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Abstract

Current advances in wireless communication are driven by an increased demand for more

data and bandwidth, mainly due to the development of new mobile platforms and appli-

cations. Ever since then the network operators are overwhelmed by the rapid increase in

mobile user subscriptions and the amount of average data volume per subscription, which is

primarily fueled by more viewing of data-intensive content. Furthermore, according to the

statistics, the ratio of downlink and uplink data traffic demands have changed drastically

as they are observed to be significantly asymmetric even over small time periods.

In recent years, different solutions, based on topological and architectural innovations of

the conventional cellular networks, have been proposed to address the issues related to the

increasing data requirements and uplink/downlink traffic asymmetries. The most trivial

solution is to scale the network capacity through network densification, i.e., by bringing

the network nodes closer to each other through efficient spectrum sharing techniques. The

resulting dense networks, also known as heterogeneous networks, can address the growing

need for capacity, coverage, and uplink/downlink traffic flexibility in wireless networks by

deploying numerous low power base stations overlaying the existing macro cellular coverage.

However, there is a need to analyze the interplay of different network processes within these

heterogeneous networks, which has not been studied in detail due to its complexity.

In the first part of this thesis, we analyze the performance of the most fundamental

network process, i.e., the user scheduling process and understand its interplay with other

network processes, which is more challenging in a heterogeneous network setting. Since, we

need to propose a global optimization framework that allows us to obtain the throughput

performance of a heterogeneous network when the network processes are optimized jointly.

This is viable under a fixed network setting, where the parameters like the channel gains

and the number of users are fixed and assumed to be known. Using this framework, we

have been able to study different choices of resource allocation, which has allowed us to

provide a number of important engineering insights on the throughput performance of

different traffic scenarios and the resource allocation schemes.

The heterogeneous networks are often characterized by complex user dynamics and in-

terference patterns, which are known to present difficulties in their design and performance
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evaluation under conventional solution techniques, hence, it is expected that by centraliz-

ing some of the network processes common to many nodes, such as coordination between

nodes, it will be easier to achieve significant performance gains. In the next part of this

thesis, we centralize the control of the underlying network processes through Centralized

Radio Access Networks (C-RAN), to meet the high data requirements as well as the asym-

metric traffic demands in a centralized manner. We analyze both large-scale centralized

solutions and the light-weight distributed solutions to obtain practical insights on how to

design and operate future heterogeneous networks.

The last part of this thesis focuses on understanding the impact of front-haul infrastruc-

ture’s capacity limitation on the underlying network processes. Most of the existing studies

assume an ideal front-haul, however, in practice this assumption needs to be revisited as

front-haul considerations are critical in C-RANs due to the economic considerations. In this

study, we propose a framework for joint user scheduling under LAN cable based front-haul

limitations, to show how this limitation has a fundamental impact on the user scheduling

process. Using results from the joint framework, we show that simple heuristics can be used

to obtain good throughput performance with relatively very low complexity/overhead.
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Chapter 1

Introduction

1.1 Overview

Cellular network providers have been experiencing tremendous growth in data traffic de-

mands since the last decade. According to the statistics reported by Ericsson [1], the

demand for more data has been increasing rapidly since 2012, driven by the development

of new mobile communication platforms, such as, android phones and tablets. Ever since

then the network operators are overwhelmed by the rapid increase in smartphone subscrip-

tions and the amount of average data volume per subscription, which is primarily fueled

by more viewing of video content. As a consequence, a huge amount of Internet traffic is

originated or terminated at one of these communication devices. It has been noted that

the uplink data traffic is increasing drastically along with the overall traffic demand. Per-

haps the reason behind this expeditious increase in uplink traffic is the emergence of new

mobile applications and Internet usage scenarios, such as, the ones that have emerged with

interactive gaming, social media, cloud storage, and, nonetheless, with Internet-Of-Things

(IoT). It is expected that the ratio of uplink to downlink data will increase significantly in

the next few years as reported by [1, 2]. The recent trends have been shown in Fig. 1.1,

which demonstrates the total global monthly data and voice traffic from 2012 to 2017,

along with the year-on-year percentage change for mobile data traffic.
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Figure 1.1: Total (uplink+downlink) traffic per month[1].

Figure 1.2: Downlink to uplink usage ratios [3].
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Figure 1.3: Smartphone usage over 2G and 3G RANs: plot of downlink against uplink

data demand for different times of the day [4].

According to the statistics reported by Nokia Solutions and Networks, given in Fig. 1.2,

the actual uplink to downlink ratio in North America was 1:2.37 in 2013, which means the

downlink traffic was 70% of the total. This shows that globally, with given traffic usage,

the uplink to downlink ratio was 1:3.29; which is fairly asymmetric. In addition, according

to the statistics based on a few million smart phone users, which were reported by [4], the

downlink and uplink data demands were observed to be significantly asymmetric over small

time periods across different RANs. Note that the current data demand over 2G networks

remains largely symmetric with strong temporal variations, whereas the demand over 3G

or Fourth Generation (4G) is asymmetric with surprisingly weak temporal variations as

shown in Fig. 1.3.
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In recent years, different solutions, based on topological and architectural innovations

of the current cellular networks, have been proposed to address the issues related to the

increasing data requirements and asymmetries. Most of these solutions are designed for

LTE based cellular networks while recognizing that the Fifth Generation (5G) cellular

networks will aggregate other RANs, for example, Wireless Fidelity (Wi-Fi) and Long

Term Evolution New Radio Access Technology (LTE-NR). In a broader sense, the current

trends in LTE based wireless networks are:

1. To add more spectrum, which is indeed available due to some recent policy-level

decisions, especially at higher frequencies (e.g., mmWave bands). The communication

technologies in these bands are promising, but are still far from mature, and are not

expected to be mainstream any soon. In addition, the mmWave bands have a very

short range that makes them impenetrable through building walls, nonetheless, they

can not be used for access links, especially in urban areas where the cellular data

usage is enormous.

2. To enhance the spectral efficiency of the currently available spectrum by using Mul-

tiple Input Multiple Output (MIMO) antennas or other related solutions which are

based on enhanced physical layer techniques. Note that these MIMO antennas are

used on a large scale (also known as “Massive MIMO”), to further enhance the

spectral efficiency of the underlying cellular network, nonetheless, at the cost of dis-

tributed signal processing operations that require strict synchronization/alignment of

the cellular users with the MIMO antennas. Further, Multi-user MIMO (MU-MIMO)

have been proposed for wireless communication, which adds multiple access (multi-

user) capabilities to MIMO by leveraging multiple users as spatially distributed

transmission resources, at the cost of somewhat more expensive signal processing

operations. In comparison, conventional, or single-user MIMO considers only local

multiple antennas to serve each user.

3. To enhance the performance of the available spectrum through network densification,

which has gathered much interest, both in industry [5], [6] as well as academia;

where, the performance of the existing cellular network (also known as a homogeneous
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network) is further enhanced by bringing the network nodes closer to each other with

the help of different spectrum sharing strategies.

4. To centralize the control of the underlying RRM processes by using Centralized-Radio

Access Networks (C-RANs). It is expected that by centralizing some of the functions

common to many nodes, such as coordination between nodes, it will be easier to

achieve significant performance gains. However, the challenges are numerous since

centralizing some of the RRM functions will make them much more complex to solve.

The above mentioned trends have brought a paradigm shift in the way the Radio

Resource Management (RRM) processes have been run in the past. For example, the

network operators now want to deliver more with less, e.g., more network throughput and

better Quality-of-Service with less energy for any of the underlying Radio Access technology

(RAT). It is expected that network densification along with the centralized control of the

underlying RRM processes will meet the future data traffic demands by bringing greater

spatial reuse opportunities along with efficient spectrum sharing between different network

nodes.

1.2 Heterogeneous Networks

The capacity of the homogeneous networks can be expanded by overlaying low power Base

Stations (BSs) to complement the existing Macro Base Station (MBS) based infrastructure,

i.e., also called a macro cell. A Pico Base Station (PBS) is an example of these low power

BSs and it differs from an MBS in terms of coverage size, transmit power, form-factor and

the way the data back-hauling is performed. These low power BSs are simply referred as

Small Cells (SCs), which can be connected to the MBSs via wired back-haul or wireless

front-haul links. The deployment of these SCs can effectively reduce the traffic load on the

MBSs, also termed as macro-offloading. Typically, an operator will place SCs at strategic

points to improve the performance of users, i.e., at cell-edge and/or within a hotspot,

while keeping the cost of infrastructure as low as possible. This network, also known

as a Heterogeneous Cellular Network (HetNet), improves the spectral efficiency and the

cell-edge coverage of the existing homogeneous network.
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The paradigm shift in the amount and ratio of uplink and downlink traffic has brought

a plethora of new technological and operational challenges, which require fundamental

changes in different network processes, such as, resource allocation, user association, user

scheduling, and interference management. Most of the research so far on RRM has focused

on the downlink, the uplink has received considerably less attention than the downlink

because it was felt that the traffic was mostly to rather than from the devices, and because

of the fact that the downlink is much easier to study.

With the emergence of the IoT and with the realization that users are creating and

uploading more of their own content from wireless devices, the uplink is becoming more

important. Nonetheless, addressing the research problems on the uplink are complicated

but critical, which is the main reason why the existing HetNet based solutions are designed

to optimize the performance of downlink traffic only. Given the unprecedented growth in

uplink data traffic, both Downlink (DL) and Uplink (UL) performance needs to be analyzed

together and the associated network processes that are designed for the downlink traffic

only needs to be revisited for the uplink traffic. This is necessary, because, for instance if

a user association rule is based on the DL performance only then it might not be optimal

for the UL and the same can be said about resource allocation.

To the best of our knowledge, no study has been done so far to investigate different

network processes for both UL and DL using a similar framework. In effect, the standpoint

of the UL has been neglected, perhaps due to the complex interplay of these network

processes on the UL. We need to analyze them from the UL’s perspective before deciding

what to do, i.e., 1) we do nothing (if the DL-centric processes are good enough for the

UL), 2) we can use UL-centric processes (if they are good enough for the DL), 3) we can

propose processes that jointly optimize the performance on the DL and the UL, or 4)

we can use different processes for the uplink and downlink traffic. From an engineering

point of view, it is highly desirable to study these processes for both DL and UL under a

given framework. The ability to model them using a similar framework would enable us to

perform a comparative study of different deployment choices in a HetNet.

Next, we describe these network processes one-by-one to develop an understanding of

the underlying challenges.
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1.2.1 Resource Allocation (RA)

Resource allocation process is responsible for allocating different resources to different BSs

in a HetNet. The communication band in Orthogonal Frequency-Division Multiplexing

(OFDM) based HetNets is divided into a set of Orthogonal Frequency-Division Multiple

Access (OFDMA) sub-channels that are equally spaced in frequency, where OFDMA adds

multiple access capabilities to OFDM. The set of sub-channels allocated to a BS can be

(fully or partially or non) overlapping with the subsets allocated to other BSs (also known

as Co-channel Deployment (CCD), Partially Shared Deployment (PSD), and Orthogonal

Deployment (OD), respectively). In TDD-based HetNets, at a given time the communi-

cation channel can either be allocated to the UL or the DL. Therefore, the fraction of the

time the channel is allocated to the UL or the DL can be considered as another resource

that can be allocated to each BS in a HetNet. Once the resources are allocated to all BSs,

they can schedule their users independently. Typically, the changes in the RA parameters

are rare, therefore, it is a slowly varying process.

Resource allocation within a macro cell, in the presence of SCs, yields numerous tech-

nical challenges, notably due to the presence of intra-cell interference. Over the last few

years, multiple resource allocation schemes, such as CCD, OD, and PSD, have been pro-

posed for limiting the intra-cell as well as the Inter-cell Interference (ICI) on the DL of

a HetNet. In these schemes, the resources were allocated by choosing RA parameters

based on the downlink traffic only. An optimal choice of these parameters would yield

optimal performance on the DL, but the performance might not be optimal for the UL.

It is therefore necessary to tune these RA parameters to achieve acceptable (if not opti-

mal) performance on the uplink along with the downlink, however, achieving acceptable

performance on the uplink is not trivial. In fact, it would be interesting to answer the key

questions, which have not been answered yet, such as: What would be an optimal resource

allocation scheme on the uplink? What is the impact of DL-centric resource allocation

schemes on the uplink performance? What is the impact of UL-centric resource allocation

schemes on the downlink performance?.
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The RA process in a macro cell along with the underlying scheduler is simplified under

static FDD or TDD based spectrum sharing techniques. Mainly because, the interfering

macro cells are synchronized, the RA/US process can be decoupled into an UL-only and

DL-only process. Nonetheless, such a strategy deals with either UL-only or DL-only traffic

and cannot be extended for flexible HetNets, where the UL and DL resources are allocated

jointly based on the prevailing traffic demands. Ideally, the RA should be employed in

each macro cell by allocating the PRBs locally/independently when the ratio of UL to DL

traffic is varying significantly from one cell to the other. However, this is possible only if

the interference from other cells could be measured exactly. In the case that the inter-cell

interference cannot be measured exactly, the performance of a local RA scheme could be

far from the optimal one, consequently, the flexible spectrum sharing techniques could not

be employed locally and independently in a multi-cell network.

1.2.2 User Association (UA)

Given a resource allocation scheme, a user association process defines a set of rules for

assigning a user, upon its arrival or at a re-association event, to one or multiple BSs. A

good user association rule should take into account both uplink and downlink performance.

Many DL-centric UA rules for HetNets have been proposed in the literature that perform

better than the UA rules that were designed for homogeneous networks. However, given

some inherent differences between the uplink and the downlink traffic flows, it is not clear

whether these DL-centric UA rules will perform well on the uplink. Therefore, it is nec-

essary to propose UL-centric UA rules and compare their performance with the existing

DL-centric UA rules. In this context, the key research questions are: What are the perfor-

mance gains on the uplink (if any) in using UL-centric rules over DL-centric rules?. We

can develop UA rules in which a user can associate differently on the uplink and on the

downlink, these are called Decoupled Uplink and Downlink (DUD) UA rules, but we need

to answer the following: What are the performance gains (if any) in using DUD UA rules

over the Coupled Uplink and Downlink (CUD) ones?.
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1.2.3 User Scheduling (US)

User scheduling process (within each BS) is responsible for allocating Physical Resource

Blocks (PRBs)1 to the associated users when the RA scheme and the set of UAs are known

and fixed. The US process is also responsible for allocating power to the PRBs. Typically,

the power budget of a BS (i.e., on the DL) is considerably larger than that of a user (i.e,

on the uplink), therefore, the US process on the downlink can be simplified by spreading

the BS power equally among all sub-channels and then allocating all sub-channels to a

user for the duration of one or more sub-frames, this type of US is called time-based US.

Due to power limitations, this type of US cannot be used on the uplink. Hence, either a

subset of sub-channels (instead of all sub-channels of a BS) are allocated to a user (i.e.,

channel-based US) or a subset of PRBs are allocated to a user (i.e, PRB-based US) for the

duration of a frame.

The user scheduling process on the uplink depends on the interference which is coming

from the users scheduled by other BSs. Since, these users are distributed randomly, the

uplink interference at a BS may vary significantly from one sub-channel to another (if US

is time-based) or from one PRB to another (for PRB-based US). Nonetheless, the uplink

interference cannot be computed exactly unless the user scheduling process (within a BS)

knows the global information of the users that are associated with other BSs and also their

exact schedules. It is important to realize that this global information cannot be provided

to the user scheduling process beforehand because of a loop: the user schedules depend on

uplink interference, which in turn depends on user schedules from other BSs.

The user scheduling process can be made local2 on the downlink because interference

estimation can be made exact as the interferers are the other BSs transmitting on the same

sub-channels. This estimation can be simplified if all BSs distribute power equally among

the sub-channels allocated to them at all times3. In contrast, the user scheduling process

on the uplink cannot be made local (to each BS) because interference depends on both the

transmit power and the channel gains from users scheduled by other BSs. As a result, the

1For time synchronization, data is transmitted through frames that are equally spaced in time and each

frame contain multiple sub-frames, where each PRB corresponds to one sub-channel for one sub-frame.
2We use the word “local” for user scheduling within a BS.
3Note that the location and channel gains from each BS can be known beforehand.
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optimal user scheduling problem on the uplink is a complex problem and we refer to it as

a global user scheduling problem4.

1.2.4 Complex Interplay of Network Processes

The interplay of network processes on the uplink is more complex than on the downlink.

The resource allocation process is responsible for sharing resources among the BSs, while

the user scheduling process (in each BS) is responsible for the sharing of BS resources among

the users associated with that BS, hence, it is linked to the user association process. User

association is about selecting a BS for a user that will deliver good performance, where

performance is a function of user scheduling. The user scheduling process is the basic

building block of a cellular network on which all other network processes are built, but it

is highly dependent on uplink interference. This is the reason why the interplay of these

network processes has only been studied from a DL-centric perspective. The resource

allocation, user association and user scheduling schemes that have been designed for the

downlink might be very inefficient for the uplink. Also, we need to consider the trade-offs

by finding user associations that are acceptable on both uplink and downlink, in addition

to the schemes that allow devices to associate differently. In the same way, the resource

allocation process needs to be revisited.

1.2.5 HetNets under C-RAN Deployment

The emerging 5G cellular networks will integrate different Radio Access technologies (RATs)

by deploying a large number of C-RANs to satisfy the diversified bandwidth and latency

requirements. Unlike the existing HetNets, where each node (e.g., Macro/Pico BS, Relay,

etc.) performs baseband processing at the local cell site, a C-RAN aims to free radio access

units from baseband processing. Essentially, a C-RAN consists of three fundamental com-

ponents: (i) the distributed Remote Radio Units (RRUs) at the cell site, (ii) the centralized

Baseband Unit (BBU) pool, and (iii) the high-bandwidth low-latency front-haul links to

connect RRUs and the BBU pool.

4We use the word “global” for user scheduling within a multi-cell system.
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Although, C-RAN appears to be nothing more than the centralization of BBUs, central-

ization is a prerequisite for many technologies that are difficult to implement in traditional

architectures; especially joint processing and cooperative communication, which is viable

in a C-RAN context only. The centralized baseband processing/scheduling in the BBUs

allows for dynamic cell re-configuration. In addition, the co-located BBUs can be utilized

to perform complex coordinated tasks for enhancing the performance of the aforementioned

network processes. Moreover, the lightweight RRUs yield easier deployment of different

types of cells, while reducing the energy consumption of each site; they can cooperate

flexibly and seamlessly to improve the spectral efficiency and the capacity of the under-

lying radio network. In addition, C-RAN enables all user-related signal processing tasks,

such as the ones required for MIMO antennas, to be carried out at a central unit with

greater computational power than conventional processors. This is particularly important

in terms of resource management, as C-RAN can jointly manage the radio resources via

the front-hauls yielding a potentially high performance gain.

However, the challenges come along with the advantages: full-scale coordination leads

to high computational overhead in the BBU pool especially for large-scale networks; real-

time user scheduling, resource allocation for flexible HetNets, and high-bandwidth front-

haul links are important to achieve the reliable connection and mapping between the BBU

and the RRUs. Note that a C-RAN only focuses on the radio link interfaces and cannot

solve the problems emerging in the core network or the higher layer protocols.

1.3 Contributions

In this thesis, we will focus on both downlink and uplink, and will study the HetNet from

a throughput performance point of view. Our contributions can be summarized as follows.

A more detailed summary of contributions are presented in the beginning of each chapter.
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1.3.1 User Scheduling in a Multi-Cell Network

As discussed earlier, there is a need to formulate a global user scheduling problem that

allows us to study and compare different US schemes for both uplink and downlink trans-

missions under the same framework. Such a framework should allow us to find a globally

optimal US solution that can reduce cross-cell interference and maximize the spectral ef-

ficiency of a multi-cell network. Note that finding the globally optimal solution is highly

challenging, but necessary to benchmark and gain insights on how to design good online

schedulers for both UL and DL.

Our main contributions in this context can be summarized as follows:

1. We formulate a joint US problem for a multi-cell network that is intractable because of

the large number of binary and continuous variables. We are interested in solving this

problem to deal with the ICI exactly and also to compute an offline benchmark. We

transform this problem into a tractable upper bound US problem, which is obtained

by using the continuous rate function and removing all integer variables by a smart

transformation. Nonetheless, the resulting problem is non-linear and non-convex in

nature and solving such problems is NP-hard.

2. We convexify the upper bound problem and show that its optimal solution can be

mapped to a feasible solution of the joint optimal problem with a small gap, i.e.,

verified via extensive simulations.

3. Using the above framework, we design local user schedulers and find that their per-

formance is far from the optimal. Indeed, the interference coordination is the key in

finding optimal schedules within each macro cell.
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1.3.2 User Scheduling and RRU Association under C-RAN De-

ployment

In this thesis, we investigate a joint US and UA process for OFDMA based radio networks

under the C-RAN setting. Since the RRUs are in co-channel for accessing the underlying

radio spectrum, the exact interference estimation/measurement on both UL and the DL is

critical to the US and UA processes that critically determine the overall network through-

put. Note that the exact interference can only be computed based on the full knowledge of

the cross channel gains, power allocations, and channel allocations for all the users associ-

ated with other RRUs. Such dynamic system states can only be obtained via inter-BBU

coordination under the C-RAN architecture; where, all BBUs are physically co-located

and can share dynamic states with each other in real time. Our main goal is to study the

joint US and UA process while considering full inter-BBU coordination in order to find the

maximum performance gains that could be achieved under the considered network setting.

Our main contributions in this context are summarized as follows:

1. We provide a complete formulation for the joint US and UA problem where inter-

BBU interference coordination is considered. This problem is intractable in its exact

form, because it deals with very large number of binary and continuous optimization

variables. Hence, we introduce an upper bound problem that can yield reasonable

upper bound solutions for the original joint problem. The upper bound problem

is further convexified and the corresponding optimal solutions are mapped to the

feasible solution space of the original joint problem using a simple method.

2. We further develop heuristic based algorithms to obtain efficient solutions for the joint

US and UA problem, on both UL and DL, via a divide-and-conquer approach. The

numerical simulations demonstrate that the proposed heuristic based algorithms yield

quasi-optimal solutions for the original joint US and UA problems under different

network settings.
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1.3.3 Resource Allocation for Flexible HetNets

As discussed earlier, the emergence of flexible FDD/TDD and in-band Full Duplex (FD)

communications has complicated the RA process, mainly due to the complex UL-to-DL and

DL-to-UL interference scenarios. Although, the performance gains of different RA schemes

have been studied extensively for DL of a static FDD/TDD based network, they need to be

revisited for flexible FDD/TDD; where, the UL performance is significantly vulnerable due

to the strong DL-to-UL interference scenarios. In this thesis, we investigate the optimal

RA performance for flexible FDD based multi-cell multi-tier networks as finding optimal

performance is necessary to benchmark the performance of existing RA schemes, but not

trivial due to the high complexity of solving a joint RA and US problem; mostly due to the

fact that the formulated joint RA problem considers all types of interferences, including

(i) inter-cell inter-link interference and (ii) intra-cell inter-link interference. Note that we

do not consider self-interference which exists in a FD network.

Our main contributions in this context are summarized as follows:

1. We formulate a joint RA and US problem for a multi-tier network that allocates pro-

portionally fair user schedules by considering both UL and DL transmissions. Solving

this problem was challenging, but we converted it into a tractable problem which can

be solved efficiently, where the tractable problem is used to obtain benchmark solu-

tions to analyze the usefulness of different RA schemes for flexible FDD/TDD based

HetNets.

2. We demonstrate the efficacy of Reverse-FDD and Static-FDD based spectrum sharing

techniques through extensive network simulations with different UL and DL traffic

scenarios.
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1.3.4 Cable based Front-hauls for C-RANs

We introduce a novel distributed antenna access architecture for achieving a cost-effective

solution of 5G indoor service provisioning. The proposed architecture takes advantage

of multi-pair Local Area Network (LAN) cables to support simultaneous transmission of

multiple baseband and intermediate frequency (IF) signals between the RRU and each

Distributed Antenna Unit (DAU), so as to meet the massive antenna requirements and

overcome the non-line-of-sight nature of the indoor environment with extremely low cost.

Our main contributions in this context are summarized as follows:

1. We propose a joint optimization framework for mapping 5G signals from each DAU to

the LAN cable, this is also referred to as Multi-pair Air-to-Cable (MP-A2C) mapping

problem. Based on the given DAU architecture, we introduce an optimal MP-A2C

scheduler for mapping the antenna signals on the sub-channels of a multi-pair cable

(i.e., CAT-5 cable).

2. We transform the MP-A2C optimization problem into a tractable problem, which

can be solved efficiently for evaluating the performance of any MP-A2C scheduler,

and propose heuristic-based schedulers for solving the MP-A2C problem in real-time.

Thesis Organization:

The rest of the thesis is organized as follows. Chapter 2 presents a summary of the related

work. In Chapter 3, we present the optimization model for a multi-cell network that

allows us to characterize the optimal network performance when the user schedules are

jointly optimized across multiple cells. We use this model to compare the performance of

local user scheduling schemes for both UL and DL transmissions. In Chapter 4, we study

the joint UA and UA problem in the context of a C-RAN and propose efficient heuristic

based solutions that can be used in real-time. In Chapter 5, we use a similar framework

to investigate the performance of existing RA schemes for flexible HetNet deployment.

In Chapter 6, we focus on the wired front-haul deployment for C-RANs and present two

different LTE-over-Cable architectures. Chapter 7 presents the summary and a list of some

extensions of this thesis work.
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Chapter 2

Literature Survey

In this chapter, we provide an overview of the relevant literature on user scheduling, re-

source allocation, and user association in cellular networks. In addition to providing a

context to our research, we present our view on the limitations of the existing work, and

how we approach to address them in this thesis.

2.1 User Scheduling

2.1.1 Single-cell vs Multi-cell Analysis

User scheduling in a single-cell network is a well-studied problem, on both uplink and

downlink, and numerous scheduling policies have been proposed so far in this context.

The notion of fairness has also been used to maximize the throughput of the worst user,

i.e., dedicating more resources to them, by using different utility maximization problems;

where, the utility is a function of user data rates that ensure more fairness. For instance, to

provide Proportional Fairness (PF), the logarithm of the user data rates has been used as

a utility function, in [7, 8], which can be used to achieve PF among the users. Nonetheless,

PF cannot be achieved without considering a global user scheduling problem encompassing

the users of the entire network, which may have more than one macro cells operating over

the given spectrum (also called multi-cell networks).
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The uplink US process in a multi-cell network is fundamentally different and much

more complex than the DL one, mainly because the UL interference strongly depends on

the US decisions of the neighboring cells, while the DL interference does not necessarily

depends on US. Note that the interference on the DL is created by the BSs whose positions

are known and they transmit all the time, hence, the interference can be computed exactly

under fixed transmit power assumptions, as discussed in [9–11]; however, these assumptions

significantly limit the potential performance gains. In contrast, the interference on the UL

is created by users whose transmissions may vary from time to time, therefore, the UL

interference cannot be computed exactly beforehand. This is the reason why most of the

existing US schemes, mainly on the UL [12–15] are based on a single-cell analysis with (or

without) an estimate of ICI.

To the best of our knowledge, only a very few studies consider exact ICI, for example,

the authors in [16] propose an algorithm for predicting ICI along with an UL scheduler;

where, the schedules are computed by exchanging US information between different BSs

while considering perfect Channel State Information (CSI). A joint interference avoidance

and US scheme has been proposed in [17] that does not require BS-coordination, but uses

probabilistic analysis over the received interference levels. A coordinated UL scheduling

problem has been presented in [18], where the joint US problem across multiple-cells has

been decoupled into multiple local US and power allocation problems (i.e., one per macro

cell) that are not globally optimal. Similarly, a heuristic based uplink US solution has been

proposed in [19] that also does not guarantee global optimality.

The benefits of BS-coordination across a multi-cell network have been examined in [20]

for interference mitigation. The proposed scheme optimizes the user schedule, transmit

and receive beamforming vectors (i.e., required for MIMO), and transmit power jointly,

while taking into consideration both the inter-cell and intra-cell interferences, and the

fairness among the users. System-level simulation results have been shown in [20], which

demonstrate that BS-coordination can significantly improve the overall network throughput

as compared to the conventional network design with fixed transmit power and no BS-

coordination. However, these user scheduling schemes with ICI considerations, either rely

on perfect BS-coordination and/or heuristics on ICI for computing the schedules that need

to be validated under a realistic multi-cell network scenario.
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2.1.2 User Scheduling with Discrete Rates

Due to high variations in channel gains, scheduling in Long Term Evolution (LTE) is

performed along with an underlying mechanism, which dynamically adjusts the rate while

maintaining the transmit power at a constant level, to compensate for channel variations,

i.e., called rate adaptation. Scheduling with rate adaptation is suitable for packet-data

traffic where a fixed rate is not required as long as the (long-term) average rate is above

a certain threshold [21]. The existing user scheduling schemes, such as, [12–20], make use

of the classical Shannon’s capacity (or some formula derived from it) to model the rate

adaption process in LTE. However, in practical LTE networks, only a discrete set of rates

are achievable due to a fixed number of Modulation and Coding Schemess (MCSs). The

aforementioned user scheduling algorithms, which indeed use a set of discrete MCSs, have

mainly focused on the downlink, e.g., [9, 10], while a very few studies have taken up the

uplink US problem, such as, [11]. In this thesis, we assume that the LTE network under

consideration uses an adaptive MCS with discrete rates, such as the ones give in [22–24].

Note that using a discrete set of MCSs will significantly change (as well as complicate) the

design of the UL and DL US schemes.

2.2 User Association

User Association is a well-studied problem on the downlink of a HetNet, where different

UA rules have been proposed in the literature. For a given RA scheme, the problem of

user association arises whenever a user can connect to more than one BS (i.e., when there

is an overlapping coverage). In homogeneous networks, UA is not as critical as in HetNets,

since, it is typically based on maximum signal-to-interference and noise ratio (SINR) rule;

where a user upon arrival associates with the BS who offers the highest downlink SINR. In

HetNets, the problem of UA is more complicated due to the inherent differences between

the MBS and the SCs. Therefore, new UA rules have been envisaged to split the users

between the MBS and SCs more efficiently and fairly. One example of such downlink-based

UA rules is cell range expansion (CRE), in which a user at the time of association adds a

positive biasing parameter to the SINR from the SCs and, as long as the biased SINR value
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is greater than the actual SINR from the MBS, it keeps associated with the SC. With CRE,

the SC’s downlink coverage area is virtually expanded and hence more users are off-loaded

from the MBS to the SCs. Another similar downlink-based UA rule introduced in [9] is the

small-cell first (SCF) rule. Under SCF, the users are offloaded to the SCs as long as the

received downlink SINR from the SC is greater than a pre-determined threshold, which

needs to be configured precisely for the underlying RA scheme and user traffic. Another

simple UA rule, proposed in [25], is range extension (RE), where a user associates with the

BS with the lowest path-loss.

The aforementioned UA rules mainly rely on the physical-layer measurements from

the user and can be easily implemented without any computational complexity. However,

these rules have been proposed by considering the performance on the downlink only and

might result in a very sub-optimal performance on the uplink. A good user association

rule should take into account the performance on both uplink and downlink. Given the

inherent differences between the uplink and the downlink, it is not clear whether these

DL-centric UA rules for HetNets will perform well on the uplink. If the DL-centric rules

do not perform well on the uplink, then either new UA rules incorporating fairness among

the downlink and the uplink users should be proposed or new devices should be introduced

in which a user can associate differently on the uplink than on the downlink (DUD UA

rules).

We classify the relevant literature on UA into two groups: Coupled UA rules (CUD)

and decoupled UA rules (DUD). In [26], the authors study a joint uplink and downlink

coupled UA problem, using a single-cell analysis that maximizes the total energy efficiency

of the network. The formulated problem is non-convex, hence they propose a heuristic-

based algorithm, without considering any optimal scheme, which associates the users in

an energy-efficient way. In [27], the authors propose a UA framework for backhaul-limited

HetNets, showing how different backhaul topologies and capacity limitations affect the

performance of coupled user associations. The authors in [28] present a decoupled UA

rule, where the downlink association is based on the downlink received power, while the

uplink association is based on the minimum pathloss rule. The authors of [29, 30] study

the capacity and throughput gains brought by decoupled UA using stochastic geometry.

None of these studies consider a multi-cell network with exact inter-cell interference, hence,
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these solutions might not reflect the actual performance gains. In this thesis, we study the

network-wide optimal UA rules in a multi-cell network with exact interference on both

uplink and downlink.

2.3 Resource Allocation

Resource allocation is a well-studied problem on the downlink of a heterogeneous cellular

network. Resource allocation (on both uplink and downlink), in the presence of SCs, yields

numerous technical challenges, notably due to the presence of intra-cell interference. Over

the last few years, multiple resource allocation schemes for the downlink, such as CCD,

OD, and PSD, have been proposed for limiting the interference on the downlink.

