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Abstract: 

 Sex differences in plasma docosahexaenoic acid (DHA) status during adulthood have 

been documented previously, and recent studies suggest the effects of DHA supplementation on 

human cognition are different in females compared with males during infancy, adolescence, and 

early adulthood. Differences in estradiol concentration are believed to be the predominant factor 

in sexual dimorphisms in DHA status when DHA is not supplemented. This suggests that sexual 

dimorphisms begin during adolescence when fed diets not supplemented with DHA, but this has 

not been examined comprehensively. Therefore, this thesis examined: 1) DHA status in rat 

maternal, fetal and pup tissues with and without dietary DHA supplementation during 

pregnancy; 2) the onset of sex differences in the fatty acid composition of plasma, heart, brain 

and liver from birth to adulthood in rats fed chow diets; and 3) the impact of DHA 

supplementation during the perinatal period on spatial memory in female and male adolescent 

pups, and possible relationships to brain lipidomic profiles. Results from these studies show that 

maternal DHA status decreased significantly during the postpartum period when DHA was not 

provided in the diet and suggest that DHA could be mobilized from maternal adipose and 

possibly maternal heart and liver for milk production. Furthermore, results show that sex 

differences in tissue polyunsaturated fatty acids (PUFA) began at 6 weeks of age. In the spatial 

memory experiment, DHA supplementation significantly increased latency times during the final 

learning session of Morris Water Maze (MWM) testing and reduced arachidonic acid (ARA) and 

n-6 docosapentaenoic acid (DPA) containing phospholipid species in the hippocampus of both 

males and females. Understanding the effects of DHA supplementation during the perinatal and 

adolescent periods on the PUFA composition of maternal and pup tissues, and how these effects 

interact with sexual dimorphisms is critical to understanding dietary requirements of DHA 

throughout pregnancy and childhood. Additionally, MWM testing and lipidomic analyses 
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indicate that DHA supplementation may interact with long chain n-6 PUFA metabolism that may 

be important for spatial memory.  
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1 General Introduction 

Docosahexaenoic acid (DHA) is essential to the development and maintenance of the 

central nervous system, and supports learning and spatial memory performance throughout life 

[1,2]. The ability of DHA to support learning and spatial memory performance has been linked 

to neurogenesis and synaptogenesis [3], particularly in the hippocampus, a brain region 

associated with spatial memory [4]. Recent human trials have reported a sex x diet interaction in 

young adults supplemented with DHA, where supplementation improved episodic memory in 

females, and working memory reaction time in males [5], but the mechanism behind this 

interaction has not been fully explained. Animal models could provide further insight into the 

mechanisms behind this. Animal models show rats with adequate dietary DHA intakes have 

shorter latency times during spatial memory testing as compared with n-3 PUFA deficient rats, 

but this research has been largely limited to male rats [6–10]. Additionally, MUFAs, which are 

higher in the typical Western diet than regular chow diets used in most studies have been shown 

to reduce PUFA metabolism [11]. Examining an animal model that incorporates females and 

Western diets could provide further insight into the mechanism behind a sex x diet interaction in 

young adults supplemented with DHA. 

Sex differences in the interaction between DHA and brain function could be occurring 

directly through the effect of estradiol on the brain [12,13] or indirectly via the ability of 

estradiol to increase circulating levels of DHA [14,15], which could then affect brain 

concentrations [16]. DHA is incorporated at higher levels in the hippocampi of female control 

mice as compared with ovariectomized mice [13]. In addition, 17β-estradiol increases mRNA 

and protein expression of hepatic delta 6 desaturase (D6D), providing females with the ability to 
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synthesize DHA from shorter chain precursors more rapidly than males [14,17], particularly 

when DHA status is low [14,15,18,19]. 

The general consensus is that estrogen largely mediates sexual dimorphisms in DHA 

status. However, when sexual dimorphisms in DHA status begin, and how they relate to 

differences reported in memory and cognition at infancy [20], adolescence [21], and adulthood 

[5,22] is not fully explained. Although overall estrogen levels are low during prepubescence, 

levels in females are higher than males [23]. Female rats also begin adolescence earlier than 

males [24].  Understanding the influence of estrogen on LCPUFA synthesis and when sexual 

dimorphisms begin is important. Most DHA is accumulated in the brain between the third 

trimester and two years of age in humans, and prenatal day 7 to postnatal day 21 in rats [3]. 

Knowing how much the brain needs, at what stages of life, and how sexual dimorphisms affect 

DHA supply and demand is important for making dietary recommendations for all stages of life. 

Current recommendations for DHA intakes during pregnancy and lactation vary between 

authoritative bodies. During pregnancy, the International Society for the Study of Fatty Acids 

and Lipids (ISSFAL) recommends 200mg/d [25], and Health Canada recommends that women 

continue eating the generally recommended 150g of fish per week [26]. The Institute of 

Medicine (IOM) has general omega-3 recommendations, but no DHA recommendations specific 

to pregnancy [27]. Most Canadian women do not meet the recommended 200mg/d of DHA [28]. 

Quantifying the effect of insufficient DHA consumption during pregnancy and lactation could 

help in determining the impact insufficient consumption has on public health, and identify better 

dietary recommendations for pregnant women, and for males and females in general. 

This thesis aims to better understand sex differences in DHA metabolism from infancy to 

adulthood. This will provide insights on the impact of diet on maternal-fetal levels of DHA, 
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changes in DHA status, and fatty acid composition in males and females during development and 

adulthood, and the potential impact of sex differences and dietary DHA on spatial memory and 

lipidomic profiles. Determining what effect these sex differences may have, and how DHA status 

changes during development in males and females is critical to understanding the dietary 

requirement of DHA throughout pregnancy and childhood development, and their impact on 

memory during adolescence. 
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2  Biochemical Foundations 

2.1 DHA status during pregnancy and perinatal uptake 

The mechanisms responsible for increasing DHA during pregnancy have not been fully 

identified, but dietary intakes and de novo synthesis could both contribute [1,29–32]. Maternal 

intakes during pregnancy can be low in North America [28], and are unlikely to match the 

amount transferred to the fetus [33] for a considerable proportion of the population. Low DHA 

intakes and status in mothers may also affect the amount of DHA supplied to the newborn during 

lactation [34,35]. The rate of DHA conversion from alpha linolenic acid (ALA) adults is 

generally less than 1% [36], and although de novo synthesis of DHA is upregulated during 

pregnancy [30], it may not be adequate to meet fetal and infant demand. Therefore, in situations 

where de novo synthesis and dietary intakes are insufficient, mobilization of maternal stores may 

be a major provider of DHA for fetuses and newborns, but mothers not consuming DHA can 

deplete them within two months of delivery [37].  

Most research examining maternal DHA mobilization is focused on the liver and adipose 

depots [31,32,38,39].  However, there are other tissues with considerable concentrations of DHA 

that could provide DHA during pregnancy and lactation. Skeletal muscle in the rat has both 

higher relative, and absolute amounts of DHA as compared with white adipose [40], and fatty 

acid levels in muscle decrease near parturition in bovine models [41]. In addition, gene 

expression for fatty acid uptake and degradation enzymes are decreased in the muscle during 

lactation in the rat [42]. The ability for skeletal muscle to mobilize fatty acids during pregnancy 

could allow mothers to provide fetuses and newborns with a minimal supply of DHA. Similarly, 

cardiac muscle in rats also has a higher concentration and percentage of DHA relative to white 

adipose [40].  Cardiac muscle also has a high fatty acid turnover rate [43] with potential 



5 

 

specificity for long chain polyunsaturated fatty acid (LCPUFA) lipolysis [44,45], but whether 

these lipids are exported for perinatal supply has not been examined. The expression of proteins 

involved in lipid uptake have been shown to decrease during lactation in skeletal muscle[42], and 

a similar mechanism could be occurring in cardiac muscle. 

Pregnancy-induced lipidemia is well documented [46]. Circulating levels of 

triacylglycerols (TAG), phospholipids (PL), and nonesterified fatty acids (NEFA) increase 

during gestation in part due to stimulation from placentally derived leptin [37]. In plasma, DHA 

increases predominantly in 16:0/DHA phosphatidylcholine (PC) [29]. This increase is due to 

repackaging of phosphatidylethanolamine (PE) to PC through the Kennedy pathway by increased 

phosphatidylethanolamine methyl transferase (PEMT) activity [29]. Generally, PE has a higher 

content of DHA than PC, but PE predominantly resides on the inner cell membrane of 

phospholipid bilayers [47]. Hepatic PEMT-derived PC appears to be preferentially partitioned to 

the fetus [48]. Converting DHA-rich hepatic PE to PC allows the DHA to be readily incorporated 

into the lipoprotein monolayers that are predominantly PC. Once in the circulation, the DHA-

rich PC is then accessible to lipases found on the microvillous membrane of the placenta, 

allowing DHA to be delivered as NEFA to the fetus by passive diffusion [33] or through protein 

mediated transport [49].  

 During lactation, circulating NEFA levels are increased by reducing fatty acid oxidation 

and increasing lipolysis in maternal adipose [50]. Adipose derived NEFA can then be sent to the 

liver for repackaging as triacylglycerol (TAG) dominant lipoproteins such as very low density 

lipoproteins (VLDL) before being sent to the mammary gland to support milk synthesis [51], 

though uptake of albumin-bound NEFA could be occurring as well [52]. Similar to lipolytic 

signalling from the placenta during pregnancy, lipoprotein lipase (LPL) activity at the mammary 
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gland is increased via increased prolactin levels [51]. The increase in LPL activity is an adaption 

to promote the incorporation of DHA into milk, as DHA from the diet is preferentially 

incorporated into plasma PL and TAG [53]. Lipids derived from intestinal absorption circulate 

primarily as chylomicrons, while those derived from hepatic synthesis or adipose tissue circulate 

primarily as VLDL[54].  

 In all, the combined provision of maternal DHA to the fetus and infant via placental 

transfer and lactation are important in ensuring adequate perinatal DHA status. Tracer studies 

have confirmed that increases in maternal dietary DHA consumption increase DHA 

concentrations in the placenta [55] and breast milk [56], but no tracer studies have yet confirmed 

to what degree each mechanism of transfer for maternal DHA to the infant is responsible for 

perinatal DHA status. De novo synthesis of DHA during the perinatal period has also been 

reported in term and preterm infants [57], but these synthesis pathways do not appear to have as 

large an impact on infant DHA status compared to adequate maternal DHA [58]. Increases in 

maternal DHA intakes are linked with increases in perinatal DHA status [58]. However, further 

research is needed to fully characterize the role of placenta, breast milk, and perinatal de novo 

synthesis on infant DHA status. 

2.2 Sex differences in DHA metabolism  

DHA levels in females are generally higher than those of males when dietary intake is 

controlled [15,59]. Females have higher biosynthesis of DHA from ALA [60]. These differences 

are believed to be primarily the result of 17β-estradiol, which increases gene expression of 

FADS2, the gene responsible for Δ6-desaturase (D6D), the rate limiting enzyme in DHA and 

ARA synthesis [17].  
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How estrogen increases D6D activity and circulating levels of DHA has not been fully 

uncovered. The three main forms of estrogens in humans are estriol, estrone, and 17β-estradiol. 

17β-estradiol is the most bioactive form in mammals, and functions through genomic and 

nongenomic mechanisms. For genomic mechanisms, 17β-estradiol binds to estrogen receptors 

(ERα and/or ERβ) to up- or downregulate gene expression, while for nongenomic mechanisms, it 

binds primarily to G protein-coupled receptor 30 (GPR30) to mediate secondary messengers 

through protein phosphorylation and calcium signalling [61]. To date, no mechanisms directly 

relating estrogen to D6D have been identified. However, genomic mechanisms explaining the 

role of 17β-estradiol in DHA synthesis have been proposed, involving the upregulation of 

desaturase, elongase, and peroxisomal enzymes through ERα-activated peroxisome proliferator-

activated receptor alpha (PPARα) upregulation [14]. 

Determining the exact lipid pools in which DHA differs between males and females 

could lead to a better understanding of the metabolic control of DHA partitioning. A recent 

review highlighted that sex differences in circulating DHA can be specified to total plasma, 

plasma PL, and red blood cell (RBC) PC fractions in humans [18,62] and rats [63]. This is in 

agreement with tracer studies showing DHA elongated from ALA leaves its synthesis pathway 

as acyl-CoA and incorporates primarily into PC, followed by CE, TAG and NEFA pools in 

women of reproductive age [59] The higher content in PC could be a result of higher circulating 

levels of 17β-estradiol, which can increase PEMT gene expression, thereby increasing their 

conversion of PE 16:0/DHA to PC 16:0/DHA [64].  

Sex differences in DHA status may be dependent on low background intakes of omega-3 

PUFA [14,65], as these sex differences have been shown to disappear with fish oil 

supplementation, and are not observed in countries with a high omega-3 intakes and blood levels 
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[18,66,67].  Most observations of higher blood DHA levels in females have been observed 

between the ages of 13-50 years old [18]. Although it is assumed that sex differences are 

associated with the higher concentration of circulating sex hormones that occur during the onset 

of puberty, this has not been clearly demonstrated.   

2.3 Established DHA biomarkers 

 For fatty acid biomarkers, various tissues can be used, but blood has significant 

advantages as it is routinely collected and stored in clinical settings. Within blood, there are 

various fractions and lipid pools that can be examined, including whole blood (that can be 

collected as dried blood spots), plasma (or serum), erythrocytes, and the buffy coat. Within 

blood, DHA is found primarily in the PL of the various blood fractions with the fatty acid 

compositions of plasma and RBC being reported the most often [67,68]. Tissue n-3 LCPUFA 

status correlates more strongly with RBC than plasma, given that RBC has a lipid bilayer and is 

composed of a more comprehensive phospholipid profile, unlike plasma, which is dominated by 

PC lipoproteins [69]. It has also been demonstrated that DHA levels in RBC are better indicators 

of dietary adherence than other n-3 LCPUFA measures in plasma, as turnover of DHA in this 

pool is slower [70]. However, the recent identification of plasma PC 16:0/DHA as the specific 

lipid responsible for most of the increase in plasma DHA during pregnancy suggests that 

lipidomic analyses has the potential to identify highly informative biomarkers not possible with 

methods that rely on the chemical isolation and derivatization of fatty acids [29]. 

While blood fatty acids can be used as biomarkers of DHA intake, the brain strongly 

retains DHA, even when blood DHA status is low [71]. Although correlations between brain and 

blood n-3 LCPUFA can be strong when n-3 PUFA deficient rats (r ≥ 0.95) are included, the 

correlations become considerably weaker when all animals are adequate in n-3 PUFA, even 
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when it is primarily obtained as ALA and not preformed DHA [69]. When examining intake 

ranges above deficiency, correlations between RBC and brain (r = 0.62) are stronger than brain 

and plasma (r=0.46) [69]. A lipidomic approach examining different brain regions may identify 

acyl specific lipid species that are highly correlated in brain and blood, and potentially serve as 

informative biomarkers in the future.  

Lipidomic data also have the potential to provide additional insights about metabolism 

when examining sex differences. Previously, the identification of increased 16:0/DHA PC in late 

pregnancy led to additional evidence that increased expression of PEMT supports maternal-fetal 

DHA transfer [29] and not just the synthesis of PC. Changes in acyl specific lipid species allows 

for systems biology approaches to identify molecular pathways with sexual dimorphism in 

response to physiological changes and diets.  However, with known sex differences in 

lipoprotein metabolism [72], lipoprotein isolation followed by lipidomic analysis, though 

currently technically challenging, needs to be considered to improve characterization of the 

plasma lipidome and our understanding of sex differences in hepatic fatty acid and lipid 

metabolism. 

2.4 Cognitive benefits of DHA 

DHA comprises between 15 and 20% of total lipids in the adult rodent brain, and is 

critical for optimal brain function [3,73]. The majority of DHA in the brain is incorporated 

within PL [16], but the effect of dietary intervention, and the PL fraction most affected by it is 

debatable. The PE and PC fractions are the most abundant phospholipids in brain [74], but these 

phospholipids and their DHA content are relatively resistant to changes in DHA intake other than 

outright n-3 PUFA deficiency [75]. However, DHA supplementation can increase DHA 

composition (%wt) of other lipid species, and possibly increase the absolute amounts of DHA 
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containing phosphatidylserine (PS) [74]. Plasmalogens, which make up an important subclass, 

and constitute approximately 20% of white matter phospholipid mass [76] may also increase in 

DHA content during dietary DHA supplementation [77,78]. DHA supplementation may also 

reduce arachidonic acid (ARA) in PC, PE, PS, and phosphatidylinositol (PI) fractions, even 

though relative amounts of DHA do not change [75]. Aging may also have a role in sex 

differences in brain, as brain DHA in lysoPC is higher in aging female as compared with male 

mice [79].  

In multi-generational studies of DHA depletion, male rodents show impaired spatial 

memory performance in Morris water maze (MWM) studies [6–10]. In vitro studies show 

neurons from the hippocampus, an area critical for spatial memory, generate more synapses in 

cell cultures with DHA included as compared with cultures without DHA [4]. This observation 

of increased neural connections could explain the shorter latency times in MWM performance of 

rats with adequate levels of DHA [6–10], as DHA may be supporting memory formation and 

increased recall speed. 

Cognitive interactions between sex and DHA intake have been reported. In 18-45 year 

old adults, DHA supplementation improved episodic memory reaction times and working 

memory accuracy in both sexes, episodic memory accuracy in females only, and working 

memory reaction times in males only [5]. DHA blood levels also correlate with cognitive test 

scores twice as strongly in girls as compared with boys, and DHA supplementation shows an 

inverse relationship with blood levels of n-6 PUFA in females only [21]. DHA supplementation 

is also linked with reducing depression in women, but not men [22]. Interestingly, in 3 year old 

Danish girls, an inverse relationship was shown between DHA in RBC and communication as 

determined by the ASQ-3 [20]. Studies examining the effects of DHA on cognition do not 
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always reach significance, and its effects remain controversial [80]. This may be partially 

explained by studies not accounting for sex differences, only measuring effects in males, or not 

accounting for age, as it is possible the effects of DHA supplementation interact with sex 

differently at different ages. Understanding the mechanisms behind why DHA supplementation 

affects females differently than males is important in understanding the cognitive effects of 

DHA. 
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3  Rationale, Objectives, and Hypotheses 

3.1 Rationale: 

 Sexual dimorphisms have been overlooked in science [81]. Within the last decade, 

policies have been put into place to prevent basic and preclinical research from being focused on 

males only [82,83]. A significant amount of basic research on the benefits of DHA has been 

conducted using only male specimens [6–10,84–86], despite female and male humans showing 

different circulating levels of DHA [15,59,60], different memory improvements from DHA 

supplementation [5], and sexually dimorphic cognitive differences in infants following maternal 

DHA supplementation [87]. Pregnancy models can provide insights on the effects of sex 

hormones on fatty acid and lipid metabolism and need to be examined to understand female 

biology. Plasma DHA increases approaching parturition in humans and rats [29,88], and sex 

differences in DHA are associated with higher levels of estrogen in females [17,29]. As 

Canadian women do not meet ISSFAL recommendations for DHA consumption during 

pregnancy [28], examining the effects of a high fat diet that mimics a Western fatty acid profile 

with and without DHA on the mother, fetuses, and 7d old pups could provide more insight on 

maternal adaptations to DHA supplementation and sexual dimorphisms in pup development. 

Additionally, circulating DHA levels are often reported to be greater in females relative 

to males [14,15,18]. This increased capacity is associated with circulating estrogen [14,15] and 

sex differences in the expression of genes related to PUFA synthesis [14,89]. While the onset of 

these differences has not been examined comprehensively, human studies suggest differences in 

circulating DHA begin with puberty [18], but sex-DHA status interactions on communication 

skills have been observed at 9 months of age [20]. This could be due to differences in DHA 

status occurring earlier than previously thought. Animal studies examining tissue DHA status 
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have been limited to single time points in mature rats [14,63], and when examined in growing 

rats, it has been examined under n-3 PUFA deprivation/repletion models [89]. Puberty in the rat 

begins between 40-60 days of age [90]. Examining changes in DHA status from 1 to 9 weeks of 

age could provide insight on how sexual dimorphisms in DHA occur in rats during development. 

 Finally, DHA supplementation causes sexually dimorphic memory improvements in 

young adults [5], and multigenerational studies in rats show severe DHA depletion negatively 

affects spatial memory in MWM [6,9,10]. However, this effect on spatial memory has only been 

examined in males. Spatial memory and MWM performance are highly associated with 

hippocampal function [91]. Dietary ALA supplementation increases DHA brain composition in 

females more than males [92], and DHA supplementation has been shown to improve memory 

differently in females as compared with males [5]. In the hippocampus, DHA accumulation 

occurs primarily in PL [93], and DHA uptake and PE levels in the brain are affected by estrogen, 

as estrogen treatment appears to maintain brain lipid homeostasis in aging and ovariectomized 

rodents [12]. A lipidomic analysis of the hippocampus compared with blood lipidomics may 

provide further insight on sexually dimorphic responses to DHA supplementation and identify 

novel blood biomarkers that are more informative than fatty acid based blood-brain biomarkers.  

3.2 Objectives: 

Using a rat model, the main objectives of this thesis are to: 1) assess the effect of dietary 

DHA supplementation and high fat Western diets during pregnancy on tissue DHA status of 

mothers, fetuses and pups, 2) determine the onset of sex differences in DHA status from birth to 

adulthood, and 3) determine the impact of DHA supplementation during pregnancy and lactation 

on the spatial memory of adolescent offspring.  
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 Assessing the effect of dietary DHA on maternal tissue stores involved a pregnancy 

model with total Western diets with (TWD+) and without DHA (TWD-), and a standard chow 

diet. Maternal and 7-day old pup tissues were analyzed during pregnancy and lactation. Plasma, 

RBC, heart, liver, brain, white perirenal adipose and placenta from the mothers were collected to 

determine how fetal demand for LCPUFA during pregnancy and lactation affected maternal 

tissue stores of LCPUFA. Brain, heart, and liver from 7-day old pups were also collected and 

examined for potential dietary effects and sexual dimorphisms in LCPUFA composition.  

 Upon examination of sexual dimorphisms in brain DHA concentrations of 7-day old pups 

fed TWD+, an objective of determining when sexual dimorphisms in the LCPUFA status of 

chow fed Sprague-Dawley rats was established. Plasma, heart, liver, and brain fatty acid 

compositions were examined. 

 The potential interaction between dietary DHA supplementation throughout development 

and sexual dimorphisms at 6 weeks of age was also examined. Spatial memory was then assessed 

using the Morris water maze, and lipidomic and fatty acid analyses were performed on the 

offspring to determine the lipid species of the hippocampus and erythrocytes. Correlations were 

performed to determine whether erythrocytes could be an effective biomarker for assessing the 

hippocampal lipidome.  

3.3 Hypotheses 

Study 1: The Effect of Dietary DHA on the Fatty Acid Composition of Maternal Tissues 

and 7 Day Old Pups 

1. At days 20 of pregnancy or 7 days postpartum, mothers fed TWD- and chow will have 

lower levels of DHA in their adipose, heart, and liver, as compared with mothers fed 
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TWD+. Maternal brain levels throughout pregnancy and postpartum will not change, 

regardless of diet. 

2. TWD+ pups will have greater levels of DHA in whole body, brain, heart, and liver than 

TWD- and chow. 

3. The tissue compositions of female and male fetuses and pups will be similar.  

Study 2: Sex Differences in Fatty Acid Compositions of Plasma, Liver, Brain, and Heart 

from Birth to Adulthood 

1. Plasma, heart, and liver DHA composition will be higher in females than males 

beginning at 40 days of age. 

2. Brain DHA composition (%wt) and concentration will be the same between sexes 

throughout the experiment (weeks 1 – 9). 

Study 3: Examining the Effects of Dietary DHA Supplementation on Spatial Memory and 

the Hippocampus in Female and Male Rats 

1. At week 6, DHA+ females will have shorter latency times than DHA+ males. For both 

sexes, the DHA supplemented group will have shorter latency times than controls  

2. Females will have greater hippocampal DHA levels than males in the supplemented, but 

not the control group at 7 weeks of age with the increased DHA occurring in PC and PE 

16:0/DHA and 18:0/DHA, and PS 18:0/DHA at the expense of n-6 LCPUFA. 

3. DHA levels in the RBC PE 16:0/DHA and PE 18:0/DHA will correlate with PE 

16:0/DHA and PE 18:0/DHA levels in hippocampal PE at 7 weeks of age. 
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4  Common Methods 

4.1 Animals and Tissue Collection 

All animal experiments will be performed in agreement with the policies of the Canadian 

Council on Animal Care and submitted for approval by the University of Waterloo Animal Care 

Committee. In all experiments, exsanguinated blood will be collected in the presence of 

ethylenediaminetetraacetic acid (EDTA) and plasma will be isolated by centrifugation at 4°C and 

1,500 g for 10 mins. Tissues will be washed in saline (0.9% v/v), weighed, and flash-frozen in 

liquid nitrogen. After collection, samples will be stored at -80°C until analysis.  

4.2 Lipid Extraction 

Tissue samples will be pulverized, weighed, placed in an ice bath, and homogenized 

using a Kinematica PT 1200E Polytron (Kinematica Inc., Bohemia, NY) in 3mL of 2:1 

chloroform:methanol containing 50μg/mL 2,6-di-tert-butyl-4-methylphenol (butylated 

hydroxytoluene, BHT; Sigma-Aldrich, St. Louis, MO, USA) and 10μg of docosatrienoic acid 

(22:3n-3, Nu Chek Prep Inc., Elysian MN) for gas chromatography analysis, or 500pmol of 

17:0/17:0 PC for mass spectrometry analysis as internal standard. Homogenized samples will be 

left at room temperature overnight in 3mL of 2:1 chloroform:methanol for lipid extraction 

following a method modified from Folch et al. [94]. Aqueous and organic phases will be 

separated by aqueous buffer of 500μL of 0.2M sodium phosphate, and the organic phase will be 

collected. 

4.3 Gas Chromatography 

 The collected organic phase containing the extracted lipids will be dried under nitrogen 

and methylated in 1mL BF3-MeOH and 300µL of hexane for one hour at 100°C. The hexane 
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layer with fatty acid methyl esters will be collected, dried under nitrogen and reconstituted in 

65µL of hexane for analysis with a Varian 3900 gas chromatograph equipped with a DB-FFAP 

15 m x 0.1 mm injected dose x 0.1 μm film thickness polyethylene glycol capillary column (J 

and W Scientific from Agilent Technologies, Mississauga, ON) at a 100:1 split ratio. The inlet 

will be heated to 250ºC with hydrogen used as a carrier gas. A temperature program will be used 

with an initial column temperature of 150ºC with a 0.25 minute hold, followed by a 35ºC/min 

ramp to 200ºC and a 8ºC/min ramp until 245ºC will be reached and held for 15 minutes [95]. 

Fatty acid methyl esters will be measured using a flame ionization detector set at 300°C and a 

sampling frequency of 50Hz [96]. 
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5 The Effect of Dietary DHA on the Fatty Acid Composition of Maternal Tissues and 7 

Day Old Pups 

5.1 Introduction 

Levels of DHA in plasma increase approaching parturition in both humans [88,97,98] and 

rats [29,99], likely as an adaptation to meet fetal demand during fetal brain growth. Mechanisms 

responsible for this increase have not been fully identified, but dietary intake, upregulated de 

novo synthesis and mobilization from maternal tissues are potential mechanisms [1,29–32]. 

Evidence suggests DHA is mobilized from maternal liver and adipose depots during pregnancy 

and lactation [31,32,38,39], and it is possible that DHA could also be mobilized from other 

maternal tissues, particularly those demonstrated to be rich in DHA [40]. The exact roles of these 

mechanisms, and how they interact with high fat diets typically found in Western societies could 

provide a better understanding as to how mothers meet fetal and infant DHA demand. 

The goal of this study was to investigate if DHA can be mobilized from various maternal 

tissues in addition to adipose during pregnancy and postpartum, and if this mobilization can be 

influenced by DHA supplementation and high fat diets. This was examined with a background 

rodent diet designed to emulate a typical human Western diet, including percentages of saturated 

fatty acids (SFA), monounsaturated fatty acids (MUFA) and PUFA [100].  A common rodent 

chow diet was included as an additional control. Maternal liver, brain, adipose, heart, 

erythrocytes, and plasma, as well as placenta, and fetal and pup tissues were examined 

throughout pregnancy and into the postpartum period across all diets. To my knowledge, this is 

the first study to comprehensively examine changes in the fatty acid compositions of multiple 

maternal tissue stores, and that of placenta, fetuses, and pups during Western and chow diet 

interventions. 
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5.2 Methods 

5.2.1 Animals and Pregnancy Model 

Seventy-two female Sprague-Dawley rats were purchased from Envigo (Mississauga, 

Ontario, Canada) and arrived at the University of Waterloo Central Animal Facility at 7 weeks of 

age. Baseline rats were not bred and fed either a fixed-formula 8640 Teklad 22/5 Rodent Diet 

(Chow), a TD.110424 total western diet with DHA (TWD+) or a total western diet without DHA 

(TWD-) (Table 1) for 7 days prior to being sacrificed (n=6 per diet). Rats assigned to the 

pregnancy groups were housed with male breeders and fed chow diets until confirmation of 

pregnancy by vaginal plug. Once pregnant, rats were immediately assigned to chow, TWD+, or 

TWD- diets (Figure 1). Daily food intakes and body weight were measured at baseline, day 15 

and 20 of pregnancy, and postpartum. Following an overnight fast, rats were sacrificed at day 15 

of pregnancy, day 20 of pregnancy, or 7 days postpartum by exsanguination after anesthesia 

using isoflurane (n=6 per group). Plasma, RBC, adipose, brain, heart, liver, fetuses, 7 day old 

pups, and pup brain, hearts, and livers were collected and analysed by gas chromatography as 

described in the general methods chapter. 

5.2.2 Statistical Analyses 

All statistical analyses were performed using SPSS release 20.0 (IBM, Chicago, IL, USA). 

The effect of diet and time was examined across maternal parameters using a two-way ANOVA 

with interactions. Differences in pup tissues across diets were examined by one-way ANOVA. 

Individual means were compared by Tukey post hoc testing after significant F-value by 

ANOVA. All data are presented as means ± SD with significance accepted when p<0.05. 
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5.3 Results 

5.3.1 Maternal food intake and body weight 

Energy intakes did not differ across the diets despite the higher energy density of the 

TWD+ and TWD- as compared with chow.  Maternal energy intakes were significantly increased 

in all diets at 7 days postpartum as compared with baseline and gestation across all diets (Figure 

2). At 7 days postpartum, chow dams consumed a significantly greater mass of food than TWD+ 

and TWD- dams (47.5 ± 4.37g vs. 34.0 ± 10.0g and 32.33 ± 12.45g, respectively).  Maternal 

body weight increased from baseline throughout pregnancy with a decrease at postpartum that 

remained higher than baseline. This was in agreement with previous reports using this pregnant 

rat model [29]. Maternal and fetal body weights did not differ between diets (data not shown).  

However, the weights of 7-day old pups from TWD+ and TWD- mothers were significantly 

higher than those from chow mothers (14.16 ± 2.99g and 14.14 ± 2.63g vs 12.63 ± 1.68g 

respectively. p = 0.0001).   

5.3.2 Fatty acid composition of maternal tissues 

The TWD+ diet supported increased concentrations of DHA in most maternal tissues 

during pregnancy while the TWD- and chow diets did not, although the responses of each tissue 

were not similar (Figure 3).  In plasma, there was a significant increase in DHA at day 20 of 

pregnancy in all three diets, and the DHA concentration with TWD+ feeding was 53% and 78% 

higher than the DHA concentrations with chow and TWD- feeding, respectively (Figure 3A).  

These concentrations returned to baseline levels by 7 days postpartum in all the diets.  These 

increases reflected, in part, a general increase in total fatty acids in plasma at 20 days of 

pregnancy. However, the relative percentage of DHA was significantly higher at 20 days of 

pregnancy for the TWD+ and chow groups, but not the TWD- diet (Appendix Table 5.1, Appendix 
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Table 5.2Error! Reference source not found.). Concentrations of ARA also changed, 

increasing above baseline at 20 days of pregnancy in TWD+ and chow rats, and decreasing 

below baseline at 7 days postpartum in TWD+ rats. The TWD+ and TWD- diets also resulted in 

higher percentages of saturated and monounsaturated and lower percentages of n-6 PUFA as 

compared with plasma from the chow diet. In erythrocytes, the increase in DHA concentrations 

at day 20 was also observed in all the diets, but the increase was more gradual, very subtle in the 

chow and TWD-, and extended into postpartum for the TWD+ group (Figure 3 B).  In contrast to 

plasma, the total fatty acid concentrations of erythrocytes did not increase at day 20 of 

pregnancy. 

