
Building Detection from Very High 

Resolution Remotely Sensed Imagery 

Using Deep Neural Networks 

 

 

by 

 

 

Mengge Chen 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Geography 

 

 

Waterloo, Ontario, Canada, 2019 

 

 

©Mengge Chen 2019 

 



 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

The past decades have witnessed a significant change in human societies with a fast pace 

and rapid urbanization. The boom of urbanization is contributed by the influx of people to the 

urban area and comes with building construction and deconstruction. The estimation of both 

residential and industrial buildings is important to reveal and demonstrate the human activities 

of the regions. As a result, it is essential to effectively and accurately detect the buildings in 

urban areas for urban planning and population monitoring. The automatic building detection 

method in remote sensing has always been a challenging task, because small targets cannot be 

identified in images with low resolution, as well as the complexity in the various scales, 

structure, and colours of urban buildings. However, the development of techniques improves 

the performance of the building detection task, by taking advantage of the accessibility of very 

high-resolution (VHR) remotely sensed images and the innovation of object detection 

methods.  

The purpose of this study is to develop a framework for the automatic detection of urban 

buildings from the VHR remotely sensed imagery at a large scale by using the state-of-art deep 

learning network. The thesis addresses the research gaps and difficulties as well as the 

achievements in building detection. The conventional hand-crafted methods, machine learning 

methods, and deep learning methods are reviewed and discussed. The proposed method 

employs a deep convolutional neural network (CNN) for building detection. Two input datasets 

with different spatial resolutions were used to train and validate the CNN model, and a testing 

dataset was used to evaluate the performance of the proposed building detection method. The 

experiment result indicates that the proposed method performs well at both building detection 

and outline segmentation task with a total precision of 0.92, a recall of 0.866, an F1-score of 

0.891. In conclusion, this study proves the feasibility of CNN on solving building detection 

challenges using VHR remotely sensed imagery. 



 

 iv 

Acknowledgements 

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor 

Dr. Jonathan Li for the continuous support of my Master study and research, for his aspiring 

guidance, priceless constructive criticism, and generous sharing of his immense knowledge. I 

appreciate his help through all the time of research and writing of the thesis. Without his 

assistance and dedicated involvement, I would never accomplish this thesis. 

I would also like to sincerely thank my thesis committee numbers, Dr. Michael Chapman, 

Professor at the Department of Civil Engineering, Ryerson University, Dr. Dongpu Cao, 

Associate Professor at the Department of Mechanical and Mechatronics Engineering, 

University of Waterloo, and Dr. Linlin Xu, Research Assistant Professor at the Department of 

System Design Engineering, University of Waterloo, for serving as my thesis examine 

committee, and for their insightful comments and encouragement. 

Furthermore, I would like to thank Zilong Zhong, Lingfei Ma, Ying Li, Ming Liu, Gaoxiang 

Zhou, Zheng Gong, Dedong Zhang, Zhuo Chen, Weiya Ye and Yue Gu, all the members in 

the Mobile Sensing and Geodata Analytics Lab, for their academic perspectives and 

stimulating discussions during the group meeting. Also, sincere thanks go to the staff and 

colleagues at WatXtract.ai where I spent two terms during internship and had access to the 

advanced computing facility. Appreciation also goes to all the staff in the Department of 

Geography and Environmental Management, especially Alan Anthony and Susie Castela, for 

their assistance. Special thanks go to Dr. Ke Yang, for providing me support on programming 

and deep learning. 

Last but not least, I would like to express my deepest gratitude to my parents for their endless 

love, understanding and moral support throughout my graduate study and my life in general. 

Thanks to my friends: Ansel Zhao, Changyuan Xiang, Jerry Liang, Liang Zhu, Sen Li, Wanxue 

Meng, Yifei Song, and Yunzhe Li, for their unconditional understanding and encouragement, 

for accepting nothing less than excellence from me, and for all the sleepless nights we have 

been through together. 



 

 v 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................. ii 

Abstract ............................................................................................................................... iii 

Acknowledgements ............................................................................................................. iv 

Table of Contents ................................................................................................................. v 

List of Figures ................................................................................................................... viii 

List of Tables........................................................................................................................ x 

List of Abbreviations........................................................................................................... xi 

Chapter 1 Introduction ......................................................................................................... 1 

1.1 Motivation .................................................................................................................. 1 

1.2 Objectives of the Thesis ............................................................................................. 4 

1.3 Structure of the Thesis ................................................................................................ 4 

Chapter 2 Background and Related Studies ......................................................................... 6 

2.1 Traditional Building Detection Methods .................................................................... 6 

2.1.1 Template Matching-based Methods ..................................................................... 7 

2.1.2 Knowledge-based Methods.................................................................................. 8 

2.1.3 Object-based Methods ......................................................................................... 9 

2.1.4 Machine Learning-based Method ...................................................................... 10 

2.2 Deep Learning .......................................................................................................... 12 

2.2.1 Structure of Deep Learning Models ................................................................... 13 

2.2.2 Deep Learning Algorithms ................................................................................ 14 

2.2.3 Building Detection with Deep Learning ............................................................ 19 

2.3 Chapter Summary ..................................................................................................... 25 

Chapter 3 Methodology for Building Detection ................................................................ 26 

3.1 Study Area and Datasets ........................................................................................... 26 

3.2 Workflow of Proposed Methodology ....................................................................... 29 

3.3 Data Pre-processing .................................................................................................. 30 

3.3.1 VHR Aerial Image Pre-processing .................................................................... 30 

3.3.2 Labelled Data Pre-processing ............................................................................ 31 



 

 vi 

3.4 Proposed Model ........................................................................................................ 31 

3.4.1 Convolutional Layer .......................................................................................... 32 

3.4.2 Pooling Layer ..................................................................................................... 33 

3.4.3 Batch Normalization .......................................................................................... 34 

3.4.4 Activation........................................................................................................... 35 

3.4.5 Fully-connected Layer ....................................................................................... 35 

3.4.6 Loss Function ..................................................................................................... 36 

3.4.7 Backpropagation ................................................................................................ 37 

3.4.8 Optimization Method ......................................................................................... 38 

3.4.9 Fine-tuning ......................................................................................................... 38 

3.5 Proposed Network Implementation .......................................................................... 40 

3.5.1 ResNet and Feature Pyramid Network .............................................................. 41 

3.5.2 Region Proposal Network .................................................................................. 44 

3.5.3 Mask Generation ................................................................................................ 45 

3.6 Accuracy Assessment ............................................................................................... 45 

3.6.1 Intersection-over-Union ..................................................................................... 46 

3.6.2 Confusion Matrix ............................................................................................... 46 

3.6.3 Precision, Recall and F1-score........................................................................... 47 

3.7 Implementation Environment ................................................................................... 48 

3.8 Chapter Summary ..................................................................................................... 49 

Chapter 4 Results and Discussion ...................................................................................... 50 

4.1 Hyper-parameters Optimization ............................................................................... 50 

4.1.1 Dataset Division ................................................................................................. 50 

4.1.2 Mini Mask .......................................................................................................... 52 

4.1.3 Learning Rate ..................................................................................................... 54 

4.1.4 Backbone ........................................................................................................... 55 

4.1.5 Model Initialization............................................................................................ 56 

4.1.6 Summary of Hyper-parameters .......................................................................... 57 

4.2 Analysis of Building Detection Result ..................................................................... 58 



 

 vii 

4.2.1 Qualitative Result Comparison .......................................................................... 59 

4.2.2 Quantitative Result Comparison ........................................................................ 70 

4.3 Comparison of Building Detection Methods ............................................................ 76 

4.4 Chapter Summary ..................................................................................................... 79 

Chapter 5 Conclusions and Recommendations .................................................................. 80 

5.1 Conclusions .............................................................................................................. 80 

5.2 Contributions ............................................................................................................ 81 

5.3 Limitations and Recommendations .......................................................................... 81 

References .......................................................................................................................... 83 

 



 

 viii 

List of Figures 

Figure 1.1 Typical examples of challenges in building detection ............................................ 3 

Figure 2.1 Structure of a simple neuron network ................................................................... 13 

Figure 2.2 Categorization of deep learning methods and representative algorithms .............. 14 

Figure 2.3 Architecture of an autoencoder ............................................................................. 15 

Figure 2.4 Architecture of a typical CNN model .................................................................... 18 

Figure 3.1 Location of Christchurch, New Zealand ............................................................... 27 

Figure 3.2 Aerial imagery of the study area ........................................................................... 27 

Figure 3.3 Workflow of proposed methodology..................................................................... 29 

Figure 3.4 Convolution operation ........................................................................................... 33 

Figure 3.5 Representation of max pooling .............................................................................. 34 

Figure 3.6 Diagram of backpropagation ................................................................................. 38 

Figure 3.7 Architecture of VGG16 network ........................................................................... 39 

Figure 3.8 The fine-tuning of model ....................................................................................... 40 

Figure 3.9 Architecture of proposed Mask R-CNN ................................................................ 41 

Figure 3.10 Architecture of a residual block .......................................................................... 42 

Figure 3.11 Diagram of FPN on the bottom-up and the top-down pathway .......................... 43 

Figure 3.12 Visualization of anchors ...................................................................................... 44 

Figure 4.1 Overall model performance for different ratios of validation dataset ................... 51 

Figure 4.2 Difference of Loss between training dataset and validation dataset ..................... 52 

Figure 4.3 (a) Original image and mask, (b) downscaled image and mask (c) re-projected image 

and mask............................................................................................................................. 53 

Figure 4.4 Overall model performance for different size of mini masks................................ 53 

Figure 4.5 Model performance for different size of mini masks ............................................ 54 

Figure 4.6 Overall model performance for different learning rates ........................................ 55 

Figure 4.7 Overall model performance between ResNet-50 and ResNet-101........................ 56 

Figure 4.8 Overall model performance for different model initialization .............................. 57 

Figure 4.9 The loss of training dataset and validation dataset ................................................ 59 

Figure 4.10 Detection result by models using training Dataset 1 at region level ................... 61 



 

 ix 

Figure 4.11 Segmentation result by models using training Dataset 1 at region level ............. 62 

Figure 4.12 Detection result by models using training Dataset 2 at region level ................... 63 

Figure 4.13 Segmentation result by models using training Dataset 2 at region level ............. 64 

Figure 4.14 Representative samples of segmentation result by models using training Dataset 1 

at single-house level ........................................................................................................... 66 

Figure 4.15 Representative samples of segmentation result by models using training Dataset 2 

at single-house level ........................................................................................................... 67 

Figure 4.16 Representative tree occlusion and shadow samples of segmentation result by 

models using training Dataset 1 at single-house level ....................................................... 68 

Figure 4.17 Representative tree occlusion and shadow samples of segmentation result by 

models using training Dataset 2 at single-house level ....................................................... 69 

Figure 4.18 Training time of models ...................................................................................... 76 

Figure 4.19 Architecture of U-Net .......................................................................................... 77 

Figure 4.20 Representative samples of detection result by the proposed model, U-Net and 

baseline Mask R-CNN ....................................................................................................... 78 

 



 

 x 

List of Tables 

Table 2.1 Comparison among four categories of deep learning ............................................. 19 

Table 2.2 Summary of deep learning method on building detection ...................................... 23 

Table 3.1 Specifications of aerial image data ......................................................................... 28 

Table 3.2 An example of confusion matrix for binary classification ..................................... 47 

Table 4.1 Summary of hyper-parameter ................................................................................. 58 

Table 4.2 Accuracy Assessment of model using training Dataset 1 ....................................... 70 

Table 4.3 Accuracy Assessment of model using training Dataset 2 ....................................... 70 

Table 4.4 Confusion matrix for training Dataset 1 at 10 epochs ............................................ 73 

Table 4.5 Confusion matrix for training Dataset 1 at 40 epochs ............................................ 73 

Table 4.6 Confusion matrix for training Dataset 1 at 120 epochs .......................................... 73 

Table 4.7 Confusion matrix for training Dataset 1 at 200 epochs .......................................... 73 

Table 4.8 Confusion matrix for training Dataset 2 at 10 epochs ............................................ 74 

Table 4.9 Confusion matrix for training Dataset 2 at 40 epochs ............................................ 74 

Table 4.10 Confusion matrix for training Dataset 2 at 120 epochs ........................................ 74 

Table 4.11  Confusion matrix for training Dataset 2 at 200 epochs ....................................... 74 

Table 4.12 Summary of optimal models ................................................................................. 75 

Table 4.13 Overall performance of models ............................................................................ 79 

 

  



 

 xi 

List of Abbreviations 

AP  Average precision 

AR  Averaged recall 

CIS  Channel-wise inhibited softmax 

CNN  Convolutional Neural Network 

CRF  Conditional Random Field 

DBN  Deep Belief Network 

DEM  Deep Energy Model 

DSM  Digital surface model 

DTM  Digital Terrain Model 

FCN  Fully Convolutional Network 

FN  False negative 

FP  False positive 

FPN  Feature Pyramid Network 

GSD  Ground sample distance 

GLGCM  Gray level-gradient co-occurrence matrix 

HOG  Histogram of oriented gradients 

IoU  Intersection-over-Union 

LINZ  Land Information of New Zealand 

mAP                            mean Average Precision 

mAR                           mean Average Recall 

MRF  Markov Random Field 

MRS  Multi-resolution segmentation 



 

 xii 

MSI  Morphological shadow index 

NAIP  National Agriculture Imagery Program 

NZTM  New Zealand Transverse Mercator 

OBIA  Object-based image analysis 

RBF  Radial Basis Function 

RBM  Restricted Boltzmann Machines 

ResNet                        Residual Network 

ROI  Region of Interest 

RPN  Region proposal network 

SGD  Stochastic Gradient Descent 

SVM  Support Vector Machine 

TN  True negative 

TP  True positive 

VHR  Very high-resolution 

 

 



 1 

Chapter 1 Introduction 

1.1  Motivation 

    During the past few decades, the significant development of human societies leads to 

expanded urbanization. Due to the modernization and industrialization, the global urbanization 

signifies the rapid movement of the population from rural to urban areas (Konstantinidis, 2017). 

According to the Population Division report from the United Nations (2015), there is currently 

more than half of the world’s population living in urban areas. And by the year 2050. the number 

will increase to 66%, which means almost two-thirds of the world’s population is projected to be 

urban residents (UN, 2015). Large changes in settlement always follow the massive urbanization; 

therefore, the estimation of buildings, especially houses for inhabitants, can be regarded as a major 

statistic for urban understanding. The construction and demolition of buildings can reflect the 

distribution and impact of human activities in a region; thus, the urban building detection and 

mapping are essential for urban management. Accordingly, the aim of building maps is to 

understand the urban dynamics, including population estimation, urban planning promotion, and 

other applications in the field of socio-economic and environmental studies (Jensen & Cowen, 

1999). 

   Object detection, one of the key issues in computer vision, can be represented as the procedure 

of detecting semantic objects from a certain class (i.e., building) through digital images or videos 

(Voulodimos, Doulamis, Doulamis, & Protopapadalkis, 2018). Building detection in the field of 

remote sensing is to identify and extract the building regions from aerial or satellite images by 

employing image processing and computer vision technologies (Cheng & Han, 2016; 

Konstantinidis, 2017). Currently, the extraction of building footprints using remote sensing 

imagery attracts people’s attention, which gives rise to competitions such as the CrowdAI Mapping 

Challenge (CrowdAI, n.d.), DeepGlobe (Demir et al., 2018) and SpaceNet challenges (van Etten, 

Lindenbaum, and Bacastow, 2018). It is worth mentioning that the commercial very high-

resolution (VHR) multispectral imagery, which can be easily obtained nowadays, provides huge 

opportunities for the identification of buildings. In recent years, the tremendous development of 

remote sensing technologies provides a great possibility for automatic object detection using the 

large numbers of VHR remote sensing images. The definition of VHR imagery is an image with a 



 

 2 

ground sample distance (GSD) on the order of 10 cm (Marmanis et al., 2016). Using these high-

resolution images, the detailed information in the urban environment can be comprehensively 

captured, making the tasks of the identification and classification on residential buildings more 

accurate and effective than low-resolution imagery (Konstantinidis, 2017; Turker & Koc-San, 

2015). Additionally, although LiDAR data can offer 3D points in high accuracy, it misses the 

breakline information which can represent a distinct surface feature. VHR imagery, on the other 

hand, provides highly accurate breakline information (Shu, 2014).  

 However, challenges remain in the automated man-made object extraction and building 

detection using VHR remote sensing images for a lot of urban planning applications 

(Vakalopoulou, Karantzalos, Komodakis, & Paragios, 2015). The main challenges can be 

summarized as follows:   

First challenge is the across and in-class diversity. The diversity of objects in the urban 

environment makes the spectral information unpredictable and challenges the conventional pixel- 

and spectral-based building detection methods, because the under-utilization of intensity 

information alone is insufficient for differentiate among impervious urban surface with similar 

spectral information (e.g., buildings, roads, and bare soil as shown in Figure 1.1(a)) (Huang, Zhu, 

Zhang, & Tang, 2014). Especially for VHR imagery, the increased resolution also results in more 

complex structural and contextual information, which makes it more difficult to find an accurate 

and robust building detection method. In addition, the complicated spatial and spectral varieties 

(e.g., size, colour, shapes and texture as shown in Figure 1.1(b)) within the characteristics of urban 

buildings bring to the impossibility of a universal template to define the major feature of buildings. 

And there is a need for context-based methods to utilize the spatial information of VHR images to 

accurately detect building objects (Huang et al., 2014). 

The second challenge relates to the occlusions and shadows. On the one hand, buildings might 

be occluded by other urban objects such as high-rise buildings or tall trees (Figure 1.1(c)). In this 

case, it is challenging to assume the exact size or shape of the buildings for segmentation 

(Konstantinidis, 2017). On the other hand, the shadows brought by the high objects will influence 

the visibility of buildings, which requires additional shadow removal tasks. Also, the shadow cast 

by the building itself (Figure 1.1(d)) can be mistakenly identified as building candidates. 



 

 3 

Furthermore, the detection and elimination of shadows are pretty difficult due to the complex 

generation of shadows as a result of radiance and reflectance, demanding more information about 

the features of occurred shadows. 

 

 

(a) Across-class diversity (b) In-class diversity  

 

 (c) Occlusion  (d) Shadow 

Figure 1.1 Typical examples of challenges in building detection 

The third challenge is the processing of large-scale dataset. The VHR imagery provides detailed 

building information for segmentation at the cost of a huge volume of data to be processed. Taking 

the dataset used in this study as an example, the aerial image covering of a small city has a size of 

30 GB. As a consequence, the processing time for such large dataset is tremendous, and it is 

important to implement an effective method for building detection from VHR imagery. 



