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Abstract

The aim of this thesis is to develop efficient transition matrix Monte Carlo simulation
methods for complex systems(e.g., spin glasses) that enable one to construct the transition
matrix from which the density of states is calculated with high accuracy. In this thesis, I
explore a series of the transition matrix Monte Carlo techniques that are newly developed
to generate the density of states with high accuracy for various systems that exhibit phase
transitions. The Ising model and the Potts model are used to demonstrate the perfor-
mance of each methods. Especially, the specific heat curve of the two-dimensional Ising
model is evaluated and compared to the exact result as a stringent accuracy test in many
cases. I extend the monovariate multicanonical transition matrix Monte Carlo method to
a bivariate version for the calculation of the joint density of states which depends on the
energy and a second variable associated with the order parameter. This bivariate version
is applied to the Edward-Anderson spin glass model which is one of the most challenging
model in the field of computer simulation.

After presenting the theoretical basis of the transition matrix Monte Carlo method, I
explain the regulated temperature method which populates the transition matrix by the
Metropolis algorithm with continuously varying temperature according to a certain sched-
ule. I introduce new techniques that can produce the optimized temperature schedule in
the context of the two-dimensional Ising model. Next I proceed to present the multicanon-
ical transition matrix Monte Carlo method in which the transition matrix is constructed
through the multicanonical iteration procedure. Although this method itself is faster than
other existing techniques such as the broad histogram method and Wang-Landau algo-
rithm, its simulation speed can be further increased by the renormalization idea which
utilizes the simulation results for a small system to obtain an accurate initial estimate of
the density of states for a large system through the convolution procedures. Especially
a novel procedure about how to apply the renormalization idea in multiple dimensions is
presented.

To study the critical behavior of the spin glasses, to my knowledge for the first time, I
employ the bivariate multicanonical sampling to construct the transition tensor from which
the joint density of states can be calculated with high accuracy. I introduce a calculation
technique that transforms the massive transition tensor to a normal transition matrix to
avoid the cumbersome manipulation of tensors. Using the joint density of states, Landau
free energies, the probability distribution functions of spin overlap and Binder parameters
are calculated. Contrary to the majority of the previous reports in the literature, the results
of my method provide evidences that nonzero temperature phase transition occurs in the
two-dimensional Ising spin glass. For the ±J Ising spin glass, the critical temperature
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obtained by my method is Tc/J ≈ 0.45 However, a definite conclusion can not be made
due to small systems sizes and the limitted number of samples of random couplings.
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Chapter 1

Introduction

Since the monumental work was done by Metropolis et al [40], the Monte Carlo (MC)
simulation has become a powerful tool in various fields of science, engineering and even
in finance. The equilibrium thermodynamic properties of a variety of systems can be pre-
dicted from the canonical distribution generated by the Metropolis importance sampling.
However, for systems that exhibit continuous phase transitons, the Metropolis algorithm
becomes very inefficient due to the diverging autocorrelation time near a critical point(so
called critical slowing down problem). For systems with first order phase transitions, ex-
ponential suppression of the tunneling between metastable states makes hard to use the
Metropolis algorithm for simulations near the critical points. Furthermore, for systems
with rough potential energy landscapes as in spin glasses, polymers and proteins, the tra-
ditional Metropolis type simulations suffer from the severe trapping in a potential energy
minimum for large numbers of simulation steps resulting in an extreme inefficiency [43, 10].

For lattice spin systems with continuous phase transitions, the critical slowing down was
overcome by the cluster algorithm in which a group of spins(called a cluster) is formed and
flipped at once insted of a single spin flip[59, 69]. To resolve the severe trapping problems
occuring in the simulations for systems with rugged energy landscapes, the replica exchange
method(sometimes called parallel tempering) simulates multiple copies(or replicas) of the
original system independently at different temperatures and allows the swapping of con-
figurations between neighboring replicas with a specific probability[58, 36]. However, even
with these breakthroughs, there is another problem when we need to evaluate a physical
quantity as a function of temperature; to obtain the canonical average of an observable as
a function of temperature varying over a significant range, due to the narrow width of the
canonical distribution for a fixed temperature, multiple runs are required with the tradi-
tional methods such as Metropolis sampling and the cluster algorithm. As the system size
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increases, the required number of different temperatures grows very fast and the selection
of appropriate temperatures becomes extremely time consuming.

Instead of generating samples drawn from the canonical distribution, a number of
MC methods taking different approaches were developed to directly attain the density
of states (DOS) g(E) which is the number of all microstates having energy E. The multi-
ple histogram reweighting technique [19], multicanonical sampling [5, 6, 4], Wang-Landau
algorithm[63, 64], broad histogram method[14, 13] and the transition matrix Monte Carlo
method(TM)[68, 67](the detailed procedures of most of these methods are explained in the
next chapter) are included in this category. Once the DOS g(E) is given, the canonical
average 〈A〉 of an observable A(E) at any temperature T is calculated by

〈A〉 =
1

Z

∑
E

A(E)g(E)e−E/kBT , (1.1)

where kB is the Boltzmann constant and Z =
∑

E g(E)e−E/kBT is the partition function.
Especially the transition matrix Monte Carlo method yields a very accurate estimate of
the DOS compared to other methods due to its unique features that will be explored in
the next chapter.

Sometimes, it is required to express the DOS as a function of two variables. For
instance, to obtain the Landau free energy F , which is useful to study phase transitions,
it is necessary to acquire the joint DOS g(E, q) which depends on both the energy E and
a second variable q which is associated with the order parameter. The Landau free energy
at a temperature T is then calculated by

F (q, T ) = −kBT ln

[∑
E

g(E, q)e−E/kBT

]
. (1.2)

In the simulations for spin glasses (the details are presented in chapter 6), it is required to
evaluate the probability distribution of the spin overlap q at temperature T , P (q, T ) which
is given by

P (q, T ) =
1

Z

∑
E

g(E, q)e−E/kBT , (1.3)

where Z =
∑

E,q g(E, q) exp (−E/kBT ). In terms of the CPU time and the required
memory, it is typically far more difficult to obtain an accurate estimate of g(E, q) than
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g(E). Thus the development of an efficient algorithm is essential to obtain the joint DOS
g(E, q).

One of the recent trends in computer simulations is designing an optimal method for
a specific problem of interest by modifying or combining numerous existing algorithms;
Wnag-Landau TM method[50, 7], multicanonical TM method[35, 76, 77, 34], replica ex-
change multicanonical algorithm[17, 57] and replica exchange Wang-Landau[61, 62, 48] etc.
Especially for complicated systems such as spin glasses, specially designed techniques for
specific systems are used[38, 52, 31, 18, 60]. The detailed discussion about the development
of various Monte Carlo algorithms may be found in [43, 10].

In this thesis, I employed the transition matrix Monte Carlo method to evaluate the
densities of states for various systems with high accuracy. The evaluation of an accurate
estimate of the DOS of a system of interest completely solves most of related physical
problems once and for all. The accuracy of the DOS generated by the transition matrix
Monte Carlo method depends on how the transition matrix is constructed; the entire re-
gion of the phase space of interest should be visited with appropriate frequencies and the
information about all the allowed transitions must be collected to populate the transition
matrix. To achieve this, the transition matrix Monte Carlo method can combine with
various broad sampling techniques, e.g., multicanonical sampling and Wang-Landau algo-
rithm. The Metropolis algorithm with slowly varying temperature, which is called regulated
temperature method, can also be adopted to construct the transition matrix [27, 73]. The
aim of this thesis is to develop efficient transition matrix simulation methods for complex
systems(e.g., spin glasses) that enable one to construct the transition matrix from which
the DOS is calculated with high accuracy.

The theoretical basis of the transition matrix Monte Carlo method together with the
explanation of related algorithms is presented in chapter 2. The regulated temperature
method is explained in the context of the two-dimensional(2D) Ising model in chapter 3.
The optimization of the temperature schedule of the regulated temperature method is also
discussed. In chapter 4, the construction of the transition matrix through the multicanon-
ical iterations is introduced and its performance is demonstrated in the applications to the
2D Ising model and the 2D 10-state Potts model. In chapter 5, the renormalized sampling
idea, which utilizes the result for a small system to produce an accurate initial estimate
of the DOS for a large system, is introduced and the dramatic increase of the simulation
speed is demonstrated in the context of the 2D Ising model. The comparison of the CPU
times of different simulation methods is also presented. In chapter 6, as an efficient and
accurate method to obtain the joint DOS, the bivariate multicanonical transition matrix
Monte Carlo method is introduced; the transition tensor is constructed through the bivari-
ate multicanonical iteration procedure in this method. The results in the applications of

3



this method to the Ising model, Potts model and Ising spin glass are presented. Especially
the possibility of the existence of a nonzero temperature phase transition in the 2D Ising
spin glass is discussed. Finally, the summary and conclusions including comments on the
future work are presented in chapter 7.
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Chapter 2

Transition Matrix Monte Carlo
Methods

2.1 Markov Chain Monte Carlo Simulations

A stochastic process is a set of random variables {Xn : n = 1, 2, 3, · · · }. The set of values-
usually possible states of a system of interest-that Xn can take forms the state space Ω. If
the states are denoted by by nonnegative integers, Ω = {0, 1, 2, 3, · · · }. Let’s suppose

P (Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , Xo = io) = P (Xn+1 = j|Xn = i) ≡ Wij, (2.1)

where Wij is dependent on i and j, but independent of n. Then this stochastic process is
called Markov chain. Wij is the probability that the process will make a transition to state
j given it is in state i. The matrix W constructed by Wij, which is called the transition
matrix (TM), contains all the essential features of the Markov chain and governs the whole
process. Since a transition to some state should be made in any case,∑

j

Wij = 1. (2.2)

Let p(0) be the initial probability distribution of states, i.e., p
(0)
i = P (X0 = i), then

P (Xn = j) =
∑
i

p
(0)
i (Wn)ij ≡ p

(n)
j . (2.3)

More compactly this can be written as

p(n) = p(0)Wn, (2.4)
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where p(n) = (p
(n)
o , p

(n)
1 , p

(n)
2 , · · · ) is the probability distribution of states in n steps starting

in a state drawn from p(0). If for all i and j, (Wn)ij > 0 for some finite n, the Markov
chain is called irreducible. This means the process can go from any state to any state in an
irreducible Markov chain. For any state i, if (Wn)ii > 0 for some finite n, the Markov chain
is called positive recurrent. If the recurrence is not periodic, the Markov chain is called
aperiodic. For any Markov chain which is irreducible, positive recurrent and aperiodic,

lim
n→∞

(Wn)ij ≡ W∞
ij (2.5)

exists and is independent of i [49]. This means the columns of W∞ are constant vectors.
Let’s define Π = (π0, π1, π2, · · · ) where πj = W∞

ij . Note that
∑

j πj = 1 is automatically
satisfied. Then, Π is the unique normalized solution of the following equation:

Π = ΠW or πj =
∑
i

πiWij. (2.6)

In other words, Π is the normalized left eigenvector of W with unit eigenvalue. Once
Π is established, from the Eq. (2.4), for any m, the probability distribution in m steps
is ΠWm = (ΠW)Wm−1 = ΠWm−1 = · · · = Π. Thus Π is called the stationary or
invariant distribution of the Markov chain. The stationary distribution is independent
of the initial distribution upto the normalization constant because p(∞) = limn→∞ p(n) =

limn→∞ p(0)Wn = p(0)W∞ =
(∑

i p
(0)
i

)
Π. The interpretation of πj is the long run pro-

portion of time that the Markov chain is in state j. From Eq. (2.2) and Eq. (2.6), the
following relation is derived: ∑

i

πjWji =
∑
i

πiWij (2.7)

This is called the global balance of a stationary Markov chain. This can be automatically
satisfied if we require

πjWji = πiWij, (2.8)

which is called the detailed balance condition. Any stationary Markov chain that satisfies
the detailed balance condition is called reversible.

In a Markov chain Monte Carlo simulation, by the Markov process, a sequence of states
X0, X1, X2, · · · , whose stationary distribution is a desired pi = P (X = xi), is generated.
Then the expectation value of f(X) is simply evaluated by

Exp(f(X)) =
∑
i

f(xi)pi = lim
n→∞

∑n
j=1 f(Xj)

n
≈
∑N

j=1 f(Xj)

N
for largeN (2.9)
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To accomplish this, the transition probabilities Wij should be properly designed. First we
need to select the transition matrix Q of any irreducible, positive recurrent and aperiodic
Markov chain. Next define the transition probabilities in the following way [49]:

Wij = Qijα(i→ j) for i 6= j

Wii = Qii +
∑
k 6=i

Qik(1− α(i→ k)), (2.10)

where α(i, j) is determined by requiring the satisfaction of the detailed balance condition.
If we set

α(i→ j) = min

(
pjQji

piQij
, 1

)
, (2.11)

we obtain
pjWji = piWij. (2.12)

In the Markov chain Monte Carlo simulations, usually Qij is called the probability to
propose a transition from state i to state j and α(i→ j) is called the acceptance probability.
In many cases, Qij = Qji, then

α(i→ j) = min

(
pj
pi
, 1

)
. (2.13)

Thus the acceptance probability can be constructed only by the target distribution pi.
If the Boltzmann distribution pi = exp(−βE(i))/Z is desired, the acceptance probability
becomes

α(i→ j) = min (exp [−β(E(j)− E(i))] , 1) . (2.14)

This is the well-known Metropolis algorithm [40]. If Ns samples are drawn from pi =
exp(−βE(i))/Z, then

∑Ns

k=1Oik ≈
∑

j NspjOj ≈ Ns〈O〉. Thus

〈O〉 ≈ 1

Ns

Ns∑
k=1

Oik , (2.15)

where 〈O〉 is the canonical average of an observable O. Even with Ns samples drawn from
a non-Boltzmann distribution pi,

〈O〉 ≈

∑Ns

k=1

Oik

pik
exp(−βE(ik))∑Ns

k=1

1

pik
exp(−βE(ik))

. (2.16)

