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Abstract

The C programming language has been an important software development tool for
decades. C

A

is a new programming language designed with strong backwards-compatibility
to take advantage of widely distributed C programming expertise and the large deployed
base of C code, paired with modern language features to improve developer productivity.

This thesis presents a number of improvements to C

A

. The author has developed one
major new language feature, generic types, in a way that integrates naturally with both
the existing polymorphism features of C

A

and the translation-unit-based encapsulation
model of C. This thesis also presents a number of smaller refinements to the C

A

overload
resolution rules, each of which improves the expressivity or intuitive nature of the language.

This thesis also includes a number of practical improvements to C

A

compilation per-
formance, focused on the expression resolution pass, which is the main bottleneck. These
include better algorithms for argument-parameter matching and type assertion satisfaction,
as well as a new type-environment data-structure based on a novel variant of union-find.
The compilation performance improvements have all been experimentally validated with a
new prototype system that encapsulates the key aspects of the C

A

language; this prototype
is a promising basis for future research and a technical contribution of this work.

C

A

, extended and refined in this thesis, presents both an independently interesting
combination of language features and a comprehensive approach to the modernization of
C. This work demonstrates the hitherto unproven compiler-implementation viability of
the C

A

language design, and provides a number of useful tools to implementors of other
languages.

iv



Acknowledgements

Though a doctoral thesis is an individual project, I could not have completed it without
the help and support of many members of my community. This thesis would not exist in
the form it does without the mentorship of my advisor, Peter Buhr, who has ably led the
C

A

team while giving me both the advantage of his decades of experience and the freedom
to follow my own interests.

My work on C

A

does not exist in a vacuum, and it has been a pleasure and a privilege
to collaborate with the members of the C

A

team: Andrew Beach, Richard Bilson, Michael
Brooks, Bryan Chan, Thierry Delisle, Glen Ditchfield, Brice Dobry, Rob Schluntz, and
others. I gratefully acknowledge the financial support of the National Science and Engi-
neering Council of Canada and Huawei Ltd. for this project. I would also like to thank
of my thesis committee, Werner Dietl, Doug Lea, Ondřej Lhoták, and Gregor Richards,
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Chapter 1

Introduction

The C programming language [9] has had a wide-ranging impact on the design of software
and programming languages. In the 30 years since its first standardization, it has consis-
tently been one of the most popular programming languages, with billions of lines of C
code still in active use, and tens of thousands of trained programmers producing it. The
TIOBE index [46] tracks popularity of programming languages over time, and C has never
dropped below second place:

Table 1.1: Current top 5 places in the TIOBE index averaged over years

2018 2013 2008 2003 1998 1993 1988
Java 1 2 1 1 18 – –
C 2 1 2 2 1 1 1

C++ 3 4 3 3 2 2 5
Python 4 7 6 11 22 17 –

C♯ 5 5 7 8 – – –

The impact of C on programming language design is also obvious from Table 1.1;
with the exception of Python, all of the top five languages use C-like syntax and control
structures. C++ [15] is even a largely backwards-compatible extension of C. Though its
lasting popularity and wide impact on programming language design point to the continued
relevance of C, there is also widespread desire of programmers for languages with more
expressive power and programmer-friendly features; accommodating both maintenance of
legacy C code and development of the software of the future is a difficult task for a single
programming language.
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C

A

A is an evolutionary modernization of the C programming language that aims to
fulfill both these ends well. C

A

both fixes existing design problems and adds multiple new
features to C, including name overloading, user-defined operators, parametric-polymorphic
routines, and type constructors and destructors, among others. The new features make C

A

more powerful and expressive than C, while maintaining strong backward-compatibility
with both C code and the procedural paradigm expected by C programmers. Unlike other
popular C extensions like C++ and Objective-C, C

A

adds modern features to C without
imposing an object-oriented paradigm to use them. However, these new features do impose
a compile-time cost, particularly in the expression resolver, which must evaluate the typing
rules of a significantly more complex type system.

This thesis is focused on making C

A

a more powerful and expressive language, both
by adding new features to the C

A

type system and ensuring that both added and existing
features can be efficiently implemented in cfa-cc, the C

A

reference compiler. Particular
contributions of this work include:

• design and implementation of parametric-polymorphic (“generic”) types in a manner
compatible with the existing polymorphism design of C

A

(Chapter 3),

• a new expression resolution algorithm designed to quickly locate the optimal decla-
rations for a C

A

expression (Chapter 4),

• a type environment data structure based on a novel variant of the union-find algo-
rithm (Chapter 5),

• and as a technical contribution, a prototype system for compiler algorithm develop-
ment which encapsulates the essential aspects of the C

A

type system without incur-
ring the technical debt of the existing system or the friction-inducing necessity of
maintaining a working compiler (Chapter 6).

The prototype system, which implements the algorithmic contributions of this thesis,
is the first performant type-checker implementation for a C

A

-style type system. As the
existence of an efficient compiler is necessary for the practical viability of a programming
language, the contributions of this thesis comprise a validation of the C

A

language design
that was previously lacking.

Though the direction and experimental validation of this work is fairly narrowly focused
on the C

A

programming language, the tools used and results obtained should be of interest

APronounced “C-for-all”, and written C

A

or Cforall.
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to a wider compiler and programming language design community. In particular, with the
addition of concepts in C++20 [10], conforming C++ compilers must support a model of
type assertions very similar to that in C

A

, and the algorithmic techniques used here may
prove useful. Much of the difficulty of type-checking C

A

stems from the language design
choice to allow overload selection from the context of a function call based on function
return type in addition to the type of the arguments to the call; this feature allows the
programmer to specify fewer redundant type annotations on functions that are polymorphic
in their return type. As an example in C++:

template<typename T> T∗ zero() { return new T( 0 ); }

int∗ z = zero<int>(); // must specify int twice

C

A

allows int∗ z = zero(), which elides the second int. While the auto keyword in
C++11 supports similar inference in a limited set of contexts (e.g. auto z = zero<int>()),
the demonstration of the richer inference in C

A

raises possibilities for similar features in
future versions of C++. By contrast to C++, Java 8 [19] and Scala [42] use comparably
powerful forms of type inference to C

A

, so the algorithmic techniques in this thesis may be
effective for those languages’ compiler implementors. Type environments are also widely
modelled in compiler implementations, particularly for functional languages, though also
increasingly commonly for other languages (such as Rust [41]) that perform type inference;
the type environment presented here may be useful to those language implementors.

One area of inquiry that is outside the scope of this thesis is formalization of the
C

A

type system. Ditchfield [14] defined the F∋
ω polymorphic lambda calculus, which is

the theoretical basis for the C

A

type system. Ditchfield did not, however, prove any
soundness or completeness properties for F∋

ω ; such proofs remain future work. A number
of formalisms other than F∋

ω could potentially be adapted to model C

A

. One promising
candidate is local type inference [38, 34], which describes similar contextual propagation of
type information; another is the polymorphic conformity-based model of the Emerald [7]
programming language, which defines a subtyping relation on types that is conceptually
similar to C

A

traits. These modelling approaches could potentially be used to extend an
existing formal semantics for C such as Cholera [31], CompCert [25], or Formalin [24].

3



Chapter 2

C

A

C

A

adds a number of features to C, some of them providing significant increases to the
expressive power of the language, but all designed to maintain the existing procedural
programming paradigm of C and to be as orthogonal as possible to each other. To provide
background for the contributions in subsequent chapters, this chapter provides a summary
of the features of C

A
at the time this work was conducted.

Glen Ditchfield laid out the core design of C

A

in his 1992 PhD thesis, Contextual
Polymorphism [14]; in that thesis, Ditchfield presents the theoretical underpinnings of the
C

A

polymorphism model. Building on Ditchfield’s design for contextual polymorphism as
well as KW-C [8], an earlier set of (largely syntactic) extensions to C, Richard Bilson [6]
built the first version of the C

A

compiler, cfa-cc, in the early 2000’s. This early cfa-cc

provided basic functionality, but incorporated a number of algorithmic choices that have
failed to scale as C

A

has developed, lacking the runtime performance for practical use; this
thesis is substantially concerned with rectifying those deficits.

The C

A

project was revived in 2015 with the intention of building a production-ready
language and compiler; at the time of this writing, both C

A

and cfa-cc remain under
active development. As this development has been proceeding concurrently with the work
described in this thesis, the state of C

A

has been somewhat of a moving target; however,
Moss et al. [30] provides a reasonable summary of the current design. Notable features
added during this period include generic types (Chapter 3), constructors and destructors
[43], improved support for tuples [43], reference types [30], first-class concurrent and parallel
programming support [13], as well as numerous pieces of syntactic sugar and the start of
an idiomatic standard library [30].

This thesis is primarily concerned with the expression resolution portion of C

A

type-

4



checking; resolution is discussed in more detail in Chapter 4, but is essentially determining
which declarations the identifiers in each expression correspond to. In C, no simultaneously-
visible declarations share identifiers, hence expression resolution in C is not difficult. In C

A

,
multiple added features make the resolution process significantly more complex. Due to
this complexity, the expression-resolution pass in cfa-cc requires 95% of compiler runtime
on some source files, making a new, more efficient procedure for expression resolution a
requirement for a performant C

A

compiler.

The features presented in this chapter are chosen to elucidate the design constraints of
the work presented in this thesis. In some cases the interactions of multiple features make
this design a significantly more complex problem than any individual feature; in other
cases a feature that does not by itself add any complexity to expression resolution triggers
previously rare edge cases more frequently.

2.1 Procedural Paradigm

It is important to note that C

A

is not an object-oriented language. This is a deliberate
choice intended to maintain the applicability of the programming model and language
idioms already possessed by C programmers. This choice is in marked contrast to C++,
which is a much larger and more complex language, and requires extensive developer re-
training to write idiomatic, efficient code in C++’s object-oriented paradigm.

Particularly, C

A

has no concept of subclass, and thus no need to integrate an inheritance-
based form of polymorphism with its parametric and overloading-based polymorphism.
While C

A

does have a system of implicit type conversions derived from C’s “usual arith-
metic conversions” [9, §6.3.1.8] and these conversions may be thought of as something like
an inheritance hierarchy, the underlying semantics are significantly different and such an
analogy is loose at best. The graph structure of the C

A

type conversions (discussed in
Section 4.1.2) is also markedly different than an inheritance hierarchy; it has neither a
top nor a bottom type, and does not satisfy the lattice properties typical of inheritance
hierarchies.

Another aspect of C

A

’s procedural paradigm is that it retains C’s translation-unit-based
encapsulation model, rather than class-based encapsulation such as in C++. As such, any
language feature that requires code to be exposed in header files (e.g. C++ templates) also
eliminates encapsulation in C

A

. Given this constraint, C

A

is carefully designed to allow
separate compilation for its added language features under the existing C usage patterns.

5



2.2 Name Overloading

In C, no more than one variable or function in the same scope may share the same nameA,
and variable or function declarations in inner scopes with the same name as a declaration
in an outer scope hide the outer declaration. This restriction makes finding the proper
declaration to match to a variable expression or function application a simple matter of
lexically-scoped name lookup, which can be easily and efficiently implemented. C

A

, on the
other hand, allows overloading of variable and function names so long as the overloaded
declarations do not have the same type, avoiding the multiplication of variable and function
names for different types common in the C standard library, as in the following example:

#include <limits.h>

const int max = INT MAX; // (1)
const double max = DBL MAX; // (2)
int max(int a, int b) { return a < b ? b : a; } // (3)
double max(double a, double b) { return a < b ? b : a; } // (4)

max( 7, max ); // uses (3) and (1), by matching int from 7
max( max, 3.14 ); // uses (4) and (2), by matching double from 3.14
max( max, max ); // ERROR, ambiguous
int m = max( max, max ); // uses (3) and (1) twice, by matching return type

The final expression in the preceding example includes a feature of C

A

name overloading
not shared by C++, the ability to disambiguate expressions based on their return type. This
provides greater flexibility and power than the parameter-based overload selection of C++,
though at the cost of greater complexity in the resolution algorithm.

While the wisdom of giving both the maximum value of a type and the function to
take the maximum of two values the same name in the example above is debatable, e.g.
some developers may prefer MAX for the former, the guiding philosophy of C

A

is “describe,
don’t prescribe” — we prefer to trust programmers with powerful tools, and there is no
technical reason to restrict overloading between variables and functions. However, the
expressivity of C

A

’s name overloading does have the consequence that simple table lookup
is insufficient to match identifiers to declarations, and a type-matching algorithm must be
part of expression resolution.

ATechnically, C has multiple separated namespaces, one holding struct, union, and enum tags, one
holding labels, one holding typedef names, variable, function, and enumerator identifiers, and one for each
struct and union type holding the field names [9, §6.2.3].

6



2.2.1 Operator Overloading

C does allow name overloading in one context: operator overloading. From the perspective
of the type system, there is nothing special about operators as opposed to other functions,
nor is it desirable to restrict the clear and readable syntax of operators to only the built-in
types. For these reasons, C

A

, like C++ and many other programming languages, allows
overloading of operators by writing specially-named functions where ? stands in for the
operands. This syntax is more natural than the operator overloading syntax of C++,
which requires “dummy” parameters to disambiguate overloads of similarly-named pre-
and postfix operatorsB:

struct counter { int x; };

counter& ++?(counter& c) { ++c.x; return c; } // pre-increment
counter ?++(counter& c) { // post-increment

counter tmp = c; ++c; return tmp;
}
bool ?<?(const counter& a, const counter& b) { // comparison

return a.x < b.x;
}

Together, C

A

’s backward-compatibility with C and the inclusion of this operator over-
loading feature imply that C

A

must select among function overloads using a method com-
patible with C’s “usual arithmetic conversions” [9, §6.3.1.8], so as to present user program-
mers with only a single set of overloading rules.

2.2.2 Special Literal Types

Literal 0 is also used polymorphically in C; it may be either integer zero or the null value
of any pointer type. C

A

provides a special type for the 0 literal, zero t, so that users can
define a zero value for their own types without being forced to create a conversion from an
integer or pointer type; C

A

also includes implicit conversions from zero t to the int and
pointer type constructorsC from zero t for backward compatibility.

According to the C standard [9, §6.8.4.1], 0 is the only false value; any value that
compares equal to zero is false, while any value that does not is true. By this rule, Boolean
contexts such as if ( x ) can always be equivalently rewritten as if ( (x) != 0 ). cfa-cc

BThis example uses C

A

’s reference types, described in Section 2.5
CSee Section 2.5

7



applies this rewriting in all Boolean contexts, so any type T can be made “truthy” (that is,
given a Boolean interpretation) in C

A

by defining an operator overload int ?!=?(T, zero t).
C++ takes a different approach to user-defined truthy types, allowing definition of an
implicit conversion operator to bool; prior to the introduction of the explicit keyword for
conversion operators in C++11 this approach also allowed undesired implicit conversions
to all other arithmetic types, a shortcoming not shared by the C

A

design.

C

A

also includes a special type for 1, one t; like zero t, one t has built-in implicit
conversions to the various integral types so that 1 maintains its expected semantics in
legacy code. The addition of one t allows generic algorithms to handle the unit value
uniformly for types where it is meaningful; a simple example of this is that polymorphic
functionsD in the C

A

prelude define ++x and x++ in terms of x += 1, allowing users to
idiomatically define all forms of increment for a type T by defining the single function
T& ?+=?(T&, one t); analogous overloads for the decrement operators are also present,
and programmers can override any of these functions for a particular type if desired.

C

A

previously allowed 0 and 1 to be the names of polymorphic variables, with sepa-
rate overloads for int 0, int 1, and the polymorphic variable forall(dtype T) T∗ 0. While
designing C

A

generic types (see Chapter 3), it was discovered that the parametric poly-
morphic zero variable is not generalizable to other types; though all null pointers have the
same in-memory representation, the same cannot be said of the zero values of arbitrary
types. As such, polymorphic variables, and in particular variables for 0 and 1, were phased
out in favour of functions that could generate those values for a given type as appropriate.

2.3 Polymorphic Functions

The most significant type-system feature C

A

adds is parametric-polymorphic functions.
Such functions are written using a forall clause (which gives the language its name):

forall(otype T)
T identity(T x) { return x; }

The identity function above can be applied to any complete object type (or “otype”).
The type variable T is transformed into a set of additional implicit parameters to identity,
which encode sufficient information about T to create and return a variable of that type.
C

A

passes the size and alignment of the type represented by an otype parameter, as well as
a default constructor, copy constructor, assignment operator, and destructor. Types that

Ddiscussed in Section 2.3
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do not have one or more of these operators visible cannot be bound to otype parameters,
but may be bound to un-constrained dtype (“data type”) type variables. In this design,
the runtime cost of polymorphism is spread over each polymorphic call, due to passing
more arguments to polymorphic functions; the experiments in Chapter 3 indicate that this
overhead is comparable to that of C++ virtual function calls.

One benefit of this design is that it allows polymorphic functions to be separately
compiled. The forward declaration forall(otype T) T identity(T); uniquely defines a single
callable function, which may be implemented in a different file. The fact that there is
only one implementation of each polymorphic function also reduces compile times relative
to the template-expansion approach taken by C++, as well as reducing binary sizes and
runtime pressure on instruction cache by re-using a single version of each function.

2.3.1 Type Assertions

Since bare polymorphic types do not provide a great range of available operations, C

A

provides a type assertion mechanism to provide further information about a typeE:

forall(otype T | { T twice(T); })
T four times(T x) { return twice( twice(x) ); }
double twice1(double d) { return d ∗ 2.0; }

double ans = four times( 10.5 ); // T bound to double, ans == 42.0

These type assertions may be either variable or function declarations that depend on
a polymorphic type variable. four times may only be called with an argument for which
there exists a function named twice that can take that argument and return another value
of the same type; a pointer to the appropriate function is passed as an additional implicit
parameter of the call to four times.

Monomorphic specializations of polymorphic functions can themselves be used to satisfy
type assertions. For instance, twice could have been defined like this:

forall(otype S | { S ?+?(S, S); })
S twice2(S x) { return x + x; }

Specializing this polymorphic function with S = double produces a monomorphic func-
tion which can be used to satisfy the type assertion on four times. cfa-cc accomplishes
this by creating a wrapper function calling twice2 with S bound to double, then providing

EThis example introduces a convention used throughout this thesis of disambiguating overloaded names
with subscripts; the subscripts do not appear in C

A

source code.
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this wrapper function to four timesF. However, twice2 also works for any type S that has
an addition operator defined for it.

Finding appropriate functions to satisfy type assertions is essentially a recursive case
of expression resolution, as it takes a name (that of the type assertion) and attempts to
match it to a suitable declaration in the current scopeG. If a polymorphic function can be
used to satisfy one of its own type assertions, this recursion may not terminate, as it is
possible that that function is examined as a candidate for its own assertion unboundedly
repeatedly. To avoid such infinite loops, cfa-cc imposes a fixed limit on the possible depth
of recursion, similar to that employed by most C++ compilers for template expansion; this
restriction means that there are some otherwise semantically well-typed expressions that
cannot be resolved by cfa-cc.

2.3.2 Traits

C

A

provides traits as a means to name a group of type assertions, as in the example belowH:

trait has magnitude(otype T) {
bool ?<?(T, T); // comparison operator
T ?(T); // negation operator
void ?{}(T&, zero t); // constructor from 0

};

forall(otype M | has magnitude(M))
M abs(M m) { return m < (M){0} ? m : m; }

forall(otype M | has magnitude(M))
M max magnitude(M a, M b) { return abs(a) < abs(b) ? b : a; }

Semantically, traits are simply a named list of type assertions, but they may be used
for many of the same purposes that interfaces in Java or abstract base classes in C++ are
used for. Unlike Java interfaces or C++ base classes, C

A

types do not explicitly state any
inheritance relationship to traits they satisfy; this can be considered a form of structural
inheritance, similar to interface implementation in Go, as opposed to the nominal inheri-
tance model of Java and C++. Nominal inheritance can be simulated in C

A

using marker

Ftwice2 could also have had a type parameter named T; C

A

specifies renaming of the type parameters,
which would avoid the name conflict with the type variable T of four times

Gcfa-cc actually performs a type-unification computation for assertion satisfaction rather than an
expression resolution computation; see Section 4.2.3 for details.