Liver DHA concentrations increased above baseline at day 15 and 20 in the TWD+ group 

and decreased below baseline at 7 days postpartum in the TWD- group (Figure 3C). The relative 

percentage of DHA was significantly higher at day 20 in both the chow (6.42±0.78 vs 

10.96±2.98) and TWD+ groups (7.42±0.90 vs 11.35±2.45, Appendix Table 5.3).  Liver ARA 

concentrations did not change from baseline in any of the dams. In the TWD+ and TWD- groups, 

total fatty acid concentrations significantly increased at 7 days postpartum as compared with day 

20 of pregnancy (1.7 – 1.9 fold) and were significantly higher than chow at the 7 days 

postpartum (2.5 – 2.7 fold, Appendix Table 5.3). These increases in liver total fatty acids were 

driven by very large increases in 16:0 and 18:1n-9, as percentages of n-3 and n-6 PUFA 

decreased in the TWD+ and TWD- diets. 

Adipose DHA concentrations were decreased throughout pregnancy in the TWD- group 

(Figure 3D).  The TWD+ and chow groups had similarly higher DHA concentrations in adipose 

throughout pregnancy and postpartum with an increase at day 20 of pregnancy that was above 

baseline levels.  There was a tendency for total fatty acid concentrations of adipose to increase 
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during pregnancy and then decrease postpartum across all diets with the decrease at postpartum 

in the chow diet being the largest.  In the heart, DHA concentrations increased in the TWD+ at 

day 20 of pregnancy and then returned to baseline levels (Figure 3E).  In the TWD- and chow 

groups, heart DHA concentrations did not increase at day 20 and significantly decreased at 7 

days postpartum (Figure 3E) and there was evidence of increased percentages of 22:4n-6 and 

22:5n-6 in these groups as compared with the TWD+ group (Appendix Table 5.5).  Maternal 

brain DHA concentrations in the TWD- group were significantly lower than those in the TWD+ 

group, at day 20 of pregnancy, but none of the values were different from baseline (Figure 3F) 

and the percentage of brain DHA did not differ in any of the groups (Appendix Table 5.6).    

5.3.4 Fatty acid composition of the placenta and pup whole bodies. 

Placental DHA concentrations increased in all diets from day 15 to day 20 of pregnancy 

with the increase in the TWD+ placentas being significantly greater than the other diets (Figure 

4A).  While there was a tendency for total fatty acid concentrations to also increase from day 15 

to day 20 (approximately 30-40%), the percentages of DHA at day 20 remained significantly 

higher than day 15 for all the diets with TWD+ having the greatest increase (Appendix Table 

5.7).  In the fetus, whole body DHA concentrations did not differ (Figure 4B) although the 

percentage of DHA increased in the TWD+ and chow fetuses from day 15 to day 20 (Appendix 

Table 5.8).  After birth, DHA concentrations increased in the pups relative to the fetuses in all 

the diets with a remarkable increase in the TWD+ diet (7 fold from baseline versus 3.7 fold in 

TWD- and 3.6 fold in chow, Figure 4B). After birth, total fatty acid concentrations increased 

significantly in all the pups, however, the concentrations in the TWD+ and TWD- 7-day old pup 

whole bodies were approximately 3 times the concentration of the chow-fed pups (Appendix 

Table 5.8).  
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5.3.5 Fatty acid composition of pup brain, liver and heart. 

The pups from the TWD+ group had the highest concentrations of DHA all tissues, 

although chow had a statistically similar level of DHA in the heart (Figure 5).  DHA 

concentrations in the brain and heart of TWD- group were also significantly lower than the chow 

group.  Differences in total fatty acid concentrations appear to have contributed to this 

observation as total fatty acid concentrations in the TWD- group were lower in the brain and 

heart but higher in the liver relative to the chow group (Appendix Table 5.9).  In the brain, the 

percentage of DHA was only different (1.2 times higher) in the TWD+ group, while the 

percentages of 22:5n-6 and 22:5n-3 were higher in the TWD- and chow pups as compared with 

the TWD+ pups (Appendix Table 5.9).  In both the heart and liver, there were increases in the 

percentages of 18:1n-9 with the TWD+ and TWD- feeding relative to chow.  In the heart, this 

was offset by lower percentages of 18:2n-6 and 18:3n-6 relative to chow, while in the liver, the 

TWD+ and TWD- had lower percentages of 18:0 and 20:4n-6 (Appendix Table 5.9). 

5.4 Discussion 

 Results of this study indicate that including preformed DHA can, in general, increase 

DHA status in various maternal, fetal and pup tissues even when fed a background Western style 

diet.  High fat feeding during pregnancy has been demonstrated to potentially reduce the hepatic 

DHA status of neonatal pups [101], but surprisingly, manipulating the DHA content of a Western 

style diet fed rodents during pregnancy has not been examined previously to our knowledge.  

This is despite the fact that the use of DHA supplements during pregnancy is encouraged for 

women in Western countries [102].   

An increase in DHA concentrations in maternal plasma has been observed previously 

[29,31,38,39,88,103]. This study also confirms a recent report that the DHA increase occurs 
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largely in late and not early pregnancy, where it was demonstrated that DHA was specifically 

increased into 16:0/DHA PC for incorporation into lipoproteins during pregnancy induced 

hyperlipidemia [29]. The present study demonstrates that the DHA increase in plasma during late 

pregnancy is even higher when preformed DHA is included in the diet, and that this metabolic 

adaptation to mobilize DHA to the plasma for potential fetal uptake was also evident in the 

TWD- diet, a high fat diet without preformed DHA. The increase and decrease in DHA 

concentrations and percentages in plasma during pregnancy and postpartum have been observed 

previously in rodents [29] and in humans [88,97].  This rise and fall is associated with changes in 

lipoprotein levels, but also DHA availability for incorporation into PC [29,104]. Erythrocyte 

DHA concentrations were also increased above baseline with this increase being higher and 

persisting into 7 days postpartum in the TWD+ group.  

In the other maternal tissues examined, an increase in DHA concentrations at day 20 of 

pregnancy was observed only in tissues of the TWD+ group.  Specifically, liver, adipose, heart 

and erythrocyte, but not brain DHA concentrations were all increased above baseline at day 20 

and they all returned to baseline levels at 7 days postpartum.  In the heart and liver, the chow and 

TWD- groups were generally similar with the DHA concentrations remaining at baseline levels, 

but lower than the TWD+ group throughout pregnancy.  However, at 7 days postpartum, DHA 

concentrations fell below baseline levels in both the chow and TWD- groups in the heart, and in 

the TWD- group in the liver. The decrease in heart tissue DHA in both the chow and TWD- was 

not expected, but losses of DHA in the heart could have been anticipated. Heart tissue has a high 

concentration of DHA [40] and high fatty acid turnover rate [43], with a potential specificity for 

lipolysis of LCPUFA such as DHA by phospholipase A2 enzymes [44,45] . It is not clear if the 
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decrease in DHA was caused by metabolic use of DHA by the heart or by release of DHA from 

the heart to the circulation.  Further examination is required. 

In contrast to the response in maternal liver and heart, perirenal adipose tissue DHA 

concentrations in the chow and TWD+ groups were similar, while the TWD- group was lower 

throughout pregnancy and postpartum.  The DHA content of adipose was actually increased at 

day 20 in the TWD+ and chow diets suggesting that adipose may have been taking up DHA from 

plasma, rather than providing it.  Previously it has been reported that DHA concentrations in 

periuterine adipose decrease but that perirenal adipose do not change at 18 days of pregnancy in 

rats fed low n-3 or ALA adequate diets [38].  In this study, an increase in DHA in perirenal 

adipose in the chow and TWD+ diets at day 20 but not day 15 of pregnancy was observed.  

The lower levels of DHA in the adipose of the TWD- group throughout pregnancy and 

postpartum suggest that the fetal/pup demand was not being met by the intake of dietary DHA 

and that adaptations to increase DHA biosynthesis during pregnancy [29,59,105,106] could not 

meet the demand as well.  The TWD- diet contained only 17 µg DHA/g diet (0.01% of total fat) 

while the chow diet had 226 µg DHA/g diet (0.41% of total fat). In regard to DHA biosynthesis, 

the total ALA content in the TWD- diet (3.17 mg ALA/g diet) was slightly higher than chow 

(2.63 mg ALA/g diet), but the % of ALA in total fat in the TWD- (1.8% of total fatty acids) was 

less than half of the chow diet (4.8% of total fatty acids).  Based on a previous study that 

considered the ratios of linoleic acid (LA) to ALA and the energy % of over 50 diets [107], it is 

unlikely that the DHA biosynthesis potential of the chow and TWD- diets would differ.  

However, the previous work was completed in male rats and not pregnant females, and this study 

included different levels of preformed DHA in the diets.  In addition, high MUFA intakes can 

reduce ALA metabolism [11] and absolute MUFA content in the TWD- diet was 66.9 mg 
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MUFA/g diet as compared with 13.4 mg MUFA/g diet in the chow diet.  Additionally, the 

different micronutrient composition of the chow and TWD diets could have had an effect on the 

metabolic outcomes of the pups[108]. Further research on their impact is necessary. 

Placental and whole body pup DHA concentrations from this model are consistent with 

previous reports of maternal DHA status affecting fetal and infant DHA status through both 

placental transfer [33] and lactation [109].  The TWD+ pups had both higher whole body and 

tissue specific DHA concentrations when compared to their chow or TWD- counterparts. 

However, it was interesting that the differences in whole body DHA concentrations were only 

observed in the 7-day old pups and not in the fetuses. This suggests that maternal adaptations 

during pregnancy were meeting fetal demand, but that this did not extend into postpartum 

lactation. Fetal synthesis of DHA could also be occurring, but from the current literature, it is 

difficult to quantitate DHA synthesis occurring during early infancy from that occurring in utero 

[33]. Future research is needed to quantify how much perinatal DHA is synthesized from the 

mother relative to the infant. Tissue fatty acid analyses of the pups indicate that while some of 

the increased DHA in the TWD+ group is probably excess and accumulating in depots such as 

liver and possibly adipose (not measured), diets low in DHA can result in slightly, but 

significantly lower levels in brain and heart.  Interestingly, the pup heart was the most sensitive 

to losses of DHA with the TWD- diet.  As mentioned previously, there is the potential for high 

DHA turnover in the heart [110], but it remains to be seen if this turnover is to meet the 

metabolic need for DHA by the heart itself or if some of the DHA is released to the circulation 

for uptake by other tissues.  More research understanding DHA metabolism and turnover in the 

heart is needed. The postpartum observations in this study may be unique to rodent models and 

not extrapolate to humans as rat pup brain development does not reach the same level as a term 
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human infant until 12 days postpartum [90]. In this rat model, however, it appears that while 

adaptations during pregnancy maintain maternal DHA status before birth, these adaptations 

change postpartum and may not support DHA demand by the pup via lactation.  

This study has several limitations.  While several maternal and fetal/pup tissues across 

various time points were screened to identify decreases in tissue levels as evidence of maternal 

mobilization for fetal/pup transfer, only static measures of tissue fatty acid levels were 

completed.  Also, while several maternal tissues were examined, results of decreases in DHA in 

heart indicate that maternal skeletal muscle should also be examined, and a recent study suggests 

that other adipose sites should be examined as well [38]. While the use of a background diet that 

resembled human fat intakes was novel for DHA supplementation during pregnancy, there were 

some unanticipated results that made it difficult to compare to the existing literature in the field. 

The TWD+ and TWD- resulted in significant increases in hepatic total fatty acids at postpartum, 

suggesting the development of fatty liver. The TWD+ and TWD- resulted in significant increases 

in hepatic total fatty acids at postpartum only (73.1 ± 25.4 and 77.2 ± 33.3 mg/g) that suggested 

progression towards fatty liver.  Total hepatic fatty acid concentrations of 122 mg/g and 

percentage shifts towards higher 18:1n-9 and lower 18:0 has been observed previously in rats 

with steatosis [111].This was not present during pregnancy, and was not reflected in maternal 

adipose, but it was reflected in the pup whole body total fatty acids. As only one postpartum time 

point was measured, the duration of this response and the consequences of these diets on 

maternal and pup health need to be examined in more detail.  

5.5 Conclusion 

In conclusion, this study provides further evidence that DHA is increased in plasma 

during late pregnancy across diets with different intakes of DHA and that tissues other than 
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adipose and liver may be a source of DHA during pregnancy and lactation in order to meet fetal 

and pup accretion and physiological requirements. These observations also suggest that in this 

model, maternal adaptations to meet lipid and fatty acid requirements change in the transition 

from pregnancy to lactation with the pup requirement for DHA during lactation being 

particularly detrimental to maternal tissue levels when dietary DHA levels are low. Additional 

work examining the rates of mobilization of DHA from maternal tissues, and the dietary intake 

required to prevent tissue decreases, could help define dietary requirements during pregnancy.  
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Figure 1: Study design flowchart for pregnancy study. Female Sprague Dawley rats were fed 

either a fixed formula 8640 Teklad 22/5 Rodent Diet (Chow), a TD.110424 total western diet 

with DHA (TWD+) or a total western diet without DHA (TWD-).  Baseline rats were sacrificed 

at 9 weeks of age after one week on the diets. Rats assigned to the pregnancy groups were fed 

chow diets until confirmation of pregnancy and then immediately assigned to one of the 3 diets, 

and sacrificed at 15d of pregnancy, 20d of pregnancy or 7d postpartum (n=6 for each group).  
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Figure 2: Food intake across pregnancy and the postpartum period. *Significantly higher than 

intakes at other time points for all diets (main effect of time by two-way ANOVA followed by 

Tukey post hoc (p<0.05). Mean ± SD, n = 6 for each point. 
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Figure 3: Effects of pregnancy and diet on DHA concentrations of maternal tissues. Different 

letters indicate diet differences within a timepoint, and * indicate timepoint differences from 

baseline within a diet. All differences are as determined by Tukey’s post hoc following 

significant (p<0.05) F-value by two-way ANOVA. Mean ± SD, n = 6 for each point. TWD+: 

DHA-supplemented Total Western Diet, TWD-: Total Western Diet. 
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Figure 4: Effects of pregnancy and diet on DHA concentrations of placenta and whole body 

fetuses and pups. Different letters indicate diet differences within a timepoint, and * indicate 

timepoint differences from baseline within a diet. All differences are as determined by Tukey’s 

post hoc following significant (p<0.05) F-value by two-way ANOVA. Mean ± SD, n = 6 for 

each point. TWD+: DHA-supplemented Total Western Diet, TWD-: Total Western Diet. 

 

 

Figure 5: Effects of pregnancy and diet on DHA concentrations of pup tissues. Different letters 

indicate diet differences. All differences are as determined by Tukey’s post hoc following 

significant (p<0.05) F-value by two-way ANOVA. Mean ± SD. TWD+: DHA-supplemented 

Total Western Diet, TWD-: Total Western Diet.  
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Figure 6: Effects of pregnancy and diet on DHA total lipids, phospholipids, and triacylglycerols 

in maternal heart. *Significantly different from baseline (p<0.05) as determined by two-tailed 

student’s t-test. Mean ± SEM, n = 6 for each point. TWD+: DHA-supplemented Total Western 

Diet, TWD-: Total Western Diet. 

 

 

Figure 7: Effects of maternal diet on brain DHA concentrations of male and female pups 

*Significant differences between male and female pups from mothers of the same diet (p<0.05), 

and letters indicate significant differences between diet as determined by two-tailed student’s t-

test. Mean ± SD. n=4 for TWD+ and chow. n=3 for TWD-. TWD+: DHA-supplemented Total 

Western Diet, TWD-: Total Western Diet.  
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Table 1: Macronutrient and fatty acid composition of chow, and DHA supplemented and 

unsupplemented Total Western Diets (TWD). 

Diet component Chow TWD-DHA TWD+DHA 

Macronutrient  mg/g of diet  

Protein 22.0 16.8 16.8 

Carbohydrate 40.6 54.6 54.6 

Fat 5.5 16.7 16.7 

Fatty Acid % composition 

C 16:0 13.24 ± 0.11 18.73 ± 0.08 18.81 ± 0.13 

C 18:0 3.68 ± 0.02 8.87 ± 0.01 9.16 ± 0.01 

Total SFA 18.56 ± 0.13 32.78 ± 0.05 32.74 ± 0.16 

C 16:1 0.77 ± 0.01 1.18 ± 0.01 1.14 ± 0.01 

C 18:1n-7 1.31 ± 0.01 1.49 ± 0.02 1.52 ± 0.06 

C 18:1n-9 21.82 ± 0.26 36.64 ± 0.10 36.79 ± 0.08 

Total MUFA 24.34 ± 0.23 39.90 ± 0.10 40.03 ± 0.07 

C 18:2n-6 48.51 ± 0.05 20.21 ± 0.04 20.86 ± 0.03 

C 20:4n-6 0.14 ± 0.02 0.08 ± 0.01 0.09 ± 0.01 

Total n-6 PUFA 48.82 ± 0.03 20.55 ± 0.04 21.23 ± 0.05 

C 18:3n-3 4.78 ± 0.01 1.83 ± 0.01 1.90 ± 0.01 

C 20:3n-3 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

C 20:5n-3 0.42 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

C 22:5n-3 0.08 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 

C 22:6n-3 0.41 ± 0.02 1.21 ± 0.02 0.01 ± 0.01 

Total n-3 PUFA 5.71 ± 0.03 3.12 ± 0.01 1.98 ± 0.01 

Data is mean ± SD from triplicate analysis in our laboratory. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. 
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Table 2 : Macronutrient and fatty acid composition of chow vs DHA supplemented (TWD+) and 

unsupplemented (TWD-) Total Western Diets. 
Diet component Chow TWD+ TWD- 

Energy Density (kcal/g) 3.0 4.4 4.4 

Macronutrients (g/100g)    

Protein 22.0 16.8 16.8 

Carbohydrate 40.6 54.6 54.6 

Fat 5.5 16.7 16.7 

Fatty Acid (% wt)    

C 16:0 13.24 ± 0.11 18.73 ± 0.08 18.81 ± 0.13 

C 18:0 3.68 ± 0.02 8.87 ± 0.01 9.16 ± 0.01 

Total SFA 18.56 ± 0.13 32.78 ± 0.05 32.74 ± 0.16 

C 16:1 0.77 ± 0.01 1.18 ± 0.01 1.14 ± 0.01 

C 18:1n-7 1.31 ± 0.01 1.49 ± 0.02 1.52 ± 0.06 

C 18:1n-9 21.82 ± 0.26 36.64 ± 0.10 36.79 ± 0.08 

Total MUFA 24.34 ± 0.23 39.90 ± 0.10 40.03 ± 0.07 

C 18:2n-6 48.51 ± 0.05 20.21 ± 0.04 20.86 ± 0.03 

C 20:4n-6 0.14 ± 0.02 0.08 ± 0.01 0.09 ± 0.01 

Total n-6 PUFA 48.82 ± 0.03 20.55 ± 0.04 21.23 ± 0.05 

C 18:3n-3 4.78 ± 0.01 1.83 ± 0.01 1.90 ± 0.01 

C 20:3n-3 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

C 20:5n-3 0.42 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

C 22:5n-3 0.08 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 

C 22:6n-3 0.41 ± 0.02 1.21 ± 0.02 0.01 ± 0.01 

Total n-3 PUFA 5.71 ± 0.03 3.12 ± 0.01 1.98 ± 0.01 

Micronutrients    

Minerals (mg/kg)    

Calcium  11000 2011 2011 

Phosphorus  9000 2757 2757 

Sodium 4000 7078 7078 

Potassium  10000 5333 5333 

Magnesium  2000 589 589 

Zinc  77.0 25.0 25.0 

Copper  24.0 2.6 2.6 

Iron  280 31.0 31.0 

Vitamins (U/kg)    

Vitamin A (IU) 15800 4300 4300 

Vitamin D3 (IU) 3000 391 391 

Vitamin E (IU) 150 24.6 24.6 

Vitamin B1 (mg) 32.0 3.5 3.5 

Vitamin B2 (mg) 9.0 4.4 4.4 

Niacin (mg) 66.0 50.6 50.6 

Vitamin B6 (mg) 14.0 3.9 3.9 

Vitamin B12 (mg) 0.06 11 11 

Folate (mg) 3.0 1.3 1.3 

Choline (mg) 2380 648 648 

Isoflavones (mg/kg) 350-650 n.d. n.d. 

Data is mean ± SD from triplicate analysis in our laboratory. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. 

 

 



36 

 

Appendix Table 5.1: Fatty acid composition (weight %) of maternal plasma during pregnancy and postpartum 

Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 14.54 ± 0.63a 15.99 ± 0.75a 20.31 ± 1.14b 15.73 ± 1.53a,1 

18:0 15.50 ± 1.11a 13.56 ± 1.42a 8.54 ± 0.95b 13.76 ± 1.96a 

Total SFA 33.46 ± 0.81a 31.60 ± 1.15b,1 30.01 ± 1.16b,1 31.37 ± 1.10b,1 

16:1 0.58 ± 0.14 0.67 ± 0.171 0.74 ± 0.141 0.70 ± 0.151 

18:1n-7 1.13 ± 0.06a 1.24 ± 0.03b 1.37 ± 0.06c 1.34 ± 0.09bc,1 

18:1n-9 5.73 ± 0.43a 8.81 ± 1.64b 11.28 ± 0.96b,1 10.72 ± 2.20b,1 

Total MUFA 8.10 ± 0.41a 11.31 ± 1.72b 13.73 ± 1.01b,1 13.27 ± 2.30b,1 

18:2n-6 17.96 ± 1.75a 20.78 ± 3.16ab,1 22.60 ± 1.37b,1 21.31 ± 2.29ab,1 

20:4n-6 33.82 ± 1.09a 26.79 ± 3.72b 19.05 ± 1.65c 24.16 ± 3.56b 

22:4n-6 0.22 ± 0.03a 0.36 ± 0.12a 1.31 ± 0.23b,1 0.35 ± 0.05a 

22:5n-6 0.14 ± 0.04a 0.26 ± 0.12a 1.63 ± 0.17b,1 0.65 ± 0.14c,1 

Total n-6 PUFA 52.97 ± 1.03a 49.34 ± 0.99b,1 45.72 ± 1.12c,1 48.38 ± 1.40b,1 

18:3n-3 0.48 ± 0.03a 0.73 ± 0.32a,1 1.09 ± 0.10b,1 0.48 ± 0.20a 

20:5n-3 0.58 ± 0.08 0.89 ± 0.341 0.61 ± 0.191 0.83 ± 0.151 

22:5n-3 0.42 ± 0.03a 0.63 ± 0.10a 1.50 ± 0.23b,1 0.88 ± 0.15c,1 

22:6n-3 3.16 ± 0.12a 4.25 ± 0.76a,1,2 6.28 ± 1.00b,1,2 3.24 ± 0.49a,1,2 

Total n-3 PUFA 4.65 ± 0.10a 6.53 ± 0.58b,1,2 9.49 ± 0.89c,1 5.43 ± 0.59a,1 

Total FA (µg/100µL) 235 ± 27a 187 ± 20a 584 ± 64b 233 ± 50a 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 15.91 ± 0.67a 18.00 ± 0.98b 21.40 ± 0.93c 19.69 ± 1.72bc,2 

18:0 15.56 ± 0.47a 14.19 ± 0.59b 10.30 ± 0.93c 12.13 ± 1.06d 

Total SFA 34.26 ± 0.42ab 35.01 ± 0.94a,2 33.24 ± 0.75b,2 34.05 ± 1.04ab,2 

16:1 0.84 ± 0.12a 1.13 ± 0.19a,2 1.12 ± 0.25a,1,2 1.55 ± 0.27b,2 

18:1n-7 1.09 ± 0.06a 1.17 ± 0.08a 1.41 ± 0.11b 1.57 ± 0.14b,1,2 

18:1n-9 8.42 ± 0.69a 12.92 ± 1.88a 18.34 ± 2.67b,2 20.93 ± 5.16b,2 

Total MUFA 11.11 ± 0.74a 16.03 ± 2.11ab 21.26 ± 2.92bc,2 24.59 ± 5.43c,2 

18:2n-6 16.58 ± 0.69a 15.72 ± 0.62ab,2 14.25 ± 0.49b,2 16.11 ± 1.78a,2 

20:4n-6 30.28 ± 1.56a 23.59 ± 2.09b 16.64 ± 1.86c 17.30 ± 5.36c 

22:4n-6 0.17 ± 0.02a 0.18 ± 0.05a 0.48 ± 0.13b,2 0.11 ± 0.05a 

22:5n-6 0.11 ± 0.03a 0.10 ± 0.04a 0.76 ± 0.25b,2 0.07 ± 0.03a,2 

Total n-6 PUFA 47.85 ± 0.99a 40.43 ± 1.66b,2 33.04 ± 1.69c,2 34.92 ± 4.88c,2 

18:3n-3 0.40 ± 0.05ab 0.46 ± 0.08a,2 0.50 ± 0.08a,2 0.32 ± 0.05b 

20:5n-3 0.63 ± 0.10ab 0.78 ± 0.10a,1 0.40 ± 0.10c,1,2 0.60 ± 0.13b,1 

22:5n-3 0.25 ± 0.02ac 0.36 ± 0.11a 0.64 ± 0.11b,2 0.21 ± 0.05c,2 

22:6n-3 4.94 ± 0.38ac 6.14 ± 0.68a,1 9.64 ± 1.11b,1 3.73 ± 1.27c,1 

Total n-3 PUFA 6.23 ± 0.42ac 7.78 ± 0.77a,1 11.19 ± 1.03b,1 4.86 ± 1.31c,1 

Total FA (µg/100µL) 222 ± 13a 197 ± 25a 508 ± 166b 239 ± 23a 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 14.44 ± 1.17a 16.74 ± 0.46b 21.26 ± 0.81c 18.33 ± 2.21b,2 

18:0 16.23 ± 0.94a 14.78 ± 0.92ab 9.58 ± 0.51c 12.89 ± 2.11b 

Total SFA 33.46 ± 0.82ab 34.23 ± 0.87a,2 32.28 ± 0.90b,2 33.47 ± 0.15ab,2 

16:1 0.63 ± 0.17a 1.19 ± 0.13b,2 1.41 ± 0.18b,2 1.54 ± 0.43b,2 

18:1n-7 1.06 ± 0.05a 1.29 ± 0.09ab 1.43 ± 0.05b 1.72 ± 0.31c,2 

18:1n-9 7.73 ± 0.91a 13.09 ± 0.63b 21.17 ± 1.49c,3 22.82 ± 6.15c,2 

Total MUFA 10.14 ± 1.10a 16.39 ± 0.59b 24.37 ± 1.57c,2 26.58 ± 6.66c,2 

18:2n-6 15.51 ± 0.82 14.89 ± 1.012 14.93 ± 0.902 14.01 ± 1.182 

20:4n-6 34.22 ± 2.41a 27.09 ± 1.30b 17.27 ± 1.77c 19.46 ± 7.12c 

22:4n-6 0.22 ± 0.02a 0.24 ± 0.05a 0.68 ± 0.12b,2 0.16 ± 0.04a 

22:5n-6 0.28 ± 0.04a 0.32 ± 0.13a 2.24 ± 0.48b,3 0.34 ± 0.08a,1,2 

Total n-6 PUFA 50.99 ± 1.61a 43.50 ± 0.81b,1,2 36.43 ± 1.26c,2 35.70 ± 5.99c,2 

18:3n-3 0.36 ± 0.03a 0.47 ± 0.03b,2 0.51 ± 0.04b,2 0.23 ± 0.07c 

20:5n-3 0.41 ± 0.04a 0.39 ± 0.06a,2 0.26 ± 0.06b,2 0.24 ± 0.04b,2 

22:5n-3 0.36 ± 0.03a 0.36 ± 0.06a 0.63 ± 0.06b,2 0.30 ± 0.06a,2 

22:6n-3 3.43 ± 0.27a 3.74 ± 0.30a,2 3.96 ± 0.36a,2 1.65 ± 0.74b,2 

Total n-3 PUFA 4.57 ± 0.25a 4.98 ± 0.31ab,2 5.37 ± 0.33b,2 2.42 ± 0.71c,2 

Total FA (µg/100µL) 235 ± 27a 187 ± 20a 584 ± 64b 233 ± 50a 

Mean ± SD, n=6 for each group. Values with different alphabetical superscripts across time and different numerical superscripts 

across diet are significantly different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. SFA, saturated 

fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids, TWD total western diet with (+) 

or without (-) docosahexaenoic acid.  
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Appendix Table 5.2: Fatty acid composition (weight %) of maternal erythrocytes during pregnancy and postpartum 

Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 23.25 ± 0.57a 22.14 ± 0.18b.1 25.10 ± 0.65c,1 24.67 ± 0.59c,1 

18:0 18.03 ± 0.38 17.96 ± 0.70 16.53 ± 1.65 16.66 ± 0.65 

24:0 1.32 ± 0.09 1.31 ± 0.101 1.30 ± 0.081 1.24 ± 0.081 

Total SFA 47.55 ± 0.65ab 48.21 ± 0.49a 47.06 ± 1.48ab,1 46.02 ± 1.13b,1 

18:1n-7 1.91 ± 0.11a 2.22 ± 0.09b 2.22 ± 0.10b 2.41 ± 0.22b 

18:1n-9 5.35 ± 0.24a 6.21 ± 0.42ab 5.97 ± 0.75ab,1 7.32 ± 1.43b,1 

24:1n-9 0.66 ± 0.05 0.64 ± 0.04 0.66 ± 0.071 0.65 ± 0.041 

Total MUFA 8.95 ± 0.26a 10.58 ± 0.82ab 9.55 ± 0.83ab 11.48 ± 2.15b 

18:2n-6 9.02 ± 0.46ab 8.28 ± 0.26a 8.82 ± 0.53a,1 9.75 ± 0.48b,1 

20:4n-6 22.70 ± 0.58a 22.47 ± 0.51ab 21.18 ± 1.10bc,1,2 20.36 ± 0.75c,1 

22:4n-6 1.81 ± 0.05a,1 1.67 ± 0.06b,1 1.64 ± 0.04bc,1 1.56 ± 0.08c,1 

22:5n-6 0.71 ± 0.03ab 0.61 ± 0.07a 0.86 ± 0.17bc,1 1.00 ± 0.17c,1 

Total n-6 PUFA 35.12 ± 0.62a 33.81 ± 0.55ab 33.26 ± 1.31b,1 33.55 ± 0.98b,1 

20:5n-3 0.22 ± 0.02a 0.27 ± 0.04b,1 0.22 ± 0.03a,1 0.28 ± 0.03b,1 

22:5n-3 1.69 ± 0.04a,1 1.59 ± 0.07ab,1 1.54 ± 0.11ab,1 1.52 ± 0.11b,1 

22:6n-3 2.42 ± 0.08a 2.75 ± 0.14a,1 3.80 ± 0.75b,1 2.70 ± 0.20a,1 

Total n-3 PUFA 4.44 ± 0.14a 4.73 ± 0.09a,1,2 5.70 ± 0.78b,1 4.63 ± 0.22a,1 

Total FA (mg/g) 2.07 ± 0.07ab 2.16 ± 0.06a 1.96 ± 0.12b,1 2.11 ± 0.13ab,1 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 22.81 ± 0.63a 21.44 ± 0.55b,1,2 23.27 ± 0.88a,2 23.38 ± 1.04a,2 