In the aforementioned RA schemes, the resources are allocated by choosing parameters

based on downlink performance. An optimal choice of these parameters would yield optimal

downlink performance, but they may or may not be optimal for the uplink. It is therefore

necessary to tune these parameters to achieve acceptable (if not optimal) performance on

the uplink along with the downlink; however, achieving acceptable performance on the

uplink is not trivial. To quantify the performance of different resource allocation schemes

for HetNets, we need to consider the performance on the uplink along with the downlink.

To the best of our knowledge, a comprehensive model for comparative assessment of the

resource allocation schemes, for both uplink and downlink, with the joint consideration

of other important network processes (including user association and user scheduling) is

missing in the literature.

Further, as discussed earlier, the emergence of flexible FDD/TDD and in-band FD

communication has complicated the RA process, mainly due to the complex UL-to-DL

and DL-to-UL interference scenarios. Although, the performance gains of different RA

schemes have been studied extensively for DL of a static FDD/TDD based network, they

need to be revisited for flexible FDD/TDD; where, the UL performance is significantly

vulnerable due to the strong DL-to-UL interference scenarios.
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Chapter 3

User Scheduling in a Multi-Cell

Network

3.1 Introduction

In Chapter 1, we presented a number of important network processes, namely resource

allocation, user association, and user scheduling, which need to be optimized properly as

they greatly impact the throughput performance of the underlying cellular network. We

also discussed that these network processes have a complex interplay, especially on the UL,

that has not been clearly analyzed before in a multi-cell context.

Our Objective:

In this chapter1, we investigate the most fundamental network process, i.e., the user

scheduling process, which critically schedule the users that are associated with each BS

in the network. We attempt at solving the global user scheduling problem for both UL

and DL transmissions in order to find the optimal performance under a given set of MCSs

with exact power allocations, channel gains, and intra/inter cell interference. We consider

1Some of the results in this chapter were published in [31] and [32].
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a joint optimization framework with full inter-BS coordination, which is used for comput-

ing benchmark solutions to compare the throughput gains that are achievable under the

considered local US scenarios for both UL and DL. Our main goals for this chapter are

listed as follows:

1. To formulate and solve a global user scheduling problem with full-coordination for

both UL and DL, which can be used as an offline benchmark for multi-cell networks.

2. To characterize the performance of simple local user scheduling schemes for both UL

and DL, that do not require any inter-BS coordination.

3. To compare the performance of the considered local user scheduling schemes on both

UL and DL with their respective benchmarks, i.e., the globally optimal schedules.

3.1.1 Need for a Global Optimization Framework

We discussed, in Chapter 2, that a global optimization framework is crucial for analyzing

the user scheduling process for both UL and DL traffic under a multi-cell deployment

scenario; where, we assume that all BSs are in co-channel for accessing the underlying

radio spectrum. This framework is essential for comparing the performance of the local

US processes, i.e., one per BS. Note that the exact interference estimation/measurement

on both UL and DL is critical for each local US process (within a BS) as it critically

determines the local throughput of the users associated with that BS, which in turn impacts

the overall throughput of the multi-cell network. However, we will explain it later that

the exact interference can only be computed using a global optimization framework, which

is based on the full knowledge of the cross channel gains, power allocations, and channel

allocations for the users associated with all BSs in the entire network.

3.1.2 Existing User Scheduling Schemes

The global US problem in OFDMA networks with multiple macro/micro cells has not been

studied extensively, primarily due to the difficulty in calculating the exact Signal-to-Noise-

Ratio (SINR) and MCS. Note that computing the exact SINR and MCS is difficult as it
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highly depends on the underlying association/scheduling decisions and the transmit power

levels of the users scheduled by the neighboring BSs through the interference term in its

denominator. In general, the exact interference cannot be computed by a local US process

without inter-BS coordination. However, the DL interference could be measured precisely

at the expense of some performance degradations when the power is equally spread over

the underlying channel [9, 10]. On the other hand, the ICI on the UL is created by users

from other cells whose transmissions vary with time, therefore, it cannot be computed

exactly in advance.

To the best of our knowledge, only a few studies have taken into account the exact

interference, SINR, and the MCS, such as, [9, 11, 22]. Most of the existing studies have

bypassed the interference problem by resorting to a single-cell analysis [12–15], which can

obviously deviate from the real scenario; they do not consider the exact MCS and ICI in the

design of their schedulers, hence, their performance needs to be validated under a multi-cell

scenario. In contrast, some of the studies do consider the exact interference in the design of

their schedulers, for example, [16] introduced an algorithm for predicting UL interference

at a local scheduler by assuming perfect CSI, where the schedules are computed locally

by exchanging only the US information among adjacent BSs. Similarly, [17] introduced a

local scheduler with interference avoidance via a probabilistic analysis.

A related work on joint UL scheduling has been presented in [18], where the global user

scheduling problem has been decoupled into a local scheduling and power allocation prob-

lem that is unable to provide globally optimal schedules. Some heuristic based solutions

have also been used for UL scheduling problem including opportunistic approaches, such

as the ones discussed in [19]. A counterpart research work was given in [24], where a re-

laxed signomial programming problem was formulated by using a novel power-fractionizing

mechanism. However, the relaxed problem has to be convexized via a series of tractable

Geometric Programming (GP) problems that can converge to a local optimum, which not

only takes excessive computation but also leaves some gaps from the true optimal. In

addition, the aforementioned studies are different from our approach as they use the Shan-

non’s capacity formula for computing data rates without considering any specific MCS for

estimating the transmission rates rather then using the exact rate of the employed MCS.
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The rest of this chapter is organized as follows: in Section 3.2, we discuss the user

scheduling process in detail. Our system model has been described in Section 3.3, whereas

the global optimization framework will be discussed in Section 3.4. The numerical results

for the global problem are presented in Section 3.4.2. Section 3.5 is dedicated to the local

user scheduling schemes and the corresponding results have been presented in Section 3.5.3.

3.2 User Scheduling with OFDMA

User scheduling (US) has been extensively studied under various RATs in the past decade

for both UL and DL, which is a critical process for other network processes that are running

on the top, for example, resource allocation and user association. In OFDMA based RATs,

the US process is based on allocating OFDM symbols, which are equally spaced in time

and frequency domains; where, different set of OFDM symbols can be grouped together

to constitute a sub-channel in frequency-domain and a time-slot in time-domain. One

sub-channel in a given time-slot is also known as a physical resource block (PRB), which

is the smallest unit of resource that can be allocated to a user. Therefore, the US process

or a user scheduler, no matter for UL or DL, is also responsible for allocating power and

a physical-layer MCS on each PRB of a given frame, where each frame is composed of

multiple PRBs.

3.2.1 Power and Channel Allocation

The user scheduling process is responsible for allocating power on each PRB of a given

OFDM frame. Typically, the power budget of a BS (on the DL) is considerably larger

than that of a user (on the UL); therefore, the user scheduling process on the DL could

be simplified by spreading a BS’s power equally among all PRBs and then allocating

all sub-channels to a user for the duration of one or more time-slots, this type of US is

called time-based US [9, 10]. Since the users (or User Equipments (UEs)) are limited in

power, this type of user scheduling cannot be used on the UL, because the users should

be allocated sub-channels in proportional with their channel gains. For instance, if the
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received UL SINR of a user is significantly lower then allocating more sub-channels to that

user would lead to zero rate. Instead, channel-based user scheduling is more realistic on the

UL, for example, the one discussed in [11], where a subset of sub-channels (instead of all

sub-channels of a BS) are allocated to a user. Likewise, a more flexible way of scheduling

is to allocate a subset of PRBs to each user for the duration of a frame, which is called

PRB-based US.

3.2.2 MCS Allocation

Due to high variation in the channel gains, scheduling in OFDMA is performed using

an underlying mechanism, called rate adaptation, by which the data rate of each user is

adjusted based on its exact SINR. Most of the existing US schemes [13–15, 24, 33–35]

make use of the classical Shannon’s theory for approximating the data rate of each user.

However, such an approach does not directly translate into the discrete rates achievable

by the given set of MCSs. Further, these US schemes do not consider the mapping of the

data rates from the physical layer to the link layer, which is essential for computing the

amount of useful data bits being transmitted and received over the duration of each frame,

i.e., also known as Goodput. Note that each MCS has a coding overhead that cannot be

counted as useful data and it significantly varies from one MCS to another.

When assigning a PRB to a user, the scheduler has to decide on a MCS that would be

used for physical layer transmission. The purpose of the scheduler is to assign precise coding

rates so that it can maximize the goodput over each frame. Note that if the transmit power,

number of sub-channels, and the MCS are not chosen properly, the receiver (i.e., either a

BS or a user) might not be able to decode and the PRB would be wasted. For computing

a precise MCS for each PRB, the scheduler requires accurate estimates of SINR; whereas

the SINR depends on the allocated power, channel gain, and the received interference on

each PRB. It is important to realize that estimating SINR between a user and its serving

BS on the UL is not as simple as on the DL. The interference on the DL is created by BSs

whose positions are known and they transmit all the time, but the interference on the UL

is created by users whose transmissions may vary from one frame to another, as they may

or may not be transmitting over a given frame.
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Figure 3.1: System-1: A multi-cell homogeneous system with omni-directional MBSs
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Figure 3.2: System-2: A multi-cell homogeneous system with tri-directional MBSs

In summary, for precise power allocation, sub-channel allocation, and MCS allocation,

the user scheduling process needs to know the global information from all users that are

associated with other BSs; mainly because, the local scheduler within a BS depends on

interference which in turn depends on the local schedules generated by other BSs. The

resulting problem indeed remains “global” and we will see later in this chapter that the

global problem cannot be solved exactly by the local schedulers. Before formulating and

solving this problem in detail, we first provide an overview of our system in the next section.
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3.3 System Overview

We consider two different systems, i.e., System-1 and System-2 (as shown in Fig. 3.1 and

Fig. 3.2 ), with each one of them operating on a set of cells denoted by K . The yellow-

coloured cells are using the same spectrum and are a part of the same system, while the

adjacent cells that are operating on the same spectrum are coloured with orange. Note that

in order to incorporate ICI for the edge cells, a wrap-around technique has been employed

as recommended by 3GPP in [36]. The centrally placed MBSs, one per macro cell, are in

co-channel with each other; where, each MBS is operating on a set of C sub-channels to

serve a set of randomly distributed user equipments (UEs). To simplify our analysis, we

assume that the MBSs and the users are equipped with single antenna each, although the

proposed US problem can be extended to the case of multi-antenna MBSs.

Assumption 1: All users are equipped with omni-directional antennas with identical

antenna gains and transmit power budget (PUE). The MBSs in System-1 and System-2

have omni-directional and tri-directional antennas, respectively, with identical transmit

power budget (PMBS) and unlimited back-haul capacity.

3.3.1 Channel Model

We analyze the global US problem by using a realization-based approach [37]; where, the

duration of each realization (ω) is considered to be the same as that of a frame, which

corresponds to a set of sub-channels and a set of time-slots, denoted by C and T , respec-

tively. The realization-based approach is simple yet insightful as it can be used to solve

a network utility maximization problem over a large number of snap-shots/realizations of

the network: a realization ω is defined by a set of UEs who want to transmit or receive

data during a frame2. For mathematical simplicity, we assume that during each realization

the users are either transmitting on the UL or receiving on the DL. Consequently, each

realization consists of either a set of UL users (denoted by UUL(ω)) or a set of DL users

2We assume that the MBSs are synchronized in terms of the UL and DL frames by using either Time

Division Duplexing (TDD) or Frequency Division Duplexing (FDD)
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(denoted by UDL(ω))3. The corresponding set of channel gains between all MBS and UE

pairs are denoted by {Gu,k(ω)} and {Gk,d(ω)}, respectively. Note that each channel gain

(either Gu,k(ω) or Gk,d(ω)) depends on:

1. The location of the user resulting in a path-loss between the user and the MBS.

2. The large scale slow fading coefficient between the user and the MBS.

Assumption 2: We assume that the channel exhibits large-scale slow fading character-

istics. The coherence time of the channel is greater than the duration of one frame, i.e.,

the channel gains remain constant within a realization and are equal on all PRBs of a

frame, such that, Gu,k(ω) = Gc,t
u,k(ω),∀u ∈ UUL(ω),∀k ∈ K ,∀c ∈ C ,∀t ∈ T . Similarly,

Gk,d(ω) = Gc,t
k,d(ω),∀d ∈ UDL(ω),∀k ∈ K ,∀c ∈ C ,∀t ∈ T

3.3.2 SINR and Link Layer Rates:

For each realization ω, the UL SINR (on PRB (c, t)) from user u to MBS k is defined as

follows:

γc,tu,k(ω) :=
P c,t
u,k ×Gu,k(ω)

N0 + Ic,tu,k(ω)
, ∀u,∀k,∀c,∀t (3.1)

Similarly, the DL SINR on PRB (c, t) from MBS k to user d is defined as follows:

γc,tk,d(ω) :=
P c,t
k,d ×Gk,d(ω)

N0 + Ic,tk,d(ω)
, ∀k,∀d,∀c,∀t (3.2)

Here, P c,t
u,k and P c,t

k,d are the transmit powers used by MBS k for user u on the UL and

user d the DL, respectively; Ic,tu,k is the UL interference for user u on PRB (c, t) as seen by

MBS k, and Ic,tk,d is the DL interference on PRB (c, t) as seen by user d when receiving data

from MBS k. Whereas, N0 is the average noise power that is assumed to be flat across the

underlying channel.

3Without loss of generality, the users that are transmitting on both UL and DL can be considered as

two separate users.
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The UL interference for user u, when it is transmitting to MBS k, is defined as follows:

Ic,tu,k :=

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈UUL(ω)

P c,t
u′,k′Gu′,k(ω),∀u,∀k,∀c,∀t (3.3)

Similarly, the DL interference for user d, when it is receiving from MBS k, is defined as

follows:

Ic,tk,d :=

k′ 6=k∑
k′∈K

d′ 6=d∑
d′∈UDL(ω)

P c,t
k′,d′Gk′,d(ω),∀d,∀k,∀c,∀t (3.4)

We consider a piece-wise discrete function f(.), which corresponds to a set of MCSs denoted

by M . This function uses a set of pre-defined SINR thresholds (i.e., {βm} with 1 ≤ m ≤
|M |) to compute the corresponding link layer coding efficiency (in bits per OFDM symbol)

as follows:

f(γ) :=


0, 0 ≤ γ < β1

f(βm), βm ≤ γ < βm+1, 1 ≤ m < |M | − 1

f(βmax), γ ≥ β|M | = βmax

(3.5)

The corresponding data rate (in bits per second) on each PRB can be computed as

follows by using the exact SINR (γ), f(γ), the total number of OFDM symbols (NS), and

the duration of each time-slot (T ):

Rate(γ) := f(γ)× NS

T
(3.6)

The SINR remains constant within a PRB, therefore, the rate remains constant across all

OFDM symbols of a PRB.

3.4 The Global User Scheduling Problem

We formulate a global US problem for UL, which refers to jointly scheduling the users

across the entire system for UL transmissions over the resources available to all BSs. Tra-

ditionally, the US problem amounts to finding a schedule for each user, with the goal of

optimizing some fairness criterion, often captured by a network-utility function. To incor-

porate fairness, we use PF as our utility function and maximize the sum of the logarithm
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(with base e) of the total link layer coding efficiencies for each user. Maximizing this

objective is known to yield a proportional fair throughput allocation [8]. Note that a PF

throughput allocation is known to maximize the Geometric Mean (GM) throughput and

hence we will use the GM throughput as our performance metric.

We chose proportional fairness as a metric as it is known to strike a good trade-off

between fairness and efficiency. We formulate this problem to understand its intractability,

where we consider a PRB-based user scheduling problem. Note that a Channel-based US

problem can be formulated as a special case of PRB-based US problem. A similar problem

for the DL has been formulated in Appendix B.

Assuming that the cell associations (i.e., zu,k(ω)) are given for each realization, where a

user can only associate with one cell/MBS, we define the following optimization variables

for the global US problem:

• xc,t,m
u,k is a binary variable for assigning discrete rates; it is equal to 1 if user u is

allocated MCS m by the MBS k on PRB (c, t) and 0 otherwise.

• P c,t
u,k is for allocating UL power on PRB (c, t).

• Ic,tu,k is for computing UL interference on PRB (c, t) at MBS k for user u.

• λu,k is the total coding rate seen by user u from MBS k

Given a set of macro cells K , a set of sub-channels C , a set of sub-frames T , a network

realization ω, a set of user associations ({zu,k(ω)}u∈UUL(ω),k∈K ), and a set of pre-defined

SINR thresholds (i.e., {βm}m∈M ), we define the global US problem as follows:
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PUL
Global(ω) : maximize

{xc,t,mu,k },{P
c,t
u,k},{I

c,t
u,k},{λu,k}

∑
u∈UUL(ω)

log (
∑
k∈K

λu,k)

subject to:

xc,t,mu,k ∈ {0, 1}, ∀u,∀k, ∀c,∀t,∀m (3.7a)

xc,t,mu,k ≤ zu,k(ω), ∀u,∀k, ∀c,∀t,∀m (3.7b)∑
u∈U(ω)

∑
m∈M

xc,t,mu,k ≤ 1, ∀k, ∀c,∀t (3.7c)

0 ≤ P c,t
u,k ≤ PUE

∑
m∈M

xc,t,mu,k , ∀u,∀k, ∀c,∀t (3.7d)∑
c∈C

P c,t
u,k ≤ PUE, ∀u,∀k, ∀t (3.7e)

P c,t
u,kGu,k(ω) ≥ xc,t,mu,k βm(N0 + Ic,tu,k),∀u,∀k,∀c,∀t,∀m (3.7f)

Ic,tu,k =

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

P c,t
u′,k′Gu′,k(ω), ∀u,∀k, ∀c,∀t (3.7g)

λu,k =
∑
c∈C

∑
t∈T

∑
m∈M

xc,t,mu,k f(βm), ∀u,∀k (3.7h)

where, u ∈ UUL(ω), k ∈ K , c ∈ C , t ∈ T ,m ∈M .

Here, the constraints (3.7c) ensures that only one MCS is assigned to a user on each

PRB and also that only one user is scheduled on a PRB of each cell. The constraints (3.7d)

and (3.7e) are for assigning UL power on each PRB. The sum of the ICI and the coding

efficiencies for user u are computed by (3.7g) and (3.7h), respectively.

Note that the bilinear constraints given by (3.7f) compute power for assigning appro-

priate MCS, however, they can be linearized by using a very large number B as follows:

P c,t
u,kGu,k(ω) ≥ βm(N0 + Ic,tu,k)−(1− xc,t,mu,k )B,∀u,∀k,∀c,∀t,∀m (3.7i)

Here, if xc,t,mu,k = 0, the inequality (3.7i) is true for all values of P c,t
u,k and Ic,tu,k, since, the right

hand side has a very large negative value. On the other hand, if xc,t,mu,k = 1, the inequality

states that P c,t
u,kGu,k(ω) ≥ βm(N0 + Ic,tu,k) and this is exactly desired.
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The bilinear constraints given by (3.7f) can be replaced by the linear constraints given

in (3.7i) to form a large-scale linearly constrained problem, however, solving this problem

is still challenging because of the large number of binary and continuous variables. In the

next section, we transform this problem into a continuous upper bound problem that can

be solved efficiently.

3.4.1 The Upper Bound Problem

We want to transform the system-wide global US problem into a tractable problem that can

be solved efficiently. This can be achieved by removing all binary variables from PUL
Global.

Note that the binary variables xc,t,mu,k in PUL
Global(ω) are required for two reasons: (i) they

determine the MCS used by user u on PRB (c, t) and (ii) they represent the PRB mappings

for each user. We replace the binary variables by introducing the following two techniques:

1. We introduce a continuous upper bound function g(.) to envelop the piece-wise dis-

crete function f(.) (as shown in Fig. 3.3), whereby the binary variables for MCS

allocation are no longer needed. The continuous rate function is defined as follows:

g(γ) := e(log10(e) loge(γ)), εγ ≤ γ ≤ βmax (3.8)

where, εγ is a very small positive value and βmax is an upper limit on γ.

2. We add new constraints to ensure that two users in each cell do not to transmit on

the same PRB, which is required to achieve one-to-one mapping between PRBs and

users of each cell.

Note that the upper bound function will over estimate the rates achieved by the users

and thereby it may require higher power in selecting the same MCS. For this reason, a

lower bound function h(.) to the piece-wise discrete function f(.) (as shown in Fig. 3.3)

can be used to find the rates that are achievable in practice, which is defined as follows:

h(γ) := a− b ∗ e−cγ, εγ ≤ γ ≤ βmax

where, a = 6.83, b = 6.92, c = −0.023. Here, εγ is a very small positive value and βmax is

an upper limit on γ.
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In this thesis, we deal with the upper bound results only, while leaving the lower bound

analysis for future extension of this work. For using the upper bound rate function, we

need the following additional variables for the upper bound problem:

• γc,t
u,k is the SINR seen by user u at MBS k on PRB (c, t)

We formulate the upper bound US problem as follows:

PUB−UL
Global (ω) : maximize

{P c,t
u,k},{I

c,t
u,k},{γ

c,t
u,k},{λu,k}

∑
u∈UUL(ω)

log (
∑
k∈K

λu,k)

subject to:

εp ≤ P c,t
u,k ≤ zu,k(ω)PUE + (1− zu,k(ω))εp, ∀u,∀k,∀c,∀t (3.9a)∑

c∈C

P c,t
u,k ≤ PUE, ∀u,∀k,∀t (3.9b)

P c,t
u,kP

c,t
u′,k ≤ εp, ∀u,∀u′, u′ 6= u,∀k,∀c,∀t (3.9c)

εγ ≤ γc,tu,k ≤ βmax, ∀u,∀k,∀c, ∀t (3.9d)

P c,t
u,kGu,k(ω) ≥ γc,tu,k

(
N0 + Ic,tu,k

)
, ∀u,∀k,∀c, ∀t (3.9e)

Ic,tu,k =

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

P c,t
u′,k′Gu′,k(ω), ∀u,∀k,∀c, ∀t (3.9f)

λu,k =
∑
c∈C

∑
t∈T

g(γc,tu,k), ∀u,∀k (3.9g)

where, u ∈ UUL(ω), k ∈ K , c ∈ C , t ∈ T .

Here, the bilinear constraints (3.9c) ensure that on each PRB only one user in each cell is

transmitting with a considerable amount of power, where εp and εγ are very small positive

values that depend on the numerical values of PUE and γc,tu,k, respectively. The bilinear

constraints (3.9e) are for computing SINR on each PRB, while the constraints (3.9f) and

(3.9g) are for computing the exact ICI and link layer coding efficiencies, respectively.
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Figure 3.3: Shannon’s capacity (s(γ) = T
NS
×∆f × log2(1 + γ)) vs. the piece-wise discrete

rate function (f(γ) with |M |=15 from [22]) and the continuous rate functions (g(γ) and

h(γ) ).

We ensure that both problems, i.e., PUL
Global(ω) and PUB−UL

Global (ω), share the same

solution space for finding their optimal objectives. Since, a feasible solution for the original

problem can always be mapped onto a feasible solution for the upper bound problem and

vice versa, the objective value of the upper bound problem will always be an upper bound

on the objective value of the original problem for any feasible solution.

The upper bound problem (PUB−UL
Global (ω)) is non-linear and non-convex in nature that

requires extensive computational resources; mainly, due to the presence of bilinear con-

straints for computing the SINR. However, it can be transformed into an equivalent convex

problem by using GP transformation that is described in [38].

Lemma 3.1: PUB−UL
Global (ω) is an upper bound on PUL

Global(ω) and it can be converted

into a convex problem.

Proof: Please see Appendix A.
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Computing Feasible Solutions:

In Appendix A, we successfully applied GP to the upper bound problem and converted it

into a fairly sparse GP problem (PUB−UL′

Global (ω)), which can be solved efficiently through

standard interior-point algorithms [38] as each constraint depends on only a modest number

of the optimization variables. Consequently, for a given realization ω, an optimal solution

for PUB−UL′

Global (ω) can be used to find a feasible solution for the original global US problem

PUL
Global(ω) using the method described in Algorithm 1; where, the feasible solution is

computed from the optimal SINR values (i.e., γ∗
′c,t

u,k (ω)) obtained by solving PUB−UL′

Global (ω).

Note that each γ∗
′c,t

u,k (ω) needs to be transformed into the corresponding γ∗c,tu,k (ω). As

g(γc,tu,k) stays greater than or equal to f(γc,tu,k), therefore, the optimal objective value of

PUB−UL′

Global (ω) will always be greater than or equal to the optimal value for PUL
Global(ω).

Nonetheless, the global optimal solution for PUL
Global(ω) lies in-between this feasible solution

and the optimal solution obtained by solving PUB−UL′

Global (ω). We will show numerically in

Section 3.4.2 that the average gap between these feasible solutions and the upper bound

solutions, is small.

Algorithm 1 A Feasible Solution for PUL
Global(ω) using {γ∗c,tu,k (ω)}∀u,∀k,∀c,∀t

1: for each u ∈ UUL(ω), k ∈ K do

2: for each c ∈ C , t ∈ T do

3: xc,t,mu,k ← 0

4: for each m ∈M do

5: if γ∗c,tu,k (ω) ≥ βm then xc,t,mu,k ← 1 break

6: else xc,t,mu,k ← 0

7: end if

8: end for

9: end for

10: λu,k =
∑
c∈C

∑
t∈T

∑
m∈M

xc,t,mu,k f(βm)

11: end for
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3.4.2 Numerical Results

We evaluate the performance of our proposed upper bound problem by considering two

different cell layouts, as shown in Fig. 3.1 and 3.2, with multiple macro cells placed at an

inter-site distance (ISD) of 500m (i.e., equal to a macro cell radius of 500√
3
m). Each macro

cell has one MBS, i.e. placed at the center as shown in Fig. 3.1 and 3.2, which is operating

on OFDMA-based frames with |C | = 30 sub-channels and |T | = 10 time-slots. The MBSs

from the same-colored macro cells are in co-channel with each other, for simplicity, we

consider the yellow colored macro cells only with a wrap-around technique to incorporate

ICI for the macro cells at the edge (i.e., these macro cells are colored in orange).

Our physical layer parameters are based on the 3GPP evaluation document [5] for LTE,

which are also summarized in Table 5.2; where, the channel gains introduced in Section

3.3.1 account for path loss, slow fading, and antenna gains only. The slow fading coefficients

are modeled by a log-normal distribution with zero mean and standard deviation equal to

σ. The directivity gain (used for MBSs in cell layout 2 only) is a function of θ, i.e., the angle

made by a user (UE) with the broadside direction of the MBS antenna. We consider an

adaptive modulation and coding scheme as given in [22] for computing exact link layer rates

(i.e., using the function f(.) with |M | = 15), which are required for computing the feasible

Table 3.1: Physical Layer Parameters from [5]

NS 12× 14 T 1ms

Noise Power -174dBm/Hz Sub-channel Bandwidth 180kHz

UE Noise Figure 9dB Penetration Loss 20dB

MBS Noise Figure 5dB Traffic Model Full Buffer

UE Antenna Gain 0dBi PUE 24dBm

Layout 1: MBS Antenna Gain 15dBi Layout 1: PMBS 46dBm

Layout 2: MBS Antenna Gain 17dBi Layout 2: 3× PMBS 46dBm

Layout 2: MBS Directivity Gain min(12( θ
70o

)2, 20)dB

Path Loss (dB) 128.1 + 37.6 log10(d/1000), d ≥ 35m

36



solutions for the global user scheduling problem along with the proposed upper bound

solutions. For numerical evaluation, a set of 100 realizations (Ω) have been generated,

where each ω ∈ Ω corresponds to the duration of one frame and a set of either UL or DL

users, denoted by UUL(ω) or UDL(ω), respectively, that are distributed uniformly across all

macro cells. We consider the geometric mean (GM) throughput of the UL or DL users,

which is equivalent to maximizing our objective function, i.e.,
∑

u∈UUL(ω)

log (
∑
k∈K

λu,k) for

UL or
∑

d∈UDL(ω)

log (
∑
k∈K

λk,d) for DL, respectively.

The GM throughput (in bits per second) for each realization ω is defined as follows:

GMUL(ω) :=

( ∏
u∈UUL(ω)

(
∑
k∈K

λu,k(ω)×NS

T × |T |
)

) 1
|UUL(ω)|

GMDL(ω) :=

( ∏
d∈UDL(ω)

(
∑
k∈K

λk,d(ω)×NS

T × |T |
)

) 1
|UDL(ω)|

(3.10)

where, NS and T are the total number of OFDM symbols in each PRB and the duration

of each time-slot, respectively, for the given frame.

The following performance measures, for each realization ω, have been defined for the

UL users, nonetheless, a similar set of performance measures can be defined for the DL

users:

• The Upper bound GM (GMUB−UL
Global (ω)), for the original global user scheduling prob-

lem (i.e., PUL
Global(ω)), can be computed by solving PUB−UL′

Global (ω) through any non-

linear programming solver, such as, SNOPT [39].

• The Feasible GM (GMFS−UL
Global (ω)), for the original global user scheduling prob-

lem (i.e., PUL
Global(ω)), can be computed from the upper bound solutions (i.e., from

PUB−UL′

Global (ω)) by using the method discussed in Algorithm 1.
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Table 3.2: System-1: Globally Optimal UL Schedules

|UUL(ω)|
|K | GMUB−UL

Global (ω) GMFS−UL
Global (ω) GAPUL

Global(ω) :=(
GM

UB−UL
Global (ω)−GM

FS−UL
Global (ω)

)
×100

GM
UB−UL
Global (ω)

Average over Ω

N Mbps Mbps %

5 4.53 4.22 6.94

10 2.31 2.16 6.99

15 1.52 1.41 7.08

Table 3.3: System-1: Globally Optimal DL Schedules

|UDL(ω)|
|K | GMUB−DL

Global (ω) GMFS−DL
Global (ω) GAPDL

Global(ω) :=(
GM

UB−DL
Global (ω)−GM

FS−DL
Global (ω)

)
×100

GM
UB−DL
Global (ω)

Average over Ω

N Mbps Mbps %

5 4.73 4.37 7.73

10 2.35 2.16 8.09

15 1.59 1.44 9.60
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Table 3.4: System-2: Globally Optimal UL Schedules

|UUL(ω)|
|K | GMUB−UL

Global (ω) GMFS−UL
Global (ω) GAPUL

Global(ω) :=(
GM

UB−UL
Global (ω)−GM

FS−UL
Global (ω)

)
×100

GM
UB−UL
Global (ω)

Average over Ω

N Mbps Mbps %

5 3.99 3.66 8.49

10 2.06 1.90 8.79

15 1.35 1.22 9.92

Table 3.5: System-2: Globally Optimal DL Schedules

|UDL(ω)|
|K | GMUB−DL

Global (ω) GMFS−DL
Global (ω) GAPDL

Global(ω) :=(
GM

UB−DL
Global (ω)−GM

FS−DL
Global (ω)

)
×100

GM
UB−DL
Global (ω)

Average over Ω

N Mbps Mbps %

5 4.10 3.75 8.72

10 2.08 1.90 8.92

15 1.37 1.24 9.66

39



A summary of these performance measures for both UL and DL, when averaged over Ω,

have been shown in Table 3.2 and 3.3 for System-1 and in Table 3.4 and 3.5 for System-2,

respectively. Given an optimal solution for the convex upper bound problem, we can find a

feasible solution for the intractable system-wide global problem. Clearly, the average gap

between GMFS and GMUB is small on both UL and DL, i.e., less than 10% for different

number of users; where, the optimal solution to the intractable system-wide global problem

lies in-between the gap. Hence, we have developed a method that delivers a feasible solution

to the intractable system-wide global US problem which is very close to the optimal.

3.5 The Local User Scheduling Problem

The proposed global user scheduling problem can be solved in the scenario where a central

scheduler has the knowledge of the channel gains to/from all users and it has extensive

computational resources. However, in practice the computational resources are very limited

and most of the time the user schedulers are employed locally within each BS. To avoid

any communication overhead, typically, these user schedulers do not coordinate with each

other for scheduling their users.