More rigorous and detailed explanation of the Markov chains and the Markov chain Monte
Carlo simulations can be found in [49, 43].
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2.2 Simulation Methods for Density of States

2.2.1 Density of States

In a Markov chain Monte Carlo simulation for a physical system, the state space Ω consists
of all possible configurations or microstates of the system. For example, the state space of
the Ising model of N spins consists of 2N different configurations. Any macrostate (usually
we are interested in macrostates) has degeneracy in general. In other words, many different
microstates can have the same value of a macrostate variable. The degeneracy of energy E
which is denoted by g(E) is called the density of states (DOS). If a probability distribution
of the configurations is written as pi = f(E(Ci)), where Ci is the ith configuration and
E(Ci) is the energy of the configuration, the probability distribution of energy p(E) is

p(E) =
∑
i∈E

f(E(Ci)) = g(E)f(E). (2.17)

From Eq. (2.13), if we set

α(i→ j) = min

(
f(E(Cj))

f(E(Ci))
, 1

)
, (2.18)

the stationary energy distribution function becomes

p(E) ∝ g(E)f(E). (2.19)

In a Metropolis algorithm, f(E(Ci)) = exp(−βE(Ci))/Z, p(E) = g(E) exp(−βE)/Z and
the partition function Z is

Z =
∑
i

exp(−βE(Ci)) =
∑
E

g(E) exp(−βE). (2.20)

The canonical average of an observable O is

〈O〉 =
1

Z

∑
E

O(E)g(E) exp(−βE). (2.21)

Once the DOS g(E) is given, the partition function Z is readily calculated by the above
equation and most essential physical quantities can be calculated as functions of tempera-
ture from the partition function. Thus if a simulation method which can produce the DOS
with high accuracy is available, we can solve many problems once and for all.
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The DOS can not be obtained directly from the Metropolis algorithm or any other
canonical sampling methods. Even though it is possible to determine the DOS by the
unweighting method (multiplying exp(βE) to p(E)), the simulation should be performed
multiple times at different temperatures which must be judiciously selected to cover the
whole energy region of interest since the Boltzmann distribution at a fixed temperature is
narrow. This is no doubt a very tedious job especially for large systems. Furthermore, the
Metropolis algorithm suffers from a so-called critical slowing down in the simulations for
systems that exhibit phase transitions due to the divergence of the correlation time or the
exponential suppression of the tunnelling between meta stable states at the critical point.
During the last a few decades, various simulation methods have been developed to obtain
the DOS from a single simulation. A few of them which are relevant to this thesis are
presented in the following subsections.

2.2.2 Multicanonical Algorithm

In 1991, B. A. Berg and T. Neuhaus [5, 6, 4] proposed the multicanonical sampling method
to resolve the problems of the canonical sampling mentioned briefly in the previous subsec-
tion. The entropic sampling which was introduced by J. Lee [33] is almost identical to the
multicanonical sampling. In the multicanonical simulation, a random walk in the energy
space is realized by the non-Boltzmann weight factor. By the random walk, any energy
barrier can be overcome and the trapping in a local energy minimum can be avoided. The
canonical average of any physical observable can be obtained at any desired temperature
from the multicanonical ensemble formed by the single multicanonical simulation.

From Eq. (2.18) and (2.19), if we set

f(E) =
1

g(E)
, (2.22)

the acceptance probability is

α(i→ j) = min

(
g(E(Ci))

g(E(Cj))
, 1

)
or Aacc = min

(
g(Eold)

g(Enew)
, 1

)
, (2.23)

and the stationary energy distribution function becomes

p(E) ∝ g(E)f(E) = constant. (2.24)

Thus the energy histogram H(E) of the visited states by the random walker is expected to
be flat. Since H(E) ∝ p(E) = g(E)f(E), the DOS can be written as g(E) ∝ H(E)f−1(E).
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From Eq. (2.21), the calculation of the canonical average of an observable O from the
multicanonical ensemble with the histogram H(E) can be done by

〈O〉 ≈
∑

E O(E)H(E)f−1(E) exp(−βE)∑
E H(E)f−1(E) exp(−βE)

. (2.25)

In an actual multicanonical simulation, however, g(E) whose reciprocal is the multi-
canonical weight factor is not known a priori. It is determined by an iterative way. The
multicanonical iteration procedure to determine the DOS g(E) can be summarized as the
following table:

1. Choose energy range Emin ≤ E ≤ Emax and the number of MCS per iteration Nit.

2. Set g(E) = 1 and H(E) = 1 for all energy bins.

3. Select the initial configuration C1 and start the simulation.

4. From the current configuration with Eold make a small random change to generate
a new configuration with Enew.

5. Accept the transition to the new configuration with the probability

Aacc = min

(
g(Eold)

g(Enew)
, 1

)
6. If the proposed transition is accepted, set H(Enew) = H(Enew) + 1, if rejected,

set H(Eold) = H(Eold) + 1.

7. If Nit MCS is reached, update g(E) by g(E) = g(E)H(E), and set H(E) = 1.

8. Repeat from 3 to 7 until the configuration with Emin is visited.

Table 2.1: Multicanonical iteration procedure to determine g(E)

After the determination of the estimate of g(E) from the above iteration procedure
(sometimes this procedure is called learning run), the estimate of g(E) is used in a long
production run during which the histogram H(E) of the multicanonical ensemble is record.
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Using Eq. (2.25), the canonical average of an observable O is calculated at any desired
temperature. In a typical multicanonical simulation, the DOS g(E) is obtained as a byprod-
uct in some sense. Usually the accuracy of g(E) obtained in the multicanonical iteration
procedure is not very high.

The procedure described in Table 2.1 is the simplest form of the multicanonical al-
gorithm. This is simple and works well for small systems. However, this suffers from
unacceptable slowing down in real situations where we need to deal with large systems [3].
The slowing down is caused by the following simple update scheme (this is called histogram
update scheme in this thesis):

g(k+1)(E) = g(k)(E)H(k)(E), (2.26)

where g(k)(E) is the estimate of the DOS used in the kth iteration and H(k)(E) is the
histogram of the visited states during the kth iteration. If we define S(k)(E) = ln g(k)(E),
the histogram update scheme becomes

S(k+1)(E) = S(k)(E) + lnH(k)(E), (2.27)

which is mostly used because g(E) contains usually huge numbers having very large number

of digits. Let’s suppose the sampled region is down to E
(k)
min in the kth iteration. Then for

E < E
(k)
min, g(k+1)(E) = g(k)(E) since still H(k)(E) = 1. This means all transition proposals

are accepted (recall the acceptance rule Aacc = min

(
g(Eold)

g(Enew)
, 1

)
). In a simulation for

a spin lattice system with N spins with the single-spin-flip dynamics, in the low energy
region, typically

g(Ei−1)

g(Ei)
∼ 1

N
, (2.28)

which implies about N spin flip trials are required to realize the transition from Ei to Ei−1.
This is the reason why H(k)(E) spreads at extremely slow pace in the low energy region
for large systems.

To reduce the slowing down problem, B. A. Berg et. al. [5, 6, 3] introduced parameters
β(E) and α(E) such that

S(k)(E) = β(k)(E)E − α(k)(E). (2.29)
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If we set kB = 1, S(E) = ln g(E) is the microcanonical entropy. From the Helmholtz free
energy F = E − TS,

S =
1

T
E − F

T
. (2.30)

Thus the parametrization Eq. (2.29) has a physical basis. To set up the update scheme
for β(k) and α(k), we have to note

β =
∂S

∂E
,

∂α

∂E
=
∂β

∂E
E, (2.31)

where the second equation is derived by differentiating S = βE − α with respect to E. If
the bin width is ε, from the above equations

β(E) =
S(E + ε)− S(E)

ε
, α(E)− α(E − ε) = [β(E)− β(E − ε)]E. (2.32)

Use the above equations to derive

β(k+1)(E) =
S(k+1)(E + ε)− S(k+1)(E)

ε

=
S(k)(E + ε) + lnH(k)(E + ε)− S(k)(E)− lnH(k)(E)

ε

= β(k)(E) +
1

ε
ln
H(k)(E + ε)

H(k)(E)

(2.33)

and

α(k)(E − ε) = α(k)(E)−
[
β(k)(E)− β(k)(E − ε)

]
. (2.34)

After setting α(k)(Emax) = 0, the above equation can be used recursively to obtain α(k)(E)
for E < Emax. It should be noted that Eq. (2.33) can be used only for the region where
H(k)(E) is reliable. For the region where H(k)(E) is unreliable, B. A. Berg et. al. used the
following rule:
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β(k+1)(E) =

{
β(k)(E) for E ≥ E

(k)
median

β(k+1)(E
(k)
cutoff ) for E < E

(k)
cutoff

(2.35)

where E
(k)
median is the median of H(k)(E) and E

(k)
cutoff < E

(k)
median is the energy cutoff that

is selected such that H(k)(E) is unreliable for E < E
(k)
cutoff and the temperature is kept

constant for E < E
(k)
cutoff in the (k+ 1)th iteration. This recursive update with parameters

β and α, which is called parametrization update scheme in this thesis, enables the histogram
to spread toward Emin way faster than the histogram update scheme.

The parametrization update scheme can be interpreted as a linear extrapolation of S(k)

from the well sampled region to the poorly sampled region; S = βE − α is a straight line
if β and α are constants. A linear extrapolations means the Metropolis sampling with
the fixed inverse temperature β(k)(E

(k)
cutoff ) is performed in the region E < E

(k)
min. Since

the with of the Boltzmann distribution is of order
√
N , this amount of expansion toward

Emin is expected in each iteration. The linear extrapolation can be seen in Fig. 2.1 which
displays a few estimates of the DOS used in the multicanonical simulation for a 16×16 Ising
model with the parametrization update scheme. The first visit of the ground state was
made in the 7th iteration with the parametrization update scheme whereas 13 iterations
were required to make a first visit to the ground state with the histogram update scheme.
For larger systems, the difference is expected to be huge. The gradual changes of the
histograms in the multicanonical iteration with each update scheme are shown in Fig. 2.2
and Fig. 2.3.

The problem of the parametrization update scheme is its complexity compared to the
attractive simplicity of the histogram update scheme. Especially, it is not easy to choose
appropriate E

(k)
cutoff . In the low energy region, slight error in the parameters causes a severe

trapping because the linear extrapolation can not fit well any more. As an example, see
Fig. 2.4; the exact S(E) = ln g(E) becomes zigzag near the ground state. In 3D, the
situation becomes worse as shown in Fig. 2.5. One remedy that I used in my simulations
is to go back to the histogram update scheme right after the first visit of the ground state
and perform a few more iterations. Usually this eliminates the subtle problems involved
with the parametrization update scheme.

For the parametrization update scheme, there is another important issue when it com-
bines with the TMMC. As discussed in chapter 4, the gradual broadening of the sampling
region in the multicanonical iteration procedure is well suited for the construction of the
transition matrix. When the parametrization update scheme is used, even though it can
speed up the multicanonical iteration procedure, the accuracy of the transition matrix is
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Figure 2.1: The evolution of the estimate of the DOS in the multicanonical iteration with
the parametrization update scheme for 16 × 16 Ising model. The circle is S(2)(E), the
square is S(4)(E) and the solid line is the exact curve.

Figure 2.2: The histograms in several iteration stages during the multicanonical iteration
for a 16× 16 Ising model with the parametrization update scheme.
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Figure 2.3: The histograms in several iteration stages during the multicanonical iteration
for a 16× 16 Ising model with the histogram update scheme.

Figure 2.4: The exact DOS of a 2D 16× 16 Ising model near the ground state.
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Figure 2.5: The exact DOS of a 3D 4×4×4 Ising model near the ground state. The exact
DOS is from Pearson’s calculation [47].

lower than when the histogram update scheme is used probably because the fast broad-
ening causes insufficient sampling for all possible transitions. For this reason, I adopted
the histogram update scheme in the multicanonical transition matrix Monte Carlo method
which is discussed in chapter 4.

2.2.3 Wang-Landau Algorithm

Wang and Landau[63, 64] introduced a new iteration method to determine the DOS of
a system in 2001. Due to its simplicity, it has drawn wide attention of researchers and
become very popular in various fields. The same acceptance rule (Eq. (2.23)) as the one
used in the multicanonical sampling is adopted, but the convergence of the DOS g(E) is
determined by monitoring the flatness of the energy histogram H(E) of the visited states.
The outline of the iteration procedure is described in the following table:

In most simulations, f1 = e1, fmin = exp(10−8). If the minimum entry of H(E) is not
smaller than 80% of the mean of H(E), it is considered reasonably flat. More specifically
the flatness criterion is

min [H(E)]

〈H(E)〉 > γ, 0 < γ < 1.
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1. Choose the desired energy range Emin ≤ E ≤ Emax.

2. Set g(E) = 1 and H(E) = 0 for all energy bins. Set the initial modification factor f = f1.

3. Select the initial configuration C1 and start the simulation.

4. From the current configuration with Eold make a small random change to generate
a new configuration with Enew.

5. Accept the transition to the new configuration with the probability

Aacc = min

(
g(Eold)

g(Enew)
, 1

)
6. If the proposed transition is accepted, set g(Enew) = g(Enew)f , H(Enew) = H(Enew) + 1.

If rejected, set g(Eold) = g(Eold)f , H(Eold) = H(Eold) + 1.

7. If the flatness of H(E) satisfies the predefined criterion, set f =
√
f , H(E) = 0.

8. Repeat from 3 to 7 while f ≤ fmin.

Table 2.2: Wang-Landau iteration procedure to determine g(E)

If higher accuracy is required, γ can be increased, e.g., upto 0.9 (or 90%). The above
flatness criterion has a subtle problem when there are empty bins. The above criterion
can never be satisfied with empty bins since min [H(E)] is always zero. If the bin width is
fixed, which is the most common case, empty bins can exist in the simulations for lattice
spin systems. For example, in a simulation for the 2D Ising model, the bin right next to
the ground state energy is empty. In a simulation for the spin glasses, the empty bins are
not even known a priori. To deal with this problem, the following criterion can be used
instead :

max [H(E)]

〈H(E)〉 < γ, γ > 1,

where γ is typically close to one, e.g., 1.2 in many cases. The DOS g(E) obtained in
the Wang-Landau method is usually accurate enough to be directly used to calculate the
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partition function and the canonical averages of physical quantities by Eq. (2.20) and Eq.
(2.21).