HThis example uses C

A

’s reference types and constructors, described in Section 2.5.
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variables in traits:

trait nominal(otype T) {
T is nominal;

};

int is nominal; // int now satisfies nominal
{

char is nominal; // char only satisfies nominal in this scope
}

Traits, however, are significantly more powerful than nominal-inheritance interfaces;
firstly, due to the scoping rules of the declarations that satisfy a trait’s type assertions,
a type may not satisfy a trait everywhere that that type is declared, as with char and
the nominal trait above. Secondly, because C

A

is not object-oriented and types do not
have a closed set of methods, existing C library types can be extended to implement a
trait simply by writing the requisite functionsI. Finally, traits may be used to declare
a relationship among multiple types, a property that may be difficult or impossible to
represent in nominal-inheritance type systemsJ:

trait pointer like(otype Ptr, otype El) {
El& ∗?(Ptr); // Ptr can be dereferenced to El

};

struct list {
int value;
list∗ next; // may omit struct on type names

};

typedef list∗ list iterator;

int& ∗?(list iterator it) {
return it >value;

}

In this example above, (list iterator, int) satisfies pointer like by the user-defined deref-
erence function, and (list iterator, list) also satisfies pointer like by the built-in dereference
operator for pointers. Given a declaration list iterator it, ∗it can be either an int or a list,

IC++ only allows partial extension of C types, because constructors, destructors, conversions, and the
assignment, indexing, and function-call operators may only be defined in a class; C

A

does not have any of
these restrictions.

JThis example uses C

A

’s reference types, described in Section 2.5.
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with the meaning disambiguated by context (e.g. int x = ∗it; interprets ∗it as int, while
(∗it).value = 42; interprets ∗it as list). While a nominal-inheritance system with associated
types could model one of those two relationships by making El an associated type of Ptr in
the pointer like implementation, I am unaware of any nominal-inheritance system that can
model both relationships simultaneously. Further comparison of C

A

polymorphism with
other languages can be found in Section 3.1.1.

The flexibility of C

A

’s implicit trait-satisfaction mechanism provides programmers with
a great deal of power, but also blocks some optimization approaches for expression reso-
lution. The ability of types to begin or cease to satisfy traits when declarations go into
or out of scope makes caching of trait satisfaction judgments difficult, and the ability of
traits to take multiple type parameters can lead to a combinatorial explosion of work in
any attempt to pre-compute trait satisfaction relationships.

2.3.3 Deleted Declarations

Particular type combinations can be exempted from matching a given polymorphic function
through the use of a deleted function declaration:

int somefn(char) = void;

This feature is based on a C++11 feature typically used to make a type non-copyable by
deleting its copy constructor and assignment operatorK or forbidding some interpretations
of a polymorphic function by specifically deleting the forbidden overloadsL. Deleted func-
tion declarations are implemented in cfa-cc by adding them to the symbol table as usual,
but with a flag set that indicates that the function is deleted. If this deleted declaration
is selected as the unique minimal-cost interpretation of an expression then an error is pro-
duced, allowing C

A

programmers to guide the expression resolver away from undesirable
solutions.

KIn previous versions of C++, a type could be made non-copyable by declaring a private copy con-
structor and assignment operator, but not defining either. This idiom is well-known, but depends on some
rather subtle and C++-specific rules about private members and implicitly-generated functions; the deleted
function form is both clearer and less verbose.

LSpecific polymorphic function overloads can also be forbidden in previous C++ versions through
use of template metaprogramming techniques, though this advanced usage is beyond the skills of many
programmers.
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2.4 Implicit Conversions

In addition to the multiple interpretations of an expression produced by name overloading
and polymorphic functions, C

A

must support all of the implicit conversions present in C for
backward compatibility, producing further candidate interpretations for expressions. As
mentioned above, C does not have an inheritance hierarchy of types, but the C standard’s
rules for the “usual arithmetic conversions” [9, §6.3.1.8] define which of the built-in types
are implicitly convertible to which other types, as well as which implicit conversions to
apply for mixed arguments to binary operators. C

A

adds rules to the usual arithmetic
conversions defining the cost of binding a polymorphic type variable in a function call;
such bindings are cheaper than any unsafe (narrowing) conversion, e.g. int to char, but
more expensive than any safe (widening) conversion, e.g. int to double. One contribution
of this thesis, discussed in Section 4.1.2, is a number of refinements to this cost model to
more efficiently resolve polymorphic function calls.

In the context of these implicit conversions, the expression resolution problem can be re-
stated as finding the unique minimal-cost interpretation of each expression in the program,
where all identifiers must be matched to a declaration, and implicit conversions or polymor-
phic bindings of the result of an expression may increase the cost of the expression. While
semantically valid C

A
code always has such a unique minimal-cost interpretation, cfa-cc

must also be able to detect and report as errors expressions that have either no interpreta-
tion or multiple ambiguous minimal-cost interpretations. Note that which subexpression
interpretation is minimal-cost may require contextual information to disambiguate. For in-
stance, in the example in Section 2.2, max(max, max) cannot be unambiguously resolved,
but int m = max(max, max) has a single minimal-cost resolution. While the interpre-
tation int m = (int)max((double)max, (double)max) is also a valid interpretation, it is
not minimal-cost due to the unsafe cast from the double result of max to intM. These
contextual effects make the expression resolution problem for C

A

both theoretically and
practically difficult, but the observation driving the work in Chapter 4 is that of the many
top-level expressions in a given program, most are straightforward and idiomatic so that
programmers writing and maintaining the code can easily understand them; it follows that
effective heuristics for common cases can bring down compiler runtime enough that a small
proportion of harder-to-resolve expressions does not inordinately increase overall compiler
runtime or memory usage.

MThe two double casts function as type ascriptions selecting double max rather than casts from int max
to double, and as such are zero-cost. The int to double conversion could be forced if desired with two
casts: (double)(int)max
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2.5 Type Features

The name overloading and polymorphism features of C

A

have the greatest effect on lan-
guage design and compiler runtime, but there are a number of other features in the type
system that have a smaller effect but are useful for code examples. These features are
described here.

2.5.1 Reference Types

One of the key ergonomic improvements in C

A

is reference types, designed and imple-
mented by Robert Schluntz [43]. Given some type T, a T& (“reference to T”) is essentially
an automatically dereferenced pointer. These types allow seamless pass-by-reference for
function parameters, without the extraneous dereferencing syntax present in C; they also
allow easy aliasing of nested values with a similarly convenient syntax. The addition of
reference types also eliminated two syntactic special-cases present in previous versions of
C

A

. Consider the a call a += b to a compound assignment operator. The previous dec-
laration for that operator is lvalue int ?+=?(int∗, int). To mutate the left argument, the
built-in operators were special-cased to implicitly take the address of that argument, while
the special lvalue syntax was used to mark the return type of a function as a mutable
reference. With references, this declaration is re-written as int& ?+=?(int&, int). The
reference semantics generalize the implicit address-of on the left argument and allow it to
be used in user-declared functions, while also subsuming the (now removed) lvalue syntax
for function return types.

The C standard makes heavy use of the concept of lvalue, an expression with a memory
address; its complement, rvalue (a non-addressable expression) is not explicitly named in
the standard. In C

A

, the distinction between lvalue and rvalue can be re-framed in terms of
reference and non-reference types, with the benefit of being able to express the difference in
user code. C

A

references preserve the existing qualifier-dropping implicit lvalue-to-rvalue
conversion from C (e.g. a const volatile int& can be implicitly copied to a bare int).
To make reference types more easily usable in legacy pass-by-value code, C

A

also adds
an implicit rvalue-to-lvalue conversion, implemented by storing the value in a compiler-
generated temporary variable and passing a reference to that temporary. To mitigate the
“const hell” problem present in C++, there is also a qualifier-dropping lvalue-to-lvalue
conversion implemented by copying into a temporary:

const int magic = 42;
void inc print( int& x ) { printf("%d\n", ++x); }
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inc print( magic ); // legal; implicitly generated code in red below:

int tmp = magic; // to safely strip const-qualifier
inc print( tmp ); // tmp is incremented, magic is unchanged

Despite the similar syntax, C

A

references are significantly more flexible than C++ refer-
ences. The primary issue with C++ references is that it is impossible to extract the address
of the reference variable rather than the address of the referred-to variable. This breaks
a number of the usual compositional properties of the C++ type system, e.g. a reference
cannot be re-bound to another variable, nor is it possible to take a pointer to, array of, or
reference to a reference. C

A

supports all of these use cases without further added syntax.
The key to this syntax-free feature support is an observation made by the author that the
address of a reference is a lvalue. In C, the address-of operator &x can only be applied
to lvalue expressions, and always produces an immutable rvalue; C

A

supports reference
re-binding by assignment to the address of a referenceN, and pointers to references by
repeating the address-of operator:

int x = 2, y = 3;
int& r = x; // r aliases x
&r = &y; // r now aliases y
int∗∗ p = &&r; // p points to r

For better compatibility with C, the C

A

team has chosen not to differentiate function
overloads based on top-level reference types, and as such their contribution to the difficulty
of C

A

expression resolution is largely restricted to the implementation details of matching
reference to non-reference types during type-checking.

2.5.2 Resource Management

C

A

also supports the RAII (“Resource Acquisition is Initialization”) idiom originated by
C++, thanks to the object lifetime work of Robert Schluntz [43]. This idiom allows a safer
and more principled approach to resource management by tying acquisition of a resource
to object initialization, with the corresponding resource release executed automatically at
object finalization. A wide variety of conceptual resources may be conveniently managed
by this scheme, including heap memory, file handles, and software locks.

NThe syntactic difference between reference initialization and reference assignment is unfortunate, but
preserves the ability to pass function arguments by reference (a reference initialization context) without
added syntax.
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C

A

’s implementation of RAII is based on special constructor and destructor operators,
available via the x{ ... } constructor syntax and ∧x{ ... } destructor syntax. Each type
has an overridable compiler-generated zero-argument constructor, copy constructor, as-
signment operator, and destructor, as well as a field-wise constructor for each appropriate
prefix of the member fields of struct types. For struct types the default versions of these
operators call their equivalents on each field of the struct. The main implication of these
object lifetime functions for expression resolution is that they are all included as implicit
type assertions for otype type variables, with a secondary effect being an increase in code
size due to the compiler-generated operators. Due to these implicit type assertions, asser-
tion resolution is pervasive in C

A

polymorphic functions, even those without explicit type
assertions. Implicitly-generated code is shown in red in the following example:

struct kv {
int key;
char∗ value;

};

void ?{} (kv& this) { // default constructor
this.key{}; // call recursively on members
this.value{};

}

void ?{} (kv& this, int key) { // partial field constructor
this.key{ key };
this.value{}; // default-construct missing fields

}

void ?{} (kv& this, int key, char∗ value) { // complete field constructor
this.key{ key };
this.value{ value };

}

void ?{} (kv& this, kv that) { // copy constructor
this.key{ that.key };
this.value{ that.value };

}

kv ?=? (kv& this, kv that) { // assignment operator
this.key = that.key;
this.value = that.value;

}
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void ∧?{} (kv& this) { // destructor
∧ this.key{};
∧ this.value{};

}

forall(otype T | { void ?{}(T&); void ?{}(T&, T); T ?=?(T&, T); void ∧?{}(T&); })
void foo(T);

2.5.3 Tuple Types

C

A

adds tuple types to C, a syntactic facility for referring to lists of values anonymously or
with a single identifier. An identifier may name a tuple, a function may return one, and
a tuple may be implicitly destructured into its component values. The implementation of
tuples in cfa-cc’s code generation is based on the generic types introduced in Chapter 3,
with one compiler-generated generic type for each tuple arity. This reuse allows tuples to
take advantage of the same runtime optimizations available to generic types, while reducing
code bloat. An extended presentation of the tuple features of C

A

can be found in [30], but
the following example demonstrates the basic features:

[char, char] x1 = [’!’, ’?’]; // tuple type and expression syntax
int x2 = 2;

forall(otype T)
[T, T] swap1( T a, T b ) {

return [b, a]; // one-line swap syntax
}

x = swap( x ); // destructure x1 into two elements
// cannot use x2, not enough arguments

void swap2( int, char, char );

swap( x, x ); // swap2( x2, x1 )
// not swap1( x2, x2 ) due to polymorphism cost

Tuple destructuring breaks the one-to-one relationship between identifiers and values.
Hence, some argument-parameter matching strategies for expression resolution are pre-
cluded, as well as cheap interpretation filters based on comparing number of parameters
and arguments. As an example, in the call to swap( x, x ) above, the second x can be re-
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solved starting at the second or third parameter of swap2, depending which interpretation
of x is chosen for the first argument.

2.6 Conclusion

C

A

adds a significant number of features to standard C, increasing the expressivity and
re-usability of C

A

code while maintaining backwards compatibility for both code and larger
language paradigms. This flexibility does incur significant added compilation costs, how-
ever, the mitigation of which are the primary concern of this thesis.
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Chapter 3

Generic Types

A significant shortcoming in standard C is the lack of reusable type-safe abstractions for
generic data structures and algorithms. Broadly speaking, there are three approaches to
implement abstract data structures in C. One approach is to write bespoke data structures
for each context in which they are needed. While this approach is flexible and supports
integration with the C type checker and tooling, it is also tedious and error prone, especially
for more complex data structures. A second approach is to use void∗-based polymorphism,
e.g. the C standard library functions bsearch and qsort, which allow for the reuse of common
functionality. However, basing all polymorphism on void∗ eliminates the type checker’s
ability to ensure that argument types are properly matched, often requiring a number of
extra function parameters, pointer indirection, and dynamic allocation that is otherwise
unnecessary. A third approach to generic code is to use preprocessor macros, which does
allow the generated code to be both generic and type checked, but errors in such code
may be difficult to locate and debug. Furthermore, writing and using preprocessor macros
is unnatural and inflexible. Figure 3.1 demonstrates the bespoke approach for a simple
linked list with insert and head operations, while Figure 3.2 and Figure 3.3 show the same
example using void∗ and #define-based polymorphism, respectively.

C++, Java, and other languages use generic types (or parameterized types) to produce
type-safe abstract data types. Design and implementation of generic types for C

A

is the
first major contribution of this thesis, a summary of which is published in [30] and on
which this chapter is closely based. C

A

generic types integrate efficiently and naturally
with the existing polymorphic functions in C

A

, while retaining backward compatibility
with C in layout and support for separate compilation. A generic type can be declared in
C

A

by placing a forall specifier on a struct or union declaration, and instantiated using
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#include <stdlib.h> // for malloc
#include <stdio.h> // for printf

struct int list { int value; struct int list∗ next; };

void int list insert( struct int list∗∗ ls, int x ) {
struct int list∗ node = malloc(sizeof(struct int list));
node >value = x; node >next = ∗ls;
∗ls = node;

}

int int list head( const struct int list∗ ls ) { return ls >value; }

// all code must be duplicated for every generic instantiation

struct string list { const char∗ value; struct string list∗ next; };

void string list insert( struct string list∗∗ ls, const char∗ x ) {
struct string list∗ node = malloc(sizeof(struct string list));
node >value = x; node >next = ∗ls;
∗ls = node;

}

const char∗ string list head( const struct string list∗ ls )
{ return ls >value; }

// use is efficient and idiomatic

int main() {
struct int list∗ il = NULL;
int list insert( &il, 42 );
printf("%d\n", int list head(il));

struct string list∗ sl = NULL;
string list insert( &sl, "hello" );
printf("%s\n", string list head(sl));

}

Figure 3.1: Bespoke code for linked list implementation.
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#include <stdlib.h> // for malloc
#include <stdio.h> // for printf

// single code implementation

struct list { void∗ value; struct list∗ next; };

// internal memory management requires helper functions

void list insert( struct list∗∗ ls, void∗ x, void∗ (∗copy)(void∗) ) {
struct list∗ node = malloc(sizeof(struct list));
node >value = copy(x); node >next = ∗ls;
∗ls = node;

}

void∗ list head( const struct list∗ ls ) { return ls >value; }

// helpers duplicated per type

void∗ int copy(void∗ x) {
int∗ n = malloc(sizeof(int));
∗n = ∗(int∗)x;
return n;

}

void∗ string copy(void∗ x) { return strdup((const char∗)x); }

int main() {
struct list∗ il = NULL;
int i = 42;
list insert( &il, &i, int copy );
printf("%d\n", ∗(int∗)list head(il)); // unsafe type cast

struct list∗ sl = NULL;
list insert( &sl, "hello", string copy );
printf("%s\n", (char∗)list head(sl)); // unsafe type cast

}

Figure 3.2: void∗-polymorphic code for linked list implementation.
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#include <stdlib.h> // for malloc
#include <stdio.h> // for printf

// code is nested in macros

#define list(N) N ## list

#define list insert(N) N ## list insert

#define list head(N) N ## list head

#define define list(N, T) \
struct list(N) { T value; struct list(N)∗ next; }; \

\
void list insert(N)( struct list(N)∗∗ ls, T x ) { \

struct list(N)∗ node = malloc(sizeof(struct list(N))); \
node >value = x; node >next = ∗ls; \
∗ls = node; \

} \
\

T list head(N)( const struct list(N)∗ ls ) { return ls >value; }

define list(int, int); // defines int list
define list(string, const char∗); // defines string list

// use is efficient, but syntactically idiosyncratic

int main() {
struct list(int)∗ il = NULL; // does not match compiler-visible name
list insert(int)( &il, 42 );
printf("%d\n", list head(int)(il));

struct list(string)∗ sl = NULL;
list insert(string)( &sl, "hello" );
printf("%s\n", list head(string)(sl));

}

Figure 3.3: Macros for generic linked list implementation.
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a parenthesized list of types after the generic name. An example comparable to the C
polymorphism examples in Figures 3.1, 3.2, and 3.3 can be seen in Figure 3.4.

3.1 Design

Though a number of languages have some implementation of generic types, backward
compatibility with both C and existing C

A

polymorphism present some unique design
constraints for C

A

generics. The guiding principle is to maintain an unsurprising language
model for C programmers without compromising runtime efficiency. A key insight for this
design is that C already possesses a handful of built-in generic types (derived types in
the language of the standard [9, §6.2.5]), notably pointer (T∗) and array (T[]), and that
user-definable generics should act similarly.

3.1.1 Related Work

One approach to the design of generic types is that taken by C++ templates [15]. The
template approach is closely related to the macro-expansion approach to C polymorphism
demonstrated in Figure 3.3, but where the macro-expansion syntax has been given first-
class language support. Template expansion has the benefit of generating code with near-
optimal runtime efficiency, as distinct optimizations can be applied for each instantiation
of the template. On the other hand, template expansion can also lead to significant code
bloat, exponential in the worst case [22], and the costs of increased compilation time and
instruction cache pressure cannot be ignored. The most significant restriction of the C++
template model is that it breaks separate compilation and C’s translation-unit-based encap-
sulation mechanisms. Because a C++ template is not actually code, but rather a “recipe”
to generate code, template code must be visible at its call site to be used. Furthermore,
C++ template code cannot be type-checked without instantiating it, a time consuming
process with no hope of improvement until C++ concepts [10] are standardized in C++20.
C code, by contrast, only needs a function declaration to call that function or a struct

declaration to use (by-pointer) values of that type, desirable properties to maintain in C

A

.