We will discuss the local US problems for both UL and DL, without assuming any

BS-coordination, in order to simplify the system-wide global US problem into multiple de-

coupled local US problems (i.e., one per BS). Designing these local schedulers to perform

efficiently in an on-line fashion is not trivial, especially on the UL, since, the US problem on

the UL is more challenging than the DL, i.e., due to various reasons which will be discussed

in Section 3.5.1. Specifically, the UL interference pattern strongly depends on the schedul-

ing decisions of the neighboring BSs, which makes the US problem much more complex

on the UL. A naive way for scheduling users would be to make the local US decisions on

a per-BS basis by assuming that the interference is fixed, but such an approach does not

work well because the interference pattern could change drastically when a different user

is scheduled on a PRB. Furthermore, simply applying the DL-based local US schemes to

the UL, for example the one proposed in [20], would lead to sub-optimal results.
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Need for Estimating Interference:

Ideally, scheduling should be local to a BS as it is performed at a very short time scale

(typically in milliseconds) and subsequently the system-wide global US problem should be

decoupled into multiple independent local schedulers (one per BS). Given that these decou-

pled local schedulers need to determine their schedules independently without any coordi-

nation, they require an estimate/measurement for ICI which could be computed/measured

beforehand. However, computing the exact estimate of ICI for decoupling the system-

wide global user scheduling problem in a multi-cell system is not possible because of the

following reasons:

1. The ICI on the UL is coming from the users that are associated with the BSs in

the interfering macro cells and its exact value depends on the power allocations and

the channel gains from the users which will get scheduled (by their BSs) on the

next frame. Since, these measures depend on the scheduling decisions made by the

interfering BSs for their next frames, they cannot be made available beforehand.

2. The ICI on the DL can be computed exactly beforehand as it is created by the

BSs whose positions are known and they transmit all the time. Hence, the DL ICI

under fixed transmit power assumptions can be measured exactly as discussed in

[9–11]. Note that fixing power on each PRB can significantly limit the potential

performance gains and if the power is not fixed then the DL US problem becomes

similar to the UL problem; where, the only way to compute exact ICI is to solve the

system-wide global US problem.

Given the aforementioned reasons, the local US process within each BS, no matter for UL

or DL, is somewhat blind with respect to the exact ICI. Nonetheless, if the ICI has to be

approximated then the performance of these local schedulers will highly depend on the ICI

estimate used by them; since, using a high value would lead to conservative user schedules

and a low value would lead to optimistic schedules with higher packet losses. Therefore,

the local US solutions based on the estimates of ICI need to be validated as they might

lead to sub-optimal solutions as opposed to the ones obtained by solving the system-wide

global user scheduling problem from Section 3.4.
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State-of-the-Art Interference Measurement:

In practice, the ICI is indeed measured and adjusted by the local schedulers based on

the feedback received by them, which is possible only in a closed loop system. In current

OFDM-based cellular networks, a user can periodically transmit a sounding reference signal

(SRS) on the UL during the last symbol of each time-slot with fixed power, which is

typically known beforehand. Thus, each BS can compute a long term average of the

channel gains from the users that are associated with the interfering BSs. In contrast, the

BSs also transmit a set of reference symbols (on the DL) within each time-slot. These

reference symbols are transmitted to facilitate the ICI estimation process on the DL. We

use a similar process for computing ICI, however for modeling purposes, we need an open

loop estimate which can be validated through simple numerical simulations. Knowing well

that if a BS can always decode the data within a frame, its open loop ICI estimate might

be overestimating the ICI. Similarly, if the BS is unable to decode properly, the estimator

might be underestimating the ICI.

3.5.1 The Uplink Problem

The local US process within each BS needs to make the PRB mapping decisions given

an estimate of ICI. More specifically, it determines the number of PRBs allocated to each

associated user without considering any inter-BS coordination. Note that the channel gains

for each users can be computed locally at each BS through the TDD protocol that results

in channel reciprocity. Given an ICI estimate (Î), the corresponding estimated rates can

be pre-computed by the local schedulers as follows:

R̂i
u,k(ω, Îk) := i× f

( PUE

i
×Gu,k(ω)

N0 + Îk

)
,∀u ∈ UULk

(ω),∀k ∈ K ,∀i ∈ {1, ..., |C |} (3.11)

Here, UULk
(ω) denotes the set of UL users that are associated with the BS k4. Note that

the compensated rates in equation (3.11) are not the exact rates that nonetheless have to

be computed with the exact interference. The equal power (EP) allocations have been used

to pre-compute these rates for the local US problem, which are not necessarily optimal.
4We assume that each macro cell has a local UA process for computing cell associations, i.e., zu,k(ω).
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In fact, we will show numerically in Section 3.5.3 that these compensated rates are far

from the optimal and we need to solve the global user scheduling problem in an efficient

manner for optimizing the power and the corresponding rates on each PRB. Note that

the number of sub-channels allocated to user u should be in proportion to u’s channel

gain from the MBS. In Fig. 3.4, it has been shown that the total rate received by each

user highly depends on the number of sub-channels allocated to that user. The users are

limited in power on UL, therefore, if the received UL SINR of a user is significantly low

then allocating more sub-channels to that user would lead to zero rate. We can see in

Fig. 3.4 that the rates computed using the Shannon’s function (i.e., s(γ)) are far from the

actual ones, which are obtained via the set of discrete MCSs (i.e., f(γ)). Therefore, the

number of sub-channel allocations should not be computed using s(γ), instead, we need to

optimize the number of sub-channel allocations using the discrete rate function f(γ).

43



The following optimization variables are required for the proposed sub-channel alloca-

tion problem:

• nt
u,k indicate the number of sub-channels allocated to user u by MBS k during time-

slot t.

• si,tu,k is the sub-channel allocation indicator, which is 1 if user u is allocated i number

of sub-channels by MBS k during time-slot t

Given a set of macro cells K , a set of sub-channels C , a set of time-slots T , a

network realization ω, a set of user associations ({zu,k(ω)}u∈UULk
(ω),k∈K ), a set of ICI

estimates({Îk}k∈K ), and a set of pre-computed data rates ({R̂i
u,k(ω, Îk)}i∈{1,...,|C |},u∈UULk

(ω),k∈K ),

the optimal sub-channel allocation problem for the MBS k is defined as follows:

PUL
k (ω, Îk) : maximize

{nt
u,k},{s

i,t
u,k},{λ̂u,k}

∑
u∈UULk

(ω)

log (λ̂u,k)

subject to:

si,tu,k ∈ {0, 1}, ∀i,∀u,∀t (3.12a)

|C |∑
i=1

si,tu,k ≤ zu,k(ω) = 1, ∀u,∀t (3.12b)∑
u∈UULk

(ω)

ntu,k ≤ |C |, (3.12c)

ntu,k =

|C |∑
i=1

(i× si,tu,k), ∀u,∀t (3.12d)

λ̂u,k =
∑
t∈T

|C |∑
i=1

(si,tu,r × R̂i
u,k(ω, Îk)), ∀u (3.12e)

where, ∀i ∈ {1, ..., |C |}, u ∈ UULk
(ω), k ∈ K , t ∈ T .

Once the optimal number of sub-channels for each time-slot (i.e., n∗tu,k(ω)) have been

determined by solving PUL
k (ω, Îk), the local PRBs of each cell k are randomly mapped

to the local users using n∗tu,k(ω). Note that the sub-channel allocations obtained by solving
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the above problem might create too many failures to decode for some users; therefore, we

randomly permute their PRB mappings over different time-slots of a frame to statistically

average out the effects of ICI estimation.

3.5.2 The Downlink Problem

Different from the UL case, the DL is not limited in power and also the DL interference is

created by the MBSs whose positions are known and they transmit all the time. Therefore,

the local US on the DL can be simplified by using equal power (EP) allocations per PRB

and the corresponding interference can be pre-computed (for each PRB) as follows:

IEPk,d (ω) :=

k′ 6=k∑
k′∈K

Pk
|C |
×Gk′,d(ω), ∀d ∈ UDLk

(ω),∀k ∈ K (3.13)

The corresponding EP based compensated rates (on each PRB) can be pre-computed for

each user as follows:

Rk,d(ω, I
EP
k,d ) := f

( Pk

|C | ×Gk,d(ω)

N0 + IEPk,d (ω)

)
, , ∀d ∈ UDLk

(ω),∀k ∈ K (3.14)

The following optimization variables are required for the sub-channel allocation problem

on the DL:

• nt
k,d indicate the number of sub-channels allocated to user d by MBS k during time-

slot t.

Given a set of macro cells K , a set of sub-channels C , a set of time-slots T , a network

realization ω, a set of user associations ({zk,d(ω)}d∈UDLk
(ω),k∈K ), a set of equal power (EP)

based ICIs ({IEPk,d }d∈UDLk
,k∈K ), and a set of pre-computed data rates using the EP based

ICIs ({Rk,d(ω, I
EP
k,d )}d∈UDLk

(ω),k∈K ), the optimal sub-channel allocation problem for the

MBS k is defined as follows:
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PDL
k (ω, {IEP

k,d (ω)}) : maximize
{nt

k,d},{λ̂k,d}

∑
u∈UDLk

(ω)

log (
∑
k∈K

λ̂k,d)

subject to:

ntk,d ≤ zk,d(ω)|C | = |C |,∀d,∀t (3.15a)

ntk,d ∈ {0, ..., |C |}, ∀d,∀t (3.15b)∑
d∈UDLk

(ω)

ntk,d ≤ |C |, ∀t (3.15c)

λ̂k,d =
∑
t∈T

ntk,dRk,d(ω), ∀d (3.15d)

where, d ∈ UDLk
(ω), k ∈ K , t ∈ T .

Theorem 3.1: The optimal solution PDL
k (ω, {IEP

k,d (ω)}) will allocate equal number

of PRBs to each user when {ntk,d} are relaxed.

Proof: Please see Appendix C.

Similar to the case for UL, after solving the above problem, we randomly map the local

users to the local PRBs of each macro cell. Note that the above problem is an EP based DL

scheduler, whose performance can be further improved through optimal power allocations

on each PRB. We will show numerically in Section 3.5.3 that the performance of this local

scheduler is also far from the optimal.

3.5.3 Performance Evaluation

We evaluate the performance of the local user scheduling schemes, on both UL and DL,

using similar simulation settings as the one discussed in Section 3.4.2 and the same set of

systems, i.e., shown in Fig. 3.1 and 3.2, have been considered. The physical layer parame-

ters are based on the 3GPP evaluation document [5] for LTE, which are also summarized

in Table 5.2. Likewise, a snapshot-based approach has been considered to validate the

proposed local schedulers with a set of 100 realizations (Ω), where each realization ω ∈ Ω

corresponds to U(ω) users that are distributed uniformly across all macro cells (k ∈ K ).

46



Validation of the Local User Schedules on the Uplink:

The exact ICI cannot be measured by the local schedulers on the UL, hence, they need to

estimate it as closely as possible for computing the corresponding Estimated Global GM. In

order to validate the performance of the local user scheduling problem on the UL, we need

to find the corresponding Effective Global GM, knowing that the solutions obtained via

solving the decoupled problems with estimates of ICI would have to be validated with the

real ICI. Note that SINRs have been estimated with the estimated ICI, which are required

for selected the appropriate MCS (m) for UL transmission. However, a bad estimation

might result in decoding errors if the effective SINR (i.e., with the real ICI) on a given

PRB is much less than the estimated SINR (i.e., with Îk as discussed in Section 3.5.1).

We define a simple PRB decoding rule for computing the effective data rates: if the

effective SINR is lower than the threshold SINR (e.g., βm for MCS m), then the receiver

will not be able to decode the PRB and we count it as a PRB loss. High losses will impact

the Effective Global GM of all users. For example, if we assume the ICI to be zero on

all PRBs, we can still compute local user schedules within each macro cell, however, the

effective data rate seen by each user might be too low with the real ICI.

The proposed UL scheduler can be validated for different numbers of users in different

macro cells, however, the validation process in this case will be much more complicated.

For simplicity, we assume that the users are distributed uniformly across the network, i.e.,

N = |U(ω)|
|K | and henceforth the same estimate of ICI can be used by all MBSs, i.e., Îk =

Î ,∀k ∈ K . We try all possible values of Î to find the Effective Global GM throughput when

real ICI and the corresponding PRB losses have been considered. Note that a conservative

value of Î might lead to lower PRB losses at the cost of a lower Effective GM, whereas an

optimistic estimation can increase it. We consider all possible values of Î to maximize the

Effective GM throughput on the UL, however, in practice this might not be possible for a

local scheduler.
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Performance Measures:

We compute the following performance measures for each realization ω, where NS and T

are the total number of OFDM symbols in each PRB and the duration of each time-slot,

respectively, for the given frame:

1. We consider the geometric mean (GM) throughput of the UL and DL users as deter-

mined by the local schedulers, i.e., by solving the local US problems PUL
k (ω, Î) and

PDL
k (ω, ÎEP

k,d ), respectively. The corresponding Estimated Global GM throughput

(in bits per second) for each realization ω is defined as follows:

ˆGM
UL

(ω, Î) :=

( ∏
u∈UUL(ω)

(
∑
k∈K

λ̂u,k(ω)×NS

T × |T |
)

) 1
|UUL(ω)|

ˆGM
DL

(ω, {IEPk,d }) :=

( ∏
d∈UDL(ω)

(
∑
k∈K

λ̂k,d(ω)×NS

T × |T |
)

) 1
|UDL(ω)|

(3.16)

2. Similarly, we also consider the arithmetic mean (AM) throughput of the UL and DL

users by solving the local US problems PUL
k (ω, Î) and PDL

k (ω, ÎEP
k,d ), respectively.

The corresponding Estimated Global AM throughput (in bits per second) for each

realization ω is defined as follows:

ˆAM
UL

(ω, Î) :=
1

|UUL(ω)|
×
( ∑
u∈UUL(ω)

∑
k∈K

λ̂u,k(ω)×NS

T × |T |

)
ˆAM

DL
(ω, {IEPk,d }) :=

1

|UDL(ω)|
×
( ∑
d∈UDL(ω)

∑
k∈K

λ̂k,d(ω)×NS

T × |T |

) (3.17)

3. The Effective Global AM/GM for UL, which can be computed by considering the real

ICI with the proposed PRB decoding rule for computing effective AM/GM against

each global solution obtained via solving PUL
k (ω, Î),∀k ∈ K .

4. The Effective Global AM/GM with ICI-coordination for UL, which can be computed

by re-evaluating the MCS on each PRB according to the real ICI for computing

effective AM/GM with ICI-coordination against each global solution obtained via

solving PUL
k (ω, Î),∀k ∈ K .
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5. The Effective Global AM/GM for DL, which is same as the Estimated Global AM/GM,

since, the exact ICI on the DL can be pre-computed exactly when EP based local

schedulers are used by all MBSs.

Numerical Results:

The numerical results for the UL are obtained by solving the problem PUL
k (ω, Î),∀k ∈ K

using a mixed integer programming solver (SCIP [40]), whereas, the results for the DL are

obtained analytically with the help of Theorem 3.1, which is described in Section 3.5.2.

The global AM/GM throughputs on the UL corresponding to each system have been shown

in Fig. 3.5 and 3.6, while the AM/GM throughputs on the DL are shown in Fig. 3.7.

The performance of the proposed local US scheme is almost similar for both systems on

the UL as well as the DL, given that System-1 experiences lesser interference than System-

2; indeed ICI estimation/measurement is critical for both systems. In both systems, the

inter-dependence between the user scheduling processes on the UL (i.e., one per MBS) can

be limited by using an estimate for UL ICI and the single-cell-based UL schedulers, such

as [12–15], with no ICI considerations (i.e., Î = 0 case), will yield zero GM throughput

on the UL. Note that although we see non-zero AM throughput (or sum of the user rates)

for Î = 0 case in Fig. 3.5 and 3.6, however, AM throughout does not offer fairness among

the users; there are some users with zero rate because the GM throughput is zero at lower

values of Î. In contrast, the user scheduling schemes based on worst case ICI, such as the

one discussed in [11] with a very large value of Î), will yield higher interference estimates

that will lead to a conservative effective AM/GM throughput.

For both systems , it can be seen that the local schedules, no matter on UL or DL,

are still far from the optimal with an average gap between 30% to 50% from the globally

optimal schedules, which are given in Table 3.2, 3.4, 3.3, and 3.5. In fact, it can be seen in

Fig. 3.5 and 3.6 that ICI coordination is indeed useful on UL, even for small values of Î.
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Î (in 10
-14

 Watts)

Estimated Global AM

Effective Global AM

Effective Global AM with ICI-coordination

(a) GM with N = 5 (b) AM with N = 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25  30

T
h

r
o

u
g

h
p

u
t 

(i
n

 M
b

p
s

)
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Figure 3.5: System-1: Average UL throughput over Ω.
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Figure 3.6: System-2: Average UL throughput over Ω.
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Figure 3.7: Average DL throughput over Ω.

In Fig. 3.8, we can see that using the shannon’s capacity function s(γ), for computing

the number of sub-channels on the UL, can significantly lower the data rate received by a

user when the discrete set of MCSs (using f(γ)) have been employed.
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Figure 3.8: Uplink Estimated rate for a user (with N = 5) when the sub-channel allocation

are determined through s(γ) as opposed to f(γ).
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3.6 Conclusions

In this chapter, we formulated an intractable system-wide global user scheduling problem

and transformed it into a tractable upper bound problem. This was achieved by replacing

the piece-wise discrete rate function with a continuous rate upper bound function. The

resulting upper bound problem was transformed into a convex problem via. geometric

programming (GP). The optimal solutions for the upper bound problem were mapped into

the feasible solutions of the intractable global US problem using a simple method. The

average gap between the feasible solutions and the optimal solutions was observed to be

tight for different systems, hence, the proposed upper bound problem can be used to obtain

reasonable solutions for benchmarking the performance of different user schedulers.

In the later part of this chapter, we explained the inter-dependence of the local user

scheduling processes within each macro cell, specifically on the uplink. We elucidated that

the user scheduling problem in a multi-cell system is indeed a global problem, which can be

decoupled into multiple local user scheduling problems (one per macro cell) by using simple

estimates/measurements for inter-cell interference. However, these local problems need to

be validated in a multi-cell setting. We validated the performance of these local schedulers

through extensive numerical simulations over two different homogeneous systems.

Our results reveal that the schedules obtained through the local user schedulers are far

from the ones obtained via solving the original system-wide global user scheduling problem.

Further, we found that BS-coordination can be very helpful in improving the performance

of these local schedulers. Inspired by the preliminary results obtained via ICI-coordination,

we believe that the performance of these local schedulers can be greatly improved under

a C-RAN [41] setting, as the exact ICI depends on dynamic system states which can only

be obtained by a centralized scheduler.
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Chapter 4

User Scheduling and RRU

Association under C-RAN

Deployment

4.1 Introduction

In Chapter 3, we presented a system-wide global user scheduling problem to benchmark the

performance of local user scheduling schemes on uplink and downlink, where the numerical

results revealed that the user schedules obtained via solving the local problems were far

from the globally optimal ones. Further, we found that ICI-coordination, which is possible

only under a C-RAN setting, can be very helpful in improving the performance of these

local schedulers. Note that the deployment of C-RANs has been taken as a norm for

supporting complex interference scenarios, inter-cell coordination, and cooperative resource

sharing. Unlike traditional networks, where each macro/micro cell performs baseband

processing at a local site, a C-RAN co-locates all BBUs in a centralized pool. Whereas,

each macro/micro cell is equipped with its own RRU that is connected to the BBU pool

through a high-bandwidth and low-latency front-haul link.
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Centralizing the baseband processing at the BBU pool yields numerous merits. Most

importantly, it enables interference coordination that is essential for optimizing the perfor-

mance of network processes like US and UA; since, the RRUs are in co-channel for accessing

the underlying radio spectrum, the centralized BBU pool (with possibly a centralized con-

troller) has to determine optimal RRU associations and user schedules, which are critical

for the underlying network as they affect the overall network throughput. Further, with

interference coordination, the distributed RRUs can cooperate flexibly and seamlessly to

improve the instantaneous network throughput of the underlying radio network by reducing

the inter/intra-cell interferences on both UL and DL. Besides this, the lightweight RRUs

can be easily deployed and maintained in different types of cells while reducing the energy

consumption of each site.

Our Objective:

In this chapter1, we investigate a joint user scheduling (US) and user association (UA)

process for OFDMA based radio networks under the C-RAN setting, where we shall focus

on the performance of the radio link interfaces only, while leaving the problems emerging in

the core network or the higher layer protocols as a future work. The C-RAN architecture

is particularly important in terms of RRM, as it enables a joint management of the radio

resources via the front-hauls yielding a potentially higher performance gain. However, the

joint processing might lead to a high computational overhead in the BBU pool, especially,

for large-scale networks, therefore, an efficient joint US and UA process has to be employed

in order to achieve a reliable connection between the RRUs and the users.

In this context, our main goals for this chapter can be summarized as follows:

1. To formulate a joint US and UA process for a multi-cell network, while considering

full inter-BBU coordination in order to find the maximum performance gains that

could be achieved under the considered network setting. We attempt at solving

the joint problem on both UL and DL for finding the optimal performance under a

given set of MCSs with exact power allocations, channel gains, and intra/inter cell

interferences.
1Some of the results in this chapter were published in [32].
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2. To find an efficient quasi-optimal solution for the joint US and UA problem, for both

UL and DL, and quantify the performance of UL-centric and DL-centric UA schemes.

4.1.1 Existing Literature on C-RANs

Most of the existing work on C-RANs has focused on minimizing the power consump-

tion through coordinated scheduling [42–44]. These studies aim at minimizing the overall

energy consumption of the C-RAN architecture subject to the users’ data rate require-

ments without considering any specific MCS. Specifically, [42] analyzed a single massive

macro cell without considering any inter-cell interference (ICI) and [44] assumed a number

of uncoordinated CRANs surrounding the actual C-RAN under consideration, whereas a

single-cell based heterogeneous C-RAN has been discussed in [45] without considering any

ICI. A multi-RRU scheduler has been proposed in [43] for energy minimization in a C-RAN

by compressing the precoded messages, where a flat ICI value has been considered within

each cell; which is not practical, since, a higher ICI value would lead to lower throughput

in each cell, while a lower value would result in packet losses.

A similar joint US and power adaptation problem for C-RANs has been solved for a

single-cell in [46] by exploiting opportunistic network coding without MCS considerations.

An interference-aware UA scheme for a heterogenous C-RAN has been investigated in [47],

where the operation state of each BS is controlled by a central controller. The authors

first proposed a UA problem which maximizes the users’ aggregate utility, but due to high

computational complexity of the problem, a distributed heuristic algorithm has been solved

to obtain sub-optimal solutions.

To the best of our knowledge, the joint US and RRU association problem for OFDMA

based C-RANs with multiple macro/micro cells has not been studied extensively, primarily

due to the difficulty in evaluating the exact interference, which makes the problem com-

putationally intractable. Computing exact ICI is difficult, but important as it critically

determines SINR (for selecting an appropriate MCS), the RRU associations and scheduling

decisions, and the transmit power level on UL/DL. We believe that without considering the

exact interference the performance of the aforementioned US or UA schemes is questionable

under a multi-cell setting as they might be far from the optimal one.
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In this chapter, we propose and solve a joint US and UA problem to obtain globally

optimal schedules via interference coordination, which is viable in a C-RAN setting with

inter-BBU coordination, in order to benchmark the performance gains. Heuristic based

solutions can then be determined to efficiently solve the joint US and UA problem within

a C-RAN.

The rest of this chapter is organized as follows: we introduce our C-RAN model in

Section 4.2. The joint US and UA problem and its corresponding upper bound problem

is introduced in Section 4.3. The heuristic-based UL and DL solutions are presented in

Section 4.4 and their efficacy is discussed in Section 4.5.

4.2 C-RAN Model

We consider a C-RAN that consists of a set of RRUs denoted by R, placed at the local

cell sites, and their corresponding BBUs (i.e., one for each RRU), that are placed in

a centralized BBU pool. The RRUs are in co-channel with each other to serve a set

of randomly distributed user equipments (UEs) that are equipped with omni-directional

antennas with identical antenna gains and transmit power budget (PUE), whereas all RRUs

have unlimited fronthaul capacity with a given transmit power budget (Pr, r ∈ R). To

simplify our analysis, we assume that the RRUs and the users are equipped with single

antenna each, although the proposed US and UA problems in this chapter can be extended

to the case of multi-antenna RRUs.

4.2.1 Channel Model, SINR, and Link Layer Rates

In this chapter, we assume the same channel model as we did in Chapter 3, i.e., by

considering a realization-based approach; where, the duration of each realization (ω) was

considered to be the same as that of a frame, which corresponds to a set of sub-channels

and a set of time-slots, denoted by C and T , respectively.
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A realization ω is defined by a set of UEs who want to transmit or receive data during

a frame2. For mathematical simplicity, we assume that during each realization the users

are either transmitting on the UL or receiving on the DL. Consequently, each realization

consists of either a set of UL users (denoted by UUL(ω)) or a set of DL users (denoted

by UDL(ω))3. The corresponding set of channel gains between all RRU and UE pairs are

denoted by {Gu,r(ω)} for UL and {Gr,d(ω)} for DL, respectively. The UL SINR (on PRB

(c, t)) from user u to RRU r is defined as follows:

γc,tu,r(ω) :=
P c,t
u,r ×Gu,r(ω)

N0 + Ic,tu,r(ω)
, ∀u,∀r,∀c, ∀t (4.1)

Similarly, the DL SINR on PRB (c, t) from RRU r to user d is defined as follows:

γc,tr,d(ω) :=
P c,t
r,d ×Gr,d(ω)

N0 + Ic,tr,d(ω)
, ∀r,∀d,∀c, ∀t (4.2)

Here, P c,t
u,r and P c,t

r,d are the transmit powers used by RRU r for user u on the UL and user

d on the DL, respectively; Ic,tu,r is the UL interference on PRB (c, t) as seen by RRU r, and

Ic,tr,d is the DL interference on PRB (c, t) as seen by user d when receiving data from RRU

r. Whereas, N0 is the average noise power that is constant for all PRBs of each RRU.

The UL interference for user u, when it is transmitting to RRU r, is defined as follows:

Ic,tu,r :=

r′ 6=r∑
r′∈R

u′ 6=u∑
u′∈UUL(ω)

P c,t
u′,r′Gu′,r(ω), ∀u,∀r,∀c,∀t (4.3)

Similarly, the DL interference for user u, when it is receiving from RRU r, is defined as

follows:

Ic,tr,d :=

r′ 6=r∑
r′∈R

d′ 6=d∑
d′∈UDL(ω)

P c,t
r′,d′Gr′,d(ω),∀r,∀d,∀c,∀t (4.4)

2We assume that all RRUs of the C-RAN are synchronized in terms of the UL and DL frames by using

either TDD or FDD mode
3Without loss of generality, the users that are transmitting on both UL and DL can be considered as

two separate users.
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Due to high variation in channel gains, rate adaptation can be used to dynamically

adjust the data rate of each user based on its exact SINR. The user schedulers that have

been studied in the past make use of the classical Shannon’s capacity (i.e., we denote it

by s(.)) for approximating data rate on each PRB. However, such an approach does not

directly translate into the set of achievable discrete rates under the given MCSs (as shown

in Fig. 3.3). To overcome this deficiency, we consider a piece-wise discrete function f(.)

(as shown in Fig. 3.3) that corresponds to a set of MCSs denoted by M with pre-defined

SINR thresholds (i.e., {βm} with 0 ≤ m ≤ |M |) for computing the appropriate coding

efficiency (in bits per OFDM symbol).

The corresponding data rate (in bits per second) on each PRB can be computed as

follows by using the exact SINR (γ), f(γ), the total number of OFDM symbols (NS), and

the duration of each time-slot (T ):

Rate(γ) := f(γ)× NS

T
(4.5)

The SINR remains constant within a PRB, therefore, the rate remains constant across all

OFDM symbols of a PRB.

4.3 An Upper Bound for Joint US and UA Problem

We formulate an upper bound problem for the joint US and UA problem, similar to the one

proposed in Section 3.4.1, by applying two smart transformations: (i) we use a continuous

upper bound function g(.) to envelop the piece-wise discrete function f(.) (as shown in

Fig. 3.3), whereby the binary variables for MCS allocation are no longer needed and (ii)

we add new constraints to ensure that any pair of two users do not to transmit on the

same PRB of an RRU and to ensure that a user do not transmit data to more than one

RRUs on the same PRB.

The following optimization variables are required for the joint US and UA problem:

• P c,t
u,r is for allocating UL power on PRB (c, t).

• Ic,tu,r is for computing UL interference on PRB (c, t) at RRU r for user u.
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• γc,t
u,r is for computing UL SINR on PRB(c, t) at RRU r for user u.

• λu,r is the total coding rate seen by user u from RRU r

4.3.1 The Upper Bound Problem

We use g(.) as a reasonable upper bound on f(.) (as shown in Fig. 3.3) for computing

the coding efficiencies (CEs) as follow: g(γ) = e(log10(e) loge(γ), εγ ≤ γ ≤ βmax, where εγ is

a small positive value that acts as a lower bound and βmax acts as an upper bound on

the SINR, respectively. Given the continuous rate function g(.), we formulate the upper

bound problem for joint US and UA on UL as follows; without loss of generality, a similar

problem can be formulated for the DL:

PUB−UL
CRAN (ω) : maximize

{P c,t
u,r},{Ic,tu,r},{γc,tu,r},{λu,r}

∑
u∈UUL(ω)

log (
∑
r∈R

λu,r)

subject to (4.3) and :

εp ≤ P c,t
u,r ≤ PUE, ∀u,∀r,∀c,∀t (4.6a)∑

r∈R

∑
c∈C

P c,t
u,r ≤ PUE, ∀u,∀t (4.6b)

P c,t
u,rP

c,t
u,r′ ≤ εp, ∀u,∀r,∀r′, r′ 6= r,∀c,∀t (4.6c)

P c,t
u,rP

c,t
u′,r ≤ εp, ∀u,∀u′, u′ 6= u,∀r,∀c,∀t (4.6d)

εγ ≤ γc,tu,r ≤ βmax, ∀u,∀r,∀c,∀t (4.6e)

P c,t
u,rGu,r(ω) ≥ γc,tu,r

(
N0 + Ic,tu,r

)
, ∀u,∀r,∀c,∀t (4.6f)

λu,r =
∑
c∈C

∑
t∈T

g(γc,tu,r), ∀u,∀r (4.6g)

where, u ∈ UUL(ω), r ∈ R, c ∈ C , t ∈ T .

Here, the bilinear constraints (4.6c) ensure that a user cannot transmit to more than

one RRUs on a given PRB, while, constraints (4.6d) ensure that on each PRB of an

RRU atmost one user can transmit with a considerable amount of power; where, εp and

εγ are very small positive values that depend on the numerical values of PUE and γc,tu,r,
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respectively. The bilinear constraints (4.6f) are for computing SINR on each PRB, while

the constraints (4.3) and (4.6g) are for computing the exact UL interference and the link

layer rates, respectively. Note that this upper bound problem is non-linear and non-convex

in nature, however, it can be transformed into an equivalent convex problem by using GP

transformation [38]. To avoid verbosity, we omit the proof of GP transformation, which

is similar to one discussed in Section 3.4.1. Further, the feasible solutions for the joint

US and UA problem, with the original discrete rate function f(.), are computed using a

similar methodology as the one defined in Section 3.4.1.

4.4 A Heuristic for Joint US and UA Problem

The proposed joint US and UA problem can be solved in the scenario where a central

controller in the BBU pool has the knowledge of the channel gains to/from all users and it

has extensive computational resources. However, in practice the computational resources

are limited thereby low complexity heuristics for both UL and DL users are required.

Proposing heuristic based schedulers are not trivial, especially on the UL, since, the UL

problem is more challenging than the DL; mainly because the UL interference pattern

strongly depends on the scheduling decisions of the neighboring RRUs. A naive way

for scheduling users would be to make the local US decisions on a per-RRU basis by

assuming that the interference is fixed, but such an approach does not work well because

the interference pattern can drastically change when a different user is scheduled on a PRB.

We propose simple heuristics for solving the joint US and UA problem, for UL as well

as DL users, by dividing the joint problem into two smaller problems, namely Local PRB

Mapping Problem and Joint Power Allocation Problem, which can be solved one after the

other as follows:

• The Local PRB Mapping Problem computes the PRB mapping decisions on an

individual RRU basis by assuming that the interference is fixed. More specifically,

it determines the number of PRBs allocated to the users associated with each RRU

without considering inter-BBU coordination. Once the number of PRBs for each

local user has been computed, PRB Mappings are determined to find which PRBs
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belong to a specific user, i.e., it determines the set {yc,tu,r(ω)}∀u,∀r,∀c,∀t, where yc,tu,r(ω) ≤
zu,r(ω) and yc,tu,r(ω) = 1 when user u has been allocated PRB(c, t) by RRU r and is 0

otherwise.

• The Joint Power Allocation Problem allocates appropriate power and MCS on

each PRB based on the exact interference when the set of PRB Mappings, i.e.,

{yc,tu,r(ω)} is known. Since, we assumed fixed interference pattern while determining

the local PRB mappings, the controller in the BBU pool needs to allocate appropriate

power, based on the exact interference, by iterating between all PRBs.