18:0 18.18 ± 0.26a 18.84 ± 0.63a 16.91 ± 1.31b 15.94 ± 0.32b 

24:0 1.26 ± 0.11a 1.09 ± 0.07b,2 1.01 ± 0.06b,2 0.96 ± 0.10b,2 

Total SFA 47.08 ± 0.46a 47.77 ± 0.28a 45.16 ± 0.81b,2 44.21 ± 1.00b,2 

18:1n-7 1.83 ± 0.10a 1.96 ± 0.11ab 2.10 ± 0.18ab 2.23 ± 0.26b 

18:1n-9 6.41 ± 0.25a 7.40 ± 0.58ab 7.84 ± 0.90b,2 9.40 ± 1.29c,2 

24:1n-9 0.66 ± 0.09 0.69 ± 0.03 0.70 ± 0.081,2 0.74 ± 0.061,2 

Total MUFA 9.94 ± 0.35a 12.00 ± 0.78ab 11.60 ± 1.48ab 13.63 ± 2.08b 

18:2n-6 8.71 ± 0.45 7.82 ± 0.40 7.96 ± 0.581,2 8.62 ± 0.932 

20:4n-6 22.19 ± 0.49a 21.98 ± 0.49a 20.03 ± 0.27b,1 20.10 ± 0.79b,1 

22:4n-6 1.66 ± 0.05a,2 1.37 ± 0.03b,2 1.26 ± 0.04c,2 1.10 ± 0.08d,2 

22:5n-6 0.64 ± 0.03a 0.51 ± 0.03bc 0.54 ± 0.08b,2 0.43 ± 0.07c,2 

Total n-6 PUFA 34.05 ± 0.30a 32.50 ± 0.51b 30.51 ± 0.79c,2 31.03 ± 1.49bc,2 

20:5n-3 0.22 ± 0.03ab 0.29 ± 0.02c,2 0.21 ± 0.03a,1 0.28 ± 0.05bc,1 

22:5n-3 1.45 ± 0.05a,2 1.24 ± 0.04b,2 1.13 ± 0.04c,2 1.02 ± 0.07d,2 

22:6n-3 3.10 ± 0.19a 3.83 ± 0.19ab,2 5.36 ± 0.97c,2 4.57 ± 0.27bc,2 

Total n-3 PUFA 4.87 ± 0.20a 5.45 ± 0.17ab,1 6.78 ± 0.94c,2 5.96 ± 0.31b,2 

Total FA (mg/g) 2.09 ± 0.06a 2.25 ± 0.08bc 2.19 ± 0.07ab,2 2.34 ± 0.06c,2 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 22.46 ± 0.48a 20.78 ± 0.54b,2 23.36 ± 0.49c,2 23.46 ± 0.56c,1,2 

18:0 18.33 ± 0.35a 18.76 ± 0.40a 16.27 ± 0.46b 16.35 ± 1.03b 

24:0 1.26 ± 0.11a 1.14 ± 0.08ab,1,2 1.14 ± 0.07ab,1,2 1.04 ± 0.07b,2 

Total SFA 46.75 ± 0.32a 47.28 ± 0.70a 45.52 ± 0.80b,1,2 44.99 ± 0.90b,1,2 

18:1n-7 1.88 ± 0.04a 2.11 ± 0.11bc 2.06 ± 0.10ab 2.26 ± 0.19b 

18:1n-9 6.45 ± 0.33a 7.68 ± 0.58b 7.52 ± 0.37b,2 9.07 ± 0.85c,2 

24:1n-9 0.69 ± 0.05a 0.74 ± 0.06ab 0.82 ± 0.07b,2 0.82 ± 0.07b,2 

Total MUFA 10.07 ± 0.39a 12.52 ± 0.75b 11.18 ± 0.55a 13.09 ± 1.11b 

18:2n-6 8.74 ± 0.27a 7.30 ± 0.59b 7.35 ± 0.40b,2 8.32 ± 0.90a,2 

20:4n-6 22.60 ± 0.37ab 23.15 ± 0.85a 21.76 ± 0.45b,2 22.14 ± 0.73ab,2 

22:4n-6 1.72 ± 0.021,2 1.59 ± 0.091 1.70 ± 0.101 1.61 ± 0.111,2 

22:5n-6 0.71 ± 0.05a 0.61 ± 0.07a 1.19 ± 0.20b,3 1.03 ± 0.13b,1 

Total n-6 PUFA 34.63 ± 0.20a 33.39 ± 0.73bc 32.68 ± 0.25b,1 33.91 ± 0.31c,1 

20:5n-3 0.18 ± 0.02a 0.20 ± 0.02a,3 0.15 ± 0.01b,2 0.18 ± 0.03a,2 

22:5n-3 1.53 ± 0.08a,2 1.29 ± 0.06b,2 1.21 ± 0.08bc,2 1.16 ± 0.03c,2 

22:6n-3 2.58 ± 0.08a 2.77 ± 0.10a,1 3.55 ± 0.44b,1 2.40 ± 0.18a,1 

Total n-3 PUFA 4.40 ± 0.08a 4.35 ± 0.07a,2 4.99 ± 0.45b,1 3.83 ± 0.14c,1 

Total FA (mg/g) 2.11 ± 0.06a 2.22 ± 0.12ab 2.11 ± 0.09a,1 2.30 ± 0.07b,2 

Mean ± SD, n=6 for each group. Values with different alphabetical superscripts across time and different numerical superscripts 

across diet are significantly different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. SFA, saturated 

fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids, TWD total western diet with (+) 

or without (-) docosahexaenoic acid.  
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Appendix Table 5.3: Fatty acid composition (weight %) of maternal liver during pregnancy and postpartum 
Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 17.40 ± 0.78a 16.75 ± 0.90a 20.77 ± 2.87b 16.22 ± 0.43a,1 

18:0 20.36 ± 1.54a 23.25 ± 0.99b,1 19.60 ± 1.69a,1 23.14 ± 0.89b,1 

Total SFA 39.95 ± 1.20a 42.26 ± 1.20b,1 42.50 ± 1.37b,1 41.57 ± 0.80ab,1 

16:1 0.61 ± 0.12 0.50 ± 0.24 0.42 ± 0.10 0.57 ± 0.101 

18:1n-7 1.70 ± 0.09a 1.55 ± 0.08ab 1.47 ± 0.18b 1.77 ± 0.16a 

18:1n-9 7.81 ± 2.721 6.42 ± 1.441 5.49 ± 1.161 7.54 ± 1.201 

Total MUFA 10.46 ± 2.841 8.85 ± 1.621 7.72 ± 1.391 10.25 ± 1.331 

18:2n-6 19.11 ± 1.19a 15.99 ± 2.17b 14.00 ± 2.57b 15.47 ± 0.92b,1 

20:4n-6 19.80 ± 1.93 20.97 ± 1.341 18.46 ± 2.111 19.72 ± 0.571 

Total n-6 PUFA 40.45 ± 2.69a 38.68 ± 1.37ab,1 36.53 ± 3.13b,1 38.27 ± 0.46ab,1 

18:3n-3 0.66 ± 0.11a 0.45 ± 0.18b 0.43 ± 0.10b 0.27 ± 0.04b 

20:5n-3 0.38 ± 0.07 0.38 ± 0.141 0.26 ± 0.08 0.36 ± 0.071 

22:5n-3 0.72 ± 0.19a 0.82 ± 0.13a,1 1.14 ± 0.25b,1 1.40 ± 0.15b,1 

22:6n-3 6.42 ± 0.78a 8.02 ± 1.43a,1,2 10.96 ± 2.98b,1 7.16 ± 0.54a,1 

Total n-3 PUFA 8.22 ± 0.55a,1,2 9.71 ± 1.31a,1,2 12.81 ± 3.05b,1 9.22 ± 0.56a,1 

Total (mg/g) 32.3 ± 4.6 31.7 ± 3.5 26.7 ± 5.0 28.4 ± 2.41 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 18.76 ± 1.78a 19.10 ± 1.16a 21.16 ± 1.42ab 24.42 ± 3.43b,2 

18:0 17.50 ± 3.43a 18.48 ± 1.98a,2 15.24 ± 1.79a,2 9.64 ± 2.84b,2 

Total SFA 38.61 ± 2.03ab 39.52 ± 0.94a,1,2 38.06 ± 1.97ab,2 35.90 ± 1.89b,2 

16:1 0.78 ± 0.23a 0.86 ± 0.12a 0.94 ± 0.11a 2.83 ± 1.09b,2 

18:1n-7 1.66 ± 0.08 1.55 ± 0.07 1.65 ± 0.10 1.72 ± 0.31 

18:1n-9 12.73 ± 4.09a,2 15.47 ± 1.66a,2 17.27 ± 2.50a,2 31.46 ± 6.80b,2 

Total MUFA 15.47 ± 4.26a,1,2 18.24 ± 1.70a,2 20.18 ± 2.51a,2 36.30 ± 7.54b,2 

18:2n-6 18.73 ± 1.97a 15.26 ± 1.65ab 13.72 ± 3.10b 12.48 ± 2.97b,2 

20:4n-6 15.84 ± 3.52a 14.43 ± 1.72a,2 12.38 ± 1.33a,2 7.30 ± 2.98b,2 

Total n-6 PUFA 35.98 ± 3.13a 30.79 ± 0.75ab,2 28.04 ± 2.20b,2 20.89 ± 5.50c,2 

18:3n-3 0.70 ± 0.13a 0.47 ± 0.10b 0.48 ± 0.15b 0.31 ± 0.15b 

20:5n-3 0.37 ± 0.09ab 0.45 ± 0.06a,1 0.26 ± 0.11b 0.26 ± 0.13b,1,2 

22:5n-3 0.51 ± 0.14a 0.38 ± 0.06a,2 0.54 ± 0.14a,2 0.18 ± 0.09b,2 

22:6n-3 7.42 ± 0.91b 9.01 ± 0.96ab,1 11.34 ± 2.45a,1 4.48 ± 2.15c,1,2 

Total n-3 PUFA 9.04 ± 0.81b,1 10.35 ± 0.91ab,1 12.66 ± 2.30a,1 5.25 ± 2.44c,2 

Total (mg/g) 38.3 ± 8.9a 43.6 ± 6.3a 44.4 ± 8.1a 77.2 ± 33.3b,2 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 18.53 ± 1.19a 18.71 ± 0.90a 20.90 ± 0.66a 25.22 ± 3.07b,2 

18:0 17.51 ± 1.33a 17.20 ± 3.19a,2 16.60 ± 1.11a,1,2 9.97 ± 2.53b,2 

Total SFA 38.09 ± 0.54 38.42 ± 3.542 39.46 ± 1.212 37.13 ± 1.402 

16:1 0.83 ± 0.14a 1.04 ± 0.22a 1.07 ± 0.23a 3.24 ± 0.80b,2 

18:1n-7 1.82 ± 0.03 1.67 ± 0.05 1.64 ± 0.04 1.70 ± 0.29 

18:1n-9 14.70 ± 1.41a,2 17.44 ± 4.08a,2 16.00 ± 2.13a,2 33.58 ± 4.98b,2 

Total MUFA 17.72 ± 1.52a,2 20.47 ± 4.25a,2 19.03 ± 2.33a,2 38.80 ± 5.18b,2 

18:2n-6 17.72 ± 0.69a 15.90 ± 2.93a 11.95 ± 1.16b 9.39 ± 0.92b,2 

20:4n-6 16.74 ± 1.45a 15.42 ± 2.83a,2 15.02 ± 1.13a,1,2 8.27 ± 3.18b,2 

Total n-6 PUFA 35.95 ± 1.25a 32.87 ± 0.68ab,2 32.36 ± 1.24b,2 19.28 ± 4.20c,2 

18:3n-3 0.62 ± 0.06a 0.52 ± 0.19ab 0.35 ± 0.07b 0.16 ± 0.03c 

20:5n-3 0.26 ± 0.09a 0.23 ± 0.06ab,2 0.15 ± 0.04bc 0.10 ± 0.03c,2 

22:5n-3 0.47 ± 0.07a 0.42 ± 0.06a,2 0.68 ± 0.06b,2 0.27 ± 0.09c,2 

22:6n-3 5.58 ± 0.85a 5.76 ± 1.24a,2 6.73 ± 0.70a,2 2.30 ± 1.12b,2 

Total n-3 PUFA 6.95 ± 0.81a,2 6.97 ± 1.04a,2 7.94 ± 0.66a,2 2.83 ± 1.22b,2 

Total (mg/g) 37.6 ± 2.5a 49.3 ± 12.4a 37.5 ± 8.7a 73.1 ± 25.4b,2 

Mean ± SD, n=6 for each group. Values with different alphabetical superscripts across time and different numerical superscripts 

across diet are significantly different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. SFA, saturated 

fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids, TWD total western diet with (+) 

or without (-) docosahexaenoic acid.  
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Appendix Table 5.4: Fatty acid composition (weight %) of maternal adipose during pregnancy and postpartum 

Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 23.17 ± 0.70 20.47 ± 2.12 21.33 ± 1.28 20.94 ± 1.24 

18:0 4.26 ± 0.31 4.88 ± 0.85 3.98 ± 0.32 4.77 ± 0.48 

Total SFA 29.53 ± 0.83 26.94 ± 2.49 26.88 ± 1.35 27.48 ± 1.30 

16:1 3.29 ± 0.46 2.42 ± 1.14 2.59 ± 0.63 2.13 ± 0.63 

18:1n-7 2.24 ± 0.11 2.22 ± 0.15 2.05 ± 0.13 2.12 ± 0.12 

18:1n-9 28.63 ± 3.56 27.29 ± 1.51 25.84 ± 0.70 27.24 ± 0.87 

Total MUFA 34.52 ± 4.02 32.28 ± 2.47 30.77 ± 1.16 31.89 ± 1.31 

18:2n-6 31.08 ± 4.15 35.38 ± 4.42 36.30 ± 1.89 35.55 ± 2.26 

20:4n-6 0.81 ± 0.22 0.79 ± 0.03 0.86 ± 0.11 0.79 ± 0.06 

22:4n-6 0.21 ± 0.06a 0.24 ± 0.03a 0.25 ± 0.02a 0.33 ± 0.04b 

22:5n-6 0.08 ± 0.02a 0.09 ± 0.02a 0.12 ± 0.02a 0.18 ± 0.04b 

Total n-6 PUFA 32.68 ± 4.48 37.01 ± 4.47 38.05 ± 2.05 37.41 ± 2.29 

18:3n-3 1.97 ± 0.26ab 2.13 ± 0.25ab 2.27 ± 0.17a 1.71 ± 0.16b 

20:5n-3 0.05 ± 0.02 0.08 ± 0.03 0.08 ± 0.02 0.04 ± 0.01 

22:5n-3 0.14 ± 0.05 0.17 ± 0.03 0.17 ± 0.03 0.19 ± 0.02 

22:6n-3 0.29 ± 0.02 0.36 ± 0.03 0.37 ± 0.06 0.37 ± 0.05 

Total n-3 PUFA 2.47 ± 0.34ab 2.77 ± 0.33ab 2.91 ± 0.27a 2.33 ± 0.20b 

Total FA (mg/g) 655 ± 116a 602 ± 46ab 867 ± 44c 450 ± 115b,1 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 23.06 ± 1.42 22.51 ± 0.61 22.44 ± 0.85 22.04 ± 1.34 

18:0 4.44 ± 0.11 4.47 ± 0.23 4.57 ± 0.45 4.52 ± 0.55 

Total SFA 29.87 ± 1.68 29.76 ± 0.69 29.82 ± 0.78 29.50 ± 0.94 

16:1 3.37 ± 0.71 3.64 ± 0.27 3.51 ± 0.46 3.25 ± 0.77 

18:1n-7 2.09 ± 0.21a 2.18 ± 0.20ab 2.37 ± 0.13bc 2.50 ± 0.06c 

18:1n-9 32.43 ± 2.92a 39.33 ± 0.54b 39.58 ± 0.71b 40.63 ± 1.08b 

Total MUFA 38.26 ± 3.53a 45.58 ± 0.35b 45.90 ± 0.84b 46.87 ± 1.09b 

18:2n-6 27.53 ± 4.44a 20.89 ± 0.58b 20.65 ± 1.18b 20.66 ± 1.42b 

20:4n-6 0.62 ± 0.18a 0.34 ± 0.04b 0.35 ± 0.03b 0.30 ± 0.04b 

22:4n-6 0.15 ± 0.06a 0.07 ± 0.01b 0.08 ± 0.01b 0.09 ± 0.02b 

22:5n-6 0.05 ± 0.02a 0.03 ± 0.01b 0.04 ± 0.01ab 0.04 ± 0.01ab 

Total n-6 PUFA 28.78 ± 4.76a 21.65 ± 0.60b 21.43 ± 1.19b 21.42 ± 1.51b 

18:3n-3 1.74 ± 0.26a 1.22 ± 0.07b 1.19 ± 0.08b 1.02 ± 0.10b 

20:5n-3 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

22:5n-3 0.10 ± 0.04 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.02 

22:6n-3 0.28 ± 0.08a 0.39 ± 0.07b 0.40 ± 0.03b 0.31 ± 0.05ab 

Total n-3 PUFA 2.17 ± 0.33a 1.72 ± 0.13b 1.69 ± 0.11b 1.44 ± 0.13b 

Total FA (mg/g) 667 ± 108a 666 ± 72a 834 ± 22b 673 ± 44a,2 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 22.03 ± 0.99ab 22.13 ± 0.97ab 23.10 ± 0.61a 20.80 ± 1.23b 

18:0 4.44 ± 0.20ab 4.13 ± 0.16a 4.28 ± 0.16a 4.95 ± 0.51b 

Total SFA 28.92 ± 0.96 28.68 ± 1.08 30.09 ± 0.70 28.60 ± 0.98 

16:1 2.04 ± 1.83a 4.00 ± 0.33b 4.01 ± 0.32b 2.65 ± 0.79ab 

18:1n-7 2.39 ± 0.06ac 1.95 ± 0.11b 2.27 ± 0.14a 2.57 ± 0.12c 

18:1n-9 34.18 ± 0.55a 39.60 ± 0.83b 39.94 ± 0.69b 41.27 ± 0.17c 

Total MUFA 39.01 ± 1.83a 45.99 ± 1.03b 46.68 ± 0.65b 47.01 ± 0.71b 

18:2n-6 26.60 ± 1.45a 21.13 ± 1.59b 19.98 ± 0.79b 21.37 ± 1.45b 

20:4n-6 0.63 ± 0.07a 0.43 ± 0.10b 0.37 ± 0.07b 0.31 ± 0.04b 

22:4n-6 0.18 ± 0.02a 0.11 ± 0.03b 0.10 ± 0.02b 0.11 ± 0.03b 

22:5n-6 0.07 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.07 ± 0.01 

Total n-6 PUFA 27.92 ± 1.60a 22.08 ± 1.76b 20.81 ± 0.92b 22.19 ± 1.49b 

18:3n-3 1.64 ± 0.05a 1.25 ± 0.12b 1.14 ± 0.07b 0.91 ± 0.13c 

20:5n-3 0.03 ± 0.01a 0.03 ± 0.01ab 0.02 ± 0.01b 0.02 ± 0.01b 

22:5n-3 0.10 ± 0.01a 0.06 ± 0.02b 0.05 ± 0.01b 0.06 ± 0.01b 

22:6n-3 0.15 ± 0.02a 0.12 ± 0.03ab 0.09 ± 0.02b 0.08 ± 0.01b 

Total n-3 PUFA 1.93 ± 0.08a 1.47 ± 0.17b 1.31 ± 0.10bc 1.08 ± 0.14c 

Total FA (mg/g) 700 ± 47ab 735 ± 33ab 861 ± 83a 589 ± 195b,1,2 

Mean ± SD. Values with different alphabetical superscripts across time and different numerical superscripts across diet are 

significantly different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids, TWD total western diet with (+) or 

without (-) docosahexaenoic acid. Tissue collected was white perirenal adipose.  
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Appendix Table 5.5: Fatty acid composition (weight %) of maternal heart during pregnancy and postpartum 

Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 15.72 ± 1.53a 13.03 ± 0.33b 13.27 ± 0.77b 12.59 ± 0.59b 

18:0 17.82 ± 3.53 20.96 ± 0.72 19.45 ± 1.01 19.85 ± 0.88 

Total SFA 38.20 ± 2.87a 37.92 ± 0.70ab 36.19 ± 0.65ab 35.52 ± 0.66b 

16:1 0.94 ± 0.59a 0.28 ± 0.07b 0.34 ± 0.13b 0.33 ± 0.05b 

18:1n-7 2.82 ± 0.12a 2.93 ± 0.08ab 2.77 ± 0.11a 3.01 ± 0.11b 

18:1n-9 9.68 ± 4.66 5.62 ± 0.90 6.68 ± 1.37 6.52 ± 1.321 

Total MUFA 14.21 ± 5.08 9.63 ± 1.04 10.36 ± 1.53 10.57 ± 1.461 

18:2n-6 19.90 ± 3.00 19.52 ± 1.941 19.34 ± 0.791 22.36 ± 1.281 

20:4n-6 13.62 ± 2.97a 16.61 ± 0.88b,1,2 17.67 ± 0.87b,1 15.97 ± 0.83ab 

22:4n-6 0.71 ± 0.10a 0.88 ± 0.10a,1 1.23 ± 0.16b,1 1.07 ± 0.07b,1 

22:5n-6 0.89 ± 0.21ab 0.83 ± 0.17a,1,2 1.31 ± 0.26bc,1 1.75 ± 0.36c,1 

Total n-6 PUFA 35.62 ± 2.22a 38.39 ± 1.17b,1 40.16 ± 0.59bc,1 41.89 ± 0.75c,1 

18:3n-3 0.56 ± 0.35 0.32 ± 0.05 0.38 ± 0.06 0.27 ± 0.06 

22:5n-3 1.32 ± 0.31a 1.48 ± 0.03ab,1 1.63 ± 0.10b,1 1.53 ± 0.05ab,1 

22:6n-3 8.71 ± 2.69 10.45 ± 0.781,2 10.08 ± 1.001 8.51 ± 1.471 

Total n-3 PUFA 10.70 ± 2.48 12.36 ± 0.69 12.19 ± 1.031 10.42 ± 1.381 

Total FA (mg/g) 36.8 ± 8.5a 26.3 ± 1.1b 31.1 ± 5.6ab 27.2 ± 1.2b 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 15.22 ± 1.10a 14.90 ± 1.53ab 13.20 ± 0.51b 13.24 ± 1.16b 

18:0 20.02 ± 2.37 19.48 ± 1.98 19.89 ± 0.20 19.06 ± 1.55 

Total SFA 38.91 ± 2.03a 37.81 ± 0.86ab 36.59 ± 0.39bc 35.62 ± 0.61c 

16:1 0.69 ± 0.42 0.77 ± 0.56 0.38 ± 0.07 0.56 ± 0.29 

18:1n-7 2.87 ± 0.06a 2.78 ± 0.09a 2.84 ± 0.13a 3.06 ± 0.10b 

18:1n-9 8.61 ± 3.67 11.03 ± 3.51 9.23 ± 0.66 11.07 ± 3.681,2 

Total MUFA 12.85 ± 3.84 15.28 ± 4.02 13.09 ± 0.80 15.47 ± 4.141,2 

18:2n-6 17.48 ± 2.90 15.70 ± 1.022 14.35 ± 0.712 17.15 ± 2.262 

20:4n-6 15.19 ± 1.65ab 13.71 ± 1.95a,1 16.49 ± 0.89b,1 14.21 ± 1.67ab 

22:4n-6 0.67 ± 0.09a 0.45 ± 0.07b,2 0.63 ± 0.11a,2 0.61 ± 0.14ab,2 

22:5n-6 0.80 ± 0.11a 0.33 ± 0.07b,1 0.50 ± 0.07c,2 0.39 ± 0.05bc,2 

Total n-6 PUFA 34.64 ± 1.76a 30.68 ± 2.42b,2 32.51 ± 0.88ab,2 32.97 ± 2.63ab,2 

18:3n-3 0.39 ± 0.22 0.26 ± 0.09 0.20 ± 0.05 0.19 ± 0.05 

22:5n-3 1.16 ± 0.19a 0.74 ± 0.10b,2 0.84 ± 0.05b,2 0.73 ± 0.10b,2 

22:6n-3 11.22 ± 3.49a 13.37 ± 1.95ab,2 15.19 ± 0.83b,2 13.46 ± 1.64ab,2 

Total n-3 PUFA 12.87 ± 3.21 14.48 ± 1.97 16.31 ± 0.902 14.48 ± 1.692 

Total FA (mg/g) 31.9 ± 4.2 29.1 ± 3.1 30.3 ± 2.1 27.7 ± 3.8 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 14.56 ± 1.63 13.35 ± 0.51 12.91 ± 0.46 12.79 ± 1.29 

18:0 20.03 ± 1.28ab 21.22 ± 0.55a 19.68 ± 0.42ab 18.90 ± 1.44b 

Total SFA 38.46 ± 1.79a 38.35 ± 0.78a 35.96 ± 0.61b 35.22 ± 0.73b 

16:1 0.68 ± 0.28 0.41 ± 0.07 0.45 ± 0.08 0.61 ± 0.29 

18:1n-7 2.94 ± 0.15 2.93 ± 0.13 2.86 ± 0.08 3.03 ± 0.18 

18:1n-9 8.53 ± 2.31ab 8.30 ± 0.62a 10.81 ± 0.85ab 12.30 ± 4.05b,2 

Total MUFA 12.93 ± 2.36ab 12.48 ± 0.63a 14.65 ± 1.03ab 16.82 ± 4.13b,2 

18:2n-6 16.92 ± 1.31ab 15.78 ± 0.82ab,2 15.18 ± 1.01a,2 18.09 ± 2.19b,2 

20:4n-6 16.37 ± 1.91a 17.95 ± 0.53ab,2 18.88 ± 0.53b,2 16.36 ± 1.79a 

22:4n-6 0.83 ± 0.19a 0.84 ± 0.11a,1 1.10 ± 0.09b,1 1.02 ± 0.14ab,1 

22:5n-6 1.20 ± 0.46a 1.06 ± 0.35a,2 2.06 ± 0.43b,3 2.06 ± 0.54b,1 

Total n-6 PUFA 35.86 ± 1.80 36.12 ± 0.541 37.71 ± 0.971 38.15 ± 3.101 

18:3n-3 0.36 ± 0.11a 0.22 ± 0.03b 0.20 ± 0.02b 0.21 ± 0.05b 

22:5n-3 1.44 ± 0.22a 1.28 ± 0.09ab,1 1.15 ± 0.10b,3 1.20 ± 0.23ab,3 

22:6n-3 9.85 ± 2.71a 9.48 ± 0.36a,1 8.78 ± 0.66ab,1 6.69 ± 0.77b,1 

Total n-3 PUFA 11.75 ± 2.54a 11.08 ± 0.31a 10.19 ± 0.63ab,1 8.18 ± 0.95b,1 

Total FA (mg/g) 30.7 ± 4.2 26.7 ± 1.7 30.7 ± 2.5 29.7 ± 4.0 

Mean ± SD, n=6 for each group. Values with different alphabetical superscripts across time and different numerical superscripts 

across diet are significantly different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids, TWD total western 

diet with (+) or without (-) docosahexaenoic acid.  
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Appendix Table 5.6: Fatty acid composition (weight %) of maternal brain during pregnancy and postpartum 

Chow Baseline 15d Preg 20d Preg 7d PP 

16:0 18.17 ± 0.71a 19.91 ± 1.18b 18.70 ± 0.89ab 19.96 ± 0.39b 

18:0 18.81 ± 0.34 19.22 ± 0.68 19.02 ± 0.33 18.60 ± 0.58 

24:0 1.19 ± 0.17a 0.89 ± 0.14b 0.93 ± 0.13b 0.85 ± 0.07b 

Total SFA 44.93 ± 0.69a 46.03 ± 1.28ab 46.60 ± 0.82b 46.40 ± 0.67b 

18:1n-7 3.52 ± 0.10 3.52 ± 0.19 3.67 ± 0.13 3.59 ± 0.06 

18:1n-9 16.14 ± 0.32 16.06 ± 0.41 16.83 ± 0.75 16.72 ± 0.47 

24:1n-9 1.68 ± 0.25 1.34 ± 0.27 1.48 ± 0.26 1.30 ± 0.15 

Total MUFA 24.80 ± 0.97 23.73 ± 1.15 25.72 ± 1.70 24.78 ± 0.88 

18:2n-6 0.92 ± 0.09 0.82 ± 0.07 0.83 ± 0.07 1.35 ± 1.01 

20:4n-6 8.95 ± 0.30 9.10 ± 0.62 8.87 ± 0.36 8.88 ± 0.40 

22:4n-6 2.96 ± 0.03a 2.73 ± 0.12b 2.65 ± 0.05b 2.74 ± 0.10b 

22:5n-6 0.61 ± 0.05ac 0.50 ± 0.05b 0.54 ± 0.04ab,1 0.63 ± 0.05c,1 

Total n-6 PUFA 14.09 ± 0.36 13.69 ± 0.68 13.42 ± 0.44 14.19 ± 0.701 

20:5n-3 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

22:5n-3 0.16 ± 0.01a 0.13 ± 0.01b,1 0.14 ± 0.01b 0.16 ± 0.01a,1 

22:6n-3 12.12 ± 0.79 12.08 ± 0.88 11.82 ± 0.81 12.20 ± 0.56 

Total n-3 PUFA 12.32 ± 0.79 12.25 ± 0.88 12.00 ± 0.82 12.42 ± 0.53 

Total FA (mg/g) 41.8 ± 1.9 41.3 ± 1.8 44.1 ± 1.5 42.2 ± 1.7 

TWD+ Baseline 15d Preg 20d Preg 7d PP 

16:0 18.00 ± 0.18a 19.01 ± 0.64ab 18.91 ± 1.01ab 19.36 ± 0.52b 

18:0 18.88 ± 0.56 19.00 ± 0.27 18.82 ± 0.62 18.44 ± 0.36 

24:0 1.16 ± 0.12a 0.85 ± 0.17b 0.90 ± 0.21ab 0.94 ± 0.13ab 

Total SFA 45.41 ± 0.50 46.18 ± 0.95 46.49 ± 1.42 46.51 ± 0.42 

18:1n-7 3.49 ± 0.08 3.50 ± 0.28 2.95 ± 1.42 3.63 ± 0.18 

18:1n-9 16.13 ± 0.13 16.42 ± 0.96 17.06 ± 1.15 17.04 ± 0.64 

24:1n-9 1.66 ± 0.16 1.28 ± 0.29 1.40 ± 0.35 1.48 ± 0.19 

Total MUFA 24.79 ± 0.39 24.46 ± 2.09 25.18 ± 1.78 25.76 ± 1.42 

18:2n-6 0.86 ± 0.08 0.76 ± 0.06 1.08 ± 0.79 0.93 ± 0.18 

20:4n-6 8.86 ± 0.26 8.96 ± 0.42 8.58 ± 0.50 8.44 ± 0.39 

22:4n-6 2.91 ± 0.14a 2.70 ± 0.03b 2.55 ± 0.10b 2.58 ± 0.07b 

22:5n-6 0.57 ± 0.06a 0.44 ± 0.03b 0.40 ± 0.03bc,2 0.35 ± 0.03c,2 

Total n-6 PUFA 13.83 ± 0.40a 13.40 ± 0.45ab 13.16 ± 0.71ab 12.90 ± 0.45b,2 

20:5n-3 0.01 ± 0.01a 0.01 ± 0.01a 0.02 ± 0.01b 0.02 ± 0.01b 

22:5n-3 0.15 ± 0.01a 0.13 ± 0.01b,1,2 0.14 ± 0.01b 0.14 ± 0.01ab,1,2 

22:6n-3 12.19 ± 0.22 12.02 ± 0.65 12.34 ± 1.05 12.47 ± 0.48 

Total n-3 PUFA 12.37 ± 0.22 12.17 ± 0.65 12.54 ± 1.04 12.66 ± 0.47 

Total FA (mg/g) 41.5 ± 1.8a 41.5 ± 1.0a 44.9 ± 2.1b 40.6 ± 1.4a 

TWD- Baseline 15d Preg 20d Preg 7d PP 

16:0 17.69 ± 0.63a 19.45 ± 0.86b 19.08 ± 0.33ab 19.10 ± 1.38ab 

18:0 18.54 ± 0.30ab 18.92 ± 0.43ab 19.22 ± 0.49a 18.36 ± 0.64b 

24:0 1.28 ± 0.10a 0.92 ± 0.13b 0.90 ± 0.18b 0.95 ± 0.23b 

Total SFA 44.96 ± 0.38a 45.58 ± 1.19ab 46.69 ± 0.74b 46.15 ± 1.29ab 

18:1n-7 3.55 ± 0.04 3.51 ± 0.14 3.59 ± 0.19 3.81 ± 0.31 

18:1n-9 16.24 ± 0.34a 16.45 ± 0.28ab 16.72 ± 0.71ab 17.40 ± 1.12b 

24:1n-9 1.86 ± 0.16 1.42 ± 0.28 1.38 ± 0.32 1.62 ± 0.50 

Total MUFA 25.45 ± 0.80 24.48 ± 0.85 25.19 ± 1.56 26.81 ± 2.82 

18:2n-6 0.82 ± 0.02ab 0.70 ± 0.05a 0.86 ± 0.13b 0.85 ± 0.13b 

20:4n-6 8.75 ± 0.25 8.79 ± 0.40 9.20 ± 0.54 8.32 ± 0.89 

22:4n-6 2.90 ± 0.06a 2.64 ± 0.14b 2.75 ± 0.11ab 2.68 ± 0.22ab 

22:5n-6 0.58 ± 0.04ab 0.47 ± 0.07a 0.63 ± 0.09ab,1 0.64 ± 0.16b,1 

Total n-6 PUFA 13.71 ± 0.26 13.12 ± 0.55 13.96 ± 0.63 13.09 ± 1.082 

20:5n-3 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.04 ± 0.06 

22:5n-3 0.15 ± 0.01a 0.11 ± 0.01b,2 0.13 ± 0.01c 0.12 ± 0.01bc,2 

22:6n-3 11.84 ± 0.58 11.70 ± 0.67 11.84 ± 0.68 11.52 ± 0.98 

Total n-3 PUFA 12.02 ± 0.58 11.84 ± 0.68 12.01 ± 0.68 11.72 ± 0.98 

Total FA (mg/g) 42.8 ± 1.0 43.4 ± 1.5 41.0 ± 5.3 43.7 ± 1.9 
Mean ± SD. Values with different alphabetical superscripts across time and different numerical superscripts across diet are significantly different by Tukey’s HSD 
following a significant F-value (p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; 

