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Abstract

We study the problem of approximate shortest path queries in chordal graphs and give
a nlogn+o(nlogn) bit data structure to answer the approximate distance query to within
an additive constant of 1 in O(1) time.
We study the problem of succinctly storing a static chordal graph to answer adjacency,
degree, neighbourhood and shortest path queries. Let G be a chordal graph with n vertices.
We design a data structure using the information theoretic minimal n?/4 + o(n?) bits of
space to support the queries:

e whether two vertices u, v are adjacent in time f(n) for any f(n) € w(1).
e the degree of a vertex in O(1) time.
e the vertices adjacent to u in O(f(n)?) time per neighbour

e the length of the shortest path from u to v in O(nf(n)) time
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Chapter 1

Introduction

In this thesis, we construct a succinct data structure for chordal graphs. We also consider
the problem of constructing a data structure to answer approximate distance queries.
Chordal graphs have a rich history of study. They were encountered in the study of Gaus-
sian elimination of sparse matrices [21]. Chordal graphs have many equivalent characteri-
zations including the absence of chordless cycles of length greater than 3, the existence of
an perfect elimination order [22], the existence of a clique tree [5], and as the intersection
graph of subtrees of a tree [25]. Rose et. al [22] gave a linear O(n + m) algorithm for rec-
ognizing chordal graphs with n vertices and m edges by computing a perfect elimination
order. The structure of chordal graphs allows the computation of many otherwise NP-
Hard problems to be solved in polynomial time. These include finding the largest clique or
computing the chromatic number. Chordal graphs have found applications in many fields,
including compiler construction [20] and databases [3].

We consider the problem of creating a data structure for a chordal graph through the lens
of succinct data structures. The goal of succinct data structures is to store an element of
a set X of objects in the information theoretic minimal log(|X|) + o(log(| X)) bits of space
while still being able to efficiently support the relevant queries. Jacobson [12] was the first
to consider space efficient data structures in this sense and he gave representations of bit
vectors, trees and planar graphs. Further work in this area gave space minimal represen-
tations of dynamic trees [17], arbitrary graphs [10] and partial k-trees [9)].

Outline of the Thesis

In subsection 1.1 we give the preliminaries that will help readers understand the thesis
better. We then in subsection 1.2 present a survey of some of the related problems that



has appeared in the literature. In chapter 2 we construct our succinct data structure for
chordal graphs. In chapter 3 we consider the problem of the shortest path (distance) query
and after hitting a wall, relax the query to allow small errors in the answer. Finally in
chapter 4, we show that at least heuristically, the problem shortest path is hard and thus
the wall we hit was inevitable. To do this we show the close relationship between the
distance query and the Set Intersection Oracle (SIO) problem, which is very similar to the
relationship between the distance query in bipartite graphs and the SIO problem.

1.1 Preliminaries

We will assume basic terminology from graph theory such as vertex, edge, tree, undirected
graph, etc. We will denote an undirected graph as G = (V| E) with vertex set V' and
edge set E. We will denote an edge between vertices u,v by (u,v). We will also denote
the number of vertices as n = |V| and the number of edges as m = |E|. As we will be
dealing with multiple graph-like structures at the same time, we will use V' to denote the
vertex set when the underlying graph is clear and V(G) to denote the vertex set of graph
G. To avoid confusion in discussing mapping a graph onto a tree, we will refer to vertices
of trees as nodes. A clique of GG is a complete subgraph of GG. Unless otherwise stated, our
logarithms are base 2.

1.1.1 Chordal Graphs

A chordal graph G is a graph that does not contain any cycle Cy, for k > 4 as an induced
subgraph. This condition means that every cycle in the graph must have a chord, an
edge joining two non-consecutive vertices in the cycle (thus the name chordal graph). It is
not surprising that chordal graphs are sometimes called triangulated graphs since adding
chords in all cycles creates triangles.

A perfect elimination order or PEO of a graph G is an ordering vy, vs, . .., v, of the vertices
of G such that the predecessor set pred(v;) = {v;;j < 1, (v;,v;) € E} forms a clique for
every vertex v;.

A graph G is a chordal graph if and only if G has PEO. Furthermore, a linear time chordal
graph recognition algorithm [22] using lexicographic-BF'S outputs a PEO if and only if the
input graph is chordal.

A third equivalent definition of chordal graphs is the existence of a clique tree that satisfies
a few conditions. A clique tree is a tree T such that every node corresponds bijectively
to an (inclusion) maximal clique of GG. The tree has the property that for every pair of
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cliques K, K’ that correspond to nodes of T', K N K’ is contained in every clique along the
path between the nodes corresponding to K, K’'. This property is equivalent to for every
vertex v € V, the set of cliques v belongs to forms a contiguous subtree. If we identified
each vertex v; with this contiguous subtree, we see that G is the intersection graph of these
subtrees of T'. That is (v;,v;) € E, if and only if the subtrees corresponding to v; and v,
intersect in a node.

