
RuSTL: Runtime Verification using
Signal Temporal Logic

by

Waleed Qadir Khan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Waleed Qadir Khan 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor(s): Sebastion Fischmeister
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Arie Gurfinkel
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Mark Crowley
Assistant Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

A system is classified to be a safety-critical system if its failure and/or malfunction of
these devices may result in severe injuries or in extreme cases loss of human life. Such
systems are all around us, examples of which include pacemakers, respiratory equipment,
electrical locks, fire sprinklers and cars among many others. Runtime Verification (RV) is
used to monitor the execution of such systems either while running or after execution to
ensure that the system under observation does not violate any safety constraints.

RV employs formal specification languages to evaluate a real-world systems. Pnueli
introduced the formal specification for Linear Temporal Logic (LTL) in 1977 for speci-
fying propositional time properties of reactive and concurrent systems. Signal Temporal
Logic (STL) is a popular extension of LTL, which analyzes dense-time real-valued signal
properties with quantitative timing constraints.

In this thesis, we introduce Runtime Verification using Signal Temporal Logic (RuSTL),
an offline qualitative semantic tool for monitoring STL properties. RuSTL is designed to
parse any valid STL formula ϕ and create a stand-alone executable monitor program, which
checks the property against a given trace σ. RuSTL also take in as input structured English
text and convert it into an equivalent STL formula. The application also has the capability
to automatically generate diagnostic plots that help the user visually inspect the results of
the monitor against a given trace.

We prove that the monitor program generated by RuSTL is sound and it terminates
for any given valid STL property. Furthermore, we prove that the parsing algorithm used
to create the monitor program is complete.

We evaluated RuSTL’s performance over traces collected from an autonomous self-
driving vehicle. The experimental results for our RV monitor show that the execution time
of the monitor grows linearly with respect to the length of the signal trace provided.

iv

Acknowledgements

I am extremely grateful to my supervisor Professor Dr. Sebastian Fischmeister, for
giving me this opportunity and allowing me to pursue my dream for higher education. He
is a great mentor and his guidance has been invaluable during the course of my research
and has shown me the importance of clarity in the written words. The words of some
unknown author come to mind:

To my supervisor, for whom no thanks is too much.

∼ Some Unknown Author

I would also like to thank Sean Kauffman, Dr. Carlos Moreno and David Shin for their
help and support during my time here. Their counsel on numerous occasions has helped
me become a better researcher and am genuinely grateful to them for taking the time out
of their schedule to assist me.

v

Dedication

This is dedicated in memory of my late grandfather Dr. Abdul Qadir Khan —
and my surviving grandparents Mr.Asadullah Khan Durrani, Mrs.Sharafat Yasmeen and
Mrs.Shakila Qadir. I would also like to dedicate this to my parents, my father Dr. Altaf
Qadir Khan, my mother Dr. Faria Altaf.

It is only due to their continuous support and guidance that I am able to make it here
today and no amount of thanks will ever be enough to show my gratitude.

vi

Table of Contents

List of Tables x

List of Figures xi

Abbreviations xii

List of Symbols xiv

1 Introduction 1

1.1 Runtime Verification . 1

1.2 Structured English . 2

1.3 Thesis Statement . 3

1.3.1 Formal Model . 4

1.4 Offline vs. Online Monitoring . 6

1.5 Contribution . 6

1.6 Organization of the Thesis . 7

2 Background 9

2.1 Linear Temporal Logic (LTL) . 9

2.1.1 Precedence Order . 11

2.1.2 Examples . 11

2.2 Metric Interval Temporal Logic (MITL) . 12

2.3 Signal Temporal Logic (STL) . 15

vii

3 ANTLR 17

3.1 Grammar . 17

3.2 Lexer and Tokenizing . 20

3.3 Parser . 20

3.3.1 Avoiding Ambiguity . 21

3.4 AST Listener . 22

4 RuSTL 23

4.1 STL Grammar . 24

4.1.1 Expression Rule . 24

4.1.2 Signal Comparison Rule . 26

4.1.3 STL Formula Rule . 27

4.2 Transforming Properties . 27

4.3 Generating the Monitor Program . 30

4.3.1 Entering a Node . 31

4.3.2 Exiting a Node . 31

4.3.3 Diagnostic Plot . 36

4.4 Soundness, Termination and Completeness 36

4.5 Temporal Depth . 40

5 Structured English 41

6 Case Study 45

6.1 Robot Operating System (ROS) . 46

6.2 Renesas Autonomy Demonstrator (RAD) 48

6.3 Experimental Results . 49

7 Related Work 53

viii

8 Conclusion 55

8.1 Summary . 55

8.2 Future Work . 55

8.2.1 Online Monitoring . 56

8.2.2 Robustness Metric . 56

8.2.3 Multi-Language Process Monitor 56

References 58

APPENDICES 66

A STL Grammar for ANTLR4 67

ix

List of Tables

6.1 Sample fields from collected dataset. 49

6.2 Computation time vs trace length. 50

x

List of Figures

1.1 System under observation. 4

1.2 Abstract overview of RuSTL. 5

2.1 Sample example of LTL property evaluations. 12

3.1 Parse tree generated after analyzing the input. 21

4.1 Workflow diagram of RuSTL. 23

4.2 Parse tree generated for: 4 + 3 ∗ 7. 25

4.3 Parse tree generated for Equation 4.2. 29

4.4 Parse tree generated for Equation 4.3. 30

5.1 Structured English Grammar by [49] . 43

6.1 Renesas Autonomy Demonstrator (RAD) - Photo credit: investStratford/Terry
Manzo. 45

6.2 Architectural overview. 48

6.3 Computation time vs trace length. 50

6.4 Diagnostic plot. 52

xi

https://startupheretoronto.com/sectors/technology/university-of-waterloo-team-contributes-to-development-of-renesas-electronics-autonomous-car/
https://startupheretoronto.com/sectors/technology/university-of-waterloo-team-contributes-to-development-of-renesas-electronics-autonomous-car/

Abbreviations

ANTLR ANother Tool for Language Recognition 7, 17, 18, 20–25, 43, 44

AP Atomic Propositions 9–11, 15

CAN Control Area Network 15, 48

CLI Command-line interface 54

CPS Cyber Physical Systems 15

CSV Comma-separated values 36

CTL Computational Tree Logic [16] 2, 42

EBNF extended Backus-Naur form 17, 43

GIL Graphical Interval Logic [70] 2, 42

GPS Global Positioning System 46

GUI Graphical User Interface 41, 54, 55

IMU Inertial Measurement Unit 46

KF Kalman filters 46

LTL Linear Temporal Logic [68] 2, 9–12, 14, 42

MITL Metric Interval Temporal Logic [3] 13–15, 51, 53, 54

xii

MTL Metric Temporal Logic [50] 2, 12–14, 42, 53

NLP Natural Language Processing 41, 42

QRE Quantified Regular Expressions [65] 2

RAD Renesas Autonomy Demonstrator xi, 45

ROS Robot Operating System 46–48, 51

RTGIL Real-Time Interval Logic [61] 2, 42

RuSTL Runtime Verification using Signal Temporal Logic iv, xi, 1, 3–7, 17, 23, 24, 28,
31, 36, 39, 42–44, 51, 55, 56

RV Runtime Verification 1–4, 6, 9, 11, 12, 15, 43, 55, 56

SPIDER Specification Pattern Instantiation and Derivation EnviRonment [48] 3, 42

STL Signal Temporal Logic [56] 2–7, 15–17, 23, 24, 27, 36, 40, 42, 50, 51, 53–57

TCTL Timed Computational Tree Logic [2] 2, 42

TL Temporal Logic [68] 2, 3, 7, 9, 41, 42, 53

TRE Timed Regular Expressions 54

UDP User Datagram Protocol 48

V2I Vehicle to Infrastructure 46

V2V Vehicle to Vehicle 46

xSTL Extended Signal Temporal Logix 54

xiii

List of Symbols

N Natural Numbers: Whole non-negative number 4

Q Rational Numbers: Numbers that can be represented as a fraction of two integers, with
a non-zero denominator. 4, 13, 24

∧ Basic logical operator for conjunction 10, 11, 32, 37, 39

∨ Logical operator for disjuncion 10, 11, 27, 32, 37

↔ Logical operator for equivalence 10

♦ Temporal operator for Eventual, which specifies that the formula will hold eventually
♦ϕ = > U ϕ. 11, 14, 15, 27, 32, 37

ϕ A temporal property formula iv, 1, 3–7, 10, 11, 14–16, 23, 24, 26–28, 31, 36, 40, 55, 56

� Temporal operator for Global, which specifies that the formula must always hold.
�ϕ = ¬♦¬ϕ = ¬(> U ¬ϕ) 11, 14, 16, 27, 32, 37

→ Logical operator for implication 10, 11, 27, 32, 37

¬ Basic logical operator for negation 10, 37, 39

© Temporal operator for next, which specifies what should hold true in the next step. 10

σ Execution trace iv, 1, 4–7, 9, 15, 24, 37, 40

U Temporal operator for Until, which specifies that the first formula should hold until the
second formula becomes true. 10, 11, 37, 39

I Time Interval: A nonempty convex subset of Q≥0 13, 24, 31, 33, 37, 42, 43

xiv

Chapter 1

Introduction

1.1 Runtime Verification

A system is classified to be a safety-critical system if its failure and/or malfunction of
these devices may result in severe injuries or in extreme cases loss of human life. Such
systems are all around us, examples of which include cars driving at 100 km/h, airplanes
flying at 35,000 feet, fire sprinklers dispersing water to extinguish an uncontrolled flame
or pacemakers in the human body ensuring the continued and rhythmic beating of the
human heart among many others. Such systems must be tested rigorously to ensure safety.
In Runtime Verification (RV) the execution of a system is monitored and analyzed to
determine if it satisfies some pre-defined correctness properties. Correctness properties
are derived from the requirements of the system or provided by engineers designing the
application to ensure that the behavior of the running system complies with the safety
specifications. An essential property for any distributed system to ensure is “a process
blocked on a resource will eventually get that resource”. The correctness property formula
ϕ is most commonly defined in a formal specification language. A monitor takes as its
input a trace σ, which is either the running execution of a system or prerecorded inputs
and outputs. The monitor analyzes the trace σ against the correctness property, where the
output denotes whether the given trace σ satisfies or violates the correctness property.

We propose Runtime Verification using Signal Temporal Logic (RuSTL), which per-
forms offline analysis about the future evolution of a continuous time behavior of real-
valued signals obtained from sources such as the safety-critical systems described above
to verify if they are operating correctly. For such devices, the timing requirements are
much stricter, and so these devices must be monitored to ensure that they are operating

1

as intended. More often than not, malfunctions leading to catastrophic failure proceeded
with anomalous behavior or temporal relations between components that are not main-
tained immediately before failure [8]. An RV monitor addresses these concerns by raising
an alert if for example, the temperature of a furnace exceeds the safety limits and the
cooling system is not turning on.

Formal specifications such as Linear Temporal Logic [68] (LTL), Computational Tree
Logic [16] (CTL), Graphical Interval Logic [70] (GIL) and Quantified Regular Expres-
sions [65] (QRE) are widely used in the fields of formal methods, software verification and
model checking and analysis. LTL specifically was developed by Pnueli in 1977 to reason
about events in the temporal domain of reactive and concurrent systems. However, these
specifications taken as is, do not quantitatively reason about time. When checking the
observed behavior of real-time systems, a property in LTL can be defined that checks if “a
request is always eventually followed by a response”. But a property such as “a request is
always followed by a response within 5-time units” cannot be defined using LTL.

There was a need to expand this formal specification for real-valued signals. To that
aim, a number of formal specification developed to target real-time properties, such as
Metric Temporal Logic [50] (MTL), Timed Computational Tree Logic [2] (TCTL) and Real-
Time Interval Logic [61] (RTGIL). In RV various formal specifications are employed [68,
50, 15, 28]. MTL is a popular expansion of LTL, that analyzes real-time systems of Boolean
signals. MTL allows temporal operators to have timing constraints and analyzing over an
n-dimensional Boolean signal. MTL thus allows the creation of correctness properties of
dense-time Boolean signals.

However sensor signals, analog circuits, control systems, etc. don’t output data only
as Boolean variables. So Signal Temporal Logic [56] (STL) was developed by expanding
on the formalism created for MTL, to monitor dense-time real-valued signals. Usually,
when observing a running system such as a vehicle or a manufacturing line, the trace
being collected, is in the form of a sequence of time-stamped values, where each entry
represents an entire snapshot of the entire system and contains Boolean, integer or real
values pertaining to the different inputs.