 

 4 

Deep learning, the latest developed method in solving artificial intelligence problems, has a 

strong capability in object detection and semantic segmentation. Due to the predicting accuracy 

and processing efficiency, deep learning proves its competitiveness in the field of remote sensing 

(Zhu et al., 2017). Furthermore, deep learning shows its ability to learn hierarchies of features of 

various buildings from VHR imagery (Zhang, Zhang, & Du, 2016). Deep learning is also able to 

obtain higher accuracy and efficiency on the building detection task compared to the convention 

building detection methods (Saito & Aoki, 2015). Considering the advantages of both VHR 

imagery and deep learning on the building detection task, this thesis proposes an approach to detect 

and extract buildings from VHR remotely sensed imagery using deep learning models.  

1.2  Objectives of the Thesis  

      The objective of this thesis is to develop an efficient and accurate framework for the 

automated detection and segmentation of urban buildings using deep learning networks on VHR 

remote sensing images. The specific objectives of the thesis are summarized as follows: 

(1) To implement methods for the preprocessing of VHR images and digitized building 

footprints to make them consistent with the data structure used in deep learning networks; 

(2) To propose and develop the deep learning networks for building detection and extraction 

from VHR images; 

(3) To conduct an accuracy assessment to evaluate the performance of the proposed building 

detection method and compare the performance of the proposed method with other building 

detection methods. 

1.3 Structure of the Thesis 

The thesis consists of six chapters. 

Chapter 1 describes the background, motivations, challenges of the study, followed by the 

research objectives as well as the structure of the study. 

Chapter 2 provides a thorough review of the related research work in the field of automated 

detection of buildings in VHR images. It first reviews the traditional building detection methods, 

including template matching-based methods, knowledge-based methods, object-based methods, 



 

 5 

and machine learning-based methods. The state-of-the-art deep learning models are then presented 

and discussed, including the structure of deep learning networks, deep learning algorithms and 

their applications in building detection. 

Chapter 3 describes the study area and the datasets used in this study. 

Chapter 4 presents the detail of methodology including pre-processing of data, the structure of 

proposed network, the implementation of proposed model, accuracy assessment and the 

implementation environment. 

Chapter 5 shows the experimental results, including the selection of hyper-parameters, the 

qualitative and quantitative results of the proposed model on building detection. Additionally, the 

accuracy assessment and comparison with other models are also presented. 

Chapter 6 concludes the key findings and contribution of the thesis, discusses limitations and 

recommendations for future research. 

  



 

 6 

Chapter 2 Background and Related Studies 

 In this chapter, a literature review is presented to discuss the related research work performed 

in the topics of automated building detection in the field of remote sensing. Section 2.1 will discuss 

conventional building detection methods for remotely sensed images. The following Section 2.2 

will introduce the current trends for object detection tasks, which mainly focus on the state-of-the-

art deep learning methodology and its application in building detection for remotely sensed 

imagery. 

2.1 Traditional Building Detection Methods 

It is important to note that the appearances of buildings are in diverse shapes and sizes, and 

might be affected by the atmospheric condition, human actions, and light intensity, especially for 

aerial imagery. Therefore, the automatic detection and extraction of buildings is a significant yet 

challenging task, and the establishment of an effective method that can be utilized in a great range 

of remotely sensed imagery is extremely difficult.   

Most of the researches involved in the building detection topic can be classified into two main 

categories in terms of the dimensionality and handling method of the data source: the methodology 

using 3D data and using 2D data (Konstantinidis, 2017). The first category, which processes 3D 

data for building extraction, mostly uses LiDAR point clouds and digital surface model (DSM) 

that are collected from laser scanners and maintains the height information of the terrain surface. 

With the representation of 3D data, two common solutions to building detection are the usage of 

appropriate height threshold (Baltsavias, Mason, & Stallmann, 1995; Brunn & Weidner, 1997) and 

the 2D feature extraction with a mapping onto 3D space (Hu, You, Neumann, & Park, 2004; Wang 

& Hsu, 2007; Huang, Zhuo, Tao, Shi, & Liu, 2017). Besides, the 3D building template that utilizes 

the building constructions from prepared urban knowledge to detect buildings is also used in 

researches (Forlani, Nardinocchi, Scaioni, & Zingaretti, 2006; Verma, Kumar, & Hsu, 2006; 

Karantzalos & Paragios, 2010; Hammoudi & Dornaika, 2011). What cannot be denied is the 

significant role of building height that is different from other objects shown on ground, with the 

exception of some tall trees and other man-made objects, that can be mistakenly identified as 

buildings under the height information (Huang et al., 2016). At the same time, there are still some 



 

 7 

limitations to 3D data methodology: the high dependency on data resolution influenced by the 

sensor and the collecting procedure, the discrete height observation in the near neighbour pixels 

due to unexpected changes of surface height, and the heavy expenses in the acquisition of 3D point 

clouds (Konstantinidis, 2017). For those reasons, most building detection tasks fail to benefit from 

3D data, which brings us to the second category as well as the focus for the rest of the literature 

review, the building detection utilizing 2D data.   

Generally speaking, the building detection methods using 2D data can be divided into four main 

categories: the template matching-based, knowledge-based, object-based and machine learning-

based methods, respectively. These four categories are not absolutely independent and have cross-

cutting areas (Cheng & Han, 2016).  

2.1.1 Template Matching-based Methods 

Template matching-based method is the earliest and simplest technique for object detection. A 

template is first generated based on hand-crafting or training set, then used to match one image 

and to find the most possible object location (Cheng & Han, 2016). The most popular method in 

building detection is the active contour model also known as the snake model. An energy 

minimizing spline solution named ‘snake’ was first introduced by Kass, Witkin, and Terzopoulous 

(1988), in order to extract the edges and lines of an object of interest based on the guided 

constraints and image forces. Inspired by the research about ‘snake’, one research proposed the 

geodesic active contours to detect object boundaries based on the relationship between active 

contours and curve evolution (Caselles, Kimmel, & Sapiro, 1997). Therefore, the research about 

energy minimization and boundary segmentation methods can be employed in the building 

detection area.  

The energy function can be produced relying on the texture, colour and shape information to 

characterize the attributes of buildings, and by minimizing the energy function, the specific type 

of building can be extracted (Konstantinidis, 2017). Theng (2006) proposed an active initialized 

contour model for automatic building extraction, where she used the enhanced snake energy 

function, combine with the circular casting algorithm to identify both structured and unstructured 

buildings from satellite imagery. Kovacs and Sziranyi (2012) extracted building contours with any 



 

 8 

shape using the Harris corner detector for contour points, and the Chan-Vese active contour 

method was used to output the final boundary result of the building. Karantzalos and Argialas 

(2009) implemented a segmentation method in the use of a region-based energy function without 

manual localization of the contour area. The initialization of the proposed energy function shows 

that the boundaries can be automatically detected without the gradient and edge-map like other 

previous active contours (Karantzalos & Argialas, 2009). However, due to the diversity of colour 

and shape of the buildings in the image, it is difficult to find a universal energy function to identify 

the characteristic for each building and extract them (Konstantinidis, 2017). 

2.1.2 Knowledge-based Methods 

One type of commonly-used building detection methods is the knowledge-based building 

detection approach in remote sensing, which interprets the building detection tasks as hypotheses 

problem based on manifold knowledge and constraints. The most important part is the 

establishment of knowledge on targets of interest, and the most important knowledge is the object 

geometric knowledge that describes the prior knowledge using particular or general parametric 

shape models (Cheng & Han, 2016). A generic shape model was proposed by Huertas and Nevatia 

(1988) who defined buildings as rectangular or consisting of rectangular features (e.g., “box”, “T”, 

“L”, and “E” shapes) and used the model for building detection. Compared to the work of Huertas 

and Nevatia (1988), which ignored a more complex building structure, McGlone and Shufelt (1994) 

applied the geometric constraints and metric calculation on the building extraction. The line 

orientation to detect the corner and edge of buildings was used to hypothesize the building structure 

followed by considering shadow information to derive the final building information.  

As a matter of fact, the shadow information is one important clue for another category of 

knowledge-based building detection, that is, the context knowledge. The context knowledge 

represents the spatial constraints or relations between the target of interest and the background, or 

the interaction between the object and its neighboring pixels. As a typical instance of context 

knowledge, shadow evidence was exploited by Peng and Liu (2005) to establish a shadow-context 

model to extract buildings from dense urban areas where the sunshine part and shadow part has a 

sharp contrast. In their research, the shadow information combined with context was first used to 



 

 9 

estimate illuminating direction, then a partial snake function was applied on the building output to 

refine the boundaries, and finally, the intensity information was used to separate the roof and the 

self-shadow, based on the generic intensity profile (Peng & Liu, 2005). Ok, Senaras, and Yuksel 

(2013) also emphasized the importance of shadow information in building detection, where the 

spatial relationship between buildings and self-shadow shading direction was created using a novel 

fuzzy landscape generation method and GrabCut partitioning algorithm. Subsequently, Ok (2013) 

extended the building detection approach to a higher level of accuracy by using a new method 

based on solar angles to detect shadow areas and combining it with a graph theory framework to 

extract buildings from the shadow (Ok, 2013; Ghaffarian, 2014). One challenge is that the implicit 

prior knowledge about objects of interest requires an effective transformation to explicit 

constraints and models (Cheng & Han, 2016). The trade-off between the strict rules resulting in 

missing target objects and the loose rules producing the false positive demands more researches in 

order to provide a generic model for building detection. 

2.1.3 Object-based Methods  

With regard to the processing method, there are two types of methods: the pixel-based building 

detection and the object-based building detection. In general, the pixel-based method processes 

individual pixel, and assigns the label of one class on each pixel in the image or groups the pixels 

based on the spectral information alone (Shu, 2014). In contrast, object-based image analysis 

(OBIA) firstly groups relatively homogeneous pixels into the same region, also known as image 

segmentation; then develops a classifier to label these regions based on their characteristics. The 

unique process of OBIA can incorporate the spatial context of targeted objects during the 

classification, therefore offering a framework to exceed the limitations of traditional pixel-based 

object detection methods (Cheng & Han, 2016).  

One of the most popular methods to sketch comparatively identical objects within the remotely 

sensed image is the multi-resolution segmentation (MRS), marked by the arrival of the first 

commercial object-oriented image analysis software eCognition (Baatz & Schape, 2000). The 

method mainly uses three parameters such as shape, compactness, and scale to segment one image 

into objects (Benz, Hofmann, Willhauck, Lingenfelter, & Heynen, 2004). The shape parameter 



 

 10 

determines the similarity of objects based on a balance between the shape (e.g,. length or the 

number of edges) and colour (Benz et al., 2004). The compactness can be seen as a sub-parameter 

of shape, which is used to calculate the smoothness and compactness. The scale parameter has the 

ability to control the average size of the image object and is influenced by the spatial resolution of 

the matching image as well as the features in the study area (Kavzoglu & Yildiz, 2014). Based on 

the MRS and eCognition software, there are some attempts to study the automatic extraction of 

building from a remotely sensed image. For instance, Myint et al. (2011) used the three parameters 

to label the complex features in urban land-cover including buildings, vegetation, and other 

impervious surfaces. In the classification of building regions, the use of MRS, ratio PCA and NDVI 

showed the integration of pixel-based and object-based classifier. Additionally, studies also 

demonstrate the significance of the scale parameter that determines the scope and size of the 

extracted objects; therefore, directly impacts the following classification (Ma et al., 2017). 

However, the accuracy assessment in OBIA method is problematic in that a definition of one single 

and universal measure of the building segmentation accuracy is impossible; and due to the complex 

characteristics of buildings, it is challenging to select a suitable sample size and the use of a specific 

accuracy measurement to the applied algorithms (Cheng & Han, 2016).  

2.1.4 Machine Learning-based Method  

A recent cutting-edge development in object detection is the machine learning techniques, 

which regards the detection task as a typical classification problem and achieves desired 

performance. In machine learning, a classifier is learned from the training data in a supervised, 

semi-supervised or weakly supervised framework, and the classifier can conduct object detection 

using the variation among different class appearances (Cheng & Han, 2016).  

The first step is the feature extraction. A sliding window or object proposal is applied on the 

raw image pixels, and the corresponding representation of features is extracted in a higher 

dimensional space (Khalid, Khalid, & Nasreen, 2014). As one of the most widely used features, 

Histogram of oriented gradients (HOG) was first introduced by Dalal and Triggs (2005) to 

calculate the distribution of intensity gradients, and the gradient orientation is regarded as the 

object feature for differentiation, which has a wide application in the edge or local contour 



 

 11 

detection of objects. In one study, Ilsever and Unsalan (2013) applied HOG on the remotely sensed 

imagery to extract tall building regions. The HOG descriptor was first calculated using a sub-

window to slide through the image, then a Support Vector Machine (SVM) was trained using the 

HOG descriptor and used to classify the building shape. An additional shadow shape detection was 

added to enhance the performance of the proposed building detection approach. Moreover, to 

strengthen the representation capability of the HOG descriptor, the concatenation of other features 

is proposed for high-performance building detection. As a continuation of previous work 

(Konstantinidis, Stathaki, Argyriou, & Grammalidis, 2015), Konstantinidis et al. (2017) combined 

HOG and LBP features as the descriptor, and the cosine-based distance between the two features 

was then put into the SVM classifier for training. After the derivation of candidate building regions, 

a region refinement method was proposed to obtain the final building extraction result. The feature 

fusion approach is robust to the variations among building shapes, and the parameters in the HOG-

LBP features are precise for the specific task, thus can achieve acceptable performance for images 

with different spatial or spectral resolutions (Konstantinidis et al., 2017).  

After the feature extraction, a classifier is trained from object regions with the corresponding 

feature representations, aiming at minimizing the error in the training set brought by 

misclassification (Cheng & Han, 2016). In practice, one commonly-used leaning approach will be 

explained in the following section, the SVM classifier. The current standard of SVM was first 

proposed by Cortes and Vapnik (1995) and becomes one of the most well-known and powerful 

machine learning algorithms in object classification. SVM is a supervised non-probabilistic 

learning model, thus the distribution of the dataset remains unknown before the training; 

additionally, SVM is trained iteratively until a relative optimal boundary is extracted to separate 

the training set (Mountrakis, Im, & Ogole, 2011). In the simplest version, SVM is a linear binary 

classifier that assigns one out of two class labels to a test sample which is an individual pixel in 

the case of remote sensing (Cheng & Han, 2016). The non-linear form of SVM, however, requires 

a kernel to project the data onto a higher dimensional feature space before the separating 

hyperplane is extracted, thus the accuracy of the detection result is influenced by the selection of 

the kernel function as well as proper parameters (Petropoulos, Kalaitzidis, & Vadrevu, 2012; 

Cheng & Han, 2016). In one research, San and Turker (2010) used SVM as the first step of building 



 

 12 

extraction methodologies to extract the building patches, where they combined the satellite image 

with two additional bands (DSM and NDVI) into the SVM classifier. The Radial Basis Function 

(RBF) was selected as the kernel function that can manage linear and non-separable problems (San 

& Turker, 2010). However, SVM can only identify the building regions with irregular boundaries, 

thus the other segmentation methods are needed to improve the result, such as Hough Transform 

for building edge detection (Turker & Koc-San, 2015), template matching technique for height 

estimation (Turlapaty, Gokaraju, Du, Younan, & Anastoos, 2012), or morphological shadow index 

(MSI) for shadow detection (Huang & Zhang, 2012). 

2.2 Deep Learning 

As a subfield of machine learning, deep learning attempts to learn and discover high-level 

distributed representations in data by implementing hierarchical architectures (Guo et al., 2016). 

Since the defining paper brought by Krizhevsky et al. (2012) as a reconstruction of earlier work of 

Fukushima (1980) and LeCun et al. (1989), deep learning dramatically arises and becomes the 

most advanced technology in solving artificial intelligence problems (Marmanis et al., 2016). The 

popularity of deep learning nowadays results from the extremely enhanced chip processing 

abilities, the dramatically decreased cost of computing hardware, as well as the theoretical progress 

in current leading researches in machine learning and image processing (Deng, 2014). The 

foundation of modern deep learning is a neural network that is a computational simulation of the 

biological neural network. In biology, a neuron is a specialized cell that passes electrochemical 

signals to other neurons or parts of the nervous system; and the receiving neuron will process 

signals and then pass signals to the downstream connected neurons (Reagen, Adolf, Whatmough, 

Wei, & Brooks, 2017). As artificial neural networks, however, most of the mathematical and 

computational models are in either of two research directions. The first attempts to simulate the 

biological neurons to understand or illustrate behaviors, and the second utilizes models inspired 

by neurons to solve arbitrary problems (Reagen et al., 2017). In terms of the research interest, the 

second direction that focuses on bio-inspired models to solve real-world problems will be the main 

topic and discussed comprehensively in this thesis.  



 

 13 

2.2.1 Structure of Deep Learning Models 

Figure 2.1 shows the architecture of a simple neural network, where each neuron is expressed 

as a node, and each weight is a line that connects neurons. Specifically, the left neurons are 

identified as inputs to the right neurons, and the value of each neuron will be passed through to the 

right as well. The passed value, however, does not flow to the right directly, but is multiplied by 

the pre-defined weights and combined with other weighted neurons before it is passed forward to 

the next neuron. Briefly speaking, the information of each neuron will be transmitted to multiple 

neurons after the weighting computation, and each neuron will receive weighted information from 

multiple neurons. All the neurons that contain the input value are considered as an input layer; then 

the input layer distributes the input signals to the neurons in the hidden layers. Each neuron in the 

hidden layer operates the activation functions based on the given weights, and these activations 

will be transferred to the output layer which calculates the probability of each output and finally 

yield the result. It is worth noting that Figure 2.1 only represents the simplest example, as there 

might be more layers in the hidden layer. The number of layers is called depth, and the number of 

neurons in one layer is the width of that layer. 

 

Figure 2.1 Structure of a simple neuron network  

(Source: O’Shea & Nash, 2015) 



 

 14 

2.2.2 Deep Learning Algorithms 

Generally, methods using deep learning can be divided into four different categories: Restricted 

Boltzmann Machines (RBMs), Autoencoder, Sparse Coding and Convolutional Neural Networks 

(CNNs). Figure 2.2 shows the category along with the representative works. The following section 

will briefly introduce the concept of each deep learning method and its representative algorithms. 

 

Figure 2.2 Categorization of deep learning methods and representative algorithms  

(Source: Guo et al., 2016) 

The RBM is a generative binary stochastic neural network that was proposed by Hinton and 

Sejnowski in 1986. As an alternative to the Boltzmann Machine, the RBM model is a bipartite 

graph using independent visible layers and hidden layers (Guo et al., 2016). In order to train the 

RBM model, a widely employed development is the rectified linear units, which allows each layer 

to preserve more information by using the same learning weight and learning bias (Nair & Hinton, 

2010). By applying RBM as the learning model, there are three well-known deep models: Deep 

Belief Networks (DBNs), Deep Boltzmann Machines (DBMs), and Deep Energy Models (DEMs). 

DBN is a probabilistic generative model, in which the top two layers are the undirected graphical 

model while the lower layers are directed, generative models. Different from DBN, DBM is 

another deep learning approach where connections are undirected across all the layers in the 

network. DEM is a more recent model whose lower layers use deterministic hidden units, and 

stochastic hidden units for one single top hidden layer, compared to DBN and DBM with multiple 

stochastic layers (Ngiam, Chen, Koh, & Ng, 2011). 