One important subclass of chordal graphs are split graphs. A split graph consists of
a size k clique and a size n — k independent set. There are no restrictions on the edges
connecting a vertex in the clique to a vertex in the independent set. Of course, if we want
the split graph to be connected, each vertex in the independent set must be adjacent to
some vertex in the clique. To see that such a graph is chordal, consider any length > 4
cycle. If two non-consecutive vertices of the cycle are in the clique, then we have a chord.
But any such cycle must contain two non-consecutive vertices in the clique since vertices of
the independent set cannot be consecutive in the cycle. Bender, Richmond and Wormald
[2] showed that furthermore, almost all chordal graphs are split graphs (in the sense that
in the limit, the probability that a randomly sampled chordal graph is a split graph is 1) ,
thus they are essentially the typical representative of chordal graphs.

Chordal graphs are important computationally as many otherwise NP-hard problems
are solvable in polynomial time in chordal graphs. For example, computing the chromatic
number, the minimal number of colours require to colour a graph. Another is computing
the maximum clique of a graph. Since chordal graphs have at most n maximal cliques,
and they are in the nodes of the clique tree, it is simple to find which is the largest.

1.1.2 Succinct Data Structures

A succinct data structure for a set X of objects aims to store each element (in the worst
case) using the information theoretic minimal log(|X|) + o(log(|X|)) bits, while still sup-
porting relevant queries efficiently. Without this query condition (in other words, having
a data structure), we could simply number the objects from 1 to |X|, but this does not
support any queries.

Jacobson was the first to consider data structures in this space efficient manner. He gave
succinct data structures for bit vectors, trees, and planar graphs [12].



select(2) = 4
{

rank(4) = 2
Figure 1.1: A length 6 bit vector, we illustrate how rank/select are inverse operations

Bit Vectors

A bit vector B of length n is a sequence of n bits. Since there are 2" such sequences,
the information theoretic minimum is log(2™) = n bits. The bit vector problem asks us to
support the following queries:

e access - return the i-th bit of B, BJi].

e rank - given an index 7, return the number of 1 bits before or at i. In other words,
return )", B[j].

e select - given i, return the index of the ¢-th 1.

rank and select are in some sense inverse operations. select(rank(i)) = i if B[i] = 1
and rank(select(i)) = i. Furthermore, we can define the same operations for 0Os, that is
ranko(i) return the number of Os before or at i. These can be implemented with the 1
based rank/select. For example, ranky(i) = i — rank;(i). Jacobson showed that there is
a succinct data structure using n + o(n) bits that support these operations using O(logn)
bit probes. Munro [14] improved this result to support these operations in O(1) time.

There is further work in compressing bit vectors even more. If we consider only those bit
vectors with £ 1s, then there are only (Z) such bit vectors, and thus the space lower bound
is lower. Patrascu [19] compressed bit vectors to zeroth order entropy, that is to account for
the number of 1s in the input, but we will not need the more advanced version in this thesis.

Trees



Trees are a fundamental object in computer science. From the most basic binary tree,
to binary search trees, to self balancing binary search trees such as AVL trees, red-black
trees, and B-trees. Despite its rich history, research in different kinds of trees continues,
for example Tarjan’s zip trees [24].

In the context of succinct data structures, the number of rooted, binary trees with n nodes
is C, = #1(2:) the n-th Catalan number. The information theoretic lower bound for bi-
nary trees is therefore log(C,,) + o(log(C,,)) = 2n+ o(n). This connection with the Catalan
numbers suggests a way to represent trees succinctly using balanced parentheses. Indeed
some of the first succinct representations of binary trees were based on balanced parenthe-
ses [15].

Further work in this area gave succinct representations of static trees (in particular, trees
with arbitrary degree) that supported a wide range of queries, with time complexity O(1)
[17]. In this thesis, we will not need to use the full set of queries available. The ones we

will use are:

e parent, k-th child
e depth(i), the depth of node i
e level-ancestor(i, d), the ancestor of node i at depth d in the tree

e LCA(i, ), the lowest common ancestor of nodes i, j

1.1.3 Chordal Graph Enumeration

To lower bound the number of bits required, we would need a count of how many chordal
graphs there are. Wormald [20] showed that the number of connected labelled chordal
graphs on n vertices is asymptotic to ), (:f) 2r(n=r) > (n%) 27*/4. To bound the number of
unlabelled chordal graphs, we take into account the number of automorphisms and obtain

a lower bound of (n%) on*/4 /n! unlabelled chordal graphs. Thus the information theoretic

lower bound gives log((n%) 27/ /nl) = n? /4 — ©(nlogn) bits.

1.2 Related Work

Graphs are a fundamental combinatorical structure and it is no surprise that there is a lot
of work in constructing space efficient data structure for different classes of graphs. Many



classes of graphs have been considered, such as arbitrary graphs [10], partial k-trees [9],
planar graphs [12] and separable graphs [3].

The graphs that are most similar to chordal graphs are partial k-trees. A k-tree is a
chordal graph, with the condition that in the clique tree representation, every clique has
size exactly k + 1. A partial k-tree is a subgraph of a k-tree. Note that every graph is a
subgraph of the complete graph K, so every graph is a partial n — 1-tree. The treewidth
of a graph is the minimal k£ such that the graph is a partial k-tree.

Farzan and Kamali [9] showed that k(n — o(n) — k/2) 4 dn bits are necessary to represent
a graph of treewidth k. They construct an exact distance oracle (which answers distance
queries) in the minimal space with query time O(k®log®(k)).