Java [19] has another prominent implementation for generic types, introduced in Java 5
and based on a significantly different approach than C++. The Java approach has much
more in common with the void∗-polymorphism shown in Figure 3.2; since in Java nearly
all data is stored by reference, the Java approach to polymorphic data is to store pointers
to arbitrary data and insert type-checked implicit casts at compile-time. This process of
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#include <stdlib.hfa> // for alloc
#include <stdio.h> // for printf

forall(otype T) struct list { T value; list(T)∗ next; };

// single polymorphic implementation of each function
// overloading reduces need for namespace prefixes

forall(otype T) void insert( list(T)∗∗ ls, T x ) {
list(T)∗ node = alloc(); // type-inferring alloc
(∗node){ x, ∗ls }; // concise constructor syntax
∗ls = node;

}

forall(otype T) T head( const list(T)∗ ls ) { return ls >value; }

// use is clear and efficient

int main() {
list(int)∗ il = 0;
insert( &il, 42 ); // inferred polymorphic T
printf("%d\n", head(il));

list(const char∗)∗ sl = 0;
insert( &sl, "hello" );
printf("%s\n", head(sl));

}

Figure 3.4: C

A

generic linked list implementation.
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type erasure has the benefit of allowing a single instantiation of polymorphic code, but
relies heavily on Java’s object model. To use this model, a more C-like language such as
C

A

would be required to dynamically allocate internal storage for variables, track their
lifetime, and properly clean them up afterward.

Cyclone [21] extends C and also provides capabilities for polymorphic functions and
existential types which are similar to C

A

’s forall functions and generic types. Cyclone
existential types can include function pointers in a construct similar to a virtual function
table, but these pointers must be explicitly initialized at some point in the code, which
is tedious and error-prone compared to C

A

’s implicit assertion satisfaction. Furthermore,
Cyclone’s polymorphic functions and types are restricted to abstraction over types with
the same layout and calling convention as void∗, i.e. only pointer types and int. In the
C

A

terminology discussed in Section 3.2, all Cyclone polymorphism must be dtype-static.
While the Cyclone polymorphism design provides the efficiency benefits discussed in Sec-
tion 3.2.3 for dtype-static polymorphism, it is more restrictive than the more general model
of C

A

.

Many other languages include some form of generic types. As a brief survey, ML [28] was
the first language to support parametric polymorphism, but unlike C

A

does not support the
use of assertions and traits to constrain type arguments. Haskell [23] combines ML-style
polymorphism with the notion of type classes, similar to C

A

traits, but requiring an explicit
association with their implementing types, unlike C

A

. Objective-C [32] is an extension to
C which has had some industrial success; however, it did not support type-checked generics
until recently [47], and its garbage-collected, message-passing object-oriented model is a
radical departure from C. Go [20], and Rust [41] are modern compiled languages with
abstraction features similar to C

A

traits: interfaces in Go and traits in Rust. Go has
implicit interface implementation and uses a “fat pointer” construct to pass polymorphic
objects to functions, similar in principle to C

A

’s implicit forall parameters. Go does not,
however, allow user code to define generic types, restricting Go programmers to the small
set of generic types defined by the compiler. Rust has powerful abstractions for generic
programming, including explicit implementation of traits and options for both separately-
compiled virtual dispatch and template-instantiated static dispatch in functions. On the
other hand, the safety guarantees of Rust’s lifetime abstraction and borrow checker impose
a distinctly idiosyncratic programming style and steep learning curve; C

A

, with its more
modest safety features, allows direct ports of C code while maintaining the idiomatic style
of the original source.
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3.1.2 C

A

Generics

The generic types design in C

A

draws inspiration from both C++ and Java generics, cap-
turing useful aspects of each. Like C++ template types, generic struct and union types
in C

A

have macro-expanded storage layouts, but, like Java generics, C

A

generic types can
be used with separately-compiled polymorphic functions without requiring either the type
or function definition to be visible to the other. The fact that the storage layout of any
instantiation of a C

A

generic type is identical to that of the monomorphic type produced
by simple macro replacement of the generic type parameters is important to provide con-
sistent and predictable runtime performance, and to not impose any undue abstraction
penalty on generic code. As an example, consider the following generic type and function:

forall( otype R, otype S ) struct pair { R first; S second; };

pair(const char∗, int) with len( const char∗ s ) {
return (pair(const char∗, int)){ s, strlen(s) };

}

In this example, with len is defined at the same scope as pair, but it could be called
from any context that can see the definition of pair and a declaration of with len. If its
return type were pair(const char∗, int)∗, callers of with len would only need the declaration
forall(otype R, otype S) struct pair to call it, in accordance with the usual C rules for
opaque types.

with len is itself a monomorphic function, returning a type that is structurally identical
to struct { const char∗ first; int second; }, and as such could be called from C given ap-
propriate re-declarations and demangling flags. However, the definition of with len depends
on a polymorphic function call to the pair constructor, which only needs to be written once
(in this case, implicitly by the compiler according to the usual C

A

constructor generation
[43]) and can be re-used for a wide variety of pair instantiations. Since the parameters to
this polymorphic constructor call are all statically known, compiler inlining can in principle
eliminate any runtime overhead of this polymorphic call.

C

A

deliberately does not support C++-style partial specializations of generic types.
A particularly infamous example in the C++ standard library is vector<bool>, which is
represented as a bit-string rather than the array representation of the other vector instan-
tiations. Complications from this inconsistency (chiefly the fact that a single bit is not
addressable, unlike an array element) make the C++ vector unpleasant to use in generic
contexts due to the break in its public interface. Rather than attempting to plug leaks
in the template specialization abstraction with a detailed method interface, C

A

takes the
more consistent position that two types with an unrelated data layout are in fact unrelated

26



types, and should be handled with different code. Of course, to the degree that distinct
types are similar enough to share an interface, the C

A

trait system allows such an interface
to be defined, and objects of types implementing that trait to be operated on using the
same polymorphic functions.

Since C

A

polymorphic functions can operate over polymorphic generic types, functions
over such types can be partially or completely specialized using the usual overload selection
rules. As an example, the following generalization of with len is a semantically-equivalent
function which works for any type that has a len function declared, making use of both the
ad-hoc (overloading) and parametric (forall) polymorphism features of C

A

:

forall(otype T, otype I | { I len(T); })
pair(T, I) with len( T s ) {

return (pair(T,I)){ s, len(s) };
}

C

A

generic types also support type constraints, as in forall functions. For example, the
following declaration of a sorted set type ensures that the set key implements equality and
relational comparison:

forall(otype Key | { int ?==?(Key, Key); int ?<?(Key, Key); }) struct sorted set;

These constraints are enforced by applying equivalent constraints to the compiler-
generated constructors for this type.

3.2 Implementation

The ability to use generic types in polymorphic contexts means that the C

A

implementa-
tion must support a mechanism for accessing fields of generic types dynamically. While
cfa-cc could in principle use this same mechanism for accessing fields of generic types in
monomorphic contexts as well, such an approach would throw away compiler knowledge of
static types and impose an unnecessary runtime cost. Instead, my design for generic types
in cfa-cc distinguishes between concrete generic types that have a fixed memory layout
regardless of type parameters and dynamic generic types that may vary in memory layout
depending on their type parameters.

A dtype-static type has polymorphic parameters but is still concrete. Polymorphic
pointers are an example of dtype-static types; given some type variable T, T is a poly-
morphic type, but T∗ has a fixed size and can therefore be represented by a void∗ in code
generation. In particular, generic types where all parameters are un-sized (i.e. they do not
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conform to the built-in sized trait, which is satisfied by all types the compiler knows the
size and alignment of) are always concrete, as there is no possibility for their layout to
vary based on type parameters of unknown size and alignment. More precisely, a type is
concrete if and only if all of its sized type parameters are concrete, and a concrete type is
dtype-static if any of its type parameters are (possibly recursively) polymorphic. To illus-
trate, the following code using the pair type from above has each use of pair commented
with its class:

//dynamic, layout varies based on T
forall(otype T) T value1( pair(const char∗, T) p ) { return p.second; }

// dtype static, F∗ and T∗ are concrete but recursively polymorphic
forall(dtype F, otype T) T value2( pair(F∗, T∗) ) { return ∗p.second; }

pair(const char∗, int) p = {"magic", 42}; // concrete
int i = value(p);
pair(void∗, int∗) q = {0, &i}; // concrete
i = value(q);
double d = 1.0;
pair(double∗, double∗) r = {&d, &d}; // concrete
d = value(r);

3.2.1 Concrete Generic Types

The cfa-cc translator template-expands concrete generic types into new structure types,
affording maximal inlining. To enable interoperation among equivalent instantiations of a
generic type, cfa-cc saves the set of instantiations currently in scope and reuses the gener-
ated structure declarations where appropriate. In particular, tuple types are implemented
as a single compiler-generated generic type definition per tuple arity, and can be instan-
tiated and reused according to the usual rules for generic types. A function declaration
that accepts or returns a concrete generic type produces a declaration for the instantiated
structure in the same scope, which all callers may reuse. As an example, the concrete
instantiation for pair(const char∗, int) isA:

struct pair conc0 { const char ∗ first; int second; };

A concrete generic type with dtype-static parameters is also expanded to a structure
type, but this type is used for all matching instantiations. In the example above, the

AField name mangling for overloading purposes is omitted.
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pair(F∗, T∗) parameter to value is such a type; its expansion is belowA, and it is used as
the type of the variables q and r as well, with casts for member access where appropriate:

struct pair conc1 { void∗ first; void∗ second; };

3.2.2 Dynamic Generic Types

In addition to this efficient implementation of concrete generic types, C

A

also offers flexibil-
ity with powerful support for dynamic generic types. In the pre-existing compiler design,
otype (and all sized) type parameters come with implicit size and alignment parameters
provided by the caller. The design for generic types presented here adds an offset array
containing structure-member offsets for dynamic generic struct types. A dynamic generic
union needs no such offset array, as all members are at offset 0, but size and alignment
are still necessary. Access to members of a dynamic structure is provided at runtime via
base-displacement addressing of the structure pointer and the member offset (similar to
the offsetof macro), moving a compile-time offset calculation to runtime.

The offset arrays are statically generated where possible. If a dynamic generic type is
passed or returned by value from a polymorphic function, cfa-cc can safely assume that
the generic type is complete (i.e. has a known layout) at any call site, and the offset array
is passed from the caller; if the generic type is concrete at the call site, the elements of this
offset array can even be statically generated using the C offsetof macro. As an example,
the body of value2 above is implemented as:

assign T( retval, p + offsetof pair[1] ); // return *p.second

Here, assign T is passed in as an implicit parameter from otype T and takes two T∗
(void∗ in the generated codeB), a destination and a source, and retval is the pointer to a
caller-allocated buffer for the return value, the usual C

A

method to handle dynamically-
sized return types. offsetof pair is the offset array passed into value; this array is statically
generated at the call site as:

size t offsetof pair[] = {offsetof( pair conc0, first), offsetof( pair conc0, second)};

Layout Functions

In some cases, the offset arrays cannot be statically generated. For instance, modularity
is generally provided in C by including an opaque forward declaration of a structure and

BA GCC extension allows arithmetic on void∗, calculated as if sizeof(void) == 1.
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associated accessor and mutator functions in a header file, with the actual implementations
in a separately-compiled .c file. C

A

supports this pattern for generic types, implying that
the caller of a polymorphic function may not know the actual layout or size of a dynamic
generic type and only holds it by pointer. cfa-cc automatically generates layout functions
for cases where the size, alignment, and offset array of a generic struct cannot be passed into
a function from that function’s caller. These layout functions take as arguments pointers
to size and alignment variables and a caller-allocated array of member offsets, as well as
the size and alignment of all sized parameters to the generic structure. Un-sized parameters
are not passed because they are forbidden from being used in a context that affects layout
by C’s usual rules about incomplete types. Similarly, the layout function can only safely
be called from a context where the generic type definition is visible, because otherwise the
caller does not know how large to allocate the array of member offsets.

The C standard does not specify a memory layout for structs, but the System V ABI
[27] does; compatibility with this standard is sufficient for C

A

’s currently-supported archi-
tectures, though future ports may require different layout-function generation algorithms.
This algorithm, sketched below in pseudo-C

A

, is a straightforward mapping of consecu-
tive fields into the first properly-aligned offset in the struct layout; layout functions for
union types omit the offset array and simply calculate the maximum size and alignment
over all union variants. Since cfa-cc generates a distinct layout function for each type,
constant-folding and loop unrolling are applied.

forall(dtype T1, dtype T2, ... | sized(T1) | sized(T2) | ...)
void layout(size t∗ size, size t∗ align, size t∗ offsets) {

∗size = 0; ∗align = 1;
// set up members
for ( int i = 0; i < n fields; ++i ) {

// pad to alignment
size t off align = ∗size % alignof(field[i]);
if ( off align != 0 ) { ∗size += alignof(field[i]) off align; }
// mark member, increase size, and fix alignment
offsets[i] = ∗size;
∗size += sizeof(field[i]);
if ( ∗align < alignof(field[i]) ) { ∗align = alignof(field[i]); }

}
// final padding to alignment
size t off align = ∗size % ∗align;
if ( off align != 0 ) { ∗size += ∗align off align; }

}

Results of layout-function calls are cached so that they are only computed once per
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type per function. Layout functions also allow generic types to be used in a function
definition without reflecting them in the function signature, an important implementation-
hiding constraint of the design. For instance, a function that strips duplicate values from
an unsorted list(T) likely has a reference to the list as its only explicit parameter, but uses
some sort of set(T) internally to test for duplicate values. This function could acquire the
layout for set(T) by calling its layout function, providing as an argument the layout of T
implicitly passed into that function.

Whether a type is concrete, dtype-static, or dynamic is decided solely on the basis of
the type arguments and forall clause type parameters. This design allows opaque forward
declarations of generic types, e.g. forall(otype T) struct Box; like in C, all uses of Box(T)
can be separately compiled, and callers from other translation units know the proper calling
conventions. In an alternate design, where the definition of a structure type is included
in deciding whether a generic type is dynamic or concrete, some further types may be
recognized as dtype-static — e.g. Box could be defined with a body { T∗ p; }, and would
thus not depend on T for its layout. However, the existence of an otype parameter T
means that Box could depend on T for its layout if this definition is not visible, and
preserving separate compilation (and the associated C compatibility) is a more important
design metric.

3.2.3 Applications of Dtype-static Types

The reuse of dtype-static structure instantiations enables useful programming patterns at
zero runtime cost. The most important such pattern is using forall(dtype T) T∗ as a type-
checked replacement for void∗, e.g. creating a lexicographic comparison function for pairs
of pointers.

forall(dtype T)
int lexcmp( pair(T∗, T∗)∗ a, pair(T∗, T∗)∗ b, int (∗cmp)(T∗, T∗) ) {

int c = cmp( a >first, b >first );
return c ? c : cmp( a >second, b >second );

}

Since pair(T∗, T∗) is a concrete type, there are no implicit parameters passed to lexcmp;
hence, the generated code is identical to a function written in standard C using void∗, yet
the C

A

version is type-checked to ensure members of both pairs and arguments to the
comparison function match in type.

Another useful pattern enabled by reused dtype-static type instantiations is zero-cost
tag structures. Sometimes, information is only used for type checking and can be omitted
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at runtime. In the example below, scalar is a dtype-static type; hence, all uses have a single
structure definition containing unsigned long and can share the same implementations of
common functions, like ?+?. These implementations may even be separately compiled,
unlike C++ template functions. However, the C

A

type checker ensures matching types are
used by all calls to ?+?, preventing nonsensical computations like adding a length to a
volume.

forall(dtype Unit) struct scalar { unsigned long value; };
struct metres {};
struct litres {};

forall(dtype U) scalar(U) ?+?(scalar(U) a, scalar(U) b) {
return (scalar(U)){ a.value + b.value };

}

scalar(metres) half marathon = { 21098 };
scalar(litres) pool = { 2500000 };
scalar(metres) marathon = half marathon + half marathon;
marathon + pool; // compiler ERROR, mismatched types

3.3 Performance Experiments

To validate the practicality of this generic type design, microbenchmark-based tests were
conducted against a number of comparable code designs in C and C++, first published in
[30]. Since these languages are all C-based and compiled with the same compiler backend,
maximal-performance benchmarks should show little runtime variance, differing only in
length and clarity of source code. A more illustrative comparison measures the costs of
idiomatic usage of each language’s features. The code below shows the C

A

benchmark
tests for a generic stack based on a singly-linked list; the test suite is equivalent for the
other languages, code for which is included in Appendix A. The experiment uses element
types int and pair(short, char) and pushes N = 4M elements on a generic stack, copies
the stack, clears one of the stacks, and finds the maximum value in the other stack.

#define N 4000000
int main() {

int max = 0, val = 42;
stack( int ) si, ti;

REPEAT TIMED( "push_int", N, push( si, val ); )
TIMED( "copy_int", ti{ si }; )
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TIMED( "clear_int", clear( si ); )
REPEAT TIMED( "pop_int", N, int x = pop( ti ); if ( x > max ) max = x; )

pair( short, char ) max = { 0h, ’\0’ }, val = { 42h, ’a’ };
stack( pair( short, char ) ) sp, tp;

REPEAT TIMED( "push_pair", N, push( sp, val ); )
TIMED( "copy_pair", tp{ sp }; )
TIMED( "clear_pair", clear( sp ); )
REPEAT TIMED( "pop_pair", N, pair(short, char) x = pop( tp );

if ( x > max ) max = x; )
}

The four versions of the benchmark implemented are C with void∗-based polymor-
phism, C

A

with parametric polymorphism, C++ with templates, and C++ using only class
inheritance for polymorphism, denoted C++obj. The C++obj variant illustrates an alter-
native object-oriented idiom where all objects inherit from a base object class, a language
design similar to Java 4; in particular, runtime checks are necessary to safely downcast
objects. The most notable difference among the implementations is the memory layout
of generic types: C

A

and C++ inline the stack and pair elements into corresponding list
and pair nodes, while C and C++obj lack such capability and, instead, must store generic
objects via pointers to separately allocated objects. Note that the C benchmark uses
unchecked casts as C has no runtime mechanism to perform such checks, whereas C

A

and
C++ provide type safety statically.

Figure 3.5 and Table 3.1 show the results of running the described benchmark. The
graph plots the median of five consecutive runs of each program, with an initial warm-up
run omitted. All code is compiled at -O2 by gcc or g++ 6.4.0, with all C++ code compiled
as C++14. The benchmarks are run on an Ubuntu 16.04 workstation with 16 GB of RAM
and a 6-core AMD FX-6300 CPU with 3.5 GHz maximum clock frequency. I conjecture
that these results scale across most uses of generic types, given the constant underlying
polymorphism implementation.

The C and C++obj variants are generally the slowest and have the largest memory
footprint, due to their less-efficient memory layout and the pointer indirection necessary to
implement generic types in those languages; this inefficiency is exacerbated by the second
level of generic types in the pair benchmarks. By contrast, the C

A

and C++ variants run
in noticeably less time for both the integer and pair because of the equivalent storage
layout, with the inlined libraries (i.e. no separate compilation) and greater maturity of
the C++ compiler contributing to its lead. C++obj is slower than C largely due to the
cost of runtime type checking of downcasts (implemented with dynamic cast); the outlier
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Figure 3.5: Benchmark timing results (smaller is better)

Table 3.1: Properties of benchmark code

C C

A

C++ C++obj
maximum memory usage (MB) 10 001 2 502 2 503 11 253
source code size (lines) 201 191 125 294
redundant type annotations (lines) 27 0 2 16
binary size (KB) 14 257 14 37
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for C

A

, pop pair, results from the complexity of the generated-C polymorphic code. The
gcc compiler is unable to optimize some dead code and condense nested calls; a compiler
designed for C

A

could more easily perform these optimizations. Finally, the binary size for
C

A

is larger because of static linking with the C

A

prelude library, which includes function
definitions for all the built-in operators.