 

 15 

Autoencoder is a different type of neural network (unsupervised) that is specialized for efficient 

encoding learning, instead of predicting features given input by training the network (Liou, Cheng, 

Liou, & Liou, 2014). The general pipeline of an autoencoder is presented in Figure 2.3. By 

minimizing the error during the reconstruction process, the autoencoder first reconstructs the 

inputs into learned features (code), then decodes the features to obtain the output vectors that have 

the same dimensionality of input (Zhou, Arpit, Nwogu, & Venu, 2016). However, a single layer 

encoder is inadequate due to the complexity of raw data, thus the deep autoencoder is proposed by 

Hinton & Salakhutdinov (2006) to fully explain the particular and characteristic features. The deep 

autoencoder is formed by multiple levels of descriptions, composed of one visible layer, various 

hidden layers and an output layer to build the deeply stacked architectures. For each layer, the 

input is the previous layer’s output, and the output with higher level features is wired to the 

successive layer (Dong, Liao, Liu, & Kuang, 2018). After the forward encoding process, a back-

propagation is applied to the model to fine-tune the parameters within all the layers. Although the 

deep autoencoder outperforms the single layer autoencoder, the model requires a pre-trained 

weight to start the training, which can sometimes result in inaccurate predictions if errors occur at 

the beginning of training (Guo et al., 2016). 

 

Figure 2.3 Architecture of an autoencoder 



 

 16 

Sparse coding, another unsupervised learning algorithm, mainly focuses on studying a 

dictionary based on various natural images to explain the underlying structure in images; and after 

using the learned dictionary to represent an image, these representation coefficients are considered 

as features to interpret the characteristics of the image (Zhang, Yao, Sun, & Lu, 2013). As a widely-

used dictionary learning model for deriving sparse representation, sparse coding only uses a small 

number of learning coefficients, thus making the encoding easier to interpret and minimizing the 

computational cost (Feng, Wu, & Zhou, 2017). The optimization of sparse coding has two main 

procedures during the encoding process: the weight update and activation inference. The projected 

gradient algorithm is one of the most commonly used algorithms in the weight update, which 

renormalizes the weight matrix after each epoch of the traditional Gradient descent algorithm. 

After the generation of weights, inferring the feature to activation is significant, thus the Iterative 

Shrinkage-thresholding Algorithm (ISTA) has been proposed for sparse coding activation 

inference. This algorithm optimizes the reconstruction object by using a gradient step and then 

uses a closing shrinkage operation for the sparsity term (Chambolle, DeVore, Lee, & Lucier, 1998). 

CNN is the most commonly used and well-developed deep learning method in the field of image 

processing and analysis problems, aiming at handling image and video data (LeCun, Bengio, & 

Hinton, 2015). Basically, CNN is composed of three types of layers: the convolutional layer, the 

pooling layer, and the fully-connected layer. The architecture of a general CNN model is shown 

in Figure 2.4. The original image is first processed through multiple convolutional, non-linear and 

pooling layers to derive the feature maps, followed by fully-connected layers to obtain the 1D 

feature vector.  

The convolutional layer in CNN is the core building part that convolves the large input image 

or the intermediate feature maps by a set of small, trainable kernels (weight matrix) to generate 

various feature maps (Guo et al., 2016). Therefore, each unit in the feature maps is connected to 

local patches of the feature maps from the previous layer, and the result of the weighted sum is 

passed through an activation function, usually non-linear such as sigmoids or rectified linear units 

(ReLU), to define the output of a layer (LeCun, Bengio, & Hinton, 2015). The convolution 

operation benefits the CNN noticeably in that: the same feature map sharing the same filter limits 

the number of parameters, and neighboring pixels with highly correlated values form unique motifs 



 

 17 

can be easily detected; while the local statistics of processing image remain invariant to location 

(Zeiler, 2013). The pooling layer is always executed after a convolutional layer to decrease the 

dimensional property of feature maps; or summarily, it compacts the output of multiple neurons 

from the previous layer (Scherer, Müller, & Behnke, 2010). The average-pooling and the max-

pooling are the most commonly used pooling methods that conduct the same operation, average 

or max, on a local spatial region to provide invariance to similar features (Reagen et al., 2017). 

Compared to average pooling, the max pooling is more preferable, since it considers the negative 

elements and avoids blurring of the gradients and activations (Zeiler, 2013). In the max pooling 

layer, the maximum value over a non-overlapping region is extracted as the output that down-

samples the input image (Ciresan, Meier, Masci, Maria, & Schmidhuber, 2011). 

After the final pooling layer, the fully-connected layer with weight matrix W and biases b 

follows to transfer the feature map in 2D to feature vector in 1D. The vector in the fully-connected 

layer can either be the various categories in an image classification task, or feature vector for the 

following process (Guo et al., 2016). However, there is one main disadvantage of the fully-

connected layer.  The model involves many parameters and demands massive computational 

resource in the training. The common solution is to decrease the connections or eliminate these 

layers. For instance, GoogLeNet replaced the fully-connected layers by sparsely connected 

architectures while maintaining the computational budget in the design of deep and wide neural 

networks (Szegedy et al., 2015). 

The training phase of CNN mainly consists of two steps: the forward and backward steps. The 

forward step simply generates the feature maps for each layer based on the weights and biases, and 

after the generation of feature maps, the prediction for each class label is extracted to obtain the 

final output as well as the calculation of loss cost. The loss function essentially aims to qualify the 

scoring function which is used to classify the input data; but specifically, the function calculates 

the difference between the estimated label and the ground truth under some degrees of 

regularization. The backward step is then utilized to optimize the weights and biases by applying 

the gradient descent to each parameter. The computing gradient is used to adjust the weights and 

biases, attempting to arrive at a local/global minimum of the loss, and the gradient descent 

algorithm operates iteratively to update the model layer by layer. The repetition process stops until 



 

 18 

the model reaches a predefined threshold of the model’s loss cost or the limit of the number of 

iterations for both forward and backward steps. 

 

Figure 2.4 Architecture of a typical CNN model 

(Source: O’Shea & Nash, 2015) 

Some of the superiority and limitations of the above-mentioned deep learning model has been 

discussed in the previous section. Guo et al. (2016) summarized the comparison among four 

categories of the deep learning algorithms as shown in Table 2.1. Nine properties are listed in the 

summary. ‘Generalization’ interprets the overall performance of a model in different media and 

applications, such as visual recognition, text recognition, etc. The ‘yes’ mark shows that all four 

deep learning models can be effective in processing diverse inputs. ‘Unsupervised learning’ 

represents the ability to train a model without access to ground truth. CNNs is the only supervised 

method that requires labeled training data in the beginning, whereas the other three types of 

methods do not have such restrictions and can work in unsupervised mode. ‘Biological 

understanding’ and ‘Theoretical justification’ refers to the biological groundwork or theoretical 

base involved in the approaches. The sparse coding can be more effective in biological research 

due to its significant biological basis. ‘Invariance’, as one of the most important benefits in CNNs, 

shows the robustness of methods to transformation, including rotation, scale, and translation. 

Especially in computer vision tasks, the CNNs can abstract the input’s features from the relative 

position or orientation of cameras and the object; therefore, the network can effectively identify 



 

 19 

the object from the image where the pixel values are significantly different (Voulodimos et al., 

2018). In general, the CNN outperforms other approaches in terms of feature learning, while 

considering non-visual input, RBMs performs better but fails in predicting joint probabilities and 

limiting the computational cost. On the other hand, the auto-encoder and sparse coding are more 

suitable for small training sets.  

Table 2.1 Comparison among four categories of deep learning 

(Source: Guo et al., 2016) 

 

2.2.3 Building Detection with Deep Learning 

Due to the outstanding capabilities in object detection, visual recognition, and semantic 

segmentation, deep learning has been introduced to solve problems in remote sensing. From the 

traditional research topics of image processing, pixel-level classification, and object recognition, 

to the latest challenging missions of high-level semantic extraction and remote sensing scene 

understanding, the state-of-the-art deep learning methods occur everywhere in the remote sensing 

analysis (Zhang, Zhang, & Du, 2016). Compared to the hand-crafted methods with a focus on 

texture and spatial context as mentioned in Section 2.1, the separation of feature extraction, pixel-

based classification and context modeling becomes extremely insignificant with the application of 

deep learning (Marmanis et al., 2016). Due to the notable ability of feature understanding in high-



 

 20 

level scale, deep learning shows its efficiency in localizing specific ground objects, including the 

task of building detection (Zhu et al., 2017). Therefore, this section provides a methodical review 

and summarizes the representative models and their diverse characteristics in the application of 

the building detection domain. 

During the early researches, patch-based CNN methods simply label a pixel using deep CNN 

to extract features from a local window. The general understanding is that patch-based methods 

are appropriate for texture feature derivation at the local scale, but not suitable for deriving 

geometric and texture features at a long range (Shu, 2014). However, the patch-based methods 

show effective solutions to object extraction with the sophisticated CNN implementation. The 

reason as mentioned in Mnih (2013) is that the former patch-based method lacks a strong feature 

extractor and a larger window that can include the investigated spatial context. Therefore, the 

development of CNN in the patch-based method can lead to a breakthrough in object extraction. 

In his experiment, Mnih (2013) used a patch-based labeling and learning framework with CNN 

for the automatic object extraction from aligned aerial images. In the post-processing step, the 

researcher extended the deep neural network to a deep Conditional Random Fields (CRFs) with a 

smoothness term among outputs. Mnih (2013) also introduced new loss functions in the deep 

learning training process, in order to achieve robustness to incomplete target maps. The results 

showed that the method of Mnih (2013) performs well on individual building extraction but works 

less well on continuous or larger buildings. Inspired by the patch-based method of Mnih (2013), 

Saito, Yamashita and Aoki (2016) employed a similar structure to train the CNN with multi-

labeled patches, but he extended the algorithm to multispectral imagery including visible and 

infrared bands. Besides, a new output function named channel-wise inhibited softmax (CIS) was 

proposed in the training process, and the experiment showed an improvement on the object 

extraction result using the multi-channel mechanism with CIS (Saito et al., 2016). Vakalopoulou 

et al. (2015) proposed a supervised methodology in building extraction based on the AlexNet 

network. A pre-trained network using ImageNet dataset was utilized and trained on the VHR 

multispectral satellite imagery. After the classification process, the Markov Random Field (MRF) 

model was used to extract the building object, and the detection result was promising with 

quantitative validation. Nonetheless, the patch-based sliding method employed in the training and 



 

 21 

testing procedure might be time-consuming (Huang et al., 2016). More specifically, the patch-

based approach with overlapping brings about extreme computational load, and the averaging 

process might disregard valuable edge details (Fu, Liu, Zhou, Sun, & Zhang, 2017). 

Using the standard CNN as a framework, the Fully Convolutional Network (FCN) was first 

proposed by Long, Shelhamer, and Darrell (2015). The fully-connected layers in the standard CNN 

were replaced with convolutional layers to train the classifier for pixel’s likelihood score. Each 

pixel is then assigned to one object label according to the score; and this is the process of the CNN-

based image segmentation (Fu et al., 2017). In remote sensing, there are several papers utilizing 

the FCN-based methods for building detection and segmentation. Sherrah (2016) labeled the aerial 

image in the use of FCN. By investigating the up-sampling and down-sampling architecture in 

CNN, a no-down-sampling approach was applied to the standard FCN to replace the down-

sampling mechanism with the deconvolution to preserve the output resolution. Marmanis et al. 

(2016) used FCN and the succeeding aggressive deconvolution architecture as well to classify the 

aerial image. The extracted output proved the feasibility and effectiveness of FCN in aerial image 

segmentation, although the pixel-based classification was still limited by the receptive field of the 

classifier (Marmanis, et al., 2016). In the research presented in Maggiori et al. (2016), the patch-

based CNN classification was compared with the FCN that was implemented using only the 

convolution and deconvolution operations, and the result showed that FCN performs better than 

the patch-based CNN in terms of classification accuracy and processing time. There are two 

advantages of FCN compared to the patch-based method. The first one has been mentioned in the 

previous paragraph about memory efficiency. Since the patch-based approach enters the 

overlapping patches into a minibatch, the same pixel will occur in the minibatch multiple times; 

while in FCN, each pixel is processed in minibatch only once (Sherrah, 2016). The second 

advantage is the training accuracy brought by FCN training since all the patches are processed in 

the training; whereas, in the patch-based method, only a random subset of all patches is selected 

for training. Therefore, more data are trained effectively in FCN and should result in higher 

accuracy (Sherrah, 2016).   

Yang et al. (2018) compared four state-of-the-art CNN models at a very large scale across the 

entire United States continent using aerial images from the National Agriculture Imagery Program 



 

 22 

(NAIP). The four deep learning architectures are namely: the branch-out CNN, FCN, conditional 

random filed as a recurrent neural network (CRFasRNN), and SegNet (Yang et al., 2018). The 

building extraction result showed that the SegNet model significantly outperforms other models 

on both the F1-score and Intersection-over-Union (IoU) at the instance level. Additionally, Yang 

et al. (2018) also considered the CRFs in the building extraction task for building boundaries 

refinement, and the experiments implied that the initial extractions from FCNs influenced the 

accuracy of the CRF module.  

However, the FCN model and other identical convolutional encoder-decoder models, for 

example, the SegNet and DeconvNet, only apply a part of layers in the generation of final output 

but ignored edge accuracy (Wu et al., 2018). Therefore, a more advanced fully convolutional 

model, U-Net was proposed by Ronneberger, Fischer, and Brox developed for the biomedical 

image in 2015. The U-Net model utilizes up-sampling operators rather than pooling operations to 

concatenate features with higher resolution from the usual encoder part to better locate and learn 

the representations for the following convolution (Ronneberger, Fischer, & Brox, 2015).    

However, there are two main limitations in U-Net as well. The first one is that during the 

backpropagation iteration, the parameter updating of the end layers on both sides of ‘U’ is before 

the intermediate layers, which makes intermediate layers less significant in terms of semantic 

representation (Wu et al., 2018). The other limitation is the sparse constraint applied in the 

intermediate features, which can be replaced by more explicit constraints for better performance 

and generalization of the model (Lin et al., 2017). Specifically, the constraints discussed here can 

be identified as the optimization between the predicted target and the related ground truth in a 

certain layer. Wu et al. (2018) utilized the multi-constraints based on the basic U-Net of skip 

connections to improve the usage of the feature’s representation ability in the hidden layers. By 

updating the parameters using multi-constraints, the bias occurred in a single constraint solution 

was eliminated in each iteration (Wu et al., 2018). The building extraction result from the aerial 

image showed better performance compared to the classic U-Net in terms of the evaluation metrics. 

Additionally, Xu et al. (2018) integrated the framework of U-Net and the deep residual network 

(ResNet) to segment buildings using VHR aerial images. After the training of deep neural network 

Res-U-Net, a guided filter, which is an edge-preserving smoothing method, was proposed to fine-



 

 23 

tune the classification performance and remove the salt-and-pepper class noise (Xu et al., 2018). 

Different from Wu et al. (2018), the researcher in this project not only used infrared data but also 

the DSM for the purpose of accuracy improvement. However, Xu et al. (2018) used a more basic 

U-Net architecture without the application of multi-constraints as introduced in Wu et al. (2018). 

Table 2.2 summarizes the several building detection methods using different deep learning model. 

The strengths and limitations are discussed and compared as well. 

Table 2.2 Summary of deep learning method on building detection 

Model Author Implementation  Strengths Limitation 

Patch-

based CNN 

Mnih et al., 

2013 

• Using a patch-based CNN 

with extension of CRF 

• Simple to 

implement 

• Appropriate 

for texture 

feature 

derivation at 

local scale 

• Not suitable for 

texture feature 

derivation at large 

scale 

• Time consuming 

with extreme 

computing load; 

Averaging process 

disregards edge 

details 

Saito et al., 

2016 

• Using multispectral 

imagery including visible 

and infrared bands 

• Using CIS output function 

Vakalopoulou 

et al., 2015 

• Based on the AlexNet 

network 

• Using MRF model 

FCN 

Sherrah, 2016 • Downsampling mechanism 

was replaced with no-

down-sampling approach 

• Memory 

efficiency 

• Training 

accuracy 

• The missing of 

layers might reduce 

model feasibility 

• Ignoring edge 

accuracy 

Marmanis et 

al., 2016 

• Using the succeeding 

aggressive deconvolution 

architecture 

Maggiori et 

al., 2016 

• Comparing between the 

patch-based CNN and FCN 

• Result shows that FCN 

outperforms patch-based 

CNN 

U-Net 

Wu et al., 

2018 

• Using multi-constraints 

based on the basic U-Net 

• Extraction 

accuracy 

• Concatenating 

features with 

higher 

resolution 

• Intermediate layers 

are less significant 

• Sparse constraint 
Xu et al., 

2018 

• Integrating U-Net and 

ResNet 



 

 24 

 

On the other hand, the concept of feature fusion is considered in some researches, where 

multiple sources are used simultaneously in the neural network. One main component in feature 

fusion is data fusion, which concatenates multiple image sources into a single data cube to the 

following process (Zhu et al., 2017). In one study, the author first trained a VGG network using 

RGB data then combine the contribution of LiDAR that trained another VGG network using the 

DSM. After the training of CNN, the extracted factor was combined to train an SVM, and the final 

semantic class for each patch was then labeled (Lagrange et al., 2015). It is to be noted that the 

spectral information other than the standard RGB can improve the distinction abilities among the 

man-made objects such as buildings (Vakalopoulou et al., 2015). Different from a simple 

combination of RGB and DSM, Geng, Wang, Fan, and Ma (2017) extracted multiscale patch-

based spatial features from SAR image and stacked them into a single sensor, then the output was 

used to train a supervised stacked autoencoder. Finally, a CRF was implemented after the stacked 

autoencoder to remove the influence of speckle noise in SAR images. The data fusion here is the 

consideration of different spatial information (e.g., edges, lines, and contours) extracted from three 

different spatial filters: gray level-gradient co-occurrence matrix (GLGCM), Gabor transform, and 

the histogram of oriented gradient (HOG) (Geng et al., 2017). Another aspect of feature fusion is 

to fuse the features extracted from various inputs, where two or more networks that are trained in 

parallel will be fused for the later stage (Zhu et al., 2017). Sherrah (2016) considered the feature 

fusion as well. He first trained the 3-bands data through a pre-trained VGG network to obtain 

colour features, and then utilized the elevation data such as DSM to learn an FCN from scratch. 

The object features from two different models were concatenated, and two randomly initialized 

FCNs were then trained from the concatenation. The visual context for feature fusion in the aerial 

image understanding was utilized in the paper of Marcu (2016), where a fully-connected layer 

performed the fusion between networks and was learned at various spatial scales. The performance 

showed that the two-pathway learning method can process the information complementarily and 

receive improved detection result.         