2.2.4 Broad Histogram Method

A New random walk dynamics based on the microcanonical averages of the numbers of
possible moves was introduced by de Oliveira et al. [14, 13] in 1996. This method is called
broad histogram method because the histogram of the samples taken by this method is
broad. A minor systematic error in the original formulation was pointed out by Wang [66].
A microcanonical ensemble with energy E is formed by all microstates having the same
energy E. Let’s denote a microstate by σ. The microcanonical average of a quantity A is
defined as

〈A〉E =
1

g(E)

∑
σ∈E

A(σ) (2.36)

Let’s suppose whenever a move from σ to σ′ is possible, the reverse move is also possible
(microreversibility). For lattice spin systems, single-spin-flip dynamics satisfies this. If the
total number of possible moves from σ with E to σ′ with E ′ = E + ∆E is N(σ,∆E) and
the total number of the reverse moves is N(σ′,−∆E), due to the microversibility,∑

σ∈E

N(σ,∆E) =
∑
σ′∈E′

N(σ′,−∆E) (2.37)

Using the microcanonical averages, this can be rewritten as

g(E)〈N(σ,∆E)〉E = g(E ′)〈N(σ′,−∆E)〉E′ . (2.38)

This is called broad histogram relation. From this relation, the random walk acceptance
rule (Eq. (2.23)) can be written as

Aacc = min

(
g(E)

g(E ′)
, 1

)
= min

(〈N(σ′,−∆E)〉E′

〈N(σ,∆E)〉E
, 1

)
, (2.39)

which makes it possible to realize a random walk in the energy space without any knowledge
of g(E) by keeping track of 〈N(σ,∆E)〉E and 〈N(σ′,−∆E)〉E′ and updating them in every
move. In the early stage of the simulation 〈N(σ,∆E)〉E can be zero if σ′ is never visited.
In such a case, the move is unconditionally accepted. Keeping track of the microcononical
averages in every move requires a significant computational cost and causes slowing down.
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2.3 Transition Matrix Monte Carlo Methods

2.3.1 Formulation of the Method

Anderson et al. [16] used the transition probabilities first in the Monte Carlo simulations.
Smith and Bruce [55] used the transition probabilities as an efficient way of obtaining
a good approximation to the multicanonical weight factor. Fitzgerald et al. [21] took
a slightly different approach to utilize the transition probabilities to reduce the variance
compared to the method of Smith and Bruce. J. S. Wang and his colleagues [68, 67]
generalized and refined the method that incorporate the transition matrices in the Monte
Carlo simulations. Since then various transition matrix Monte Carlo (TMMC) methods
have been developed by employing broad sampling techniques in widespread applications
[50, 7, 23, 76, 77].

The transition matrix W = (Wij) introduced in section 2.1 is formed by the microstate
transition probabilities. Since the macrostate observables such as energy and magnetization
are of our interest, the macrostate transition matrix must be defined. In a Markov chain
Monte Carlo simulation, the macrostate transition matrix T (from here on, transition
matrix refers to macrostate transition matrix unless otherwise mentioned) is defined such
that its element TIJ coincides with the probability that a Markov chain evolves from a
macrostate I with energy EI to a macrostate J with energy EJ in a single Monte Carlo
step. Then from the microstate transition probability Wij and the DOS g(E),

TIJ =
1

g(EI)

∑
i∈I

∑
j∈J

Wij. (2.40)

From
∑

j∈Ω Wij = 1, where the summation runs over the entire configuration space Ω,

∑
J

TIJ =
1

g(EI)

∑
J

(∑
i∈I

∑
j∈J

Wij

)
=

1

g(EI)

∑
i∈I

(∑
J

∑
j∈J

Wij

)

=
1

g(EI)

∑
i∈I

(∑
j∈Ω

Wij

)
=

1

g(EI)

∑
i∈I

1 =
1

g(EI)
g(EI) = 1.

Thus we derive, ∑
J

TIJ = 1. (2.41)
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The probability that the Markov chain occupies a state I at the (k + 1)st step is related
to the corresponding occupation probabilities at the kth step by

P (k+1)(EJ) =
∑
I

P (k)(EI)TIJ . (2.42)

The macrostate transition matrix T retains all the properties of the microstate transition
matrix W. Thus if limn→∞W

n
ij exists, then limn→∞ T nIJ exists. In the same way as explained

in section 2.1, the stationary macrostate distribution P can be constructed from T ∞ (any
row vector of T ∞ can be picked up for P) so that it satisfies

P = PT . (2.43)

From Eq. (2.10) and (2.40) the explicit form of T is,

TIJ =
1

g(EI)

∑
i∈I

∑
j∈J

Qijα(i→ j), (2.44)

where Qij is the probability to propose the microscopic transition from i to j and α(i→ j)
is the acceptance probability as explained in section 2.1. If Qij = Qji is assumed (this is
satisfied in most Markov chain Monte Carlo simulations),

TIJ
TJI

=
g(EJ)

g(EI)

∑
i∈I
∑

j∈J α(i→ j)∑
i∈I
∑

j∈J α(j → i)
. (2.45)

If we further assume the following condition (unconditional acceptance),

α(i→ j) = 1 for all i, j, (2.46)

the following relation is obtained:

T∞IJ
T∞JI

=
g(EJ)

g(EI)
, (2.47)

where T∞IJ is sometimes called infinite temperature transition matrix because the uncondi-
tional acceptance is realized in the Metropolis algorithm at infinite temperature, i.e., β = 0
(however, this does not imply T∞IJ can be obtained only by the Metropolis algorithm at
infinite temperature). The above relation looks similar to the broad histogram relation Eq.
(2.38). Note

T∞E,E′ = 〈N(σ,E ′ − E)〉E. (2.48)
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Because of this close relation, many researchers believe the root of TMMC goes down to
the broad histogram method introduced by Oliveira et al. [14, 13]. From Eq. (2.41) and
(2.47), we can derive

g(EI) =
∑
J

g(EJ)T∞JI , (2.49)

which means the DOS g(E) is the left eigenvector with unit eigenvalue of T∞. A big
question is how to design a simulation that satisfies the unrealistic condition of Eq. (2.46)
to produce the infinite temperature TM from which the DOS can be calculated by Eq.
(2.47) and (2.49). Before answering this question, let’s first figure out how to calculate the
DOS from the TM.

2.3.2 Calculation of DOS from Transition Matrix

Suppose all information about the transitions occurred during the course of a simulation
is stored in CIJ . Then the estimate of the infinite temperature TM is

T̃∞IJ =
CIJ
DI

, (2.50)

where DI =
∑

K CIK . The use of Eq. (2.47) with the above estimate enables us to calculate
the DOS g(E). The simplest way is to use only neighbouring entries of T̃∞IJ . With g(E1)
given or set to a constant,

g(E2) =
T̃∞12

T̃∞21

g(E1), g(E3) =
T̃∞23

T̃∞32

g(E2), · · ·

The second method is to evaluate the best estimate of g(E) with a multi-variable
optimization procedure as described in [14, 67, 50]. If there are Nb energy bins, there are
Nb − 1 unknown values of g(E) and Nb(Nb − 1)/2 equations from Eq. (2.47). Thus this
is an over-specified problem. Furthermore, the entries of T∞ are not independent; they
satisfy the following relations:

0 ≤ T∞IJ ≤ 1,
∑
J

T∞IJ = 1. (2.51)

From the detailed balance condition, for any distinct I, J and K,

T∞IJT∞JKT∞KI = T∞JIT∞IKT∞KJ , (2.52)
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which is called TTT identity. There are two possible optimization models for this situation.
In the first model, the total variance with respect to SI = ln g(EI) is minimized;

σ2
tot =

∑
IJ

(
SI − SJ + ln T̃∞IJ/T̃∞JI

)2

σ2
IJ

, (2.53)

where σ2
IJ is the variance of ln T̃∞IJ/T̃∞JI . Its explicit form is

σ2
IJ =

1

CIJ
+

1

DI

+
1

CJI
+

1

DJ

. (2.54)

In the second model, the following is minimized to obtain the best estimate of T∞:∑
IJ

1

σ2
IJ

(
T∞IJ − T̃∞IJ

)2

. (2.55)

The minimization is subject to the conditions given in Eq. (2.51) and (2.52).

The most straightforward way to find the best estimate of g(E) from T̃∞ is the method
based on the existence of the stationary distribution under certain conditions which are
usually satisfied in most simulations as discussed in section 2.1 (see Eq. (2.5) and (2.6)).
The procedure is summarized in the following table:

This third method is called repeated multiplication method in this thesis. Since the left
eigenvector of T̃∞ with unit eigenvalue (left unit eigenvector) can be directly obtained from
limn→∞ T̃ n∞, this method is extremely simple. However, this procedure works only when
the statistical quality of T̃∞ is above certain level. If the statistics is not good enough,
T̃ n∞ → 0 as n → ∞. In such a case, previously explained two methods can be applied to
obtain g(E).

2.3.3 Construction of TM by Accepted Transitions

In a Markov chain Monte Carlo simulation, since the stationary distribution is the left
eigenvector of the TM with unit eigenvalue (left unit eigenvector), if the TM is constructed
by all the accepted transitions in the course of the simulation, the stationary distribution
can be calculated from the TM without taking any samples during the simulation. For
the TM T constructed by the accepted transitions in the Metropolis algorithm at a fixed
temperature T , if we find P such that P = PT ,

P(E) ∝ g(E) exp(−E/T ). (2.56)
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1. Normalize the estimate of TM : T̃∞IJ = CIJ∑
K CIK

.

2. Set p(E) = 1 for all energy bins. Calculate pn = pn−1T̃∞.

3. Calculate x = the sum of elements of pn − pn−1.

4. If |x| < ε, where ε is the predefined positive small number, stop multiplication.

5. Set P = pn. Then P satisfies P = PT̃∞ and P ∝ g(E).

6. Normalize P : g(E) = g(E1)
P1
P , provided g(E1) is known.

Table 2.3: Determination of g(E) by the Repeated Multiplication Method

From this equation, we obtain

g(E) ∝ P(E) exp(E/T ). (2.57)

This implies that the DOS g(E) can be obtained from the TM that is constructed by
the accepted transitions in the Metropolis algorithm. The algorithm is not restricted
to Metropolis; any canonical sampling method such as heat bath algorithm or cluster
algorithm can be adopted to populate the TM. Since the canonical sampling methods have
good convergence to its stationary distributions, the TM constructed in any one of these
algorithms also has a good convergence character; the existence of limn→∞ T is guaranteed
if reasonably large number of steps are taken to populate TM. Thus P can be readily
calculated by the repeated multiplication method.

The normalized left unit eigenvector P of the TM constructed in the Metropolis sam-
pling for the 32× 32 Ising model at temperature T = 3.0 and the normalized histogram of
samples taken during the simulation are plotted in Fig. 2.6. 2× 105 samples were taken in
every 322 spin flip trials (which is called one MCS). As expected, they are almost identical.
The DOS obtained by the Eq. (2.57) is shown in Fig. 2.7. Near the critical temperature
Tc = 2.269, due to long correlation time, cluster algorithm is more efficient in general. The
results from the Wolff cluster algorithm for 32×32 Ising model at T = 2.3 are shown in Fig.
2.8 and Fig. 2.9. Samples were taken during 7×105 cluster spin flips. As in the Metropolis
sampling, the normalized left unit eigenvector P of the TM is in great agreement with the
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Figure 2.6: The solid line is the normalized left unit eigenvector P of the TM constructed
in the Metropolis sampling for 32×32 Ising model at T = 3.0. The circle is the normalized
histogram of the samples taken during the sampling.

histogram of samples in the Wolf cluster sampling. Note that the TM constructed in the
single spin flip Metropolis algorithm at T and the TM constructed in the Wolff cluster
spin flip algorithm at T have identical left unit eigenvector P ∝ g(E) exp(−E/T ) even
though they are totally different matrices. The exact DOS of the two dimensional (2D)
Ising model was calculated by the Beale’s method [2].

As shown in Fig. 2.7 and Fig. 2.9, the DOS’s obtained from the canonical sampling
methods are restricted in small region of the energy space due to the narrow Boltzmann
distributions. To cover the entire energy region, the simulation should be performed multi-
ple times at different temperatures. Temperatures must be chosen for the adjacent DOS’s
to have proper overlap. Fig. 2.10 shows the DOS covers the entire range of the energy
of 32 × 32 Ising model obtained from the TM constructed in the Wolff cluster algorithm
performed at 7 different temperatures. The DOS obtained in this method is so accurate
that it is almost impossible to distinguish it from the the exact DOS. Since it is very dif-
ficult to obtain the correct location and height of the peak of the specific heat near the
critical temperature Tc (the peak position is very sensitive to the estimate of the DOS),
the calculation of the error in the specific heat is more stringent test of the accuracy of the
DOS. The specific heat of the Ising model is evaluated by

C = kBβ
2
(
〈E2〉 − 〈E〉2

)
. (2.58)
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Figure 2.7: The circle is the DOS obtained from the TM constructed in the Metropolis
sampling for 32× 32 Ising model at T = 3.0. The solid line is the exact DOS.

Figure 2.8: The solid line is the normalized left unit eigenvector P of the TM constructed in
the Wolff cluster algorithm for 32×32 Ising model at T = 2.3. The circle is the normalized
histogram of the samples taken during the sampling.
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Figure 2.9: The circle is the DOS obtained from the TM constructed in the Wolff cluster
algorithm for 32× 32 Ising model at T = 2.3. The solid line is the exact DOS.

