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Abstract

Concussions are a common type of traumatic brain injury that can have severe conse-
quences and are often induced by sports injuries. Once concussed, patients are more likely
to sustain a second concussion, as they could be returned to play before they have fully re-
covered, in what is known as second-impact syndrome. Repeated concussions can also lead
to delayed post-traumatic brain degradation, causing dementia and movement disorders.
It is important to be able to detect concussions in an accurate and timely manner to avoid
severe long-term effects. Current methods of diagnosis require a knowledgeable physician
to be able to identify inconspicuous symptoms such as dizziness, headaches, nausea, and
imbalance. It is necessary to develop new tools that enable the diagnosis of concussions
reliably and quantitatively.

The researchers in this thesis propose a method to classify concussions in hockey players
based on the reaction time to an external stimulus in a Virtual Reality (VR) environment.
Different hockey scenarios were recorded with the use of a 360 degree camera and am-
bisonic microphone. The scenarios involved the dual-task challenge of a puck being passed
towards the camera followed by a hockey player charging towards the camera. The col-
lected audio and video are played back to participants on an Oculus Rift head-mounted
display. The participants then attempt to track the puck and avoid the charging hockey
player while the VR scenario is replayed. Electromyography (EMG) data is collected from
the quadriceps femoris muscle group, minus the vastus lateralis, to measure the reaction
time of the participants to the virtual collision. Motion capture data is also collected to
track head directionality during the experimental procedure to gauge the spatial awareness
of participants.

There appear to be no observable differences between participants with a history of
concussions and participants without a history of concussions. Preliminary results will
be shown; however, more data collection is needed in the future to be able to classify
concussions based on reaction time and motion. In the future, this work will be expanded
to players who have suffered a recent concussion (< 1 month), where their reaction times
and motion will also be collected throughout their recovery.
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Chapter 1

Introduction

Concussions are a common type of traumatic brain injury that can have severe consequences
and occur frequently among athletes [1]. In contact sports such as ice-hockey, recurrence of
concussions is an issue since concussions can occur without the loss of consciousness [31].
There were 5.8 concussions per 100 players per season recorded during the NHL regular
season games between 1997 and 2004 and only 18% of the instances resulted in loss of
consciousness [1].

The high acceleration in these situations exerts rotational forces on the brain that result
in bio-mechanical injury and a malfunctioning metabolism. Other symptoms of concussions
include headaches, nausea, confusion, memory loss and fatigue [45].

Despite the alleviation of these symptoms, it is still not safe to assume that athletes
should return to their active lifestyles. This is because it is possible that symptoms may
return and worsen after physical or cognitive exercise either right after exercise or even
the day after. There are step-wise return to play protocols that guide the athlete during
rehabilitation where the athlete is required to be asymptomatic at each single level before
progressing to the next step of the protocol [33]. An example of such protocol is shown in
Table 1.1.
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Step 1: No activity, complete rest

Step 2:
Light aerobic exercise such as walking or stationary cycling, no
resistance training

Step 3: Sport-specific training
Step 4: Non-contact training drills
Step 5: Full contact training after medical clearance
Step 6: Game play

Table 1.1: Return to Play Protocol [33].

Table 1.1 is only applicable to simple concussion cases and might not be a suitable
protocol for complex or recurring concussions [33]. In some instances, it is advised not to
return to contact sports or collisions as there is proof that individuals who have suffered a
concussion are more prone to suffering another [6, 63].

Beyond the aforementioned general symptoms, concussions impact the visual motor
coordination [14], impede information processing [2], and affect gait stability [52]. Jordan
et al. administered several neurocognitive tests to professional boxers and found decreased
performance in visual motor coordination as sparring increased. These findings suggest
that repetitive concussive and sub-concussive Traumatic Brain Injury (TBI) blows may
result in the deterioration of cognitive brain functionality [30]. Similar cognitive defects
were found in collegiate athletes participating in ice hockey [32]. The notion that there is
complete recovery after a single mild head injury is also under scrutiny. In a test where the
event related potential P300 wave is measured for a set of easy and difficult tasks, it was
found that those who had suffered a mild head injury had a reduced P300 amplitude and
performed more poorly than the controls group on cognitive tasks several years after injury.
These results seem to point to impaired information processing speed and a struggle with
divided attention [2]. Furthermore, a study measuring Centre of Mass (COM) sway found
an a significant increase in imbalance while the subjects were engaged in simple cognitive
activities, which confirms the hypothesis that a mild head trauma restricts the ability to
divide attention across different tasks. Gait instability was also noticeable thought not as
significant when attention was undivided [52].

It is important to be able to detect concussions in an accurate and timely manner
to avoid severe long term effects. Once concussed, patients are more likely to sustain a
second concussion as they could return to play before they have fully recovered in what
is known as second-impact syndrome [7]. Repeated concussions can also lead to delayed
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post-traumatic brain degradation causing dementia and movement disorders [46]. Current
methods of diagnosis require a knowledgeable physician to be able to identify inconspicuous
symptoms such as dizziness, headaches, nausea, and imbalance. Additionally, diagnostic
tools such as the Sport Concussion Assessment Tool (SCAT) are traditionally being used.
This diagnosis consists of a questionnaire that helps identify 22 possible symptoms, with
the presence of one symptom being sufficient for a diagnosis [25]. Unfortunately, these
diagnostic tools rely on the patients’ cooperation alongside several physical factors [10].
Such physical factors include sex [15, 22, 39, 62, 64, 69], education level [69], age [58],
concussion history [5, 64], and depression and anxiety levels [58]. Concussed athletes may
also hide their symptoms so that they can continue playing and avoid long recovery periods.
Therefore, it is necessary to develop new tools that enable the diagnosis of concussions
reliably and quantitatively.

The research in this thesis propose a quantitative method to diagnose and check the
progression of a concussion. This involves using VR in conjunction with EMG responses
and tracking the directionality of participant movements using a motion tracking system.
The study will primarily focus on concussions sustained by hockey players, with the hopes
of expanding to athletes of other sports in the future. Players will be immersed into a life-
like hockey environment using VR. To achieve the desired realism, a 360-degree camera
and ambisonic microphone will be used to record real life hockey scenarios in a hockey rink,
where players simulate intercepting passes as well as attempting to check a virtual player
situated at the camera locator. Ambisonic microphones, unlike standard microphones, en-
capsulate several diaphragms for capturing full-spectrum sound from all directions. These
recordings will then be inserted into a virtual world to perfectly recreate the desired situ-
ation with accurate 360 video and audio. It is important to include ambisonic recordings
to recreate 360 audio, as this helps immerse the participant in a more realistic experience.

Electrodes will be attached to several muscles below the torso in order to measure
muscle twitch activity and collect EMG data. Additionally, motion capture, via infrared
cameras and markers placed on the posterior of the head, will be used to track the di-
rectionality of participants during dynamic motion to assess the Situational Awareness
(SA) of the participants. VR based neuropsychological testing has been shown to have a
high ecological validity and so is more applicable to real life settings [54], this enables us
to create an environment in which the hockey players would be exposed to familiar and
realistic conditions. This experimental setup can be seen in Figure 1.1 which captures a
participant with skates on synthetic ice surrounded by two Optitrack cameras (circled in
yellow) and six IR markers (three on the head and three on the waist, circled in green).
Future investigations of Optitrack data can also allow us to analyze COM accelerations
during gait, which is known to be an issue among concussed patients [52].

3



Figure 1.1: Experimental Setup with Cameras Circled in Yellow and IR Markers in Green

Once the data has been captured, signal processing methods will be incorporated to
help analyze the data for statistical significance. The hypothesis is that concussed hockey
players have slower reaction times than non-concussed hockey players. The researchers
propose a method of analyzing EMG data using wavelet transforms [56]. Unlike Fourier
transforms, wavelet transforms are localized in both time and frequency and can therefore
be utilized to analyze a signal that varies in frequency over time. This representation should
be visually intuitive to a physician since it can display muscle twitch activity over time and
would help identify reaction time, which is one of the key markers for concussion diagnosis.
Reaction times can be further processed using PCA, a pattern recognition algorithm which
transforms the data to a new coordinate system based on the largest variances in the data
set [28]. Classification of different groups (e.g. concussed vs non-concussed) with the use
of PCA then creates a visual aid to help determine if there are any differences in reactions
times. Boxplots are finally incorporated to encapsulate the new data after PCA analysis.
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Refer to Chapter 2 for more information regarding PCA implementation.