 

 25 

2.3 Chapter Summary 

This chapter reviews the related studies of building detection in the field of remote sensing, 

including the traditional building detection method and the advanced deep learning-based method. 

The template matching-based, knowledge-based, object-based and machine learning-based 

methods were introduced and discussed in the field of conventional building detection methods. 

As for the cutting-edge deep learning-based method, the patch-based CNN, FCN, U-Net and 

feature fusion were presented and compared in the review. It can be concluded that deep learning-

based building detection method shows its capability to accurately and effectively detect and 

extract buildings from remotely sensed imagery.  

 

 

 



 

 26 

Chapter 3 Methodology for Building Detection 

This chapter gives a detailed introduction of the proposed method. Section 3.1 introduces the 

study area and the datasets, respectively. Section 3.2 introduces the workflow of the proposed 

method, with a detailed explanation of the processes at every stage. Section 3.3 describes the pre-

processing for both aerial image and labelled data. Then, the architecture of CNN and the 

implementation of proposed model are described in Sections 3.4 and 3.5, respectively. 

Furthermore, the accuracy assessment and the implementation environment are introduced in 

Sections 3.6 and 3.7, respectively. 

3.1 Study Area and Datasets 

In order to examine the performance of the proposed building detection method, the city 

Christchurch in New Zealand, with more than 220,000 independent buildings covering 450 km2, 

is selected in the thesis (see Figure 3.1). Christchurch is the largest city in the South Island, and 

the second-largest city in New Zealand with a population of 404,600 (Stats NZ, n.d.). Between 

September 2010 and February 2011, a series of earthquakes occurred in this region, which has 

resulted in many deaths and thousands of collapsed buildings across the city (Christchurch City 

Council, 2015). After that, the redevelopment project is undertaken involving the destruction of 

damaged buildings and the following construction of buildings with the same building footprints 

(Guo, Morgenroth, & Conway, 2018).  

As shown in Figure 3.1, the selected study area contains the urban region of Christchurch 

including the Cathedral Square (the central city), the inner suburbs and its surroundings, which is 

covered by residential and industrial buildings with distributed grassland and trees. The majority 

of residential buildings in this study area are detached houses with a clear boundary, while most 

of the industrial buildings are large building clusters with different shapes. According to Figure 

3.2, the urban area is mainly filled with various buildings; while the major vegetation region 

(Hagley Park) is located in the center of the study area surrounded by the commercial region, and 

a water region (Avon River) crosses the northeast of the study area. 



 

 27 

 

Figure 3.1 Location of Christchurch, New Zealand 

 

Figure 3.2 Aerial imagery of the study area 



 

 28 

There are two datasets used in the study: the aerial image and the building vector data. 

The ortho-rectified aerial images were collected from the Land Information of New Zealand 

(LINZ) on February 24, 2011, in response to the 22 February 2011 earthquake in Canterbury 

(LINZ Data Service, 2014). All images depict areas of the city Christchurch in a relatively cloud-

free condition using the Vexcel UCXp camera at an elevation of approximately 1,600m. The ortho-

rectified aerial images are in New Zealand Transverse Mercator (NZTM) projection with a spatial 

resolution of 7.5cm in bands R, G and B. The dataset contains 1785 tiles and each tile has 

4,800*7,200 pixels. These tiles are then merged into a single mosaic. The compressed mosaic has 

a total size of around 25G, in the format of GeoTIFF. Figure 3.2 presents that the study area is 

divided into two areas: one for training (70%) and one for testing (30%). Table 3.1 summarizes 

the detailed specifications of main parameters in the aerial image data. 

Table 3.1 Specifications of aerial image data 

Parameter Specifications 

Data Source LINZ 

Captured Date February 24, 2011 

Camera Vexcel UCXp  

Flight Height 1,600m 

Channels R, G and B 

Resolution 7.5cm 

Projection  NZTM 

Format GeoTIFF 

 

The building vector data, which is also the ground truth data, is manually edited by the 

laboratory from Wuhan University, based on Christchurch's building vector data (Ji, Wei, & Lu, 

2018). The building vector data presents all the digitized building masks as shown on the aerial 

image. The vector data is divided through labeling building maps into shapefile with two classes: 

the building class and non-building class, respectively. Therefore, these images can be used for the 

supervised model training on both detection and segmentation tasks by employing the ground truth 

building masks. 

After pre-processing, the training Dataset 1 has a total of 7,058 images with a pixel size of 

1024*1024, combined with the corresponding building mask data in the same size. The validation 

dataset separated from training dataset to fine-tune the model has the same image size as the 

training Dataset 1. The training Dataset 2 has a total of 27,582 images with a pixel size of 512*512, 

combined with the corresponding building mask data in the same size. The corresponding 

validation dataset has the same image size as the training Dataset 2. The performance of building 



 

 29 

detection model is then evaluated in the testing dataset with a total of 15,810 images and 

corresponding building mask data as a comparison. The details of the pre-processing process will 

be discussed in the following section. 

 

3.2 Workflow of Proposed Methodology 

 

Figure 3.3 Workflow of proposed methodology 

Figure 3.3 shows the overall workflow of the methodology that is implemented in this study, 

which can be divided into three main steps: data pre-processing, model training, and building 

detection. In the first step, both the aerial image and the labeled ground truth data were pre-

processed to fit into the CNN model. After the preprocessing, these aerial image slices were 

divided into the training dataset and the testing dataset, combined with the corresponding labeled 

dataset. During the training process, the deep learning network was established, and the training 

dataset was used to train and validate the network. Through training and validation, the hyper-



 

 30 

parameters, the number of iterations, the spatial resolution of images and other parameters were 

optimized and determined to find the optimal detection model. Furthermore, the corresponding 

labeled dataset was employed to compare the correctness between the predicted result and the 

ground truth to train the model. In this step, a well-trained model with defined parameters was 

developed for building detection. Finally, the trained CNN model was applied on the testing 

dataset to detect the building objects and segment buildings from the aerial image, and the 

detection and segmentation result was extracted for accuracy assessment and future application. 

3.3 Data Pre-processing 

The aim of the pre-processing is to establish the appropriate structure of input data to be used 

in the CNN model, which can be divided into two sections: the pre-processing of the aerial image, 

and the pre-processing of the labeled data. 

3.3.1 VHR Aerial Image Pre-processing 

Before the pre-processing, the aerial image was ortho-rectified by the provider (LINZ Data 

Service, 2014). During the orthophoto generation, the original image was processed using the 

NZGD2000 reference system and the Digital Terrain Models (DTM) from the LINZ source. The 

ortho-rectified process means that the distortion as a result of sensor and earth’s topography has 

been geometrically removed. Therefore, the ortho-rectified aerial image can be used directly in the 

study for a more accurate measurement of buildings. 

It cannot be denied that the high resolution of aerial imagery will also lead to shadow visibility. 

As discussed in Section 1, the shadow information can be mistakenly classified as building due to 

the similar outline, which requires an additional shadow removal algorithm. However, in the use 

of deep learning, the shadows cannot be mistaken due to the pixel intensity consideration during 

the feature extraction process. Therefore, there is no need for shadow removal algorithm in the 

data pre-processing for building detection. 

The aerial image from the study area was primarily divided into training and testing regions as 

shown in Figure 3.2. The aerial images from both regions were then scanned and sliced into patches 

based on a pre-defined sliding window. For training Dataset 1, the sliding window cropped the 

image into slices of 1024*1024 pixels at a stride of 500 pixels. The setting of the sliding window 

is important. A large slice size will result in the increase of computation and the complexity of 

retrieve feature during the training process; while a small slice size might not be enough to capture 

the spatial context of one building. The stride length is almost half of the image, the decision of 

which will be explained in Section 3.3.2. For training Dataset 2, the original training image slices 

were down-sampled during the cropping process by performing a 2*2 averaging window. 

Therefore, the image in training Dataset 1 with 1024*1024 pixels was down-sampled to 512*512 



 

 31 

pixels to increase computational efficiency. Through further experiments, whether the down-

sampled process will influence the accuracy of the building detection result are tested and 

discussed. 

Considering the overfitting issue, two solutions were employed in the preparation of data: the 

bias data removing and data augmentation. Since biased data will contribute to overfitting, a 

threshold was applied on the extracted slices to filter out images with no building object 

(Goodfellow, Bengio, & Courville, 2016). In addition, the band shuffling was applied to 30% of 

the random testing data for data augmentation. The red, green and blue channels in the selected 

images were shuffled to present the image with a different combination of bands, which will 

decrease overfitting effect and increase the model performance (Bei et al., 2018). 

3.3.2 Labelled Data Pre-processing 

To be consistent with the aerial image, the labeled data was sliced into the same size as the 

image patch with 512*512 pixels. Since the CNN model only accepts labeled data in image format, 

the labeled data was transferred into a binary mask map in which 0 represents background class, 

and 1 represents building class. In the processing of image cropping, every independent building 

was detected to output a mask image. Thus, for each aerial image patch, multiple mask images 

would be extracted and processed in the training process, if there were more than one building in 

that aerial image. However, the buildings that cross the boundary of each patch will be cropped 

into two or more incomplete parts using the sliding window, and the incomplete building mask 

will influence the prediction accuracy. Therefore, two solutions were used to avoid this situation. 

The first one was to detect and remove buildings across the boundary of the image patches. The 

other solution was to use the stride during the window sliding, which can make neighboring images 

overlap and include buildings that were removed in the previous step. The setting of stride is 

important. Although a small stride length can enhance the extraction accuracy, it will also increase 

the overall computation load. In this study, the stride was set to 500 pixels, which is close to the 

half of the image size, to cover most of the independent buildings. 

Finally, after data pre-processing, the training Dataset 1 contained 7,058 image samples with 

the corresponding mask image, and the training Dataset 2 contained 27,582 image samples with 

the corresponding mask image. The testing dataset contained 15,810 image samples with the 

labeled vector map. 

3.4 Proposed Model 

In Section 2.2.2, the typical architecture of a normal CNN was introduced and consists of the 

convolutional layers, pooling layers, and fully-connected layers. However, during the 

implementation of this study, the architecture of the proposed model is different from normal 



 

 32 

CNN, and the detailed model will be illustrated in the next section. For this section, the key 

components of the proposed CNN model including main layers, training, and testing are discussed 

to provide a better overview of the implemented method. 

3.4.1 Convolutional Layer 

The most important layer and main calculation operation in the CNN should be the 

convolutional layer, where kernels are used to convolve over input 2D image and extract feature 

map using the following equation: 

 
𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝐼(𝑚, 𝑛)

 

𝑛

 

𝑚

 
(3-1) 

 

where i, j denotes the row and the column number of the image, and m, n denote the serial number 

in the kernel. I is the input image, and K is the 2D kernel. S is the output image after convolution.  

Taking Figure 3.4 as an example, it shows the convolution process of a 5*5 3-channel image with 

2 kernels. The blue matrix represents the intensity value of the three colour channels in the input 

image with a size of 5*5, and the image is extended to 7*7 to fit the final output size using zero-

padding on the edges. The right matrices indicate the two kernels (or filters) with a size of 3*3; 

since the input has three channels, each filter has three matrices as well. With a stride of 2, the 

kernel slides through each channel of the input image for convolution. At each location of the 

kernel, an element-wise multiplication between the input arrays and the kernel is executed, and the 

values of these multiplications are summed and added to a bias to get a single value in the output 

of the corresponding location. The green matrix is the output which is also the feature map, and 

the dark green square shows the corresponding location of the dot product. In this case, two 

separate kernels convolve the image input horizontally and vertically, until the image input is 

convolved entirely, to produce the two feature maps shown on the right (Santos, n.d.). Moreover, 

the relationship between the input size and the output size can be calculated using the following 

equation: 

 
𝑊 =

𝑊 − 𝐹 + 2𝑃

𝑆 + 1
 

(3-2) 

 
𝐻 =

𝐻 − 𝐹 + 2𝑃

𝑆 + 1
 

(3-3) 

   

 𝐷 = 𝐾 (3-4) 

 

where [H, W] is the input size padded by P; F is the size of a square kernel; and S is the stride 

value. And the dimension of output (D) equals to the number of kernels (K). 



 

 33 

 

Figure 3.4 Convolution operation 

(Source: Karpathy, 2016) 

3.4.2 Pooling Layer 

Unlike normal CNN where the convolutional layer alternates with pooling layer, the 

implemented CNN does not involve pooling operation much. In ResNet, there is only one max 

pooling layer and one global average pooling layer at the start and the end of the network, 

respectively. As discussed before, the max pooling layer is used to add hierarchy and reduce 

dimensionality. Instead of multiplying with each array and producing the multiplied result, this 

special filter only extracts the maximum value outside of the processed region. Figure 3.5 shows 

an example of a max pooling layer with a size of 2*2 with a stride of 2. For every 2*2 block with 



 

 34 

different colours in the input, the largest value is selected to be the output value, and this operation 

iterates by taking a step or two pixels, until the whole image input has been processed. The max 

pooling layer used in ResNet has a size of 3*3 with a stride of 2. Average pooling, on the other 

side, is to get the average value of the selected block. The aim of using an average pooling layer 

at the end of the network in ResNet is to avoid a fully-connected layer. However, in this study, 

since ResNet is combined with FPN, there is no need for an average pooling layer. The extracted 

feature maps at different stages of ResNet were combined directly using the Region of Interest 

(ROI) pooling. 

 

 

Figure 3.5 Representation of max pooling 

3.4.3 Batch Normalization 

As one of the commonly used normalization methods, batch normalization aims to normalize 

the output of the convolutional layer and keep the mean value close to 0 and standard deviation 

close to 1. The value of normalized x is computed using the following algorithm: 

 
𝑥̂𝐼 =

𝑥𝑖 − 𝜇𝛽

√𝛿𝛽
2 + 𝜀

 
(3-5) 

   

where 𝜇𝛽  is the mean value over the mini-batch 𝛽, and 𝜎𝛽 is the standard deviation over the mini-

batch 𝛽: 

 

 
𝜇𝛽 =

1

𝑀
∑ 𝑥𝑖

𝑚

𝑖=1

 
(3-6) 



 

 35 

 
𝜎𝛽

2 =  
1

𝑚
∑(𝑥𝑖 − 𝜇𝛽)2

𝑚

𝑖=1

 
(3-7) 

 

where m is the total inputs of the mini-batch. The e is set to a small positive value such as 1e-6 to 

avoid zero denominators. 

Batch normalization has been proved to effectively increase the speed of convergence, allowing 

the use of a higher learning rate, reduce overfitting and shorten the training time. This results in a 

better performance of the implemented model (Ioffe & Szegedy, 2015). 

3.4.4 Activation 

After the input is convolved and normalized, an activation layer is applied to the output to 

determine whether a node is accepted or denied for the following process. Since there is no weight 

and bias learned inside activations, activations are not technically ‘layers’ in the architecture of 

deep learning. In practice, the activation function employed is the ReLU function and Sigmoid 

function. ReLU is an activation function that calculates max(0, x) where x denotes the output 

matrix after convolution. After the process of ReLU activation, outputs with a negative value are 

assigned to zero, and positive values and zero values are left unchanged. Sigmoid activation is 

used in the ROI pooling layer as the last layer of FCN. Sigmoid activation uses the following 

equations: 

 
𝑡 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 
(3-8) 

 𝑠(𝑡) = 1/(1 + 𝑒−𝑡) (3-9) 

 

                          

where t represents the weighted sum, s is the sigmoid function, w is the weight, and x is the input 

image value with a total number of n. 

Both ReLU and Sigmoid activations are non-linear functions and produce the non-binary result. 

After applying activation functions, an activation map is produced for each kernel; in other words, 

the dimension of the activation map is the same as the number of kernels. 

3.4.5 Fully-connected Layer 

The fully-connected layer is applied at the end of CNN, where all the activations in the previous 

layer are connected. The fully-connected layer used in the proposed model is also called a dense 



 

 36 

layer. A linear operation is conducted in which every input/node is connected to every output by 

weight using the following formula: 

 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏) 
(3-10) 

where w is the weight, x is the input image value with a total number of n, b is the bias value, and 

f is the activation function. The activation used in the proposed model for bounding box refinement 

branch is the linear activation, and no activation is processed in the classifier branch. 

3.4.6 Loss Function 

The loss function is one of measurements to estimate the error between the network prediction 

and the ground truth. The smaller the loss, the better the predictor is at predicting the correct class 

type of the input. In this study, there are five losses considered to produce the final loss function: 

the RPN anchor classifier loss, the RPN bounding box loss, the loss for the classifier of Mask R-

CNN, the loss for Mask R-CNN bounding box refinement, and the loss for mask segmentation. In 

practice, these losses all have a weight of 1 in the final loss calculation, which means they are 

considered evenly: 

 Total loss = rpn_class_loss + rpn_bbox_loss + mrcnn_class_loss  

+ mrcnn_bbox_loss + mrcnn_mask_loss  (3-11) 

 

For the RPN anchor classifier loss, both positive (matched and true) and negative (matched but 

false) anchors contribute to the loss while neutral anchors (not matched) do not, and the cross-

entropy loss was used to measure the difference between the predicted anchor type and the ground 

truth. For the Mask R-CNN classifier loss, both positive (predicted and true) and negative 

(predicted but false) class labels contribute to the loss, and the cross-entropy loss was used to 

measure the difference between the predicted class type and the ground truth. The cross-entropy 

loss calculates loss by:  

 
𝐶𝐸 = − ∑ 𝑡𝑖𝑙𝑜𝑔 (𝑠𝑖)

𝐶

𝑖

 
(3-12) 

where CE is the cross-entropy loss, 𝑡𝑖 is the ground truth, 𝑆𝑖 is the standard scoring function form 

for each class I in C:  

 𝑠 = 𝑓(𝑥𝑖 , 𝑊) (3-13) 

 

where 𝑥𝑖 is the input minibatch, and W is the weight matrix. f is the activation function.  

 



 

 37 

For the RPN bounding box class loss, only positive anchors contribute to the loss, negative and 

neutral anchors do not. The smooth 𝐿1  loss was used to measure the bounding box loss for 

bounding box refinement. For the Mask R-CNN bounding box loss, only positive ROIs (predicted 

and true) contribute to the loss, and it uses smooth 𝐿1  loss as well. The smooth 𝐿1  loss is a 

combination of 𝐿1loss and 𝐿2 loss, where it uses 𝐿1 loss when the difference between the predicted 

value and true value is less than 1and 𝐿2 loss otherwise: 

 

 
𝑆𝑚𝑜𝑜𝑡ℎ 𝐿1 𝑙𝑜𝑠𝑠 = {

0.5|𝑥|2, |𝑥| < 1
|𝑥| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3-14) 

 

where |𝑥| denotes the 𝐿1 loss, which calculates the difference between the predicted value and 

ground truth: 

 
𝐿1 ≔ (𝑎, 𝑏, 𝑁) ⟶ ∑ |𝑎[𝑖] − 𝑏[𝑖]|

𝑁

𝑖=1

 
(3-15) 

 

where a denotes the predicted value, and b denotes the ground truth. N denotes the number of 

classes. 