C

A

is also competitive in terms of source code size, measured as a proxy for programmer
effort. The line counts in Table 3.1 include implementations of pair and stack types for
all four languages for purposes of direct comparison, although it should be noted that
C

A

and C++ have prewritten data structures in their standard libraries that programmers
would generally use instead. Use of these standard library types has minimal impact on the
performance benchmarks, but shrinks the C

A

and C++ code to 39 and 42 lines, respectively.
The difference between the C

A

and C++ line counts is primarily declaration duplication to
implement separate compilation; a header-only C

A

library is similar in length to the C++
version. On the other hand, due to the language shortcomings mentioned at the beginning
of the chapter, C does not have a generic collections library in its standard distribution,
resulting in frequent re-implementation of such collection types by C programmers. C++obj
does not use the C++ standard template library by construction, and, in fact, includes the
definition of object and wrapper classes for char, short, and int in its line count, which
inflates this count somewhat, as an actual object-oriented language would include these in
the standard library. I justify the given line count by noting that many object-oriented
languages do not allow implementing new interfaces on library types without subclassing
or wrapper types, which may be similarly verbose.

Line count is a fairly rough measure of code complexity; another important factor is
how much type information the programmer must specify manually, especially where that
information is not type-checked. Such unchecked type information produces a heavier
documentation burden and increased potential for runtime bugs and is much less common
in C

A

than C, with its manually specified function pointer arguments and format codes, or
C++obj, with its extensive use of un-type-checked downcasts, e.g. object to integer when
popping a stack. To quantify this manual typing, the “redundant type annotations” line in
Table 3.1 counts the number of lines on which the known type of a variable is re-specified,
either as a format specifier, explicit downcast, type-specific function, or by name in a
sizeof, struct literal, or new expression. The C++ benchmark uses two redundant type
annotations to create new stack nodes, whereas the C and C++obj benchmarks have several
such annotations spread throughout their code. The C

A

benchmark is able to eliminate
all redundant type annotations through use of the return-type polymorphic alloc function
in the C

A

standard library.
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3.4 Future Work

The generic types presented here are already sufficiently expressive to implement a variety
of useful library types. However, some other features based on this design could further
improve C

A

.

The most pressing addition is the ability to have non-type generic parameters. C
already supports fixed-length array types, e.g. int[10]; these types are essentially generic
types with unsigned integer parameters (i.e. array dimension), and allowing C

A

users the
capability to build similar types is a requested feature.

The implementation mechanisms behind generic types can also be used to add new
features to C

A

. One such potential feature is field assertions, an addition to the existing
function and variable assertions on polymorphic type variables. These assertions could be
specified using this proposed syntax:

trait hasXY(dtype T) {
int T.x; // T has a field x of type int
int T.y; // T has a field y of type int

};

Implementation of these field assertions would be based on the same code that supports
member access by dynamic offset calculation for dynamic generic types. Simulating field
access can already be done more flexibly in C

A

by declaring a trait containing an accessor
function to be called from polymorphic code, but these accessor functions impose some
overhead both to write and call, and directly providing field access via an implicit offset
parameter would be both more concise and more efficient. Of course, there are language
design trade-offs to such an approach, notably that providing the two similar features of
field and function assertions would impose a burden of choice on programmers writing
traits, with field assertions more efficient, but function assertions more general; given this
open design question a decision on field assertions is deferred until C

A

is more mature.

If field assertions are included in the language, a natural extension would be to provide
a structural inheritance mechanism for every struct type that simply turns the list of
struct fields into a list of field assertions, allowing monomorphic functions over that type
to be generalized to polymorphic functions over other similar types with added or reordered
fields, for example:

struct point { int x, y; }; // traitof(point) is equivalent to hasXY above
struct coloured point { int x, y; enum { RED, BLACK } colour };

// works for both point and coloured point
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forall(dtype T | traitof(point)(T) )
double hypot( T& p ) { return sqrt( p.x∗p.x + p.y∗p.y ); }

C

A

could also support a packed or otherwise size-optimized representation for generic
types based on a similar mechanism — nothing in the use of the offset arrays implies that
the field offsets need to be monotonically increasing.

With respect to the broader C

A

polymorphism design, the experimental results in
Section 3.3 demonstrate that though the runtime impact of C

A

’s dynamic virtual dispatch
is low, it is not as low as the static dispatch of C++ template inlining. However, rather
than subject all C

A

users to the compile-time costs of ubiquitous template expansion, it is
better to target performance-sensitive code more precisely. Two promising approaches are
an inline annotation at polymorphic function call sites to create a template specialization
of the function (provided the code is visible) or placing a different inline annotation on
polymorphic function definitions to instantiate a specialized version of the function for some
set of types. These approaches are complementary and allow performance optimizations
to be applied only when necessary, without suffering global code bloat.
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Chapter 4

Resolution Algorithms

The main task of the cfa-cc type-checker is expression resolution: determining which
declarations the identifiers in each expression correspond to. Resolution is a straightforward
task in C, as no simultaneously-visible declarations share identifiers, but in C

A

, the name
overloading features discussed in Section 2.2 generate multiple candidate declarations for
each identifier. A given matching between identifiers and declarations in an expression
is an interpretation; an interpretation also includes information about polymorphic type
bindings and implicit casts to support the C

A

features discussed in Sections 2.3 and 2.4,
each of which increase the number of valid candidate interpretations. To choose among
valid interpretations, a conversion cost is used to rank interpretations. This conversion
cost is summed over all subexpression interpretations in the interpretation of a top-level
expression. Hence, the expression resolution problem is to find the unique minimal-cost
interpretation for an expression, reporting an error if no such unique interpretation exists.

4.1 Expression Resolution

The expression resolution pass in cfa-cc must traverse an input expression, match identi-
fiers to available declarations, rank candidate interpretations according to their conversion
cost, and check type assertion satisfaction for these candidates. Once the set of valid inter-
pretations for the top-level expression is found, the expression resolver selects the unique
minimal-cost candidate or reports an error.

The expression resolution problem in C

A

is more difficult than the analogous problems
in C or C++. As mentioned above, the lack of name overloading in C (except for built-in
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operators) makes its resolution problem substantially easier. A comparison of the richer
type systems in C

A

and C++ highlights some of the challenges in C

A

expression resolution.
The key distinction between C

A

and C++ resolution is that C++ uses a greedy algorithm for
selection of candidate functions given their argument interpretations, whereas C

A

allows
contextual information from superexpressions to influence the choice among candidate
functions. One key use of this contextual information is for type inference of polymorphic
return types; C++ requires explicit specification of template parameters that only occur in
a function’s return type, while C

A

allows the instantiation of these type parameters to be
inferred from context (and in fact does not allow explicit specification of type parameters
to a function), as in the following example:

forall(dtype T) T& deref(T∗); // dereferences pointer
forall(otype T) T∗ def(); // new heap-allocated default-initialized value

int& i = deref( def() );

In this example, the C

A

compiler infers the type arguments of deref and def from the
int& type of i; C++, by contrast, requires a type parameter on defA, i.e. deref( def<int>() ).
Similarly, while both C

A

and C++ rank candidate functions based on a cost metric for
implicit conversions, C

A

allows a suboptimal subexpression interpretation to be selected
if it allows a lower-cost overall interpretation, while C++ requires that each subexpression
interpretation have minimal cost. Because of this use of contextual information, the C

A

expression resolver must consider multiple interpretations of each function argument, while
the C++ compiler has only a single interpretation for each argumentB. Additionally, until
the introduction of concepts in C++20 [10], C++ expression resolution has no analogue to
C

A

assertion satisfaction checking, a further complication for a C

A

compiler. The precise
definition of C

A

expression resolution in this section further expands on the challenges of
this problem.

4.1.1 Type Unification

The polymorphism features of C

A

require binding of concrete types to polymorphic type
variables. Briefly, cfa-cc keeps a mapping from type variables to the concrete types
they are bound to as an auxiliary data structure during expression resolution; Chapter 5
describes this environment data structure in more detail. A unification algorithm is used
to simultaneously check two types for equivalence with respect to the substitutions in an

AThe type parameter of deref can be inferred from its argument.
BWith the exception of address-of operations on functions.
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environment and update that environment. Essentially, unification recursively traverses
the structure of both types, checking them for equivalence, and when it encounters a type
variable, it replaces it with the concrete type it is bound to; if the type variable has not
yet been bound, the unification algorithm assigns the equivalent type as the bound type
of the variable, after performing various consistency checks. Ditchfield [14] and Bilson [6]
describe the semantics of C

A

unification in more detail.

4.1.2 Conversion Cost

C

A

, like C, allows inexact matches between the type of function parameters and function
call arguments. Both languages insert implicit conversions in these situations to produce
an exact type match, and C

A

also uses the relative cost of different conversions to se-
lect among overloaded function candidates. C does not have an explicit cost model for
implicit conversions, but the “usual arithmetic conversions” [9, §6.3.1.8] used to decide
which arithmetic operators to apply define one implicitly. The only context in which C
has name overloading is the arithmetic operators, and the usual arithmetic conversions
define a common type for mixed-type arguments to binary arithmetic operators. Since for
backward-compatibility purposes the conversion costs of C

A

must produce an equivalent
result to these common type rules, it is appropriate to summarize [9, §6.3.1.8] here:

• If either operand is a floating-point type, the common type is the size of the largest
floating-point type. If either operand is Complex, the common type is also
Complex.

• If both operands are of integral type, the common type has the same sizeC as the
larger type.

• If the operands have opposite signedness, the common type is signed if the signed

operand is strictly larger, or unsigned otherwise. If the operands have the same
signedness, the common type shares it.

Beginning with the work of Bilson [6], C

A

defines a conversion cost for each function call
in a way that generalizes C’s conversion rules. Loosely defined, the conversion cost counts

CTechnically, the C standard defines a notion of rank in [9, §6.3.1.1], a distinct value for each signed

and unsigned pair; integral types of the same size thus may have distinct ranks. For instance, though int

and long may have the same size, long always has greater rank. The standard-defined types are declared
to have greater rank than any types of the same size added as compiler extensions.
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the implicit conversions utilized by an interpretation. With more specificity, the cost is
a lexicographically-ordered tuple, where each element corresponds to a particular kind of
conversion. In Bilson’s design, conversion cost is a 3-tuple, (unsafe, poly, safe), where
unsafe is the count of unsafe (narrowing) conversions, poly is the count of polymorphic
type bindings, and safe is the sum of the degree of safe (widening) conversions. Degree
of safe conversion is calculated as path weight in a directed graph of safe conversions
between types; Bilson’s version of this graph is in Figure 4.1a. The safe conversion graph
is designed such that the common type c of two types u and v is compatible with the C
standard definitions from [9, §6.3.1.8] and can be calculated as the unique type minimizing
the sum of the path weights of −→uc and −→vc. The following example lists the cost in the
Bilson model of calling each of the following functions with two int parameters, where the
interpretation with the minimum total cost will be selected:

void f1(char, long); // (1,0,1)
void f2(short, long); // (1,0,1)
forall(otype T) void f3(T, long); // (0,1,1)
void f4(long, long); // (0,0,2)
void f5(int, unsigned long); // (0,0,2)
void f6(int, long); // (0,0,1)

Note that safe and unsafe conversions are handled differently; C
A

counts distance of
safe conversions (e.g. int to long is cheaper than int to unsigned long), while only counting
the number of unsafe conversions (e.g. int to char and int to short both have unsafe cost
1, as in f1 and f2 above). These costs are summed over the parameters in a call; in the
example above, the cost of the two int to long conversions for f4 sum equal to the one int

to unsigned long conversion for f5.

As part of adding reference types to C

A

(see Section 2.5), Schluntz added a new
reference element to the cost tuple, which counts the number of implicit reference-to-
rvalue conversions performed so that candidate interpretations can be distinguished by
how closely they match the nesting of reference types; since references are meant to act
almost indistinguishably from lvalues, this reference element is the least significant in the
lexicographic comparison of cost tuples.

I also refined the C

A

cost model as part of this thesis work. Bilson’s C

A

cost model
includes the cost of polymorphic type bindings from a function’s type assertions in the poly
element of the cost tuple; this has the effect of making more-constrained functions more
expensive than less-constrained functions, as in the following example, based on differing
iterator types:

forall(dtype T | { T& ++?(T&); }) T& advance1(T& i, int n);
forall(dtype T | { T& ++?(T&); T& ?+=?(T&, int)}) T& advance2(T& i, int n);
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(a) Bilson (b) Extended

Figure 4.1: Safe conversion graphs. In both graphs, plain arcs have cost safe = 1, sign = 0
while dashed sign-conversion arcs have cost safe = 1, sign = 1. As per [9, §6.3.1.8], types
promote to types of the same signedness with greater rank, from signed to unsigned with
the same rank, and from unsigned to signed with greater size. The arc from unsigned long

to long long (highlighted in red in 4.1a) is deliberately omitted in 4.1b, as on the presented
system sizeof(long) == sizeof(long long).
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In resolving a call to advance, the binding to the T& parameter in the assertions is added
to the poly cost in Bilson’s model. However, type assertions actually make a function less
polymorphic, and as such functions with more type assertions should be preferred in type
resolution. In the example above, if the meaning of advance is “increment i n times”,
advance1 requires an n-iteration loop, while advance2 can be implemented more efficiently
with the ?+=? operator; as such, advance2 should be chosen over advance1 whenever its
added constraint can be satisfied. Accordingly, a specialization element is now included in
the C

A

cost tuple, the values of which are always negative. Each type assertion subtracts
1 from specialization, so that more-constrained functions cost less, and thus are chosen
over less-constrained functions, all else being equal. A more sophisticated design would
define a partial order over sets of type assertions by set inclusion (i.e. one function would
only cost less than another if it had a strict superset of assertions, rather than just more
total assertions), but I did not judge the added complexity of computing and testing this
order to be worth the gain in specificity.

I also incorporated an unimplemented aspect of Ditchfield’s earlier cost model. In the
example below, adapted from [14, p.89], Bilson’s cost model only distinguished between
the first two cases by accounting extra cost for the extra set of otype parameters, which,
as discussed above, is not a desirable solution:

forall(otype T, otype U) void f1(T, U); // polymorphic
forall(otype T) void f2(T, T); // less polymorphic
forall(otype T) void f3(T, int); // even less polymorphic
forall(otype T) void f4(T∗, int); // least polymorphic

The new cost model accounts for the fact that functions with more polymorphic vari-
ables are less constrained by introducing a var cost element that counts the number of
type variables on a candidate function. In the example above, f1 has var = 2, while the
others have var = 1.

The new cost model also accounts for a nuance unhandled by Ditchfield or Bilson,
in that it makes the more specific f4 cheaper than the more generic f3; f4 is presumably
somewhat optimized for handling pointers, but the prior C

A

cost model could not account
for the more specific binding, as it simply counted the number of polymorphic unifications.
In the modified model, each level of constraint on a polymorphic type in the parameter list
results in a decrement of the specialization cost element, which is shared with the count
of assertions due to their common nature as constraints on polymorphic type bindings.
Thus, all else equal, if both a binding to T and a binding to T∗ are available, the model
chooses the more specific T∗ binding with specialization = −1. This process is recursive,
such that T∗∗ has specialization = −2. This calculation works similarly for generic types,
e.g. box(T) also has specialization cost −1. For multi-argument generic types, the least-
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specialized polymorphic parameter sets the specialization cost, e.g. the specialization cost
of pair(T, S∗) is −1 (from T) rather than −2 (from S). Specialization cost is not counted
on the return type list; since specialization is a property of the function declaration, a
lower specialization cost prioritizes one declaration over another. User programmers can
choose between functions with varying parameter lists by adjusting the arguments, but
the same is not true in general of varying return typesD, so the return types are omitted
from the specialization element. Since both vars and specialization are properties of the
declaration rather than any particular interpretation, they are prioritized less than the
interpretation-specific conversion costs from Bilson’s original 3-tuple.

A final refinement I have made to the C

A

cost model is with regard to choosing among
arithmetic conversions. The C standard [9, §6.3.1.8] states that the common type of int
and unsigned int is unsigned int and that the common type of int and long is long, but
does not provide guidance for making a choice among conversions. Bilson’s cfa-cc uses
conversion costs based off Figure 4.1a. However, Bilson’s design results in inconsistent and
somewhat surprising costs, with conversion to the next-larger same-sign type generally
(but not always) double the cost of conversion to the unsigned type of the same size. In
the redesign, for consistency with the approach of the usual arithmetic conversions, which
select a common type primarily based on size, but secondarily on sign, arcs in the new
graph are annotated with whether they represent a sign change, and such sign changes
are summed in a new sign cost element that lexicographically succeeds safe. This means
that sign conversions are approximately the same cost as widening conversions, but slightly
more expensive (as opposed to less expensive in Bilson’s graph), so maintaining the same
signedness is consistently favoured. This refined conversion graph is shown in Figure 4.1b.

With these modifications, the current C

A

cost tuple is as follows:

(unsafe, poly, safe, sign, vars, specialization, reference)

4.1.3 Expression Cost

The mapping from C

A

expressions to cost tuples is described by Bilson in [6], and remains
effectively unchanged with the exception of the refinements to the cost tuple described
above. Nonetheless, some salient details are repeated here for the sake of completeness.

DIn particular, as described in Section 4.1.3, cast expressions take the cheapest valid and convertible
interpretation of the argument expression, and expressions are resolved as a cast to void. As a result of
this, including return types in the specialization cost means that a function with return type T∗ for some
polymorphic type T would always be chosen over a function with the same parameter types returning
void, even for void contexts, an unacceptably counter-intuitive result.
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On a theoretical level, the resolver treats most expressions as if they were function calls.
Operators in C

A

(both those existing in C and added features like constructors) are all
modelled as function calls. In terms of the core argument-parameter matching algorithm,
overloaded variables are handled the same as zero-argument function calls, aside from a
different pool of candidate declarations and setup for different code generation. Similarly,
an aggregate member expression a.m can be modelled as a unary function m that takes
one argument of the aggregate type. Literals do not require sophisticated resolution, as in
C the syntactic form of each implies their result types: 42 is int, "hello" is char∗, etc.E.

Since most expressions can be treated as function calls, nested function calls are the
primary component of complexity in expression resolution. Each function call has an
identifier that must match the name of the corresponding declaration, and a possibly-
empty list of arguments. These arguments may be function call expressions themselves,
producing a tree of function-call expressions to resolve, where the leaf expressions are
generally nullary functions, variable expressions, or literals. A single instance of expression
resolution consists of matching declarations to all the identifiers in the expression tree of
a top-level expression, along with inserting any conversions and satisfying all assertions
necessary for that matching. The cost of a function-call expression is the sum of the
conversion costs of each argument type to the corresponding parameter and the total cost
of each subexpression, recursively calculated. C

A
expression resolution must produce either

the unique lowest-cost interpretation of the top-level expression, or an appropriate error
message if none exists. The cost model of C

A

precludes a greedy bottom-up resolution
pass, as constraints and costs introduced by calls higher in the expression tree can change
the interpretation of those lower in the tree, as in the following example:

void f(int);
double g1(int);
int g2(long);

f( g(42) );

Considered independently, g1(42) is the cheapest interpretation of g(42), with cost
(0, 0, 0, 0, 0, 0, 0) since the argument type is an exact match. However, in context, an
unsafe conversion is required to downcast the return type of g1 to an int suitable for f, for
a total cost of (1, 0, 0, 0, 0, 0, 0) for f( g1(42) ). If g2 is chosen, on the other hand, there
is a safe upcast from the int type of 42 to long, but no cast on the return of g2, for a
total cost of (0, 0, 1, 0, 0, 0, 0) for f( g2(42) ); as this is cheaper, g2 is chosen. Due to this
design, all valid interpretations of subexpressions must in general be propagated to the top

EStruct literals (e.g. (S){ 1, 2, 3 } for some struct S) are a somewhat special case, as they are known
to be of type S, but require resolution of the implied constructor call described in Section 2.5.2.
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of the expression tree before any can be eliminated, a lazy form of expression resolution,
as opposed to the eager expression resolution allowed by C or C++, where each expression
can be resolved given only the resolution of its immediate subexpressions.