The chapters in the thesis are as follows. Chapter 2 reviews the background behind cur-
rent concussion diagnosis tools as well as background concepts in signal analysis. Chapter
3 outlines the instrumentation used and describes the methodology carried out during the
experimental procedure. Chapter 4 presents the results of both EMG and directionality
data as well as the appropriate signal processing techniques. Chapter 5 draws conclusions
on the presented results. Lastly, Chapter 6 gives insight into some of the weaknesses of
the experimental procedure and outlines areas for improvement. Future research issues are
also explored.
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Chapter 2

Background

In order to create concussion diagnostic tools to aid physicians and clinicians in their
assessments, several research areas have arisen. Of most relevance are previous work in
concussion diagnosis tools, and the physical effects of concussions, both symptomatic and
non-symptomatic. This chapter provides the background information behind current-day
concussion assessment tools along with their advantages and disadvantages, which will in
turn provide a leeway into the advantages of the current research in this thesis. Also in this
chapter, the physical effects of concussions will be reviewed alongside Endsley’s Situational
Awareness Model. Lastly, the anatomy of the lower limbs, specifically the appendicular
muscles will be presented to familiarize the reader with the set of muscles used for EMG
testing.

Previous work has been conducted on diagnosing the effects of concussions. The com-
plexity arises in the elusiveness of the diagnosis since the use of traditional brain imaging
techniques such as Computed Tomography (CT) scans and Magnetic Resonance Imaging
(MRI) scans prove to be of no use in cases where there is no internal bleeding [72].

2.1 Concussion Diagnostic Tools

Several concussion assessment tools have been developed in the past to aid in the clinical
evaluation of concussions. This thesis will consider the most widely used tools on the
sidelines of major sports such as hockey, football, soccer and rugby.
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2.1.1 Sport Concussion Assessment Tool (SCAT)

The SCAT survey is an example of such a tool, and has been incorporated in this experi-
ment to aid in the analysis. The SCAT3 is used in sideline assessments and is implemented
by several sports associations such as FIFA, the Olympics, and IIHF [23].

Immediately after head impact, the physician assesses the state of the athlete and looks
for any clear signs of trauma. This includes loss of consciousness, lack of coordination,
disorientation/confusion, loss of memory, and any visible superficial impact on the head.
There are also several tests within the SCAT3 assessment to evaluate the severity of the
head trauma.

It is valuable to briefly explore the SCAT procedure, considering its use across major
sporting events and the research in this thesis.

SCAT Procedure

The latest revision of the SCAT survey is the SCAT5 (2017) which was published 4 years
after SCAT3. The latest edition synthesized the latest research, included additional tests
and refined previous tests [19].

The SCAT survey is divided into 6 major sections, beginning with an immediate on-
field assessment to identify any life-threatening injuries, and gradually following through
with standardized tests once it has been determined that the athlete is in no immediate
danger.

Section 1: Immediate Assessment

The first step of the procedure after an athlete has suffered a TBI is for the sideline
physicians to immediately evaluate the player and check for any ”Red Flags”. These
involve (and are not limited to) any of the following symptoms:

1. Weakness or tingling in the arms or legs

2. Severe headache

3. Seizures or convulsions

4. Loss of consciousness
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5. Vomiting

If any of these symptoms are available, the athlete is in need of immediate medical
attention and must carefully be transferred to the hospital.

If none of these immediate signs are noticeable then the clinicians will search for any
observable signs such as disorientation, confusion, a blank or vacant countenance, and
imbalance. This is followed by the ”Memory Assessment Maddocks Questions” where a
few simple questions are presented to the athlete in order to ensure that the athlete is not
suffering from any memory loss [40]. The following step is to perform the Glasgow Coma
Scale (GCS) examination, where a scored is assigned to the athlete’s eye response, verbal
response, and motor response. Finally, a Cervical Spine Assessment is performed to ensure
that the athlete’s neck has full Range of Motion (ROM) and is free from pain.

Figure 2.1: Flowchart of the Immediate Actions performed during a SCAT Examination
[23]

Figure 2.1 summarizes the procedures performed by clinicians and physicians immedi-
ately after an athlete has suffered a TBI. Once this examination is complete, the physicians
then move on to the next step where a series of tests are performed in an off-field assess-
ment.

Section 2: Off-field Assessment

The off-field assessment is comprised of two tasks. Firstly, the background information
of the athlete is collected, both personal and medical. This includes information such
as history of concussions suffered and list of current medications. Secondly, the athlete is
required to complete a symptom evaluation list on their own and check off the 22 symptoms
on a severity scale. The symptom evaluation is completed twice, the first time to identify
a baseline score based on how the athlete typically feels, and a second time post-injury.

Section 3: Cognitive Screening

For Section 3 of the examination, a Standardized Assessment of Concussion (SAC) test is
performed [44]. The SAC is comprised of 4 different tests, where each response is given
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a score. The first test is an orientation test designed to test the athlete’s ability to recall
the date including the day, month, year alongside the time in hours. This is followed by
an immediate memory test where a list of 5 words is read aloud to the athlete, who’s
then asked to recite the list backwards. The third test focuses on the concentration of
the athlete who’s then required to recite a string of numbers in reverse order. Lastly, the
athlete is asked to recite the months of the year in reverse order.

Figure 2.2: Flowchart of the Cognitive Screening as part of the SAC [23]

Figure 2.2 above displays a flowchart to summarize the testing performed during the
cognitive screening aspect of the SCAT.

Section 4: Neurological Screen

Step 4 of the procedure tests the athlete for any observable neurological disorders and
imbalances. The athlete is graded on their ability to follow instructions, display full cervical
spine ROM without pain, perform the finger nose test, move their head and neck without
experiencing double vision, and perform tandem gait normally [23].

Once the above has been graded, a Modified Balance Error Scoring System (mBESS)
test is performed. This involves testing the athlete’s ability to maintain balance in several
different scenarios, where a grade for each is assigned.

Section 5: Delayed Recall

The delayed recall test involves reciting the words used in the immediate memory test in
Section 2.1.1 after waiting 5 minutes from the end of the immediate recall section.

Section 6: Decision

The scores from all previous 5 sections are then tallied up and a decision is made regarding
the status of the athlete. It is important to note that the SCAT is not intended to be used
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alone to diagnose concussions or inform the physician about the recovery time required
before the athlete can return to play.

While the SCAT examination is widely used by several sporting associations it still
contains several flaws. The SCAT method does not make use of any bio-markers for accu-
rate diagnosis, which puts in question the accuracy of the testing involved. Furthermore, it
should be noted that not all concussions display symptoms at the onset of impact. In fact,
research performed on a sample of college athletes found that 50% of those who sustained
concussions did not experience immediate symptomatic effects [13]. SCAT scores have also
been found to vary with age and sex, the significance of which is not known.

One of the big issues with the SCAT examination is that it does not provide any insight
into the recovery of the athlete, nor does it give any quantitative indication of the severity
of the concussion. Therefore, unless a concussion has immediate significant symptomatic
impact, it will not be identified by the SCAT examination.

2.1.2 Military Acute Concussion Evaluation

Similar to the SCAT examination the Military Acute Concussion Evaluation (MACE)
examination is a survey with no bio-markers involved. Due to the absence of any reliable
neurocognitive impairment test, the American military employs the use of MACE in the
battlefield. Another disadvantage of the MACE is that the validity of the test decreases if
the test is not administered immediately after head injury [13].

2.1.3 Automated Neuropsychological Assessment Metrics

Neurocognitive tests, the most widely used being the Automated Neuropsychological As-
sessment Metrics (ANAM), have also been developed to measure cognitive parameters
such as attention, concentrations, and reaction time [9]. However, further investigation
has questioned whether the ANAM test is accurate in long-term assessment of patients
[12].

This thesis is interested in identifying all anthropometric variables that could affect the
results, as well as identifying the validity of the process for long-term testing.
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2.1.4 Banyan Brain Trauma Indicator

The Banyan Brain Trauma Indicator (BTI) is the first blood test developed to test con-
cussions in adults [51]. The principle is that two protein bio-markers are released by the
brain into the blood stream within 12 hours of impact. However, there are several ques-
tions which need to be addressed. It’s still unclear whether this indicator can be used to
aid with recovery. It is also unclear how long the proteins remain in the bloodstream and
whether the quantity of these proteins correlates to the severity of the concussion. While
the initial findings look promising, the Banyan BTI seems to only confirm the presence of
a head trauma.

2.1.5 Assessing Concussions using VR

The assessments of concussions using VR is a relatively new field of research with great
potential due to the nature of VR being able to recreate a life-like immersive environment
in which the participants can be assessed.