Note that the exact interference can only be computed based on the full knowledge

of the cross channel gains, power allocations, and channel allocations for all the users

associated with other RRUs. Such dynamic system states can only be obtained via inter-

BBU coordination under the C-RAN architecture; where, all BBUs are physically co-

located and can share dynamic states with each other in real time. It is assumed that

the local UAs for each RRU and the UL/DL channel gains for user are known to the

controller in the BBU pool through inter-BBU coordination, given that each RRU/BBU

pair is running a local UA process for computing zu,r(ω) based on a local UA rule. The

channel gains on UL/DL can then be computed locally at each RRU through the TDD or

FDD protocol, however, the channel gains for computing exact interference are determined

through explicit coordination between the BBUs, which has been discussed in [48] and [49].

4.4.1 Heuristic-based UL Scheduler

The proposed PRB mapping problem for each RRU should determine the number of PRBs

allocated to the local users during time-slot t, which is denoted by nt
u,r. We use an

interference compensation factor (Î) as an input parameter for computing the following

compensated rates :

R̂i
u,r(ω, Î) = i× f

( PUE

i
×Gu,r(ω)

N0 + Î

)
, ∀u ∈ UULr(ω),∀r ∈ R, ∀i ∈ {1, ..., |C |} (4.7)

62



Here, UULr(ω) denotes the set of UL users associated with RRU r using a local UA rule.

Note that the compensated rates in equation (4.7) are not the exact rates that nonetheless

have to be computed with the exact interference. Moreover, equal power (EP) allocation

has been used to pre-compute these rates for the local PRB mapping problem; whereas,

the optimal power allocation on each PRB will vary with the exact ICI. We will show

numerically in Section 4.5 that these compensated rates are far from the optimal, and as a

result we need to solve a joint power allocation problem with inter-BBU coordination for

optimizing the rates achieved by the local users of each RRU.

If the interference pattern is assumed to be fixed then the number of sub-channels

allocated to the local users (i.e., n∗tu,r(ω) ∈ {1, ..., |C |}) can be determined beforehand

by solving the sub-channel allocation problem (i.e., PUL
k (ω, Îk)) from Section 3.5.1 for

each RRU r when {zu,r(ω)} are known. Once the number of PRBs (n∗tu,r(ω)) have been

determined by solving PUL
r (ω, Î) for each RRU, we compute the set of PRB mappings by

randomly allocating the local PRBs to the local users, i.e., {yc,tu,r(ω)}, where
|C |∑
c=1

yc,tu,r(ω) =

n∗tu,r(ω),∀u,∀r,∀t. The local PRB Mappings can be used for computing the initial power

and MCS used by the UL users, however, this might result in PRB decoding errors with

real interference.

Next, we propose a joint power allocation problem (PUL
Joint(ω, c, t)), which yields the

optimal power allocations on each PRB(c, t) when the set of PRB Mappings, i.e., {yc,tu,r(ω)}
are given. This power allocation problem requires the knowledge of the channel gains from

interfering users (i.e., Gu′,r(ω)) that can be computed at each BBU through the dedicated

Sounding Reference Symbols (SRSs) within each PRB. However, this information needs to

exchanged through the BBU pool controller for computing the optimal power and MCS

on the PRBs of each RRU. The corresponding power allocation problem for PRB(c, t) on

UL is defined as follows:
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PUL
Joint(ω, c, t) : maximize

{xc,t,mu,r },{P c,t
u,r},{Ic,tu,r},{λc,tu,r}

∑
u∈UUL(ω,c,t)

log (λc,tu,r)

subject to:

xc,t,mu,r ∈ {0, 1}, ∀u,∀r,∀m (4.8a)∑
m∈M

xc,t,mu,r ≤ yc,tu,r(ω) = 1, ∀u,∀r (4.8b)

0 ≤ P c,t
u,r ≤ PEP

u,r (ω) + P unused
u,r (ω), ∀u,∀r (4.8c)

P c,t
u,rGu,r(ω) ≥ βm(N0 + Ic,tu,r)− (1− xc,t,mu,r )M ,∀u,∀r,∀m (4.8d)

Ic,tu,r =

r′ 6=r∑
r′∈R

u′ 6=u∑
u′∈UUL(ω,c,t)

(P c,t
u′,r′Gu′,r(ω)), ∀r (4.8e)

λc,tu,r =
∑
m∈M

xc,t,mu,r f(βm), ∀u,∀r (4.8f)

where, u ∈ UUL(ω, c, t), r ∈ R, and m ∈M .

Here, UUL(ω, c, t) denote the set of UL users that are mapped on PRB (c, t) by their

respective RRUs with |UUL(ω, c, t)| ≤ |R|. We divide user u’s power equally on each

PRB allocated to u, i.e., PEP
u,r (ω) := PUE

n∗tu,r(ω)
. Since, the power budget is limited on the

UL, we also add the unallocated power (i.e., P unused
u,r (ω)) that is carried forward from the

previous PRBs for user u. The complete heuristic based UL scheduling problem has been

summarized in Algorithm 2.

Lemma 4.1: The problem PUL
Joint(ω, c, t) can be transformed into continuous and

convex optimization problem using the continuous rate function g(.).

Proof: Please see Appendix D.
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Algorithm 2 The Heuristic-based UL Scheduler

1: for each r ∈ R do

2: Determine zu,r(ω) for each user u.

3: Solve PUL
r (ω, Î) to find n∗tu,r(ω).

4: Randomly map users in UULr(ω) to PRBs of RRU r.

5: Compute yc,tu,r(ω) for all users in UULr(ω).

6: Compute PEP
u,r (ω) := PUE

n∗tu,r(ω)
for all users in UULr(ω) .

7: end for

8: for each t ∈ T do

9: P unused
u,r (ω)← 0.

10: for each c ∈ C do

11: Determine UUL(ω, c, t).

12: Solve PUL
Joint(ω, c, t) to find P ∗c,tu,r (ω).

13: P unused
u,r (ω)← PEP

u,r (ω)− P ∗c,tu,r (ω) + P unused
u,r (ω)

14: end for

15: end for

4.4.2 Heuristic-based DL Scheduler

Different from the UL case, the local PRB mapping problem on the DL can be simplified

by using equal power (EP) allocations per PRB, since, the interference on the DL is created

by the RRUs whose positions are known and they transmit all the time [9]. The exact

DL interference on each PRB, based on EP allocation can be pre-computed by user u as

follows:

IEPr,d (ω) :=

r′ 6=r∑
r′∈R

Pr
|C |
×Gr′,d(ω), ∀r ∈ R,∀d ∈ UDLr(ω) (4.9)

The corresponding EP based compensated rates per-PRB can be computed as follows:

R̂r,d(ω) = f

( Pr

|C | ×Gr,d(ω)

N0 + IEPr,d (ω)

)
, ∀r ∈ R,∀d ∈ UDLr(ω) (4.10)
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Here, UDLr(ω) denotes the set of DL users associated with RRU r using a local UA

rule. Note that the compensated rates in equation (4.9) are also the exact rates, however,

the equal power (EP) allocations have been used to pre-compute these rates for the local

PRB mapping problem on the DL; whereas, the optimal power allocation on each PRB will

vary with the exact ICI. We will show numerically in Section 4.5 that these compensated

rates are far from the optimal, and as a result we need to solve a joint power allocation

problem with inter-BBU coordination for optimizing the rates achieved by the local users

of each RRU.

If we consider an EP-based interference pattern then we can determine the number of

PRBs allocated to each local user during time-slot t (i.e., n∗tr,d ∈ {1, ..., |C |}) by using the

aforementioned compensated rates and solving the sub-channel allocation problem (i.e.,

PDL
k (ω, {IEP

k,d (ω)})) from Section 3.5.2 for each RRU r when {zr,d(ω)} are given. Once

the number of PRBs (n∗tr,u(ω)) have been determined by solving PDL
r (ω, {IEP

r,d (ω)}), we

randomly map the local users to the local PRBs and compute the resulting set of PRB

mappings, i.e, {yc,tr,d(ω)}, where
|C |∑
c=1

yc,tr,d(ω) = n∗tr,d(ω),∀r,∀d,∀t.

Note that here the power on each sub-channel has been determined through an EP-

based DL scheduler, whose performance can be further improved via optimal power allo-

cation on each PRB. We will show numerically in Section 4.5 that the performance of this

local scheduler is far from the optimal. As a counter measure, we need to solve a joint

power allocation problem with inter-BBU coordination for optimizing the data rates while

considering exact interference on the DL. However, the local PRB mappings can be used

for computing the initial power and MCS used by the DL users.

Next, we propose a joint power allocation problem (PDL
Joint(ω, c, t)), which yields the

optimal power allocations on each PRB(c, t) when the set of PRB Mappings, i.e., {yc,tr,d(ω)}
are given. This problem also requires the knowledge of the channel gains from interfering

RRUs (i.e., Gr′,d(ω)) that can be shared by the local users through the dedicated DL

control channels, which are available within each PRB. This information needs to be further

exchanged with the BBU pool controller in order to compute the optimal power and MCS

on each PRB.
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The corresponding power allocation problem for PRB(c, t) is defined as follows:

PDL
Joint(ω, c, t) : maximize

{xc,t,mr,d },{P c,t
r,d},{I

c,t
r,d},{λ

c,t
r,d}

∑
d∈UDL(ω,c,t)

log (λc,tr,d)

subject to:

xc,t,mr,d ∈ {0, 1}, ∀r,∀d,∀m (4.11a)∑
m∈M

xc,t,mr,d ≤ yc,tr,d(ω) = 1, ∀r,∀d (4.11b)

0 ≤ P c,t
r,d ≤ PEP

RRU , ∀r,∀d (4.11c)

P c,t
r,dGr,d(ω) ≥ βm(N0 + Ic,tr,d)− (1− xc,t,mr,d )M ,∀r,∀d,∀m (4.11d)

Ic,tr,d =

r′ 6=r∑
r′∈R

d′ 6=d∑
d′∈UDL(ω,c,t)

(P c,t
r′,d′Gr′,d(ω)), ∀r,∀d (4.11e)

λc,tr,d =
∑
m∈M

xc,t,mr,d f(βm), ∀r,∀d (4.11f)

where, r ∈ R, d ∈ UDL(ω, c, t), and m ∈M .

Here, UDL(ω, c, t) denotes the set of users that are mapped on PRB (c, t) by their

respective RRUs on the DL with |UDL(ω, c, t)| ≤ |R|. Since the power budget on the

DL is significantly larger than the UL, we divide an RRU’s power equally on all PRBs,

i.e., PEP
r := Pr

|C | , and solve the corresponding power allocation problem in parallel for

each PRB(c, t). The proposed heuristic-based DL scheduler has been summarized using

Algorithm 3.

Lemma 4.2: The problem PDL
Joint(ω, c, t) can be transformed into continuous and

convex optimization problem using the continuous rate function g(.).

Proof: The problem PUL
Joint(ω, c, t) has been transformed into a convex upper bound

problem in Appendix D. A similar approach can be used to transform PDL
Joint(ω, c, t).
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Algorithm 3 The Heuristic-based DL Scheduler

1: for each r ∈ R do

2: Determine zr,d(ω) for each user d.

3: Compute n∗tr,d(ω) := |C |
|UDLr (ω)|

for all users in UDLr(ω).

4: Randomly map users in UDLr(ω) to PRBs of RRU r.

5: Compute yc,tr,d(ω) for all users in UDLr(ω).

6: Compute PEP
r := Pr

|C | .

7: end for

8: for each PRB (c, t) do

9: Determine UDL(ω, c, t).

10: Solve PDL
Joint(ω, c, t).

11: end for

4.4.3 Computational Complexity

The local PRB mapping problem for UL, i.e., PUL
r (ω, Î) is an integer problem that

can be solved quasi-optimally by using a heuristic based algorithm given in [11] with

O(|UULr(ω)| log(|UULr(ω)|) + |C ||UULr(ω)|). While, the local PRB mapping problem for

DL, i.e., PDL
r (ω, {IEP

r,u (ω)}), can be solved optimally by using equal sub-channel allo-

cations. The joint power allocation problems for UL and DL, i.e, PDL
Joint(ω, c, t) and

PUL
Joint(ω, c, t), respectively, are small sized mixed integer programs. They can be solved

exactly to find the optimal power allocations, however, they are transformed into convex

problems via the continuous rate function g(.) as described in Lemma 4.1 and Lemma

4.2, respectively. Note that these continuous and convex optimization problems can be

solved exactly through interior point methods with a polynomial time complexity [38]

that increases linearly with the number of RRUs (since, |UUL/DL(ω, c, t)| ≤ |R|). The

number of variables and constraints in the joint problem are equal to 2|R| and 3|R|, re-

spectively, therefore, the overall complexity of solving the joint power allocation problem

is O
(
3|R| × (2|R|)3

)
. In the event that the number of RRUs are not significantly large,

the proposed heuristic based schedulers can be used for online user scheduling.
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Figure 4.2: Macro cell layout 2

4.5 Performance Evaluation

We evaluate the performance of our proposed heuristic-based schedulers by considering two

different layouts with multiple macro cells at an inter-site distance (ISD) of 500m (i.e., cell

radius is 500√
3
m). Each macro cell, with one high-power (HP-RRU) and multiple low-power

(LP-RRU) RRUs as shown in Fig. 4.1 and Fig. 4.2, is operating on OFDMA-based frames

with |C | = 30 sub-channels and |T | = 10 time-slots.
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The RRUs in the same-colored macro cells are in co-channel with each other, for sim-

plicity, we consider the yellow colored macro cells only with a wrap-around technique to

incorporate ICI for the macro cells at the edge (i.e., these macro cells are colored in or-

ange). Our physical layer parameters are based on the 3GPP evaluation document [5] for

LTE, which are also summarized in Table 5.2. Note that the channel gains introduced in

Section 4.2 account for path loss, slow fading, and antenna gains only, whereas the direc-

tivity gain (used for HP-RRUs in Layout 2 only) is a function of θ, i.e., the angle made by

a user (UE) with the broadside direction of the RRU antenna. The slow fading coefficients

are modeled by log-normal distribution with zero mean and standard deviation equal to σ.

We consider an adaptive MCS as given in [22] for computing exact link rates using the

function f(.) with |M |= 15. The performance of the joint US and UA problem along with

the proposed heuristic-based solution techniques have been studied for a set of 100 realiza-

tions (Ω); where, each ω ∈ Ω corresponds to the duration of one frame and a set of UUL(ω)

UL users and UDL(ω) users that are distributed uniformly across all cells. We consider the

geometric mean (GM) throughput of these users, which is equivalent to maximizing our

objective function, i.e.,
∑

u∈UUL(ω)

log (
∑
r∈R

λu,r) for UL and
∑

d∈UDL(ω)

log (
∑
r∈R

λr,d) for DL.

The GM throughput (in bits per second) can be computed as follows:

GMUL(ω) :=

( ∏
u∈UUL(ω)

(
∑
r∈R

λu,r ×NS

T × |T |
)

) 1
|UUL(ω)|

GMDL(ω) :=

( ∏
d∈UDL(ω)

(
∑
r∈R

λr,d ×NS

T × |T |
)

) 1
|UDL(ω)|

(4.12)

where, NS and T are the total number of OFDM symbols in each PRB and the duration

of each time-slot, respectively, for the given frame.

For each realization ω, the following performance measures have been defined for the

UL, nonetheless, a similar set of performance measures can be defined for the DL:

• The Upper bound GM (GMUL
UB(ω)), can be computed by solving PUB−UL

CRAN (ω),

after GP transformation, using any nonlinear programming solver like SNOPT [39].
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Table 4.1: Physical Layer Parameters from [5]

NS 12× 14 T 1ms

Noise Power -174dBm/Hz Sub-channel Bandwidth 180KHz

Shadow Fading (σ) 8dB Penetration Loss 20dB

Traffic Model Full Buffer Noise Figure 9dB

UE Antenna Gain 0dBi LP-RRU Noise Figure 13dB

LP-RRU Antenna Gain 5dBi HP-RRU Noise Figure 5dB

Layout 1: HP-RRU Antenna Gain 15dBi

Layout 2: HP-RRU Antenna Gain 17dBi

Layout 2: RRU Directivity Gain min(12( θ
70o

)2, 20)dB

Path Loss with HP-RRU (dB) 128.1 + 37.6 log10(d/1000), d ≥ 35m

Path Loss with LP-RRU (dB) 140.7 + 36.7 log10(d/1000), d ≥ 10m

PUE 24dBm PLP−RRU 30dBm

Layout 1: 1× PHP−RRU 46dBm

Layout 2: 3× PHP−RRU 46dBm

• The Feasible GM (GMUL
FS (ω)), for the joint US and UA problem considering the

actual discrete rate function f(.) 4, can be computed from the upper bound solutions

by using a simple method that has been discussed in Algorithm 1.

• The Heuristic GM (GMUL
HS(ω)) can be computed by using the method discussed

in Algorithm 2 with any integer programming solver, such as, SCIP [40].

4.5.1 Scenario 1: Joint US and UA for HP-RRUs Only

High-power RRUs generate significant interference for each other, even when they are

placed significantly farther from each other, therefore, usually they are placed in separate

4To avoid verbosity, we have not defined the original joint US and UA problem in this chapter. However,

a similar problem has been defined in Section 3.4.

71



macro cells. For the sake of simplicity, first we compare the performance of our heuristic-

based solutions with HP-RRUs only. In this homogeneous network, the UA (also known

as cell association, since, there is only one RRU per cell) is not as critical as in HetNets,

since, it can be based on maximum SINR-based rules, where a user upon arrival associates

with the BS who offers the highest UL/DL SINR. We assumed the following maximum

SINR-based UL-centric and DL-centric cell association rules for our heuristic-based UL

and DL schedulers:

zu,r(ω) = argmax
r

(
PUE ×Gu,r(ω)

N0 + ˆICIworst

)
, ∀u ∈ UUL(ω)

zr,d(ω) = argmax
r

( Pr

|C | ×Gr,d(ω)

N0 + ICIEPr,d (ω)

)
, ∀d ∈ UDL(ω)

(4.13)

here, a worst-case ICI (from the users in interfering cells) and an EP-based ICI (from the

RRUs in interfering cells) has been used on the UL and the DL, respectively. We studied

the performance of the DL-centric rules on the UL and vice versa, by assuming a TDD

based setting, where the UL and DL channel gains could be assumed similar due to channel

reciprocity conditions. However, we found no significant difference in UL/DL performance.

For completeness, we compare the difference in performance when there is no inter-BBU

coordination, which is the case when these HP-RRUs have to perform local scheduling on

the UL and DL, while estimating/measuring ICI from other macro cells. The exact ICI

cannot be measured by the local schedulers on the UL, hence they need to estimate it as

closely as possible for computing the corresponding Effective GM (i.e., with Î as discussed

in Section 3.5.1). Similarly, the Effective GM on the DL is computed using the local DL

scheduler, which was discussed in Section 3.5.2. It can be seen in Fig. 4.3(a) and 4.3(c) that

these local schedules, obtained after choosing proper ˆICI, are still far from the optimal.

In Fig. 4.3(b) and 4.3(d), it can be seen that the EP based local schedules on the DL are

also far from the optimal one with an average gap between 30% to 50%.

The average gap between GMUB and GMFS is quite small for both layouts as shown

in Fig. 4.3, which validates our assumption that the local schedulers can benefit from ICI-

coordination in a C-RAN setting. For cell layout 1, the average gap between GMFS and

GMHS is almost negligible as the frequency re-use factor is 3, that leads to lower ICI,
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Figure 4.3: Scenario 1: Average GM throughput over Ω vs. the average number of users

in each macro cell

(
N = |UUL(ω)|

|R| or |UDL(ω)|
|R|

)
.

whereas in cell layout 2 the frequency re-use factor of 1 results in higher ICI, consequently,

the average gap between GMUB and GMHS is higher than the one between GMUB and

GMFS. This is due to the fact that the proposed heuristics compute PRB mappings at

the local RRUs without knowing exact ICI; where, a fixed ICI compensation factor ( ˆICI)

is used for all realizations on the UL and an equal power based ICI (i.e., ICIEPr,d (ω)) has

been used for all realizations on the DL.
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4.5.2 Scenario 2: Joint US and UA in a Single Macro Cell with

One HP-RRU and Multiple LP-RRUs

We also consider the scenario of a single macro cell based C-RAN, where one HP-RRU

is placed in the middle with a few LP-RRUs around it, which are in co-channel with the

HP-RRU. The interfering macro cells are assumed to be operating independently without

any coordination, therefore, the local schedulers on both UL and DL have to estimate ICI

generated by the LP-RRUs as well as the HP-RRUs from the neighboring macro cells. The

exact ICI cannot be measured by the local schedulers on the UL, hence, we consider a worst

case ICI estimate (i.e., ˆICIworst at each RRU) from the users associated with other RRUs

in the interfering macro cells; this is necessary to avoid packet losses and also to reduce

the complexity of the joint US and UA problem. An equal power (EP) based DL ICI (i.e.,

ICIEPr,d (ω)) has been considered from the RRUs of the interfering macro cells. We use a

fixed estimate of intra-cell UL interference (Î) from the users in the same macro cell and an

EP based intra-cell DL interference (i.e., IEPr,d (ω)) from other RRUs within the macro cell

under consideration. The local UL-centric and DL-centric UA rules for the heuristic-based

schedulers are defined as follows:

zu,r(ω) = argmax
r

(
PUE ×Gu,r(ω)

N0 + Î + ˆICIworst

)
, ∀u ∈ UUL(ω)

zr,d(ω) = argmax
r

( Pr

|C | ×Gr,d(ω)

N0 + IEPr,d (ω) + ICIEPr,d (ω)

)
, ∀d ∈ UDL(ω)

(4.14)

Note that the optimal GM throughput lies between GMUB and GMFS, which is shown in

Fig. 4.4 for both layouts under the heterogeneous C-RAN setting (i.e., Scenario 2). Our

heuristic based algorithm, i.e., denoted by GMHS, performs better than GMFS in almost

all of the network realizations. The performance ofGMHS can be further improved by using

multi-RRU association (also known as dual connectivity), which accounts for the large gap

between GMUB and GMHS with lower number of users (i.e., N = 5). Specifically, the UL

performance can be further improved by exploiting multi-user association as the intra-cell

interference is lower as compared to the case of DL. We also see that the DL-centric UA

rules are sub-optimal for the UL performance and vice versa, when UL and DL channel

gains are similar, which is indeed the case in TDD-based systems.
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Figure 4.4: Scenario 2: Average GM throughput over Ω vs the number of users in the

macro cell.
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4.6 Conclusions

In this chapter, we investigated the joint user scheduling (US) and user association (UA)

problem for OFDMA based networks, which is nonetheless computationally intractable in

its exact form. We transformed this problem into a corresponding upper bound problem

with the help of a novel continuous rate function. The resulting problem could be solved

efficiently in a C-RAN setting with inter-BBU coordination, after converting it into an

equivalent convex optimization problem via geometric programming (GP). Furthermore,

the solutions of the upper bound problem were mapped into the solution space of the

original joint US and UA problem with a small gap. As a practically implementable

solution to the original problem, heuristic-based schedulers were proposed to obtain quasi-

optimal UA and US solutions for both uplink (UL) and downlink (DL) transmissions with

decoupled UL-centric and DL-centric local UA rules, respectively. Extensive numerical

simulations were conducted to verify the performance of the proposed heuristic based

schedulers, which can achieve very close performance to the benchmark derived by solving

the upper bound problem for either a homogeneous or a heterogeneous C-RAN. Our results

for homogenous C-RAN demonstrate the performance gains for the local schedulers (one

per RRU) through inter-BBU-coordination.
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Chapter 5

Resource Allocation for Flexible

HetNets

5.1 Introduction

In Chapter 4, we presented a joint US and UA problem along with its heuristic based quasi-

optimal solution, which can be obtained under a CRAN setting. Further, we assumed that

the RRUs in the underlying C-RAN are synchronized in terms of their UL and DL frames by

using either TDD or FDD mode of transmission; where, the RRUs were in co-channel (i.e.,

CCD) with each other for accessing the underlying spectrum. Under these assumptions,

the joint US and UA problems for UL and DL can be decoupled into two problems. This

is indeed true for conventional cellular networks, which were initially deployed for fixed

and symmetric bandwidth requirements. Note that in these conventional networks the

sub-channel allocations are statically provisioned across multiple cells, for the UL and the

DL traffic, consequently, the sub-channels could only be allocated using either static FDD

or static TDD based spectrum sharing techniques.

With the emergence of new mobile applications and Internet usage scenarios, such as,

the ones that have emerged with interactive gaming, social media, cloud storage, and,

nonetheless, with IoT, it is expected that the traffic demands on both UL and DL will
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vary significantly from one macro/small cell to another and these asymmetries will further

increase in the future [1, 2]. It is anticipated that during a short span of time the DL

traffic volume would be several times larger than that of the UL and vice versa [4]. As

a countermeasure, flexible spectrum sharing techniques have been advocated recently to

meet the asymmetric bandwidth demands on the UL and DL of OFDMA-based networks.

Specifically, flexible duplexing has been considered as a new promising technique to improve

the spectral efficiency of the underlying network by handling asymmetric UL and DL traffic

flows flexibly, unlike TDD and FDD that requires fixed time or frequency splitting between

UL and DL.

Flexible spectrum sharing is indeed becoming more viable with time as many network

operators have both unpaired as well as paired spectrum, therefore, an ability to aggregate

the two types of spectrum could bring a number of potential benefits. For example, TDD

spectrum could be used to supplement FDD spectrum to provide additional throughput

and capacity on the DL. Conversely, FDD spectrum, which is generally at lower frequencies

than TDD spectrum, could be used to achieve greater range on a TDD UL, which is often

the limiting factor for TDD coverage. Further, the static spectrum sharing techniques do

not consider a scenario common in today’s cellular networks, in which a macro cell may

support multiple DL and UL FDD carriers due to exploding wireless traffic. With a paired

UL carrier for each DL carrier, the FDD spectrum has symmetric time/frequency resources

that are not well suited for asymmetric traffic scenarios, in such cases, it is beneficial to

serve DL traffic on a subset of the FDD UL carriers and vice versa.

Our Objective:

Apparently, it seems simple to share the underlying communication channel flexibly as and

when needed, however, the flexible spectrum sharing techniques yield numerous technical

challenges notably for multi-tier networks1 due to the presence of inter-tier interference.

Traditionally, with static FDD/TDD based spectrum sharing techniques, the RA process

between multiple tiers was simple; due to the lack of inter-tier interference, it was decoupled

1We use the term multi-tier network for generalization, in which case a network could either be homo-

geneous or heterogeneous. However, in this chapter, we discuss the case of a HetNet only.
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into two separate RA schemes, i.e., one for the DL and the other one for the UL. With the

growing interest in flexible duplexing for allocating asymmetric time/frequency resources,

depending on the statistics of the prevailing traffic in each macro cell, there is a need to

analyze the jointly optimal RA schemes, for UL and DL, that would essentially minimize

the inter-tier interference across the entire network in order to maximize the network-wide

throughput gains.

In this chapter2, we investigate the benefits of flexible duplexing after being motivated

by its potential gains. We study and analyze the joint RA and US problem for a multi-tier

multi-cell network from a link-layer’s perspective only. The main purpose is to benchmark

the performance gains that should be expected from flexible HetNets, which has not been

done yet due to the complexity of coordination between different macro cells for interference

mitigation. Our main contributions in this chapter can be summarized as follows:

1. We propose a reasonable benchmark for flexible FDD/TDD based multi-cell multi-

tier networks by jointly optimizing the RA and US process across multiple macro

cells. The joint problem provides proportional fairness by maximizing the sum of the

logarithm of the achievable rates on both UL and DL while provisioning asymmetric

traffic flows, DUD, and multiple BS associations.

2. The complicated UL-to-DL and DL-to-UL interference scenarios yield additional in-

teger variables, which make the joint RA and US problem a large scale Mixed Integer

Non-Linear Programming (MINLP) problem that is also non-convex in nature. How-

ever, we are interested in solving this problem to deal with the interferences exactly

and also to compute a reasonable off-line benchmark. Therefore, we formulate a

large scale convex upper bound problem by replacing these integer variables through

a smart transformation that can only be solved off-line.

3. The benchmark problem is used as a framework for solving the joint RA and US

problems in Reverse-FDD and Static FDD based HetNets, where extensive numerical

results are obtained for the benchmark problem and compared with that of the

existing RA schemes.

2Some of the results presented in this chapter have been submitted to IEEE Transactions [50].
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5.1.1 Related Work

For multi-tier networks, small-cell (SC) deployments have been identified as a primary

means to enhance network capacity and to address the asymmetric traffic issue by using

flexible FDD/TDD3 for SCs [51]; mainly, because, the coverage areas are smaller (in SCs)

and the SC tiers do not cause significant interference to the nearby SCs when placed at

the right distance. Based on this decoupling, cell-specific TDD pattern selection became

feasible through ICI coordination between the SC tiers [52–54], as there are relatively fewer

UEs associated with each SC, thus, the changes in the traffic could be dealt at a faster time

scale, thereby, increasing the potential benefit of flexible TDD. Although, this scheme ap-

pears to be very attractive considering the typically small number of simultaneously active

UEs in a SC, its efficacy has been studied in [52, 54] within a limited environment only, i.e.,

with only SC tiers. Note that the SCs cannot provide coverage to a large number of users

and reducing their inter-site distances would lead to an increase in inter-SC interference.

Hence, the macro-BSs (MBSs) need to be co-located and connected with a sparse num-

ber of SCs for providing coverage and backhaul connectivity in flexible FDD/TDD based

networks. Nonetheless, there is a need to study the efficacy of using flexible FDD/TDD

in such a network where MBSs are sharing the time/frequency resources along with the

SCs. The resulting trade-off needs to be analyzed carefully as the UL SINR, under PSD or

CCD, suffer significantly from severe performance degradation due to the strong DL-to-UL

interference from an MBS to a SC tier and vice versa.

Motivated by the promising benefits of dynamic TDD, the authors in [53] have inves-

tigated the technical implementation issues for applying dynamic TDD in homogeneous

SC networks and the feasibility of introducing dynamic TDD in HetNets; where, the users

are associated using different cell range expansion (CRE) biases and almost blank sub-

frame (ABS) has been used as a given RA scheme to study the efficacy of the proposed

traffic-adaptive DL and UL schedulers. It was shown that SC-DL to MBS-UL interference

cancellation is indispensable for the macro cells to achieve reasonable UL performance.

Moreover, it has been noted that the DL-to-UL interference cancellation in the SC tier is

required to mitigate the inter-link interference among SCs, particularly when the traffic

3We use the terms “flexible FDD/TDD” and “dynamic FDD/TDD” interchangeably.
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load is medium or high. Nonetheless, the performance of the proposed schedulers has been

benchmarked using system-level simulations for a few RA schemes, whose performance

might not be close to the globally optimal one.

A joint UL and DL user association problem with provisioning for decoupled associa-

tions (DUD) has been proposed in [55] for a single macro cell based flexible FDD HetNet

that maximizes the sum-rate of all users on the UL as well as the DL, thus it does not

guarantee fairness. Due to complicated UL-to-DL and DL-to-UL interferences and integer

optimization variables, the formulated problem has been relaxed and the intra-tier inter-

ferences have been estimated to convert the problem into a convex GP problem under high

SINR assumptions. Similarly, a joint load balancing and interference mitigation problem

in FD based HetNets, subject to wireless backhaul constraints, has been studied in [56] for

a single macro cell.

The feasibility of a multi-cell flexible FDD based HetNet has been studied in [57, 58],

where it has been shown that the inter-tier interference may be mitigated with DL power

management, antenna tilt, and link-layer based interference cancellation. Some factors,

such as, limitations in the RA granularity and the constraints to avoid full duplex challenge,

were reported that could prevent ideal fairness, nevertheless, the potential performance

improvements were shown to be significant. In contrast, a multi-cell homogeneous network

has been considered in [59], where the available resources per cell and per TDD frame are

freely allocated to both UL and DL transmission depending on traffic demand and user

distribution within the network. The numerical results demonstrate significant gains with

dynamic UL/DL mode selection as compared to the conventional TDD with fixed mode

assignment.

In this chapter, we also consider the performance of a potential RA scheme, i.e., Reverse

FDD (R-FDD), that is similar to the reverse mode in TDD (also known as R-TDD). R-TDD

has been proposed in the past, mainly for enhancing spectrum sharing within a HetNet by

deliberately introducing inter-tier interference between an MBS and its SC tiers; where,

the MBS is in the DL mode of transmission when the SCs are operating on the UL and

vice versa. In addition, it also leverages the channel reciprocity of the TDD protocol for

providing an implicit coordination between the two tiers without the need of exchanging

the channel state information (CSI).
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The authors in [60] analyzed the performance of R-TDD using one macro cell with

one MBS and numerous SCs. They considered a simple and coupled user association

rule (CUD); where, the low mobility UEs were associated with the SCs, while those with

medium-to-high mobility were served by the MBS. This study has been limited to static

spectrum sharing schemes only with a single cell analysis. We want to study Reverse FDD

as a potential RA scheme for flexible FDD networks as the underlying complex interference

scenarios in R-FDD and R-TDD are quite similar to the case of flexible FDD and TDD,

respectively.