The relative error is defined as

ε(C) =
|C − Cexact|

Cexact
. (2.59)

The specific heat per spin is plotted in Fig. 2.11 with the inset of the relative error. Note
the error is very low even near the peak. Furthermore this is the result of single simulation;
the error can be lowered by taking average of multiple results. However, it costs a lot to
attain this accuracy; long CPU time, additional efforts to select temperatures compared
to other TMMC methods to be presented in what follows.

2.3.4 Construction of TM by Proposed Transitions

Now it is the time to answer the big question posed in the last part of subsection 2.3.1;
how to design a simulation method to construct the TM with unconditional acceptance
rule α(i → j) = 1. To find the answer, we need to note that a proposed transition in a
simulation have valuable information about all possible transitions from the current state.
As can be seen in Eq. (2.44), this information is essential to construct the TM. To obtain
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Figure 2.10: The dotted line is the logarithm of the DOS obtained from the TM constructed
in the Wolff cluster algorithms for 32 × 32 Ising model at 7 different temperatures. The
solid line is the logarithm of the exact DOS.

Figure 2.11: The dotted line is the specific heat per spin calculated by the the DOS
obtained from the TM constructed in the Wolff cluster algorithms for 32× 32 Ising model
at 7 different temperatures. The solid line is the exact specific heat per spin. The inset
shows the relative error at each each temperature.
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a good estimate of T∞IJ , it is required to visit all microstates i ∈ I many times to record
all possible transitions to j ∈ J . If we construct TM by the accepted transitions we lose
some of (most of in some cases) the information about the allowed transitions because all
proposed transitions are not accepted. Thus we have to populate the TM by the proposed
transitions to make the most of the chosen simulation method. Moreover, if the TM
(precisely CIJ in an actual simulation) is updated by every proposed transition regardless
of the acceptance of it, the TM is constructed as if α(i → j) = 1 even though the actual
acceptance probability is not equal to one. Therefore, the estimate of T∞ can be obtained
in any simulation method by utilizing all the attempted transitions, i.e., all the accepted
and rejected transitions, for the construction of the TM. The job of the algorithm with
certain acceptance rule is steering the random walker and pushing it to the location in the
configuration space where we want to collect the information on the possible transitions to
construct the TM.

The DOS obtained from the TM constructed by the proposed transitions in the Metropo-
lis algorithm for 16× 16 Ising model at T = 3.0 is plotted in Fig. 2.12. Once the left unit
eigenvector P of the TM is found, since P ∝ g(E), multiplication of exp(E/T ) is not
required any more. Again note the range of P is restricted due to the narrow sampling re-
gion of the Metropolis algorithm. The Metropolis samplings were performed at 5 different
temperatures to construct the TM that produces the DOS covering the entire energy bins
as shown in Fig. 2.13. To check the accuracy of the DOS, I calculated the specific heat
which is plotted in Fig. 2.14. Separate calculations of the DOS at each temperature and
patching them up are not needed any more. Just adding up the TM’s constructed from
the simulations at different temperatures is enough to construct the final single TM from
which the full range DOS is derived. This is a great advantage of the transition matrix
Monte Carlo methods.

When the TM is constructed in the Metropolis algorithm, there is a close relation
between the TM, T (β) constructed by the accepted transitions at β = 1/T and the TM,
T∞ constructed by the proposed transitions. As discussed before, since

TIJ =
1

g(EI)

∑
i∈I

∑
j∈J

Qijα(i→ j),

and
α(i→ j) = min [exp(−β(Ej − Ei), 1]

in the Metropolis algorithm,
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Figure 2.12: The dotted line is the logarithm of the DOS obtained from the TM constructed
in the Metropolis algorithms for 16 × 16 Ising model at T = 3.0. The solid line is the
logarithm of the exact DOS.
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Figure 2.13: The dotted line is the logarithm of the DOS obtained from the TM constructed
in the Metropolis algorithms for 16×16 Ising model at 5 different temperatures. The solid
line is the logarithm of the exact DOS.

Figure 2.14: The dotted line is the specific heat per spin calculated by the the DOS
obtained from the TM constructed in the Metropolis algorithms for 16 × 16 Ising model
at 5 different temperatures. The solid line is the exact specific heat per spin. The inset
shows the relative error at each each temperature.
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T (β)IJ = T∞IJ exp [−β(EJ − EI)] for EI < EJ

T (β)IJ = T∞IJ for EI > EJ

T (β)II = T∞II +
∑
J>I

T∞IJ [1− exp(−β(EJ − EI)] ,
(2.60)

where the third equation is derived from
∑

J T (β)IJ =
∑

J T∞IJ = 1. In the same way,
the following reversed relation can be derived:

T∞IJ = T (β)IJ exp [β(EJ − EI)] for EI < EJ

T∞IJ = T (β)IJ for EI > EJ

T∞II = T (β)II +
∑
J>I

T (β)IJ [1− exp(β(EJ − EI)] .
(2.61)

2.3.5 Construction of TM by Broad Sampling Methods

It is not an efficient way, as discussed in the previous subsection, to construct the TM
in the multiple Metropolis algorithms since a lot of time and effort are required to choose
proper temperatures prior to the main simulation (significant improvement can be achieved
though by employing continuously varying temperature as presented in the next chapter).
We know the broad sampling methods, such as the multicanonical algorithm and Wang-
Landau algorithm, are available. If the TM is constructed by the proposed transitions
in any one of such methods, it is expected the DOS that covers any region of energy
space can be obtained more efficiently since the simulation is performed just once. In this
subsection, I present a method that can realize a random walk in the energy space without
any knowledge of the DOS beforehand [67, 50, 7]. It is based on the following fundamental
relation which was derived in subsection 2.3.1:

T∞IJ
T∞JI

=
g(EJ)

g(EI)

From the above relation, the random walk acceptance rule Aacc = min

(
g(EI)

g(EJ)
, 1

)
can

be replaced by

Aacc = min

(T∞JI
T∞IJ

, 1

)
. (2.62)

The steps of the procedure is outlined in the following table:
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1. Choose the desired energy range Emin ≤ E ≤ Emax.

2. Set the total number of steps Ns.

3. Set CIJ = 0 for all I, J .

4. From the current configuration with EI make a small random change to generate
a new configuration with EJ .

5. Update CIJ = CIJ + 1. Calculate T∞IJ = CIJ∑
K CIK

and T∞JI = CJI∑
K CJK

.

6. If CJI = 0, accept the proposed transition. If CJI 6= 0, accept

with the probability Aacc = min

(T∞JI
T∞IJ

, 1

)
.

7. Repeat from 4 to 6 for Ns steps.

8. Calculate the left unit eigenvector P of T∞.

Table 2.4: The procedure of the Transition matrix Monte Carlo method

In this thesis, this method is called the original transition matrix Monte Carlo method.
The total number of steps Ns should be large enough for the histogram H(E) to be reason-
ably flat in the range of Emin ≤ E ≤ Emax. To increase the accuracy, from step 3 to step 7
in the above table can be repeated a few times. The great feature of this method is the ran-
dom walk is realized from the beginning; the histogram H(E) spreads very fast and T∞IJ is
filled quickly compared to the multicanonical or Wang-Landau method. Apparently, in the
early stage, T∞IJ is not accurate since all the possible transitions can not be thoroughly
probed due to the fast moving random walker. The accuracy of T∞IJ improves slowly as
the frequencies of the visits of the states increase. However, there are serious drawbacks of
this method; this is prohibitively slow and the convergence is not guaranteed. The latter
might not be a serious problem because it doesn’t mean the TM doesn’t converge; it can
converge (actually it seems it converges in most simulations) even though the convergence
is not guaranteed. The speed is a real issue; the additional time spent to normalize the
TM in every move before being used in the acceptance rule is significant.
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Figure 2.15: The dotted line is the logarithm of the DOS obtained from the original TMMC
for 16× 16 Ising model. The solid line is the logarithm of the exact DOS.

For the 16 × 16 Ising model, the original TMMC was performed with Ns = 1.3 × 108

to obtain the results plotted in Fig. 2.15 and Fig. 2.16. Ns steps were taken 4 times
repeatedly to construct the TM. In all 4 simulations, the histograms of the visited states
are almost identical as shown in Fig. 2.17.

The construction of the TM from the single run of a broad sampling method is a great
advantage. However, the original TMMC is too slow; to increase the simulation speed, it
is required to employ other broad sampling methods such as the multicanonical algorithm
or the Wang-Landau algorithm. It is also required to figure out how to control the random
walker to make its movement in the phase space optimized for the construction of the TM.
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Figure 2.16: The dotted line is the specific heat per spin calculated by the the DOS obtained
from the original TMMC for 16× 16 Ising model. The solid line is the exact specific heat
per spin. The inset shows the relative error at each each temperature.
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Figure 2.17: The histograms recorded in 4 repeated original TMMC simulations for the
original TMMC for 16× 16 Ising model. All of them are very flat and almost identical.
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Chapter 3

Regulated Temperature Method

3.1 Introduction

It is required to perform the Metropolis algorithm multiple times at different temperatures
to construct the TM that can generate the DOS valid for the entire energy range of interest.
Even if this is a tedious job, the advantage of employing the TMMC is that the simple
addition of the TM’s obtained from each simulation is enough to construct the final TM.
By introducing continuously changing temperature, we can construct the TM for the full
range DOS from a single simulation [27, 73]. In this method, temperature T is expressed
as a function of a parameter x which indicates the progress of the simulation. If the total
number of steps (or the total number of spin flip trials in a simulation for a lattice spin
system) is Nt and the index of the main loop of the Metropolis algorithm is i, the parameter
x is defined as

x =
i

Nt

. (3.1)

Then, this parameter x, which is called progress parameter, changes approximately from 0
to 1 as i increases from 1 to Nt. The acceptance probability becomes

Pacc = min{exp [−(Enew − Eold)/T (x)] , 1}. (3.2)

By choosing an appropriate T (x), the TM can be constructed over the entire energy
range of interest. This method is called the regulated temperature transition matrix Monte
Carlo (RTTM) method. This is closely related to the simulated annealing which was

36



proposed by Kirkpatrick et al. [32] as a simulation method to find the global minima
of complex functions by gradually lowering temperature. However, in the RTTM, T (x)
is not necessarily a monotonically decreasing or increasing function since the purpose of
the simulation is not the minimization but the construction of the TM. T (x) is called
temperature schedule. The numerical details of the RTTM and the optimization of the
temperature schedule will be presented in the context of the 2D Ising model on a square
lattice with the nearest neighbour interactions and the periodic boundary condition.

3.2 Various Temperature Schedules

3.2.1 Linear Temperature Schedule

The simplest form of the T (x) would be a linear function. If a cooling down is chosen (a
heating up works as well) the highest temperature Tmax and the lowest temperature Tmin
must be selected. Then

T (x) = −(Tmax − Tmin)x+ Tmax. (3.3)

For the 2D Ising model with N spins, Tmax and Tmin must be selected so that the maximum
energy 0 and the minimum energy −2N can be visited in the Metropolis sampling. The
DOS for the positive energy region can be obtained from g(−E) = g(E).

For 32×32 Ising model, with Tmax = 50 and Tmin = 1.4, the TM was constructed by the
RTTM with a linear temperature schedule. The total number of steps (Nt) was 1.0× 109.
The energy of the visited state as a function of time t measured in MCS as the simulation
proceeds and the energy histogram of the all visited states are plotted in Fig. 3.1. It can
be seen that samples are taken mostly in high temperature region. This implies the linear
schedule is too crude for the 2D Ising model. The specific heat, which is shown in Fig. 3.2,
was obtained by taking average over 10 independent results. The average relative error is
0.351 % which is very small in spite of the choice of the crude linear schedule.

3.2.2 Exponential Temperature Schedule

When there is no information about the better choice of the temperature schedule for the
system of interest, the most common choice is the exponential cooling schedule. With Tmax
and Tmin given,
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Figure 3.1: The upper graph is the energy of the visited states in RTTM with a linear
schedule as a function of time t measured in MCS. The lower graph is the energy histogram
of the total visited states.
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Figure 3.2: The specific heat of 32 × 32 Ising model obtained by taking average over the
results of 10 independent RTTM simulations with a linear temperature schedule.

T (x) = Tmax exp

[
−
(

ln
Tmax
Tmin

)
x

]
. (3.4)

For 32× 32 Ising model, with Tmax = 50 and Tmin = 1.4, the results of the RTTM with
an exponential temperature schedule are shown in Fig. 3.4. The total number of steps
(Nt) was 1.0× 108. Note that the samples in lower temperature region has increased. The
specific heat was obtained by taking average over 10 independent results and plotted in
Fig. 3.5. The average relative error is 0.256 % which is less than the one with a linear
schedule.

3.2.3 Piecewise Linear Temperature Schedule

It is well known that the 2D Ising model exhibits a continuous phase transition at Tc =
2.269 in the thermodynamic limit. The fluctuation becomes larger as the temperature
approaches Tc. This knowledge can be used to modify the simple linear schedule so that
more samples are taken near Tc. There are many options; one example is the first graph
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Figure 3.3: Various temperature schedules. The left and right graphs in the first row are
the linear and the exponential schedule respectively. The left graph in the second row is
the piecewise linear schedule. The right one in the second row is the schedule obtained by
the use of the autocorrelation times.
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Figure 3.4: The upper graph is the energy of the visited states in RTTM with an expo-
nential schedule as a function of time t measured in MCS. The lower graph is the energy
histogram of the total visited states.
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Figure 3.5: The specific heat of 32 × 32 Ising model obtained by taking average over the
results of 10 independent RTTM simulations with an exponential temperature schedule.
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Figure 3.6: The upper graph is the energy of the visited states in RTTM with a piecewise
linear schedule as a function of time t measured in MCS. The lower graph is the energy
histogram of the total visited states.

in the second row in the Fig. 3.3. This schedule is applied to 32× 32 Ising model without
changing other conditions to obtain the results shown in Fig. 3.6 and Fig. 3.7. Note
the samples in the low energy bins which corresponds to temperatures close to Tc are
significantly increased. This modification of the temperature schedule based on the naive
guess lowered the average relative error down to 0.174 % which means the DOS obtained
in the TM constructed in the RTTM with the piecewise linear schedule is highly accurate.
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Figure 3.7: The specific heat of 32 × 32 Ising model obtained by taking average over the
results of 10 independent RTTM simulations with a piecewise linear temperature schedule.
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3.3 Optimized Temperature Schedule

3.3.1 Optimization by Autocorrelation Time

To improve the temperature schedule further, we need to know the regions in the energy
space where we need to spend more time taking samples. In the Metropolis sampling for
the Ising model, more samples are required as the temperature approaches the critical
temperature since the autocorrelation time, which causes an error, increases dramatically
near the critical point. The normalized autocorrelation function of an observable Q is
defined as

A(t) =
〈QkQk+t〉 − 〈Qk〉2
〈Q2

k〉 − 〈Qk〉2
, (3.5)

where t is measured in MCS. A(t) can be approximated by the following exponential
function :

A(t) ∼ exp(−t/τ), (3.6)

where τ is called the autocorrelation time. The autocorrelation functions of the 32 × 32
Ising model are plotted in Fig. 3.8 and Fig. 3.9. It can be seen that τ increases fast as T
becomes near Tc = 2.269 (Of course there is no precise Tc for a finite system though). Fig.
3.10 shows the autocorrelation times measured at different temperatures for 32× 32 Ising
model.