1.2 Structured English

As mentioned earlier, leveraging Temporal Logic [68] (TL) allows the user to check if the
system under observation satisfies the desired correctness properties. However, in industry,
employing techniques based on formal methods is often met with resistance, due to the

2

lack of background knowledge and training. Specifications to check on an observed system
can come from multiple sources, such as engineers, designers, managers, etc. Non-technical
professionals are usually unfamiliar with the formal semantics of TL. It becomes difficult
for those unfamiliar with the domain to understand the type of check that the property is
trying to perform.

Structured English language sentences are intuitive to understand, and translating them
into correctness properties, then provides an incentive for the use of this technology in RV.
STL or TL properties can be complicated and highly nested, and just by looking at the
formula ϕ itself, it may not be easy even for domain experts to discern with the property
is trying to achieve. Structured text acts as a conduit between generating correctness
properties from text requirements and deploying them on the observed system. Structured
text that closely resembles the natural English language alleviates some of that complexity.
Multiple techniques [40, 5, 35, 60, 62] have been developed that use parsing and natural
language processing to compute the specifications from the structured text, in the domain of
model checking, robot controllers and formal methods. Specification Pattern Instantiation
and Derivation EnviRonment [48] (SPIDER) is a tool that takes Structured English text
and converts them to the desired specification properties.

These techniques have been utilized in synthesizing robotic controllers and motion
planning [52, 33, 29, 54]. Since they allow designers to enter requirements similar to if
they were talking to a person “if in room1, go to room2 next” or “speed never exceeds 20
km/h”.

1.3 Thesis Statement

In this thesis, we claim that future bounded STL properties are practically applicable
for checking the integrity of dense-time real-valued signal traces from observed systems.
The proposed application RuSTL does this by (1) parsing any valid STL property or
structured English text, (2) generating a monitor program which when provided with a
trace determines the satisfiability of the property.

The thesis statement leads to the following problem statement:

Problem Statement: Given a trace and a set of properties in STL, effectively and
efficiently determine offline whether the properties are being violated.

3

1.3.1 Formal Model

For RV, we assume that there is a system under observation, as shown in Figure 1.1 that
takes some input, processes the information and generates an output. Let Q be the set
of rational numbers, N the set of natural numbers and B = {True, False} the Boolean
domain. The time domain T is the set Q≥0 of non-negative rational numbers. The state of
the system is described by a set of n state variables V = {x1, x2, x3, . . . , xn}, where n ∈ N.
“A state is a snapshot or instantaneous description of the system that captures the values
of the variables at a particular instant of time” [17]. Valid values of V are in the domain
of Q.

Figure 1.1: System under observation.

Definition 1 (Signal Trace σ). A signal trace (or trace) σ is the behaviour (state) of the
system over a finite or infinite subset of T. For a given trace σ, we define σ(ti) = xi[t] as
the value of the state variable xi, xi ∈ V at a time instance t.

Assumption 1 (Discrete-time signals). We assume the system is sampled such that the
result of applying the formula on the discrete-time signal trace is equivalent to applying it
on the continuous-time signal. For example we sample the system in such a way that every
relevant event in the system is included within the trace.

Assumption 2 (Finite length trace). It is important to note that there are certain proper-
ties that cannot be evaluated over a finite length trace. Example of such a property is one
that checks “traffic light is green infinitely often”, which requires an infinite length trace to
analyze that it is satisfied. RuSTL is designed to analyze properties that can be evaluated
over a finite length trace.

Figure 1.2 provides a high-level overview of RuSTL. A STL specification ϕ is provided
to a compiler program, which tokenizes the input string, and outputs a parse-tree. The
algorithm traverses the parse-tree and generates a monitor program, which is a stand-
alone script, which when executed, takes as input a signal trace σ and checks if the trace
satisfied or violated the property and outputs the appropriate verdict over the Boolean
domain B = {True, False} respectively.

4

Figure 1.2: Abstract overview of RuSTL.

Effectively

The following metrics will be used to demonstrate that RuSTL executes its tasks effectively:

Definition 2 (Soundness). RuSTL will be deemed sound, if and only if, when given a valid
trace σ and STL specification ϕ the monitor program always computes the correct answer,
regarding the satisfiability or violation of the property.

Definition 3 (Termination). RuSTL will be considered terminating, if and only if, when
given a valid trace σ and STL specification ϕ the monitor program always halts.

Definition 4 (Completeness). RuSTL will be deemed complete, if and only if, when given
a valid STL specification ϕ, the Algorithm accepts any output generated by the Parser and
creates a monitor program.

Efficiently

Computation Time - This is the only metric used to measure the efficiency of the applica-
tion. Time elapsed between the start of the monitor program (after loading the trace) till
the end of execution (when the process halts and outputs the result). Ideally, the moni-
tor should output the result as quickly as possible, so lower computation time values are
desirable.

The complexity of the formula and the length of the trace heavily influence the perfor-
mance of the system and are subjective to the user. So metrics such as memory allocation
and CPU consumption are not considered to chart the performance of the application.

5

Violate a Property

The evaluation function θ : σ × ϕ × t → B, maps a given trace σ, a valid STL formula ϕ
and a time t to a value in the domain of B. If θ(σ, ϕ, t) evaluates to True then the property
was satisfied, and False means that it was violated.

1.4 Offline vs. Online Monitoring

The main focus of RV is to detect violations (or satisfaction) of correctness properties [9].
The detection can be achieved either offline or online. In offline RV, the process of veri-
fication starts after the entire trace σ has been collected “(i.e., traces starting at time 0,
and lasting till a user-specified time horizon)” [19].

In online RV, the monitor runs in parallel to the running system, checking the currently
running execution of the system. If the trace σ violates the correctness property, the
monitor raises the alarm. In some cases, after the monitor raises the alarm, some entity
may use this signal to begin the process to rectify the system. In some cases, a safety
program may be triggered by the alarm to start the process to stabilize the system. Since
the monitor is checking a running system, it is unknown how far into the future will the
system keep running. So the property is always being monitored until either the system
shuts down or the trace violates the property.

In embedded real-time systems, resources such as memory (non-volatile or volatile)
are much smaller compared to everyday devices such as laptops or desktops. The main
concern when doing monitoring online is to analyze its effect on the performance of the
embedded device. The temporal depth requirement of the trace σ and the complexity of
the property directly affect the computation time and memory allocation. For online RV
the performance of the running system should be affected in the least amount possible.
Whereas for offline monitoring the complexity cost can be passed on to offsite servers (e.g.,
supercomputers), that have more than enough resources and have been optimally designed
to perform such computations.

1.5 Contribution

The main contribution of this work is RuSTL, an RV application using STL, which performs
an offline qualitative analysis of STL formulas that takes in input as:

6

• Structured English text - The text is then analyzed and converted into a STL formula
ϕ.

• Valid STL formula ϕ - The result of analysing the valid STL property is the generation
of a stand-alone monitor program. During the generation of the monitor program
RuSTL collects specifics regarding the formula ϕ and makes it available to the user.
The collected information includes all the signals required for the formula ϕ, its
temporal depth (the maximum time window that a property may require to compute
a verdict) and general stack information.

The generated monitor program is independent of the application and can be deployed
headless on different platforms. The monitor program is currently generated as a
Python program, but can easily be extended to other languages such as C or C++.
The monitor program can then be run by providing it with a valid trace σ.

The novelty to our approach is that the created monitor program, is a stand-alone
python script. Thus the monitor program can be deployed on any system that supports
python, independently of RuSTL. To the best of our knowledge, there is no open-source
implementation available that offers this feature.

After the monitor program analyzes a trace σ, it gives a binary response stating whether
the trace satisfied or violated the property. But, an observer ensuring the system is running
safely would like a more in-depth diagnostic alongside the True or False verdict. The
verdict alone does not tell where in the sequence of events the property failed and by
how much. To that end, RuSTL provides some diagnostic capability in the form of an
interactive HTML plot. The tool takes the output from the monitor program and plots
the checked data and also outputs the violated trace section.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives background on TL, leading
up to STL. In Chapter 3, we present the background information related to ANother Tool
for Language Recognition (ANTLR), the tool used for parsing and lexing grammars.

In Chapter 4 and 5 we introduce the proposed solution that takes either structured text
or an STL property and creates the corresponding checker. We explain its inner workings
and present a proof for its effectiveness.

In Chapter 6 we describe a case study for implementing checks on data collected from
a real-time self-driving autonomous vehicle and discuss the results.

7

Chapter 7 describes the related work done in the field. Finally, concluding remarks and
discussion related to future work are in Chapter 8.

8

Chapter 2

Background

Temporal Logic [68] (TL) was first introduced in by Pnueli in 1977. It is a formalism
for specifying propositional time properties of reactive and concurrent systems. Temporal
logic has been studied extensively since its conception [10, 16, 53, 4].

TL can be divided into two categories:

• Linear Temporal Logic [68]

• Branching Time Logic

The first section in this chapter will explain the Linear Temporal Logic (LTL) specifi-
cation and gives a few useful examples. Later sections will cover Metric Interval Temporal
Logic (MITL), used to analyze real-time systems of Boolean signals and Signal Temporal
Logic (STL) which is used to monitor dense-time real-valued signals.

2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic [68] (LTL) specifications are checked on a finite set of Atomic
Propositions (AP) over an infinite length trace σ. A trace can be either a particular
execution of a program or data collected from sensors. As the name applies, in LTL there
is a single sequence of events or system-states. Whereas the branching time logic, analysis
properties over a computation tree model. Since the focus of this work centers on Runtime
Verification (RV), we will not be looking into branching time logic and only focus on LTL.

9

The grammar for LTL can be expressed as follows:

ϕ := > | p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2 (2.1)

where

• ϕ is a temporal formula

• p is an AP from a pre-defined finite set

• ¬ is the basic logical operator for negation

• > is the Boolean operator True

• False (⊥) can be represented as: ⊥ = ¬>

• ∧ is the basic logical operator for conjunction

• The © or next is a basic temporal operator that specifies what should hold true in
the next step

• U is a basic temporal operator for until, which specifies that the first formula should
hold until the second formula becomes true

σ |= ϕ1 U ϕ2 ↔ ∃i = 0, 1, . . . such that ϕ2 hold true and ∀0 ≤ j < i : ϕ1 hold true
(2.2)

Additional logical operators which build on top of ¬ (negation) and ∧ (conjunction)
are:

• ∨ is the logical operator for disjunction

ϕ1 ∨ ϕ2 ≡ ¬(¬ ϕ1 ∧ ¬ ϕ2) (2.3)

• → is the logical operator for implication

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 ≡ ¬(ϕ1 ∧ ¬ ϕ2) (2.4)

• ↔ is the logical operator for equivalence

ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) (2.5)

10

Additional temporal operators are also defined as follows:

• ♦ is the temporal operator eventually. ♦ϕ specifies that the formula ϕ will eventually
hold true at some point in the future. It is derived from the basic temporal operators
and can be expressed as follows:

♦ϕ ≡ > U ϕ (2.6)

• � is the temporal operator always, while some literature also refers to it as globally.
�ϕ specifies that the formula ϕ will always hold. It is also derived from the basic
temporal operators and can be written as:

�ϕ ≡ ¬♦¬ϕ ≡ ¬(> U ¬ϕ) (2.7)

2.1.1 Precedence Order

The precedence order on the operators are defined already. The U temporal operator has
a higher precedence than the logical operators of ∧ conjunction, ∨ disjunction and →
implication. The U temporal operator is right-associative, so the formula ϕ1Uϕ2Uϕ3 and
ϕ1U(ϕ2Uϕ3) are equivalent.

2.1.2 Examples

Figure 2.1 outlines a few basic examples in LTL. Each circle represents a state. A state
marked with an alphabet signifies that the AP is true in that state. Unmarked states can
have any arbitrary AP true or false in them and does

LTL has been widely used for specification and verification of programs, RV over
observed system behaviour and model checking. Popular model checking tools such as
SPIN [41], SMV [59] and NuSMV [14] all have roots in LTL. It has also been used in mo-
bile robot applications for dynamic controller and path planning algorithms in [29, 47, 51].
There are also Numerous RV techniques for LTL properties have also been proposed [36, 38]
and tools such as EAGLE [7] exist for public use.