If there are no valid interpretations of the top-level expression, expression resolution
fails and must produce an appropriate error message. If any subexpression has no valid
interpretations, the process can be short-circuited and the error produced at that time. If
there are multiple valid interpretations of a top-level expression, ties are broken based on
the conversion cost, calculated as above. If there are multiple minimal-cost valid interpre-
tations of a top-level expression, that expression is said to be ambiguous, and an error must
be produced. Multiple minimal-cost interpretations of a subexpression do not necessarily
imply an ambiguous top-level expression, however, as the subexpression interpretations
may be disambiguated based on their return type or by selecting a more-expensive inter-
pretation of that subexpression to reduce the overall expression cost, as in the example
above.

The C

A

resolver uses type assertions to filter out otherwise-valid subexpression inter-
pretations. An interpretation can only be selected if all the type assertions in the forall

clause on the corresponding declaration can be satisfied with a unique minimal-cost set of
satisfying declarations. Type assertion satisfaction is tested by performing type unification
on the type of the assertion and the type of the declaration satisfying the assertion. That
is, a declaration that satisfies a type assertion must have the same name and type as the
assertion after applying the substitutions in the type environment. Assertion-satisfying
declarations may be polymorphic functions with assertions of their own that must be satis-
fied recursively. This recursive assertion satisfaction has the potential to introduce infinite
loops into the type resolution algorithm, a situation which cfa-cc avoids by imposing a
hard limit on the depth of recursive assertion satisfaction (currently 4); this approach is
also taken by C++ to prevent infinite recursion in template expansion, and has proven to
be effective and not unduly restrictive of the expressive power of C

A

.

Cast expressions must be treated somewhat differently than functions for backwards
compatibility purposes with C. In C, cast expressions can serve two purposes, conversion
(e.g. (int)3.14), which semantically converts a value to another value in a different type
with a different bit representation, or coercion (e.g. void∗ p; (int∗)p;), which assigns a
different type to the same bit value. C provides a set of built-in conversions and coercions,
and user programmers are able to force a coercion over a conversion if desired by casting
pointers. The overloading features in C

A

introduce a third cast semantic, ascription (e.g.
int x; double x; (int)x;), which selects the overload that most-closely matches the cast type.
However, since ascription does not exist in C due to the lack of overloadable identifiers, if
a cast argument has an unambiguous interpretation as a conversion argument then it must
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be interpreted as such, even if the ascription interpretation would have a lower overall cost.
This is demonstrated in the following example, adapted from the C standard library:

unsigned long long x;
(unsigned)(x >> 32);

In C semantics, this example is unambiguously upcasting 32 to unsigned long long,
performing the shift, then downcasting the result to unsigned, at cost (1, 0, 3, 1, 0, 0, 0). If
ascription were allowed to be a first-class interpretation of a cast expression, it would be
cheaper to select the unsigned interpretation of ?>>? by downcasting x to unsigned and
upcasting 32 to unsigned, at a total cost of (1, 0, 1, 1, 0, 0, 0). However, this break from
C semantics is not backwards compatible, so to maintain C compatibility, the C

A

resolver
selects the lowest-cost interpretation of the cast argument for which a conversion or coercion
to the target type exists (upcasting to unsigned long long in the example above, due to
the lack of unsafe downcasts), using the cost of the conversion itself only as a tie-breaker.
For example, in int x; double x; (int)x;, both declarations have zero-cost interpretations
as x, but the int x interpretation is cheaper to cast to int, and is thus selected. Thus, in
contrast to the lazy resolution of nested function-call expressions discussed above, where
final interpretations for each subexpression are not chosen until the top-level expression is
reached, cast expressions introduce eager resolution of their argument subexpressions, as
if that argument was itself a top-level expression.

4.2 Resolution Algorithms

C

A

expression resolution is not, in general, polynomial in the size of the input expression,
as shown in Section 4.2.1. While this theoretical result is daunting, its implications can be
mitigated in practice. cfa-cc does not solve one instance of expression resolution in the
course of compiling a program, but rather thousands; therefore, if the worst case of expres-
sion resolution is sufficiently rare, worst-case instances can be amortized by more-common
easy instances for an acceptable overall runtime, as shown in Section 6.4. Secondly, while
a programmer can deliberately generate a program designed for inefficient compilationF,
source code tends to follow common patterns. Programmers generally do not want to run
the full compiler algorithm in their heads, and as such keep mental shortcuts in the form
of language idioms. If the compiler can be tuned to handle idiomatic code more efficiently,
then the reduction in runtime for idiomatic (but otherwise difficult) resolution instances
can make a significant difference in total compiler runtime.

FSee for instance [22], which generates arbitrarily large C++ template expansions from a fixed-size
source file.
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4.2.1 Worst-case Analysis

Expression resolution has a number of components that contribute to its runtime, includ-
ing argument-parameter type unification, recursive traversal of the expression tree, and
satisfaction of type assertions.

If the bound type for a type variable can be looked up or mutated in constant time (as
asserted in Table 5.2), then the runtime of the unification algorithm to match an argument
to a parameter is usually proportional to the complexity of the types being unified. In C,
complexity of type representation is bounded by the most-complex type explicitly written
in a declaration, effectively a small constant; in C

A

, however, polymorphism can generate
more-complex types:

forall(otype T) pair(T) wrap(T x, T y);

wrap(wrap(wrap(1, 2), wrap(3, 4)), wrap(wrap(5, 6), wrap(7, 8)));

To resolve the outermost wrap, the resolver must check that pair(pair(int)) unifies with
itself, but at three levels of nesting, pair(pair(int)) is more complex than either pair(T)
or T, the types in the declaration of wrap. Accordingly, the cost of a single argument-
parameter unification is O(d), where d is the depth of the expression tree, and the cost of
argument-parameter unification for a single candidate for a given function call expression
is O(pd), where p is the number of parameters. This bound does not, however, account
for the higher costs of unifying two polymorphic type variables, which may in the worst
case result in a recursive unification of all type variables in the expression (as discussed in
Chapter 5). Since this recursive unification reduces the number of type variables, it may
happen at most once, for an added O(pd) cost for a top-level expression with O(pd) type
variables.

Implicit conversions are also checked in argument-parameter matching, but the cost
of checking for the existence of an implicit conversion is again proportional to the com-
plexity of the type, O(d). Polymorphism also introduces a potential expense here; for a
monomorphic function there is only one potential implicit conversion from argument type
to parameter type, while if the parameter type is an unbound polymorphic type-variable
then any implicit conversion from the argument type could potentially be considered a
valid binding for that type variable. C

A

, however, requires exact matches for the bound
type of polymorphic parameters, removing this problem. An interesting question for future
work is whether loosening this requirement incurs a significant compiler runtime cost in
practice; preliminary results from the prototype system described in Chapter 6 suggest it
does not.
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Considering the recursive traversal of the expression tree, polymorphism again greatly
expands the worst-case runtime. Let i be the number of candidate declarations for each
function call; if all of these candidates are monomorphic, then there are no more than i

unambiguous interpretations of the subexpression rooted at that function call. Ambiguous
minimal-cost subexpression interpretations may also be collapsed into a single ambiguous
interpretation, as the presence of such a subexpression interpretation in the final solution
is an error condition. One safe pruning operation during expression resolution is to discard
all subexpression interpretations with greater-than-minimal cost for their return type, as
such interpretations cannot beat the minimal-cost interpretation with their return type
for the overall optimal solution. As such, with no polymorphism, each declaration can
generate no more than one minimal-cost interpretation with its return type, so the number
of possible subexpression interpretations is O(i) (note that in C, which lacks overloading,
i ≤ 1). With polymorphism, however, a single declaration (like wrap above) can have
many concrete return types after type variable substitution, and could in principle have a
different concrete return type for each combination of argument interpretations. Calculated
recursively, the bound on the total number of candidate interpretations is O(ip

d

), each with
a distinct type.

Given these calculations of number of subexpression interpretations and matching costs,
the upper bound on runtime for generating candidates for a single subexpression d levels
up from the leaves is O(ip

d

· pd). Since there are O(pd) subexpressions in a single top-level
expression, the total worst-case cost of argument-parameter matching with the overloading
and polymorphism features of C

A

is O(ip
d

·pd ·pd). Since the size of the expression is O(pd),
letting n = pd this simplifies to O(in · n2)

This bound does not yet account for the cost of assertion satisfaction, however. C

A

uses
type unification on the assertion type and the candidate declaration type to test assertion
satisfaction; this unification calculation has cost proportional to the complexity of the
declaration type after substitution of bound type variables; as discussed above, this cost
is O(d). If there are O(a) type assertions on each declaration, there are O(i) candidates
to satisfy each assertion, for a total of O(ai) candidates to check for each declaration.
However, each assertion candidate may generate another O(a) assertions, recursively until
the assertion recursion limit r is reached, for a total cost of O((ai)r · d). Now, a and i

are properties of the set of declarations in scope, while r is defined by the language spec,
so (ai)r is essentially a constant for purposes of expression resolution, albeit a very large
one. It is not uncommon in C

A

to have functions with dozens of assertions, and common
function names (e.g. ?{}, the constructor) can have hundreds of overloads.

It is clear that assertion satisfaction costs can be very large, and in fact a method for
heuristically reducing these costs is one of the key contributions of this thesis, but it should
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be noted that the worst-case analysis is a particularly poor match for actual code in the
case of assertions. It is reasonable to assume that most code compiles without errors, as an
actively-developed project is compiled many times, generally with relatively few new errors
introduced between compiles. However, the worst-case bound for assertion satisfaction is
based on recursive assertion satisfaction calls exceeding the limit, which is an error case. In
practice, then, the depth of recursive assertion satisfaction should be bounded by a small
constant for error-free code, which accounts for the vast majority of problem instances.

Similarly, uses of polymorphism like those that generate the O(d) bound on unification
or the O(ip

d

) bound on number of candidates are rare, but not completely absent. This
analysis points to type unification, argument-parameter matching, and assertion satisfac-
tion as potentially costly elements of expression resolution, and thus profitable targets
for algorithmic investigation. Type unification is discussed in Chapter 5, while the other
aspects are covered below.

4.2.2 Argument-Parameter Matching

Pruning possible interpretations as early as possible is one way to reduce the real-world
cost of expression resolution, provided that a sufficient proportion of interpretations are
pruned to pay for the cost of the pruning algorithm. One opportunity for interpretation
pruning is by the argument-parameter type matching, but the literature [5, 6, 12, 18, 36, 37]
provides no clear answers on whether candidate functions should be chosen according to
their available arguments, or whether argument resolution should be driven by the available
function candidates. For programming languages without implicit conversions, argument-
parameter matching is essentially the entirety of the expression resolution problem, and is
generally referred to as “overload resolution” in the literature. All expression-resolution
algorithms form a DAG of interpretations, some explicitly, some implicitly; in this DAG,
arcs point from function-call interpretations to argument interpretations, as in Figure 4.2

Note that some interpretations may be part of more than one super-interpretation, as
with the p2 interpretation of pB, while some valid subexpression interpretations, like the
f2 interpretation of fB, are not used in any interpretation of their superexpression.

Overload resolution was first seriously considered in the development of compilers for
the Ada programming language, with different algorithms making various numbers of
passes over the expression DAG, these passes being either top-down or bottom-up. Baker’s
algorithm [5] takes a single pass from the leaves of the expression tree up, pre-computing
argument candidates at each step. For each candidate function, Baker attempts to match
argument types to parameter types in sequence, failing if any parameter cannot be matched.
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char ∗p1;
int ∗p2;

char ∗f1(char∗, int∗);
double ∗f2(int∗, int∗);

fA( fB( pA, pB ), pC );

Figure 4.2: Resolution DAG for a simple expression, annotated with explanatory sub-
scripts. Functions that do not have a valid argument matching are covered with an X.

Bilson [6] similarly pre-computes argument-candidates in a single bottom-up pass in
the original cfa-cc, but then explicitly enumerates all possible argument combinations for
a multi-parameter function. These argument combinations are matched to the parameter
types of the candidate function as a unit rather than individual arguments. Bilson’s ap-
proach is less efficient than Baker’s, as the same argument may be compared to the same
parameter many times, but does allow a more straightforward handling of polymorphic
type-binding and tuple-typed expressions.

Unlike Baker and Bilson, Cormack’s algorithm [12] requests argument candidates that
match the type of each parameter of each candidate function, in a single pass from the
top-level expression down; memoization of these requests is presented as an optimization.
As presented, this algorithm requires the parameter to have a known type, which is a
poor fit for polymorphic type parameters in C

A

. Cormack’s algorithm can be modified to
request argument interpretations of any type when provided an unbound parameter type,
but this eliminates any pruning gains that could be provided by the algorithm.

Ganzinger and Ripken [18] propose an approach (later refined by Pennello et al. [36])
that uses a top-down filtering pass followed by a bottom-up filtering pass to reduce the
number of candidate interpretations; they prove that a small number of such iterations
is sufficient to converge to a solution for the overload resolution problem in the Ada pro-
gramming language. Persch et al. [37] developed a similar two-pass approach where the
bottom-up pass is followed by the top-down pass. These approaches differ from Baker,
Bilson, or Cormack in that they take multiple passes over the expression tree to yield a
solution by applying filtering heuristics to all expression nodes. This approach of filtering
out invalid types is unsuited to C

A

expression resolution, however, due to the presence of
polymorphic functions and implicit conversions.

Some other language designs solve the matching problem by forcing a bottom-up or-
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der. C++, for instance, defines its overload-selection algorithm in terms of a partial order
between function overloads given a fixed list of argument candidates, implying that the
arguments must be selected before the function. This design choice improves worst-case
expression resolution time by only propagating a single candidate for each subexpression,
but type annotations must be provided for any function call that is polymorphic in its
return type, and these annotations are often redundant:

template<typename T> T∗ malloc() { /∗ ... ∗/ }

int∗ p = malloc<int>(); // T = int must be explicitly supplied

C

A

saves programmers from redundant annotations with its richer inference:

forall(dtype T | sized(T)) T∗ malloc();

int∗ p = malloc(); // Infers T = int from left-hand side

Baker [5] left empirical comparison of different overload resolution algorithms to future
work; Bilson [6] described an extension of Baker’s algorithm to handle implicit conversions
and polymorphism, but did not further explore the space of algorithmic approaches to
handle both overloaded names and implicit conversions. This thesis closes that gap in
the literature by performing performance comparisons of both top-down and bottom-up
expression resolution algorithms, with results reported in Chapter 6.

4.2.3 Assertion Satisfaction

The assertion satisfaction algorithm designed by Bilson [6] for the original cfa-cc is the
most-relevant prior work to this project. Before accepting any subexpression candidate,
Bilson first checks that that candidate’s assertions can all be resolved; this is necessary
due to Bilson’s addition of assertion satisfaction costs to candidate costs (discussed in
Section 4.1.2). If this subexpression interpretation ends up not being used in the final res-
olution, then the (sometimes substantial) work of checking its assertions ends up wasted.
Bilson’s assertion checking function recurses on two lists, need and newNeed, the current
declaration’s assertion set and those implied by the assertion-satisfying declarations, re-
spectively, as detailed in the pseudo-code below (ancillary aspects of the algorithm are
omitted for clarity):

List(List(Declaration)) checkAssertions(
List(Assertion) need, List(Assertion) newNeed, List(Declaration) have,
Environment env ) {

if ( is empty(need) ) {
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if ( is empty( newNeed ) ) return { have };
else return checkAssertions( newNeed, {}, have, env );

}

Assertion a = head(need);
Type adjType = substitute( a.type, env );
List(Declaration) candidates = decls matching( a.name );
List(List(Declaration)) alternatives = {}
for ( Declaration c : candidates ) {

Environment newEnv = env;
if ( unify( adjType, c.type, newEnv ) ) {

append( alternatives,
checkAssertions(

tail(need), append(newNeed, c.need), append(have, c), newEnv ) );
}

}
return alternatives;

}

One shortcoming of this approach is that if an earlier assertion has multiple valid can-
didates, later assertions may be checked many times due to the structure of the recursion.
Satisfying declarations for assertions are not completely independent of each other, since
the unification process may produce new type bindings in the environment, and these
bindings may not be compatible between independently-checked assertions. Nonetheless,
with the environment data-structures discussed in Chapter 5, I have found it more efficient
to produce a list of possibly-satisfying declarations for each assertion once, then check
their respective environments for mutual compatibility when combining lists of assertions
together.

Another improvement I have made to the assertion resolution scheme in cfa-cc is to
consider all assertion-satisfying combinations at one level of recursion before attempting
to recursively satisfy any newNeed assertions. Monomorphic functions are cheaper than
polymorphic functions for assertion satisfaction because they are an exact match for the
environment-adjusted assertion type, whereas polymorphic functions require an extra type
binding. Thus, if there is any mutually-compatible set of assertion-satisfying declarations
that does not include any polymorphic functions (and associated recursive assertions), then
the optimal set of assertions does not require any recursive newNeed satisfaction. More gen-
erally, due to the C

A

cost-model changes I introduced in Section 4.1.2, the conversion cost
of an assertion-satisfying declaration is no longer dependent on the conversion cost of its
own assertions. As such, all sets of mutually-compatible assertion-satisfying declarations
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can be sorted by their summed conversion costs, and the recursive newNeed satisfaction
pass is required only to check the feasibility of the minimal-cost sets. This optimization
significantly reduces wasted work relative to Bilson’s approach, as well as avoiding gener-
ation of deeply-recursive assertion sets, for a significant performance improvement relative
to Bilson’s cfa-cc.

Making the conversion cost of an interpretation independent of the cost of satisfying its
assertions has further benefits. Bilson’s algorithm checks assertions for all subexpression
interpretations immediately, including those that are not ultimately used; I have developed
a deferred variant of assertion checking that waits until a top-level interpretation has been
generated to check any assertions. If the assertions of the minimal-cost top-level inter-
pretation cannot be satisfied then the next-most-minimal-cost interpretation’s assertions
are checked, and so forth until a minimal-cost satisfiable interpretation (or ambiguous set
thereof) is found, or no top-level interpretations are found to have satisfiable assertions.
In the common case where the code actually does compile, this saves the work of checking
assertions for ultimately-rejected interpretations, though it does rule out some pruning op-
portunities for subinterpretations with unsatisfiable assertions or which are more expensive
than a minimal-cost polymorphic function with the same return type. The experimental
results in Chapter 6 indicate that this is a worthwhile trade-off.

Optimizing assertion satisfaction for common idioms has also proved effective in C
A

;
the code below is an unexceptional print statement derived from the C

A

test suite that
nonetheless is a very difficult instance of expression resolution:

sout | "one" | 1 | "two" | 2 | "three" | 3 | "four" | 4 | "five" | 5 | "six" | 6
| "seven" | 7 | "eight" | 8 | "nine" | 9 | "ten" | 10 | "end" | nl | nl;

The first thing that makes this expression so difficult is that it is 23 levels deep; Sec-
tion 4.2.1 indicates that the worst-case bounds on expression resolution are exponential
in expression depth. Secondly, the ?|? operator is significantly overloaded in C

A

— there
are 74 such operators in the C

A

standard library, and while 9 are arithmetic operators
inherited from C, the rest are polymorphic I/O operators that look similar to:

forall( dtype ostype | ostream( ostype ) )
ostype& ?|? ( ostype&, int );

Note that ostream is a trait with 25 type assertions, and that the output operators
for the other arithmetic types are also valid for the int-type parameters due to implicit
conversions. On this instance, deferred assertion satisfaction saves wasted work checking
assertions on the wrong output operators, but does nothing about the 23 repeated checks
of the 25 assertions to determine that ofstream (the type of sout) satisfies ostream.

To solve this problem, I have developed a cached variant of assertion checking. During
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the course of checking the assertions of a single top-level expression, the results are cached
for each assertion checked. The search key for this cache is the assertion declaration with
its type variables substituted according to the type environment to distinguish satisfaction
of the same assertion for different types. This adjusted assertion declaration is then run
through the C

A

name-mangling algorithm to produce an equivalent string-type key.