The rest of this chapter is organized as follows: We discuss the RA process and our

system model in Section 5.1.2 and 5.2. The joint RA and US problem along with its

relaxed upper bound problem has been formulated in Section 5.3. We formulate a similar

problem for some existing RA schemes in Section 5.4. The numerical results are presented

in Section 5.5.

5.1.2 Resource Allocation with OFDMA

Resource allocation (RA) is a fundamental process for allocating different resources to

different BSs in a multi-tier network. In OFDMA based networks, these resources are

referred to as a set of OFDM symbols that are grouped together to constitute sub-channels

in the frequency-domain and time-slots in the time-domain; where, one sub-channel in

a given time-slot is known as a physical resource blocks (PRB)4. RA in OFDMA based

networks is performed on a per frame basis after optimizing one or more RA parameters;

where, each frame is composed of multiple PRBs and a subset of these PRBs, based on

a RA parameter, are allocated to a BS that can be fully (CCD) or partially (PSD) or

non overlapping (OD) with the subsets allocated to other BSs. In PSD, power on the

shared sub-channels is another RA parameter that needs to be optimized. Once the PRBs

are allocated to the BSs, they can schedule their users on the subsets of PRBs that are

allocated to them through a user scheduler.

4Note that the use of TDD in flexible FDD allows the RA scheme to match the resources to either UL

or DL at a finer granularity, since, it can occur at the PRB level as opposed to the sub-channel level for

flexible FDD without TDD.
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The RA process in a macro cell along with the underlying scheduler is simplified under

static FDD or TDD based spectrum sharing techniques, because the interfering macro

cells are synchronized, therefore, the RA/US process can be decoupled into UL-only and

DL-only processes. Nonetheless, the decoupled RA/US schemes based on either UL-only

or DL-only traffic cannot be extended for flexible FDD or TDD based networks, where the

ratio of UL to DL traffic can vary significantly from one cell to another. Note that for static

spectrum sharing the RA process can be further decoupled into local RA processes (one

per macro cell) under certain conditions on the US process, for example, by estimating

interference exactly. This has been discussed in [9] for the case of DL. In contrast, the RA

process on the UL has not been studied explicitly, however, it can also be decoupled into

local RA processes by using a local US process with interference estimation at the cost of

significant performance degradations.

Ideally, each macro cell should be able to employ flexible duplexing by matching

time/frequency resources, locally and independently, according to the prevailing traffic.

Nonetheless, this is possible only if the interference from other cells could be measured

exactly. In practice, this interference cannot be measured exactly, but it can be estimated

beforehand to design local US schemes that are far from the optimal. Since, the multi-cell

multi-tier networks are inherently limited by intra-cell and inter-cell interference, a local

RA scheme in a macro cell, based on its local performance with an estimate on inter-cell

interference, might not be optimal for the entire network consisting of multiple macro cells

operating on the same spectrum.

The main purpose of this chapter is to provide a benchmark for RA for multi-cell

multi-tier networks by jointly optimizing the RA process for different UL and DL traffic

scenarios. Note that achieving optimal performance in such networks is not trivial, but

necessary to benchmark the performance of different RA schemes and a comparative study

in this context is also important, because it provides valuable insights on full duplex (FD)

transmission, which has been identified as one of the candidate technologies for 5G; where,

a BS can simultaneously transmit to and receive from different user equipments (UEs), thus

enhancing spectrum reuse, but creating (i) inter-cell inter-link interference, (ii) intra-cell

inter-link interference, and (iii) self-interference. Note that the main difference between

FD and flexible FDD is that self-interference does not exist in the later one.
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Figure 5.1: A multi-cell heterogeneous network (HetNet).

5.2 System Model

We consider a HetNet (as shown in Fig. 5.1) with a set of macro cells denoted by K , which

are using the same frequency spectrum and represented by yellow color. Note that in order

to incorporate interference for the macro cells that are on the edge of the HetNet, we take

a wrap-around technique which is recommended by 3GPP [36]; where, the adjacent macro

cells that are operating on the same frequency band are filled with orange color. Each macro

cell in K has one MBS and two outdoor pico-BSs (PBS), thus, altogether they constitute a

set of BSs denoted by B. These macro cells are operating on a set of sub-channels to serve

a set of randomly distributed users with omni-directional antennas, identical antenna gains,

and similar transmit power budgets (i.e., PUE). All MBSs have tri-directional antennas

with identical transmit power budgets (i.e., PMBS) and unlimited back-haul capacities,

whereas, all PBSs have omni-directional antennas with identical transmit power budgets

(i.e., PPBS) and unlimited front-haul capacities.

5.2.1 Channel Model, SINR, and Link Layer Rates

We study the joint RA and US process on a per frame basis by using a realization-based

approach [37], where the duration of each realization (ω) is same as that of a frame. Recall

that each frame corresponds to a set of sub-channels (C ) and time-slots (T ).
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A realization ω is defined by a set of users (i.e., denoted by U(ω)) and their channel

gains. For mathematical simplicity, we assume that during each realization a user is either

transmitting on the UL or receiving on the DL; without loss of generality, the users that are

transmitting on both UL and DL can be considered as two separate users, consequently,

U(ω) can be divided into a set of UL users (denoted by UUL(ω)) and a set of DL users

(denoted by UDL(ω)).

Remark 5.1: We assume that the user associations are under the DUD scenario,

where a user can associate with different BS(s) on the UL as on the DL. In [55], DUD has

been studied for flexible FDD based networks and it has been shown to perform better than

the coupled UL and DL user association rules.

Remark 5.2: We consider a single half-duplex channel for both UL and DL transmis-

sions; where, a BS can only serve one DL user at a given time (or PRB), similarly, an

UL user can only transmit to one BS at a given time (or PRB). This is necessary to avoid

self-interference scenarios.

We define the following channel gains for this chapter that are also listed in Table 1:

1. A set of channel gains between the UL users and BSs, i.e., denoted by

{Gu,k,b(ω)}u∈UUL(ω),k∈K ,b∈B; this set is required for the traditional UL channel gains

or interference from UL users as seen by the BS (k, b).

2. A set of channel gains between the BSs and the DL users, denoted by

{Gk,b,d(ω)}k∈K ,b∈B,d∈UDL(ω); this set is required for the traditional DL channel gains

or interference from the BSs as seen by the DL user d.

3. A set of channel gains between different BSs, denoted by

{Gk′,b′,k,b(ω)}k′∈K ,b′∈B,k∈K ,b∈B; this set is required for the new DL-to-UL interference

from other BSs as seen by the BS (k, b).

4. A set of channel gains between the UL and DL users, denoted by

{Gu,d(ω)}u∈UUL(ω),d∈UDL(ω); this set is required for the new UL-to-DL interference

from UL users as seen by the DL UE d.
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Table 5.1: List of Notations

Notation Description

Gu,k,b Channel gain from UL user u to BS (k, b).

Gk,b,d Channel gain from BS (k, b) to DL user d.

Gk′,b′,k,b Channel gain from BS (k′, b′) to BS (k, b).

Gu,d Channel gain from UL user u to DL user d.

P c,t
u,k,b Power on PRB (c, t) used by UL user u for BS (k, b).

P c,t
k,d,b Power on PRB (c, t) used by BS (k, b) for DL user d.

Pb Total power budget for BS b ∈ B, which is equal to PMBS for all MBSs

and PPBS for all PBSs.

Ic,tk,b UL interference seen by BS (k, b) on PRB (c, t).

Ic,td DL interference seen by the DL user d on PRB (c, t).

γc,t
u,k,b UL SINR on PRB (c, t) from UL user u to BS (k, b).

γc,t
k,b,d DL SINR on PRB (c, t) from BS (k, b) to user d.

λu,k Sum of CEs for UL user u from cell k.

λk,d Sum of CEs for DL user d from cell k.

Note that all channel gains listed in Table 5.1 depend on the location of the user/BS re-

sulting in a path-loss, a large-scale slow fading coefficient (chosen at random) that remains

constant during a frame, and a small-scale fast fading coefficient (chosen at random) that

remains constant over each sub-channel of the given frame; we assume that the underlying

radio channel exhibits large-scale slow fading as well as small-scale fast fading characteris-

tics with coherence time greater than the duration of one frame:

Gc
u,k,b(ω) = Gc,t

u,k,b(ω),∀u,∀k,∀b, ∀c, ∀t
Gc
k,b,d(ω) = Gc,t

k,b,d(ω),∀d,∀k, ∀b,∀c,∀t
(5.1)

where, u ∈ UUL(ω), d ∈ UDL(ω), k ∈ K , b ∈ B, c ∈ C , t ∈ T .
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Using the aforementioned channel gains, the UL SINR on PRB (c, t), from user u to

BS (k, b), can be defined as follows:

γc,tu,k,b(ω) :=
P c,t
u,k,b ×Gc

u,k,b(ω)

N0 + Ic,tu,k,b
,∀u,∀k,∀b, ∀c, ∀t (5.2)

Similarly, the DL SINR on PRB (c, t), from BS (k, b) to user u, can be defined as

follows:

γc,tk,b,d(ω) :=
P c,t
k,b,d ×Gc

k,b,d(ω)

N0 + Ic,tk,b,d
,∀d,∀k, ∀b,∀c,∀t (5.3)

Here, P c,t
u,k,b and P c,t

k,b,d are the transmit powers chosen by BS (k, b) for user u and d, re-

spectively. Ic,tu,k,b is the UL interference seen by BS (k, b) on PRB (c, t), Ic,tk,b,d is the DL

interference seen by user d on PRB (c, t), and N0 is the average noise power that is con-

stant over all PRBs.

The exact UL interference on PRB (c, t) for UL user u, when it is transmitting to BS

(k, b), can be computed as follows:

Ic,tu,k,b =
∑
k′∈K

∑
b′∈B

( u′ 6=u∑
u′∈UUL(ω)

(P c,t
u′,k′,bG

c,t
u′,k,b(ω))+

∑
d′∈UDL(ω)

(P c,t
k′,b′,d′G

c,t
k′,b′,k,b(ω))

)
,∀k,∀b, ∀c,∀t

(5.4)

Similarly, the exact DL interference on PRB (c, t) as seen by the DL user d, when it is

receiving from BS (k, b), can be computed as follows:

Ic,tk,b,d =
∑
k′∈K

∑
b′∈B

( ∑
u′∈UUL(ω)

(P c,t
u′,k′,b′G

c,t
u′,d(ω))+

d′ 6=d∑
d′∈UDL(ω)

(P c,t
k′,b′,d′G

c,t
k′,b′,d(ω))

)
,∀d,∀c,∀t

(5.5)

Remark 5.3: In the equations (5.4) and (5.5), we take an implicit assumption that a

BS cannot allocate a PRB to more than one users either on UL or DL. Therefore, there

are no self-interference scenarios.
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Figure 5.2: Continuous rate function g(γ) as an upper bound for: (1) the discrete rate

function f(γ) from [23] and (2) the achievable CEs with BLER= 0.1 from [61].

In Chapter 4 and 5, we considered a continuous rate function (i.e., g(γ)) that acted as

a tight upper bound on the discrete rate function (i.e., f(γ)) given in [23] when QPSK,

16QAM, and 64QAM based MCSs were considered. This continuous function can be

extended (see Fig. 5.2) to envelop the achievable coding efficiencies (CEs), with BLER

target equal to 0.1 as suggested by 3GPP [61], for 5G OFDMA networks. Note that the

maximum link layer CE for 256QAM based MCS is approximately 7.4 bits/OFDM symbol

as suggested by 3GPP in 2017 [62]. Therefore, g(γ) can be extended to include 256QAM

based MCSs that can be used in the high SINR region [63] and also within a slightly

lower SINR region when combined with 8x8 MIMO techniques [64]. These 256QAM based

MCSs highly depend on the SINR thresholds and the underlying physical layer techniques

(e.g. MIMO), henceforth, no piece-wise discrete rate function has been proposed so far.

Therefore, we need to use this function as is for computing an upper bound on the link

layer CEs (in bits per OFDM symbol), knowing well that the actual set of CEs would be

discrete in nature. We believe that this approach will give us a reasonable upper bound

for an off-line study, since the resulting problem with discrete MCSs will be an intractable

large scale MINLP problem.
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The CEs using the suggested upper bound function can be computed as follows:

CE(γ) :=


g(εγ), γ < εγ

g(γ) = e(log10(e) loge(γ)), εγ ≤ γ ≤ βmax

g(βmax), γ > βmax

(5.6)

Here, εγ is a small positive value that acts as a lower bound on SINR, similarly, βmax is an

upper bound on SINR. The corresponding data rate (in bits per second) on each PRB can

be computed as follows by using the exact SINR (γ), CE(γ), the total number of OFDM

symbols (NS), and the duration of each time-slot (T ):

Rate(γ) := CE(γ)× NS

T
(5.7)

Note that we use a scheduler that schedule users on a per sub-channel basis, where the

whole sub-channel is allocated to a user for the duration of a frame. Since, the channel

gains are assumed to be constant over each sub-channel, the SINR and the corresponding

link layer rate remains constant for each sub-channel of a given frame.

5.3 Joint RA and US for Flexible FDD

We want to study the performance of flexible FDD within a multi-tier multi-cell HetNet

by formulating a joint RA and US problem that considers the exact inter-cell and intra-

cell interferences. The RA process is optimized across multiple macro cells of the HetNet

according to the ratio of UL and DL users in each macro cell. Without loss of generality,

a similar problem can be formulated for flexible TDD. Since, the UL suffers from severe

degradation on SINR due to the strong DL-to-UL interference, which is generated by MBS-

DL to a SC-UL and vice versa, we use proportional fairness (PF) as our objective function

for the joint problem, which maximizes the sum of the logarithm (with base e) of the total

rates seen by each UL or DL user.
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We consider a two-level UA process across the HetNet, i.e., one for determining the

cell-association and the other for the BS-association. The cell-association for each user,

either operating on the UL or the DL, is fixed and assumed to be known beforehand,

i.e., denoted by zv,k(ω), where zv,k is 1 if user v is associated with cell k and 0 otherwise.

On the other hand, the BS-associations are unknown and need to be optimized for each

network realization; where, we allow a user to transmit/receive data to/from multiple BSs,

which is also known as multi-BS-association. However, the users cannot transmit/receive

data to/from multiple BSs on the same PRB. Similarly, a BS cannot transmit/receive data

to/from multiple users on the same PRB.

In addition to the variables and parameters defined in Table 5.1, we need the following

additional variables for defining the joint RA and US problem:

• xc,t
v,k,b is a PRB allocation indicator variable, which is 1 if user v is allocated PRB

(c, t) by BS (k, b) and 0 otherwise. Note that the binary variables xc,tv,k,b are essential

for computing appropriate power on each PRB and then computing exact SINRs;

whereas, the exact SINRs are necessary for computing the CEs using the continuous

rate function g(.).

5.3.1 The Joint RA and US Problem

Given a network realization ω, a set of cell-associations ({zv,k(ω)}), and the continuous

rate function g(.), we formulate the network-wide joint RA and US problem as follows:

PRA
Joint(ω) : maximize

{xc,tv,k,b},{P
c,t
u,k,b},{P

c,t
k,b,d},{I

c,t
u,k,b},{I

c,t
k,b,d},{γ

c,t
u,k,b},{γ

c,t
k,b,d},{λu,k},{λk,d}∑

u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

d∈UDL(ω)

log (
∑
k∈K

λk,d)
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subject to: (5.4), (5.5), and

xc,tv,k,b ∈ {0, 1}, ∀v,∀k,∀b,∀c,∀t (5.8a)

xc,tv,k,b ≤ zv,k(ω), ∀v,∀k,∀b,∀c,∀t (5.8b)∑
v∈U(ω)

xc,tv,k,b ≤ 1, ∀k,∀b,∀c,∀t (5.8c)

∑
b∈B

xc,tv,k,b ≤ 1, ∀v,∀k,∀c,∀t (5.8d)

εp ≤ P c,t
u,k,b ≤ xc,tu,k,bPUE + (1− xc,tu,k,b)εp,∀u,∀k,∀b,∀c,∀t (5.8e)

εp ≤ P c,t
k,b,d ≤ xc,td,k,bPb + (1− xc,td,k,b)εp, ∀d,∀k,∀b,∀c,∀t (5.8f)∑

b∈B

∑
c∈C

P c,t
u,k,b ≤ PUE, ∀u,∀k,∀t (5.8g)∑

d∈UDL(ω)

∑
c∈C

P c,t
k,b,d ≤ Pb, ∀k,∀b,∀t (5.8h)

εγ ≤ γc,tu,k,b ≤ βmax, ∀u,∀k,∀b,∀c,∀t (5.8i)

εγ ≤ γc,tk,b,d ≤ βmax, ∀d,∀k,∀b,∀c,∀t (5.8j)

P c,t
u,k,bG

c,t
u,k,b(ω) ≥ γc,tu,k,b(N0 + Ic,tu,k,b), ∀u,∀k,∀b,∀c,∀t (5.8k)

P c,t
k,b,dG

c,t
k,b,d(ω) ≥ γc,tk,b,d(N0 + Ic,tk,b,d), ∀d,∀k,∀b,∀c,∀t (5.8l)

λu,k =
∑
c∈C

∑
t∈T

∑
b∈B

g(γc,tu,k,b), ∀u,∀k (5.8m)

λk,d =
∑
c∈C

∑
t∈T

∑
b∈B

g(γc,tk,b,d), ∀d,∀k (5.8n)

where, u ∈ UUL(ω), d ∈ UDL(ω), k ∈ K , b ∈ B, c ∈ C , t ∈ T .

Note that the constraints (5.4) and (5.5) are for computing the UL and DL interference,

respectively. The constraints (5.8c) are to ensure that only one user, either on UL or DL,

would be scheduled on PRB (c, t) by BS (k, b) and the constraints (5.8d) ensure that a

user will not receive/transmit data from/to more than one BS on each PRB. Here, εp

and εγ are very small positive values that depend on the numerical values of PUE and γc,tu,k,

respectively. The bilinear constraints (5.8k) and (5.8l) are for computing UL and DL SINR
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on PRB (c, t), respectively; whereas, the constraints (5.8m) and (5.8n) are for computing

the sum of the CEs seen by UL and DL users, respectively.

The joint RA and US problem (PRA
Joint(ω)) is a large-scale optimization problem with

both binary and continuous variables. Given the large number of mixed variables and

non-convex constraints, such as (5.8k) and (5.8l), solving this problem is challenging even

for a small number of users in each macro cell. Our goal is to solve this problem exactly in

order to provide a benchmark solution that is essential for designing efficient on-line RA

schemes for flexible FDD/TDD based HetNets. Next, we transform this problem into a

relaxed problem that can be solved efficiently.

5.3.2 The Relaxed Problem

In this section, we transform PRA
Joint(ω) into a relaxed problem with continuous variables

only. Our proposed transformation removes all the binary variables and the associated

constraints (i.e., 5.8a to 5.8f) from PRA
Joint(ω). Note that the binary variables, i.e., xc,tv,k,b,

are used to determine the BS-association for user v on PRB (c, t), and their removal will

allow all users to transmit over the same PRB; this condition would lead to self interference

scenarios, i.e., a user will be receiving/transmitting data from/to multiple BSs on a single

PRB or multiple users will be scheduled by a BS on a single PRB. To avoid these scenarios

and also to obtain a tight upper bound on PRA
Joint(ω), we need to add additional constraints

to ensure that only one UE in each macro cell is transmitting with a considerable amount

of power on PRB (c, t) of each BS. The corresponding upper bound joint RA and US

problem is defined as follows:

PUB−RA
Joint : maximize

{P c,t
u,k,b},{P

c,t
k,b,d},{I

c,t
u,k,b},{I

c,t
k,b,d},{γ

c,t
u,k,b},{γ

c,t
k,b,d},{λu,k},{λk,d}∑

u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

d∈UDL(ω)

log (
∑
k∈K

λk,d)

subject to : (5.4), (5.5), (5.8g) to (5.8n), and
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εp ≤ P c,t
u,k,b ≤ zu,k(ω)PUE + (1− zu,k(ω))εp, ∀u,∀k,∀b, ∀c, ∀t (5.9a)

εp ≤ P c,t
k,b,d ≤ zd,k(ω)Pb + (1− zd,k(ω))εp ∀d,∀k,∀b, ∀c, ∀t (5.9b)

P c,t
u,k,bP

c,t
u′,k,b ≤ εp, ∀u,∀u′, u 6= u′,∀k,∀b, ∀c, ∀t (5.9c)

P c,t
k,b,dP

c,t
k,b,d′ ≤ εp, ∀d,∀d′, d 6= d′,∀k,∀b, ∀c, ∀t (5.9d)

P c,t
u,k,bP

c,t
k,b,d ≤ εp, ∀u,∀d,∀k,∀b, ∀c, ∀t (5.9e)∏

b∈B

P c,t
u,k,b ≤ ε|B|−1p , ∀u,∀k,∀c, ∀t (5.9f)∏

b∈B

P c,t
k,b,d ≤ ε|B|−1p , ∀d,∀k,∀c, ∀t (5.9g)

where, u ∈ UUL(ω), d ∈ UDL(ω), k ∈ K , b ∈ B, c ∈ C , t ∈ T .

Here, more constraints are added to achieve a one-to-one PRB mapping between dif-

ferent users and BSs of each macro cell without using any indicator variables. The bilinear

constraints from (5.9c) to (5.9e) ensure that only one UE in each macro cell (either on

UL or DL) is transmitting/receiving data to/from BS (k, b) with a considerable amount of

power using PRB (c, t); whereas, the bilinear constraints (5.9f) and (5.9g) ensure that a

user cannot send/receive data to/from more than one BSs on a single PRB.

Lemma 5.1: PUB−RA
Joint can be transformed into an equivalent convex problem, i.e.,

PUB−RA′

Joint by using GP transformation.

Proof: See Appendix E.

5.4 Existing RA schemes

In this section, we formulate and solve a set of different joint RA and US problems which

are corresponding to the existing RA schemes under static FDD/TDD scenarios (as shown

in Fig. 5.3 and also enumerated in following paragraphs). The exact performance of these

schemes can be compared with that of the proposed upper-bound RA problem, where we

assume multi-BS-association for both UL and DL users. In addition, we also assume that

all macro cells in the network are synchronized, i.e., they are using the same RA scheme.
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Figure 5.3: Potential RA schemes for Flexible FDD based HetNets.
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The following schemes have been considered, in this chapter, as the potential candidates

for RA in flexible FDD/TDD based HetNets:

1. Static FDD (S-FDD): In this RA scheme, the set of sub-channels are divided into

two groups, namely, CUL and CDL. The sub-channels in CUL are shared between the

MBS and the SCs for UL transmissions, while the sub-channels from CDL are shared

between the MBS and the SCs for the transmissions on DL.

2. Reverse FDD (R-RDD): In this RA scheme, the set of sub-channels are divided

into two sets, such that, when the MBS is operating on the UL then the SCs are

operating on the DL and vice versa.

5.4.1 Joint RA and US Problem for Static FDD

Given a network realization ω, a set of cell-associations ({zv,k(ω)}), the continuous rate

function g(.), the sub-channel allocation parameter for the UL, i.e., αUL ∈ {1, .., |C |}, and

the sub-channel allocation parameter for the DL, i.e., αDL = |C | − αUL ∈ {1, .., |C | − 1},
the network-wide joint RA and US problem for Static FDD can be formulated as follows:

P S−FDD
Joint (ω, αUL) : maximize

∑
u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

d∈UDL(ω)

log (
∑
k∈K

λd,k)

subject to : (5.4), (5.5), (5.8g) to (5.8n), (5.9a) to (5.9g), and

P c,t
k,b,d= εp,∀d,∀k, ∀b,∀c ∈ CUL,∀t (5.10a)

P c,t
u,k,b= εp,∀u,∀k,∀b,∀c ∈ CDL,∀t (5.10b)

where, u ∈ UUL(ω), d ∈ UDL(ω), k ∈ K , b ∈ B, c ∈ C , t ∈ T , CUL = {1, .., αUL}, and

CDL = {αUL + 1, .., αUL +αDL = |C |}. The set of constraints given by (5.10a) ensure that

only UL users in each macro cell are transmitting data to BS (k, b) with a non-negligible

amount of power over CUL, while, the set of constraints (5.10b) ensure that only DL users

in each macro cell are receiving data from BS (k, b) with a non-negligible amount of power

over CDL.
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Note that when there are no DL users then αUL = |C | and αDL = 0, similarly, when

there are no UL users then αDL = |C | and αUL = 0. In these scenarios, the static FDD

problem becomes equivalent to the upper-bound problem, where SCs and the MBS in

each cell are operating in the co-channel deployment (CCD) mode. For UL-only and DL-

only traffic, we also consider partially-shared deployment (PSD) mode. The corresponding

problem is denoted by P S−PSD
Joint (ω, α), where the set of sub-channels are divided into two

sets using the sub-channel allocation parameter α ∈ {1, .., |C | − 1}, namely, the shared

and the non-shared set of sub-channels. The non-shared sub-channels, i.e., denoted by

Cα ∈ {1, .., α}, are exclusively used by the MBS, whereas the shared sub-channels, i.e.,

denoted by C
′
α ∈ {α + 1, .., |C |}, can be used by both SCs and the MBS.

Lemma 5.2: The problems P S−FDD
Joint and P S−PSD

Joint can be transformed into equivalent

convex problems, i.e., P S−FDD′

Joint and P S−PSD′

Joint , respectively, by using GP transformation.

Proof: The problem PUB−RA
Joint has been convexified in Appendix E. A similar approach

can be used to obtain P S−FDD′

Joint and P S−PSD′

Joint .

5.4.2 Joint RA and US Problem for Reverse FDD

Given a network realization ω, a set of cell-associations ({zv,k(ω)}), the continuous rate

function g(.), the sub-channel allocation parameter, i.e., α ∈ {1, .., |C | − 1}, the network-

wide joint RA and US problem for R-FDD can be formulated as follows:

PR−FDD
Joint (ω, α) : maximize

∑
u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

d∈UDL(ω)

log (
∑
k∈K

λd,k)

subject to : (5.4), (5.5), (5.8g) to (5.8n), (5.9a) to (5.9g), and

P c,t
u,k,bm

= εp,∀u,∀k,∀bm,∀c1,∀t (5.11a)

P c,t
u,k,bs

= εp,∀u,∀k,∀bs, ∀c2,∀t (5.11b)

P c,t
k,bm,d

= εp,∀d,∀k,∀bm, ∀c2,∀t (5.11c)

P c,t
k,bs,d

= εp,∀d,∀k,∀bs,∀c1,∀t (5.11d)

where, u ∈ UUL(ω), d ∈ UDL(ω), k ∈ K , b ∈ B, c ∈ C , t ∈ T , c1 ∈ C1 = {1, .., α},
c2 ∈ C2 = {α + 1, .., |C |}, bm ∈ {MBS}, and bs ∈ B/{MBS}.
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We assume that all macro cells in the network are synchronized and they are sharing

the same sub-channels for SC-UL and MBS-DL and vice versa. The constraints (5.11a)

ensure that the UL users in each macro cell do not transmit data to the MBS on C1, while,

the constraints (5.11c) ensure that the MBS in each macro cell do not transmit data to the

DL users on C2. Likewise, the constraints (5.11b) ensure that the UL users in each macro

cell do not transmit data to the SCs on C2, while, the constraints (5.11d) ensure that the

DL users in each macro cell do not transmit data to the SCs on C1. Note that when there

are only UL users or only DL users in the network, then R-FDD is equivalent to the case

where the MBS and the SCs are operating in the orthogonal deployment (OD) mode.

Lemma 5.3: PR−FDD
Joint can be transformed into an equivalent convex problem PR−FDD′

Joint

by using GP transformation.

Proof: The problem PUB−RA
Joint has been convexified in Appendix E. A similar approach

can be used to obtain PR−FDD′

Joint .

5.5 Numerical Results

We consider a scenario of multiple hexagonal cells (|K | = 7) with an inter-site distance

(ISD) of 500m (i.e., cell radius is 500√
3
m). As shown in Fig. 5.1, each macro cell k ∈ K has

a directional MBS that is overlaid by 2 symmetrically placed PBSs at a distance of 200m

from the MBS. All macro cells are operating on OFDMA-based frames, where each frame

has |C | = 10 sub-channels and |T | = 10 time-slots. Our physical layer parameters are

based on the 3GPP evaluation document [36] that are also shown in Table 5.2. The channel

gains (i.e., listed in Table 5.1) account for antenna gain, directivity gain, path loss (given in

Table 5.3), large-scale shadow fading coefficients, and small-scale fast fading coefficients;

where, the directivity gain is a function of θ, i.e., the angle made by a user with the

broadside direction of the MBS antenna. The shadow fading coefficients are modeled by a

log-normal distribution that has zero mean and σ2 variance (given in Table 5.3), whereas,

the small-scale fast fading coefficients (due to multi-path propagation) are modeled by a

normalized Rayleigh distribution.
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Table 5.2: Physical Layer Parameters from [36]

NS 12× 14 T 1ms

Traffic Model Full buffer Penetration Loss 20dB

Subchannel BW 180kHz Noise Power −174dBm/Hz

UE Antenna Gain 0dBi UE Noise Figure 9dB

PBS Antenna Gain 5dBi Pico Noise Figure 13dB

MBS Antenna Gain 15dBi MBS Noise Figure 5dB

MBS Directivity Gain min(12( θ
65o

)2, 20)dB UE Transmit Power 24dBm

MBS Transmit Power 46dBm Pico Transmit Power 24dBm

Table 5.3: Path Loss and Shadow Fading Models from [36]

Path Loss (dB) (σ)

MBS and UE 131.1 + 42.8× log10(d/1000), d ≥ 35m 8dB

MBS and MBS 98.45 + 20× log10(d/1000) 8dB

MBS and Outdoor Pico 125.2 + 36.3× log10(d/1000), d ≥ 75m 6dB

Outdoor Pico and Outdoor Pico 169.36 + 40× log10(d/1000), d ≥ 40m 6dB

UE and Outdoor Pico 145.4 + 37.5× log10(d/1000), d ≥ 10m 10dB

UE and UE 98.45 + 20× log10(d/1000), d ≤ 50m 12dB

175.78 + 40× log10(d/1000), d > 50m
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We study the performance of the upper bound problem for joint RA and US along with

the existing RA schemes by generating a set of 100 realizations (Ω) for symmetric as well as

asymmetric UL/DL traffic scenarios. Each ω ∈ Ω corresponds to the duration of one frame

and a set of users (U(ω)) including a set of UL users (i.e., UUL(ω)) and a set of DL users (i.e.,

UDL(ω)), which are distributed uniformly across all macro cells. We are interested in max-

imizing the geometric mean (GM) throughput of all users in the network that is equivalent

to maximizing our objective function, i.e.,
∑

u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

u∈UDL(ω)

log (
∑
k∈K

λd,k).

Note that the GM throughput of all users in the network is defined as follows:

GM(ω) := |U(ω)|

√ ∏
u∈U(ω)

(
∑
k∈K

λu,k(ω)×NS

T×|T | ),∀ω ∈ Ω

where, NS is the number of OFDM symbols in each PRB and T is the time duration for

one PRB. Note that their numerical values are given in Table 5.2.

5.5.1 Performance Measures

The following measures have been computed for each realization (ω) using a non-linear

programming solver SNOPT [39] before averaging them over Ω:

• The Upper-bound GM (GMUB(ω)) is computed by solving PUB−RA′

Joint (ω), as dis-

cussed in Section 5.3.2.

• The Static-FDD GM (GMS−FDD(ω, αUL)) is computed by solving P S−FDD′

Joint (ω, αUL)

for each value of αUL, as discussed in Section 5.4.1.

• The Static-FDD GM Max (GMS−FDD
max (ω)) is computed by solving P S−FDD′

Joint (ω, αUL)

and the resulting GM is then maximized for all possible values of αUL.

• The Reverse-FDD GM (GMR−FDD(ω, α)) is computed by solving PR−FDD′

Joint (ω, α)

for each value of α, as discussed in Section 5.4.2.

• The Reverse-FDD GM (GMR−FDD
max (ω)) is computed by solving PR−FDD′

Joint (ω, α)

and the resulting GM is then maximized for all possible values of α.
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• The Static-PSD GM (GMS−PSD(ω, α)) is computed by solving P S−PSD′

Joint (ω, α)

for each value of α, as discussed in Section 5.4.1.

