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Abstract

Longevity risk management is becoming increasingly important in the pension and life

insurance industries. The unexpected mortality improvements observed in recent decades

are posing serious concerns to the financial stability of defined-benefit pension plans and

annuity portfolios. It has recently been argued that the overwhelming longevity risk ex-

posures borne by the pension and life insurance industries may be transferred to capital

markets through standardized longevity derivatives that are linked to broad-based mortal-

ity indexes. To achieve the transfer of risk, two technical issues need to be addressed first:

(1) how to model the dynamics of mortality indexes, and (2) how to optimize a longevity

hedge using standardized longevity derivatives. The objective of this thesis is to develop

sensible solutions to these two questions.

In the first part of this thesis, we focus on incorporating stochastic volatility in mortality

modeling, introducing the notion of longevity Greeks, and analysing the properties of

longevity Greeks and their applications in index-based longevity hedging. In more detail,

we derive three important longevity Greeks—delta, gamma and vega—on the basis of an

extended version of the Lee-Carter model that incorporates stochastic volatility. We also

study the properties of each longevity Greek, and estimate the levels of effectiveness that

different longevity Greek hedges can possibly achieve. The results reveal several interesting

facts. For example, we found and explained that, other things being equal, the magnitude

of the longevity gamma of a q-forward increases with its reference age. As with what

have been developed for equity options, these properties allow us to know more about

standardized longevity derivatives as a risk mitigation tool. We also found that, in a

delta-vega hedge formed by q-forwards, the choice of reference ages does not materially

affect hedge effectiveness, but the choice of times-to-maturity does. These facts may aid

insurers to better formulate their hedge portfolios, and issuers of mortality-linked securities

to determine what security structures are more likely to attract liquidity.

We then move onto delta hedging the trend and cohort components of longevity risk

under the M7-M5 model. In a recent project commissioned by the Institute and Faculty

of Actuaries and the Life and Longevity Markets Association, a two-population mortality

model called the M7-M5 model is developed and recommended as an industry standard
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for the assessment of population basis risk. We develop a longevity delta hedging strategy

for use with the M7-M5 model, taking into account of not only period effect uncertainty

but also cohort effect uncertainty and population basis risk. To enhance practicality, the

hedging strategy is formulated in both static and dynamic settings, and its effectiveness can

be evaluated in terms of either variance or 1-year ahead Value-at-Risk (the latter is highly

relevant to solvency capital requirements). Three real data illustrations are constructed to

demonstrate (1) the impact of population basis risk and cohort effect uncertainty on hedge

effectiveness, (3) the benefit of dynamically adjusting a delta longevity hedge, and (3) the

relationship between risk premium and hedge effectiveness.

The last part of this thesis sets out to obtain a deeper understanding of mortality

volatility and its implications on index-based longevity hedging. The volatility of mor-

tality is crucially important to many aspects of index-based longevity hedging, including

instrument pricing, hedge calibration, and hedge performance evaluation. We first study

the potential asymmetry in mortality volatility by considering a wide range of GARCH-

type models that permit the volatility of mortality improvement to respond differently

to positive and negative mortality shocks. We then investigate how the asymmetry of

mortality volatility may impact index-based longevity hedging solutions by developing an

extended longevity Greeks framework, which encompasses longevity Greeks for a wider

range of GARCH-type models, an improved version of longevity vega, and a new longevity

Greek known as ‘dynamic delta’. Our theoretical work is complemented by two real-data

illustrations, the results of which suggest that the effectiveness of an index-based longevity

hedge could be significantly impaired if the asymmetry in mortality volatility is not taken

into account when the hedge is calibrated.
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Chapter 1

Introduction

1.1 Background

In recent decades, rapid increases in human life expectancy have been observed in most

countries. According to Statistics Canada (2018), the Canadian male and female life

expectancy at birth increased respectively by an average of 2.9 and 1.8 months each year

from 1981 to 2012. Figure 1.1 shows the mortality rates of the Canadian male population

at ages 60, 70 and 80 from year 1961 to 2011. It is clear that the realized rates for all ages

exhibit a downward/improvement trend over the period shown. More importantly, there

is a certain level of uncertainty surrounding the improvement trend of mortality, which we

refer to as longevity risk.

Longevity risk is borne by institutions that have financial obligations linked to how

long an individual may live. Two typical examples of these institutions are defined-benefit

pension plans and life insurance companies. For instance, the number of payments a

pension plan has to make to a pensioner is proportional to how long the pensioner may

live. If this pensioner lives longer than expected, then the pension plan may not have

enough money reserved to fulfil its financial obligations to this pensioner.

The size of the longevity risk exposures borne by the pension and life insurance indus-

tries is enormous. According to Biffis and Blake (2014), the total amount of pension-related

1
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Figure 1.1: The realized mortality rates (log-scale) of the Canadian male population at ages 60,

70 and 80 from year 1961 to 2011.

longevity risk exposures is globally estimated at $25 trillion (USD). More importantly,

longevity risk is a systematic risk that cannot be managed internally through the Law

of Large Numbers. That means, unlike a typical insurance risk, selling more insurance

products or having more pensioners will not decrease the risk, but instead increase it.

In recent years, the overwhelming longevity risk exposure combined with its systematic

nature have driven some pension plans to seek external de-risking solutions. For example, in

2012, General Motors engaged in a pension transfer agreement with Prudential Financial

to reduce its pension obligations by approximately $26 billion (USD). In 2015, the Bell

Canada Pension Plan executed a $5 billion (CAD) longevity swap with Sun Life Financial,

SCOR SE, and Reinsurance Group of America. In the UK market, 48 longevity swaps with

a total amount of £75 billion (GBP) were completed between 2007 and 2016, covering 13

insurance companies and 22 pension plans (Blake et al., 2018). These transactions have

2



fostered a new market, called the longevity risk transfer market.

Although we have seen many successful transactions in the past, the size of the cur-

rent longevity risk transfer market is still small when compared to the total amount of

global longevity risk exposures. Zhou and Li (2017) argued that the underdevelopment

of the market may be attributed the marked imbalance between the demand and supply

for acceptance of longevity risk. Most of the past transactions are insurance-based, which

means that the longevity risk is being transferred from a pension plan to an (re-)insurance

company, and hence is also kept within the insurance industry. While the insurance indus-

try has the scope and financial stability to accept longevity risk, its capacity is not large

enough to generate sufficient supply for acceptance. Using the global size of pension assets

as a proxy for demand and the global insurance assets for non-life risks as a proxy for sup-

ply, Graziani (2014) concluded that the demand for acceptance of longevity risk is 10 times

higher than the supply. A similar conclusion was reached by Michaelson and Mulholland

(2014) using the total capital of the global insurance industry and the potential increase

in pension liabilities due to unexpected mortality improvement.

To overcome the problem of shortage in supply, some recent studies have argued that the

longevity risk exposures borne by pension plans and annuity providers can be transferred to

capital markets (e.g., Biffis and Blake, 2014; Blake et al., 2013; Michaelson and Mulholland,

2014). In addition to a risk premium, capital market investors may enjoy diversification

benefits from including longevity risk into their portfolio, as longevity risk exhibits no

apparent correlations with typical market risk factors, such as equity, inflation and foreign

exchange (Ribeiro and Di Pietro, 2009). To further draw interest from these investors,

the transfer of risk has to be executed through standardized securities that are (1) linked

to broad-based mortality indexes, such as the mortality of a national population, and (2)

structured like typical capital market derivatives, such as bonds, swaps and forwards. The

act of standardization is important because it fosters liquidity and transparency, both of

which are highly demanded by capital market investors.

The act of standardization also poses two fundamental challenges to the end-users of

standardized longevity securities. The first challenge concerns modeling the dynamics of

broad-based mortality indexes. In particular, a statistical model is needed to explain the

mortality behaviour of a national population and/or the population of a pension plan.
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Furthermore, based on an established mortality model, one has to be able to accurately

measure the level of uncertainty/risk underlying a population’s future mortality.

Researchers have contributed significantly on the topic of mortality modeling. A large

number of them worked along the lines of the Lee-Carter model, the seminal work of

Lee and Carter (1992) (see, e.g., Brouhns et al., 2002; Currie et al., 2004; Czado et al.,

2005; Kleinow, 2015; Koissi et al., 2006; Lee and Miller, 2001; Li and Hardy, 2011; Li

and Lee, 2005; Li et al., 2009; Pedroza, 2006; Renshaw and Haberman, 2006; Villegas and

Haberman, 2014; Zhou et al., 2014). The Cairns-Blake-Dowd model proposed by Cairns

et al. (2006) along with its extensions (see, e.g., Cairns et al., 2009, 2011; Haberman et al.,

2014; Li et al., 2015) created another large category of mortality modeling studies. Other

than the above two groups, many other research projects, such as Ahmadi and Li (2014),

Hatzopoulos and Haberman (2013), Jarner and Kryger (2011), Tsai and Yang (2015) and

Yang et al. (2010), have also contributed various innovative approaches to modeling the

dynamics of mortality.

The second challenge relates to developing a hedging strategy for longevity risk us-

ing standardized longevity derivatives. In particular, given a collection of standardized

longevity derivatives, how should a hedger optimize a longevity hedge? To answer this

question, a hedger needs to determine the types of standardized derivatives to purchase,

the notional amounts and other specifications of the chosen derivatives, and also how to

evaluate the effectiveness of an implemented hedge.

Over the past few years, there has been a wave of work on addressing the second

challenge. Generally speaking, existing hedging strategies can be categorized as either a

risk-minimizing approach or a sensitivity-matching approach. A risk-minimizing approach

focuses on minimizing a certain risk measure that reflects the extent of the longevity risk

exposure of the hedger. Studies that have adopted this approach include Coughlan et al.

(2011), Cairns et al. (2014), Dahl and Møller (2006), Dahl et al. (2008), Dahl et al. (2011),

Liu and Li (2016), Ngai and Sherris (2011) and Wong et al. (2014). A sensitivity-matching

approach, on the other hand, equates the sensitivities of the liability being hedged and the

standardized derivatives to changes in the underlying mortality. Examples of this approach

include the work of Cairns (2011), Cairns (2013), Li and Hardy (2011), Li and Luo (2012),

Lin and Tsai (2013), Lin and Tsai (2014), Luciano et al. (2012), Luciano et al. (2017), Tsai
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et al. (2010), Tsai and Chung (2013) and Zhou and Li (2017).

1.2 Objectives and Outline of the Thesis

The objectives of this thesis are to (1) procure a deeper understanding of mortality model-

ing with a specific focus on the volatility of mortality (i.e., the level of uncertainty surround-

ing the improvement trend of mortality), and (2) further investigate the implementation

and implications of index-based longevity hedging. On the modeling front, we propose

several extensions of the Lee-Carter model to incorporate conditional heteroskedasticity

and asymmetry in the volatility of mortality. We achieve this goal by applying differ-

ent variations of the generalized autoregressive conditional heteroskedasticity (GARCH)

model to the period effect of the Lee-Carter model. We also utilize the M7-M5 model, a

two-population extension of the Cairns-Blake-Dowd model that is capable of capturing the

period, cohort (year-of-birth-related) and population basis effects. On the hedging front,

we focus on the sensitivity-matching approach of index-based longevity hedging, and work

along lines of longevity Greeks (an analogous to option Greeks) and Greek hedging. In

particular, we study the properties of longevity Greeks, propose several Greek hedging

strategies for longevity risk, and use real data illustrations to explore the implications of

the proposed hedging strategies.

In Chapter 2, we focus on incorporating stochastic volatility in the Lee-Carter model,

introducing the notion of longevity Greeks, and analysing the properties of longevity Greeks

and their applications in index-based longevity hedging. In more detail, we first derive

three important longevity Greeks—delta, gamma and vega—on the basis of an extended

version of the Lee-Carter model that incorporates stochastic volatility. We then study the

properties of each longevity Greek, and estimate the levels of effectiveness that different

longevity Greek hedges can possibly achieve. The results reveal several interesting facts.

For example, we found and explained that, other things being equal, the magnitude of the

longevity gamma of a q-forward increases with its reference age. As with what have been

developed for equity options, these properties allow us to know more about standardized

longevity derivatives as a risk mitigation tool. Our findings on hedge effectiveness may
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also aid insurers to better formulate their hedge portfolios, and issuers of mortality-linked

securities to determine what security structures are more likely to attract liquidity. Lastly,

we investigate how much hedge effectiveness may be eroded if the mortality model from

which the longevity Greeks are derived does not hold.

In Chapter 3, we move onto delta hedging the trend and cohort components of longevity

risk under the M7-M5 model. The M7-M5 model is a two-population mortality model

developed and recommended (as an industry standard for the assessment of population

basis risk) by a recent project commissioned by the Institute and Faculty of Actuaries and

the Life and Longevity Markets Association. We develop a longevity delta hedging strategy

for use with the M7-M5 model, taking into account of not only period effect uncertainty

but also cohort effect uncertainty and population basis risk. To enhance practicality, the

hedging strategy is formulated in both static and dynamic settings, and its effectiveness can

be evaluated in terms of either variance or 1-year ahead Value-at-Risk (the latter is highly

relevant to solvency capital requirements). Three real data illustrations are constructed to

demonstrate (1) the impact of population basis risk and cohort effect uncertainty on hedge

effectiveness, (2) the benefit of dynamically adjusting a delta longevity hedge, and (3) the

relationship between risk premium and hedge effectiveness.

In Chapter 4, we set out to study the potential asymmetry in mortality volatility and its

implications on index-based longevity hedging. We first explore the potential asymmetry

in mortality volatility by considering a wide range of GARCH-type models that permit

the volatility of mortality improvement to respond differently to positive and negative

mortality shocks. We then investigate how the asymmetry of mortality volatility may

impact index-based longevity hedging solutions by developing an extended longevity Greeks

framework, which encompasses longevity Greeks for a wider range of GARCH-type models,

an improved version of longevity vega, and a new longevity Greek known as ‘dynamic

delta’. Lastly, our theoretical work is complemented by two real-data illustrations. The

empirical results suggest that the effectiveness of an index-based longevity hedge could be

significantly impaired if the asymmetry in mortality volatility is not taken into account

when the hedge is calibrated.

Finally, Chapter 5 concludes the thesis with some suggestions on future research work.
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Chapter 2

Longevity Greeks: What Do Insurers

and Capital Market Investors Need

to Know?

2.1 Introduction

It has been argued that capital markets may share some of the overwhelming longevity risk

exposures borne by the pension and life insurance industries (Blake et al., 2013; Biffis and

Blake, 2014; Graziani, 2014; Michaelson and Mulholland, 2014). Capital market investors

may be interested in taking longevity risk in exchange for a risk premium, because it has no

apparent correlations with typical market risk factors such as equity, inflation and foreign

exchange. The resulting diversification effect allows capital market investors to expand

their efficient frontiers, achieving better risk and reward combinations.

Capital market investors demand liquidity and transparency. Therefore, to attract

their participation in longevity risk transfers, there is a need to package longevity risk as

standardized products which are structured like typical capital market derivatives such as

swaps and forwards. Hedgers have to compromise, as standardized hedging instruments

do not give a full elimination of risk (which bespoke de-risking solutions such as pension
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buy-outs can offer). The act of standardization leads to a fundamental question: given a

collection of standardized mortality derivatives, how should a hedger optimize a longevity

hedge? Over the past few years, there has been a wave of work on this research question.

The contributions can be divided into two broad categories: (1) risk minimization and (2)

sensitivity matching.

A risk minimization strategy is one that aims to minimize a certain risk measure which

reflects the hedger’s exposure to longevity risk. The most commonly used risk measure is

the variance of the present values of the unexpected cash flows arising from the liability

being hedged and the hedging instruments used. Examples of such strategies include those

proposed by Dahl and Møller (2006), Dahl et al. (2008), Coughlan et al. (2011), Dahl

et al. (2011), Ngai and Sherris (2011), Cairns et al. (2014) and Wong et al. (2014). These

strategies are very well suited for hedgers with a definite hedging objective (e.g., minimizing

variance). However, a solution that is optimum with respect to one objective may require

compromising other objectives. That being said, when a hedger cares about the overall

longevity risk profile (based on a collection of risk measures), then a risk minimization

strategy may not result in the most preferred hedge portfolio.

A sensitivity matching strategy is one that equates the sensitivities of the liability being

hedged and the hedging instruments used to changes in the underlying mortality. Rather

than focusing on a particular objective, it aims to find a ‘replicating portfolio’ that is a

broadly similar to the liability being hedged in terms of its longevity risk exposure. Com-

pared to risk minimization, sensitivity matching appears to be more flexible as measures

of mortality sensitivity can be applied to, in principle, all types of life-contingent liabilities

(e.g., life insurance and annuities) and mortality derivatives (e.g., mortality forwards and

swaps). It is also more adaptable to the formation of a liability hedging platform (Coughlan

et al., 2007), in which risks other than longevity (e.g., equity and inflation) are also hedged

so that a synthetic pension buy-out can be created. This is because the other risks can be

mitigated by matching additional sensitivity measures (e.g., the equity delta), without the

need to re-derive the optimal solution.

Depending on how sensitivity is quantified, sensitivity matching strategies can be fur-

ther classified into two types. The first type is based on the sensitivity to the changes

in the (future) mortality rates themselves. For instance, the key q-duration proposed by
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Li and Luo (2012) measures the sensitivity to changes in several representative mortality

rates on the relevant mortality curve/surface. Other examples include those considered

by Li and Hardy (2011), Plat (2011), Tsai et al. (2010), Tsai and Jiang (2011), Lin and

Tsai (2013) and Tsai and Chung (2013). In addition to calibrating standardized longevity

hedges, sensitivity matching techniques have also been used in the context of natural hedg-

ing, whereby the offsetting longevity exposures in life insurance and life annuity books are

utilized (see, e.g., Wang et al., 2010; Lin and Tsai, 2014).

The second type, which is the focus of this chapter, is based on the sensitivity to changes

in certain parameter(s) in the stochastic process driving the evolution of mortality. Such

measures of sensitivity are sometimes known as ‘longevity Greeks’, as they are largely

analogous to option Greeks that are utilized extensively to hedge equity-related risks. In a

continuous-time setting, Luciano et al. (2012), Luciano and Regis (2014) and Luciano et al.

(2017) use two longevity Greeks (delta and gamma) to develop their hedge portfolios. Their

contributions have been extended by De Rosa et al. (2017), who incorporate an additional

longevity Greek (theta) to measure the change in the value of a life-contingent liability

with respect to the passage of time. In a discrete-time setting, delta hedging has been

considered by Cairns (2011) and Zhou and Li (2017), and extended by Cairns (2013) to

delta-nuga hedging which incorporates additionally the sensitivity to the drift vector of the

random walk embedded in the author’s assumed stochastic mortality model.

The continuous-time setting has many mathematical appeals, including analytical so-

lutions that require no simulation to evaluate. However, it often relies on rather restrictive

mortality processes, which inevitably compromise its applicability in practice. As an ex-

ample, the result of Luciano et al. (2012) is developed from an Ornstein-Uhlenbeck process

which captures the mortality intensity of one birth cohort only, and hence it does not facil-

itate the comparison between hedging instruments that are associated with different years

of birth. In this chapter we choose to consider the discrete-time setting, which is more

practical at the expense of more computationally involved calculations. We work along the

lines of Cairns (2011) with an objective to develop a better understanding of (discrete-time)

longevity Greek hedging. As described below, the contributions are quadrifold.

First, we propose to use two additional longevity Greeks: gamma and vega. Considered

previously in the continuous-time setting, longevity gamma measures the second-order sen-
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sitivity to changes in the period (time-related) effect in the assumed mortality model, com-

plementing the corresponding first-order sensitivity captured by longevity delta. Longevity

vega, on the other hand, quantifies the sensitivity to changes in the volatility of the period

effects. Despite not being considered in previous studies, we believe that it is important to

consider longevity vega, as there exists profound evidence that the evolution of mortality

over time is subject to (stochastically) varying volatility (see, e.g., Lee and Miller, 2001;

Gao and Hu, 2009; Chai et al., 2013). In the context of equity risk, the importance of

vega in a stochastic volatility environment is highlighted by Engle and Rosenberg (1995,

2000), Lehar et al. (2002), Javaheri et al. (2004) and Crépey (2004). Several researchers

including Gao and Hu (2009), Giacometti et al. (2012), Chai et al. (2013), Chen et al.

(2015) and Wang and Li (2016) have used different variants of the generalized autoregres-

sive conditional heteroskedasticity (GARCH) model to capture the stochastic volatility of

mortality over time. However, they have made no attempt to relate their GARCH models

to longevity hedging.

The longevity Greeks are derived from the Lee-Carter model (Lee and Carter, 1992),

which is augmented to incorporate stochastic volatility. In particular, the evolution of

its period effect is modeled by a random walk (with drift), of which the innovations are

assumed to follow a GARCH(1,1) process. We focus on static hedges, so all longevity

Greeks are calculated at time 0 when the hedge is established. The longevity vega of

a liability/instrument is defined as the first derivative of its value with respect to the

conditional volatility of the innovations at time 0. Likewise, longevity delta and gamma

are calculated as the first and second derivatives with respect to the time-0 value of the

period effect, respectively. Compared to those of Cairns (2011), our longevity Greeks

are different in that they are expressed in a semi-analytical form. For this reason, the

computation of our longevity Greeks does not require finite differencing and is therefore

somewhat less computationally intensive.

Second, we derive and explain the properties of the three longevity Greeks for q-forwards

with different specifications. Simply speaking, a q-forward is a zero-coupon swap with its

floating leg proportional to the realized death rate at a certain age (the reference age)

in a certain year (the reference year) and its fixed leg proportional to the corresponding

pre-determined forward mortality rate. We focus on q-forwards, in part because they

10



form basic building blocks from which other more complex mortality derivatives can be

constructed (Coughlan, 2009), and in part because they have been considered extensively

in the literature (e.g., Cairns, 2011, 2013; Cairns et al., 2014; Li and Hardy, 2011; Li and

Luo, 2012). We found and explained that, for example, other things equal, the magnitude

of the longevity gamma of a q-forward increases with its reference age. As with what have

been developed for equity options (see, e.g., McDonald, 2012), these properties allow us

to know more about q-forwards as a risk mitigation tool. Also, in practice when a perfect

Greek neutralization is not always possible, these properties can guide the hedger to choose

an appropriate q-forward which can offset his/her longevity risk exposure in a particular

dimension. For instance, if the hedger has an annuity liability with a large longevity

gamma, then based on our results he/she should contemplate acquiring a q-forward with

a high reference age.

Third, using the properties of longevity Greeks, we identify and explain several relation-

ships between hedge effectiveness and q-forward specification. The results reveal several

interesting facts; for example, in a delta-vega hedge formed by q-forwards, the choice of

reference ages does not materially affect hedge effectiveness, but the choice of times-to-

maturity does. What we found may aid insurers to better formulate their hedge portfolios,

in terms of choosing what q-forwards to use and what longevity Greek(s) to match. The

relationships we identified also allow us to go beyond the classical problem of longevity

hedge optimization, shedding light on questions like “what q-forward specification is likely

to be the most useful to typical hedgers?” The answers to such questions may help issuers

of mortality derivatives determine what security specifications are more likely to attract

demand and hence liquidity.

Fourth and finally, we investigate how much hedge effectiveness may be eroded if the

mortality model from which the longevity Greeks are derived does not hold. We also

examine if the identified patterns of hedge effectiveness relative to q-forward specifications

are still preserved if the evolution of mortality does not follow the assumed model. To

this end, we employ the non-parametric bootstrapping method considered by Li and Ng

(2011), in which scenarios of future mortality are simulated by drawing pseudo samples of

mortality improvement rates from the historical data. This bootstrapping method is chosen

for our analyses, because among all available mortality bootstrapping methods (Brouhns
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et al., 2005; Koissi et al., 2006; Renshaw and Haberman, 2008; Liu and Braun, 2010; Li,

2014; Yang et al., 2015), it appears to be the only one that entails no assumed model.

So far as we aware, this study represents the first attempt to validate longevity hedging

results with a non-parametric, model-free approach.

The rest of this chapter is organized as follows. Section 2.2 introduces the extension of

the Lee-Carter model that incorporates stochastic volatility. Section 2.3 defines the three

longevity Greeks considered, and derives these Greeks for annuity liabilities and q-forwards.

Section 2.4 studies the properties of the three longevity Greeks for q-forwards with different

specifications. Section 2.5 considers several longevity Greek hedging strategies and esti-

mate the levels of hedge effectiveness that these strategies can possibly achieve. Section

2.6 validates the results in the previous section using the non-parametric bootstrapping

method. Finally, Section 2.7 concludes with a discussion of the limitations of this study.

2.2 The Lee-Carter Model with Stochastic Volatility

The model we consider is developed from the Lee-Carter structure, which assumes that

ln(mx,t) = ax + bxκt, (2.1)

where mx,t represents the underlying central death rate at age x and in year t, ax is a

parameter capturing the average level of mortality at age x, κt is a time-varying index

(the period effect) reflecting the overall level of mortality in year t, and bx is a parameter

measuring the sensitivity of the mortality at age x to changes in κt.

As in many studies of the Lee-Carter model including the original work of Lee and

Carter (1992), we assume that κt follows a random walk with drift. However, to capture

the potential stochastic volatility of mortality, we permit the innovations of the random

walk to follow a GARCH(1,1) process. Overall, the dynamics of κt are governed by the

following set of equations: 
κt = κt−1 + µ+ εt

εt = σtηt

σ2
t = ω + αε2t−1 + βσ2

t−1

, (2.2)
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Figure 2.1: The estimated values of ax, bx and κt.

where µ is the drift term representing the expected rate of change in κt, εt is the innovation

at time t, σ2
t is the conditional variance of εt, ηt is a standard normal random variable

which possesses no serial correlation, and ω, α, β are parameters in the GARCH process

that determines the evolution of σ2
t . Parameters α and β, which respectively measures

the dependence of σ2
t on ε2t−1 and σ2

t−1, play the most crucial role in modeling stochastic

volatility. In the extreme case when α = β = 0, the volatility of εt becomes constant over

time and equation (2.2) degenerates to an ordinary random walk with drift.

We illustrate the proposed model using data from the female population of England

and Wales (EW), over an age range of 60 to 89 and a sample period of 1921 to 2011. This

data set and the estimated model are used throughout the rest of this chapter.

We first use Poisson maximum likelihood (Brouhns et al., 2002) to estimate the param-

eters in equation (2.1). The estimated values of ax, bx and κt are shown in Figure 2.1. Of

our particular interest is the pattern of κt. As expected, κt possesses a downward trend,

which reflects the historical improvement in mortality. The augmented Dickey-Fuller test

confirms that this trend is removed after first differencing; that is, the series of κt − κt−1

is stationary. More importantly, we observe signs of varying volatility from the pattern of

κt, particularly during 1921-1961.

We use Engle’s ARCH test and the Ljung-Box test to verify the existence of condi-

tional heteroskedasticity. Reported in Table 2.1, the test results reject the null hypothesis
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Figure 2.2: The sample autocorrelation functions for (κt−κt−1)2 (the left panel) and the squared

standardized residuals (ε2t /σ
2
t ) in equation (2.2) (the right panel), lags 1 to 20.

that (κt − κt−1)2 possesses no serial correlation, confirming the existence of conditional

heteroskedasticity. The test results are echoed in the sample autocorrelation function for

(κt−κt−1)2 (Figure 2.2, left panel), from which we observe that the sample autocorrelation

for (κt − κt−1)2 at lags 1, 10, 11 and 12 are significant. There is hence a strong ground for

using a GARCH process for εt instead of assuming a constant volatility.

We then fit equation (2.2) to the estimates of κt over the sample period. The retrieved

values of σ2
t are displayed in Figure 2.3, while the estimates of µ, ω, α and β are reported

in Table 2.2. The existence of conditional heteroskedasticity is further supported by the

empirical facts that σ2
t is not constant over time and that the estimates of α and β are

significantly different from zero.

Finally, we evaluate the adequacy of the assumed stochastic process by applying Engle’s

ARCH test and the Ljung-Box test to the squared standardized residuals (ε2t/σ
2
t ). For both

tests, the null hypothesis that ε2t/σ
2
t is free of serial correlation is not rejected (see Table

2.3), suggesting that conditional heteroskedasticity is adequately captured by the assumed

stochastic process. The same conclusion can be drawn from the right panel of Figure 2.2,

where we plot the sample autocorrelation function for the squared standardized residuals.
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Lag 1 2 3 4 5

Engle’s ARCH test
19.9426 21.7042 22.8088 22.7850 23.1499

(<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0003)

The Ljung-Box test
20.5841 21.5166 22.2887 22.5414 23.0843

(<0.0001) (<0.0001) (<0.0001) (0.0002) (0.0003)

Table 2.1: The values of the test statistic for Engle’s ARCH test and the Ljung-Box test on

(κt − κt−1)2, lags 1 to 5. The p-Values are reported in parentheses.

Parameter Estimate Standard error t-value

µ −0.49476 0.109296 −4.52677

ω 0.03297 0.046127 0.71482

α 0.13450 0.062155 2.16393

β 0.83494 0.071398 11.6941

Table 2.2: The estimates of µ, ω, α and β in equation (2.2).

We conclude this section with two remarks. First, admittedly, the existence of con-

ditional heteroskedasticity is data dependent. Nevertheless, it has been detected in the

historical mortality experiences of quite a few other populations; see Gao and Hu (2009)

for Iceland, Giacometti et al. (2012) for Italy, Chai et al. (2013) for the UK (including

the part of UK outside England and Wales), Chen et al. (2015) and Wang and Li (2016)

for Canada, France, Germany, Japan and the USA. Second, to keep the mathematics in

the derivation of longevity Greeks modest, we consider only the simplest possible GARCH

process and do not impose an autoregressive moving average (ARMA) structure for the

conditional mean of κt−κt−1. In principle, a more general GARCH(P ≥ 1, Q ≥ 1) process

can be assumed, but, as Tsay (2005, Ch.3) mentioned, in most applications only lower

order GARCH processes such as GARCH(1,1) are used.

15



1921 1941 1961 1981 2001
year (t)

0

1

2

3

4

5

6

7

8

9

10

2 t

Figure 2.3: The retrieved values σ2
t over the sample period of 1921 to 2011.

2.3 The Longevity Greeks

2.3.1 Defining Survival Probabilities

Let

Sx,t(T ) =
T∏
s=1

(1− qx+s−1,t+s)

be the ex post probability that an individual aged x at time t would have survived to

time t + T , where qx,t represents the probability that an individual aged x at time t − 1

dies between time t − 1 and t (during year t). Using the approximation that qx,t ≈
1 − exp(−mx,t), which holds exact if the force of mortality between two integer ages is
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Lag 1 2 3 4 5

Engle’s ARCH test
2.3773 2.5549 2.5148 2.8920 3.2689

(0.1231) (0.2787) (0.4726) (0.5761) (0.6586)

The Ljung-Box test
2.4791 2.4819 2.6298 3.0612 3.9322

(0.1154) (0.2891) (0.4523) (0.5476) (0.5592)

Table 2.3: The values of the test statistic for Engle’s ARCH test and the Ljung-Box test on the

squared standardized residuals (ε2t /σ
2
t ) in equation (2.2), lags 1 to 5. The p-Values are reported

in parentheses.

constant, we can express Sx,t(T ) in terms of the Lee-Carter parameters as

Sx,t(T ) ≈ exp

(
−

T∑
s=1

exp(ax+s−1 + bx+s−1κt+s)

)

= exp

(
−

T∑
s=1

exp(Yx,t(s))

)
= exp(−Wx,t(T )),

where Yx,t(s) = ax+s−1 + bx+s−1κt+s and Wx,t(T ) =
∑T

s=1 exp(Yx,t(s)) are defined for sim-

plicity.

For ease of exposition, from now on time t = 0 represents the time at which the (static)

longevity hedge is established. In the illustrations, we set time 0 to the end of 2011, the

year in which the data sample ends. We let Ft be the information about mortality up

to and including time t. It is clear that for t ≥ 0, Sx,t(T )|F0 is a random variable which

depends on the random realizations of κs for s = t+ 1, . . . , t+ T .

According to equation (2.2), we have the following expression for κt given F0:

κt = κ0 + tµ+
t∑

s=1

εs = κ0 + tµ+
t∑

s=1

σsηs,

where

σ2
t =

ω
(
1 +

∑t−1
s=1

∏s
u=1(αη2

t−u + β)
)

+ (αε20 + βσ2
0)
∏t−1

u=1(αη2
t−u + β) if t ≥ 2

ω + αε20 + βσ2
0 if t = 1

.

17



It follows that Sx,t(T ) depends on κ0 (the time-0 value of the period effect), σ2
0 (the time-

0 value of the conditional volatility) and the sequence of i.i.d. standard normal random

variables {ηs; s = 1, . . . , t+ T}.