FA, fatty acids, TWD total western diet with (+) or without (-) docosahexaenoic acid.  
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Appendix Table 5.7: Fatty acid composition (weight %) of the placenta during pregnancy 

 Chow TWD+ TWD- 

 15d Preg 20d Preg 15d Preg 20d Preg 15d Preg 20d Preg 

16:0 18.44 ± 0.74a 20.51 ± 0.90b 18.76 ± 0.92a 20.36 ± 0.47b 18.28 ± 0.77a 20.33 ± 0.63b 

18:0 20.32 ± 1.52a 15.42 ± 2.50c 20.21 ± 1.19a 17.44 ± 0.54b 20.64 ± 0.99a 17.20 ± 0.77b 

24:0 0.99 ± 0.16a 1.41 ± 0.44b 0.89 ± 0.10a 1.54 ± 0.23b 0.90 ± 0.13a 1.50 ± 0.17b 

Total SFA 44.43 ± 2.05a 40.86 ± 2.53b 44.68 ± 1.18a 43.88 ± 1.19a 44.44 ± 0.73a 43.21 ± 1.46a 

16:1 0.96 ± 0.27 1.03 ± 0.56 1.06 ± 0.15 0.83 ± 0.07 1.12 ± 0.23 0.88 ± 0.09 

18:1n-7 2.41 ± 0.17a 2.11 ± 0.18b 2.32 ± 0.24ab 2.16 ± 0.09b 2.41 ± 0.22a 2.15 ± 0.11b 

18:1n-9 10.12 ± 2.12a 12.37 ± 5.51ab 12.64 ± 1.76ab 13.88 ± 0.85b 12.48 ± 1.24ab 14.48 ± 1.19b 

Total MUFA 15.24 ± 2.33a 16.70 ± 5.91ab 17.97 ± 1.93ab 18.73 ± 1.03ab 17.96 ± 1.54ab 19.02 ± 1.34b 

18:2n-6 13.00 ± 2.46b 15.54 ± 3.40a 10.75 ± 1.15bc 10.61 ± 0.39c 10.18 ± 0.80c 10.36 ± 0.75c 

20:4n-6 16.23 ± 1.60bc 12.83 ± 2.88a 15.01 ± 1.00bc 14.35 ± 0.68ab 16.29 ± 0.89c 14.79 ± 0.63bc 

22:4n-6 3.21 ± 0.37a 2.28 ± 0.89bc 2.65 ± 0.23b 1.77 ± 0.25c 3.35 ± 0.36a 2.11 ± 0.23bc 

22:5n-6 0.48 ± 0.09a 1.40 ± 0.36b 0.32 ± 0.09a 1.15 ± 0.60b 0.57 ± 0.17a 2.53 ± 0.77c 

Total n-6 PUFA 34.94 ± 1.65a 33.58 ± 2.46ab 30.56 ± 1.36cd 29.37 ± 1.44d 32.23 ± 1.10bc 31.18 ± 1.11cd 

20:5n-3 0.25 ± 0.07ab 0.21 ± 0.06ab 0.28 ± 0.09a 0.21 ± 0.05ab 0.17 ± 0.05b 0.17 ± 0.08b 

22:5n-3 0.61 ± 0.08b 0.77 ± 0.22a 0.54 ± 0.08bc 0.55 ± 0.12bc 0.50 ± 0.11bc 0.43 ± 0.08c 

22:6n-3 2.33 ± 0.44a 3.13 ± 0.84bc 3.26 ± 0.40c 5.15 ± 0.87d 2.11 ± 0.25a 3.10 ± 0.85bc 

Total n-3 PUFA 3.65 ± 0.36ab 4.73 ± 0.85c 4.44 ± 0.46bc 6.22 ± 0.96d 3.13 ± 0.29a 3.98 ± 0.87abc 

Total FA (mg/g) 11.98 ± 1.31a 17.00 ± 5.35c 12.42 ± 0.84ab 16.40 ± 4.59bc 11.73 ± 1.19a 14.97 ± 0.83abc 

Mean ± SD, n=6 for each group. Values with a different superscript are significantly different by Tukey’s HSD following a significant F-

value (p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; 

FA, fatty acids, TWD total western diet with (+) or without (-) docosahexaenoic acid. 
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Appendix Table 5.8: Fatty acid composition (weight %) of whole body fetuses and pups 

Chow 15d Preg 20d Preg 7d PP 

16:0 26.55 ± 0.72a 26.46 ± 0.79a 21.99 ± 0.83b 

18:0 14.43 ± 0.64a 13.14 ± 0.17a 9.10 ± 1.88b,1 

Total SFA 45.55 ± 0.61a 44.58 ± 0.75a 42.16 ± 1.28b,1 

16:1 2.59 ± 0.14a 2.74 ± 0.26a 0.99 ± 0.12b,1 

18:1n-7 3.51 ± 0.16a 3.44 ± 0.16a 2.02 ± 0.21b 

18:1n-9 15.79 ± 0.88 15.25 ± 0.45 15.75 ± 1.261 

Total MUFA 23.28 ± 0.87a 22.35 ± 0.84a 19.58 ± 1.13b,1 

18:2n-6 3.46 ± 0.29a 7.51 ± 0.70b 18.00 ± 2.25c,1 

20:4n-6 13.79 ± 0.77a 11.57 ± 0.13a 8.57 ± 1.99b,1 

22:4n-6 2.94 ± 0.30a 1.94 ± 0.08b 1.44 ± 0.29b,1 

22:5n-6 1.56 ± 0.23a 1.15 ± 0.13b,1 0.44 ± 0.14c 

Total n-6 PUFA 22.97 ± 0.80a,1 23.55 ± 0.77a,1 30.72 ± 0.89b,1 

20:5n-3 0.12 ± 0.08a 0.16 ± 0.04ab,1,2 0.25 ± 0.04b 

22:5n-3 0.26 ± 0.12a 0.46 ± 0.07a,1 1.02 ± 0.11b,1 

22:6n-3 2.59 ± 0.23a 4.37 ± 0.56b,1 2.56 ± 0.67a,1 

Total n-3 PUFA 3.13 ± 0.29a 5.24 ± 0.72b,1 4.65 ± 0.52b,1 

Total FA (mg/g) 8.24 ± 1.29a 11.37 ± 2.28a 33.57 ± 11.99b,1 

TWD+ 15d Preg 20d Preg 7d PP 

16:0 26.50 ± 0.35a 24.96 ± 0.55b 20.89 ± 0.68c 

18:0 13.91 ± 0.41a 13.17 ± 0.37a 6.87 ± 0.87b,2 

Total SFA 45.61 ± 0.65a 43.76 ± 0.83b 38.35 ± 0.62c,2 

16:1 2.65 ± 0.16a 2.59 ± 0.12a 1.53 ± 0.19b,2 

18:1n-7 3.58 ± 0.11a 3.36 ± 0.15b 2.28 ± 0.14c 

18:1n-9 17.09 ± 1.00a 16.74 ± 1.11a 30.22 ± 1.85b,2 

Total MUFA 24.77 ± 1.07a 24.02 ± 1.28a 34.94 ± 1.82b,2 

18:2n-6 3.18 ± 0.26a 6.33 ± 0.41b 12.64 ± 0.35c,2 

20:4n-6 12.60 ± 0.51a 10.96 ± 0.40b 4.14 ± 1.23c,2 

22:4n-6 2.56 ± 0.16a 1.66 ± 0.13b 0.83 ± 0.21c,2 

22:5n-6 1.21 ± 0.13a 0.69 ± 0.14b,2 0.11 ± 0.05c 

Total n-6 PUFA 20.69 ± 0.792 20.91 ± 0.762 19.56 ± 1.322 

20:5n-3 0.10 ± 0.05a 0.21 ± 0.04b,1 0.19 ± 0.02b 

22:5n-3 0.27 ± 0.07a 0.29 ± 0.09a,1,2 0.48 ± 0.13b,2 

22:6n-3 3.59 ± 0.35a 5.97 ± 0.54b,2 2.64 ± 0.81c,1 

Total n-3 PUFA 4.10 ± 0.30a 6.68 ± 0.61b,2 3.94 ± 0.90a,1 

Total FA (mg/g) 8.90 ± 0.84a 10.03 ± 0.57a 94.35 ± 35.17b,2 

TWD- 15d Preg 20d Preg 7d PP 

16:0 26.41 ± 0.86a 25.87 ± 0.75a 20.86 ± 1.52b 

18:0 13.82 ± 0.84a 12.98 ± 0.37a 6.43 ± 0.81b,2 

Total SFA 45.16 ± 0.94a 43.78 ± 1.12a 38.26 ± 2.41b,2 

16:1 2.68 ± 0.09a 2.70 ± 0.16a 1.55 ± 0.29b,2 

18:1n-7 3.53 ± 0.17a 3.45 ± 0.18a 2.24 ± 0.16b 

18:1n-9 17.01 ± 0.67a 17.62 ± 1.49a 31.36 ± 1.24b,2 

Total MUFA 24.44 ± 0.71a 24.87 ± 1.70a 36.06 ± 1.30b,2 

18:2n-6 3.74 ± 1.33a 6.21 ± 0.52b 12.71 ± 0.39c,2 

20:4n-6 12.92 ± 1.05a 11.73 ± 0.90a 4.34 ± 1.01b,2 

22:4n-6 2.64 ± 0.43a 2.06 ± 0.19a 0.99 ± 0.39b,1,2 

22:5n-6 1.63 ± 0.30a 1.85 ± 0.30a,3 0.30 ± 0.03b 

Total n-6 PUFA 22.04 ± 0.97ab,1,2 23.13 ± 1.19a,1,2 20.16 ± 1.77b,2 

20:5n-3 0.09 ± 0.02a 0.09 ± 0.05a,2 0.16 ± 0.02b 

22:5n-3 0.20 ± 0.10a 0.21 ± 0.12a,2 0.48 ± 0.10b,2 

22:6n-3 2.70 ± 0.60a 3.44 ± 0.41a,1 0.90 ± 0.22b,2 

Total n-3 PUFA 3.22 ± 0.68a 3.92 ± 0.35a,3 2.16 ± 0.26b,2 

Total FA (mg/g) 8.15 ± 1.20a 10.03 ± 0.22a 97.70 ± 19.51b,2 

Mean ± SD, n=6 for each group. Values with different alphabetical superscripts across time and different 

numerical superscripts across diet are significantly different by Tukey’s HSD following a significant F-value 

(p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids; FA, fatty acids, TWD total western diet with (+) or without (-) docosahexaenoic 

acid.  



44 

 

Appendix Table 5.9: Fatty acid composition (weight %) of 7-day old pup tissues 

 Chow TWD+ TWD- 

Brain    

14:0 1.70 ± 0.22b 2.11 ± 0.37a 2.04 ± 0.30a 

16:0 31.52 ± 0.65a 31.45 ± 0.87a 30.44 ± 0.97b 

18:0 16.30 ± 0.46 16.24 ± 0.30 16.50 ± 0.35 

Total SFA 53.97 ± 1.21b 52.23 ± 1.17a 50.79 ± 1.44a 

16:1 1.47 ± 0.11a 1.45 ± 0.19a 1.29 ± 0.10b 

18:1n-7 2.20 ± 0.06 2.21 ± 0.09 2.21 ± 0.07 

18:1n-9 10.49 ± 0.76 10.59 ± 0.31 10.52 ± 0.39 

Total MUFA 14.77 ± 0.88 15.00 ± 0.96 14.51 ± 0.45 

18:2n-6 1.37 ± 0.88 0.91 ± 0.04 0.90 ± 0.08 

20:4n-6 12.21 ± 0.47a 11.93 ± 0.28a 13.40 ± 0.61b 

22:4n-6 2.40 ± 0.11a 2.44 ± 0.22a 2.89 ± 0.23b 

22:5n-6 1.61 ± 0.11c 1.15 ± 0.12a 2.65 ± 0.15b 

Total n-6 PUFA 18.24 ± 0.60c 17.09 ± 0.56a 20.46 ± 0.99b 

20:5n-3 0.03 ± 0.01ab 0.05 ± 0.02a 0.03 ± 0.01b 

22:5n-3 0.26 ± 0.02c 0.18 ± 0.02a 0.30 ± 0.05b 

22:6n-3 9.33 ± 0.39b 11.27 ± 0.68a 9.37 ± 0.56b 

Total n-3 PUFA 9.64 ± 0.37b 11.52 ± 0.70a 9.72 ± 0.57b 

Total FA (mg/g) 20.47 ± 1.37a 20.41 ± 2.00a 17.08 ± 1.39b 

Heart    

14:0 0.82 ± 0.48 0.95 ± 0.39 1.09 ± 0.23 

16:0 16.19 ± 0.77 16.69 ± 0.77 16.58 ± 0.66 

18:0 18.93 ± 1.32 19.27 ± 1.54 19.22 ± 1.25 

Total SFA 39.89 ± 1.04 40.54 ± 1.12 39.89 ± 2.19 

18:1n-7 3.18 ± 0.38 3.40 ± 0.14 3.37 ± 0.23 

18:1n-9 5.60 ± 1.58b 9.19 ± 3.29a 9.19 ± 2.17a 

Total MUFA 9.91 ± 1.42b 14.08 ± 3.32a 14.92 ± 4.36a 

18:2n-6 7.18 ± 1.09b 5.78 ± 0.76a 5.37 ± 0.42a 

18:3n-6 2.34 ± 0.88b 0.06 ± 0.02a 0.03 ± 0.01a 

20:3n-6 1.07 ± 0.10 1.17 ± 0.10 1.04 ± 0.17 

20:4n-6 23.18 ± 2.03 21.83 ± 2.38 22.89 ± 1.85 

22:4n-6 0.39 ± 0.96c 2.24 ± 0.24a 3.70 ± 0.45b 

22:5n-6 0.18 ± 0.47a 0.29 ± 0.09a 1.33 ± 0.22b 

Total n-6 PUFA 35.35 ± 1.28b 32.13 ± 1.91a 35.24 ± 1.99b 

20:5n-3 0.15 ± 0.28 0.05 ± 0.02 0.04 ± 0.01 

22:5n-3 0.23 ± 0.08b 0.15 ± 0.02a 0.10 ± 0.02a 

22:6n-3 6.68 ± 1.04c 10.09 ± 1.63a 4.67 ± 0.92b 

Total n-3 PUFA 10.30 ± 0.92a 11.83 ± 1.74a 7.44 ± 1.37b 

Total FA (mg/g) 23.98 ± 3.52b 19.17 ± 3.99ab 16.38 ± 4.06a 

Liver    

16:0 20.77 ± 1.05b 19.24 ± 1.46ab 19.06 ± 0.95a 

18:0 15.58 ± 0.87b 13.29 ± 2.26a 12.10 ± 1.78a 

Total SFA 39.05 ± 0.93b 35.20 ± 1.97a 34.21 ± 1.21a 

18:1n-7 1.38 ± 0.06b 1.61 ± 0.13a 1.58 ± 0.10a 

18:1n-9 3.71 ± 0.94b 10.46 ± 2.47a 12.09 ± 2.25a 

Total MUFA 5.83 ± 0.98b 13.11 ± 2.46a 14.76 ± 2.33a 

18:2n-6 9.73 ± 1.16 9.40 ± 1.05 9.87 ± 1.03 

20:4n-6 19.79 ± 0.75c 15.71 ± 2.01a 17.54 ± 0.92b 

22:4n-6 0.92 ± 0.11a 1.24 ± 0.34a 2.08 ± 0.75b 

22:5n-6 0.43 ± 0.07c 0.23 ± 0.11a 1.21 ± 0.23b 

Total n-6 PUFA 32.40 ± 1.30b 28.20 ± 1.44a 32.40 ± 0.94b 

20:5n-3 0.39 ± 0.11b 0.50 ± 0.08a 0.33 ± 0.06b 

22:5n-3 2.47 ± 0.29b 1.52 ± 0.27a 2.52 ± 0.66b 

22:6n-3 13.39 ± 1.50c 15.79 ± 1.13a 9.04 ± 1.57b 

Total n-3 PUFA 16.44 ± 1.39a 18.03 ± 1.17a 12.17 ± 1.66b 

Total FA (mg/g) 25.12 ± 5.06b 33.80 ± 9.05ab 35.39 ± 5.81a 
Mean ± SD, n=6 for each group. Values with a different superscript are significantly different by Tukey’s HSD following a significant F-value 

(p< 0.05) by one-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty 
acids, TWD total western diet with (+) or without (-) docosahexaenoic acid 
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6 Sex Differences in Fatty Acid Compositions of Plasma, Liver, Brain, and Heart from Birth to 

Adulthood 

6.1 Introduction 

 The effects of estrogen on LCPUFA and long-chain MUFA and SFA synthesis from shorter 

chain precursors has been reported [15,105,112]. Sex differences have been reported to occur 

predominantly when diets are controlled for low DHA intakes [18]. However, recent studies reporting 

sexual dimorphisms in communication skills at 3 years of age following DHA supplementation during 

infancy [20], and the results from chapter 5 showing a sexual dimorphism in the brain DHA 

concentrations of 7-day pups warrant further investigation into when sexual dimorphisms in fatty status 

begin. To my knowledge, the fatty acid compositions of plasma, brain, heart, and liver of female and 

male pups from weeks 1 to 9 have not yet been examined. This study is the first, and provides insight 

into how tissue fatty acid compositions change during development in rats fed a regular chow diet. 

6.2  Methods 

6.2.1: Study Design 

 Five male and five female pups fed Teklad 22/5 Rodent Diet chow were sacrificed each week 

from weeks 1 to 9. Pups were sacrificed after an overnight fast, except for pups 1-3 weeks old who were 

left with their mothers until sacrifice. Plasma, RBC, brain, hearts, and livers were collected and analyzed 

by gas chromatography as described above. 

6.2.2 Diets 

 Rats were fed the chow diets outlined in Table 1 from weeks 4 to 9, and mothers at weeks 1 to 

three were fed chow as well. Since 1 to 3-week-old rats were not fasted, stomach contents were 
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collected, and their compositions at each week are outlined in Appendix Table 6.1 and Appendix Table 

6.2. 

6.2.3 Statistical Analyses 

All statistical analyses were performed using SPSS release 20.0 (IBM, Chicago, IL, USA). The 

effect of sex and time was examined across offspring tissue fatty acid and body weight data using a two-

way ANOVA with interactions. Differences in tissues across time were examined by one-way ANOVA. 

Individual means were compared by Tukey post hoc testing after significant F-value by ANOVA. All 

data are presented as means ± SD with significance accepted when p<0.05. 

6.3  Results 

6.3.1 Body Weights over Time 

 Males were significantly heavier than females from week 6 to week 9 (Figure 8). In both sexes, 

body weights increased each week except between weeks 2 and 3, and weeks 7 and 8, where body 

weights remained equal. 

6.3.2 Changes in the Fatty Acid Composition of Plasma 

Relative levels of DHA and n-3 docosapentaenoic acid (DPAn-3) were significantly affected by 

a sex x time interaction. Both DHA and DPAn-3 decreased below baseline at week 3 and returned to 

baseline levels at week 4. DPAn-3 then decreased below baseline again at week 5 in females and week 6 

in males (Appendix Table 6.3 and 6.4). At week 9, females had higher plasma relative levels of DHA 

than males (Figure 9). Relative levels of ALA were higher in males than females overall, but no sex x 

time interaction occurred in ALA relative levels or concentrations. No effect of sex was detected in 

DHA concentrations, which were highest in both sexes at weeks 2, 4, and 5.  
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Relative levels of ARA increased above baseline at week 5 in females, and week 7 in males and 

were higher in females at week 9 (Appendix Table 6.3 and Appendix Table 6.4 13). Conversely, while 

LA levels increased above baseline at week 3 and returned to baseline levels at week 4 in both sexes, LA 

levels in males increased above baseline again at week 9, and were higher than females at weeks 7, 8, 

and 9 (Figure 9). Concentrations of ARA were not different between sexes. Concentrations of LA were 

higher in males at weeks 7, 8, and 9. 

 In both sexes, total MUFA concentrations increased above baseline at week 5, before returning 

to baseline at week 7. Additionally, the relative composition of saturates were sexually dimorphic. 

Females had higher relative levels of 18:0 acid at weeks 7, 8, and 9, while males had higher levels of 

16:0 acid at weeks 8 and 9 (Appendix Table 6.3 and Appendix Table 6.4).  

 Total fatty acid concentrations in plasma were not significant for sex x time interactions or 

sexual dimorphisms but were affected by time. Fatty acid concentrations increased above baseline at 2, 

5, and 6 weeks of age (Appendix Table 6.3 and Appendix Table 6.4). 

6.3.3 Changes in the Fatty Acid Composition of Liver 

 Female livers had higher relative amounts of DHA than males at week 9, but males had higher 

concentrations at weeks 6 and 9 (Figure 9). In both sexes, relative compositions of DHA and total n-3 

PUFA decreased from weeks 2 to 9, while relative percent compositions of ALA increased from weeks 

1 to 9. In females, relative levels and concentrations of ALA increased and remained above baseline 

levels starting a week 3, whereas in males relative levels and concentrations of ALA increased above 

baseline levels at week 4 (Appendix Table 6.5 and Appendix Table 6.6). Fatty acid composition (weight %) 

of male liver). 
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Males had a higher relative composition of total hepatic n-6 PUFA than females at weeks 6, 8, 

and 9, but differences within individual fatty acids were subtle. There was a significant sex x time 

interaction for relative LA compositions, which increased above baseline at week 2 in females and at 

week 3 in males (Appendix Table 6.5 and Appendix Table 6.6). Relative ARA levels were higher in males 

than females at week 6, but concentrations of LA and ARA were not significant for sex differences or 

sex x time interactions.  

 Relative compositions of total MUFA increased above baseline at week 3 in both sexes, 

suggesting a weaning effect. A sex x time interaction was also shown in 18:1n-7 and 18:1n-9. In 

females, 18:1n-7 started at the same relative percentage as males, and remained at baseline levels at 

week 9, whereas males increased significantly. Relative percentages of 18:1n-9 for females were equal 

to males at baseline, but increased significantly for females while males remained at baseline levels at 

week 9. hepatic total SFAs had a significant time effect, and 16:0 and 18:0 were significant for sex x 

time interactions. Palmitic acid dropped from week 1 to 9, and at week 8, was significantly lower in 

females. Conversely, 18:0 increased from week 1 to 9, and was significantly higher in females at weeks 

8 and 9. Total concentrations were significant for sex differences, and were higher in females (Appendix 

Table 6.5 and Appendix Table 6.6). 

6.3.4 Changes in the Fatty Acid Composition of Heart and Brain 

 DHA concentrations in the brain were significantly higher in females, but there was no sex x 

time interaction, and relative compositions of DHA and ARA, and ARA concentrations showed no 

sexual dimorphisms (Figure 9). Interestingly, brain relative percentages of 18:2n-6 began at the same 

levels in males and females, but were higher in males at week 9 (Appendix Table 6.7 and Appendix 

Table 6.8 ).  
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Relative fatty acid compositions in brain and heart were affected primarily by time. In the brain, 

relative compositions of DHA in both sexes peaked at weeks 3, 4 and 5, while ARA composition was 

highest at week 1 and decreased until week 9. In the heart, DHA relative composition or concentrations 

were not significant for sex x time interactions (Figure 9) but were significantly higher in females 

(Appendix Table 6.9 and Appendix Table 6.10). Total fatty acid concentrations in the brain were affected 

by time, whereas those in the heart were more stable. Total fatty acid concentrations in the brain 

increased above baseline immediately from week 1 to 2, and peaked at weeks 6, 7, and 9, in both sexes. 

6.4 Discussion 

 To my knowledge, this study is the first to demonstrate that in the plasma and liver, 18 carbon 

PUFA increase above baseline levels in males before females, whereas LCPUFA increase above 

baseline in females first. This also appears to be the first study to show that total fatty acid 

concentrations in plasma, liver, brain, and heart peak during adolescence before decreasing entering 

adulthood.  

Higher levels of ARA in the plasma and liver of adult females, and LA in in that of adult males, 

have been reported previously [105,113] and are confirmed in this study. Sexual dimorphisms in 

circulating levels of DHA and ARA have been linked to differences in estrogen  [14,15,17]. In the rat, 

puberty begins in females and males at postnatal days 32-34 and 45-48 respectively [24,114,115]. This 

study goes to further show that these differences also interact with development. The relative percentage 

of plasma ARA increasing above baseline in females prior to males and remaining higher in females at 

adulthood supports the theory of elongation and desaturation being related to estrogen. However, further 

research directly linking estrogen to levels of circulating ARA increasing in females before males is 

required.  
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Elongation and desaturation enzymes critical to fatty acid remodelling and synthesis are found in 

the liver [116]. Greater relative percentages of DHA in female livers at week 9 despite similar relative 

percentages of ALA found in female and male livers at that time support previous reports of sexual 

dimorphisms in the expression and activity of elongase and desaturase enzymes [17,63], hepatic export 

and uptake of fatty acids [117–119], and fatty acid metabolism [120]. In particular, higher relative 

percentages of DHA in female livers despite similar ALA amounts supports previous data of females 

having greater expression and activity of delta 5 and delta 6 desaturase [105]. This increase in the 

relative percent of hepatic DHA in females as compared with the higher hepatic relative percentage of 

ARA in males, despite similar levels of LA, suggests females may also have a greater selectivity for 

elongating and desaturating DHA precursors.  

Concentrations and relative percentages of the DHA precursor ALA could be increasing above 

baseline earlier in female as compared with male livers due to a variety of mechanisms. Despite being 

low compared to adolescence and adulthood, estrogen levels are higher in prepubescent females than 

males [23], in rats, females begin adolescence earlier than males [24], and females have a higher 

expression of fatty acid transport proteins [117,118,121]. This, combined with the chow diet being 

composed of more ALA than DHA could explain the greater amounts of LCPUFA precursors in female 

livers, but further research is required to confirm which combination or individual mechanism leads to 

the earlier increase of hepatic ALA in females. 

Sex differences in liver and plasma fatty acids were not limited to PUFA. Sexual dimorphisms in 

relative percent [122] and concentrations of 16:0 and 18:0 of plasma is in agreement with previous 

animal models. Differences in plasma 16:0 concentrations alone has been shown in some animal models 

[112,123], and differences in 18:0 concentrations alone in others [122], but this study shows differences 

in both occurring simultaneously. Females show lower relative percentages of 16:0 starting at week 7, 
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and higher percentages of 18:0 at week 8. Relative percentages of 16:0 decrease from week 7 to week 9 

in both sexes. However, 18:0 increases from week 7 to week 9 in females only. No sex differences in 

MUFA were shown, although higher levels of 16:1 [112] and 18:1n-7 have been reported at later 

timepoints than those observed in this study [122]. This suggests that at a young age, females may have 

a greater ability to convert 16:0 to other fatty acids and are converting it to 18:0 at a greater rate than 

males. 

Hepatic sexual dimorphisms in 18:0, 18:1n-9 and 18:1n-7 concentrations [112,123] were 

confirmed, but differences in 16:0 [112] were not, possibly as a result of not separating PL from TAG 

and other lipid fractions. Higher relative percentages of hepatic 18:1n-7 in males, and nearly 

significantly higher hepatic levels of 18:1n9 in females at week 6 (p =0.059), occurred alongside higher 

relative percentages of 18:0 in females and higher amounts of 16:0 in males. This is in agreement with 

previous studies indicating that estradiol and progesterone increase the protein levels of stearoyl-CoA 

desaturase 1 (SCD1) [110], a delta-9 desaturase that desaturates 18:0 to 18:1n-9 [124]. However, these 

findings are not in agreement with previous findings of 18:1n-7 in the PL fraction being increased in 12 

week old ovariectomized rats given progesterone and estradiol [123]. This could be due to differences 

occurring in older age, an interaction with additional sex hormones affected by ovariectomy models, or 

differences in PL that were not detected in the total lipid extracts of this study.  

In contrast to the plasma and hepatic fatty acid changes, brain and heart tissue were relatively 

stable. There were no sex x time interactions for relative percentages or concentrations of DHA or ARA, 

but there was a sex difference for DHA concentrations being generally higher in female brain. The lack 

of sex differences in the relative percentage of DHA is in agreement with previous data [92,105]. In 

contrast to DHA, brain PUFA and MUFA did show sex x time interactions. The 18:1n-9 spike in 

females at week 6, and the nearly significant (p=0.055) sex differences in total brain fatty acid 
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concentrations were unexpected, but could have implications for sex differences shown in high fat diet 

rodent models [125].  

The heart had fewer significant concentration sex x time interactions than the brain, but relative 

percentage measures were similar, and in both the brain and the heart, LA had a significant sex x time 

interaction. The greater amounts of LA in the male brain is in agreement with previous data [126], but 

the greater amounts of LA in the male heart is not [105]. These sex differences in tissue LA relative 

percentages could be the result of higher levels of plasma LA in males, which are significantly higher 

beginning at week 7, being deposited at a greater rate in male tissues. 

In both sexes, the peaking of total fatty acids in plasma at weeks 2 and 5 suggest high amounts of 

fatty acid turnover during weaning and puberty, and higher circulating fatty acid concentrations at week 

5 appeared to increase the fatty acid concentrations of surrounding tissues. Total fatty acid 

concentrations in liver appeared to be reflected in plasma total fatty acid concentrations, with amounts 

peaking at week 5 before decreasing. This supports studies showing the liver playing a role in fatty acid 

remodelling [116], and the sexual dimorphisms in remodelling could play a role in sexual dimorphisms 

shown in other tissues [105]. Total fatty acid concentrations in the brain peaked at week 6, and were 

maintained at those concentrations for weeks 7 and 9, in agreement with findings that most fatty acid 

accumulation in the brain occurs during early development [3]. However, relative levels of fatty acids 

continued to change in the brain despite the steady total fatty acid concentration. As the brain developed, 

the relative percentage of ARA decreased in both sexes while DHA remained steady, supporting 

previous literature showing a specific need for DHA in the brain [73]. 

The design of this pilot study limited its findings. The fatty acid data is limited to total lipid fatty 

acid analyses, and differences between PL, TAG, and other lipid classes were not determined. Pups were 

chosen out of convenience and from mothers excluded by a previous study as a result of a failure to 
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observe the vaginal plug after breeding. As a result, the block design of the litters were limited to one 

litter per time point when multiple litters should have been used [127]. Pups being weaned abruptly at 3 

weeks of age could be affecting plasma and tissue concentrations at weeks 4 and 5, as free living rats are 

breastfed for longer, and weaned more gradually [128]. Additionally, sex hormones also factor into 

adipose tissue lipolysis [129], and sexual dimorphisms have been shown in intestinal fatty acid uptake 

[130–132]. Collecting adipose tissue and intestines could have provided more insights into how sexual 

dimorphisms in tissues were affecting sexual dimorphisms in the plasma, and vice versa. Finally, these 

findings are limited to rats fed a standard chow diet high in LA, and providing the rats with different 

diets during development could have interacted with changes in tissue fatty acid composition [126]. 

Further research including adipose tissue analysis, and the interaction of different diets and maturity on 

sexual dimorphisms should be conducted.  

