest
was investigated in mini1-Imin2-1 plants using the pCYCB1;1-GFP reporter to record the
effects of MTN-deficiency on the root meristem (Figure 2.15). Furthermore, the use of this
reporter also provided the opportunity to validate the presence of the cell cycle GO term

enriched from cluster H in Table 2.2.

The expression of pCYCB1;1-GFP was used for three separate calculations in roots:

meristem area (Figure 2.150), pCYCBI1;1-GFP intensity (Figure 2.15¢), and meristem
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Figure 2.14: Bud RNAseq alternative splicing analysis.

Using mRNA splicing information from RNAseq data of WT as a baseline, differential splicing
events for mutant samples were summarised. All genotypes, with the exception of prmt5, are
from a single RNAseq experiment of unopened buds. The prmt5 RNAseq experiment is of
14d old seedlings. Alternative splicing events were categorized as intron loss, intron gain, exon
loss, or exon gain.
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length (Figure 2.15d). For all three measurements mitni-Imin2-1 roots had significantly
lower values (Figure 2.15). The decreased pCYCBI1;1-GFP signal intensity result of
minl-1mtn2-1 (Figure 2.15¢) is inconsistent with the pCYCB1;1-GUS accumulation result
of prmt5 mutants (Li et al., 2016a).

2.3.6 Restoration of fertility by decapitation

The shoot apical meristem of plants plays a large role in regulating axillary branching
(Leyser, 2003). Accordingly, decapitating the shoot apical meristems can have large effects
on other parts of the plant both in terms of hormone and gene expression levels. In Pisum
sativum L. seedlings, decapitation of the shoot apical meristem resulted in 2-3 fold decrease
in the auxin TAA and a 5-6 fold increase in the cytokinins zeatin and zeatin riboside in
the leftover stem (Kotova et al., 2004). In Arabidopsis, decapitation induces large changes
in the expression of genes related to sugar usage, the cell cycle and protein synthesis in

axillary shoots (Tatematsu et al., 2005).

It was accidentally observed in mtni-1mtn2-1 mutants that after decapitation, flowers
in close proximity to the site of decapitation became fertile. This fertility recovery could
be seen as early as two days post decapitation. The fertility was recorded in Figure
2.16. Decapitation would, most of the time, cause the three flowers closest to the site of
decapitation to recover their fertility. Flowers in position 4-6 would also become fertile
in approximately half of the decapitated branches (Figure 2.16). Beyond this, the flowers
were more likely than not to remain infertile, suggesting that there may be a growth stage

cutoff for fertility recovery by decapitation.
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Figure 2.15: Root cell cycle analysis.

WT and mtni-1mtn2-1 (mtn) seedlings were grown vertically on MS media for 5-7 days.
Roots were imaged with confocal microscopy (a), with GFP signal in green and cell wall
staining (propodium iodide, PI) in red. The meristem area (b) was determined as the region
of the root tip with pCYCB1;1-GFP expression, or in other words the approximate zone of
cell division. Signal intensity of pCYCBI1;1-GFP (¢) was also quantified. Finally, the length
of the meristem (d) was quantified as the distance between the quiescent centre and the
beginning of the elongation zone. Stars represent significant difference from Student’s T-Tests
(***p < 0.001, **p < 0.01, *p < 0.05), n = 10. Scale bar represents 300 pM. This experiment
was done twice with similar results.

76



(a) Decapitation at 0 d (b) Decapitation at 7 d

(¢) Flower position and fertility (n = 25)

T T T T T T T T
—o— Fertile
201 —u— [nfertile |
p=
§ 10} .
0 [ |
| | | | |

| | | | | |
0O 2 4 6 8 10 12 14 16 18 20
Flower number from site of decapitation

Figure 2.16: Inducing fertility in mini-1min2-1 by decapitation.

The apical unopened bud clusters of mtni-1mtn2-1 were decapitated. The plants were imaged
for at least a week post decapitation (a, b). At this point the leftover flowers on decapitated
branches were observed for fertility (c¢). A total of 25 decapitated branches were observed,
with a minimum of 3 and a maximum of 20 flowers below the site of decapitation recorded for
fertility restoration.
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2.3.7 Preliminary ROS quantification in mitni1-1min2-1

Several enriched GO terms from the clusters in Table 2.2 are related to ROS. ROS are
especially relevant for unopened buds. For fertilization to occur, pollen are completely
dependent on proper regulation of ROS (Mangano et al., 2016). ROS help mediate cell wall
loosening, which is required for the polar growth of pollen tubes (Mangano et al., 2016). To
determine the GO terms from the RNAseq are representative of in vivo alterations of ROS
in mtni-1mtn2-1 the redox state reporter roGFP2 (Schwarzldnder et al., 2008) was used to
quantify the redox state of roots. Higher ROS levels correlate with increased oxidation of
the roGFP2 protein. As shown in Figure 2.17, a slight but not significant increase in the

ratio of oxidized to reduced roGFP2 was detected in minl-1min2-1.
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Figure 2.17: Preliminary quantification of the redox state of roots.

WT and mitni-1mitn2-1 ((min)) seedlings were grown vertically for 5-7 days on MS media.
The roots were imaged with confocal microscopy, recording the signal intensity of the roGFP2
reporter. Both oxidized and reduced states of the reporter were quantified, and the ratio
between the two calculated as a measure of the redox state of the root. No significant difference
was detected using a Student’s T-Test, n = 10. This experiment was done twice with similar
results.
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2.4 Discussion

2.4.1 Developmental stage-specific effects of MTN deficiency and

Spd restoration

Several sulfur-related metabolites were measured from 14d seedlings and buds of WT,
minl-1mitn2-5, minl-Imin2-1, G2, and G3 plants. When comparing the data of WT
between samples it is clear they have differing metabolite profiles. It is known that the
metabolite profiles of different tissues are not identical (Petersson et al., 2015). Regarding for
the MTN-deficient lines, two main observations are seen: the developmental stage-specific
metabolite profiles were greatly affected by differing levels of MTN-deficiency, and Spd

restoration.

The MTA content of unopened buds in the MTN-deficient lines is quite different. Despite
the levels of MTN activity of both mtni-1min2-1 and mtni-1min2-5 inflorescences being
quite low (14.9% and 28%, respectively; Waduwara-Jayabahu, 2011), mtn1-1mitn2-5 has
similar MTA content to WT whereas mtnI-1min2-1 has over ten times as much (Figure
2.2f). Tt appears that there is a tipping point (or threshold) in MTN activity that is
associated with MTA accumulation; below this level of MTN activity, MTA content remains
stable.

The MTA content of both mtni-1mitn2-1 and mitni-1min2-5in 14d seedlings is quite
similar to WT (Figure 2.2¢). This is likely because there is less MTA accumulation in
the various seedling tissues. Not only is there less than half the amount of MTA in WT
seedlings compared to unopened buds (Figure 2.2¢, 2.2f), there is also less than a third
the amount of SAM (the precursor of reactions which generate MTA as a byproduct) in
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seedlings (Figure 2.2a, 2.2d). NA and Spd which are synthesized in reactions that produce
MTA as a by-product, are similarly reduced (Figure 2.3a, 2.3¢, 2.3d, 2.3f). Taken together,
the tipping point of MTN activity is dependent on the amount of MTA being produced.
In the case of seedlings, the reduced MTA pressure would consequently result in a lower

tipping point.

Generally Spd treatment (within a generation) had very little impact on the clustering
of differently treated samples within genotypes for metabolite abundance (Figure 2.1).
There are two possible explanations for this. One is that the restorative effects of Spd
are dependent on spatial or temporal factors. The other explanation is that there may be
some relation between MTA accumulation (which could itself be dependent on spatial or
temporal factors) and the effects of Spd restoration, such that the restorative effects are

only revealed when a tissue or organ is experiencing a certain level of MTA pressure.

All of the above conclusions are dependent on there being a large difference in the
metabolic requirements of seedlings or unopened buds (especially the relevance of pathways
which generate MTA as a byproduct). Though the data presented in this chapter are
insufficient to directly implicate this, one possible trigger for this change is the transition
from the vegetative stage to the reproductive stage. This transition is associated with
great changes in metabolism in general (Kooke and Keurentjes, 2011). Among these are
those induced by increased shoot apical meristem activity, such as specification of floral
identity and increased cell cycle activity (Gilbert, 2000). This increased rate of metabolism
may well be contributing to the increased MTA pressure, which is also consistent with the
transcript abundance of both MTN1 and MTNZ2 in the shoot apical meristem peaking at
the transition stage (retrieved from the Arabidopsis eFP Browser on November 1%, 2018;

Winter et al., 2007).

The association between flowering transition and changes in the shoot apical meristem
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are consistent with Spd restoration having an epigenetic aspect (as suggested by Waduwara-
Jayabahu et al., 2012). In fact, previous studies have noted changes in the epigenome of the
shoot apical meristem during this time period (You et al., 2017). Spd-induced changes in the
epigenome of MTN-deficient plants may be dependent on changes induced by the flowering
transition. It is also possible that the Spd-induced changes may even be contributing to
the development of the shoot apical meristem during transitioning, as seen by the partial
reversal of the late-flowering phenotype of mitni-1mtn2-1 in Spd-restored lines: whereas no

mitnl-1mtn2-1 plants bolt at five weeks, 69% of G3 plants do (Waduwara-Jayabahu, 2011).

The lack of evidence of any MTA accumulation in seedlings suggests they are experiencing
relatively little MTA pressure in all studied MTN-deficient genotypes (Figure 2.2¢). However
it is important to note that previous studies have shown that both mtni-1mitn2-1 and
minl-1min2-5 exhibit a number of mutant phenotypes in seedlings, such as interveinal
chlorosis, cuticle defects, slower true leaf development, and altered vasculature (Waduwara-
Jayabahu, 2011; Waduwara-Jayabahu et al., 2012). Though the evidence provided in this
chapter shows no evidence of increased MTA accumulation in seedlings (Figure 2.2¢), this
does not mean that the plants are free of the effects of MTA. Rather it could be simply
that the current experimental design for the quantification of metabolites in seedlings
was not designed to capture tissue-specific data. For the seedling measurements, whole
seedlings were collected which masks tissue or cell-type specific MTA accumulation. It is
worth mentioning though that NA levels are lower in min1-1min2-1 seedlings (Figure 2.3a),
which may be an example of a particular MTA-affected process which is not masked by the

collection and quantification method.

An additional possibility to consider is that the MTN protein itself may have additional
functions aside from MTA hydrolysis, though currently there is no physiological evidence

for this. Both MTN isoforms physically interact in vitro with CBL3 (Oh et al., 2008; Ok
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et al., 2015). CBL3 has been implicated in the regulation of calcium responses (Batistic
et al., 2010), magnesium homeostasis (Tang et al., 2015), potassium transport (Liu et al.,
2013), osmotic and salt stress responses (Pandey et al., 2015), seed size and embryonic
growth (Eckert et al., 2014), pollen growth (Zhou et al., 2009), and glucose response (Yan
et al., 2014). Though the exact nature of this interaction has not been investigated in vivo,
should CBL3 require MTN for some of its activities then this could potentially explain

some of observed phenotypes in mtni-Imitn2-1 and minl-1mtn2-5.