11

Figure 2.1: Sample example of LTL property evaluations.

2.2 Metric Interval Temporal Logic (MITL)

Metric Temporal Logic [50] (MTL) was introduced to analyze real-time systems of Boolean
signals. Real-time systems such as vehicles, manufacturing plants, power stations, etc. have
multiple sensory inputs during normal operation. These system needs to respond to these
events asynchronously within a bounded time. While the domain of model checking and
formal verification leveraged LTL extensively, there was an apparent lack of a formal spec-
ification method that involved reasoning about quantitative timing properties. Also, LTL
properties are defined over infinite trace executions which is not the case when analyzing
black box systems.

Many extensions have been proposed to the traditional LTL to deal with these issues
in RV. One popular extension is MTL, proposed in [50] as a formal specification that
subscripts a timing constraint on temporal operators.

Following are a few examples that are typical in the field of RV that would be difficult
to express using the LTL specification:

• A request should always be followed by a response within at least 5-time units.

• When triggered the light should stay Amber for 3-time units and then turn Green.

• Each time someone opens the front door, someone will enter the correct security code

12

with the next 10 seconds or the alarm will start ringing for 5 seconds after the first
8 seconds have passed.

In [3] the authors intorduced Metric Interval Temporal Logic [3] (MITL). “MITL is
MTL where the timing constraints are not allowed to be singleton sets” [21]. MITL restricts
MTL by forbidding the use of single time constraint susbscripted to temporal operators
and are instead susbscripted by time intervals.

Definition 5 (Time Interval I). A time interval is a nonempty convex subset of Q≥0.
Intervals can be in the form of:

• Open — (a, b) = {x ∈ Q | a < x < b}

• Half-open — [a, b) = {x ∈ Q | a ≤ x < b}

• Closed — [a, b] = {x ∈ Q | a ≤ x ≤ b}

We restrict ourselves to bounded timing interval I = [a, b] of finite length in the range
of ⊆ [0,∞). An interval in the form of I = [a, a], holds only a single value.

The grammar for MTL is defined as follows:

ϕ := > | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 | ϕ1 U ϕ2 (2.8)

where

• A temporal operator with no interval equates to one for the entire time domain

ϕ1 U ϕ2 ≡ ϕ1 U[0,∞] ϕ2 (2.9)

• The until formula ϕ1U[a,b]ϕ2 equates to the following, where t, is the starting position:

(σ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃t
′ ∈ [t+ a, t+ b] such that ϕ2 holds true

and ∀t′′ ∈ [t, t
′
] ϕ1 holds true

(2.10)

In this work the non-strict semantics of until U are employed, where both ϕ1 and ϕ2

hold true for some value t
′
.

13

Thus the remaining temporal operators can be expressed as follows:

• The ♦ temporal operator for eventually is now expressed as ♦[a,b]ϕ

♦[a,b]ϕ ≡ >U[a,b]ϕ (2.11)

The formula ϕ will eventually hold true between [t+ a, t+ b]

• The � temporal operator for always is now expressed as �[a,b]ϕ

�[a,b]ϕ ≡ ¬♦[a,b]¬ϕ ≡ ¬(> U[a,b] ¬ϕ) (2.12)

The formula ϕ will always hold true between [t+ a, t+ b]

Equation 2.13 is a valid property for MTL but not MITL, that checks that it is always
the case that whenever ϕ1 holds true, ϕ2 will eventually hold true in exactly a time units.

ϕ := �(ϕ1 → ♦=a ϕ2) (2.13)

It has been shown in [39] that both MTL and MITL are equally as expressive, so the
semantics for only MTL is defined. In MITL the temporal operators are subscripted by
a time interval. Equation 2.13 can be re-written in MITL notation as follows, where the
bounded time interval [a, a] contains exactly one point:

ϕ := �(ϕ1 → ♦[a,a] ϕ2) (2.14)

With this expansion on the temporal logic specification that has the notion timing
constraints, it gives the user more expressive power allowing them to define properties
MITL that were not possible with LTL, such as those that require exact time distance
between events or a specified time distance between two separate event occurrences.

With the grammar now defined we look at the examples given at the start of the section
and construct their MITL formulas

• It is always the case that a response within 5-time units should follow a request.

�(request→ ♦[0,5]response) (2.15)

14

• When triggered the light should stay Amber for 3-time units and then turn Green.

�(trigger → �[0,3]Amber ∧�[4,4]Green) (2.16)

• Each time someone opens the front door, someone will enter the correct security code
with the next 10 seconds or the alarm will start ringing for 5 seconds after the first
8 seconds have passed.

�(OpenFrontDoor → (♦[0,10]SecurityCode ∨�[8,13]AlarmRinging)) (2.17)

2.3 Signal Temporal Logic (STL)

Signal Temporal Logic [56] (STL) was developed as an extension to MITL to monitor
dense-time real-valued signals. STL is similar to MITL, with the added benefit that the
specification is no longer bound to evaluate only AP. In STL, the execution trace σ is
a set of time-stamped real-valued signals. Since the intent is to deploy this RV monitor
in embedded applications such as autonomous vehicles, Control Area Network (CAN)
operated devices or Cyber Physical Systems (CPS) systems, this will be helpful.

The grammar for STL is identical to that of MITL presented in Equation 2.8 on page
13.

ϕ := > | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 (2.18)

• The temporal formula for bounded STL until (ϕ1 U[a,b] ϕ2) is the same as presented
in 2.10 on page 13, but the formulas can now include real-valued signals and not just
AP.

(σ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃t
′ ∈ [t+ a, t+ b] such that ϕ2 holds true

and ∀t′′ ∈ [t, t
′
] ϕ1 holds true

(2.19)

• The ♦ temporal operator eventually is expressed as ♦[a,b]ϕ

(σ, t) |= ♦[a,b] ϕ↔ ∃t
′ ∈ [t+ a, t+ b] where ϕ holds true (2.20)

The formula ϕ will eventually hold true between [t+ a, t+ b]

15

• The � temporal operator always is expressed as �[a,b]ϕ

(σ, t) |= �[a,b]ϕ↔ ∀t
′ ∈ [t+ a, t+ b] ϕ holds true (2.21)

The formula ϕ will always hold true between [t+ a, t+ b]

The formal specification provides a way to monitor hybrid systems, where the input
signals can be either Boolean or real-valued. Following are a few properties that can be
expressed using STL:

• The braking system should disengage in the vehicle as soon as wheel locking is de-
tected.

�((Wheel Locking == True)→ �[1,1](Braking System Disengage == True))
(2.22)

• Vehicle should not exceed a speed of 100 within the first 5 time units

�[0,5](speed ≤ 100) (2.23)

• Whenever the signal goes above 1, within 2-time units it should settle under 0.5 for
at least 3-time units

�((signal > 1)→ ♦[0,2](�[0,3](signal < 0.5))) (2.24)

16

Chapter 3

ANTLR

Computer language parsing is the first step in writing a compiler. There is no restriction
to writing a parser from scratch, but this is a highly error-prone and complex task. It is
often preferred to use an existing program that performs this step. Bison and yaac are
examples of popular parser generators used today. Bison is commonly used in conjunction
with flex, which performs lexing and tokenizing.

Runtime Verification using Signal Temporal Logic (RuSTL) uses ANother Tool for
Language Recognition (ANTLR) [67], a tool written in Java that handles structured text.
ANTLR is an ALL(*) parser generator, which means it takes a top-down approach when
parsing. The tool takes in as input a grammar file (with an extension “*.g4”), create a
parser which can recognize structured text input of the language. The application provides
additional targets for languages such as C, C++, Python along with Java. Our application
is written using Python bindings.

3.1 Grammar

A grammar is a formal language description of a set of rules defining how the language
is structured. It is used to define the syntax of programming languages and compiler
construction. There should never be any ambiguity in the grammar of what constitutes a
valid input for the language. Fortunately, the grammar for STL has already been defined
as shown in Equation 2.18. ANTLR accepts grammar defined in extended Backus-Naur
form (EBNF) notation.

17

Grammar 3.1 is an example sample grammar taken from the online [72] repository,
that recognizes simple mathematical expressions. The grammar is conveniently called
Expression. The general notation for ANTLR is that lexical (tokens) rules are written
in uppercase letters and are defined near the end of the grammar while parser rules are
denoted using lowercase letters.

ANTLR employs the concept of alternatives by having them to the right-hand side of
a given rule. An alternative is a choice between possible matches that the parser can make
from its current position. Ideally, only one of the alternatives will match; however, there
can be cases where multiple alternatives can match the rule, and in such instances ANTLR
matches it to the first alternative.

It starts with a prog rule (short for program), that comprises of one or more stat
(short for statements). A stat has three alternatives. The first being an expr (short
for expression) followed by a newline. The second an assignment statement for an expr
followed by a newline. And the last being just a newline. The expr rule has 5 alternatives.
They follow the logic of mathematical expressions. The multiply and divide rule is defined
before the addition and subtract, and so they will be matched first. The last alternative
matches and expression encapsulated in parenthesis.

The following lists examples of valid inputs for the grammar:

• 3

• a = (3 + 1)

• b = 5

• c = c + 1

• a = b + 2

The grammar is just displayed here to understand the basics of ANTLR and is in no
way a complete. For instance, the fourth bullet point is a valid syntax for incrementing
the value of variable c by 1. However, before this line, the variable has not been initialized.
ANTLR will raise no error flags, since the grammar accepts the input but the resulting
logic will break down. It is then the programmer’s job to look for these cases when parsing
the input.

18

Grammar for expression statements

grammar Express ion ;

prog : s t a t+ ;

s t a t : :=
expr NEWLINE # printExpr
| ID ‘= ’ expr NEWLINE # a s s i g n
| NEWLINE # blank

expr : :=
expr op =(‘∗ ’ | ‘ / ’) expr # MulDivExpr
| expr op =(‘+ ’ | ‘− ’) expr # AddSubExpr
| INT # i n t
| ID # id
| ‘ (’ expr ‘) ’ # parensExpr

MUL : ‘∗ ’ ;
DIV : ‘/ ’ ;
ADD : ‘+ ’ ;
SUB : ‘− ’ ;
ID : [a−zA−Z]+;
INT : [0−9]+;
NEWLINE: ’\ r ’ ? ’\n ’ ;
WS : [\ t]+ −> sk ip ;

19

3.2 Lexer and Tokenizing

A lexer is a program that tokenizes a stream of text. The job of a lexer is to read the
input character by character and performs lexical analysis —transforming plain text into
a stream of tokens. There are at least two main characteristics of a lexar. First is to chunk
the text according to the rules and second is identifying the type of the token. Other
information associated with a token includes the line number, start index, stop index and
text width.

Equation 3.1 is an example of a simple variable assignment statement that is valid for
the grammar defined in Grammar 3.1.

a = b+ 2 (3.1)

The tokens generated by the program for the input provided in Equation 3.1 are:

• ID: a

• ID: b

• op: +

• INT: 2

3.3 Parser

A parser then recognizes the sentence structure. The parsers input is the stream/sequence
of tokens. The parser then checks the meaning of the tokens, analyzes their relative position
and the context in which they appear. It is the job of the parser to determine if the
structure of the sequence of tokens is valid with respect to the grammar of the language.
The resulting output from a parser is a tree-like structure called a parse tree.

ANTLR is a recursive-descent parser, meaning that “this is a specific kind of top-down
parser implemented with a function for each rule in the grammar” [66]. In Figure 3.1 nodes
of the tree are labeled with the parser rule whereas the leaves of the parse tree are the
input tokens. They correspond to the rules defined in the grammar shown in Grammar 3.1.

20

Figure 3.1: Parse tree generated after analyzing the input.

3.3.1 Avoiding Ambiguity

There is ambiguity in the grammar if an input string provided to a grammar results in more
than one parse tree generated by the parser. Having ambiguity while defining the grammar
can lead to unexpected and unintended consequences as it becomes more complex and
supports a wide array of interconnected behavior. For a grammar with any uncertainty can
lead to a scenario where multiple alternatives match with a single string input. These faults
are not easy to identify by just viewing the grammar, and an extensive battery of user-
provided test cases should be run to validate the claim that the grammar is unambiguous.

An unambiguous grammar is one whose parser generates a unique parse tree when
provided with a valid input string. ANTLR deals with such ambiguities by matching
the input to the first rule specified in the grammar. So these points must be taken into
consideration when designing a grammar.