For chordal graphs, there has been work in the dynamic setting, focusing mainly on whether
the given edge insertions/deletions preserve chordality [1, 1]. Banerjee et al. showed that
insertions/deletions can be done in O(deg(u)+deg(v)) time where (u, v) is the edge that is
inserted /deleted. They also show a lower bound that O(logn) amortized time is required.
Singh et al. [23] gave an O(nlogn) bit data structure for the problem of approximate
distance queries (given two vertices, output the distance between them) in chordal graphs.
Their query returns a value that is anywhere between d, the actual distance and 2d 4 8 in
constant time.



Chapter 2

Data Structure

In this chapter, we will build a data structure that will answer adjacency, degree and neigh-
bourhood queries. An adjacency query answers whether the edge (i, j) is in the graph. A
degree query gives the degree of a given vertex. Neighbourhood queries will return a list
of vertices adjacent to a given vertex. The results in this thesis are based on the ISAAC
2018 paper [16].

2.1 Preliminaries

The basis of our data structure will be a slight variant of the clique tree that has n
nodes constructed from the perfect elimination order, which we will denote as a strong tree
decomposition of G. Let T be a tree and X : V(T') — 2" a function that assigns to each
node of T" a subset of the vertices of G such that:

e For every v € V, the set of nodes X !(v) is non-empty and is contiguous. We will
call this the contiguous subtree property.

e For every pair of vertices u,v € V', (u,v) is an edge if and only if there is a tree node
T, such that u,v € X(T,).

We will say that any decomposition of the graph into a tree 7" and the function X satisfying
the above conditions a strong tree decomposition. Note that clique trees satisfy these
properties.



We start with a PEO of the graph G. Let ¢ be a vertex, and recall that pred(i) = {j <
i; (i,7) € E}, are the set of vertices preceding i in the PEO that is also adjacent to i. Define
B(i) = pred(i)U{i} which we will call the bag of i. Define the functions s(i) = min(pred(7))
and [(i) = max(pred(i)). It is easily seen that pred(i) C B(I(7)) since I(i) € pred(i) so it
is adjacent to every element of pred(7).

We will construct a tree decomposition 7" from a PEO of G inductively. The initial node
is Ty with X (71) = {1} = pred(1) U {1} = B(1). Given a tree decomposition of 1,... .1,
construct a tree decomposition of 1,...,7 + 1 by creating a node T;, 1 with X (7T};,1) = B(1)
and connect Ty to Tiygiqy).

Lemma 2.1.1. This construction is a strong tree decomposition of G. !

Proof. The second condition is easily seen as every edge (4, j) with ¢ < j is in bag X (7}) =
B(j). Conversely, every bag is a clique. For the first condition, each T; € X 1(7), so it
is non-empty. Furthermore, since pred(i) C B(l(7)), it follows by induction that the set
X~1(4) is contiguous for every i. O

The main difference between our strong tree decomposition and other tree decompo-
sition such as the clique tree is that every vertex is associated with exactly one node.
Furthermore, we guarantee that for any node 4, the parent [(7) is an element of B(7). Fur-
thermore, the structure is nicer since only one vertex is introduced at each node. This
makes the proof for the space usage cleaner.

We will abuse notation and refer to both the tree node T; and the vertex ¢ as ¢ when the
context is clear. We will naturally refer to (i) as the parent of i and use 7} for strong tree
decomposition constructed as in figure 2.1.

2.2 Representation, Adjacency and Neighbourhood

Since we may reconstruct the graph from the tree decomposition, all the information
content of the graph exists in it. We will store the chordal graph as follows: for each vertex
i, store a bit vector W (i) of length |B(I(7))|. W (i) will indicate which subset pred(7) is of
B(l(7)). Specifically, W (i)[j] = 1 when the j-th element of B(l(i)) also belongs to pred(7).
We also store 1 bit indicating whether this bit vector is the all 1s vector, and if so, store
the length in [log|B(l(4))|] bits instead. This second part is important as the bit vector
we store depend on the size of the cliques. If the cliques are too large, simply storing the

!This construction is from a personal communication with Therese Biedl
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Figure 2.1: A chordal graph with a PEO of it labelled. A clique tree and the strong tree
decomposition obtained from the PEO.




bit vectors would take too much space. However, there are many such simple bit vectors
(consisting of all 1s) when cliques are large, which helps bring the space usage down as we
will see.

Theorem 2.2.1. This representation uses at most n?/4+o(n?) bits. So this representation
matches the information theoretic lower bound in the leading term.

Proof. The main fact we will use is that pred(i) C B(l(i)) so that |B(i)| < |B(l())] + 1
and equality occurs only when pred(i) = B(l(i)). In this equality case, we need only
log [B(I(i))| < logn bits.

Consider the index i such that bag size |B(i)| = b is maximized. Since at each vertex, the
bag size can only increase by 1 from its parent (), there must be at least b indices such
that the above inequality is an equality, and we only need at most logn bits each in these
indices, for a total of blogn < nlogn bits. In all other vertices 7, we need to store at most
|B(1(7))] < |B(l(z))] = b bits (4+o(b) for the rank and select structures). Thus in total we
need to store (b+ o(b))(n —b) + nlogn + O(n) < n?/4 + o(n?) bits. O

2.2.1 Adjacency Queries

This structure is enough to answer the following queries in O(n) time:

e Given a vertex ¢ and an integer k, find the k-th smallest predecessor of 7. We will
call this decode(i, k).

e Given two vertices j < i, determine whether (i, 7) € E or equivalently, j € pred(i).
We will call this adj(i, j)

We first show how to answer these queries recursively with recursion depth equal to tree
node depth in the worst case, then improve the query time by stopping the recursion early.
The second query above is the adjacency query, while the first will be useful in listing out
the neighbours of a vertex.