Given the tissue-specificity of MTA producing reactions, different cell types must cope
with different levels of MTA accumulation. More work is needed to carefully dissect
developmental stage and tissue-specific effects of MTA accumulation, as well as the extent
of MTA accumulation the specific tissues undergo. Further investigation is also needed
to determine if the MTN protein itself has additional critical functions unrelated to the

catalysis of MTA to MTR.

2.4.2 MTA accumulation affects several sulfur-related pathways

Combining the metabolite quantification and RNAseq transcript abundance data from
unopened buds of mtni-1mitn2-1 reveals which sulfur-related pathways are affected by MTA
accumulation. Generally in mtni-Imitn2-1 unopened buds there is a reduction in Met and
metabolites dependent on SAM, the activated form of Met, for their synthesis (Figure
2.10). The reduction in Met-related activities may in part be originally due to reduced
Cys biosynthesis (Figure 2.4d). This is because de novo Met biosynthesis requires the
biosynthesis of the sulfur-containing Cys (Figure 1.2). Free sulfate levels remain unchanged
in WT versus mtni-1mitn2-1 and there is no clear reduction in the transcript abundances

of genes encoding Cys and Cys-precursor biosynthesis genes, suggesting this regulation is
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post-transcriptional. Alternatively, Cys can be oxidized to form various radicalized species
of Cys undetectable by the current method, which can be damaging to the plant as well as

inhibiting Cys biosynthesis itself (Jacob et al., 2003; Park and Imlay, 2003).

The general reduction in the abundance of sulfur-containing metabolites is not observed
for other compounds. GSH and Spd remain constant, whereas SAH even increases (Figure
2.10). The unchanging GSH and Spd levels suggests that the plant may prioritize these
over other sulfur-related metabolites monitored in these analyses (Figure 2.10). For GSH,
this is supported by an increase in transcript abundance of the GSH biosynthesis gene
GS. For Spd, this prioritization can be seen in the increases in transcript abundances of
SAMDC1, SAMDC2, SAMDCY, SPDS1, and SPDS2, as well as an increase in the precursor
Put (Figure 2.10). However, it is important to note that the quantification methods used
to measure Spd only took into account free, un-conjugated Spd (Heeg et al., 2008). Spd
conjugates are not generally measured, but have been found to contribute significantly to
the total amount of Spd in Arabidopsis seeds (Imai et al., 2004). Should this also be the
case in unopened buds then the constant levels of free Spd may be a result of changes in its
conjugation. A reduction in Spd conjugates could have its own consequences, as some Spd
conjugates in plants have been implicated to have functions related to cell division, defence,

flowering and sexual differentiation (Facchini et al., 2002).

The data do not provide a clear explanation for the increased accumulation of SAH
shown in unopened buds of mtni-1min2-1 versus WT as the transcript abundance of the
SAHH1 and SAHH? genes remains unchanged in both genotypes (Figure 2.10). Should the
regulation of SAH hydrolysis at the gene expression level be unaffected, another possibility
is the accumulation of Hcy causing a change in the reaction equilibrium. Normally in
Arabidopsis the hydrolysis of SAH to Hcy is heavily favoured compared to the reverse
reaction (Ranocha et al., 2000). Thus the accumulation of SAH could be explained by an
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accumulation in Hecy. Transcript abundance data may support this, with a decrease in
abundances for the Hey biosynthesis gene CBL and the Met biosynthesis gene MS2 (Figure
2.10).

Feedback inhibition by MTA may be affecting the abundance of other metabolites
monitored in this study. For NA (where a feedback inhibition mechanism has been described;
Herbik, 1997) this is clearly supported, with a severe decrease in NA (Figure 2.3d) despite
steady transcript abundances of NAS-encoding genes relative to WT (Figure 2.10). Though
feedback inhibition of ACS has been described previously (Hyodo and Tanaka, 1986), it
was not measured in this study. The transcript data could be suggestive of this occurring
though, with increases for ACO1, ACO2, and ACO3 (Figure 2.10). If this is the case, the
plant might increase the expression of ACO to make up for a decrease in ACC. Spd is in a
similar yet different situation. Transcript abundances of genes allowing for Spd biosynthesis
are increased in unopened buds as mentioned earlier. However as opposed to NA which
shows a clear decrease, Spd remains constant. Furthermore, there is only n silico evidence
of an interaction between SPDS and MTA (Waduwara-Jayabahu et al., 2012). Unless Spd
levels are being maintained by changes in Spd conjugates as discussed previously, then

SPDS could simply be less sensitive to feedback inhibition to MTA.

While there is clear evidence of the wide-ranging impacts of MTA accumulation on
sulfur-related metabolites, more work is needed to elucidate the particular regulatory
mechanisms underlying these changes, and how MTA is interfering with these. Furthermore,

it remains to be seen to what extent the activity of SPDS is affected by MTA accumulation.
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2.4.3 Some pathways affected by M'TA accumulation are restored
in G3

Some metabolites which have decreased abundances in mitni-Imtn2-1 show a recovery in
the transgenerationally Spd-restored G3. This recovery is quite obviously very specific,
with only Cys, SAM, SAH, and Put showing recovery towards WT levels (Figure 2.10).
For Cys this change may still be due to the influence of Spd on a post-transcriptional
regulatory mechanism, as there are no clear increases in the transcript abundances of
Cys and Cys-precursor biosynthesis genes. Alternatively should Cys in mini-1min2-1 be
oxidized to radicalized species as discussed earlier (Jacob et al., 2003; Park and Imlay,
2003), then there may be some mechanisms involving a suppression of the generation of
these radicalized Cys species. The increase in Cys could also be used to justify the increase
in SAM, though this is a bit more difficult with the current evidence. Not only do the
transcript abundances of SAM1 and SAM2 remain lower than WT, additionally CBL and
MS1 decrease as well (Figure 2.10).

On the other hand if the decrease in CBL transcript abundance is representative of a
decrease in Hcy, then this could explain the decrease in SAH due to a relief in the feedback
inhibition of Hcy on SAH hydrolysis. Additionally the transcript abundance of SAHH2 is
increased (Figure 2.10); and while it is the less expressed of the two SAHH-encoding genes
(Li et al., 2008), its expression is comparable to SAHH! in stage 12 petals and anthers
(retrieved from the Arabidopsis eFP Browser on November 15, 2018; Winter et al., 2007).
Regardless, a decrease in SAH back to WT levels would likely be a benefit to the health
of mtnl-1mtn2-1 unopened buds, with SAH accumulation being associated with negative

impacts on methyl homeostasis and the stability of the epigenome (Ouyang et al., 2012).

Considering the WT-levels of Spd in mtni-1mtn2-1 and G3, the decrease in Put levels
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back to WT and the further increase in transcript abundances of SPDS1 and SPDS2
is somewhat mysterious (Figure 2.10). One possibility invokes changes to the pool of
conjugated Spd mentioned previously. In this scenario, the increase in Spd (as perhaps
suggested by the decrease in Put and increase in SPDS1 and SPDS2) would not be captured
using the current quantification method as it would instead be diverted to replenish the
pool of conjugated Spd. Another possibility can also be envisaged: the reduction of Put
along with decreases in SAMDC1 and SAMDC/ transcripts would be due to a reduction in
the feedback inhibition of SPDS by MTA. This can be considered since MTA levels actually
show a modest decrease in G3 (Figure 2.2f). Regardless there is no strong evidence for either
scenario: evidence of MTA-driven feedback inhibition of SPDS as well as measurements of

conjugated Spd are needed to address this.

The restoration of Cys, Put, SAH and SAM correlates well with the gene expression
profile of cluster G (Figure 2.9). One of the GO terms enriched within this cluster included
the cell cycle (Table 2.2). The importance of SAM and SAH in proper regulation of the
cell cycle has been clearly demonstrated in yeast (Hayashi et al., 2018; Park et al., 2015).
Should this also be the case in Arabidopsis and considering the importance of cell division
in a rapidly developing organ such as unopened buds, then this could implicate irregularities
in the progression of the cell cycle as one of the key factors resulting in infertility in
minl-1mtn2-1. This is also seen in the decrease in cell division activity in minl-1min2-1

roots (Figure 2.15).

Now that some headway has been made into investigating which specific pathways are
required for the transgenerational restoration of fertility, research is needed to investigate
how and why these particular pathways can reverse male and female mtnI-1mitn2-1 sterility

(Waduwara-Jayabahu et al., 2012).
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2.4.4 Spd treatment has different short and long term effects

Though metabolites were measured from all genotypes and developmental stages with and
without Spd treatment, only the 14 d seedling tissue samples were directly exposed to Spd
when sampling was performed. By the time the unopened buds were collected, the parent
plant had not been directly exposed to Spd for 3-4 weeks. This distinction between the
sampling time and Spd exposure leads to a consideration of the dissection of both short-
term and long-term effects of Spd treatment. This analysis is only rudimentary however,
as different developmental stages will have different metabolisms. From the metabolite
measurements in Figures 2.2-2.5, clearly the Spd treatment was nearly completely ineffective
in all developmental stages, with only subsequent G2 and G3 generations showing changes

relative to the previous generation.

However despite Spd treatment having little impact on the metabolite profiles of either
developmental stages, this is not quite the case for the transcriptomes. An RNAseq experi-
ment has been done previously for WT, mtni-1mtn2-1 and mtni-1mtn2-5 14d seedlings
grown with and without Spd (M. Saechao and B. Moffatt, personal communication, 2018).
Though this data will not be discussed, one aspect of the effect of Spd treatment was
clear: the impact of Spd treatment on WT and minl-1mitn2-1 seedlings was large, and
furthermore, both genotypes responded differently. This is in opposition with the impact of
Spd treatment on W'T and mini-1mtn2-1 unopened buds: not only was the impact quite
subtle, as seen in Figure 2.6, the impact on the overall transcriptomes appeared to affect

the genotypes somewhat similarly.

The RNAseq evidence suggests that Spd has different short-term and long-term effects,
each of which may be mechanistically different. Short term effects in this case may reflect

Spd playing a role in affecting transcriptional regulation, whereas the long-term effects
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could be from changes induced by Spd in the epigenome. This idea is somewhat comparable
to the concept of stress memory: plants have an immediate response to an environmental
stress, and later in the plant’s lifetime (or even in the next generation) the same stress will
induce a different response (Lamke and Béurle, 2017). This different response is thought
to be caused by the plant changing its epigenome after the first exposure to the stress in
order to create a stress memory, allowing the plant to improve its response to the stress and
better adapt to its environmental conditions (L&émke and Béurle, 2017). However for either
short-term and long-term responses to Spd treatment, their ultimate impacts on the plant
physiology of WT and minI-1mtn2-1 plants (within a single generation) are not yet known
as the transcriptional changes are not reflected in the limited metabolite data presented

here.