For the loss of mask segmentation, only the positive ROIs (predicted and true) contribute to the 

loss, and a binary cross-entropy is used to calculate the loss: 

 

𝐶𝐸 = − ∑ 𝑡𝑖 𝑙𝑜𝑔 (𝑠𝑖) 

𝐶′=2

𝑖=1

= −𝑡1 𝑙𝑜𝑔 (𝑠1) −(1 − 𝑡1)𝑙𝑜𝑔 (1 − 𝑠1) 

(3-16) 

 

where two classes 𝐶1 and 𝐶2 are considered. 𝑡1 and 𝑠1 are the ground truth and the score for class 

𝐶1  , and 𝑡2 = 1-𝑡1and 𝑠1 =1-𝑠1 are the ground truth and the score for 𝐶2. 

3.4.7 Backpropagation 

Backpropagation is the main process in CNN to train the model. The backpropagation calculates 

the gradient of the loss function in the final layer of the network and uses the gradient to iteratively 

update the weights in the network. Figure 3.6 is diagram for backpropagation. In the forward pass, 

the input is passed through the network and the output predictions are acquired. The loss function 

is executed to calculate the difference (error E) between the actual output and the desired output 

(ground truth). In the backward pass, the derivative of loss function or the gradient is computed to 

update the weights by using the chain rule in the computational process. And by the end of the 

process, the effect of each parameter in the kernels on the final loss of the network can be 

identified. The parameter of the weight update depends on the choice of the optimizer. The forward 



 

 38 

and backward steps iterate through the network, until the model converges, or the number of 

iterations is met. 

 

Figure 3.6 Diagram of backpropagation 

3.4.8 Optimization Method 

Optimization method decides the parameter of the weight update as stated in the last paragraph. 

One widely used optimizer in deep learning is the Stochastic Gradient Descent (SGD) (LeCun, 

Bottou, Orr, & Muller, 2012). SGD calculates the gradient and updates the weight on a small batch 

of input data, and the use of small patch means that an update occurs for every batch, rather than 

an update per epoch (Rosebrock, 2017). The formula of SGD is shown in the following algorithm: 

 𝑉𝑡 = 𝛽𝑉𝑡−1 + (1 − 𝛽)𝛻𝑤𝐿(𝑊, 𝑋, 𝑦) (3-17) 

 𝑊𝑡 = 𝑊𝑡−1 − 𝛼𝑉𝑡 (3-18) 

 

where 𝑊𝑡−1 is the original weight, and 𝑊𝑡 is the updated weight. 𝛼 is the learning rate to control 

the speed of weight update which will be tested and decided in Section 4.1.3. 𝛽 is the momentum 

to the accumulated gradient of the past for faster convergence. Specifically, the aim of momentum 

is to increase the speed of updates for gradients in the same direction while decreasing the effect 

of gradients in the opposite direction. The default value of momentum is 0.9, which is proved to 

be the optimal value supported by papers and tutorials (Mitliagkas, Zhang, Hadjis and Ré, 2016). 

L(W, X, y) is the loss function using weigh W, input X, and ground truth y. 

3.4.9 Fine-tuning 

These networks already contain rich and distinguishable filters which can be used on other 

datasets and classes. However, the network cannot be directly applied to the dataset. A solution 

called ‘fine-tuning’ was used to modify the architecture and re-train the networks. Figure 3.7 



 

 39 

shows the typical architecture of a CNN network (VGG16). The blue box represents different 

convolutional layers; the white box represents a different pooling layer while the green box 

represents the final fully-connected layers. The “head” is the final set of layers including the three 

fully-connected layers and the softmax classifier. During the fine-tuning process, the original head 

in the architecture was replaced by the new fully-connected head; therefore, the new head with 

random initialization can be fine-tuned to the specific dataset used in this study (shown in Figure 

3.8). Basically, in the forward propagation, the training data passed through the network normally 

as discussed before. However, in the backpropagation, the rest layers before the head were 

‘frozen’, which means the parameters in these layers remained unchanged, and only the fully-

connected layer was trained from the highly discriminative convolutional layer. The formal layers 

were unfrozen and started to be trained until the new fully-connected layer learned patterns and 

achieve a certain accuracy. Although the process of fine-tuning requires more complex work and 

relies heavily on the choice of new heads parameters, it can take the full advantage of the pre-

existing and discriminative network architectures that have been trained on the ImageNet dataset, 

and increase the final model accuracy with less effort, compared to training the network from the 

beginning. 

 

Figure 3.7 Architecture of VGG16 network 

(Source: Amaratunga, 2019) 



 

 40 

 

Figure 3.8 The fine-tuning of model 

(Source: Amaratunga, 2019) 

3.5 Proposed Network Implementation 

The technical details of the employed CNNs are described in the following sections. The 

literature references that introduce the proposed network are provided for additional information. 



 

 41 

 

Figure 3.9 Architecture of proposed Mask R-CNN 

Proposed by He, Gkioxari, Dollár, and Girshick on 2017, Mask R-CNN is based on Faster R-

CNN (Ren, He, Girshick, & Sun, 2015), in which the author added a third branch of mask 

segmentation to the Faster R-CNN architecture. Figure 3.9 shows the overall architecture of Mask 

R-CNN used in this study, which was built based on the Matterport Mask R-CNN implementation 

(Abdullat, 2018). 

Generally, there are two stages in Mask R-CNN (see Figure 3.9): first, the feature map was 

extracted from input images to generate the region proposal layer using the region proposal 

network (RPN); second, the proposed regions were squashed into a feature map to produce the 

final mask, bounding box and label after processing. Therefore, during the forward process, the 

input of Mask R-CNN was the original image slices, and the output was the bounding box of the 

building class and the mask vector map, both in the format of shapefile. 

3.5.1 ResNet and Feature Pyramid Network 

In the first stage, the original image was first gridded into image slices based on the grid size 

during the pre-processing. In the Mask R-CNN implementation, the image can be resized to any 

shapes (i.e., rectangular and square) with a scaling parameter to fit into the CNN model. However, 

since the gridded images already had the appropriate size and resolution, this step was skipped in 

this study. The image slices were then passed through a deep CNN to extract the feature map. The 

deep CNN used here is also called backbone, in which the standard CNN was used to transfer a 

raw image into a feature map. The backbone feature extractor used in the study is ResNet and 

Feature Pyramid Network (FPN), both of which were pre-trained using the ImageNet classification 

dataset (Russakovsky et al., 2015). 

The ResNet introduces the concept of residual learning where the subtraction of the input, 

known as residual, is learned for the next layer. The residual can be simplified as the following 

residual function: 



 

 42 

 𝐹(𝑥)  =  𝐻(𝑥) –  𝑥  (3-19) 

 

where H(x) is the output, and x is the input to the first of the layers, both of which is in the same 

dimension. And F(x) is the residual. Therefore, the original H(x) function has become the 

following function 

 𝐻(𝑥)  =  𝐹(𝑥)  +  𝑥 (3-20) 

 

for subsequent operations. 

Rather than learned directly from the former layers, a right branch as shown in Figure 3.10 was 

added to the output, which is called “shortcut connections”. The input of the nth layer was directly 

connected with the additional operation to the (n+x)th layer (x represents the number of layers in 

between) before the ReLU activations, while the left branch still follows the standard CNN 

construction in which a set of convolutions, batch normalizations and activations were applied on 

the input. Additionally, the ResNet implementation with more than 50 layers utilized the 

‘bottleneck’ design with three layers in each identity block to sum residuals in each stage, which 

is a simple and efficient solution for deeper neural network implementation (Li et al., 2018). 

The early layers in ResNet detected low-level features such as edges and corners, and later 

layers could successively detect high-level features such as rooftops and buildings. By passing 

through the backbone network, one image was transformed from 512*512*3(RGB channels) to a 

feature map of shape 1*1*2048, which became the input for the following stages. 

 

Figure 3.10 Architecture of a residual block 

 (Source: He, Zhang, Ren, & Sun, 2016) 

 

Additionally, in order to better describe features of objects at multiple scales, the FPN was 

implemented as well in Mask R-CNN. By building up multiple levels of representations at different 

scales in the forward process, the FPN collected the feature activations output from different stages 

of ResNet as shown in Figure 3.11, which was also called “bottom-up pathway” (Lin et al., 2017). 



 

 43 

 

Figure 3.11 Diagram of FPN on the bottom-up and the top-down pathway 

 (Source: Hui, 2018) 

 

Although the map resolution decreased as the pyramid layer increased, the semantic value of 

each layer was increasing with higher-level structures detected. Then, in the top-down pathway, 

higher resolution features were constructed from higher pyramid levels to lower pyramid levels 

using up-sampling by a factor of 2. Furthermore, the reconstructed up-sampling map (M5, M4, 

M3 and M2 in Figure 3.11) was merged with the corresponding feature maps to better detect 

object’s location by element-wise, during which a 1*1 convolutional layer was implemented to 

reduce channel dimensions (Lin et al., 2017). And finally, to reduce the aliasing effect brought by 

up-sampling, a 3*3 convolutional layer was applied on each merged layer and the final feature 

maps (P5, P4, P3 and P2 in Figure 3.11) were then produced. 



 

 44 

3.5.2 Region Proposal Network 

After multiple feature maps were extracted by FPN, the feature map layer at the most proper 

scale based on the size of the object was selected to extract feature patches in the next important 

process: Region Proposal Network (RPN). 

RPN is a neural network for object detection that uses a sliding window to scan the image within 

a region and identifies regions containing objects. The region in RPN is called “anchors”. A set of 

locations were distributed evenly and uniformly on the extracted feature map as show in Figure 

3.12. For each location, a total of 15 anchors with different shapes and scales were created to pick 

up the ROIs. In this study, the shape and size of anchors were determined by two parameters: 

RPN_ANCHOR_SCALES and RPN_ANCHOR_RATIOS, respectively. The 

RPN_ANCHOR_SCALES was set to (32, 64, 128, 256, 512), where each number represents the 

length of square anchor side in pixels. The RPN_ANCHOR_RATIOS was set to [0.5, 1, 2] where 

1 represents the square anchor, and 0.5 and 2 represent rectangular anchor. The ratio value here 

equals to the ratio of width to height. Then, the FPN applied a 3*3 convolutional layer on the 

feature map with two 1*1 convolutional layers for a class label and a boundary box refinement 

separately. The three convolutional layers are called the RPN head. The class label simply defined 

whether there is a possibility of an object in the anchor with two classes: the foreground or the 

background. The bounding box refinement was applied to estimate the offset of the foreground 

anchor and refine the boundary bounding box (anchor) to better fit the object. With multiple 

anchors on the same object, a Non-maximal suppression was applied on these duplicate detections, 

and the anchor with the highest probability score was selected as the ROI.  

 

Figure 3.12 Visualization of anchors 



 

 45 

Since the ROI had been extracted, there were two outputs in one ROI that was similar to RPN: 

the class and bounding box. However, the class label was no longer to differentiate the foreground 

and background but to classify the specific classes (e.g., cats, dogs and human); while in this study, 

there is only one class: building. The bounding box was operated with another refinement to further 

localize the object and refine the boundary and size of the bounding box to encapsulate the object. 

Moreover, since the ROIs were in different sizes and shapes after the bounding box refinement 

process, while the classifier requires a fixed input size, the ROI pooling process was needed before 

classification. In this study, ROI pooling refers to the simplified process where a part of the 

featured map containing the object was cropped and resized to a fixed size (7*7 in setting). 

3.5.3 Mask Generation 

Finally, the extracted positive regions from ROI was fed into another CNN to generate masks 

covering the contour of an object at pixel-scale. The CNN employed here is a small FCN, which 

was introduced in Section 2.2.3. During the implementation, four convolutional blocks including 

a convolutional layer, a batch normalization layer and a ReLU activation, followed by a 

deconvolutional layer and sigmoid activation was processed to extract a mask represented by float 

numbers. The size of the mask was set by MINI_MASK_SHAPE, and the setting in this study was 

set to (128, 128), representing the height and width of the mini-mask in pixels. A smaller mask 

size can save the memory load, while the mask resolution becomes lower compared to the ROI 

bounding box. Despite that, the float numbers contain more details than the final binary mask. 

Hence, after the mask was extracted in the prediction process, the mask was scaled up to the size 

of the bounding box to produce the final binary mask for the object. Consequently, by applying 

Mask R-CNN, the model processed the input image and produced three outputs: the bounding box 

around the building object, the class label, and the mask of the object. 

During the implementation, for the first two training stages, the ResNet backbones layers were 

frozen, and only the RPN, classifier and mask heads were trained for 10 and 40 epochs with a 

learning rate of 0.001 and 0.0001, respectively. Next, the ResNet layers in stage 3 and up were 

unfrozen and trained for 120 epochs to fine-tune layers with a learning rate of 0.0001. Finally, the 

rest of the layers were added in the training to finetune layers for 200 epochs with a learning rate 

of 0.00001. Furthermore, the pre-trained weights from COCO dataset were used as the model 

initial weight parameters to achieve faster convergence and higher accuracy. 

3.6 Accuracy Assessment  

With various parameters in the implementation of models, it is difficult to decide the optimal 

model for the particular detection problem in this study. In order to verify the performance and 



 

 46 

reliability of the proposed model, accuracy assessment was conducted on the building detection 

result using the following metrics. 

3.6.1 Intersection-over-Union 

Before the discussion of accuracy assessment, an important concept needed to be noted is the 

IOU. IOU is an evaluation metric to measure the accuracy of an object detection result over a 

specific dataset. 

 
𝐼𝑂𝑈 =

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

(3-21) 

 

where in the numerator, the area of overlap between the predicted object region and the ground 

truth region is calculated. In the denominator, the area of union where the predicted object region 

and the ground truth region intersects is calculated. Dividing the area of overlap by the area of 

union yields the final output-- the IOU score. The higher the IOU score, the better the prediction 

is. For example, if the IOU is set to 0.5, then once the overlap between the predicted object region 

the ground truth region is greater than or equal to 50%, the prediction is identified as a correct 

prediction. 

3.6.2 Confusion Matrix 

A confusion matrix, also known as an error matrix, is a table to visualize the performance of a 

method, especially for a supervised learning model. Table 3.2 gives an example of a confusion 

matrix for binary classification, which will be used in this study as well. This table shows the 

correct predictions (the diagonal) and the incorrect predictions on what classes are assigned. In 

detail, true positive (TP) denotes that the prediction is a correct detection, which means the IOU 

between the prediction and ground truth is greater than or equal to the threshold. False positive 

(FP) denotes that the prediction is a wrong detection, which means the IOU between the prediction 

and ground truth is smaller than the threshold. False negative (FN) denotes that a ground truth 

region fails to be detected by the detector, and true negative (TN) denotes that the detector does 

not detect a region and it is correct. However, since there are only two classes-- building and 

background in this case-- the ‘background object’ makes no sense, thus TN is not considered for 

accuracy assessment. 

 

 

 

 



 

 47 

Table 3.2 An example of confusion matrix for binary classification 

 Prediction 

Positive Negative 

Actual Positive TP FN 

Negative FP TN 

 

3.6.3 Precision, Recall and F1-score 

In order to fully evaluate the effectiveness of the proposed model, precision and recall are used 

to quantitatively illustrate the confusion matrix.  

Precision aims to find what proportion of positive prediction is actually correct; in other words, 

precision defines how much the predictor can identify the object as buildings. The formula of 

precision is shown as follows: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3-22) 

 

where precision equals to the number of correct predictions divided by the total number of 

predictions. Average Precision (AP) is the averaged precision over all the classes: 

 
𝐴𝑃 =

1

𝑀
∑ 𝑃𝑖

𝐶

𝑖

 
(3-23) 

 

where 𝑃𝑖 is the precision for each class i in C, and M is the number of classes. Since there is only 

one class (building) in this study, AP equals the precision. 

Recall, however, attempts to find what proportion of ground truth are correctly reflected by 

predictions; more specifically, recall evaluates how the predictor can correctly identify the object 

as buildings. The formula of recall is shown as follows: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3-24) 

where recall equals to the number of correct predictions divided by the total number of ground 

truth. Averaged Recall (AR) is the averaged recall over all the classes: 



 

 48 

 
𝐴𝑅 =

1

𝑀
∑ 𝑅𝑖

𝐶

𝑖

 
(3-25) 

where 𝑅𝑖 is the precision for each class i in R, and M is the number of classes. Since there is only 

one class (building) in this study, AR equals the recall. 

In addition, mean Average Precision (mAP) denotes the averaged AP over IOUs for the testing 

dataset, where IOU is set to 0.5, 0.6, 0.7, 0.8: 

 
𝑚𝐴𝑃 =

1

4
∑ 𝐴𝑃𝑖

4

𝑖

 
(3-26) 

where 𝐴𝑃𝑖 is the AP over IoU at 0.5, 0.6, 0.7, 0.8, respectively. 

Mean Average Recall (mAR) denotes the averaged AR over IOUs for the testing dataset, where 

IOU is set to 0.5, 0.6, 0.7, 0.8: 

 
𝑚𝐴𝑅 =

1

4
∑ 𝐴𝑅𝑖

4

𝑖

 
(3-27) 

where 𝐴𝑅𝑖 is the AR over IoU at 0.5, 0.6, 0.7, 0.8, respectively. 

According to the equations of precision and recall, it is easy to find that the two metrics are in 

tension, which means that an increase in precision leads to a decrease in recall and vice versa. 

Therefore, it is important to introduce a metric that balances precision against recall: the F1-score. 

The F1-score is the harmonic mean of precision and recall using the following equation: 

 

 
𝐹1 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(3-28) 

 

The harmonic mean of the two metrics can effectively decrease the influence of extreme values. 

F1-score has a range between 0 and 1, where 0 denotes the worst value and 1 denotes the best 

score. 

3.7 Implementation Environment 

The implementation of deep learning method in this thesis uses Keras with Tensorflow backend. 

Keras is an open-source neural network library written in Python. It aims to establish a user-

friendly, modular and extensible environment (Keras, n.d.). Keras not only supports convolutional 

networks, but also recurrent networks and the combination of both. The high-level wrappers of 

Tensorflow in Keras make it easier to combine standalone modules for the creation of a new deep 

earning model. These modules including the neural layers, the cost functions, the activation 

functions, optimizers, etc. 



 

 49 

There are many backend frameworks in Keras, such as TensorFlow, CNTK or Theano. In this 

study, TensorFlow was selected as the backend library. TensorFlow is an open-source software 

library for tensor calculation with a neural network. 