A study done in 2012 incorporated VR as a tool for assessing sports concussions in
adolescents [49]. The experiment relies on the use of Vigil Continuous Performance Test
(VIGIL-CPT) as a computerized test [8]. The participants are immersed in an environment
where a letter appears on a whiteboard at different intervals, and a keyboard response is
required of them whenever the letter appears. It was reported that the concussed group
reported increased symptoms of cybersickness compared to the control group. Findings
also suggest that sports concussions were associated with minor deficits in attention and
concentration. While cybersickness is used as a measure for concussions, there is no quan-
tifier indicating the severity of the concussion. There is also no indication of whether this
can be used to indicate when participants can return to an active lifestyle. Furthermore,
the VIGIL-CPT computerized test was initially developed to test concentration and atten-
tion in order to identify attention deficit issues in adolescents. There is no indication that
using the VIGIL-CPT test in a VR environment has any added benefits.

More recently, the use of VR in detecting balance impairment following a mild traumatic
brain injury has been shown to be valid and can replace expensive equipment. Furthermore,
it has been shown to be useful in a rehabilitation setting by monitoring and controlling the
participant’s posture and balance [73].

The use of VR in the rehabilitation of stroke patients is greatly increasing as more
data confirms the increased recovery of motor functions and daily activities [75]. This
is promising as several research papers are embarking on the exploration of the use of
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VR in a rehabilitation and identification setting for concussions [3, 16–18, 61, 67, 73, 74].
However, no work has been done in classifying the severity of concussions and identifying
an indicator that can be used to accurately assess the state of the athlete and determine
their ability to return to sports.

2.2 Situational Awareness

One concept from Neuropsychology that is worth investigating for the purposes of this
thesis is SA. SA is broken down into 3 distinct levels. Level 1 is the perception of all the
elements in the environment within a volume of time and space. Level 2 is the integration
of the different elements and the comprehension of the current situation, and Level 3 is the
prediction of their states in the near future [20].

Concussions can have a drastic impact on an individual’s SA often in the form of a lack
of perception of dangerous elements in the environment, or a delayed response in evading
them. A study conducted in 2010 found that drivers were late in responding to important
cues when driving after they had suffered a mild TBI [57].

Figure 2.3 provides an overview of Endsley’s SA model. This will prove to be useful
during the research for this thesis since it will give insight into which specific area of
cognition has been affected to help determine the severity of the concussion.
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Figure 2.3: Model of Situational Awareness in Dynamic Decision Making [20].

Loss of SA has drastic effects as determined by Endsley. There are three main com-
ponents that can gauge the severity of SA loss and which have been utilized in the ex-
perimental design. First, spatial disorientation can be worsened by the use of VR [48].
Second, a lack of system awareness can occur which encompasses insufficient scanning of
the surrounding. Last, a lack of task awareness can exist where competing tasks are not
handled properly.

Situation Awareness Global Assessment Technique (SAGAT) is a query-based measure
used to assess SA by asking the participants a set of predetermined questions during any
experiment. It is informally utilized during the experimental procedure in this thesis to
ensure that the participants are not experiencing drastic disorientation and that they’re
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aware of the dual-task of receiving the puck and bracing for a body-check. However, the
use of SAGAT is limited since it introduces the challenge of being intrusive and can affect
performance.

2.2.1 Factors That Affect EMG Measurements

Measuring EMG with surface electrodes is tricky due to 3 factors that can make the
procedure quite challenging. These factors will be carefully identified and minimized based
on previous guidelines and research [59].

Causative Factors

Causative factors are generally subdivided into two distinct classes, Extrinsic and Intrin-
sic factors. Extrinsic factors include electrode placement, the shape of the electrode, the
medium between the electrode and the contact surface, and the location of the electrode
with respect to the belly of the muscle. These factors are generally minimized by ensuring
that the surface is smooth, which involves shaving any hair to remove any source of in-
terference. Furthermore, having one researcher consistently place the electrodes on all the
participants helps reduce the variability of the placement of the electrodes.

The intrinsic factors comprise anatomical and physiological factors that are determined
by the number of active motor units such as blood flow, and fiber diameter. It is beyond
the scope of this thesis and research to determine and account for these variables.

Intermediate Factors

Intermediate factors are physiological phenomena brought about by causative factors. Most
notably, crosstalk from neighbouring muscles cause intermediate factors and reduce the re-
liability of the EMG data. This is even more pronounced in the case where dynamic
movement is involved, which makes EMG data more susceptible to crosstalk from other
muscles. The research involved in this thesis attempted to mitigate these errors by exam-
ining larger muscles below the torso that are less influenced by crosstalk.

Deterministic Factors

Deterministic factors are the direct results of the number of motor firing rate and the
interaction between different muscle fibers. It is important to note that these factors have
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a direct effect on the information in the EMG signal; however, they are outside of the scope
of the research in this thesis.
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Chapter 3

Methodology

The use of IR markers is described in this chapter by considering SA and Endsley’s model.
Furthermore, an outline of the Appendicular muscles is shown in this chapter in order to
familiarize the reader with the anatomical structure of the leg muscles, which is crucial
for understanding where the EMG electrodes should be placed. The last section of this
chapter is focused on the procedural aspect of the experiment.

3.1 IR Markers & Situational Awareness

SA plays a big role in hockey games since players are required to process a vast amount
of information, and predict future events. Tracking the participants’ directionality during
the experiment gives insight into the level of SA that each participant is capable of. A
participant with significant experience, who is not capable of processing the number of
players in the rink, the location of the puck, and their own location in the rink may have
suffered a severe concussion that has impacted Level 1 and Level 2 of their SA. A participant
that is aware of their surroundings but is slow to determine which of the opposing players
will body-check them may have suffered a milder concussion that has impacted Level 3 of
their SA.

IR markers placed on the back of the participants’ heads will allow for gathering direc-
tionality data that can be used to track where in the simulation the participants are facing,
and whether they’re aware of the location of the puck and the opposing virtual player who
will body-check them. The setup of the Oculus Rift with IR markers can be seen in Figure
3.1.
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Figure 3.1: Oculus Rift with IR Markers.

Optitrack is chosen for research purposes as a result of the low noise levels as compared
to other types of motion capture solutions such as inertial and regular computer vision
[27]. IR markers allow for quick modifications to experimental design and have shown to
be robust throughout dynamic movement when attached properly to the desired element.
It is worth noting that Optitrack does experience drift with longer duration of testing (30
minutes), which will not impact the data in this thesis as the experimental duration is at
most 15 minutes. Refer to Chapter 6 for improvements to the motion capture system.
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3.2 Anatomy Background & EMG

Recall from Chapter 1 that electrodes are placed on specific leg muscles in order to measure
the participants’ reaction time through EMG measurements during the experiment. It is
important to note where the EMG electrodes are placed and the justification behind their
location.

3.2.1 Appendicular Muscles

There are 8 surface EMG electrodes that are placed on each participant. Figure 3.2 below
displays the 4 muscles and 2 bones where the electrodes are attached.

Figure 3.2: Appendicular Muscles of the Lower Limb [42].

More specifically, eight disposable surface electrodes are placed on the participants legs
on the:
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1. Right Tibial Tubercle

2. Right Patella

3. Right Rectus Femoris

4. Right Vastus Medialis

5. Right Tibialis Anterior

6. Left Rectus Femoris

7. Left Vastus Medialis

8. Left Tibialis Anterior

Figure 3.3 demonstrates the placement of the electrodes on a participant during the
experimental procedure. An elastic bandage wrap was initially used for cable management
as can also be seen in the figure; however, it proved to be a source of interference.
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Figure 3.3: Electrode Placement on Appendicular Muscles.

The reason behind placing the electrodes in the specified locations has to do with the
nature of the electrodes used and the muscles that the electrodes are placed on.

During dynamic movement such as those in hockey and for ethical reasons, it is not
possible to insert indwelling electrodes directly into the muscle. The only solution is to
utilize surface electrodes which are not as accurate or reliable [66]. In order to minimize the
effects of the inaccuracies brought about by the surface electrodes, it is important to use
larger muscles to take measurements since it reduces the possibility of muscle cross-talk.
The Rectus Femoris, Vastus Medialis, and Tibialis Anterior have all shown in previous
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research to be reliable when measured using surface electrodes [43, 47, 59].

These muscles are part of the Quadriceps Femoris muscle group and form a complete
set when the Vastus Lateralis is included [4]. Collectively, the quadriceps femoris muscle
group act as the main extensors of the leg at the knee joint. However, due to limitations
in the number of EMG channels, several muscles were not taken into account including
the Vastus Lateralis and any of the posterior muscles such as the Gastrocnemius, and as a
result, flexion is not well covered.