2.4.5 Evidence of an altered epigenome in mtni-1mitn2-1

The transgenerational restoration of fertility by Spd has been suggested to involve an
epigenetic mechanism (Waduwara-Jayabahu et al., 2012). Assuming this to be correct,
two (not mutually exclusive) possibilities exist for the effects of Spd on the epigenome: (i)
Spd induces new changes in parts of the epigenome of mitni-Imtn2-1 which is unaffected
by MTA accumulation, and (i) Spd is restoring parts of the epigenome of mini-1min2-1
which have been altered by MTA accumulation. Since the restoration is transgenerational,
it is more likely to involve changes in DNA methylation (Budhavarapu et al., 2013). This
research was used to investigate these options. Three pieces of evidence were considered:
metabolite quantification data of SAM and SAH, transcript abundance data of genes with
specific methylation patterns, and Chop PCR results of two previously studied loci under

the control of RADM.
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A reduction in the methylation index which is at least partially caused by an increase in
SAH has long been used in mammalian systems as a marker of global DNA hypomethylation
(Caudill et al., 2001). Though this concept has not been widely applied to Arabidopsis,
previous work has linked increased SAH with DNA hypomethylation and increased expres-
sion of transposable elements (Ouyang et al., 2012). Since there is both a reduction in the
methylation index (Figure 2.11) and an increase in SAH (Figure 2.2¢) in mitni-1mtn2-1, it
is logical to consider that the epigenome may be affected. It becomes interesting then to
consider how those epigenetic marks are affected by transgenerational Spd-driven restoration.
In G2 the methylation index and SAH content are slightly restored towards WT levels; in
G3 plants these are nearly completely restored. Should these methylation-related changes
also be reflective of the state of the epigenome, this suggests that Spd restoration increas-
ingly normalizes the minI-1min2-1 epigenome towards WT over subsequent generations.
This is actually consistent with previous phenotypic observations of these plants where
such phenotypes as seed yield and flowering time recovered increasingly over subsequent

generations (Waduwara-Jayabahu, 2011).

Changes in the epigenome are usually reflected in the transcriptome (Zhu et al., 2016).
With this in mind transcript abundance of methylated and unmethylated genes in unopened
buds was analyzed (Figure 2.12). The Arabidopsis epigenome changes in response to
environmental stresses (Ladmke and Béurle, 2017). MTA may be acting as a stress and
inducing changes in the epigenome. Furthermore, different environmental conditions can
affect specific types of DNA methylation (i.e. location: gene body methylation, promoter
methylation; cytosine context: CpG, CHG, CHH; Dubin et al., 2015). There was a clear
enrichment in the increased transcript abundance of genes with CpG gene body methylation
in mitni-1min2-1, which has been linked with the expression of highly transcribed genes (To
et al., 2015). The enrichment for differentially expressed genes with a specific methylation
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type suggests that MTA stress may not be inducing DNA methylation changes in a totally
untargeted manner. Abnormal CpG gene body methylation in mini-1mtn2-1 is actually
consistent with previous work showing that reduced CpG gene body methylation in the
metl mutant is accompanied with an overall increase in expression of those genes which
are normally under the influence of this type of DNA methylation (Zilberman and Henikoff,
2007). Transgenerational Spd restoration may be implicated: there is a slight enrichment in
CpG gene body methylated genes down-regulated in G3 compared to mini-1min2-1 (Figure
2.12). These findings connect MTA accumulation to specific changes in DNA methylation,
and a targeting of these same DNA methylation changes by Spd.

Finally the Chop PCR data (Figure 2.13) supports that mtni-1min2-1 and G3 plants
have changes in the RADM pathway. Targets of the RADM pathway usually do not
include genes under the influence of CpG gene body methylation, rather it tends to target
transposons and transposable elements (He et al., 2014). The methylation at these sites
is usually non-CpG (Dubin et al., 2015). Since there was no significant enrichment of
differentially expressed genes in mtni-1min2-1 with non-CpG methylation, it could be that
a possible disturbance in the RADM pathway does not contribute substantially to the MTA
accumulation phenotype. This is further supported by the fact that the G3 samples show
no recovery compared to mini-1min2-1 in the Chop PCR result (Figure 2.13), suggesting

it is not necessary for fertility.

It remains to be seen what the changes in the epigenome are specifically and how these

are related to the mutant phenotype.
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2.4.6 Mixed evidence for reduced PRMTS5 in mtn1-1mitn2-1

Since inhibition of PRMT5 is now believed to be a major contributor to the negative
impact of MTA accumulation in mammalian systems (Kryukov et al., 2016; Marjon et al.,
2016; Mavrakis et al., 2016), it was of interest to investigate whether the Arabidopsis
PRMTS5 is similarly affected by MTA accumulation in MTN-deficient mutants. PRMT5-
deficient Arabidopsis have a number of mutant phenotypes, including growth retardation,
late flowering, improper pre-mRNA splicing, salt intolerance, calcium insensitivity, iron
accumulation, cell cycle arrest, and disruption of root and shoot meristem maintenance
(Deng et al., 2010; Fan et al., 2014; Fu et al., 2013; Hernando et al., 2015; Li et al., 2016a;
Wang et al., 2007; Yue et al., 2013; Zhang et al., 2011). Similarly mini-1min2-1 plants
have been shown to undergo growth retardation and late flowering, though instead of
accumulating iron they instead suffer from iron deficiency (Waduwara-Jayabahu, 2011;
Waduwara-Jayabahu et al., 2012). An investigation to look for mutant phenotypes indicative

of PRMTS5 deficiency in mtnl-1min2-1 was performed.

The evidence in Figure 2.14 suggests that even if mini-1mtn2-1 unopened buds undergo
differential alternative splicing compared to W'T, it does not follow the pattern of intron
retention seen in prmt5 mutant seedlings (Hernando et al., 2015). This is not definitive
however as evidence of tissue-specific alternative splicing patterns has been presented
previously (Estrada et al., 2015; Li et al., 2016b). Since RNAseq data of mini-1mitn2-1
seedlings is available (Saechao et al.), then analyzing this data for this intron retention

pattern is needed.

Finally, mtni1-1mitn2-1 were tested for the G2 phase cell cycle arrest phenotype of prmts
mutant seedling roots (Li et al., 2016a). Looking at Figure 2.15, no accumulation of the

G2 phase reporter pCYCB1;1-GFP was detected. While this could be indicative of a lack
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of altered PRMT5 function, another possibility is an overall suppression of root meristem
activity (Figure 2.15). In this case, even should G2 phase cell cycle arrest be occurring
(proportionally) at rates higher than WT, due to the overall decrease in meristem activity

it would not be detected with mere reporter signal intensity.

Overall the evidence for altered PRMT5 function in minl-1min2-1 remains mixed. Due
to the possible significance of PRMT5 involvement in MTA accumulation-driven phenotypes,

this issue requires further investigation.

2.4.7 A possible link between decapitation, MTA content, and
ROS in the pollen defects of mtni-1min2-1

The restoration of fertility of min1-1min2-1flowers on decapitated stems was quite surprising.
Despite this, there may exist a simple explanation. In mammalian tissues, MTA generation
and MTAP activity are positively correlated with actively dividing cells (Sunkara et al.,
1985). The high levels of MTA accumulation in mtnI-1min2-1 unopened buds (where
there is a high rate of cell division) relative to other developmental stages (Figures 2.2c¢,
2.2f; Waduwara-Jayabahu, 2011) may support this. MTA moves between human cells
via a facilitated diffusion mechanism (Carteni-Farina et al., 1983) and may be similarly
transported in Arabidopsis. Assuming this to be the case, a working model that fits
these observation can be proposed as follows: flowers on mini-Imitn2-1 stems become
infertile as a result of large amounts of MTA diffusing from the apical unopened bud cluster.
Decapitation, then, would allow for a relief from this MTA pressure and thus fertility could

occur.

From this model, a couple considerations arise. The first consideration is that MTA-

driven infertility can be reverted only in flowers which have detached from the apical
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unopened bud cluster. Stage 9 flowers would be the earliest that could be restored because
this is when the unopened bud separates from the apical unopened bud cluster (Smyth
et al., 1990). However, minl-1min2-1 plants are both male and female sterile (Waduwara-
Jayabahu et al.; 2012), so considering pollen and ovule development near this stage is crucial

in determining the exact stages of gametogenesis susceptible to recovery.

For pollen, the major event at this stage is the beginning of tapetum degeneration
(Sanders et al., 1999) induced by an accumulation of ROS (Yi et al., 2016). Part of the
tapetum which must be degraded includes a special callose wall (Bedinger, 1992). From the
GO terms enriched from the RNAseq gene expression clusters (Table 2.2), there is a possible
involvement of ROS mis-regulation in mtni-1min2-1 unopened buds. While this is currently
not supported by ROS measurements in seedling roots (Figure 2.17), this result could still
be attributed to the comparably low amount of MTA present in this developmental stage
(Figure 2.2¢). Furthermore, from previous work there is some evidence of improper callose

degradation in pollen (Perera, 2018; Waduwara-Jayabahu et al., 2012).

In terms of ovule development, stage 9 roughly corresponds with ovule initiation
(Cucinotta et al., 2014). At this point, an important factor in maintaining cell identity
during ovule initiation is the proper regulation of the movement of transcription factors
between cells via plasmodesmata (Cucinotta et al., 2014). One of the main components which
controls plasmodesmatal conductivity is callose (De Storme and Geelen, 2014). Considering
improper callose degradation is a possible factor in the male sterility of mtni-1mtn2-1, then

this could also be a contributing element to female sterility.

The second consideration for this model is the speed at which this fertility reversal
occurs (detectable as early as within two days after decapitation). This suggests that
while a rapid change in the transcriptional program of the plant is possible, it is more

likely a post-translational or biochemical mechanism. Such mechanisms could include ROS
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homeostasis and callose degradation. With this in mind, the model proposed above can
be extended in that MTA accumuation interferes with callose and ROS regulation, which
would be quickly returned to normal once MTA levels drop post decapitation. Of course,
the evidence for this model is still rather circumstantial and requires a further exploration
of the pollen and ovule developmental defects in mtni-1min2-1 as well as how MTA would

directly be interfering with callose and ROS regulation.
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Chapter 3

Identification and early

characterization of

METHYLTHIOADENOSINFE
RESISTANT mutants

3.1 Introduction

In Arabidopsis, MTN catalyzes the formation of MTR from MTA. MTN is encoded for by
two genes, MTN1 (AT4G38800) and MTN2 (AT4G34840). MTA is formed as a byproduct
of several reactions which use SAM, the active form of Met as a substrate. These are
NA biosynthesis by NAS, ACC (the precursor the ethylene) biosynthesis by ACS, and the
biosynthesis of the PAs Spd, Spm and Tspm by SPDS, SPMS and ACLS5, respectively.
MTA is recycled back to Met via Met salvage cycle.
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NA is secreted by the root system to chelate and dissolve soil bound iron, making it
available for transport into the roots (Higuchi et al., 1999). The plant hormone ethylene
has many roles in plant development and stress response (Dubois et al., 2018). The PAs
Spm and Tspm are involved in stress response and vascular development, respectively (Clay
and Nelson, 2005; Tiburcio et al., 2014; Yamaguchi et al., 2006). The PA Spd is involved
in numerous processes including gene regulation, ROS scavenging and stress responses

(Tiburcio et al., 2014).