6.5 Conclusion 

 This study confirms previous reports of sexual dimorphisms in n-3 and n-6 PUFA, SFA, and 

MUFA, and provides evidence that these dimorphisms interact with development. In chow fed rats, 

females have higher levels of circulating ARA beginning at 8 weeks of age, while males have higher 

levels of plasma LA beginning at weeks 7, which appear to influence brain and heart LA levels. Relative 

percentages of hepatic ALA and LA appear to increase above baseline earlier in females than males, 

potentially playing a role in DHA and ARA levels, which could impact development. Finally, the peak 

in total fatty acid concentrations occurring around puberty in plasma and brain suggest further research 

investigating the influence of diets, developmental stages, and sexual dimorphisms on tissue fatty acid 

composition should be conducted. 
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Figure 8: Whole Body Weights *Significant sex differences, and letters represent significant time 

differences determined by Tukey’s post hoc following significant two-way ANOVA (p<0.05). Mean ± 

SD, n = 5 at each point. 
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Figure 9: Relative percent (%wt) levels of LA, ARA and DHA in male and female tissues *Significant 

sex difference determined by Tukey’s post hoc following significant two-way ANOVA (p<0.05). Mean 

± SD, n = 5 at each point. 
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Appendix Table 6.1: Fatty acid composition (weight %) of female stomach contents 

 Week 1 Week 2 Week 3 

P Sex x 

time  

P Sex 

Effect 

14:0 9.53 ± 0.75a 10.67 ± 0.55b 7.80 ± 0.54c 0.84 0.14 

16:0 22.90 ± 0.99a 23.79 ± 0.68a 17.18 ± 0.21b 0.91 0.09 

18:0 3.20 ± 0.18a 3.26 ± 0.11a 2.98 ± 0.03b 0.41 0.02 

22:0 0.04 ± 0.01a 0.04 ± 0.01a 0.08 ± 0.02b 0.63 0.66 

24:0 0.06 ± 0.01a 0.06 ± 0.01a 0.10 ± 0.02b 0.72 0.75 

Total SFA 53.91 ± 1.94a 57.91 ± 1.43b 50.95 ± 2.90a 0.68 0.67 

16:1 1.24 ± 0.11a 0.86 ± 0.06b 1.00 ± 0.05c 0.20 <0.01 

18:1n-7 1.34 ± 0.15a 0.96 ± 0.06b 1.07 ± 0.05b 0.91 0.04 

18:1n-9 15.26 ± 0.90a 13.77 ± 0.57b 14.35, ± 0.50ab 0.97 0.11 

24:1n-9 0.03 ± 0.01a 0.02, ± 0.01ab 0.02 ± 0.01b 0.71 0.56 

Total MUFA 18.20 ± 1.21a 15.89 ± 0.69b 16.70 ± 0.53b 0.94 0.07 

18:2n-6 20.75 ± 0.41a 21.02 ± 0.57a 27.43 ± 2.29b 0.62 0.97 

18:3n-6 0.52 ± 0.05a 0.32 ± 0.02b 0.13 ± 0.01c 0.14 0.14 

20:2n-6 0.59 ± 0.06a 0.43 ± 0.03b 0.24 ± 0.02c 0.53 0.03 

20:3n-6 0.64 ± 0.04a 0.32 ± 0.02b 0.12 ± 0.01c 0.84 0.37 

20:4n-6 1.40 ± 0.17a 0.80 ± 0.03b 0.50 ± 0.04c 0.59 0.04 

22:4n-6 0.29 ± 0.06a 0.15 ± 0.01b 0.09 ± 0.02b 0.53 0.02 

22:5n-6 0.05 ± 0.01a 0.03 ± 0.01b 0.03 ± 0.01b 0.24 0.03 

Total n-6 PUFA 24.28 ± 0.76a 23.10 ± 0.66a 28.55 ± 2.19b 0.62 0.94 

18:3n-3 1.79 ± 0.06a 2.01 ± 0.03a 2.88 ± 0.26b 0.57 0.58 

20:5n-3 0.45 ± 0.02a 0.35 ± 0.01b 0.28 ± 0.02c 0.36 0.91 

22:5n-3 0.36 ± 0.05a 0.30 ± 0.02b 0.22 ± 0.02c 0.76 0.04 

22:6n-3 0.43 ± 0.04a 0.33 ± 0.01b 0.35 ± 0.01b 0.74 0.58 

Total n-3 PUFA 3.10 ± 0.06a 3.06 ± 0.07a 3.77 ± 0.26b 0.56 0.79 

20:3n-9 0.06 ± 0.01a 0.04 ± 0.01b 0.04 ± 0.01b 0.36 0.03 

Total FA (mg/g) 262 ± 17a 264 ± 37a 115 ± 37b 0.56 0.94 

Mean ± SD, n=5. Different alphabetical superscripts represent differences across time and different numerical 

superscripts represent sex x time interactions significantly different by Tukey’s HSD following a significant F-value 

(p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids; FA, fatty acids. 
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Appendix Table 6.2: Fatty acid composition (weight %) of male stomach contents 

 Week 1 Week 2 Week 3 

P Sex x 

time 

P Sex 

Effect 

14:0 9.71 ± 0.76ab 11.07 ± 0.15a 8.33 ± 1.13b 0.84 0.14 

16:0 22.88 ± 0.66a 24.18 ± 0.33b 17.52 ± 0.49c 0.91 0.09 

18:0 3.20 ± 0.14a 3.19 ± 0.05a 2.85 ± 0.12b 0.41 0.02 

22:0 0.04 ± 0.01a 0.04 ± 0.01a 0.09 ± 0.03b 0.63 0.66 

24:0 0.06 ± 0.01a 0.06 ± 0.01a 0.09 ± 0.02b 0.72 0.75 

Total SFA 54.65 ± 2.16ab 58.92 ± 0.51a 50.97 ± 4.50b 0.68 0.67 

16:1 1.18 ± 0.14a 0.82 ± 0.03b 0.90 ± 0.06b 0.20 <0.01 

18:1n-7 1.30 ± 0.14a 0.92 ± 0.03b 1.02 ± 0.06b 0.91 0.04 

18:1n-9 15.07 ± 1.01a 13.35 ± 0.24b 13.94 ± 0.82ab 0.97 0.11 

24:1n-9 0.03 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 0.71 0.56 

Total MUFA 17.91 ± 1.30a 15.37 ± 0.30b 16.13 ± 0.89b 0.94 0.07 

18:2n-6 20.54 ± 0.60a 20.62 ± 0.17a 27.91 ± 3.35b 0.62 0.97 

18:3n-6 0.48 ± 0.08a 0.30 ± 0.01b 0.13 ± 0.01c 0.14 0.14 

20:2n-6 0.64 ± 0.07a 0.41 ± 0.02b 0.20 ± 0.02c 0.53 0.03 

20:3n-6 0.64 ± 0.04a 0.31 ± 0.02b 0.11 ± 0.01c 0.84 0.37 

20:4n-6 1.35 ± 0.13a 0.77 ± 0.02b 0.46 ± 0.04c 0.59 0.04 

22:4n-6 0.30 ± 0.04a 0.14 ± 0.01b 0.08 ± 0.01c 0.53 0.02 

22:5n-6 0.05 ± 0.01a 0.03 ± 0.01b 0.02 ± 0.01b 0.24 0.03 

Total n-6 PUFA 24.03 ± 0.86a 22.61 ± 0.22a 28.92 ± 3.26b 0.62 0.94 

18:3n-3 1.78 ± 0.04a 2.01 ± 0.02a 2.99 ± 0.39b 0.57 0.58 

20:5n-3 0.46 ± 0.02a 0.34 ± 0.01b 0.29 ± 0.04b 0.36 0.91 

22:5n-3 0.39 ± 0.04a 0.28 ± 0.01b 0.20 ± 0.03c 0.76 0.04 

22:6n-3 0.43 ± 0.03a 0.33 ± 0.01b 0.35 ± 0.04b 0.74 0.58 

Total n-3 PUFA 3.13 ± 0.09a 3.02 ± 0.03a 3.87 ± 0.45b 0.56 0.79 

20:3n-9 0.06 ± 0.01a 0.04 ± 0.01b 0.03 ± 0.01b 0.36 0.03 

Total FA (mg/g) 271 ± 15a 272 ± 23a 105 ± 31b 0.56 0.94 

Mean ± SD, n=5. Different alphabetical superscripts represent differences across time and different numerical 

superscripts represent sex x time interactions significantly different by Tukey’s HSD following a significant F-value 

(p< 0.05) by two-way ANOVA. SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids; FA, fatty acids. 
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Appendix Table 6.3: Fatty acid composition (weight %) of female plasma 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 2.44 ± 0.75ab 3.14 ± 0.55a 2.17 ± 0.38b 0.68 ± 0.08c 0.40 ± 0.02c 0.43 ± 0.04c 0.36 ± 0.05c 0.31 ± 0.03c 0.25 ± 0.03c 

16:0 21.44 ± 1.166,7,8 22.99 ± 0.478 19.90 ± 0.274,5,6 18.37 ± 0.332,3,4 17.37 ± 0.482,3,4 19.30 ± 0.973,4,5 19.18 ± 1.463,4,5 16.76 ± 1.321,2 15.13 ± 0.611 

18:0 9.17 ± 0.441 9.57 ± 0.521 10.16 ± 0.621,2 10.30 ± 0.791,2,3 11.80 ± 1.202,3,4 11.89 ± 0.673,4 13.49 ± 0.964,5 15.15 ± 1.255,6 16.28 ± 0.556 

22:0 0.14 ± 0.01a 0.20 ± 0.02bcdf 0.18 ± 0.02abc 0.15 ± 0.03ab 0.22 ± 0.02cdef 0.20 ± 0.02bcdf 0.24 ± 0.02de 0.26 ± 0.06e 0.17 ± 0.02af 

24:0 0.38 ± 0.07ade 0.39 ± 0.03ab 0.42 ± 0.03ac 0.28 ± 0.04d 0.38 ± 0.03ade 0.45 ± 0.03bcefh 0.56 ± 0.04fg 0.59 ± 0.10g 0.39 ± 0.04adh 

Σ SFA 36.29 ± 1.354,5,6,7 38.70 ± 0.947 35.07 ± 0.473,4 31.26 ± 1.321,2 30.99 ± 0.951,2 34.80 ± 1.913,4 37.07 ± 1.424,5,6,7 35.53 ± 1.283,4,5,6 33.50 ± 0.712,3 

16:1 0.57 ± 0.09ad 0.43 ± 0.03a 0.47 ± 0.05ad 0.74 ± 0.11bce 0.75 ± 0.05be 0.89 ± 0.07b 0.76 ± 0.08be 0.57 ± 0.07acf 0.64 ± 0.11def 

18:1n-7 1.11 ± 0.05a 0.86 ± 0.02b 1.14 ± 0.04a 1.53 ± 0.15c 1.50 ± 0.09c 1.40 ± 0.08cd 1.23 ± 0.08ade 1.37 ± 0.11cef 1.19 ± 0.12af 

18:1n-9 7.63 ± 1.34ab 7.23 ± 0.46ab 7.84 ± 0.69ab 8.17 ± 0.87a 8.33 ± 0.83a 7.61 ± 0.33ab 6.48 ± 0.67bd 6.47 ± 0.72bcd 5.57 ± 0.35d 

24:1n-9 0.24 ± 0.04ad 0.17 ± 0.04bcg 0.22 ± 0.03abd 0.14 ± 0.02c 0.19 ± 0.02abc 0.28 ± 0.02dfh 0.36 ± 0.02e 0.35 ± 0.05ef 0.23 ± 0.03agh 

Σ MUFA 9.96 ± 1.432,3,4,5 9.20 ± 0.491,2,3,4 9.94 ± 0.722,3,4,5 10.78 ± 1.003,4,5,6 11.09 ± 0.875,6 10.37 ± 0.352,3,4,5,6 9.04 ± 0.761,2,3 9.02 ± 0.771,2 7.78 ± 0.391 

18:2n-6 21.15 ± 0.951,2,3,4 23.96 ± 0.264,5,6 29.77 ± 0.497 22.10 ± 1.912,3,4 24.12 ± 2.014,5,6 21.40 ± 0.991,2,3,4 18.63 ± 1.311 19.78 ± 2.511,2 18.44 ± 1.151 

18:3n-6 0.45 ± 0.042,3,4,5 0.33 ± 0.011,2 0.33 ± 0.061,2 0.59 ± 0.115,6 0.59 ± 0.064,5,6 0.56 ± 0.033,4,5,6 0.38 ± 0.072 0.37 ± 0.092 0.44 ± 0.042,3,4 

20:2n-6 0.38 ± 0.058,9 0.34 ± 0.027,8,9 0.26 ± 0.033,4,5 0.27 ± 0.024,5,6,7 0.26 ± 0.013,4,5 0.19 ± 0.011,2,3 0.17 ± 0.021 0.20 ± 0.061,2,3,4 0.17 ± 0.031,2 

20:3n-6 0.95 ± 0.038 0.67 ± 0.027 0.41 ± 0.024,5,6 0.28 ± 0.021,2 0.29 ± 0.021,2 0.25 ± 0.021 0.29 ± 0.031,2 0.35 ± 0.082,3,4,5 0.31 ± 0.041,2,3 

20:4n-6 19.78 ± 2.591,2,3,4 18.09 ± 1.321,2 16.30 ± 1.041 23.90 ± 1.814,5,6 24.43 ± 2.295,6,7 25.25 ± 1.265,6,7 27.78 ± 1.916,7 28.21 ± 3.337,8 32.14 ± 1.808 

22:4n-6 0.40 ± 0.04a 0.30 ± 0.02b 0.30 ± 0.06b 0.39 ± 0.04a 0.27 ± 0.02bc 0.22 ± 0.04c 0.23 ± 0.03bc 0.24 ± 0.04bc 0.26 ± 0.04bc 

22:5n-6 0.20 ± 0.032,3,4 0.12 ± 0.021,2,3,4 0.23 ± 0.064,5 0.33 ± 0.065,6 0.20 ± 0.012,3,4 0.22 ± 0.034 0.23 ± 0.144,5 0.15 ± 0.021,2,3,4 0.13 ± 0.031,2,3,4 

Σ n-6 PUFA 43.40 ± 1.74a 43.86 ± 1.51a 47.64 ± 1.02b 47.94 ± 0.85b 50.18 ± 0.68bc 48.20 ± 1.54b 47.85 ± 1.84b 49.42 ± 1.29bc 51.94 ± 1.03c 

18:3n-3* 0.66 ± 0.17ab 0.73 ± 0.10ab 0.97 ± 0.13a 0.92 ± 0.22ab 0.92 ± 0.15ab 0.87 ± 0.06ab 0.70 ± 0.17ab 0.65 ± 0.18ab 0.64 ± 0.10b 

20:5n-3* 1.14 ± 0.13acde 1.10 ± 0.07acdef 0.75 ± 0.04b 1.36 ± 0.23a 1.31 ± 0.13a 0.96 ± 0.11bc 0.87 ± 0.16bd 0.88 ± 0.10be 0.84 ± 0.09bf 

22:5n-3 1.45 ± 0.205,6 1.53 ± 0.096 0.99 ± 0.084 1.27 ± 0.095 0.82 ± 0.063,4 0.54 ± 0.061,2 0.39 ± 0.151 0.51 ± 0.041,2 0.54 ± 0.051,2 

22:6n-3 5.61 ± 0.748 4.44 ± 0.224,5,6 3.29 ± 0.171,2 5.24 ± 0.647,8 4.43 ± 0.114,5,6 3.81 ± 0.372,3,4 3.71 ± 0.301,2,3,4 3.67 ± 0.131,2,3 4.15 ± 0.233,4,5 

Σ n-3 PUFA 8.92 ± 0.85a 7.85 ± 0.27bd 6.05 ± 0.17c 8.84 ± 0.82ab 7.52 ± 0.40d 6.21 ± 0.51c 5.70 ± 0.52c 5.74 ± 0.24c 6.19 ± 0.19c 

20:3n-9 0.13 ± 0.03ab 0.14 ± 0.02a 0.15 ± 0.04a 0.15 ± 0.02a 0.09 ± 0.01bc 0.06 ± 0.01cd 0.04 ± 0.01d 0.04 ± 0.01de 0.05 ± 0.01cdf 

Σ FA (mg/g) 69 ± 13a 144 ± 22b 92 ± 18ac 94 ± 36ac 132 ± 22bcde 112 ± 11ab 97 ± 7ad 98 ± 22ae 82 ± 15a 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.  
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Appendix Table 6.4: Fatty acid composition (weight %) of male plasma 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 2.68 ± 0.48a 2.94 ± 0.23a 1.92 ± 0.59b 0.73 ± 0.04c 0.49 ± 0.07c 0.49 ± 0.07c 0.38 ± 0.14c 0.31 ± 0.01c 0.28 ± 0.05c 

16:0 22.06 ± 1.507,8 22.96 ± 0.588 19.82 ± 0.664,5,6 18.90 ± 0.443,4,5 18.42 ± 0.622,3,4 20.58 ± 1.045,6,7 20.76 ± 0.685,6,7 19.83 ± 0.794,5,6 17.79 ± 0.792,3 

18:0 9.33 ± 0.561 9.89 ± 0.361 10.34 ± 0.581,2,3 9.45 ± 0.601 10.58 ± 1.331,2,3 10.17 ± 0.431,2 10.65 ± 0.411,2,3 10.74 ± 0.541,2,3 10.76 ± 0.461,2,3 

22:0 0.17 ± 0.07ab 0.19 ± 0.02abc 0.19 ± 0.02abcd 0.13 ± 0.01a 0.20 ± 0.02bcdf 0.24 ± 0.03cd 0.25 ± 0.01d 0.25 ± 0.02cde 0.15 ± 0.02af 

24:0 0.43 ± 0.05ae 0.39 ± 0.03ace 0.43 ± 0.03ae 0.28 ± 0.04b 0.34 ± 0.04bc 0.45 ± 0.04a 0.55 ± 0.04d 0.56 ± 0.07d 0.36 ± 0.01be 

Σ SFA 37.89 ± 1.565,6,7 38.09 ± 0.756,7 34.62 ± 0.863,4 30.78 ± 1.031 30.82 ± 0.801 34.43 ± 1.863,4 35.42 ± 0.543,4,5 34.96 ± 1.373,4 30.57 ± 0.441 

16:1 0.56 ± 0.03a 0.43 ± 0.01a 0.44 ± 0.02a 0.78 ± 0.11b 0.88 ± 0.09bc 0.96 ± 0.07c 0.76 ± 0.15b 0.55 ± 0.07a 0.55 ± 0.04a 

18:1n-7 1.06 ± 0.04a 0.88 ± 0.03b 1.12 ± 0.02a 1.54 ± 0.12cd 1.64 ± 0.06ce 1.57 ± 0.08cd 1.43 ± 0.05d 1.75 ± 0.08e 1.75 ± 0.08ef 

18:1n-9 7.46 ± 0.67adef 7.10 ± 0.29abf 7.34 ± 0.59acf 8.30 ± 0.76adeg 8.93 ± 0.65d 7.66 ± 0.90adef 7.00 ± 1.00bcef 6.61 ± 0.43f 6.93 ± 0.47bcfg 

24:1n-9 0.25 ± 0.02ad 0.18 ± 0.03bc 0.22 ± 0.02ab 0.14 ± 0.03c 0.17 ± 0.03bc 0.31 ± 0.02d 0.38 ± 0.02e 0.38 ± 0.05e 0.17 ± 0.03bc 

Σ MUFA 9.74 ± 0.682,3,4,5 9.05 ± 0.291,2,3 9.38 ± 0.631,2,3,4,5 10.92 ± 0.914,5,6 12.00 ± 0.686 10.72 ± 0.922,3,4,5,6 9.80 ± 1.182,3,4,5 9.56 ± 0.362,3,4,5 9.61 ± 0.462,3,4,5 

18:2n-6 20.57 ± 0.241,2,3 23.69 ± 0.583,4,5 30.14 ± 0.967 23.32 ± 1.343,4,5 25.85 ± 2.455,6 23.74 ± 1.853,4,5,6 22.08 ± 0.772,3,4 23.78 ± 2.453,4,5,6 27.04 ± 0.746,7 

18:3n-6 0.42 ± 0.032,3 0.34 ± 0.011,2 0.38 ± 0.072 0.64 ± 0.156 0.54 ± 0.103,4,5,6 0.33 ± 0.031,2 0.21 ± 0.031 0.21 ± 0.021 0.20 ± 0.051 

20:2n-6 0.41 ± 0.069 0.34 ± 0.026,7,8,9 0.25 ± 0.042,3,4 0.27 ± 0.044,5,6,7 0.25 ± 0.013,4 0.25 ± 0.043,4 0.23 ± 0.011,2,3,4 0.27 ± 0.023,4,5,6 0.33 ± 0.045,6,7,8 

20:3n-6 0.96 ± 0.088 0.67 ± 0.017 0.44 ± 0.046 0.26 ± 0.021,2 0.29 ± 0.031,2 0.34 ± 0.031,2,3,4,5 0.32 ± 0.031,2,3,4 0.40 ± 0.063,4,5,6 0.43 ± 0.065,6 

20:4n-6 19.36 ± 1.721,2,3 19.24 ± 0.791,2,3 17.19 ± 1.831 23.04 ± 1.853,4,5 21.53 ± 2.522,3,4,5 23.20 ± 1.213,4,5 25.29 ± 1.675,6,7 24.57 ± 1.625,6,7 24.56 ± 1.355,6,7 

22:4n-6 0.36 ± 0.02ac 0.27 ± 0.02bd 0.29 ± 0.04ab 0.37 ± 0.05c 0.27 ± 0.03bd 0.22 ± 0.02d 0.24 ± 0.02bd 0.23 ± 0.04bd 0.29 ± 0.05bd 

22:5n-6 0.13 ± 0.021,2,3,4 0.10 ± 0.011,2 0.23 ± 0.074,5 0.37 ± 0.056 0.21 ± 0.043,4 0.12 ± 0.021,2,3,4 0.11 ± 0.011,2,3 0.10 ± 0.021,2 0.07 ± 0.011 

Σ n-6 PUFA 42.28 ± 1.68a 44.69 ± 0.84a 48.99 ± 1.07b 48.32 ± 0.75b 49.00 ± 0.40b 48.32 ± 1.22b 48.61 ± 1.55b 49.68 ± 1.33b 52.97 ± 0.74c 

18:3n-3* 0.67 ± 0.07a 0.73 ± 0.06ab 0.87 ± 0.18ab 0.99 ± 0.18ab 1.03 ± 0.19b 0.90 ± 0.22ab 0.73 ± 0.12ab 0.76 ± 0.12ab 0.98 ± 0.15ab 

20:5n-3* 1.09 ± 0.07acf 1.07 ± 0.07acf 0.80 ± 0.05a 1.39 ± 0.20bg 1.39 ± 0.19b 1.13 ± 0.17bcdeg 0.97 ± 0.10adh 0.96 ± 0.08aeh 1.10 ± 0.17fgh 

22:5n-3 1.30 ± 0.135 1.45 ± 0.115,6 1.02 ± 0.134 1.32 ± 0.105,6 0.84 ± 0.053,4 0.60 ± 0.061,2 0.58 ± 0.051,2 0.59 ± 0.041,2 0.69 ± 0.132,3 

22:6n-3 5.10 ± 0.496,7,8 4.67 ± 0.175,6,7 3.29 ± 0.291,2 4.94 ± 0.086,7,8 4.63 ± 0.225,6,7 3.43 ± 0.431,2,3 3.39 ± 0.141,2 3.06 ± 0.161,2 3.02 ± 0.221 

Σ n-3 PUFA 8.22 ± 0.42a 7.95 ± 0.30a 6.01 ± 0.31b 8.67 ± 0.38a 7.94 ± 0.37a 6.10 ± 0.71b 5.70 ± 0.16b 5.41 ± 0.14b 5.83 ± 0.49b 

20:3n-9 0.11 ± 0.01ad 0.13 ± 0.01ab 0.16 ± 0.03b 0.15 ± 0.02bc 0.09 ± 0.01de 0.05 ± 0.01ef 0.04 ± 0.01f 0.04 ± 0.01fg 0.04 ± 0.01fh 

Σ FA (mg/g) 88 ± 17a 136 ± 13b 94 ± 25a 114 ± 19ab 131 ± 24b 109 ± 24ab 109 ± 4ab 105 ± 6ab 83 ± 7a 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.  
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Appendix Table 6.5: Fatty acid composition (weight %) of female liver 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 0.91 ± 0.17ac 1.26 ± 0.15ab 1.43 ± 0.51b 0.59 ± 0.07cd 0.34 ± 0.02dg 0.28 ± 0.03deg 0.19 ± 0.02dfg 0.16 ± 0.02g 0.18 ± 0.02dgh 

16:0 23.26 ± 0.465 23.17 ± 0.255 20.16 ± 0.504 18.79 ± 0.383 17.49 ± 0.332 16.90 ± 0.312 16.37 ± 0.412 15.02 ± 0.801 16.47 ± 0.372 

18:0 15.94 ± 0.411,2,3 15.09 ± 0.531 15.77 ± 0.951,2 16.48 ± 0.571,2,3,4 17.37 ± 0.642,3,4,5 16.89 ± 1.301,2,3,4 20.03 ± 0.486,7 20.84 ± 1.637 20.19 ± 0.886,7 

22:0 0.17 ± 0.022,3,4 0.12 ± 0.011 0.14 ± 0.011,2 0.17 ± 0.022,3,4 0.19 ± 0.013,4,5 0.15 ± 0.021,2,3 0.19 ± 0.033,4,5 0.21 ± 0.024,5,6 0.14 ± 0.011,2 

24:0 0.53 ± 0.091,2,3,4,5 0.54 ± 0.042,3,4,5,6 0.49 ± 0.061,2,3 0.48 ± 0.051,2 0.52 ± 0.021,2,3,4,5 0.46 ± 0.061,2 0.60 ± 0.023,4,5,6,7 0.74 ± 0.068 0.44 ± 0.051,2 

Σ SFA 42.29 ± 0.51a 41.41 ± 0.39a 39.51 ± 0.28b 37.59 ± 0.86c 37.01 ± 0.47cd 35.76 ± 1.46d 38.55 ± 0.57bc 38.21 ± 1.14bc 38.50 ± 0.93bc 

16:1* 0.23 ± 0.04a 0.18 ± 0.02a 0.34 ± 0.14ab 0.48 ± 0.07b 0.53 ± 0.09bcd 0.70 ± 0.09d 0.52 ± 0.08bde 0.46 ± 0.13bf 0.48 ± 0.08bg 

18:1n-7 1.53 ± 0.033,4 1.31 ± 0.031,2 1.65 ± 0.044,5,6 1.74 ± 0.035,6,7 1.88 ± 0.077,8 1.89 ± 0.107,8,9 1.79 ± 0.165,6,7 1.89 ± 0.157,8,9 1.67 ± 0.094,5,6 

18:1n-9 3.77 ± 0.401 4.96 ± 0.351,2,3,4 7.14 ± 1.376,7 6.53 ± 0.584,5,6,7 6.73 ± 0.505,6,7 7.70 ± 0.797 5.87 ± 0.662,3,4,5,6 6.26 ± 0.954,5,6,7 5.91 ± 0.612,3,4,5,6 

24:1n-9* 0.25 ± 0.03a 0.21 ± 0.02acd 0.15 ± 0.03bef 0.17 ± 0.01bcef 0.20 ± 0.01bdg 0.15 ± 0.02e 0.20 ± 0.02dfg 0.22 ± 0.03ag 0.13 ± 0.02eh 

Σ MUFA 6.08 ± 0.381 6.88 ± 0.341,2,3 9.49 ± 1.554,5,6 9.09 ± 0.654,5,6 9.51 ± 0.625,6 10.61 ± 0.906 8.53 ± 0.573,4,5 9.00 ± 0.874,5,6 8.34 ± 0.613,4,5 

18:2n-6 11.87 ± 0.491 15.17 ± 0.472 19.63 ± 0.933,4,5,6 18.68 ± 0.843 20.77 ± 0.583,4,5,6,7 22.63 ± 1.237 19.75 ± 0.963,4,5,6 19.97 ± 1.593,4,5,6 19.77 ± 1.473,4,5,6 

18:3n-6 0.12 ± 0.011,2 0.04 ± 0.011 0.06 ± 0.011 0.45 ± 0.045,6 0.43 ± 0.084,5,6 0.50 ± 0.066 0.30 ± 0.103,4,5 0.35 ± 0.154,5,6 0.38 ± 0.064,5,6 

20:2n-6 0.48 ± 0.034,5,6 0.56 ± 0.025,6,7 0.56 ± 0.035,6,7 0.47 ± 0.023,4,5 0.46 ± 0.033,4,5 0.37 ± 0.021,2,3 0.34 ± 0.081 0.35 ± 0.091,2 0.34 ± 0.041 

20:3n-6 0.82 ± 0.027,8 0.75 ± 0.047 0.70 ± 0.026,7 0.33 ± 0.021 0.37 ± 0.021,2,3 0.32 ± 0.011 0.38 ± 0.041,2,3 0.47 ± 0.132,3,4,5 0.45 ± 0.061,2,3,4,5 

20:4n-6 19.29 ± 0.683,4,5,6 17.19 ± 0.321,2,3 15.69 ± 1.111 18.17 ± 0.722,3,4 18.54 ± 0.533,4,5 17.62 ± 0.831,2,3 21.39 ± 1.256,7,8 20.45 ± 1.235,6,7 20.97 ± 1.096,7,8 

22:4n-6 0.76 ± 0.036,7 0.67 ± 0.045,6 0.70 ± 0.136 0.55 ± 0.024,5 0.43 ± 0.021,2,3 0.40 ± 0.031,2,3 0.36 ± 0.041,2,3 0.41 ± 0.031,2,3 0.47 ± 0.043,4 

22:5n-6 0.24 ± 0.012,3,4 0.20 ± 0.011,2,3,4 0.50 ± 0.125 0.49 ± 0.085 0.26 ± 0.053,4 0.27 ± 0.053,4 0.16 ± 0.041,2,3,4 0.18 ± 0.071,2,3,4 0.20 ± 0.021,2,3,4 

Σ n-6 PUFA 33.63 ± 0.421 34.59 ± 0.221 37.86 ± 0.482 39.14 ± 0.303,4 41.27 ± 0.186,7 42.14 ± 0.637,8 42.70 ± 1.098,9 42.21 ± 0.457,8 42.60 ± 0.608,9 

18:3n-3 0.21 ± 0.031 0.42 ± 0.041,2,3,4 0.59 ± 0.123,4,5,6 0.69 ± 0.105,6 0.75 ± 0.095,6,7 0.99 ± 0.107 0.71 ± 0.155,6 0.77 ± 0.186,7 0.77 ± 0.155,6,7 

20:5n-3 0.43 ± 0.03acgi 0.52 ± 0.02abd 0.35 ± 0.03c 0.62 ± 0.14d 0.64 ± 0.05de 0.63 ± 0.06df 0.58 ± 0.10bdg 0.61 ± 0.09dh 0.60 ± 0.09bdi 

22:5n-3 2.37 ± 0.185,6 3.39 ± 0.127 2.50 ± 0.306 2.02 ± 0.114 1.44 ± 0.103 1.02 ± 0.051 0.86 ± 0.131 0.98 ± 0.051 0.98 ± 0.071 

22:6n-3 14.33 ± 0.697 12.44 ± 0.566 9.44 ± 1.224,5 10.44 ± 0.535 9.18 ± 0.374,5 8.19 ± 0.433,4 7.53 ± 0.522,3 7.60 ± 0.342,3 7.69 ± 0.552,3 

Σ n-3 PUFA 17.41 ± 0.507 16.85 ± 0.537 12.95 ± 1.375,6 13.82 ± 0.646 12.07 ± 0.334,5 10.87 ± 0.433,4 9.73 ± 0.522,3 10.00 ± 0.152,3 10.07 ± 0.372,3 

20:3n-9 0.08 ± 0.01ad 0.12 ± 0.01bc 0.12 ± 0.02b 0.09 ± 0.01ac 0.06 ± 0.01dgh 0.05 ± 0.01def 0.03 ± 0.01f 0.03 ± 0.01fg 0.03 ± 0.01fh 

Σ FA (mg/g) * 26 ± 4a 35 ± 2b 35 ± 6ab 44 ± 4cde 43 ± 2bc 48 ± 5c 41 ± 3bc 36 ± 5bd 38 ± 5be 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.  
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Appendix Table 6.6: Fatty acid composition (weight %) of male liver 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 1.23 ± 0.44a 1.12 ± 0.04a 1.23 ± 0.22a 0.57 ± 0.14b 0.32 ± 0.03bc 0.26 ± 0.04bc 0.16 ± 0.01c 0.14 ± 0.01bd 0.19 ± 0.04bc 

16:0 23.20 ± 0.965 23.02 ± 0.365 20.39 ± 0.454 18.71 ± 0.583 17.52 ± 0.492 17.43 ± 0.612 17.38 ± 0.462 16.68 ± 0.372 17.48 ± 0.642 