Finally, we let

px,t(T, κ0, σ
2
0) := E[Sx,t(T ) | F0],

which represents the expected probability that an individual aged x at time t survives to

time t + T , given the information about mortality up to and including time 0. Revealed

later in this section, px,t(T, κ0, σ
2
0) is the key building block for the expected present values

of the liability being hedged and the hedging instruments at the time when the hedge is

established. We can compute px,t(T, κ0, σ
2
0) by simulations. Specifically, we can simulate a

large number, say N , of sample paths of {ηs; s = 1, . . . , t+ T}, from which N realizations

of Sx,t(T )|F0 can be obtained; the value of px,t(T, κ0, σ
2
0) can be evaluated by averaging

the N realizations of Sx,t(T )|F0.

2.3.2 The Longevity Greeks for px,t(T, κ0, σ
2
0)

In this section, we define the three longevity Greeks for px,t(T, κ0, σ
2
0). The full derivation

of each Greek is presented in Appendix A.

The longevity delta for px,t(T, κ0, σ
2
0) is defined as

∆x,t(T ) :=
∂px,t(T, κ0, σ

2
0)

∂κ0

= −
T∑
s=1

bx+s−1 E[exp(Yx,t(s)−Wx,t(T )) | F0], (2.3)

which measures the first-order sensitivity of px,t(T, κ0, σ
2
0) to κ0 (the time-0 value of the

period effect). For most mortality data sets (including the one we consider), the estimates

of bx are all positive. In this case, according to the above formula, ∆x,t(T ) is always

negative, which means that px,t(T, κ0, σ
2
0) is negatively related to κ0.
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The longevity gamma for px,t(T, κ0, σ
2
0) is defined as

Γx,t(T )

:=
∂2px,t(T, κ0, σ

2
0)

∂κ2
0

(2.4)

= E

exp(−Wx,t(T ))

( T∑
s=1

bx+s−1 exp(Yx,t(s))

)2

−
T∑
s=1

b2
x+s−1 exp(Yx,t(s))

 ∣∣∣∣∣∣ F0

,
(2.5)

which represents the second-order sensitivity of px,t(T, κ0, σ
2
0) to κ0 and, equivalently, the

first-order sensitivity of the longevity delta ∆x,t(T ) to κ0. If Γx,t(T ) is negative, then

px,t(T, κ0, σ
2
0) is a concave function of κ0. The implications of the sign of Γx,t(T ) is further

discussed later in section 2.4.

The longevity vega for px,t(T, κ0, σ
2
0) is defined as

Vx,t(T ) :=
∂px,t(T, κ0, σ

2
0)

∂σ2
0

= −
T∑
s=1

bx+s−1 E

[
exp(Yx,t(s)−Wx,t(T ))

(
∂κt+s
∂σ2

0

) ∣∣∣∣ F0

]
, (2.6)

where
∂κt+s
∂σ2

0

=
t+s∑
u=1

ηu
2σu

∂σ2
u

∂σ2
0

and

∂σ2
u

∂σ2
0

=

β
∏u−1

v=1(αη2
u−v + β) if u ≥ 2

β if u = 1
.

It measures the first-order sensitivity of px,t(T, κ0, σ
2
0) to changes in σ2

0 (the time-0 value of

the conditional volatility). Compared to ∆x,t(T ), Vx,t(T ) contains additionally ∂κt+s/∂σ
2
0,

which measures the sensitivity of the period effect at time t+s to σ2
0. It is also noteworthy

that the longevity vega depends critically on parameter β, which measures the extent of

GARCH effect (i.e., the serial dependence in the conditional variance). If β equals zero,
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then the longevity vega is always zero, which means that px,t(T, κ0, σ
2
0) is no longer sensitive

to the time-0 value of the conditional volatility.

The value of ∆x,t(T ), Γx,t(T ) and Vx,t(T ) can be obtained numerically. In particular,

using N simulated paths of {ηs; s = 1, . . . , t + T} (which should be the same as those

used for calculating px,t(T, κ0, σ
2
0)), we can readily obtain N realizations of Yx,t(s)|F0 and

Wx,t(T )|F0, with which the expectations in expressions (2.3), (2.4) and (2.6) can be eval-

uated.

2.3.3 The Longevity Greeks of a Stylized Pension Plan

We consider a pension plan for a single cohort of pensioners, who are aged x0 at time 0.

The plan pays each pensioner $1 at the end of each year until death or time τ , whichever is

the earliest. Let r be the constant interest rate at which future cash flows are discounted.

When viewed at time 0, the present value of the pension plan’s future cash flows is

L(x0, τ) =
τ∑
s=1

(1 + r)−sSx0,0(s),

which is a random variable that depends on the random realizations of κt for t = 1, . . . , τ .

At time 0, the expected present value of the pension plan’s future cash flows is given

by

L(x0, τ) = E[L | F0] =
τ∑
s=1

(1 + r)−spx0,0(s, κ0, σ
2
0),

which is just a linear combination of various expected survival probabilities. It follows that

the longevity delta, gamma and vega for the pension plan are

∆(L)(x0, τ) =
τ∑
s=1

(1 + r)−s∆x0,0(s),

Γ(L)(x0, τ) =
τ∑
s=1

(1 + r)−sΓx0,0(s)

and

V (L)(x0, τ) =
τ∑
s=1

(1 + r)−sVx0,0(s),
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respectively. These longevity Greeks respectively measure the first-order sensitivity of

L(x0, τ) to κ0, the second-order sensitivity of L(x0, τ) to κ0, and the first-order sensitivity

of L(x0, τ) to σ2
0.

2.3.4 The Longevity Greeks of q-Forwards

A q-forward is characterized by three parameters: the reference age xf , the time-to-

maturity (also known as the reference year) tf , and the forward mortality rate qf . For

a q-forward issued at time 0, the payoff to the fixed rate receiver, payable at time tf , is

qf − qxf ,tf per $1 notional. At an interest rate of r, its (random) discounted value at time

0 is given by

Q(xf , tf ) = (1 + r)−t
f

(qf − qxf ,tf )
= (1 + r)−t

f

(qf − (1− Sxf ,tf−1(1)))

= (1 + r)−t
f

(Sxf ,tf−1(1)− (1− qf )).

Hence, at time 0, the expected present value of the q-forward’s payoff from the per-

spective of the fixed rate receiver is

Q(xf , tf ) = E[Q | F0] = (1 + r)−t
f

(pxf ,tf−1(1, κ0, σ
2
0)− (1− qf )) (2.7)

per $1 notional. As Q(xf , tf ) is linearly related to pxf ,tf−1(1, κ0, σ
2
0), we can easily calculate

the longevity Greeks of the q-forward using what we have developed in Section 2.3.2. It

turns out that the longevity delta, gamma and vega of the q-forward (per $1 notional and

from the fixed receiver’s perspective) are

∆(Q)(xf , tf ) = (1 + r)−t
f

∆xf ,tf−1(1),

Γ(Q)(xf , tf ) = (1 + r)−t
f

Γxf ,tf−1(1),

and

V (Q)(xf , tf ) = (1 + r)−t
f

Vxf ,tf−1(1),

respectively. These longevity Greeks respectively represent the first-order sensitivity of

Q(xf , tf ) to κ0, the second-order sensitivity of Q(xf , tf ) to κ0, and the first-order sensitivity
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of Q(xf , tf ) to σ2
0. Of course, they are functions of the reference age xf and time-to-

maturity tf . However, they do not depend on the forward mortality rate qf , which appears

in Q(xf , tf ) as a constant term and thus becomes irrelevant when derivative is taken.

2.4 Analyzing the Longevity Greeks of q-Forwards

In this section, we study the properties of the three longevity Greeks of q-forwards. All

empirical illustrations are based on the data and model described in Section 2.2 and a

constant interest rate of r = 5% per annum.

2.4.1 Introducing the Curve of exp(− exp(Yx,t(1))) against Yx,t(1)

It follows from equation (2.7) that the expected present value of the payoff to the fixed-rate

receiver of a q-forward (with reference age xf and time-to-maturity tf ) can be expressed

as

Q(xf , tf ) = (1 + r)−t
f

(pxf ,tf−1(1, κ0, σ
2
0)− (1− qf ))

= (1 + r)−t
f

(E
[
Sxf ,tf−1(1)

∣∣ F0

]
− (1− qf ))

= (1 + r)−t
f (

E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
− (1− qf )

)
,

which is linearly related to E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
.

It is clear that the curve of exp(− exp(Yx,t(1))) against Yx,t(1) is very influential to the

expected present value and hence the longevity Greeks of a q-forward. It can be verified

easily that the curve possesses the following properties.

1. For all real values of Yx,t(1), the curve is downward sloping.

2. For all Yx,t(1) < 0 (equivalently speaking, for all mx,t = exp(Yx,t(1)) < 1), the curve

is concave.

3. For Yx,t(1) < −1 (equivalently speaking, for all mx,t < exp(−1) ≈ 0.3679), the curve

becomes increasingly concave as Yx,t increases.
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Figure 2.4: The curve exp(− exp(Yx,t(1))) against Yx,t(1), for −6 < Yx,t(1) < −2, and 100

simulated values of Y65,9(1) (circles), Y75,9(1) (crosses) and Y85,9(1) (squares).

The value of mx,t is typically less than the threshold of 0.3679, except for very high ages.

For instance, this threshold is not exceeded until age 97 (100) for English and Welsh males

(females) in 2011. In practice, it is unlikely that a q-forward with such an extremely

high reference age will be available in the market. Therefore, the portion of the curve of

exp(− exp(Yx,t(1))) that is of our interest is concave, with a concavity that increases with

Yx,t(1). Figure 2.4 shows the curve of exp(− exp(Yx,t(1))) for −6 < Yx,t(1) < −2, a range

that encompasses all values of Yx,t(1)|F0 for x = 60, . . . , 89 and t = 1, . . . , 30, calculated

from 10,000 simulated sample paths of {κt|F0; t = 1, . . . , 30}.

Also shown in Figure 2.4 are 100 simulated values of Yx,9(1)|F0, for x = 65, 75, 85. As x

increases, the cloud of simulated values moves to the right. This outcome is not surprising,

because Yx,t, which represents the log central death rate at age x in year t, should be

monotonically increasing with x when t is fixed. Consequently, for a given t, the simulated

values of Yx,t(1)|F0 = (ax + bxκt+1)|F0 tend to be larger as x increases. Similarly, because
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of the downward trend in κt, we can deduce that for a given x, the simulated values of

Yx,t(1)|F0 tend to be smaller as t increases.

The following analyses draw heavily from the facts concerning the curve of

exp(− exp(Yx,t(1))) against Yx,t(1) and the simulated values of Yx,t(1)|F0.

2.4.2 Properties of the Longevity Delta

The longevity delta of a q-forward (with reference age xf and time-to-maturity tf ) is defined

as the first partial derivative of Q(xf , tf ) with respect to κ0. Assuming the expectation

and differential operator can be interchanged, it can be expressed as

∆(Q)(xf , tf ) = (1 + r)−t
f

∆xf ,tf−1(1)

= (1 + r)−t
f ∂

∂κ0

E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
= (1 + r)−t

f

E

[(
∂ exp(− exp(Yxf ,tf−1(1)))

∂Yxf ,tf−1(1)

)(
∂Yxf ,tf−1(1)

∂κ0

) ∣∣∣∣ F0

]
= (1 + r)−t

f

bxf E

[
∂ exp(− exp(Yxf ,tf−1(1)))

∂Yxf ,tf−1(1)

∣∣∣∣ F0

]
. (2.8)

Figure 2.5 shows the longevity deltas of q-forwards with reference ages xf = 60, . . . , 89

and times-to-maturity tf = 1, . . . , 30. All of the longevity deltas are negative, which

is expected because the curve of exp(− exp(Yx,t(1))) against Yx,t(1) is always downward

sloping (so that the expectation of the partial derivative is negative) and the values of bx

for all x ∈ [60, 89] are positive.

We also observe that the longevity delta of a q-forward increases (becomes less negative)

when its time-to-maturity tf lengthens, but decreases (becomes more negative) when its

reference age xf rises. These trends can be explained by considering equation (2.8), which

suggests that the estimate of ∆(Q)(xf , tf ) is proportional to the gradient of the curve of

exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) over the region of Yxf ,tf−1(1) that the simulated

values of Yxf ,tf−1(1)|F0 span.

As argued in Section 2.4.1, for a fixed xf , the cloud of the simulated values of

Yxf ,tf−1(1)|F0 tends to move leftwards as tf increases, lining up along the flatter portion
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Figure 2.5: The longevity delta of q-forwards with reference ages xf = 60, . . . , 89 and times-to-

maturity 1, . . . , 30.

of the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1). Moreover, the discount factor

in ∆(Q)(xf , tf ) approaches zero as tf increases. As such, the magnitude of the longevity

delta is smaller as the time-to-maturity tf becomes longer.

The relationship between ∆(Q)(xf , tf ) and xf is more complicated. On one hand, the

magnitude of the expectation in equation (2.8) increases with xf , as the cloud of the

simulated values of Yxf ,tf−1(1)|F0 tends to move rightwards when xf increases. On the

other hand, the magnitude of bxf reduces as xf increases (see Figure 2.1). However, in this

illustration, the former effect outweighs the latter, and consequently the magnitude of the

longevity delta becomes larger as the reference age xf becomes higher.

2.4.3 Properties of the Longevity Gamma

The longevity gamma of a q-forward (with reference age xf and time-to-maturity tf ) is

defined as the second partial derivative of Q(xf , tf ) with respect to κ0. Assuming the
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expectation and differential operator are interchangeable, it can be expressed as

Γ(Q)(xf , tf ) = (1 + r)−t
f

Γxf ,tf−1(1),

= (1 + r)−t
f ∂2

∂κ2
0

E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
= (1 + r)−t

f

b2
xf E

[
∂2 exp(− exp(Yxf ,tf−1(1)))

∂(Yxf ,tf−1(1))2

∣∣∣∣ F0

]
. (2.9)

Figure 2.6 shows the longevity gamma of q-forwards with reference ages xf = 60, . . . , 89

and times-to-maturity tf = 1, . . . , 30. The following observations can be made:

• As the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is concave, the expectation

of the second partial derivative in equation (2.9) is negative and so is Γ(Q)(xf , tf ).

• As tf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move

leftwards where the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is less con-

cave, so the expectation of the second partial derivative in equation (2.9) becomes

less negative. Compounded by the fact that the discount factor diminishes with tf ,

the value of Γ(Q)(xf , tf ) becomes less negative as tf increases.

• The relationship between Γ(Q)(xf , tf ) and xf depends on two offsetting effects. As xf

increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move rightwards

where the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is more concave, which

in turn means that the expectation of the second partial derivative in equation (2.9)

becomes larger in magnitude. On the other hand, as xf increases, the magnitude

of bxf reduces (see Figure 2.1). For xf < 85, bxf reduces rather gently with xf ,

so the former effect dominates and the magnitude of Γ(Q)(xf , tf ) increases with xf .

However, the opposite is true for xf > 85 when bxf reduces rapidly with xf .

• The relationship between Γ(Q)(xf , tf ) and xf is somewhat jagged. The jaggedness

arises because the estimates of bx are not perfectly smooth across ages (see Figure

2.1).
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Figure 2.6: The longevity gamma of q-forwards with reference ages xf = 60, . . . , 89 and times-

to-maturity tf = 1, . . . , 30.

2.4.4 Properties of the Longevity Vega

In terms of Yxf ,tf−1(1), the longevity vega of a q-forward (with reference age xf and time-

to-maturity tf ) can be expressed as

V (Q)(xf , tf ) = (1 + r)−t
f

Vxf ,tf−1(1),

= (1 + r)−t
f ∂

∂σ2
0

E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
, (2.10)

which suggests that from a numerical perspective, V (Q)(xf , tf ) measures how the average

of the simulated values of exp(− exp(Yxf ,tf−1(1))) will change when the time-0 conditional

volatility σ2
0 increases by an arbitrarily small amount.

Figure 2.7 shows the longevity vega of q-forwards with reference ages xf = 60, . . . , 89

and times-to-maturity tf = 1, . . . , 30. As with the longevity delta and gamma, the

longevity vega is negative for all reference ages and times-to-maturity considered. A neg-

ative longevity vega means that the expected present value of a q-forward decreases as

the conditional volatility (σ2
0) of the current period effect increases. The negativeness
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Figure 2.7: The longevity vega of q-forwards with reference ages xf = 60, . . . , 89 and times-to-

maturity 1, . . . , 30.

of the longevity vega is related to the concavity of the curve of exp(− exp(Yxf ,tf−1(1)))

against Yxf ,tf−1(1), which means that the sensitivity of exp(− exp(Yxf ,tf−1(1))) to changes

in Yxf ,tf−1(1) is asymmetric. When σ2
0 increases, the range of the simulated values of

Yxf ,tf−1(1)|F0 widens symmetrically around E
[
Yxf ,tf−1(1)

∣∣ F0

]
; however, because of the

asymmetric sensitivity, the average of the simulated values of exp(− exp(Yxf ,tf−1(1)))|F0

reduces, thereby resulting in a negative longevity vega.1 This phenomenon is demonstrated

in Figure 2.8, which compares the simulated values of exp(− exp(Yx,t(1)))|F0 that are based

on two different assumed values of σ2
0.

The relationship between the longevity vega and the reference age (xf ) is a result of

the tradeoff between two offsetting effects:

1. When xf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move

rightwards where the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is more

1According to Theorem 2 in Section 2.5.3, the third moment of κtf |F0 about its mean is zero. It follows

that the distribution of Yxf ,tf−1(1) = axf + bxfκtf given F0 is symmetric.
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Figure 2.8: The simulated values of exp(− exp(Yx,t(1)))|F0 based on a smaller value of σ2
0 (the

left panel) and a larger value of σ2
0 (the right panel). The values of x and t used are arbitrary.

concave. The effect of asymmetric sensitivity becomes more severe, thereby pushing

the longevity vega more negative.

2. When xf increases, bxf reduces and so does the variance of Yxf ,tf−1(1)|F0 (which is

proportional to the square of bxf ). As the simulated values of Yxf ,tf−1(1)|F0 span a

smaller range, the effect of asymmetric sensitivity becomes less significant, and hence

the longevity vega tends to be less negative.

As seen in the left panel of Figure 2.7, in this illustration the first effect dominates for

xf < 85 but the opposite happens when xf > 85.

The relationship between the longevity vega and the time-to-maturity (tf ) depends on

the following three factors:

1. Given the assumed stochastic process for κt, the volatility of κtf |F0 increases with
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tf . As such, when tf increases, the volatility of Yxf ,tf−1(1)|F0 = (axf + bxfκtf )|F0

increases and thus the simulated values of Yxf ,tf−1(1)|F0 span a wider range. Conse-

quently, the effect of asymmetric sensitivity becomes more significant, thereby push-

ing the longevity vega more negative.

2. As tf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move left-

wards where the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is less concave.

The effect of asymmetric sensitivity becomes less significant, and thus the longevity

vega tends to be less negative.

3. As tf increases, the discount factor in equation (2.10) reduces and hence the longevity

vega tends to be less negative.

The first factor dominates when tf is small, but the second and third factors become more

influential when tf is high. In this illustration, the turning point is at tf = 12 (see the

right panel of Figure 2.7).

2.5 Greek Hedging of Longevity Risk

In this section, we consider different static longevity Greek hedging strategies, and inves-

tigate the how much hedge effectiveness can be obtained using different combinations of

longevity Greeks and q-forwards.

2.5.1 Assumptions

The following assumptions are used in the rest of this section:

1. The liability being hedged is a pension plan for a single cohort of individuals aged

x0 = 60 at time 0. The pension plan pays each pensioner $1 at the end of each year

until age 89 or death, whichever is the earliest (i.e. τ = 30).

2. At time 0, a static longevity hedge for the pension plan is constructed using one or

two q-forwards.
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3. At time 0, q-forwards with reference ages xf = 60, . . . 89 and times-to-maturity tf =

1, . . . , 30 years are available. The q-forwards’ reference population is the EW female

population.

4. The mortality experience of the plan members is identical to that of the EW female

population, so that there is no population basis risk.

5. The interest rate for all durations is r = 5% per annum.

6. The longevity Greeks are numerically calculated based on 10,000 mortality scenarios

that are generated from the model described in Section 2.2.

Under these assumptions, the longevity Greeks of the liability being hedged are fixed

regardless of how many q-forwards are used and what the reference age(s) and time(s)-to-

maturity are. It turns out that the liability being hedged has an expected present value

of L(60, 30) = 13.4403, a longevity delta ∆(L)(60, 30) = −0.0562, a longevity gamma of

Γ(L)(60, 30) = −0.0014, and a longevity vega of V (L)(60, 30) = −0.0053.

2.5.2 The Evaluation Metric

We measure hedge effectiveness with the following metric:

HE = 1− Var(L(60, 30)−
∑J

i=1 u(xfi , t
f
i )Q(xfi , t

f
i )|F0)

Var(L(60, 30)|F0)
, (2.11)

where

• J denotes the number of q-forwards used,

• u(xfi , t
f
i ) represents the notional amount of the ith q-forward used, and

• xfi and tfi are the reference age and time-to-maturity for the ith q-forward used,

respectively.
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In the fraction, the numerator is the hedged position’s variance whereas the denominator

is the unhedged position’s variance. It follows that a value of HE that is close to one

indicates a good hedge effectiveness.

We simulate 10,000 mortality scenarios on top of those used for calculating the longevity

Greeks. The additional 10,000 simulated mortality scenarios enable us to calculate real-

izations of L(60, 30)|F0 and Q(xf , tf )|F0, with which the value of HE can be estimated.

2.5.3 Single Longevity Greek Hedging

When using J = 1 q-forward to match one longevity Greek, we find the required notional

amount by setting

G(L)(60, 30)− u(G)(xf , tf )G(Q)(xf , tf ) = 0,

which gives

u(G)(xf , tf ) =
G(L)(60, 30)

G(Q)(xf , tf )
,

where G = ∆, V represents the longevity Greek being matched. We do not consider

gamma hedges here, as it does not seem legitimate to match the second-order sensitivity

to κ0 without matching the first-order sensitivity.

It is clear that the notional amount and hence the hedge effectiveness depend on G,

xf and tf . Figure 2.9 (left and middle panels) shows the values of HE for G = ∆, V ,

xf = 60, . . . , 89 and tf = 1, . . . , 30.

We also benchmark the Greek hedges against the corresponding ex post ‘optimal’

hedges, which are obtained by searching for the notional amount that minimizes the hedged

position’s variance. Following the results of Cairns et al. (2014), for a hedge with J = 1

q-forward, the ex post optimal notional amount is

u(opt)(xf , tf ) =

√
Var(L(60, 30)|F0)

Var(Q(xf , tf )|F0)
× Corr(L(60, 30),Q(xf , tf )|F0), (2.12)

which gives a hedge effectiveness equal to the square of Corr(L(60, 30),Q(xf , tf )|F0). The

variances and correlation in equation (2.12) are estimated using the 10,000 mortality sce-
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Figure 2.9: The values of HE for the delta hedges (left panel), vega hedges (middle panel) and

ex post optimal hedges (right panel) with J = 1 q-forward, xf = 60, . . . , 89 and tf = 1, . . . , 30.

narios which we use to evaluate the Greek hedges. The right panel of Figure 2.9 shows the

ex post optimal hedge effectiveness for different combinations of xf and tf .

Several interesting relationships are observed in Figure 2.9. First, for a given time-

to-maturity, the hedge effectiveness is insensitive to the choice of the reference age. This

outcome is not overly surprising, because the assumed Lee-Carter structure implies that

ln(mx,t) and ln(my,t) are perfectly correlated even if x 6= y. As such, q-forwards with the

same time-to-maturity but different reference ages should result in similar levels of hedge

effectiveness.

Second, a delta hedge is almost equally effective as the ex post optimal hedge when

the q-forward’s time-to-maturity is short (less than 15 years), but is very ineffective when

the q-forward’s time-to-maturity is long. This outcome can be attributed to the pattern

of ∆(Q)(xf , tf ) against tf (Figure 2.5, right panel), which implies that in a delta hedge the

notional amount u(∆)(xf , tf ) = ∆(L)(60, 30)/∆(Q)(xf , tf ) of the q-forward increases rapidly

as tf increases. However, the optimal notional amount u(opt)(xf , tf ) does not increases

rapidly with tf . In effect, as tf increases, u(∆)(xf , tf ) moves away from u(opt)(xf , tf ),

leading to a highly sub-optimal hedge effectiveness. See Figure 2.10 for an illustration.

Third, in contrast, the effectiveness of a vega hedge approaches that of the ex post

optimal hedge when the q-forward’s time-to-maturity becomes longer. This relationship is

associated with the moments of κtf (about its mean) under the assumed GARCH process.

In more detail, recall that Q(xf , tf ) (the expected present value of the payoff from a q-
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Figure 2.10: The notional amount of the delta hedge, vega hedge and optimal hedge that are

built using a q-forward with reference age xf = 80 and times-to-maturity tf = 1, . . . , 30.

forward with reference age xf and time-to-maturity tf ) is linearly related to

pxf ,tf−1(1, κ0, σ
2
0) = E[exp(− exp (axf + bxfκtf )) | F0] = E[f(κtf ) | F0],

where

f(κtf ) := exp(− exp(axf + bxfκtf ))

is defined for convenience. Using a fourth order Taylor’s expansion, we have

pxf ,tf−1(1, κ0, σ
2
0) ≈f(κ0 + tfµ) +

1

2!

∂2f

∂κ2
tf

E

 tf∑
s=1

σsηs

2 ∣∣∣∣∣∣ F0


+

1

3!

∂3f

∂κ3
tf

E

 tf∑
s=1

σsηs

3 ∣∣∣∣∣∣ F0

+
1

4!

∂4f

∂κ4
tf

E

 tf∑
s=1

σsηs

4 ∣∣∣∣∣∣ F0

,
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where partial derivatives are evaluated at E[κtf | F0] = κ0 + tfµ, which is free of σ2
0. The

moments of
∑tf

s=1 σsηs (i.e., the moments of κtf about its mean) satisfy the following results.

Theorem 1. For tf ≥ 1,

E

 tf∑
s=1

σsηs

2 ∣∣∣∣∣∣ F0

 = ztf ,0 + ztf ,1σ
2
0, (2.13)

where ztf ,0 and ztf ,1 do not depend on σ2
0.

Proof. See Appendix B.

Theorem 2. For tf ≥ 1,

E

 tf∑
s=1

σsηs

3 ∣∣∣∣∣∣ F0

 = 0. (2.14)

Proof. See Appendix C.

Theorem 3. For tf ≥ 1,

E

 tf∑
s=1

σsηs

4 ∣∣∣∣∣∣ F0

 = ctf ,0 + ctf ,1σ
2
0 + ctf ,2σ

4
0, (2.15)

where ctf ,0, ctf ,1 and ctf ,2 do not depend on σ2
0. Furthermore, ctf ,1 tends to ∞ as tf →∞,

and if 3α2 + 2αβ + β2 < 1 then ctf ,2 tends to a constant as tf →∞.

Proof. See Appendix D.

Our estimated GARCH(1,1) model satisfies the condition that 3α2 + 2αβ+β2 < 1 (see

Table 2.2).2 It follows from the results above that Q(xf , tf ) is approximately a quadratic

function of σ2
0, with a curvature that diminishes as tf tends to infinity. In other words,

the longevity vega V (Q)(xf , tf ) = ∂Q(xf , tf )/∂σ2
0 tends to be a more accurate measure of

the sensitivity of Q(xf , tf ) to σ2
0 as tf increases, and thus the effectiveness of a vega hedge

tends to be closer to that of the ex post optimal hedge for higher values of tf .

2All stationary ARCH(1) models (in which α = 0 and β < 1) meet this condition. However, admittedly,

not all GARCH(1,1) models satisfy this condition, even if they are stationary with α+ β < 1.
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2.5.4 Multiple Longevity Greek Hedging

Calculating the Notional Amounts

We now consider matching two longevity Greeks with J = 2 q-forwards. We let G1 and G2

be the two longevity Greeks being matched, and u(G1,G2)(xf1 , t
f
1) and u(G1,G2)(xf2 , t

f
2) be the

notional amounts of the two q-forwards in the resulting hedge portfolio. We have(
G(Q)

1 (xf1 , t
f
1) G(Q)

1 (xf2 , t
f
2)

G(Q)
2 (xf1 , t

f
1) G(Q)

2 (xf2 , t
f
2)

)(
u(G1,G2)(xf1 , t

f
1)

u(G1,G2)(xf2 , t
f
2)

)
=

(
G(L)

1 (60, 30)

G(L)
2 (60, 30)

)
, (2.16)

which gives

u(G1,G2)(xf1 , t
f
1) =

G(L)
1 (60, 30)G(Q)

2 (xf2 , t
f
2)− G(Q)

1 (xf2 , t
f
2)G(L)

2 (60, 30)

G(Q)
1 (xf1 , t

f
1)G(Q)

2 (xf2 , t
f
2)− G(Q)

1 (xf2 , t
f
2)G(Q)

2 (xf1 , t
f
1)

(2.17)

and

u(G1,G2)(xf2 , t
f
2) =

G(L)
2 (60, 30)G(Q)

1 (xf1 , t
f
1)− G(Q)

2 (xf1 , t
f
1)G(L)

1 (60, 30)

G(Q)
1 (xf1 , t

f
1)G(Q)

2 (xf2 , t
f
2)− G(Q)

1 (xf2 , t
f
2)G(Q)

2 (xf1 , t
f
1)
. (2.18)

It is clear that u(G1,G2)(xf1 , t
f
1) and u(G1,G2)(xf2 , t

f
2) depend on the two q-forwards’ specifi-

cations as well as the two matched longevity Greeks (G1,G2), which can be either (∆,Γ)

or (∆, V ). We do not consider (Γ, V ), because it does not seem appropriate to match Γ

without matching ∆.

A necessary (but not sufficient) condition for two q-forwards with different times-to-

maturity to provide risk reduction is that the notional amounts of both q-forwards must

be positive; that is, the hedger must be the fixed leg receiver in both q-forwards. This

condition can explained as follows.

• When both notional amounts are negative, the present values of the q-forward port-

folio and the pension liability change in the same direction for any departure from

the expected mortality trajectory. The pension plan provider will be subject to even

more longevity risk compared to the naked position.
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• If one notional amount is negative and the other is positive, then the hedged position

will be very vulnerable to ‘non-linear’ mortality scenarios. To illustrate, let us sup-

pose that the notional amount of the shorter-dated q-forward is negative while that

of the longer-dated is positive. Suppose further that on the earlier maturity date the

realized mortality is lower than expected, so that the hedger suffers a loss (arising

from both the unexpected increase in the pension liability and the net payment to

the q-forward’s counterparty). If the realized mortality on the later maturity date

is also lower than expected, then the payoff from the longer-dated q-forward may

defray the earlier hedge loss (provided that the notional amount of the longer-dated

q-forward is sufficiently large). However, if it turns out to be higher than expected

(i.e., a ‘non-linear’ scenario), then the earlier hedge loss can never be recovered.

We remark that this condition does not apply when the q-forwards have the same time-

to-maturity, because in this case the payoffs from both q-forwards are made at the same

time.

Using equations (2.17) and (2.18), it can be shown straightforwardly that to have both

u(G1,G2)(xf1 , t
f
1) and u(G1,G2)(xf2 , t

f
2) being positive, we require

G(Q)
1 (xf1 , t

f
1)

G(Q)
2 (xf1 , t

f
1)
>
G(L)

1 (60, 30)

G(L)
2 (60, 30)

>
G(Q)

1 (xf2 , t
f
2)

G(Q)
2 (xf2 , t

f
2)
, (2.19)

that is, the ratio of the two matched longevity Greeks for the liability being hedged must

be strictly in between those of the two q-forwards. This necessary condition explains many

of the hedging results we are about to present.

The Impact of the Reference Age Combinations

We now examine the effectiveness of the delta-gamma and delta-vega hedges for different

reference ages when the times-to-maturity are fixed to 5 and 15 years, respectively. As

in the previous sub-section, we benchmark the Greek hedges against their corresponding

ex post optimal hedges, which are obtained by minimizing the hedged position’s variance

on the basis of the 10,000 mortality scenarios used for evaluating the Greek hedges. The
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Figure 2.11: The values of HE for the delta-gamma hedges (left panel), delta-vega hedges (middle

panel) and ex post optimal hedges (right panel) with J = 2 q-forwards, tf1 = 5, tf2 = 15,

xf1 , x
f
2 = 60, . . . , 89.

hedging results are displayed in Figure 2.11. For delta-gamma hedges, most reference age

combinations yield low or even negative hedge effectiveness; a meaningful reduction in risk

only happens when one reference age is greater than 86 but the other is not. In contrast,

for delta-vega hedges, the hedge effectiveness is much more robust relative to the choice of

reference ages, and is much closer to that produced by the corresponding ex post optimal

hedges.