• The Static-PSD GM Max (GMS−PSD
max (ω)) is computed by solving P S−PSD′

Joint (ω, α)

and the resulting GM is then maximized for all possible values of α.

5.5.2 Comparison Results

To compare the efficacy of different CA schemes under varying traffic scenarios, we cate-

gorize our numerical results as follows:

• DL-only traffic (|U(ω)| = |UDL(ω)| = 35): In this scenario, R-FDD acts as an

OD mode (i.e., the MBS is operating on C1 and the SCs are operating on C2 in

each macro cell) and GMUB acts as a CCD mode. The corresponding results are

shown in Fig. 5.4, where we also computed the GM throughput for PSD mode (i.e.,

GMS−PSD). Clearly, this scenario can benefit from CCD mode (i.e., GMUB)

that significantly outperforms the OD mode even when the CA parameters for R-

FDD (i.e., α’s are chosen to maximize the GM throughput of each realization), in

contrast, PSD performs closely to the CCD mode when α’s are maximized for each

realization. In addition, choosing α independently for each realization in R-FDD

(i.e., GMR−FDD
max (ω)) can bring huge performance gains for DL users then the case

when α’s are constant for all realizations.

• UL-only traffic (|U(ω)| = |UUL(ω)| = 35): In this scenario, R-FDD acts as an

OD mode (i.e., the SCs are operating on C1 and the MBS is operating on C2 in

each macro cell) and GMUB acts as a CCD mode. The corresponding results are

shown in Fig. 5.5, where we see similar results as for the DL-only traffic scenario,

i.e., the CCD mode (i.e., GMUB) outperform the OD and PSD modes even when

the CA parameters for R-FDD and S-PSD (i.e., α’s are chosen to maximize the GM

throughput of each realization).

• Symmetric UL and DL traffic (|U(ω)| = |UDL(ω)| + |UUL(ω)| = 35): In this

scenario, there are same number of UL and DL users in each macro cell. The cor-
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responding results are shown in Fig. 5.6, 5.7, 5.8, and 5.9, which suggest that when

there is disparity between the number of UL and DL users (Fig. 5.6 and 5.7) in each

macro cell, S-FDD outperforms R-FDD, otherwise (Fig. 5.8 and 5.9), their perfor-

mance gains remain quite similar to each other. Clearly, the solutions obtained for

S-FDD are quasi-optimal as they are close to the upper bound (GMUB) under for

different symmetric UL and DL traffic scenarios.

• Asymmetric UL and DL traffic (|U(ω)| = |UDL(ω)| + |UUL(ω)| = 35): the

corresponding results, as shown in Fig. 5.10, suggest that when the number of UL

and DL users in each macro cell are random (with at least one UL and one DL user in

each macro cell), R-FDD outperforms S-FDD when α’s are chosen to maximize the

GM throughput of each realization. Hoever, in the case that α’s cannot be adjusted

on a per frame basis their performance is very far from the optimal.

Nonetheless, the purpose of this study is to benchmark the performance of the existing

and/or yet-to-be designed RA schemes for flexible HetNets in an off-line manner. In

practice the RA parameters, i.e., αUL and α, could not be optimized on a per realization

basis, since, it requires synchronization among all macro cells, which can be performed in

a Centralized-Radio Access Network (C-RAN) scenario only, where the intra-cell and the

inter-cell interferences can be measured exactly for each macro cell. In addition, within

a C-RAN the RA parameters can also be adjusted periodically depending on the channel

conditions and the UL/DL traffic scenario in each macro cell.
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Figure 5.4: Symmetric UL/DL traffic (UL:DL=0:5): Average GM throughput over Ω
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Figure 5.5: Symmetric UL/DL traffic (UL:DL=5:0): Average GM throughput over Ω
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Figure 5.6: Symmetric UL/DL traffic (UL:DL=1:4): Average GM throughput over Ω
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Figure 5.7: Symmetric UL/DL traffic (UL:DL=4:1): Average GM throughput over Ω
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Figure 5.8: Symmetric UL/DL traffic (UL:DL=2:3): Average GM throughput over Ω
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Figure 5.9: Symmetric UL/DL traffic (UL:DL=3:2): Average GM throughput over Ω
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Figure 5.10: Asymmetric UL/DL traffic: Average GM throughput over Ω

5.6 Conclusions

In this chapter, we investigated the joint RA and US problem for a specific HetNet under

various deployment choices, i.e., static, reverse, and flexible. We formulated the joint

problems corresponding to each one of them, which are non-convex integer optimization

problems that are, nonetheless, computationally intractable. We transformed them into

convex problems by first removing the binary variables and then using GP transformation.

Using this approach, we obtained upper bound solutions, which can serve as a benchmark

to analyze the efficacy of existing or new RA schemes for flexible FDD based HetNets.

These off-line solutions can also be used to propose engineering insights for designing

future flexible HetNets. Through extensive numerical simulations, we demonstrated the

performance of Static FDD and Reverse FDD for flexible FDD by comparing them with

the proposed upper-bound solutions. It was observed that the Static FDD can outperform

Reverse FDD for symmetric UL and DL traffic scenarios, whereas Reverse FDD achieves the

closest performance with respect to the proposed upper-bound solutions under asymmetric

UL/DL traffic scenarios. In general, it was observed that in order to achieve a quasi-optimal

performance, either the RA parameters for R-FDD need to be adjusted for each network

realization or new quasi-optimal RA schemes should be proposed for flexible HetNets to

incorporate asymmetric UL/DL traffic scenarios.
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Chapter 6

Cable based Front-hauls for C-RANs

6.1 Introduction

In recent years, different solutions, based on topological and architectural innovations of

the current cellular networks, have been proposed to address the issues related to the

increasing data requirements and asymmetries. In our previous chapters, we presented a

detailed analysis of various RRM processes from a link-layer perspective only, where our

main focus was on network densification, however, the current trends in cellular networks

are to enhance the spectral efficiency of the currently available spectrum by using MIMO

antennas or other related solutions which are based on enhanced physical layer techniques.

Note that these MIMO antennas are used on a large scale to further enhance the spec-

tral efficiency of the underlying cellular network, nonetheless, at the cost of distributed

signal processing operations that require strict synchronization/alignment of the cellular

users with the MIMO antennas. Further, MU-MIMO have been proposed which adds mul-

tiple access (multi-user) capabilities to MIMO by leveraging multiple users as spatially

distributed transmission resources, at the cost of somewhat more expensive signal process-

ing operations. In contrast, single-user MIMO considers only local multiple antennas to

serve each user, in particular, they are used to ensure outdoor coverage and to serve mobile

UEs (allowing for handoff minimization), while MU-MIMO used within each SC can act

as the main capacity-driver for indoor and outdoor UEs with low mobility.
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Our Objective:

5G mobile networks are expected to support highly dynamic traffic and stringent delay

requirements, therefore, pervasive deployment of a large number of low-power SCs with

possibly overlapped radiation ranges appear to be the most viable solution to meet these

requirements [65]. This is particularly the basis of achieving cost-effective indoor distribu-

tion systems for 5G indoor networks, since, each SC can exploit a low cost analog-fronthaul

based DAU.

In this context, a low cost C-RAN architecture is necessary for handling the complex

scenarios generated by the large number of SCs for indoor 4G/5G services. In conventional

C-RANs, the front-haul link between a Base Band Unit (BBU) and a Remote Radio Unit

(RRU) deploys digital baseband signaling using an optical fiber link; the optical fibers are

used to transport data at a very high speed. Recently, copper-based all-analog front-hauls

[66] have been proposed as a low cost alternative to the fiber optics based connections.

These cable based fronthauls, also known as LTE over Cable (LoC) for 4G LTE, leverage

the existing LAN cable based indoor architecture to meet the high bandwidth requirements

with almost negligible cost.

This chapter presents a recently introduced novel distributed antenna access system

[67] for indoor service provisioning, aiming to provide 5G indoor services with extremely

low cost1. The proposed architecture is characterized by the fact that a DAU can be placed

a few hundred meters from the BBU or RRU via a multi-segment front-haul, where the

last hop is through a multi-pair LAN cable. This DAU architecture can provide a cost-

effective alternative to the expensive fiber-optic based indoor solution(s), allow the antenna

units to be distributed over a wide geographical area by using multi-pair LAN cables for

transporting 4G LTE or 5G New Radio (NR) signals. However, the use of existing indoor

cables has been limited because of the attenuation and the crosstalk among the twisted pairs

of each cable. To realize the proposed system, we focus on the design, optimization, and

implementation of a real-time scheduler for resource mapping between the Radio Frequency

(RF) signals of the radio antennas and the sub-channels of a multi-pair LAN cable.

1Some of the figures and tables presented in this chapter have been published in [67] and [68].
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The main contributions of this chapter are summarized as follows:

• We propose an optimization framework for an all-analog user scheduler for mapping

4G LTE or 5G NR signals from a DAU over a LAN cable. In particular, we propose a

novel joint power allocation and sub-channel allocation problem, such that, the cable

impairments are minimized before transporting the signals from each antenna unit

onto the cable, this is also referred to as Multi-pair Air-to-Cable (MP-A2C) mapping

problem. Based on the given DAU architecture, we introduce an optimal MP-A2C

scheduler for mapping the antenna signals on the sub-channels of a multi-pair cable.

• The MP-A2C optimization problem is a MINLP problem whose feasible solution

space is nonetheless non-linear and non-convex. To obtain optimal solutions for the

MP-A2C problem, we propose a convex upper bound problem by exploiting GP.

Through extensive numerical simulations, we show that the proposed framework can

be used as a benchmark for evaluating the performance of any MP-A2C scheduler.

• We propose heuristic-based schedulers for the MP-A2C problem that allow us to

decouple the joint power and sub-channel allocation problem (for mapping signals

over the LAN cable) into two simple problems, which can be solved efficiently in real-

time. By decoupling the power allocation process from the sub-channel allocation

process over the LAN cable, we significantly reduce the computational complexity of

the joint problem, i.e., to polynomial time.

• We verify the performance of the heuristic-based schedulers via extensive simulation

over a realistic 5G NR channel and a multi-pair cable channel (i.e., with actual CAT-

5 cable measurements) in terms of the optimal cable throughput of the radio users

under the given rate requirements.

The rest of the chapter is organized as follows: Section 6.1.2 reviews the prior work

on 5G indoor access systems. In Section 6.2, we present our system model along with

the distributed antenna access architecture for 5G indoor service provisioning. Section 6.3

introduces the optimal MP-A2C scheduler and its feasible solutions through a novel upper

bound problem. The proposed heuristic based MP-A2C scheduler and its performance

evaluation is provided by Section 6.4 and 6.5, respectively.

108



6.1.1 Motivation

C-RANs have been considered as a promising solution for providing indoor services by

centralizing the baseband units (BBUs) into a common BBU pool and geographically

distributing the remote radio units (RRUs) over each indoor chamber (one per SC) for

providing radio transmissions/receptions. One of the main considerations, for these indoor

chambers is to achieve a cost-effective indoor distribution system for transporting RF

signals between the BBU pool and each distributed RRU, also referred to as front-hauls.

In this context, the current industry practice of indoor front-hauling is subject to various

challenges for the 5G era, where much higher frequency bands and massive antenna arrays

will be employed, as mentioned below:

1. Currently, the digital links are used for the transportation of the RF signals between

the BBU and the RRU via the IEEE 802.3 Ethernet protocol and Common Public

Radio Interface (CPRI), respectively, where A/D and D/A conversions are necessary

at both ends. Note that a high-rise building may contain hundreds of deep-indoor

chambers, and each chamber may require a DAU for broadband service provisioning.

2. The indoor front-hauls should be scalable to the number of antennas at each RRU.

Optical fiber can provision a huge amount of bandwidth but is subject to high hard-

ware complexity in achieving fine granularity. For example, a small indoor chamber

just needs an antenna set with 4 radiation units that can provision a sum-rate of a

few Gbps. In this case, using an optical module with CPRI based digital links is not

cost-effective at all.

3. The reuse of existing infrastructure is highly desired for cost reduction and pervasive

provisioning. Although optical fibers have been largely deployed in metropolitan

areas, they may not reach every indoor femto/pico-cell as much as LAN cables.

However, the digital link on LAN cables is subject to very low rates due to the

need for A/D/A conversion as well as the waste of media spectrum due to frequency

expansion.

4. The passive devices in the conventional system may not be able to support multiple

high-frequency ranges of operation. The attenuation of a coaxial cable is significantly
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more serious when signal frequency is in GHz. Further, a DAU with NA antennas

has to take NA coaxial cables to feed it, which is not realistic in most cases.

6.1.2 Related Work

To the best of our knowledge, solutions for 5G indoor service provisioning that takes LAN

cables and analog feeders to the antennas are seen in [66–73]. More specifically, [69, 70]

suggested to directly launch analog radio signals over a twisted pair cable-based front-haul,

also known as Radio over cable (RoC), which has merits mostly due to the requirement of

modest complexity for up conversion (from Baseband (BB) to RF) and down conversion

(from RF to BB), also referred to as the analog-to-analog conversion (A/A) in the following

context. Since, the latency of analog relaying at the RRUs is negligible and all latency is

due to propagation, the 0.5 ms latency predicted in 5G NR [74] can be ensured.

The A/A operation is illustrated in Fig. 6.1, where the RF signal from a 5G user of 20

MHz band (withK sub-channels) is first received at an antenna and then mapped to the low

frequency spectrum (below 500 MHz) of the cable with proper power shaping. Frequency

down-conversion is performed before the RF signals are launched on the twisted pair LAN

cable in order to avoid any further attenuation. An A/A operation is needed again at the

other side where a frequency up-conversion is performed, so as to restore the original RF

frequency. Note that crosstalk among bundled twisted pairs exists even if low frequency

signals (0-500 MHz) are transported. This is also referred to as Far-end Crosstalk (FEXT).

Note that an identical spectrum width is preserved during the frequency conversion with

some power shaping, which is required to pre-compensate the attenuation with respect to

the frequency over the LAN cable. The down-converted RF signal is then launched over

the twisted pair using a predefined spectral mask as shown in Fig. 6.1. It is likewise but

only reverse every step in the downlink direction.

A naive solution to mitigate the FEXT is to allow a single RF signal to be carried

by a twisted pair, such as the one suggested by [69, 70]. However, in this scenario, we

would be using the lowest possible band on the twist pair of the LAN cable to carry the

frequency down-converted RF signal (at GHz carrier) with a small spectrum width (≈
20MHz). This naive mapping policy is feasible and can achieve a very low FEXT among

110



�fair
0 0

Power shaping

Freq (RF)fRF Freq (LF)

1Ks
- Ks2s1s

BW5G = 20 MHz

1Kx
- Kx2x

1x

�fcable
fLF

BWCable = 500 MHz

20 MHz

Figure 6.1: Air-to-Cable frequency translation [67].

the IF signals traveling on the cable. Nonetheless, such a policy casts a stringent constraint

on the bandwidth usage of the twisted pair and the number of antennas at each RAU that

has to be bounded by the number of twisted pairs to the RRU. For example, an RRU with

a 16-antenna array would require 16 independent twisted pairs, which is not practical in

most scenarios. Therefore, it is critical to have multiple antennas to be provisioned by a

single twisted pair for the desired scalability, which can be achieved in the following two

dimensions: one is to multiplex antenna signals in a single twisted pair (i.e., design in the

frequency domain), and the other is to consider multiple twisted pairs accommodated in a

single cable (i.e., design in the space domain). The resource of such a multi-pair cable is

defined under the space-frequency (SF) domain, where the signal from/to each antenna is

required to be mapped properly over a specific space frequency cable resource.

In [72], a scheduler has been proposed to achieve an efficient SF2SF mapping between

the sub-channels of each antenna and the sub-channels of a certain twisted pair. Although

feasible, it took an invalid/unrealistic assumption that each 22MHz of spectrum width

has a flat channel response. In addition, it did not consider the fact that the multi-pair

cable channel experiences insertion loss (IL) as well as far end crosstalk (FEXT) that are

directly proportional to the frequency and the cable length. In [73], a similar scheduler

was introduced and the scheduling problem was formulated into an Integer Linear Problem

(ILP) problem, where one twisted-pair was allocated for analog baseband transmission

while the rest of the twisted pairs were allocated to the Ethernet signals; such a setting

may lead to higher crosstalk over the front-haul link as the transmit power spectrum density

(PSD) of the Ethernet signals are significantly higher than the radio signals.
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A similar analysis has been performed in [75] for a single UE based multiple-input

single output (MISO) downlink scenario, which has been adopted to avoid the performance

analysis to be affected by multi-user spatial multiplexing. Besides the technical issues

presented in Section 6.1.1, all of the reported analog solutions for front-hauling have to

modify the industry practice of using a digital optical link between the RRU and BBU,

resulting in compatibility-issues.

6.2 System Model

In our previous chapters, we characterized and analyzed a HetNet consisting of a con-

ventional macro-BS tier overlaid with a second tier of Pico-BSs considering uniformly

distributed low mobility users. In general, the HetNets have non-uniformly distributed

users that are endowed with a single antenna with different speeds. Those associated with

the SCs (which acts as a HotSpot with a large number of users) are primarily static or

have low mobility, while the medium-to-high mobility ones are served by the macro BS.

Typically, the user association (UA) decisions are made locally, whereas we assume that

the RRUs are connected to the DAUs through low cost and high capacity front-hauls, thus,

both US and UA decisions can be taken by the RRU without any inter-BBU coordination.

In Fig. 6.2, we illustrate a scenario where an RRU is located at the top of the building

and each floor is installed with a DAU. Different from distributed antenna systems with

digital optical links, each DAU is connected to the RRU via a LAN cable. In particular,

the DAU is assumed to be an all-analog device without any intelligent processing that is

required to reduce its hardware cost. The DAU only performs simple tasks like frequency

translation, amplification, and radiation/reception of radio frequency signals, and hosts

an array of antennas. In Fig. 6.3, we present the functional diagram of the DAU system,

which has been proposed in [67]. In line with the conventional C-RANs, the proposed

DAU system has a CPRI-based optical link in between the BBU and RRU. The RRU

supports two types of antenna units, one locally hosted at the RRU called local antenna

units (LAUs), and the other referred to as DAUs which can be placed up to 200 meters

away from the RRU.
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The proposed architecture for 5G indoor services has the following merits: (i) the

system is compatible with the conventional C-RAN front-hauls where CPRI based digital

optical links are used to connect the BBU and RRUs, while the LAN cables are used to

extend the DAUs away from the RRU. (ii) The DAU is a protocol-independent device

that is transparent to the transmission rate. This leads to a fact that the DAU can

incorporate with all possible wireless technologies and standards. (iii) Since, the LAN

cables are pervasive in the indoor environment, using the LAN cables is very cost-effective

compared with any other solution such as coaxial cable and optical fibers. Note that a

multi-pair LAN cable contains at least 4 twisted pairs (i.e. CAT 5/6/7) bundled together

to provide bandwidth up to 1 GHz/pair (depending on the cable type and length). Thus,

by using such multi-pair LAN cables would enable the design of high-bandwidth, low-cost,

and fine-granularity short distance interconnections (up to 200 meters) between the RRU

and DAUs.
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Notation: [A]ij = aij denotes the ij th element of matrix A and diag(A1, . . . ,AN) is a

block-diagonal matrix. Letters R,C refer to real and complex numbers, respectively. We

denote matrix transposition and conjugate transposition as (·)T and (·)H , respectively.

The system model of the proposed distributed antenna access system is shown in Fig.

6.4, where, the DAU with NA antennas are available to serve NU users. Each DAU is

connected to the RRU through a LAN cable with NC twisted pairs, where each twisted

pair has NF sub-channels over the cable bandwidth BWC . Each sub-channel is equally

spaced in the frequency domain at intervals equal to 4fcable (i.e., NF = bBWC/4fcablec).
The coherence bandwidth is assumed to be equal to4fair over the bandwidthBW 5G, where

each user has NR sub-channels (i.e., NR = bBW5G/4fairc). Without loss of generality, we

assume that the sub-channel width of air and cable is identical (4fcable ≈ 4fair ≈ 4f).

In the uplink, the DAU needs to filter the received RF signals at4f intervals to extract

the corresponding IF signals that are suitable for transmission over the cable. The downlink

operations are similar but just reversed. For this purpose, the DAU contains analog-to-

analog (A/A) converters that down-convert (or up-convert) the received antenna signals

into IF signals for uplink and vice versa for the downlink. Note that this A/A device is

designed to map these IF signals on the cable by means of analog and/or digital processing.

We assume that the US decisions are made by a scheduler located inside each RRU and

the A/A converter receives the scheduling decisions through a control channel between the

RRU and the DAU (as shown in Fig. 6.4). The carrier frequency of the local oscillators

(that are attached to each antenna) is set based on these scheduling decisions to ensure

that each IF signal is mapped at the desired sub-channel over the cable.

The received signal vector after down-conversion in Fig. 6.4 is defined as follows:

s̃ = HAs + nA (6.1)

here, HA ∈ CNA×NU is the air channel matrix for uplink transmission from NU users to

the NA antennas at the DAU (which will be discussed in Section 6.2.2), s ∈ CNU are the

transmitted signals (with unit power σ2
s = 1) from the 5G users, nA ∼ CN (0, σ2

AIA) is the

AWGN at different antennas of the DAU with a flat PSD equal to σ2
A.
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The signal vector y ∈ CNU received at the RRU can be defined as:

y = HCBs̃ + nC (6.2)

here, HC ∈ CNC×NC×NF is the block diagonal cable MIMO channel with frequency depen-

dent direct channels on the main diagonal ([HC ]i,i) and far-end crosstalk (FEXT) channels

on the off-diagonals ([HC ]i,j), B is the amplifier gain that controls the transmitted power

over the cable, and nC ∼ CN (0, σ2
CINC

) is the thermal noise within the cable with a flat

PSD equal to σ2
C . Note that the amplifier gain B is required to minimize the FEXT due

to capacitive and inductive coupling between different cable pairs.

6.2.1 Cable MIMO Channel

The cable channel capacity can be greatly enhanced by considering cable MIMO, which

is possible by employing LAN cables that have multiple twisted pairs [69]. Since, the

NC pairs within a single LAN cable can support a large number of antennas when the

NR sub-channels of each antenna can be properly mapped onto the cable. Therefore,

a key functional element of the proposed distributed antenna access architecture is the

mapping of RF signals over different sub-channels of the multi-pair cable. The overall

cable bandwidth required to transport data signals from NA antennas at DAU should be

at least NA × BW 5G, where BW 5G is the transmission bandwidth of each user that is

considered to be 20 MHz in this thesis. Hence the capacity of the cable must be

NC∑
n=1

BWC,n ≥ NA ×BW 5G (6.3)

here, the achievable transmission bandwidth for n-th cable pair is BC,n and NC is the

number of twisted pairs in the multi-pair LAN cable. Using (6.3), the maximum number

of antennas (Nmax
U ) for all 5G users connected to a single DAU can be expressed as:

Nmax
U =

NC∑
n=1

⌊
BWC,n

BW 5G

⌋
(6.4)
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The number of radio signals that could be mapped over the LAN cable depends on

multiple practical factors such as LAN cable type, length and total transmission bandwidth

over each twisted pair (i.e., BWC,n). The multi-pair cable characteristics vary with the

shielding type and the twist density (i.e. number of twist/cm). The most affordable and

commonly deployed LAN cable for data networks is unshielded twisted pair (UTP) CAT-5

cable. However, it results in low noise immunity at high frequencies. In contrast, the noise

and interference immunity is improved in high grade UTP CAT-6 cable with the help of

additional foil and also by increasing the twist density (which is > 2 twists/cm). Further

noise and interference immunity is achieved in high grade shielded CAT-7 cables through

extensive shielding over each twisted pair.

For a CAT cable with NC twisted pairs, the channel can be modeled as a block-diagonal

matrix to ensure orthogonality among multiple sub-channels

HC = diag
[
H1,H2, . . . ,HNF

]
(6.5)

where, the diagonal elements of the k-th sub-channel, i.e, Hk ∈ CNC×NC , k ∈ {1...NF},
represent the direct link between the RRU and the DAU, and the off-diagonal terms show

the crosstalk between different twisted cable pairs [66, 72].

Thus, the SINR on the kth sub-channel on nth twisted pair is defined as follows:

[SINRCable]
n,k =

|hn,kn |2P n,k∑n′ 6=n
n′ |hn′,kn |2P n′,k + σ2

C

, ∀n,∀k (6.6)

here, hn,kn is the direct channel gain on the kth sub-channel of the nth cable pair, hn
′,k
n

is the off-diagonal channel gain between the kth sub-channels of the nth and n′th cable

pairs, σ2
C is the noise power for cable sub-channels, and P n,k is the power allocated on the

kth sub-channel of the nth cable pair. The sum power of all the sub-channels for the pair

n are constrained by the total transmit power of PT (i.e.,
NF∑
k=1

P n,k ≤ PT ). In addition,

the maximum power of the transmitted signals over the cable are also constrained by the

maximum power spectral density (i.e., P n,k ≤ Pmax).
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6.2.2 Radio MIMO Channel

We consider an uplink MIMO system that has NU single antenna UEs transmiting signals

to the DAU, which is equipped with NA antennas, simultaneously. When the Non-line of

sight (NLoS) channel is assumed, the air channel model can be generalized by HA = GD1/2,

where D = diag
[
β1, β2, . . . , βNU

]
is the large-scale propagation matrix and G ∈ CNA×NU

is the fast fading matrix; here, βu [dB] = α + γ × 10 × log10(du) + ξu; du is the distance

between the user u and the DAU, α is a constant related to the antenna gain and carrier

frequency, γ is the path loss exponent, and ξu is the log-normal shadow fading coefficient

with 10× log10(ξu) ∈ N (0, σ2).

For computing the fast fading matrix G, we assume a correlation-based channel model

[76, 77] to evaluate the performance of the proposed DAU with linear antenna array,

where the fast fading channel vector of each user can be formed by the correlation matrix

multiplied by a standard complex Gaussian vector:

Gu = Ruvu, u = 1, 2, . . . , NU (6.7)

where, the steering matrix Ru ∈ CNA×NU contains Du steering vectors with different angles

of arrival (AoAs) for user u and vu ∼ CN (0, IDu).

When the linear antenna array is assumed at the DAU, the steering matrix Ru can be

computed as:

Ru =
1

Du

[
a(θu,1) a(θu,2) . . . a(θu,Du)

]
,∀u (6.8)

here, θu,i ∼ U(0, 2π) is the ith AoA of user u and the steering vector a(θu,i) ∈ CNA×1 is

given by:

a(θu,i) =
[
1 ej2πd/λ sin(θu,i) · · · ej2π(NA−1)d/λ sin(θu,i)

]T
(6.9)

here, d is the distance between the adjacent antennas and λ is the carrier wavelength.

This correlation-based channel model introduces the AoAs, which can be utilized to

distinguish the UE and improve the accuracy of channel estimation [78]. When the UE

is located at different orientations, the user channels can almost be separated by angle

information, thereby alleviating the pilot contamination.
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It is also helpful to analyze the inter-user or inter-cell interference and develop schedul-

ing algorithms with/without RRU cooperation to alleviate the interference. Note that

a minimum-mean-square-error (MMSE) receiver has been assumed at the RRU for in-

terference mitigation on the UL. In contrast, a concatenated linear pre-coding technique

employing either zero-forcing (ZF) or regularized ZF (RZF) can be used on the DL to

satisfy the minimum transmission rate constraints and also to nullify interference.

6.2.3 5G Transmission Rates

C-RAN front-haul implementation for 5G [79] defines several functional split options (e.g.

different signal processing capabilities at the BBU and RRU) to relax the latency and

bandwidth requirements within conventional CPRI implementation. We employ 5G new

radio (NR) specifications for computing the transmission rates in this chapter, where phys-

ical layer functionalities, such as, FFT/ IFFT, sub-carrier mapping/ de-mapping, signal

equalization, and MIMO processing, are implemented at the RRU. We assume that the

Error Vector Magnitude (EVM) of each user is estimated at the RRU during the initial-

ization procedure between UE and RRU as mentioned in [80]. The EVM of each IF signal

in Fig. 6.4 can be translated into the corresponding Signal-to-Noise Ratio (SNR) by using

the techniques discussed in [81] (i.e., [SNR5G]u,r, u = 1, . . . , NU , r = 1, . . . , NR); where,

sub-channel r in 5G corresponds to multiple OFDM symbols (NS) with varying band-

widths ∆fS per PRB (of duration T ). Since, we consider BW5G to be flat across ∆f , the

corresponding bit rates (R5G ∈ RNU×NR) are assumed to be quasi-constant within each

sub-channel. Therefore, the data rate (in bits per second) on each sub-channel (∆f) can

be computed as follows:

[R5G]u,r = ∆f × log2 (1 + [SNR5G]u,r) , u = 1, . . . , NU , r = 1, . . . , NR (6.10)
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6.3 The Joint MP-A2C Optimization Problem

In this section, we formulate the optimal MP-A2C problem, which jointly determines the

power and sub-channel allocation along the multi-pair (MP) cable when there are NU ≤ NA

active users transmitting to the DAU. Each user/antenna has NR radio sub-channels that

needs to be mapped over NC twisted pairs, each one with NF sub-channels.

The following optimization variables are required for the joint MP-A2C problem:

• xn,k
u,r is an assignment variable for one-to-one sub-channel mapping; it is equal to 1

if sub-channel r ∈ {1, . . . , NR} of user u ∈ {1, . . . , NU} is allocated to sub-channel

k ∈ {1, . . . , NF} of the twisted pair n ∈ {1, . . . , NC} and 0 otherwise.

• P n,k
u,r is for allocating power for rth sub-channel of uth user over kth sub-channel of

nth cable pair.

• γn,k
u,r is for computing SINR for rth sub-channel of uth user over kth sub-channel of

nth cable pair.

• In,k is for computing interference on kth sub-channel of nth cable pair.

• λu,r is the data rate seen by user u on sub-channel r.

The objective function of the joint MP-A2C problem is based on maximizing the AM

throughput of all users along the multi-pair cable. Given the cable channel matrix (i.e.,

HC with hn,kn as the direct channel gains and hn
′,k
n as the off-diagonal channel gains) and

the set of data rates achievable by each radio sub-channel (i.e., [R5G]u,r), the MP-A2C

optimization problem, denoted by [PMP−A2C ]2, can be defined as follows:

[PMP−A2C ] : maximize
{xn,k

u,r },{Pn,k
u,r },{γn,k

u,r },{In,k},{λu,r}

NU∑
u=1

NR∑
r=1

λu,r

2 Here the bracket signifies that this problem is dependent on the network realization/snapshot of 5G

users for determining [R5G]u,r.
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subject to:

xn,ku,r ∈ {0, 1}, ∀u,∀r,∀n,∀k (6.11a)

NU∑
u=1

NR∑
r=1

xn,ku,r ≤ 1, ∀n,∀k (6.11b)

NC∑
n=1

NF∑
k=1

xn,ku,r ≤ 1, ∀u,∀r (6.11c)

0 ≤ P n,k
u,r ≤ xn,ku,rPmax, ∀u,∀r,∀n,∀k (6.11d)

NU∑
u=1

NR∑
r=1

NF∑
k=1

P n,k
u,r ≤ PT , ∀n (6.11e)

0 ≤ γn,ku,r ≤ xn,ku,rγmax, ∀u,∀r,∀n,∀k (6.11f)

P n,k
u,r |hn,kn |2 ≥ γn,ku,r

(
In,k + σ2

C

)
, ∀u,∀r,∀n,∀k (6.11g)

In,k =

NC∑
n′=1,n′ 6=n

NU∑
u′=1

NR∑
r′=1

P n′,k
u′,r′|h

n′,k
n |2, ∀n,∀k (6.11h)

λu,r = ∆f × log2(1 +

NC∑
n=1

NF∑
k=1

γn,ku,r ), ∀u,∀r,∀n,∀k (6.11i)

λu,r ≥ [R5G]u,r, ∀u,∀r (6.11j)

where, u ∈ {1, . . . , NU}, r ∈ {1, . . . , NR}, n ∈ {1, . . . , NC}, and k ∈ {1, . . . , NF}. The

constraints (6.11a), (6.11b), and (6.11c) ensure that a single sub-channel over the cable

will not be assigned to multiple radio sub-channels and vice versa. The constraints (6.11d),

(6.11e), and (6.11f) ensure that the transmit power (as well as the SINR) over each cable

sub-channel is not higher than the specified margins.

Note that in [PMP−A2C ] the sub-channel assignment variables, i.e., xn,ku,r are binary and

the constraints for computing SINR are bilinear in nature. This leads to a non-convex

solution space, therefore, solving this problem exactly is computationally intractable. To

solve problem efficiently, we propose a convex upper bound problem by exploiting GP

along with some smart transformations.
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6.3.1 The Upper Bound Problem

We want to transform the joint MP-A2C problem into a tractable problem that can be

solved efficiently. This can be achieved by removing all binary variables from [PMP−A2C ].