Proof. We will handle these queries recursively up the tree.
e For the decode operation, we find the index of the k-th predecessor in the parent [(7)
as k' = select(W (i), k). The vertex we are looking for is thus the &’-th predecessor of
[(7). Note that /(i) is a predecessor of i and it will be at index |B((7))|. This is the

10



Figure 2.2: The label on each node is the bit vector W (i). Those that are all 1s are
identified and only their lengths are stored, but for clarity, they are drawn out explicitly.

only predecessor that we know exactly, all others are relative. Hence if &' = |B(((7))]
we report the answer being I(7), otherwise we recursively call decode(l(i), k). In the
worst case, this will recurse depth(i) times with O(1) work per recursion, which could
be as bad as O(n).

For the adj operation, we recursively descend the tree. First note that for every pre-
decessor j of 7, the tree node of j must be an ancestor of the tree node corresponding
to @ (in 7). This is because the predecessor set of i is produced by taking subsets
of i’s ancestor’s predecessor sets. Thus it is necessary that j is an ancestor of ¢ in T}
and we can check this by LC'A(T}, j,i) = j. If this fails, we return false.

Next consider the path from j to i, 5 = po,p1,...,pn = 7. We wish to calcu-
late the index kjp—; of j in B(l(i)) = B(pp—1) if it exists. At which point, we
may determine whether it survived in the subset pred(i) by checking the value of
W (i)[kn-1]. To do this, we know that the index of j in B(py) is simply ko = |B(po)|-
Thus j exists in B(py) if W(p1)[ko] = 1, and its index in B(p;) is simply k1 =

11



rank(W (p1), ko). We return false if W (p;)[ko] = 0. Thus we create the helper query
adj(i, 7, k) which determines whether the k-th predecessor of j is adjacent to ¢, with
adj(i,j) = adj(i, 7,|B(j)|). In the recursive case above we will call adj(i, py, k1). We
determine p; in O(1) time by calling level-ancestor (i, depth(j) + 1). This is O(1) per
recursive call and the number of calls is at most depth(i) which could be as bad as

O(n).
[

To speed up the query times, we would need to store some additional information.
For certain nodes, rather than storing its predecessors relative to its parents, we store
them explicitly with a bit vector using n bits (that is, we store the corresponding row
of the adjacency matrix) along with a rank and select structure on this. To use o(n?)
bits, we can only store this information in o(n) of these nodes. Furthermore, we would
like to select these nodes in an uniform manner, such that for the paths above, we will
encounter these shortcut nodes with regularity. Formally, we would like to find a set of
|o(n)| nodes such that every path of length k in 7} intersects one of these nodes. Technically,
this statement is stronger than what we require, as all our paths are node-to-root paths.
However, the stronger statement seems easier to prove in trees whose degrees are arbitrary.
This statement is the problem of k-path vertex cover. Bresar et al. [1] showed that while
in general it is NP-hard, it is solvable on trees in linear time.

Lemma 2.2.2. There is an algorithm that computes an optimal k-path vertex cover of a

tree T, of size at most @ mn linear time.

Let f = w(1) be any non-constant increasing function, for example, the inverse Acker-
mann function. Then by Lemma 2.2.2, we can find a set of at most oy = o(n) shortcut
nodes such that every path in 7; contains one of these nodes. We may thus modify the

above queries to cap the recursion depth.

e If 7 is a shortcut node, then the k-th predecessor of i is select(W (i), k). Thus the
recursion depth is at most f(n). The time is thus O(f(n)).

e We follow the path to the root from ¢ until we hit either j or a shortcut node. If we
hit j first, then we continue as above, but with the recursion depth guaranteed to be
less than f(n). If we hit a shortcut node py first, check that j is a predecessor of pg
by W(po)[j] = 1. If not, return false, otherwise call adj(i, po, rank(W (po), 7)) since
j is the rank(W (pg), j)-th predecessor of py. Again the recursion depth is at most
f(n) so the time is O(f(n)).

12
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Figure 2.3: Example path in a tree decomposition, with how our algorithms works with
the bit vectors
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Thus we have the following result:

Theorem 2.2.3. Let [ be a function. There is a data structure for chordal graphs on n
vertices that can answer adjacency queries in f(n) time using n*/4 +n?/f(n) + o(n?) bits
of space. If we further assume that f(n) = w(1), then the space usage is n?/4+ o(n?) bits.

