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Abstract 

As companies search for sustainable solutions, the need has arisen to develop alternative 

polymer platforms comprising a portion, or 100%, of bio-based materials. The ultimate goal 

would be to produce bio-based polymers which offer ease of processing, excellent stability, 

as well as mechanical and physical properties similar to those currently found in olefinic 

polymers. Starch-resin copolymers, produced in patent WO 2013116945A1 (Wolff 2013), 

offer several properties similar to olefinic polymers. However, due to the nature of batch 

reactor processes, the ability to economically scale the process is not favourable.  

 

Chemical modification of starch through reactive extrusion (REX) (Moad 2011) suggests that 

similar starch copolymer characteristics, as found in the patented batch process, would be 

available. However, dry state synthesis of maleic grafted starch, described in the patent, 

could not be supported with REX process (Zuo 2013). As such, alternative sequencing of 

materials may be required to address this limitation. 

 

The object of the investigation is to determine the parameters at which specific starches could 

be destructured (plasticized), chemically modified, and transesterified to produce starch 

copolyester resins.  

 

Examinations were performed with a three piece, CW Brabender (CWB) 60 cc internal mixer 

with intermeshing Banbury blades, connected to a CWB Intelli-Torque Plasticorder Torque 

Rheometer, and supported with CWB WinMix Data Software. The WinMix Software 

captured stock (material) temperatures, torque, and specific energy, in real time. As such, 

gelatinization, half-esterification and transesterification kinetics were studied for starch 

mixtures of various levels of plasticizers / dicarboxylic acid anhydride / polyester, under 

different temperatures and blade speeds.    
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The evaluations indicated the fastest rate of gelatinization occurred with the addition of 10% 

water. However, the kinetics of the half-esterification and transesterification processes 

favoured high temperatures. In particular, the transesterification reaction was faster at 

temperatures exceeding 150oC. Those high temperatures are not favourable for the use of 

water as a plasticizer. At these temperatures, the water of plasticization boils off. As such, 

blends of water and glycerol were considered to rapidly plasticize the starch and keep it 

plasticized at elevated temperatures. 

 

With the understanding of processing parameters, the next steps are to conduct NMR analysis 

of the starch copolyester polymers generated using this technique in order to understand the 

polymers’ structure, then adjust the parameters to optimize the physical and mechanical 

properties. 
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Chapter 1 

Introduction 

 

1.1 Motivation and Objectives 

There is increased demand by consumers to improve the sustainability of consumers goods. As 

companies search for sustainable solutions, the need has risen to develop alternative polymer 

platforms comprising a portion, or 100%, of bio-based materials. The ultimate goal would be to 

produce bio-based polymers which have the ease of processing, excellent stability, and offer the 

mechanical and physical properties similar to those currently found in olefinic polymers. 

Starch-resin copolymers, produced in patent WO 2013116945A1 Wolff (Wolff, 2013), offer 

several properties similar to olefinic polymers. However, due to the nature of batch reactor 

processes, the ability to economically scale the process is not favourable. 

  

Chemical modification of starch through reactive extrusion (REX) (Moad, 2011) suggests that 

similar starch copolymer characteristics, as found in the patented batch process, would be 

available. However, the dry state synthesis of maleic grafted starch, described in the patent, 

could not be supported with REX process (Zuo 2013). As such, alternative sequencing of 

materials may be required to address this and other limitations. 

 

The objective of this research investigation is to determine the parameters under which specific 

starches could be destructured (plasticized), chemically modified, and transesterified in the 

presence of polyester resins to produce stable starch copolyester polymers. The goal is to 

provide insight about the variables controlling the process as well as developing a technology to 

enable sustainable thermoplastics. 
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1.2 Thesis Layout 

 

This thesis is organized in six Chapters: 

 

Chapter 1 establishes the motivation and objectives of the thesis. It defines the overall structure 

of the studies and the experimental design.  

 

Chapter 2 reviews and discusses the relevant background required for this document. It looks at 

the relevant existing literature and outlines the fundamental aspects pertinent to the subsequent 

chapters.  

 

Chapter 3 presents the considerations and specific choices of materials and methods as they 

pertain to: raw material selection; compounding techniques employed; the systematic 

development of compounds; and the methods of analysis as applied in characterizing the 

compounds. 

 

Chapter 4 reports the results and contains te discussion about  the influences of plasticizers 

consisting of water and other plasticizers; temperature and revolutions per minute (RPM), shear 

on the destructuring of a variety of other starches with varying levels of amylose, viscosities 

and chemical modification.  

 

Chapter 5 reports the results and contains the discussion on the influences of free radical 

initiators; maleic anhydride (MAH) grafting agent; and various polyesters on polymer 

development of the various starch co-polyester polymers synthesized.  

 

Chapter 6 presents the general conclusions regarding the work carried out in this thesis and 

offers recommendations for future research on this topic.  
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1.3 Experimental Design 

 

The objective of this research is to establish the parameters for the synthesis of starch 

copolyester. This process starts with understanding starch and the conditions which are required 

for its physical and chemical modification. It examines the influence of different type of 

starches, while taking into consideration the various sources and ratios of amylose/amylopectin. 

As well, it looks at starches which do  and do not contain chemical modifications. The initial 

focus will be on the gelatinization of the starch granule and then progress to an understanding of 

the influences that grafting agents, free radical initiators and polyester resins have on the 

synthesized polymer.   

 

These examinations are to be performed with a three piece, CW Brabender (CWB) 60 cc 

internal mixer with intermeshing Banbury blades, connected to a CWB Intelli-Torque 

Plasticorder Torque Rheometer and supported with CWB WinMix Data Software. The WinMix 

Software will capture the stock (material) temperatures, torque, and specific energy, in real 

time. As such, gelatinization, half-esterification and transesterification kinetics can be studied 

for starch mixtures of various levels of plasticizers / dicarboxylic acid anhydride / free radical 

initiators and polyester resins, under different temperatures and blade speeds.    