21

3.4 AST Listener

An expr rule has multiple alternatives, and so multiple nodes in Figure 3.1 are labelled
with this rule. Once the parser creates the parse tree, ANTLR, provides a walking method
to traverse it. The ParseTreeListener implementation provided by ANTLR creates an
entry and exit method for each rule. If the alternatives for a rule are named, then ANTLR
creates an individual entry and exit methods under those names.

The walker then starts at the root node and visits each of the children nodes in the
tree. The mechanism works automatically, and the user does not have to call the methods
explicitly. So when the method of AddSub is entered, it will have two expr child nodes
that can be accessed explicitly.

ANTLR ensures that all rules (or alternatives) have an entry and exit function associ-
ated with them. And the appropriate method is called while walking the parse tree. The
class method provides a context for of which rule (or alternative) ANTLR matched from
the input.

22

Chapter 4

RuSTL

The entire workflow of RuSTL is outlined in Figure 4.1. The user has the option to either
provide a valid STL formula ϕ or structured text as input. If the latter is provided, it
is converted into an STL formula ϕ and will be presented in more detail in Chapter 5.
If the input is an STL formula ϕ, the grammar specification analyzes it and generates a
parse-tree. RuSTL performs some optimizations and updates the parse-tree, which is then
traversed to create the monitor program.

Figure 4.1: Workflow diagram of RuSTL.

This chapter first outlines the grammar as supplied to ANTLR, and explain its key
components. Then moves on to describe how RuSTL traverses the parse-tree generated by

23

the parser and the logic used to create the monitor program. RuSTL makes the following
two assumptions regarding the input trace σ and the correctness property ϕ being checked
respectively:

Assumption 3 (Time Column). RuSTL makes the explicit assumption that the time values
column of the trace σ is labelled as “Time”, where each subsequent entry is a linearly-
ordered unique ascending Q≥0.

Assumption 4 (Future Bounded STL Properties). It is assume that the interval I sub-
scripted to the temporal modalities are in the form of [a, b]. Where 0 ≤ a ≤ b and a, b ∈
Q≥0.

4.1 STL Grammar

Defining the grammar is the first step. The designed grammar takes as input any valid
STL property and creates a unique parse-tree. The basics of defining a grammar using
ANTLR have already been discussed in Chapter 3, so this section will cover the critical
components of stlgrammar and explain the design in detail. The entire grammar is available
in Appendix A.

4.1.1 Expression Rule

We will start defining the grammar from the base and work way up to the complete STL
formula. The grammar should be able to process expressions that are part of the formula ϕ
to monitor real-valued signals. The following lists examples of valid expression in formulas
for the grammar:

• 63

• 4/63

• (4/63 ∗ (4 + 3))

• 4/63 ∗ 4 + 3

As discussed in Section 3.3.1, any ambiguity in the defined grammar can lead to parsers
generating parse trees which are in-line with the defined grammar but not correct according

24

Expression grammar

expr : :=
expr op =(‘∗ ’ | ‘ / ’) expr # MulDivExpr
| expr op =(‘+ ’ | ‘− ’) expr # AddSubExpr
|REAL # rea lExprs
| ‘ (’ expr ‘) ’

to the specification. Since ANTLR matches the tokens to the first alternative in a rule,
the implementation ensures that the multiply (*) and divide (\) operation have the same
priority and need to be matched before the addition (+) and subtraction (-) operator.
Grammar 4.1.1 shows the complete definition.

A rule alternative can have the rule itself as part of the definition. Figure 4.2 shows
the parse tree generated by the parser for the input expression 4 + 3 ∗ 7.

Figure 4.2: Parse tree generated for: 4 + 3 ∗ 7.

25

Signal comparison grammar

signalComp : :=
s i g n a l relOp expr # s igna lExpr
| expr relOp s i g n a l # s igna lExpr
| Bool relOp s i g n a l # s i gna lBoo l
| s i g n a l relOp Bool # s i gna lBoo l

4.1.2 Signal Comparison Rule

Grammar 4.1.2 relates to signal comparison expressions that are accepted by the grammar.
The following lists examples of valid inputs for the grammar:

• a == True

• 4/63 >= a

• (4/63 ∗ (4 + 3)) ! = b

• (False ! = a)

The time-stamped real-valued signal is to be on one side of the relational operator, while
the other is either an expression or a Boolean value. Do note that multiple alternatives
have the same label in the grammar. The inputs a == True and 4/63 >= a are handled
differently. The prior expression compares a signal to a real, while the latter to a Boolean
string value. So 4/63 >= a and a <= 4/63 are associated with the same alternative method
even though they are distinct inputs however the logic associated with them remains the
same.

As an added step, the entry methods for the signalComp updates a unique list relating
to all the signals used in the formula ϕ. It does this by verifying if the signal variable
is already in the global signal list and appends the signal to the list if that is not the
case. This step has no bearing on the generation of the monitor program. The tool uses
this information in labeling the diagnostic plots after traversing the entire parse tree. The
specifics of the diagnostic plots are discussed in Section 4.3.3.

26

STL formula grammar

st lFormula : :=
st lFormula ‘U’ t i m e S l i c e st lFormula # st lUnt i lFormula
| st lFormula i m p l i e s st lFormula # st lFormula Impl i e s
| st lFormula andorOp st lFormula # st lConjDis jFormula
|NOT stlFormula # stlNotFormula
| ‘G’ t i m e S l i c e ? ‘ (’ st lFormula ‘) ’ # st lGlobalFormula
| ‘ F ’ t i m e S l i c e ? ‘ (’ st lFormula ‘) ’ # st lEventualFormula
| signalComp # stlSignalComp
| s i g n a l # s t l S i g n a l
| Bool # st lProp
| ‘ (’ st lFormula ‘) ’ # s t lPa r en s

4.1.3 STL Formula Rule

Section 2.1.1 outlines the precedence order of the operators and Grammar 4.1.3 follows
the same rules while defining the alternatives for what constitutes an STL formula. The
following lists examples of valid STL formula’s ϕ for the grammar:

• G[0, 10]((pb == 1)→ F [1, 2](qb == 1))

• G[3, 5](F [2, 5](x > 0)) → (y > 0)

• (not(x > 9) U [10, 15]y > 25) → (a! = 3)

• (x > 12) and x > 9 U [10, 15]y > 25 and (z[t] >= 25)

4.2 Transforming Properties

Equation 2.18 on page 15 shows the basic temporal and logical operator to form any
correctness property. The operators for � (global) and ♦ (eventually), → (implies) and ∨
(or) can be generated using the basic operators.

The additional operators make the process of generating the properties easier for the
user and help them understand the properties intuitively. In Equation 4.1, all three formu-
las are equivalent and will check that “during the first 30 time units the value of x remains

27

below 100”. Although all three formula’s are performing the same check, the first method
of writing the formula is more compact.

�[0,30](x < 100) ≡ ¬♦[0,30]¬(x < 100) ≡ ¬(> U[0,30] ¬(x < 100)) (4.1)

De Morgan’s Laws [73] outlines the principles where propositions are related to their
negations and disjunctions. The transformation to the input adheres to those rules. There
are two reasons for performing the transformation. Firstly, this reduces the number of
alternatives for the stlFormula rule that will be called by the stlgrammarListener class.
The entry and exit methods for all affected alternatives are skipped resulting in a leaner
code which reduces debug times.

Secondly, when going through the proof that the monitor program generated by the
application is sound and terminates in Section 4.4 these additional operators case will not
have to be analyzed. The grammar supports the full syntax of the formal specification and
accepts all valid formula ϕ, but the transformation helps reduce the complexity associated
with proving the completeness of RuSTL.

The main focus of this intermediate step is to take a correctness property as a string
input and restructure the formula so that it only uses the basic operators. If a given input
formula provided by the user only consists of the basic logical and temporal operators,
then the output of this step will be identical to the input.

A bottom-up approach on the parse tree achieves the desired outcome. For any given
property, such as �(ϕ), there is no restriction as to how nested the formula ϕ can be. The
entry method for any rule will have no inherent knowledge of the depth of the tree from
its node if the parse-tree is traversed using a top-down approach.

By using only the exit methods for the rules, the callbacks will start from the leaf
(token) nodes in the parse-tree. The nodes are annotated with the transformed formula
and exit its callback, traversing up the tree is continued in this manner. The number of
its children and their type are already known for each alternative’s callback and can be
accessed explicitly.

Only the non-basic type operators need to be altered leaving the remaining nodes
untouched. Any rule that is not an alternative stlFormula gets annotated with the text
that the parser associated with it by default.

Whenever an exit method for a node is reached, it is explicitly known that the sub-
tree below that node has already been analyzed and the information annotated on the
children’s node. Figure 4.3 shows the parse tree that would be generated by taking as
input Equation 4.2.

28

G[0, 10](x < 10) (4.2)

Figure 4.3: Parse tree generated for Equation 4.2.

In Figure 4.3, the signalComp node will be annotated with the expression computed
so far: x < 10. The parent of the signalComp node is the stlFormula rule but is not the
alternative that needs to be altered so will be annotated with the entire sub-tree without
modifications. The first stlFormula node, that is the child of the prog node, is matched to
the stlGlobalFormula alternative and is one of the operators to be transformed. The child
stlFormula of this node is already annotated with the sub-tree and and thus mutates the
operator according to the rule shown in Equation 2.7. The resultant output formula and
parse-tree is shown in Equation 4.3 and Figure 4.4 respectively.

not(True U [0, 10](not(x < 10))) (4.3)

29

Figure 4.4: Parse tree generated for Equation 4.3.

4.3 Generating the Monitor Program

When generating the monitor program, the general approach is to create a function call for
each alternative of the stlFormula, signalComp and expr rule. Each alternative for these
rules has a code template associated with it. At each exit callback in the parse tree, the
template is updated with the specific details. The logic then appends the function to the
monitor program file.

This function-based template approach has multiple advantages. Calling any specific
function is equivalent to checking a sub-formula from that node in the parse tree. When
checking complex and highly nested properties, this allows the user to verify which sub-rule
violated or satisfied.

Furthermore, since the functions are based on pre-defined templates, the output code
becomes as lean as possible. This strategy allows the execution of the monitor program to
be run on a variety of different platforms independently of the application.

30

4.3.1 Entering a Node

Every time an entry method for the stlFormula the signalComp is called, a unique function
name is associated with that node. The function name is a concatenation of a string prefix
(the rule name) and a unique integer value.

Here the application also performs some general housekeeping, such as ensuring the
end time is not less than the start time in an interval I. RuSTL updates a list of all the
unique signals that the property ϕ requires.

4.3.2 Exiting a Node

At the exit callback the function template is populated with the unique specifics. The
function then gets appended to the monitor program. For each node, there is a separate
function that will exist in the final output. The only parameter required by the function
call is the time t. The trace is a global variable and can be accessed through all functions.
Additionally, any call in the form of func ϕ1(t) || func ϕ(t), refers to a function that
evaluates ϕ1 || ϕ formula respectively at time t.

Exiting expr

In the expr rule, the node of the parse-tree gets annotated with the complete expression
processed from that node as the root till the token leaves. A simple python dictionary,
with the node address as the key, is employed to store and access the information. The
same strategy is used throughout the application to annotate nodes with relevant data that
a parent or child node might require. The exit method for the alternative encapsulates
the expression in brackets to ensure precedence order. So for an input that contains the
expression 4 + 3 ∗ 7, the monitor program checks (4 + (3 ∗ 7)).

Exiting signalComp Alternate

When exiting a signalComp method, for any of the two alternatives that get matched,
there will always be three children nodes. Of the three, two will be the relational operator
and the signal name. The last child will either be an expression or a Boolean value.

31

Algorithm 1 shows the function template that will be generated for the signalComp rule,
when the alternative is signalExpr. The logic for the signalBool alternative is similar.