One superficially-promising optimization, which I did not pursue, is caching assertion-
satisfaction judgments among top-level expressions. This approach would be difficult to
correctly implement in a C

A

compiler, due to the lack of a closed set of operations for a
given type. New declarations related to a particular type can be introduced in any lexical
scope in C

A

, and these added declarations may cause an assertion that was previously
satisfiable to fail due to an introduced ambiguity. Furthermore, given the recursive nature
of assertion satisfaction and the possibility of this satisfaction judgment depending on an
inferred type, an added declaration may break satisfaction of an assertion with a different
name and that operates on different types. Given these concerns, correctly invalidating
a cross-expression assertion satisfaction cache for C

A

is a non-trivial problem, and the
overhead of such an approach may possibly outweigh any benefits from such caching.

The assertion satisfaction aspect of C

A

expression resolution bears some similarity to
satisfiability problems from logic, and as such other languages with similar trait and as-
sertion mechanisms make use of logic-program solvers in their compilers. For instance,
Matsakis [26] and the Rust team have developed a PROLOG-based engine to check sat-
isfaction of Rust traits. The combination of the assertion satisfaction elements of the
problem with the conversion-cost model of C

A

makes this logic-solver approach difficult
to apply in cfa-cc, however. Expressing assertion resolution as a satisfiability problem
ignores the cost optimization aspect, which is necessary to decide among what are often
many possible satisfying assignments of declarations to assertions. (MaxSAT solvers [29],
which allow weights on solutions to satisfiability problems, may be a productive avenue for
future investigation.) On the other hand, the deeply-recursive nature of the satisfiability
problem makes it difficult to adapt to optimizing solver approaches such as linear program-
ming. To maintain a well-defined programming language, any optimization algorithm used
must provide an exact (rather than approximate) solution; this constraint also rules out
a whole class of approximately-optimal generalized solvers. As such, I opted to continue
Bilson’s approach of designing a bespoke solver for C

A

assertion satisfaction, rather than
attempting to re-express the problem in some more general formalism.
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4.3 Conclusion & Future Work

As the results in Chapter 6 show, the algorithmic approaches I have developed for C

A

expression resolution are sufficient to build a practically-performant C

A

compiler. This
work may also be of use to other compiler construction projects, notably to members of
the C++ community as they implement the new Concepts [10] standard, which includes
type assertions similar to those used in C

A

, as well as the C-derived implicit conversion
system already present in C++.

I have experimented with using expression resolution rather than type unification to
check assertion satisfaction; this variant of the expression resolution problem should be
investigated further in future work. This approach is more flexible than type unification,
allowing for conversions to be applied to functions to satisfy assertions. Anecdotally, this
flexibility matches user-programmer expectations better, as small type differences (e.g. the
presence or absence of a reference type, or the usual conversion from int to long) no longer
break assertion satisfaction. Practically, the resolver prototype discussed in Chapter 6 uses
this model of assertion satisfaction, with no apparent deficit in performance; the generated
expressions that are resolved to satisfy the assertions are easier than the general case
because they never have nested subexpressions, which eliminates much of the theoretical
differences between unification and resolution. The main challenge to implement this
approach in cfa-cc is applying the implicit conversions generated by the resolution process
in the code-generation for the thunk functions that cfa-cc uses to pass type assertions to
their requesting functions with the proper signatures.

One C

A

feature that could be added to improve the ergonomics of overload selection
is an ascription cast ; as discussed in Section 4.1.3, the semantics of the C cast operator
are to choose the cheapest argument interpretation which is convertible to the target type,
using the conversion cost as a tie-breaker. An ascription cast would reverse these priorities,
choosing the argument interpretation with the cheapest conversion to the target type, only
using interpretation cost to break tiesG. This would allow ascription casts to the desired
return type to be used for overload selection:

int f1(int);
int f2(double);
int g1(int);
double g2(long);

f((double)42); // select f2 by argument cast

GA possible stricter semantics would be to select the cheapest interpretation with a zero-cost conversion
to the target type, reporting a compiler error otherwise.
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(as double)g(42); // select g2 by return ascription cast
(double)g(42); // select g1 NOT g2 because of parameter conversion cost

Though performance of the existing resolution algorithms is promising, some further
optimizations do present themselves. The refined cost model discussed in Section 4.1.2
is more expressive, but requires more than twice as many fields; it may be fruitful to
investigate more tightly-packed in-memory representations of the cost-tuple, as well as
comparison operations that require fewer instructions than a full lexicographic comparison.
Integer or vector operations on a more-packed representation may prove effective, though
dealing with the negative-valued specialization field may require some effort.

Parallelization of various phases of expression resolution may also be useful. The al-
gorithmic variants I have introduced for both argument-parameter matching and asser-
tion satisfaction are essentially divide-and-conquer algorithms, which solve subproblem
instances for each argument or assertion, respectively, then check mutual compatibility of
the solutions. While the checks for mutual compatibility are naturally more serial, there
may be some benefit to parallel resolution of the subproblem instances.

The resolver prototype built for this project and described in Chapter 6 would be a
suitable vehicle for many of these further experiments, and thus a technical contribution
of continuing utility.
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Chapter 5

Type Environment

One key data structure for expression resolution is the type environment. As discussed in
Chapter 4, being able to efficiently determine which type variables are bound to which
concrete types or whether two type environments are compatible is a core requirement
of the resolution algorithm. Furthermore, expression resolution involves a search through
many related possible solutions, so the ability to re-use shared subsets of type-environment
data and to switch between environments quickly is desirable for performance. In this
chapter, I discuss a number of type-environment data-structure variants, including some
novel variations on the union-find [17] data structure introduced in this thesis. Chapter 6
contains empirical comparisons of the performance of these data structures when integrated
into the resolution algorithm.

5.1 Definitions

For purposes of this chapter, a type environment T is a set of type classes
{

T1, T2, · · · , T|T |

}

.
Each type class Ti contains a set of type variables

{

vi,1, vi,2, · · · , vi,|Ti|

}

. Since the type
classes represent an equivalence relation over the type variables the sets of variables con-
tained in two distinct classes in the same environment must be disjoint. Each individual
type class Ti may also be associated with a bound, bi; this bound contains the bound type
that the variables in the type class are replaced with, but also includes other information
in cfa-cc, including whether type conversions are permissible on the bound type and what
sort of type variables are contained in the class (data types, function types, or variadic
tuples).
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Table 5.1: Summary of type environment operations.

find(T, vi,j)→ Ti | fail Locate class for variable
report(Ti)→ {vi,j · · · } List variables for class
bound(Ti)→ bi | fail Get bound for class

insert(T, vi,1) New single-variable class
add(Ti, vi,j) Add variable to class
bind(Ti, bi) Set or update class bound

unify(T, Ti, Tj)→ pass | fail Combine two type classes
split(T, Ti)→ T ′ Revert the last unify operation on Ti

combine(T, T ′)→ pass | fail Merge two environments
save(T )→ H Get handle for current state

backtrack(T,H) Return to handle state

The following example demonstrates the use of a type environment for unification:

forall(otype F) F f(F, F);
forall(otype G) G g(G);

f( g(10), g(20) );

Expression resolution starts from an empty type environment; from this empty envi-
ronment, the calls to g can be independently resolved. These resolutions result in two
new type environments, T = {{G1} → int} and T ′ = {{G2} → int}; the calls to g have
generated distinct type variables G1 and G2, each bound to int by unification with the
type of its argument (10 and 20, both int). To complete resolution of the call to f, both
environments must be combined; resolving the first argument to f produces a new type
environment T ′′ = {{G1, F1} → int}: the new type variable F1 has been introduced and
unified with G1 (the return type of g(10)), and consequently bound to int. To resolve the
second argument to f, T ′′ must be checked for compatibility with T ′; since F1 unifies with
G2, their type classes must be merged. Since both F1 and G2 are bound to int, this merge
succeeds, producing the final environment T ′′ = {{G1, F1,G2} → int}.

Type environments in cfa-cc need to support eleven basic operations, summarized
in Table 5.1. The first six operations are straightforward queries and updates on these
data structures: The lookup operation find(T, vi,j) produces Ti, the type class in T that
contains variable vi,j, or an invalid sentinel value for no such class. The other two query
operations act on type classes, where report(Ti) produces the set

{

vi,1, vi,2, · · · , vi,|Ti|

}

of
all type variables in a class Ti and bound(Ti) produces the bound bi of that class, or a
sentinel indicating no bound is set.
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The update operation insert(T, vi,1) creates a new type class Ti in T that contains only
the variable vi,1 and no bound; due to the disjointness property, vi,1 must not belong to
any other type class in T . The add(Ti, vi,j) operation adds a new type variable vi,j to class
Ti; again, vi,j cannot exist elsewhere in T . bind(Ti, bi) mutates the bound for a type class,
setting or updating the current bound.

The unify operation is the fundamental non-trivial operation a type-environment data-
structure must support. unify(T, Ti, Tj) merges a type class Tj into another Ti, producing
a failure result and leaving T in an invalid state if this merge fails. It is always possible to
unify the type variables of both classes by simply taking the union of both sets; given the
disjointness property, no checks for set containment are required, and the variable sets can
simply be concatenated if supported by the underlying data structure. unify depends on an
internal unifyBound operation, which may fail. In cfa-cc, unifyBound(bi, bj) → b′i | fail
checks that the type classes contain the same sort of variable, takes the tighter of the
two conversion permissions, and checks if the bound types can be unified. If the bound
types cannot be unified (e.g. struct A with int∗), then unifyBound fails, while other
combinations of bound types may result in recursive calls. For instance, unifying R∗
with S∗ for type variables R and S results in a call to unify(T, find(R), f ind(S)), while
unifying R∗ with int∗ results in a call to unifyBound on int and the bound type of the
class containing R. As such, a call to unify(T, Ti, Tj) may touch every type class in T ,
not just Ti and Tj, collapsing the entirety of T into a single type class in extreme cases.
For more information on C

A

unification, see [6]. The inverse of unify is split(T, Ti), which
produces a new environment T ′ that is the same as T except that Ti has been replaced by
two classes corresponding to the arguments to the previous call to unify on Ti. If there is
no prior call to unify on Ti (i.e. Ti is a single-element class) Ti is absent in T ′.

Given the nature of the expression resolution problem as a backtracking search, caching
and concurrency are both useful tools to decrease runtime. However, both of these ap-
proaches may produce multiple distinct descendants of the same initial type environment,
which have possibly been mutated in incompatible ways. As such, to effectively employ
either caching or concurrency, the type environment data structure must support an ef-
ficient method to check if two type environments are compatible and merge them if so.
combine(T, T ′) attempts to merge an environment T ′ into another environment T , pro-
ducing pass if successful or leaving T in an invalid state and producing fail otherwise. The
invalid state of T on failure is not important, given that a combination failure results in
the resolution algorithm backtracking to a different environment. combine proceeds by
calls to insert, add, and unify as needed, and can be roughly thought of as calling unify

on every pair of classes in T that have variables v′i,j and v′i,k in the same class T ′
i in T ′.

Like unify, combine can always find a mutually-consistent partition of type variables into
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classes (in the extreme case, all type variables from T and T ′ in a single type class), but
may fail due to inconsistent bounds on merged type classes.

Finally, the backtracking access patterns of the compiler can be exploited to reduce
memory usage or runtime through use of an appropriately designed data structure. The set
of mutations to a type environment across the execution of the resolution algorithm produce
an implicit tree of related environments, and the backtracking search typically focuses
only on one leaf of the tree at once, or at most a small number of closely-related nodes as
arguments to combine. As such, the ability to save and restore particular type environment
states is useful, and supported by the save(T ) → H and backtrack(T,H) operations, which
produce a handle for the current environment state and mutate an environment back to a
previous state, respectively. These operations can be naively implemented by a deep copy
of T into H and vice versa, but have more efficient implementations in persistency-aware
data structures such as the persistent union-find introduced in Section 5.2.5.

5.2 Approaches

5.2.1 Näıve

The type environment data structure used in Bilson’s [6] original implementation of cfa-cc
is a simple translation of the definitions in Section 5.1 to C++ code; a TypeEnvironment
contains a list of EqvClass type equivalence classes, each of which contains the type bound
information and a tree-based sorted set of type variables. This approach has the benefit
of being easy to understand and not imposing life-cycle or inheritance constraints on its
use, but, as can be seen in Table 5.2, does not support many of the desired operations
with any particular efficiency. Some variations on this structure may improve performance
somewhat; for instance, replacing the EqvClass variable storage with a hash-based set
reduces search and update times from O(logn) to amortized O(1), while adding an index
for the type variables in the entire environment removes the need to check each type class
individually to maintain the disjointness property. These improvements do not change the
fundamental issues with this data structure, however.

5.2.2 Incremental Inheritance

One more invasive modification to this data structure that I investigated is to support
swifter combinations of closely-related environments in the backtracking tree by storing a
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reference to a parent environment within each environment, and having that environment
only store type classes that have been modified with respect to the parent. This approach
provides constant-time copying of environments, as a new environment simply consists
of an empty list of type classes and a reference to its (logically identical) parent; since
many type environments are no different than their parent, this speeds backtracking in this
common case. Since all mutations made to a child environment are by definition compatible
with the parent environment, two descendants of a common ancestor environment can
be combined by iteratively combining the changes made in one environment, then that
environment’s parent, until the common ancestor is reached, again re-using storage and
reducing computation in many cases.

For this environment, I also employed a lazily-generated index of type variables to
their containing class, which could be in either the current environment or an ancestor.
Any mutation of a type class in an ancestor environment causes that class to be copied
into the current environment before mutation, as well as added to the index, ensuring all
local changes to the type environment are listed in its index. However, not adding type
variables to the index until lookup or mutation preserves the constant-time environment
copy operation in the common case in which the copy is not mutated from its parent during
its life-cycle.

This approach imposes some performance penalty on combine if related environments
are not properly linked together, as the entire environment needs to be combined rather
than just the difference, but is correct as long as the “null parent” base-case is properly
handled. The life-cycle issues are somewhat more complex, as many environments may
descend from a common parent, and all of these need their parent to stay alive for purposes
of lookup. These issues can be solved by “flattening” parent nodes into their children before
the parent’s scope ends, but given the tree structure of the inheritance graph it is more
straightforward to store the parent nodes in reference-counted or otherwise automatically
garbage-collected heap storage.

5.2.3 Union-Find

Given the nature of the classes of type variables as disjoint sets, another natural approach to
implementing a type environment is the union-find disjoint-set data-structure [17]. Union-
find efficiently implements two operations over a partition of a collection of elements into
disjoint sets; find(x) locates the representative of x, the element which canonically names
its set, while union(r, s) merges two sets represented by r and s, respectively. The union-
find data structure is based on providing each element with a reference to its parent element,
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such that the root of a tree of elements is the representative of the set of elements contained
in the tree. find is then implemented by a search up to the parent, generally combined
with a path compression step that links nodes more directly to their ancestors to speed
up subsequent searches. union involves making the representative of one set a child of the
representative of the other, generally employing a rank- or size-based heuristic to ensure
that the tree remains somewhat balanced. If both path compression and a balancing
heuristic are employed, both union and find run in amortized O(α(n)) worst-case time;
this inverse Ackermann bound is a small constant for all practical values of n [45].

The union-find find and union operations have obvious applicability to the find and
unify type environment operations in Table 5.1, but the union-find data structure must be
augmented to fully implement the type environment operations. In particular, the type-
class bound cannot be easily included in the union-find data structure, as the requirement
to make it the class representative breaks the balancing properties of union, and requires
too-close integration of the type environment unifyBound internal operation. This issue
can be solved by including a side map from class representatives to the type-class bound.
If placeholder values are inserted in this map for type classes without bounds then this also
has the useful property that the key set of the map provides an easily obtainable list of all
the class representatives, a list which cannot be derived from the union-find data structure
without a linear search for class representatives through all elements.

5.2.4 Union-Find with Classes

Another type environment operation not supported directly by the union-find data struc-
ture is report, which lists the type variables in a given class, and similarly split, which
reverts a unify operation. Since the union-find data structure stores only links from chil-
dren to parents and not vice-versa, there is no way to reconstruct a class from one of its
elements without a linear search over the entire data structure, with find called on each
element to check its membership in the class. The situation is even worse for the split

operation, which requires extra information to maintain the order that each child is added
to its parent node. Unfortunately, the literature [44, 16, 35] on union-find does not present
a way to keep references to children without breaking the asymptotic time bounds of the
algorithm; I have discovered a method to do so, which, despite its simplicity, seems to be
novel.

The core idea of this “union-find with classes” data structure and algorithm is to keep
the members of each class stored in a circularly-linked list. Aho, Hopcroft, and Ullman also
include a circularly-linked list in their 1974 textbook [2]. However, the algorithm presented
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Figure 5.1: Union operation for union-find with classes. Solid lines indicate parent pointers,
dashed lines are next pointers.

by Aho et al. has an entirely flat class hierarchy, where all elements are direct children of
the representative, giving constant-time find at the cost of linear-time union operations.
In my version, the list data structure does not affect the layout of the union-find tree,
maintaining the same asymptotic bounds as union-find. In more detail, each element is
given a next pointer to another element in the same class; this next pointer initially points
to the element itself. When two classes are unified, the next pointers of the representatives
of those classes are swapped, splicing the two circularly-linked lists together as illustrated
in Figure 5.1. Importantly, though this approach requires an extra pointer per element, it
does maintain the linear space bound of union-find, and because it only requires updating
the two root nodes in union it does not asymptotically increase runtime either. The basic
approach is compatible with all path-compression techniques, and allows the members of
any class to be retrieved in time linear in the size of the class simply by following the next
pointers from any element.

If the path-compression optimization is abandoned, union-find with classes also encodes
a reversible history of all the union operations applied to a given class. Theorem 1 demon-
strates that the next pointer of the representative of a class always points to a leaf from the
last-added subtree. This property is sufficient to reverse the most-recent union operation
by finding the ancestor of that leaf that is an immediate child of the representative, break-
ing its parent link, and swapping the next pointers backA. Once the union operation has
been reversed, Theorem 1 still holds for the reduced class, and the process can be repeated
recursively until the entire set is split into its component elements.

AUnion-by-size may be a more appropriate approach than union-by-rank in this instance, as adding
two known sizes is a reversible operation, but the rank increment operation cannot be reliably reversed.
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Theorem 1. The next pointer of a class representative in the union-find with classes
algorithm, without path compression, points to a leaf from the most-recently-added subtree.

Proof. By induction on the height of the tree.
Base case: A height 1 tree by definition includes only a single item. In such a case, the
representative’s next pointer points to itself by construction, and the representative is the
most-recently-added (and only) leaf in the tree.
Inductive case: By construction, a tree T of height greater than 1 has children of the
root (representative) node that were representative nodes of classes merged by union. By
definition, the most-recently-added subtree T ′ has a smaller height than T , thus by the
inductive hypothesis before the most-recent union operation, the next pointer of the root
of T ′ pointed to one of the leaf nodes of T ′; by construction the next pointer of the root of
T points to this leaf after the union operation.

On its own, union-find, like the näıve approach, has no special constraints on life-
cycle or inheritance, but it can be used as a building block in more sophisticated type
environment data structures.

5.2.5 Persistent Union-Find

Given the backtracking nature of the resolution algorithm discussed in Section 5.1, the
abilities to quickly switch between related versions of a type environment and to de-
duplicate shared data among environments are both assets to performance. Conchon and
Filliâtre [11] present a persistent union-find data structure based on the persistent array
of Baker [4, 3].