To derive a temperature schedule from Fig. 3.10, I assumed the following relation :

dT

dx
∝ −1

τ
, (3.7)

which implies the slope of T (x) becomes smaller, which means taking more samples, as τ
becomes larger. This is a bold assumption. However, the derivation of the temperature
schedule now at least has a reasonable and quantified basis instead of crude ad hoc assump-
tions presented in the previous section. To explain the detailed procedure of the derivation
of T (x) from Eq. (3.7), let’s assume {T1, T2, · · · , Tn} and {τ1, τ2, · · · , τn} are given. τi
is the autocorrelation time at temperature Ti. We have to determine the corresponding
{x1, x2, · · · , xn} where x1 = 0, xn = 1. Set dx/dT = −kτ and determine the constant k in
the following way :
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Figure 3.8: The autocorrelation function of 32× 32 Ising model at three different temper-
atures in the Metropolis algorithm.

Figure 3.9: The semilog plot of the autocorrelation function of 32×32 Ising model at three
different temperatures in the Metropolis algorithm.
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Figure 3.10: The autocorrelation times of 32× 32 Ising model measured at different tem-
peratures in the Metropolis algorithm.

x2−x1 = −kτ1(T2−T1), x3−x2 = −kτ2(T3−T2), · · · , xn−xn−1 = −kτn−1(Tn−Tn−1). (3.8)

Add up all the above equations to obtain

k =
1∑n−1

i=1 τi(Ti − Ti+1)
. (3.9)

Then,

xj = xj−1 + kτj−1(Tj−1 − Tj) = xj−1 +
τj−1(Tj−1 − Tj)∑n−1
i=1 τi(Ti − Ti+1)

. (3.10)

The right graph in the second row of Fig. 3.3 is the schedule obtained by the use of the
autocorrelation times plotted in Fig. 3.10. The results of the RTTM with this temperature
schedule are shown in Fig. 3.11 and Fig. 3.12. Note the number of samples in the low
temperature region has significantly increased. The average relative error of the specific
heat is 0.21% in this case.
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Figure 3.11: The upper graph is the energy of the visited states in RTTM with the schedule
derived from the autocorrelation time as a function of time t measured in MCS. The lower
graph is the energy histogram of the total visited states.
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Figure 3.12: The specific heat of 32× 32 Ising model obtained by taking average over the
results of 10 independent RTTM simulations with the temperature schedule derived from
the autocorrelation time.

3.3.2 Optimization by Magnetization Distribution

The ideal optimized temperature schedule should be self-adapting ; instead of changing
according to the predetermined schedule, the temperature should be adjusted adaptively
to guide the random walker to the insufficiently sampled regions. For the 2D Ising model,
if the the trace of the Markov chain is monitored in the energy and magnetization (M =∑
σi) space, it is found that the covered area in equilibrium is restricted and increases

as temperature approaches the critical point as shown in Fig. 3.13. If the temperatures
changes too quickly, the required area at each temperature can not be fully covered, which
leads to an error in the TM. Whether the area in the E-M space is fully covered or not at
each temperature can be determined by monitoring the histogram of magnetization since
the distribution of the magnetization won’t change once the area is fully covered.

The adaptive optimization of the temperature schedule based on the saturation of
the magnetization histogram was proposed, to my knowledge for the first time, by D.
Yevick and the author [74]. Let’s suppose the RTTM starts at the maximum temperature
Tmin. Choose the maximum number of steps Ns and Nm(< Ns) which is the period of
the convergence check of the magnetization histogram. The following is the temperature
update procedure by the convergence check of the magnetization histogram :
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1. Set Hnew(M) = 0 and Hold(M) = 1 for all M bins.

2. Update Hnew for Nm steps in the RTTM at temperature T .

3. Normalize Hold and Hnew. Calculate x = mean of |Hnew −Hold|.

4. If x ≥ ε, where ε is the predetermined small number,
set Hold = Hnew and Hnew = 0. Repeat from 2 to 3.
If x < ε, Set T = T −∆T and repeat from 1 to 3.

5. If the total steps reaches Ns, irrespective of x, set T = T −∆T
and repeat from 1 to 3. This is to avoid infinite loop.

6. If T = Tmin, terminate the procedure.

Table 3.1: Temperature Update Procedure

In this procedure, how long to stay at each temperature is determined automatically. The
accuracy can be easily adjusted by ε. The temperature interval ∆T can also be adjusted
for further acceleration of the simulation. I chose a cooling down procedure (decreasing
temperature) as in the previous section. However, sometimes a heating up procedure is
more convenient if the ground state is known. In a cooling down procedure for 32×32 Ising
model, with Tmax = 20, Tmin = 1.2, I decreased ∆T gradually from 5.0 to 0.2 as T decreases.
With this variable ∆T , the simulation time can be reduced without affecting the accuracy.
The energy histogram of the visited states in the RTTM with this adaptive optimized
temperature schedule is plotted in Fig. 3.14. The temperature schedule produced in the
simulation is shown in Fig. 3.15. Interestingly this is very similar to the one derived from
the autocorrelation time. If ε = 5× 10−6, Ns = 3× 108 and Nm = 1× 107, the CPU time
is almost same as the one of other temperature schedules (linear, exponential or piecewise
linear). The specific heat is plotted in Fig. 3.16. The average relative error is 0.113%
which is the lowest error so far. Even though this optimization method seems valid only
for the Ising model, the generalization to other systems which have the second order phase
transitions is straightforward by replacing M with the corresponding order parameter.
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Figure 3.13: The trace of the sequence of the visited states in the Metropolis algorithm at
a fixed temperature. The results at three different temperatures are plotted.

Figure 3.14: The energy histogram of the visited states in the RTTM for 32 × 32 Ising
model with the optimized temperature schedule produced by the convergence check of
magnetization histogram.
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Figure 3.15: The temperature schedule derived by the adaptive optimization based on the
convergence of the magnetization histogram.

Figure 3.16: The specific heat of 32× 32 Ising model obtained by taking average over the
results of 10 independent RTTM simulations with the temperature schedule derived from
the adaptive optimization method.
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Chapter 4

Multicanonical Transition Matrix
Methods

4.1 Introduction

From the discussion presented in the subsection 2.3.4, it is found that the infinite tem-
perature TM elements can be populated by all accepted and rejected transitions during
the simulation with any acceptance rule. In the subsection 2.3.4, it is presented that the
infinite temperature TM for the full energy range of interest can be constructed in a single
simulation by employing broad sampling methods such as multicanonical sampling, Wang-
Landau algorithm and original TMMC method. The important feature of this method is
that temperature is not involved in the construction of the TM. In the RTTM, which can
be called a temperature-driven construction of the TM, a lot of work should be done for
the selection of temperature range and the choice of the temperature schedule since those
factors greatly affect the accuracy as well as the efficiency. Thus, by employing a broad
sampling method, the TM construction procedure can be considerably simplified. In the
original TMMC, with the following acceptance rule,

Aacc = min

(T∞JI
T∞IJ

, 1

)
,

all energy bins can be visited with approximately equal frequency. This eliminates all
involving jobs required in the RTTM at the cost of the simulation speed; the original
TMMC is very slow. Instead of the above acceptance rule, the multicanonical iteration
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procedure can be employed to populate the transition matrix elements in a more efficient
way [76, 77, 34]. This method is called the multicanonical transition matrix Monte Carlo
method (MCTM).

4.2 Simulation Method

In the multicanonical iteration procedure (learning run), to find the estimate of the DOS
g(E), the following acceptance rule is used

Aacc = min

(
g(EI)

g(EJ)
, 1

)
as g(E) is periodically updated in the following way :

g(k+1)(E) = g(E)(k)Hk)(E), (4.1)

where g(k) and H(k) are the estimate of the DOS and the histogram in the kth iteration
respectively. In contrast to the original TMMC, the histograms are not flat in the early
stage of the iteration. As shown in Fig. 4.1, the histogram becomes wider and flatter as the
iteration proceeds. Usually the total number of steps per iteration is gradually increased
to deal with widening energy region. During the iteration, all proposed transitions are
recorded in the C-matrix; for instance, CIJ = CIJ + 1 when the transition from I to J is
proposed. C is never zeroed during the entire iteration procedure. After the first visit of
the state with Emin, 2 or 3 more iterations are performed before the iteration procedure
is terminated. Using the C-matrix populated during the iteration procedure, the infinite
temperature TM is obtained by

T∞IJ =
CIJ∑
K CIK

. (4.2)

The DOS g(E) is subsequently calculated from the TM by the repeated multiplication
method for instance.

The MCTM is generally faster than the original TMMC; the reason, I guess, is the
gradual broadening of the histogram. Note that there is no iteration procedure in the
original TMMC and the simulation is performed until the the boundary states are visited
to realize a flat histogram. The original TMMC spends long time to produce a single flat
histogram as depicted in Fig. 2.17. The clear difference can be seen in the plot of the
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Figure 4.1: The histograms of the visited states recorded during several different iteration
stages in the multicanonical simulation for the 2D 16× 16 Ising model.

Figure 4.2: The histogram of the total visited states during the entire iteration procedure
in the multicanonical simulation for the 2D 16× 16 Ising model.
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Figure 4.3: The histograms of the visited states recorded during several early iteration
stages of the Wang-Landau simulation for the 2D 16× 16 Ising model.

accumulated energy histogram of the visited states during the MCTM iteration as shown
in Fig. 4.2. This is not flat in contrast to Fig. 2.17. The frequency of the visit is almost
proportional to the energy E. I think this is reasonable because more time should be spent
in the region where more states exist. The uniform sampling is simple, but it might be
excessive and wasteful. It is interesting to see the histograms recorded during the Wang-
Landau sampling. Obviously every histogram in each iteration is reasonably flat because
the flatness criterion had to be satisfied as shown in Fig. 4.5. This is similar to the original
TMMC. The unique feature is the total number of steps increases dramatically as the
modification factor f approaches fmin. This can be seen in Fig. 4.6. I think this explains
why the TMMC combined with the Wang-Landau algorithm (WLTM) is very slow [7, 34].

4.3 Simulation Results

4.3.1 2D Ising Model

In the RTTM simulations, lots of time and efforts are required to do the tedious preparation
such as numerous try and error to select appropriate temperatures the number of which
increases very fast as the system size increases. Since the MCTM is free from the concept
of temperature, it is simple and straightforward even for large systems. Thus it can be
said the MCTM has better scalability compared to the RTTM.
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Figure 4.4: The histograms of the visited states recorded during a few latter iteration
stages of the Wang-Landau simulation for the 2D 16× 16 Ising model.

In a MCTM simulation of a 2D Ising model with N spins, 10N ∼ 100N MCS are
employed in each iteration. After the multicanonical iteration that first reaches the ground
state, 2 ∼ 5 additional iterations are performed to make sure all possible transitions are
recorded. This normally results in the average relative error for the specific heat, ε(C) =
|C − Cexact|/Cexact, below 1%. In the transition matrix calculations, the DOS is first
obtained from T , after which the specific heat is evaluated from the standard formula
C = kBβ

2(〈E2〉 − 〈E〉2). To attain the average relative error of C not exceeding 1% ,
the average relative error of log [g(E)] must be lower than roughly 0.1%. The MCTM was
applied to a 64× 64 Ising system, T was constructed as indicated in the preceding section
from the accepted and rejected transitions occurring during 240 multicanonical iterations
with 17×642 MCS per iteration. The average was taken over 5 independent simulations to
obtain the specific heat which is plotted in Fig. 4.5. The inset displays the relative error
over the temperature interval between 0.5 and 5.5. The average relative error over this
interval is 0.14%. The average CPU time was 469 minutes when a MATLAB interpreter
together with a 2.3GHz Intel Core i7 processor was employed.

4.3.2 2D 10-state Potts Model

To demonstrate the performance of the MCTM for a system that exhibits the first order
phase transition, the MCTM was applied to the 2D 10-state Potts model. The Hamiltonian
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Figure 4.5: The MCTM result for the specific heat per spin of the 64 × 64 Ising model
averaged over 5 independent simulations (dotted line) compared to the corresponding exact
result. The inset displays the relative error with respect to the exact values. The average
relative error equals 0.14%.

of r-state 2D Potts model of N spins is given by

H = −J
∑
〈i,j〉

δsi,sj , where si = 1, 2, · · · , r. (4.3)

If r = 2, this model becomes identical to the 2D Ising model. The magnetization M is
defined as

M = (rNm/N − 1)/(r − 1), (4.4)

where Nm is the number of the majority spins in a spin configuration. It is known that a
continuous phase transition occurs for r ≤ 4 and a first order phase transition for r > 4.
The critical temperature in the thermodynamic limit is

Tc =
1

log (1 +
√
r)
. (4.5)

For the 10-state Potts model, Tc = 0.7012. At the critical point, the energy probability
distribution function P (E) has double peaks since the coexistence of the disordered states
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Figure 4.6: The semilog plot of the DOS obtained by the MCTM for a 16 × 16 10-state
Potts model.

and the ordered states. For the states between the two metastable states, P (E) is extremely
small. Thus, as the system size increases, tunnelling between the two metastable states
are exponentially suppressed, which in turn causes extreme slowing down.