Algorithm 1: signalComp Function Template

Input: t
Result: True or False

1 if signal[t] relOp expr then
2 return True

3 else
4 return False
5 end

Exiting stlSignal Alternate

The stlSignal or stlProp alternate of the stlFormula are easily mapped in a single function
since no temporal operator is associated with those cases. The resulting template is outlined
in Algorithm 2:

Algorithm 2: stlSignal Function Template

Input: t
Result: True or False

1 if signal[t] == True then
2 return True

3 else
4 return False
5 end

Exiting Disjunction Alternate

Due to the pre-processing done on the input string as described in Section 4.2, a callback
related to the � (globally), ♦ (eventually), → (implies) and ∨ (or) will never be entered.
If the alternate for stlConjDisjFormula is reached, it will have three children, two of which
will be properties ϕ1 and ϕ2, and the remaining child will be the operator, in the form of
ϕ1∧ϕ2, and it can be implicitly assumed that the operator will be an ∧ (and) operator. At
Line 1 of Algorithm 3, func ϕ1(t), refers to the function that evaluates the ϕ1 property at
time t. As outline in Section 4.3.1 all the relevant nodes are annotated by a unique function
call. The callback method here while exiting can access that value since the children have

32

all been assigned this information. So func ϕ1(t) is being passed the same time value t
that the stlConjDisjFormula function received and the same is true for func ϕ2(t).

Algorithm 3: stlConjDisjFormula Function Template: ϕ1 ∧ ϕ2

Input: t
Result: True or False

1 if (func ϕ1(t) and func ϕ2(t)) == True then
2 return True

3 else
4 return False
5 end

Exiting Negation Alternate

The stlNotFormula case, shown in Algorithm 4, is similar to the one presented for stlCon-
jDisjFormula alternative. It will not the result received by the func ϕ(t) call and check
the result.

Algorithm 4: stlNotFormula Function Template: ¬ϕ
Input: t
Result: True or False

1 if not(func ϕ(t)) then
2 return True

3 else
4 return False
5 end

Exiting Until Alternate

The stlUntilFormula alternate method shown in Algorithm 5 is the only case where a
temporal operator is involved. The rule has three children. Two of them are the sub-
formulas ϕ1 and ϕ2, while the last child is the time interval. Assumption 4 addresses the
requirement of future bounded properties by restricting the values of the interval I. Values
of the interval, [a, b] are accessed, and are checked to ensure that both are greater than
zero: a, b ≥ 0, and that b is never less than a: b ≥ a. An interval [6,3], will be accepted by
the grammar but will correctly fail this check.

33

The Boolean variable initially gets set to False. This variable denotes the state of the
property in the check so far, and ensure that the function always returns a valid output.
Line 4 computes the dense-time range at which ϕ2 will be evaluated. The array holds all
time-stamped values in the range [t + a, t + b]. The for-loop at Line 6 iterates through
the array and checks the result. If the func ϕ2(t) does not hold true for any value in the
dense-time range then the Boolean value stays False. But if func ϕ2(t) holds true for any
value in the array, the variable is set to True and break from this for-loop.

Next, the value of the Boolean variable gets evaluated at Line 14. If it is False, it
indicates that ϕ2 did not yield True in the required range and as such the property could
not be satisfied. If however the check is passed, ϕ2 holds true at some time value between
[t+a, t+b], and that is stored in the variable i. The next step is to calculate the dense-time
range for ϕ1.

According to the grammar, ϕ1 needs to hold True at all time indexes in the range [t, i].
The for-loop at Line 17 then iterates through the array and evaluates func ϕ1(t = j) and
if any return value evaluates to False, updates the Boolean variable with that answer and
breaks from the for loop. Finally, the Boolean variable gets evaluated at Line 25, whose
value signifies if the property is violated or satisfied.

34

Algorithm 5: stlUntilFormula Function Template: ϕ1 U[a,b] ϕ2

Input: t
Result: True or False

1 /* Initialize the Boolean variable to False */

2 until check ← False
3 /* A list of time-stamps from the trace that fall in the range */

4 dense time range phe = [t+a, t+b]
5 /* Iterate over the list of states that are within the time range */

6 for i in dense time range phe do
7 /* if func ϕ2(t = i) equals to true for any value in the list, set

the Boolean variable to True, and break from the loop */

8 if func ϕ2(t = i) holds true then
9 until check ← True

10 break

11 end

12 end
13 /* if the Boolean variable is True, it means that func ϕ2(t = i) did

result True for some value in the time range of [t+a, t+b] */

14 if until check == True then
15 /* calculate the subset of the first list till the time where

func ϕ2(t = i) resulted in True */

16 dense time range phi = [all values in dense time range phe ≤ i]
17 for j in dense time range phi do
18 /* Iterate over the second list and if func ϕ1(t = j) returns

False for any value, set the Boolean variable to False and

break from the loop */

19 if not (func ϕ1(t = j) holds true) then
20 until check ← False
21 break

22 end

23 end

24 end
25 if until check == True then
26 return True

27 else
28 return False
29 end

35

4.3.3 Diagnostic Plot

Presently RuSTL only provides a qualitative result in the form of True or False for any
valid STL formula. If the property being checked is in the form of ϕ1∧ϕ2, a Boolean True
or False verdict does not give any insight into which sub-formula was violated. For that
reason a diagnostic component is added to RuSTL, which allows the user to gain more
insight regarding the sequence of event.

As outlined in Section 4.3, each node in the parse tree is assigned a unique function
call. That unique name is appended to a global list. When the monitor program is created,
RuSTL also outputs a dictionary, whose keys are the function call and the value associated
with each key is the sub-formula that function checks. The monitor program also has these
function call names available to it in the final output.

During the execution of the monitor program, each function updates the global data
frame with its result, under the function name column, at time t in the trace. The results
of the check are stored in a Comma-separated values (CSV) file. The CSV can then be
used to plot the results by the user. RuSTL provides a way to plot the results using Plotly,
an open-source JavaScript charting library. The plots are interactive, allowing the user to
focus only on the desired signals and timeframes.

The graphing capability causes over-head in terms of memory usage and computation
time, and therefore RuSTL provides a way to set this feature on or off depending on their
need.

4.4 Soundness, Termination and Completeness

An algorithm is considered to be sound if the answer computed by the said algorithm
is always correct. It should not ever yield the wrong answer. While, an algorithm is
considered to terminate if, for a given valid input it will always halt.

Take as an example of an algorithm which sorts a finite unsorted array of integers. If
an algorithm always sorts any finite unsorted integer list correctly, it can be proved to be
sound. If an algorithm always halts for any given input within its domain, it is proved
to terminate. If the algorithm returns a sorted array when provided with positive integer
value array, but does not halt when the list contains negative values, then the algorithm
is sound but does not terminate.

RuSTL handles any valid STL formula ϕ as input and generates a unique parse-tree
followed by a monitor program. If the input is not a valid STL formula ϕ, it is not accepted

36

https://plot.ly/

and terminates with a warning message. Due to the pre-processing done on the input as
described in Section 4.2, soundness and termination is proven over the basic operators only.

As a reminder, for time an alternate for the stlFormula is being exit from the parse-tree
in the logic, an associative function call is added to the monitor program. Each function
requires a single input t, which is the time at which that sub-formula is being checked.
The trace however is a global variable and can be access by all functions. Additionally,
any call in the form of func ϕ1(t) || func ϕ(t), refers to a function that evaluates ϕ1 || ϕ
formula respectively at time t. As an example, the disjunction formula is written as ϕ1∧ϕ2.
It has two sub-formula ϕ1 and ϕ2 respectively. The calls func ϕ1(t) and func ϕ2(t) as
presented in Algorithm 3 return the result for both these sub-formulas and the disjunction
formula and’s the output and returns the appropriate result. Furthermore, as outlined in
Section 4.2, the algorithm transforms all � (globally), ♦ (eventually), → (implies) and ∨
(or) operators from the input specification and transforms them using the predefined rules
so only the cases for ∧ (conjunction), ¬ (negation), and U (until) operators need to be
handled for the monitor program.

Theorem 4.4.1 (Soundness). The monitor program is sound.

Proof. There are three cases to consider.

• The disjunction (ϕ1 ∧ ϕ2) template, as presented in Algorithm 3 only performs a
single check at Line 1, evaluating the returns from func ϕ1(t) and func ϕ2(t). It
passes the same time value t to both functions as provided to itself.

• The negation (¬ϕ) template, as presented in Algorithm 4 evaluates ϕ at time t and
checks the negated result against True before returning it.

• The until (ϕ1 U[a,b] ϕ2) template is presented in Algorithm 5. As part of the logic
in the exit method, the interval values I = [a, b] are checked for a, b ≥ 0 and b ≥
a. Since the temporal operator for until U[a,b] is the only modality that looks into
future time it also needs to be checked that the trace is sufficiently long enough. If
b < max time of trace, then the logic may yield a wrong answer. However since
this is dependant on the trace σ, it is left up to the user at this point to ensure the
temporal-depth does not exceed the trace length. The logic presented in Section 4.5
shows how the temporal depth can be calculated and the application outputs the
required temporal depth for the trace when generating the monitor program.

37

The use-case of the formula can be broken down into three subcategories to prove its
soundness.

1. func ϕ2(t
′
) holds for no value of time t

′
in the range of [t+a, t+ b]. In this case

the property should yield as False.

The dense-time array calculated at Line 4 in Algorithm 5, will have either finite
positive increasing time-stamped values from the trace or yield will empty if no
time-stamps exist within the range [a, b]. Either scenario is valid.

If the evaluation of the Boolean value at Line 14 is False, that means that there
was no time in the range [t + a, t + b], where func ϕ2(t

′
) held True or the list

containing the trace within the time range was empty.

The logic will move to Line 25, which will evaluate to False, which is the correct
behavior.

2. func ϕ2(t
′
) holds for some value of time t

′
in the range of [t + a, t + b], and

func ϕ1(t
′′
) does not hold for some value t

′′
in the range [t, t

′
]. In this case the

property should yield as False.

If this scenario is reached then some value of t
′

yielded func ϕ2(t
′
) as True. So

the Boolean check at Line 14 will hold true and the code will loop through the
values between [t, t

′
] from Line 17. If for any value t

′′
, func ϕ1(t

′′
) yields False,

the Boolean variable is update to False breaks from the loop.

The logic will move to Line 25, which will evaluate to False, which is the correct
behavior.

3. func ϕ2(t
′
) holds for some value of time t

′
in the range of [t + a, t + b], and

func ϕ1(t
′′
) holds for all values of t

′′
in the range [t, t

′
]. In this case the property

should yield as True.

For this scenario, func ϕ2(t
′
) holds for some value of time t

′
, otherwise option

1 would be matched. And func ϕ1(t
′′
) holds for all values in the range [t, t

′
],

otherwise option 2 would have matched.

So the Boolean variable will be True, during the final check at Line 25, which
results in the formula equating to True, which is the correct result.

Theorem 4.4.2 (Termination). The monitor program always terminates.

38

Proof. The same three cases are considered to prove termination.

• The disjunction function template in Algorithm 3 has no loops and as such will always
terminate

• The negation function template in Algorithm 4 has no loops and as such will always
terminate

• The until function template presented in Algorithm 5 contains two for-loops. To
prove that this function always halts the logic should never run into a situation
where the code runs infinitely.

1. The for-loop at Line 6 iterates over the list of finite time-stamped states from
the states computed between the range [t+ a, t+ b] derived on Line 4. There is
no recursion, and calls a function to compute the result of func ϕ2(t

′
). Hence

the code will always exit the loop.

2. The for-loop at Line 17 if reached goes over the subset of the finite time-stamped
states computed at Line 16, to compute the result for func ϕ1(t

′′
). Using the

same logic as presented for the first for-loop, it is shown that the code will never
run into an infinite running sate in this function template.

Theorem 4.4.3 (Completeness). The Algorithm that handles the parse tree and generates
the monitor program is complete.

Proof. As discussed in Section 4.2, the parser will only be handling cases for ∧ (conjunc-
tion), ¬ (negation), and U (until) operators. Section 4.3 outlines the steps used by RuSTL
to handle each of these cases and how the resulting check is implemented.

Grammar 4.1.3 specifies that any alternative may include a nested formula without
restrictions, so the complexity of the input formula is not constrained. The final output
handles recursion by making a single individual call to each instance of the rule included
in the alternative. So thereby we can prove that the algorithm handling the parse-tree is
complete.

39

4.5 Temporal Depth

The satisfaction or violation of any future bounded STL property ϕ at time t depends
upon future inputs t

′
> t. The work presented in [57], describes the concept of temporal

depth as the sufficient length of time required from any time time t to satisfy a property
ϕ, which they denoted as D(ϕ). The required depth is always relative to the formula
ϕ. Equations 4.4, outlines their approach on how to calculate the temporal depth of a
bounded STL formula ϕ.