 

The materials synthesized will be characterized, via the various techniques discussed in 

chapter three, for their physical-chemical properties. The findings from the investigation will be 

examined in subsequent chapters. From their review, conclusions will be drawn and commented 

on at the end of this thesis. 
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Chapter 2 

Literature Review 

2.1 Introduction 

 

As companies search for sustainable solutions, the need has risen to develop alternative polymer 

platforms comprising a portion, or 100%, of bio-based materials. The objective is to achieve 

bio-based polymers which offer ease of processing, excellent stability, and mechanical and 

physical properties found in olefinic polymers at a reasonable cost.  

 

Olefinic polymers are built from ethylene and propylene monomers. Both originate from 

petrochemical production and have a low cost. According to ICIS Houston in the period of May 

- July 2018, pricing on polymer monomer grade ethylene was between US$0.13 and US$0.14 

per pound and propylene was between US$0.575 and US$0.58 per pound. (Figure 2-1 & 2-2) 

As such, while considering raw materials for bio-based polymers, attention must be paid to their 

cost, availability, and the chemical and physical properties that they offer the final polymer. 

Over the last couple of decades, significant research and development has advanced bio-based 

polymers. This thesis plans to investigate the parameters required for the synthesis of starch 

copolyester and the influences that these raw materials groups, listed below, have on those 

parameters.  

• Starches 

• Plasticizer 

• MAH 

• Free radical initiator 

• Polyester 

 

 

 This chapter goes into the relevant literature review on the background of these raw materials 

and sets forth the foundation from which the work in this thesis expands upon. As well, it looks 
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at some of the potential proposed mechanisms for esterification and transesterification which 

may be possible when these raw materials come together.  

 

 
 

Figure 2-1 ICIS marketing research of 

ethylene contract pricing for the period April 

to May 2018 (ICIS Marketing Research 2018) 

  

Figure 2-2 ICIS marketing research of 

propylene contract pricing for the period 

April to May 2018 (ICIS Marketing Research 

2018) 

 

 

 

2.2 Starches 

 

Starches are a viable, renewable and biodegradable raw material, which makes them ideal for 

consideration in building biopolymers. (French 2009) They are a major component of cereal 

grains and isolates from cereal kernels, vegetables tubers, or roots which are recovered through 

their wet milling and other various subsequent processes. (Kalambur 2012) Corn and wheat 

crops are the major source of starch in North America. (Kalambur 2012) Starches are 

commercially available in many native (none chemical modified) and chemically modified 

varieties.  As a raw material, starch lend its themself to modification which can enhance its 

chemical and physical properties and enrich those of biobased polymers. (Kalambur 2012)  



 

 6 

2.2.1 Molecular Structure of Starch 

Starch’s polymer chains are protected inside the structure called granules. These structures are 

designed to provide a stable storage environment for carbohydrates until time of need. In their 

native forms, they are stable in water at ambient temperatures. However, they are created to be 

rapidly metabolized on demand to support the plant’s requirement for fast energy in the vent of 

ripening fruit, germination of seeds, and/or the sprouting of roots and/or tubers. (Bemiller 2009)  

 

Starch granules are typically between 1-100µm in size (Bemiller 2009). Their size and shape 

depend on the species and location within the plant from which the starch is extracted (Bemiller 

2009).  Jenkin proposed a schematic for a multilayer native starch structure seen in Figure 2-3. 

In Figure 2-4, this photo depicts the layers which he describes in Figure 2-3. Jenkin suggested 

that these layers reveal alternating amorphous and semi-crystalline shells (growth rings) of 

about 100 – 400 nm in size. Within these regions, crystalline lamella exists in section of 9-10 

nm consisting of alternating amorphous regions of smaller dimension as demonstrated in Figure 

2-3. (Jenkins 1995). 

 

There are two types of polysaccharide macromolecule polymers existing within the starch 

granule, amylose and amylopectin. Amylose is a sparsely branched linear polymer mainly based 

on polymerized α -1,4- D glucopyranosyl units with molecular weights in the range of 105 to 

106 g/mol and degree of polymerization (DP) in the range 1x102- 4x105  (Figure 2-7 & 2-14). 

(Xie,2009) Amylose, within the granule, presents spiral-shaped single or double-helices with a 

rotation on the α-(1–4) link and with six units of glucoses per rotation. (Xie,2009) This structure 

proposed by Xie, has the hydroxyl groups of the glucose units mainly orientated towards the 

exterior of the helices and offers the ability for hydrogen bonding between helices. As such, the 

higher hydrogen bond density exists between the amylose helices within the granule. This 

configuration results in significantly more energy being required to dissociate these bonds 

during the melting or gelatinization process. As such, as the amylose content increases in the 

starch granule so does the melting point, due to this phenomenon. (Jenkins 1995) 
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Figure 2-3 Schematic diagram of starch granule structure (amorphous and crystalline 

regions).  (Jenkins 1995) 

 

Figure 2-4 Starch Kernel (Bemiller 2009) 
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Figure 2-5 Proposed structure of amylopectin structure with no amylose (Jenkins 1995) 

[waxy starch] 

 

 

 

Figure 2-6 Proposed structure of amylopectin and amylose in a co-crystallinity matrix 

(Jenkins 1995) [maize] 
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Figure 2-7  Amylose Structure (Bemiller 2009) 

 

 

 

Figure 2-8 Amylopectin structure  (Bemiller 2009) 
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Amylopectin, on the other hand, is a highly multiple-branched polymer with high molecular 

weight ranging from 1x107 to 4x109 (Figure 2-8 & 2-15). Amylopectin is based on a complex 

structure consisting of about 95% α 1,4- D glucopyranosyl units and the balance, about 5%, of 

branches taking place at α-(1–6). (Xie 2009) These branching points occur about every 22–70 

glucose units and generate branches of approximately 15 DP in length. (Xie 2009) These short 

chain amylopectin branches tend to form double helical structures, generating a grape-branch 

like assembly while associating themselves into close quarters with each other. (Bemiller 2009) 

It is within this arrangement that the double helical structures align themselves together, parallel 

to the axis of the large helix, forming regions of crystallinity within the starch granule. (Yu & 

Christie 2005) This crystallinity can be identified through the presence of birefringence maltase 

cross as detected under a microscope with polarized light. (Bemiller 2009) 

 

2.2.2 Morphology 

 

 The Morphology of starch polymers is controlled through two properties, those being the 

polymer’s molecular weight and the frequency of branches (amylose / amylopectin ratio) (Moad 

2011) 

 

High amylose starch is composed predominantly of linear chains with molecular weights in the 

range 105–106 DP, having relatively few α-1,6 linkages or branch points. While, amylopectin 

starch is highly branched with many α-1,6-linkages and significantly higher molecular weight 

than that of amylose. (Xie 2009) The proportion of amylose chains in native starches are 

genetically established and generally consistent within given plant species (Bemiller 2009). 