The proposed model is implemented on the computing environment with the following 

hardware specifications: 

● One Intel® CPU i7-9700k @  3.60GHZ (eight cores)  

● 64GB RAM  

● 1TB of local SSD storage  

● One NVIDIA GeForce GTX 1080 8GB GPU 

3.8 Chapter Summary 

In this chapter, the methodology of building detection using the deep neural network from VHR 

imagery is presented in detail. The workflow of building detection method includes three steps: 

the data pre-processing, the model training and the building detection. In data pre-processing, both 

aerial image data and building vector data were processed to fit the CNN model. Then, the 

processed data was used to train and validate the CNN model. Finally, the optimal CNN model 

was used to conduct building detection on the testing data. The CNN model employed in the thesis 

is Mask R-CNN that has two stages. In the first stage, the input image was processed to extract the 

feature map, and the feature map was used to generate the region proposal layer using RPN. The 

proposed regions were then used to produce the bounding box, class label and mask. In addition, 

the metrics of accuracy assessment used in the thesis are IoU, confusion matrix, precision, recall, 

and F1-score. The implementation environment of the method is presented as well.  



 

 50 

Chapter 4 Results and Discussion 

This chapter presents and discusses the results acquired by the proposed methodology described 

in Chapter 4. Section 4.1 compares and evaluates the performance of models using different hyper-

parameter values to find the optimal combination of five hyper-parameters. In Section 4.2, the 

quantitative and qualitative results of the training Dataset 1 and training Dataset 2 are presented 

and evaluated. Furthermore, the proposed model is compared with other representative deep 

learning models in Section 4.3. 

4.1 Hyper-parameters Optimization 

Hyper-parameter refers to parameters that cannot be optimized or learned from the training 

process, opposite to model parameters like weight and bias, thus the word “hyper-” represents 

higher-level properties of the model. Theses hyper-parameters are required to be fixed before the 

training process starts. In deep learning, hyper-parameters and their values vary from models to 

models, and hyper-parameters also depends on the training dataset. The selection of hyper-

parameter value is always a challenging task in the model. In this study, optimization about five 

hyper-parameters that will influence the performance of the model was conducted in the 

implementation of the proposed neural network, while other hyper-parameters remained as a 

default based on former experiments and experiences. For consistency, each hyper-parameter was 

tested individually, while other hyper-parameters are constant. All the test works used the training 

and validation Dataset 2, thus the only variate was the tested hyper-parameter. For each test, there 

was a total of 40 epochs in the training process. 

4.1.1 Dataset Division 

Generally, the allocation of validation dataset from the training dataset is around 10% to 20%. 

The ratio of validation data extracted from training data can influence the model performance, and 

inappropriate amount of training data might lead to overfitting. In order to find the optimal division 

of the two datasets, five ratios of training and validation data were tested using the same testing 

dataset, which is 30%, 25%, 20%, 15%, and 10%, respectively. Figure 4.1 illustrates the overall 

model performance when different ratios of validation dataset are used. The horizontal axis 



 

 51 

represents the ratios of validation dataset separated from the training dataset; and the vertical is the 

calculated value of metrics (mAP, mAR, and F1-score). According to Figure 4.1, both F1-score 

and mAP reaches the highest value at the model using 15% of validation data, with a steeply drop 

when the ratios of validation dataset increase. The mAR values are relatively close when using 

different ratios of validation dataset. Except for the ratio of 10%, the left four ratios have the same 

mAR value. With regard to the overfitting issue, the differences of overall loss between the training 

dataset and validation dataset during the training process are presented in Figure 4.2. Smaller loss 

difference indicates the similarity of the prediction between the training data and validation data. 

Therefore, according to Figure 4.2, the model using 15% of validation data has the lowest loss 

difference, which denotes that the overfitting is relatively avoided when 15% of validation data is 

separated from training data. As a result, the ratio of 15% validation data is the optimal dataset 

division ratio used for the proposed network. 

 

Figure 4.1 Overall model performance for different ratios of validation dataset  



 

 52 

    

Figure 4.2 Difference of Loss between training dataset and validation dataset 

4.1.2 Mini Mask 

In order to reduce memory load, the mask can be rescaled to a size smaller than the image size. 

Although the downscaled process will decrease the resolution of the extracted mask; as using high-

resolution images, the effect on the performance can be insignificant. Figure 4.3 (a) presents the 

original image and mask, with the downscaled image and mask in the middle (Figure 4.3 (b)). The 

re-projected image and mask are shown in Figure 4.3 (c), where the pixel loss is identified at the 

edge of the mask. 

Thus, in order to find whether the resized mask will influence the model performance 

significantly, the mask size is set to unchanged, (128, 128), (256, 256), which represents the height 

and width in pixels. ‘Unchanged’ means that all the segmented masks remain as original during 

the training process, and the size of the mask depends on the size of building in the input image. 

(128, 128) and (256, 256) means that all the segmented masks are re-scaled to a fixed square size 

with height and width are both 128 or 256 in pixels. Three metrics, mAP, mAR and F1-score are 

used to represent the model performance using different mask sizes. As shown in Figure 4.4, the 

model using a mini mask with the size of (128, 128) outperforms other two models on all the three 

metrics, which means that by rescaling mask actually can predict the mask more accurate. The 



 

 53 

model without rescaling mask has a better performance than the model using a mini mask with the 

size of (256, 256); in other words, the model using a mini mask with the size of (256, 256) has the 

lowest accuracy. 

 

 
 

 
 

 
 

(a) (b) (c) 

Figure 4.3 (a) Original image and mask, (b) downscaled image and mask (c) re-projected 

image and mask 

 

Figure 4.4 Overall model performance for different size of mini masks  



 

 54 

Why rescaling mask increases the accuracy is complicated. However, one reason might relate 

to the size of buildings in the input image. Since most of the buildings in the input image are 

detached houses having a size of 100*100 in pixels, the upscaling of the mini mask gives more 

details in the boundary of the segmented objects. Looking into the performance of each model 

considering AP at different IoU threshold as shown in Figure 4.5, the model using the mini mask 

with the size of (128, 128) has the highest AP over different IoU thresholds; while the differences 

among AP over different IoU increases with the increase of IoU threshold value. Comparing the 

model using a mini mask of (128, 128) and the model without a mini mask, the AP at IoU of 0.5 

is relatively similar, thus for detection task, both models perform almost the same. The accuracy 

gap between the two models increases with rising IoU threshold implies that the employment of 

the mini mask influences the result of the segmentation task. Therefore, considering the accuracy, 

the most appropriate model in terms of the mini mask use is the model by using a mini mask with 

the size of (128, 128). 

 

Figure 4.5 Model performance for different size of mini masks 

4.1.3 Learning Rate 

Since the backpropagation process updates the weight by using the gradient multiplied by a 

learning rate, the learning rate controls the amount of change to the model for each step of the 



 

 55 

training process. If the learning rate is set to be large, although it can make the model to learn 

faster, too large learning rate will overlook the optimum model and results in divergence. On the 

contrary, small learning rate may allow the model to reach the local or global minimum of loss 

with tiny steps, but it will consume a large amount of time (training iterations) and fails to 

converge. In order to find the optimal learning rate used for the proposed model, four learning 

rates are selected and tested, which is 0.005, 0.001, 0.0005 and 0.0001, respectively. According to 

Figure 4.6, the obvious difference of mAP indicates the influence of learning rate on the output 

precision; while learning rate 0.005 and 0.001 have a similar mAP result. The difference between 

0.005 and 0.001 becomes distinct at the mAR result, which leads to the variance of F1-score. In 

conclusion, the model reaches the best performance with the learning rate of 0.001, and the 

learning rate of 0.001 is selected for the final training process. 

 

Figure 4.6 Overall model performance for different learning rates 

4.1.4 Backbone 

There are two ResNet backbones available in this study: the ResNet-50 and ResNet- 101. The 

main difference between these two backbones is the number of layers that ResNet-50 has 50 layers 

while ResNet-101 has 101 layers with considerably increased depth. The detailed architectures of 

ResNet-50 (ResNet-50, n.d.) and ResNet-101 (ResNet-101, n.d.) can be found from references. 



 

 56 

Basically, ResNet-50 has one convolutional layer at the beginning with batch normalization and 

ReLU activation, 16 ResNet blocks, and one dense layer in the end. Each block has three identity 

blocks. For each identity block, there is one convolutional layer, one batch normalization layer and 

one ReLU activation; while the only convolutional layer is identified as a layer. Compared to 

ResNet-50, ResNet-101 has 17 more ResNet blocks, which is 33 ResNet blocks in total. Although 

the increased depth involves more parameters and a more complex network, it does not mean a 

more accurate model in terms of different datasets and experiments. Therefore, the dataset was 

tested by using ResNet50 and ResNet 101 architectures separately. According to Figure 4.7, a 

model using ResNet-101 backbone has a better performance on all the three metrics. Additionally, 

the training time of the model using ResNet-101 is only nine minutes longer than the model using 

ResNet-50. Therefore, considering both accuracy and efficiency, ResNet-101 is selected as the 

backbone of the proposed model. In this study, the variation inside the building class requires a 

deeper neural network to learn more features and predict a more accurate result. 

 

Figure 4.7 Overall model performance between ResNet-50 and ResNet-101 

4.1.5 Model Initialization 

Compared to training a model from scratch, a more advanced method is to employ an existing 

pre-trained model learned from other datasets as a starting point of the proposed model. The pre-



 

 57 

trained model, in this case, is the set of feature extractors to form the architecture of the model. 

Instead of initializing the model with random weights, using a pre-trained model can lead to faster 

convergence and increase the detection accuracy. In this study, two available pre-trained models 

are used and compared with the model with random initialization. One pre-trained model is the 

ResNet 50 that was trained on ImageNet dataset downloaded from Keras Application (Keras 

Documentation, n.d.). The ImageNet dataset contains more than 1.4 million images consisting of 

20,000 classes (e.g., human, car, fish and building) (ImageNet, n.d.). Another pre-trained model is 

the ResNet 101 that was trained on COCO dataset. COCO dataset contains more than 330,000 

images consisting of around 200 classes, specially designed for object detection and segmentation 

(COCO, n.d.). As shown in Figure 4.8, the model using pre-trained weights from COCO dataset 

achieves the best performance in terms of the three metrics, while the accuracy of the model using 

random initialization is significantly lower than the other two models. Therefore, it is essential to 

use a pre-trained model rather than randomly picking up weights. And in this case, the model using 

pre-trained weights from COCO dataset is selected as the base model for the following training 

process.  

 

Figure 4.8 Overall model performance for different model initialization 

4.1.6 Summary of Hyper-parameters 

Generally, five hyper-parameters are tested and discussed above. Table 4.1 summarizes the 

selection of the five hyper-parameters and the optimal value (highlighted in bold) for each hyper-



 

 58 

parameter. In conclusion, the optimal hyper-parameters are: the 15% ratio of validation dataset, 

the mini mask with the size of (128, 128), the learning rate at 0.001, the ResNet-101 backbone and 

the model initialed with pre-trained weight from COCO dataset. 

Table 4.1 Summary of hyper-parameter 

Hyper-parameters Value Performance 

Ratio of validation 

dataset 

10% Medium 

15% Best 

20% Medium 

25% Medium 

30% Worst 

Mini Mask (128, 128) Best 

(256, 256) Worst 

Unchanged Medium 

Learning Rate 0.005 Medium 

0.001 Best 

0.0005 Worst 

0.0001 Medium 

Backbone ResNet-50 Worst 

ResNet-101 Best 

Model Initialization ImageNet Medium 

COCO Best 

Random 

Initialized 

Worst 

4.2 Analysis of Building Detection Result 

In the experiment, two training datasets with different spatial resolutions were learned using 

Mask R-CNN, and two models trained separately with the training datasets were applied on the 

testing dataset. In order to find the optimal building detector and avoid overfitting, each model was 



 

 59 

trained from 10 epochs to 200 epochs. For each trained model, four model weights were selected 

from different epoch range (i.e., 0-10, 11-40, 41-120 and 121-200). Figure 4.9 presents the loss 

trend of training dataset and validation dataset within 200 epochs. The lower loss represents that 

the error in building detection is decreasing. The difference between the training dataset and 

validation dataset shows that the trained model is overfitting after 200 epochs. Therefore, 200 

epochs for training is enough. Consequently, eight models with different spatial resolutions and 

training epochs are tested and compared in the following section, in terms of qualitative and 

quantitative assessment. 

 

Figure 4.9 The loss of training dataset and validation dataset 

4.2.1 Qualitative Result Comparison 

4.2.1.1 Region-level Comparison 

Figure 4.10 shows the detection result (bounding box) of the model using training Dataset 1 

from Epoch 10 to Epoch 200, in comparison with the original image and ground truth. The image 

shows the detection result at the region level; thus, each image represents a square area of 576m * 

576m. Five region-level samples are presented, including the top left, top right, center, bottom left 

and bottom right of the study areas. For a residential area such as top left, central and bottom left, 



 

 60 

all models are capable of dense building detection compared to the ground truth. However, for 

large building cluster in the center of the top left image (the bright white building), both models at 

10 epochs and 200 epochs failed to identify this building; while models at 40 epochs and 120 

epochs recognize part of the building. In a rural region such as top right and bottom right, all the 

models can successfully detect the detached houses, even the smallest house in the right center of 

the top right image. Conclusively, all the models are able to detect individual houses, and the 

models at 40 epochs and 120 epochs can identify large buildings as well. Precisely, Figure 4.11 

presents the segmentation result (mask) of the four models at the same five regions. In the 

residential region, all the models are prone to segment buildings correctly, although only the model 

at 40 epochs can segment the two large buildings in the top left image. In the non-residential 

region, all the models are capable of individual building segmentation with a clear boundary 

between each building. In conclusion, all the models can detect and segment the majority of 

buildings in both residential and rural regions, while improvements are needed for large building 

clusters’ detection. 

Figure 4.12 presents the detection result of the models using training Dataset 2 from Epoch 10 

to Epoch 200, in comparison with the aerial image and the ground truth at the same region level. 

As shown in Figure 4.12, all the models are capable of building detection, especially performing 

better in large building detection compared to training Dataset 1. The large buildings in the top left 

image are successive to be detected in all four models, although the parking lot between the two 

large buildings (highlighted in red circle) is mistakenly identified as buildings by the model at 40 

epochs. In the non-residential region, all the models can detect individual houses, which is similar 

to training Dataset 1. When looking into details, Figure 4.13 presents the segmentation result of 

models. As shown in Figure 4.13, all the detached buildings are successfully segmented. However, 

the models segment the large buildings in the center of the top left and bottom left images into 

many small pieces. Although the number of predictions is increased, the number of FP is rising as 

well. As a result, the models using training Dataset 2 is skilled at detection and segmentation on 

both small and large buildings, while the fragmental segmentation of large buildings requires 

merging to increase the precision. 



 

 61 

 Top left Top right Centre  Bottom left Bottom right 

Aerial image 

     

Ground truth 

     

Model at 10 

epochs 

     

Model at 40 

epochs 

     

Model at 120 

epochs 

     

Model at 200 

epochs 

     

Figure 4.10 Detection result by models using training Dataset 1 at region level 

 

 



 

 62 

 Top left Top right Centre Bottom left Bottom right 

Aerial image 

     

Ground truth 

     

Model at 10 

epochs 

     

Model at 40 

epochs 

     

Model at 120 

epochs 

     

Model at 200 

epochs 

     

Figure 4.11 Segmentation result by models using training Dataset 1 at region level 

 

 



 

 63 

 Top left Top right Centre Bottom left Bottom right 

Aerial image 

     

Ground truth 

     

Model at 10 

epochs 

     

Model at 40 

epochs 

     

Model at 120 

epochs 

     

Model at 200 

epochs 

     

Figure 4.12 Detection result by models using training Dataset 2 at region level 

 

 



 

 64 

 Top left Top right Centre Bottom left Bottom right 

Aerial image 

     

Ground truth 

     

Model at 10 

epochs 

     

Model at 40 

epochs 

     

Model at 120 

epochs 

     

Model at 200 

epochs 

     

Figure 4.13 Segmentation result by models using training Dataset 2 at region level 



 

 65 

4.2.1.2 Single-house-level Comparison 

In response to the discussion of building detection challenges as introduced in Section 1.1, the 

detection result of typical samples at single-house level is presented from Figures 4.14 to 4.17. 

As shown in Figures 4.14 and 4.15, five representative samples of the segmentation result by 

the proposed models at 10 epochs to 200 epochs, in comparison to the aerial image and ground 

truth. Generally, all the models can extract the main section of buildings in different directions, 

shapes and colours. In addition, all the models can segment the mask closing to the actual shapes 

of individual buildings, except that the models using training Dataset 1 at 10 and 40 epochs failed 

to extract corners of the building a and b. Furthermore, in response to the shadow and occlusion 

challenges, Figures 4.16 and 4.17 present two occlusion samples and two shadow samples, and the 

corresponding segmentation result. In Figure 4.16, the models using training Dataset 1 at 120 

epochs and 200 epochs outperform the other models in the segmentation of buildings occluded 

partially by trees in the image a. The building part that is occluded by trees can be successfully 

extracted from the image by the two models, while all the models using training Dataset 2 and the 

other two models using training Dataset 1. Moreover, all the models can segment the building 

section covered by tree shadow in the image d, while the ground truth fails to identify the covered 

part. In conclusion, the proposed building detection method can solve the in-class diversity, 

shadow and occlusion challenges, superior to the conventional building detection method, with a 

clear and precise boundary segmentation. 

 

 

 

 

 

 

 

 

 



 

 66 

 a b c d e 

Aerial image 

 
    

Ground truth 

 
    

Model at 10 

epochs 

 
    

Model at 40 

epochs 

 
    

Model at 120 

epochs 

 
    

Model at 200 

epochs 

 
    

Figure 4.14 Representative samples of segmentation result by models using training 

Dataset 1 at single-house level 

 

 

 

 



 

 67 

 a b c d e 

Aerial image 

 
    

Ground truth 

 
    

Model at 10 

epochs 

 
    

Model at 40 

epochs 

 
    

Model at 120 

epochs 

 
    

Model at 200 

epochs 

 
    

Figure 4.15 Representative samples of segmentation result by models using training 

Dataset 2 at single-house level 

 

 



 

 68 

 a b c d 

Aerial image 

    

Ground truth 

    

Model at 10 

epochs 

    

Model at 40 

epochs 

    

Model at 120 

epochs 

    

Model at 200 

epochs 

    

Figure 4.16 Representative tree occlusion and shadow samples of segmentation result by 

models using training Dataset 1 at single-house level 



 

 69 

 a b c d 

Aerial image 

    

Ground truth 

    

Model at 10n 

epochs 

    

Model at 40 

epochs 

    

Model at 120 

epochs 

    

Model at 200 

epochs 

    

Figure 4.17 Representative tree occlusion and shadow samples of segmentation result by 

models using training Dataset 2 at single-house level 



 

 70 

4.2.2 Quantitative Result Comparison 

In order to quantitatively evaluate the performance of different models, the AP at different IoU, 

mAP, AR at different IoU, mAR, and corresponding F1-score is calculated as shown in Table 4.2 

and Table 4.3 for training Dataset 1 and training Dataset 2, respectively. The highest values for 

each evaluation metric are highlighted in bold. 