D(p) = 0

D(¬ϕ) = D(ϕ)

D(ϕ1 ∧ ϕ2) = max{D(ϕ1), D(ϕ2)}
D(ϕ1 U[a,b] ϕ2) = b+max{D(ϕ1), D(ϕ2)}

(4.4)

A trace σ that satisfies or violates a property ϕ may not require the entire depth
of the trace and can output the result earlier, but will not need a longer interval than
calculated by the temporal depth to process the satisfiability. An input trace σ shorter
than the calculated temporal depth may lead to the incorrectly evaluating the satisfiability
of the property. The user can use the computed depth value to ensure that the trace σ is
sufficiently long. Equations 4.5 shows the calculated temporal depth for a formula which
checks that eventually during the first 10 time units the safeState holds for at least 2-time
units.

D(ϕ) ≡ D(♦[0,10](�[0,2](safeState == True))) ≡ 12 (4.5)

40

Chapter 5

Structured English

The formal specification processes have been around a long time and are widely used in
industry. But while the logic behind TL and its variants are well understood, there is
often difficulty in creating these properties. It is an accepted fact that developing formal
specifications is an error-prone task [21]. Specifying TL properties is difficult for someone
not intimate with the field and even the experts can have difficulty describing adequately
what a rule might be trying to accomplish by just reading the property. When looking
at the property specified in Equation 5.1 it is not immediately clear what the property
aims to monitor. However, it is a common property to check the behavior of stabilizing
spikes in a system. It verifies that whenever the signal value exceeds the value 1, it should
eventually within the next 2 time units remain under 0.5 for at least 3 time units.

�((signal > 1)→ ♦[0,2](�[0,3](signal < 0.5))) (5.1)

System requirements can be generated from multiple sources such as engineers, man-
agers, sales, etc. targeted to monitor different aspects of the system. But the assumption
cannot be made that the engineers or developers will be familiar with specifying and/or in-
terpreting of TL properties. Often enough even engineer with a mathematical background
face problems trying to compose TL specifications [34].

So we need ways for the end-user to leverage these formal specification based frameworks
without the ambiguity. Multiple techniques [40, 5, 35, 60, 62] have been developed that
use parsing, Graphical User Interface (GUI) and Natural Language Processing (NLP) to
compute the specifications from the structured text, in the domain of model checking,
robot controllers and formal methods.

41

TL specifications have a strong resemblance to natural languages so using structured-
texts to generate properties is an advantageous approach. “Specifying a query by selecting
fragments of an English sentence allow users more easily to formulate required properties
for a given model which gives him/her the possibility to focus on the specification of the
properties rather than on the specification process itself ” [34]. Structured English sentences
allows users to understand the meaning of a property without requiring them to interpret
the the temporal logic representation [49]. “Feedback from industry has indicated that a
structured English representation is less intimidating than the temporal logic notation” [49].
Many projects have undertaken this approach, one among them being Specification Pattern
Instantiation and Derivation EnviRonment [48] (SPIDER).

SPIDER is one such tool that takes Structured English text and converts them to the
desired specification properties. It supports specifications for LTL, Computational Tree
Logic [16] (CTL), Graphical Interval Logic [70] (GIL), MTL, Timed Computational Tree
Logic [2] (TCTL) and Real-Time Interval Logic [61] (RTGIL). The approach of using
grammar over techniques such as NLP has many benefits over the latter. “Since different
notations are used for the same temporal operators, a structured English framework targeted
for robotic applications can offer a uniform representation of temporal logic formulas” [52].

RuSTL implements the grammar described in [49], shown in Figure 5.1 and enhances
it to handle real-valued signals to accommodate for STL. Dwyer collected an impressive
amount of real-time specification patterns from industry and published his finding [27].
The work categorizes the specification properties into several patterns and shows that the
majority of the properties, if not all, conform to one of the prescribed patterns. The
grammar developed in [49] supports those patterns and created additional mappings to
categorize timing-based requirements since such requirements were originally not specified
in the study [27].

The grammar starts by selecting the scope of the property, followed by whether if the
property is qualitative or real-time. Qualitative properties can fall under the category of
occurrence or order. While the real-time properties can be duration (bounds the interval
I of the occurrence), periodic (addresses the periodicity of the occurrences) and real-time
order (addresses the time-elapsed requirement between different occurrences).

One of the key points to note is that the grammar cannot be used to construct recur-
sive and repetitive properties. Each sentence provided to the grammar gets mapped to a
scoped specification pattern which is either qualitative or real-time. It also does not tailor
to past-bounded temporal operators. RuSTL is based on the assumption to only handle
future bounded STL properties, so these design decisions align with the core of RuSTL. As
mentioned before, structured English representation is far more relatable than temporal

42

Figure 5.1: Structured English Grammar by [49]

logic notation. Not supporting recursive properties limits the formulas that can be con-
structed. Nested text that covers the complete semantics would lose their resemblance to
English language sentences. That would retain that barrier for non-experts who wish to
use this formal specification tool. A further point to consider is the fact that this gram-
mar was developed by analyzing specification properties most often monitored by industry,
giving confidence in the knowledge that the grammar covers correctness properties most
frequently used by experts in RV.

The grammar is defined in the EBNF format and then uses ANTLR for lexing and
parsing. A few minor modifications were made to facilitate the integration of the grammar
within RuSTL. Firstly, due to Assumption 4, interval I in the form of [≤ t] are not
considered valid, since the original work maps the timing restriction to singleton sets.

43

RuSTL maps to this time value to the prescribed future bounded time-interval format
[0, t], to circumvent the error.

A slight text modification was made to Rule 18. The string is changed from “it is always
the case that” to “it’s always the case that”. This modification is due to ANTLR’s inherent
limitation, where the parser only supports direct left recursion. Due to this, Rule 7 and
Rule 18 which require the same start string cannot be told apart, since ANTLR does not go
into deeper levels to differentiate an input. ANTLR will perform left recursion on a single
rule and try to match the input to the first rule matched, and as a result, a valid string
input for the grammar may cause an error. So by making this modification we overcome
this issue while retaining the original architecture of the grammar.

We tested the implementation against the examples provided in [49] and supplemented
them with additional test cases.

“Globally, it’s always the case that if x == 0 holds, then y == 1 holds after at
most 6 time unit(s).”

�(x == 0→ ♦[0,6]y == 1) (5.2)

“Globally, it’s always the case that x == 0 holds at least every 10 time unit(s).”

�(♦[0,20]x == 0) (5.3)

“Globally, it’s always the case that if RampDownInitiated == True holds, then
AssistTorque == 0 holds after at most 20 time unit(s).”

�(RampDownInitiated == True→ ♦[0,20]AssistTorque == 0) (5.4)

“Globally, it’s always the case that if RampDownInitiated == True holds, then
AssistTorque != 0 holds for at least 19 time unit(s).”

�(RampDownInitiated == True→ �[0, 19]AssistTorque! = 0) (5.5)

44

Chapter 6

Case Study

The University of Waterloo has a highly advanced and established autonomous driving
research platform. In 2017 and 2018, the University of Waterloo partnered with Renesas,
QNX and other companies to showcase the project at the Consumer Electronics Show
(CES), in Las Vegas, Nevada. The goal of the project was to showcase the Renesas Au-
tonomy Demonstrator (RAD), a fully functional autonomous driving vehicle.

Figure 6.1: RAD - Photo credit: investStratford/Terry Manzo.

The demo consisted of the vehicle driving at low speeds (under 15 km/h), following a

45

https://startupheretoronto.com/sectors/technology/university-of-waterloo-team-contributes-to-development-of-renesas-electronics-autonomous-car/

predefined path and performing complex maneuvers such as lane-keep-assist, pedestrian
identification, identifying and following traffic and road signs, forward and reverse parking
in designated parking spots, along with communicating with other vehicles on the road
and collision avoidance.

The vehicle used was a 2015 Lincoln MKZ. The company Dataspeed retrofitted the
vehicle with a drive-by-wire system which gave the ability to control the car without any
physical human interaction. The vehicle was instrumented with a wide array of sensors,
including a Novatel Span GPS. The Global Positioning System (GPS) provided an accuracy
of about 5 cm and updated at a frequency of 20 Hz. A Novatel Inertial Measurement
Unit (IMU) for heading angle accuracy. A Velodyne LiDAR, which “is a remote sensing
technology which uses the pulse from a laser to collect measurements which can then be
used to create 3D models and maps of objects and environments” [1]. The instrumented
Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) radio system were used to
establish communication with smart traffic lights and other vehicles on the road.

6.1 Robot Operating System (ROS)

Robot Operating System (ROS) is a popular, open-source robotics framework widely used
in industry for robot applications such as drones, rumbas, and autonomous vehicles. It
provides an extensive set of libraries and drivers that allow developers to design their
applications without having to build everything from the ground up. These resources are
available for applications targetted towards motion planning, 3D localization and mapping,
state estimation and sensor fusion using sophisticated techniques such as Kalman filters
(KF) for prediction and updates, image processing for classification, etc. Using ROS
dramatically reduces the development time of robotic applications, and with its broad
community base, and publicly available project code repositories it is easy to find helpful
resources.

ROS was designed to be language neutral and binding are currently available in C++,
Python, Octave, and LISP, and development in others is underway. Thus ROS can be used
in wide variety of scenarios and environments, and although performance differs based
on the language in use, the fact that the underlying methodologies remain the same,
applications developed in one programming language can easily communicate with those
developed in a different one.

46

ROS Nodes

A ROS node is akin to a process. Usually, a node is designed to perform a specific task. A
single ROS application will typically have multiple nodes communicating with one another.
A node does not know who is on the receiving end of its communication. All the nodes
need not run on the same machine but can be running on distributed platform.

ROS Messages

Nodes communicate with one another by transmitting a message. Messages in ROS are
generated using simple text files that describe the data structure, comprising typed fields.
The message structure supports primitive types such as integer, floating point, Boolean,
etc. The header in each message holds the time in nanoseconds at which it was published.

ROS works on a publish / subscribe model. The nodes specify what information they are
going to publish and at what frequency. Subsequently, the nodes also list what information
they will be listening for, and specify a callback associated for each such.

ROS Topics

Nodes exchange messages over named busses call Topics. Topics in ROS are an asyn-
chronous mode of communication. Publisher nodes transmit pre-configured ROS message
types to a specified topic and listener nodes then subscribe to said topic and execute the as-
sociated callback function in their code. More than one node may publish and/or subscribe
to the same topic, and a node can also publish and/or subscribe to multiple topics. A key
point to note is that subscriber nodes are unable to verify the identity of the publisher for
any message they receive.

ROS Bags

The ROS rosbag utility gives the ability to record and playback ROS topics. A user can
either choose to identify a subset of the topics or specify to bag all topics. The files collected
from using this tool are usually referred to as bags and are used to record and play the
bags. The data appears as JSON objects, and any text editor can be used to view the
data. In this work the term bagging means using the rosbag utility to record ROS message.

47

6.2 Renesas Autonomy Demonstrator (RAD)

Figure 6.2 provides a high-level overview of the architecture. The three independent ROS
autonomy stacks executed concurrently and were fed the sensor reading and feedback up-
dating the current state of the vehicle. They processed the data and computed the control
commands —the future heading including steering, brake, throttle and gear values that
should be executed by the car. Each ROS stack packets its control commands message and
sends the data to the micro-controller via the User Datagram Protocol (UDP) communica-
tion protocol. The microcontroller checks the incoming data for timing and authenticates
the messages to ensure their integrity and chooses which of the received actuation command
message to pass on to the Dataspeed module. Ideally, all three stacks should compute the
future heading within an error threshold. The Dataspeed module then transmits the com-
mands on the vehicle CAN bus, at 50 Hz, which ultimately actuates the vehicle, updating
the throttle, brake, steering, and gear values accordingly.

Figure 6.2: Architectural overview.

The vehicle was configured to start bagging a list of pre-defined ROS topics on power-
up. We knew the responsibilities of each node in the Autonomosse ROS architecture. We
also knew which topics each node publishes and/or subscribes to, at what frequency and
what information is contained in the message sent on that topic. The list comprised of
topics that provided a high-level state estimation of the vehicle. The data was cleaned and
imported into a PostgreSQL database for analysis. Table 6.1 outlines a few of the fields in
the dataset:

48

Data Field Definition

autonomy enabled User requesting vehicle into autonomy mode
vehicle brake report enabled Signifies the vehicle is in autonomy mode
control commands gear cmd gear Gear requested by autonomy stack
vehicle gear cmd gear Requested gear from Dataspeed to vehicle
vehicle gear state gear Current gear value of the vehicle

Table 6.1: Sample fields from collected dataset.