In Baker’s persistent array, an array reference contains either a pointer to the array
or a pointer to an edit node; these edit nodes contain an array index, the value in that
index, and another array reference pointing either to the array or a different edit node.
By construction, these array references always point to a node more like the actual array,
forming a tree of edits rooted at the actual array. Reads from the actual array at the root
can be performed in constant time, as with a non-persistent array. The persistent array
can be mutated in constant time by directly modifying the underlying array, then replacing
its array reference with an edit node containing the mutated index, the previous value at
that index, and a reference to the mutated array. If the current array reference is not the
root, mutation consists simply of constructing a new edit node encoding the change and
referring to the current array reference.
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The mutation algorithm at the root is a special case of the key operation on persistent
arrays, reroot. A rerooting operation takes any array reference and makes it the root node
of the array. This operation is accomplished by tracing the path from some edit node to
actual array at the root node, recursively applying the edits to the underlying array and
replacing each edit node’s successor with the inverse edit. In this way, any previous state
of the persistent array can be restored in time proportional to the number of edits to the
current state of the array. While reroot does maintain the same value mapping in every
version of the persistent array, the internal mutations it performs break thread-safety, and
thus it must be used behind a lock in a concurrent context. Also, the root node with the
actual array may in principle be anywhere in the tree, and does not provide information
to report its leaf nodes, so some form of automatic garbage collection is generally required
for the data structure. Since the graph of edit nodes is tree-structured, reference counting
approaches suffice for garbage collection; Conchon and Filliâtre [11] also observe that if
the only reroot operations are for backtracking then the tail of inverse edit nodes may be
elided, suggesting the possibility of stack-based memory management.

While Conchon and Filliâtre [11] implement their persistent union-find data structure
over a universe of integer elements in the fixed range [1, N ], the type environment problem
needs more flexibility. In particular, an arbitrary number of type variables may be added
to the environment. As such, a persistent hash table is a more suitable structure than a
persistent array, providing the same expected asymptotic time bounds, while allowing a
dynamic number of elements. Besides replacing the underlying array with a hash table,
the other major change in this approach is to replace the two types of array references,
Array and Edit, with four node types, Table, Edit, Add, and Remove, where Add adds a new
key-value pair, Remove removes a key-value pair, and Edit mutates an existing key-value
pair. In this variant of cfa-cc, this persistent hash-table is used as the side map discussed
in Section 5.2.3 for class bounds. The actual union-find data structure is slightly modified
from this approach, with a Base node containing the root union-find data structure, Add
nodes adding new elements, AddTo nodes defining the union of two type classes, and Remove
and RemoveFrom nodes as inverses of the previous two elements, for purposes of maintaining
the edit list. Figure 5.2 demonstrates the structure of a simple example. Making AddTo
and RemoveFrom single nodes provides semantic information missing from the raw array
updates in Conchon and Filliâtre’s data structure. RemoveFrom is implemented using the
“leaf of last union” approach discussed in Section 5.2.4; this does, however, preclude the
use of path-compression algorithms in this persistent union-find data structure.

This added semantic information on union operations in the persistent union-find edit
tree exposes a new option for combining type environments. If the type environments are
part of the same edit tree, one environment T ′ can be combined with another T by only
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Figure 5.2: Persistent union-find data structure. Shows the edit nodes to reverse back to
an empty structure.

testing the edits on the path from T ′ to T in both the persistent union-find data structure
describing the classes and the persistent hash table containing the class bounds. This
approach is generally more efficient than testing the compatibility of all type classes in T ′,
as only those that are actually different than those in T must be considered. However, the
improved performance comes at the cost of some flexibility, as the edit-tree link must be
maintained between any two environments to be combined under this algorithm.

The procedure for combine(T, T ′) based on edit paths is as follows: The shared edit
trees for classes and bindings are rerooted at T , and the path from T ′ to T is followed to
create a list of actual edits. By tracking the state of each element, redundant changes such
as an Edit followed by an Edit can be reduced to their form in T ′ by dropping the later
(more like T ) Edit for the same key; Add and Remove cancel similarly. This procedure is
repeated for both the class edit-tree and the binding edit-tree. When the list of net changes
to the environment is produced, the additive changes are applied to T . For example, if
a type class exists in T ′ but not T , the corresponding Add edit is applied to T , but in
the reverse situation the Remove edit is not applied to T , as the intention is to produce a
new environment representing the union of the two sets of type classes; similarly, AddTo
edits are applied to unify type-classes in T that are united in T ′, but RemoveFrom edits
that split type classes are not. A new environment, T ′′, can always be constructed with
a consistent partitioning of type variables; in the extreme case, all variables from both T

and T ′ are united in a single type class in T ′′. combine can fail to unify the bound types;
if any class in T ′ has a class bound that does not unify with the merged class in T ′′, then
combine fails.
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Table 5.2: Worst-case analysis of type environment operations. n is the number of type
classes, m the maximum size of a type class, and p the edit distance between two envi-
ronments or a single environment and the empty environment; u(n) captures the recursive
cost of class unification.

Näıve Incremental Union-Find Persistent U-F

find O(n) O(p) O(α(m)) O(logm)
report O(m) O(m) O(nmα(m)) O(m)
bound O(1) O(1) O(1) O(1)
insert O(1) O(1) O(1) O(1)

add O(1) O(m) O(1) O(1)
bind O(1) O(1) O(1) O(1)

unify O(m+ u(n)) O(m+ u(n)) O(1 + u(n)) O(1 + u(n))
split — — — O(logm)

combine O(n2m O(p2m O(nmα(m) O(p logm
+ nu(n)) + pu(n)) + nu(n)) + pu(n))

save O(nm) O(1) O(nm) O(1)
backtrack O(nm) O(pm) O(nm) O(p)

5.3 Analysis

In this section, I present asymptotic analyses of the various approaches to the type envi-
ronment data structure discussed in the previous section. My results are summarized in
Table 5.2; in all cases, n is the number of type classes, m is the maximum size of a type
class, and p the number of edits between two environments or one environment and the
empty environment. u(n) captures the recursive cost of class unification, which is kept
separate so that the O(n) number of recursive class unifications can be distinguished from
the direct cost of each recursive step.

5.3.1 Näıve and Incremental

The näıve type environment data structure does not have an environment-wide index for
type variables, but does have an index for each type class, assumed to be hash-based here.
As a result, every class’s index must be consulted for a find operation, at an overall cost
of O(n). The incremental variant builds an overall hash-based index as it is queried, but
may need to recursively check its parent environments if its local index does not contain a
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type variable, and may have as many parents as times it has been modified, for cost O(p).
It should be noted that subsequent queries for the same variable execute in constant time.

Since both näıve and incremental variants store complete type classes, the cost of a
report operation is simply the time needed to output the contained variables, O(m). Since
the type classes store their bounds, bound and bind are both O(1) given a type class. Once
a find operation has already been performed to verify that a type variable does not exist
in the environment, the data structures for both these variants support adding new type
classes (the insert operation) in O(1). Adding a variable to a type class (the add operation)
can be done in O(1) for the näıve implementation, but the incremental implementation
may need to copy the edited type class from a parent at cost O(m).

The linear storage of type classes in both variants also leads to O(m) time for the
variable-merging step in unify, plus the usual u(n) recursion term for unifyBound. The
näıve combine operation must traverse each of the classes of one environment, merging in
any class of the other environment that shares a type variable. Since there are at most
n classes to unify, the unification cost is O(nm + nu(n)), while traversal and find costs
to locate classes to merge total O(n2m), for an overall cost of O(n2m + nu(n)). The
incremental combine operation works similarly, but only needs to consider classes modified
in either environment with respect to the common ancestor of both environments, allowing
the n cost terms to be substituted for p, for an overall cost of O(p2m + pu(n)). Neither
variant supports the split operation to undo a unify.

The näıve environment does nothing to support save and backtrack, so these operations
must be implemented by making a deep copy of the environment on save, then a destructive
overwrite on backtrack, each at a cost of O(nm). The incremental environment supports
O(1) save by simply setting aside a reference to the current environment, then proceeding
with a new, empty environment with the former environment as a parent. backtrack to
a parent environment may involve destroying all the intermediate environments if this
backtrack removes the last reference to the backtracked-from environment; this cost is
O(pm).

5.3.2 Union-Find

The union-find data structure is designed to support find efficiently, and thus for any
variant, the cost is simply the distance up the tree to the representative element. For basic
union-find, this is amortized to the inverse Ackermann function, O(α(m)), essentially a
small constant, though the loss of path compression in persistent union-find raises this cost
to O(logm). Basic union-find is not designed to support the report operation, however,
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so it must be simulated by checking the representative of every type variable, at cost
O(nmα(m)). Persistent union-find, on the other hand, uses the “with classes” extension
to union-find described in Section 5.2.4 to run report in O(m) time.

All union-find environment variants described here use a secondary hash table to map
from class representatives to bindings, and as such can perform bound and bind in O(1),
given the representative. insert is also a O(1) operation for both basic and persistent
union-find. Since add simply involves attaching a new child to the class root, it is also a
O(1) operation for all union-find environment variants.

Union-find is also designed to support unify in constant time, and as such, given
class representatives, the variable-merging cost of unify for both variants is O(1) to make
one representative the child of the other, plus the O(u(n)) term for unifyBound. Basic
union-find does not support split, but persistent union-find can accomplish it using the
mechanism described in Section 5.2.4 in O(logm), the cost of traversing up to the root of a
class from a leaf without path compression. combine on the basic union-find data structure
works similarly to the data structures discussed above in Section 5.3.1, with a O(nu(n))
term for the O(n) underlying unify operations, and a O(nα(m)) term to find the classes
which need unification by checking the class representatives of each corresponding type
variable in both environments for equality. Persistent union-find uses a different approach
for combine, discussed in Section 5.2.5. Discounting recursive unify operations included
in the u(n) unifyBound term, there may be at most O(p) unify operations performed, at
cost O(pu(n)). Each of the O(p) steps on the edit path can be processed in the O(logm)
time it takes to find the current representative of the modified type class, for a total runtime
of O(p logm+ pu(n)).

In terms of backtracking operations, the basic union-find data structure only supports
deep copies, for O(nm) cost for both save and backtrack. Persistent union-find, as the
name suggests, is more optimized, with O(1) cost to save a backtrack-capable reference to
the current environment state, and O(p) cost to revert to that state (possibly destroying
no-longer-used edit nodes along the path).

5.4 Conclusion & Future Work

This chapter presents the type environment abstract data type, some type-environment
data-structures optimized for workloads encountered in the expression resolution problem,
and asymptotic analysis of each data structure. Chapter 6 provides experimental perfor-
mance results for a representative set of these approaches. One contribution of this thesis
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is the union-find with classes data structure for efficient retrieval of union-find class mem-
bers, along with a related algorithm for reversing the history of union operations in this
data structure. This reversible history contributes to the second novel contribution of this
chapter, a type environment data structure based off the persistent union-find data struc-
ture of Conchon and Filliâtre [11]. This persistent union-find environment uses the split

operation introduced in union-find with classes and the edit history of the persistent data
structure to support an environment-combining algorithm that only considers the edits
between the environments to be merged.

This persistent union-find data structure is efficient, but not thread-safe; as suggested
in Section 4.3, it may be valuable to parallelize the C

A

expression resolver. However,
allowing multiple threads concurrent access to the persistent data structure is likely to
result in “reroot thrashing”, as different threads reroot the data structure to their own
versions of interest. This contention could be mitigated by partitioning the data structure
into separate subtrees for each thread, with each subtree having its own root node, and
the boundaries among them implemented with a lock-equipped ThreadBoundary edit node.
Alternatively, the concurrent hash trie of Prokopec et al. [39, 40] may be a useful hash-table
replacement.
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Chapter 6

Experiments

I implemented a prototype system to test the practical effectiveness of the various algo-
rithms described in Chapters 4 and 5. This prototype system implements the expression
resolution pass of the C

A

compiler, cfa-cc, with a simplified version of the C

A

type system
and a parser to read in problem instances, and is published online under a permissive li-
cenceA. The resolver prototype allows for quicker iteration on algorithms due to its simpler
language model and lack of a requirement to generate runnable code, yet captures enough
of the nuances of C

A

to have predictive power for the runtime performance of algorithmic
variants in cfa-cc itself.

cfa-cc can generate realistic test inputs for the resolver prototype from equivalent C

A

code; the generated test inputs currently comprise all C

A

code currently in existenceB, 9,000
lines drawn primarily from the standard library and compiler test suite. This code includes
a substantial degree of name overloading for common library functions and a number of
fundamental polymorphic abstractions, including iterators and streaming input/output.
cfa-cc is also instrumented to produce a number of code metrics. These metrics were
used to construct synthetic test inputs during development of the resolver prototype; these
synthetic inputs provided useful design guidance, but the performance results presented in
this chapter are based on the more realistic directly-generated inputs.

Ahttps://github.com/cforall/resolv-proto
BThough C

A

is backwards-compatible with C, the lack of forall functions and name overloading in C
mean that the larger corpus of C code does not provide challenging test instances for cfa-cc.
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6.1 Resolver Prototype Features

The resolver prototype can express most of the C

A

features described in Chapter 2. It sup-
ports both monomorphic and polymorphic functions, with type assertions for polymorphic
functions. Traits are not explicitly represented, but cfa-cc inlines traits before the resolver
pass, so this is a faithful representation of the existing compiler. The prototype system
supports variable declarations as well as function declarations, and has a lexical-scoping
scheme and C

A

-like overloading rules.

The type system of the resolver prototype also captures key aspects of the C

A

type
system. Concrete types represent the built-in arithmetic types of C

A

, along with the
implicit conversions among them. Each concrete type is represented by an integer identifier,
and the conversion cost from x to y is |y − x|, a safe conversion if y > x, or an unsafe
conversion if y < x. This scheme is markedly simpler than the graph of conversion costs
in C

A

(Figure 4.1), but captures the essentials of the design. For simplicity, zero t and
one t, the types of 0 and 1, are represented by the type corresponding to int. Named types
are analogues to C

A

aggregates, such as structs and unions; aggregate fields are encoded as
unary functions from the struct type to the field type, with the function named based on the
field name. Named types also support type parameters, and as such can represent generic
types as well. Generic named types are used to represent the built-in parameterized types
of C

A

as well; T∗ is encoded as #$ptr<T>. C

A

arrays are also represented as pointers,
to simulate array-to-pointer decay, while top-level reference types are replaced by their
referent to simulate the variety of reference conversions. Function types have first-class
representation in the prototype as well; C

A

function pointers are represented as variables
with the appropriate function type, though C

A

polymorphic function pointers cannot be
represented, as the prototype system stores information about type assertions in function
declarations rather than in the function type. Void and tuple types are also supported
in the prototype, to express the multiple-return-value functions in C

A

, though varargs
functions and ttype tuple-typed type variables are absent from the prototype system. The
prototype system also does not represent type qualifiers (e.g. const, volatile), so all such
qualifiers are stripped during conversion to the prototype system.

The resolver prototype supports three sorts of expressions in its input language. The
simplest are value expressions, which are expressions declared to be a certain type; these
implement literal expressions in C

A

, and, already being typed, are passed through the
resolver unchanged. The second sort, name expressions, represent a variable expression in
C

A

; these contain the name of a variable or function, and are matched to an appropriate
declaration overloading that name. The third input expression, the function expression,
represents a call to a function, with a name and zero or more argument subexpressions. As
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is usual in C

A

, operators are represented as function calls; however, as mentioned above,
the prototype system represents field access expressions a.f as function expressions as well.

The main area for future expansion in the design of the resolver prototype is conversions.
Cast expressions are implemented in the output language of the resolver, but cannot be
expressed in the input. The only implicit conversions supported are among the arithmetic-
like concrete types, which capture most, but not all, of C

A

’s built-in implicit conversionsC.
Future work should include a way to express implicit (and possibly explicit) conversions
in the input language, with an investigation of the most efficient way to handle implicit
conversions, and potentially a design for user-defined conversions.

6.2 Resolver Prototype Design

As discussed above, for speed of development the resolver prototype works over a simplified
version of the C

A

type system. The build system for the resolver prototype uses a number of
conditional compilation flags to switch among algorithm variants while retaining maximally
shared code. A distinct executable name is also generated for each algorithmic variant so
that distinct variants can be more easily tested against each other.

The primary architectural difference between the resolver prototype and cfa-cc is that
the prototype system uses a simple mark-and-sweep garbage collector for memory man-
agement, while cfa-cc uses a manual memory-management approach. This architectural
difference affects the mutation patterns used by both systems: cfa-cc frequently makes
deep clones of multi-node object graphs to ensure that there is a single “owner” for each
object which can safely delete it later; the prototype system, by contrast, relies on its
garbage collector to handle ownership, and can often copy pointers rather than cloning
objects. The resolver prototype thus only needs to clone nodes that it modifies, and can
share un-modified children between clones; the tree mutator abstraction in the prototype
is designed to take advantage of this property. The key design decision enabling this is that
all child nodes are held by const pointer, and thus cannot be mutated once they have been
stored in a parent node. With minimal programming discipline, it can thus be ensured that
any expression is either mutable or shared, but never both; the Dotty research compiler
for Scala takes a similar architectural approach [33].

Given the significantly better performance results from the resolver prototype than
cfa-cc and profiling data showing that memory allocation is a large component of cfa-cc
runtime, I attempted to port this garbage collector to cfa-cc, but without success. The

CNotable absences include void∗ to other pointer types, or 0 to pointer types.
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GC could be used for memory management with few changes to the code-base, but without
a substantial re-write to enforce the same “const children” discipline, cfa-cc could not
take advantage of the potential to share sub-objects; without sharing of sub-objects the
GC variant of cfa-cc must do all the same allocations and deletions and garbage-collector
overhead degraded performance unacceptably (though it did fix some known memory leaks
introduced by failures of the existing manual memory-management scheme).

Another minor architectural difference between the prototype system and cfa-cc is that
cfa-cc makes extensive use of the pointer-based std::list, std::set, and std::map data struc-
tures, while the prototype uses the array-based std::vector and the hash-based unordered
variants of set and map instead. Porting the prototype to use the pointer-based data struc-
tures resulted in modest performance regressions, whereas preliminary results from porting
cfa-cc to use std::vector over std::list also showed performance regressions, in some cases
significant. The relative performance impact of this architectural difference is unclear, and
thus excluded from consideration.

The final difference between cfa-cc and the resolver prototype is that, as an experi-
ment in language usability, the prototype performs resolution-based rather than unification-
based assertion satisfaction, as discussed in Section 4.3. This change enables coding pat-
terns not available in cfa-cc, e.g. a more flexible approach to type assertion satisfaction
and better handling of functions returning polymorphic type variables that do not exist in
the parameter list. The experimental results in Section 6.3 indicate that this choice is not
a barrier to a performant resolver.

6.3 Prototype Experiments

The primary performance experiments for this thesis are conducted using the resolver
prototype on problem instances generated from actual C

A

code using the method described
in Section 6.1. The prototype is compiled in 24 variants over 3 variables, with variants
identified by the hyphen-separated concatenation of their short codes, e.g. bu-imm-bas
for bottom-up traversal, immediate assertion satisfaction, basic type environment. The
variables and their values are as follows:

Traversal direction The order in which arguments are matched with parameters, as
discussed in Section 4.2.2.

Bottom-up (bu) Baker-style bottom-up pass, searching for function candidates
based on the available argument interpretations.
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Combined (co) Bilson-style bottom-up pass, where argument interpretations are
combined into a single interpretation for each set of options.

Top-down (td) Cormack-style top-down pass, searching for argument interpreta-
tions based on function candidate parameter types. The td-* variants of the
resolver prototype implement a caching system to avoid re-computation of the
same argument interpretation with the same type.

Assertion satisfaction The algorithm for finding satisfying declarations for type asser-
tions, as discussed in Section 4.2.3.

Immediate (imm) All assertions are checked for satisfaction immediately upon gen-
erating a candidate interpretation. The techniques discussed in Section 4.2.3 for
environment combination and level-by-level consideration of recursive assertions
are applied here.

Deferred (def) As in imm, but only checks minimal-cost top-level interpretations
after all top-level interpretations have been generated.