Amylose fractions typically range from about 20–30% to about 70–80% in genetically modified 

organisms and essentially zero amylose content in waxy starch type species (Jenkins 1995). 

 

The starches with different crystalline starches perform substantially differently in their 

rheological behavior, their processing characteristics, and affect the mechanical properties of 
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the final bio-polymer. Of note are starches with high amylose content.  In the context of reactive 

extrusion (REX), starches with higher levels of amylose require significantly higher 

temperatures for gelatinization. While they are less prone to thermal and shear degradation 

during extrusion, high amylose starches are more disposed to retrogradation and syneresis 

(Moad 2011).  

 

2.2.3 Physicochemical Changes in Starch during Processing 

 

Native starches behave differently during processing than chemically modified versions and as 

such require different process conditions and formulations. In processing native starches, the 

first step is to open the starch granule and expose the polymeric chains. Typical processes 

considered to achieve the starch granule opening are the application of heat, shear, and /or 

plasticization. 

“The melting point of native starch granules is around 170oC-190oC. Applying 

that amount of heat to starch granules will result in decomposition of the starch 

before melting can be achieved. Since mechanical properties are proportional to 

molecular weight, attempts to melt the starch is not desirable”. (Kalambur, 2012) 

 

The application of shear on native starch granules, through the process of 

extrusion, can result in size reduction from shearing the granule and the exposure 

of the polymer chains. Like melt processing, this process reduces the molecular 

weight and is not desirable. (Kalambur, 2012) 

 

The plasticization of the starch granule in a suitable solvent, like water or a blend 

thereof, results in the swelling of the starch granule. Then, upon the application 

of shear, the swollen granule breaks open and releases the polymeric chains. 

Unlike melting and shear, the implementation of plasticization first helps maintain 
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the overall molecular weights of the polymeric chains in the starch granule. 

(Kalambur, 2012)  

 

2.2.4 Gelatinization  

 

Starch, by nature’s design, is a highly organized structure of macromolecules shrouded in a 

hard-outer wall forming the granule (Figure 2-4). When heated in water, it undergoes a 

transformation which breaks down the granule and the crystalline structure between the 

macromolecules to create a mixture of polymers in solution.(Bemiller 2009) Ratnayake refers to 

this process as gelatinization. (Ratnayake 2008) In Ratnayake and Jackson’s review on Starch 

Gelation in Advances in Food and Nutrition Research, they commented that gelatinization of 

starch is a very complex process.  

 

As the point of reference, the graphic interpretation of microstructure and phase transition of 

starch as a result of gelatinization, offered by Yu & Christie (2005) and depicted in Figure 2-11, 

has been considered for this thesis. They highlight that the amylose and amylopectin are partly 

separated during gelatinization due to, what is believed to be, incompatibility (Yu & Christie 

2005).   In thermoplastic starch systems, which are developed in lower levels of solvent, they 

surmise that higher heats and shear from extrusion / processing are required in order to achieve 

gelatinization. In their model, the gelatinized segments of amylopectin forms gel balls as noted 

with the swelling of the starch granule and the formation of viscosity paste.  In the presence of 

the solvent, like water, the amylopectin molecules and branches are in an amorphous state. Even 

on cycling the starch polymer in solutions over a broad temperature range, the amorphous 

amylopectin is seen as going through little or no morphological change (Yu & Christie 

2005)(Figure 2-11). 

 

This cannot be said for the amylose segment of the starch in solution. On cycling the starch 

polymer in solutions over a broad temperature range, the amylose polymer fraction goes 

through significant morphological change. Upon cooling, the amorphous amylose chains 
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reorganize themselves back into their crystalline structure. Then on heating, they revert to their 

amorphous orientation (Yu & Christie 2005). Yu & Christie describe this event as a certain type 

of “memory” within the starch polymer.  

 

Native starch cannot be melt processed directly in the absence of water or plasticizer. Starch 

gelatinization / destructuring is necessary to render the starch thermoplastic prior to melt 

compounding. As the melting temperature of native starches are higher than the thermal 

decomposition temperature, gelatinization is used to avoid shear and /or thermal decomposition 

(Zhang 2007).  

 

As discussed by Jenkins 1995, high amylose starches form  single or double helices structures 

rotating in on itself and forming hydrogen bonding. As such, gelatinization of high amylose 

starches requires higher process temperatures than that for low amylose starch. Typical process 

temperatures for low amylose starch is 70–80oC, while gelatinization temperature for high 

(>50%) amylose starch can range 120–140oC (Yu & Chirstie 2005). This high temperature, 

required for amylose rich starches, imposes challenges with extrusion processing conditions. 

The higher gelatinization temperature for amylose rich starches exceeds the boiling point of 

water. As such, water will evaporate from the starch paste matrix and the advantages of the 

gelatinized starch are gone. Alternative plasticizers or blends, which are stable at these process 

temperatures, need be considered (Kalambur 2012). 