6.3 Experimental Results

Based on the architecture and the relationship between the components, multiple proper-
ties can be checked to ensure that the vehicle was running safely. One such property is
presented in Equation 6.1, which specifies that: Globally, it’s always the case that if
autonomy enabled holds, then vehicle brake report enabled holds after at most 5 time
unit(s).. Here vehicle brake report enabled signifies a user input which commands the ve-
hicle to go from manual to autonomous driving mode, while vehicle brake report enabled
is a field in the Dataspeed feedback loop, which if True, indicates that the vehicle is in au-
tonomous driving mode. This check is performed to ensure that the acceptable worst-case
timing behavior was never violated. Since the project is a prototype of an autonomous
self-driving car, there are opportunities for optimization. So this specification checks the
upper bound placed on getting the signal from the in-car display when the user pushes the
button to car switching the driving mode to autonomous.

�(autonomy enabled→ ♦[0,5]vehicle brake report enabled == True) (6.1)

Multiple tests were conducted before the demo to ensure that the described behavior
was always satisfied. The data was queried from the database for increasingly longer signal
traces, ranging from 1,000 to 100,000, sampled at a step size of 1 second. So, the number
of rows in a trace is equal to the number of seconds the trace covers. An additional signal
trace of 1,000,000 samples was created by replicating the data of the 100,000 second trace
to stress test the system. Table 6.2 shows a summary of the timing results obtained from
running the experiment multiple times, and Figure 6.3 is a plot depicting the results. The
second column in the Table 6.2 refers to the number of times autonomy enabled was True
in the trace and SD stands for standard deviation. The timing results are consistent for
the multiple executions so the mean time in seconds for the experiments is presented. The
y-axis in Figure 6.3 showing the computation time is in log scale

49

Trace Length # of Requests Mean Computation Time (s) SD (s)

1,000 97 0.1456 0.0026
10,000 950 1.1615 0.0239
100,000 9,600 11.0871 0.2611

1,000,000 96,000 234.9861 1.62

Table 6.2: Computation time vs trace length.

Figure 6.3: Computation time vs trace length.

All traces satisfied the STL formulas listed in Equation 6.1, and the results show that
the computation time for a formula increases linearly with the length of the trace. Fig-
ure 6.4 shows the output from the diagnostic charts automatically created using Plotly,
after running the monitor program. The user can choose which signals to plot and focus
on a sub-section of the time. In Figure 6.4, autonomy enabled was replaced by p and vehi-
cle brake report enabled by q so that the labels on the plot do not become too wide. Each
curve in the plot corresponds to either the input signal used from the trace in the formula
or to a node in the parse tree and can be toggled on or off. For any curve, +1 means that
the formula equated to True at that time t, while −1 means it equated to False. 0 means
that the formula was not computed for that time value. The range slider at the bottom of
the chart allows the user to zoom into specific time windows of their choice.

50

The property checked in Equation 6.1 was chosen since it was always guaranteed to
hold and could be used to test the performance of RuSTL. However, the property only
contains atomic propositions and thus can be considered a MITL formula. Equation 6.2
checks that globally it is always the case that if current vehicle’s gear value is Drive, and
the current requested next gear value is not Drive, this implies that globally for at least
the next 3 time units, the vehicle should not be requested to go into the Drive gear. The
property concerns the safety of the vehicle, to ensure that it does not change gears too
often.

The property contains real-value variable comparison on the current gear status and the
next requested gear and is, therefore, a real STL property. This specification was not chosen
at random but derived from the actual physical behavior exhibited by the car. Passengers
in the vehicle could feel a “jerky motion” while it was moving in autonomous mode and, on
the rare occasion, exit out of autonomous mode while performing a complicated maneuver.

�((vehicle gear state gear = Drive ∧ vehicle gear cmd gear! = Drive)

→ �[0,3] vehicle gear cmd gear = ¬Drive)
(6.2)

Monitoring the specification on the trace showed that the property is violated at mul-
tiple time instances. Note, that this does not reveal the cause of the behavior, since the
logic of how the control commands are computed is not part of the scope of the runtime-
monitor. The violation only reveals that the ROS autonomy stack requests the gears to be
switched quickly, and a closer look should be taken at the internal algorithms computing
the values.

Based on the knowledge of the system and its behavior many additional properties can
be checked using RuSTL. We know that the node publishing the control commands sends
its message at 50 Hz, so the property presented in Equation 6.3 can be used to verify that
a new message is always sent at regular intervals.

�(♦[0,0.02](control command msg sent)) (6.3)

51

Figure 6.4: Diagnostic plot.

52

Chapter 7

Related Work

TL was first introduced four decades ago and STL more than one decade ago. So it is
not surprising that a lot of work has been done to leverage these technologies over the
years. Temporal Rover [26], is a commercial tool that can generate program code in either
C, C++ or Java to monitor satisfiability of specifications at run time. LOLA [18] and
MaC [55] are also one of the first tools developed for monitoring TL specifications. The
original STL paper [56] provided an offline monitoring framework for bounded real-time
MITL properties.

S-TALIRO [6] is an extensive tool built on the Matlab platform, used for monitoring,
testing and verification of MTL properties both online [20] and offline. It was developed at
Arizona State University and has had multiple updates with increased functionality over
the years [42]. Along with a Boolean satisfaction, the tool also computes the robustness
metric of trace over a MTL formula through a real-number [30, 31, 32].

The authors also acknowledge in their work, that writing formal specifications is an
error-prone task, so S-TALIRO also provides a graphical formalism tool, VISPEC [43],
providing non-expert users with an interactive system to visualize specification properties
and develop MTL properties. ”The set of specifications that can be generated from this
graphical formalism is a proper subset of the set of MTL specifications” [42].

Breach [22] is another popular Matlab/C++ toolbox for simulation-based verification
and analysis. It is a highly versatile tool, used for simulation-based analysis [23], mining
requirements of Simulink models [46] and computing robustness of piecewise-continuous
signal over an STL formula [24].

The Breach toolbox can be used to generate simulation traces for property falsification
and parameter synthesis. Monitoring the satisfiability of STL formulas can be performed

53

both online [19] and offline [22]. It provides both a GUI and a Command-line interface
(CLI) to define properties. In [24] the developers of Breach, provide experimental results
that show their implementation outperforming S-TALIRO v1.3.

AMT [64] is another tool for offline monitoring temporal properties of continuous signals
using the STL specification. It is written in C++ for Linux machines. It is a stand-alone
application with a GUI implemented in QT library. It allows users to define properties and
assertion and manage input signals. The tool evaluates the property for the given input
trace and provides a visualization window showing graphical output related to the result.
Online monitor techniques developed in [58] were later implemented in AMT.

AMT 2.0 [63] is a recent update of the same tool and perform qualitative and quanti-
tative analysis with Extended Signal Temporal Logix (xSTL) for offline monitoring. xSTL
integrates Timed Regular Expressions (TRE) within STL. TRE are used to match segments
of the trace on which quantitative semantics are applied. The tool offers an upgraded GUI
along with the capability to include declarations and aliases in the GUI itself.

U-Check [11] is an open-source software suite written in Java, that deals with stochastic
models (Continuous-Time Markov Chains). U-Check performs property falsification and
parameter synthesis on MITL and STL properties.

Both Stlinspector [71] and [69] are tools that automatically generate traces that either
satisfy or violate an STL formula. Labeled traces help users cement their understanding
of what the property is trying to monitor and update the property if need be.

STL has gained a lot of popularity in recent years, which is reflected by its applications
in the domain of FPGA’s [44], Chemical Reaction Networks (CRN) [12], frequency analysis
and signal processing [13, 25], networked power systems [37] among many others. The
broad breadth of applications spanning over multiple fields proves towards the versatility
and usefulness of the specification.

54

Chapter 8

Conclusion

8.1 Summary

In this thesis we proposed RuSTL, an RV application for qualitative semantics of future-
bounded STL properties. RuSTL generates a stand-alone monitor program, for any valid
STL formula ϕ, that can be deployed on most modern computers headless (without the
use of a GUI). RuSTL also has the capability to take structured English language text
and convert the input into a corresponding STL formula following the grammar provided
in [49]. RuSTL also provides the user with the option to automatically generate diagnostic
plots for the monitor program for any valid input trace. The plots allow the user to visually
inspect the results of the monitor.

The monitor program generated by RuSTL can be run independently of the application
and we show that the monitor program is both sound and it terminates. Along with that,
we show that our algorithm that computes the monitor program from the parse-tree is
complete.

RuSTL was tested on traces collected from an autonomous self-driving vehicle. The
experimental results also show that the computation time for the monitor program grows
linearly with the size of the input trace.

8.2 Future Work

Based on the related work performed by other research groups there are several avenues
for further research. Leveraging techniques such as vector-based operation for data manip-

55

ulation and dynamic programming by storing the results of searching the state-space once
and using them for future operations can increase the performance of the application with
respect to the computation time.

8.2.1 Online Monitoring

RuSTL currently performs offline RV of STL properties. The application can be enhanced
to perform online RV. To that end, the temporal depth of a formula ϕ is already computed
for any given temporal property as described in Section 4.5. Online RV gives the obvious
advantage of alerting a user as soon as a property is violated. The monitor will stop the
processing the trace whenever a violation occurs.

8.2.2 Robustness Metric

The application currently performs only qualitative satisfaction analysis for STL properties.
Receiving just a binary response for monitoring real-values signals does not account for
any degree of tolerance in the observed system.

Quantitative semantics adds a robustness metric, which is the degree of satisfaction/vi-
olation of the property. The robustness metric assigns a real-valued number to the formula
over a given trace, whose magnitude indicates the satisfaction or violation by some dis-
tance metric. If the property being monitored is x < c, and at some time t, x exceeds that
value, then the property is violated. But it is useful to know if the violation was marginal
x = c+ ε, or if the violation was of a higher magnitude x = c× 10.

Having the capability to quantify the degree of satisfaction/violation is a highly desir-
able feature, providing more insight into the observed system. Robustness for STL was
introduced in [31]. Many works [24, 45, 42] have implemented this quantitative semantic
using a variety of techniques. Robustness is a key metric for categorizing the performance
of a system that goes beyond just the Boolean semantics.

A recent survey [8] discusses the prominent approaches for qualitative and quantitative
measurements designed thus far and list the different tools available.

8.2.3 Multi-Language Process Monitor

The monitor program generated by RuSTL is in Python. Using Python was a design
decision made due to the ever-increasing use of the language and the tools available for

56

data analytics and visualization.

However, for embedded systems, C is the logical programming language of choice. The
application can be upgraded to generate the core monitor program in C, which can then
deployed on micro-controllers as well as microprocessors.

Additional features to include are property falsification which automatically generates
counterexamples that violate a given STL property. Parameter synthesis is also a use-
ful feature to have which finds the range of parameters in a STL property that satisfies
the behavior. Property falsification can be considered as a dual problem to parameter
synthesis [8].

57

References

[1] 3dlasermapping. 3d laser mapping, 2019. Online documentation https://www.

3dlasermapping.com/what-is-lidar-and-how-does-it-work/, Last accessed on
2019-02-17.

[2] Rajeev Alur. Techniques for automatic verification of real-time systems. PhD thesis,
stanford university, 1991.

[3] Rajeev Alur, Tomás Feder, and Thomas A Henzinger. The benefits of relaxing punc-
tuality. Journal of the ACM (JACM), 43(1):116–146, 1996.

[4] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM (JACM), 49(5):672–713, 2002.

[5] Vincenzo Ambriola and Vincenzo Gervasi. Processing natural language requirements.
In Proceedings 12th IEEE International Conference Automated Software Engineering,
pages 36–45. IEEE, 1997.

[6] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan.
S-taliro: A tool for temporal logic falsification for hybrid systems. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 254–257. Springer, 2011.

[7] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based
runtime verification. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 44–57. Springer, 2004.

[8] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. Specification-based monitoring
of cyber-physical systems: a survey on theory, tools and applications. In Lectures on
Runtime Verification, pages 135–175. Springer, 2018.

58

https://www.3dlasermapping.com/what-is-lidar-and-how-does-it-work/
https://www.3dlasermapping.com/what-is-lidar-and-how-does-it-work/

[9] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for
ltl and tltl. ACM Transactions on Software Engineering and Methodology (TOSEM),
20(4):14, 2011.