18:0 15.07 ± 1.481 15.12 ± 0.241 15.88 ± 1.181,2 15.75 ± 1.131,2 17.65 ± 0.842,3,4,5 17.28 ± 0.632,3,4,5 19.05 ± 0.445,6,7 18.40 ± 0.334,5,6 17.95 ± 0.673,4,5 

22:0 0.17 ± 0.032,3 0.14 ± 0.011,2 0.15 ± 0.021,2 0.19 ± 0.023,4,5 0.19 ± 0.033,4,5 0.19 ± 0.013,4,5 0.24 ± 0.026 0.22 ± 0.015,6 0.14 ± 0.011,2 

24:0 0.62 ± 0.094,5,6,7 0.64 ± 0.025,6,7,8 0.51 ± 0.061,2,3,4 0.48 ± 0.071,2 0.50 ± 0.041,2,3,4,5 0.48 ± 0.031,2 0.65 ± 0.056,7,8 0.68 ± 0.037,8 0.41 ± 0.021 

Σ SFA 41.88 ± 0.27a 41.27 ± 0.35ab 39.56 ± 0.73bd 36.84 ± 1.50c 37.28 ± 1.34ce 36.72 ± 0.90c 38.77 ± 0.46defg 37.43 ± 0.23bf 37.39 ± 0.57cg 

16:1* 0.23 ± 0.02ae 0.17 ± 0.01a 0.31 ± 0.11aceg 0.55 ± 0.09bd 0.51 ± 0.06bd 0.60 ± 0.09b 0.44 ± 0.06cdf 0.34 ± 0.03efg 0.40 ± 0.11dg 

18:1n-7 1.45 ± 0.082,3 1.22 ± 0.011 1.61 ± 0.043,4,5 1.81 ± 0.036,7 1.89 ± 0.067,8,9 2.06 ± 0.089 1.99 ± 0.058,9 2.30 ± 0.1210 2.26 ± 0.1210 

18:1n-9 4.34 ± 0.681,2 4.51 ± 0.211,2,3 6.37 ± 0.744,5,6,7 7.03 ± 1.136,7 6.68 ± 1.215,6,7 6.07 ± 0.493,4,5,6,7 4.92 ± 0.381,2,3,4 5.11 ± 0.151,2,3,4,5 5.35 ± 0.651,2,3,4,5 

24:1n-9* 0.25 ± 0.03a 0.24 ± 0.01ac 0.18 ± 0.02bf 0.18 ± 0.02bde 0.20 ± 0.03bcde 0.17 ± 0.02bf 0.23 ± 0.02ad 0.23 ± 0.01ae 0.14 ± 0.01f 

Σ MUFA 6.57 ± 0.591,2 6.34 ± 0.201 8.66 ± 0.854,5 9.75 ± 1.215,6 9.45 ± 1.224,5,6 9.08 ± 0.504,5,6 7.74 ± 0.391,2,3,4 8.19 ± 0.152,3,4,5 8.36 ± 0.763,4,5 

18:2n-6 12.72 ± 1.321,2 14.42 ± 0.382 19.36 ± 1.463,4 19.67 ± 1.973,4,5,6 19.91 ± 1.533,4,5,6 21.95 ± 0.885,6,7 19.47 ± 0.893,4,5 21.62 ± 0.804,5,6,7 22.03 ± 0.586,7 

18:3n-6 0.14 ± 0.041,2,3 0.06 ± 0.041 0.05 ± 0.011 0.50 ± 0.146 0.41 ± 0.174,5,6 0.27 ± 0.032,3,4 0.14 ± 0.021,2,3 0.16 ± 0.031,2,3 0.16 ± 0.021,2,3 

20:2n-6 0.52 ± 0.034,5,6,7 0.52 ± 0.014,5,6,7 0.59 ± 0.057 0.47 ± 0.024,5 0.45 ± 0.032,3,4 0.50 ± 0.064,5,6,7 0.46 ± 0.033,4,5 0.51 ± 0.064,5,6,7 0.58 ± 0.066,7 

20:3n-6 0.89 ± 0.108 0.73 ± 0.017 0.74 ± 0.077 0.34 ± 0.021,2 0.37 ± 0.041,2,3 0.47 ± 0.053,4,5 0.45 ± 0.061,2,3,4 0.58 ± 0.115,6 0.58 ± 0.064,5,6 

20:4n-6 18.40 ± 1.403,4,5 18.10 ± 0.412,3,4 16.05 ± 1.091,2 17.79 ± 1.231,2,3 18.80 ± 1.353,4,5 19.97 ± 0.654,5,6,7 22.69 ± 0.838 21.30 ± 0.546,7,8 21.64 ± 0.537,8 

22:4n-6 0.82 ± 0.057 0.68 ± 0.026 0.64 ± 0.105,6 0.55 ± 0.044,5 0.44 ± 0.062,3,4 0.31 ± 0.081 0.33 ± 0.031,2 0.33 ± 0.031,2 0.33 ± 0.021,2 

22:5n-6 0.25 ± 0.033,4 0.19 ± 0.011,2,3,4 0.48 ± 0.135 0.50 ± 0.095 0.29 ± 0.104 0.13 ± 0.031,2,3 0.09 ± 0.011 0.10 ± 0.011,2 0.09 ± 0.021 

Σ n-6 PUFA 33.77 ± 0.381 34.72 ± 0.281 37.93 ± 0.402,3 39.84 ± 1.074,5 40.69 ± 0.555,6 43.62 ± 0.389,10 43.66 ± 0.499,10 44.63 ± 0.4510,11 45.44 ± 0.7611 

18:3n-3 0.30 ± 0.101,2 0.39 ± 0.021,2,3 0.51 ± 0.122,3,4,5 0.78 ± 0.176,7 0.67 ± 0.164,5,6 0.77 ± 0.135,6,7 0.53 ± 0.062,3,4,5,6 0.69 ± 0.075,6 0.70 ± 0.085,6 

20:5n-3 0.51 ± 0.07acefhi 0.56 ± 0.03abd 0.36 ± 0.05c 0.69 ± 0.12d 0.58 ± 0.09bdeg 0.62 ± 0.09bdfg 0.51 ± 0.03acghi 0.60 ± 0.03bdh 0.61 ± 0.09bdi 

22:5n-3 2.67 ± 0.326 3.25 ± 0.137 2.69 ± 0.166 2.02 ± 0.244,5 1.40 ± 0.102,3 1.17 ± 0.061,2,3 1.14 ± 0.121,2,3 1.19 ± 0.101,2,3 1.08 ± 0.101,2 

22:6n-3 13.86 ± 1.016,7 13.17 ± 0.356,7 10.05 ± 0.985 9.69 ± 0.985 9.53 ± 0.544,5 7.39 ± 0.162,3 7.20 ± 0.292,3 6.51 ± 0.401,2 5.71 ± 0.291 

Σ n-3 PUFA 17.40 ± 0.537 17.44 ± 0.457 13.69 ± 0.746 13.24 ± 0.895,6 12.24 ± 0.415 10.00 ± 0.292,3 9.43 ± 0.281,2 9.04 ± 0.371,2 8.16 ± 0.201 

20:3n-9 0.07 ± 0.01a 0.11 ± 0.01b 0.12 ± 0.03b 0.10 ± 0.02b 0.06 ± 0.01a 0.04 ± 0.01c 0.03 ± 0.01c 0.03 ± 0.01b 0.03 ± 0.01c 

Σ FA (mg/g) * 30 ± 2a 34 ± 1a 32 ± 2a 46 ± 6b 41 ± 2bcd 42 ± 3bcd 36 ± 3ac 35 ± 2a 36 ± 2ad 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.   
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Appendix Table 6.7: Fatty acid composition (weight %) of female brain 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 1.67 ± 0.097 0.95 ± 0.056 0.46 ± 0.062,3,4,5 0.33 ± 0.051,2,3 0.32 ± 0.091,2,3 0.27 ± 0.041,2 0.33 ± 0.101,2,3 0.39 ± 0.031,2,3,4 0.55 ± 0.054,5 

16:0 29.14 ± 0.51a 26.23 ± 0.44b 21.34 ± 1.01c 19.22 ± 1.16cd 18.63 ± 1.58df 17.61 ± 1.97de 20.24 ± 0.65cf 19.59 ± 1.29cd 19.26 ± 0.93cd 

18:0 15.78 ± 0.05a 17.34 ± 0.18b 18.61 ± 0.23c 19.17 ± 0.32cd 19.25 ± 0.22cde 19.56 ± 0.68de 20.09 ± 0.78e 19.38 ± 0.32cde 19.71 ± 0.34def 

22:0 0.06 ± 0.02a 0.18 ± 0.04ab 0.41 ± 0.10bc 0.53 ± 0.13c 0.57 ± 0.15cd 0.64 ± 0.22ce 0.44 ± 0.02bcf 0.48 ± 0.14cg 0.61 ± 0.11ch 

24:0 0.09 ± 0.03a 0.28 ± 0.07a 0.74 ± 0.19b 1.01 ± 0.22b 1.12 ± 0.29b 1.17 ± 0.34b 0.88 ± 0.03b 0.98 ± 0.25b 1.14 ± 0.20b 

Σ SFA 51.02 ± 0.47a 50.39 ± 0.43a 48.07 ± 0.59bc 47.06 ± 0.74bc 46.32 ± 0.87b 47.24 ± 1.47bc 48.22 ± 0.91c 47.34 ± 0.84bc 47.50 ± 0.62bc 

16:1 1.35 ± 0.035 0.82 ± 0.034 0.47 ± 0.032,3 0.36 ± 0.031,2 0.31 ± 0.031 0.37 ± 0.061,2,3 0.38 ± 0.021,2,3 0.38 ± 0.031,2,3 0.37 ± 0.051,2,3 

18:1n-7 2.32 ± 0.09a 2.70 ± 0.08b 3.00 ± 0.14bc 3.16 ± 0.08c 3.37 ± 0.23cdfgh 3.88 ± 0.36e 3.65 ± 0.05ef 3.58 ± 0.16eg 3.74 ± 0.19eh 

18:1n-9 10.36 ± 0.31a 11.19 ± 0.55ab 13.10 ± 0.83bc 14.51 ± 0.72cd 15.57 ± 1.15dfh 18.24 ± 1.78e 16.88 ± 0.29ef 16.24 ± 1.30deg 17.43 ± 1.03eh 

24:1n-9 0.07 ± 0.01a 0.18 ± 0.04a 0.51 ± 0.16ab 0.96 ± 0.25bc 1.15 ± 0.36cg 1.36 ± 0.50cdg 0.92 ± 0.03bce 1.12 ± 0.34cfg 1.56 ± 0.30g 

Σ MUFA 14.62 ± 0.41a 15.75 ± 0.75a 18.73 ± 1.42ab 21.34 ± 1.52bc 23.14 ± 2.42cg 28.09 ± 3.97d 24.69 ± 0.45cde 24.15 ± 2.37cdf 26.56 ± 2.06dg 

18:2n-6 1.22 ± 0.075 1.20 ± 0.055 1.30 ± 0.055 1.04 ± 0.063,4 1.02 ± 0.043,4 0.96 ± 0.072,3,4 0.84 ± 0.041,2 0.79 ± 0.061 0.76 ± 0.031 

18:3n-6 0.07 ± 0.017 0.02 ± 0.014,5,6 0.01 ± 0.011,2,3 0.01 ± 0.011,2,3 0.03 ± 0.016 0.01 ± 0.011,2,3,4 0.01 ± 0.011,2,3 0.01 ± 0.011,2,3 0.01 ± 0.011,2 

20:2n-6 0.16 ± 0.011 0.19 ± 0.011,2,3,4 0.24 ± 0.022,3,4 0.23 ± 0.021,2,3,4 0.24 ± 0.042,3,4 0.25 ± 0.064 0.18 ± 0.021,2,3 0.17 ± 0.021,2 0.18 ± 0.021,2,3,4 

20:3n-6* 0.48 ± 0.02ac 0.54 ± 0.02a 0.62 ± 0.05b 0.56 ± 0.03ab 0.54 ± 0.06ab 0.50 ± 0.07ac 0.43 ± 0.01cd 0.38 ± 0.03d 0.39 ± 0.02de 

20:4n-6 13.52 ± 0.18a 13.20 ± 0.30a 11.50 ± 0.65b 10.25 ± 0.51bc 9.99 ± 0.86c 8.17 ± 0.99d 9.75 ± 0.83ce 9.00 ± 0.69cdf 9.02 ± 0.48cdg 

22:4n-6 3.01 ± 0.073,4,5,6,7 3.07 ± 0.075,6,7 3.14 ± 0.067 3.01 ± 0.103,4,5,6,7 3.13 ± 0.096,7 2.75 ± 0.041,2 2.83 ± 0.171,2,3,4 2.70 ± 0.171 2.80 ± 0.081,2,3 

22:5n-6 1.42 ± 0.07a 1.21 ± 0.06b 0.89 ± 0.07c 0.77 ± 0.10cd 0.70 ± 0.10d 0.38 ± 0.08e 0.51 ± 0.04e 0.47 ± 0.09e 0.41 ± 0.07e 

Σ n-6 PUFA 19.89 ± 0.18a 19.45 ± 0.25a 17.73 ± 0.66b 15.91 ± 0.69c 15.69 ± 0.83c 13.06 ± 0.88d 14.57 ± 0.97cd 13.54 ± 0.83d 13.58 ± 0.57d 

18:3n-3 0.01 ± 0.01a 0.01 ± 0.01a 0.03 ± 0.01abc 0.03 ± 0.01bc 0.02 ± 0.01ab 0.04 ± 0.01c 0.03 ± 0.01cd 0.03 ± 0.01bce 0.04 ± 0.01cf 

20:5n-3 0.04 ± 0.01a 0.03 ± 0.01ab 0.03 ± 0.01abc 0.03 ± 0.01a 0.03 ± 0.01abc 0.02 ± 0.01bce 0.01 ± 0.01ce 0.02 ± 0.01bcde 0.01 ± 0.01e 

22:5n-3* 0.33 ± 0.02ab 0.34 ± 0.01a 0.29 ± 0.02bc 0.26 ± 0.02cd 0.24 ± 0.01d 0.15 ± 0.02e 0.15 ± 0.01e 0.15 ± 0.02e 0.14 ± 0.01e 

22:6n-3 12.19 ± 0.26ab 12.53 ± 0.18ab 13.31 ± 0.63a 13.40 ± 0.82a 13.66 ± 0.82a 11.08 ± 1.56b 12.19 ± 0.41ab 12.75 ± 1.20ab 11.93 ± 1.07ab 

Σ n-3 PUFA 12.58 ± 0.27ab 12.92 ± 0.18ab 13.67 ± 0.63a 13.75 ± 0.84a 13.95 ± 0.83a 11.30 ± 1.56b 12.40 ± 0.42ab 12.96 ± 1.20ab 12.14 ± 1.06ab 

20:3n-9 0.13 ± 0.01ab 0.14 ± 0.01a 0.11 ± 0.02bc 0.09 ± 0.01ceg 0.10 ± 0.02cde 0.08 ± 0.02eg 0.07 ± 0.01efg 0.06 ± 0.01g 0.07 ± 0.01gh 

Σ FA (mg/g) 22 ± 1a 30 ± 1b 34 ± 6b 36 ± 4b 36 ± 2b 56± 6c 48 ± 5cd 45 ± 4d 48 ± 3cd 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.   
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Appendix Table 6.8: Fatty acid composition (weight %) of male brain 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 1.82 ± 0.257 1.05 ± 0.046 0.44 ± 0.041,2,3,4,5 0.25 ± 0.111 0.60 ± 0.115 0.35 ± 0.041,2,3 0.42 ± 0.031,2,3,4,5 0.52 ± 0.063,4,5 0.62 ± 0.105 

16:0 29.82 ± 0.56a 26.50 ± 0.36b 21.86 ± 0.78c 18.45 ± 0.60d 19.19 ± 1.48d 19.73 ± 1.76cd 20.07 ± 0.81cd 18.85 ± 0.63d 18.61 ± 1.34d 

18:0 15.75 ± 0.25a 17.06 ± 0.20b 19.06 ± 0.57c 19.07 ± 0.32c 19.33 ± 0.68c 19.52 ± 0.60c 19.60 ± 0.24c 19.70 ± 0.43c 19.40 ± 0.59c 

22:0 0.05 ± 0.01a 0.19 ± 0.05ab 0.40 ± 0.02bc 0.59 ± 0.09c 0.62 ± 0.16cd 0.48 ± 0.17ce 0.44 ± 0.08cf 0.62 ± 0.04cg 0.64 ± 0.18ch 

24:0 0.09 ± 0.01a 0.29 ± 0.08ab 0.70 ± 0.02bde 1.14 ± 0.17c 1.23 ± 0.32c 0.89 ± 0.29cd 0.89 ± 0.15ce 1.28 ± 0.09c 1.16 ± 0.30c 

Σ SFA 51.52 ± 0.39a 50.28 ± 0.26a 47.80 ± 1.19beg 46.23 ± 0.27bc 46.40 ± 1.06bd 48.34 ± 1.23e 48.40 ± 0.53ef 47.61 ± 0.32beg 46.57 ± 1.02cdg 

16:1 1.49 ± 0.186 0.86 ± 0.034 0.49 ± 0.033 0.34 ± 0.011 0.33 ± 0.021 0.40 ± 0.051,2,3 0.36 ± 0.031,2 0.35 ± 0.021 0.32 ± 0.051 

18:1n-7 2.28 ± 0.05a 2.65 ± 0.11ab 2.99 ± 0.09bc 3.20 ± 0.12cfg 3.33 ± 0.28cde 3.65 ± 0.33eh 3.63 ± 0.15efh 3.55 ± 0.16egh 3.83 ± 0.29h 

18:1n-9 10.22 ± 0.36a 11.17 ± 0.52ab 13.14 ± 0.36bc 14.70 ± 0.76cd 15.83 ± 1.21dg 16.44 ± 1.78deg 16.66 ± 0.90dfg 17.29 ± 0.42g 17.77 ± 1.35gh 

24:1n-9 0.12 ± 0.10a 0.18 ± 0.05a 0.50 ± 0.06ab 1.07 ± 0.17bcg 1.22 ± 0.38cg 0.94 ± 0.38bcd 0.98 ± 0.12bce 1.53 ± 0.13cfg 1.59 ± 0.54g 

Σ MUFA 14.61 ± 0.40a 15.70 ± 0.72a 18.54 ± 0.34ab 21.86 ± 1.49bc 23.32 ± 2.53cg 24.71 ± 3.63cdg 24.85 ± 1.50ceg 25.90 ± 0.84cfg 27.21 ± 3.03g 

18:2n-6 1.23 ± 0.115 1.23 ± 0.035 1.23 ± 0.045 1.06 ± 0.054 1.07 ± 0.054 1.04 ± 0.063,4 0.98 ± 0.053,4 0.91 ± 0.052,3 0.98 ± 0.033,4 

18:3n-6 0.07 ± 0.017 0.03 ± 0.015,6 0.02 ± 0.013,4,5 0.02 ± 0.012,3,4,5 0.03 ± 0.015,6 0.01 ± 0.011,2,3 0.01 ± 0.011,2,3 0.01 ± 0.011,2,3 0.01 ± 0.011 

20:2n-6 0.16 ± 0.011 0.19 ± 0.011,2,3,4 0.22 ± 0.021,2,3,4 0.25 ± 0.044 0.24 ± 0.053,4 0.24 ± 0.052,3,4 0.24 ± 0.022,3,4 0.23 ± 0.021,2,3,4 0.24 ± 0.053,4 

20:3n-6* 0.46 ± 0.02a 0.55 ± 0.03b 0.62 ± 0.01b 0.59 ± 0.05b 0.57 ± 0.06b 0.46 ± 0.06a 0.46 ± 0.03a 0.44 ± 0.02a 0.44 ± 0.04a 

20:4n-6 13.34 ± 0.16a 13.21 ± 0.42ab 11.81 ± 0.26bc 10.59 ± 0.76cd 10.17 ± 0.99dg 9.32 ± 1.01deg 9.27 ± 0.63dfg 8.88 ± 0.33g 8.99 ± 0.99gh 

22:4n-6 2.97 ± 0.062,3,4,5,6,7 3.02 ± 0.023,4,5,6,7 3.14 ± 0.137 3.16 ± 0.117 3.06 ± 0.064,5,6,7 2.71 ± 0.121 2.80 ± 0.131,2,3 2.89 ± 0.141,2,3,4,5 2.90 ± 0.071,2,3,4,5,6 

22:5n-6 1.49 ± 0.12a 1.19 ± 0.04b 0.89 ± 0.04c 0.81 ± 0.10cd 0.71 ± 0.12d 0.49 ± 0.11e 0.42 ± 0.06e 0.41 ± 0.03e 0.35 ± 0.05e 

Σ n-6 PUFA 19.76 ± 0.23a 19.43 ± 0.42ab 17.96 ± 0.43bc 16.55 ± 0.84cd 15.90 ± 1.02de 14.31 ± 1.07ef 14.22 ± 0.69f 13.78 ± 0.40fg 13.94 ± 0.97fh 

18:3n-3 0.02 ± 0.01ab 0.01 ± 0.01a 0.03 ± 0.01bcf 0.02 ± 0.01abc 0.01 ± 0.01ab 0.04 ± 0.01cf 0.04 ± 0.01cdf 0.04 ± 0.01cef 0.04 ± 0.01f 

20:5n-3 0.04 ± 0.01a 0.03 ± 0.01abc 0.03 ± 0.01abc 0.04 ± 0.02ab 0.02 ± 0.01bcd 0.02 ± 0.01cd 0.01 ± 0.01d 0.01 ± 0.01de 0.02 ± 0.01cdf 

22:5n-3* 0.34 ± 0.02ab 0.34 ± 0.03a 0.29 ± 0.03b 0.30 ± 0.02ab 0.25 ± 0.01c 0.19 ± 0.02d 0.18 ± 0.02d 0.17 ± 0.01d 0.17 ± 0.01d 

22:6n-3 12.10 ± 0.17ab 12.57 ± 0.22ab 13.50 ± 0.34a 13.56 ± 0.86a 13.11 ± 0.75ab 12.06 ± 1.48ab 11.93 ± 0.74ab 11.61 ± 0.83b 11.98 ± 1.09ab 

Σ n-3 PUFA 12.51 ± 0.17ab 12.98 ± 0.21ab 13.86 ± 0.35a 13.95 ± 0.86a 13.40 ± 0.75ab 12.32 ± 1.48ab 12.18 ± 0.74ab 11.85 ± 0.83b 12.21 ± 1.09ab 

20:3n-9 0.13 ± 0.02a 0.14 ± 0.01a 0.10 ± 0.01bc 0.11 ± 0.02ab 0.10 ± 0.01b 0.07 ± 0.02cf 0.07 ± 0.01cdf 0.07 ± 0.01cef 0.06 ± 0.01f 

Σ FA (mg/g) 22 ± 1a 30 ± 1ab 34 ± 2b 32 ± 3bc 37 ± 3bdf 47 ± 5e 47 ± 2e 46 ± 4ef 47 ± 9e 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.   
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Appendix Table 6.9: Fatty acid composition (weight %) of female heart 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 1.23 ± 0.18a 1.39 ± 0.25a 1.61 ± 0.43a 0.65 ± 0.27b 0.39 ± 0.23bc 0.15 ± 0.10c 0.22 ± 0.11bc 0.33 ± 0.09bc 0.24 ± 0.13bc 

16:0 18.62 ± 0.49a 18.53 ± 0.31a 17.69 ± 0.49a 14.41 ± 0.63b 13.74 ± 0.46bc 13.11 ± 0.85bc 12.72 ± 0.93c 13.15 ± 0.49bc 13.17 ± 1.31bc 

18:0 19.01 ± 0.45ab 18.73 ± 0.53ab 17.80 ± 0.71a 19.15 ± 0.89ab 19.72 ± 0.79ab 20.20 ± 1.05ab 20.49 ± 1.23b 20.08 ± 2.25ab 20.16 ± 1.35ab 

22:0 0.17 ± 0.02a 0.19 ± 0.01ad 0.25 ± 0.01be 0.31 ± 0.02c 0.25 ± 0.03be 0.25 ± 0.02b 0.21 ± 0.02def 0.24 ± 0.02bf 0.10 ± 0.01g 

24:0 0.23 ± 0.02acd 0.25 ± 0.01a 0.27 ± 0.01a 0.25 ± 0.02a 0.17 ± 0.02b 0.19 ± 0.02bc 0.17 ± 0.03b 0.20 ± 0.02bd 0.09 ± 0.02e 

Σ SFA 

42.92 ± 

0.273,4,5 43.09 ± 0.203,4,5 41.13 ± 0.443 38.24 ± 0.452 37.22 ± 0.371,2 37.12 ± 0.451,2 37.64 ± 0.501,2 37.63 ± 2.001,2 37.15 ± 0.471,2 

16:1 0.47 ± 0.14 0.22 ± 0.02 0.20 ± 0.05 0.21 ± 0.05 0.35 ± 0.09 0.39 ± 0.18 0.31 ± 0.18 0.38 ± 0.15 0.39 ± 0.19 

18:1n-7 3.42 ± 0.07ac 3.46 ± 0.10ab 3.71 ± 0.17b 3.49 ± 0.13ab 3.40 ± 0.12ac 3.48 ± 0.20ab 3.22 ± 0.15acd 3.14 ± 0.04cd 3.01 ± 0.12d 

18:1n-9 6.48 ± 1.08a 4.43 ± 0.52ab 3.82 ± 0.65b 4.23 ± 1.12ab 5.09 ± 0.92ab 4.95 ± 1.52ab 4.34 ± 1.38ab 5.14 ± 1.22ab 4.83 ± 1.87ab 

24:1n-9 0.16 ± 0.01a 0.12 ± 0.01b 0.11 ± 0.02b 0.10 ± 0.01b 0.06 ± 0.01c 0.06 ± 0.01c 0.07 ± 0.01c 0.07 ± 0.01c 0.05 ± 0.01c 

Σ MUFA 11.27 ± 1.15a 8.95 ± 0.47ab 8.38 ± 0.54b 8.61 ± 1.04ab 9.44 ± 0.89ab 9.47 ± 1.54ab 8.71 ± 1.41ab 9.46 ± 1.34ab 9.02 ± 1.95ab 

18:2n-6 8.88 ± 0.791 10.73 ± 0.671 15.74 ± 0.652 17.05 ± 2.472,3 19.85 ± 1.373,4,5 18.17 ± 1.462,3,4 18.85 ± 1.202,3,4,5 19.87 ± 2.573,4,5 19.53 ± 0.533,4,5 

18:3n-6 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 

20:2n-6* 0.74 ± 0.04a 0.80 ± 0.01b 0.60 ± 0.01c 0.48 ± 0.03d 0.35 ± 0.03e 0.33 ± 0.02ef 0.28 ± 0.01fg 0.27 ± 0.02g 0.26 ± 0.03gh 

20:3n-6 1.03 ± 0.06a 1.10 ± 0.02a 0.82 ± 0.03b 0.51 ± 0.03c 0.39 ± 0.01d 0.36 ± 0.04d 0.34 ± 0.02d 0.33 ± 0.03d 0.32 ± 0.04d 

20:4n-6 21.97 ± 1.02a 20.22 ± 0.84ac 16.00 ± 0.55b 17.28 ± 1.03b 17.32 ± 0.87b 18.26 ± 1.43bc 17.65 ± 1.37b 16.17 ± 1.09b 16.94 ± 0.93b 

22:4n-6 2.09 ± 0.197 1.81 ± 0.026 1.43 ± 0.055 1.26 ± 0.034,5 1.05 ± 0.033,4 1.06 ± 0.173,4 0.92 ± 0.072,3 0.84 ± 0.051,2,3 0.84 ± 0.161,2,3 

22:5n-6 0.51 ± 0.052,3,4 0.56 ± 0.023,4,5 0.75 ± 0.047 0.98 ± 0.108 0.72 ± 0.075,6,7 0.77 ± 0.127 0.67 ± 0.034,5,6,7 0.60 ± 0.104,5,6,7 0.61 ± 0.054,5,6,7 

Σ n-6 PUFA 35.29 ± 0.401,2 35.29 ± 0.201,2 35.41 ± 0.451,2 37.61 ± 1.892,3,4 39.73 ± 0.484,5,6 38.99 ± 0.484,5 38.76 ± 1.284,5 38.14 ± 1.423,4 38.55 ± 0.734 

18:3n-3 0.21 ± 0.04 0.25 ± 0.04 0.34 ± 0.09 0.27 ± 0.17 0.41 ± 0.15 0.39 ± 0.16 0.37 ± 0.18 0.50 ± 0.18 0.41 ± 0.16 

20:5n-3* 0.19 ± 0.02a 0.19 ± 0.01a 0.15 ± 0.02ab 0.15 ± 0.02ab 0.15 ± 0.01ab 0.13 ± 0.01b 0.14 ± 0.01bc 0.15 ± 0.03bd 0.13 ± 0.02be 

22:5n-3 2.54 ± 0.26a 4.40 ± 0.14b 4.70 ± 0.23b 3.25 ± 0.39c 2.32 ± 0.18ad 1.88 ± 0.16de 1.72 ± 0.05e 1.80 ± 0.15ef 1.74 ± 0.08eg 

22:6n-3* 6.93 ± 0.67a 7.33 ± 0.30a 9.33 ± 0.79ab 11.01 ± 2.08be 10.48 ± 0.97bce 11.71 ± 0.97bde 12.26 ± 0.85e 11.91 ± 1.15ef 12.81 ± 1.58eg 

Σ n-3 PUFA* 9.92 ± 0.84a 12.22 ± 0.36ab 14.59 ± 0.89bh 14.73 ± 2.38bch 13.39 ± 0.98bdh 14.12 ± 0.94beh 14.51 ± 0.70bfh 14.38 ± 1.02bgh 15.12 ± 1.46h 

20:3n-9 0.03 ± 0.01a 0.03 ± 0.01ab 0.04 ± 0.01bc 0.05 ± 0.01c 0.03 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 

Σ FA (mg/g) 21 ± 3a 26 ± 2b 27 ± 1b 29 ± 2b 29 ± 2b 26 ± 1b 26 ± 1b 28 ± 1b 27 ± 1b 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.   
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Appendix Table 6.10: Fatty acid composition (weight %) of male heart 

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

14:0 1.39 ± 0.42a 1.50 ± 1.16a 1.71 ± 0.51a 0.75 ± 0.35ab 0.25 ± 0.17b 0.14 ± 0.11bc 0.34 ± 0.29bd 0.16 ± 0.08be 0.21 ± 0.06bf 

16:0 19.45 ± 1.27a 18.91 ± 1.76a 17.64 ± 0.55a 14.34 ± 0.62b 13.44 ± 0.50bc 12.94 ± 1.41bc 13.25 ± 1.41bc 11.88 ± 0.83c 12.12 ± 0.73bc 

18:0 19.64 ± 2.30 18.51 ± 2.00 17.70 ± 0.89 18.75 ± 0.87 20.17 ± 0.68 20.78 ± 1.52 19.80 ± 2.40 20.49 ± 1.10 19.86 ± 0.79 

22:0 0.19 ± 0.02a 0.20 ± 0.04ab 0.25 ± 0.01bcefg 0.30 ± 0.01c 0.26 ± 0.03cdefg 0.23 ± 0.02ae 0.21 ± 0.04af 0.21 ± 0.01ag 0.10 ± 0.01h 

24:0 0.27 ± 0.03a 0.26 ± 0.04a 0.29 ± 0.01a 0.24 ± 0.02a 0.18 ± 0.04b 0.17 ± 0.01b 0.14 ± 0.03b 0.17 ± 0.03b 0.08 ± 0.02c 

Σ SFA 44.52 ± 2.175 43.40 ± 1.414,5 41.41 ± 0.573,4 37.94 ± 0.321,2 37.37 ± 0.381,2 37.41 ± 0.591,2 37.30 ± 1.141,2 36.71 ± 0.581,2 35.88 ± 0.451 

16:1 0.29 ± 0.03 0.23 ± 0.15 0.20 ± 0.07 0.29 ± 0.11 0.29 ± 0.10 0.37 ± 0.33 0.40 ± 0.30 0.20 ± 0.11 0.28 ± 0.11 

18:1n-7 3.27 ± 0.24ab 3.45 ± 0.31ab 3.59 ± 0.15a 3.50 ± 0.18ab 3.61 ± 0.08a 3.40 ± 0.17ab 3.16 ± 0.16b 3.35 ± 0.15ab 3.19 ± 0.10bc 