Note that the binary variables xn,ku,r are required for achieving one-to-one mapping between

radio sub-channels and cable sub-channels. Therefore, after removing these binary vari-

ables, we need to add more constraints to ensure that two radio sub-channels do not to

get mapped to the same cable sub-channel and vice versa. Given these considerations, we

formulate the relaxed joint MP-A2C problem as follows:

[PUB
MP−A2C ] : maximize

{Pn,k
u,r },{In,k

u,r },{γn,k
u,r },{λu,r}

NU∑
u=1

NR∑
r=1

λu,r

subject to (6.11e), (6.11g), (6.11h),

(6.11i),(6.11j), and:

Pmin ≤ P n,k
u,r ≤ Pmax, ∀u,∀r,∀n,∀k (6.12a)

P n,k
u,r P

n,k
u′,r′ ≤ εp, ∀u,∀r,∀(u′, r′), (u′, r′) 6= (u, r),∀n,∀k (6.12b)

P n,k
u,r P

n′,k′

u,r ≤ εp, ∀u,∀r,∀n,∀k, ∀(n′, k′), (n′, k′) 6= (n, k) (6.12c)

NU∑
u=1

NR∑
r=1

P n,k
u,r ≤ Pmax, ∀n,∀k (6.12d)

εγ ≤ γn,ku,r ≤ γmax, ∀u,∀r,∀n,∀k (6.12e)

NU∑
u=1

NR∑
r=1

γn,ku,r ≤ γmax, ∀n,∀k (6.12f)

NC∑
n=1

NF∑
k=1

γn,ku,r ≤ γmax, ∀u,∀r (6.12g)

where, u ∈ {1, . . . , NU}, r ∈ {1, . . . , NR}, n ∈ {1, . . . , NC}, and k ∈ {1, . . . , NF}. The

constraints (6.12b) and (6.12c) ensure that each cable sub-channel is assigned to only one

user with a considerable amount of power. Similarly, the constraints (6.12f) and (6.12g)

ensure that the total SINR on each sub-channel does not exceed its maximum specified

value, hence, forcing a sub-channel to be mapped to only one user with a considerable
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amount of SINR. Note that Pmin, εp, and εγ are very small positive values that depend on

the numerical values of P n,k
u,r and γn,ku,r , respectively.

The upper bound problem ([PUB
MP−A2C ]) is non-linear and non-convex in nature that

requires extensive computational resources; mainly, due to the presence of bilinear con-

straints for computing the SINR. However, it has been shown in [82] that when SINR

is much larger than 0dB, the GP transformation [38] can be used to efficiently compute

the globally optimal power in many of the non-linear convex problems. The key obser-

vations that despite the apparent non-convexity, through logarithmic change of variable

the GP techniques can turn these constrained optimization of power control into convex

optimization.

Lemma 6.1: In the high-SINR region, the problem ([PUB
MP−A2C ]) can be solved by GP,

i.e., can be transformed into a convex optimization problem ([PUB′

MP−A2C ]) with efficient

algorithms to compute the globally optimal power vector.

Proof: Please see Appendix F.

6.3.2 Feasible Solutions

For a given realization, an optimal solution for [PUB′

MP−A2C ] can be used to find a feasible

solution for the original problem [PMP−A2C ] using the method described in Algorithm 4;

where, the feasible solution is computed from the optimal SINR values (i.e., γ∗
′n,k

u,r ) ob-

tained by solving [PUB′

MP−A2C ]. Note that each γ∗
′n,k

u,r needs to be transformed into the

corresponding γ∗n,k
u,r .
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Algorithm 4 A Feasible Solution for[PMP−A2C ] using {γ∗n,k
u,r (ω)}∀u,∀r,∀n,∀k

1: for each u ∈ {1, . . . , NU}, r ∈ {1, . . . , NR} do

2: maxN ← −1, maxK ← −1, maxSINR← 0

3: for each n ∈ {1, . . . , NC}, k ∈ {1, . . . , NF} do

4: if γ∗n,ku,r ≥ maxSINR then

5: if maxN ≥ 0 AND maxK ≥ 0 then P n,k
u,r ← 0

6: end if

7: maxN ← n , maxK ← k, maxSINR← γ∗n,ku,r

8: else P n,k
u,r ← 0

9: end if

10: end for

11: end for

12: Compute modified SINRs (i.e.,γ∗∗n,ku,r ,∀u ∈ {1, . . . , NU},∀r ∈ {1, . . . , NR})

6.4 Heuristic-based MP-A2C Scheduler

The proposed joint MP-A2C problem can be solved in the presence of a joint scheduler in

the RRU, which has extensive computational resources. However, in practice the computa-

tional resources are limited thereby low complexity heuristic-based schedulers are preferred

for real-time mapping from air to cable and vice versa. We propose simple, but efficient

heuristics for solving the joint MP-A2C problem by dividing it into two smaller problems,

namely Power Allocation Problem and Sub-channel Mapping Problem, which can be solved

one after the other as follows:

• The Power Allocation Problem computes the optimal power on each individual

sub-channel given the inter-pair crosstalk due to FEXT. More specifically, it deter-

mines the amount of power required on each sub-channel that will maximize the

overall sum-rate throughput on the given LAN Cable. Once the power has been op-

timized and thereby fixed on each sub-channel, we can determine one-to-one mapping

between the radio sub-channels and cable sub-channels in an efficient manner.

124



• The Sub-channel Mapping Problem allocates appropriate sub-channel to find

which radio sub-channels will be assigned to which sub-channel, i.e., it determines

the set {xn,ku,r}∀u,∀r,∀n,∀k, where xn,ku,r = 1 when rth sub-channel of uth user has been

allocated kth sub-channel of nth cable pair and is 0 otherwise.

6.4.1 Power Allocation Problem

Power allocation over sub-channels of each twisted pair bundled in a LAN cable directly

affects the crosstalk (FEXT) among the twisted pairs. Therefore, the power on each

sub-channel of the LAN cable must be selected in a way that the overall data rates, cor-

responding to the actual SINR with FEXT considerations, are maximized. This could

be achieved by solving a power allocation problem, denoted by PC , with the following

optimization variables:

• P n,k is the power allocation on kth sub-channel of nth cable pair.

• γn,k is the actual SINR with FEXT on kth sub-channel of nth cable pair.

• Rn,k is the maximum data rate (in bits per second) that can be achieved on kth

sub-channel of nth cable pair.

The objective function of the AM-based power allocation problem is based on maximizing

the AM throughput of all sub-channels across the multi-pair cable. Given the cable channel

matrix (i.e., HC with hn,kn as the direct channel gains and hn
′,k
n as the off-diagonal channel

gains), the AM-based power allocation problem, denoted by PAM
C , can be defined as

follows:
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PAM
C : maximize

{Pn,k},{In,k},{γn,k},{λn,k}

NC∑
n=1

NF∑
k=1

(λn,k)

subject to:

Pmin ≤ P n,k ≤ Pmax, ∀n,∀k (6.13a)

NF∑
k=1

P n,k ≤ P T , ∀n (6.13b)

γmin ≤ γn,k ≤ γmax, ∀n,∀k (6.13c)

P n,k|hn,kn |2 ≥ γn,k
(
In,k + σ2

C

)
,∀n,∀k (6.13d)

In,k =

NC∑
n′=1,n′ 6=n

P n′,k|hn′,kn |2, ∀n,∀k (6.13e)

λn,k = ∆f × log2(1 + γn,k), ∀n,∀k (6.13f)

where, k ∈ {1, ..., NF} and n ∈ {1, .., NC}.

Lemma 6.2: In the high-SINR region, the problem PAM
C can be solved by GP, i.e., can

be transformed into a convex optimization with efficient algorithms to compute the globally

optimal power vector.

Proof: Please see Appendix G.

The objective function of the GM-based power allocation problem is based on maxi-

mizing the GM throughput of all sub-channels across the multi-pair cable. Given the cable

channel matrix (i.e., HC with hn,kn as the direct channel gains and hn
′,k
n as the off-diagonal

channel gains), the GM-based power allocation problem, PGM
C , can be defined as follows:

PGM
C : maximize

{Pn,k},{In,k},{γn,k},{λn,k}

NC∑
n=1

NF∑
k=1

log (λn,k)

subject to: (6.13a-f)

Lemma 6.3: In the high-SINR region, the problem PGM
C can be solved by GP, i.e., can

be transformed into a convex optimization with efficient algorithms to compute the globally

optimal power vector.

Proof: Please see Appendix H.
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Let the optimal power matrix be denoted by P ∗C ∈ RNC×NF and the corresponding

optimal rate matrix be denoted by R∗C ∈ RNC×NF , which can be obtained by solving the

above mentioned power allocation problems. Once the optimal power P ∗C is known, the

amplifier gain matrix B is simple a block diagonal matrix; B = diag(B1, . . . ,BNF
) and it

can be computed beforehand to allocate optimal transmit power to the signals x before

transmitting them over the cable. The NC × NC amplifier gain matrix Bk for the k-th

sub-channel is defined as:

Bk = diag
[√

[P ∗C ]21,k, . . . ,
√

[P ∗C ]2NC ,k

]
(6.15)

Thus, the SINRs of the received signals, i.e., y at the RRU will correspond to the maximum

rates that can be obtained over the cable on a particular sub-channel. Note that the MP-

A2C scheduler in the RRU is also responsible for allocating sub-channels to each user as

discussed in the next sub-section.

6.4.2 Sub-channel Mapping Problem

In this section, we define a sub-channel mapping problem to determine one-to-one mapping

between the radio sub-channels and cable sub-channels, when the power (P ∗C ∈ RNC×NF )

and the corresponding rate (R∗C ∈ RNC×NF ) has been allocated to each sub-channel of the

LAN cable after solving either PAM
C or PGM

C . More specifically, we need to determine the

set {xn,k
u,r}u∈{1,...,NU},r∈{1,...,NR},n∈{1,...,NC},k∈{1,...,NF }, where xn,ku,r = 1 when rth sub-channel of

uth user has been allocated kth sub-channel of nth cable pair and is 0 otherwise.

We assume that the mapping of the received radio signals at the DAU is based on a

utility function that considers the transmission rates of the users corresponding to the LAN

cable, i.e., denoted by Rateu,r, ∀u,∀r. If the sub-channel mapping is based on maximizing

the arithmetic mean rate (AM) of the sub-channels allocated to each user on the cable, we

define our utility function as follows:
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U({Rateu,r}u∈{1,...,NU},r∈{1,...,NR}) :=

NU∑
u=1

NR∑
r=1

(Rateu,r), (6.16)

For maximizing the geometric mean rate (GM), we define the utility function as follows:

U({Rateu,r}u∈{1,...,NU},r∈{1,...,NR}) :=

NU∑
u=1

log(

NR∑
r=1

Rateu,r), (6.17)

We ensure that two radio sub-channels do not get mapped over the same cable sub-

channel and vice versa. In addition, we consider a one-to-one mapping of only those radio

and cable sub-channels that have strictly positive bit rates, i.e., [R5G]u,r > 0,∀u,∀r and

[R∗C]n,k > 0,∀n,∀k, respectively.

According to the above considerations, the optimization problem for one-to-one map-

ping between radio and cable sub-channels, denoted by [PUS]3, is defined as follows:

[PUS] : maximize
{xn,k

u,r },{Rateu,r}
U({Rateu,r}u∈{1,...,NU},r∈{1,...,NR})

subject to:

xn,ku,r ∈ {0, 1}, ∀u,∀r,∀n,∀k (6.18a)

NU∑
u=1

NR∑
r=1

xn,ku,r ≤ 1, ∀n,∀k (6.18b)

NC∑
n=1

NF∑
k=1

xn,ku,r ≤ 1, ∀u,∀r (6.18c)

Rateu,r =

NC∑
n=1

NF∑
k=1

xn,ku,r [R
∗
C]n,k, ∀u,∀r (6.18d)

Rateu,r ≥ [R5G]u,r, ∀u,∀r (6.18e)

3 Here the bracket signifies that this problem is dependent on the network realization/snapshot of 5G

users for determining [R5G]u,r.
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Note that [PUS] becomes a large scale matching problem when ∆f is relatively small.

Therefore, we need to transform this problem into a weighted bipartite matching problem

that can be solved efficiently using existing algorithms, such as, the Hungarian algorithm

[83]. This transformation is possible if the cost matrix for the weighted bipartite matching

problem is computed using Algorithm 5; where, [W ]u are the weights assigned to each

user, i.e., [W ]u = 1 and [W ]u = 1
NR∑
r=1

[R5G]u,r

for [PAM
US ] and [PGM

US ], respectively. When the

cost associated with each assignment is known, the mappings can be obtained by solving

the following pure assignment problem:

[P
′

US] : maximize
{xn,k

u,r }

NU∑
u=1

NR∑
r=1

NC∑
n=1

NF∑
k=1

xn,ku,r [C]n,ku,r

subject to:

xn,ku,r ∈ {0, 1},∀u,∀r,∀n,∀k (6.19a)

NU∑
u=1

NR∑
r=1

xn,ku,r = 1, ∀n,∀k (6.19b)

NC∑
n=1

NF∑
k=1

xn,ku,r = 1, ∀u,∀r (6.19c)

Pure assignment problems can be solved efficiently using existing algorithms, such as, the

Hungarian method with complexity O(N3), where N = NU×NR. A step by step algorithm

and its complexity has been derived in [83], whereas a latest heuristic for the Hungarian

method with time complexity O(N2) has been proposed in [84].

Algorithm 5 Algorithm for Computing Cost Matrix

Input: [W ]u, [R5G]u,r, [R
∗
C]n,k, NU , NR, NC , NF

1: for each u ∈ {1...NU}, r ∈ {1...NR}, n ∈ {1..NC}, k ∈ {1..NF} do

2: if [R∗C]n,k ≥ [R5G]u,r then [C]n,ku,r = [W ]u
(
[R∗C]n,k − [R5G]u,r

)
3: else [C]n,ku,r = −∞
4: end if

5: end for

Output: C ∈ RNU×NR×NC×NF
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Table 6.1: 5G NR Physical Layer Parameters

Sub-carrier spacing parameter (µ) 2 (indoor propagation)

Sub-carrier spacing (∆fSC = 2µ × 15kHz) 60 kHz

Number of sub-carriers per PRB (NSC) 12

PRB bandwidth (∆fPRB = NSC × 2µ × 15kHz) 720 kHz

OFDM symbols per PRB (NS) 12× 4× 14

PRB Duration (T ) 1 ms

Number of radio sub-channels per antenna/user (NR) 4

Sub-channel bandwidth (∆f = 6×∆fPRB) 4.32MHz

5G Bandwidth (BW5G = NR ×∆f) 17.28MHz < 20MHz

Path Loss Constant (α) 140.7

Path Loss Exponent (γ) 3.67

Shadow Fading Coefficient (ξu ∈ N (0, σ2)) σ = 8dB

6.5 Performance Evaluation

In this section, we analyze the performance of the Heuristic-based MP-A2C scheduler

and examine its efficiency in supporting a single DAU with multiple antennas via a LAN

cable, when the DAU is placed in the middle of a chamber (of radius 100m). The DAU is

connected with the RRU via a multi-pair LAN cable (i.e., CAT-5) with varying lengths (i.e.,

from 100m to 200m). We consider the actual channel measurements, i.e., Insertion Loss

(IL) and Far-end Crosstalk (FEXT) for multi-pair CAT-5 cable as discussed in [66]. The

radio channel under consideration is modeled by 5G NR physical layer and transmission

parameters for indoor propagation environment, which are given in Table 6.1. The radio

channel is assumed to be flat across each sub-channel bandwidth (i.e., ∆f).

Note that we consider a cable bandwidth of 500MHz, since, the longer LAN cables, i.e.

larger than 100m, offer almost zero spectral efficiency after this frequency band [66].
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Table 6.2: LAN Cable Physical Layer Parameters

Multi-pair Cable CAT-5

Number of twisted pairs (NC) 4

Cable lengths 100m, 125m, 150m, 175m, 200m

Cable bandwidth (BWC) 500MHz

Sub-channel bandwidth (∆f) 4.32MHz

Sum Power per Line (P T ) 4dBm

Maximum Transmit PSD mask (Pmax) −80dBm/Hz

Cable Noise PSD (σC) −140dBm/Hz

6.5.1 Power Allocation over a LAN Cable

The resources on the cable channel can be evaluated in terms of different parameters, in-

cluding the maximum achievable bandwidth BWC over each twisted pair, the sum through-

put over a single multi-pair cable, and the maximum number of users that can be supported.

For multi-pair cable channels, the extended bandwidth beyond 1 GHz is foreseen in future

broadband access networks [85], however, it is limited to 500MHz in this chapter, where

we consider a CAT-5 cable with NC = 4 twisted pairs and BWC = 500MHz.

Table 6.2 provides the simulation parameters derived from the multi-pair multi-length

CAT-5 cable measurements. Since, the multi-pair cable channel is considered to be flat

within the interval ∆f , the optimal power (P ∗C ∈ RNC×NF ) and the corresponding rates

(R∗C ∈ RNC×NF ), obtained by solving either PAM
C or PGM

C , are considered to be quasi

constant within each sub-channel (of duration ∆f). The results of the power allocation

problems, i.e., PAM
C and PGM

C , for cable lengths 100m, 125m, 150m, 175m, and 200m,

have been shown in Fig. 6.5, 6.6, 6.7, 6.8, and 6.9, respectively. Particularly, the parts

(a) and (b) show the transmit signal power (in dBm per ∆f) for all twisted pairs (i.e.,

n = {1, . . . , NC}) with PAM
C and PGM

C , respectively. Clearly, the transmit signal power

requirements over the LAN cable are significantly low for frequencies below 50MHz, due

to fact that the far-end crosstalk (FEXT) is minimum over the lower frequency band.
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Figure 6.5: Power allocation problem for 100m long CAT-5 cable.
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Figure 6.6: Power allocation problem for 125m long CAT-5 cable.
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Figure 6.7: Power allocation problem for 150m long CAT-5 cable.
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Figure 6.8: Power allocation problem for 175m long CAT-5 cable.
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Figure 6.9: Power allocation problem for 200m long CAT-5 cable.
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The parts (c) and (d) show the SINR (in dB) for all twisted pairs (i.e., n = {1, . . . , NC})
with PAM

C and PGM
C , respectively. Note that we used a high SINR assumption of 10dB

for solving these power allocation problems, hence, we see results for only those cable

frequencies/sub-channels that can satisfy the minimum SINR assumption. The parts (e)

and (f) show the spectral efficiency (in bits per sec per ∆f) for all twisted pairs (i.e.,

n = {1, . . . , NC}) with PAM
C and PGM

C , respectively. It can be noted that the spectral

efficiency of 8bps (corresponding to 256-QAM) can be guaranteed for a 100m long CAT-

5 cable over the frequencies upto 150MHz, while this band is reduced to approximately

75MHz for a 200m long CAT-5 cable. Thus, the sum throughput and total number of sub

channels that can be allocated over the LAN cable, are observed to be inversely proportional

to the cable length.

6.5.2 Sub-channel Mapping over a LAN Cable

We evaluate the performance of the heuristic-based MP-A2C scheduler by generating a set

of different radio network realizations denoted by ΩNU
(with |ΩNU

| = 100). Each realization

(ω ∈ ΩNU
) corresponds to a set of NU users (with NU ≤ NA) that are distributed uniformly

within the 100m radius chamber. The sub-channel mappings over the CAT-5 cable are

obtained by maximizing the AM or the GM of user throughput allocations over the cable,

i.e., by solving PAM
US (ω) and PGM

US (ω), respectively, via the modified problem P
′

US(ω).

The corresponding AM and GM throughputs for each realization are defined as follows:

AM(ω) :=

(
NU∑
u=1

NR∑
r=1

Rateu,r)

NU

, ω ∈ ΩNU
(6.20)

GM(ω) := NU

√√√√NU∏
u=1

(

NR∑
r=1

Rateu,r), ω ∈ ΩNU
(6.21)

The numerical results are averaged after computing the AM as well as GM through-

put over the CAT-5 cable for all realizations ω ∈ ΩNU
, as shown in Fig. 6.10 and 6.11,

respectively.
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Figure 6.10: Average AM throughput over the CAT-5 cable: solving PAM
C followed by

P
′AM
US (ω),∀ω ∈ ΩNU

vs solving PGM
C followed by P

′GM
US (ω),∀ω ∈ ΩNU

.

The AM and GM throughput of these AM and GM based MP-A2C schedulers signif-

icantly degrades when the number of users exceeds a certain limit. This limit appears

to be equal to 50, 35, 25, 20, and 15 for the cable lengths 100m, 125m, 150m, 175m, and

200m, respectively. Note that the MP-A2C schedulers can support more users beyond this

limit, but this will result in some unallocated sub-channels, which are shown in Fig. 6.12.

This is due to the inability of the cable channel to satisfy the 5G rate constraints for all

users. Thus, the number of un-allocated sub-channels increases significantly when the num-

ber of users exceeds a certain limit (based on the network realization ω). Consequently,

the user throughputs decrease significantly after a limit; mainly, the GM throughput,

since, it offers proportional fairness by allocating “good” sub-channels to the antennas

with “poor” user rates, leaving slightly more un-scheduled sub-channels over the cable as

shown in Fig. 6.12. Fig. 6.10 shows the average AM throughput over the CAT-5 cable

when power is allocated by solving PAM
C and the sub-channel mappings are obtained by

solving P
′AM
US (ω),∀ω ∈ ΩNU

vs when the power is allocated by solving PGM
C and the sub-
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Figure 6.11: Average GM throughput over the CAT-5 cable when power is allocated by

solving PAM
C and the sub-channel mappings are obtained by solving P

′AM
US (ω), ∀ω ∈ ΩNU

vs when the power is allocated by solving PGM
C and the sub-channel mappings are obtained

by solving P
′GM
US (ω),∀ω ∈ ΩNU

.

channel mappings are obtained by solving P
′GM
US (ω), ∀ω ∈ ΩNU

. Clearly, when the power

is allocated through PAM
C , the AM throughput is slightly better than the case when it is

allocated through PGM
C .

Fig. 6.11 shows the average GM throughput over the CAT-5 cable when power is allo-

cated by solving PAM
C and the sub-channel mappings are obtained by solving P

′AM
US (ω), ∀ω ∈

ΩNU
vs when the power is allocated by solving PGM

C and the sub-channel mappings are

obtained by solving P
′GM
US (ω),∀ω ∈ ΩNU

. Clearly, when the power is allocated through

PGM
C , the GM throughput is significantly better than the case when it is allocated through

PAM
C .
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Figure 6.12: Average number of un-scheduled sub-channels over the CAT-5 cable.

Fig. 6.12 shows the average number of un-allocated sub-channels over the CAT-5 cable

when power is allocated by solving PAM
C and the sub-channel mappings are obtained by

solving P
′AM
US (ω),∀ω ∈ ΩNU

vs when the power is allocated by solving PGM
C and the

sub-channel mappings are obtained by solving P
′GM
US (ω),∀ω ∈ ΩNU

. Clearly, when the

power is allocated through PGM
C , the un-allocated sub-channels are slightly more than the

case when it is allocated through PAM
C . Since, the GM-based MP-A2C scheduler offers

proportional fairness by allocating “good” sub-channels to the antennas with “poor” user

rates, leaving slightly more un-scheduled sub-channels over the cable.

Since, some of the cable resources are still unused after allocation of the radio sub-

channels, it gives an opportunity to use these leftover cable resources for duplicate trans-

missions of the antenna signals with bad channel quality to achieve diversity gain at the

RRU.
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6.6 Conclusions

This chapter introduced a distributed antenna unit (DAU) architecture for 5G indoor

service provisioning, which has been proposed recently to provide a cost-effective alternative

to the expensive fiber-optic based indoor solutions. This indoor architecture allows the

antenna units to be distributed over a wide geographical area by using multi-pair LAN

cables for transporting 5G (LTE or NR) signals. However, the use of existing indoor cables

has been limited because of the attenuation and the crosstalk among the twisted pairs of

each cable.

Based on the proposed DAU architecture, a novel multi-pair air-to-cable (MP-A2C)

scheduler has been proposed in this chapter for joint allocation of power and sub-channels

over a LAN cable. Since, the joint MP-A2C problem was a mixed-integer non-linear

programming (MINLP) problem, with binary constraints, we used binary relaxations and

Geometric Programming (GP) techniques to formulate a tractable upper bound problem.

Through extensive numerical simulations, we show that the proposed framework can be

used as a benchmark for evaluating the performance of existing MP-A2C schedulers.

Further, the joint MP-A2C problem was decoupled into two sub-problems, namely,

power allocation problem and sub-channel mapping problem, which can be solved one

after the other in real-time. The simulation results demonstrated that the performance of

the proposed MP-A2C scheduler under various scheduling policies, such as, AM or GM,

are quasi-optimal.
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Chapter 7

Summary and Future Work

7.1 Summary

The work presented in this thesis has been mainly based on optimizing different network

processes, such as, user scheduling, user association, and resource allocation, in a multi-tier

network to find optimal uplink-centric as well as downlink centric network processes.

• We proposed globally optimal user scheduling solutions in Chapter 3, where our

framework was based on optimizing the instantaneous network throughput per frame,

while taking precise power and physical layer modulation and coding scheme (MCS)

into consideration for joint optimization. To achieve the goal, we had to develop

large-scale efficient optimization problems that can provide benchmark solutions for

the considered framework.

• In the later part of Chapter 3, we demonstrated the trade-offs between inaccurate

interference estimation and the instantaneous network throughput for a local user

scheduling process within a BS. We found a huge gap between the performance of

the local US process and the jointly optimal user scheduling process, which signified

the importance of considering exact interference in the design of a local scheduler

especially on the uplink.
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• We proposed heuristic based joint user association and user scheduling solutions in

Chapter 4 for maximizing instantaneous network throughput per frame in a C-RAN

setting.

• We investigated an optimal resource allocation process in flexible FDD based multi-

cell multi-tier networks in Chapter 5, for analyzing the performance of existing Static

FDD or TDD based resource allocation schemes. Studying an optimal resource al-

location process was necessary to benchmark the performance of existing schemes,

but not trivial due to the high complexity of solving the joint problem; mainly be-

cause the formulated joint problem considered all types of interferences, including (i)

inter-cell inter-link interference and (ii) intra-cell inter-link interference.

• In Chapter 6, we proposed a novel multi-pair air-to-cable (MP-A2C) scheduler for

a distributed antenna unit (DAU) architecture, which can be used as a low cost

alternative for front-hauling in C-RAN architectures. For obtaining solutions in real-

time, the joint MP-A2C problem was decoupled into two sub-problems, which can

be solved one after the other in real-time.

7.2 Future Research Direction

The current trends in cellular networks have brought a paradigm shift in the way the

network processes have been run in the past. For example, the network operators now

want to deliver more with less, e.g., more network throughput and better QoS with less

energy for any of the underlying RAT. This is achievable if we can take full advantage

of Machine Learning (ML) based solutions for providing wireless access, such as the ones

discussed in [86–89].

We plan to take the advantage of the existing ML algorithms to come up with very

fast distributed solutions that can minimize intra as well as inter cell interference in multi-

tier multi-cell networks. Particularly, we want to develop efficient ML-based algorithms

for enabling flexible spectrum allocation in each macro cell for both uplink and downlink

based on instantaneous network load.
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Further, the reinforcement-based ML algorithm can be used for estimating interference

and thereby fine tuning the rate adaptation process, which is essential for selecting an

appropriate modulation and coding scheme (MCS) for the underlying 4G LTE or 5G NR

links. We strongly believe that an interference estimation process is at the heart of all

network processes, therefore, they can be decoupled from each other if an appropriate

interference estimation process is in place.

The autonomous ML-based UL and DL interference models, such as the one given

in [89], will facilitate the working of other network processes. Note that it is necessary

for all of them to optimize their long-term or instantaneous objectives without worrying

much about the underlying dependence on the interference estimation process. An example

would be the link selection process (i.e., 4G LTE or 5G NR), which depends on the amount

and type of user traffic (including uplink and downlink) that has been sent on each link in

the past, can benefit from the interference estimates for selecting the appropriate links for

each user. Perhaps it would be able to assign the links with lesser interference to the users

with poor channel gains given that an efficient ML-based interference estimation process

is in place.
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Appendix A

Proof of Lemma 3.1

A.1 Proof for Upper bound

In the following, we show that the set of feasible solutions to PUL
Global(ω) is a subset of the

set of feasible solutions for PUB−UL
Global (ω).

Let FUB(ω) denote a feasible solution for PUL
Global(ω). If FUB(ω) is a feasible solution

for PUL
Global(ω) then it should satisfy all constraints defined by PUL

Global(ω). We show that

FUB(ω) will be able to satisfy all of them as follows:

1. After merging the constraints (3.9e) into (3.9f), the constraints for computing SINR

in PUB−UL
Global (ω) impose that FUB(ω) will satisfy

P c,t
u,kGu,k(ω) ≥ γc,tu,k

(
N0 +

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

P c,t
u′,k′Gu′,k(ω)

)
, ∀u,∀k,∀c,∀t (A.1)

Therefore, by computing xc,t,mu,k = 1 when βm ≤ γc,tu,k < βm+1, 1 ≤ m < |M |, FUB(ω)

will be able to satisfy these constraints from PUL
Global(ω):

P c,t
u,kGu,k(ω) ≥ xc,t,mu,k βm(N0 +

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

P c,t
u′,k′Gu′,k(ω)), ∀u,∀k,∀c,∀t,∀m (A.2)
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2. All other constraints except for the ones for computing rate, which are a part of the

objective function, will be satisfied by FUB(ω) as these constraints are a subset of

the corresponding constraints in PUB−UL
Global (ω).

Since, FUB(ω) satisfy all constraints for PUB−UL
Global (ω), there exists an onto mapping

between the feasible solutions of PUB−UL
Global (ω) and PUL

Global(ω); different feasible solutions

for PUB−UL
Global (ω) can be mapped on to the same feasible solution for PUL

Global(ω) and the

reverse is not true. However, the objective value for the corresponding feasible solution for

the original problem will be equal even though the objective values for the upper bound

solutions (i.e., FUB(ω)) will vary depending on the values of γc,tu,k. Since, g(γ) is always

greater than f(γ), the objective value for any feasible solution of the upper bound problem

(i.e., FUB(ω)) will always return an objective value that is greater than or equal to the

objective value for the original problem.

Next we transform the upper bound problem into a convex problem to find a globally

optimal solution, which will serve as an upper bound solution for the original problem.

Nonetheless, the global optimal solution for PUL
Global(ω) lies in-between this feasible solution

and the optimal solution obtained by solving PUB−UL
Global (ω).

A.2 Convexity of the Upper bound Problem

A Monomial Function

Let x1, ..., xn denote n real positive variables, and x = (x1, ..., xn) a vector with components

xi. A real valued function f of x, with the form f(x) = cxa11 x
a2
2 . . . xann , where c > 0 and

ai ∈ R, is called a Monomial function.

A Posynomial Function

A sum of one or more monomials, i.e., a function of the form f(x) =
∑k=K

k=1 ckx
a1k
1 xa2k2 . . . xank

n ,

where ck > 0, is called a posynomial function with K terms.
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Geometric Programming Transformation

Geometric programs are not in general convex optimization problems, but they can be

transformed to convex problems by a change of variables and a transformation of the ob-

jective and constraint functions. In particular, after performing the change of variables

and taking the log of the objective and constraint functions, the posynomial functions, are

transformed into log-sum-exp functions, which are convex, and the monomial functions

become affine. Hence, this transformation transforms every GP into an equivalent con-

vex program. We show that the upper bound problem is a GP problem, by writing all

constraints in the form of monomial and posynomial functions as follows:

PUB−UL
Global (ω) : maximize

{P c,t
u,k},{γ

c,t
u,k}

∑
u∈UUL(ω)

log
(∑
c∈C

∑
t∈T

(γc,tu,k)
α)

subject to:

εp(P
c,t
u,k)
−1 ≤ 1, ∀u,∀k,∀c,∀t (A.3a)

P c,t
u,k

PUE
≤ 1, ∀u,∀k,∀c,∀t (A.3b)∑

c∈C

P c,t
u,k

PUE
≤ 1, ∀u,∀k,∀t (A.3c)

P c,t
u,kP

c,t
u′,k

εp
≤ 1, ∀u,∀u′, u′ 6= u,∀k,∀c,∀t (A.3d)

εγ(γ
c,t
u,k)
−1 ≤ 1, ∀u,∀k,∀c,∀t (A.3e)

γc,tu,k
βmax

≤ 1, ∀u,∀k,∀c,∀t (A.3f)

γc,tu,k
N0

(P c,t
u,kGu,k(ω))

+γc,tu,k

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

(
P c,t
u′,k′Gu′,k(ω)

P c,t
u,kGu,k(ω)

)
≤ 1,∀u,∀k,∀c,∀t (A.3g)

where, α = log10(e), u ∈ UUL(ω), k ∈ K , c ∈ C , t ∈ T .
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Note that the objective function is a concave function because: (1) (γc,tu,k)
α

on R++ is a

concave function when 0 ≤ α ≤ 1 (with α = log10(e)), (2) the sum of two concave functions

is itself concave, and (3) every concave function that is non-negative on its domain is log-

concave. In addition, the left hand side of the constraints (A.3a-f) are monomial functions,

whereas the left hand side of (A.3g) is a posynomial function when we rearrange and

substitute equation (3.9f) into (3.9e).