To explain the hedging results, let us study Figure 2.12 which demonstrates how the

delta/gamma and delta/vega ratios of a q-forward may vary with its reference age when its

time-to-maturity is fixed. Also shown in Figure 2.12 are the corresponding delta/gamma

and delta/vega ratios for the liability being hedged (the solid horizontal lines).

Let us first focus on the delta/gamma ratios (the left panel of Figure 2.12). The

delta/gamma ratio of a q-forward depends quite heavily on its reference age. The sensitivity

to xf can be understood from the following formula:

∆(Q)(xf , tf )

Γ(Q)(xf , tf )
=

E
[
exp(Yxf ,tf−1(1)−Wxf ,tf−1(1))

∣∣ F0

]
bxf E

[
exp(Yxf ,tf−1(1)−Wxf ,tf−1(1))(1− exp(Yxf ,tf−1(1)))

∣∣ F0

] , (2.20)

which says that the delta/gamma ratio is inversely related to bxf . Indeed, the pattern of

the delta/gamma ratios against xf is reminiscent of the pattern of bx against x (Figure

2.1). However, the trends for tf = 5 and tf = 15 almost overlap each other, indicating that
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the delta/gamma ratio is very insensitive to its reference age. From the graph, it is quite

clear that in order to satisfy the necessary condition specified by (2.19), one q-forward in

the portfolio must have a reference age less than or equal to 86 and the order must have a

reference age greater than 86.

Next, we turn to the delta/vega ratios (the right panel of Figure 2.12). In stark contrast,

the delta/vega ratio of a q-forward are rather sensitive to its time-to-maturity (the trends

for tf = 5 and tf = 15 are far apart), but are relatively less sensitive to its reference age.

The following formula casts some light on the observed sensitivity to tf and insensitivity

to xf :
∆(Q)(xf , tf )

V (Q)(xf , tf )
=

E
[
exp(Yxf ,tf−1(1)−Wxf ,tf−1(1))

∣∣ F0

]
E
[
exp(Yxf ,tf−1(1)−Wxf ,tf−1(1))

(
∂κ

tf

∂σ2
0

) ∣∣∣ F0

] ,
In the above, the only difference between the denominator and numerator is ∂κtf/∂σ

2
0,

which of course depends heavily on tf . Compared to equation (2.20), bxf no longer appears

as a coefficient of the expectation in the denominator, offering an explanation to why the

delta/vega ratio is relatively less sensitive to xf . As a consequence, for the chosen times-

to-maturity (5 and 15 years), all reference age combinations meet the necessary condition

specified by (2.19), offering a reason as to why the effectiveness of a delta-vega hedge is

fairly robust relative to the q-forwards’ reference ages.

The Impact of the Time-to-Maturity Combinations

We now fix the reference ages to xf1 = 80 and xf2 = 89, and examine how the hedge

effectiveness may vary with the q-forwards’ times-to-maturity.3 The hedging results are

presented in Figure 2.13.

Except when both times-to-maturity are high, the delta-gamma hedges are almost as

effective as their corresponding ex post optimal hedges for all time-to-maturity combina-

tions. We can attribute this outcome to the property that the delta/gamma ratio of a

q-forward is sensitive to its reference age but not to its time-to-maturity. The implication

3When considering delta-gamma hedges with tf1 = 5 and tf2 = 15, these two reference ages result in the

highest level of hedge effectiveness. Other reference ages may also be used in this analysis, provided that

one of them is less than or equal to 86 and the other is greater than 86.
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Figure 2.12: The delta-gamma (left penal) and delta-vega (right penal) ratios for q-forwards

with tf = 5, 15 and xf = 60, . . . , 89. The solid horizontal line in the left (right) panel represents

the delta-gamma (delta-vega) ratio for the liability being hedged.

of this property can be observed from the left panel of Figure 2.14, which shows that when

the reference ages are fixed to 80 and 89 the necessary condition specified by (2.19) is met

no matter what times-to-maturity are chosen. The delta-gamma hedges do not perform

well when both times-to-maturity are high, because in this case the deltas and gammas

of both q-forwards are very small (see Figures 2.5 and 2.6) so that the matrix on the

left-hand-side of equation (2.16) is close to singular.

On the other hand, the delta-vega hedges perform well for only some time-to-maturity

combinations. This outcome can be explained by considering the property that the

delta/vega ratio of a q-forward is sensitive to its time-to-maturity but not so much to

its reference age. Because of this property, from Figure 2.14 we observe that in order to

satisfy the necessary condition specified by (2.19). when the q-forward with xf = 80 has

a time-to-maturity of less than 10 years, the other q-forward (with xf = 89) must have a

time-to-maturity of greater than 15 years; likewise, when the q-forward with xf = 89 has

a time-to-maturity of less than 15 years, the other q-forward (with xf = 80) must have a
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Figure 2.13: The values of HE for the delta-gamma hedges (left panel), delta-vega hedges (middle

panel) and ex post optimal hedges (right panel) with J = 2 q-forwards, xf1 = 80, xf2 = 89,

tf1 , t
f
2 = 1, . . . , 30.

time-to-maturity of greater than 10 years. It is noteworthy that part of the diagonal in the

middle panel of Figure 2.13 is fairly bright. This result is because, as previously mentioned,

the necessary condition specified by (2.19) does not apply when the two q-forwards have

identical time-to-maturity.

2.6 Validation with a Model-Free Approach

2.6.1 The Non-parametric Bootstrap

In Section 2.5, the model used to generate the evaluation scenarios is identical to the model

from which the longevity Greeks are derived. We now examine how the hedging results

may change when the model assumptions are waived in the evaluation work. To this end,

we employ the non-parametric (model-free) bootstrapping method that was considered by

Li and Ng (2011). The method is implemented as follows:

1. Calculate the historical mortality reduction rates, defined as

rx,t =
mx,t+1

mx,t

.

41



1 5 10 15 20 25 30
0

10

20

30

40

50

60

1 5 10 15 20 25 30
0

10

20

30

40

50

60

Figure 2.14: The delta-gamma (left penal) and delta-vega (right penal) ratios for q-forwards

with xf = 80, 89 and tf = 1, . . . , 30. The solid horizontal line in the left (right) panel represents

the delta-gamma (delta-vega) ratio for the liability being hedged.

Since we have 91 years of data, 90 values of rx,t are obtained for each age. The

augmented Dickey-Fuller test is performed to confirm that the trend of rx,t over time

at every age is weakly stationary.

2. Construct vectors of historical mortality improvement rates, i.e.,

rt = (r60,t, . . . , r89,t)
′

for t = 1921, . . . , 2010. The vectorization is performed to preserve any potential

correlation across the age dimension.

3. To retain the potential serial dependence, rt for t = 1921, . . . , 2010 are grouped into

overlapping blocks of size 2. The following 89 blocks are obtained:

(r1921, r1922), (r1922, r1923), . . . , (r2008, r2009), (r2009, r2010).

The same block size was also used by Li and Ng (2011). We have considered other

block sizes, which lead to similar conclusions.
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4. A pseudo sample of reduction rates is obtained by drawing randomly from the 89

blocks in the previous step with replacement and pasting the blocks drawn end to

end. The pseudo sample of reduction rates is multiplied by the most recent central

death rates (mx,2011;x = 60, . . . , 89) to form a simulated mortality scenario.

5. Repeat the previous step 10,000 times to obtain 10,000 simulated mortality scenarios,

which give 10,000 realizations of L(60, 30)|F0 and Q(xf , tf )|F0 for xf = 60, . . . , 89

and tf = 1, . . . , 30. The realizations of L(60, 30)|F0 and Q(xf , tf )|F0 allow us to

estimate the effectiveness of the Greek hedges using equation (2.11). They also

permit us to derive the ex post optimal (variance-minimizing) hedges. Note that

the longevity Greeks (and hence the notional amounts in the Greek hedges) are still

calculated from the Lee-Carter model with GARCH effects.

Figure 2.15 shows the effectiveness of various hedges, estimated using the non-

parametric bootstrapping method. As expected, the effectiveness of all hedges is reduced

as the model assumptions are waived.

Let us first focus on the top row, where the effectiveness of the single Greek hedges

is presented. Still, the delta and vega hedges can still perform comparably to the ex post

optimal hedges, provided that the q-forward’s time-to-maturity is appropriately selected.

The vega hedges are almost as effective as the ex post optimal hedges if the q-forward’s

time-to-maturity is longer than 10 years, whereas the delta hedges perform similarly to the

ex post optimal hedges only if a short-dated q-forward is used. These observations are in

line with the those made in Section 2.5.3.

When both the evaluation scenarios and the longevity Greeks are obtained from our

assumed model, which implies that the log mortality rates at a given time point are per-

fectly correlated across ages, the effectiveness of the single Greek hedges is robust relative

to the q-forward’s reference age (see Figure 2.9). When the evaluation scenarios are ob-

tained from the non-parametric bootstrap, the assumption of perfect age correlation no

longer holds and thus we observe that the robustness with respect to the choice of refer-

ence ages is weakened. For both delta and vega hedges, the non-parametrically estimated

hedge effectiveness increases and then decreases with the q-forward’s reference age. This
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pattern may be explained by considering the age-specific goodness-of-fit produced by the

Lee-Carter model, which can be measured by the following explanation ratio:

ER(x) = 1−
∑

t (ln(mx,t)− ax − bxκt)2∑
t (ln(mx,t)− ax)2 ,

where the summations are taken over the entire sample period.4 The model gives a better

fit to age x than age y if ER(x) is greater than ER(y). As shown in Figure 2.16, the

estimated values of ER(x) suggest that the Lee-Carter model gives a poorer fit at the ends

of the age range. As a consequence, the sensitivity measures for a q-forward tend to be

more inaccurate when its reference age is too high or low. The inaccuracy in turn leads to

a low hedge effectiveness.

Next, we turn to the middle row of Figure 2.15, which displays the non-parametrically

calculated HE values for the hedges with two q-forwards, of which the times-to-maturity

are fixed to 5 and 15 years and the reference ages are allowed to vary from 60 to 89.

The major conclusions drawn in Section 2.5.4 are still preserved even when the evaluation

scenarios are generated using a model-free approach: (i) the delta-gamma hedges do not

give a satisfactory performance for most combination of reference ages (that lead to one

negative and one positive notional amounts); (i) compared to a delta-gamma hedges, a

delta-vega hedge is much more robust with respect to the choice of reference ages.

Finally, we study the bottom row of Figure 2.15, which displays the non-parametrically

calculated HE values for the hedges with two q-forwards, of which the reference ages are

fixed to 80 and 89 and the times-to-maturity are allowed to vary from 1 to 30 years. The key

conclusions drawn in Section 2.5.4 can still be observed: (i) the delta-vega hedges perform

satisfactorily only for some time-to-maturity combinations; (ii) delta-gamma hedges do not

work well when the q-forwards’ times-to-maturity are long.

2.6.2 Other Considerations

With modest adaptations, the procedure presented in the previous sub-section can be used

to examine what may happen to the hedge effectiveness if the true model is different from

4This metric is adopted from the (non-age-specific) explanation ratio considered by Li and Lee (2005).
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the assumed model with which the longevity Greeks are derived.

We now study the changes in hedge effectiveness if the true model is the Cairns-Blake-

Dowd (CBD) model (Cairns et al., 2006), which is different from the assumed model in

two aspects: (1) there is one additional period effect; (2) the age effect that interacts with

a period effect is perfectly linear. The study is accomplished by replacing Steps 1 to 4 in

the procedure presented in the previous sub-section with the following:

• Obtain one set of simulated central death rates (mx,2011;x = 60, . . . , 89) from the

CBD model that is fitted to the data set described in Section 2.2.

Step 5 in the procedure remains unchanged.

The results are displayed graphically in Figure 2.17, which has exactly the same layout

as that of Figure 2.15. The heat maps in Figure 2.17 are generally brighter than those in

Figure 2.15, suggesting that the Greek hedges perform better when the actual mortality

dynamics follow a certain model (which is not necessarily the same as the model assumed

in the calculation of Greeks) than when the actual mortality dynamics follow no specific

model. More importantly, we observe that the following relationships (identified in Section

2.5) are still valid when the true model is the CBD model instead of the one on which the

calculation of Greeks is based:

1. The delta and vega hedges can still perform comparably to the ex post optimal

hedges, provided that the q-forward’s time-to-maturity is appropriately selected.

2. The delta-gamma hedges do not give a satisfactory performance for most combination

of reference ages.

3. Compared to a delta-gamma hedges, a delta-vega hedge is much more robust with

respect to the choice of reference ages.

4. The delta-vega hedges perform satisfactorily only for some time-to-maturity combi-

nations.

5. Delta-gamma hedges do not work well only when the q-forwards’ times-to-maturity

are long.
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2.7 Concluding Remarks

In this chapter, we consider three longevity Greeks which enable us to calibrate an index-

based longevity hedge. Most notably, we propose the longevity vega to address the empir-

ical fact that for many populations the volatility of mortality improvement rates changes

stochastically over time. Semi-analytical formulas for the longevity Greeks of a q-forward

and a stylized pension plans are provided.

The properties of the three longevity Greeks for q-forwards are studied. It is found that,

for example, while the magnitudes of the longevity delta and gamma reduce with the time-

to-maturity, the magnitude of the longevity vega increases and then decreases with the

time-to-maturity. All of these properties can be explained by considering (i) the gradient

and concavity of the curve of exp(− exp(Yx,t(1))) against Yx,t(1), (ii) the magnitude and

variability of Yx,t(1), (iii) the pattern of bx across age, and (iv) the time-value of money.

We construct static hedges by matching one or two longevity Greeks, and examine

how the performance of the Greek hedges may vary with the reference age(s) and time(s)-

to-maturity of the q-forward(s) used. For instance, when matching one longevity Greek

(with one q-forward), the hedge effectiveness is highly sensitive to the q-forward’s time-to-

maturity but not so to the q-forward’s reference age. Specifically, a delta hedge performs

satisfactory only when the time-to-maturity is short, whereas a vega hedge behaves in the

opposite way. This finding may help hedgers decide which longevity Greek to use when a

q-forward with a certain specification is available to them.

We fully acknowledge that the longevity Greeks are model dependent. Under another

stochastic mortality model, the expressions for the longevity Greeks would become quite

different. To address this problem, we validate our Greek hedges using the non-parametric

bootstrapping method which does not depend on any model. As expected, the hedge

effectiveness estimated using the model-free approach is not as good as that estimated

using the model from which the longevity Greeks are derived. Nevertheless, many of the

points we made concerning the relationship between hedge effectiveness and q-forward

specifications are still observed even when the evaluation scenarios are generated by a

model-free approach.

We conclude this chapter with a discussion of its caveats. First, the existence of
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stochastic volatility (and hence the necessity of the longevity vega) is data dependent.

For some populations, particularly those with little historical mortality data, conditional

heteroskadasticity may not be statistically significant. We will revisit this issue in Chapter

4. Second, we focus on q-forwards only and paid no attention to other mortality-linked

securities such as S-forwards and longevity bonds. While the longevity Greeks for these

more complex securities can be derived, their properties may not be easily explained using

simple arguments. In Chapter 4, we will use S-forwards as the hedging instrument. Fi-

nally, we disregard small sample risk and population basis risk. Small sample risk can be

easily taken into account by using a death count process in future research. The impact of

population basis risk on an index-based longevity hedge is investigated in Chapter 3 using

a multi-population mortality model.
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Figure 2.15: The values of HE produced by the delta, vega, delta-gamma, delta-vega and ex post

optimal hedges for different choices of reference age(s) and time(s)-to-maturity. All HE values

are calculated using the non-parametric bootstrapping method with a block size of 2.
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Figure 2.16: The explanation ratio ER(x) for x = 60, . . . , 89.
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Figure 2.17: The values of HE produced by the delta, vega, delta-gamma, delta-vega and ex post

optimal hedges for different choices of reference age(s) and time(s)-to-maturity. All HE values

are calculated using the CBD model that is fitted to the data set described in Section 2.2.
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Chapter 3

Delta-Hedging Longevity Risk under

the M7-M5 Model: The Impact of

Cohort Effect Uncertainty and

Population Basis Risk

3.1 Introduction

The Life and Longevity Markets Association (LLMA) is a non-profit organization funded

by AVIVA, AXA, Deutsche Bank, J.P. Morgan, Morgan Stanley, Prudential PLC and

Swiss Re to advance the development of a liquid longevity market. In 2012, the LLMA

acquired ownership of the LifeMetrics Index (originally created by J.P. Morgan), on which

standardized mortality-linked derivatives such as q-forwards can be written. The LLMA

has also invested heavily on researching on population basis risk, the risk which arises

from the fact that future mortality improvements of two different populations (the hedger’s

portfolio of individuals and the reference population of the hedging instrument) are unlikely

to be identical. It is believed by many that the lack of understanding of population basis

risk is a major obstacle to market development.

51



In 2013, the LLMA and the Institute and Faculty of Actuaries (IFoA) jointly commis-

sioned a project with an objective to develop a well-established methodology for assessing

population basis risk. Phase I of the project was undertaken by a team of researchers

from Cass Business School and practitioners from Hymans Robertson, who performed a

systematic assessment of over 20 existing mortality models, aiming to identify the most

suitable two-population mortality model for measuring population basis risk. Through a

‘best of breed’ selection process, the project team recommended the M7-M5 model, which

can be regarded as a two-population extension of the Cairns-Blake-Dowd (CBD) family

of models (Cairns et al., 2006, 2009). The selection process and estimation results can be

found in the project report (Haberman et al., 2014).

Although the project team’s recommendation does not preclude the consideration of

alternative models in future work, the M7-M5 model is likely to be regarded by market

participants as an industry standard for assessing population basis risk. The M7-M5 model

captures the most important drivers of the mortality dynamics of two related populations,

including (1) the period (time-related) effect that applies to both populations, (2) the

cohort (year-of-birth-related) effect that applies to both populations, (3) the period ef-

fect that applies to the mortality differential between the two populations, and (4) the

interaction between age and period effects.

As discussed in Chapter 2, users of index-based longevity hedges are challenged by the

question of how to best use a collection of mortality-linked derivatives. In this chapter, we

attempt to seek an answer to this question, on the basis of the assumption that the true

underlying mortality dynamics of the populations involved follow the M7-M5 model. Given

the expected popularity of the M7-M5 model, the research problem we consider is impor-

tant and practically relevant, but to our knowledge it has not been investigated seriously.

Some related work has been performed by Villegas et al. (2017), who estimated hedge effec-

tiveness under the M7-M5 model assumption using a hedge ratio of h∗ = cov(L,H)/var(H),

where L and H represent the random present values of the unhedged liability and hedging

instrument, respectively. It can be shown that the hedge ratio of h = h∗ minimizes the

variance of the hedged position L − hH. However, this simple one-instrument hedging

strategy is far from being adequate, and is not even valid when the hedger’s objective is

not minimizing variance. It is also unclear as to how this strategy can be applied in a
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dynamic-setting with manageable computational efforts.

Similar to Chapter 2, we again propose to take a sensitivity-matching approach, in

which the optimal hedging strategy is formulated by matching the longevity Greeks (de-

rived specifically under the M7-M5 model assumption) of the liability being hedged and

the portfolio of hedging instruments. Longevity Greeks, defined as partial derivatives with

respect to the key model parameters, can be seen as a functional equivalent of the option

Greeks that are used extensively in managing equity risk, so that practitioners should find

them easy to interpret and understand. The approach we take is highly dissimilar from

risk-minimization approaches (see, e.g., Coughlan et al., 2011; Cairns et al., 2014; Dahl

and Møller, 2006; Dahl et al., 2008, 2011; Liu and Li, 2016; Ngai and Sherris, 2011; Wong

et al., 2014), in which one particular risk metric such as variance is minimized (but other

risk metrics may have to be compromised). It is also different from duration-matching

approaches (see, e.g., Tsai et al., 2010; Li and Hardy, 2011; Li and Luo, 2012; Lin and

Tsai, 2013, 2014; Tsai and Jiang, 2011; Tsai and Chung, 2013), in which the sensitivities

to the mortality rates themselves (rather than those to the parameters in the assumed

model) are being matched.

Longevity Greeks have been studied previously by Luciano et al. (2012), Luciano and

Regis (2014), Luciano et al. (2017) and De Rosa et al. (2017) in continuous-time settings

and Cairns (2011), Cairns (2013), Liu and Li (2017) and Zhou and Li (2017) in discrete-

time settings. We choose to draw on the recent contributions of Cairns (2013) and Zhou

and Li (2017), because they fit the fact that the M7-M5 model is defined in discrete-time

and our ambition to develop not only static but also dynamic hedging strategies. As in

the original work of Cairns (2013) and Zhou and Li (2017), we use q-forwards as hedging

instruments and assume that the liability being hedged is a life annuity. However, to

enhance flexibility, we permit the annuity liability to have a non-zero deferment period.

Furthermore, unlike Cairns (2013) and Zhou and Li (2017) who focused on period effects

only, we consider both period and cohort effects, incorporating the circumstances when

the q-forwards and/or the annuity liability are subject to cohort effect uncertainty. Of

course, we allow the annuity liability and q-forwards to be linked to different populations,

leveraging the ability of the M7-M5 model to capture population basis risk.

We first introduce a static hedging strategy by deriving the semi-analytical expressions
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for the longevity deltas (i.e., the first partial derivatives with respect to the most recently

realized period and cohort effects) of the annuity liability and q-forwards. The expressions

are semi-analytical in the sense that a large part of the calculations are accomplished using

the structural and statistical properties of the assumed stochastic processes for the period

and cohort effects.

We then extend the hedging strategy to a dynamic setting, in which the hedger is

allowed to rebalance the portfolio of q-forwards periodically. To this end, we utilize the

‘approximation of survival functions’ method, considered previously by Cairns (2013) and

Zhou and Li (2017), to avoid the nested simulations that would otherwise be required in

the calculation of the following:

1. the values of the q-forwards at each time point when the hedge portfolio is adjusted,

for each simulated sample path of future mortality;

2. the deltas of the q-forwards and annuity liability at each time point when the hedge

portfolio is adjusted, for each simulated sample path of future mortality.

The application of the ‘approximation of survival functions’ method under the M7-M5

model assumption is significantly more complicated than that in the previous studies, due

primarily to the fact that the M7-M5 model incorporates both period and cohort effects. To

overcome this technical challenge, we systematically divide all possibly encountered survival

functions into five cases, according to the duration, the starting age, the starting time

and the given information (filtration), and tailor a specific approximation (or calculation)

method for each of the five cases.

In addition to aforementioned contributions, this chapter adds value to the literature

on longevity Greeks on the following aspects:

• Unlike Cairns (2011) and Zhou and Li (2017) who assume that the hedging instru-

ments are costless to the hedger, we better mimic reality by allowing the counterparty

of the q-forwards to charge a non-zero risk premium. Although the cost of hedging

has no impact on hedge effectiveness measured in terms of variance reduction, its

effect on asymmetric risk measures such as Value-at-Risk can be significant. Such an

effect is examined in this chapter.
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• We consider not only cash flow hedges (of which the focus is the variability of cash

flows) but also value hedges (of which the focus is the variability of the portfolio

values at a certain future time point), in contrast to the existing work on discrete-

time longevity Greek hedging which considers only the former. In line with Solvency

II capital requirements, we measure the effectiveness of value hedges in terms of the

reduction in the Value-at-Risk over a one-year horizon at a confidence level of 99.5%.

• We study the benefit of a dynamically adjusted hedge over a hedge that is left unad-

justed over time. Cairns et al. (2008) has also investigated this issue, but their study

takes no account of population basis risk and cohort effect uncertainty.

Our theoretical work is supplemented by three real data illustrations, which respectively

demonstrate (1) the impact of cohort effect uncertainty and population basis risk on hedge

effectiveness, (2) the benefit of dynamically adjusting a hedge portfolio in different market

conditions, and (3) how the risk premium demanded by the counterparty may affect hedge

effectiveness. The empirical work leads to several conclusions that may inform future

studies of index-based longevity hedging. For example, it is found that if the liability

being hedged is free of cohort effect uncertainty, then the effectiveness of a longevity hedge

reduces as the extent of the cohort effect uncertainty surrounding the hedging instruments

increases.

The rest of this chapter is structured as follows. In Section 3.2, we specify the M7-M5

model and estimate it to real data. In Section 3.3, we define the ex post survival probability,

from which most of the theoretical work in this chapter is developed. In Section 3.4, we

explain how survival probabilities can be approximated in different circumstances. The

approximation methods are then applied in Section 3.5 where the valuation of the annuity

liability and q-forwards is discussed, and in Section 3.6 where the longevity deltas of the

annuity liability and q-forwards are derived. In Section 3.7, we define the metrics for

evaluating hedge effectiveness, which are then used in Section 3.8 where the three real

data illustrations are presented. Finally, Section 3.9 concludes the chapter.
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3.2 The M7-M5 Model

3.2.1 Model Specification

Proposed by Haberman et al. (2014), the M7-M5 model is a two-population stochastic

mortality model that is formed by amalgamating the M5 model (the original Cairns-Blake-

Dowd) model and the M7 model (the Cairns-Blake-Dowd model with quadratic age and

cohort effects). In the M7-M5 model, one of the two populations being modelled is regarded

as the dominant population (also referred to as the reference population), driving the

mortality dynamics of both populations being modelled. The mortality dynamics of the

reference population is assumed to follow an M7 model; that is,

ln

(
q

(R)
x,t

1− q(R)
x,t

)
= κ

(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σ2

x)κ
(3)
t + γt−x, (3.1)

where

• x and t are integers representing age and time, respectively,

• q(R)
x,t denotes the probability that an individual from the reference population (R) dies

in calendar year t (between time t− 1 and time t), given that he/she has survived to

age x at the beginning of year t,

• κ(1)
t , κ

(2)
t and κ

(3)
t are the first, second and third period effects for calendar year t,

respectively,

• γt−x is the cohort effect for year-of-birth t− x,

• x̄ is the mid-point of the age range to which the model is fitted, and

• σ2
x is the average value of (x− x̄)2 over the age range to which the model is fitted.

The other population is called the book population. The mortality differential between

the book and reference populations is assumed to follow an M5 model; that is,

ln

(
q

(B)
x,t

1− q(B)
x,t

)
− ln

(
q

(R)
x,t

1− q(R)
x,t

)
= κ

(1,B)
t + (x− x̄)κ

(2,B)
t , (3.2)

56



where

• q(B)
x,t denotes the probability that an individual from the book population (B) dies in

calendar year t (between time t − 1 and time t), given that he/she has survived to

age x at the beginning of year t, and

• κ(1,B)
t and κ

(2,B)
t are the period effects that determine the mortality differential in year

t.

Using equations (3.1) and (3.2), we have

ln

(
q

(B)
x,t

1− q(B)
x,t

)
= (κ

(1)
t + κ

(1,B)
t ) + (x− x̄)(κ

(2)
t + κ

(2,B)
t ) + ((x− x̄)2 − σ2

x)κ
(3)
t + γt−x,

which in turn means that the mortality dynamics of the book population also follow an M7

model, whose third period effect and cohort effect are identical to those in the M7 model

for the reference population.

For ease of reading, we define y
(i)
x,t := ln(q

(i)
x,t/(1− q

(i)
x,t)), and express the M7-M5 model

in a vector form as

y
(i)
x,t = β(i)

x κ
(i)
t + γt−x, i = R,B, (3.3)

where

• β(R)
x = (1, x− x̄, (x− x̄)2 − σ2

x),

• β(B)
x = (1, x− x̄, (x− x̄)2 − σ2

x, 1, x− x̄),

• κ(R)
t = (κ

(1)
t , κ

(2)
t , κ

(3)
t )′ is the vector of period effects that are relevant to the reference

population, and

• κ(B)
t = (κ

(1)
t , κ

(2)
t , κ

(3)
t , κ

(1,B)
t , κ

(2,B)
t )′ is the vector of period effects that are relevant to

the book population.

We also define κ
(B)
t := (κ

(1,B)
t , κ

(2,B)
t )′ as the vector of period effects that determine the

mortality differential.
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3.2.2 Model Estimation

Let [xa, xb] be the sample age range and [ta, tb] be the sample period of the data set under

consideration. Fitting the M7-M5 model to such a data set yields estimates of κ
(1)
t , κ

(2)
t ,

κ
(3)
t , κ

(1,B)
t and κ

(2,B)
t for t = ta, . . . , tb, and estimates of γt−x for t − x = ta − xb (the

earliest cohort covered by the data set) to t − x = tb − xa (the latest cohort covered by

the data set). That being said, the period effects beyond calendar year t = tb and the

cohort effects beyond year-of-birth tb−xa have to be obtained by extrapolations. Also, for

ages x = xb + 1, . . . , ω, where ω is the highest attainable age, the values of q
(R)
x,t and q

(B)
x,t

are obtained by extrapolations with the built-in age functions in the M7-M5 model. We

assume that ω = 100 in our illustrations. The set-up is illustrated in Figure 3.1.

It is well known that the M7 model is subject to an identifiability problem. Following

Haberman et al. (2014), we impose the following constraints to ensure parameter unique-

ness in the M7 component:

tb−xa∑
c=ta−xb

γc = 0 ;

tb−xa∑
c=ta−xb

cγc = 0 ;

tb−xa∑
c=ta−xb

c2γc = 0.

With these constraints, the resulting values of γta−xb , . . . , γtb−xa would fluctuate around

zero and exhibit no linear or quadratic trend. Note that the chosen constraints are also

used in the paper by Cairns et al. (2009) where the M7 model is first introduced. We

acknowledge that there exist other ways to formulate the identifiability constraints, but we

choose to preserve the original setting specified by Haberman et al. (2014).

The illustrations in this chapter are based on an M7-M5 model that is fitted to the

historical mortality experience of the English and Welsh male population (the reference

population) and U.K. male insured lives (the book population). The former population’s

data are obtained from the Human Mortality Database, whereas that for the latter pop-

ulation’s data are obtained from the Institute and Faculty of Actuaries. The sample age

range and sample period used are [xa, xb] = [60, 89] and [ta, tb] = [1961, 2005], respectively.

We estimate the M7 component using the method of binomial maximum likelihood,

implemented with the R package StMoMo (Villegas et al., 2016), and estimate the M5

component using the method of least squares as in the original work of Cairns et al.
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(2006). Figure 3.2 shows the estimates of the period effects for calendar years ta = 1961 to

tb = 2005, and the estimates of the cohort effects for years-of-birth ta − xb = 1961− 89 =

1872 to tb − xa = 2005− 60 = 1945.

Time

Age

xa=60

ta=1961 tb=2005

First cohort effect 
covered by the 

data: !taѲxb=!1872

t

Data
Sample

Last cohort effect 
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time t: !tѲxa

First period effect
covered by the 
data: "ta="1961
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covered by the 
data: "tb="2005

Period effect
realized at 
time t: "t

ω=100

Figure 3.1: A Lexis diagram showing the first and last period/cohort effects covered by the

data sample, and an example of the period and cohort effects that have to be obtained by

extrapolations.

3.2.3 The Processes for the Period and Cohort Effects

Following Haberman et al. (2014), we assume that κ
(R)
t follows a tri-variate random walk,

κ
(R)
t = µ+ κ

(R)
t−1 + z

(R)
t ,

where µ is the drift vector, and z
(R)
t is the innovation vector which follows a tri-variate

normal distribution with a zero mean vector and a constant covariance matrix of Σ(R), and

assume that κ
(B)
t follows a first-order vector-autoregressive process,

κ
(B)
t = θ0 + Θ1κ

(B)
t−1 + z

(B)
t ,
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t for t = 1961, . . . , 2005, and the estimates

of γ
(R)
t−x for t− x = 1872, . . . , 1945

60



where θ0 is the offset vector, Θ1 is the 2-by-2 matrix of AR coefficients, and z
(B)
t is the

innovation vector which follows a bivariate normal distribution with a zero mean vector

and a constant covariance matrix of Σ(B).

Haberman et al. (2014) do not assume any process for γt−x, because their case study

does not involve any unknown cohort effect. On the grounds that the estimated values

of γt−x fluctuate around zero and exhibit no trend, we choose to assume a first-order

autoregression for γt−x:

γ
(R)
t−x = ψ0 + ψ1γ

(R)
t−x−1 + zt−x,

where ψ0 and ψ1 are the constant term and the autoregressive coefficient, respectively, and

zt−x is the innovation which follows a univariate normal distribution with a mean of zero and

a constant variance of σ2
γ. It is further assumed that z

(R)
t , z

(B)
t and zt−x are independently

distributed and possess no serial correlation. The estimates of the parameters in the three

processes are shown in Table 3.1.