2.2.2 Degree, Neighbourhood queries

Degree queries (given a vertex i, output deg(i)) are simple, since we may write the down
the degree of every vertex in nlogn bits of space. A neighbourhood query asks that given
a vertex 7, output a list containing all vertices j adjacent to ¢. For neighbourhood queries
at vertex ¢, we split it into two parts, those neighbours that are smaller than i (since we
labelled vertices by their order in the PEO, these are those that precede i) and those that
are greater.

e For the smaller neighbours, we simply query: at vertex 4, find the k-th predecessor of
i for 1 < k < |pred(i)|. In other words, applying decode(i, k). This takes f(n) time
per neighbour.

e For the larger neighbours at vertex i, we store a bit vector of length (n—14)/f(n), with
entry j being a 1 if there is a neighbour in range of vertices [i+(j —1)f(n),i+jf(n)].
Total space is O(n?/f(n)) = o(n?). We select each 1 from this bit vector and check
adjacency for every vertex in the given range. Therefore, each neighbour will need
at most f(n) adjacency queries, and thus we need f(n)? time per neighbour.

Thus we have the following:

Theorem 2.2.4. Let f be a function. There is a data structure for chordal graphs on n
vertices that can answer adjacency queries in O(f(n)) time, degree queries in O(1) time
and neighbourhood queries in O(f(n)?) time per neighbour using n*/4+0(n?/f(n))+o(n?)
bits of space. If we further assume that f(n) = w(1), then the space usage is n*/4 + o(n?)
bits.

14



Chapter 3

Shortest Paths

In this chapter, we consider the problem of exact and approximate shortest path and
distance queries. A shortest path query returns a path between two vertices 7, 7 of minimal
length. A distance query return the length of a shortest path between 7,j. Let d(i,7)
denote the exact distance between vertices 7,j. We will say our approximate distance
query adist(i, j) is an f-additive approximation if for all vertices 4, j, d(i, j) < adist(i,j) <
d(i,j) + f(d(i,7)). Similarly for the shortest path queries. In this chapter our goal will be
a l-additive approximation.

We will denote our queries by:

e sp(i,j) :==14=po,p1,---,Pk = J, i.e. a path from ¢ to j of minimal length
e dist(i,j) := k, i.e. the length of the shortest path

e asp(i,j) :==1=po,p1,--.,Pk = J, i.e. a path from i to j of approximately minimal
length

o adist(i,j) =k

In the next chapter, we will show that the exact queries are difficult to answer. Specifically
it is difficult to construct a data structure in minimal space with fast (for example O(n°)
query time for some constant ¢) query time. For now, it is easily seen that these queries are
at least as hard as adjacency queries, since they are a superset of them. For this reason, we
will build our exact distance oracle on top of our navigational data structure. Note that
we will use d(i,7) to denote the actual distance and dist(i, j) to denote the result of our
query. We will split our investigation into two parts. First we investigate the easy case,
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when ¢, 7 are in an ancestor relationship. We then investigate the general case, and see
that the difficulty lies at the lower common ancestor of ¢ and j.

3.1 Ancestor Case

Recall that we built our strong tree decomposition based on a PEO. For each vertex i, we
defined pred(i) = {j < 4;(i,5) € E}. We also defined the functions [ (for largest) and s
(for smallest) as [(z) = max(pred(i)), s(i) = min(pred(i)). We defined T} as the tree built
such that the parent of each node i was [(i). We will now build a second tree which is not
a tree decomposition as we are not associating each node with a set of vertices. We will
denote this tree by T, and set the parent of i as s(i). For an example see Figure 3.1. T}
will be used in the computation of shortest paths and distances. The main way we will use
T, is to find an ancestor in the tree using tree operations rather than repeatedly applying
s(.). We will now store the tree T succinctly. This does not change the asymptotic space
usage. We identify each vertex with the corresponding node in these trees 7; and T crudely
by writing the mapping explicitly using an array taking n[logn| bits. Unless otherwise
stated, all tree relations such as parent, are in 7j.

We will first study the easy case, where j < i is an ancestor of 7. In this case, a greedy
algorithm successfully gives the exact distance between ¢ and j.

Lemma 3.1.1. The following algorithm.:

o repeatedly apply s(.) to i to obtain the sequence i = po, p1, ..., pr. This is equivalent
to traverse the node to root path from i in Tj.

e stop when py > j but pry1 = s(pr) < j.

e if adj(py,j) then dist(i,j) = k + 1 and the path is i = po,P1,-- ., Dk, Pks1 = J-

Otherwise, dist(i,j) = k + 2 and the path is i = po,P1,- - -, Pk, Pkt1, ]

correctly computes the distance (that is dist(i,j) = d(i,j)) and a shortest path between i
and j given that j is an ancestor of i.

Proof. We induct on the distance between i and j.

If d(i,j) = 1, then ¢ and j are adjacent. Furthermore, since j € pred(i), s(i) < j. Thus
i = po = py and algorithm correctly gives dist(i,j) = 1.

Suppose that d(i, ) = 2, and let i, h, j be a path from i to j with minimal h. Note that
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if h > i then both i, € pred(h) so they are adjacent, while contradicts d(i,j) = 2. In all
other cases, the algorithm will return the path i, s(i), j. We need to show that s(i) and j
are adjacent. First note that h > s(i) (both h and s(i) € pred(i) and by definition s() is
the smallest) and they are adjacent by definition of s(.). Thus the ordering must be either
i>h>s(i)>jori>h>j>s(i)ori>j>h>s(i). In the first two orderings,
s(i),j € pred(h). In the third ordering, since s(i) € pred(i), by the contiguous subtree
property, it must exist in the bag along the entire path between s(i),7 which contains j.
Thus s(i) € pred(j). In all these cases s(i) is adjacent to j.