18:1n-9 5.78 ± 0.91 4.28 ± 2.11 4.05 ± 1.11 4.67 ± 0.79 4.51 ± 1.00 4.21 ± 1.91 5.15 ± 2.91 3.73 ± 1.36 4.67 ± 0.85 

24:1n-9 0.17 ± 0.01a 0.13 ± 0.01b 0.12 ± 0.01bc 0.10 ± 0.01cef 0.06 ± 0.02d 0.07 ± 0.01d 0.08 ± 0.01de 0.07 ± 0.01df 0.05 ± 0.02d 

Σ MUFA 10.25 ± 0.89 8.77 ± 1.89 8.60 ± 1.03 9.18 ± 0.85 9.03 ± 1.09 8.64 ± 2.12 9.52 ± 3.00 8.16 ± 1.39 8.99 ± 0.94 

18:2n-6 8.34 ± 1.361 10.43 ± 1.741 16.00 ± 0.892 17.53 ± 1.052,3 19.55 ± 1.423,4,5 19.90 ± 0.933,4,5 21.63 ± 2.924,5,6 22.07 ± 1.385,6 23.74 ± 1.226 

18:3n-6 0.04 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 

20:2n-6* 0.80 ± 0.13a 0.83 ± 0.04a 0.59 ± 0.01b 0.46 ± 0.03c 0.37 ± 0.03cd 0.36 ± 0.02cd 0.34 ± 0.02d 0.33 ± 0.01de 0.31 ± 0.03df 

20:3n-6 1.08 ± 0.09a 1.08 ± 0.08a 0.85 ± 0.02b 0.51 ± 0.02c 0.40 ± 0.02d 0.37 ± 0.02d 0.34 ± 0.01d 0.36 ± 0.02d 0.33 ± 0.02d 

20:4n-6 21.68 ± 1.28a 19.75 ± 2.71acdefg 16.04 ± 1.06b 17.16 ± 0.81bc 17.76 ± 0.91bd 17.64 ± 1.54be 16.15 ± 2.46b 17.28 ± 0.97bf 16.44 ± 0.41bg 

22:4n-6 2.26 ± 0.207 1.75 ± 0.196 1.48 ± 0.055 1.25 ± 0.084,5 1.07 ± 0.103,4 0.94 ± 0.062,3, 0.77 ± 0.051,2 0.69 ± 0.021,2 0.66 ± 0.091 

22:5n-6 0.51 ± 0.032,3,4 0.56 ± 0.093,4,5,6 0.72 ± 0.045,6,7 0.97 ± 0.098 0.74 ± 0.166,7 0.54 ± 0.032,3,4 0.42 ± 0.071,2,3 0.39 ± 0.041,2 0.34 ± 0.021 

Σ n-6 PUFA 34.75 ± 2.311 34.48 ± 1.421 35.76 ± 0.471,2,3 37.95 ± 1.254,5 39.93 ± 0.444,5,6 39.78 ± 1.194,5,6 39.71 ± 0.474,5,6 41.16 ± 0.835,6 41.85 ± 1.036 

18:3n-3 0.20 ± 0.06 0.27 ± 0.20 0.36 ± 0.12 0.38 ± 0.11 0.33 ± 0.11 0.33 ± 0.16 0.48 ± 0.37 0.32 ± 0.15 0.45 ± 0.12 

20:5n-3* 0.21 ± 0.03a 0.20 ± 0.01a 0.16 ± 0.01b 0.16 ± 0.01b 0.14 ± 0.01b 0.14 ± 0.01b 0.15 ± 0.01b 0.15 ± 0.01b 0.15 ± 0.01b 

22:5n-3 2.58 ± 0.27ac 4.60 ± 0.75b 4.52 ± 0.50b 3.06 ± 0.24a 2.35 ± 0.22ac 2.10 ± 0.25c 1.94 ± 0.30cd 2.10 ± 0.17ce 1.95 ± 0.19cf 

22:6n-3* 6.28 ± 0.46a 7.98 ± 1.47ab 8.58 ± 1.01abf 10.47 ± 1.15bd 10.59 ± 1.06bcd 11.35 ± 0.97d 10.51 ± 2.17bde 11.03 ± 1.11df 10.46 ± 0.43bdg 

Σ n-3 PUFA* 9.32 ± 0.58a 13.09 ± 2.01b 13.68 ± 1.33b 14.12 ± 1.30b 13.43 ± 1.18b 13.95 ± 1.05b 13.11 ± 2.10b 13.63 ± 1.14b 13.03 ± 0.48b 

20:3n-9 0.02 ± 0.01ad 0.03 ± 0.01a 0.04 ± 0.01b 0.05 ± 0.01c 0.02 ± 0.01ad 0.02 ± 0.01ad 0.02 ± 0.01ad 0.01 ± 0.01d 0.02 ± 0.01de 

Σ FA (mg/g) 21 ± 2 23 ± 2 27 ± 2 27 ± 1 27 ± 3 26 ± 2 26 ± 6 25 ± 1 27 ± 2 

Mean ± SD, n=5. Different numerical superscripts represent sex x time interactions and different alphabetical superscripts represent differences across time that are significantly 

different by Tukey’s HSD following a significant F-value (p< 0.05) by two-way ANOVA. *Indicates a significant main effect of sex by two-way ANOVA (p< 0.05). SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids.  
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7 Examining the Effects of Dietary DHA Supplementation on Spatial Memory and the 

Hippocampus in Female and Male Rats  

7.1 Introduction 

 Interactions between DHA supplementation and biological sex on episodic and working 

memory have been reported in young adults [5], but cognitive sexual dimorphisms may begin 

earlier [20,125]. Modelling these differences in animals could help uncover the mechanisms 

behind the interactions shown in humans. To date, studies reporting the effects of DHA on 

spatial memory in animal models have generally included only adult males and n-3 PUFA 

deficient diets [6,8,9,73]. Additionally, lipidomic analysis on the hippocampus, an area of the 

brain critical to spatial memory [91], has not been performed in both sexes following dietary 

DHA supplementation. An animal model of DHA supplementation including both sexes and 

provided Adequate Fat Western Diets (AFWD), could generate findings more applicable to 

humans. Combining spatial memory analyses with an examination of the hippocampal lipidome 

could provide further insight as to how DHA supplementation affects spatial memory in the rat, 

and examining the erythrocyte lipidome could reveal potential biomarkers for hippocampal DHA 

status [133]. Therefore, the aim of this study was to determine the effect of DHA 

supplementation in a rat model using ALA adequate [134,135] AFWDs [100] to provide insight 

into how sexual dimorphisms affect spatial memory in rats.  

7.2 Methods 

7.2.1 Animals and Study Design 

 Six female rats were bred on campus and placed on AIN-93G based AFWDs with or 

without 2% of total fatty acid mass DHA supplementation (Table 3) after confirmation of 
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pregnancy by vaginal plug. Diets were purchased from Envigo (Mississauga, Ontario, Canada). 

The AFWD used in this study is designed to contain a fatty acid profile typically consumed in 

Western societies, but at an adequate amount of total fat for rodents as outlined in the AIN-93G 

formulation [136]. This reduction in fat compared to the typical Total Western Diet (TWD) [100] 

is important, as a high consumption of SFAs is related to mastitis and inflammation during 

lactation [137]. The 2% DHA supplementation was chosen as this amount has been suggested to 

maximize brain DHA levels [138]. Rats and their pups were kept in a temperature controlled 

room with a 12hr light cycle at 10pm-10am. After weaning, pups were placed on the same diets 

as their mothers, underwent behavioural testing as outlined below at 6 weeks of age, and were 

sacrificed at 7 weeks of age. Plasma, erythrocytes, whole blood, heart, and liver were collected 

whole and snap frozen in liquid nitrogen. Brain was separated into brainstem, cerebellum, cortex, 

hippocampus, striatum, and rest of brain sections over wax sheeting cooled by dry ice, then snap 

frozen in liquid nitrogen. Tissues were then stored at -80°C until analysis. Culling litters to 10 

pups each was considered. However, the reductions in variability from culling on pup weight, 

nutrient availability, and behaviour are still controversial [128,139,140], and mothers may 

already have natural adaptations to adjust milk volume to litter sizes [141]. For these reasons, 

litters were not culled to avoid introducing a confounding factor by reducing perinatal demand 

for maternal DHA between placental transfer and breast milk production. 

7.2.2 Behavioural Testing 

 During testing, rats were placed in clear, polypropylene cages with heating pads 

underneath. At the end of testing, rats were dried and returned to their individual cage. The order 

of testing was chosen at random, and swim patterns were recorded using a Noldus Ethovision XT 

v8.5 video tracking system (Noldus Information Technology, Leesburg, VA, USA). 
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  The testing protocol began with the learning phase, which consisted of 4 trials per day 

for 4 days, starting once at each of the 4 starting positions (NW, N, E, SE) with approximately 10 

min intertrial intervals. Starting positions were approximately equidistant from the platform and 

the order of the starting positions was sorted at random. Timers started as the rats were released 

into the pool facing the wall and stopped when rats touched the platform. Rats had 60s to reach 

the platform and were allowed to remain on it for 30s to orientate themselves. Unsuccessful rats 

were guided to the platform after 60s and allowed to remain on it for 30s. 

 Memory retention was then assessed using a probe test 24h after the last day of the 

learning phase. After the platform was removed, rats were given 30s to search for the platform 

and the time spent in the target quadrant was recorded. Finally, a visual test using a styrofoam 

ball above a platform placed in a different quadrant was performed after the probe test to ensure 

animals could locate visual cues. 

7.2.3 Lipidomic Analyses 

Levels of DHA containing lipid species were determined using ultra high pressure liquid 

chromatography with tandem mass spectrometry (UHPLC-MS/MS). Lipid extracts, spiked with 

500pmol 1,2-diheptadecanoyl-sn-glycero-3-phosphatidylcholine (17:0/17:0 PC) as the internal 

standard, were dried under nitrogen gas and resuspended into 100µL of 65:35:5 acetonitrile-

isopropanol-water + 0.1% formic acid and stored at 4 ºC until analysis. 

 The UHPLC-MS/MS system was a Waters Synapt G2Si QTOF coupled to a Dionex 

UltiMate 3000 UHPLC system (Mississauga, ON) equipped with a Waters ACQUITY CSH C18 

column with dimensions 1.7µm x 2.1mm x 150mm. A reverse-phase, binary multistep HPLC 

protocol using A, 60:40 acetonitrile-water + 0.1% formix acid + 10 mM ammonium formate and 
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B, 90:10 isopropanol-acetonitrile + 0.1% formic acid + 10 mM ammonium formate to separate 

polar and nonpolar lipids.  Column temperature was set at 45 ºC and tray temperature at 4 ºC.  

 The QTOF (quadrupole time of flight) mass spectrometer was operated under positive 

electrospray ionization for PC, PE, and TAG analysis. Data dependent acquisition (DDA) for 

top-5 ions was used with a scan range of m/z 50-1000, a scan frequency of 0.1 sec, and transfer 

cell collision energy ramps of 20-30V at low mass and 30-50V at high mass. All data were lock-

mass corrected using leucine enkephalin (m/z 556.2771) and processed using ProGenesis QI 

software (Nonlinear Dynamics, Newcastle upon Tyne, UK). Data are expressed as relative 

abundancies (ratios of analyte/internal standard) with PC data presented as concentrations as the 

internal standard was 17:0/17:0 PC.   

7.2.4 Fatty Acid Analyses 

RBC and hippocampal tissues were collected for fatty acid analyses. Lipids were 

extracted using the methods described in section 4.2, and fatty acids were analysed by gas 

chromatography as described in section 4.3. 

7.2.5 Statistical Analyses 

Behavioural data were analysed in two ways: 1) with session data analyzed by pup, or 2) 

with session data analyzed by litter. When sessions were analyzed by pup, the four trials of each 

pup in a given session were averaged and analyzed as a function of the overall performance of 

the individual pups. The data of each pup were then divided into a 2x2 factorial for diet and sex 

(n=14-16). When sessions were analyzed by litter, the trials of the males and females of each 

litter were averaged and analyzed as one entity. Groups were then divided into a 2x2 factorial for 

diet and sex (n=3). No adjustments for sex ratio imbalances outlined in Table 5 were made. 
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Mean comparisons for behavioural, fatty acid, and identified lipid species analyses were 

performed using SPSS release 20.0 (IBM, Chicago, IL, USA). The effect of diet, sex, and a diet 

x sex interaction was examined using a two-way ANOVA. Individual means were compared by 

Tukey post hoc testing after significant F-value by ANOVA. Fatty acid and lipidomic data are 

presented as means ± SD with significance accepted when p<0.05, and behavioural data are 

presented as means ± SEM with significance accepted when p<0.05. 

Analyses to determine significantly different compounds detected by UHPLC-MS prior 

to manual identification were performed using ProGenesis QI software (Nonlinear Dynamics, 

Newcastle upon Tyne, UK). Erythrocyte compounds were identified using the ProGenesis q-

value system, which adjusted p-values according to multiple testing by adjusting for each 

individual test, reducing the chances of identifying false positives. Erythrocyte species were 

identified with a q-value of q<0.05, and hippocampal species were identified with a p-value of 

p<0.05. These values were used to reduce the number of detected species into a manageable 

amount that could be manually identified. 

Pearson’s correlations were used to examine the association between hippocampal and 

erythrocyte fatty acids and lipid species. Significance was accepted when p<0.05. 

  



71 

 

7.3 Results 

7.3.1 Body Weight and Food Intake 

 DHA fed rats were significantly heavier than controls from 21 to 47 days of age (Figure 

10). Males were heavier than females from 28 to 47 days of age. DHA fed rats consumed more 

diet at day 21, and males consumed more than females at 28, 35, and 42 days of age (Figure 11).  

7.3.2 Behavioural Testing 

 Statistical analyses for behavioural testing were performed in two ways: with session 

times analyzed 1) by individual pup, or 2) by litter. A priori analyses revealed no differences 

between litters or treatment groups during the first trial (data not shown). Maulchy’s test of 

sphericity also confirmed that within-subject variances for repeated measures were equal (data 

not shown). When session times were analyzed by pup, no significant dietary effects or sexual 

dimorphisms were detected for latency times, distance travelled, or velocity when all learning 

phase sessions were pooled together. The final session of the learning phase was then analyzed 

individually to determine if the learning phase concluded differently between groups. This two-

way ANOVA anlalysis indicated a significant effect of diet on latency time (p=0.048) (Figure 

12), but not distance travelled (p=0.084) (Figure 13) or velocity (p=0.622, data not shown), with 

the supplemented group taking longer to reach the platform, suggesting greater difficulty 

memorizing the platform position. For the probe test, no significant dietary effects or sexual 

dimorphisms were detected for time spent in the correct quadrant, average distance from the 

platform, or velocity (Figure 14). Conversely, when data were analyzed by litter, no significant 

effect of diet or sex was detected on latency time (Figure 15), distance travelled (Figure 16), or 

velocity (p=0.640, data not shown) in either the pooled sessions or during the final day of the 
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learning phase. Similarly, no significant differences were detected during the probe test (Figure 

17). 

7.3.3 Lipidomic Analyses of the Hippocampus 

DHA supplementation reduced ARA-containing lipid species in the hippocampus. Both 

normalized abundance and concentration measures of PC 18:1_20:4 and PC 18:0_20:4 were 

lower in the DHA supplemented group (Figure 18). The normalized abundancies of 22:5 

containing PE, alkenyl-PE, and a PS species were also lower in the DHA supplemented group 

(Figure 18). Of note, the normalized abundancies of the 22:5 containing species PE 16:0_22:5 

and alkenyl-PE 18:0_22:5 were the most affected, being 2.55 and 2.36 fold higher, respectively, 

in the control group hippocampi.  

7.3.4 Lipidomic Analyses of Erythrocytes 

 Erythrocytes in DHA supplemented rats also showed reductions in ARA-containing lipid 

species, and some changes in the hippocampus were mirrored in the erythrocyte fraction (Figure 

19). Of the lipid species affected in the hippocampus, PC 18:0_20:4, PC 18:1_20:4, and PE 

18:0_22:5 we also reduced in the erythrocytes of the supplemented group but showed an 

additional sex effect not shown in the hippocampus. In the erythrocytes, the effects of DHA 

supplementation on fatty acids appeared to have lipid class specificity. Reductions in ARA 

occurred primarily in the PC fraction, while reductions in 18:2 occurred primarily in PE. 

Conversely, both PS changes were due to increases in DHA. 

Both normalized abundance and concentration of PC 18:0_20:4 was lower in the DHA 

supplemented group. The normalized abundance of PC 18:1_20:4 was lower in the DHA group 
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as well, but concentrations were only nearly significant ( p = 0.076). Interestingly, PC 18:0_20:4 

was also higher in females, while PC 18:1_20:4 was higher in males.  

DHA containing lipid species also differed by diet and sex. PC 18:0_22:6 was higher in 

females, and PS 16:0_22:6 in males. Alkenyl-PE 18:0_22:6 was nearly significantly higher (p = 

0.084) in supplemented females than males, and higher in the DHA group. The normalized 

abundancies of PS were particularly sensitive to DHA supplementation. Both PS 16:0_22:6 and 

18:1_22:6 were higher in the supplemented group. Interestingly, PS 16:0_22:6 was higher in 

males than females. 

Sexual dimorphisms were also present in LA and adrenic acid containing species. In 

alkenyl-PE, 16:0_22:4 was higher in control males than control females, and lowest in DHA 

supplemented rats. The ARA precursor LA was also affected by sexual dimorphisms, and PE 

16:0_18:2 was higher in males.  

7.3.5 Fatty Acid Composition of Hippocampi and Erythrocytes 

 Fatty acid analyses of total lipid extracts indicated that DHA supplementation increased 

the relative percentages of all hippocampal n-3 PUFA except 20:3n-3 (Appendix Table 7.5) 

Interestingly, DHA supplementation also increased hippocampal relative percent and 

concentrations of ARA precursors, though ARA, adrenic acid, DPAn-6, and total n-6 PUFA 

concentrations were lower in the DHA supplemented group. The relative percentage of adrenic 

acid was significant for a sex x diet interaction, being higher in control females than males, and 

both sexes of the control group being higher than rats fed the supplemented diet. Concentrations 

and relative levels of hippocampal LA were higher in males.  
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 Some of the differences in the relative percentages of hippocampal fatty acids also 

occurred in the erythrocytes. Like the hippocampus, the relative percentages of LA, EPA, DPAn-

3 and DHA were higher in the supplemented group, while the relative percentages of adrenic 

acid, DPAn-6, and total n-6 PUFA were lower in the DHA group (Appendix Table 7.6). Males 

also had higher relative percentages of LA and 18:1n-7 in erythrocytes. The relative percentages 

of erythrocyte fatty acids also had additional differences as compared with the relative 

percentages of the hippocampal fatty acids. Females had higher relative percentages of DHA, 

EPA, and DPAn-6, and males had higher relative percentages of DPAn-3 and total MUFA 

(Appendix Table 7.6) .  

7.3.6 Correlations between Erythrocyte and Hippocampal Fatty acids and Lipid Species 

 Correlations between the concentrations and relative percentages of erythrocyte and 

hippocampal ARA, DPAn-6, and DHA were not significant within male or female dietary 

groups, but relative percentages of adrenic acid was significantly correlated in control males, and 

concentrations of adrenic acid in control females (Appendix Tables 7.7 and 7.8). 

 Correlations between lipid species were performed with sex and dietary groups pooled 

together to compare the results to a previous study[142], and with the groups separated as 

originally proposed. At the lipidomic level, the acyl lipid species of PE 18:0_22:5, PC 18:0_20:4 

and PC 18:1_20:4 in erythrocyets and the hippocampus were correlated. When sex and dietary 

groups were pooled, all species had significant correlations in normalized abundance or 

concentration (). When divided by sex or diet only, only nearly significant correlations were 

observed. In normalized abundance, PC 18:0_20:4 was nearly significantly correlated in the 

DHA group (r=0.74,p=0.060), and in males (r=0.74, p=0.055), and PE 18:0_22:5 was nearly 

significant in males (r=0.72, p=0.070). Some p<0.10 correlations were observed in concentration 
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values as well, with PC 18:1_20:4 in the control group (r=0.65, p=0.082) and in males (r=0.66, 

p=0.088) (Tables 7 and 8). Finally, when divided by sex and diet as originally proposed, these 

correlations were no longer significant except for concentrations of PC 18:1_20:4 in DHA males 

(Table 6). 

7.4 Discussion 

 This study shows that dietary DHA supplementation reduces hippocampal n-6 PUFA 

containing lipid species and increases latency times of the final day of the learning phase in 

adolescent female and male rats. This is the first report of adolescent males and females fed 

AFWDs with dietary DHA supplementation being assessed for spatial memory performance, and 

changes in hippocampal and erythrocyte lipid species at a medio lipidomic level [143]. No sex 

differences in behavioural performance were detected, and the DHA supplemented group 

unexpectedly had significantly longer latency times during the final day of the learning phase. 

Both diets in this study contained sufficient amounts of ALA [134,135]. This study agrees with 

reported increases in total fatty acid levels of DHA, but not with reported increases in DHA 

containing lipid species in the hippocampi of the supplemented group as shown in studies with 

deficient [78] or unreported [93] amounts of dietary ALA. The findings confirm previous reports 

of DHA supplementation reducing normalized abundancies of ARA-containing PC lipid species 

in the hippocampus [78], and also show that these reductions occur in erythrocytes as well. 

Behavioural results did not support the original hypothesis, and supplemented females did not 

perform differently than supplemented males, nor did the supplemented group perform better 

than the unsupplemented group in the MWM. Spatial memory analysis by MWM suggest that 

the reductions of n-6 PUFA in the hippocampus during DHA supplementation in ALA-sufficient 

diets could be increasing latency times in female and male adolescent rats. These observations 
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appear to support recent reports that a balance between ARA and DHA supplementation is most 

effective when supplementing LCPUFA perinatally[144,145].  

 The DHA diet used in this model was composed of 2%wt of total fatty acids as DHA. 

This amount is similar to amounts given to young adults in recent human trials [5] and consumed 

in populations with regular fish consumption [146]. Compared to previous animal trials 

examining DHA and spatial memory, the amount of DHA in the supplemented diet was higher 

than some previously used diets that used 1.1%wt of total fatty acids [6–9,73], but lower than 

others that used 11.2%wt [78]. This study is unique in that both diets provided to the mothers 

and dam reared pups were ALA sufficient [134,135]. While DHA supplementation increased 

normalized abundancies of DHA-containing lipid species in erythrocytes, DHA-containing lipid 

species in the hippocampus did not change, and ARA- containing lipid species were reduced. 

The similar brain DHA composition of the control group compared with the supplemented group 

agrees with previous reports that whole body synthesis rates of ALA are sufficient to supply the 

brain with adequate DHA [86]. The reductions in DPAn-6 but not DPAn-3 fatty acids in the 

hippocampus suggest reductions in 22:5-containing lipid species to be DPAn-6. These reductions 

in the 22:5- and ARA-containing lipid species in the hippocampus agree with previous research 

reporting a preference in the brain for DHA over DPAn-6 and ARA [147,148]. The reductions of 

ARA and DPAn-6 in PC, PE, alkenyl-PE, and PS are in agreement with previously reported data 

[78]. Although no DHA-containing lipid species were significantly increased in the hippocampus 

following supplementation, the relative percent of DHA in total fatty acids was higher in the 

supplemented group. These observations suggest that in rats fed adequate amounts of ALA and 

LA, DHA supplementation does not increase the normalized abundance of specific DHA-
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containing lipid species but does reduce DPAn-6 and ARA-containing lipid species in the 

hippocampus. 

Statistical analyses for the behavioural data were run in two ways to explore how the 

benefits of each would affect the interpretation. The first approach analyzes the data of each rat 

individually and reduces the impact of litter sex ratio imbalances, which was important for the 

interpretation of sex effects in this study. The second approach analyzes the data of each litter as 

a whole, and calls for a balanced subset of multiple litters to be used [125]. The use of a greater 

number of litters reduces the risk of a model with low genetic variability, and provides greater 

power as n=15 litters could be more powerful than n=15 individual rats from genetically similar 

backgrounds. However, the time and financial resources required to perform this method 

properly could be restrictive, and in this study, only 3 litters were used to meet the power 

requirements outlined in an a priori power analysis performed for ethics clearance, in which 

studies using similarly small genetic backgrounds were cited [105]. Unfortunately, this study 

design does not provide the genetic diversity that would provide the additional advantages of 

testing by litter. 

No overall effects of diet or sex were detected in the MWM. However, latency times of 

the DHA supplemented group during the final day of the learning phase were longer than 

controls. This may be due to the imbalance between LCPUFA supplementation, and the 

specificity for DHA over DPAn-6 in the brain [147–149], or due to competition with ARA [150]. 

A previous study has shown that high consumptions of DHA without ARA leads to reduced 

water maze performance that is improved with ARA supplementation, but these DHA 

consumptions were excessive, with DHA composing 5.42-5.45% total energy [150]. However, 

ARA is essential to water maze performance [145], and the reductions in ARA and 22:5-
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containing species in the brain without increases in DHA containing species could be 

detrimental. PL balance is also critical to brain function [151,152]. The observed reduction of all 

quantitatively measured PC species without any observed increases in other PC leaves the 

possibility that the supplementation of DHA without any n-6 LCPUFA supplementation could be 

altering PC/PE balance, but further research would be necessary.  

 The correlations between the concentrations of ARA containing PC species in the 

hippocampus and those in the erythrocytes, and the normalized abundances of 22:5-containing 

PE species in the hippocampus and erythrocytes are in partial agreement with previous reports of 

DHA composition by %wt correlating between PE species in erythrocytes and the hippocampus, 

when animals are not divided by dietary DHA consumption [142]. However, while previous 

reports only correlated total DHA fatty acids within the PE lipid class, this study demonstrates 

that reductions in the concentrations of ARA-containing PC, and the normalized abundancies of 

22:5-containing PE, can be correlated between erythrocytes and the hippocampus as well in both 

males and females. Additionally, this study shows that dividing lipidomic data according to the 

dietary DHA intakes and sex produces some nearly significant correlations, suggesting that 

lipidomic analyses of human trials with more even distributions of dietary intakes could uncover 

potential biomarkers. 

 The lack of a lipidomic and fatty acid analyses of all litters in this study is a limitation. In 

the interest of time, all litters have completed behavioural assessments, but only 4 rats per diet x 

sex group have undergone fatty acid and lipidomic analyses. The inclusion of all rats to meet the 

a priori criteria of a 5% type 1 error rate and 80% test power could change the aforementioned 

results. Future directions should include the addition of a dietary group with a 1:1 ARA:DHA 

supplementation ratio. Providing rats with this diet would provide further insight into whether 
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the reduction in ARA is due to an imbalance in dietary LCPUFA, and has implications related to 

the previously reported hypothesis that in male rats, dietary 18-carbon PUFA consumption plays 

a larger role in LCPUFA synthesis than gene expression [153]. Erythrocyte fatty acid analysis 

seems to provide an additional dimension to this hypothesis, as it appears the DHA group had 

significantly reduced ARA synthesis as compared with controls, which did not have high levels 

of dietary DHA to impede LA elongation. Lipidomic, genomic, and protein analysis of the 

collected hepatic tissues and plasma could provide further insight into how DHA 

supplementation affected ARA synthesis relative to how gene expression affected ARA 

synthesis. Additionally, kinetic analyses could uncover whether in-vivo incorporation rates of 

DHA and ARA into the brain differ between diets and sex. These incorporation rates change 

with availability [148], and data from erythrocytes suggest LCPUFA availability differed 

between sexes and diets. The balance between PE and PC could be investigated as well. With 

current lipidomic data suggesting reductions in hippocampal concentrations of PC, a potential 

imbalance in lipid class homeostasis could be occurring. This could be confirmed by quantitative 

analysis using a Splash Lipidomix mix containing multiple deuterated phospholipid internal 

standards [154]. Finally, the 1:1 ARA:DHA diet could provide rats with the spatial memory 

benefit originally hypothesized. Recent reports in children fed exclusively through infant formula 

with varying levels of DHA and a consistent amount of ARA during infancy found that those fed 

formula with either a lower or equal amount of DHA relative to ARA exhibited greater 

connectivity between frontal and parietal lobes, and greater white matter volume as compared to 

those fed the higher amount of DHA and controls [144].  
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7.5 Conclusion 

In conclusion, this study demonstrates that dietary DHA supplementation in rats with 

adequate ALA consumption affects spatial memory and increases latency times during the final 

day of the learning phase in the MWM. These results were significant for a diet effect. This 

study also reports that in the hippocampus, DHA supplementation reduced ARA- and 22:5-

containing lipid species, but did not increase DHA containing lipid species. However, increases 

in the relative composition of DHA in total fatty acids of the hippocampus were detected. 

Finally, significant correlations between 22:5- and ARA-containing PE and PC lipid species 

were identified between erythrocytes and the hippocampus, but further research into how these 

findings can translate into identifying biomarkers is required.  
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Figure 10: Body weights of male and female pups from weaning until adolescence. & indicates 

significant interaction between diet and sex, # indicates significant differences between dietary 

groups, and * indicates significant difference between sexes as determined by two-way ANOVA 

followed by Tukey post hoc (p<0.05). Mean ± SD. DHA females n = 21, DHA males n = 15, 

Control females n = 20, Control males n = 16. 

 

 
Figure 11: Food intakes of male and female pups from weaning until adolescence. # indicates 

intakes are significantly different between dietary groups, and * Intakes are significantly 

different between sexes as determined by two-way ANOVA followed by Tukey post hoc 

(p<0.05). Mean ± SD, n=15-21. 
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Figure 12: Effect of DHA-supplementation on escape latency in the Morris water maze. The 

escape latency (time required for a rat to find and climb onto the hidden platform) is presented as 

the mean of four trials ± SEM, n = 14-16. Significant differences between dietary groups 

determined by repeated measures one-way ANOVA followed by Tukey post hoc (p<0.05). 

 

Figure 13: Effect of DHA-supplementation on distance travelled during the Morris water maze 

The escape latency (time required for a rat to find and climb onto the hidden platform) is 

presented as the mean of four trials ± SEM, n = 14-16. Significant differences between dietary 

groups determined by repeated measures one-way ANOVA followed by Tukey post hoc 

(p<0.05).  
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Figure 14: Performance of DHA and Control males and females during the probe test. (A) time 

in the former platform containing quadrant. (B) average distance from the former platform 

containing quadrant. No significant differences were detected by F test with (p>0.05) two-way 

ANOVA. n = 14-16 per group. 

 

 

Figure 15: Effect of DHA-supplementation on escape latency in the Morris water maze The time 

required (escape latency, mean of four trials) for a rat to find and climb onto a hidden platform is 

presented as the mean ± SEM, n = 3. Significant differences between dietary groups by repeated 

measures one-way ANOVA followed by Tukey post hoc (p<0.05). 
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Figure 16: Effect of DHA-supplementation on distance travelled during the Morris water maze 

The time required (escape latency, mean of four trials) for a rat to find and climb onto a hidden 

platform is presented as the mean ± SEM, n = 3. Significant differences between dietary groups 

by repeated measures one-way ANOVA followed by Tukey post hoc (p<0.05). 

 

Figure 17: Performance of DHA and Control males and females during the probe test. (A) time 

in the former platform containing quadrant. (B) average distance from the former platform 

containing quadrant. No significant differences were detected by F test with (p>0.05) two-way 

ANOVA. n = 3 per group. 
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Figure 18: Significant differences in hippocampal PC (A), PE (B), alkenyl-PE (C) and PS (D) 

concentrations and relative abundancies between DHA and Control groups. Concentrations and 

relative abundancies are significantly different between diets as determined by two-way 

ANOVA followed by Tukey post hoc at * being (p<0.05), ** being (p<0.01). Mean ± SD, n=4.  
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Figure 19: Differences in erythrocyte PC. Relative abundancies between diets (A), sex(B). 

Relative abundancies are significantly different by as determined by two-way ANOVA followed 

by Tukey post hoc at by p<0.05 signified by * or #, or by p<0.01 as signified by ** or ## for sex 

or diet, respectively. Mean ± SD, n=4.  
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Table 3: Macronutrient and fatty acid composition of control and DHA supplemented diets used 

in the behavioural study. 