Parameters in the process for κ
(R)
t

µ =


−1.7847× 10−2

3.9294× 10−4

3.8309× 10−5

, Σ(R) =


9.0330× 10−4 3.4619× 10−5 6.9415× 10−7

3.4619× 10−5 2.6108× 10−6 7.3790× 10−8

6.9415× 10−7 7.3790× 10−8 6.0241× 10−9


Parameters in the process for κ

(B)
t

θ0 =

−2.5406× 10−1

4.5888× 10−3

, Θ1 =

 4.6170× 10−1 6.8288× 10−1

−3.9184× 10−3 1.8264× 10−2


Σ(B) =

1.2758× 10−3 2.9297× 10−9

2.9297× 10−9 2.5984× 10−6


Parameters in the process for γt−x

ψ0 = −2.8093× 10−3, ψ1 = 9.0507× 10−1, σ2
γ = 6.8077× 10−4

Table 3.1: Estimated values of the parameters in the assumed processes of κ
(R)
t , κ

(B)
t and γt−x.
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Let Ft be the information concerning the evolution of mortality up to and including

time t (the end of year t) for t = tb, tb + 1, . . .. For t = tb,

Ftb = {κ(R)
ta , . . . ,κ

(R)
tb
,κ

(B)
ta , . . . ,κ

(B)
tb
, γta−xb , . . . , γtb−xa}

contains the values of the period and cohort effects that are estimated from the historical

data, whereas for t = tb + 1, tb + 2, . . .,

Ft = {κ(R)
ta , . . . ,κ

(R)
tb
, . . . ,κ

(R)
t ,κ

(B)
ta , . . . ,κ

(B)
tb
, . . . ,κ

(B)
t , γta−xb , . . . , γtb−xa , . . . , γt−xa}

contains additionally the realized values of the period effects for calendar years tb + 1 to t

and the realized values of the cohort effects for years-of-birth tb + 1− xa to t− xa.

Given Ft, κ(R)
t+s, κ

(B)
t+s and γt−xa+s for s = 1, 2, . . . can be expressed as

κ
(R)
t+s = sµ+ κ

(R)
t +

s−1∑
v=0

z
(R)
t+s−v, (3.4)

κ
(B)
t+s =

s−1∑
v=0

Θv
1φ0 + Θs

1κ
(B)
t +

s−1∑
v=0

Θv
1z

(B)
t+s−v, (3.5)

and

γt−xa+s =
s−1∑
v=0

ψv1ψ0 + ψs1γt−xa +
s−1∑
v=0

ψv1zt−xa+s−v, (3.6)

respectively. It follows that

E[κ
(R)
t+s|Ft] = sµ+ κ

(R)
t , (3.7)

Var[κ
(R)
t+s|Ft] = sΣ(R), (3.8)

E[κ
(B)
t+s|Ft] = (I−Θ1)−1(I−Θs

1)θ0 + Θs
1κ

(B)
t , (3.9)

Var[κ
(B)
t+s|Ft] = (I−Θ2

1)−1(I−Θ2s
1 )Σ(B), (3.10)

E[γt−xa+s|Ft] = (1− ψ1)−1(1− ψs1)ψ0 + ψs1γt−xa , (3.11)

Var[γt−xa+s|Ft] = (1− ψ2
1)−1(1− ψ2s

1 )σ2
γ. (3.12)

where I is a 2-by-2 identity matrix. Finally, as κ
(R)
t+s|Ft is independent of κ

(B)
t+s|Ft, we have

E[κ
(B)
t+s|Ft] =

(
E[κ

(R)
t+s|Ft]

E[κ
(B)
t+s|Ft]

)
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and

Var[κ
(B)
t+s|Ft] =

(
Var[κ

(R)
t+s|Ft] O3×3

O2×2 Var[κ
(B)
t+s|Ft]

)
,

where Ok×k is a k-by-k zero matrix. The results above are used extensively in later sections.

3.3 The Set-up

3.3.1 Survival Probabilities

We let

S(i)
x,u(T ) =

T∏
s=1

(1− q(i)
x+s−1,u+s)

=
T∏
s=1

(
1 + exp(β

(i)
x+s−1κ

(i)
u+s + γu−x+1)

)−1

,

for integer-valued x, u and T , and i = R,B, be the ex post probability that an individual

(born in year u− x+ 1) from population i, aged x at time u (the beginning of year u+ 1)

would have survived to the end of year u + T . It is clear from the above expression that

S
(i)
x,u(T ) is a function of κ

(i)
u+1, . . . ,κ

(i)
u+T and γu−x+1.

Using the definitions of Ft and S
(i)
x,u(T ), the following statements concerning the ran-

domness surrounding S
(i)
x,u(T )|Ft can be deduced.

• If t ≤ u, then none of the period effects in S
(i)
x,u(T ) has been realized at time t, and

hence S
(i)
x,u(T )|Ft depends on the unknown random values of κ

(i)
u+1|Ft, . . . ,κ

(i)
u+T |Ft.

• If u < t < u+T , then S
(i)
x,u(T )|Ft depends on the realized values of κ

(i)
u+1|Ft, . . . ,κ

(i)
t |Ft

and also the unknown random values of κ
(i)
t+1|Ft, . . . ,κ

(i)
u+T |Ft.

• If t ≥ u + T , then all of the period effects in S
(i)
x,u(T ) have been realized at time t,

and hence S
(i)
x,u(T )|Ft is not subject to any period effect uncertainty.
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• If t−xa < u−x+ 1, S
(i)
x,u(T )|Ft depends on the unknown random value of γu−x+1|Ft,

since Ft contains cohort effects only up to and including γt−xa .

• If t − xa ≥ u − x + 1, then the cohort effect in S
(i)
x,u(T ) has already been realized at

time t, and thus S
(i)
x,u(T )|Ft is not subject to any cohort effect uncertainty.

It follows that S
(i)
x,u(T )|Ft is a random variable if t < u+ T ∨ u− x+ 1 + xa, and a known

constant otherwise.

The expected value of S
(i)
x,u(T ) given Ft,

E[S(i)
x,u(T )|Ft],

is crucially important in this study. In Sections 3.3.3 and 3.3.4, we explain how this

conditional expectation is involved in the valuation of the liability being hedged and the

hedging instruments. In Section 3.4, we discuss how this conditional expectation can be

computed in different circumstances.

3.3.2 The (u,Ft)-Value of a Random Cash Flow Stream

The following definition is used throughout the rest of this chapter.

Definition 1. The (u,Ft)-value of a cash flow stream is the conditional expectation of the

discounted value of all of the cash flows beyond time u, with u being the time point to which

the cash flows are discounted and Ft being the condition on which the expectation is taken.

3.3.3 The Liability Being Hedged

Suppose that the hedger wishes to establish a longevity hedge at an integer time point tb

(at the end of the last year of the sample period to which the M7-M5 model is fitted). The

liability being hedged is a τ -year deferred whole life annuity, payable to an individual from

the book population B, who has survived to age x0 − τ at time tb (the beginning of year

tb + 1). The annuity makes no payment in years tb + 1, . . . , tb + τ , and pays $1 at the end
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of each year until death starting in year tb + τ + 1. Note that x0 is the age of the annuitant

at the beginning of the year in which the annuity begins to pay, and that the annuitant

was born in year tb − x0 + τ + 1.

Let r be the constant interest rate at which future payments are discounted. Dis-

counting the liability cash flows to time tb when the longevity hedge is established, we

have

L(B)(τ) =

ω−x0∑
s=1

(1 + r)−(τ+s)S
(B)
x0−τ,tb(τ + s).

It follows from Definition 1 that the (tb,Ft)-value of the liability being hedged is

L
(B)
t (τ) := E[L(B)(τ)|Ft]

=

ω−x0∑
s=1

(1 + r)−(τ+s)E[S
(B)
x0−τ,tb(τ + s)|Ft],

for t = tb, tb + 1, . . ..

3.3.4 The Hedging Instruments

Suppose that the hedging instruments used are q-forwards that are linked to the reference

population R. As the hedging instruments are not linked to the book population B, the

hedge is subject to population basis risk.

Consider a q-forward whose date-of-issue is t∗, reference population is R, reference

age is xf and time-to-maturity is tf , where t∗, xf and tf are both integers. From the

perspective of the fixed rate receiver, the payoff of this q-forward per $1 notional at maturity

is qf − q(R)

xf ,t∗+tf
, where qf is the forward mortality rate which is a constant fixed at time

t∗. We assume that all q-forwards used are issued on or after the day when the hedge is

first established (i.e., t∗ ≥ tb).

Discounting the q-forward’s payoff to time t∗ at a constant interest rate r, we have

Q(R)(t∗, xf , tf ) = (1 + r)−t
f

(qf − q(R)

xf ,t∗+tf
)

= (1 + r)−t
f

(S
(R)

xf ,t∗+tf−1
(1)− (1− qf )).
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It then follows from Definition 1 that the (t∗,Ft)-value of the q-forward is given by

Q
(R)
t (t∗, xf , tf ) := E[Q(R)(t∗, xf , tf )|Ft]

= (1 + r)−t
f

(E[S
(R)

xf ,t∗+tf−1
(1)|Ft]− (1− qf )),

for t = t∗, t∗ + 1, . . ..

Following Coughlan et al. (2007) and Li and Hardy (2011), we determine the for-

ward mortality rate qf (fixed at time t∗ when the q-forward is launched) as a fraction of

E[q
(R)

xf ,t∗+tf
|Ft∗ ]; that is

qf = (1− λ)(1− E[S
(R)

xf ,t∗+tf−1
(1)|Ft∗ ]), (3.13)

where λ is a parameter that reflects the risk premium demanded by the counterparty.

3.4 Evaluation of E[S
(i)
x,u(T )|Ft]

This section discusses the evaluation of E[S
(i)
x,u(T )|Ft]. The evaluation method depends on

the value of t relative to the values of u and tb.

3.4.1 Computing E[S
(i)
x,u(T )|Ft] for t = tb

This sub-section explains how E[S
(i)
x,u(T )|Ftb ] can be computed. We focus only on the

situation when u ≥ tb, because the otherwise situation is never encountered in our set-up.

For u ≥ tb, S
(i)
x,u(T )|Ftb is a random variable with the following properties.

• All of the period effects in S
(i)
x,u(T ) are not contained in Ftb , so they are random as

of t = tb, depending on the value of κ
(i)
tb

(by the Markov property of the period effect

processes).

• If tb − xa ≥ u− x+ 1, then the cohort effect γu−x+1 in S
(i)
x,u(T ) is covered by Ftb and

is thus a known constant.
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• If tb − xa < u− x+ 1, then the cohort effect in S
(i)
x,u(T ) is not covered by Ftb , and is

hence random as of t = tb. Using the Markov property of the cohort effect process,

it depends on the value of γtb−xa (the latest cohort effect contained in Ftb).

These properties imply that

E[S(i)
x,u(T )|Ftb ] =

E[S
(i)
x,u(T )|κ(i)

tb
, γtb−xa ] if tb − xa < u− x+ 1

E[S
(i)
x,u(T )|κ(i)

tb
, γu−x+1] if tb − xa ≥ u− x+ 1

,

which is equivalent to

E[S(i)
x,u(T )|Ftb ] = E[S(i)

x,u(T )|κ(i)
tb
, γtb−xa∧u−x+1]. (3.14)

This expectation is calculated by simulating sample paths of the period and/or cohort

effects involved in S
(i)
x,u(T ), given the values of κ

(i)
tb

and/or γtb−xa .

3.4.2 Approximating E[S
(i)
x,u(T )|Ft] for t > tb

At time tb when the hedge is established (and when hedge effectiveness is evaluated),

E[S
(i)
x,u(T )|Ft] for t > tb is a random variable. The (empirical) distribution of E[S

(i)
x,u(T )|Ft]

given Ftb may be obtained using nested simulations.

The nested simulations involve a generation of N realizations of Ft (i.e., N realiza-

tions of κ
(i)
u |Ftb and γu−xa |Ftb for u = tb + 1, . . . , t). Also, for each of the N realizations

of Ft, another M simulations are needed to obtain the value of E[S
(i)
x,u(T )|Ft]. In total,

N ×M simulations are required to obtain an empirical distribution of N realizations of

E[S
(i)
x,u(T )|Ft] given Ftb . As both N and M are typically large, the procedure is computa-

tionally demanding.

Drawing from the work of Cairns (2011), we develop methods to approximate

E[S
(i)
x,u(T )|Ft] for any given realization of Ft, so that the second set of simulations is no

longer required. The approximation method used depends on which one of the following

three cases u and t fall into.

• Case A: E[S
(i)
x,u(T )|Ft] for t = u
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• Case B: E[S
(i)
x,u(T )|Ft] for t < u

• Case C: E[S
(i)
x,u(T )|Ft] for t > u

The distinction between these three cases is illustrated in Figure 3.3. In the rest of this

section, we explain how E[S
(i)
x,u(T )|Ft] is approximated in each case. The accuracy of the

approximation methods is demonstrated in Appendix F.

Time

Age

xa

tb

Data
Sample

xb

t

Case B

Range of u 
for Case C

Range of u 
for Case B

Case C Case A

Last period effect
covered by the 

data: !tb

Last cohort effect 
covered by the 

data: "tb-xa

Most recently 
realized cohort effect 

as of time t: "t-xa

Most recently 
realized period effect 

as of time t: !t

■:(x+T,u+T)
□:(x,u)

Figure 3.3: A Lexis diagram illustrating the distinctions between Case A (t = u), Case B (t < u)

and Case C (t > u).

Case A: E[S
(i)
x,u(T )|Ft] for t = u

Using arguments similar to those made in Section 3.4.1, we obtain

E[S(i)
x,u(T )|Ft] = E[S(i)

x,u(T )|κ(i)
u , γu−xa∧u−x+1]. (3.15)
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The approximation is set around κ̂
(i)
u := E[κ

(i)
u |Ftb ] and γ̂u−xa∧u−x+1 := E[γu−xa∧u−x+1|Ftb ],

and is applied to the probit transform of E[S
(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1]; that is,

Φ−1(E[S(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1])

≈ d
(i)
x,u,0(T ) + d(i)

x,u(T )′(κ(i)
u − κ̂(i)

u ) + d(i)
x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1), (3.16)

where Φ is the standard normal distribution function,

d
(i)
x,u,0(T ) = Φ−1(E[S(i)

x,u(T )|κ̂(i)
u , γ̂u−xa∧u−x+1]),

d(R)
x,u (T ) = (d

(R)
x,u,1(T ), d

(R)
x,u,2(T ), d

(R)
x,u,3(T ))′

and

d(B)
x,u (T ) = (d

(B)
x,u,1(T ), d

(B)
x,u,2(T ), d

(B)
x,u,3(T ), d

(B)
x,u,4(T ), d

(B)
x,u,5(T ))′,

with 
d

(i)
x,u,j(T ) = ∂

∂κ
(j)
u

Φ−1(E[S
(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1])

d
(B)
x,u,3+k(T ) = ∂

∂κ
(k,B)
u

Φ−1(E[S
(B)
x,u (T )|κ(B)

u , γu−xa∧u−x+1])

d
(i)
x,u,γ(T ) = ∂

∂γu−xa∧u−x+1
Φ−1(E[S

(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1])

for i = R,B, j = 1, 2, 3 and k = 1, 2. Since the approximation is set around κ̂
(i)
u

and γ̂u−xa∧u−x+1, we evaluate d
(i)
x,u,j(T ), d

(B)
x,u,3+k(T ) and d

(i)
x,u,γ(T ) at κ

(i)
u = κ̂

(i)
u and

γu−xa∧u−x+1 = γ̂u−xa∧u−x+1.

To derive d
(i)
x,u,j(T ), d

(B)
x,u,3+k(T ) and d

(i)
x,u,γ(T ), we use the fact that

∂Φ−1(f(x))

∂x
=

1

φ(Φ−1(f(x)))

∂f(x)

∂x
,

where φ is the standard normal probability density function. First, we have

d
(i)
x,u,j(T ) = 1

φ(Φ−1(E[S
(i)
x,u(T )|κ(i)

u ,γu−xa∧u−x+1]))

(
∂

∂κ
(j)
u

E[S
(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1]
)

= 1

φ(Φ−1(E[S
(i)
x,u(T )|Fu]))

(
∂

∂κ
(j)
u

E

[
T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)−1
∣∣∣∣Fu])

= −1

φ(Φ−1(E[S
(i)
x,u(T )|Fu]))

E

[(
S

(i)
x,u(T )

)2
∂

∂κ
(j)
u

T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

) ∣∣∣∣Fu] .
(3.17)

69



In the above, ∂

∂κ
(j)
u

∏T
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
can be calculated recursively as

∂

∂κ
(j)
u

T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)

=



∂y
(i)
x,u+1

∂κ
(j)
u

exp(y
(i)
x,u+1) if T = 1

∂y
(i)
x+T−1,u+T

∂κ
(j)
u

exp(y
(i)
x+T−1,u+T )

∏T−1
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
+
(

1 + exp(y
(i)
x+T−1,u+T )

)
∂

∂κ
(j)
u

∏T−1
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
if T > 1

, (3.18)

where

∂y
(i)
x+T−1,u+T

∂κ
(j)
u

=



∂y
(i)
x+T−1,u+T

∂κ
(1)
u+T

∂κ
(1)
u+T

∂κ
(1)
u

= 1 if j = 1

∂y
(i)
x+T−1,u+T

∂κ
(2)
u+T

∂κ
(2)
u+T

∂κ
(2)
u

= x+ T − 1− x̄ if j = 2

∂y
(i)
x+T−1,u+T

∂κ
(3)
u+T

∂κ
(3)
u+T

∂κ
(3)
u

= (x+ T − 1− x̄)2 − σ2
x if j = 3

for T ≥ 1 is obtained by using the chain rule and equations (3.3) and (3.4).

Second, d
(B)
x,u,3+k(T ) is obtained by replacing κ

(j)
u in equations (3.17) and (3.18) with

κ
(k,B)
u . The result depends on the partial derivatives of y

(B)
x+T−1,u+T with respect to κ

(1,B)
u

and κ
(1,B)
u , which can be obtained by using the chain rule and equation (3.3) and (3.5):

∂y
(B)
x+T−1,u+T

∂κ
(k,B)
u

=
∂y

(B)
x+T−1,u+T

∂κ
(1,B)
u+T

∂κ
(1,B)
u+T

∂κ
(k,B)
u

+
∂y

(B)
x+T−1,u+T

∂κ
(2,B)
u+T

∂κ
(2,B)
u+T

∂κ
(k,B)
u

= [ΘT
1 ]1,k+(x+T−1−x̄)[ΘT

1 ]2,k,

k = 1, 2, where [ΘT
1 ]i,j is the (i, j)th element in ΘT

1 .

Finally, d
(i)
x,u,γ(T ) is obtained by replacing κ

(j)
u in equations (3.17) and (3.18) with

γu−xa∧u−x+1. The result depends on the partial derivative of y
(i)
x+T−1,u+T with respect to

γu−xa∧u−x+1, which can be derived using the chain rule and equations (3.3) and (3.6):

∂y
(i)
x+T−1,u+T

∂γu−xa∧u−x+1

=


∂y

(i)
x+T−1,u+T

∂γu−x+1

∂γu−x+1

∂γu−xa
= ψxa−x+1

1 if u− xa < u− x+ 1
∂y

(i)
x+T−1,u+T

∂γu−x+1
= 1 if u− xa ≥ u− x+ 1

,
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We can analytically calculate κ̂
(i)
u and γ̂u−xa∧u−x+1 using equations (3.7), (3.9) and

(3.11). Given the values of κ̂
(i)
u and γ̂u−xa∧u−x+1, we can compute d

(i)
x,u,0(T ), d

(i)
x,u,j(T ),

d
(B)
x,u,3+k(T ) and d

(i)
x,u,γ(T ) with a single set of (say M) simulations. Therefore, using the

approximation method, the number of simulations required to obtain an empirical dis-

tribution of N values of E[S
(i)
x,u(T )|Ft] for t = u is reduced from N ×M to N + M (N

simulations are used to obtain realizations of Ft).

Case B: E[S
(i)
x,u(T )|Ft] for t < u

As in Section 3.4.1 and 3.4.2, we use the Markov property of the assumed processes to

obtain

E[S(i)
x,u(T )|Ft] = E[S(i)

x,u(T )|κ(i)
t , γt−xa∧u−x+1]. (3.19)

In Case B, t and u take different values. Therefore, if the approximation method for

Case A is used, then a specific approximation formula is needed for each u = t+1, t+2, . . .,

thereby demanding significant computational effort. As such, for Case B, we employ a

variant of Case A’s method, which yields the following approximation formula:

E[S(i)
x,u(T )|κ(i)

t , γt−xa∧u−x+1] ≈ Φ

 −E[V
(i)
u |Ft]√

Var[V
(i)
u |Ft]

 , i = R,B, (3.20)

where

E[V (i)
u |Ft]

= −d(i)
x,u,0(T )− d(i)

x,u(T )′(E[κ(i)
u |Ft]− κ̂(i)

u )− d(i)
x,u,γ(T )(E[γu−xa∧u−x+1|Ft]− γ̂u−xa∧u−x+1)

and

Var[V (i)
u |Ft] = 1 + d(i)

x,u(T )′Var[κ(i)
u |Ft]d(i)

x,u(T ) + (d(i)
x,u,γ(T ))2Var[γu−xa∧u−x+1|Ft].

The full derivation is presented in Appendix E.

Using equations (3.7) to (3.12), we can analytically calculate E[κ
(i)
u |Ft], Var[κ

(i)
u |Ft],

E[γu−xa∧u−x+1|Ft] and Var[γu−xa∧u−x+1|Ft] for a given realization of Ft. Therefore, as in

Case A, with approximation formula (3.20), the number of simulations required to obtain

an empirical distribution of N values of E[S
(i)
x,u(T )|Ft] for t > u is N +M .
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Case C: E[S
(i)
x,u(T )|Ft] for t > u

We further divide Case C into Cases C1 and C2 as follows:

• Case C1: E[S
(i)
x,u(T )|Ft] for t > u and t− xa ≥ u− x+ 1;

• Case C2: E[S
(i)
x,u(T )|Ft] for t > u and t− xa < u− x+ 1.

In Case C1, the cohort effect in S
(i)
x,u(T ) has already been realized at time t, but in Case C2,

S
(i)
x,u(T )|Ft still depends on the unknown random value of γu−x+1|Ft. Figure 3.4 illustrates

the distinction between Cases C1 and C2. The shaded area in the diagram represents the

combinations of u and x that fall into Case C2.

Time

Age

xa

tb

Data
Sample

xb

t

Last cohort effect 
covered by the 

data: !tb-xa

Case C2

Last period effect
covered by the 

data: "tb

Case C1

Range of u 
and x for 
Case C2

■:(x+T,u+T)
□:(x,u)

Most recently 
realized period effect 

as of time t: "t

Most recently 
realized cohort effect 

as of time t: !t-xa

Figure 3.4: A Lexis diagram illustrating the distinction between Case C1 (t > u and t − xa ≥
u−x+1) and Case C2 (t > u and t−xa < u−x+1). The shaded area represents the combinations

of u and x that fall into Case C2.
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Case C1

Let us first focus on Case C1. For u < t < u+ T , we have

S(i)
x,u(T ) = S(i)

x,u(t− u)S
(i)
x+t−u,t(T − t+ u).

As the relevant cohort effect has already been realized at time t, S
(i)
x,u(t − u) given Ft is

free of cohort effect uncertainty. Moreover, as Ft contains all of the period effects to which

S
(i)
x,u(t − u) is linked, S

(i)
x,u(t − u) given Ft is also free of period effect uncertainty. Thus,

S
(i)
x,u(t− u) given Ft is non-random, and we have

E[S(i)
x,u(T )|Ft] = E[S(i)

x,u(t− u)S
(i)
x+t−u,t(T − t+ u)|Ft]

= S(i)
x,u(t− u)E[S

(i)
x+t−u,t(T − t+ u)|Ft]

= S(i)
x,u(t− u)E[S

(i)
x+t−u,t(T − t+ u)|κ(i)

t , γu−x+1] (3.21)

The last step in the above follows from equation (3.15) and Case C1’s condition that

t − xa ≥ u − x + 1. The value of S
(i)
x,u(t − u) can be calculated using the period and

cohort effects contained in Ft, whereas the value of E[S
(i)
x+t−u,t(T − t+ u)|κ(i)

t , γu−x+1] can

be approximated using the method introduced in Section 3.4.2. For t ≥ u + T , we have

E[S
(i)
x,u(T )|Ft] = S

(i)
x,u(T ), as all of the relevant period and cohort effects are contained in

Ft,

Case C2

Next, we turn to Case C2. Given Ft, γu−x+1 is still unknown and random; hence, given

Ft, S(i)
x,u(t − u) for u < t < u + T and S

(i)
x,u(T ) for t ≥ u + T are still random variables,

even though all of the relevant period effects are contained in Ft. As a consequence, for

u < t < u + T , S
(i)
x,u(t− u) cannot be taken out from E[S

(i)
x,u(t− u)S

(i)
x+t−u,t(T − t + u)|Ft],

and for t ≥ u+ T , S
(i)
x,u(T ) cannot be taken out from E[S

(i)
x,u(T )|Ft]. Thus, we have

E[S(i)
x,u(T )|Ft] =

E[S
(i)
x,u(T )|κ(i)

u+1, . . . ,κ
(i)
t , γt−xa ] if u < t < u+ T

E[S
(i)
x,u(T )|κ(i)

u+1, . . . ,κ
(i)
u+T , γt−xa ] if t ≥ u+ T

.
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An approximation formula for the above may be obtained by applying a first order Taylor’s

expansion around (κ
(i)
u+1, . . . ,κ

(i)
t , γt−xa) for u < t < u + T or (κ

(i)
u+1, . . . ,κ

(i)
u+T , γt−xa) for

t ≥ u + T . The approximation formula for Case C2 is inevitably much more tedious

compared to those for the other cases. Fortunately, Case C2 is not encountered in our

hedging set-up, given the assumptions made in the later sections.

3.4.3 Summary

Figure 3.5 summarizes the methods for calculating E[S
(i)
x,u(T )|Ft] in all possible circum-

stances. When t = tb, we use non-nested simulations. When t > tb, we use an approxima-

tion and the applicable approximation formula depends on the values of t and u. In Case

A (t = u), we use approximation formula (3.16). In Case B (t < u), we use approximation

formula (3.20). In Case C1 (t > u and t− xa ≥ u− x + 1), we decompose the expression

using equation (3.21) and apply approximation formula (3.16). In Case C2 (which is not

encountered in the rest of this chapter), the approximation formula is significantly more

involved.

3.5 Valuation of the Liability Being Hedged and the

Hedging Instruments

3.5.1 The Liability Being Hedged

Let us revisit the annuity liability described in Section 3.3.3. Recall that the (tb,Ft)-value

of the annuity liability is

L
(B)
t (τ) =

ω−x0∑
s=1

(1 + r)−(τ+s)E[S
(B)
x0−τ,tb(τ + s)|Ft], t = tb, tb + 1, . . . .

We calculate, for any given realization of Ft, the value of E[S
(B)
x0−τ,tb(τ + s)|Ft] for each

s = 1, . . . , ω − x0 using the methods developed in Section 3.4.
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Valuation 
of E[Sx,u(T)|ℱt]

For t=tb,  
non-nested 
simulations 
are used.

For t>tb, an 
approximation 

is used.

Case A: 
E[Sx,u(T)|ℱt] 

for t=u

Case B: 
E[Sx,u(T)|ℱt] 

for t<u

Case C: 
E[Sx,u(T)|ℱt] 

for t>u

Case C1: 
E[Sx,u(T)|ℱt] 
for t>u and 
t−xa ≥u−x+1  

Case C2: 
E[Sx,u(T)|ℱt] 
for t>u and 

t−xa <u−x+1  

Figure 3.5: A road map summarizing the methods for calculating E[S
(i)
x,u(T )|Ft].

L
(B)
t (τ) for t = tb

For t = tb, we use equation (3.14) to get

L
(B)
tb

(τ) =

ω−x0∑
s=1

(1 + r)−(τ+s)E[S
(B)
x0−τ,tb(τ + s)|κ(B)

tb
, γtb−xa∧tb−x0+τ+1], (3.22)

where, as described in Section 3.4.1, the value of E[S
(B)
x0−τ,tb(τ +s)|κ(B)

tb
, γtb−xa∧tb−x0+τ+1] for

each s = 1, . . . , ω − x0 is obtained by non-nested simulations.

L
(B)
t (τ) for t > tb

When t > tb, E[S
(B)
x0−τ,tb(τ + s)|Ft] falls into Case C, so its value is approximated by the

methods presented in Section 3.4.2. In what follows, we assume that x0 − τ ≥ xa, which

equivalently means that the annuitant is aged at least xa at time tb (the beginning of year

tb + 1). This working assumption is generally satisfied in practice, because the user may
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fit the M7-M5 model to an age range [xa, xb] that covers the age of the youngest annuitant

in his/her portfolio.

As t > tb (the condition applicable to this sub-section) implies t − xa ≥ tb − xa + 1

and x0 − τ ≥ xa (the assumption made) implies tb − xa + 1 ≥ tb − x0 + τ + 1, we have

t− xa ≥ tb− x0 + τ + 1. In this condition, E[S
(B)
x0−τ,tb(τ + s)|Ft] always belongs to Case C1,

and hence we can use the method for Case C1 to calculate the value of E[S
(B)
x0−τ,tb(τ +s)|Ft]

for each s = 1, . . . , ω − x0.

Using equation (3.21) and approximation formula (3.16), L
(B)
t (τ) for tb < t ≤ tb + τ

can be calculated as follows:

L
(B)
t (τ) =

ω−x0∑
s=1

(1 + r)−(τ+s)S
(B)
x0−τ,tb(t− tb)E[S

(B)
x0−τ+t−tb,t(τ + s− t+ tb)|κ(B)

t , γtb−x0+τ+1],

(3.23)

where

E[S
(B)
x0−τ+t−tb,t(τ + s− t+ tb)|κ(B)

t , γtb−x0+τ+1]

≈ Φ
(
d

(B)
x0−τ+t−tb,t,0(τ + s− t+ tb) + d

(B)
x0−τ+t−tb,t(τ + s− t+ tb)

′(κ
(B)
t − κ̂(B)

t )

+ d
(B)
x0−τ+t−tb,t,γ(τ + s− t+ tb)(γtb−x0+τ+1 − γ̂tb−x0+τ+1)

)
for s = 1, . . . , ω − x0. Similarly, for tb + τ < t < tb + τ + ω − x0, we get

L
(B)
t (τ) =

t−tb−τ∑
s=1

(1 + r)−(τ+s)E[S
(B)
x0−τ,tb(τ + s)|Ft]

+

ω−x0∑
s=t−tb−τ+1

(1 + r)−(τ+s)E[S
(B)
x0−τ,tb(τ + s)|Ft]

=

t−tb−τ∑
s=1

(1 + r)−(τ+s)S
(B)
x0−τ,tb(τ + s)

+

ω−x0−t+tb+τ∑
s=1

(1 + r)−(t−tb+s)S
(B)
x0−τ,tb(t− tb)E[S

(B)
x0−τ+t−tb,t(s)|κ

(B)
t , γtb−x0+τ+1],

(3.24)
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where

E[S
(B)
x0−τ+t−tb,t(s)|κ

(B)
t , γ

(R)
tb−x0+τ+1] ≈ Φ

(
d

(B)
x0−τ+t−tb,t,0(s) + d

(B)
x0−τ+t−tb,t(s)

′(κ
(B)
t − κ̂(B)

t )

+ d
(B)
x0−τ+t−tb,t,γ(s)(γtb−x0+τ+1 − γ̂tb−x0+τ+1)

)
for s = 1, . . . , ω − x0 − t+ tb + τ . Lastly, for t ≥ tb + τ + ω − x0, we have

L
(B)
t (τ) =

ω−x0∑
s=1

(1 + r)−(τ+s)S
(B)
x0−τ,tb(τ + s),

since E[S
(B)
x0−τ,tb(τ + s)|Ft] = S

(B)
x0−τ,tb(τ + s) for s = 1, . . . , ω − x0.

3.5.2 The Hedging Instruments

As mentioned in Section 3.3.4, the hedging instruments used are q-forwards that are linked

to the reference population R. Recall that the (t∗,Ft)-value of a q-forward linked to the

reference population R can be expressed as

Q
(R)
t (t∗, xf , tf ) = (1 + r)−t

f

(E[S
(R)

xf ,t∗+tf−1
(1)|Ft]− (1− qf )), t = t∗, t∗ + 1, . . . ,

where t∗ is the date-of-issue, tf is the time-to-maturity, xf is the reference age, and qf

is the forward mortality rate. Again, the values of E[S
(R)

xf ,t∗+tf−1
(1)|Ft] for t = t∗, t∗ +

1, . . . (including E[S
(R)

xf ,t∗+tf−1
(1)|Ft∗ ] in qf ) in the expression above are calculated with the

methods developed in Section 3.4.