Despite the limitations in the number of muscles that could be measured, the chosen
muscle group provides excellent insight into some of the most active muscles during ice-
hockey [26].

3.3 General Procedure

This section describes the general procedure undertaken to carry out the experiment.

An invitation to participate in the experiment is sent out to several intramural ice-
hockey teams at the University of Waterloo. An ethics approved information letter is also
sent out detailing the experimental procedure, the exclusion criteria, and the risks and
benefits. Participants who are interested, and who qualify for the experiment are then
scheduled to undergo the experiment.

The participants are told in advance to wear shorts, a tight fitting shirt, and to bring
their hockey skates. The first step of the procedure is for the participants to fill out the
ACE and SCAT surveys, which have been detailed in Chapter 2. Upon completion, the
participants are required to fill out a Consent Form and a Data Collection Form. The Data
Collection Form records the following parameters:

• Age

• Gender

• Height

• Weight

• Level of Play

• Contact/Non-Contact Play
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• Level of Experience

• History of Concussions and Treatment

• Dominant Hand

The participants are then prepped for the experiment. This involves shaving any hair
on the location where the electrodes are placed to minimize any interference. Once they
are in proper clothing, with skates on, the experiment commences.

3.3.1 Overview of VR Simulation

After discussions with physiotherapists who are familiar with concussions brought about
by sports, specifically hockey, several scenarios on the ice rink were devised. The focus
was on scenarios where a concussed individual’s lack of spatial awareness could result in
physical contact that could lead to injury or, head trauma. Equipped with a 360 degree
video camera and an ambisonic microphone to capture 360 degree audio, 30 scenes were
created in order to test the participants’ spatial awareness and stability. The goal is to
create an immersive life-like experience of real hockey scenarios in a risk-free environment
that can allow the researchers to collect data. The 30 scenes are divided across 7 different
scenarios. The scenarios are similar in their setup but differ in where the camera is placed
in the ice rink, and the number of players involved in the recording.
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Figure 3.4: Scenario 1

In Figure 3.4 the camera is placed in the referee crease. Scenes 1-4 are carried out in
scenario 1.

Figure 3.5: Scenario 2
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In Figure 3.5 the camera is placed by the boards in the corner. The scenario is made
up of scenes 5-8.

Figure 3.6: Scenarios 3 and 5

In Figure 3.6 the camera is placed in the center ice. Scenario 3 is made up of scenes
9-14 and provides the greatest challenge to the participants as it involves dual tasking
(receiving the puck and reacting to a body-check) while also being spatially aware in all
directions.

Scenario 5 is similar in that the camera is placed in the center ice however, there is no
puck involved in the recordings. An opposing player will still skate towards the camera
to simulate a body-check. This simplifies scenario 3 by removing the complexity of dual
tasking, allowing the participant to focus on the one task of predicting which opposing
players will body-check them. Scenario 5 is made up of scenes 19-22.

24



Figure 3.7: Scenario 4

Scenario 4 in Figure 3.7 is made up of scenes 15-18 where the camera is placed on the
blue line by the boards.

Figure 3.8: Scenarios 6 and 7
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In Figure 3.8 the camera is placed in the center of the blue line. Scenario 6 is made up
of scenes 23-26 and scenario 7 is made up of scenes 27-30.

There are two distinct teams present in the recordings, one team wearing white jerseys
and the second wearing black jerseys. In the simulation, one player wearing a white-jersey
passes the puck towards the camera (i.e. the participant). Through all this, the black-jersey
team is skating around the rink and as soon as the puck is passed towards the camera, a
member from the black-jersey team charges towards the camera to simulate a body-check
and the recording ends. Only 2 players wearing a black jersey are present in all 30 scenes.
However, the number of players wearing white jerseys ranges from 2 to 4.

Once all the scenarios have been recorded, both 360 video and audio were taken back
to the lab for processing. In order to integrate the 360 videos with the Oculus Rift, Unity,
a video game engine is programmed to playback videos to the participants.

Before actual testing, an introductory sample video is played to the participants in order
to help familiarize them with the testing environment. The introductory video involves
the puck being passed around in a circle with the participant in the middle observing. The
participants are encouraged to look around in order to fully immerse in the virtual reality
experience. The participants’ are given as much time as required to become accustomed
to the VR experience before the testing scenarios commence.

Figure 3.9 demonstrates a frame from the simulation of Scene 8 from Scenario 2. The
participant is virtually by the boards in the corner of the rink looking towards the incoming
puck as the opposing team-member is about to body-check the participant.
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Figure 3.9: Real footage of Scene 8 from Scenario 2

Synthetic ice is placed on the floor to create a 9’x9’ perimeter on which the participants
can skate as shown in Figure 3.10. It is of utmost importance to create scenarios as realistic
as possible such that the responses collected mimic the exact responses as would be seen
in hockey games. Furthermore, a hockey stick is given to each participant to add to the
realism of the experiment.
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Figure 3.10: Participant with Skates on Synthetic Ice

Velcro-band is placed on the waist of the participants and on top of which 3 IR markers
are placed as can be seen in Figure 1.1. The Velcro-band serves the purpose of minimizing
any movement due to loose clothing. On the back of the Oculus Rift, 3 more IR markers
are attached in order to monitor the motion of the head. Optitrack cameras placed in the
testing laboratory capture 360 degree motion of the IR markers and serve the purpose of
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identifying both COM location and the directionality of the participant’s head.

Figure 3.11 shows the real-time information of the IR markers during the experimental
procedure. The 3 markers on the head are labeled as “Trackable 1” and the 3 markers
on the waist are labelled as “Trackable 2”. The participant is surrounded by 6 Optitrack
cameras to ensure that each marker is captured by at least 2 cameras at every instance in
time. The X-Z plane marked on the figure is the plane that the participant skates on. The
“Real-Time Information” tab on the right of the figure demonstrates the average values of
the head markers “Trackable 1” during the experimental procedure. Of primary interest
is the Yaw, the orientation around the Y-axis, which identifies where the participant is
looking.

Figure 3.11: Real Time Visualization of Head Markers in Optitrack

When a testing scene is opened up, it is presented in a paused state to allow the par-
ticipants to look around in all directions before the video is played. Once the participants
are comfortable and ready, they inform the researchers. Parallel programming in the Unity
game engine allows the researchers to start the video, start an Optitrack recording for the
scene, and insert a trigger signal in the EMG data collection hub. The trigger signal allows
for the comparison of the reaction times of different participants with respect to the start
time of the scene. The trigger signal is also applied to Optitrack motion capture data so
that the orientation of all participants can be compared per scene. Once the scene is com-
plete, a researcher guides the participants to a default starting position at the beginning of
every scene. This is beneficial as it helps avoid any wire entanglement and helps with the

29



Optitrack data collection in that every scene is standardized with the participant facing
the default position.

Figure 3.12 demonstrates the data flow direction between the different elements in the
experimental procedure. There are 3 computer software applications running simultane-
ously. The Unity game engine application is responsible for streaming the different scenes
through the Oculus Rift. Furthermore, as soon as a scene begins a trigger signal is sent
to both the Optitrack cameras and an Arduino that relays the signal to the EMG hub.
The Arduino is utilized to simplify the integration of Unity and the EMG hub. Optitrack
cameras return the “Trackables” location and orientation to the Optitrack Tracking Tools
software as was seen in Figure 3.11, this data is also stored in a text file. The EMG hub
returns the measurements from the 8 electrodes to the ”OpenBCI” software responsible
for collecting and filtering EMG data.

Figure 3.12: Communication between Different Components in the Experimental Proce-
dure

Figure 3.13 shows the OpenBCI software application during EMG streaming. The data
is streamed at 250 Hz and is automatically stored in a text file similar to Optitrack data.
In all cases, live streaming from OpenBCI and Optitrack was monitored to ensure that
there weren’t any issues during the experimental procedure.
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Figure 3.13: OpenBCI EMG Data Streaming

This procedure is carried out until either all the scenarios have been completed, or
the participant feels unwell to continue with the experiment, and at which point, the
experimental procedure is discontinued. The pain scale shown in Figure 3.14 is displayed
to participants in the case where the experiment is discontinued and therapists/physicians
are required.

The pain scale was not used throughout the experimental procedure for any of the 13
participants, and there was no experience of discomfort that elicited the need of a physician
or clinician.
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Figure 3.14: Pain Scale.