 

The gelatinization temperature can be determined by slowly heating starch in a mixture with 

water, or a glycerol and water blend under a Polarized Optical Microscope (POM). The starch 

granules will show birefringence maltase cross clearly at 20oC (Figure 2-10). As the 

birefringence cross begins to blur, the gelatinization temperature (Tgel) is determined. With high 

levels of amylose starches, Tgel could exceed 120oC as the hydrogen bonds are broken, while 

regular starches of higher level amylopectin, would be around 70-80oC (Zhang 2007).  
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Figure 2-9 Schematic representation of the high-density amylopectin helices structures 

in ungelatinized starch  (Yu & Chirstie 2005) 

 

 

 

Figure 2-10 Birefringence maltase cross displayed under polarized optical microscope 

(Bemiller 2009) 
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Figure 2-11 Schematic representation of microstructure and phase transition of starch as a result 

of gelatinization (Yu & Christie 2005) retrogradation & syneresis 

 

2.2.5 Retrogradation and Syneresis 

 

Retrogradation is the process associated with aged gelatinized starch. The crystalline nature 

from the helical structure of the amylopectin and amylose in the pre-gelatinized starch is part of 

the memory of the molecule.  As the gelatinized starch ages, the starch chains begin to expel 

water from between the branches and re-associate themselves. The amylopectin and amylose re-

crystallize and form themselves into helical structures and crystallites. The process whereby 

water is expelled from the polymer network of gelatinized starch is referred to as syneresis. 

(Ottenhof 2004) Yu & Christie 2005 proposed the model outlined below which describes the 

transformation from starch granule through gelatinization to retrogradation (Figure 2-12). 
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Figure 2-12 Schematic representation of microstructure and phase transition of starch during gelatinization 

and retrogradation (Yu & Christie 2005) 

 

 

2.2.6 Rheology 

 

The rheological properties of the starch depend on: the type of starch under consideration; the 

amylose / amylopectin ratio; the amount of moisture; the temperature and the presence of 

modification or not. (Xie F 2009) 

 

Xie, in his research, noted the effects on viscosity and shear stress as it relates to the variables 

of amylose / amylopectin ratio, the amount of moisture and the temperature.  First, Xie looked 

at the amylose / amylopectin ratio, by examining the effect on viscosity and shear stress over a 

series of samples at steady temperature (130oC) and moisture level (23%).   It was found that as 

shear rate is increased, the viscosity dropped, and shear stress decreased. However, as the 
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amylose content in the starch was increased, at any given shear rate, a higher viscosity and 

shear stress was noted. (Xie F 2009) 

 

When evaluating high amylose starches with 23% moisture content over temperatures ranging 

from 110oC to 140oC, as shear rates were increased, the viscosity dropped, and shear stress 

increased. However, with higher temperatures, lower viscosity and lower shear stress were 

found. (Xie F 2009) 

 

As moisture content over a range from 19% to 27% was evaluated with high amylose starch, 

and temperature steady at 130oC, it was reported that as the shear rate was increased, the 

viscosity dropped, and shear stress increased. However, with higher moisture levels, lower 

viscosities and shear stress were seen. (Xie F 2009) 

 

2.3 Chemical Modification 

 

Starch modifications were developed to offer specific traits and benefits for a wide range of 

applications.  Certain modifications help starch reduce the degree of retrogradation and gelling 

tendencies of the amylose fractions. Other modifications allow starch the ability to increase the 

water-holding capability at low temperature, while alternative chemical modification provides 

for enhanced hydrophilic or hydrophobic characteristics.  (Bemiller 2009)  The ability to hold 

water is a manner to prevent syneresis and retrogradation. 

 

In Moad’s analysis of the starch granule, the potential areas for chemical reactions were 

identified as occurring at the non-reducing and reducing chain end, the hemiacetal chain end, or 

at the hydroxyl groups located at C6, C2 and C3 (Figure 2-13, 2-14 & 2-15). (Moad 2011) The 

primary C6 and secondary C2, C3 hydroxyl groups of starch have been recognized as reactive 

when catalyzed by acid or base. Base catalyzation is employed in grafting of anhydrides, and 

the base is often used in stoichiometric with respect to reagent. (Moad 2011) However, reaction 
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with starches in highly alkaline media are prone to change of color of starch from white to pale 

yellow. While acid-catalysis reactions will hydrolytically degrade the starch, balancing the level 

of catalysis is critical to achieving the desired product. (Moad 2011) 

 

 

 

Figure 2-13 Structure of the glucose molecule (Moad 2011) 

 

 

 

Figure 2-14 Amylose – Chain Ends (Moad 2011) 
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Figure 2-15 Amylopectin – Identification of Branching (Moad 2011) 

 

 

In Morton’s review of the chemical process for starch modification, he summarized chemical 

modification as occurring in one of the following three states: (Bemiller 2009) 

• In suspension, where the starch is dispersed in water, the chemical reaction occurs, the 

modified starch is precipitated, rinsed and dried. 

• In a paste, where the starch is gelatinized with chemicals in a small amount of water, the 

paste is stirred and when the reaction is complete, the starch is air dried. 

• In the solid state, dry starch is treated with chemicals in a water solution, air dried, and 

finally reacted at high temperature (≥ 100oC). 

 

Twin-screw extruders are commonly used to produce modified starches in a continuous process 

with a more consistent product quality. The extruder has the advantage of being an excellent 

mixing device and is particularly suitable for processing highly viscous fluids, such as 

gelatinized starch. (Moad 2011) Thus, with the use of reaction extrusion (REX), starch 

modification can be performed in an homogeneous medium. The extruder also displays good 

heat transfer and plug flow characteristics. (Moad 2011) Variations in twin screw designs offer 
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good control over residence times, dispersion and distributions, thereby providing opportunities 

for the addition (or removal) of reagents and additives during the process, such as processing 

aids and stabilizers.  (Moad 2011)  

 

When describing a starch modification /derivative, several factors are considered: (Bemiller 

2009) 

• The plant source (Corn, Waxy Maize, Potato, Cassava, Pea etc.) 