Q
(R)
t (t∗, xf , tf ) for t = tb

As t∗ ≥ tb (an assumption made in Section 3.3.4), t = tb (the condition applicable to this

sub-section) and t ≥ t∗ (we only need to value a q-forward on or after its issue date), we

have t∗ = tb. Thus, we may use equation (3.14) to obtain

Q
(R)
tb

(t∗, xf , tf ) = (1 + r)−t
f

(E[S
(R)

xf ,tb+tf−1
(1)|κ(R)

tb
, γtb−xa∧tb+tf−xf ]− (1− qf )), (3.25)

and compute the value of E[S
(R)

xf ,tb+tf−1
(1)|κ(R)

tb
, γtb−xa∧tb+tf−xf ] using non-nested simulations

(Case A, Section 3.4.1). When t∗ = tb, the conditional expectation in qf (specified by

equation (3.13)) can also be calculated with non-nested simulations.
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Q
(R)
t (t∗, xf , tf ) for t > tb

For t > tb, the approximation methods introduced in Section 3.4.2 are used. When t∗ ≤
t < t∗ + tf − 1, E[S

(R)

xf ,t∗+tf−1
(1)|Ft] falls into Case B, and hence we use approximation

formula (3.20) to get

Q
(R)
t (t∗, xf , tf ) = (1 + r)−t

f

(E[S
(R)

xf ,t∗+tf−1
(1)|κ(R)

t , γt−xa∧t∗+tf−xf ]− (1− qf )) (3.26)

≈ (1 + r)−t
f

Φ

 −E[V
(R)

t∗+tf−1
|Ft]√

Var[V
(R)

t∗+tf−1
|Ft]

− (1− qf )

 ,

where

E[V
(R)

t∗+tf−1
|Ft] = −d(R)

xf ,t∗+tf−1,0
(1)− d(R)

xf ,t∗+tf−1
(1)′(E[κ

(R)

t∗+tf−1
|Ft]− κ̂(R)

t∗+tf−1
)

− d(R)

xf ,t∗+tf−1,γ
(1)(E[γt∗+tf−1−xa∧t∗+tf−xf |Ft]− γ̂t∗+tf−1−xa∧t∗+tf−xf )

and

Var[V
(R)

t∗+tf−1
|Ft] = 1 + d

(R)

xf ,t∗+tf−1
(1)′Var[κ

(R)

t∗+tf−1
|Ft]d(R)

xf ,t∗+tf−1
(1)

+ (d
(R)

xf ,t∗+tf−1,γ
(1))2Var[γt∗+tf−1−xa∧t∗+tf−xf |Ft].

As mentioned previously in Section 3.4.2, E[κ
(R)

t∗+tf−1
|Ft], E[γt∗+tf−1−xa∧t∗+tf−xf |Ft],

Var[κ
(R)

t∗+tf−1
|Ft] and Var[γt∗+tf−1−xa∧t∗+tf−xf |Ft] in the above can be calculated analyti-

cally.

When t = t∗ + tf − 1, E[S
(R)

xf ,t∗+tf−1
(1)|Ft] falls into Case A. Hence, we can apply

approximation formula (3.16) to obtain

Q
(R)
t (t∗, xf , tf )

≈ (1 + r)−t
f

(
Φ
(
d

(R)

xf ,t∗+tf−1,0
(1) + d

(R)

xf ,t∗+tf−1
(1)′(κ

(R)

t∗+tf−1
− κ̂(R)

t∗+tf−1
)

+ d
(R)

xf ,t∗+tf−1,γ
(1)(γt∗+tf−1−xa∧t∗+tf−xf − γ̂t∗+tf−1−xa∧t∗+tf−xf )

)
− (1− qf )

)
.

When t > t∗+ tf − 1, E[S
(R)

xf ,t∗+tf−1
(1)|Ft] falls into Case C. In what follows, we assume

that xf ≥ xa, which equivalently means that the q-forward’s reference age is no smaller
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than xa. This working assumption is generally satisfied in practice, as the reference age of

a q-forward is typically a pensionable age, which should be encompassed in the age range

[xa, xb] to which the M7-M5 model is fitted. As t > t∗+tf−1 implies t−xa ≥ t∗+tf−xa and

xf ≥ xa (the assumption made) implies t∗+tf−xa ≥ t∗+tf−xf , we have t−xa ≥ t∗+tf−xf .
In this condition, E[S

(R)

xf ,t∗+tf−1
(1)|Ft] always belongs to Case C1. Specifically, we have

Q
(R)
t (t∗, xf , tf ) = (1 + r)−t

f

(S
(R)

xf ,t∗+tf−1
(1)− (1− qf ))

as E[S
(R)

xf ,t∗+tf−1
(1)|Ft] = S

(R)

xf ,t∗+tf−1
(1) for t > t∗ + tf − 1.

Lastly, the value of qf in equation (3.26) can be calculated as follows: if t∗ = tb, use

non-nested simulations; if t∗ > tb and tf = 1, use approximation formula (3.16); if t∗ > tb

and tf > 1, use approximation formula (3.20).

3.6 Delta Hedging

In this section, we use the set-up and calculation methods developed previously to derive

static and dynamic delta hedging strategies. The hedging strategies incorporate not only

period effect uncertainty, but also cohort effect uncertainty and population basis risk.

3.6.1 Static Delta Hedging

A static delta hedge established at time tb is calibrated by matching the first-order partial

derivatives of the (tb,Ftb)-values of the annuity liability and the q-forward portfolio with

respect to the most recently realized period and cohort effects that are relevant to both the

book and reference populations (i.e., κ
(1)
tb

, κ
(2)
tb

, κ
(3)
tb

and γtb−xa). No adjustment is made to

the q-forward portfolio after time tb.

Sensitivities of the Hedging Instruments

In a static hedge, all of the q-forwards used are launched at time tb. The partial derivatives

of the (tb,Ftb)-value of a q-forward with an issue date of tb, a reference age of xf and a
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time-to-maturity of tf with respect to κ
(1)
tb

, κ
(2)
tb

and κ
(3)
tb

are calculated as

∂Q
(R)
tb

(tb, x
f , tf )

∂κ
(j)
tb

= (1 + r)−t
f ∂

∂κ
(j)
tb

E[S
(R)

xf ,tb+tf−1
(1)|Ftb ], j = 1, 2, 3,

Also, if the q-forward is subject to cohort effect uncertainty (i.e., tb − xa < tb + tf − xf ),
we calculate the partial derivative of Q

(R)
tb

(tb, x
f , tf ) with respect to γtb−xa as

∂Q
(R)
tb

(tb, x
f , tf )

∂γtb−xa
= (1 + r)−t

f ∂

∂γtb−xa
E[S

(R)

xf ,tb+tf−1
(1)|Ftb ].

Otherwise, ∂Q
(R)
tb

(tb, x
f , tf )/∂γtb−xa is simply zero. The partial derivatives of the expecta-

tions in the expressions above are derived in Appendix G.

Sensitivities of Liability Being Hedged

The partial derivatives of the (tb,Ftb)-value of the annuity liability with respect to κ
(1)
tb

,

κ
(2)
tb

and κ
(3)
tb

are calculated as

∂L
(B)
tb

(τ)

∂κ
(j)
tb

=

ω−x0∑
s=1

(1 + r)−(τ+s) ∂

∂κ
(j)
tb

E[S
(B)
x0−τ,tb(τ + s)|Ftb ], j = 1, 2, 3.

Also, if the annuity liability is subject to cohort effect uncertainty (i.e., tb− xa < tb− x0 +

τ + 1), we calculate the partial derivative of L
(B)
tb

(τ) with respect to γtb−xa as

∂L
(B)
tb

(τ)

∂γtb−xa
=

ω−x0∑
s=1

(1 + r)−(τ+s) ∂

∂γtb−xa
E[S

(B)
x0−τ,tb(τ + s)|Ftb ].

Otherwise, ∂L
(B)
tb

(τ)/∂γtb−xa is simply zero. The partial derivatives of the expectations in

the expressions above are presented in Appendix G.

Calculating the Notional Amounts

We let J be the number of q-forwards in the hedge portfolio, hj be the notional amount

of the j-th q-forward, and Q
(R)
tb

(tb, x
f
j , t

f
j ) be the (tb,Ftb)-value of the j-th q-forward with
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a reference age of xfj and a time-to-maturity of tfj . Assuming that J = 4 q-forwards are

used and that the sensitivities with respect to κ
(j)
tb

for j = 1, 2, 3, and γtb−xa are being

matched, the values of hj for j = 1, . . . , 4 are obtained by solving the following system of

linear equations:

∂Q
(R)
tb

(tb,x
f
1 ,t

f
1 )

∂κ
(1)
tb

∂Q
(R)
tb

(tb,x
f
2 ,t

f
2 )

∂κ
(1)
tb

∂Q
(R)
tb

(tb,x
f
3 ,t

f
3 )

∂κ
(1)
tb

∂Q
(R)
tb

(tb,x
f
4 ,t

f
4 )

∂κ
(1)
tb

∂Q
(R)
tb

(tb,x
f
1 ,t

f
1 )

∂κ
(2)
tb

∂Q
(R)
tb

(tb,x
f
2 ,t

f
2 )

∂κ
(2)
tb

∂Q
(R)
tb

(tb,x
f
3 ,t

f
3 )

∂κ
(2)
tb

∂Q
(R)
tb

(tb,x
f
4 ,t

f
4 )

∂κ
(2)
tb

∂Q
(R)
tb

(tb,x
f
1 ,t

f
1 )

∂κ
(3)
tb

∂Q
(R)
tb

(tb,x
f
2 ,t

f
2 )

∂κ
(3)
tb

∂Q
(R)
tb

(tb,x
f
3 ,t

f
3 )

∂κ
(3)
tb

∂Q
(R)
tb

(tb,x
f
4 ,t

f
4 )

∂κ
(3)
tb

∂Q
(R)
tb

(tb,x
f
1 ,t

f
1 )

∂γtb−xa

∂Q
(R)
tb

(tb,x
f
2 ,t

f
2 )

∂γtb−xa

∂Q
(R)
tb

(tb,x
f
3 ,t

f
3 )

∂γtb−xa

∂Q
(R)
tb

(tb,x
f
4 ,t

f
4 )

∂γtb−xa




h1

h2

h3

h4

 =



∂L
(B)
tb

(τ)

∂κ
(1)
tb

∂L
(B)
tb

(τ)

∂κ
(2)
tb

∂L
(B)
tb

(τ)

∂κ
(3)
tb

∂L
(B)
tb

(τ)

∂γtb−xa


.

All of the partial derivatives in the system of equations are evaluated at κ
(R)
tb

= κ̂
(R)
tb

,

κ
(B)
tb

= κ̂
(B)
tb

and γtb−xa = γ̂tb−xa .

If both the annuity liability and the q-forwards are not subject to cohort effect uncer-

tainty at time tb (all partial derivatives with respect to γtb−xa are zero), then the above

reduces to a system of three linear equations and only J = 3 q-forwards are needed.

3.6.2 Dynamic Delta Hedging

In a dynamic hedge, the q-forward portfolio is adjusted at the end of each year after time tb

(when the hedge is first established). We assume that at each time step t = tb+1, tb+2, . . .,

the existing q-forwards (purchased at time t− 1) in the portfolio are closed out, and new

q-forwards (freshly launched at time t) are purchased. The process continues until the

annuity liability completely runs off.

For t = tb, tb + 1, . . ., the hedge is (re-)calibrated by matching the first-order partial

derivatives of the (t,Ft)-values of the annuity liability and the q-forward portfolio with

respect to the most recently realized period and cohort effects that are relevant to both

the book and reference populations (i.e., κ
(1)
t , κ

(2)
t , κ

(3)
t and γt−xa).
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Sensitivities of the Hedging Instruments

By assumption, all q-forwards purchased at time t have an issue date of t∗ = t. Let Jt be the

number of q-forwards purchased at time t. We use xft,j and tft,j to denote the reference age

and time-to-maturity of the j-th q-forward purchased at time t. Note that the (t,Ft)-value

of j-th q-forward purchased at time t is Q
(R)
t (t, xft,j, t

f
t,j).

To (re-)calibrate the hedge at time t = tb, tb + 1, . . ., we need the partial derivatives of

Q
(R)
t (t, xft,j, t

f
t,j) with respect to the most recently realized period and cohort effects as of

time t. We calculate the partial derivatives of Q
(R)
t (t, xft,j, t

f
t,j) with respect to κ

(1)
t , κ

(2)
t and

κ
(3)
t as

∂Q
(R)
t (t, xft,j, t

f
t,j)

∂κ
(j)
t

= (1 + r)−t
f ∂

∂κ
(j)
t

E[S
(R)

xft,j ,t+t
f
t,j−1

(1)|Ft], j = 1, 2, 3.

Also, if the j-th q-forward purchased at time t is subject to cohort effect uncertainty (i.e.,

t − xa < t + tft,j − xft,j), then we calculate the partial derivative of Q
(R)
t (t, xft,j, t

f
t,j) with

respect to γt−xa as follows:

∂Q
(R)
t (t, xft,j, t

f
t,j)

∂γt−xa
= (1 + r)−t

f ∂

∂γt−xa
E[S

(R)

xft,j ,t+t
f
t,j−1

(1)|Ft].

Otherwise, the partial derivative ofQ
(R)
t (t, xft,j, t

f
t,j) with respect to γt−xa is simply zero. The

partial derivatives of the expectations in the above expressions are presented in Appendix

G (for t = tb) and Appendix H (for t > tb).

Sensitivities of Liability Being Hedged

Using equations (3.22) to (3.24), we can rewrite the (tb,Ft)-value of the annuity liability

as

L
(B)
t (τ) =



FL
(B)
t (τ), if t = tb

(1 + r)−(t−tb)S
(B)
x0−τ,tb(t− tb)FL

(B)
t (τ), if tb < t ≤ tb + τ∑t−tb−τ

s=1 (1 + r)−(τ+s)S
(B)
x0−τ,tb(τ + s)

+(1 + r)−(t−tb)S
(B)
x0−τ,tb(t− tb)FL

(B)
t (τ), if tb + τ < t < tb + τ + ω − x0

,
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where

FL
(B)
t (τ) =



∑ω−x0
s=1 (1 + r)−(τ+s)E[S

(B)
x0−τ,t(τ + s)|Ft], if t = tb∑ω−x0

s=1 (1 + r)−(τ+s−t+tb)E[S
(B)
x0−τ+t−tb,t(τ + s− t+ tb)|Ft], if tb < t ≤ tb + τ∑ω−x0−t+tb+τ

s=1 (1 + r)−sE[S
(B)
x0−τ+t−tb,t(s)|Ft], if tb + τ < t < tb + τ + ω − x0

for t = tb, tb + 1, . . . is the (t,Ft)-value of the annuity liability.

To (re-)calibrate the hedge at time t = tb, tb + 1, . . ., we need the partial derivatives of

FL
(B)
t (τ) with respect to the most recently realized period and cohort effects as of time t.

Using the information presented in Appendices G and H, we can easily compute the partial

derivatives of FL
(B)
t (τ) with respect to κ

(1)
t , κ

(2)
t and κ

(3)
t for each t = tb, tb + 1, . . ., and the

partial derivative of FL
(B)
t (τ) with respect to γt−xa for each t = tb, tb + 1, . . . if FL

(B)
t (τ)

is still subject to cohort effect uncertainty (i.e., t − xa < tb − x0 + τ + 1). If FL
(B)
t (τ) is

no longer subject to cohort effect uncertainty, its partial derivative with respect to γt−xa is

simply zero.

Calculating the Notional Amounts

Similar to a static hedge, the notional amounts of the q-forwards purchased at time t =

tb, tb + 1, . . . are determined by solving the following system of linear equations:

∂Q
(R)
t (t,xft,1,t

f
t,1)

∂κ
(1)
t

∂Q
(R)
t (t,xft,2,t

f
t,2)

∂κ
(1)
t

∂Q
(R)
t (t,xft,3,t

f
t,3)

∂κ
(1)
t

∂Q
(R)
t (t,xft,4,t

f
t,4)

∂κ
(1)
t

∂Q
(R)
t (t,xft,1,t

f
t,1)

∂κ
(2)
t

∂Q
(R)
t (t,xft,2,t

f
t,2)

∂κ
(2)
t

∂Q
(R)
t (t,xft,3,t

f
t,3)

∂κ
(2)
t

∂Q
(R)
t (t,xft,4,t

f
t,4)

∂κ
(2)
t

∂Q
(R)
t (t,xft,1,t

f
t,1)

∂κ
(3)
t

∂Q
(R)
t (t,xft,2,t

f
t,2)

∂κ
(3)
t

∂Q
(R)
t (t,xft,3,t

f
t,3)

∂κ
(3)
t

∂Q
(R)
t (t,xft,4,t

f
t,4)

∂κ
(3)
t

∂Q
(R)
t (t,xft,1,t

f
t,1)

∂γt−xa

∂Q
(R)
t (t,xft,2,t

f
t,2)

∂γt−xa

∂Q
(R)
t (t,xft,3,t

f
t,3)

∂γt−xa

∂Q
(R)
t (t,xft,4,t

f
t,4)

∂γt−xa




ht,1

ht,2

ht,3

ht,4

 =



∂FL
(B)
t (τ)

∂κ
(1)
t

∂FL
(B)
t (τ)

∂κ
(2)
t

∂FL
(B)
t (τ)

∂κ
(3)
t

∂FL
(B)
t (τ)

∂γt−xa


.

(3.27)

where ht,j, j = 1, . . . , Jt, denotes the notional amount of the j-th q-forward purchased at

time t. All of the partial derivatives in the system of equations are evaluated at κ
(R)
t = κ̂

(R)
t ,

κ
(B)
t = κ̂

(B)
t and γt−xa = γ̂t−xa .
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If both the annuity liability and the q-forwards are not subject to cohort effect un-

certainty at time t (all partial derivatives with respect to γt−xa are zero), then the above

reduces to a system of three linear equations and only Jt = 3 q-forwards are needed.

3.7 Hedge Evaluation

In this section, we define two metrics for evaluating the effectiveness of the delta longevity

hedges. The first metric, which is based on the reduction in variance, is suited for evaluating

cash flow hedges of which the focus is the variability of (the discounted values of) the cash

flows involved in the portfolio. The second metric, which is based on the reduction in

Value-at-Risk, is developed for evaluating value hedges of which the focus is the variability

of the values of the portfolio at a certain future time point.

3.7.1 Evaluation with Variance

Static Hedging

Let us first consider on a static hedge. Suppose that the hedge is evaluated at time tb,

i.e., the time when the hedge is established. Discounted to time tb, the net cash outflows

arising from the hedged and unhedged positions sum to

L(B)(τ)−
J∑
j=1

hjQ(R)

tb+t
f
j

(tb, x
f
j , t

f
j ) and L(B)(τ),

respectively. Therefore, the following metric quantifies the extent to which the static hedge

reduces the variability of cash flows:

HE = 1−
Var[L(B)(τ)−

∑J
j=1 hjQ

(R)

tb+t
f
j

(tb, x
f
j , t

f
j )|Ftb ]

Var[L(B)(τ)|Ftb ]
.

The closer to 1 the value of HE is, the better the hedge effectiveness is. The variances in

the expression for HE can be calculated easily using non-nested simulations.
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Dynamic Hedging

As with static hedging, L(B)(τ) still represents the annuity liability’s cash flows discounted

to time tb when the hedge is established and evaluated.

However, the cash flows from the hedge (the portfolio of q-forwards) are very different

if it is dynamically adjusted instead of being kept unchanged. For a dynamic hedge, the

following events occur for each t = tb, . . . , tb + τ + ω − x0 − 1:

• At time t, write Jt freshly launched q-forwards. The notional amount for the jth

q-forward (with a reference age of xft,j and a time-to-maturity of tft,j) is ht,j. Since all

q-forwards written are freshly launched, this event does not incur any cash flow.

• At time t + 1, the Jt q-forwards written at time t are closed out. Per unit notional,

the value of the jth q-forward at time t+ 1 is Q
(R)
t+1(t, xft,j, t

f
t,j). Therefore, this event

generates a cash inflow of
∑Jt

j=1 ht,jQ
(R)
t+1(t, xft,j, t

f
t,j).

Discounted to time tb, the cash inflows generated from the dynamically adjusted hedge

sum to
tb+τ+ω−x0−1∑

t=tb

Jt∑
j=1

(1 + r)−(t−tb)ht,jQ
(R)
t+1(t, xft,j, t

f
t,j)

and hence the net cash outflows arising from the hedged position sum to

L(B)(τ)−
tb+τ+ω−x0−1∑

t=tb

Jt∑
j=1

(1 + r)−(t−tb)ht,jQ
(R)
t+1(t, xft,j, t

f
t,j). (3.28)

It follows that the following metric quantifies the extent to which the dynamic hedge

reduces the variability of cash flows:

HE = 1−
Var[L(B)(τ)−

∑tb+τ+ω−x0−1
t=tb

∑Jt
j=1(1 + r)−(t−tb)ht,jQ

(R)
t+1(t, xft,j, t

f
t,j)|Ftb ]

Var[L(B)(τ)|Ftb ]
.

A value of HE that is close to 1 indicates the hedge is effective.

To estimate HE, we simulate a large number of mortality scenarios (i.e., sample paths

of κ
(R)
t |Ftb , κ

(B)
t |Ftb and γt−ta|Ftb , for t = tb + 1, . . . , tb + τ + ω − x0). For each mortality

scenario, we obtain the following:
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1. A realization of L(B)(τ)

2. A realization of ht,j for t = tb, . . . , tb + τ + ω − x0 − 1 and j = 1, . . . , Jt

In particular, for each t = tb, . . . , tb + τ + ω − x0 − 1, we calculate

∂Q
(R)
t (t, xft,j, t

f
t,j)

∂κ
(i)
t

,
∂Q

(R)
t (t, xft,j, t

f
t,j)

∂γt−xa
,
∂FL

(B)
t (τ)

∂κ
(i)
t

, and
∂FL

(B)
t (τ)

∂γt−xa

for j = 1, . . . , Jt and i = 1, 2, 3, using the procedures outlined in Appendices G

and H. Note that the procedure in Appendix H utilizes the approximation methods

presented in Section 3.4.2. With the calculated partial derivatives, we then compute

ht,j for j = 1, . . . , Jt using equation (3.27).

3. A realization of Q
(R)
t+1(t, xft,j, t

f
t,j) for t = tb, . . . , tb + τ + ω − x0 − 1 and j = 1, . . . , Jt

Specifically, for t = tb, . . . , tb + τ + ω − x0 − 1, we calculate Q
(R)
t+1(t, xft,j, t

f
t,j) with the

approximation methods described in Section 3.5.2.

The algorithm above generates empirical distributions of L(B)(τ) and (3.28), from which

the variances in the expression for HE can be estimated.

The importance of the previously discussed approximation methods can now be clearly

seen. Without the approximation methods, items 2 and 3 in the algorithm have to be

calculated with simulations, thereby creating the situation of computationally demanding

“simulations on simulations”.

3.7.2 Evaluation with Value-at-Risk

We now define a metric for measuring the effectiveness of a value hedge in terms of reduction

in VaR. To avoid additional notation, we focus on a horizon of 1 year and a confidence level

of 99.5% (consistent with Solvency II). With straightforward adaptations, other horizons

and confidence levels can be considered.

First, note the following:

• The (tb,Ftb+1)-value of the unhedged position is L
(B)
tb+1(τ).
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• The (tb,Ftb+1)-value of the hedged position is L
(B)
tb+1(τ)−

∑J
j=1 hjQ

(R)
tb+1(tb, x

f
j , t

f
j ).

Given Ftb , L
(B)
tb+1(τ) and Q

(R)
tb+1(tb, x

f
j , t

f
j ) are random variables, depending on the period

and/or cohort effects realized at time tb + 1. Note also that when viewed at time tb, the

expected value of the annuity liability is E[L
(B)
tb+1(τ)|Ftb ] = L

(B)
tb

(τ), which can be calculated

easily with non-nested simulations.

It follows that the reduction in VaR (over the expected value of the annuity liability)

produced by the delta hedge can be calculated as

HEVaR = 1−
VaR99.5%

[
L

(B)
tb+1(τ)−

∑J
j=1 hjQ

(R)
tb+1(tb, x

f
j , t

f
j )
∣∣Ftb]− L(B)

tb
(τ)

VaR99.5%

[
L

(B)
tb+1(τ)

∣∣Ftb]− L(B)
tb

(τ)
.

A value of HEVaR that is close to 1 indicates that the hedge is effective in mitigating the

variability (in terms of VaR) of the values of the portfolio one year from the time when

the hedge is established.

The following procedure is used to calculate the two values of VaR99.5% in HEVaR:

(i) Simulate realizations of κ
(R)
t |Ftb , κ

(B)
t |Ftb and γt−tb|Ftb for t = tb + 1.

(ii) For each realization of the period and cohort effects, calculate the realized values

of L
(B)
tb+1(τ) and Q

(R)
tb+1(tb, x

f
j , t

f
j ) for j = 1, . . . , J , using the approximation methods

described in Sections 3.5.1 and 3.5.2.

(iii) Using the result from the previous step, obtain empirical distributions of L
(B)
tb+1(τ)

and L
(B)
tb+1(τ) −

∑J
j=1 hjQ

(R)
tb+1(tb, x

f
j , t

f
j ), of which the 99.5th percentile yield the val-

ues of VaR99.5% in the denominator and numerator in the expression for HEVaR,

respectively.

Note that the approximations methods we developed also play a crucial role in the calcu-

lation of HEVaR (Step (ii) in the procedure above).
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3.8 Illustrations

In this section, we provide three illustrations of the longevity hedging strategies developed

in Section 3.6.

3.8.1 Illustration 1: Population Basis Risk and Cohort Effect

Uncertainty

The first illustration provides the baseline results. It also analyzes the impact of cohort

effect uncertainty and population basis risk on hedge effectiveness.

Assumptions

The following assumptions are used for Illustration 1:

• The hedge is a static hedge, which is established and evaluated at time tb = 2005.

Recall that the data sample used ends in year 2005.

• The liability being hedged is a deferred annuity-immediate sold at time tb. It has a

deferment period of τ years, and begins payment at the end of the year in which the

annuitant attains age 65. The mortality experience of the annuitant is identical to

that of the UK male insured lives.

Two different values of τ are considered:

– τ = 0

This value of τ implies that the annuitant was born in 1941. As this year-of-

birth is covered by the data sample, the annuity is not subject to any cohort

effect uncertainty.

– τ = 9

This value of τ implies that the annuitant was born in 1950. This year-of-birth

is beyond the data sample, and thus the annuity is subject to cohort effect

uncertainty.
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• The q-forwards used are issued at the end of year 2005 (i.e., t∗ = 2005). We consider

q-forwards with references ages 65, 69, 75 and 85, and times-to-maturity 5, 10 and 15

years. The table below shows the years-of-birth to which the q-forwards are linked.

The number of asterisks (displayed next to the year-of-birth) indicates the relative

level of cohort effect uncertainty.

tf
xf

65 69 75 85

5 1945 1941 1935 1925

10 1950 (**) 1946 (*) 1940 1930

15 1955 (***) 1951 (**) 1945 1935

The q-forwards’ reference population is the English and Welsh population. As the

q-forwards and the annuity liability are associated with different populations, popu-

lation basis risk exists.

To focus on the goals of this illustration, we set λ to 0. This assumption is re-

laxed in Section 3.8.3 when the relationship between the cost of hedging and hedge

effectiveness is studied.

• Three or four q-forwards are used in each hedge, depending on whether or not the

sensitivity to γtb−xa is matched.

• The interest rate is at 5% per annum for all durations.

Baseline Results

The baseline results are displayed in Table 3.2. Hedges #1 to #3 are for the annuity

liability with τ = 0, whereas Hedges #4 to #8 are for the annuity liability with τ = 9.

89



Hedge q-forward 1 q-forward 2 q-forward 3 q-forward 4 HE

τ = 0

#1 (65,5,1945) (75,10,1940) (85,15,1935) - 0.83

#2 (75,5,1935) (65,10,1950) (**) (85,15,1935) - 0.78

#3 (75,5,1935) (85,10,1930) (65,15,1955) (***) - 0.68

τ = 9

#4 (65,5,1945) (75,10,1940) (85,15,1935) - 0.57

#5 (75,5,1935) (65,10,1950) (**) (85,15,1935) - 0.60

#6 (75,5,1935) (85,10,1930) (65,15,1955) (***) - 0.55

#7 (65,5,1945) (75,10,1940) (85,15,1935) (65,10,1950) (**) 0.67

#8 (65,5,1945) (75,10,1940) (85,15,1935) (69,10,1946) (*) 0.60

Table 3.2: The effectiveness of the static hedges for the annuity liabilities with τ = 0 and τ = 9. The specification

of each q-forward used is presented by a triplet (xf ,tf ,cf ), where cf = tb + tf − xf is the cohort to which the

q-forward is linked. The number of asterisks next to the triplet indicates the level of cohort effect uncertainty to

which the q-forward is subject.
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Annuity with τ = 0

We first focus on the annuity liability with τ = 0. Since it is not subject to any cohort

effect uncertainty, the sensitivity to γtb−xa is not matched and three q-forwards are used.

Even though the sensitivity to γtb−xa is not matched, the hedger may still use q-forwards

that are subject to cohort effect uncertainty. In Hedge #1, all of the q-forwards are free of

cohort effect uncertainty, but in Hedges #2 and #3, one of the q-forwards used is subject

to cohort effect uncertainty.

The following findings are observed:

• Even when population basis risk exists, a static hedge with only three q-forwards can

still achieve an reasonably high level of hedge effectiveness (up to 83% reduction in

variance).

• Among the three hedges constructed, Hedge #1 (the only one that is free of cohort

effect uncertainty), is the most effective. This outcome is not overly surprising,

because using a q-forward that is exposed to cohort effect uncertainty (Hedges #2

and #3) would introduce cohort effect uncertainty to the hedger’s portfolio (which is

originally free of such uncertainty). A similar reasoning can also explain why Hedge

#2 yields a higher value of HE compared to Hedge #3.

Annuity with τ = 9

We now turn to the annuity liability with τ = 9. Since it is subject to cohort effect

uncertainty, we can match the sensitivity to γtb−xa , provided that at least one of the q-

forwards used is also subject to cohort effect uncertainty. The following observations are

made:

• By comparing Hedges #4, #5 and #6 with Hedges #1, #2 and #3, we can deduce

that hedge effectiveness is significantly reduced if the annuity liability is subject to

cohort effect uncertainty but the sensitivity to γtb−xa is not matched.
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• While both Hedges #5 and #6 contains a q-forward that is exposed to cohort effect

uncertainty, Hedge #5 is more effective than Hedge #6. This outcome can be at-

tributed to the fact that the second q-forward in Hedge #5 and the annuity liability

are linked to the same cohort (year-of-birth 1950).

• Hedges #4 and #7 are identical, except that Hedge #7 contains an additional q-

forward that is subject to cohort effect uncertainty and is linked to the same cohort

(year-of-birth 1950) as the annuity liability. It can be seen that by matching γtb−xa
using an additional q-forward that is also associated with year-of-birth 1950, the

hedge effectiveness is significantly increased.

• Hedge #8 also contains an additional q-forward that is subject to cohort effect uncer-

tainty. However, the additional q-forward is not associated with year-of-birth 1950.

As the cohorts to which the annuity liability and the additional q-forward are linked

do not coincide, Hedge #8 is not as effective as Hedge #7. However, Hedge #8 is

still more effective than Hedge #4, in which the sensitivity to γtb−xa is not matched

at all.

From these observations, we can conclude that when the liability being hedged is subject

to cohort effect uncertainty, it is important to match the sensitivity to γtb−xa . Furthermore,

whenever possible, the hedger should include in his/her portfolio a q-forward that is linked

to the same cohort as the liability being hedged.

The Impact of Population Basis Risk

In the M7-M5 model, the extent of population basis risk is determined exclusively by the

covariance matrix Σ(B) in the process for κ
(B)
t . To examine the impact of population basis

risk, we now consider four hypothetical scenarios for which the specifications of Σ(B) are

different. In Scenario 1, Σ(B) = 0 so that the hedge is not subject to any population basis

risk. In Scenarios 2 to 4, the diagonal elements in Σ(B) are increased to 2, 5 and 10 times

their estimated values, respectively.
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In Table 3.3, we compare, for each of eight hedges constructed, the values of HE in

the four hypothetical scenarios with the baseline HE value. The following observations are

made:

• Compared to the baseline HE value, the value of HE when population basis risk is

completely absent (Scenario 1) is only slightly higher.

• Across Scenarios 1 to 4, the extent of population basis risk increases rapidly, but the

hedge effectiveness decreases very slowly. Even if population basis risk is 10 times

that in the baseline scenario, the hedges still perform reasonably well.