3.4 Raw Data

Upon completion of all 30 scenes for each participant, the Optitrack and EMG text files
are imported into MATLAB for post processing and analysis.

Figure 3.15 presents the raw EMG data of the right rectus femoris of one participant for
scene 2. Notice that there are four important markers superimposed on the graph. These
represent the time at which the puck arrives to the player, the time at which the charging
opponent reaches terminal velocity, the time at which collision occurs, and the time at
which the scene ends. These four markers were extracted from each scene by playing back
the videos in slow-motion at one-eighth the speed. The videos were paused when one of
the events had occurred and the time was noted down.
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Figure 3.15: Raw EMG Data of the Right Rectus Femoris

Note that the y-axis in Figure 3.15 is normalized voltage. Voltage was normalized
across all participants to create a standard metric for comparison. Let x be a real-valued
vector such that x ∈ Rn and µ the mean of x. The normalized voltage x̂ is then:

x̂ =
x− µ

max(|x− µ|)
(3.1)

Figure 3.16 presents the directionality of a non-concussed participant during one scene.
One of the observable differences between concussed and non-concussed participants is the
statistical variance in the directionality. This observation could, with further research,
support the fact that non-concussed participants are more spatially aware. Chapter 4
shows preliminary results for all participants during one scene.
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Figure 3.16: Head Directionality from a non-concussed Participant

Figure 3.17 presents the head directionality taken from a concussed participant for the
same scene as used in Figure 3.16. It is clear that the maximum angle is smaller and
that there aren’t as many drastic rotations. This could possibly point to a lower spatial
awareness.

34



Figure 3.17: Head Directionality from a Concussed Participant

In the next chapter, EMG data will be post-processed and analyzed to display any
significant differences between concussed and non-concussed hockey players. Due to lim-
itations specified in Chapter 6, Optitrack data will be used qualitatively to support the
notion that concussed participants are not as spatially aware as non-concussed partici-
pants.
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Chapter 4

Results

This chapter is concerned with reviewing signal analysis concepts needed for the processing
of the captured signals.

4.1 Signal Analysis Overview

Given that the data captured by the EMG is noisy, it is necessary to apply signal processing
to present the data embedded in the raw EMG signal in a manner which can be analyzed
and interpreted by clinicians. This section goes through the basics of Fourier series, Fourier
transforms, and finally wavelet transforms.

4.1.1 Fourier Series

A Fourier series breaks up an arbitrary periodic signal into an infinite sum of sines and
cosines, by making use of the orthogonality relationship of the sine and cosine functions as
well as Euler’s formula.

The most general form of the Fourier series for a periodic real-valued function f(t) can
be written as follows [71]:
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f(t) =
∞∑

n=−∞

Ane
i(2πnt/L)

An =
1

L

∫ L
2

−L
2

f(t)e−i(2πnt/L)dt

(4.1)

Where L is the period of f(t).

4.1.2 Fourier Transforms

Fourier transforms are one of the most popular tools in wave decomposition and are used
in representing aperiodic signals as an integral of sine and cosine functions. Used primarily
for the purposes of decomposing a signal into its constituent frequencies, the transform has
the following mathematical form [71]:

X(ω) =

∫ ∞
−∞

x(t)e−jωt dt (4.2)

Where x(t) is the aperiodic time function, and X(ω) is the frequency domain representation
of x(t). The Fourier inversion theorem allows for the reconstruction of x(t) from X(ω) as
follows:

x(t) =
1

2π

∫ ∞
−∞

X(ω)ejωt dω (4.3)

However, for the purposes of this experiment, the Fourier transform has limitations. While
localized in frequency, the transform not localized in time, and therefore is not as useful
for this research.

4.1.3 Short Time Fourier Transform Resolution Issues

A STFT is similar to the Fourier transform seen in Equation (4.2) except that it determines
the frequency contents of a signal as it changes over time. This is done by dividing a time
signal into smaller segments of equal length and then computing the Fourier transform of
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each segment separately. This reveals the frequency content on each smaller time segment,
and the changing spectra as a function of time can be plotted for illustration.

In order to calculate the STFT the time function of interest, x(t) is multiplied by a
window function w(t) which is non-zero for a short period of time. The Fourier transform
of the new signal is calculated as the window is translated across the time axis (τ is the
translation parameter). This is mathematically expressed as follows:

X(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−jωt dt (4.4)

In a STFT, there is a trade-off between time and frequency information determined by
the width of the window function. A wide window in a STFT provides better frequency
resolution than time resolution. This can be understood simply by extending the window
width to approach infinity to emulate a Fourier transform. Conversely, a narrower width
gives better time than frequency resolution. The example below demonstrates the difference
in information when different window sizes are used for the Fourier Transform.

Consider the piecewise cosine function defined in Equation 4.5. There is one frequency
present in four separate waveforms, 10 Hz, 25 Hz, 50 Hz, and 100 Hz respectively.

x(t) =


cos(2π10t) 0s ≤ t < 5s

cos(2π25t) 5s ≤ t < 10s

cos(2π50t) 10s ≤ t < 15s

cos(2π100t) 15s ≤ t < 20s

(4.5)

The spectrograms in Figure 4.1 are produced with a sampling frequency of 400 Hz.
Four different subplots of different window sizes are shown.

In Figure 4.1a a 25 ms is the narrowest window that can be used since the original
function is sampled at 400 Hz as stated before. The horizontal axis shows time in seconds,
the vertical axis shows frequency in Hz and the colour-bar represents the magnitude of the
frequencies. It is apparent that a narrow window covers time resolution well but frequency
content is compromised. Observe that the predominant frequency changes at 5 s, 10 s, and
15 s. However the frequency content seems to have a range between 0 - 80 Hz from 0 to
5 s, which is not true when referring back to Equation 4.5. Even if the largest amplitude
is considered within the first 5 seconds by using the colour-bar, it still ranges from 0 to 30
Hz, which is highly inaccurate in the case of EMG analysis.
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On the other hand, a 1000 ms window allows for greater frequency precision but worsens
time precision between frequency changes as can be seen in Figure 4.1d. For example, it’s
quite clear that the predominant frequency in the first waveform is approximately 10 Hz.
However, the transition to the next frequency occurs around between 5 - 6 s. It is clear
from Equation (4.5) that a frequency change occurs at exactly 5 s.

(a) A 25 ms window. (b) A 125 ms window.

(c) A 375 ms window. (d) A 1000 ms window.

Figure 4.1: STFT with different Window Sizes
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4.1.4 Wavelet Transforms

The Fourier transform is a useful tool in analyzing the frequency components of a signal;
however, it is impossible to determine when a particular frequency arises. The STFT,
in contrast, uses a sliding window to find a spectrogram which gives both time and fre-
quency information. The problem with the STFT is that the width of the window function
determines time and frequency resolution. Wavelet transforms provide a solution to this
problem.

Wavelet transforms are based on wavelet functions with limited time duration and are
governed by two important parameters, j which represents the dilation of the wavelet and
k which represents the translation.

Figure 4.2: Morlet wavelets with different dilation and translation factors

Wavelet transforms are suitable for expressing both time and frequency information.
This is ideal for displaying EMG data in that any clinician can identify muscle twitch
activity for specific muscles throughout dynamic movement. It therefore gives a more
illuminating method of expressing temporal changes in frequency.
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A function ψ : R −→ R is called a mother wavelet of order m if the following five
properties are satisfied [65]:

1. If m > 1 then ψ is (m− 1)-times differentiable.

2. ψ ∈ L∞(R). If m > 1, for each j ∈ {1, ...,m− 1}ψ(j) ∈ L∞(R).

3. ψ and all its derivatives up to order (m− 1) decay rapidly: For each r > 0 there is a
γ > 0 such that

|ψ(j)(t)| < 1

t
, j ∈ {0, 1, ...,m− 1} for each |t| > γ.

4. For each j ∈ {0, 1, ...,m − 1},
∫
tjψ(t)dt = 0. This is known as the vanishing

moment property of the mother wavelet. A wavelet has N vanishing moments ⇐⇒
the wavelet scaling function (defined below) can generate polynomials up to degree
N − 1 and the wavelet coefficients are 0 for polynomials of degree at most N − 1.
The scaling function alone can be used to represent such functions.

5. The set {ψj,k}j,k∈Z is an orthonormal basis of L2(R) where ψj,k are derived from the
mother wavelet by relationship ψj,k(t) = 2j/2ψ(2jt− k).