The MCTM easily overcomes this problem and generates a highly accurate DOS. The
TMMC was applied to a 16 × 16 10-state Potts model to obtain accurate double peaked
distribution at the critical point and the specific heat. The number steps per iteration was
gradually increased from 6.4 × 105 MCS to 25.6 × 105 MCS. To reach the ground state,
44 iterations were required and 2 more iterations were performed. The semilog plot of the
DOS is shown in Fig. 4.6 and the energy probability distribution function P (E) at the
critical point is plotted in Fig. 4.7 which clearly shows double peaks. P (E) is given by

P (E) ∝ g(E) exp(−E/Tc). (4.6)

Because the size is small, the temperature at which the heights of two peaks become equal
is slightly higher the Tc = 0.7012 in the thermodynamic limit. The specific heat per spin,
which is displayed in Fig. 4.8, shows the typical spike due to the latent heat involved in
the first order phase transition.
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Figure 4.7: The canonical distribution of a 16 × 16 10-state Potts model at the critical
point.

Figure 4.8: The MCTM result for the specific heat per spin of a 16 × 16 10-state Potts
model.
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Chapter 5

Renormalized Multicanonical
Transition Matrix Methods

5.1 Introduction

The CPU time grows according to a power law as the system size increases. For a d
dimensional lattice spin system with linear size L, it volume or number of spins is V = Ld.
It holds typically that Emax − Emin ∼ V . In the optimum random walk to obtain a flat
histogram over the entire energy range, the CPU time ∼ V 2 [5]. This implies, for 2D
(d = 2) and 3D (d = 3), the CPU time increases by a factor of 16 and 64 respectively
when the system size is doubled. To deal with the dramatic increase of the CPU time in
a simulation for a larger system, the TM T or the DOS g(E) of a smaller system can be
utilized to produce better initial estimate of T or g(E) of a larger system [35, 6, 4].

In 2016, for 1D systems, D. Yevick proposed a new method to utilize the DOS of a
smaller system to model the DOS of a larger system by employing the convolution technique
[70]. This method, which is called renormalized multicanonical sampling, was extended to
higher dimensions resulting in a significant acceleration by the author [34]. The MCTM
that employs the renormalized multicanonical sampling to increase the simulation speed is
called the renormalized multicanonical transition matrix Monte Carlo method (RMCTM).
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5.2 Simulation Method

In one dimension, the renormalized multicanonical procedure is based on approximating
the density of states of a spin lattice system with short range interactions by the convolution
of the density of states of two identical subsystems S1 and S2, each corresponding to one
half of the original system [70]. That is, since in general the interaction between S1 and
S2 is far weaker than the individual spin-spin coupling, to a first approximation the two
systems can be considered isolated. If the probabilities that S1 and S2 possess energies
E1 and E2 are given by P1(E1) and P2(E2), an initial estimate of the probability that the
combined system has energy E is given by

P (E) =
∑
E1

P1(E1)P2(E − E1). (5.1)

Employing an accurate initial estimate of g(E), which corresponds to the infinite tempera-
ture probability distribution, in a multicanonical iteration significantly increases its rate of
convergence. Especially for large systems, the efficiency can therefore be greatly enhanced
by generating g(E) for a small system and then applying the above procedure to obtain
an approximation for g(E) for a system with twice the linear size. This estimate can be
further refined through multicanonical iterations. Repeated application of these latter two
steps in principle enables the rapid simulation of systems with arbitrarily large sizes.

Previously, a similar methodology was advanced by B. A. Berg et al. [6, 4] to improve
the efficiency of multicanonical algorithms by employing g(E) for a smaller system to model
the DOS of larger systems. While this method has proven highly effective in many contexts,
renormalized multicanonical sampling is in certain respects both more straightforward as
it directly manipulates the DOS and more general since it can be employed in conjunction
with numerous other methods besides the multicanonical algorithm. For example, a renor-
malized WLTM (RWLTM) can be formulated that combines the convolution procedure
with the WLTM.

When Eq. (5.1) is applied, the resulting number of bins must coincide with that of the
enlarged system. For example, assuming a constant bin width and M initial energy bins,
2M − 1 equal width bins are obtained after the convolution. Thus for a 1D system of N
spins and M = aN + 1 bins where a represents an arbitrary positive integer, Eq. (5.1)
yields the density of states over 2M−1 = 2(aN+1)−1 = a·2N+1 bins, which corresponds
to the appropriate number of discrete bins for a system of 2N spins. In contrast, for a two-
dimensional L × L spin lattice system the spin numbers are quadrupled when the linear
size L is doubled, while the number of bins resulting from the convolution of Eq. (5.1)
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Convolution 1 Convolution 2

16×16 32×16 32×32

Figure 5.1: An illustration of the procedure employed for doubling the linear size of a two
dimensional system for the RMCTM.

coincides with the number of bins of a spin system (subject to boundary conditions) with
a linear size that is doubled in a single direction as indicated in Fig. 5.1. However, as
apparent from the figure, a second convolution then yields the correct number of bins for a
system with twice the linear size. Fig. 5.2 illustrates the excellent agreement between the
exact normalized DOS of a 32×32 Ising system and the DOS resulting from two successive
convolutions of the exact normalized DOS of a 16×16 Ising system.

In three dimensions, RMCTM procedure requires a series of three convolutions to double
the linear system size. Similarly, if the DOS of a n dimensional system of N spins is
expressed as a histogram over M = aN + 1 equal size bins, the DOS of a 2nN spin system
with twice the linear size can be approximated by performing n convolutions.

5.3 Numerical Results

When the RMCTM is applied to 2D Ising systems, the ground state is often already visited
in the first iteration as a result of the accurate initial estimates of the DOS generated by
the convolution procedure. Accordingly, an alternative convergence criterion is required
to terminate a RMCTM simulation. For a system with N spins, 8 ∼ 12 iterations with
15N ∼ 100N MCS per iteration is found to typically be sufficient to generate C with a
relative error below 1%.

To apply RMCTM to a 64× 64 system, the simulation was initialized with the MCTM
result for a 8 × 8 system after which the system size was repeatedly doubled according
to the procedure illustrated in Fig. 5.1. At the final system size of 64 × 64, 10 iterations
with 30× 642 MCS per iteration proved sufficient to generate the DOS to within the same
level of accuracy as the MCTM. The specific heat per spin of the system calculated from
the DOS obtained by RMCTM and averaged over 10 independent simulations is given by
the dotted line in Fig. 5.3. The average relative error equals 0.17%. The CPU time was
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Figure 5.2: The result of convolving the exact normalized DOS of 16×16 Ising system
twice (circle) compared to the exact normalized DOS of a 32×32 Ising system (solid line).
Energy is in units of J which is the exchange energy between the nearest neighbour spins.

48 minutes on average. Hence the computation time was reduced almost by a factor of
10 from that of the MCTM calculation without a significant decrease in accuracy. This
considerable reduction in CPU time enabled RMCTM simulations up to sizes of 128× 128
on a normal Pentium laptop, for which the specific heat could be generated with a mean
relative error of 0.27% in about 460 minutes as shown in Fig. 5.4.

As the density of states and specific heat of 3D Ising spin systems have not been analyt-
ically evaluated, the guidelines employed above for selecting the computational parameters
in the 2D simulations are here assumed to ensure a similar degree of accuracy in 3D. Thus
the MCTM results of a 16×16×16 system were obtained by averaging over 5 independent
simulations, each of which employed 236 iterations with 20 × 163 MCS per iteration to
construct the transition matrix from which the DOS and specific heat were subsequently
evaluated. The average CPU time per simulation was 787 minutes. The corresponding
RMCTM calculation was initialized with the MCTM result for a 4 × 4 × 4 system after
which three convolutions were applied each time the linear system size was doubled. The
final simulation stage for 16×16×16 system then required 9 iterations with 25×163 MCS
per iteration. The final result was then averaged over 10 independent simulations, each
of which required on average 43 minutes. Despite the reduction by a factor of 19 in the
required CPU time, the RMCTM result for the specific heat, shown as the dotted line in
Fig. 5.5 is nearly identical to that of the MCTM (solid line). When the system size was
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Figure 5.3: The RMCTM result for the specific heat per spin of the 64× 64 Ising model
averaged over 10 independent simulations (dotted line). The average relative error here
equals 0.17%.
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Figure 5.4: As in the previous figure but for the RMCTM applied to the 128× 128 Ising
model. The average relative error equals 0.27%.
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Figure 5.5: The specific heat per spin for the 16× 16× 16 three-dimensional Ising model
as calculated with RMCTM (dotted line) and MCTM (solid line).

further increased to 24× 24× 24, the DOS and the specific heat of Fig. 5.6 were obtained
in ≈ 490 minutes with the RMCTM. In the latter simulation, 8 iterations with 16 × 243

MCS/iteration were performed in the final step.

5.4 Scaling Behavior

In this section I investigate the dependence of the CPU time on system size at a pre-
scribed level of computational accuracy for several algorithms that employ the TMMC. In
particular, Fig. 5.7 displays the variation of the logarithm of the CPU time in minutes
required to reach an average relative error ε(C) of between 0.1% ∼ 0.5% as a function of
the logarithm of the area V = L2 of 2D Ising systems with linear size L for each of the
hybrid TMMC algorithms discussed in the previous sections. The CPU times of all the
methods obey power laws; however, the RMCTM possesses the smallest exponent. While
the CPU times of both the WLTM and MCTM vary approximately as V 2.2 where the
proportionality constant of the WLTM exceeds that of the MC-TM, those of the RTTM
and RMCTM instead increase as ∼ V 2.0 and ∼ V 1.75 receptively. Precise linear fits to the
MCTM and RMCTM curves yield the following scaling relations:
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Figure 5.6: The specific heat per spin for the 24× 24× 24 three-dimensional Ising model
calculated with the RMCTM.

τMCTM
CPU = e−12.1V 2.19, (5.2)

τRMCTM
CPU = e−10.7V 1.75, (5.3)

The relative efficiency of MCTM and RMCTM can be expressed as a ratio of CPU times

r = τMCTM
CPU /τRMCTM

CPU = 0.247V 0.44. (5.4)

For V = 1282, r = 17.7, indicating that for the 128 × 128 spin system, the RMCTM
requires about 18 times less CPU time than the MCTM.

Turning to 3D Ising systems, the CPU times for MCTM and RMCTM calculations
were obtained for several system sizes subject to the convergence criterion presented in
the previous section. Fig. 5.8 displays the resulting log-log plots of the CPU times in
minutes for the MCTM (squares), RMCTM (triangles) and the corresponding linear fits
as a function of the system volume V = L3. Linear fits yield the following relations:

τMCTM
CPU = e−12.96V 2.36, (5.5)

τRMCTM
CPU = e−9.94V 1.64, (5.6)

r = τMCTM
CPU /τRMCTM

CPU = 0.0488V 0.72. (5.7)
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Figure 5.7: The scaling properties of the four methods employing the TMMC discussed
in the text for the 2D Ising model together with the corresponding linear fits displayed as
log-log plots of CPU time vs system area.

The significantly smaller slope of the RMCTM curve in Fig.5.8 shows that the relative
efficiency of the renormalized procedure increases rapidly with system size. For instance,
r = 87 for V = 323, which implies that the RMCTM will perform a 323 Ising model
calculation 87 times faster than the MCTM.
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Chapter 6

Bivariate Multicanonical Transition
Matrix Methods

6.1 Introduction

As the thermodynamic variables of a system at any temperature can be obtained from
the density of states (DOS) g(E) by evaluating the partition function Z =

∑
E g(E)e−βE,

numerous methods, such as parallel tempering [22, 28], the broad histogram method [14],
the multicanonical method [5, 6, 4, 24], the Wang-Landau algorithm [63, 64] and numerous
variants of these [17, 61, 57] have been developed to estimate the DOS. The transition
matrix Monte Carlo method (TMMC) [55, 66, 21] can further be combined with the above
broad sampling procedures to generate the DOS with particularly high accuracy.

Quantities such as Landau free energy and the probability distribution of order param-
eter related variables, however, require the evaluation of the joint density of states (JDOS)
g(E, q) which depends on both the energy E and a second variable q which is associated
with the order parameter. For lattice spin systems, q can represent either the magnetiza-
tion or the spin overlap. The Landau free energy at a temperature T is given in terms of
g(E, q) by

F (q, T ) = −kBT ln

[∑
E

g(E, q)e−E/kBT

]
, (6.1)

where kB is the Boltzmann constant. The order parameter corresponds to the value of q

70



that minimizes F (q, T ). The thermal average of any physical quantity A(E, q) at temper-
ature T is

〈A(E, q)〉 =
1

Z

∑
E,q

A(E, q)g(E, q)e−E/kBT , (6.2)

where Z =
∑

E,q g(E, q) exp (−E/kBT ). The probability distribution of q at temperature
T is

P (q, T ) =
1

Z

∑
E

g(E, q)e−E/kBT . (6.3)

F. Wang and D. P. Landau applied the bivariate version of Wang-Landau algorithm to
the three-dimensional (3D) Ising spin glass [65]. The bivariate version of multicanonical
sampling was applied to the 3D Ising spin glass by N. Hanato and J. E. Gubernatis [26].
M. S. Kalyan et al calculated the Landau free energies of various models using a modified
Wang-Landau algorithm which is called two level method [29] . However, the computational
effort required to obtain a reasonable level of accuracy with the bivariate version of Wang-
Landau is excessive while despite relatively shorter computation times the JDOS obtained
with the bivariate version of multicanonical method is not sufficiently accurate to provide
a reliable result for Eq. (6.2) [34].