• The conclusions made in the previous sub-section are still valid under all of the

scenarios.

Hedge Baseline Scenario 1 Scenario 2 Scenario 3 Scenario 4

τ = 0

#1 0.83 0.84 0.82 0.79 0.75

#2 0.78 0.79 0.77 0.75 0.71

#3 0.68 0.69 0.68 0.66 0.62

τ = 9

#4 0.57 0.57 0.56 0.55 0.54

#5 0.60 0.60 0.60 0.58 0.57

#6 0.55 0.55 0.54 0.53 0.52

#7 0.67 0.67 0.67 0.65 0.63

#8 0.60 0.61 0.60 0.59 0.57

Table 3.3: The values of HE for the eight static hedges produced under the baseline specification

of Σ(B) and the four alternatives specifications of Σ(B).

From these observations, we can conclude that if a longevity hedge is properly calibrated

(using the strategies developed earlier in this chapter), then the resulting hedge effectiveness

is reasonably robust with respect to the level of population basis risk. In particular, with a

proper calibration, the hedge effectiveness when there is a normal level of population basis

risk is almost identical to that when population basis risk is completely absent.
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3.8.2 Illustration 2: Static vs. Dynamic

In this illustration, we focus on the difference in hedge effectiveness between a static hedge

and a dynamic hedge.

Assumptions

The following assumptions are made for Illustration 2:

• Both hedges (static and dynamic) are established and evaluated at time tb = 2005.

The dynamic hedge is rebalanced annually until one year before the liability com-

pletely runs off (i.e., from time tb + 1 = 2006 to tb + τ + ω − x0 − 1 = 2044).

• The liability being hedged is a deferred annuity-immediate sold at time tb = 2005.

It has a deferment period of 5 years, and begins payment at the end of the year in

which the annuitant attains age 65. The mortality experience of the annuitant is

identical to that of the UK male insured lives.

These assumptions imply that the annuitant was born in 1946. This year-of-birth is

not covered by the data sample, so at time tb the annuity is subject to cohort effect

uncertainty. However, as the cohort effect for year-of-birth 1946 will be realized at

time tb+1, the annuity liability will be free of cohort effect uncertainty one year after

the hedges are established.

• The reference population of the q-forwards used is English and Welsh males. To

focus on the goals of this illustration, λ is again set to 0. All q-forwards used are

freshly launched at the time when they are written.

• Two scenarios are considered. They differ in the specifications of the q-forwards used.

– Scenario I

For the static hedge, we use four q-forwards with (xf , tf ) = (65, 5), (69, 10),

(75, 10), (85, 15). The q-forward with (xf , tf ) = (69, 10) is associated with the
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same year-of-birth (1946) as the annuity liability, and is subject to cohort ef-

fect uncertainty. The other three q-forwards are not subject to cohort effect

uncertainty.

For the dynamic hedge, we use four q-forwards with (xf , tf ) = (65, 5), (69, 10),

(75, 10), (85, 15) when the hedge is first established at time tb = 2005. As the

annuity liability is free of cohort effect uncertainty after time tb + 1, only three

q-forwards, with (xf , tf ) = (65, 5), (75, 10), (85, 15), are used when the hedge is

rebalanced. These three q-forwards are not subject to cohort effect uncertainty.

– Scenario II

For the static hedge, we use four q-forwards with (xf , tf ) = (69, 10), (70, 10),

(75, 10), (80, 10). Note that they have the same time-to-maturity. The q-forward

with (xf , tf ) = (69, 10) is associated with the same year-of-birth (1946) as the

annuity liability, and is subject to cohort effect uncertainty. The other three

q-forwards are not subject to cohort effect uncertainty.

For the dynamic hedge, we use four q-forwards with (xf , tf ) = (69, 10), (70, 10),

(75, 10), (80, 10) when the hedge is first established at time tb = 2005. As the

annuity liability is free of cohort effect uncertainty after time tb + 1, only three

q-forwards, with (xf , tf ) = (70,10), (75,10), (80,10), are used when the hedge is

rebalanced. These three q-forwards are not subject to cohort effect uncertainty.

Empirical Results

The resulting values of HE are tabulated in Table 3.4. The following observations and

conclusions are made:

• In both scenarios, the dynamic hedge yields a significantly higher value of HE com-

pared to the static hedge. This finding highlights the benefit from dynamically

adjusting a longevity hedge over time.

• The static hedge in Scenario II (whereby all q-forwards have the same time-to-

maturity) is substantially less effective than that in Scenario I. However, the dynamic
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hedges in both scenarios are similarly effective. This finding echoes that of Zhou and

Li (2017), who identified and explained the empirical that the performance of a dy-

namically adjusted longevity hedge is robust with respect to the times-to-maturity

of the q-forwards used.

This finding suggests that when the range of times-to-maturity in the q-forward

market is limited, rebalancing a longevity hedge periodically is particularly beneficial.

What is found in this illustration is practically relevant, because from the lessons

learnt from the BNP/EIB longevity bond (see, e.g., Blake et al., 2006), we anticipate

that it is unlikely that q-forwards with ultra-long times-to-maturity will become

available in the market.

Static Hedge Dynamic Hedge

Scenario I 0.74 0.97

Scenario II 0.57 0.93

Table 3.4: The values of HE for the static and dynamic hedges in Scenarios I and II.

3.8.3 Illustration 3: Cost of Hedging

The third illustration investigates the impact of the cost of hedging. To this end, we

now allow λ (which reflects the risk premium demanded by the counterparty) to deviate

from zero. Recall from Section 3.3.4 that the cost of a q-forward is related to its forward

mortality rate qf , which is determined as a function of λ:

qf = (1− λ)(1− E[S
(R)

xf ,t∗+tf−1
(1)|Ft∗ ]).

A higher value of λ means that a larger amount of risk premium is demanded by the

counterparty.

We now also measure hedge effectiveness with HEVaR instead of HE, because the former

takes the cost of hedging into account while the latter (which only measures the dispersion

around the expected value) does not.
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Assumptions

Other than the above assumptions regarding hedge evaluation and λ, the following as-

sumptions are used in this illustration:

• The hedge is a static hedge, established and evaluated at time tb = 2005.

• The liability being hedged is identical to that in Illustration 2.

• The q-forwards used are the same as those for the static hedge in Scenario 2 of

Illustration 2.

• Four values of λ, namely 0, 0.005, 0.01 and 0.05, are considered.

Empirical Results

Table 3.5 shows the values of HEVaR for the four assumed values of λ. Figure 3.6 compares,

for each of the four assumed values of λ, the empirical distributions of the (t2005,F2006)-

values of the hedged position (i.e., L
(B)
2006 −

∑4
j=1 hjQ

(R)
2006) and unhedged positions (i.e.,

L
(B)
2006) given F2005. The following observations and conclusions can be made from Table

3.5 and Figure 3.6:

• When the q-forwards are costless (i.e., λ = 0), the value of HEVaR is 0.95, which

means equivalently means that the longevity hedge reduces the 1-year ahead 99.5%

VaR (over the expected value of the annuity liability) by 95%.

• For all of the four assumed values of λ, the hedged positions are equally less dispersed

than the unhedged position. This phenomenon confirms the fact that the cost of

hedging does not affect the mitigation of the dispersion surrounding the expected

value.

• However, as λ increases, the distribution of L
(B)
2006 −

∑4
j=1 hjQ

(R)
2006 given F2005 shifts

rightwards, and hence has a higher 99.5th percentile. Consequently, the value of

HEVaR decreases with λ. It can be deduced that beyond a certain threshold value
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of λ, the value of HEVaR would become negative, which in turn means that the

longevity hedge would no longer be economically viable.

λ 0 0.005 0.01 0.05

HEVaR 0.95 0.90 0.85 0.45

Table 3.5: The values of HEVaR for the four assumed values of λ.

3.9 Concluding Remarks

In this chapter, we have contributed a discrete-time delta hedging strategy (constructed

in both static and dynamic settings) for use with the M7-M5 model, a two-population

mortality model that is recommended by the research team in charge of the population

basis risk project (phase I) commissioned by the LLMA and IFoA. The hedging strategy

takes into account of both cohort effect uncertainty and population basis risk, in contrast

to those in previous work which ignore at least one of these two sources of randomness.

Under the M7-M5 model assumption, a survival function may involve both unrealized

period effects and an unrealized cohort effect. As a consequence, the ‘approximation of

survival function’ method, which is essential for keeping the computational effort entailed

in a dynamic delta hedge manageable, is not straightforward to implement. We have over-

come this technical challenge by systematically dividing all possibly encountered survival

functions into five cases, and tailoring a specific approximation (or calculation) method for

each.

We have defined several metrics for quantifying the effectiveness of cash flow hedges

(of which the focus is the variability of cash flows) and value hedges (of which the focus

is the variability of the portfolio values at a future time point). The metric based on

the reduction in Value-at-Risk over a one-year horizon at a confidence level of 99.5% is

particularly relevant to Solvency II capital requirements. Typically, the evaluation of such

a metric requires simulations on simulations, but this need is waived by the approximation

methods we consider.
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Figure 3.6: The empirical distributions of the (t2005,F2006)-values of the unhedged position (i.e.,

L
(B)
2006) and the hedged position (i.e., L

(B)
2006 −

∑4
j=1 hjQ

(R)
2006) given F2005, obtained using the four

assumed values of λ.

We have provided three real data illustrations to supplement our theoretical work. The

empirical work suggests the following points concerning index-based longevity hedging:

• If the liability being hedged is subject to cohort effect uncertainty, a delta hedge
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that matches the sensitivity to the most recently realized cohort effect significantly

outperforms one that does not.

• Whether possible, the hedger should include in his/her hedge portfolio a q-forward

that is linked to the same cohort as his/her annuity liability.

• If a longevity hedge is properly calibrated (with the strategies developed in this

chapter), then the resulting hedge effectiveness is reasonably robust with respect to

the level of population basis risk.

• When the range of times-to-maturity of the q-forward market is limited, rebalancing

a longevity hedge periodically is particularly beneficial.

• The hedge effectiveness measured in terms of Value-at-Risk reduces as the risk pre-

mium demanded by the counterparty of the q-forwards increases. When the risk

premium becomes sufficiently high, a negative hedge effectiveness may be resulted.

Generally speaking, an index-based longevity hedge is subject to three sources of basis

risk, namely (i) population basis risk (which arises from demographic or socioeconomic dif-

ferences), (ii) sampling basis risk (which arises from the finite sample variation surrounding

a fixed mortality trajectory), and (iii) structural basis risk (which arises from the differ-

ences in the payoff structures of the liability being hedged and the hedging instruments).

In this chapter, we have focused on (i) and addressed (iii) by deriving longevity deltas

that are specific to the payoff structures of the annuity liability and q-forwards, but have

paid no attention to (ii). Future research warrants a study that incorporates (ii), using the

M7-M5 model in conjunction with a suitable death count process. Note that (ii) has no

impact on the calculation of deltas, but may reduce hedge effectiveness depending on the

size of the hedger’s portfolio.
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Chapter 4

Asymmetry in Mortality Volatility

and Its Implications on Index-based

Longevity Hedging

4.1 Introduction

Mortality volatility, that is, the level of uncertainty surrounding the trend of mortality

improvement, is crucially important to many aspects of index-based longevity hedging, in-

cluding instrument pricing, hedge calibration, and hedge performance evaluation. Methods

for pricing mortality-linked instruments often involve an estimate of mortality volatility.

For example, the q-forward pricing formula considered by Coughlan et al. (2007) and Li

and Hardy (2011) determines the forward mortality rate as the corresponding expected

mortality rate (under the real-world probability measure) less the product of the assumed

Sharpe ratio and an estimate of mortality volatility. When adjusting the real-world Cairns-

Blake-Dowd model for pricing purposes, the adjustment amounts to the product of a vector

of Sharpe ratios and an estimate of the volatility of the period (time-related) effects driving

the evolution of mortality (Cairns et al., 2006). Mortality volatility is also heavily involved

in many methods for calibrating longevity hedges. One example is the variance-minimizing

method considered by Cairns et al. (2014) (and used in Chapter 2 as a benchmark), which
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leads to an optimal hedge ratio of which both the numerator and denominator depend on

an estimate of mortality volatility. Lastly, when evaluating a longevity hedge using typical

metrics such as reduction in variance and reduction in Value-at-Risk (both of which are

used in Chapter 3), an estimate of mortality volatility is needed.

While most studies in stochastic mortality modeling treat mortality volatility as a

constant over time, there exists profound empirical evidence supporting the time-varying

nature of mortality volatility (Lee and Miller, 2001; Gao and Hu, 2009; Giacometti et al.,

2012; Lin et al., 2015). As discussed in Chapter 2, there has been a growing awareness of this

empirical fact, and attempts have been made to extend existing stochastic mortality models

to incorporate time-varying mortality volatility. One approach is to borrow methodologies

used in the context of interest rate modeling; for instance, Fung et al. (2017) employed

a discrete version of the Cox-Ingersoll-Ross model to capture the dynamics of mortality

volatility. A more common approach is to utilize the family of generalized autoregressive

conditional heteroskedasticity (GARCH) models, as seen in the recent contributions by

Chai et al. (2013), Chen et al. (2015) Gao and Hu (2009), Giacometti et al. (2012), Lin

et al. (2015), Wang and Li (2016), and also in Chapter 2 of this thesis.

This chapter sets out to obtain a deeper understanding of mortality volatility and

its implications on index-based longevity hedging. The first objective is to investigate,

from a global perspective, the potential asymmetry in mortality volatility, which arises

when mortality volatility is more (or less) responsive to positive mortality shocks (due to,

for example, wars and pandemics) than negative mortality shocks (due to, for example,

medical breakthroughs). To this end, we apply a range of GARCH-type models that

permit asymmetric volatility, including the E-GARCH model (Nelson, 1991), the GJR-

GARCH model (Glosten et al., 1993), the N-GARCH model (Engle and Ng, 1993) and

the T-GARCH model (Zakoian, 1994), to mortality data from nine countries that span

four continents. While some of these models have previously been used to capture the

dynamics of mortality volatility, this study represents the first attempt to compare these

models with their symmetric counterpart (the GARCH model with symmetric volatility)

with a goal to identify the need to incorporate asymmetric mortality volatility in modeling

and applications.

In the context of equity risk, the financial impact of asymmetry in volatility (of equity
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returns) has been demonstrated by many researchers including Campbell and Hentschel

(1992), Koutmos and Booth (1995) and Bekaert and Wu (2000). It is therefore reasonable

to conjecture that asymmetry in mortality volatility, if exists, has a financial impact on

participants in the market of longevity risk transfers, and that failing to take such volatility

asymmetry into account may result in erroneous index-based longevity hedges.

The second objective is to study how asymmetric mortality volatility may affect index-

based longevity hedges through longevity Greeks. As introduced in Chapter 2, a longevity

Greek measures the sensitivity to changes in a certain parameter in the stochastic process

driving the evolution of mortality over time. Longevity Greeks have been proven to be

an effective tool for calibrating index-based longevity hedges (Cairns, 2011, 2013; De Rosa

et al., 2017; Liu and Li, 2017; Luciano et al., 2012, 2017; Luciano and Regis, 2014; Zhou

and Li, 2017). Studies such as Cairns (2011) and Zhou and Li (2017), and also Chapter

3 have shown that longevity Greeks are useful in approximating the values of mortality-

linked instruments and liabilities, and in assessing different dimensions of longevity risk

inherent in pension plans or annuity portfolios.

In more detail, we make three technical contributions which enable us to link mortality

volatility to index-based longevity hedging. First, we extend the work of Chapter 2 to the

mentioned collection of GARCH-type models that permit asymmetric mortality volatility.

Semi-analytical expressions, similar to those derived in Chapters 2 and 3, for three key

longevity Greeks – delta, gamma, and vega – are derived for each of the models.

Second, we improve the framework introduced in Chapter 2 to enable a more robust

estimate of longevity vega. As demonstrated in this chapter, the longevity vega defined in

Chapter 2 may erroneously take a value of zero, even when volatility is actually time-varying

and is influential to the value of the liability or instrument under consideration. This

problem in turn leads to difficulties in establishing a vega hedge (a hedge that neutralizes

the longevity vega of the hedger’s position). Drawing on the ideas of Engle and Rosenberg

(1995) and Badescu et al. (2014), in the improved longevity Greeks framework we treat

the liability or instrument under consideration as a function of the conditional volatility

at time 1 instead of that at time 0, and take partial derivatives accordingly. We show

theoretically that the improved framework can mitigate the ‘zero problem’ found in the

original framework.
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Third, inspired by the work of Duan (2009), we contribute a new longevity Greek known

as ‘dynamic delta’. When the period effect of mortality dynamics is modeled in a stochastic

volatility framework, a shock to the period effect has the following two impacts: (1) a direct

impact on the level of mortality, and (2) an indirect impact on the level of mortality as

other parameters in the model are changed due to the shock to the period effect. The

original longevity delta can only capture the former impact, because it is defined as the

first partial derivative with respect to the time-0 period effect, and when the derivative is

taken all parameters except the time-0 period effect are held constant. In contrast, defined

as the total derivative with respect to the time-0 the period effect, dynamic delta can

capture both direct and indirect impacts. The expression for dynamic delta turns out to

be highly intuitive: it is the sum of the original longevity delta (which captures the direct

impact) and the product of longevity vega and an adjustment term (which jointly reflect

the indirect impact).

Our theoretical contributions are complemented by two real-data illustrations, one of

which is based on a value hedge that focuses on the variability of the values of the hedged

position at a certain future time point, the other of which is based on a cash flow hedge

that focuses on the variability of all cash flows arising from the liability being hedged

and the hedging instruments. In line with Solvency II capital requirements, we measure

hedge effectiveness in terms of the reduction in the Value-at-Risk at a confidence level of

99.5%. Our empirical results point to the conclusion that if mortality volatility is in fact

asymmetric but the asymmetry in mortality volatility is not taken into account when a

longevity hedge is calibrated, then the resulting hedge effectiveness could be significantly

impaired.

The remainder of the chapter is organized as follows. Section 4.2 describes the GARCH-

type models we consider, and demonstrates the need of incorporating asymmetric mortality

volatility. For ease of reading, Section 4.3 reviews the longevity Greeks defined in Chapter

2. Section 4.4 presents the improved longevity Greeks framework, which encompasses

the enhanced version of longevity vega, and the longevity Greeks for a wider class of

GARCH models that permit asymmetric mortality volatility. Section 4.5 introduces the

new longevity Greek called dynamic delta. The two real-data illustrations are presented

in Section 4.6. Finally, Section 4.7 concludes the chapter.
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4.2 Modeling Mortality Volatility

4.2.1 Data

We consider mortality data from the female populations of nine countries which span four

continents. All of the required data are obtained from the Human Mortality Database.

The age range we use is 40 to 89, which covers typical ages of annuitants/pensioners and

excludes the extreme ages for which the data are extrapolated values instead of raw counts.

To better satisfy the data requirements of GARCH-type model and discern the potential

asymmetry in mortality volatility, we use all available data (over the chosen age range)

from 1900.1 A summary of the mortality data used is summarized in Table 4.1.

Continent Country Calibration window Age range Gender

North America
Canada 1921-2011 40-89 Female

US 1933-2016 40-89 Female

Europe

Finland 1900-2015 40-89 Female

France 1900-2015 40-89 Female

Italy 1900-2014 40-89 Female

Spain 1908-2014 40-89 Female

UK 1900-2016 40-89 Female

Oceania Australia 1921-2014 40-89 Female

Asia Japan 1947-2016 40-89 Female

Table 4.1: A summary of the mortality data used in this chapter.

4.2.2 The Lee-Carter Structure

Following Chapter 2, we assume that mortality follows the Lee-Carter structure:

lnmx,t = ax + bxκt, (4.1)

1For some populations, the available data series begins after 1900, and in this situation the beginning

point of the calibration window is set to the earliest year for which data is available.
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where mx,t is the central death rate at age x and in year t, ax is an age-specific parameter

measuring the average level of mortality at age x, κt is the time-varying index (also known

as the period effect) capturing the overall level of mortality in year t, and bx is an age-

specific parameter reflecting the sensitivity of mx,t to changes in κt.

The dynamics of κt is specified as

κt = κt−1 + µ+ εt, (4.2)

where µ is the drift term representing the expected rate of change in κt, and εt is the time-t

innovation which has a zero mean.2 While most previous studies in stochastic mortality

modeling assume that the variance of εt is time-invariant, we permit the (conditional)

variance of εt to vary over time.3 We use σ2
t to represent the conditional variance of εt.

In the rest of this section, we first identify any possible conditional heteroskedasticity,

that is, the phenomenon that σ2
t is time-varying, for each of the nine populations. We

then move to our first research objective to investigate the possibility that σ2
t responds

asymmetrically to positive and negative shocks (innovations) prior to time t.

4.2.3 Conditional Heteroskedasticity

Using the Poisson maximum likelihood method (Brouhns et al., 2002), we obtain estimates

of parameters in equation (4.1). Figure 4.1 shows the estimated series of (κt − κt−1) for

each of the nine populations under consideration. For all populations except Australia and

the US, the variation in (κt − κt−1) clearly varies over time. In particular, the variation

seems more pronounced during certain periods such as 1910s and 1930s. Such a pattern

suggests that conditional heteroskedasticity exists.

To verify the existence of conditional heteroskedasticity, we apply Engle’s ARCH test

to the series of (κt − κt−1)2 for each population. The test results are reported in Table

4.2. Except for US and Australia, the test results suggest a rejection of the null hypothesis

2It is assumed that {εt} and hence {κt − κt−1} possess no serial correlation. Despite this assumption,

{ε2t} and {(κt − κt−1)2} are both serially correlated if conditional heteroskedasticity exists.
3The condition is the information up to and including time t− 1.
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that (κt − κt−1)2 possesses no serial correlation, confirming the existence of conditional

heteroskedasticity. We also apply the Ljung-Box test to the series of (κt − κt−1)2 for each

population. The test results (not shown for the sake of space) point to the same conclusion.

Lag 1 2 3 4 5

Canada
3.9186 34.6104 38.2005 41.9446 39.9087

(0.0478) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

US
0.6037 1.8717 3.5025 4.8071 10.5270

(0.4372) (0.3923) (0.3204) (0.3077) (0.0616)

Finland
11.9455 11.7071 12.7023 18.3154 27.5272

(0.0005) (0.0029) (0.0053) (0.0011) (<0.0001)

France
17.9267 18.7987 19.1268 28.9292 30.6836

(<0.0001) (0.0001) (0.0003) (<0.0001) (<0.0001)

Italy
25.0178 33.2536 38.0725 39.3564 39.6428

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

Spain
24.3091 27.2442 28.3534 28.2829 28.0881

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

UK
24.4022 25.0509 24.8998 24.8032 24.8135

(<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0002)

Australia
0.0976 0.7170 0.7759 6.3877 7.5213

(0.7547) (0.6987) (0.8552) (0.1720) (0.1847)

Japan
0.6633 8.1174 10.0398 10.6085 15.1785

(0.4154) (0.0173) (0.0182) (0.0313) (0.0096)

Table 4.2: The test statistic and p-value (in parentheses) of the Engle’s ARCH test (at lag 1 to

5) applied to the series of (κt − κt−1) for each of the nine populations under consideration.

In our preliminary modeling work, we estimate a GARCH(1,1) model, the model con-

sidered in Chapter 2, to the series of εt (i.e., the mean corrected series of (κt−κt−1)) for each
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of the nine populations under consideration. The GARCH(1,1) model can be expressed as

εt = σtηt, (4.3)

σ2
t = ω + αε2t−1 + βσ2

t−1, (4.4)

where σ2
t is the conditional variance of εt, ηt-s are independent and identically distributed

(i.i.d.) standard normal random variables, and ω, α and β are constant parameters. In

particular, parameters α and β govern the dependence of the time-t conditional variance on

the time-(t− 1) squared innovation and the time-(t− 1) conditional variance, respectively.

Having fitted the GARCH(1,1) model, the inferred values of σ2
t over the calibration

window are extracted and are reported in Figure 4.2. The existence of conditional het-

eroskedasticity is further supported by the fact that the patterns of the inferred values of

σ2
t over the calibration window are far from being flat for all of the populations consid-

ered, except US and Australia. We then apply Engle’s ARCH test to the series of squared

standardized residuals4 for each population. Reported in Table 4.3, the test results in-

dicate no significant serial correlations in the squared standardized residuals, suggesting

that conditional heteroskedasticity is adequately captured by the GARCH(1,1) models.

We also apply the Ljung-Box test to the series of squared standardized residuals for each

population. The test results (not shown for the sake of space) point to the same conclusion.

While the GARCH(1,1) model appears to have captured conditional heteroskedasticity

adequately, it does not capture any asymmetry in volatility. It is clear from equation (4.4)

that a positive shock (innovation) at time t − 1, say |ε∗t−1|, and a negative shock of the

same magnitude, that is, −|ε∗t−1|, have exactly the same impact on the time-t conditional

variance.

4.2.4 Asymmetry in Mortality Volatility

To investigate the potential asymmetry in mortality volatility, a wider range of GARCH-

type models are considered. The additional models include the E-GARCH model, the

4The standardized residual at time t is defined as the ratio of the residual at time-t to the inferred value

of σt.
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GJR-GARCH model, the N-GARCH model, and the T-GARCH model. These models

differ from the GARCH model in the way in which the dynamics of the conditional variance

σ2
t is specified. We consider an order of (1,1) for all of the additional models, because the

results in the previous sub-section suggest that this order can adequately capture the serial

correlation in the conditional variances.

Below we describe, for each of the additional GARCH-type models, the specification of

the dynamics of σ2
t and the way in which the asymmetry in volatility is captured. In all

of the models, ω, α, β and γ are constant parameters, and γ is the parameter controlling

the asymmetry in volatility.

• E-GARCH

The E-GARCH(1,1) model assumes that

ln(σ2
t ) = ω + γηt−1 + α

(
|ηt−1| −

√
2

π

)
+ β lnσ2

t−1, (4.5)

where ηt−1 = εt−1/σt−1. A positive time-(t− 1) innovation with a magnitude of |ε∗t−1|
affects ln(σ2

t ) by γ|ε∗t−1|/σt−1 +α(|ε∗t−1|/σt−1−
√

2/π), whereas an otherwise identical

negative innovation affects ln(σ2
t ) by −γ|ε∗t−1|/σt−1 + α(|ε∗t−1|/σt−1 −

√
2/π).

• GJR-GARCH

The GJR-GARCH(1,1) model assumes that

σ2
t = ω + αε2t−1 + γε2t−1I{εt−1<0} + βσ2

t−1, (4.6)

where IA is an indicator function which equals 1 if event A holds true and 0 otherwise.

A positive time-(t − 1) innovation with a magnitude of |ε∗t−1| affects σ2
t by α(ε∗t−1)2,

whereas an otherwise identical negative innovation affects σ2
t by (α + γ)(ε∗t−1)2.
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• N-GARCH

The N-GARCH(1,1) model assumes that

σ2
t = ω + ασ2

t−1(ηt−1 − γ)2 + βσ2
t−1. (4.7)

A positive time-(t − 1) innovation with a magnitude of |ε∗t−1| affects σ2
t by

ασ2
t−1(|ε∗t−1|/σt−1 − γ)2, whereas an otherwise identical negative innovation affects

σ2
t by ασ2

t−1(−|ε∗t−1|/σt−1 − γ)2.

• T-GARCH

The T-GARCH(1,1) model assumes that

σt = ω + α(|εt−1| − γεt−1) + βσt−1. (4.8)

A positive time-(t−1) innovation with a magnitude of |ε∗t−1| affects σt by α(1−γ)|ε∗t−1|,
whereas an otherwise identical negative innovation affects σt by α(1 + γ)|ε∗t−1|.

We apply the above mentioned models to all of the nine populations under consider-

ation. To compare the performances of these models as well as the GARCH model and

the constant volatility assumption, we consider the Bayesian information criterion (BIC),

which is defined such that a lower BIC value indicates a better goodness-of-fit with the

number of model parameters being taken into account.

In line with the results in Section 4.2.3, the constant volatility assumption produces

the lowest BIC values for US and Australia. For all but one of the remaining populations,

the best performing model is either the E-GARCH, GJR-GARCH or T-GARCH model,

suggesting that there exists asymmetry in mortality volatility. We further examine the

estimates of parameter γ for these populations (Table 4.5). It is found that all of the six

estimates of γ are significant at any reasonable level of significance, further confirming the

existence of asymmetry in mortality volatility and the need for capturing it.

4.3 A Brief Review of Chapter 2

We study the impact of asymmetry in mortality volatility on index-based longevity hedging

through various extensions of existing longevity Greeks. These extensions draw on the work
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of Chapter 2, which we summarize in this section for ease of reading.

4.3.1 The Key Building Block

Denote by qx,t the probability that an individual who has survived to age x at time t− 1

dies between time t− 1 and t. We have

Sx,t(T ) =
T∏
s=1

(1− qx+s−1,t+s)

being the ex post probability that an individual who has survived to age x at time t would

have survived to time t + T for T = 1, 2, . . .. Assuming a constant force of mortality

between consecutive integer ages, which in turn implies that qx,t = 1− exp(−mx,t), we can

express Sx,t(T ) as follows:

Sx,t(T ) =
T∏
s=1

exp(−mx+s−1,t+s)

= exp

(
−

T∑
s=1

exp(ax+s−1 + bx+s−1κt+s)

)
(4.9)

= exp

(
−

T∑
s=1

exp(Yx,t(s))

)
= exp(−Wx,t(T )), (4.10)

where

Yx,t(s) = ax+s−1 + bx+s−1κt+s (4.11)

and

Wx,t(T ) =
T∑
s=1

exp(Yx,t(s)) (4.12)

are defined to make the expressions of longevity Greeks more compact.

We set time 0 to the end point of the calibration window to which the model is fitted.

Using equations (4.2) and (4.3), we obtain

κt = κ0 + tµ+
t∑

s=1

σsηs, t ≥ 1, (4.13)
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so that

Sx,t(T ) = exp

(
−

T∑
s=1

exp

(
ax+s−1 + bx+s−1

(
κ0 + (t+ s)µ+

t+s∑
u=1

σuηu

)))
. (4.14)

A GARCH(1,1) model is assumed in Chapter 2, which implies that

σ2
s =

ω
(
1 +

∑s−1
u=1

∏u
v=1(αη2

s−v + β)
)

+ (αε20 + βσ2
0)
∏s−1

v=1(αη2
s−v + β) if s ≥ 2

ω + αε20 + βσ2
0 if s = 1

.

(4.15)

Let Ft be the information about the evolution of mortality up to and including time

t. It follows from equations (4.14) and (4.15) that given F0, Sx,t(T ) depends on κ0 (the

time-0 value of the period effect), σ2
0 (the time-0 value of the conditional volatility) and a

sequence of i.i.d. standard normal random variables {ηs; s = 1, . . . , t+ T}. It is clear that

Sx,t(T ) given F0 is a random variable due to its dependence on {ηs; s = 1, . . . , t+ T}.

Finally, we arrive at the following key building block of the longevity Greeks framework:

px,t(T, κ0, σ
2
0) := E[Sx,t(T ) | F0],

which can be interpreted to mean the probability for an individual aged x at time t to

survive to time t + T , given the information about the evolution of mortality up to and

including time 0.

4.3.2 Longevity Greeks for px,t(T, κ0, σ
2
0)

The longevity Greeks for px,t(T, κ0, σ
2
0) are obtained by taking the partial derivatives of

px,t(T, κ0, σ
2
0) with respect to either κ0 or σ2

0.

The longevity delta for px,t(T, κ0, σ
2
0) is

∂px,t(T, κ0, σ
2
0)

∂κ0

= −
T∑
s=1

bx+s−1 E[exp(Yx,t(s)−Wx,t(T )) | F0],

a quantity which measures the first-order sensitivity of px,t(T, κ0, σ
2
0) to changes in κ0.
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The longevity gamma for px,t(T, κ0, σ
2
0) is

∂2px,t(T, κ0, σ
2
0)

∂κ2
0

= E

exp(−Wx,t(T ))

( T∑
s=1

bx+s−1 exp(Yx,t(s))

)2

−
T∑
s=1

b2
x+s−1 exp(Yx,t(s))

 ∣∣∣∣∣∣ F0

,

a quantity which represents the second-order sensitivity of px,t(T, κ0, σ
2
0) to changes in κ0.

Finally, the longevity vega for px,t(T, κ0, σ
2
0) is defined as

∂px,t(T, κ0, σ
2
0)

∂σ2
0

= −
T∑
s=1

bx+s−1 E

[
exp(Yx,t(s)−Wx,t(T ))

(
∂κt+s
∂σ2

0

) ∣∣∣∣ F0

]
, (4.16)

where
∂κt+s
∂σ2

0

=
t+s∑
u=1

ηu
2σu

∂σ2
u

∂σ2
0

(4.17)

and

∂σ2
u

∂σ2
0

=

β
∏u−1

v=1(αη2
u−v + β) if u ≥ 2

β if u = 1
. (4.18)

This longevity Greek measures the first-order sensitivity of px,t(T, κ0, σ
2
0) to changes in σ2

0.