Thus the expression for wavelet coefficients is given as

fj,k =

∫ ∞
−∞

f(t)ψj,k(t)dt (4.6)

where j and k are related to frequency and time respectively.

Recall the example given by Equation (4.5) in Section (4.1.3) where the STFT was
shown to be inaccurate for a time frequency analysis of a simple waveform. To overcome
this, consider the implementation of the wavelet transform for Equation (4.5) in Figure
4.3.

41



Figure 4.3: Wavelet Transform of Equation 4.5

Figure 4.3 shows the time frequency plot for Equation (4.5). The x − axis represents
time and the y − axis represents frequency. The colour-bar shows the magnitude of the
frequencies based on the wavelet coefficients. Three markers are superimposed on the
graph to depict when a frequency change should occur. The dashed white line and the grey
region represent the cone of influence. The cone of influence shows areas in the scalogram
potentially affected by edge-effect artifacts. These are effects in the scalogram that arise
from areas where the stretched wavelets extend beyond the edges of the observation interval.
Values in the grey region should therefore be treated with caution as they are susceptible
to edge-effects. [68].
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4.2 EMG Post-Processing

EMG data was collected from 13 different participants, 6 who had suffered at least 1
concussion in the past. Post-processing was done on all 6 muscles from the 13 participants
for the 30 different scenes.

The strategy for post-processing EMG data is outlined in Figure 4.4. The raw EMG
signal is denoised using a Daubechies Discrete Wavelet Transform (DDWT). A CWT is
then applied to the denoised signal to plot the time-frequency behaviour of the signal for
illustrative and visual purposes. PCA is then applied to the denoised EMG signal in order
to identify any differences in the reaction times of concussed and non-concussed hockey
players. Once a visual intuition was built up from the PCA plot, Box plots were utilized
to output the means and variances of the first two critical components for the different
groups of interest.

Figure 4.4: Post-processing Technique
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4.2.1 Discrete Wavelet Transform

In the case of EMG analysis, the Daubechies wavelets are the most widely used wavelet
functions for EMG feature extraction. Daubechies wavelets also act as bandpass filters
and are capable of effectively removing more unnecessary noise in the EMG signal when
compared to Butterworth filtering techniques [56]. Mallat has introduced a repetitive
application of high pass and low pass filters to calculate the wavelet expansion of a given
function as shown in Figure 4.5 [41, 60].

An auxiliary function φ(t), a companion of the wavelet function, which is called the
scaling function, is used to define the approximations (low-pass output) and forms a set of
orthonormal bases of L2(R) as given by [11]:

φj,k(t) = 2−j/2φ

(
t− k2j

2j

)
, j, k ∈ Z. (4.7)

Figure 4.5: Mallat’s cascaded filter [65]
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The scaling function φ(t) satisfies

∫ +∞

−∞
φ(t)dt = 1 (4.8)

and two scale difference equation,

φ(t) =
√

2
L−1∑
k=0

hkφ(2t− k), j, k ∈ Z. (4.9)

The wavelet function is given by

ψj, k(t) = 2−j/2ψ

(
t− k2j

2j

)
, j, k ∈ Z. (4.10)

In Equation (4.10), the function ψ has M vanishing moments up to order (m− 1) and
it satisfies the following two scale difference equation,

ψ(t) =
√

2
L−1∑
k=0

gkφ(2t− k). (4.11)

Recall that the wavelet transform requires a pair of filters (high-pass and low-pass).
One filter in the pair calculates wavelet coefficients (high-pass), whereas, the other applies
the scaling function (low-pass). This scaling function, implemented with filter coefficients
{hk}, provides an approximation of the signal via the following equation:

WL(n, j) =
∑
m

WL(m, j − 1)h(m− 2n). (4.12)

The wavelet function gives us the detail signals, which are also called high-pass coefficients,
and they are given by the following equation:

WH(n, j) =
∑
m

WL(m, j − 1)g(m− 2n), (4.13)

where WL(p, q) is the pth scaling coefficient at the qth stage, WH(p, q) is the pth wavelet
coefficient at the qth stage, and h(n), g(n) are the filter coefficients corresponding to the
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scaling (low-pass filter) and wavelet (high-pass filter) functions respectively. These two
filters are called quadrature mirror filters and are related by

gk = (−1)khL−K , k = 0, ..., L− 1. (4.14)

It is common practice to use a 7th order Daubechies wavelet (db7) to iteratively trans-
form the EMG signal into subsets of coefficients [56]. The db7 wavelet and scaling functions
are presented in Figure 4.6.

(a) db7 Scaling Function φ (b) db7 Wavelet Function ψ

Figure 4.6: Daubechies 7th Order Wavelet

46



(a) φ Decomposition low-pass filter (b) ψ Decomposition high-pass filter

(c) φ Reconstruction low-pass filter (d) ψ Reconstruction high-pass filter

Figure 4.7: db7 Decomposition and Reconstruction of the Scaling and Wavelet Functions

It has been shown previously that Detail levels ‘d1’ and ‘d2’ are sufficient in encom-
passing all the important details in a raw EMG signal [24, 55, 56].

Consider the decomposition of a raw EMG signal into 4 levels using the Daubechies
Discrete Wavelet Transform (DWT) shown in Figure 4.8
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Figure 4.8: EMG Decomposition

The reconstructed EMG waveform using detail levels 1 and 2 is shown in Figure 4.9.
The raw signal is shown in red, and the superimposed denoised signal is shown in black.
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Figure 4.9: Denoised EMG Signal in Black, Original in Red

Once the EMG data has been denoised, the maximum EMG peak that occurs between
the terminal velocity of the opposing player and the time of collision identified. The peak
time is then subtracted from the time of the terminal velocity to yield reaction time.

The reaction time in Figure 4.10 as an example would be the time of the peak response
(t = 1.888) minus the time of terminal velocity (t = 1.835).
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Figure 4.10: Reaction Time Visualization

4.2.2 Continuous Wavelet Transforms

There are several types of wavelets that can be utilized depending on the application and
the signal at hand. However, the most general expression for a mother wavelet can be
written as:

Ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(4.15)

where a, b ∈ R and a 6= 0. a is the scaling factor that determines the window size and b
is the translation factor. Recall that for a STFT a was fixed. This is not the case with
wavelets.

The wavelet transform is defined in Equation (4.16) as the integral of the mother wavelet
with the time function of interest x(t):

X(a, b) =
1√
a

∫ ∞
−∞

ψ

(
t− b
a

)
x(t) dt. (4.16)
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where, ψ(·) represents the desired mother wavelet, and a, b represent scaling and time vari-
ables respectively. The choice of the mother wavelet depends on the intended application
and range of frequencies of interest. For the purposes of EMG analysis, the Morse wavelet
was used to analyze the time frequency components as proposed by Wachowiak et al. [70].

The Fourier transform of the generalized Morse Wavelet is

ΨP,γ(ω) = U(ω)aP,γω
P2

γ e−ω
γ

(4.17)

where U(ω) is the unit step, aP,γ is a normalizing constant, P 2 is the time-bandwidth
product, and γ characterizes the symmetry of the Morse wavelet. By adjusting the time-
bandwidth product and symmetry parameters of a Morse wavelet, analytic wavelets with
different properties and behavior emerge.

The plots in Figure 4.11 show how different values of symmetry and time-bandwidth
affect the shape of a Morse wavelet. Longer time-bandwidths broaden the central portion of
the wavelet and increase the rate of the long time decay. Increasing the symmetry broadens
the wavelet envelope, but does not affect the long time decay. Very small time-bandwidth
and large symmetry values produce undesired time-domain sidelobes and frequency-domain
asymmetry [36–38, 50]. The P 2 and γ values used are based off the work of Wachowiak et
al. [70].
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(a) γ = 3 and P 2 = 60 (b) γ = 3 and P 2 = 9.3

(c) γ = 1.5 and P 2 = 3 (d) γ = 2.5 and P 2 = 3

Figure 4.11: Effects of symmetry and time-bandwidth values on the shape a Morse wavelet

Figure 4.12 shows the time frequency plot of the denoised EMG signal from Figure
4.9. The plot is the response of the right rectus femoris of a non-concussed participant for
scene 2. Note the clear response of the rectus femoris muscle around 1.8 s, right after the
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opposing player reaches terminal velocity (shown by the cyan marker). This non-concussed
participant reacts almost instantaneously with more than 500 ms before collision occurs
(shown by the magenta marker).