Now suppose that our algorithm is correct for distances < k. Let d(i,j) = k and a shortest
path be ¢ = pg, p1,...,pr = 7. We will show that there is a shortest path that begins with
the step 4,s(i). Thus, d(s(i),7) = k — 1 and a path for it can be found using the above
algorithm. But the step 4, s(i) is the first step in the algorithm for distances > 2, so the
combination of the two is exactly the output of the algorithm.

Essentially, we will replace p; by s(i) and argue that the resulting sequence is still a path.
Let p, be the node such that p, < . We claim that a = 1 since otherwise, p,_1 is a
descendant of ¢ and by the contiguous subtree property, ¢ is adjacent to p,. Thus we may
replace the entire path i,...,p, by 7, p,, contradicting minimality. Thus at each step of
the shortest path, we must go to an ancestor. Let pg be the first node in the path such that
pp < s(i). Note that ps_1 > s(i) > ps is a path on the tree, and thus by the contiguous
subtree property, s(i) is adjacent to pg hence we may replace the path i = py,p1,...,ps
with 4, s(i), ps. O

Figure 3.1: The tree T;.

To answer sp(i, j), we simply follow the algorithm, and traverse Ty, so we can output
the path in O(1) per vertex in the path. To answer dist(i,j) we would like to compute
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k efficiently. Denote i = p, in the algorithm. That is, p; is the ancestor such that
pr > j but s(px) < j. The only candidates are level-ancestory, (i, depth(j)) and level-
ancestorr, (¢, depth(j) + 1). Thus we may find ¢ in constant time. In both queries, we
require 1 adjacency check in the final step. Finally, if we do not perform this check, we are
able to answer the queries within 1. Thus we obtain:

Lemma 3.1.2. Using the data structure as before, and suppose that j is an ancestor of
i in 1}, then we can answer sp(i,j) in O(d(i,j) + f(n)) time and dist(i,j) in O(f(n))
time. We can answer asp(i,j) in O(d(i,j)) time and adist(i,j) in O(1) time such that
d(i,j) <l|asp(i,j)| = adist(i,7) < d(i,j) + 1.

Furthermore, since we only need to traverse through T}, Ty in the approrimate queries, the
space required is the two trees plus a table to identify the nodes that correspond to the same
vertex. Thus the space required is n[logn]| + 4n + o(n) bits.

We note that ©(nlogn) bits is best possible for our idea of representing these two trees
and the mapping between them. The mapping between them is equivalent to computing
the function s(.). Since the order of the children in the trees does not matter, they are free
trees. Consider the split graph with a size n/2 clique {vi,...,v,/2}, size n/4 independent

set {u1, ..., un/a} together with one child of each of the n/4 vertices in the independent set
{wy, ..., wyp/a}. Furthermore, we have the freedom to allow s(u;) to be any permutation
of {v1,...,vn/4} and also s(w;) to be any permutation of {vy/441,...,vn/2}. Thus for any

ordering of the children in the tree, we would have to store a permutation on n/4 elements.
This requires O(nlogn) bits.

3.2 General Case

Now we study the general case when 7,7 do not have the ancestor relation. Since we are
dealing with the same queries but in a more general setting, we will overload our query
names. It should be clear when the vertices in question have the ancestor relation or not.
We will reduce to the ancestor case by the following lemma:

Lemma 3.2.1. Consider the shortest path Pr in 1) T;, ..., Ty, ..., T; between T; and T;
with LCA Ty,. For every path Pg from i to j in G, and every node T, in Pr, B(T,)
contains a vertex of Pg.

Proof. Note that if (u,v) € E then X '(u) N X' (v) # 0 since there must be a bag that
both u, v belong to. Thus the set [ J,cp. X ~1(v) is a contiguous subtree of T; that contains
both T; and 7. So in particular it contains the path Pr. O]
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Let h = LCAr,(i,7). Then B(h) contains a vertex x on a shortest path between i, j.
Thus, d(i,j) = d(i,z) + d(x, j). Furthermore,  is an ancestor of both ¢ and j. Therefore,
if we knew x, we would be able to convert the general case into two applications of the
ancestor case functions. Unfortunately, it is difficult to find such an x. Indeed, the problem
of finding this minimal length ancestor will inspire our reduction to the Set Intersection
Oracle problem in the next section. In the mean time, we will crudely iterate over all such
ancestors.

Lemma 3.2.2. Consider the algorithm dist(i,j) (sp(i,j)):

o Compute h = LC Ag,(3, j)
e For each vertex x € B(h) compute dist(x,1) + dist(x,j) (or sp(x,i) U sp(x,7)).

e return the minimum sum (resp. path) among those calculated above.

Computes the distance (resp. a shortest path) between i,j. The time cost for d(i,j) is
O(|B(h)|- f(n)) = O(n- f(n)) and the time cost for sp(i, j) is O (|B(h)| - (d(i,7) + f(n))) =
O(n - (d(i,7) + f(n))

Our approximation algorithm in this case comes from the observation that the distances
calculated in each iteration of the loop (that is using each of the vertices in the bag at h)
do not change very much. The worst vertex in the bag do not perform vastly worse than
the optimal vertex. Therefore, we may simply choose any vertex (in particular h) in the
bag and use it as our approximation.