Met biosynthesis occurs de novo with the assimilation of sulfur. During sulfur-sufficient
conditions, the Met salvage cycle is unnecessary. In fact several Met salvage cycle knockout
mutants have WT phenotypes under sulfur-sufficient conditions (Biirstenbinder et al.,
2007; Zierer et al., 2016). Despite this, blocking the progression from MTA to MTR
has great consequences on plant health. The mini-imitn2-1 double mutant, which has
14.9% residual MTN activity, has a severe pleiotropic mutant phenotype including delayed
bolting, fasciation, and male and female sterility (Waduwara-Jayabahu et al., 2012). mtn1-1
single mutant seedlings grown on media supplemented with 500 uM MTA are severely
growth-inhibited, represented by a distinctive short-root phenotype (Biirstenbinder et al.,
2010).

Current understanding of the mechanisms of MTA toxicity is lacking. Part of the
toxicity is believed to originate from MTA-feedback inhibition of reactions which generate
it as a byproduct. Previous studies have used in vitro inhibitor studies to described the
inhibitory activities of MTA on NAS and ACS (Herbik, 1997; Hyodo and Tanaka, 1986).
NA levels are decreased in adult mitni-Imitn2-1 plants and mini-1 seedlings grown on
MTA (Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012), though ethylene
measurements from these plants show no change (Biirstenbinder et al., 2010; Washington

et al., 2016). An in silico analysis suggests MTA can interact with SPDS and ACL5
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(Waduwara-Jayabahu et al., 2012), but no evidence of this interaction being inhibitory
exists in Arabidopsis. Spd and Spm measurements in adult mnti-Imin2-1 plants and
mitnl-1 seedlings grown on MTA suggest they are unaffected (Biirstenbinder et al., 2010;
Waduwara-Jayabahu et al., 2012).

With all of the mixed evidence concerning which processes are affected by MTA ac-
cumulation, the goal of this study was to increase our understanding of MTA toxicity
using a forward genetics approach. This was done via a suppressor screen experiment to
identify which MTA-affected pathways contribute significantly to the mutant phenotypes of
MTN-deficient plants which accumulate MTA. This study yielded several unique suppressor
mutants, one of which implicates glucosinolates (GLS) and auxin biosynthesis with MTA

accumulation in MTN-deficient plants.

99



3.2 Materials and methods

3.2.1 Plant growth

The growth of Arabidopsis thaliana (Col-0 ecotype) seedlings and adult plants was done
as described in Chapter 2. Preparation of MTA media was as described by Biirstenbinder
et al. (2007). PCR genotyping was performed as described by Biirstenbinder et al. (2010).

3.2.2 Mutant generation and screening

Approximately 5,000 mitni-1 seeds were mixed with 25 mL 0.2% ethyl-methanesulfonate
(EMS). This was left to gently shake for 15h. The M1 seed were washed with water eight
times and split into ten pools. After keeping the seeds at 4°C for 2d, the M1 pools were
sown in soil and grown to maturity. M2 seeds were collected and surface sterilized. A
thousand M2 seeds from individual pools were grown vertically on media containing 500 pM
MTA. Putative suppressor mutants were screened for increased root length and transferred

to empty plates to recover, before transplanting into soil.

3.2.3 Metabolite measurements

Sample collection and extraction

Seedlings were collected and frozen with liquid nitrogen, then weighed to ~25mg in 1.5 mL
microcentrifuge tubes. The plant material was ground to a fine powder with a homogenizer
and stored at —80°C. For extraction of metabolites, 1 mL of 0.1 M HCI was added to the

tubes, and vortexed every ~30s for 15min. The tubes were subsequently centrifuged at
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Table 3.1:

Primers used for genotyping and Sanger sequencing.

Primer name

Sequence (5 to 3')

SNP1F
SNP1R
SNP3F
SNP3R
SNP4F
SNP4R
SNP5Fv2
SNP5Rv2
NSP1F
NSP1R
072600LP
072600RP
IONTORR-F
IONTORR-R
IONT-R95

IONT-R96

mitnl-1F

minl-1R
LLBb1.3

CTCCAACGCTTGTTGAAGAG
TGTGAGCAGCCATGAGAAAC
TGATGCCACTTCCACAGGTA
AGCATTTCGAAGGCACTGAT
AGCCGTGAGAGACAAGGAAG
CATGGAAGACAACGCTCAGA
TCCCAAAATGGGCACACGAA
TACAGGTTCAGGCTTAGCGG
ATTAGGCCAAAATGCGAGAG
CGTTTTCAACACATCCATCG
TATGACAAGAAATTCGTCCCG
ACCTTCTCCTTTTTGCTCCAC
CCATCTCATCCCTGCGTGTC
GGTGATGCGGAGGCGAAAGG
CCACTACGCCTCCGCTTTCCTCTCTATGGGC
AGTCGGTGATTTGTTGCTTCCTTCCAGACCA
CCATCTCATCCCTGCGTGTCTCCGACTCAGTT
AGCGGTCGATAGTGGAAACATTCGGTGTGAG
TGACGGAGACCAACTCCATAC
GAGGCTCTTCCTTTGGTCAAC
ATTTTGCCGATTTCGGAAC
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16 000 RCF, 4°C, for 5min. The supernatants were transferred to new tubes and stored at
—80°C.

Derivatisation and quantification of thiols, adenosines, and nicotianamine

The thiols Cys and GSH, the adenosines SAM, SAH and MTA, and NA were derivatised
and quantified exactly as described in Chapter 2.

3.2.4 Whole genome sequencing

Approximately 1g of vegetative tissue was frozen with liquid nitrogen and ground with a
mortar and pestle. The ground tissue was added to 10 mL CTAB extraction buffer (100 mM
Tris-HCI pH 8, 20mM EDTA pH 8, 1.4 M NaCl, 2% CTAB, 1% PVP 40,000). This extract
was incubated at 65 °C for 10 min, and gently inverted every 2min. After incubation 10 mL
chloroform:isoamyl alcohol (24:1) was added and mixed by inversion for 5 min. The solution
was centrifuged for 10 min at max speed in a bench-top centrifuge (model 5415R; Eppendorf,
Hamburg, Germany). The aqueous phase was separated and mixed with 0.7 volumes of
isopropanol. After incubating for 5min, it was centrifuged for 5min at max speed in a
bench-top centrifuge. The liquid was discarded and the DNA pellet was washed with 80%
ethanol and then centrifuged for 5 min at max speed in a bench-top centrifuge. The DNA
was resuspended in 50 pL. TE buffer (pH 8). RNase A was added to the solution to a final
concentration of 10 pg mL~! and incubated for 1h at 37 °C. Afterward the DNA was stored
at 4°C. The DNA was cleaned using a DNeasy Plant Mini Kit (Qiagen Inc., Toronto,
ON, Canada). For Whole Genome Sequencing (WGS), preparation of 350 bp insert DNA

libraries was performed by Novogene Corporation (Sacramento, CA, USA) and sequenced
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with a HiSeq X Ten platform (Illumina Inc., San Diego, CA, USA) with a paired-end 150

bp sequencing strategy.

3.2.5 Sanger and ION Torrent sequencing

Target regions were amplified with PCR. Sanger sequencing of amplicons was performed
with a ABI 3730XL (ThermoFisher Scientific, Mississauga, ON, Canada) sequencer at The
Centre for Applied Genomics (Toronto, ON, Canada). Ion Torrent sequencing of amplicons
was performed with an Ion Torrent Personal Genome Machine (ThermoFisher Scientific,
Mississauga, ON, Canada) at the Genomics Core Facility (Sunnybrook Research Institute,
Toronto, ON, Canada).

3.2.6 Bioinformatics analysis

Raw reads were quality trimmed with Trim Galore! v0.4.5 (Krueger, 2012). These were
mapped onto the TAIR10 Arabidopsis reference genome (Lamesch et al., 2012) with
bwa v0.7.17 (Li and Durbin, 2009). Duplicated reads were removed with Picard v2.15.0
(McKenna et al., 2010). Read recalibration and Single Nucleotide Polymorphism (SNP)
calling was done with GenomeAnalysisTK v3.8 (McKenna et al., 2010). The tool SnpSift
v4.3 (Cingolani et al., 2012) was used to annotate SNPs. SNP Chromosome (Chr) density
analysis and identification of Heterozygous (Het) and Homozygous (Homo) SNPs were
performed with the R language (R Core Team, 2018). Candidate suppressor gene orthologs
were retrieved from OrthoDB (Kriventseva et al., 2018), and Amino Acid (AA) sequences
aligned with Clustal Omega v1.2.3 (Sievers and Higgins, 2018). All statistical tests including
one-way ANOVA and Tukey HSD tests were done with the R language (R Core Team,
2018).
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3.3 Results

3.3.1 Detailed analysis of the impact of MTA feeding on seedling

growth for use in a suppressor screen

The effects of MTA accumulation in MTN-deficient Arabidopsis plants are still not well
understood, despite previous work involving metabolite analyses and careful physiological
observations (Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012). In an attempt
to understand the specific mechanisms behind the negative effects of MTA accumulation, a
suppressor screen approach was developed to identify genes that affect the phenotype of
MTN-deficient mutants. Suppressor screens are known to be useful for revealing protein
interactors or relevant functions for the phenotype under study (Li and Zhang, 2016). First
however, it was necessary define conditions under which a suppressor mutation would be

revealed (i.e., mutations that allow the mutant to have a more WT phenotype).

The single mutants mini-1 and min2-1 show no phenotype under control conditions
(Biirstenbinder et al., 2010), and the double mutant mitni-Imitn2-5 exhibits a clear but
moderate mutant phenotype (Waduwara-Jayabahu, 2011; Waduwara-Jayabahu et al., 2012).
The mini-1mtn2-1 double mutant instead has a highly variable and very severe mutant
phenotype including male and female infertility under control conditions (Waduwara-
Jayabahu et al., 2012). Since working with an infertile plant would make the suppressor
screen not possible, it was not considered. Since a suppressor screen based purely on the
external phenotypes of MTN-deficient mutants would likely be inefficient a simple assay
was needed. Previously it has been observed that single mutant mini-1 seedlings grow
short roots when fed MTA as a sole sulfur source (Biirstenbinder et al., 2010). Considering

how quickly this assay can be performed, a careful analysis of this assay was first decided
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upon for use in a suppressor screen. The effects of different concentrations of MTA on the

root growth of various MTN-deficient mutants were studied.

Seedlings were grown vertically on media supplemented with various concentrations of
MTA; root growth was measured at 7d. The results of this analysis are shown in Figure
3.1. The mtni-1mtn2-1 mutant, as well as the Spd-restored G2 and G3, grew shorter
roots at even the lowest tested concentration (10 pM MTA). Due to seed stock limitations,
as well as the need to genotype minl-1min2-1 seedlings to confirm their identity, not all

concentrations were tested on all genotypes.

The mitni-1 and mtnl-1min2-5 mutants required higher concentrations of MTA (100 pM
MTA) to begin exhibiting a short root phenotype (Figure 3.1). The difference in root length
between WT and these two mutants increased further at higher concentrations. Fortunately,
both mtni-1 and mitni-1mtn2-5 are completely fertile opening up the opportunity of
mutagenizing homozygous seed to identify mutations that restore normal root growth.
This allowed for a quick and high through-put screening method. Since both mitni-1 and
minl-1min2-5 reacted similarly to high concentrations of MTA, minl-1 was ultimately
chosen for use in the suppressor screen in order to avoid any unknown effects from the

mtn2-5 mutation unrelated to root length.