Figure 4.12: CWT of an EMG Signal for a Non-concussed Participant

Contrast Figure 4.12 of a non-concussed participant’s response to a concussed par-
ticipant’s response in Figure 4.13. It is clear that it takes more time for the concussed
participant to respond to the oncoming challenge. This delay could be a result of spatial
disorientation where the participant is unaware of where the challenge is coming from, or
it could be a cognitive delay in information processing as a result of the concussion [2, 30].
However, no conclusions can be made for one scene from two participants. This will be
discussed in more detail in Chapter 6.
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Figure 4.13: CWT of an EMG Signal for a Concussed Participant

Another observable difference between the two participants is the frequency response.
The rectus femoris of the non-concussed participant is more active throughout the entire
duration of the scene, and reaches a maximum before the opposing player reaches terminal
velocity. This maximum contraction is maintained for approximately 200 ms, and is again
observed between the time of collision and when the scene ends.

In contrast, the concussed participant shows more sporadic and narrower durations of
frequency response, with maximum frequency response not lasting more than 50 ms.

4.2.3 Principal Component Analysis

PCA is an unsupervised regression algorithm used in pattern recognition. More specifi-
cally it is an orthogonal linear transformation that transforms data into a new coordinate
system such that the greatest variance by some projection of the data comes to lie on
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the first coordinate (called the first principal component), the second greatest variance on
the second coordinate, etc [29]. PCA is used in identifying patterns in data by helping
highlight their similarities and differences.

The researchers decided to use unsupervised learning because there are a lot of varia-
tions in the participants’ biometric data that could cause drastic differences to the reaction
times of both concussed and non-concussed participants. PCA was utilized as a first step
to examine if there were any noticeable features in the reaction times. However, in the
future, the use of Neural networks on large sets of data could shed light on more patterns
within the data.

Consider a data matrix X that has 390 observations for 1 variable. The 1 variable
represents one of the muscles, and the 390 observations represent the reactions times for
each participant for each of the 30 scenes. The first step of PCA is to achieve zero empirical
mean by subtracting the mean X̄:

X − X̄ = X −
∑n

i=1Xi

n
(4.18)

where X is a 390 by 1 matrix of reaction times and n is the number of observations.

The second step is to calculate the covariance matrix between the muscles, recall that
the covariance of a column of X with itself is simply the variance. The covariance is
mathematically defined as follows:

cov(X, Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n− 1
(4.19)

where Y represents another one of the six muscles.

This process is repeated with all six muscles until a covariance matrix is calculated. A
positive covariance indicates that both X and Y increase together, a negative covariance
indicates that as one of the dimensions increases, the other decreases.

The eigenvectors and eigenvalues of the covariance matrix are then calculated where
the eigenvectors represent the new transformed basis of the data. The largest eigenvector
represents the first principal component and represents the largest variance in the data,
the second principal component represents the second largest eigenvector and the second
largest variance in the data, etc.

Consider Figure 4.14 below of a sample data distribution. The vectors shown on the
plot are the largest two vectors of the covariance matrix scaled by their eigenvalues, and
shifted so that their tails are at the mean.
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Figure 4.14: PCA Example

The largest variance in the data set lies along the vector labelled ‘PC1’ whereas the
second largest variance lies along the vector labelled ‘PC2’ as seen in Figure 4.14. These
two vectors are the principal components and form the new transformed coordinate system.
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4.3 Summary of Results

Reaction Times

Data was collected from 13 participants. They were divided into 3 groups:

• CE - Concussed & Experienced - 6 participants

• NCE - Not Concussed & Experienced - 5 participants

• NCNE - Not Concussed & Not Experienced - 2 participants

Players who had suffered at least one concussion were placed in the CE group (there
were no inexperienced players who had suffered concussions). Experienced players were
those who had played ice hockey for at least 10 years.

Figure 4.15 shows the output of the transformed data after the application of PCA.
The total variance is divided across the 6 principal components as follows:

• Principal component 1 - 47%

• Principal component 2 - 14%

• Principal component 3 - 12%

• Principal component 4 - 10%

• Principal component 5 - 9%

• Principal component 6 - 7%

It is apparent that principal component 1 accounts for approximately 50% of the vari-
ance in the data. Referring to Figure 4.15, principal component 1 displays the weighted
reaction times of the 6 different muscles labelled in the figure.

All six variables are represented in the biplot by a vector, and the direction and length
of the vector indicate how each variable contributes to the two principal components in
the plot. For example, the first principal component, which is on the horizontal axis,
has positive coefficients for all six variables. The second principal component, which is
on the vertical axis, has negative coefficients for the right tibialis anterior, the left rectus
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femoris, the left tibialis anterior, and the left vastus medialis. However this component has
a positive coefficient for the right rectus femoris and the right vastus medialis.

A boxplot of principal component 1 could shed light onto the different reaction times
in the 3 different groups. However, principal component 2 has no physiological significance
since it represents the differential reaction time between different muscles.

Furthermore, principal component 2 accounts for only 14% of the total variance. This is
not very significant considering that the variances depicted by the remaining 4 components
are very close. There is therefore no added benefit in visualizing the data in 3D by including
principal component 3.

58



Figure 4.15: PCA for the EMG Data Set

Figure 4.16 displays the boxplot for principal component 1. The 3 distinct groups
are displayed separately. The data markers on the plot give information regarding the
interquartile range. It appears that there is very little difference between the average
reaction times for the three different groups. No conclusion can be formed from the reaction
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times of concussed and non-concussed participants.

Figure 4.16: Principal Component 1 Boxplot
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Head Directionality

Head directionality (Yaw) was determined for all participants for scenes 12 and 13. These
scenes, shown in Figure 4.17 and Figure 4.18, represent a particularly difficult scenario
for any hockey player. The participant is in the center (marked by a yellow circle) with
two opposing players (marked by a red X) and four teammates (marked by a green X).
The puck (marked by the direction of a green arrow) is passed towards the participant as
one of the opposing players (marked by the direction of a red arrow) charges towards the
participant.

Figure 4.17: Scene 12
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Figure 4.18: Scene 13

Figure 4.19 shows the head directionality of all 13 participants for Scene 12. Note that
the puck arrival and player collision occur at the same time.
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Figure 4.19: Scene 12 responses

It may appear that some participants show almost 0 movement between the terminal
velocity of the opposing player and the time of collision. However, this is not indicative of
a concussion.

Consider the boxplot in Figure 4.20 where the 3 distinct groups are labelled (Concussed
Experienced, Not Concussed Experienced, and Not Concussed Not Experienced). This
boxplot contains the head directionality for all participants for both scenes 12 and 13.
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Figure 4.20: Scenes 12 and 13 Boxplot

While the average angle of the inexperienced and non-concussed group seems to be
drastically different from the other two groups, it is important to note that the group is
comprised of only 2 participants and therefore is not indicative of a true response. This
group was isolated so as not to affect the responses of the experienced participants.

The directionality between experienced concussed and non-concussed participants is
centered around the same mean angle with a slight deviation of approximately 2 degrees.
The distribution is the same for both groups suggesting that there might not be an ob-
servable difference between participants with a history of concussion and non-concussed
participants.
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Chapter 5

Conclusions

The purpose of this thesis was to develop a quantitative metric by which concussions can
be assessed, a secondary goal was to use visual aids to assist physicians and clinicians in
making assessments.

In Chapters 1 and 2, the problem with concussions was investigated in detail. Con-
cussions are elusive and include a wide variety of symptoms that range from trivial to
detrimental. Classifying and diagnosing concussions is a difficult task yet it is of utter
importance since the well-being of several athletes rests on precise diagnosis.

Chapter 3 described the methodology taken to create diagnostic tools. A 360 degree
camera and microphone were used to collect real-life hockey scenarios that involve dual-
task management. The scenarios involve the hockey puck being passed towards the camera
and an ice hockey player charging towards the camera. This data was then processed and
fitted into Unity game engine so that it could be played back in a VR environment. The use
of VR along with synthetic ice provided an immersive environment where the responses of
hockey players could be collected in response to a virtual stimulus that posed no physical
risk. EMG was collected alongside motion capture data in an attempt to capture the
reaction time of participants and the directionality of their heads.

Chapter 4 discussed some signal processing techniques for filtering and extracting rel-
evant information from the raw EMG data. The use of PCA proved useful in helping
analyze reaction times of different groups, and boxplots of the first two principal compo-
nents provided sufficient information to infer some observations.

The results section was divided in two, reaction time, and head directionality. No
comment can be made regarding the statistical significance of data since there weren’t
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enough data points available for the use of a T-test. There was no observable difference
between any of the three groups when it came to reaction time as observed in Figure 4.16.
The interquartile range of the experienced non-concussed group was slightly narrower than
the concussed group; however, the overall range was the same, and the difference was
insignificant. The inexperienced and non-concussed group involved only two participants,
which made it difficult to draw any results based on their responses. Regardless, for
reaction time, there was no difference between their performance and the other two group’s
performance.