Deferred Cached (dca) As in def, but uses the caching optimization discussed
in Section 4.2.3.

Type Environment The type environment data structure used, as discussed in Chap-
ter 5.

Basic (bas) Bilson-style type environment with hash-based equivalence class stor-
age, as discussed in Section 5.2.1.

Incremental Inheritance (inc) Incremental-inheritance variant sharing unmod-
ified common parent information among environments, as discussed in Sec-
tion 5.2.2.

Persistent union-find (per) Union-find-based environment, using the persistent
variant discussed in Section 5.2.5 for backtracking and combination. This vari-
ant requires that all pairs of type arguments used as arguments to combine de-
scend from a common root environment; this requirement is incompatible with
the caching used in the top-down traversal direction, and thus no td-*-per

algorithms are tested.

To test the various algorithms, the resolver prototype is compiled using g++ 6.5.0 with
each of the 24 valid combinations of variablesD, and then timed running each of the C

A

-
derived test inputs. Terminal output is suppressed for all tests to avoid confounding factors

DNamely, all combinations except td-*-per.
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Figure 6.1: Number of tests completed for each algorithmic variant

in the timing results, and all tests are run three times in series, with the median result
reported in all cases. The medians are representative data points; considering test cases
that took at least 0.2 s to run, the average run was within 2% of the reported median
runtime, and no run diverged by more than 20% of median runtime or 5.5 s. The memory
results are even more consistent, with no run exceeding 2% difference from median in peak
resident set size, and 93% of tests recording identical peak memory usage within the 1 KB
granularity of the measurement software. All tests were run on a machine with 128 GB of
RAM and 64 cores running at 2.2 GHz.

As a matter of experimental practicality, test runs that exceeded 8 GB of peak resident
memory usage are excluded from the data set. This restriction is justifiable by real-world
use, as a compiler that is merely slow may be accommodated with patience, but one
that uses in excess of 8 GB of RAM may be impossible to run on many currently deployed
computer systems. 8 GB of RAM is not typical of the memory usage of the best-performing
two variants, bu-dca-bas and bu-dca-per, which were able to run all 131 test inputs to
completion with maximum memory usage of 70 MB and 78 MB, respectively. However,
this threshold did eliminate a significant number of algorithm-test variants, with the worst-
performing variant, td-imm-inc, only completing 62 test inputs within the memory bound.
Full results for tests completed by algorithm variant are presented in Figure 6.1. As can
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Figure 6.2: Average peak resident set size for each algorithmic variant over the 56 test
inputs all variants complete.

be seen from these results, traversal direction is clearly the dominant variable in memory
usage, with the bu-* variants performing better than the co-* variants, which in turn
out-perform the td-* variants.

To provide a more holistic view of performance, I have considered the results from
the 56 test inputs that all algorithms are able to complete within the memory bound.
Limiting consideration to these algorithms provides an apples-to-apples comparison among
algorithms, as the excluded inputs are harder instances, which take more time and memory
for the algorithms that are able to solve them. Figures 6.2 and 6.3 show the mean peak
memory and runtime, respectively, of each algorithm over the inputs in this data set. These
averages are not themselves meaningful, but do enable an overall comparison of relative
performance of the different variants. Selecting only these 56 “easy” test inputs does bias
the average values downward, but has little effect on the relative trends; similar trends
can be seen in the graphs of the bu-* algorithms over the 124 (of 131) test inputs that all
complete, which have been omitted to save space.

It can be seen from these results that the top-down, immediate assertion-satisfaction
(td-imm-*) variants are particularly inefficient, as they check a significant number of
assertions without filtering to determine if the arguments can be made to fit. It is also
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Figure 6.3: Average runtime for each algorithmic variant over the 56 test inputs all variants
complete.

clear that the bottom-up (bu) traversal order is better than both top-down (td) and
the Bilson-style bottom-up-combined (co) orders. While the advantage of bu over co

is clear, in that it performs less redundant work if a prefix of a combination fails, the
advantage of bu over td provides an answer for an open question from Baker [5]. I believe
that bottom-up is superior because it must only handle each subexpression once to form
a list of candidate interpretations, whereas the top-down approach may do similar work
repeatedly to resolve a subexpression with a variety of different types, a shortcoming that
cannot be fully addressed by the memoization scheme employed in the td algorithm.

With regard to assertion satisfaction, immediate (imm) satisfaction is an inferior so-
lution, though there is little performance difference between deferred (def) and deferred-
cached (dca) for instances that both can complete; particularly notable is that the dca

caching-scheme does not have a noticeable impact on peak memory usage. Since the dca

algorithm can solve some particularly hard instances that def cannot, it is the recom-
mended approach.

The incremental-inheritance (inc) type environment also often uses upwards of double
the memory required by the other variants, in addition to being consistently slower on
these easy tests; aside from bu-imm-bas performing worse than bu-imm-inc on average
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when larger tests are considered, these results hold for the other variants. It is apparent
from these results that any efficiencies from the inheritance mechanism are insufficient to
pay for the added complexity of the data structure. Aside from that, the persistent union-
find (per) type environment generally performs better than the basic (bas) environment,
with similar peak memory usage and an average speedup factor of nearly 2, though the
requirements of the per environment for automatic garbage collection and a shared history
for combination make retrofitting it into older code difficult.

6.4 Instance Difficulty

To characterize the difficulty of expression-resolution problem instances, the test suites
must be explored at a finer granularity. As discussed in Section 4.2.1, a single top-level
expression is the fundamental problem instance for resolution, yet the test inputs discussed
above are composed of thousands of top-level expressions, like the actual source code they
are derived from. To pull out the effects of these individual problems, the resolver prototype
is instrumented to time resolution for each expression, and also to report some relevant
properties of the expression. This instrumented resolver is then run on a set of difficult test
instances; to limit the data collection task, these runs are restricted to the best-performing
bu-dca-per algorithm and test inputs taking more than 1 s to complete.

The 13 test inputs thus selected contain 20,632 top-level expressions among them, which
are separated into order-of-magnitude bins by runtime in Figure 6.4. As can be seen from
this figure, overall runtime is dominated by a few particularly difficult problem instances
— the 60% of expressions that resolve in under 0.1 ms collectively take less time to resolve
than any of the 0.2% of expressions that take at least 100 ms to resolve. On the other hand,
the 46 expressions in that 0.2% take 38% of the overall time in this difficult test suite, while
the 201 expressions that take between 10 and 100 ms to resolve consume another 30%.

Since the top centile of expression-resolution instances requires approximately two-
thirds of the resolver’s time, optimizing the resolver for specific hard problem instances
has proven to be an effective technique for reducing overall runtime. The data indicates
that the number of assertions necessary to resolve has the greatest effect on runtime, as
seen in Figure 6.5. However, since the number of assertions required is only known once
resolution is finished, the most-promising pre-resolution metric of difficulty is the nesting
depth of the expression; as seen in Figure 6.6, expressions of depth > 10 in this data-set
are uniformly difficult. Figure 6.7 presents a similar pattern for number of subexpressions,
though given that the expensive tail of problem instances occurs at approximately twice the
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Figure 6.4: Histogram of top-level expression resolution runtime, binned by order-of-
magnitude. The left series counts the expressions in each bin according to the left axis,
while the right series reports the summed runtime of resolution for all expressions in that
bin. Note that both y-axes are log-scaled.

depth values, it is reasonable to believe that the difficult expressions in question are deeply-
nested invocations of binary functions rather than wider but shallowly-nested expressions.

6.5 C

A

Results

I have integrated a number of the algorithmic techniques discussed in this chapter into
cfa-cc. This integration took place over a period of months while cfa-cc was under
active development on a number of other fronts, so it is not possible to completely isolate
the effects of the algorithmic changes, but I believe the algorithmic changes to have had
the most-significant effects on performance over the study period. To generate this data,
representative commits from the git history of the project were checked out and compiled,
then run on the same machine used for the resolver prototype experiments discussed in
Section 6.3. To negate the effects of changes to the C

A

standard library on the timing
results, 55 test files from the test suite of the oldest C

A

variant are compiled with the
-E flag to inline their library dependencies, and these inlined files are used to test the
remaining cfa-cc versions.

I performed two rounds of modification to cfa-cc; the first round moved from Bilson’s
original combined-bottom-up algorithm to an un-combined bottom-up algorithm, denoted
cfa-co and cfa-bu, respectively. A top-down algorithm was not attempted in cfa-cc
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Figure 6.5: Top-level expression resolution time by number of assertions resolved. Source
input file for each expression listed in legend; note log scales on both axes.
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Figure 6.6: Top-level expression resolution time by maximum nesting depth of expression.
Note log scales on both axes.
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Figure 6.7: Top-level expression resolution time by number of subexpressions. Note log
scales on both axes.

due to its poor performance in the prototype. The second round of modifications ad-
dressed assertion satisfaction, taking Bilson’s original cfa-imm algorithm and modifying
it to use the deferred approach cfa-def. Due to time constraints, a deferred-cached as-
sertion satisfaction algorithm for cfa-cc could not be completed, but both preliminary
results from this effort and the averaged prototype results from Section 6.3 indicate that
assertion satisfaction caching is not likely to be a fruitful optimization for cfa-cc. The new
environment data structures discussed in Section 6.3 have not been successfully merged
into cfa-cc due to their dependencies on the garbage-collection framework in the proto-
type; I spent several months modifying cfa-cc to use similar garbage collection, but due
to cfa-cc not being designed to use such memory management the performance of the
modified compiler was non-viable. It is possible that the persistent union-find environment
could be modified to use a reference-counted pointer internally without changing the entire
memory-management framework of cfa-cc, but such an attempt is left to future work.

As can be seen in Figures 6.8–6.10, the time and peak memory results for these five
versions of cfa-cc show that assertion resolution dominates total resolution cost, with
the cfa-def variant running consistently faster than the others on more expensive test
cases, and the speedup from the deferred approach increasing with the difficulty of the
test case. The results from cfa-cc for cfa-co vs. cfa-bu do not mirror those from the
prototype; I conjecture this is mostly due to the different memory-management schemes
and sorts of data required to run type unification and assertion satisfaction calculations, as
cfa-cc performance has proven to be particularly sensitive to the amount of heap allocation
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Figure 6.8: cfa-cc runtime against cfa-co baseline. Note log scales on both axes.

performed. This data also shows a noticeable regression in compiler performance in the
eleven months between cfa-bu and cfa-imm, which use the same resolution algorithms;
this approximate doubling in runtime is not due to expression resolution, as no integration
work happened in this time, but I am unable to ascertain its actual cause. To isolate the
effects of the algorithmic changes from this unrelated performance regression, the speedup
results in Figure 6.9 are shown with respect to the start of each modification round, cfa-
bu vs. cfa-co and cfa-def vs. cfa-imm. It should also be noted with regard to the peak
memory results in Figure 6.10 that the peak memory usage does not always occur during
the resolution phase of the compiler.

6.6 Conclusion

The dominant factor in the cost of C

A

expression resolution is assertion satisfaction. Re-
ducing the total number of assertions satisfied, as in the deferred satisfaction algorithm, is
consistently effective at reducing runtime, and caching results of these satisfaction prob-
lem instances has shown promise in the prototype system. The results presented here also
demonstrate that a bottom-up approach to expression resolution is superior to top-down,
settling an open question from Baker [5]. The persistent union-find type environment intro-
duced in Chapter 5 has also been demonstrated to be a modest performance improvement
on the näıve approach.

Given the consistently strong performance of the bu-dca-imm and bu-dca-per vari-
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ants of the resolver prototype, the results in this chapter demonstrate that it is possible to
develop a C

A

compiler with acceptable runtime performance for widespread use, an impor-
tant and previously unaddressed consideration for the practical viability of the language.
However, the less-marked improvement in Section 6.5 from retrofitting these algorithmic
changes onto the existing compiler leave the actual development of a performant C

A

com-
piler to future work. Characterization and elimination of the performance deficits in the
existing cfa-cc has proven difficult, though runtime is generally dominated by the expres-
sion resolution phase; as such, building a new C

A

compiler based on the resolver prototype
contributed by this work may prove to be an effective strategy.
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Chapter 7

Conclusion

Decades after its first standardization, the C language remains a widely-used tool and a
vital part of the software development landscape. The C

A

language under development at
the University of Waterloo represents an evolutionary modernization of C with expressive
modern language features paired with strong C backwards-compatibility. This thesis has
contributed to these project goals in a variety of ways, including the addition of a generic-
types language feature (Chapter 3) and refinement of the C

A

overload selection rules to
produce a more expressive and intuitive model (Section 4.1.2). Based on the technical
contribution of the resolver prototype system (Section 6.1), I have also made significant
improvements to C

A

compilation performance, including un-combined bottom-up expres-
sion traversal (Section 4.2.2), deferred-cached assertion satisfaction (Section 4.2.3), and a
novel persistent union-find type environment data structure (Section 5.2.5). The combina-
tion of these practical improvements and added features significantly improve the viability
of C

A

as a practical programming language.

Further improvements to the C

A

type system are still possible, however. One area
suggested by this work is development of a scheme for user-defined conversions; to integrate
properly with the C

A

conversion model, there would need to be a distinction between safe
and unsafe conversions, and possibly a way to denote conversions as explicit-only or non-
chainable. Another place for ongoing effort is improvement of compilation performance;
I believe the most promising direction for that effort is rebuilding the C

A

compiler on a
different framework than Bilson’s cfa-cc. The resolver prototype presented in this work
has good performance and already has the basics of C

A

semantics implemented, as well
as many of the necessary core data structures, and would be a viable candidate for a new
compiler architecture. An alternate approach would be to fork an existing C compiler

87



such as Clang [1], which would need to be modified to use one of the resolution algorithms
discussed here, as well as various other features introduced by Bilson [6].

More generally, the algorithmic techniques described in this thesis may be useful to
implementors of other programming languages. In particular, the demonstration of prac-
tical performance for polymorphic return-type inference suggests the possibility of eliding
return-type-only template parameters in C++ function calls, though integrating such an
extension into C++ expression resolution in a backwards-compatible manner may be chal-
lenging. The C

A

expression resolution problem also bears some similarity to the local type
inference model put forward by Pierce & Turner [38] and Odersky et al. [34]; compiler
implementors for languages like Scala [42], which performs type inference based on this
model, may be able to profitably adapt the algorithms and data structures presented in
this thesis.
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Appendix A

Generic Stack Benchmarks

This appendix includes the generic stack code for all four language variants discussed in
Section 3.3. Throughout, /∗∗∗/ designates a counted redundant type annotation; these
include sizeof on a known type, repetition of a type name in initialization or return state-
ments, and type-specific helper functions. The code is reformatted slightly for brevity.

A.1 C

typedef struct node {
void ∗ value;
struct node ∗ next;

} node;
typedef struct stack {

struct node ∗ head;
} stack;
void copy stack( stack ∗ s, const stack ∗ t, void ∗ (∗copy)( const void ∗ ) ) {

node ∗∗ cr = &s >head;
for (node ∗ nx = t >head; nx; nx = nx >next) {

∗cr = malloc( sizeof(node) ); /∗∗∗/
(∗cr) >value = copy( nx >value );
cr = &(∗cr) >next;

}
∗cr = NULL;

}
void clear stack( stack ∗ s, void (∗ free el)( void ∗ ) ) {
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for ( node ∗ nx = s >head; nx; ) {
node ∗ cr = nx;
nx = cr >next;
free el( cr >value );
free( cr );

}
s >head = NULL;

}
stack new stack() {

return (stack){ NULL }; /∗∗∗/
}
stack ∗ assign stack( stack ∗ s, const stack ∗ t, void ∗ (∗copy el)( const void ∗ ),

void (∗free el)( void ∗ ) ) {
if ( s >head == t >head ) return s;
clear stack( s, free el ); /∗∗∗/
copy stack( s, t, copy el ); /∗∗∗/
return s;

}
Bool stack empty( const stack ∗ s ) {

return s >head == NULL;
}
void push stack( stack ∗ s, void ∗ v ) {

node ∗ n = malloc( sizeof(node) ); /∗∗∗/
∗n = (node){ v, s >head }; /∗∗∗/
s >head = n;

}
void ∗ pop stack( stack ∗ s ) {

node ∗ n = s >head;
s >head = n >next;
void ∗ v = n >value;
free( n );
return v;

}

A.2 C

A

forall( otype T ) {
struct node {

T value;
node(T) ∗ next;

};
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struct stack { node(T) ∗ head; };
void ?{}( stack(T) & s, stack(T) t ) { // copy

node(T) ∗∗ cr = &s.head;
for ( node(T) ∗ nx = t.head; nx; nx = nx >next ) {

∗cr = alloc();
((∗cr) >value){ nx >value };
cr = &(∗cr) >next;

}
∗cr = 0;

}
void clear( stack(T) & s ) with( s ) {

for ( node(T) ∗ nx = head; nx; ) {
node(T) ∗ cr = nx;
nx = cr >next;
∧ (∗cr){};
free( cr );

}
head = 0;

}
void ?{}( stack(T) & s ) { (s.head){ 0 }; }
void ∧?{}( stack(T) & s) { clear( s ); }
stack(T) ?=?( stack(T) & s, stack(T) t ) {

if ( s.head == t.head ) return s;
clear( s );
s{ t };
return s;

}
Bool empty( const stack(T) & s ) {

return s.head == 0;
}
void push( stack(T) & s, T value ) with( s ) {

node(T) ∗ n = alloc();
(∗n){ value, head };
head = n;

}
T pop( stack(T) & s ) with( s ) {

node(T) ∗ n = head;
head = n >next;
T v = n >value;
∧ (∗n){};
free( n );
return v;
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}
}

A.3 C++

template<typename T> struct stack {
struct node {

T value;
node ∗ next;
node( const T & v, node ∗ n = nullptr ) :

value( v ), next( n ) {}
};
node ∗ head;
void copy( const stack<T> & o ) {

node ∗∗ cr = &head;
for ( node ∗ nx = o.head; nx; nx = nx >next ) {

∗cr = new node{ nx >value }; /∗∗∗/
cr = &(∗cr) >next;

}
∗cr = nullptr;

}
void clear() {

for ( node ∗ nx = head; nx; ) {
node ∗ cr = nx;
nx = cr >next;
delete cr;

}
head = nullptr;

}
stack() : head( nullptr ) {}
stack( const stack<T> & o ) { copy( o ); }
∼ stack() { clear(); }
stack & operator=( const stack<T> & o ) {

if ( this == &o ) return ∗this;
clear();
copy( o );
return ∗this;

}
bool empty() const {

return head == nullptr;
}
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void push( const T & value ) {
head = new node{ value, head }; /∗∗∗/

}
T pop() {

node ∗ n = head;
head = n >next;
T v = std::move( n >value );
delete n;
return v;

}
};

A.4 C++obj

struct stack {
struct node {

ptr<object> value;
node ∗ next;
node( const object & v, node ∗ n = nullptr ) :

value( v.new copy() ), next( n ) {}
};
node ∗ head;
void copy( const stack & o ) {

node ∗∗ cr = &head;
for ( node ∗ nx = o.head; nx; nx = nx >next ) {

∗cr = new node{ ∗nx >value }; /∗∗∗/
cr = &(∗cr) >next;

}
∗cr = nullptr;

}
void clear() {

for ( node ∗ nx = head; nx; ) {
node ∗ cr = nx;
nx = cr >next;
delete cr;

}
head = nullptr;

}
stack() : head( nullptr ) {}
stack( const stack & o ) { copy( o ); }
∼ stack() { clear(); }
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stack & operator=( const stack & o ) {
if ( this == &o ) return ∗this;
clear();
copy( o );
return ∗this;

}
bool empty() const {

return head == nullptr;
}
void push( const object & value ) {

head = new node{ value, head }; /∗∗∗/
}
ptr<object> pop() {

node ∗ n = head;
head = n >next;
ptr<object> v = std::move( n >value );
delete n;
return v;

}
};
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