3.3.2 Recovery of M2 generation mitni-1mtar mutants and re-

screening

To allow for the recovery of homozygous recessive mutations, EMS-mutagenized mitnI-1
were advanced to the M2 generation. The M2 seed was pooled from groups of M1 plants,
creating 10 distinct M2 seed populations. Approximately a thousand M2 seeds from
each pool were grown vertically on media containing 500 pM MTA. Seedlings which had
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Figure 3.1: Root length analysis of MTN-deficient mutants grown on MTA.

Seeds were sown on media containing either 500 pM MgSO, (shown as 0 pM MTA) or various
concentrations of MTA and grown vertically for 7d. Seedlings were imaged at the end of the
experiment for root length measurements (n = 20).
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longer roots by 4 d were separated out, up about until 10d at which point the inhibitory
effects of MTA weakened. Three rounds of screening were performed, and 11 putative
mutants were selected (Figure 3.2, Table 3.2). The suppressor mutations were named
METHYLTHIOADENOSINE RESISTANT (MTAR). In order to avoid false positives, they
were genotyped to ensure they carried the mini-1 mutation and re-screened individually
(Table 3.2). Several putative mutants were removed from consideration; for example, the
putative mtni-Imtarl seedling was WT. Putative mutants were backcrossed with mitni-1.
By screening the F'1 and F2 progeny, it was revealed that all mutants were recessive, with
the exception of one dominant mutant. The first mtar considered for sequencing was mtar2,
being the first succesful putative mutant. The next putative mutant considered for study
was mtar8 for having a stronger suppressor phenotype than other putative suppressors.

Finally, mtari1-d is also being investigated for being the only dominant putative suppressor.

In order to determine whether the mtar mutations could restore fertility in infertile

mitnl-1min2-1 mutants (Waduwara-Jayabahu et al., 2012), mitn1-1mtar plants were crossed

: minl-1 MTN2
with minl-1  min2-1

plants. F2 seed were sown on MgSO, or MTA-containing media before
genotyping. Only those exhibiting signs of having the long-root mtar phenotype were
genotyped from the MTA-treated plates, meaning that from the MgSO,-genotyped F2
some likely did not containing two copies of the mtar mutations. The resulting genotypes
compared (Table 3.3). Unexpectedly, the F2 seedlings did not follow typical Mendelian
inheritance, rather favouring the genotyping without any copy of mtn2-1. This seemed
to be more pronounced for the MTA-treated seedlings for the mtar2 and mtar8 lines.
Furthermore complete MTA-treated double mutants could only be recovered for the mtar2
mutants. These results suggest either the mtar phenotype is suppressed by the addition
of one or two copies of mitn2-1, or that a full mini-1min2-Imtar triple mutant is embryo

lethal. More work is needed to confirm the number sin Table 3.3, and currently these
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seedlings have yet to be grown until adulthood to check for fertility.

3.3.3 Metabolite analysis of M2 generation min1-1mtar mutants

The opportunity arose to quantify several key MTA-related metabolites in some of the
putative mtnl-1mtar mutants. The measurements were performed in two individual experi-
ments. The mini-1mtar2 and minl-1mtars were measured together in the first experiment;
minl-Imtar8, minl-1mtar10 and minl-Imtarll-d were evaluated in the second. Each
experiment has its own WT and mini-1 controls. In an effort to recreate the conditions
from the suppressor screen, vertically grown 7d seedlings were collected with and without
500 nM MTA supplementation. Most of the metabolites (i.e., SAM, MTA, Cys, GSH and
NA) have been previously quantified in 4d m¢ni-1 mutant seedlings (Biirstenbinder et al.,

2010).

The data from WT and mini-1 measurements were mostly consistent between ex-
periments, and with previous results (Biirstenbinder et al., 2010). SAM, SAH and MTA
all increased for both genotypes on MTA, with a slightly larger increase for mitni-1, in
experiments 1 and 2 (Figure 3.3). Cys increased in mini-1 on MTA for both experiments as
well (Figures 3.3a, 3.3d). All of these changes (except SAH which has not been quantified
previously) are in agreement with previous measurements (Biirstenbinder et al., 2010).
GSH increased on in mitni-1 MTA for experiment 1 (Figure 3.4b), but stayed stable in
experiment 2 (Figure 3.4¢). Both of these are actually not in agreement with a previous
result where instead an increase in GSH was seen (Biirstenbinder et al., 2010). Finally,
NA was lower in mtni-1 compared to WT for all conditions, and MTA treatment reduced
this further in m¢ni-1 on MTA in the second experiment (Figures 3.4¢, 3.4f). Previous

NA measurements in minI-1 seedlings had high variation (Biirstenbinder et al., 2010), so
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(a) Round 1 (10 d) (b) Round 2 (14 d)

Figure 3.2: First two rounds of mtar screening.

Putative minlI-1mtar2 seedlings were moved from plates with no MTA once they were
identified during the suppressor screen. Once they had recovered they were photographed
alongside control genotypes which had also been grown on plates containing 500 pM MTA
as used for the screen. Putative mutants recovered during round 1 of screening were imaged
several days after having been moved to plates without any MTA for recovery. Round 1
putative mutants were imaged at 10d (a), and round 2 putative mutants at 14d (b). Scale
bar represents 0.7 cm.
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Table 3.2: Recovering M2 generation mtar mutants and rescreening.

Putative min1-Imtar mutants were found in three rounds of screening involving various pools
of M2 seed. The putative suppressors were genotyped for mini-1 to confirm their identity as
M2 plants. Finally individual putative suppressors were re-screened to confirm the phenotype.

mtar  Screening round M2 pool Correct genotype* Passed rescreen

1 1 6 no -
2 1 6 yes yes
3 1 ) yes no
4 2 4 yes no
5 2 9 yes yes
6 2 10 yes no
7 3 - yes no
8 3 - yes yes
9 3 - yes no
10 3 - yes yes
11-d? 3 - yes yes

*Putative mitnl-1mtar mutants were genotyped for mini-1.

IThe mtar11-d mutation was found to be dominant.
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Table 3.3: F2 segregation results after crossing mini-1mtar mutants with
mitnl-imitn2-1.

minl-1mtar mutants were crossed with minl-1min2-1 plants. F2 seed were grown on MgSOy
(only mtar2 and mtar8) or MTA-containing media, and genotyped for min2-1 after one week

of seedling growth. For the MTA-treated seedlings, only those which grew long roots were

_ mini-1 A MTN2 _ minl-1 = MTN2 _ minl-1  min2-1
genOtyped' aaBB = mini-1  MTN2’ aaBb = minl-1  mitn2-1° bb = minl-1  min2-1

Mutant  Treatment aaBB aaBb aabb n

mtar2 MTA 90.2%  7.3% 2.4% 41
MgSOy4 43.3% 50% 6.6% 30
mtar8 MTA 100% 0% 0% 26
MgSOy4 54.2% 37.5% 83% 24
mtarl0 MTA 100% 0% 0% 19
MgSO, - - - -
mtarl1 MTA % 25% 0% 24
MgSO, - - - -

Expected percentage  25%  50%  25%
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it cannot be determined whether this result is in agreement with the significant decrease

detected in mtnI-1 in this study.

The impact of the MTAR mutations on the seedling metabolomes were quite evident.
The MTA-driven increase in SAM was completely suppressed (Figures 3.3a), 3.3d), and
MTA accumulation itself only rose to WT levels (Figures 3.3¢), 3.3f). SAH was increased
in a manner similar to WT (though not as highly as in mtni-1) by MTA treatment (Figures
3.3b, 3.3¢). Cys remained unchanged by MTA treatment in all mtar mutants except
minl-1mtar10 (Figures 3.4a, 3.4d). The minl-1mtar2 samples showed a clear decrease in
GSH and mitnI-1mtar5 no change in GSH versus the increase in mtni-1 when treated with
MTA (Figure 3.4b). GSH measurements were quite variable in experiment 2 and showed

no clear pattern (Figure 3.4e).

3.3.4 Whole genome sequencing of the mitni-1mtar2 mutant

Due to the large number of mutations induced by the original EMS treatment, it was
necessary to remove as many of these as possible before sequencing. The removal of
extraneous SNPs was done by backcrossing the minI-Imtar mutants with fresh mini-1
plants, then screening F2 to select for the SNP. A pool of 40 mtni-1mtar2 F2 plants were
used for WGS with 40x coverage in a mapping-by-sequencing approach to SNP mapping
(James et al., 2013). The reads were mapped to the TAIR10 reference genome (Lamesch
et al., 2012). In order to account for differences between the reference genome and the
mitnl-1 parent, WGS of mtni-1 was also performed. Only those SNPs possibly caused by
EMS (C—T and G—A) were extracted and assigned as Het (< 75%) or Homo (> 75%)
with the R language. To find the causal SNP, the density of mapped Het and Homo SNPs

were first examined (Figure 3.5). Since the backcross and subsequent F2 selection would
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Figure 3.3: SAM, SAH and MTA measurements of mini-1mtar seedlings.

Seedlings were grown vertically for 7d on media containing either 500 pM MgSO4 or 500 pM
MTA as a sulfur source. The mutants were grown and collected in two separate experiments,
with mini-1mtar2 (m2) and mini-Imtar5 (m5) in experiment 1 (a)-(c), then minI-1mtar8
(m8), mtni-1mtar10 (m10) and minl-Imtarll (ml11) in experiment 2 (d)-(f). SAM (a, d),
SAH (b, e) and MTA (¢, f) were measured simultaneously with HPLC. Significant difference
was tested for using a one-way ANOVA (p < 0.05), followed up with a Tukey’s HSD post-hoc
test (n = 5). Significant differences are represented as unique letters above the individual

boxes.
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Figure 3.4: Cys, GSH and NA measurements of mitn1-1mtar seedlings.

Seedlings were grown vertically for 7d on media containing either 500 pM MgSO4 or 500 pM
MTA as a sulfur source. The mutants were grown and collected in two separate experiments,
with min1-1mtar2 (m2) and mini-Imtar5 (m5) in experiment 1 (a)-(c), then minI-1mtar8
(m8), mini-1mtar10 (m10) and mini-Imtaril (m11) in experiment 2 (d)-(f). Cys (a, d)
and GSH (b, e) were measured simultaneously, followed by NA (¢, f), with HPLC. Significant
difference was tested for using a one-way ANOVA (p < 0.05), followed up with a Tukey’s
HSD post-hoc test (n = 5). Significant differences are represented as unique letters above the
individual boxes.
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decrease the frequency of the non-causal SNPs, the causal SNP would likely be found within
a region of linked Homo SNPs (James et al., 2013). Two regions with high Homo and low
Het SNP density were found: on Chr 3 and 5, though intragenic SNPs were only found in
the former (Figure 3.5).

3.3.5 Identification and analysis of candidate mtar2 SNPs

The WGS of backcrossed mini-1mtar2 revealed the causal SNP was likely within a cluster
of intragenic SNPs on Chr 3 (Figure 3.5), listed in Table 3.4. Only SNPs which resulted in
a non-synonymous AA change were considered. A total of five of these SNPs were identified
across a 7.6 Mbp region. Each was confirmed to be present in mini-Imtar2 by Sanger
sequencing of PCR amplified segments of Chr 3. To identify the causal SNP, the AA
sequences of protein orthologs were examined for conservation at the site changed by the
SNP (Table 3.5). Plant orthologs were identified using OrthoDB (Kriventseva et al., 2018)
and aligned with Clustal Omega (Sievers and Higgins, 2018), at which point the number
of orthologs with the original AA, the new SNP-caused AA and gaps at the AA position
were counted and listed in Table 3.5 and also shown in Figure 3.6 as sequence logos. No
ortholog group for SNP5 could be found, so only SNPs 1, 3, 4 and 6 AA conservation were
investigated. Among these SNPs 1 and 3 had a number of orthologs with the SNP-caused

AA, suggesting any impacts from such SNPs would not greatly affect protein function.