[10] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic of branching
time. Acta informatica, 20(3):207–226, 1983.

[11] Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. U-check: Model checking
and parameter synthesis under uncertainty. In International Conference on Quanti-
tative Evaluation of Systems, pages 89–104. Springer, 2015.

[12] Luca Bortolussi, Alberto Policriti, and Simone Silvetti. Logic-based multi-objective
design of chemical reaction networks. In International Workshop on Hybrid Systems
Biology, pages 164–178. Springer, 2016.

[13] Lubos Brim, P Dluhoš, D Šafránek, and Tomas Vejpustek. Stl: Extending signal
temporal logic with signal-value freezing operator. Information and Computation,
236:52–67, 2014.

[14] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In International Conference on Com-
puter Aided Verification, pages 359–364. Springer, 2002.

[15] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs,
pages 52–71. Springer, 1981.

[16] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[17] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. MIT press, 2018.

[18] Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B Sipma, Sandeep Mehrotra, and Zohar Manna. Lola: Runtime
monitoring of synchronous systems. In Temporal Representation and Reasoning, 2005.
TIME 2005. 12th International Symposium on, pages 166–174. IEEE, 2005.

59

[19] Jyotirmoy V Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A Seshia. Robust online monitoring of signal temporal logic.
Formal Methods in System Design, 51(1):5–30, 2017.

[20] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. On-line monitoring for tem-
poral logic robustness. In International Conference on Runtime Verification, pages
231–246. Springer, 2014.

[21] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. Metric interval temporal logic
specification elicitation and debugging. In Formal Methods and Models for Codesign
(MEMOCODE), 2015 ACM/IEEE International Conference on, pages 70–79. IEEE,
2015.

[22] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In International Conference on Computer Aided Verification, pages 167–170.
Springer, 2010.

[23] Alexandre Donzé, Eric Fanchon, Lucie Martine Gattepaille, Oded Maler, and Philippe
Tracqui. Robustness analysis and behavior discrimination in enzymatic reaction net-
works. PloS one, 6(9):e24246, 2011.

[24] Alexandre Donzé, Thomas Ferrere, and Oded Maler. Efficient robust monitoring
for stl. In International Conference on Computer Aided Verification, pages 264–279.
Springer, 2013.

[25] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and Scott
Smolka. On temporal logic and signal processing. In International Symposium on
Automated Technology for Verification and Analysis, pages 92–106. Springer, 2012.

[26] Doron Drusinsky. The temporal rover and the atg rover. In International SPIN
Workshop on Model Checking of Software, pages 323–330. Springer, 2000.

[27] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st international con-
ference on Software engineering, pages 411–420. ACM, 1999.

[28] Cindy Eisner. Psl for runtime verification: Theory and practice. In International
Workshop on Runtime Verification, pages 1–8. Springer, 2007.

[29] Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas. Temporal logic mo-
tion planning for mobile robots. In Robotics and Automation, 2005. ICRA 2005.

60

Proceedings of the 2005 IEEE International Conference on, pages 2020–2025. IEEE,
2005.

[30] Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifications.
In Formal Approaches to Software Testing and Runtime Verification, pages 178–192.
Springer, 2006.

[31] Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

[32] Georgios E Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel.
Verification of automotive control applications using s-taliro. In 2012 American Con-
trol Conference (ACC), pages 3567–3572. IEEE, 2012.

[33] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltlmop: Experimenting
with language, temporal logic and robot control. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 1988–1993. IEEE, 2010.

[34] Stephan Flake, Wolfgang Müller, and Jürgen Ruf. Structured english for model check-
ing specification. In MBMV, pages 99–108, 2000.

[35] Norbert E Fuchs and Rolf Schwitter. Attempto controlled english (ace). arXiv preprint
cmp-lg/9603003, 1996.

[36] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of tempo-
ral properties on running programs. In Automated Software Engineering, 2001.(ASE
2001). Proceedings. 16th Annual International Conference on, pages 412–416. IEEE,
2001.

[37] Iman Haghighi, Austin Jones, Zhaodan Kong, Ezio Bartocci, Radu Gros, and Calin
Belta. Spatel: a novel spatial-temporal logic and its applications to networked systems.
In Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control, pages 189–198. ACM, 2015.

[38] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 342–356. Springer, 2002.

[39] Thomas A Henzinger, J-F Raskin, and P-Y Schobbens. The regular real-time lan-
guages. In International Colloquium on Automata, Languages, and Programming,
pages 580–591. Springer, 1998.

61

[40] Alexander Holt and Ewan Klein. A semantically-derived subset of english for hard-
ware verification. In Proceedings of the 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics, pages 451–456. Association
for Computational Linguistics, 1999.

[41] Gerard J. Holzmann. The model checker spin. IEEE Transactions on software engi-
neering, 23(5):279–295, 1997.

[42] Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi, Yoshihiro Kobayashi,
and Georgios Fainekos. Towards formal specification visualization for testing and
monitoring of cyber-physical systems. In Int. Workshop on Design and Implementation
of Formal Tools and Systems, 2014.

[43] Bardh Hoxha, Nikolaos Mavridis, and Georgios Fainekos. Vispec: A graphical tool
for elicitation of mtl requirements. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 3486–3492. IEEE, 2015.

[44] Stefan Jakšić, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen, and
Dejan Ničkovié. From signal temporal logic to fpga monitors. In Formal Methods and
Models for Codesign (MEMOCODE), 2015 ACM/IEEE International Conference on,
pages 218–227. IEEE, 2015.

[45] Susmit Jha, Ashish Tiwari, Sanjit A Seshia, Tuhin Sahai, and Natarajan Shankar.
Telex: Passive stl learning using only positive examples. In International Conference
on Runtime Verification, pages 208–224. Springer, 2017.

[46] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Mining
requirements from closed-loop control models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(11):1704–1717, 2015.

[47] Marius Kloetzer and Calin Belta. A fully automated framework for control of linear
systems from temporal logic specifications. IEEE Transactions on Automatic Control,
53(1):287–297, 2008.

[48] Sascha Konrad and Betty HC Cheng. Facilitating the construction of specification
pattern-based properties. In 13th IEEE International Conference on Requirements
Engineering (RE’05), pages 329–338. IEEE, 2005.

[49] Sascha Konrad and Betty HC Cheng. Real-time specification patterns. In Proceedings
of the 27th international conference on Software engineering, pages 372–381. ACM,
2005.

62

[50] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time
systems, 2(4):255–299, 1990.

[51] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In Robotics and Automation, 2007 IEEE
International Conference on, pages 3116–3121. IEEE, 2007.

[52] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Translating structured
english to robot controllers. Advanced Robotics, 22(12):1343–1359, 2008.

[53] Leslie Lamport. What good is temporal logic? In IFIP congress, volume 83, pages
657–668, 1983.

[54] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, Johan Bos, and Ewan Klein.
Converting natural language route instructions into robot executable procedures. In
Robot and Human Interactive Communication, 2002. Proceedings. 11th IEEE Inter-
national Workshop on, pages 223–228. IEEE, 2002.

[55] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswanathan.
Runtime assurance based on formal specifications. Departmental Papers (CIS), page
294, 1999.

[56] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.
In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pages 152–166. Springer, 2004.

[57] Oded Maler, Dejan Nickovic, and Amir Pnueli. On synthesizing controllers from
bounded-response properties. In International Conference on Computer Aided Verifi-
cation, pages 95–107. Springer, 2007.

[58] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal properties of
discrete, timed and continuous behaviors. In Pillars of computer science, pages 475–
505. Springer, 2008.

[59] Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages
25–60. Springer, 1993.

[60] James Bret Michael, Vanessa L Ong, and Neil C Rowe. Natural-language processing
support for developing policy-governed software systems. In Proceedings 39th Inter-
national Conference and Exhibition on Technology of Object-Oriented Languages and
Systems. TOOLS 39, pages 263–274. IEEE, 2001.

63

[61] Louise E Moser, YS Ramakrishna, George Kutty, P Michael Melliar-Smith, and
Laura K Dillon. A graphical environment for the design of concurrent real-time
systems. ACM Transactions on Software Engineering and Methodology (TOSEM),
6(1):31–79, 1997.

[62] Rani Nelken and Nissim Francez. Automatic translation of natural language system
specifications into temporal logic. In International Conference on Computer Aided
Verification, pages 360–371. Springer, 1996.

[63] Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus. Amt
2.0: Qualitative and quantitative trace analysis with extended signal temporal logic. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 303–319. Springer, 2018.

[64] Dejan Nickovic and Oded Maler. Amt: A property-based monitoring tool for analog
systems. In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 304–319. Springer, 2007.

[65] Kurt M. Olender and Leon J. Osterweil. Cecil: A sequencing constraint language for
automatic static analysis generation. IEEE Transactions on Software Engineering,
16(3):268–280, 1990.

[66] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[67] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[68] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[69] Pavithra Prabhakar, Ratan Lal, and James Kapinski. Automatic trace generation for
signal temporal logic. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages
208–217. IEEE, 2018.

[70] Y Srinivas Ramakrishna, P Michael Melliar-Smith, Louise E Moser, Laura K Dillon,
and George Kutty. Interval logics and their decision procedures: Part ii: A real-time
interval logic. Theoretical Computer Science, 170(1-2):1–46, 1996.

[71] Hendrik Roehm, Thomas Heinz, and Eva Charlotte Mayer. Stlinspector: Stl validation
with guarantees. In International Conference on Computer Aided Verification, pages
225–232. Springer, 2017.

64

[72] Terence Parr. Antlr4 python examples, 2016. Online documentation https://github.

com/jszheng/py3antlr4book, Last accessed on 2019-02-17.

[73] Wikipedia. De morgan’s laws, 2019. Online documentation https://en.wikipedia.

org/wiki/De_Morgan%27s_laws, Last accessed on 2019-03-01.

65

https://github.com/jszheng/py3antlr4book
https://github.com/jszheng/py3antlr4book
https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

APPENDICES

66

Appendix A

STL Grammar for ANTLR4

67

Complete STL Grammar for ANTLR

grammar stlGrammar ;

prog : st lFormula+ ;

st lFormula : :=
st lFormula ‘U’ t i m e S l i c e st lFormula # st lUnt i lFormula
| st lFormula i m p l i e s st lFormula # st lFormula Impl i e s
| st lFormula andorOp st lFormula # st lConjDis jFormula
|NOT stlFormula # stlNotFormula
| ‘G’ t i m e S l i c e ? ‘ (’ st lFormula ‘) ’ # st lGlobalFormula
| ‘ F ’ t i m e S l i c e ? ‘ (’ st lFormula ‘) ’ # st lEventualFormula
| signalComp # stlSignalComp
| s i g n a l # s t l S i g n a l
| Bool # st lProp
| ‘ (’ st lFormula ‘) ’ # s t lPa r en s

signalComp : :=
s i g n a l relOp expr # s igna lExpr
| expr relOp s i g n a l # s igna lExpr
| Bool relOp s i g n a l # s i gna lBoo l
| s i g n a l relOp Bool # s i gna lBoo l

expr : :=
expr op =(‘∗ ’ | ‘ / ’) expr # MulDivExpr
| expr op =(‘+ ’ | ‘− ’) expr # AddSubExpr
|REAL # rea lExprs
| ‘ (’ expr ‘) ’

68

	List of Tables
	List of Figures
	Abbreviations
	List of Symbols
	Introduction
	Runtime Verification
	Structured English
	Thesis Statement
	Formal Model

	Offline vs. Online Monitoring
	Contribution
	Organization of the Thesis

	Background
	Linear Temporal Logic (LTL)
	Precedence Order
	Examples

	Metric Interval Temporal Logic (MITL)
	Signal Temporal Logic (STL)

	ANTLR
	Grammar
	Lexer and Tokenizing
	Parser
	Avoiding Ambiguity

	AST Listener

	RuSTL
	STL Grammar
	Expression Rule
	Signal Comparison Rule
	STL Formula Rule

	Transforming Properties
	Generating the Monitor Program
	Entering a Node
	Exiting a Node
	Diagnostic Plot

	Soundness, Termination and Completeness
	Temporal Depth

	Structured English
	Case Study
	Robot Operating System (ROS)
	Renesas Autonomy Demonstrator (RAD)
	Experimental Results

	Related Work
	Conclusion
	Summary
	Future Work
	Online Monitoring
	Robustness Metric
	Multi-Language Process Monitor

	References
	APPENDICES
	STL Grammar for ANTLR4