By making a logarithmic change of the variables and a logarithmic transformation of

the objective and the constraints, we can convert the upper bound problem into a a GP

problem. For consistency, we use the same notation to represent the transformed variables

but with a prime symbol, i.e., P
′c,t
u,k = log(P c,t

u,k) and γ
′c,t
u,k = log(γc,t

u,k). For simplicity of

notation, we use LSE({x}) to denote the logarithm of the sum of exponentials over the

set {x}.

Using these transformations, we re-formulate the upper bound problem as a GP problem

as follows:

PUB−UL′

Global (ω) : maximize
{P
′c,t
u,k },{γ

′c,t
u,k }

∑
u∈UUL(ω)

LSE
(
{αγ

′c,t
u,k}k∈K ,c∈C ,t∈T ,

)
subject to:

log(εp) ≤ P
′c,t
u,k ≤ zu,k(ω) log(PUE) + (1− zu,k(ω)) log(εp),∀u,∀k,∀c,∀t (A.4a)

LSE({P
′c,t
u,k }c∈C

) ≤ log(PUE), ∀u,∀k, ∀t (A.4b)

P
′c,t
u,k + P

′c,t
u′,k ≤ log(εp),∀u,∀u′, u 6= u′,∀k,∀c,∀t (A.4c)

log(εγ) ≤ γ
′c,t
u,k ≤ log(βmax),∀u,∀k,∀c, ∀t (A.4d)

log

(
exp

(
γ
′c,t
u,k − P

′c,t
u,k + log(N0)− log(Gu,k(ω))

)
+ (A.4e)

k′ 6=k∑
k′∈K

u′ 6=u∑
u′∈U(ω)

exp
(
γ
′c,t
u,k + P

′c,t
u′,k′ − P

′c,t
u,k + log(Gu′,k(ω))− log(Gu,k(ω))

))
≤ 0,∀u,∀k,∀c,∀t

(A.4f)

where, α = log10(e), u ∈ UUL(ω), k ∈ K , c ∈ C , t ∈ T .
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Appendix B

Global User Scheduling Problem for

Downlink

B.1 The Global User Scheduling Problem

Given a set of macro cells K , a set of sub-channels C , a set of sub-frames T , a network

realization ω, a set of user associations ({zk,d(ω)}d∈UDL(ω),k∈K ), and a set of pre-defined

SINR thresholds (i.e., {βm}m∈M ), we define the following optimization variables for the

global US problem:

• xc,t,m
k,d is a binary variable for assigning discrete rates; it is equal to 1 if user d is

allocated MCS m by the MBS k on PRB (c, t) and 0 otherwise.

• P c,t
k,d is for allocating DL power on PRB (c, t).

• Ic,tk,d is for computing DL interference on PRB (c, t) at user d for MBS k.

• λk,d is the total coding rate seen by user d from MBS k
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The system-wide global US problem for DL is defined as follows:

PDL
Global(ω) : maximize

{xc,t,mk,d },{P c,t
k,d},{I

c,t
k,d},{λk,d}

∑
d∈UDL(ω)

log (
∑
k∈K

λk,d)

subject to:

xc,t,mk,d ∈ {0, 1}, ∀d,∀k,∀c,∀t,∀m (B.1a)

P c,t
k,d ≥ 0, ∀d,∀k, ∀c (B.1b)

xc,t,mk,d ≤ zk,d(ω), ∀d,∀k,∀c,∀t,∀t,∀m (B.1c)∑
d∈UDL(ω)

∑
m∈M

xc,t,mk,d ≤ 1, ∀k, ∀c,∀t (B.1d)

∑
d∈UDL(ω)

∑
c∈C

P c,t
k,d ≤ PMBS, ∀k,∀t (B.1e)

P c,t
k,d ≤ PMBS

∑
m∈M

xc,t,mk,d , ∀d,∀k, ∀c,∀t (B.1f)

P c,t
k,dGk,d(ω) ≥ βm(N0 + Ic,tk,d)− (1− xc,t,mk,d )B, ∀d,∀k,∀c,∀t,∀m (B.1g)

Ic,tk,d =

k′ 6=k∑
k′∈K

d′ 6=d∑
d′∈UDL(ω)

P c,t
k′,d′Gk′,d(ω), ∀d,∀k, ∀c,∀t (B.1h)

λk,d =
∑
c∈C

∑
t∈T

∑
m∈M

xc,t,mk,d f(βm), ∀d,∀k (B.1i)

where, d ∈ UDL(ω), k ∈ K , c ∈ C , t ∈ T ,m ∈M , and B is a very large number.

The constraint (B.1d) ensures that only one MCS is assigned to a user on each PRB. It

also ensures that only one user is scheduled on a PRB in each macro cell. The constraints

(B.1e) and (B.1f) are for assigning power on each PRB. The constraints (B.1h) and (B.1i)

are for computing DL interference and coding rates, respectively. PDL
Global is also a large-

scale linear problem with binary and continuous variables and solving it is challenging even

for very small number of users in each macro cell. To solve PDL
Global, we need to transform

it into a relaxed problem that can be solved efficiently and that can provide a tight upper

bound to the original problem. In the next section, we transform the system-wide global

US problem into a tractable upper bound problem that can be solved efficiently.
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B.2 The Upper Bound Problem

Using the same approach that was discussed in Section 3.4.1, we formulate the upper bound

problem for the DL as follows:

PUB−DL
Global (ω) : maximize

{P c,t
k,d},{I

c,t
k,d},{γ

c,t
k,d}

∑
d∈UDL(ω)

log (
∑
k∈K

λd,k)

subject to:

εp ≤ P c,t
k,d ≤ zk,d(ω)PMBS + (1− zk,d(ω))εp, ∀d,∀k,∀c,∀t (B.2a)∑

d∈UDL(ω)

∑
c∈C

P c,t
k,d ≤ PMBS, ∀k,∀t (B.2b)

P c,t
k,dP

c,t
k,d′ ≤ εp, ∀d,∀d′, d′ 6= d,∀k,∀c,∀t (B.2c)

εγ ≤ γc,tk,d ≤ βmax, ∀d,∀k,∀c,∀t (B.2d)

P c,t
k,dGk,d(ω) ≥ γc,tk,d

(
N0 + Ic,tk,d

)
, ∀d,∀k,∀c,∀t (B.2e)

Ic,tk,d =

k′ 6=k∑
k′∈K

d′ 6=d∑
d′∈UDL(ω)

P c,t
k′,d′Gk′,d(ω), ∀d,∀k,∀c,∀t (B.2f)

λk,d =
∑
c∈C

∑
t∈T

g(γc,tk,d), ∀d,∀k,∀t (B.2g)

where, d ∈ UDL(ω), k ∈ K , c ∈ C , t ∈ T .

The upper bound problem PUB−DL
Global is a non-linear non-convex continuous optimization

problem that requires extensive computational resources; mainly, due to the presence of

bilinear constraints for computing SINR. We can transform it into an equivalent convex

problem by using geometric programming (GP) transformations given in [38].

The Convex Upper Bound Problem:

The GP transformation of a non-convex optimization problem is based on a logarithmic

change of variables, and a logarithmic transformation of the objective and the constraints

to form a convex problem; a convex optimization problem has a convex objective, convex

inequality constraints, and linear equality constraints. We define the following additional

optimization variables to state the convex problem:
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• Rc,t
k,d is the DL coding rate from MBS k to user d on PRB(c, t)

For consistency, we use the same notation to represent the transformed variables but with a

prime symbol. For example, P
′,c,t
k,d = log(P c,t

k,d), γ
′,c,t
k,d = log(γc,t

k,d), andR
′,c,t
k,d = log(Rc,t

k,d).

For simplicity of notation, we use LSE({x}) to denote the logarithm of the sum of ex-

ponentials over the set {x}. Using logarithmic transformation, the objective of the upper

bound problem can be written as:∑
d∈UDL(ω)

log (
∑
k∈K

λk,d) =
∑

d∈UDL(ω)

log
(∑
k∈K

∑
c∈C

∑
t∈T

eR
′c,t
k,d
)

=
∑

d∈UDL(ω)

LSE
(
{R

′c,t
k,d}k∈K ,c∈C ,t∈T

) (B.3)

Before transforming the bilinear constraints given in (B.2e) into convex constraints, we

need to rearrange and substitute equations (B.2f) in (B.2e) as follows:

γc,tk,d
N0

P c,t
k,dGk,d(ω)

+ γc,tk,d

k′ 6=k∑
k′∈K

d′ 6=d∑
d′∈UDL(ω)

(
P c,t
k′,d′Gk′,d(ω)

P c,t
k,dGk,d(ω)

)
≤ 1, ∀d,∀k,∀c, ∀t (B.4)

Note that the left hand side of the above inequality is a posynomial function that is non-

convex in nature. However, we can apply a logarithmic transformation to a posynomial

function, as described in [38], in order to convert it into an LSE function (which is convex):

log

(
exp

(
γ
′c,t
k,d − P

′c,t
k,d + log(N0)− log(Gk,d(ω))

)
+

k′ 6=k∑
k′∈K

d′ 6=d∑
d′∈UDL(ω)

exp
(
γ
′c,t
k,d + P c,t

k′,d′ − P
′c,t
k,d + log(Gk′,d(ω))− log(Gk,d(ω))

))
≤ 0,∀d,∀k,∀c,∀t

(B.5)
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Using the above transformations, we formulate the convex upper bound problem as

follows:

PUB−DL′

Global (ω) : maximize
{P
′c,t
k,d },{γ

′c,t
k,d },{R

′c,t
k,d }

∑
d∈UDL(ω)

LSE
(
{R

′c,t
k,d}k∈K ,c∈C ,∀t∈T

)
subject to (B.5) and:

log(εp) ≤ P
′c,t
k,d ≤ zd,k(ω) log(PMBS)

+(1− zd,k(ω)) log(εp),∀d,∀k, ∀c,∀t (B.6a)

LSE({P
′c,t
k,d }d∈UDL(ω),c∈C

) ≤ log(PMBS), ∀k, ∀t (B.6b)

P
′c,t
k,d + P

′c,t
k,d′ ≤ log(εp), ∀d,∀d′, d 6= d′,∀k, ∀c,∀t (B.6c)

log(εγ) ≤ γ
′c,t
k,d ≤ log(βmax), ∀d,∀k, ∀c,∀t (B.6d)

R
′c,t
k,d = log10(e)γ

′c,t
k,d , ∀d,∀k, ∀c,∀t (B.6e)

where, d ∈ UDL(ω), k ∈ K , c ∈ C , t ∈ T .

Computing Feasible Solutions:

Given an optimal solution for PUB−DL′

Global (ω), we can compute a feasible solution for

PDL
Global(ω). This is achieved by computing the binary variables xc,t,mk,d for each PRB (c, t);

xc,t,mk,d ,∀d, k, c, t,m can be computed by using the optimal value of γ
′c,t
k,d from PUB−DL′

Global (ω)

and mapping it to the highest SINR threshold with βm ≤ γ
′c,t
k,d , m ∈ M . Since, g(γc,tk,d)

is always greater than or equal to f(γc,tk,d), the optimal objective of PUB−DL′

Global (ω) will

always be greater than or equal to the optimal objective of PDL
Global(ω). The optimal so-

lution for PDL
Global(ω) lies in-between the feasible solution and the optimal solution from

PUB−DL′

Global (ω). Hence, we have a method that delivers a feasible solution to the intractable

system-wide global US problem on the DL.
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Appendix C

Proof of Theorem 3.1

We prove that an optimal solution for the local sub-channel allocation problem, i.e., given

in Section 3.5.2, will allocate equal number of PRBs to the local users, given that the

integer variables have been relaxed from PDL
k (ω, {IEP

k,d (ω)}). The Lagrangian for the

relaxed primal problem can then be computed as:

L(µt, γ
t
d, n

t
k,d) = −

∑
d∈UDLk

(ω)

log(
∑
t∈T

ntk,dR̂k,d(ω))) + µt(
∑

d∈UDLk
(ω)

ntk,d − |C |)− γtd(ntk,d)

(C.1)

For dual and primal feasibility, we derive the following first-order necessary conditions for

optimality along with the complementary-slackness conditions:

∂L(µt, γ
t
d, n

t
k,d)

∂ntk,d
= −(

∑
t∈T

ntk,d)
−1 + µt − γtd = 0, ∀d,∀t

µt(
∑

d∈UDLk
(ω)

ntk,d − |C |) = 0, ∀t

γtd(n
t
k,d) = 0, ∀d,∀t

(C.2)

Since, the primal problem involves maximization of a concave function over a convex set,

hence any tuple of the primal and dual variables satisfying the KKT conditions given by

(C.2) is optimal [38]. By substituting γtd = 0 and ntk,d = |C |
|UDLk

(ω)| , we can see that all of

the KKT conditions are satisfied. Hence, the optimal solution for PDL
k (ω, {IEP

k,d (ω)}) is

the one that will allocate equal number of PRBs to the local users.
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Appendix D

Proof of Lemma 4.1

We formulate a relaxed upper bound problem for PUL
Joint(ω, c, t) using GP transformation,

where all variables are continuous and the constraints are convex. For consistency, we use

the same notation to represent the transformed variables but with a prime symbol; for

example, P
′c,t
u,r = log(P c,t

u,r), γ
′c,t
u,r = log(γc,t

u,r), and λ
′c,t
u,r = log(λc,t

u,r).

PUL′

Joint(ω, c, t) : maximize
{P
′c,t
u,r },{γ

′c,t
u,r },{λ

′c,t
u,r }

∑
u∈UUL(ω,c,t)

λ
′c,t
u,r

subject to:

log(εp) ≤ P
′c,t
u,r ≤ log(PEP

u,r (ω) + P unused
u,r (ω)), ∀u,∀r (D.1a)

log(εγ) ≤ γ
′c,t
u,r ≤ log(βmax), ∀u,∀r (D.1b)

log

(
exp

(
γ
′c,t
u,r − P

′c,t
u,r + log(N0)− log(Gu,r(ω))

)
+

r′ 6=r∑
r′∈R

u′ 6=u∑
u′∈U(ω,c,t)

exp
(
γ
′c,t
u,r + P

′c,t
u′,r′ − P

′c,t
u,r

+ log(Gu′,r(ω))− log(Gu,r(ω))
))
≤ 0, ∀u,∀r (D.1c)

λ
′c,t
u,r = log10(e)γ

′c,t
u,r , ∀u,∀r (D.1d)

where, u ∈ UUL(ω, c, t) and r ∈ R.
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Appendix E

Proof of Lemma 5.1

The problem PUB−RA
Joint (ω), which is non-convex in nature, requires extensive computa-

tional resources. By making a logarithmic change of the variables and a logarithmic trans-

formation of the objective and the constraints, the GP transformation (that is described

in [38]) can convert this problem into an equivalent convex problem, i.e., PUB−RA′

Joint (ω).

We define the following additional optimization variables for the GP transformation:

• Rc,t
u,k,b is the UL CE from user u to BS (k, b) on PRB(c, t)

• Rc,t
k,b,d is the DL CE from BS (k, b) to user d on PRB(c, t)

For consistency, we use the same notation to represent the transformed variables but with a

prime symbol, i.e., P
′c,t
u,k,b = log(P c,t

u,k,b), γ
′c,t
u,k,b = log(γc,t

u,k,b), and R
′c,t
u,k,b = log(Rc,t

u,k,b).

For simplicity of notation, we use LSE({x}) to denote the logarithm of the sum of

exponentials over the set {x}. By using GP transformation, the objective of the problem

PUB−RA
Joint (ω) can be written as a sum of LSE functions as follows:

157



∑
u∈UUL(ω)

log (
∑
k∈K

λu,k) +
∑

d∈UDL(ω)

log (
∑
k∈K

λd,k)

=
∑

u∈UUL(ω)

log
(∑
k∈K

∑
c∈C

∑
t∈T

∑
b∈B

eR
′c,t
u,k,b
)

+
∑

d∈UDL(ω)

log
(∑
k∈K

∑
c∈C

∑
t∈T

∑
b∈B

eR
′c,t
k,b,d
)

=
∑

u∈UUL(ω)

LSE
(
{R

′c,t
u,k,b}k∈K ,b∈B,c∈C ,t∈T ,

)
+

∑
d∈UDL(ω)

LSE
(
{R

′c,t
k,b,d}k∈K ,b∈B,c∈C ,t∈T

)
(E.1)

Before transforming the bilinear constraints given in (5.8k) into convex constraints, we

need to rearrange and substitute (5.4) into (5.8k) as follows:

γc,tu,k,b
N0

(P c,t
u,k,bGu,k,b(ω))

+ γc,tu,k,b
∑
k′∈K

∑
b′∈B

u′ 6=u∑
u′∈UUL(ω)

(
P c,t
u′,k′,b′Gu′,k,b(ω)

P c,t
u,k,bGu,k,b(ω)

)
+

γc,tu,k,b
∑
k′∈K

∑
b′∈B

∑
d′∈UDL(ω)

(
P c,t
k′,b′,d′Gk′,b′,k,b(ω)

P c,t
u,k,bGu,k,b(ω)

)
≤ 1,∀u,∀k, ∀b,∀c,∀t

(E.2)

Note that the left-hand side of the above inequality is a posynomial function, however,

we can apply a logarithmic transformation to this function in order to convert it into a

corresponding LSE function, which is convex:

log

(
exp

(
γ
′c,t
u,k,b − P

′c,t
u,k,b + log(N0)− log(Gu,k,b(ω))

)
+

∑
k′∈K

∑
b′∈B

u′ 6=u∑
u′∈UUL(ω)

exp
(
γ
′c,t
u,k,b + P

′c,t
u′,k′,b′ − P

′c,t
u,k,b + log(Gu′,k,b(ω))− log(Gu,k,b(ω))

)
+

∑
k′∈K

∑
b′∈B

∑
d′∈UDL(ω)

exp
(
γ
′c,t
u,k,b + P

′c,t
k′,b′,d′ − P

′c,t
u,k,b + log(Gk′,b′,k,b(ω))− log(Gu,k,b(ω))

))
≤ 0,∀u,∀k,∀b, ∀c, ∀t

(E.3)
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Similarly, before transforming the bilinear constraints given in (8l) into convex con-

straints, we need to rearrange and substitute equation (5) in (8l) as follows:

γc,tk,b,d
N0

P c,t
k,b,dGk,b,d(ω)

+ γc,tk,b,d
∑
k′∈K

∑
b′∈B

∑
u′∈UUL(ω)

(
P c,t
u′,k′,b′Gu′,d(ω)

P c,t
k,b,dGk,b,d(ω)

)
+

γc,tk,b,d
∑
k′∈K

∑
b′∈B

d′ 6=d∑
d′∈UDL(ω)

(
P c,t
k′,b′,d′Gk′,b′,d(ω)

P c,t
k,b,dGk,b,d(ω)

)
≤ 1,∀d,∀k,∀b,∀c,∀t

(E.4)

Now, we can apply the logarithmic transformation of the variables as follows:

log

(
exp

(
γ
′c,t
k,b,d − P

′c,t
k,b,d + log(N0)− log(Gk,b,d(ω))

)
+∑

k′∈K

∑
b′∈B

∑
u′∈UUL(ω)

exp
(
γ
′c,t
k,b,d + P

′c,t
u′,k′,b′ − P

′c,t
k,b,d + log(Gu′,d(ω))− log(Gk,b,d(ω))

)
+

∑
k′∈K

∑
b′∈B

d′ 6=d∑
d′∈UDL(ω)

exp
(
γ
′c,t
k,b,d + P c,t

k′,b′,d′ − P
′c,t
k,b,d + log(Gk′,b′,d(ω))− log(Gk,b,d(ω))

))
≤ 0,∀d,∀k,∀b,∀c,∀t

(E.5)

Using the above transformations, we formulate the convex upper-bound problem as follows:

PUB−RA′

Joint (ω) : maximize
{P
′c,t
u,k,b},{γ

′c,t
u,k,b},{R

′c,t
u,k,b}∑

u∈UUL(ω)

LSE
(
{R

′c,t
u,k,b}k∈K ,b∈B,c∈C ,∀t∈T

)
+

∑
d∈UDL(ω)

LSE
(
{R

′c,t
k,b,d}k∈K ,b∈B,c∈C ,∀t∈T

)

subject to (E.3), (E.5), and:

log(εp) ≤ P
′c,t
u,k,b ≤ zu,k(ω) log(PUE) + (1− zu,k(ω)) log(εp),∀u,∀k,∀b,∀c,∀t (E.6a)

log(εp) ≤ P
′c,t
k,b,d ≤ zd,k(ω) log(Pb) + (1− zd,k(ω)) log(εp), ∀d,∀k,∀b,∀c,∀t (E.6b)

LSE({P
′c,t
u,k,b}b∈B,c∈C

) ≤ log(PUE), ∀u,∀k,∀t (E.6c)

LSE({P
′c,t
k,d,b}d∈UDL(ω),c∈C

) ≤ log(Pb), ∀k,∀b,∀t (E.6d)

159



P
′c,t
u,k,b + P

′c,t
u′,k,b ≤ log(εp), ∀u,∀u′, u 6= u′,∀k,∀b, ∀c, ∀t (E.6e)

P
′c,t
k,b,d + P

′c,t
k,b,d′ ≤ log(εp), ∀d,∀d′, d 6= d′,∀k,∀b, ∀c, ∀t (E.6f)

P
′c,t
u,b,d + P

′c,t
k,b,d ≤ log(εp), ∀u,∀d,∀k,∀b, ∀c, ∀t (E.6g)

P
′c,t
u,k,1+, ....,+P

′c,t
u,k,|B| ≤ (|B| − 1) log(εp), ∀u,∀k,∀c, ∀t (E.6h)

P
′c,t
k,1,d+, ....,+P

′c,t
k,|B|,d ≤ (|B| − 1) log(εp), ∀d,∀k,∀c, ∀t (E.6i)

log(εγ) ≤ γ
′c,t
u,k,b ≤ log(βmax), ∀u,∀k,∀b, ∀c,∀t (E.6j)

log(εγ) ≤ γ
′c,t
k,b,d ≤ log(βmax), ∀d,∀k,∀b, ∀c, ∀t (E.6k)

R
′c,t
u,k,b = log10(e)γ

′c,t
u,k,b, ∀u,∀k,∀b, ∀c, ∀t (E.6l)

R
′c,t
k,b,d = log10(e)γ

′c,t
k,b,d, ∀d,∀k,∀b, ∀c, ∀t (E.6m)
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Appendix F

Proof of Lemma 6.1

The problem [PUB
MP−A2C ] requires extensive computational resources, by making a high

SINR assumption, we can convert it into an equivalent convex problem ([PUB′

MP−A2C ]) using

the techniques given in [82]. We take the high SINR assumption on the sum of the SINR

variables, which leads to the following approximation of the constraints (6.11i) and (6.11j):

λu,r ≈ ∆f × log2(

NC∑
n=1

NF∑
k=1

γn,ku,r ) = ∆f ×
log(

NC∑
n=1

NF∑
k=1

γn,ku,r )

log(2)
≥ [R5G]u,r

=⇒ log(

NC∑
n=1

NF∑
k=1

γn,ku,r ) ≥ log(2)× [R5G]u,r
∆f

(F.1)

By making a logarithmic change of the variables, a logarithmic transformation of the

objective and the constraints, the GP transformation (i.e., described in [38]) can convert

this problem into an equivalent convex problem using the high SINR approximation. For

consistency, we use the same notation to represent the transformed variables but with a

prime symbol; for example, P
′n,k
u,r = log(P n,k

u,r ) and γ
′n,k
u,r = log(γn,k

u,r ). For simplicity of

notation, we use LSE({x}) to denote the logarithm of the sum of exponentials over the

set {x}.
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By using GP transformation, the objective of the problem [PUB
MP−A2C ] can be reformu-

lated as follows:

NU∑
u=1

NR∑
r=1

λu,r =
∑
u

∑
r

∆f ×
log(

NC∑
n=1

NF∑
k=1

γn,ku,r )

log(2)

=

NU∑
u=1

NR∑
r=1

∆f

log(2)
× LSE({γ′n,ku,r }n∈{1,...,NC},k∈{1,...,NF })

(F.2)

Before transforming the bilinear constraints given in (6.11g) into convex constraints,

we need to rearrange and substitute (6.11g) into (6.11h) as follows:

γn,ku,r
σ2
C

(P n,k
u,r |hn,kn |2)

+ γn,ku,r

NC∑
n′=1,n′ 6=n

NU∑
u′=1

NR∑
r′=1

P n′,k
u′,r′|hn

′,k
n |2

P n,k
u,r |hn,kn |2

≤ 1,∀u,∀r,∀n,∀k

=⇒ log

(
exp

(
γ
′n,k
u,r − P

′n,k
u,r + log(σ2

C)− log(|hn,kn |2)
)
+

NC∑
n′=1,n′ 6=n

NU∑
u′=1

NR∑
r′=1

exp
(
γ
′n,k
u,r + P

′n′,k
u′,r′ − P

′n,k
u,r + log(|hn′,kn |2)− log(|hn,kn |2)

))
≤ 0,∀u,∀r,∀n,∀k

(F.3)

Note that we applied a logarithmic transformation to the above constraint and converted

its left hand side into a corresponding LSE function which is convex.
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Using the above transformations, we can formulate the convex optimization problem

as follows:

[PUB′

MP−A2C ] : maximize
{P
′n,k
u,r },{γ

′n,k
u,r }

NU∑
u=1

NR∑
r=1

∆f

log(2)
× LSE({γ′n,ku,r }n∈{1,...,NC},k∈{1,...,NF })

subject to (F.3) and:

log(Pmin) ≤ P
′n,k
u,r ≤ log(Pmax), ∀u,∀r,∀n,∀k (F.4a)

P n,k
u,r + P n,k

u′,r′ ≤ log(εp),∀(u′, r′), (u′, r′) 6= (u, r), ∀u,∀r,∀n,∀k (F.4b)

P
′n,k
u,r + P

′n′,k′

u,r ≤ log(εp),∀(n′, k′), (n′, k′) 6= (n, k), ∀u,∀r,∀n,∀k (F.4c)

LSE({P
′n,k
u,k }u∈{1,...,NU},r∈{1,...,NR}

) ≤ log(Pmax), ∀n,∀k (F.4d)

LSE({P
′n,k
u,k }u∈{1,...,NU},r∈{1,...,NR},k∈{1,...,NF }

) ≤ log(PT ), ∀n (F.4e)

log(εγ) ≤ γ
′n,k
u,r ≤ log(γmax), ∀u,∀r (F.4f)

LSE({γ
′n,k
u,k }u∈{1,...,NU},r∈{1,...,NR}

) ≤ log(γmax), ∀n,∀k (F.4g)

LSE({γ
′n,k
u,k }n∈{1,...,NC},k∈{1,...,NF }

) ≤ log(γmax), ∀u,∀r (F.4h)

LSE({γ
′n,k
u,k }n∈{1,...,NC},k∈{1,...,NF }

) ≥ log(2)× [R5G]u,r
∆f

, ∀u,∀r (F.4i)

where, u ∈ {1, . . . , NU}, r ∈ {1, . . . , NR}, n ∈ {1, . . . , NC}, and k ∈ {1, . . . , NF}.
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Appendix G

Proof of Lemma 6.2

The problem PAM
C requires extensive computational resources, by making a high SINR

assumption, we can convert it into an equivalent convex problem (PAM ′

C ) using the tech-

niques given in [82]. We take the high SINR assumption on the sum of the SINR variables,

which leads to the following approximation of the constraints (6.13f):

λn,k = ∆f × log2(1 + γn,k) ≈ ∆f × log2(γ
n,k) = ∆f × log(γn,k)

log(2)
, ∀n,∀k (G.1)

By making a logarithmic change of the variables, a logarithmic transformation of the

objective and the constraints, the GP transformation (i.e., described in [38]) can convert

this problem into an equivalent convex problem using the high SINR approximation. For

consistency, we use the same notation to represent the transformed variables but with a

prime symbol; for example, P
′n,k = log(P n,k) and γ

′n,k = log(γn,k). For simplicity of

notation, we use LSE({x}) to denote the logarithm of the sum of exponentials over the

set {x}.

By using GP transformation, the objective of the problem PAM
C can be written as

follows:

NC∑
n=1

NF∑
k=1

λn,k =

NC∑
n=1

NF∑
k=1

(
∆f × log(γn,k)

log(2)

)
=

NC∑
n=1

NF∑
k=1

(
∆f × γ′n,k

log(2)

)
(G.2)
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Before transforming the bilinear constraints given in (6.13d) into convex constraints, we

need to rearrange and substitute (6.13e) into (6.13d) as follows:

γn,k
σ2
C

(P n,k|hn,kn |2)
+ γn,k

NC∑
n′=1,n′ 6=n

P n′,k|hn′,kn |2

P n,k|hn,kn |2
≤ 1, ∀n,∀k

=⇒ log

(
exp

(
γ
′n,k − P ′n,k + log(σ2

C)− log(|hn,kn |2)
)
+

NC∑
n′=1,n′ 6=n

exp
(
γ
′n,k + P

′n′,k − P ′n,k + log(|hn′,kn |2)− log(|hn,kn |2)
))
≤ 0, ∀n,∀k

(G.3)

Note that we applied a logarithmic transformation to the above constraint and converted

its left hand side into a corresponding LSE function which is convex.

Using the above transformations, we can formulate the convex optimization problem

as follows:

PAM ′

C : maximize
{P ′n,k},{γ′n,k}

NC∑
n=1

NF∑
k=1

(
∆f × γ′n,k

log(2)

)

subject to (G.3) and:

log(Pmin) ≤ P
′n,k ≤ log(Pmax),∀n,∀k (G.4a)

LSE({P ′n,k}k∈{1,...,NF }) ≤ log(P T ), ∀n (G.4b)

log(γmin) ≤ γ
′n,k ≤ log(γmax), ∀n,∀k (G.4c)

where, n ∈ {1, . . . , NC}, and k ∈ {1, . . . , NF}.
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Appendix H

Proof of Lemma 6.3

The problem PGM
C requires extensive computational resources, by making a high SINR

assumption, we can convert it into an equivalent convex problem (PGM ′

C ) using the tech-

niques given in [82]. We take the high SINR assumption on the sum of the SINR variables,

which leads to the following approximation of the constraints (6.13f):

λn,k = ∆f × log2(1 + γn,k) ≈ ∆f × log2(γ
n,k) = ∆f × log(γn,k)

log(2)
, ∀n,∀k (H.1)

By making a logarithmic change of the variables, a logarithmic transformation of the

objective and the constraints, the GP transformation (i.e., described in [38]) can convert

this problem into an equivalent convex problem using the high SINR approximation. For

consistency, we use the same notation to represent the transformed variables but with a

prime symbol; for example, P
′n,k = log(P n,k) and γ

′n,k = log(γn,k). For simplicity of

notation, we use LSE({x}) to denote the logarithm of the sum of exponentials over the

set {x}.
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By using GP transformation, the objective of the problem PGM
C can be written as

follows:

NC∑
n=1

NF∑
k=1

log(λn,k) =

NC∑
n=1

NF∑
k=1

log

(
∆f × log(γn,k)

log(2)

)
=

NC∑
n=1

NF∑
k=1

log

(
∆f × γ′n,k

log(2)

)

=

NC∑
n=1

NF∑
k=1

(
log
( ∆f

log2(2)

)
+ log(γ

′n,k)

) (H.2)

Using these transformations, we can formulate the convex optimization problem as follows:

PGM ′

C : maximize
{P ′n,k},{γ′n,k}

NC∑
n=1

NF∑
k=1

(
log
( ∆f

log2(2)

)
+ log(γ

′n,k)

)

subject to (G.3) and:

log(Pmin) ≤ P
′n,k ≤ log(Pmax),∀n,∀k (H.3a)

LSE({P ′n,k}k∈{1,...,NF }) ≤ log(P T ), ∀n (H.3b)

log(γmin) ≤ γ
′n,k ≤ log(γmax), ∀n,∀k (H.3c)

where, n ∈ {1, . . . , NC}, and k ∈ {1, . . . , NF}.
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