While both SNPs 4 and 6 had nearly no orthologs with the alternative AA, the majority
of orthologs for the SNP4 protein had gaps at the SNP AA site. This left the consideration
of causal SNPs down to SNPs 5 and 6. The SNP6 gene, NSP1 (AT3G16400), was previously
demonstrated to function in nitrile formation (Burow et al., 2009). No function has been

currently attributed to the SNP5 gene, but it has been characterized as a small open reading
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Figure 3.5: SNP density in along genome of min1-1mtar2.

SNPs from WGS of mtni-1mtar2 were categorized as Het (< 75%) or Homo (> 75%) and
separated by chromosome. The densities of Het and Homo SNPs were calculated using the
kernel density estimation function of R and a ceiling of 10~7 was applied to the density values.
Homo intragenic SNPs were highlighted using blue dots.
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frame (sORF; Hanada et al., 2007). While it is generally unknown whether most of these
sORFs are functional, some have been shown to affect plant morphogenesis (Hanada et al.,
2013). Since both SNP5 and SNP6 genes could have important functional impacts and
the AA conservation analysis did not discount either, they required further validation to

determine which was the final causal SNP.

Between the SNP5 and SNP6 proteins, a protein structure is only available for the latter,
NSP1 (Zhang et al., 2017). Shown in Figure 3.7a, SNP6 causes a substitution at position
372 from alanine to valine deep within the protein core. The valine adds two additional
sidechains which could potentially destabilizing effects on the protein structure (A. Doxey,

personal communication, 2018).

3.3.6 ION Torrent analysis of candidate mtar2 SNPs

To find which of SNP5 and SNP6 was the causal SNP, a different sequencing approach
was used. A previous study argued that the causal SNP can be differentiated from closely
linked SNPs by sequencing a large number of genomes with high read counts (Hartwig
et al., 2012). This particular method uses ION Torrent technology (Rothberg et al., 2011)
to sequence a small region around the candidate SNPs resulting in thousands of reads. To
investigate both SNPs, approximately 200 backcrossed mini-1mtar2 F2 plants were pooled
for ION Torrent sequencing. Both SNPs were sequenced with over 10, 000 reads each (Table
3.6). Based on this analysis SNP6 had more reads with the SNP, at 80% of reads versus
50% of SNP5 reads with the SNP (Table 3.6). While this suggested SNP6 to be the causal
SNP, in the original method the SNPs were found in over 90% of reads (Hartwig et al.,
2012). As a result this experiment would need to be repeated to properly replicate the
method. Alternatively, it could also suggest that neither SNP is the causal SNP.
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Figure 3.6: Amino acid conservation of putative mtar2 protein orthologs

Plant OrthoDB clusters from Table 3.4 were aligned, and the resulting multiple sequence
alignment converted to sequence logos using WebLogo (Crooks et al., 2004). Only the row
containing the putative mtar2 SNP from the multiple sequence alignments were used to
generate the sequence logos. The location of the putative mtar2 SNP for each protein is
pointed to with a blue arrow. The amino acid substitutions in each putative mtar2 protein
are: G to S for SNP1 (a), L to F for SNP3 (b), G to S for SNP4 (¢), and A to V for SNP6 (d).
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Figure 3.7: Modelling mtar2 amino acid substitution.

The alanine at position 372 in the protein NSP1 was substituted with valine, the putative
mtar2 mutation. The image in (b) is a closeup of the core from the protein in (a). Position
372 is buried deep within the protein. Alanine side chains are shown in red, and additional
sidechains introduced by a valine substitution shown in yellow. The valine sidechains would
extend the original alanine sidechains and potential destabilize the protein structure. Analysis
and illustration curtesy of A. Doxey (personal communication, 2018).
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Table 3.4: List of candidate mtar2 mutations.

Homozygous mutations in WGS data of mini-1mtar2 were extracted. Those which
introduced AA substitution are listed.

SNP* Position on Chr3 Resident gene Gene symbol DNA change AA change
1 2892611 AT3G09400 PLL3 C—>T G—S
3 6050541 AT3G17700 CNBT1 C—T L—F
4 6930590 AT3G19920 - C—>T G—S
5 10514696 AT3G28193 - G—A L—F
6 5568032 AT3G16400 NSP1 C—T A—V

*SNP2 was originally mistakenly thought to be within a coding region. It was removed

from consideration once the mistake was discovered.
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Table 3.5: Analysis of AA conservation in candidate mtar2 genes.

Plant OrthoDB clusters which included the candidate genes were found. The AA sequences of
all cluster members were aligned and the AA conservation of the SNP site was investigated.

SNP AA change OrthoDB cluster*  Ortholog count  Original AAT New AA*  Gap®

1 G—S 61898at33090 283 in 98 species 7 42 27
3 L—F 35874at33090 250 in 102 species 190 20 27
4 G—S 1012685at2759 184 in 87 species 38 1 124
5) L—F none - - - -
6 A=V 123585at3193 164 in 93 species 42 0 6

*The biggest exclusively plant OrthoDB cluster containing the gene of interested was selected, and

the protein sequences of all the cluster orthologs were aligned.

tAfter alignment, the number of orthologs which shared the same AA as the gene of interest at the

SNP position were counted.

fNumber of orthologs which have the same AA as that caused by the SNP in the gene of interest at
the SNP position.

§Number of orthologs which have a gap in their alignment at the position of SNP in the gene of

interest.
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Table 3.6: Comparing SNP5 and SNP6 homozygosity with ION Torrent.

Genomic DNA from nearly 200 mtni-Imtar?2 were extracted. Fragments surrounded the two
candidate SNPs were amplified and sent for ION Torrent sequencing. The number of reads
with the candidate SNPs were investigated.

SNP Total reads Reads with SNP  SNP percent

5 18947 9397 20
6 12548 10036 80
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3.3.7 T-DNA analysis of NSP1 as the candidate causal mtar2
SNP

As an alternative approach to finding the causal SNP, T-DNA insertion mutants in the
SNP genes were introduced into a mini-1 background in the hope of finding one which
could replicate the original mtar phenotype. Between the SNP5 and SNP6 genes, T-DNA
mutants could only be found for the SNP6 gene (NSP1). The SALK_072600C line (Alonso
et al., 2003) which has a T-DNA insertion in the second exon of NSP1, previously renamed
nspl-1 (Wittstock et al., 2016), was crossed into a minI-1 background. Homo mini-Inspl
seedlings were grown on MTA to recreate the conditions of the suppressor screen (Figure
3.8). In this experiment, mitni-1nsp1-1 roots did not grow as long as mini-1mtar?2 roots
on MTA, however were still longer than mtni-1 and closer to mtni-1mtar8 mtni-1mtari1

in length (Figure 3.8).
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Figure 3.8: Preliminary root length analysis of mtar mutants.

Seedlings were grown vertically on media with either 500 pM MTA or 500 uM MgSQOy4 for 7d
before imaging and root measurements were performed. For each genotype, the relative root
length was calculated as the root lengths from growth on MTA divided by the root lengths
from growth on MgSOy. The mitni-Imtar2 and mitnl-imtari! lines were back-crossed once.
(n = 14-30)
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3.4 Discussion

3.4.1 Seedling root growth did not respond linearly to increasing

MTA concentration

Previous work has shown that mini-1, but not mtn2-1, seedling shoot fresh weight de-
creased when grown on media containing 500 pM MTA (Biirstenbinder et al., 2010). No
negative effects occurred when mtni-1 seedlings were grown on media containing 100 pnM
MTA (Biirstenbinder et al., 2010). This is generally in agreement with the root length
measurements of mitni-1 seedlings grown on MTA-containing media in this work (Figure
3.1). Additional concentrations were tested, allowing for a more detailed analysis of the

impact of MTA on seedling growth of MTN-deficient mutants.

Going from 100 pM MTA to 250 pM MTA, and finally 500 pM MTA, there was a near
linear relation ship between decreasing root length and increasing MTA concentration
in mtni-1 and minl-1min2-5 seedlings. This successful result allowed for its use as a
suppressor screen assay. However, during this experiment inadvertently another interesting
result was noted at lower concentrations. For the most part, low MTA had little effect on
the growth of these two genotypes. However, 50nM MTA (and to a lesser extent 75 1M
MTA) the seedlings grew longer roots. This was most pronounced for the G3 seedlings.
G3 seedling roots, which were overall sensitive to much lower concentrations of MTA, also
showed remarkable root length recovery at 50 pM MTA (mitni-1mitn2-1 and G2 genotypes

were not tested at this concentration).

Seeing positive root growth responses to MTA is surprising in MTN-deficient plants,

as it was never believed MTA accumulation could have beneficial effects on plant health
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(Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012). Despite this, the concept
of differential responses to changing treatment concentration has been reported for other
compounds. In fact, a similar effect can be seen in the root growth of seedlings grown
on media containing TAA (Evans et al., 1994; Li et al., 2015). Different concentrations
of exogenous TAA will induce auxin signalling via different pathways. For example, low
TAA will induce TAAT signalling, whereas high TAA will induce TAA12 signalling (Calderén
Villalobos et al., 2012). For MTA, it could be that there is some positive signalling response
to mild amounts of exogenous MTA, and after a certain threshold high exogenous MTA

will instead trigger a negative response.

Studying the effects of high MTA accumulation is important to understanding the short
root phenotypes of MTN-deficient seedlings grown on MTA-supplemented media as well as
the severe mutant phenotype of adult mitni-1mtn2-1 plants. However studying the effects of
lower MTA accumulation could still be beneficial. For example, the mitni-1mitn2-5 mutant
does not accumulate MTA any more so than WT (to any detectable degree) in adult plants
yet still displays mutant phenotypes, such as delayed bolting and increased vasculature
(Waduwara-Jayabahu et al., 2012). The same can be said of mtn1-1min2-1 seedlings, which
while exhibiting abnormal phenotypes such as delayed development, interveinal chlorosis
and altered cuticle development do not accumulate MTA more than WT to any detectable
degree (see chapter 2). Determining the underlying basis for the response to low MTA

supplementation could well be informative but would be technically difficult.
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3.4.2 Control of SAM accumulation is likely a significant contrib-

utor to suppression of the short root phenotype

Perhaps the most surprising result from the metabolite measurements of mtni-1mtar
seedlings after MTA treatment was the complete lack of increase in SAM levels (Figure
3.3a, 3.3d). When grown on MTA-supplemented media, the SAM content of WT and
mitnl-1 seedlings increases (2-fold and 3-fold, respectively) relative to control conditions.
Surprisingly this same increase in SAM content did not occur in mtni-Imtar seedlings
(Figure 3.3a and 3.3d). This response (or lack thereof) in MTA-treated mitnI-1mtar

seedlings is likely a significant contributor in the suppressive effects of the mtar mutation.