Lemma 3.2.3. The algorithm adist(i, j) (asp(i,j)):
o Compute h = LC Ag,(3, j)
o Compute dist(h,i) + dist(h,j) (or sp(h,i) Usp(h,j))
s a 2-additive approzimation of the distance.
Proof. Let x € B(h) be the vertex that is in a shortest path between 7, j. Consider the paths
h,sp(zx,i) and h, sp(x, j). These are paths between h and i, 7. Thus d(h,i) < 1+d(x,7) and

d(h,j) < 14d(z,j). Finally, we have adist(i,j) = d(h,i)+d(h,j) < 2+d(x,i)+d(z,j) =
2 4 d(i, j). O
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Figure 3.2: Green is the optimal path between ¢’ and j'. Red is the naive path returned
by adist and yellow is the fix from an error of 2 to an error of 1.

20



3.3 A Better Approximation

In this section, we will improve the approximation so that the error is 1 instead of 2.
Furthermore, we would change the distance subroutine from dist to adist. Recall that
the only difference between adist and dist in the ancestor case is that we skip the final
adjacency check. We will see that this is exactly the same as not choosing minimal length
ancestor in the bag at h instead of a minimal length ancestor. Therefore, since we do
not use the minimal length ancestor, skipping the adjacency check does not impact our
approximation. To do this, we would need to compare the computation steps that are done
by both the approximate and the exact versions.

Let x € B(h) be a minimal length ancestor where ¢, j are the vertices we are interested
in and h = LCA(i,j). Let i/, be the vertex right before dist(c, i) performs its adjacency
check. Similarly for adist, as the only difference is that the adjacency check is omitted.
Consider the computation of adist(h,i) and dist(x,i). They both proceed to find the
vertices i), i, before dist performs its final adjacency check. Since z is an ancestor of h,
we have i}, > i/, that is 4/ is higher up in the tree. In the case that ¢, # i), adist(h,1)
gives 2 steps between 4j and h. Since i, is a step further than @), dist(z,i) gives that x is
at least 2 steps away from ¢}, by ¢, — i, — x. Thus adist(h,i) < dist(z,i). In the case
that i/, = i}, adist(h,i) gives 2 steps from ¢} to h and dist(x,) is 1 step from ¢}, = i’ to
x. Thus we have adist(h,i) < dist(x,7) + 1. In particular, we have an error exactly when
dist(x, i) performs the adjacency check, it is true.

Recall that our guarantees from before was that dist(h,i) < dist(x,i) + 1. Therefore, we
may replace dist(h,i) by adist(h,i) and obtain the same guarantees.

Next consider the path we obtain. This path is j —* j' — s(j’) = h — s(i') =" i. In this
case, both s(i'), s(j') € B(h) and thus are adjacent. We may therefore shorten the path
by removing h from it. Therefore we obtain the path 7 —* j' — s(j') — s(¢/) —* 4, which
always exists. This show that in our choice of x, we may never have the situation that
both dist(x,i),dist(z, j) fails the adjacency check in the final step. Otherwise, our path
adjustment above will give a better path than our optimal path. In particular, we could
have chosen z = s(i") which does not fail the adjacency check on the branch above i. Since
we may always cut the length by 1, we see that in doing so, we reduce our error by 1 down
to 1.

Lemma 3.3.1. The algorithm adist(i,j):

e Compute h = LC' Ar, (i, j)

o return adist(h,i) + adist(h,j) — 1
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approzimates d(i, j) within 1 in O(1) time.

Combining this result and 3.1.2, we obtain:

Theorem 3.3.2. There is a data structure for Chordal graphs that gives a 1-additive
approzimation to distances in O(1) time using nllogn]| + 4n + o(n) bits of space.
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Chapter 4

Relation to Set Intersection Oracle

In this chapter, we explore the relationship between our distance queries and the Set
Intersection Oracle problem. We first define the problem and explore some variations of
it, then show the rough equivalence between it and distances in chordal graphs.

4.1 Set Intersection Oracle Problem

The set intersection oracle (SIO) problem is the following:

Given n sets S; C U, such that > |S;| = N, preprocess the sets to answer queries of
SiNS; =07 We may also view this as storing the intersection graph of the sets, where the
vertex set is each set, and two sets are adjacent if they intersect. It is known that it can
be done in O(N) space and O(v/N) query time [6].

The above data structure uses N as the main parameter. In particular, if N € ©(n?), the
query time would be ©(n). In our situation, we wish to use |U| as the main parameter and
view the sets as primarily the underlying intersection graph. This brings up the converse
question: given a graph, what is the minimal |U]| such that we may find a set intersection
representation of the graph. This is known as the intersection number of the graph. It is
equivalent to the number of cliques required to cover the edges of the graph and is NP-
complete to compute [13].

If we take |U| = n?/4, the intersection graph can be any graph [7]. We are interested in the
case that |U| = n as it is in this case, that chordal graphs fall into. This is because every
chordal graph can be covered by n maximal cliques. The number of graphs that can be
represented by such a set intersection representation with |U| = n is at least (n%) 27/ /)
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by the counting argument of chordal graphs. Therefore, again we require Q(n?) space for
the data structure.

Furthermore it can be shown that for a set system with universe U that is not too large
or small, O(n|U]) bits of space is necessary and sufficient to answer these queries (without
any regard to the time complexity of the queries).