A full derivation of the above formulas can be found in Appendix A.

4.3.3 Longevity Greeks for the Values of Liabilities and Hedging

Instruments

The values of annuity/liabilities and hedging instruments such as q-forwards and S-forwards

can be expressed as a linear combination of px,t(T, κ0, σ
2
0) for different values of x, t and T .

As such, the longevity Greeks for the values of annuity/liabilities and hedging instruments

can be computed easily as a linear combination of the longevity Greeks of px,t(T, κ0, σ
2
0)

for different values of x, t and T .
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4.4 The Enhanced Framework of Longevity Greeks

In this section, we improve the framework of Chapter 2 to avoid a technical problem that

may happen in practice. We also expand the framework to incorporate the GARCH-type

models that permit asymmetry in volatility.

4.4.1 Motivations

One problem of the previous framework is that it produces a longevity vega that is highly

sensitive to parameter β in the GARCH(1,1) model, a parameter that measures the extent

of serial dependence in {σ2
t }. It can be seen from equation (4.18) that the longevity

vega of the value of a liability/instrument must be zero if parameter β equals zero (which

happens when the fitted model is an ARCH(1) model), even when volatility is not constant

(parameter α is not zero) and the value of the liability/instrument is in fact sensitive to

changes in volatility. This zero longevity vega not only leads to a misleading conclusion

concerning the liability/instrument’s exposure to mortality volatility risk, but also causes

difficulties when establishing a vega hedge (i.e., a hedge that neutralizes the longevity vega

of the hedge’s portfolio) due to a division-by-zero problem.

One possible way to circumvent this problem is to create a new Greek that measures

the sensitivity to ε20 (the squared innovation at time 0). Calculated as a partial derivative

of E[Sx,t(T ) | F0] with respect to ε20, this new longevity Greek can be expressed as

−
T∑
s=1

bx+s−1 E

[
exp(Yx,t(s)−Wx,t(T ))

(
∂κt+s
∂ε20

) ∣∣∣∣ F0

]
,

where

∂σ2
u

∂ε20
=

α
∏u−1

v=1(αη2
u−v + β) if u ≥ 2

α if u = 1
. (4.19)

However, this solution opens up another problem. As implied by equation (4.19), this

new longevity Greek is spuriously zero whenever parameter α (which measures the serial

dependence in {ε2t}) in the GARCH(1,1) model is zero even if volatility is in fact not

constant (parameter β is non-zero).
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Instead of introducing another longevity Greek, we propose to adapt the previous frame-

work by considering E[Sx,t(T ) | F0] as a function of κ0 and σ1 rather than κ0 and σ0, and

redefining longevity vega accordingly.

4.4.2 Redefining the Building Block

In developing the improved framework, the first step is to obtain recursive expressions of

σ2
u, u = 2, 3, . . ., in terms of σ2

1, using equations (4.4) to (4.8). The expressions of σ2
u,

u = 2, 3, . . ., in terms of σ2
1 for the GARCH model as well as the four GARCH-type models

that permit asymmetry in volatility are summarized in Table 4.6.

Then, using the expressions in Table 4.6 and equation (4.14), we can express Sx,t(T ) in

terms of κ0 and σ1 for each of the GARCH-type models we consider. Finally, noting that

σ2
1 is non-random given F0, we obtain

px,t(T, κ0, σ
2
1) := E[Sx,t(T ) | F0] (4.20)

as the key building block of the improved longevity Greeks framework.

4.4.3 Longevity Vega for px,t(T, κ0, σ
2
1)

In the improved longevity Greeks framework, the longevity vega for px,t(T, κ0, σ
2
1) is ob-

tained by taking the first-order partial derivative of px,t(T, κ0, σ
2
1) with respect to σ2

1:

Vx,t(T ) :=
∂px,t(T, κ0, σ

2
1)

∂σ2
1

= E

[
∂Sx,t(T )

∂σ2
1

∣∣∣∣ F0

]
= E

[
exp(−Wx,t(T ))

(
−

T∑
s=1

exp(Yx,t(s))

(
bx+s−1

t+s∑
u=1

∂σuηu
∂σ2

1

)) ∣∣∣∣∣ F0

]

= −
T∑
s=1

bx+s−1 E

[
exp(Yx,t(s)−Wx,t(T ))

(
t+s∑
u=1

ηu
2σu

∂σ2
u

∂σ2
1

) ∣∣∣∣∣ F0

]
, (4.21)

where ∂σ2
u

∂σ2
1

= 1 for u = 1, and ∂σ2
u

∂σ2
1

for u ≥ 2 depends on the chosen GARCH-type model.
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For the GARCH, GJR-GARCH and N-GARCH models, the expression of ∂σ2
u

∂σ2
1

for u ≥ 2

can be easily derived from the corresponding expressions of σ2
u for u ≥ 2 in Table 4.6. For

the E-GARCH model, we use the chain rule to get

∂σ2
u

∂σ2
1

=
∂σ2

u

∂ ln(σ2
u)

∂ ln(σ2
u)

∂ ln(σ2
1)

∂ ln(σ2
1)

∂σ2
1

=
σ2
u

σ2
1

∂ ln(σ2
u)

∂ ln(σ2
1)
,

where ∂ ln(σ2
u)

∂ ln(σ2
1)

= βu−1 for u ≥ 2 can be obtained straightforwardly from the expression of

σ2
u for u ≥ 2 for the E-GARCH model as shown in Table 4.6. Lastly, for the T-GARCH

model, the chain rule is used to get

∂σ2
u

∂σ2
1

=
∂σ2

u

∂σu

∂σu
∂σ1

∂σ1

∂σ2
1

=
σu
σ1

∂σu
∂σ1

,

where ∂σu
∂σ1

=
∏u−1

v=1(α(|ηu−v| − γηu−v) + β) for u ≥ 2 can be derived from the expression of

σ2
u for u ≥ 2 for the T-GARCH model as shown in Table 4.6. The resulting expressions of
∂σ2
u

∂σ2
1

for u ≥ 2 for all GARCH-type models under consideration are presented in Table 4.7.

The expressions of both Yx,t(s) and Wx,t(T ) in equation (4.21) also depend on the

chosen GARCH-type model. In particular, they depend on σ2
u for u ≥ 2 (which in turn

depends on the GARCH-type model chosen) through equations (4.11), (4.12) and (4.13).

The calculation of Yx,t(s) and Wx,t(T ) is enabled by the expressions provided in Table 4.6.

Let us revisit the longevity vega under the GARCH model assumption. From Table 4.7

and equation (4.21), we observe that in the improved framework the longevity vega under

the GARCH model assumption is non-zero unless both α and β are zero (which happens

only when σ2
t is indeed a constant), suggesting that the spurious zero vega problem found in

Chapter 2’s longevity Greeks framework is mitigated. This desirable property also applies

to all other GARCH-type models under consideration except the E-GARCH, for which the

longevity vega must be zero if β = 0 regardless of whether or not α is zero.

4.4.4 Longevity Delta and Gamma for px,t(T, κ0, σ
2
1)

As the partial derivatives of px,t(T, κ0, σ
2
1) and px,t(T, κ0, σ

2
0) with respect to κ0 are identical,

longevity delta and gamma in the improved framework remain the same as those in the

previous framework. They are reported below for completeness.
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The longevity delta for px,t(T, κ0, σ
2
1) is

∆x,t(T ) :=
∂px,t(T, κ0, σ

2
1)

∂κ0

= −
T∑
s=1

bx+s−1 E[exp(Yx,t(s)−Wx,t(T )) | F0], (4.22)

and the longevity gamma for px,t(T, κ0, σ
2
1) is

Γx,t(T ) (4.23)

:=
∂2px,t(T, κ0, σ

2
1)

∂κ2
0

= E

exp(−Wx,t(T ))

( T∑
s=1

bx+s−1 exp(Yx,t(s))

)2

−
T∑
s=1

b2
x+s−1 exp(Yx,t(s))

 ∣∣∣∣∣∣ F0

.
(4.24)

As discussed in the previous sub-section, Yx,t(s) and Wx,t(T ) in the above expressions

depend on the chosen GARCH-type model.

4.4.5 Additional Remarks

We compute the values of ∆x,t(T ), Γx,t(T ) and Vx,t(T ) with simulations. In particular,

using N simulated paths of {ηs; s = 1, . . . , t+T}, we calculate N realizations of Yx,t(s)|F0,

Wx,t(T )|F0 and ∂σ2
u

∂σ2
1
|F0 for u ≥ 2, with which the expectations in equations (4.21), (4.22)

and (4.24) can be evaluated.

The values of annuity/pension liabilities and typical mortality-linked instruments can

be expressed as linear combinations of px,t(T, κ0, σ
2
1) for different values of x, t and T . As

such, their longevity Greeks can be expressed as linear combinations of ∆x,t(T ), Γx,t(T )

or Vx,t(T ) for different values of x, t and T . The calculation of longevity Greeks for the

values of liabilities and instruments is illustrated in Sections 4.6.2 and 4.6.3.

4.5 A New Longevity Greek: Dynamic Delta

When a GARCH-type model is used, a shock to κ0 has both direct and indirect impacts

on px,t(T, κ0, σ
2
1):
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1. Direct impact

It is clear from equation (4.14) that a shock to κ0 directly affects the distribution of

Sx,t(T ), and hence the value of px,t(T, κ0, σ
2
1).

2. Indirect impact

A shock to κ0 (represented by the time-0 innovation ε0) alters the value of σ2
1 through

the conditional variance dynamics, thereby leading to changes in the values of σ2
u for

all u ≥ 2. These changes affect the distribution of Sx,t(T ) through equation (4.14),

and thus the value of px,t(T, κ0, σ
2
1).

Longevity delta captures only the direct impact but not the indirect impact, because it

is defined as a partial derivative which is taken with respect to κ0 while σ2
1 is held constant.

This limitation makes longevity delta an inadequate measure of the sensitivity to changes

in κ0.

To mitigate this limitation, we propose a new longevity Greek known as ‘dynamic

delta’. This new longevity Greek is derived on the basis of a total derivative, in which

the interrelationship between κ0 and σ2
1 is captured through the chain rule. More specif-

ically, the dynamic delta for px,t(T, κ0, σ
2
1) is defined as the first-order total derivative of

px,t(T, κ0, σ
2
1) with respect to κ0:

Λx,t(T ) :=
dpx,t(T, κ0, σ

2
1)

dκ0

=
dκ0

dκ0

∂px,t(T, κ0, σ
2
1)

∂κ0

+
dσ2

1

dκ0

∂px,t(T, κ0, σ
2
1)

∂σ2
1

= ∆x,t(T ) +
dσ2

1

dκ0

Vx,t(T ). (4.25)

Equation (4.25) says that dynamic delta is the sum of (i) longevity delta and (ii)

longevity vega with an adjusting term,
dσ2

1

dκ0
, which represents the sensitivity of σ2

1 to changes

in κ0. The direct impact of a shock to κ0 is captured by (i), while the indirect impact is

captured by (ii).
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To calculate dynamic delta, we need the values of ∆x,t(T ), Vx,t(T ) and
dσ2

1

dκ0
. The calcu-

lation of ∆x,t(T ) and Vx,t(T ) is detailed in the previous section. The expression for
dσ2

1

dκ0
is

derived below.

First, we use the chain rule to obtain

dσ2
1

dκ0

=
dσ2

1

dε0

dε0
dκ0

=
dσ2

1

dε0
,

where dε0
dκ0

= 1 according to equation (4.2). We then derive
dσ2

1

dε0
for each GARCH-type

model under consideration:

• GARCH

For the GARCH(1,1) model, we have

dσ2
1

dε0
=

d

dε0

(
ω + αε20 + βσ2

0

)
= 2αε0.

• E-GARCH

For the E-GARCH(1,1) model, we use the chain rule to get

dσ2
1

dε0
=
dη0

dε0

dσ2
1

dη0

=
1

σ0

d

dη0

exp

(
ω + γη0 + α

(
|η0| −

√
2

π

)
+ β lnσ2

0

)

=
σ2

1

σ0

(
γ + α

|η0|
η0

)
,

where dη0
dε0

= 1
σ0

according to equation (4.3).

• GJR-GARCH

If the chosen model is the GJR-GARCH(1,1) model, then we have

dσ2
1

dε0
=

d

dε0

(
ω + αε20 + γε20I{ε0<0} + βσ2

0

)
= 2αε0 + 2γε0I{ε0<0}.
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• N-GARCH

For the N-GARCH(1,1) model, we use the chain rule to get

dσ2
1

dε0
=
dη0

dε0

dσ2
1

dη0

=
1

σ0

d

dη0

(
ω + ασ2

0(η0 − γ)2 + βσ2
0

)
= 2ασ0(η0 − γ).

• T-GARCH

If the T-GARCH(1,1) model is used, we have

dσ2
1

dε0
=

d

dε0
(ω + α(|ε0| − γε0) + βσ0)2

= 2ασ1

(
|ε0|
ε0
− γ
)
.

Given F0,
dσ2

1

dκ0
is non-random and can be analytically calculated. Thus, once the values

of ∆x,t(T ) and Vx,t(T ) are calculated, dynamic delta can be computed easily without any

additional simulations.

4.6 Illustrations

In this section, we provide two real-data illustrations to demonstrate the impact of asym-

metry in mortality volatility on index-based longevity hedging. We begin with a list of

assumptions, followed by the derivations of the longevity Greeks for the liability being

hedged and the hedging instrument. Hedge calibration is then discussed. Finally, numeri-

cal results are presented.

4.6.1 General Assumptions

The following assumptions are used in both illustrations.
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• The liability being hedged is a pension plan for pensioners who are all aged 60 at

time 0. The plan pays each pensioner $1 at the end of each year until death or age

90, whichever is the earliest. The mortality experience of the pensioners is identical

to that of the Italian female population. The plan contains an infinitely large number

of pensioners, so diversifiable risk can be ignored.

• The hedger establishes a Greek longevity hedge for the pension plan using a S-forward

at time 0. No adjustment is made to the hedge after time 0.

• At time 0, freshly launched S-forwards with a reference age 60 and times-to-maturity

from 1 to 20 years are available. The hedger uses S-forwards of which the reference

population is Italian female, so there is no population basis risk. Further information

about S-forwards is given in Section 4.6.3.

• The evaluation of hedge effectiveness is based on the E-GARCH(1,1) model, which,

as shown in Section 4.2, is found to be the best fitting model for the Italian female

population. Parameter estimates of the E-GARCH(1,1) model fitted to the data

from the Italian female population (over ages 40 to 89 and years 1900 to 2014) are

reported in Table 4.8.

• Time 0 is defined as the end of year 2014 (i.e., the end point of the calibration

window).

• When discounting future cash flows, an interest rate of r = 3% per annum for all

durations is used.

4.6.2 Longevity Greeks for the Liability being Hedged

We now derive the longevity Greeks of the value of the pension plan. As per the assump-

tions made, we have

L =
30∑
s=1

(1 + r)−sS60,0(s)
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as the sum of all future cash flows (per pensioner), discounted to time 0. Given F0, L is a

random variable which depends on the evolution of mortality between time 1 and time 30.

It follows that on a per pensioner basis, the time-0 value of the plan is

L(κ0, σ
2
1) := E[L|F0] =

30∑
s=1

(1 + r)−sp60,0(s, κ0, σ
2
1).

As L(κ0, σ
2
1) is a linear combination of p60,0(s, κ0, σ

2
1) for different values of s, the longevity

Greeks of L(κ0, σ
2
1) can be calculated straightforwardly using the results in Sections 4.4 and

4.5. The longevity delta, longevity gamma, longevity vega, and dynamic delta of L(κ0, σ
2
1)

are given by

∆(L) :=
∂L(κ0, σ

2
1)

∂κ0

=
30∑
s=1

(1 + r)−s∆60,0(s),

Γ(L) :=
∂2L(κ0, σ

2
1)

∂κ2
0

=
30∑
s=1

(1 + r)−sΓ60,0(s),

V (L) :=
∂L(κ0, σ

2
1)

∂σ2
1

=
30∑
s=1

(1 + r)−sV60,0(s),

and

Λ(L) :=
dL(κ0, σ

2
1)

dκ0

=
30∑
s=1

(1 + r)−sΛ60,0(s),

respectively.

4.6.3 Longevity Greeks for the Hedging Instrument

Here we derive the longevity Greeks of the value of a S-forward. A S-forward is a zero-

coupon swap with a fixed leg proportional to a forward survival rate Sf that is pre-

determined at inception, and a floating leg proportional to a (random) realized survival

rate. For a S-forward with a time-to-maturity of tf and a reference age of xf , the realized

survival rate is the one for individuals aged xf when the S-forward is launched over a

period of tf years. To mitigate longevity risk, a hedger can participate in a S-forward as a
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fixed-rate payer, so that when future mortality turns out to be lighter than expected (i.e.,

the realized survival rate turns out to be lower than expected), the hedger will receive from

the counterparty a positive net payment, which can be used to offset the correspondingly

higher pension/annuity liability.

From the fixed-rate payer’s perspective, the payoff of a S-forward (with a reference age

of xf = 60 and an issue date of t = 0) discounted to time 0 is

H = (1 + r)−t
f

(S60,0(tf )− Sf )

per $1 notional. Given F0, H is a random variable which depends on the evolution of

mortality between time 1 and time tf . It follows that the time-0 value of the S-forward is

H(κ0, σ
2
1) := E[H|F0] = (1 + r)−t

f

(p60,0(tf , κ0, σ
2
1)− Sf ).

per $1 notional.

As H(κ0, σ
2
1) is linearly related to p60,0(tf , κ0, σ

2
1), the longevity Greeks of H(κ0, σ

2
1) can

be obtained easily using the results in Section 4.4 and 4.5. The longevity delta, longevity

gamma, longevity vega, and dynamic delta of H(κ0, σ
2
1) are given by

∆(H) :=
∂H(κ0, σ

2
1)

∂κ0

= (1 + r)−t
f

∆60,0(tf ),

Γ(H) :=
∂2H(κ0, σ

2
1)

∂κ2
0

= (1 + r)−t
f

Γ60,0(tf ),

V (H) :=
∂H(κ0, σ

2
1)

∂σ2
1

= (1 + r)−t
f

V60,0(tf ),

and

Λ(H) :=
dH(κ0, σ

2
1)

dκ0

= (1 + r)−t
f

Λ60,0(tf ),

respectively.

The longevity Greeks of a S-forward do not depend on its forward survival rate Sf ,

because Sf is pre-determined at time 0 and is thus treated as a constant. We set Sf to

E[S60,0(tf )|F0], a forward survival rate which implies that no payment exchanges hands at

time 0 (i.e., E[H|F0] = 0).
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4.6.4 Hedge Calibration

A Greek longevity hedge can be created by matching the longevity Greek(s) of the liability

being hedged and the hedging instrument(s). The longevity hedges in both of our illustra-

tions are calibrated by matching dynamic delta, the new longevity Greek proposed in this

chapter.

Since we are matching one longevity Greek, only one S-forward is needed. When the

dynamic deltas of the liability being hedged and the S-forward are matched, the notional

amount of the S-forward is calculated at time 0 as

u =
Λ(L)

Λ(H)
.

To demonstrate the impact of asymmetry in mortality volatility on the longevity hedges,

we calculate two sets of results which respectively represent the situations when asymmetry

in mortality volatility is ignored and taken into account:

(I) Asymmetry in mortality volatility is ignored

For this set of results, the longevity Greeks (and hence the notional amount u) are

derived from a GARCH(1,1) model, which does not permit volatility to respond

asymmetrically to positive and negative shocks. The GARCH(1,1) model is fitted to

the Italian female data described in Section 4.6.1. The forward survival rate Sf is also

calculated from the GARCH(1,1) model to mimic the situation when participants in

the S-forward market ignore any asymmetry in mortality volatility. However, the

mortality scenarios used to evaluate hedge effectiveness are generated from the E-

GARCH(1,1) model as described in Section 4.6.1 to reflect the fact that asymmetry

in mortality volatility exists.

(II) Asymmetry in mortality volatility is taken into account

In line with the model from which the mortality scenarios for evaluating hedge ef-

fectiveness are generated, the longevity Greeks (and hence the notional amount u)

as well as the forward survival rate Sf for this set of results are calculated from the

E-GARCH(1,1) model which permits asymmetry in mortality volatility.
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4.6.5 Illustration 1: Value Hedge

The first illustration concerns a value hedge, which aims to reduce the variability of the

values of the pension plan sponsor’s position at time 1. We measure hedge effectiveness

by the reduction in the 1-year ahead 99.5% Value-at-Risk over the time-0 value of the

unhedged position:

1− VaR99.5% (E[L − uH|F1]|F0)− E[L|F0]

VaR99.5%(E[L|F1]|F0)− E[L|F0]
.

The following comments concerning this metric of hedge effectiveness are made.

• In the expression, L is the pension plan sponsor’s position in the absence of a longevity

hedge. Measured in time-0 dollars, the time-0 and time-1 values of the position are

E[L|F1] and E[L|F0], respectively.

• In the numerator of the expression, L − uH is the pension plan sponsor’s position

when the longevity hedge is in place. Measured in time-0 dollars, the time-1 value of

the position is E[L − uH|F1].

• Given F0, E[L|F1] and E[L−uH|F1] are random variables depending on the unknown

realization of F1, but E[L|F0] is a known constant.

• If the value hedge is effective, then the value of the metric should be close to one; if

the opposite is true, then the value of the metric should be close to zero.

We use nested simulations to calculate the value of the metric. In more detail, we first

use the fitted E-GARCH model to generate 10,000 mortality scenarios at time 1 (i.e., 10,000

realizations of F1). For each of these mortality scenarios, another 10,000 mortality scenarios

are generated (also using the fitted E-GARCH model) to compute 10,000 realizations of

E[L|F1] and E[H|F1], from which empirical distributions of E[L − uH|F1] and E[L|F1]

given F0 are obtained. The 99.5th percentiles of these two empirical distributions give the

estimated 99.5% Values-at-Risk of E[L−uH|F1] and E[L|F1], respectively. Lastly, E[L|F0]

is calculated with non-nested simulations.
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Figure 4.3 compares the effectiveness of the value hedges that are calibrated when

(I) asymmetry in mortality volatility is ignored and when (II) asymmetry in mortality

volatility is taken into account. When asymmetry in mortality volatility is incorporated

into the calibration of the value hedge, the hedge effectiveness ranges between 0.9 and

1, indicating that the hedge reduces at least 90 percent of the 99.5% Value-at-Risk over

a horizon of one year. If the hedger ignores asymmetry in mortality volatility, then the

hedge effectiveness is significantly reduced (by up to 70 percentage points depending on

the time-to-maturity of the S-forward used).

4.6.6 Illustration 2: Cash Flow Hedge

The second illustration concerns a cash flow hedge, which aims to reduce the variability

of all future cash flows of the pension plan sponsor. In this illustration, we measure hedge

effectiveness by the reduction in the 99.5% Value-at-Risk of all future cash flows measured

in time-0 dollars over the time-0 value of the liability being hedged:

1− VaR99.5% (L − uH|F0)− E[L|F0]

VaR99.5%(L|F0)− E[L|F0]
,

where L−uH and L represent the present (time-0) value of all cash flows arising from the

hedged and unhedged positions, respectively. If the cash flow hedge is effective, then the

value of the metric should be close to one; if the opposite is true, then the value of the

metric should be close to zero.

To compute the value of the metric defined above, we use the fitted E-GARCH model

to generate 10,000 realizations of L and H, from which empirical distributions of L − uH
and L given F0 are obtained. The 99.5th percentiles of these two empirical distributions

give the estimated 99.5% Values-at-Risk of E[L− uH|F0] and E[L|F0], respectively. As in

the first illustration, E[L|F0] is also calculated with non-nested simulations.

Figure 4.4 compares the effectiveness of the cash flow hedges that are calibrated when (I)

asymmetry in mortality volatility is ignored and when (II) asymmetry in mortality volatil-

ity is taken into account. For all S-forward times-to-maturity considered, the effectiveness

of the hedge that takes asymmetry in mortality volatility into account is higher compared
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to the hedge that ignores asymmetry in mortality volatility. The difference in hedge effec-

tiveness ranges from 10 to 40 percentage points, depending on the time-to-maturity of the

S-forward used.

4.7 Concluding Remarks

We have investigated the existence of asymmetry in mortality volatility by using a range

of GARCH-type models that permit volatility to respond asymmetrically to positive and

negative shocks. It is found that for six out of the nine populations under consideration,

asymmetry in mortality volatility is significant and needs to be modeled.

We have also studied the impact of asymmetry in mortality volatility on index-based

longevity hedging, through three technical contributions that are made in this chapter.

First, we have improved the framework introduced in Chapter 2 by redefining the

building block on which longevity Greeks are built. The longevity vega defined in the

improved framework works with a wider range of α and β parameters in various GARCH-

type models.

Second, we have derived, under the improved framework, semi-analytic expressions

for the longevity vega under different GARCH model assumptions. These expressions

enable us to calibrate longevity hedges when the assumed model is one that incorporates

asymmetry in mortality volatility.

Third, we have introduced a new longevity Greek called dynamic delta. Derived on the

basis of total derivative with respect to κ0, dynamic delta incorporates both the direct and

indirect impacts of a shock to the period effect. We have also shown that dynamic delta

is a linear combination of longevity delta and longevity vega with an adjusting term that

is known at time 0, so that the value of dynamic delta can be obtained easily from the

calculated values of longevity delta and longevity vega without any additional simulations.

We have provided two real-data illustrations to demonstrate the impact of asymmetry

in mortality volatility on index-based longevity hedging. The results of both illustrations

point to the conclusion that if mortality volatility is in fact asymmetric but the asymmetry
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in mortality volatility is not taken into account when a longevity hedge is calibrated, then

the resulting hedge effectiveness could be significantly impaired.

In financial markets, two types of volatility (realized and implied) are considered. In

this chapter, we have focused on realized volatility, which is estimated from historical data.

Implied volatility on the other hand is assembled from market expectation and obtained

by back-solving the volatility parameter of a pricing model using observed market prices.

The study of implied mortality volatility is impeded by the lack of market price data in

today’s infantile market for longevity risk transfers. However, it would be interesting to

investigate implied mortality volatility when the market becomes more mature.

Finally, we remark that along the lines of dynamic delta, we can define ‘dynamic gamma’

as the second-order total derivative with respect to the time-0 period effect. The derivation

of dynamic gamma can be initiated as follows:

d2px,t(T, κ0, σ
2
1)

dκ2
0

=
d

dκ0

(
dpx,t(T, κ0, σ

2
1)

dκ0

)
=

d

dκ0

Λx,t(T )

=
d

dκ0

(
∆x,t(T ) +

dσ2
1

dκ0

Vx,t(T )

)
= Γx,t(T ) +

d2σ2
1

dκ2
0

(Vx,t(T )) +
dσ2

1

dκ0

(
d

dκ0

Vx,t(T )

)
.

Applications of this new longevity Greek are left as a topic for further research.

128



1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Canada

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

US

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Finland

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

France

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Italy

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Spain

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

UK

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Australia

1900 1920 1940 1960 1980 2000
Year (t)

-10

-5

0

5

10

Va
lu

e

Japan

Figure 4.1: The estimated series of (κt − κt−1) for each of the nine populations under consider-

ation.
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Figure 4.2: The inferred values of σ2
t derived from the estimated GARCH(1,1) models for the

nine populations under consideration.
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Lag 1 2 3 4 5

Canada
0.3250 1.9275 2.0685 2.7649 2.6145

(0.5686) (0.3815) (0.5583) (0.5979) (0.7592)

US
0.0613 0.1474 0.4116 3.5730 8.4085

(0.2597) (0.2280) (0.2778) (0.3262) (0.3748)

Finland
0.4489 0.6515 0.6034 1.1397 1.0648

(0.5029) (0.7220) (0.8956) (0.8879) (0.9572)

France
1.1372 1.8028 3.4347 4.1475 4.0885

(0.2863) (0.4060) (0.3293) (0.3864) (0.5367)

Italy
0.1206 0.6007 0.6155 1.2811 1.3904

(0.7284) (0.7406) (0.8929) (0.8646) (0.9254)

Spain
1.2405 2.1881 2.9848 2.9233 3.3817

(0.2654) (0.3349) (0.3940) (0.5707) (0.6414)

UK
0.2054 0.2797 0.9665 1.6838 1.8774

(0.6504) (0.8695) (0.8094) (0.7937) (0.8658)

Australia
0.3451 1.1161 1.1881 5.9202 5.8099

(0.5569) (0.5723) (0.7558) (0.2052) (0.3252)

Japan
0.0000 0.7354 2.4198 4.4147 6.1261

(0.9949) (0.6923) (0.4900) (0.3528) (0.2941)

Table 4.3: The test statistic and p-value (in parentheses) of the Engle’s ARCH test (at lag 1

to 5) applied to the squared standardized residuals from the GARCH(1,1) for each of the nine

populations under consideration.
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Constant GARCH E-GARCH GJR-GARCH N-GARCH T-GARCH

Canada 3.3762 3.1447 3.2016 3.1925 3.1939 3.2452

US 2.9238 2.9668 3.0231 3.0193 3.0199 3.0731

Finland 4.8028 4.6416 4.6211 4.6277 4.6179 4.6461

France 5.0807 4.9103 4.8223 4.8099 4.8088 4.8470

Italy 38.3286 5.0997 5.0547 5.1396 5.0597 5.0550

Spain 5.2163 4.9746 4.8374 4.8123 4.8189 4.9095

UK 5.3489 5.2041 5.1991 5.1961 5.2085 5.1967

Australia 3.9126 3.9971 3.9588 3.9478 3.9693 4.0167

Japan 4.0182 4.0084 3.9396 3.9624 4.0642 4.2027

Table 4.4: The BIC values resulting from the constant volatility assumption, the GARCH model,

and four GARCH-type models that incorporate asymmetry in volatility, fitted to the mean-

corrected series of (κt−κt−1) for the nine populations under consideration. The lowest BIC value

for each population is highlighted in red.

Country Estimate Standard error t-Value

Finland −3.86888 1.80264 −2.1462

France −1.96910 0.75138 −2.6206

Italy 0.42944 0.10635 4.0380

Spain −0.39775 0.00841 −47.3160

UK −0.41025 0.20227 −2.0282

Japan 0.50631 0.10614 4.7703

Table 4.5: Estimates (and their standard errors and t-values) of parameter γ in the best per-

forming models for Finland, France, Italy, Spain, UK and Japan.
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Model Expression of σ2
u, u = 2, 3, . . ., in terms of σ2

1

GARCH σ2
u =

ω
(

1 +
∑u−2

u=1

∏u
v=1(αη2

u−v + β)
)

+ σ2
1

∏u−1
v=1(αη2

u−v + β) if u ≥ 3

ω + σ2
1(αη2

1 + β) if u = 2

E-GARCH ln(σ2
u) =

∑u−1
u=1 β

u−1
(
ω + γηu−u + α

(
|ηu−u| −

√
2
π

))
+ βu−1 ln(σ2

1)

GJR-GARCH σ2
u =


ω
(

1 +
∑u−2

u=1

∏u
v=1(αη2

u−v + γη2
u−vI{ηu−v<0} + β)

)
+σ2

1

∏u−1
v=1(αη2

u−v + γη2
u−vI{ηu−v<0} + β) if u ≥ 3

ω + σ2
1(αη2

1 + γη2
1I{η1<0} + β) if u = 2

N-GARCH σ2
u =


ω
(

1 +
∑u−2

u=1

∏u
v=1(α(ηu−v − γ)2 + β)

)
+σ2

1

∏u−1
v=1(α(ηu−v − γ)2 + β) if u ≥ 3

ω + σ2
1(α(η1 − γ)2 + β) if u = 2

T-GARCH σu =


ω
(

1 +
∑u−2

u=1

∏u
v=1(α(|ηu−v| − γηu−v) + β)

)
+σ1

∏u−1
v=1(α(|ηu−v| − γηu−v) + β) if u ≥ 3

ω + σ1(α(|η1| − γη1) + β) if u = 2

Table 4.6: Expression of σ2
u, u = 2, 3, . . ., in terms of σ2

1 for all GARCH-type models under

consideration.

Model Expression of ∂σ2
u

∂σ2
1
, u = 2, 3, . . .