The mechanism behind the increase in SAM in WT seedlings grown on MTA is unknown.
One simplistic explanation for this response is an increased rate of Met regeneration and
subsequent SAM formation via the Met salvage cycle. This explanation however does not
properly explain the reason for MTA not accumulating past WT amounts in mtni-Imtar
seedlings. If MTA was being used for increased SAM biosynthesis in mtn1-1mtar mutants
then this could make sense. However, SAM levels show absolutely no increase in mtni1-1mtar

seedlings grown on MTA (Figure 3.3¢, 3.3f).

There are two possible explanations for the mysterious lack of SAM and MTA accu-
mulation in mtni-Imtar seedlings. The easiest is a simple restriction to the movement of
exogenous MTA into the plant. The evidence for this is lacking though, as MTA transport
studies in human cell lines have revealed there are no specific MTA transporters and rather
it moves via a facilitated diffusion mechanism (Carteni-Farina et al., 1983). The other
explanation is that Met regeneration is indeed occurring at a higher rate, but it is not being
converted to SAM or SAM is being used at a rate equal to its production. Both these

explanations also require that Cys levels not increase, as Cys stays stable in MTA-treated
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minl-1mtar seedlings (whereas it increases in MTA-treated mini-1; Figures 3.4a, 3.4d).

The former explanation involving the restriction of MTA transport into the plant would
be harder to validate. The latter explanation concerning a distribution of regenerated Met
away from SAM could be validated by further measurements of MTA-related metabolites
and a flux analysis of Met. Both possibilities heavily implicate the control of SAM levels in
the suppression of the short root phenotype of MTA-treated mtni-1 seedlings.

3.4.3 NSP1 and suppression of the short root phenotype

While the evidence is not conclusive, among all of the candidate mtar2 SNPs the NSP1 SNP,
lying in a GLS-related gene, seems most likely to be the causal SNP. GLS are precursor
plant defence compounds which are degraded by myrosinases to an unstable intermediate
upon herbivory attack (Bones and Rossiter, 1996). The intermediate is spontaneously
converted to the defence compound isothiocyanate (ITC); alternatively, specifier proteins
can associate with enzymes which use this intermediate to form of nitriles, epithionitriles
and thiocyanates (Bones and Rossiter, 2006). NSP1 (one of five copies of NSP) is a specifier
protein which induces the formation of simple nitriles (Bones and Rossiter, 2006). The
majority of GLS in seedlings generally are converted to simple nitriles, with the majority of
the formation of these simple nitriles being attributed to the activity of NSP1 specifically
(Wittstock et al., 2016).

Assuming that the activity of NSP1 is affected in mtni-1mtar2 allows for an extension
of one of the models proposed earlier to explain the effects of MTA feeding. This model
proposed Met was being regenerated at a higher rate, but equally being used in other
processes indicative of a higher flux through this route of metabolism. By reducing

NSP1 activity, the plant could be attempting to maintain normal levels of simple nitriles
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by diverting excess Met towards aliphatic GLS production. This would prevent the

accumulation of SAM.

An alternative model for the suppressive effects of a mutated NSP1 invokes the relation-
ship of this pathway to auxin synthesis. Aliphatic GLS can be converted to simple nitriles
which can form the auxin precursor indole-3-acetonitrile (IAN) (Malka and Cheng, 2017).
In this model, sulfur in MTA-treated mtni-1 is used for GLS biosynthesis instead of Met,
and the excess GLS becomes excess auxin. This elevated auxin biosynthesis would then
result in the short root phenotype seen in seedlings grown on higher concentrations of auxin
(Evans et al., 1994; Li et al., 2015). By reducing the activity of NSP1 in mini-1mtar2
seedlings, the increased auxin biosynthesis phenotype is suppressed. Of course, as opposed

to the previous model, the lack of SAM accumulation is not explained.

More work is needed to validate the NSP1 SNP as being the causal mtar2 mutation.
Furthermore, measurements of I'TC, simple nitriles, and auxin would be required to explore

the proposed models.
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Chapter 4

Conclusion

4.1 Spd transgenerational restoration likely is epige-
netic and begins in some cells in the shoot apical

meristem

One of the most interesting aspects of Spd transgenerational fertility-restored mtni-1min2-1
plants is the initial difficulty in generating these lines. After the application of Spd
treatment to seedlings only a small fraction of mitni-1mtn2-1 plants will be successfully
restored, and even so at this point only one or two branches will be fertile (Waduwara-
Jayabahu, 2011). This first generation Spd-restored plant (G1) will also otherwise be
phenotypically identical to mini-1mtn2-1 plants which have not been Spd-treated, such
as exhibiting interveinal chlorosis, thick vasculature, stem fasciation, reduced cuticle,
and delayed bolting (Waduwara-Jayabahu, 2011). Amazingly, these phenotypes become

increasingly less apparent in subsequent generations (G2, G3), alongside an increase in
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fertility; and by the G3 generation, the plants are completely fertile (Waduwara-Jayabahu,
2011). Based on the fertility changing from generation to generation, I propose two
hypotheses. First, Spd restoration initially occurs in some cells in the shoot apical meristem
of treated seedlings. Second, Spd restoration is epigenetic (specifically at the level of DNA
methylation, which is heritable; Budhavarapu et al., 2013). This epigenetic restoration
increases over subsequent generations through a positive feedback loop which induces

changes in the epigenome.

Considering that the Spd treatment occurs at the seedling stage, it is curious that
not only are the metabolite profiles of mtni-1mtn2-1 seedlings generally not significantly
different from W'T, those of the G2 and G3 Spd-restored generations are also unchanged
(Chapter 2). In this case, whatever the Spd treatment is doing is only active or triggered
past a certain developmental stage or in specific tissues. One such tissue present in seedlings
which undergoes huge developmental changes is the shoot apical meristem. The shoot
apical meristem is a population of pluripotent cells which generate new leaves and floral
organs (Murray et al., 2012). As these cells are individual progenitors of entire organs,
random mutations in these cells can result in chimeric plants where different organs have
non-identical genomes (Burian et al., 2016). This effectively means that after flowering
occurs, these chimeric plants can produce genetically distinct progeny. Borrowing this
concept, I propose that during the initial treatment, Spd will randomly affect the pluripotent
cells within the shoot apical meristem. This will sometimes result in Spd affecting some

cells, which results in the corresponding branches becoming fertile.

The progeny from the few fertile branches in the first generation of Spd restored
minl-1min2-1 will now be made up of cells which all originated from single Spd-affected
shoot apical meristem cells. This explains why these progeny will have the Spd-induced

fertility spread across nearly all branches (Waduwara-Jayabahu, 2011). Since the progeny
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seedlings share the same metabolite profiles as naive minI-1mtn2-1, this likely means the
changes induced by Spd only become active after a certain developmental trigger. With
the current evidence, I suggest this trigger is flowering. Past this point huge changes in the
metabolite profiles of the unopened buds of Spd-restored progeny can be detected (Chapter
2). Of course, this does not explain how Spd is affecting these shoot apical meristem
cells, nor why the restoration phenotype continues to become stronger over subsequent

generations (Waduwara-Jayabahu, 2011).

The second hypothesis takes into consideration the specific mechanism of Spd restoration:
that Spd induces epigenetic changes in some kind of positive feedback loop. Though there is
yet to be any evidence showing that Spd can induces changes in the epigenome of Arabidopsis,
it has been shown to interact with DNA and histones in mammalian cells (Childs et al.,
2003) and recent studies indicate Spd can positively benefit human health epigenetically
(Madeo et al., 2018). Additionally, epigenetic positive feedback loops are known to occur, for
example during accelerated evolution (Furasawa and Kaneko, 2013). Using this information,
I propose that Spd induces changes in the epigenome of mitni-1mitn2-1, and additionally
there is a positive feedback loop which increases the level of restoration between generations.
Of course, with the current evidence there is no way to know which epigenetic changes are

involved.
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4.2 A unifying model for MTA accumulation, glucosi-

nolates, auxin and callose

While previous studies have carefully described the various mutant phenotypes of the severe
mitnl-1min2-1 mutant (Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012), our
understanding of the mechanisms causing these phenotypes is still unclear. In this work
metabolite measurements and an RNAseq experiment of the mitni-1mtn2-1 mutant have
allowed for additional insights into the effects of MTA accumulation on the underlying
physiology of these plants, at two separate developmental stages. Additionally, metabolite
measurements of seedlings treated with exogenous MTA and suppressor mutant experiments
were used for an analysis of the impact of artificially high MTA on the main MTA-related
pathways. With this information, I propose an overarching model (Figure 4.1) which
attempts to explain how MTA accumulation could negatively impact plant physiology

throughout a plant’s lifespan.

Beforehand, a clarification of the most direct physical effects of MTA accumulation is
required. It was previously suggested the most significant direct effects were the feedback
inhibition of ethylene, NA, Spd, Spm and Tspm biosynthesis enzymes (Biirstenbinder et al.,
2010; Waduwara-Jayabahu et al., 2012). Of these, there is the most evidence supporting
the inhibition of NA biosynthesis. Not only have reduced NA levels been detected in both
seedling and unopened bud samples tested in this study (Chapter 2), previous studies also
corroborate this (Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012). Furthermore
the inhibitory activity of MTA on NAS has been previously described (Herbik, 1997).
While it is almost certain NA biosynthesis is affected by MTA accumulation, its overall

impact on the mutant phenotype is less certain. While this can probably be used to explain
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the interveinal chlorosis phenotype of mtni-1min2-1 mutants (Waduwara-Jayabahu et al.,
2012), this could very well be the extent of the effects of reduced NA. At the very least,
it is not a major contributing factor in the male and female infertility of mini-1min2-1

plants, as transgenerationally Spd-restored G3 plants continue to have severely reduced NA

(Chapter 2).

The evidence for an effect on ethylene is unfortunately lacking. It has been shown that
MTA inhibits ethylene biosynthesis enzymes in vitro (Hyodo and Tanaka, 1986). The in
vwo evidence of reduced ethylene biosynthesis in MTA-accumulating conditions is sparse.
Biirstenbinder et al. (2010) measured ethylene in etiolated single mutant seedlings at 4 d
exposed to 500 pM MTA and found no change compared to WT. Washington et al. (2016)
measured ethylene from leaves of adult mini-2min2-2 mutants under control conditions
and also found no change compared to WT. While these two measurements would suggest
ethylene biosynthesis is unaffected, it is important to understand the limitations of the
measurement method: only ethylene which escapes the plant is measured, and thus internal
ethylene levels remain unknown. In this study, RNAseq data of mitni-1min2-1 unopened
buds shows that transcript abundances of ethylene biosynthesis genes ACO1, ACO2 and
ACOS3 are increased, perhaps as a response of reduced ethylene (Chapter 2). Waduwara-
Jayabahu et al. (2012) also noted a delayed senescence phenotype in mitni-1mitn2-1 plants,
similar to ethylene-deficient mutants. With all of this mixed evidence, it remains to be seen

whether altered ethylene metabolism contributes to the MTN-deficient phenotype.