• Any prior treatment that the starch may have seen before chemical modification, for 

example if the starch is oxidized, acid-catalyzed or dextrinization 

• The amylose / amylopectin ratio / content 

• Some idea, or measurement, of molecular weight distribution  

• The degree of polymerization (DP) in terms of the number α-D glucopyranose units 

• The type of derivation imposed on the starch—whether it is esterification, etherification 

or oxidation of the starch granule 

• The nature of the substituent group, if  the starch reacted with acetates, hydroxypropyl 

or other functional groups 

• The degree of substitution (DS) or the molar substitution of the available hydroxyl 

groups of the α-D glucopyranose units by the substituent group.  There are three 

hydroxyl groups on each α-D glucopyranose unit, as such, the maximum value for DS is 

3. When chemical modification occurs, the value for DS is expressed as an average 

substitution of the three hydroxyl groups on the α-D glucopyranose unit. The hydroxyl 

groups are located on carbon C2, C3 & C6 of the α-D glucopyranose units (anhydrous 

AGS) with C6 generally being the point of greatest substitution.  

• The physical form, whether it be granular or pregelatinized 

• The presence of associated components (proteins, fatty acids, fats, phosphorous 

compounds etc.) or native substituents 
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Morton pointed out that in some applications more than one chemical modification / treatment 

may be applied in order to obtain the desired properties of the starch.  (Bemiller 2009) The 

following are but a few of those chemical modifications / treatments which are regularly 

preformed on starches. 

 

2.3.1 Oxidation 

 

Oxidation of starches helps address the shortfalls of native starches in paper applications due to 

the thermal degradation as a result of continuous cooking of the starches for sizing and coatings 

applications.  Starch oxidation lowers the viscosities of high-solid dispersions while reducing 

the potential of increasing viscosity through continuous cooking (gelatinization). Oxidation 

depolymerizes the starch in a controlled chemical modification, resulting in reduced viscosity 

through limited cleavage of the α-1,6 linkage within amylopectin, and the minor introduction of 

carbonyl and carboxyl group at C2  C3. The presence of these additional functional groups 

minimizes the retrogradation of the amylose and offers viscosity stability.  (Bemiller 2009)  

 

Sodium hypochlorite is one of the main reagents which is employed for the oxidation of starch. 

In the process, polymer chains are cleaved and oxidation of the hydroxyl groups to carbonyl and 

carboxyl groups is achieved. Oxidation occurs randomly at primary hydroxyl (C6), secondary 

hydroxyl (C2 and C3), aldehydic reducing end groups, and minor cleavage of C2-C3 bonds. (Xie 

2011) 

 

The scission of the glucosidic linkages results in depolymerization of amylose and amylopectin, 

hence decreasing the swelling. The formation of carbonyl and carboxyl groups reduces 

gelatinization temperature, increases solubility and decreases gelatinization. The carbonyl and 

carboxyl groups also reduce the thermal stability of the oxidized starch resulting in browning. 

As well, the bulkiness of the carboxyl and carbonyls sterically interferes with the tendency of 

amylose to associate and retrograde. (Xie 2011, Moad 2011, Bemiller 2009) In Figure 2-16, 
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Moad proposes a mechanism for base catalyzed, oxidation of starch generating carbonyl and 

carboxyl groups. 

 

 

Figure 2-16 Oxidation mechanism of Starch (Moad 2011) 
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Oxidized starch was developed for the coating and sizing of corrugated, box board and paper. 

The goal was to achieve higher filler or fiber retention and smoother/ finer surfaces on the paper 

(sizing and sealing the pores). (Bemiller 2009) As the paper mills were continuously cooking 

the starches, modification was required to address the need for lower viscosities for uniform 

coating and prevention of retrodegradation. (Bemiller 2009) 

 

2.3.2 Esterification 

 

Esterification of starch was found to create a stable thickening agent which would work over 

larger temperature ranges (including refrigeration), high shear rates and low pHs, without 

syneresis (weeping resistance) or retrogradation. (Bemiller 2009) Many of these properties 

would be ideal to incorporate into a biopolymer. 

 

Starch esters are prepared by reacting starch with acid chlorides and anhydrides (acetic 

anhydride, higher anhydrides, maleic anhydride, alkyl/alkenyl succinic anhydrides). Starch 

esterification with an anhydride may be achieved through catalyzation by acid or base or free 

radical initiator. When base-catalysis is employed the amount of base used is typically 

stoichiometric. In Figure 2-18, Moad proposes a reaction mechanism for base-catalyzed 

succinic anhydride esterification and in Figure 2-17 to 2-21, he offers a reaction mechanism for 

esterification starch with maleic anhydride. (Bemiller 2009, Moad 2011)  

 

2.3.3 Transesterification and Cross-linking  

 

Starch contains two types of hydroxyls, primary (C6-OH) and secondary (C2-OH and C3-OH). 

These hydroxyls are able to react with multifunctional reagents resulting in starch cross-linking. 

Cross-linking is used to restrict swelling of the starch granule or to prevent gelatinization of the 

starch. (Bemiller 2009) 
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Figure 2-17 Starch Acetate Esterification (Moad 2011) 

 

 

Figure 2-18  Succinic Anhydride Esterification (Moad 2011) 
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Figure 2-19 Maleic Anhydride Esterification (Moad 2011) 

 

 

 

 

Figure 2-20 Acetic Anhydride Esterification (Moad 2011) 
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Figure 2-21 Alkyl Esterification (Moad 2011) 

 
 

Starches with low levels of cross-linking show a higher peak viscosity than that of native 

starches with reduced viscosity. The chemical bonding can maintain the granule’s integrity in a 

swollen state, prevents loss of viscosity, and provides resistance to mechanical shear while 

increasing levels of cross-linking will reduce granule swelling and decrease viscosity. At high 

levels of cross-linking, granules will not swell, and the starch will not gelatinize in boiling 

water under autoclave conditions. Morton commented that the employment of dicarboxylic 

acids or anhydrides offers the ability of transesterification to occur, thereby cross-linking starch 

chains.  These cross-links create a more shear and viscosity stable gelatinized starch over a 

wider range of temperatures. (Bemiller 2009). This ability to stabilize starches against shear and 

temperature offers several benefits in the design of bio-based thermoplastic. 
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2.4 Thermoplastic Starch Production 

 

Overview 

 

 

Figure 2-22 Schematic Representation of Starch Processing by Extrusion (Xie F. 2007) 

 

Starch is a renewable, low cost, biodegradable polymeric material. As such, it poses an 

attractive substitute for petroleum-based plastics (Chaudhary 2008) It is highly desirable to use 

extrusion equipment when processing starch because it is commonly available in the plastics 

industry. 