GARCH ∂σ2
u

∂σ2
1

=
∏u−1

v=1(αη2
u−v + β)

E-GARCH ∂σ2
u

∂σ2
1

= βu−1 σ
2
u

σ2
1

GJR-GARCH ∂σ2
u

∂σ2
1

=
∏u−1

v=1(αη2
u−v + γη2

u−vI{ηu−v<0} + β)

N-GARCH ∂σ2
u

∂σ2
1

=
∏u−1

v=1(α(ηu−v − γ)2 + β)

T-GARCH ∂σ2
u

∂σ2
1

= σu
σ1

(∏u−1
v=1(α(|ηu−v| − γηu−v) + β)

)
Table 4.7: Expressions of ∂σ2

u

∂σ2
1
, u = 2, 3, . . ., for all GARCH-type models under consideration.
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Parameter Estimate Standard error t-Value

µ −0.78690 0.22012 −3.57489

ω 0.25478 0.11267 2.26134

α 0.34416 0.23105 1.48955

β 0.87076 0.05254 16.5736

γ 0.42944 0.10635 4.03803

Table 4.8: Parameter estimates (and their standard errors and t-values) of the fitted E-GARCH

model for the Italian female population.
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(I) Asymmetry in mortality volatility is ignored
(II) Asymmetry in mortality volatility is taken into account

Figure 4.3: Effectiveness of the value hedges that are calibrated when (I) asymmetry in mortality

volatility is ignored (dashed red line) and when (II) asymmetry in mortality volatility is taken

into account (solid blue line), for S-forward with times-to-maturity ranging from 1 to 15 years.
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Figure 4.4: Effectiveness of the cash flow hedges that are calibrated when (I) asymmetry in

mortality volatility is ignored (dashed red line) and when (II) asymmetry in mortality volatility

is taken into account (solid blue line), for S-forward with times-to-maturity ranging from 10 to

20 years.
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Chapter 5

Conclusion and Future Research

This thesis focused on (1) obtaining a deeper understanding of mortality modeling with

specific attention on the volatility of mortality, and (2) investigating the implementation

and implications of index-based longevity hedging via longevity Greeks. On the modeling

front, we incorporated conditional heteroskedasticity and asymmetry in the volatility of

mortality into the Lee-Carter model by applying various GARCH-type models to its period

effect. We also utilized the M7-M5 model, a two-population model that is capable of

capturing the period, cohort and population basis effects of mortality. On the hedging

front, we pursued the sensitivity-matching approach of index-based longevity hedging, and

worked along the lines of longevity Greeks. We studied the properties of longevity Greeks,

proposed several Greek hedging strategies for longevity risk, and used real mortality data

to demonstrate the implications of the proposed hedging strategies.

In Chapter 2, we first derived three important longevity Greeks—delta, gamma and

vega—on the basis of an extended version of the Lee-Carter model that incorporates con-

ditional heteroskedasticity. Semi-analytical expressions for the longevity Greeks of a q-

forward and a stylized pension plan are provided. We then studied the properties of the

three longevity Greeks for q-forwards. It is found that, for example, while the magnitudes

of the longevity delta and gamma reduce with the time-to-maturity, the magnitude of the

longevity vega increases and then decreases with the time-to-maturity. Lastly, we con-

structed static hedges by matching one or two longevity Greeks, and examined how the
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performance of the Greek hedges may vary with the reference age and time-to-maturity of

the q-forward(s) used. Our findings could help hedgers to decide which longevity Greek to

use when a q-forward with a certain specification is available to them.

In Chapter 3, we contributed a discrete-time delta hedging strategy under both static

and dynamic settings for use with the M7-M5 model. The proposed hedging strategy takes

into account of both cohort effect uncertainty and population basis risk. Several metrics

are defined for quantifying the effectiveness of the cash flow and value hedges considered.

To overcome the technical problems of the ‘approximation of survival function’ method due

to the structure of the M7-M5 model, we systematically divided all possibly encountered

survival functions into five cases, and tailored a specific approximation method for each

case. We also provided three real data illustrations to supplement our theoretical work, and

discovered several interesting facts concerning index-based longevity hedging. For example,

we found that if the liability being hedged is subject to cohort effect uncertainty, a delta

hedge that matches the sensitivity to changes in cohort effect significantly outperforms one

that does not.

In Chapter 4, we first investigated the existence of asymmetry in mortality volatility

by using a range of GARCH-type models that permit volatility to respond asymmetrically

to positive and negative shocks. Our empirical results suggested that six out of the nine

populations considered exhibit asymmetry in mortality volatility. We then studied the

impact of asymmetry in mortality volatility on index-based longevity hedging. To this

end, we contributed an improved framework for deriving longevity vega, a set of semi-

analytical expressions for longevity Greeks under different GARCH-type models, and a new

longevity Greek (called dynamic delta) derived on the basis of total derivative. Lastly, we

provided two real data illustrations to demonstrate the impact of asymmetry in mortality

volatility on index-based longevity hedging. The results of both illustrations pointed to the

conclusion that if mortality volatility is in fact asymmetric but the asymmetry is not taken

into account when a longevity hedge is calibrated, then the resulting hedge effectiveness

could be significantly impaired.

Our analyses on mortality volatility have been focused on the Lee-Carter model, which

has only one period effect. It would be interesting to conduct a similar analysis on a wider

range of stochastic mortality models, especially on those that have multiple period effects
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and/or a cohort effect (e.g., the M7-M5 model). In such a case, a multivariate GARCH

model may be needed to fully explain the interdependence in volatility changes between

period and/or cohort effects.

Admittedly, there are numerous alternative methods that can incorporate conditional

heteroskedasticity in the volatility of mortality. One promising approach is to use a regime-

switching model (Hamilton, 1989; Hamilton and Susmel, 1994; Hardy, 2001) to govern the

dynamics of mortality volatility. Assuming that there are only two regimes, one may

correspond to a temporary period of high volatility in mortality (for example, during wars

and pandemics), while the other one may represent the common low volatility periods.

Milidonis et al. (2011) have considered applying a log-normal regime-switching model to

the U.S. population mortality index, and also to the period effect of the Lee-Carter model

fitted to the U.S. population.

We also acknowledge that the longevity Greeks defined in this thesis are model depen-

dent. In other words, the expressions for longevity Greeks will be different if the mortality

model assumed is changed. In this thesis, we have derived longevity Greeks under two

main categories of stochastic mortality models: the Lee-Carter model (in Chapters 2 and

4) and the M7-M5 model, an extension of the Cairns-Blake-Dowd model (in Chapter 3).

In Chapter 2, we have also attempted to address the problem by validating the proposed

longevity hedges with a non-parametric simulation approach that does not depend on any

model. Although the hedge effectiveness estimated using the model-free approach is not as

good as the one estimated using the model from which the longevity Greeks are derived,

many of our findings concerning the relationship between hedge effectiveness and q-forward

specifications are still observed even when the mortality realizations are generated by a

model-free approach.

Another important risk that is often encountered by small pension plans and insurance

companies is small sample risk, which we have disregarded in this thesis. Small sample risk

has no impact on the calculation of longevity Greeks, and can be easily taken into account

by using a death count process (see, e.g., Zhou and Li, 2017). Future research warrants a

study that analyses the impact of small sample risk on the effectiveness of various Greek

longevity hedges.
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Appendix A

Derivation of the Longevity Greeks

This appendix presents the derivations of the three longevity Greeks for px,t(T, κ0, σ
2
0). In

all derivations, it is assumed that the expectation and differential operator are interchange-

able.

• The longevity delta for px,t(T, κ0, σ
2
0):

∆x,t(T ) =
∂px,t(T, κ0, σ

2
0)

∂κ0

=
∂

∂κ0

E
[
e−Wx,t(T )

∣∣ F0

]
= E

[
e−Wx,t(T )

(
− ∂

∂κ0

Wx,t(T )

) ∣∣∣∣ F0

]
= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(

∂

∂κ0

Yx,t(s)

)) ∣∣∣∣∣ F0

]

= −
T∑
s=1

bx+s−1 E
[
eYx,t(s)−Wx,t(T )

∣∣ F0

]
.
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• The longevity gamma for px,t(T, κ0, σ
2
0):

Γx,t(T ) =
∂2px,t(T, κ0, σ

2
0)

∂κ2
0

=
∂

∂κ0

(
∂px,t(T, κ0, σ

2
0)

∂κ0

)
=

∂

∂κ0

(
E

[
−

T∑
s=1

bx+s−1e
Yx,t(s)−Wx,t(T )

∣∣∣∣∣ F0

])

= E

[
−

T∑
s=1

bx+s−1e
Yx,t(s)−Wx,t(T ) ∂

∂κ0

(Yx,t(s)−Wx,t(T ))

∣∣∣∣∣ F0

]

= E

[
−

T∑
s=1

bx+s−1e
Yx,t(s)−Wx,t(T )

(
bx+s−1 −

T∑
u=1

bx+u−1e
Yx,t(u)

) ∣∣∣∣∣ F0

]

= E

e−Wx,t(T )

( T∑
s=1

bx+s−1e
Yx,t(s)

)2

−
T∑
s=1

b2
x+s−1e

Yx,t(s)

 ∣∣∣∣∣∣ F0

.
• The longevity vega for px,t(T, κ0, σ

2
0):

Vx,t(T ) =
∂px,t(T, κ0, σ

2
0)

∂σ2
0

= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(

∂

∂σ2
0

Yx,t(s)

)) ∣∣∣∣∣ F0

]

= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(
bx+s−1

∂κt+s
∂σ2

0

)) ∣∣∣∣∣ F0

]

= −
T∑
s=1

bx+s−1 E

[
eYx,t(s)−Wx,t(T )

(
∂κt+s
∂σ2

0

) ∣∣∣∣ F0

]
,

where
∂κt+s
∂σ2

0

=
t+s∑
u=1

ηu
2σu

∂σ2
u

∂σ2
0

and

∂σ2
u

∂σ2
0

=

β
∏u−1

v=1(αη2
u−v + β) if u ≥ 2

β if u = 1
.
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Appendix B

Proof of Theorem 1

For convenience, we let Et [·] := Et [·|Ft]. Because ηt
i.i.d.∼ N(0, 1), we have Et−1 [ηt] = 0,

Et−1 [η2
t ] = 1, Et−1 [η3

t ] = 0, and Et−1 [η4
t ] = 3 for t ≥ 1. These results are used in this and

the following two appendices.

Proof of Theorem 1. For tf = 1,

E0

[
(σ1η1)2] = ω + αε0 + βσ2

0 = z1,0 + z1,1σ
2
0,

where z1,0 = ω + αε0 and z1,1 = β do not depend on σ2
0. Thus, equation (2.13) holds for

tf = 1. Let t > 1 be given and suppose that equation (2.13) holds for tf = t − 1. Then,
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for tf = t,

E0

( t∑
s=1

σsηs

)2
 = E0

( t−1∑
s=1

σsηs + σtηt

)2


= E0

( t−1∑
s=1

σsηs

)2
+ E0

[
σ2
t

]
= zt−1,0 + zt−1,1σ

2
0 +

(
ω − ω(α + β)t

1− α− β

)
+ (α + β)t−1(αε20 + βσ2

0)

= zt−1,0 +

(
ω − ω(α + β)t

1− α− β
+ α(α + β)t−1ε20

)
+
(
zt−1,1 + β(α + β)t−1

)
σ2

0

= zt,0 + zt,1σ
2
0,

where zt,0 and zt,1 do not depend on σ2
0. Hence, equation (2.13) also holds for tf = t. By

the principle of induction, equation (2.13) holds for tf ≥ 1.
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Appendix C

Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

Lemma 4. For tf ≥ 2,

E0

tf−1∑
s=1

σsηs

σ2
tf

 = 0. (C.1)

Proof of Lemma 4. For tf = 2,

E0

[
σ1η1σ

2
2

]
= σ1E0 [η1]σ2

2 = 0.

Thus, equation (C.1) holds for tf = 2. Let t > 2 be given and suppose equation (C.1)

holds for tf = t− 1. Then, for tf = t,

E0

[(
t−1∑
s=1

σsηs

)
ht

]
= E0

[(
t−2∑
s=1

σsηs + σt−1ηt−1

)(
ω +

(
αη2

t−1 + β
)
σ2
t−1

)]

= E0

[(
t−2∑
s=1

σsηs

)
σ2
t−1

]
(α + β)

= 0.

So, equation (C.1) also holds for tf = t. By the principle of induction, equation (C.1) holds

for tf ≥ 2.
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Proof of Theorem 2. For tf = 1,

E0

[
(σ1η1)3] = σ3

1E0

[
η3

1

]
= 0.

Thus, equation (2.14) holds for tf = 1. Let t > 1 be given and suppose equation (2.14)

holds for tf = t− 1. Then, for tf = t,

E0

( t∑
s=1

σsηs

)3
 = E0

( t−1∑
s=1

σsηs + σtηt

)3


= E0

( t−1∑
s=1

σsηs

)3
+ 3E0

[(
t−1∑
s=1

σsηs

)
σ2
t

]
= 0,

since E0

[(∑t−1
s=1 σsηs

)
σ2
t

]
= 0 by Lemma 4. Hence, equation (2.14) also holds for tf = t.

By the principle of induction, equation (2.14) holds for tf ≥ 1.
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Appendix D

Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.

Lemma 5. For tf ≥ 1,

E0

[
σ4
tf

]
= φtf ,0 + φtf ,1σ

2
0 + φtf ,2σ

4
0, (D.1)

where φtf ,0, φtf ,1 and φtf ,2 do not depend on σ2
0.

Proof of Lemma 5. For tf = 1,

E0

[
σ4

1

]
= (ω + αε20)2 + 2β(ω + αε20)σ2

0 + β2σ4
0 = φ1,0 + φ1,1σ

2
0 + φ1,2σ

4
0,

where φ1,0 = (ω + αε20)2, φ1,1 = 2β(ω + αε20) and φ1,2 = β2 do not depend on σ2
0. Hence,

equation (D.1) holds for tf = 1. Let t > 1 be given and suppose equation (D.1) holds for
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tf = t− 1. Then, for tf = t,

E0

[
σ4
t

]
= E0

[
(ω +

(
αη2

t−1 + β
)
σ2
t−1)2

]
= E0

[
ω2 + 2ω(α + β)σ2

t−1 +
(
3α2 + 2αβ + β2

)
σ4
t−1

]
= ω2 + π1

(
ω − ω(α + β)t−1

1− α− β
+ (α + β)t−2(αε20 + βσ2

0)

)
+ π2

(
φt−1,0 + φt−1,1σ

2
0 + φt−1,2σ

4
0

)
= π2φt−1,0 + ω2 +

π1ω(1− (α + β)t−1)

1− α− β
+ π1α(α + β)t−2ε20

+
(
π2φt−1,1 + π1β(α + β)t−2

)
σ2

0 + π2φt−1,2σ
4
0

= φt,0 + φt,1σ
2
0 + φt,2σ

4
0,

where φt,0, φt,1 and φt,2 do not depend on σ2
0, and π1 = 2ω(α+β) and π2 = 3α2 +2αβ+β2.

Thus, equation (D.1) also holds for tf = t. By the principle of induction, equation (D.1)

holds for tf ≥ 1.

Lemma 6. For tf ≥ 2,

E0

tf−1∑
s=1

σsηs

2

σ2
tf

 = ψtf ,0 + ψtf ,1σ
2
0 + ψtf ,2σ

4
0, (D.2)

where ψtf ,0, ψtf ,1 and ψtf ,2 do not depend on σ2
0.

Proof of Lemma 6. For tf = 2,

E0

[
(σ1η1)2 σ2

2

]
= ωσ2

1 + (3α + β)σ4
1

=
(
ω2 + ωαε20 + (3α + β)(ω + αε20)2

)
+
(
βω + 2β(3α + β)(ω + αε20)

)
σ2

0

+ β2(3α + β)σ4
0

= ψ2,0 + ψ2,1σ
2
0 + ψ2,2σ

4
0,

where ψ2,0 = ω2 + ωαε20 + (3α + β)(ω + αε20)2, ψ2,1 = βω + 2β(3α + β)(ω + αε20) and

ψ2,2 = β2(3α + β) do not depend on σ2
0. Thus, equation (D.2) holds for tf = 2. Let t > 2
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be given and suppose equation (D.2) holds for tf = t− 1. Then, for tf = t,

E0

( t−1∑
s=1

σsηs

)2

σ2
t


= E0

( t−2∑
s=1

σsηs + σt−1ηt−1

)2 (
ω + (αη2

t−1 + β)σ2
t−1

)
= (α + β)E0

( t−2∑
s=1

σsηs

)2

σ2
t−1

+ ωE0

( t−1∑
s=1

σsηs

)2
+ (3α + β)E0

[
σ4
t−1

]
= ((α + β)ψt−1,0 + (3α + β)φt−1,0 + ωzt−1,0)

+ ((α + β)ψt−1,1 + (3α + β)φt−1,1 + ωzt−1,1)σ2
0 + ((α + β)ψt−1,2 + (3α + β)φt−1,2)σ4

0

= ψt,0 + ψt,1σ
2
0 + ψt,2σ

4
0,

where ψt,0, ψt,1 and ψt,2 do not depend on σ2
0. Hence, equation (D.2) also holds for tf = t.

By the principle of induction, equation (D.2) holds for tf ≥ 2.

Proof of Theorem 3. For tf = 1,

E0

[
(σ1η1)4] = 3(ω + αε20)2 + 6β(ω + αε20)σ2

0 + 3β2σ4
0

= c1,0 + c1,1σ
2
0 + c1,2σ

4
0,

where c1,0 = 3(ω + αε20)2, c1,1 = 6β(ω + αε20) and c1,2 = 3β2 do not depend on σ2
0. Thus,

equation (2.15) holds for tf = 1. Let t > 1 be given and suppose equation (2.15) holds for

tf = t− 1. Then, for tf = t,

E0

( t∑
s=1

σsηs

)4
 = E0

( t−1∑
s=1

σsηs + σtηt

)4


= E0

( t−1∑
s=1

σsηs

)4
+ 6E0

( t−1∑
s=1

σsηs

)2

σ2
t

+ 3E0

[
σ4
t

]
= (ct−1,0 + 6ψt,0 + 3φt,0) + (ct−1,1 + 6ψt,1 + 3φt,1)σ2

0

+ (ct−1,2 + 6ψt,2 + 3φt,2)σ4
0

= ct,0 + ct,1σ
2
0 + ct,2σ

4
0,
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where ct,0, ct,1 and ct,2 do not depend on σ2
0. Therefore, equation (2.15) also holds for

tf = t. By the principle of induction, equation (2.15) holds for tf ≥ 1. Furthermore, ztf ,1

in equation (2.13), φtf ,1 and φtf ,2 in equation (D.1), and ψtf ,1 and ψtf ,2 in equation (D.2)

can be solved as follows:

ztf ,1 =
β − β(α + β)t

f

1− α− β
,

φtf ,1 =

(
βπ1

α + β − π2

)
(α + β)t

f−1 +

(
2β(ω + αε20)− βπ1

α + β − π2

)
πt

f−1
2

= π3(α + β)t
f−1 + π4π

tf−1
2 ,

φtf ,2 = β2πt
f−1

2 ,

ψtf ,1 =
π4(3α + β)

α + β − π2

(
(α + β)t

f−1 − πtf−1
2

)
+

βω

(1− α− β)2

(
1− (α + β)t

f−1
)

+

(
2βω(3α + β)

α + β − π2

− βω

1− α− β

)
(α + β)t

f−1(tf − 1),

ψtf ,2 =
β2(3α + β)

α + β − π2

(
(α + β)t

f−1 − πtf−1
2

)
,

where π3 = βπ1
α+β−π2 and π4 = 2β(ω + αε20) − π3. Substituting the expressions above into

ctf ,1 and ctf ,2, we obtain

ctf ,1 = 6β(ω + αε20) +

(
6π4(3α + β)

α + β − π2

− 6βω

(1− α− β)2
+ 3π3

)(
α + β − (α + β)t

f

1− α− β

)

+ 6

(
2βω(3α + β)

α + β − π2

− βω

1− α− β

)(
(α + β)− tf (α + β)t

f
+ (tf − 1)(α + β)t

f+1

(1− α− β)2

)

+

(
3π4 −

6π4(3α + β)

α + β − π2

)(
π2 − πt

f

2

1− π2

)
+

6βω

(1− α− β)2
(tf − 1),

ctf ,2 = 3β2 +

(
6β2(3α + β)

α + β − π2

)(
α + β − (α + β)t

f

1− α− β

)

+

(
3β2 − 6β2(3α + β)

α + β − π2

)(
π2 − πt

f

2

1− π2

)
.

It is clear that ctf ,1 tends to∞ as tf →∞, and if π2 = 3α2 + 2αβ+β2 < 1 then ctf ,2 tends

a constant as tf →∞.
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Appendix E

Deriving the Approximation Formula

for Case B

Here we derive the approximation formula for E[S
(i)
x,u(T )|κ(i)

u , γ
(R)
u−xa∧u−x+1] when t < u. Let

Z be a standard normal random variable that is independent of the period and cohort

effects. Using the approximation formula derived in Section 3.4.2, we get

E[S(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1]

≈ Φ(d
(i)
x,u,0(T ) + d(i)

x,u(T )′(κ(i)
u − κ̂(i)

u ) + d(i)
x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1))

= Pr(Z ≤ d
(i)
x,u,0(T ) + d(i)

x,u(T )′(κ(i)
u − κ̂(i)

u )

+ d(i)
x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1)|κ(i)

u , γu−xa∧u−x+1)

= E
[
I
Z≤d(i)x,u,0(T )+d

(i)
x,u(T )′(κ

(i)
u −κ̂

(i)
u )+d

(i)
x,u,γ(T )(γu−xa∧u−x+1−γ̂u−xa∧u−x+1)

∣∣∣ κ(i)
u , γu−xa∧u−x+1

]
= E

[
I
Z≤d(i)x,u,0(T )+d

(i)
x,u(T )′(κ

(i)
u −κ̂

(i)
u )+d

(i)
x,u,γ(T )(γu−xa∧u−x+1−γ̂u−xa∧u−x+1)

∣∣∣ Fu],
where IA is an indicator function which equals to one if event A holds and 0 otherwise.

The last step in the above follows from the Markov property of the assumed processes for
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the period and cohort effects. Using this result, we obtain

E[S(i)
x,u(T )|κ(i)

t , γt−xa∧u−x+1]

= E[E[S(i)
x,u(T )|κ(i)

u , γu−xa∧u−x+1]|Ft]

≈ E
[
E
[
I
Z≤d(i)x,u,0(T )+d

(i)
x,u(T )′(κ

(i)
u −κ̂

(i)
u )+d

(i)
x,u,γ(T )(γu−xa∧u−x+1−γ̂u−xa∧u−x+1)

∣∣∣ Fu] ∣∣∣ Ft]
= E

[
I
Z≤d(i)x,u,0(T )+d

(i)
x,u(T )′(κ

(i)
u −κ̂

(i)
u )+d

(i)
x,u,γ(T )(γu−xa∧u−x+1−γ̂u−xa∧u−x+1)

∣∣∣ Ft]
= Pr(Z ≤ d

(i)
x,u,0(T ) + d(i)

x,u(T )′(κ(i)
u − κ̂(i)

u ) + d(i)
x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1)|Ft)

= Pr(Z − d(i)
x,u,0(T )− d(i)

x,u(T )′(κ(i)
u − κ̂(i)

u )− d(i)
x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1) ≤ 0|Ft).

Again, the first step in the above is a consequence of the Markov property of the assumed

processes. Let

V (i)
u = Z − d(i)

x,u,0(T )− d(i)
x,u(T )′(κ(i)

u − κ̂(i)
u )− d(i)

x,u,γ(T )(γu−xa∧u−x+1 − γ̂u−xa∧u−x+1).

It is not hard to see that V
(i)
u |Ft follows a normal distribution, and that

E[S(i)
x,u(T )|κ(i)

t , γt−xa∧u−x+1] ≈ Φ

 −E[V
(i)
u |Ft]√

Var[V
(i)
u |Ft]

 ,

where

E[V (i)
u |Ft] = −d(i)

x,u,0(T )− d(i)
x,u(T )′(E[κ(i)

u |Ft]− κ̂(i)
u )

− d(i)
x,u,γ(T )(E[γu−xa∧u−x+1|Ft]− γ̂u−xa∧u−x+1)

and

Var[V (i)
u |Ft] = 1 + d(i)

x,u(T )′Var[κ(i)
u |Ft]d(i)

x,u(T ) + (d(i)
x,u,γ(T ))2Var[γu−xa∧u−x+1|Ft].
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Appendix F

Evaluating the Accuracy of the

Approximation Methods

In this appendix, we evaluate the accuracy of the methods for approximating E[S
(i)
x,u(T )|Ft]

when t = u (Section 3.4.2; Case A) and when t < u (Section 3.4.2; Case B).

Case A: E[S
(i)
x,u(T )|Ft] for t = u

The method presented in Case A approximates the value of E[S
(i)
x,u(T )|Fu] for a given real-

ization of Fu. For the sake of space, we only present the evaluation result for

E[S
(i)
65,2010(10)|F2010], which is involved in the (2005,F2010)-value of the liability being

hedged for Illustrations 2 and 3. The evaluation results for other combinations of i, x,

u and T are similar.

It follows from equation (3.16) that the approximation formula for E[S
(R)
65,2010(10)|F2010]

is a function of κ
(1)
2010, κ

(2)
2010, κ

(3)
2010 and γ

(R)
1946, all of which are random as of tb = 2005 when the

hedges in Illustrations 2 and 3 are evaluated. The contour lines in Figure F.1 indicate the

percentage errors (percentage deviations from the ‘actual’ values that are calculated using

full nested simulations) of the approximation when it is applied to different combinations

of the four variables. The dots in the figure represent 1,000 simulated values of the four

variables given F2005, so that the clouds of dots can be interpreted as the possible ranges
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of the four variables. It can be observed that within the boundary of each cloud, the

maximum percentage error is only approximately 0.1%. We thereby conclude that the

approximation method for Case A is reasonably accurate over the possible ranges of the

four variables.

Case B: E[S
(i)
x,u(T )|Ft] for t < u

The method presented in Case B approximates the value of E[S
(i)
x,u(T )|Ft] for a realization

of Ft with t < u. Again, for the sake of space, we only show the evaluation results for

E[S
(i)
70,2019(1)|F2010], which is involved in the (2010,F2010)-value of the q-forward that has

a reference age of 70 and matures at the end of year 2020 (one of the q-forwards used

in Illustration 2). For other combinations of i, x, u, T and t, the evaluation results are

similar.

It follows from equation (3.20) that the approximation formula for E[S
(R)
70,2019(1)|F2010] is

a function of κ
(1)
2010, κ

(2)
2010, κ

(3)
2010 and γ

(R)
1950, all of which are random as of tb = 2005 when the

hedge in Illustration 2 is evaluated. With a layout similar to Figure F.1, Figure F.2 shows

the percentage errors of the approximation when it is applied to different combinations of

the four variables. It can be observed that within the possible ranges of the four variables,

the percentage errors are smaller than 0.01%, suggesting that the approximation method

for Case B is highly accurate.
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Figure F.1: Contour plots showing the percentage errors in approximating

E[S
(R)
65,2010(10)|F2010].The dots in the figure represent simulated values of κ

(1)
2010, κ

(2)
2010, κ

(3)
2010 and

γ
(R)
1946 given F2005.
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Figure F.2: Contour plots showing the percentage errors in approximating E[S
(i)
70,2019(1)|F2010].

The dots in the figure represent simulated values of κ
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2010, κ
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2010, κ

(3)
2010 and γ

(R)
1950 given F2005.
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Appendix G

Deriving the Sensitivities of

E[S
(i)
x,u(T )|Ft] for t = tb

Here we derive the first-order partial derivatives of E[S
(i)
x,u(T )|Ft] with respect to κ

(1)
t , κ

(2)
t

and κ
(3)
t for t = tb, u ≥ tb and any possible values of i, x and T , and that with respect to

γtb−xa for tb − xa < u− x+ 1.

The partial derivatives of E[S
(i)
x,u(T )|Ft] with respect to κ

(j)
t for j = 1, 2, 3 are given by

∂

∂κ
(j)
tb

E[S(i)
x,u(T )|Ft] =

∂

∂κ
(j)
tb

E

[
T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)−1
∣∣∣∣Ftb

]

= −E

[(
S(i)
x,u(T )

)2 ∂

∂κ
(j)
tb

T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

) ∣∣∣∣Ftb
]
.
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In the above, ∂

∂κ
(j)
tb

∏T
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
can be calculated recursively as

∂

∂κ
(j)
tb

T∏
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)

=



∂y
(i)
x,u+1

∂κ
(j)
tb

exp(y
(i)
x,u+1) if T = 1

∂y
(i)
x+T−1,u+T

∂κ
(j)
tb

exp(y
(i)
x+T−1,u+T )

∏T−1
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
+
(

1 + exp(y
(i)
x+T−1,u+T )

)
∂

∂κ
(j)
tb

∏T−1
s=1

(
1 + exp(y

(i)
x+s−1,u+s)

)
if T > 1

,

where

∂y
(i)
x+T−1,u+T

∂κ
(j)
tb

=



∂y
(i)
x+T−1,u+T

∂κ
(1)
u+T

∂κ
(1)
u+T

∂κ
(1)
tb

= 1 if j = 1

∂y
(i)
x+T−1,u+T

∂κ
(2)
u+T

∂κ
(2)
u+T

∂κ
(2)
tb

= x+ T − 1− x̄ if j = 2

∂y
(i)
x+T−1,u+T

∂κ
(3)
u+T

∂κ
(3)
u+T

∂κ
(3)
tb

= (x+ T − 1− x̄)2 − σ2
x if j = 3

for T ≥ 1 are obtained using the chain rule and equations (3.3) and (3.4).

The partial derivatives of E[S
(i)
x,u(T )|Ft] with respect to γtb−xa for tb − xa < u − x + 1

can be obtained by replacing κ
(j)
tb

with γtb−xa and using the fact that

∂y
(i)
x+T−1,u+T

∂γtb−xa
=
∂y

(i)
x+T−1,u+T

∂γu−x+1

∂γu−x+1

∂γtb−xa
= ψu−x+1−tb+xa

1 ,

which can be derived easily with the chain rule and equations (3.3) and (3.6).
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Appendix H

Deriving the Sensitivities of

E[S
(i)
x,u(T )|Ft] for t > tb

Here we derive the first-order partial derivatives of E[S
(i)
x,u(T )|Ft] with respect to κ

(1)
t , κ

(2)
t ,

κ
(3)
t for t > tb, u ≥ t and any possible values of i, x and T , and that with respect to γt−xa

for t− xa < u− x+ 1.

First, because of the Markov property of the assumed period and cohort effect processes,

we have

E[S(i)
x,u(T )|Ft] = E[S(i)

x,u(T )|κ(i)
t , γt−xa∧u−x+1].

When u = t, we use approximation formula (3.16) to obtain

∂

∂κ
(j)
t

E[S(i)
x,u(T )|κ(i)

t , γt−xa∧u−x+1]

≈ ∂

∂κ
(j)
t

Φ
(
d

(i)
x,t,0(T ) + d

(i)
x,t(T )′(κ

(i)
t − κ̂

(i)
t ) + d

(i)
x,t,γ(T )(γt−xa∧t−x+1 − γ̂t−xa∧t−x+1)

)
= φ

(
d

(i)
x,t,0(T ) + d

(i)
x,t(T )′(κ

(i)
t − κ̂

(i)
t ) + d

(i)
x,t,γ(T )(γ

(R)
t−xa∧t−x+1 − γ̂

(R)
t−xa∧t−x+1)

)
d

(i)
x,t,j(T )
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for j = 1, 2, 3, and

∂

∂γ
(R)
t−xa

E[S(i)
x,u(T )|κ(i)

t , γ
(R)
t−xa∧u−x+1]

≈ φ
(
d

(i)
x,t,0(T ) + d

(i)
x,t(T )′(κ

(i)
t − κ̂

(i)
t ) + d

(i)
x,t,γ(T )(γ

(R)
t−xa − γ̂

(R)
t−xa)

)
d

(i)
x,t,γ(T )

when t− xa < u− x+ 1. When u > t, we use approximation formula (3.20) to get

∂

∂κ
(j)
t

E[S(i)
x,u(T )|κ(i)

t , γt−xa∧u−x+1] ≈ ∂

∂κ
(j)
t

Φ

 −E[V
(i)
u |Ft]√

Var[V
(i)
u |Ft]


= φ

 −E[V
(i)
u |Ft]√

Var[V
(i)
u |Ft]

 d
(i)
x,u,j(T )√

Var[V
(i)
u |Ft]

for j = 1, 2, 3, and

∂

∂γ
(R)
t−xa

E[S(i)
x,u(T )|κ(i)

t , γ
(R)
t−xa∧u−x+1] ≈ φ

 −E[V
(i)
u |Ft]√

Var[V
(i)
u |Ft]

 d
(i)
x,u,γ(T )√

Var[V
(i)
u |Ft]

when t− xa < u− x+ 1.
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