As for the PAs Spd, Spm and Tspm, the current evidence would suggest the biosynthesis
of PAs is not affected by MTA-driven feedback inhibition. In this study and previous
studies, Spd levels are never decreased regardless of tissue or level of MTN-deficiency
(Chapter 2; Biirstenbinder et al., 2010; Waduwara-Jayabahu et al., 2012). Spm has also

been measured previously with the same result, showing no decrease (Biirstenbinder et al.,
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2010; Waduwara-Jayabahu et al., 2012). As for Tspm, the low abundance of this metabolite
has made it difficult to measure. Despite this, there is some phenotypic evidence of
Tspm levels being unaffected by MTA accumulation: Tspm-deficient adult plants have a
severe dwarf phenotype unseen even in the severe mtnl-Imin2-1 mutant (Clay and Nelson,
2005). Waduwara-Jayabahu et al. (2012) provided in silico evidence of the existence of
an interaction between SPDS and ACL5 with MTA. Even so, this is not evidence of
an inhibitory relationship. In fact, it has been shown that while SPDS in Plasmodium
falciparum also interacts with MTA in wvitro, there is no inhibitory relationship (Sprenger
et al., 2016). With all of this information, I suggest that the PA biosynthesis enzymes in
Arabidopsis are simply not feedback inhibited by MTA under MTA-accumulating conditions.

At this point an in wvitro inhibitor study would be needed to show otherwise.

I also propose two additional direct effects of MTA accumulation. The first is a feedback
inhibition of MTA onto sulfur assimilation via Cys. As shown in Figure 4.1a, sulfur is
incorporated and stored in the form of APS. At this point APS can be used to form PAPS
for sulfonation reactions, or Cys. I propose that MTA inhibits the flow of sulfur towards
Cys. The sulfur metabolites HyS, Cys and GSH (Figure 1.2) have been shown to feedback
inhibit sulfur assimilation through some unknown sulfur sensing mechanism (Kopriva, 2006).
It would not be unreasonable to extend this to include the sulfur-containing MTA among
these. This suppression of sulfur assimilation via Cys is supported by the metabolite data
of unopened buds from mini-1mitn2-1 mutants in Chapter 2. This mutant accumulates
over ten times as much MTA in unopened buds, making this tissue ideal to study the
effects of MTA accumulation. In the metabolite data of unopened buds, the key sulfur
metabolites Cys, Met and SAM are all decreased. Some of these data are actually consistent
with a previous metabolome study of sulfur-starved Arabidopsis. Nikiforova et al. (2005)

showed that both Cys and SAM decreased. Interestingly, under sulfur-limiting conditions

136



Nikiforova et al. (2005) an increase in Put was also noted, which is consistent with the
increase in Put detected in mitni-1mtn2-1 unopened buds. While I cannot suggest the
exact MTA interaction which would induce this inhibition of sulfur assimilation into Cys
as the sulfur sensing mechanism in Arabidopsis is unknown, amongst the data provided
in Chapter 2 are clear signs that a reduction in sulfur assimilation via Cys is occurring.
With MTA being the only measured sulfur metabolite accumulating to a large degree, it is

a likely candidate for this inhibition.

The second direct effect of MTA accumulation I propose involves the formation of ROS.
This would occur either via the direct formation of radical MTA species, or by another
directly MTA-induced ROS-forming mechanism. Unfortunately there are currently no
previous studies which could support this, but assuming that high MTA can lead to a
direct increase in ROS allows for a simple explanation of some of the phenotypes seen in
minl-1min2-1 mutants. Among some of the enriched GO terms from differentially expressed
gene clusters in the RNAseq of minl-1mtn2-1 unopened buds are those related to various
stress responses, including ROS (Chapter 2). While this by itself is not strong evidence, I
would suggest the fertility restoration on mini-1min2-1 stems which have had the apical
bud cluster decapitated supports this conclusion. In Chapter 2 I argued that fertility was
being restored due to a quick and dramatic decrease in MTA levels in the remaining flowers
on decapitated stems, which were originally rendered infertile by high ROS. In order for
the rapid decrease in MTA levels to correlate closely with ROS levels, some closely linked
interaction would be necessary. MTA being a direct, or at least near-direct, source of ROS

would allow for a simple explanation of this phenomenon.

With a clarification of specific MTA-affected processes, a more in-depth discussion of how
these processes subsequently affect plant physiology can begin. I propose that the sulfur not

being used for sulfur assimilation via Cys is instead being used for the production of GLS
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Figure 4.1: A combined model for the involvement of MTA in auxin, callose,
glucosinolates and sulfur assimilation.

In (a), MTA suppresses sulfur assimilation through cysteine and also contributes to increased
ROS. Sulfur is driven towards GLS, which drives auxin biosynthesis through the formation of
IAN. In (b), increased auxin signalling and ROS levels negatively affect various tissues under
MTA-accumulating conditions. 4-m I3G, 4-methoxy-indol-3-ylmethylglucosinolate. APS,
adenylylsulfate. Cys, cysteine. GLS, glucosinolates. GSH, glutathione. IAA, auzin. IAN,
(continued on next page)
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Figure 4.1: PA combined model for the involvement of MTA in auxin,
callose, glucosinolates and sulfur assimilation. (Cont)

indole-3-acetonitrile. 1TC, isothyocyanate. Met, methionine. MTA, methylthioadenosine.
PAP, 3-phosphoadenosine 5 -phosphate. PAPS, 3 -phosphoadenylyl sulfate. ROS, reactive
oxygen species. SAH, S-adenosylhomocysteine. SAM, S-adenosylmethionine. Trp, tryptophan.

(Figure 4.1a). There are three classes of GLS, derived from different amino acids: aliphatic
(alanine, isoleucine, leucine, methionine, valine), aromatic (phenylalanine, tyrosine), and
indole (tryptophan; Ishida et al., 2014). GLS upon being hydrolyzed by myrosinases,
GLS will spontaneously form ITC, but the alternative products nitriles, epithionitriles and
thiocyanates can also be formed by the association of specifier proteins with the respective
enzymes (Ishida et al., 2014). ITC are bitter defence compounds produced by plants to
discourage herbivory predation, but have also been shown to have anti-oxidant properties
(Ishida et al., 2014). Interestingly, nitriles formed from indole GLS can be further processed
to form the auxin precursor AN, which is believed to contribute significantly to the total

auxin pool in Arabidopsis (Malka and Cheng, 2017).

From the RNAseq experiment of unopened buds from mitni-1mitn2-1, transcript abun-
dance of the IAN biosynthesis genes CYP71A13 was increased twenty-fold, and transcript
abundance of the auxin biosynthesis gene NIT2 (which uses IAN as a substrate) was
increased sixty-four-fold (Chapter 2). Combined with a suppression of sulfur assimilation
towards Cys, this would suggest an increase in auxin biosynthesis from GLS (Figure 4.1a).
This is also supported by the discovery of the NSP1 mutant mtar2 as a potential suppressor
of the short root phenotype of MTA-fed mini-1 seedlings (Chapter 3). NSP1 is a specifier
protein which is required for the formation of IAN from indole GLS (Malka and Cheng,
2017). The suppressor mutant experiment suggests that the MTA-induced short root
phenotype could perhaps be suppressed by preventing auxin biosynthesis from indole GLS.
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These GLS could instead form ITC, which could help reduce ROS levels (Ishida et al.,
2014). Additionally, ITC is further broken down to indole-3-carbinol (I3C), which has been
shown to act as auxin antagonist by binding the auxin-binding pocket of auxin signaling

protein TIR1 (Katz et al., 2015).

Taken together, these results support a model wherein MTA accumulation leads to
increased ROS and auxin biosynthesis. These metabolites could act together to lead
to some of the phenotypes seen in MTN-deficient mutants (Figure 4.1b). In seedlings,
high auxin leads to the short root phenotype (Evans et al., 1994; Li et al., 2015). In
anthers, (where increased callose deposition has been observed for minI-1mtn2-1 mutants;
N. Perera, E. Yeung and B. Moffatt, personal communication, 2018; Waduwara-Jayabahu
et al., 2012), increased auxin signalling (via ARF17) and ROS leads to a CALS5-dependent
increase in callose (Shi et al., 2015). It could also be possible for the indole GLS product
4-methoxy-indol-3-ylmethylglucosinolate (4-m 13G), which induces CALS5 activity (Clay
et al., 2009), to contribute to this. Finally, high auxin biosynthesis negatively affects stem
cell maintenance in the shoot apical meristem. This is usually performed by cytokinin,
however cytokinin biosynthesis in the shoot apical meristem is suppressed by auxin (Su
et al., 2011). By disturbing the careful balance between auxin and cytokinin in the shoot
apical meristem, this results in a larger meristem and altered phyllotaxy (Su et al., 2011).
Though the size of the shoot apical meristem of MTN-deficient mutants is unknown, signs of
a disturbed shoot apical meristem are present: for example, delayed bolting and increased

number of shoots in mini-1min2-1 mutants (Waduwara-Jayabahu, 2011).

One weakness of this proposed model is that it does not explain the transgenerational
Spd restoration, though at the very least there are hints that it is related. For example, there
are signs that the inhibition of sulfur assimilation is reduced in unopened buds of G3 plants:

Cys and SAM levels increase, and even Put decreases (Chapter 2). Furthermore, transcript
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abundance of the auxin biosynthesis gene NIT2 decreases eleven-fold in G3 unopened buds
relative to mini-1min2-1 (Chapter 2). Further work is required to investigate the exact

mechanism behind transgenerational Spd restoration.
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4.3 Future work

There are four main directions which require further investigation. The first is to determine
the involvement of PRMT5 in MTN-deficient plants. While the evidence provided in Chapter
2 would suggest PRMTS5 is unrelated, this evidence is incomplete. Two possible experiments
would include in vitro inhibitor assays of MTA and PRMT5, and observing the phenotype
of triple mutant prmt5Smini-1mitn2-1 plants. If this triple mutant is phenotypically identical
to mtnl-1min2-1, then it could suggest PRMTS5 is already affected.

The second is a continued exploration of the mtar suppressor mutants. Further validation
of NSP1 as mtar2 is required, which in the simplest case involves repeating the root length
analysis of NSP1 T-DNA insertion mutants. By confirming that different mutant alleles can
be used to replicate the suppression mutant, this could help validate NSP1 as the mtar2
gene. WGS of mtar§ is also underway, with plans for WGS of mtar11 as well. Identification
of additional MTAR genes will help decipher the effects MTA accumulation, and could

contribute the model proposed in Figure 4.1.

More evidence in general is needed to support the model proposed in Figure 4.1.
This would include measurements of key metabolites in unopened buds of mitni-1mtn2-1
plants. For example: auxin, cytokinin, IAN, I'TC and 4-m I3G. Evidence of increased ROS
and callose in anthers is required. Experiments are also underway to observe stem cell
maintenance in the shoot apical meristem of minI-1mtn2-1 plants using the double reporter

pCLV3:mCherry-NLS pWUS:3ctVENUS-NLS (Pfeiffer et al., 2016).

Finally, further experiments are needed to deepen on understanding of transgenerational
Spd restoration. One such planned experiment is bisulfite sequencing of unopened buds

from WT, mtni-1mtn2-1, and G3 plants. This would allow for a comparison of the DNA
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methylation profiles of these plants. By doing this, the epigenetic changes induced by Spd

in G3 could be known and increase our understanding of restoration.
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