The TMMC has been successfully applied to various systems for accurate DOS cal-
culations in many different hybrid forms in which it is combined with various meth-
ods such as Wang-Landau algorithm, multicanonical sampling and simulated annealing
[50, 7, 23, 27, 71, 73, 34]. In this thesis, I demonstrate that the TMMC can be com-
bined with the bivariate version of multicanonical sampling as well to generate an accurate
JDOS with a high degree of computational efficiency. This method is called bivariate mul-
ticanonical transition matrix Monte Carlo method (BMCTM) in this thesis. In the next
section, the simulation method is explained in detail. Subsequently, as an initial test, I
apply the method to Ising models and Potts models to calculate the Landau free energies
of systems some of which exhibit second order phase transitions, others of which do not.
To demonstrate the applicability of the BMCTM to complex systems, the Landau free
energies, the distributions of spin overlaps and the Binder parameters of the 2D and 3D
Ising spin glasses are evaluated. The evidences that may imply the nonzero temperature
phase transition of the 2D spin glass are presented.
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6.2 Bivariate Multicanonical Transition Matrix Monte

Carlo Method

6.2.1 Bivariate Multicanonical Sampling

The bivariate multicanonical method straightforwardly extends the monovariate procedure
to realize a random walk in a two-dimensional space. To generate the two dimensional
random walk, the multicanonical weight wmu = 1/g(E, q) is first determined. The iterative
procedure is initialized by setting g(1)(E, q) = 1. In the kth iteration, the transition from
a state with E and q to a state with E ′ and q′ is accepted with probability

Pacc = min

[
g(k)(E, q)

g(k)(E ′, q′)
, 1

]
. (6.4)

The number of samples N
(k)
s in the kth iteration is preset to insure that the histogram

h(k)(E, q) attains a certain degree of flatness. Usually N
(k)
s is increased as the iteration pro-

ceeds since the size of the sampling region expands with k. Once kth iteration terminates
after taking N

(k)
s samples, (k + 1)th iteration begins with

g(k+1)(E, q) = g(k)(E, q)h(k)(E, q). (6.5)

If the ground state or the most rare state is visited, normally in the next iteration the
histogram becomes flat in the entire region of interest and the iteration procedure ends.
In a typical bivariate multicanonical simulation, an estimate of g(E, q) can be used to
construct a multicanonical ensemble of samples with high statistics. The thermal averages
of the physical quantities of interest can be determined by the unweighting and reweighting
techniques. However, in a bivariate TMMC method, the transition tensor is constructed
during the iteration procedure as explained below.

6.2.2 Bivariate TMMC

Let us denote the transition probability from a state with EI and qJ to a state with EK
and qL by WIJKL. Then,

∑
K,L

WIJKL = 1. (6.6)
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Using the exactly same reasoning as explained in Sec. 3.2, the following can be derived:

g(EI , qJ) =
∑
K,L

g(EK , qL)WKLIJ , (6.7)

which implies that the JDOS g(E, q) is the unit left eigenmatrix of the four-dimensional
transition tensor W . Eq. (6.7) can be transformed to a matrix form corresponding to Eq.
(2.49) by reducing the number of indices. For instance, if g(EI , qJ) is a (m × n) matrix,
define g̃ and W̃ as

g̃Ĩ = g(EI , qJ), Ĩ = n(I − 1) + J, (6.8)

W̃Ĩ,J̃ = WIJKL, Ĩ = n(I − 1) + J, J̃ = n(K − 1) + L. (6.9)

Then the following relation is obtained:

g̃Ĩ =
∑
J̃

g̃J̃W̃J̃ Ĩ . (6.10)

Accordingly, the standard TMMC can be applied to the simulations for JDOS provided
that W is populated efficiently. In this thesis, we employ the iteration procedure of the
bivariate multicanonical sampling to populate W . In the iteration procedure, if there is a
proposal of the transition from a state with E and q to a state with E ′ and q′, irrespective
of acceptance, W is updated according to

W (E, q, E ′, q′) = W (E, q, E ′q′) + 1. (6.11)

When the iteration procedure terminates, the calculation of the unit left eigenvector of W̃
is performed to obtain an estimate of the JDOS which is generally more accurate than the
multicanonical estimate.

The downside of the BMCTM is that it requires large memory to store the transition
tensor W and the histogram h(E, q). The additional CPU time to calculate the eigenmatrix
of W also grows fast as the system size increases. Thus for the case where the JDOS with
a moderate accuracy is enough, the estimate of the JDOS obtained in the Muca iteration
procedure can be used without the additional effort to handle W . The high computational
cost of the BMCTM for the evaluation of the more accurate JDOS can be reduced by
parallelizing the procedure or adopting the renormalized version which is explained in the
next subsection.
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6.2.3 Renormalized Version

Renormalized multicanonical sampling, as presented in chapter 5 in the context of the
Ising model, considerably reduces the computation time of the multicanonical iteration
procedure by providing an accurate initial estimate of the DOS. This estimate is obtained
by convolving the simulation results of smaller systems according to the prescription of
Ref. [70, 34]. Renormalized sampling can be adapted to the bivariate version of the mul-
ticanonical sampling by instead convolving the normalized bivariate probability densities:

PL(E, q) =
∑
Ei,qi

PS(Ei, qi)PS(E − Ei, q − qi), (6.12)

where PL(E, q) and PS(Ei, qi) are the normalized JDOS’s for a large and a small systems
respectively.

However, to apply this methods, the coupling constant between neighbour spins should
be uniform throughout the entire system. For systems with nonuniform coupling constants
such as spin glasses in which the coupling constant is a random variable, this method can
not be used.

6.3 Numerical Results

6.3.1 Ising Model

The Hamiltonian of an Ising spin system consisting of N spins with nearest neighbour
interactions is given by H = −J∑〈i,j〉 sisj. The second variable of JDOS is the magneti-

zation M =
∑N

i=1 si/N whose thermal average is the order parameter. The JDOS g(E,M)
of an 1D Ising spin system of 200 spins was obtained by the BMCTM. The Landau free
energy F (M,T ), which is calculated by Eq. (6.1), is plotted in FIG. 6.1 at four different
temperatures. The lack of a minimum of F except at M = 0 demonstrates that a finite
temperature second order phase transition is absent in the 1D Ising spin systems.

It is well known that the 2D Ising model exhibits a finite temperature(Tc = 2.269J)
second order phase transition in the thermodynamic limit. BMCTM was next applied
to a 16 × 16 square lattice Ising spin system to calculate the JDOS g(E,M) and the
Landau free energy F (M,T ) which is plotted in FIG. 6.2. For comparison, the rescaled
Landau free energies at three different temperatures near Tc are plotted in FIG. 6.3. The
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Figure 6.1: The Landau free energy F (M,T ) of an 1D Ising spin system of 200 spins at
several different temperatures in units of J .

emergence of global minima of F at nonzero M establishes the presence of a second order
phase transition. As a result of the small system size, the curve for F already starts
to form minima at nonzero magnetizations for T ≈ 2.5J . The precise value of Tc can be
determined by calculating the Binder parameters which are calculated for Ising spin glasses
in Sec. 6.4.3.

6.3.2 Two-dimensional Potts Model

The Hamiltonian of a r-state 2D Potts model with N spins is given by H = −J∑〈i,j〉 δsi,sj
where si = 1, 2, · · · , r. The second variable of the JDOS is the magnetization M =
(rNm/N−1)/(r−1) where Nm is the number of the majority spins in a spin configuration.
A continuous phase transition occurs for r ≤ 4 and a first order phase transition for r > 4.

The BMCTM was applied to 3-state and 10-state 8 × 8 Potts models. The Landau
free energy of a 3-state Potts model is plotted in FIG. 6.4 and FIG. 6.5. The value of M
that minimizes F (M,T ), which corresponds to 〈M〉, varies continuously from a near zero
value towards unity as the temperature decreases. The abrupt change in 〈M〉 occurs at
T ≈ 1.1J , which approximates the exact value of Tc = 0.995J .
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Figure 6.2: The Landau free energy F (M,T ) of a 16×16 square lattice Ising spin system.
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Figure 6.5: The Landau free energies of a 8 × 8 3-state Potts model at three different
temperatures(in units of J) near Tc.

FIG. 6.6 displays the Landau free energies of a 8 × 8 10-state Potts model at three
different temperatures near Tc = 0.7012J . From the curve of F (M,T ) at T = 0.72J , two
coexisting phases with small and large M are apparent. The transitions of the shape of
F (M,T ) near Tc shows that 〈M〉 jumps from near zero to near unity almost discontinuously
indicating a first order phase transition.

6.3.3 Ising Spin Glasses

Spin glasses are randomly diluted magnetic alloys such as AuFe or CuMn in which a
tiny percentage of magnetic ions are randomly scattered in a non-magnetic host metal.
The interaction between the magnetic atoms in a spin glass is described by the RKKY
interaction which is

Jij = J0
cos(2kF rij)− (2kF rij)

−1 sin(2kF rij)

(kF rij)3
∼ J0

cos(2kF rij)

(kF rij)3
, (6.13)

where kF is the Fermi wave number of the host conduction electrons and rij is the dis-
tance between two interacting magnetic atoms. Note the sign of the exchange interaction
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Figure 6.6: The Landau free energies of a 8 × 8 10-state Potts model at three different
temperatures(in units of J) near Tc.

depends on the distance between the two magnetic atoms. Since magnetic atoms are ran-
domly dispersed, there are roughly equal number of ferromagnetic and antiferromagnetic
interactions in a spin glass. In 1972, V. Cannella and J. A. Mydosh [12] found a sharp cusp
in the frequency dependent magnetic susceptibility which is reminiscent of the critical be-
havior associated with a typical second order phase transition. A few years later, Edwards
and Anderson [15] introduced a theoretical model (EA model) of spin glasses that exhibits
the essential properties of real spin glasses. The Hamiltonian of the EA model is

H = −
∑
〈i,j〉

Jij~si · ~sj, (6.14)

where Jij is a random variable with zero mean. If ~si takes only up or down orientation
along a fixed direction (si = ±1), it is called Ising spin glass.

Ever since the work of Edwards and Anderson, intensive theoretical and experimen-
tal efforts have been made to understand the nature of spin glass ordering for decades.
Immediately after the introduction of the EA model, Sherrington and Kirkpatrick [51]
introduced a mean-field model (SK model) which replaces the short range interaction in
the EA model with an unphysical infinite range interaction between all the spins. Soon
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after, the Sherrington and Kirkpatrick’s solution of the SK model, which was obtained
by the use of replica trick, was found to be unstable with negative entropy. In 1979, G.
Parisi presented a stable solution of SK model and introduced a novel concept of replica
symmetry breaking [46]. Parisi’s theory brought up an unprecedented level of complexity
in the theoretical research of spin glasses. A new theory based on a scaling hypothesis on
local excitations, which is called droplet picture, emerged [39, 20] and predicted conclusions
strikingly different from the ones derived by the replica symmetry breaking picture. The
different conclusions from the two different pictures regarding spin glasses with a short
range interaction are still controversial. The problem of spin glasses, which has a long
history, is rich and profound. Even mentioning the major experimental, theoretical and
simulational issues in this problem is beyond the scope of this thesis because the focus of
this thesis is developing efficient and accurate MC algorithms. The detailed information
about spin glasses can be found, e.g., in [11, 41, 44, 56].

Two essential ingredients of a spin glass are randomness and frustration. Randomness
means the locations of magnetic atoms and the directions of its spins are random. This
is reflected in the random variable Jij of the EA model. The randomness or the disorder
encapsulated in Jij is called quenched since it remains fixed during the evaluation of a
thermal average. Frustration refers to the situation where no configuration of the system
can simultaneously minimize each term of the Hamiltonian. A simple example illustrat-
ing frustration is shown in Fig. 6.7. A “+” indicates ferromagnetic interaction with which
spins prefer parallel alignment and a “-” indicates antiferromagnetic interaction with which
spins have to be antiparallel to lower the interaction energy. Note, regardless of the di-
rection of spin 4, the interaction energy of spin 1 and spin 4 and the interaction energy
of spin 3 and spin 4 can not be simultaneously minimized. This competition between fer-
romagnetic and antiferromagnetic interactions results in multiple local minima in the free
energy (called rugged energy landscape) which makes it extremely non-trivial to determine
the ground state as well as to reach a thermal equilibrium at low temperature. Due to
the extremely slow relaxation process, despite the numerous Monte Carlo simulations per-
formed for decades, many questions regarding the low temperature nature of spin glasses
are still unanswered.