Table 4.2 Accuracy Assessment of model using training Dataset 1 

Epochs AP0.5 AP0.6 AP0.7 AP0.8 mAP F1-score 

10 0.892 0.853 0.79 0.611 0.786 0.67 

40 0.895 0.865 0.814 0.677 0.813 0.774 

120 0.92 0.884 0.831 0.685 0.83 0.805 

200 0.942 0.906 0.855 0.713 0.854 0.804 
 

AR0.5 AR0.6 AR0.7 AR0.8 mAR 
 

10 0.661 0.638 0.586 0.453 0.583 

40 0.813 0.785 0.74 0.615 0.738 

120 0.866 0.833 0.782 0.645 0.781 

200 0.838 0.806 0.76 0.634 0.759 

Table 4.3 Accuracy Assessment of model using training Dataset 2 

Epochs AP0.5 AP0.6 AP0.7 AP0.8 mAP F1-score 

10 0.742 0.695 0.623 0.454 0.628 0.698 

40 0.817 0.778 0.717 0.566 0.72 0.767 

120 0.852 0.809 0.736 0.553 0.738 0.768 

200 0.848 0.816 0.762 0.627 0.763 0.801 

 
AR0.5 AR0.6 AR0.7 AR0.8 mAR 

 

10 0.927 0.868 0.779 0.566 0.785 

40 0.932 0.888 0.818 0.646 0.821 

120 0.924 0.878 0.799 0.6 0.8 

200 0.937 0.902 0.842 0.693 0.844 



 

 71 

Generally, both training datasets have the highest AP and AR when the IoU is at 0.5, which 

means that both models perform well in the task of building detection. However, when it comes to 

building segmentation task where the IoU threshold is increased, the performance of both models 

becomes less positive. The highest overall F1-score for training Dataset 1 and training Dataset 2 

is 0.805 at Epoch 120 and 0.801 at Epoch 200, respectively. Since higher F1-score represents a 

better balancing model, the value of F1-score in both models shows a good balance. 

As shown in Table 4.2, the model using training Dataset 1 reaches the highest AP (0.942) when 

the epoch is at 200 and the IoU is at 0.5. The model reaches the highest AR (0.866) when the epoch 

is at 120 and the IoU is at 0.5. In general, the model at Epoch 200 outperforms the previous model 

in terms of AP and mAP (0.854), which means that the model at Epoch 200 is more precise when 

predicting building targets. However, considering AR and mAR, the model at Epoch 120 has the 

best performance where mAR equals to 0.781. The better performance of the model at Epoch 120 

on AR indicates that the model is easier to assign an object to the class of building, although the 

precision is not good. Additionally, in terms of F1-score, the model at Epoch 120 has a relatively 

higher F1-score (0.805) than the model at Epoch 200 (0.804) demonstrating that the combination 

of precision and recall is more balanced after 120 epochs of training. For each IoU threshold and 

epoch, the value of precision is always higher than the value of recall, which indicates that, in 

general, the model learned from training Dataset 1 can misclassify some buildings into the class 

of background. 

As for training Dataset 2, the precision, recall and F1-score result is shown in Table 4.3. 

According to Table 4.3, the model reaches the highest AP (0.852) when the model is at 120 epochs 

and the IoU is at 0.5. The model reaches the highest AR (0.937) when the model is at 200 epochs 

and the IoU is at 0.5. With regards to precision, the model at 120 epochs has the highest AP at IoU 

of 0.5, while with the increase of IoU threshold, the model at 200 epochs always has the highest 

AP. Therefore, the mAP (0.763) is the highest when the model is trained for 200 epochs. When it 

comes to recall, the model trained for 200 epochs outperforms other models over all the IoU 

thresholds. Both the F1-score (0.801) and mAR (0.844) has the highest at 200 epochs as well. 

Different from the model learned from training Dataset 1, in training Dataset 2, the value of recall 



 

 72 

is always higher than the value of precision, which implies that the model trained using Dataset 2 

tends to classify more objects to the class of buildings. 

In order to evaluate the detection performance of different models in detail, the confusion matrix 

for each model with IoU at 0.5 is extracted as seen in Table 4.4 to Table 4.11. These tables 

obviously present the performance of the detection models in terms of the number of correct 

classification (TP) and the number of misclassification (FP and FN). In addition, the highest values 

for each evaluation metric are highlighted in bold. The total number of predictions (at the lower 

left) changes when different models are employed, while the total number of actual (at the upper 

right) is a constant (29958) that represents the number of ground truth within the testing area. By 

comparing these tables, it is obvious that the model at Epoch 200 predicts more buildings than 

other models (see Table 4.7 and Table 4.11). For training Dataset 1, FP is lower than FN, indicating 

that more buildings are misclassified to the background. For training Dataset 2, on the contrary, 

FN is lower than FP, which implies that the model fails to detect certain buildings. Additionally, 

the training Dataset 2 has a relatively higher predictive value than the training Dataset 1, which 

denotes that the model using the training Dataset 2 can detect more buildings than training Dataset 

1, while the detection precision of training Dataset 2 cannot be guaranteed. In regard to the model 

at different epochs, for training Dataset 1, TP has the highest value, and FN has the lowest value 

at 120 epochs, which means that the model trained for 120 epochs can detect more buildings in the 

testing area. At 200 epochs, FP is the lowest among all the models, indicating that the model trained 

for 200 epochs is more precise in building detection task. The phenomenon also verifies the higher 

AR for 120 epochs, and higher AP for 200 epochs in Table 4.4. For training Dataset 2, the model 

has the highest TP and the lowest FN at Epoch 200, showing that the model trained for 200 epochs 

can detect more buildings than other models. The model trained for 120 epochs has the lowest FP 

value, which indicates that the model makes fewer mistakes in differentiating the buildings and 

background. The phenomenon also confirms the higher AR for 120 epochs and higher AP for 200 

epochs. 

 

 

 



 

 73 

Table 4.4 Confusion matrix for training Dataset 1 at 10 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 27757 2201 29958 

Negative 9674 
 

Total 37431 

Table 4.5 Confusion matrix for training Dataset 1 at 40 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 27916 2042 29958 

Negative 6262 
 

Total 34178 

Table 4.6 Confusion matrix for training Dataset 1 at 120 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 27680 2278 29958 

Negative 4805 
 

Total 32485 

Table 4.7 Confusion matrix for training Dataset 1 at 200 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 28068 1890 29958 

Negative 5046 
 

Total 33114 

 

 



 

 74 

Table 4.8 Confusion matrix for training Dataset 2 at 10 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 19815 10143 29958 

Negative 2411 
 

Total 22226 

Table 4.9 Confusion matrix for training Dataset 2 at 40 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 24353 5605 29958 

Negative 2861 
 

Total 27214 

Table 4.10 Confusion matrix for training Dataset 2 at 120 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 25919 4039 29958 

Negative 2282 
 

Total 28201 

Table 4.11  Confusion matrix for training Dataset 2 at 200 epochs 

 
Prediction 

Positive Negative Total 

Actual 

Positive 25096 4862 29958 

Negative 1546 
 

Total 26642 

 

 



 

 75 

After above comparing and discussing, the model using training Dataset 1 has the best precision 

performance at Epoch 120 and the best recall performance at Epoch 200, and the model using 

training Dataset 2 has the best precision performance at Epoch 200 and the best recall performance 

at Epoch 120. Table 4.12 summarizes the AP, AR and F1-score of training Datasets 1 and 2 with 

the best performance at IoU equaling to 0.5, where the highest values for each metric are 

highlighted in bold. According to 5.12, the model using training Dataset 1 at Epoch 200 has the 

highest precision (0.942), and the model using training Dataset 2 at Epoch 120 has the highest 

recall (0.937). Considering the combination of precision and recall, training Dataset 1 has the 

highest F1-score (0.891). 

Table 4.12 Summary of optimal models 

 Precision Recall F1-score 

Training Dataset 1 at Epoch 120 0.92 0.866 0.891 

Training Dataset 1 at Epoch 200 0.942 0.838 0.886 

Training Dataset 2 at Epoch 120 0.852 0.924 0.887 

Training Dataset 2 at Epoch 200 0.848 0.937 0.89 

 

Additionally, the processing time of training models from Datasets 1 and 2 are presented in 

Figure 4.18. The overall processing time of the training model using training Dataset 1 is 256.2 

mins, which is almost twice longer than the training model using training Dataset 2 (145.52 mins). 

In conclusion, the processing time increases significantly with the increase of spatial resolution. 

Considering both quantitative result and qualitative, the model using training Dataset 1 at Epoch 

120 is selected as the optimal model for VHR imagery building detection task. 



 

 76 

 

Figure 4.18 Training time of models 

4.3 Comparison of Building Detection Methods 

In order to further evaluate the performance of the proposed Mask R-CNN building detection 

method, a comparative study was constructed by implementing other state-of-the-art building 

detection methods (i.e., U-Net and baseline Mask R-CNN) on the VHR aerial imagery. 

Considering the better performance of training Dataset 1, as well as the optimal model as tested 

and discussed in Section 4.2, the proposed Mask R-CNN model using optimal hyper-parameters 

after 120 epochs training was performed and compared with other two models using the training 

Dataset 1. 

As reviewed in Section 2.2.3, U-Net is a fully convolutional model that is used in the field of 

building detection (e.g., Wu et al., 2018, Xu et al., 2018). The detailed architecture of U-Net is 

shown in Figure 4.19. Each blue box represents a calculated feature map from the previous input 

image, and the number of channels for each feature map is presented on the top of the blue box. 

The gray arrow in the middle represents the skip connections that pass the feature map from down 

path to up path at different levels. In the encoder or down-path on the left side of the architecture, 

the convolutional blocks are followed by max pooling layer to encode the image into feature maps 

at multiple levels. In the decoder or up path on the right side of the architecture, the up-sampling 



 

 77 

operation is followed by convolutions to expand the feature map dimensions to fit the size of 

feature maps from the left side. Therefore, the location information from the down-sampling path 

and the contextual information from the up-sampling path are combined to obtain the general 

information from both localization and context, and a precise segmentation result is produced 

using this architecture. Additionally, during the implementation of U-Net in the thesis, the optimal 

hyper-paramters in the U-Net model were selected and tuned. The optimizer is Adam with a 

learning rate of 0.0001, and the loss function is binary cross-entropy. 

 

 

Figure 4.19 Architecture of U-Net 

(Source: Ronneberger, Fischer & Brox, 2015) 

 

Another model used for comparison is a baseline Mask R-CNN model acquired from the 

Mapping Challenge of CrowdAI (CrowdAI, n.d.). Figure 4.20 presents five representative samples 

of detection result using the three models, in comparison to the original image and ground truth. 

As shown in Figure 4.20, the majority of buildings are extracted from images by the three models. 

The proposed model can identify all the buildings in the images with a more rounded boundary; 

while U-Net performs better in the boundary segmentation. The baseline Mask R-CNN has worse 

performance on the building detection with more background are misclassified into buildings. 

Furthermore, although U-Net has a more precise boundary, it is sensitive to buildings located at 



 

 78 

the image corner. For instance, the buildings (circled in red) at the bottom-left corner of image b 

is successfully detected and segmented by the proposed and baseline model, while U-Net only 

extracts a small portion of the building. However, the proposed model failed to identify one of the 

building, which might be a result of IoU threshold. According to the qualitative result, the proposed 

model has the best performance on building detection, while U-Net focuses on segmentation rather 

than detection, and the baseline model performs worse compared to the other two models. 

 a b c d e 

Aerial image 

     

Ground truth 

     

Proposed 

method 

     

U-Net 

     

Baseline 

Mask R-CNN 

     

Figure 4.20 Representative samples of detection result by the proposed model, U-Net 

and baseline Mask R-CNN 



 

 79 

The overall performance of the three models is quantitatively evaluated on the accuracy 

assessment (i.e., precision, recall and F1-score). According to Table 4.13, the U-Net method can 

achieve an average of 0.918 in precision, 0.771 in recall and 0.838 in F1-score, respectively. The 

baseline method can achieve an average of 0.3 in precision, 0.887 in recall and 0.447 in F1-score, 

respectively. Nevertheless, the proposed method can achieve an average of 0.92 in precision, 0.866 

in recall and 0.891 in F1-score. According to the qualitative and quantitative assessments, the 

proposed method outperforms the other two models in terms of precision and recall. Additionally, 

it indicates that the proposed building detection method using Mask R-CNN model can accurately 

and effectively detect and segment buildings from VHR aerial imagery. 

Table 4.13 Overall performance of models 

Methods Precision Recall F1-score 

The proposed method 0.92 0.866 0.891 

U-Net 0.918 0.771 0.838 

Baseline Mask R-CNN 0.3 0.887 0.447 

 

4.4 Chapter Summary 

In this chapter, the qualitative and quantitative results of building detection were presented and 

discussed. First, the hyper-parameter values involved in the implementation of the CNN model 

were compared and tuned. The optimal hyper-parameters are: 15% of validation dataset; mini 

mask (128, 128); learning rate at 0.001; ResNet-101 backbone and COCO pre-trained weights. 

Then, the models using optimal hyper-parameters were trained and validated using training Dataset 

1 and training Dataset 2 from 10 to 200 epochs, and the building detection results were obtained 

from the testing dataset. The optimal model was the model trained on training Dataset 1 at 120 

epochs in terms of both qualitative and quantitative results. In the accuracy assessment, the optimal 

model has a precision of 0.920, a recall of 0.866 and an F1-score of 0.891, which also outperforms 

the state-of-the-art U-Net model and baseline Mask-RCNN. 

  

 



 80 

Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

In this thesis, an automated building detection methodology using deep neural networks 

from VHR aerial imagery was proposed and implemented. Mask R-CNN was utilized as the 

framework of the proposed detection methodology. Two datasets with different spatial 

resolutions were used to verify the feasibility and practicability of the proposed model. 

Generally, the proposed model achieves 0.920 in precision, 0.866 in recall, and 0.891 in F1-

score, respectively. In conclusion, the proposed Mask R-CNN model has the ability to operate 

automated building detection and segmentation from aerial imagery. 

Five hyper-parameters were tested and evaluated to find the optimal model. Concerning the 

experiment results, the ratio of validation dataset at 15% has the highest accuracy and limits 

the problem of overfitting. The model using the mini mask with a size of (128, 128) 

outperforms the model without a mini mask and has a better performance on the segmentation 

task. The model using learning rate at 0.001 has the highest score of all three metrics (mAP, 

mAR and F1-score); thus, the optimal learning rate helps the model to achieve the highest 

accuracy and avoid divergence. The ResNet-101 backbone has a better performance than 

ResNet-50 backbone, although the training time of ResNet-101 is a little bit longer. However, 

the selection of ResNet-101 back used in the model is the result of a trade-off between accuracy 

and efficiency. The better performance of the model using ResNet-101 backbone in this study 

proves the necessity of a more complex and deeper neural network on the object detection task, 

considering the complexity and variation of the target category. Finally, the model initialized 

with pre-trained weights from COCO dataset was used as a starting point of the proposed 

model. The significant difference between the pre-trained weight and random initialized 

weight demonstrates that the lower-level features such as line and edges are similar among 

various objects, and the usage of a pre-trained model is necessary to start training a new model. 

Additionally, the experiment result evinces that the concept of transfer learning is fundamental 

during the establishment and development of deep learning (Pan & Yang, 2010). 

Comparing with other building detection models, the baseline Mask R-CNN model has the 

worst performance, with a precision of 0.3, recall of 0.887 and F1-score of 0.447; while U-Net 



 

 81 

is capable of achieving 0.918 in precision, 0.771 in recall and 0.838 in F1-score. The proposed 

Mask R-CNN method has the best performance, with a precision of 0.92, recall of 0.866 and 

F1-score of 0.891. The overall performance verifies the capability of deep learning method in 

the building detection task. Furthermore, the building detection model using deep 

convolutional neural networks proposed in this thesis can automatically and accurately detect 

and segment buildings in VHR aerial imagery. 

5.2 Contributions 

The proposed method in this thesis contributes to the researches and developments of 

building detection from VHR aerial imagery at large scale. The experimental results 

demonstrate the potential of the deep learning-based model to solve building detection 

problem. Consequently, the major contributions of this thesis can be summarized as follows: 

First, an accurate and effective deep neural network using the framework of Mask R-CNN 

is proposed to automatically detect and extract buildings from VHR aerial imagery at large 

scale. Second, the proposed building detection method proves the feasibility of deep learning-

based method on building detection problem. The proposed method also solves the challenges 

as mentioned in Chapter 1: the across and in-class diversity, the occlusion and shadow issues, 

and the processing of large-scale dataset. 

Furthermore, the proposed building detection method can be utilized as a baseline method 

for future building detection task by using different format of the dataset and different locations 

of the study area. Also, the proposed building detection method can be utilized as the base step 

for the building-related task such as change detection, urban land classification, post-

earthquake manipulation, etc. 

5.3 Limitations and Recommendations 

Generally, deep learning is empirical. There is no good theory on the actual working of or 

the decision made inside the large networks. The setting such as learning rate, the number of 

layers or other parameters can only be decided empirically rather than analytically. Therefore, 

future experiments are required to further enhance the performance of building detection 



 

 82 

model. Moreover, post-processing such as edge detection, boundary regularization. corner 

detector can be made to improve the segmentation result. In addition, the majority of buildings 

in this study is detached house. In order to derive a more general models, more training data 

are needed to comprehensively present the features and variation of buildings. 

In the meantime, the computational capability needs to be considered due to the effective 

demand in the experiment. Therefore, more computing resources and advanced computing 

devices are encouraged to train a deeper neural network and reduce time cost. 

In addition, since the dataset collected on 24 February 2011, two days earlier to the occurred 

earthquake, the DTM for orthorectification might not be accurate and influence the position of 

objects. However, due to the objective of the proposed method is to detect buildings, this 

limitation shows less effect on the final result.  

The further aim of deep learning is that a trained model can generalize other datasets without 

training or fine-tuning; therefore, a generalized model can be re-applied in many other cases. 

In order to achieve this goal, more training data are needed to comprehensively present the 

features and variation of buildings. For example, the images containing large building clusters, 

such as malls, warehouses and stadiums, are essential for the identification of urban buildings. 



 83 

References 

Abdullat, W. (2017). Mask R-CNN for object detection and instance segmentation on Keras 

and TensorFlow. Retrieved from https://github.com/matterport/Mask_RCNN. Last 

accessed on April 12, 2019. 

Amaratunga, T. (2019). Build Deeper: The Path to Deep Learning (Second ed.). 

Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: an optimization approach for 

high quality multi-scale image segmentation. Angewandte Geographische 

Informationsverarbeitung, XII, 12–23.  

Baltsavias, E., Mason, S., & Stallmann, D. (1995). Use of DTMs/DSMs and orthoimages to 

support building extraction. In Automatic Extraction of Man-made Objects from Aerial and 

Space Images, 199-210. 

Bei, Y., Damian, A., Hu, S., Menon, S., Ravi, N., & Rudin, C. (2018). New techniques for 

preserving global structure and denoising with low information loss in single-image super-

resolution. In 2018 IEEE Conference on Computer Vision and Pattern Recognition 

Workshops (CVPR), 874-881. 