 

The construction of starch-based polymers is comprised of several steps which encompass 

chemical and physical processes. Such aspects covered are: the diffusion of water into the 

granule; granule expansion; gelatinization; shear and / or thermal decomposition; melting and 

crystallization. (Liu 2009 & Xie F. 2007) Figure 2-22 shows a typical representation of an 

extruder used for processing starch and the role of the respective regions in the extruder. 
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Gelatinization is particularly important as it relates to other processes. It is the basis of the 

conversion of the starch granules to a thermoplastic. (Zhang 2007) Different extrusion 

processing conditions alter the transformation of the starch during gelatinization.  Modification 

of these conditions are required to address the type of starch and extruder screw speed. For 

example, higher amylose starches may require an increase in extruder screw speed to address 

the higher crystallinity due to the hydrogen bonding of the amylose helix. (Chaudhary 2008)    

 

Thermoplastic starch resins may include the addition of processing aids and plasticizers to aid 

gelatinization during processing, thus producing suitable mechanical properties in the finished 

product.  Extruder screw speed is a particularly useful processing variable since it is readily 

available for change during extrusion operation, controls the amount of work done on the 

material during processing, affects the extent of degradation of starch, and alters the rheology of 

starch melts. (Chaudhary 2008) The differences in melt viscosity can be achieved through the 

selection of starches with various levels of amylose content.  Higher amylose content equates to 

a higher melt viscosity, thus affecting the die pressure for a set of extruder conditions. However, 

through chemical modification of high amylose starches, lower viscosity can be achieved 

resulting in a lower die pressure. (Thuwall 2006) 

 

2.4.1 Plasticizers 

 

Starches have a “memory” and naturally form helical structures of the amylopectin and 

amylose.  As such, in their native form, starches will degrade before their melt point is obtained. 

(Yu & Christie 2005)   To avoid degradation of the starch through either heat or shear, the 

hydrogen bonds of the hydroxyl groups within the helical structures need to be dissociated.  

This can be achieved through the gelatinization of the starch with a suitable plasticizer.  

(Kaseem 2011) 
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The most effective plasticizer for the gelatinization of starch is water. Willett studied the 

relationship between viscosity and shear rate as it pertains to various levels of moisture content 

and temperature. In general terms, Willett’s results showed temperature had a greater impact on 

viscosity to shear rate than did moisture content. In rough terms, as both temperature and 

moisture contents were increased, a subsequent drop in viscosity was noted. (Willett 1995) 

Thunwall observed a similar relationship when investigating the correlation between viscosity 

and shear rate as it pertains to oxidized and non-potato starches at various levels of glycerol and 

temperature. (Thunwall 2006) 

 

Although water is more effective as a plasticizer than glycerol, glycerol is better suited for 

extrusion and other thermo-processing. This is due to glycerol’s higher boiling point, 

availability and low cost. Figure 2-23 depicts the common plasticizers documented for starches 

and the relative frequency of their use. (Kaseem 2011) 

 

 

 

Figure 2-23 Familiar starch plasticizers as a percentage for glycerol (100% glycerol)  (Kaseem 

2011) 
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2.4.2 Free Radical Initiators  

 

Free radical initiators are applied in polymerization to start the reactions. In free radical 

polymerization there exists three fundamental stages which are defined by the mechanism of 

reaction: initiation, propagation and termination. It is in the initiation stage that the free radical 

initiator plays an essential role. (Odian 2004) 

 

In the initiation stage, peroxide thermal homolytically dissociates creating the active 

intermediates which advance the chemical reaction.  

Initiation 

I          2R*
0         Equation 2-1 

 

2R*
0 + M           R*

1     Equation 2-2  

 

As such, the decomposition rate for peroxide can be expressed as   

 

 
−𝝏[𝑰]

𝝏𝒕
= 𝒌𝒅[𝑰]   Equation 2-3    

 

whereby kd is the reaction rate of the decomposition at a temperature and [Io] in the 

concentration of the initiator at time equals zero. On the integration of the reaction rate, a 

function as an expression of time taken for peroxide to dissociate is obtained. (Odian 2004) 

   

[𝑰] = [𝑰𝟎]ⅇ−𝒌𝒅𝒕    Equation 2-4     or  𝒍𝒏
[𝑰𝟎]

[𝑰]
= 𝒌𝒅𝒕   Equation 2-5 

 

Free radical initiator chemistry has adopted the convention of describing their reactivity through 

the expression of their half-life time at a particular temperature. Half-life is the time at which 

the concentration of the initiator [I] decreases to one half of its original value. (Odian 2004) As 

such, when substituting ln 2 = 0.693 into the equation, it can be simplified.  
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𝒕𝟏
𝟐⁄ =

𝟎.𝟔𝟗𝟑

𝒌𝒅
      Equation 2-6 

 

Peroxide free radical initiator dissociation reactions follow the Arrhenius equation and allow for 

the calculation of reaction rate as a function of temperature. It goes without saying, that as 

processing temperatures increase so will the reaction rate.  (Odian 2004)  

 

𝒌𝒅 = 𝑨ⅇ−
𝑬𝒂

𝑹𝑻⁄
        Equation 2-7 or 𝒍𝒏 𝒌𝒅 =

𝒍𝒏 𝑨 − 𝑬𝒂
𝑹𝑻⁄       Equation 2-8 

 

From Equation 2-8, on the graphing of the values of ln kd against 1/T (K) a straight line is 

obtained. From the equation of that line, ln A is obtained from the y intercept and Ea/R from the 

line’s slope. Given that information, subsequently half-life times can be calculated for any other 

particular processing temperature. 