A d-dimensional Ising spin glass of N = Ld spins on a hypercubic lattice with nearest
neighbour interactions is described by the Hamiltonian

H = −
∑
〈i,j〉

Jijsisj, (6.15)

where si = ±1 and Jij is a random variable. The distribution of the random bonds {Jij}
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Figure 6.7: A simple example illustrating frustration. A “+” indicates ferromagnetic
interaction with which spins prefer parallel alignment and a “-” indicates antiferromagnetic
interaction with which spins have to be antiparallel to lower the interaction energy. No
matter what direction spin 4 takes, the interaction energy of spin 1 and spin 4 and the
interaction energy of spin 3 and spin 4 can not be simultaneously minimized.
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in the ±J model (or bimodal model) is defined as

P (Jij) =
1

2
δ(Jij + J) +

1

2
δ(Jij − J). (6.16)

and in the Gaussian model

P (Jij) =
1√

2π∆J
exp

(
−J2

ij/∆J
2
)
, (6.17)

where the variance ∆J is typically set to unity. The order parameter of a spin glass system
is defined as

qEA =

[
lim
t→∞

1

N

N∑
i=1

〈si(0)si(t)〉
]
av

=

[
1

N

N∑
i=1

〈si〉2
]
av

, (6.18)

where [· · · ]av indicates an average over the quenched random couplings {Jij}, i.e.,

[
A{Jij}

]
av

=
∏
〈i,j〉

∫
dJijA{Jij}P (Jij). (6.19)

If Ns samples(Ns different realizations of {Jij}) are taken,

[
A{Jij}

]
av
≈ 1

Ns

Ns∑
m=1

A{Jij}m . (6.20)

For the JDOS g(E, q) of a spin glass system, the second variable q can be defined as

q =
1

N

N∑
i=1

sis
g
i , (6.21)

where {sgi } is a ground state spin configuration. [〈q〉]av is not exactly identical to qEA,
but its behavior is quite similar to qEA [42, 65]. Once the JDOS gJ(E, q) of a spin glass
system with one realization of the random couplings {Jij} is given, the Landau free energy
FJ(q, T ) can be calculated by Eq. (6.1) and the random average F (q, T ) = [FJ(q, T )]av
can be obtained from Eq. (6.20). The probability distribution of q which is denoted by
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PJ(q, T ) and its random average P (q, T ) = [PJ(q, T )]av are calculated by Eq. (6.3) and
Eq. (6.20) respectively. With P (q, T ), the average of any q dependent quantity f(q) can
be calculated by

[〈f(q)〉]av =
∑
q

f(q)P (q, T ). (6.22)

The Binder parameter, which is defined as

gL(T ) =
1

2

[
3− [〈q4〉]av

[〈q2〉]2av

]
, (6.23)

is particularly important because the curves of gL(T ) for different values of L intersect
at Tc. More common method for the evaluation of gL(T ) is to use a two-replica system
consisting of two identical systems with the same couplings {Jij}. As the two replicas are
thermodynamically independent, the Hamiltonian is

H = −
∑
〈i,j〉

Jijs
(1)
i s

(1)
j −

∑
〈i,j〉

Jijs
(2)
i s

(2)
j , (6.24)

where the superscript indicates each replica in the system. For the two-replica system, the
spin overlap is defined as

q =
1

N

N∑
i=1

s
(1)
i s

(2)
i . (6.25)

This can be regarded as the average of the multiplication of spins of two configurations
at infinitely remote moments. Thus [〈q〉]av is identical to qEA defined in Eq. (6.18). The
probability distribution function of the spin overlap can be calculated from the JDOS of
the two-replica system using Eq. (6.3).

After the extensive theoretical, numerical and experimental studies on spin glasses that
have been done for decades, now it is widely believed that a spin glass phase transition
occurs at a finite, nonzero temperature (Tc ≈ 1.1J) in 3D [37, 30, 45, 1] and at zero
temperature (Tc = 0) in 2D [54, 25, 9]. However there are still other works that claim a
nonzero phase transition temperature in 2D [53, 52].
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I carried out BMCTM simulations for 2D spin glasses with bimodal and Gaussian bonds
up to L = 14 and 3D spin glasses with bimodal bonds up to L = 8. To obtain the Landau
free energy F (q, T ), the BMCTM simulation with the Hamiltonian given in Eq. (6.15)
and the second variable q given in Eq. (6.21) was performed repeatedly for many different
realizations of {Jij} and the average was computed according to Eq. (6.20). The joint
histogram of the visited states and the JDOS acquired from the BMCTM simulation for a
10× 10 system are shown in FIG. 6.8 and FIG. 6.9 respectively. The nearly flat histogram
implies that a random walk in E-q space was realized and a good statistics was obtained
even for the least probable states. The symmetry g(E,−q) = g(E, q), which is due to the
global spin reversal symmetry of the Hamiltonian, can be used to reduce the simulation
time by limiting the sampling region. For the evaluation of the Binder parameter, the
Hamiltonian of the two-replica system given in Eq. (6.24) and the spin overlap q given in
Eq. (6.25) should be employed in the BMCTM simulation since the second variable q given
in Eq. (6.21) can not represent all possible spin overlaps especially when the degeneracy is
high. From the symmetry of the Hamiltonian of the two-replica system, g(E,−q) = g(E, q)
and g(−E, q) = g(E, q) can be derived, which can be utilized to reduce the simulation time
significantly. The probability distribution of the spin overlap P (q, T ) obtained from the
BMCTM simulations with the two-replica Hamiltonian for a 12 × 12 system is plotted in
FIG. 6.10.

For a 6 × 6 × 6 3D ±J Ising spin glass, the typical rugged shape of the Landau free
energy at low temperature obtained by the BMCTM simulation is shown in FIG. 6.11.
The average Landau free energy of 100 samples (i.e., 100 randomly chosen realizations
of the bimodal bonds) is shown in FIG. 6.12. To increase visibility, the rescaled Landau
free energies at four different temperatures are plotted in FIG. 6.13. The behavior of
the Landau free energy apparent in FIG. 6.12 and FIG. 6.13 implies a continuous phase
transition at a nonzero temperature. To evaluate the Binder parameters, 310, 54 and 21
samples were taken for L = 4, 6 and 8 respectively. As shown in FIG. 6.14, even with
these limitted number of samples, the curves of gL intersect at T ∼ 1.15J which is nearly
equal to the result of previous studies Tc ≈ 1.1J .

The average Landau free energy of 100 samples for a 10 × 10 system with ±J bonds
were obtained by the BMCTM. Contrary to my expectation, as shown in FIG. 6.15, the
rescaled Landau free energies at four different temperatures exhibit a feature of a continuous
phase transition at a nonzero temperature. To find a more reliable evidence, the Binder
parameters shown in FIG. 6.16 were obtained from 1100, 800, 616, 284 and 173 independent
BMCTM simulations for L = 6, 8, 10, 12 and 14 respectively. The curves of gL for various
L cross at almost the same temperature of T ∼ 0.45J which is surprisingly high. This
appears to imply a nonzero temperature phase transition in the 2D spin glass with ±J
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Figure 6.17: The plots of the rescaled Landau free energy at four different temperatures
for a 10× 10 Gaussian Ising spin glass.
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Figure 6.18: The temperature dependence of the Binder parameters for L = 6, 8 and 10.
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Figure 6.19: Scaling plot of gL of the 3D ±J Ising spin glass according to Eq. (6.26) with
ν = 1.3 and Tc = 1.2J .
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Figure 6.20: Scaling plot of gL of the 2D ±J Ising spin glass according to Eq. (6.26) with
ν = 1.5 and Tc = 0.43J .
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interactions. As shown in FIG. 6.17 and FIG. 6.18, I obtained the same results for the 2D
spin glass with Gaussian interactions as well. The scaling behavior of gL is expected to
follow

gL(T ) = ḡ(L1/ν(T − Tc)), (6.26)

where ḡ is a scaling function and ν is the exponent of the correlation length [8]. For the
3D ±J spin glass, with ν = 1.3 and Tc = 1.2J , a scaling plot of the data in FIG. 6.14 was
obtained according to Eq. (6.26) as shown in FIG. 6.19. For the 2D ±J spin glass, with
ν = 1.5 and Tc = 0.43J , a scaling plot of the data in FIG. 6.16 is displayed in FIG. 6.20.
It seems that the data collapses of gL are acceptable in the scaling plots for both 2D and
3D.

The spin glass susceptibility when approached from high temperature is given by

χSG(T ) = N
[
〈q2〉

]
av

= N
∑
q

q2P (q, T ). (6.27)

The spin glass susceptibility χSG diverges as T approaches Tc from above. χSG also has
the following scaling form:

χSG = L2−ηχ̄(L1/ν(T − Tc)), (6.28)

where η describes the power law decay the spin correlation at Tc and χ̄ is a scaling function.
For the 3D ±J spin glass, with ν = 1.3, η = −0.27 and Tc = 1.2J , a scaling plot of χSG is
displayed in FIG. 6.21. With ν = 1.5, η = 0.20 and Tc = 0.43J , a scaling plot of χSG for
the 2D ±J spin glass is shown in FIG. 6.22. Compared to the χSG for 2D, the quality of
the data collapse of the χSG for 3D does not look good. This is possibly due to insufficient
number of samples in the simulations for 3D systems.

All the results of the Landau free energy, the Binder parameters and the scaling analysis
seem to support a nonzero temperature phase transition in the 2D Ising spin glass, which
is an interesting result because this is contrary to the current consensus. I believe the
JDOSs of spin glasses obtained by the BMCTM are very accurate since the accuracy of
the method was proven in the applications to the Ising and Potts models. However, I can
not definitely conclude that Tc 6= 0 for the 2D Ising spin glass because of the limitted
number of samples. The number of different sets of random couplings {Jij} is huge; it is
the order of 1020 (however, many of them would be identical due to the periodic boundary
condition) even for a 6× 6 Ising spin glass with the bimodal interactions. FIG. 6.23 shows
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Figure 6.21: Scaling plot of χSG of the 3D ±J Ising spin glass according to Eq. (6.28)
with ν = 1.3 and Tc = 1.2J .
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Figure 6.22: Scaling plot of χSG of the 2D ±J Ising spin glass according to Eq. (6.28)
with ν = 1.5, η = 0.20 and Tc = 0.43J .
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Figure 6.23: Binder parameters with different number of samples for a 6 × 6 Ising spin
glass with the bimodal interactions.

how the Binder parameter changes as the number of samples increases for 6× 6 ±J Ising
spin glass. Although gL changes more slowly as more samples are taken, as can be seen in
FIG. 6.24 which magnifies at lower temperatures, it is still possible that gL keeps changing
extremely slowly even for a very large number of samples.

Regarding the Tc of the 2D Ising spin glass, I think the above results imply three possible
scenarios. One is that the evidences for Tc 6= 0 disappear extremely slowly as more samples
are taken, thus Tc = 0. Another scenario is that the results supporting Tc 6= 0 are true
up to a certain system size L∗ and for L > L∗ the results chage to support Tc = 0. The
third scenario is that simply Tc 6= 0, which is unlikely at this point but still possible. To
determine which scenario is true, the extensive simulations for larger systems with more
samples of random couplings should be performed using more powerful computer resources.
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Figure 6.24: Magnified plot of FIG. 6.23 at lower temperatures
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Chapter 7

Conclusions and Future Work

In this thesis, the transition matrix Monte Carlo method is employed to evaluate the
densities of states for various systems. Since the accuracy of the DOS generated by the
transition matrix Monte Carlo method depends on how the transition matrix is constructed,
the TMMC needs to combine with appropriate broad sampling techniques. I explored the
numerical methods of several different combinations and presented the test results of them.
In chapter 2, I discussed the theoretical basis of the TMMC and explained how to construct
the TM by all of the accepted and rejected transitions. The higher accuracy of the TMMC
than other methods mainly results from the utilization of all the proposed transitions.

In chapter 3, I explained the regulated temperature method which populates the transi-
tion matrix by the Metropolis algorithm with continuously varying temperature according
to a certain schedule. This method is simple and straightforward since the random walker
can be controlled by adjusting temperature. However, finding the optimized self-adapting
temperature schedule is not an easy task. In the context of the 2D Ising model, I intro-
duced new techniques that can produce the optimized temperature schedule based on the
autocorrelation time and the magnetization distribution. Next I proceeded to present the
multicanonical transition matrix Monte Carlo method in which the transition matrix is
constructed through the multicanonical iteration procedure. Although TMMC is highly
accurate, it also suffers from the scalability problem; the CPU times grows according to
τTMMC
CPU ∼ V 2.19, τTMMC

CPU ∼ V 2.36 for 2D and 3D Ising model respectively. The simulation
speed of the TMMC could be significantly improved by the renormalization idea which
utilizes the simulation results for a small system to obtain an accurate initial estimate
of the DOS for a large system through the convolution procedures. I explained how to
implement the RMCTM for the 2D and 3D systems. As the system size increases, the
CPU time of the RMCTM grows according to τRTMMC

CPU ∼ V 1.75, τRTMMC
CPU ∼ V 1.64 for 2D

96



and 3D Ising model respectively. The decrease of the exponent in the formula of a power
law implies tremendous increase of the simulation speed especially for large systems.

In chapter 6, I explained how to obtain JDOS g(E, q) by the bivariate MCTM in which
the transition tensor WIJKL is constructed through the bivariate multicanonical iteration
procedure. Since the transition tensor is stored in a four dimensional array, it is very
cumbersome to handle and it takes long time to find the eigenmatrix which corresponds to
the JDOS. I introduced a simple technique that can transform the transition tensor WIJKL

to a transition matrix W̃ĨJ̃ which can be manipulated by the methods developed in the
monovariate TMMC. As a pilot test, I applied BMCTM to the Potts model as well as the
Ising model and found its results correctly described the existence as well as the nature
of phase transitions. Subsequently I applied it to the Edward-Anderson spin glass model
to obtain the JDOS from which the Landau free energy and the probability distribution
of the spin overlap were calculated. For the 3D ±J Ising spin glass, from the analysis of
the Binder parameters, I obtained the critical temperature Tc/J ≈ 1.15 which is almost
identical to the consensus. For the 2D ±J Ising spin glass, contrary to the majority of the
previous studies (Tc = 0), I found evidences for the nonzero temperature phase transition;
the estimated critical temperature is Tc/J ≈ 0.45. However, a definite conclusion could
not be made due the limitted number of samples. Although I can not definitely exclude a
few different possibilities regarding the Tc for the 2D Ising spin glass, I believe my results
of the JDOSs for the 2D spin glass are reliable because I obtained correct results in the
applications to the 3D ±J Ising spin glass, the Potts model as well as the Ising model.
At least my results indicate the further study is required to fully understand the critical
behavior of the 2D Ising spin glass.

I introduced several TMMC methods including a few newly developed techniques that
can be used to evaluate the DOS or the JDOS of a system with high accuracy. I presented
very accurate results obtained by those methods when applied to various models such as
Ising model, Potts model ans Ising spin glasses. For the RTTM method, the optimized
temperature schedule could be generated by monitoring the magnetization distribution in
a self-adapting manner. I expect the accuracy and speed of the RTTM can be further
improved by incorporating the cluster spin flip in the single spin flip dynamics since inter-
mittent introduction of the cluster spin flip can reduce the correlations between samples.
Promising results have been already obtained even though further refinement is required
[75]. Regarding the finding of novel evidences of a nonzero temperature phase transition in
the 2D Ising spin glass, since I could perform the BMCTM simulations only up to L = 14
with limited number of samples (different realizations of the random bonds), to confirm
the results, I need to increase further the system size as well as the number of samples
using more extensive and powerful computer resources.
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