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-

resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. 

ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4), 239-258. 

Brunn, A., & Weidner, U. (1997). Extracting buildings from digital surface models. 

International Archives of Photogrammetry and Remote Sensing, 32(3), 27-34. 

Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal 

of Computer Vision, 22(1), 61-79. 

Chambolle, A., DeVore, R. A., Lee, N. Y., & Lucier, B. J. (1998). Nonlinear wavelet image 

processing: variational problems, compression, and noise removal through wavelet 

shrinkage. IEEE Transactions on Image Processing, 7(3), 319-335. 

Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. 

ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28. 



 

 84 

Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. 

ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28. 

Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., & Schmidhuber, J. (2011). 

Flexible, high performance convolutional neural networks for image classification. In 2011 

International Joint Conference on Artificial Intelligence (IJCAI), 22(1), 1237. 

COCO. (n.d.). Common Objects in Context. Retrieved from http://cocodataset.org/#home. Last 

accessed on April 12, 2019. 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. 

Council, C. C. (2015). Christchurch District Plan. Retrieved from https://ccc.govt.nz/the-

council/plans-strategies-policies-and-bylaws/plans/christchurch-district-plan/. Last 

accessed on April 22, 2019. 

CrowdAI. (n.d.). Mapping Challenge: Building Missing Maps with Machine Learning. 

Retrieved from https://www.crowdai.org/challenges/mapping-challenge. Last accessed on 

April 22, 2019.  

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 

International Conference on Computer Vision and Pattern Recognition (CVPR), 1, 886-

893.  

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., ... & Raska, R. (2018). 

Deepglobe 2018: A challenge to parse the earth through satellite images. In 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 172-

17209.  

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep 

learning. APSIPA Transactions on Signal and Information Processing, 3, e2. 

Dong, G., Liao, G., Liu, H., & Kuang, G. (2018). A Review of the Autoencoder and Its 

Variants: A Comparative Perspective from Target Recognition in Synthetic-Aperture Radar 

Images. IEEE Geoscience and Remote Sensing Magazine, 6(3), 44-68. 



 

 85 

Feng, X., Wu, S., & Zhou, W. (2017). Multi-hypergraph consistent sparse coding. ACM 

Transactions on Intelligent Systems and Technology (TIST), 8(6), 75. 

Forlani, G., Nardinocchi, C., Scaioni, M., & Zingaretti, P. (2006). Complete classification of 

raw LIDAR data and 3D reconstruction of buildings. Pattern Analysis and Applications, 

8(4), 357-374. 

Fu, G., Liu, C., Zhou, R., Sun, T., & Zhang, Q. (2017). Classification for high resolution remote 

sensing imagery using a fully convolutional network. Remote Sensing, 9(5), 498. 

Geng, J., Wang, H., Fan, J., & Ma, X. (2017). Deep supervised and contractive neural network 

for SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 

55(4), 2442-2459. 

Ghaffarian, S. (2014). Automatic building detection based on supervised classification using 

high resolution Google Earth images. The International Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 40(3), 101. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

Guo, T., Morgenroth, J., & Conway, T. (2018). Redeveloping the urban forest: The effect of 

redevelopment and property-scale variables on tree removal and retention. Urban Forestry 

& Urban Greening, 35, 192-201. 

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for 

visual understanding: A review. Neurocomputing, 187, 27-48. 

Hammoudi, K., & Dornaika, F. (2011). A featureless approach to 3D polyhedral building 

modeling from aerial images. Sensors, 11(1), 228-259. 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In 2017 IEEE 

International Conference on Computer Vision (ICCV), 2961-2969. 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. 



 

 86 

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural 

networks. Science, 313(5786), 504-507. 

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. 

Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 282-

317. 

Hu, J., You, S., Neumann, U., & Park, K. K. (2004). Building modeling from LiDAR and aerial 

imagery. In 2004 ASPRS, 4, 23-28. 

Huang, X., & Zhang, L. (2012). Morphological building/shadow index for building extraction 

from high-resolution imagery over urban areas. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 5(1), 161-172. 

Huang, X., Zhu, T., Zhang, L., & Tang, Y. (2014). A novel building change index for automatic 

building change detection from high-resolution remote sensing imagery. Remote Sensing, 

5(8), 713-722. 

Huang, Y., Zhuo, L., Tao, H., Shi, Q., & Liu, K. (2017). A novel building type classification 

scheme based on integrated LiDAR and high-resolution images. Remote Sensing, 9(7), 679. 

Huang, Z., Cheng, G., Wang, H., Li, H., Shi, L., & Pan, C. (2016). Building extraction from 

multi-source remote sensing images via deep deconvolution neural networks. In 2016 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS), 1835-1838. 

Huertas, A., & Nevatia, R. (1988). Detecting buildings in aerial images. Computer Vision, 

Graphics, and Image Processing, 41(2), 131-152. 

Hui, J. (2018). What do we learn from single shot object detectors (SSD, YOLOv3), FPN & 

Focal loss (RetinaNet)? Retrieved from https://medium.com/@jonathan_hui/what-do-we-

learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d. Last 

accessed on April 22, 2019.  

ImageNet. (n.d.). IMAGENET. Retrieved from http://image-net.org/index. Last accessed on 

April 22, 2019.  



 

 87 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. In 2015 ICML, 448-456. 

Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and 

socio-economic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611-

622. 

Ji, S., Wei, S., & Lu, M. (2018). Fully convolutional networks for multisource building 

extraction from an open aerial and satellite imagery data set. IEEE Transactions on 

Geoscience and Remote Sensing, 99, 1-13.  

Karantzalos, K., & Argialas, D. (2009). A region-based level set segmentation for automatic 

detection of man-made objects from aerial and satellite images. Photogrammetric 

Engineering & Remote Sensing, 75(6), 667-677. 

Karantzalos, K., & Paragios, N. (2010). Large-scale building reconstruction through 

information fusion and 3-d priors. IEEE Transactions on Geoscience and Remote Sensing, 

48(5), 2283-2296. 

Karpathy, A. (2016). Cs231n convolutional neural networks for visual recognition. Neural 

Networks, 1.  

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International 

Journal of Computer Vision, 1(4), 321-331. 

Kavzoglu, T., & Yildiz, M. (2014). Parameter-based performance analysis of object-based 

image analysis using aerial and Quikbird-2 images. ISPRS Annals, 2(7), 31. 

Keras Documentaiton. (n.d.). Applications. Retrieved from https://keras.io/applications/. Last 

accessed on April 24, 2019.  

Keras: The Python Deep Learning library. (n.d.). Retrieved from https://keras.io/. Last 

accessed on April 24, 2019.  

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction 

techniques in machine learning. In 2014 Science and Information Conference, 372-378.  



 

 88 

Konstantinidis, D. (2017). Building Detection for Monitoring of Urban Changes. (Doctoral 

dissertation, Imperial College London).  Retrieved from 

https://spiral.imperial.ac.uk/handle/10044/1/57036. Last accessed on April 25, 2019.  

Konstantinidis, D., Stathaki, T., Argyriou, V., & Grammalidis, N. (2015). A probabilistic 

feature fusion for building detection in satellite images. In 2015 International Conference 

on Computer Vision Theory and Applications, 205–212.  

Konstantinidis, D., Stathaki, T., Argyriou, V., & Grammalidis, N. (2017). Building detection 

using enhanced HOG–LBP features and region refinement processes. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 888-905. 

Kovacs, A., & Sziranyi, T. (2012). Orientation based building outline extraction in aerial 

images. ISPRS Annals of Photogram. ISPRS Annals, 1, 141-146. 

 Lagrange, A., Le Saux, B., Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., ... & 

Ferecatu, M. (2015). Benchmarking classification of earth-observation data: From learning 

explicit features to convolutional networks. In 2015 IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS), 4173-4176. 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. 

D. (1989). Backpropagation applied to handwritten zip code recognition. Neural 

Computation, 1(4), 541-551. 

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In Neural 

networks: Tricks of the Trade, 9-48. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436. 

Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., & Sun, J. (2018). Detnet: A backbone network 

for object detection. arXiv preprint, arXiv:1804.06215, 2018. 

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature 

pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2117-2125. 



 

 89 

LINZ Data Service. (2014). Christchurch Post-Earthquake 0.1m Urban Aerial Photos (24 

February 2011). Data.linz.govt.nz. Retrieved from https://data.linz.govt.nz/layer/51932-

christchurch-post-earthquake-01m-urban-aerial-photos-24-february-2011/metadata/. Last 

accessed on April 22, 2019. 

Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R. (2014). Autoencoder for words. 

Neurocomputing, 139, 84-96. 

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic 

segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 3431-3440. 

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-

based land-cover image classification. ISPRS Journal of Photogrammetry and Remote 

Sensing, 130, 277-293. 

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Fully convolutional neural 

networks for remote sensing image classification. In 2016 IEEE International Geoscience 

and Remote Sensing Symposium (IGARSS), 5071-5074. 

Marcu, A., & Leordeanu, M. (2016). Dual local-global contextual pathways for recognition in 

aerial imagery. arXiv preprint, arXiv:1605.05462. 

Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., & Stilla, U. (2016). 

Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS Annals, 3, 473-

480. 

McGlone, J. C., & Shufelt, J. A. (1994). Projective and object space geometry for monocular 

building extraction. In 1994 IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition (CVPR), 54-61. 

Mitliagkas, I., Zhang, C., Hadjis, S., & Ré, C. (2016). Asynchrony begets momentum, with an 

application to deep learning. In 2016 Annual Allerton Conference on Communication, 

Control, and Computing, 997-1004. 



 

 90 

Mnih, V. (2013). Machine Learning for Aerial Image Labeling. (Doctoral dissertation, 

University of Toronto). Retrieved from 

https://www.cs.toronto.edu/~vmnih/docs/Mnih_Volodymyr_PhD_Thesis.pdf. Last accessed 

on April 25, 2019. 

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A 

review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. 

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. 

object-based classification of urban land cover extraction using high spatial resolution 

imagery. Remote Sensing of Environment, 115(5), 1, 145-1161. 

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann 

machines. In 2010 International Conference on Machine Learning, 807-814. 

Ngiam, J., Chen, Z., Koh, P. W., & Ng, A. Y. (2011). Learning deep energy models. In 2011 

International Conference on Machine Learning, 1105-1112. 

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv 

preprint, arXiv:1511.08458. 

Ok, A. O., Senaras, C., & Yuksel, B. (2013). Automated detection of arbitrarily shaped 

buildings in complex environments from monocular VHR optical satellite imagery. IEEE 

Transactions on Geoscience and Remote Sensing, 51(3), 1701-1717. 

Ok, A. O. (2013). Automated detection of buildings from single VHR multispectral images 

using shadow information and graph cuts. ISPRS Journal of Photogrammetry and Remote 

Sensing, 86, 21-40. 

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge 

and Data Engineering, 22(10), 1345-1359. 

Peng, J., & Liu, Y. C. (2005). Model and context‐driven building extraction in dense urban 

aerial images. International Journal of Remote Sensing, 26(7), 1289-1307. 



 

 91 

Petropoulos, G. P., Kalaitzidis, C., & Vadrevu, K. P. (2012). Support vector machines and 

object-based classification for obtaining land-use/cover cartography from Hyperion 

hyperspectral imagery. Computers and Geosciences, 41, 99-107. 

Reagen, B., Adolf, R., Whatmough, P., Wei, G. Y., & Brooks, D. (2017). Deep learning for 

computer architects. Synthesis Lectures on Computer Architecture, 12(4), 1-123. 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection 

with region proposal networks. Advances in Neural Information Processing Systems, 91-

99. 

ResNet-101. (n.d.). Retrieved from 

http://ethereon.github.io/netscope/#/gist/b21e2aae116dc1ac7b50. Last accessed on April 

22, 2019.  

ResNet-50. (n.d.). Retrieved from 

http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006. Last accessed on April 

22, 2019.  

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical 

image segmentation. International Conference on Medical Image Computing and 

Computer-assisted Intervention, 234-241. 

Rosebrock, A. (2017). Deep Learning for Computer Vision with Python: Starter Bundle. 

Pyimagesearch.  

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C. (2015). 

Imagenet large scale visual recognition challenge. International Journal of Computer 

Vision, 115(3), 211-252. 

Saito, S., & Aoki, Y. (2015). Building and road detection from large aerial imagery. IS&T/SPIE 

Electronic Imaging, 94050K– 94050K.  

 Saito, S., Yamashita, T., & Aoki, Y. (2016). Multiple object extraction from aerial imagery 

with convolutional neural networks. Electronic Imaging, 2016(10), 1-9. 



 

 92 

San, D. K., & Turker, M. (2010). Building extraction from high resolution satellite images 

using Hough transform. ISPRS Archives, 38(Part 8), 1063-1068. 

Santos, L. A. (n.d.). Convolution. Retrieved from 

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/convolution.html. 

Last accessed on April 22, 2019.  

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in 

convolutional architectures for object recognition.  In 2010 International Conference on 

Artificial Neural Networks (ICANN), 92-101. 

Sherrah, J. (2016). Fully convolutional networks for dense semantic labelling of high-

resolution aerial imagery. arXiv preprint arXiv:1606.02585. 

Shu, Y. (2014). Deep Convolutional Neural Networks for Object Extraction from High 

Spatial Resolution Remotely Sensed Imagery. (Doctoral dissertation, University of 

Waterloo). Retrieved from 

https://uwspace.uwaterloo.ca/bitstream/handle/10012/9140/Shu_Yuanming.pdf?sequence

=5&isAllowed=y. Last accessed on April 22, 2019. 

Stats NZ. (n.d.). Subnational population estimates (UA, AU), by age and sex, at 30 June 

1996, 2001, 2006-18 (2017 boundaries). Retrieved from 

http://nzdotstat.stats.govt.nz/wbos/Index.aspx?DataSetCode=TABLECODE7541. Last 

accessed on April 22, 2019. 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. 

(2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 1-9. 

Theng, L. B. (2006). Automatic building extraction from satellite imagery. Engineering 

Letters, 13(4), 255-259. 

Turker, M., & Koc-San, D. (2015). Building extraction from high-resolution optical 

spaceborne images using the integration of support vector machine (SVM) classification, 



 

 93 

Hough transformation and perceptual grouping. International Journal of Applied Earth 

Observation and Geoinformation, 34, 58-69. 

Turlapaty, A., Gokaraju, B., Du, Q., Younan, N. H., & Aanstoos, J. V. (2012). A hybrid 

approach for building extraction from spaceborne multi-angular optical imagery. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 89-

100. 

UN, D. (2015). World urbanization prospects: The 2014 revision. United Nations Department 

of Economics and Social Affairs, Population Division: New York, NY, USA. 

Vakalopoulou, M., Karantzalos, K., Komodakis, N., & Paragios, N. (2015). Building detection 

in very high-resolution multispectral data with deep learning features. In 2015 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS), 1873-1876.  

van Etten, A., Lindenbaum, D., & Bacastow, T. M. (2018). Spacenet: A remote sensing dataset 

and challenge series. arXiv preprint, arXiv:1807.01232. 

Verma, V., Kumar, R., & Hsu, S. (2006). 3D building detection and modeling from aerial 

LIDAR data. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR), 2, 2213-2220. 

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for 

computer vision: a brief review. Computational Intelligence and Neuroscience, 1-13. 

Wang, C., & Hsu, P. (2007). Building detection and structure line extraction from airborne 

lidar data. Journal of Photogrammetry and Remote Sensing, 12(4), 365-379. 

Wu, G., Shao, X., Guo, Z., Chen, Q., Yuan, W., Shi, X., ... & Shibasaki, R. (2018). Automatic 

building segmentation of aerial imagery using multi-constraint fully convolutional 

networks. Remote Sensing, 10(3), 407. 

Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018). Building 

extraction at scale using convolutional neural network: Mapping of the United States. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2600-

2614. 



 

 94 

Zeiler, M. D. (2013). Hierarchical Convolutional Deep Learning in Computer Vision. 

(Doctoral dissertation, New York University). Retrieved from 

https://search.proquest.com/openview/62c046242f67ce115a76b9224e66a69c/1?pq-

origsite=gscholar&cbl=18750&diss=y. Last accessed on April 22, 2019. 

Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical 

tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-

40. 

Zhang, S., Yao, H., Sun, X., & Lu, X. (2013). Sparse coding based visual tracking: Review 

and experimental comparison. Pattern Recognition, 46(7), 1772-1788. 

Zhou, Y., Arpit, D., Nwogu, I., & Govindaraju, V. (2014). Is joint training better for deep auto-

encoders? arXiv preprint, arXiv:1405.1380. 

Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep 

learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience 

and Remote Sensing Magazine, 5(4), 8-36. 


	Chapter 1  Introduction
	1.1  Motivation
	1.2  Objectives of the Thesis
	1.3 Structure of the Thesis

	Chapter 2  Background and Related Studies
	2.1 Traditional Building Detection Methods
	2.1.1 Template Matching-based Methods
	2.1.2 Knowledge-based Methods
	2.1.3 Object-based Methods
	2.1.4 Machine Learning-based Method

	2.2 Deep Learning
	2.2.1 Structure of Deep Learning Models
	2.2.2 Deep Learning Algorithms
	2.2.3 Building Detection with Deep Learning

	2.3 Chapter Summary

	Chapter 3  Methodology for Building Detection
	3.1 Study Area and Datasets
	3.2 Workflow of Proposed Methodology
	3.3 Data Pre-processing
	3.3.1 VHR Aerial Image Pre-processing
	3.3.2 Labelled Data Pre-processing

	3.4 Proposed Model
	3.4.1 Convolutional Layer
	3.4.2 Pooling Layer
	3.4.3 Batch Normalization
	3.4.4 Activation
	3.4.5 Fully-connected Layer
	3.4.6 Loss Function
	3.4.7 Backpropagation
	3.4.8 Optimization Method
	3.4.9 Fine-tuning

	3.5 Proposed Network Implementation
	3.5.1 ResNet and Feature Pyramid Network
	3.5.2 Region Proposal Network
	3.5.3 Mask Generation

	3.6 Accuracy Assessment
	3.6.1 Intersection-over-Union
	3.6.2 Confusion Matrix
	3.6.3 Precision, Recall and F1-score

	3.7 Implementation Environment
	3.8 Chapter Summary

	Chapter 4  Results and Discussion
	4.1 Hyper-parameters Optimization
	4.1.1 Dataset Division
	4.1.2 Mini Mask
	4.1.3 Learning Rate
	4.1.4 Backbone
	4.1.5 Model Initialization
	4.1.6 Summary of Hyper-parameters

	4.2 Analysis of Building Detection Result
	4.2.1 Qualitative Result Comparison
	4.2.1.1 Region-level Comparison
	4.2.1.2 Single-house-level Comparison

	4.2.2 Quantitative Result Comparison

	4.3 Comparison of Building Detection Methods
	4.4 Chapter Summary

	Chapter 5  Conclusions and Recommendations
	5.1 Conclusions
	5.2 Contributions
	5.3 Limitations and Recommendations