Diet component Control DHA+ 

Macronutrient mg/g of diet 

Protein 17.70 17.70 

Carbohydrate 60.10 60.10 

Fat 7.20 7.20 

Fatty Acid % composition 

16:0 14.60 ± 0.08 14.58 ± 0.18 

18:0 7.02 ± 0.05 6.46 ± 0.22 

Total SFA 27.95 ± 0.19 24.91 ± 0.16 

16:1 0.72 ± 0.01 0.82 ± 0.01 

18:1n-7 1.51 ± 0.05 1.41 ± 0.09 

18:1n-9 37.13 ± 0.23 38.02 ± 0.14 

Total MUFA 39.77 ± 0.21 40.67 ± 0.10 

18:2n-6 27.95 ± 0.11 27.92 ± 0.06 

20:4n-6 0.05 ± 0.01 0.03 ± 0.01 

Total n-6 PUFA 28.07 ± 0.12 28.02 ± 0.06 

18:3n-3 3.87 ± 0.01 3.86 ± 0.02 

20:3n-3 <0.01 <0.01 

20:5n-3 0.01 ± 0.01 0.01 ± 0.01 

22:5n-3 0.01 ± 0.01 0.04 ± 0.01 

22:6n-3 0.02 ± 0.01 2.10 ± 0.04 

Total n-3 PUFA 3.91 ± 0.01 6.01 ± 0.04 

Data is mean ± SD from triplicate analysis in our laboratory. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. tr: trace amounts (<0.01 mg/g) 
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Table 4: Energy composition of control and DHA supplemented diets used in the behavioural 

study. 

Diet component Control DHA+ 

Energy Density (kcal/g) 3.8 3.8 

Macronutrient % of energy 

Protein 18.8 18.8 

Carbohydrate 63.9 63.9 

Fat 17.2 17.2 

Fatty Acid % of energy 

16:0 2.51 ± 0.01 2.51 ± 0.03 

18:0 1.21 ± 0.01 1.11 ± 0.04 

Total SFA 4.81 ± 0.03 4.28 ± 0.03 

16:1 0.12 ± 0.01 0.14 ± 0.01 

18:1n-7 0.26 ± 0.01 0.24 ± 0.01 

18:1n-9 6.39 ± 0.04 6.54 ± 0.02 

Total MUFA 6.84 ± 0.04 6.99 ± 0.02 

18:2n-6 4.81 ± 0.02 4.80 ± 0.01 

20:4n-6 0.01 ± 0.01 0.01 ± 0.01 

Total n-6 PUFA 4.83 ± 0.02 4.82 ± 0.01 

18:3n-3 0.67 ± 0.01 0.66 ± 0.01 

20:3n-3 <0.01 <0.01 

20:5n-3 <0.01 <0.01 

22:5n-3 <0.01 0.01 ± 0.01 

22:6n-3 <0.01 0.36 ± 0.01 

Total n-3 PUFA 0.67 ± 0.01 1.03 ± 0.01 

Data is mean ± SD from triplicate analysis in our laboratory. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. 
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Table 5: Dam and sire pairings and sex ratios of litters and groups used for behavioural analyses 

Each dam was bred once. Each sire was bred with one dam per diet. Total number of pups 

indicates total litter size, broken down by sex. Number of pups used in MWM (Morris Water 

Maze) indicates the ratio of female:male pups from the indicated litter used for behavioural 

analyses. 

 

 

Table 6: Sex Differences in normalized abundance of erythrocyte lipid species 

 Female Male P Sex Effect 

PC 16:0_20:4 40.80 ± 12.77 40.73 ± 12.11 <0.01 

PC 20:4_20:4 2.19 ± 2.00 2.11 ± 1.92 0.90 

PE 18:1_18:2 15.20 ± 4.65 16.22 ± 3.66 0.03 

PE 18:1_22:6 4.83 ± 2.18 4.31 ± 1.85 0.50 

PE 38:6 17.66 ± 7.18 14.17 ± 4.17 0.07 

PE 40:8 5.62 ± 1.07 3.61 ± 0.57 <0.01 

Alkenyl-PE 16:0_22:4 15.44 ± 6.45 17.26 ± 8.71 0.01 

Alkenyl-PE 18:0_22:6 20.58 ± 7.46 19.56 ± 4.35 0.39 

Alkenyl-PE 18:1_22:6 12.01 ± 3.34 12.60 ± 3.74 0.52 

PS 16:0_22:6 1.38 ± 1.05 2.73 ± 1.79 <0.01 

PS 18:1_22:6 6.96 ± 3.74 6.74 ± 3.27 0.80 

Abundance represented as analyte abundance divided by ISTD. Mean ± SD. n=4. P values 

determined by Tukey’s HSD following two-way ANOVA.  

 

 Total Number of Pups 

Number of Pups Used in 

MWM 

Litter # Dam Sire Diet Female Male Female Male 

1 1 1 DHA 9 4 6 4 

2 2 1 Control 6 4 6 4 

3 3 2 Control 7 8 4 6 

4 4 2 DHA 6 6 5 5 

5 5 3 DHA 6 5 4 6 

6 6 3 Control 7 4 6 4 

Total: DHA 21 15 15 15 

  Control 20  16  16 14 
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Table 7: Correlations between hippocampal and erythrocyte lipid species (normalized abundance) 

Correlations of lipid species between hippocampi and erythrocytes. Total group includes all rats analyzed by mass spectrometry. 

Correlations could only be determined for lipid species identified in erythrocytes and the hippocampus. DHA and control groups 

include rats of both sexes from the respective dietary group. Male and female groups include rats that consumed both diets from the 

respective sex. Pearson’s r: Pearson’s correlation coefficient.*p<0.05; **p<0.01 

 

Table 8: Correlations between hippocampal and erythrocyte lipid species (concentrations) 

Group Total DHA Female DHA Male Control Female Control Male 

n 15 4 3 4 4 

Lipid Species Pearson’s r p Pearson’s r p Pearson’s r p Pearson’s r p Pearson’s r p 

PC 18:0_20:4 .55* 0.03 0.19 0.81 0.76 0.45 0.10 0.90 0.52 0.48 

PC 18:1_20:4 .70** <0.001 0.83 0.17 -0.20 0.87 -0.77 0.23 0.59 0.41 

Correlations of lipid species between hippocampi and erythrocytes. Total group includes all rats analyzed by mass spectrometry. 

Correlations could only be determined for lipid species identified in erythrocytes and the hippocampus. DHA and control groups 

include rats of both sexes from the respective dietary group. Male and female groups include rats that consumed both diets from the 

respective sex. Pearson’s r: Pearson’s correlation coefficient;**p<0.01; *p<0.05 

Group Total DHA Female DHA Male Control Female Control Male 

n 15 4 3 4 4 

Lipid Species Pearson’s r p Pearson’s r p Pearson’s r p Pearson’s r p Pearson’s r p 

PC 18:0_20:4 0.39 0.15 -0.90 0.11 0.91 0.27 0.15 0.85 0.69 0.31 

PC 18:1_20:4 0.61* 0.02 0.52 0.48 -1.00** <0.001 -0.03 0.97 -0.25 0.75 

PE 18:0_22:5 0.54* 0.04 -0.52 0.48 -0.31 0.80 -0.66 0.34 0.08 0.92 
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Abundance represented as analyte abundance divided by ISTD. Mean ± SD. n=4. P values determined by Tukey’s 

HSD following two-way ANOVA.  

 

 

Appendix Table 7.2: Normalized abundancies of erythrocyte lipid species in all groups 

 DHA male DHA female Control Male Control Female 

P Sex x time 

Interaction 

P Sex 

Effect 

P Diet 

Effect 

PC 16:0_20:4 30.22 ± 2.36 29.88 ± 5.17 51.24 ± 6.11 51.73 ± 5.98 0.60 <0.01 0.34 

PC 18:0_20:4 1.25 ± 0.66 2.37 ± 0.56 2.69 ± 0.17 4.88 ± 1.18 0.88 0.98 <0.01 

PC 18:0_22:6 8.91 ± 1.00 15.38 ± 2.61 8.39 ± 1.63 13.67 ± 2.54 0.19 <0.01 <0.01 

PC 18:1_20:4 6.29 ± 1.19 3.30 ± 0.49 11.01 ± 1.79 6.70 ± 1.36 0.35 <0.01 <0.01 

PC 20:4_20:4 0.36 ± 0.18 0.79 ± 0.68 3.86 ± 0.64 3.59 ± 1.90 0.56 0.90 <0.01 

PE 18:1_22:6 5.69 ± 1.92 6.56 ± 1.35 2.93 ± 0.25 3.09 ± 1.13 0.60 0.44 <0.01 

PE 16:0_18:2 5.41 ± 0.33 4.09 ± 0.56 8.24 ± 2.00 6.04 ± 0.60 0.47 0.01 <0.01 

PE 18:0_22:5 2.51 ± 0.97 5.61 ± 1.28 7.59 ± 1.60 7.94 ± 1.24 0.07 0.03 <0.01 

PE 18:1_18:2 13.34 ± 1.03 11.88 ± 1.28 19.10 ± 2.67 18.51 ± 4.41 0.77 0.50 <0.01 

PE 38:6 17.61 ± 1.36 23.41 ± 2.59 10.73 ± 2.53 11.92 ± 5.03 0.21 0.07 <0.01 

PE 40:8 3.31 ± 0.37 5.16 ± 0.97 3.91 ± 0.59 6.09 ± 1.08 0.71 <0.01 0.10 

Alkenyl-PE 

16:0_22:4 9.16 ± 0.13 9.52 ± 1.48 25.37 ± 1.22 21.36 ± 1.20 0.01 0.01 <0.01 

Alkenyl-PE 

18:0_22:6 22.96 ± 3.88 27.38 ± 1.97 16.15 ± 1.15 13.79 ± 1.71 0.01 0.39 <0.01 

Alkenyl-PE 

18:1_22:6 15.71 ± 1.75 14.82 ± 0.95 9.49 ± 1.96 9.19 ± 2.01 0.75 0.52 <0.01 

PS 16:0_22:6 4.29 ± 0.76 2.28 ± 0.46 1.18 ± 0.69 0.48 ± 0.47 0.06 <0.01 <0.01 

PS 18:1_22:6 9.21 ± 2.66 10.30 ± 1.14 4.27 ± 1.65 3.62 ± 1.27 0.34 0.80 <0.01 

Abundance represented as analyte abundance divided by ISTD. Mean ± SD. n=4. P values determined by Tukey’s 

HSD following two-way ANOVA.  

  

Appendix Table 7.1: Normalized abundancies of hippocampal lipid species in all groups 

 DHA Male 

DHA 

Female 

Control 

Male 

Control 

Female 

P Sex x time 

Interaction 

P Sex 

Effect 

P Diet 

Effect 

PC 16:0_16:1 5.95 ± 1.84 6.55 ± 1.42 10.40 ± 2.31 8.54 ± 0.77 0.06 0.18 >0.01 

PC 18:0_20:4 15.51 ± 2.89 18.67 ± 0.74 25.33 ± 8.51 22.14 ± 4.14 0.23 1.00 0.02 

PC 18:1_20:4 7.37 ± 1.12 8.18 ± 0.85 14.46 ± 4.21 10.21 ± 1.96 0.62 0.85 0.03 

PC 38:5 0.05 ± 0.06 0.11 ± 0.12 1.03 ± 0.70 1.22 ± 0.50 0.64 0.44 >0.01 

PE 16:0_22:5 1.89 ± 0.60 1.73 ± 0.20 5.53 ± 2.94 3.70 ± 1.65 0.42 0.73 >0.01 

PE 18:0_22:5 10.40 ± 1.28 8.62 ± 1.61 18.35 ± 4.57 19.07 ± 3.18 0.35 0.27 0.01 

Alkenyl-PE 

16:0_22:5 8.18 ± 3.56 7.47 ± 1.51 15.62 ± 4.49 15.34 ± 2.73 0.28 0.94 >0.01 

Alkenyl-PE 

18:0_22:5 2.71 ± 0.73 3.07 ± 1.08 7.14 ± 2.05 6.47 ± 2.16 0.86 0.78 >0.01 

PS 18:0_22:5 15.49 ± 0.89 13.78 ± 3.21 

27.78 ± 

10.63 28.04 ± 9.81 0.80 0.85 >0.01 

PG 18:1_16:0 2.31 ± 0.15 3.82 ± 0.59 5.63 ± 1.59 4.40 ± 1.02 0.01 - - 
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Appendix Table 7.3: Concentrations of hippocampal phosphatidylcholine species in all groups 

 DHA male DHA female Control Male 

Control 

Female 

P Sex x 

time 

Interaction 

P Sex 

Effect 
P Diet 

Effect 

PC 18:1_20:4  10.19 ± 2.29 10.13 ± 3.01 18.64 ± 6.96 13.69 ± 2.24 0.26 0.25 0.01 

PC 18:0_20:4  21.02 ± 1.11 23.07 ± 5.39 31.53 ± 9.78 29.76 ± 5.11 0.59 0.97 0.03 

PC 16:0_16:1  8.06 ± 2.05 8.25 ± 3.37 13.70 ± 5.36 11.75 ± 3.11 0.57 0.64 0.03 

PC 38:5  0.07 ± 0.08 0.12 ± 0.15 1.16 ± 0.69 1.57 ± 0.37 0.38 0.27 >0.01 

Concentration reported in ng/mg. Mean ± SD. n=4. P values determined by Tukey’s HSD following two-way 

ANOVA.  

 

Appendix Table 7.4: Concentrations of erythrocyte phosphatidylcholine species in all groups 

 DHA male DHA female Control Male 

Control 

Female 

P Sex x time 

Interaction 

P Sex 

Effect 

P Diet 

Effect 

PC 16:0_20:4 5.54 ± 0.81 5.12 ± 2.07 10.08 ± 5.87 7.41 ± 1.45 0.36 0.11 0.44 

PC 18:0_20:4 0.22 ± 0.11 0.41 ± 0.18 0.51 ± 0.23 0.68 ± 0.10 0.53 0.40 0.08 

PC 18:0_22:6 1.63 ± 0.24 2.52 ± 0.46 1.68 ± 1.09 1.93 ± 0.28 0.95 0.07 0.01 

PC 18:1_20:4 1.15 ± 0.24 0.57 ± 0.21 2.18 ± 1.31 0.95 ± 0.21 0.40 0.03 0.08 

PC 20:4_20:4 0.07 ± 0.03 0.13 ± 0.11 0.73 ± 0.35 0.47 ± 0.18 0.17 0.38 <0.01 

Concentration reported in ng/mg. Mean ± SD. n=4. P values determined by Tukey’s HSD following two-way 

ANOVA.  
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Appendix Table 7.5: Fatty acid composition (weight %) of hippocampi 

 DHA Female DHA Male 

Control 

Female Control Male 

P Sex x time 

Interaction 
P Sex Effect 

P Diet Effect 

14:0 0.30 ± 0.01 0.37 ± 0.05 0.29 ± 0.01 0.31 ± 0.03 0.13 <0.01 0.04 

16:0 21.19 ± 1.26 22.15 ± 0.49 20.95 ± 1.42 20.66 ± 1.16 0.29 0.57 0.16 

18:0 20.66 ± 0.23 20.89 ± 0.30 20.99 ± 0.15 20.43 ± 0.42 0.02 - - 

20:0 0.38 ± 0.10 0.41 ± 0.08 0.40 ± 0.05 0.46 ± 0.12 0.75 0.33 0.48 

22:0 0.46 ± 0.15 0.48 ± 0.08 0.48 ± 0.11 0.60 ± 0.19 0.49 0.31 0.32 

24:0 0.69 ± 0.32 0.66 ± 0.02 0.78 ± 0.29 0.94 ± 0.34 0.49 0.63 0.21 

SFAs 48.13 ± 0.61 49.11 ± 0.79 48.11 ± 0.68 47.79 ± 1.15 0.14 0.45 0.13 

16:1 0.38 ± 0.03 0.43 ± 0.02 0.36 ± 0.04 0.36 ± 0.05 0.35 0.18 0.04 

18:1n-7 2.71 ± 0.10 2.56 ± 0.12 2.72 ± 0.11 2.95 ± 0.20 0.02 - - 

18:1n-9 13.56 ± 1.12 12.45 ± 0.86 13.28 ± 1.86 14.35 ± 1.63 0.15 0.98 0.28 

20:1n-9 0.46 ± 0.12 0.40 ± 0.08 0.44 ± 0.15 0.54 ± 0.17 0.25 0.77 0.37 

22:1n-9 0.34 ± 0.09 0.43 ± 0.15 0.28 ± 0.14 0.20 ± 0.09 0.20 0.94 0.03 

24:1n-9 0.47 ± 0.21 0.32 ± 0.13 0.45 ± 0.29 0.63 ± 0.33 0.21 0.95 0.28 

MUFAs 18.84 ± 1.79 17.33 ± 1.39 18.46 ± 2.63 20.14 ± 2.64 0.17 0.94 0.29 

18:2n-6 0.68 ± 0.05 0.78 ± 0.06 0.53 ± 0.04 0.58 ± 0.01 0.27 <0.01 <0.01 

18:3n-6 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 <0.01 0.16 0.68 0.08 

20:2n-6 0.09 ± 0.01 0.11 ± 0.01 0.07 ± 0.02 0.09 ± 0.01 0.69 <0.01 0.03 

20:3n-6 0.49 ± 0.01 0.51 ± 0.04 0.34 ± 0.05 0.35 ± 0.04 0.67 0.44 <0.01 

20:4n-6 11.17 ± 0.81 11.41 ± 0.53 12.31 ± 1.16 11.50 ± 0.59 0.22 0.50 0.16 

22:2n-6 0.03 ± 0.02 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.67 0.60 0.95 

22:4n-6 2.52 ± 0.03 2.64 ± 0.08 3.06 ± 0.11 2.85 ± 0.14 <0.01 - - 

22:5n-6 0.34 ± 0.04 0.38 ± 0.03 0.95 ± 0.17 0.91 ± 0.13 0.50 0.92 <0.01 

N-6 15.31 ± 0.88 15.88 ± 0.60 17.30 ± 1.34 16.31 ± 0.61 0.11 0.65 0.02 

18:3n-3 0.02 ± 0.01 0.03 ± 0.02 0.01 ± 0.01 0.02 ± 0.01 0.44 0.08 0.03 

20:3n-3 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.79 0.11 0.42 

20:5n-3 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.50 0.29 <0.01 

22:5n-3 0.18 ± 0.01 0.19 ± 0.01 0.16 ± 0.02 0.18 ± 0.02 0.49 0.14 0.01 

22:6n-3 14.37 ± 0.68 14.77 ± 1.02 12.93 ± 1.02 12.32 ± 1.08 0.32 0.84 <0.01 

N-3 14.62 ± 0.68 15.05 ± 1.02 13.14 ± 1.00 12.55 ± 1.06 0.31 0.87 <0.01 

20:3n-9 0.10 ± 0.02 0.08 ± 0.01 0.09 ± 0.02 0.10 ± 0.03 0.19 0.68 0.70 

PUFAs 30.03 ± 1.54 31.00 ± 0.98 30.53 ± 2.32 28.96 ± 1.64 0.16 0.73 0.38 

N-6/N-3 1.05 ± 0.02 1.06 ± 0.09 1.32 ± 0.02 1.30 ± 0.06 0.66 0.99 <0.01 

Total 

(mg/g) 38.2 ± 5.1 38.6 ± 3.2 40.4 ± 7.6 41.4 ± 3.4 0.90 0.80 0.35 

Mean ± SD, n=4. P values determined by Tukey’s HSD following two-way ANOVA. SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids 
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Appendix Table 7.6: Fatty acid composition (weight %) of erythrocytes 

 DHA Female DHA Male 

Control 

Female Control Male 

P Sex x time 

Interaction 

P Sex 

Effect 

P Diet 

Effect 

14:0 0.45 ± 0.02 0.48 ± 0.03 0.42 ± 0.02 0.46 ± 0.01 0.41 0.01 0.04 

16:0 24.88 ± 0.30 27.98 ± 1.22 24.37 ± 0.42 26.84 ± 0.58 0.40 <0.01 0.04 

18:0 14.17 ± 0.62 11.11 ± 0.59 15.03 ± 0.55 11.89 ± 0.73 0.91 <0.01 0.02 

20:0 0.17 ± 0.02 0.22 ± 0.10 0.15 ± 0.01 0.16 ± 0.03 0.58 0.33 0.17 

22:0 0.46 ± 0.03 0.48 ± 0.15 0.40 ± 0.03 0.42 ± 0.03 0.93 0.63 0.16 

24:0 1.14 ± 0.08 1.10 ± 0.22 1.18 ± 0.04 1.14 ± 0.06 0.98 0.51 0.58 

SFAs 45.89 ± 1.02 44.79 ± 1.25 45.75 ± 1.35 45.27 ± 0.38 0.57 0.17 0.76 

16:1 0.30 ± 0.05 0.35 ± 0.04 0.31 ± 0.04 0.40 ± 0.04 0.30 <0.01 0.17 

18:1n-7 2.11 ± 0.06 2.39 ± 0.08 2.19 ± 0.02 2.61 ± 0.11 0.09 <0.01 <0.01 

18:1n-9 7.91 ± 0.14 8.25 ± 0.18 8.05 ± 0.15 8.58 ± 0.17 0.27 <0.01 0.01 

20:1n-9 0.12 ± 0.01 0.14 ± 0.01 0.12 ± 0.01 0.14 ± 0.01 0.98 0.01 0.48 

22:1n-9 0.60 ± 0.40 0.78 ± 0.62 0.28 ± 0.31 0.49 ± 0.61 0.95 0.46 0.25 

24:1n-9 0.77 ± 0.51 0.94 ± 0.10 1.02 ± 0.06 1.16 ± 0.11 0.93 0.28 0.10 

MUFAs 13.50 ± 0.84 14.60 ± 0.28 13.68 ± 0.36 15.19 ± 0.57 0.46 <0.01 0.19 

18:2n-6 7.47 ± 0.21 8.92 ± 0.18 6.91 ± 0.38 8.00 ± 0.29 0.22 <0.01 <0.01 

18:3n-6 0.06 ± 0.01 0.04 ± 0.01 0.08 ± 0.01 0.05 ± 0.01 0.59 <0.01 0.01 

20:2n-6 0.25 ± 0.02 0.29 ± 0.01 0.24 ± 0.01 0.30 ± 0.02 0.35 <0.01 0.87 

20:3n-6 0.49 ± 0.01 0.58 ± 0.01 0.40 ± 0.01 0.47 ± 0.03 0.20 <0.01 <0.01 

20:4n-6 21.89 ± 0.71 20.00 ± 0.23 24.92 ± 0.24 23.37 ± 0.50 0.49 <0.01 <0.01 

22:2n-6 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.02 0.49 0.58 0.62 

22:4n-6 0.77 ± 0.02 0.72 ± 0.05 1.47 ± 0.13 1.47 ± 0.10 0.64 0.62 <0.01 

22:5n-6 0.24 ± 0.02 0.21 ± 0.02 0.60 ± 0.05 0.55 ± 0.03 0.65 0.04 <0.01 

N-6 31.21 ± 0.67 30.81 ± 0.25 34.66 ± 0.16 34.25 ± 0.62 1.00 0.12 <0.01 

18:3n-3 0.32 ± 0.48 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.02 0.33 0.36 0.36 

20:3n-3 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.02 0.73 0.72 0.78 

20:5n-3 0.71 ± 0.04 0.65 ± 0.04 0.32 ± 0.02 0.30 ± 0.02 0.16 0.03 <0.01 

22:5n-3 1.64 ± 0.03 1.74 ± 0.04 1.80 ± 0.07 1.84 ± 0.06 0.28 0.03 <0.01 

22:6n-3 6.04 ± 0.21 5.53 ± 0.17 3.01 ± 0.12 2.77 ± 0.12 0.12 <0.01 <0.01 

N-3 8.74 ± 0.55 8.03 ± 0.14 5.24 ± 0.15 5.03 ± 0.19 0.13 0.01 <0.01 

20:3n-9 0.05 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.25 0.12 <0.01 

PUFAs 40.00 ± 0.91 38.89 ± 0.36 39.96 ± 0.19 39.35 ± 0.57 0.39 0.01 0.48 

N-6/N-3 3.58 ± 0.22 3.84 ± 0.05 6.62 ± 0.20 6.82 ± 0.32 0.81 0.06 <0.01 

Total 

(mg/g) 4.24 ± 0.44 4.26 ± 0.30 4.74 ± 2.11 5.01 ± 0.45 0.82 0.79 0.28 

Mean ± SD, n=4. P values determined by Tukey’s HSD following two-way ANOVA. SFA, saturated fatty acids; 

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; FA, fatty acids 
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Appendix Table 7.7: Correlations between hippocampal and erythrocyte fatty acid concentrations (mg/g) 

Group Total DHA Female DHA Male Control Female Control Male 

n 16 4 4 4 4 

Fatty Acid Pearson’s r Pearson’s r Pearson’s r Pearson’s r Pearson’s r 

20:4n-6  0.679**   -0.089   -0.772   0.841   0.531 

22:4n-6   0.832**   -0.446   -0.743   0.979*   0.875 

22:5n-6  0.874**   0.630   -0.720   0.475   -0.822 

22:6n-3  0.484   -0.384   -0.844   0.897   -0.513 

Correlations of fatty acid concentrations (mg/g) between hippocampi and erythrocytes. Total group includes all rats analyzed by GC-

FID. Pearson’s r: Pearson’s correlation coefficient.*p<0.05; **p<0.01 

 

Appendix Table 7.8: Correlations between hippocampal and erythrocyte fatty acid compositions (wt %) 

Group Total DHA Female DHA Male Control Female Control Male 

n 16 4 4 4 4 

Fatty Acid Pearson’s r Pearson’s r Pearson’s r Pearson’s r Pearson’s r 

20:4n-6  0.306 -0.940   0.414   -0.124   -0.374 

22:4n-6   0.849** -0.479   -0.541   0.276   0.967* 

22:5n-6  0.932** -0.434   -0.075   0.268   -0.249 

22:6n-3  0.714** -0.950   -0.467   -0.166   0.465 

Correlations of fatty acid compositions (wt %)between hippocampi and erythrocytes. Total group includes all rats analyzed by GC-

FID. Pearson’s r: Pearson’s correlation coefficient.*p<0.05; **p<0.01 
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8 General Discussion 

 The main objectives of this thesis were to assess the effects of DHA supplementation in 

the context of Western diets on maternal tissue stores and the spatial memory of female and male 

pups at adolescence. These objectives were approached through a series of three experiments: the 

first to identify the effect of DHA supplementation on pups and mothers in mothers fed high fat 

TWDs compared to controls; the second to examine when sexual dimorphisms in LCPUFA 

begin in selected tissues of pups fed chow diets; and the third to determine the effect of DHA 

supplementation in AFWDs on spatial memory in adolescent rats. Altogether, these studies 

aimed to address the gap between recommendations and actual intakes of DHA during 

pregnancy, and better understand the effects of dietary supplementation on spatial memory in 

males and females during adolescence. 

 The hypotheses and limitations of individual studies are discussed within their individual 

chapters, however there are general hypotheses and limitations to this thesis. Currently, 

recommendations for omega-3 PUFA intakes, and more specifically DHA intakes during 

pregnancy, are broad and are not tailored to individual dietary habits. For example, Health 

Canada and the IOM recommend 150g of fish per week to women of childbearing age [26], and 

the ISSFAL recommends at least 200mg of DHA/d for pregnant women [25]. However, the 

combined findings of studies 1 and 3 suggest recommendations for dietary n-3 PUFA could be 

more effective if they were provided relative to total fat or caloric intakes, such as the general 

recommendations provided by the Brazilian Dietary Guide [155]. Current ISSFAL 

recommendations to pregnant women suggest that increased DHA consumption is unlikely to 

affect maternal plasma and tissue contents of ARA [25]. However, because fetal ARA accretion 

predominantly occurs postnatally[156], potential changes to maternal ARA status during 
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lactation could affect infant ARA status. Further research on the effect of increased dietary DHA 

consumption on perinatal ARA status should be considered. 

DHA accounted for between 0.3 and 0.5% of total caloric intakes in the supplemented 

diets used in studies 1 and 3. However, 34.5% of total caloric intakes in study 1 were from fat, 

while in study 3 only 17.2% of total caloric intakes were from fat. In these studies, DHA 

appeared to be beneficial to the mothers in study 1, as those on the supplemented diets 

maintained or improved tissue DHA status during pregnancy and postpartum. However, it may 

have been harmful to adolescent pups in study 3, as those from the DHA group had longer 

latency times during the final day of the learning phase during the MWM as compared with 

controls. Providing consumers with the tools necessary to contextualize DHA recommendations 

to their daily fat intakes could improve their DHA status and optimize their health benefits from 

DHA consumption. 

 Although spatial memory outcomes were only measured in study 3, diet significantly 

affected the fatty acid composition of arachidonic acid in both studies 1 and 3. In the pregnancy 

study, mothers fed TWD+ and TWD- had significantly lower ARA in maternal livers and whole 

body fetuses than mothers fed chow. Additionally, ARA was significantly lower in plasma at 

postpartum compared to baseline in all diets, but ARA in maternal liver and adipose was lower 

during the postpartum period in both the TWD groups. These findings of low tissue ARA levels 

despite high LA intakes are in accordance with previous research [157], and suggest that the 

consumption of the high amounts of SFAs and MUFAs in high fat diets could be displacing 

ARA, much like how DHA supplementation appeared to displace ARA in the spatial memory 

study. 
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 The TWDs and AFWDs used in the pregnancy and spatial memory studies are worth 

discussing. The fatty acid composition of the diets used in these studies are based on fatty acid 

intakes reported in the 2005 NHANES study [100]. These data, however, are based on USDA 

standard references that have been shown in the past to under-report ARA content, and over-

report n-3 PUFA content in red meat and poultry [158]. Since ARA is predominantly consumed 

in meat, confirming the ARA and n-3 PUFA content in red meat and poultry for recent USDA 

standard references may be important. Regardless, low levels of ARA consumption are also 

reported in studies using a mix of the French food consumption table and USDA standard 

references [159], in pregnant African-Americans[160], and in developing countries [161]. The 

results of the spatial memory study suggest this prevalent low consumption of ARA is 

detrimental when combined with long term DHA supplementation. A 1:1 ratio of ARA:DHA 

appears to be optimal when supplementing the LCPUFA perinatally [144], and further research 

into using this ratio of fatty acids should be conducted. 

  Limitations in this thesis include the differences between puberty in humans and in rats. 

In rats, females begin puberty earlier than males [24,114,115]. This complicates translating 

findings of adolescence in rats studied at a single time point to stages of adolescence in humans 

between both sexes, as female rats may be more developed than males during a single time point, 

whereas humans would be similar. Additionally, the estrous cycle has been reported to affect 

fatty acid status [162] and Morris water maze performance in rats [163]. Measuring estradiol 

levels in females and males could assist in contextualizing the findings between animal and 

human studies, and between stages of the estrous cycle in animal studies.  

The interpretation of this thesis is also limited by differences in lipoproteins and fatty 

acid metabolism between rodents and humans. Although lipoprotein profiles of rats and humans 
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are similar, rats can have higher amounts of circulating TAG and VLDL compared to healthy 

humans [164]. Additionally, the elongation enzyme ELOVL2 which can elongate both 18 and 

20-carbon PUFA to 22-carbon PUFA in rodents, appears to only operate on 20-carbon PUFA in 

humans [165]. The potential interaction of these lipoprotein profiles and enzymes with sex, diet, 

or pregnancy, and the differences they may have between rodents and humans should be taken 

into consideration when interpreting these findings. 

The aim of this thesis was to determine the effects of DHA supplementation in the 

context of western diets on maternal tissue status and spatial memory in female and male pups 

during adolescence. Examination of maternal tissues during pregnancy and the postpartum 

period revealed that maternal adaptations to meet lipid and fatty acid requirements change in the 

transition from pregnancy to lactation with the pup requirement for DHA during lactation being 

particularly detrimental to maternal tissue levels when dietary DHA levels are low. These 

findings can be used to guide examinations of the kinetics of a potential DHA mobilization from 

maternal tissues, or as a guide to examine previously understudied candidates for maternal stores 

of DHA that could be mobilized to meet fetal demand. Furthermore, the examination of DHA 

supplementation from the confirmation of pregnancy to adolescence on spatial memory in males 

and females revealed that DHA supplementation in diets adequate for LA and ALA displaces 

ARA and 22:5n-6 containing lipid species in the hippocampus, and increases latency times in the 

Morris Water Maze. These findings corroborate recent suggestions that a 1:1 ratio of ARA:DHA 

supplementation is optimal for cognitive benefits [144], and could be used to guide future 

recommendations for dietary LCPUFA recommendations. Altogether, these findings show that 

further research is needed in determining appropriate LCPUFA recommendations for the early 

stages of life. Considering the impact of dietary DHA supplementation in the context of Western 
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diets in future study designs could provide valuable insight into its effects on maternal and 

perinatal health.  
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