 

Table 2-1 Table of Properties for Trigonox 101 

Trigonox 101   T(oC) – 1h T(oC) – 10 h T(oC) – 15 second 

Half-life temperatures 147 oC 124 oC 214 oC 

Reaction rate kd 1.925 x10-4 1.925 x10-5 0.0462 

 

 

Displayed in Table 2-1 are the half-life temperatures for 1 and 10 hours for Trigonox 101. From 

that information, the reaction rates for each temperature are calculated with Equation 2-8. When 

the equations outlined above are applied to the data in Table 2-1, the graph for Trigonox 101 

Activation Energy is generated (Figure 2-24). With that information, there is the ability to 

calculate the reaction temperature for the peroxide dissociation for any half-life time. In Table 

2-1, the temperature of 214oC was calculated to achieve half-life of 15 seconds. 
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Figure 2-24  Trigonox Activation Energy - Graph of ln kd versus T-1 K 

 

 

Understanding the concept of reaction rate and kinetic calculations are important in migrating 

from the original work conducted in the Wolff’s patent (2013)to potentially a twin-screw 

extruder. As outlined, Trigonox 101 was chosen for discussion for review here because it is a 

free radical initiator for the chemical modification in the batch reactor and subsequent steps. In 

the batch reactor described in Wolff’s patent (2013), thermoplastic starch (TPS) was generated 

in the presence of peroxide.  The mixture was exposed to 82o-96oC for a minimum of 6 hours 

under vacuum before being discharged. In the subsequent stages, the thermoplastic starch was 

melt fluxed with the polyester at 160oC in a Banbury internal mixer for 20 minutes before the 

starch copolyester polymer was transferred to a single screw extruder for pelletization. One of 

the advantages of this batch process is the easy of control of the residence time. 

 

In a twin-screw extruder, the time is limited to how long the raw materials remain within it. As 

such, complete polymerization is constrained to this time frame and limited to shorter residence 

times as compared to batch processes like the Banbury internal mixer. An extruder with a 52:1 

L/D, 53 mm twin screw extruder operating at 100 RPM, this time ranges from 80 – 120 seconds 
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depending on the twin screw extruder’s element configuration. This time frame is referred to as 

the residence time. Therefore, the residence time in an extruder (about 2 minutes) is significant 

smaller than the residence time on an internal mixer (about 20 minutes). 

 

In conclusion, the kinetics of the free radical initiator and the half-life time for the free radical 

initiator needs to be adjusted according to the time of processing equipment. If the half-life time 

of the free radical initiator is much longer than the residence time experience by the equipment, 

than the contribution of the free radical initiator is of limited or not benefit to the overall 

process requiring chemical reactions to the polymer. As such, high temperatures and the nature 

of the free radical initiators (peroxides) with fast reaction rates should be considered when 

migrating from a batch process with long residence time to a continuous process with short 

residence time. 

 

2.5 Addition of other Biopolymers 

 

Over the past several years, thermoplastic starches have been compounded with other 

biopolymers in order to enhance the properties of the thermoplastic starch (TPS). Compounds 

of TPS have been made with the following biopolymers: Polylactic Acid (PLA) has similar 

mechanical properties to traditional polymer, however much lower thermal properties due to its 

low Tg at 60oC; Polyhrdroxyalkanoates (PHA) produced by bacterial fermentation with 

potential to replace conventional hydrocarbons with Tg from -40oC to 5oC and melting 

temperatures in the range from 50oC to 180oC; Polybutylene Succinate (PBS), a semi-

crystalline polyester with melt point higher than that of PLA and similar mechanical properties 

to those of polyethylene; and Poly(butylene adipate-co-terephthalate)(PBAT) has similar 

mechanical and thermal properties to conventional polymer. (Phua 2013) 
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2.6 Reaction Mechanisms 

 

Numerous papers have been written which cover the topics of potential mechanism for 

maleation, etherification, esterification and transesterification of starches and various 

polyesters. Some of the more prominent articles published were by Stagner 2011, Raquez 2006 

/ 2008, Narayan 2009, Moad 2011, Hablot 2012, Kalambur 2012 and Nabar 2005.    

 

In sample preparation, all the raw materials are comingled before introduction to the CWB 

Intelli-Torque Plasti-Corder® Rheometer 3-piece mixer/measuring head with Banbury Blades. 

As such, several potential reaction mechanisms could be possible. These are but a few of the 

potential mechanisms which could be considered: 

• Maleated Poly(butylene adipate-co-terephthalate) PBAT in the presence of peroxide 

• Maleated Polylactic Acid (PLA) in the presence of peroxide 

• Maleated Starch 

• Starch hydrolysis followed by its subsequent maleation 

• Starch ether formation with glycerol 

• Various combinations of each one of them. 

 

2.6.1 Maleation of Poly(butylene adipate-co-terephthalate) (PBAT) 

 

Nabar studied the effects of maleated poly(butylene adipate-co-terephthalate) as a 

compatibilizer. In Nabar’s mechanism scheme, it is proposed that the PBAT reacts with the free 

radical initiator creating a radical which subsequently reacts with the maleic anhydride. That 

structure goes through β-scission and maleates a portion of the PBAT molecule. (Nabar 2005) 

(Figure 2-25) 
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Figure 2-25 Proposed free radical initiated maleation mechanism followed by β-scission of PBAT 

(Nabar 2005) 
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2.6.2   Maleation of Polylactic Acid (PLA) 

 

Kalambur 2012, in his studies, looked at the reaction of maleic anhydride with polylactic acid 

(PLA). From there, the authors proposed the free radical initiated maleation mechanism of 

polylactic acid (PLA). (Figure 2-26) 

 

Figure 2-26 Proposed free radical initiated maleation mechanism of PLA (Kalambur 2012) 

 

2.6.3 Raquez’s Maleation of Starch 

 

Raquez, in her papers and PhD thesis, proposed three different mechanisms on the reactions 

between glycerol, water, maleic anhydride, a free radical initiator and starch in a twin-screw 

extruder. (Raquez 2008) Her work covered: the maleation of starch; the hydrolysis of starch; 

and starch glycerylate formation.  