Theorem 4.1.1. Let |U| =k and |U| = w(logn) and |U| = O(n). Then O(n|U]) bits are

necessary and sufficient to answer set intersection queries.

Proof. One direction is trivial. We may always represent a set with a length |U| bit vector,
with position ¢ = 1 if 7 is in the set. To answer the queries, with compute the bit-wise and
of the bit vectors and check if it is the 0 vector. Therefore n|U| bits is sufficient to answer
the query.

Conversely, consider the split graphs where we have a size n — k clique and a size k
independent set. The neighbourhood of each of the vertices in the independent set is one
of 2"~% — 2 subsets of the clique (we omit the empty set and the entire set). Since there
are k such vertices in the independent set, there are 2¥("=*) such graphs. Divide by n! to
account for isomorphisms and we obtain a lower bound of k(n—k)—O(nlogn) bits required
to represent these sets. Note that all of these split graphs have intersection number k + 1.
For k = o(n) and k € w(logn), k(n — k) — O(nlogn) = nk — o(nk). For k = ¢n for some
constant ¢, we require (1 — ¢)nk — O(nlogn) = O(nk) bits. O

The above does not try to optimize the query time of the data structure. To ob-
tain a query time of O(1), it is not known whether there is any non-naive data structure
(storing the entire incidence matrix using n?/2 bits) to solve the problem, even when
|U| = O(log®(n)) (see conjecture 3 in [18]).

4.2 Connection to Distances in Chordal Graphs

We now consider the conditions in which our approximation algorithm is exact and when
it incurs an error of 1. We argued above that we incur an error of 1 on both branches when
there is € B(h) such that (x,7), (x, ') € E. Equivalently, (z,i') € F < z € B(¢'). Thus
x € B(i') N B(j'). Conversely, if no such z exists, we only incur an error of 1 on exactly
one branch, and due to the adjustment our algorithm is exact.

Lemma 4.2.1. adist(i,j) incurs an error of 1 if and only if B(i") N B(j") # 0.
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Next we show the close relationship between SIO and an exact distance oracle for
chordal graphs. As shown above, it seems very difficult to construct an exact distance
oracle that has query time O(1) succinctly, using n?/4 bits of space.

Theorem 4.2.2. Consider the SIO problem, with n sets S; C U and |U| = n. Any solution
using B bits of space and has query time t will yield an exvact distance oracle for chordal
graphs occupying B + o(B) bits of space with query time O(t). Conversely, any eract
distance oracle for chordal graphs on n nodes using B(n) bits of space with query time t(n)

will yield a solution to the SIO problem on n sets using B(2n) bits of space and query time
t(2n).

Proof. WLOG assume U = [n] and S; # 0, for if S; = () then S; N.S; = 0 for every j.

The lower bound implies that B = Q(n?). Suppose we have a SIO, then we simply store
B(i) for every vertex i. By Lemma 4.2.1, we can detect when adist(i,j) is wrong by
applying the query B(i') N B(j’). Thus we have a chordal graph distance oracle using
B + o(B) bits of space with query time ¢ + O(1).

Conversely, let Sq, ..., S, be an instance of the SIO problem and consider the split graph on
2n vertices. Let the vertex set be [n]U{vy,...,v,} where [n] is a clique and {vy,...,v,} is
an independent set. Let N(v;) = S;. Then d(v;,v;) = 2 or 3 and d(v;,v;) = 2 < 5;NS; # 0.
Thus we have reduced the SIO query to a exact distance query in chordal graphs on 2n
vertices. [
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Chapter 5

Further Research

In this chapter, we ask some open questions and lines of potential research on topics related
to those presented in the thesis.

e We gave an approximate distance query data structure using nlogn + O(n) bits
and showed that our approach cannot easily be optimized further by exploiting any
structural properties between the mapping of the nodes of T; and T§. Furthermore, it
would seem that given the correct enumeration model, the number of chordal graphs
under a approximate distance “equivalence metric” is much less than the number of
chordal graphs. How this “equivalence metric” would be defined is not attempted.
However it should capture the notion that two graphs are equivalent if they cannot
be distinguished by only approximate distance queries. Such a definition would have
to deal with transitivity correctly. This is not surprising as our data structure gives
the same queries for every split graph with a size k; clique and a size ko independent
set, regardless of how the edges connect the clique to the independent set.

e This question of approximate distance queries and lower bounds can be extended
past chordal graph. We could ask similar questions for other classes of graphs. For
instance, how difficult is constructing an d 4 1-approximate distance data structure
for arbitrary graphs? What is the information theoretic lower bound in this case?
We could replace arbitrary graphs with bipartite graph, or planar graphs and ask the
same question.

e We discussed a conjecture from [15] that stated that Q(n?) space is required to answer
set intersection oracle queries in O(1) even when |U| € O(log®(n)). We do not need
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such a restriction as |U| = n is our situation. In this case, it would require Q(n?)
space due to the chordal graph lower bound, but a time bound of even O(n°) for
¢ < 1 would be useful in our data structure.

We could phrase the SIO problem in a different way. The set up is the same, but
suppose that you have an oracle that answers v € S;. That is, you are allowed to
query set elements. Can you build an intersection oracle in o(n?) additional space
with query time O(n°) for some ¢ < 17
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