It is difficult to make a claim regarding the directionality observed in Figure 4.20.
Though the range is larger for the non-concussed participants, the data points only com-
prise one scene and are therefore not indicative of any differences between the groups.

No claims can be made regarding the difference in responses between concussed and
non-concussed hockey players. There were several different factors that could have made an
impact such as, time since last concussion, recovery period, severity of the concussion, and
if any formal therapy was received. The most recent concussion that one of the participants
had suffered was six years prior to undergoing the experiment, which should not have had
any effect on the participant [21].

While it could be the case that there is no difference in the reaction time and direc-
tionality of non-concussed and concussed hockey players, more data needs to be collected.
Of interest would be to collect data from recently concussed participants (< 1 month) over
several different sessions to monitor their recovery. It is almost important to recall that
the most recent concussion recorded was six years ago, therefore it is of no surprise that
there is no difference between concussed and non-concussed responses.

Though the boxplots have demonstrated no difference between the three different groups
overall. A case scenario between an experienced non-concussed participant and an expe-
rienced concussed participant shown in Figure 4.12 and Figure 4.13 demonstrated a sig-
nificant difference in their reaction times and their time frequency plots. The concussed
participant was slower and their rectus femoris was not activated for as long of a duration.
Furthermore, their head directionality shown for one scene in Figure 3.16 and Figure 3.17
also showed a significant difference. The non-concussed participant showed great variabil-
ity in their directionality when compared to the concussed participant. These observations
would confirm the hypotheses of this thesis. However, no conclusion can be drawn from a
case scenario.

The methodology developed in this experiment proved to be immersive. The par-
ticipants found themselves engaged and responsive to the external stimulus of a virtual
body-check. The VR environment proved to be safe for testing. This was validated by
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comparing participant inputs from the Acute Concussion Evaluation (ACE) and SCAT
surveys to their responses during SAGAT inquiries regarding any dizziness, nausea, or any
general discomfort. Furthermore, the pain scale was not utilized once during the experi-
ment.

The use of the CWT to generate a time frequency plot proved to be useful in visualizing
the response times of the participants while monitoring the frequency response of the muscle
of interest. This visual aid can be used by physicians and clinicians to draw information
on the response time as well as the activation of the muscle of interest.

Finally, though no conclusion can be drawn from the results. The experimental proce-
dure developed proved to be very useful, and with the a larger participant sample size can
provide some great insight.
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Chapter 6

Future Work & Current Limitations

This section discusses several improvements that could be made to the experimental pro-
cedure and design, and suggests future steps to be taken by the next set of researchers.

6.1 Participant Data Collection

Collecting data from hockey players with a history of concussions proved to be challenging.
Ideally in the future, the next set of researchers would partner with a sports rehabilitation
clinic in order to collect more data. This would help overcome the limited sample size
in this thesis. Furthermore, collecting responses from recently concussed participants can
provide great insight into the recovery time from concussions.

6.2 Wireless Approach

During the first draft of the experimental procedure, a wired EMG Hub was utilized for
EMG data collection. However, the research team quickly discovered the limitations of a
wired system, the interference caused by EMG electrodes falling off, and by the interaction
between the EMG electrode cables and the serial wire attached to the USB input of the
computer. The research team iterated to another EMG Hub with Bluetooth capability.
However, Bluetooth provided a 250 Hz sampling rate which is lower than ideal for EMG
measurements, and therefore while the Bluetooth option is still available, the research
team had decided to collect data on an SD card directly attached to the EMG OpenBCI
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data collection board. This option allows the data to be sampled at 1 KHz. Unfortunately,
while the first 2 sets of data from the SD card were stored without any issue, the remaining
11 sets of data were corrupted. This left the researchers with no option but to use data
sampled at 250 Hz.

The first improvement would be to purchase the OpenBCI wireless shield which allows
for wireless streaming at a 1 KHz sampling rate. The second improvement would be to
purchase a wireless head-mounted display such as the HTC Vive to avoid the entanglement
and interference of cables. Another added benefit of a new head-mounted display is that the
latest versions provide eye tracking which would greatly help with identifying directionality.
One of the issues faced with collecting IR motion capture data is that participants with
different play styles react differently and the directionality of the head could be misleading
as the eyes could be facing another direction.

6.3 EMG Improvements

The quadriceps femoris muscle group minus the vastus lateralis was monitored throughout
the experiment. Including the vastus lateralis would allow for a complete picture of the
anterior legs muscles. Furthermore posterior muscles such as the hamstring should also be
monitored in the future to check for cocontraction.

6.4 ECG and EEG Data Collection

In the initial draft of the experiment, there was interest in collecting both ECG and EEG
data, but they were not pursued.

It would be useful if future researchers carried out EEG measurements either using the
already purchased OpenBCI Hub or with a different setup. Research has already been done
on concussion testing with EEG data. This further gives the researcher more biometric
data that can be used in conjunction with what is already being collected to give a more
accurate diagnosis tool. ECG has not been utilized in concussion testing, however, since
the technology for ECG data collection is becoming significantly more abundant, it might
be worthwhile to gather ECG data for classification purposes.
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6.5 Improved Motion Capture Technology

Optitrack Tracking Tools has been retired and proved difficult to work with. Optitrack’s
new Motive software provides a great platform that can accelerate the process of data
collection and analysis. If more precise measurements are to be taken then it might be
worthwhile to consider investing in more advance motion capture technology such as Qual-
isys [27].

6.6 Theoretical Improvements

More research needs to be put into the type of CWT and DWT used. The ones incorporated
in this experiment were based off the works of previous researchers, however, improvements
could still be made. This will help ensure that no useful information is lost when denoising
or when computing the time frequency analysis of an EMG signal.

Further signal processing techniques should be explored. PCA was used as a leeway
into possibly identifying patterns based off the variance in the data. However, with in-
creased participant sample size and larger data sets, more sophisticated and appropriate
techniques should be utilized. Ideally, the use of supervised regression algorithms should be
incorporated when comparing data from non-concussed to concussed participants. Further
strategies could involve the use of neural networks to identify trend patterns in large data
sets.

6.7 Scenario Improvements

One of the most common feedback comments from the participants was that they would
have attempted to skate away to evade the hit if possible. The simulation did not allow for
any translation but only rotation, which could have elicited an unnatural response from
the participants. Furthermore, the scenes were greatly unrestricted in that the participants
could have reacted in several different ways (such as by completing ignoring the puck and
only focusing on the charging opposing player). This makes it possible to have several
different ‘correct’ responses. In the future it would be ideal to restrict the scenarios in
such a way where there would be only one correct response by which to evaluate all the
participants.

Furthermore it might be beneficial to examine participant responses in a scene-by-scene
basis in order to reduce the variability in the data set. Analyzing each scene separately
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while viewing EMG responses alongside head directionality might shed more light on the
responses of concussed and non-concussed groups.
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Appendix A

All the Different Hockey Scenes

A.1 Scenario 1

Figure A.1: Scene 1
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Figure A.2: Scene 2

Figure A.3: Scene 3
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Figure A.4: Scene 4

A.2 Scenario 2

Figure A.5: Scene 5
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Figure A.6: Scene 6

Figure A.7: Scene 7
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Figure A.8: Scene 8

A.3 Scenario 3

Figure A.9: Scene 9
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Figure A.10: Scene 10

Figure A.11: Scene 11
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Figure A.12: Scene 12

Figure A.13: Scene 13

87



Figure A.14: Scene 14

A.4 Scenario 4

Figure A.15: Scene 15
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Figure A.16: Scene 16

Figure A.17: Scene 17
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Figure A.18: Scene 18

A.5 Scenario 5

Figure A.19: Scene 19
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Figure A.20: Scene 20

Figure A.21: Scene 21
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Figure A.22: Scene 22

A.6 Scenario 6

Figure A.23: Scene 23
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Figure A.24: Scene 24

Figure A.25: Scene 25
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Figure A.26: Scene 26

A.7 Scenario 7

Figure A.27: Scene 27
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Figure A.28: Scene 28

Figure A.29: Scene 29
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Figure A.30: Scene 30
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Appendix B

Survey Questions and Ethics
Documents

The sections below show the surveys and data collection form that were filled out by each
participant.
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B.1 SCAT Survey
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B.2 ACE Survey
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B.3 Data Collection Form
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