 

The first mechanism looked at the reaction between maleic anhydride and starch. In it, Raquez 

suggests that the maleic anhydride forms an ester with hydroxyl group of C6 of the glucose unit 

as offered in Figure 2-27.  

 

In the second mechanism, Raquez proposed that starch, in the presence of a free radical initiator 

and an excess of water, would hydrolyze, resulting in a reduction of the starch’s molecular 

weight. Figure 2-28  
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In the third and final mechanism, she proposed that starch, in the presence of a free radical 

initiator and an excess of glycerol, would result in hydrolysis of the starch followed by 

formation a starch glycerylate. Figure 2-29 

 

 

Figure 2-27 Esterification reaction of starch with maleic anhydride occurring at the C6 hydroxyl 

position on starch – (Raquez 2008) 

 

Figure 2-28 Hydrolysis and glucosidation of starch in the presence of water and proton donator 

(Raquez 2008) 

 

Figure 2-29 Hydrolysis and starch ether formation with glycerol glycerylated starch (Raquez 

2008) 
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2.6.4 Glycerylated Starch and Starch Polyesters Graft Copolymers 

 

Hablot’s paper “Reactive extrusion of glycerylated starch and starch polyesters graft 

copolymers” offers two groups of reaction schemes from his investigation. The first was 

regarding reactions between starch, maleic anhydride, glycerol, and water (Figure 2.30). The 

second was on the concept of transesterification of starch with a polyester like PBAT. (Figure 

2-31) (Hablot 2012) 

 

In the reactions with starches, Hablot offers a mechanism which suggests the generation of 

ethers between the starch, maleic anhydride and glycerol, where various species of starch 

glycerylate are formed. Hablot’s first group of mechanisms were a similar concept to what 

Raquez 2008 had proposed. However, Hablot suggests the potential of an equilibrium that 

exists between certain starch glycerylate species.  (Hablot 2012) (Figure 2-30) 

 

In the second group of mechanisms, Hablot suggests the potential for three separate 

mechanisms for transesterification between starch glycerylate and a polyester through reactions 

with maleic anhydride (Hablot 2012) (Figure 2-31, 2-32, 2-33, & 2-34). In each one the 

mechanisms proposed by Nabar, Kalambur, Raquez and Hablot, they were able to support their 

proposals through the analysis of their FTIR curves. 
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Figure 2-30 Ether formation in the presence of maleated starch in excess glycerol (Hablot 2012) 

 

  

Figure 2-31 The second propose mechanisms of transesterification reactions between starch and 

PBAT in the presence of maleic anhydride, glycerol and water (Hablot 2012) 
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Figure 2-32 Transesterification at C6 (Hablot 2012) 

  

Figure 2-33 [and / or] Transesterification at C1 (Hablot 2012) 

 

Figure 2-34 [and / or] Starch grafted glycerol transesterification (Hablot 2012) 
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2.7 Polymer Characterization.  

 

Chemical characterization of the materials synthesized were conducted through the 

implementation of the standard testing methods established by America Society for Testing and 

Materials (ASTM). This section covers the methodologies of, 

• Fourier Transform Infrared Spectroscopy (FTIR) ASTM E1252 

• Differential Scanning Calorimetry (DSC) ASTM D3418 

• Thermogravimetric Analysis (TGA) ASTM E1131 

 

 

2.7.1 Fourier Transform Infrared Spectroscopy 

 

Fourier Transform Infrared Spectroscopy (FTIR) is a valuable tool in understanding the 

molecular structure for polymers. With polymer synthesis, FTIR can qualitatively and 

quantitatively determine the formation of certain bond structures, such as ether, esters, carbonyl 

and carboxyl groups. (Griffiths 2007) FTIR can detect the characteristic signature associated 

with each configuration of organic atoms. Then, by referring to existing spectral tables of 

function groups, their presence can be determined. Quantitative determination of the functional 

group concentrations of an organic species can be determined with the application of Beer’s 

Law. (Griffiths 2007) Figure 2-35 offers an FTIR spectrum in absorption mode and depicts the 

unique spectral signatures that are available for the specific functional groups. (Griffiths 2007)  

Beside each peak, the functional group is noted.   
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Figure 2-35 FTIR spectrum of thermal plastic starch with PBAT (Griffiths 2007) 

 

 

2.7.1 Differential Scanning Calorimetry (DSC) 

 

ASTM D3418 defines the standard test method for measurement of transition temperatures, and 

enthalpies of fusion and crystallization of polymers, by Differential Scanning Calorimetry 

(DSC). 

DSC provides a rapid thermal analysis through the measurement of energy given off, or 

absorbed, by the material during phase transitions as a result of morphological or chemical 

changes as a polymer is heated/cooled over specified temperature ranges. Specific values for 

heat capacity, heat flow and phase transitions temperatures can be obtained from the DSC. 

Differential scanning calorimetry can be used to identifying specific polymers, polymer alloys, 

and certain polymer additives, through thermal transitions as outline the ASTM method ASTM 

D3418. 
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Table 2-2 Characteristic FTIR bands of starch and associated polymers (Aldrich)  

Wavelength Assignment 

3300-3900 O-H Stretching from moisture 

3200-3400 cm-1 O-H stretching from glycerol 

2940 cm-1 ν CH=CH Alkene 

2920 cm-1 ν CH3 C-H stretching 

2890 cm-1 ν CH2 C-H stretching  

1850 cm-1 ν C-O-C maleic anhydride 

1728 cm-1 ν C=O carbonyl 

1710 -1715 cm-1 ν C=O esters  

1640 – 1690 cm-1 ν C=C stretching  

1462 cm-1 δ CH2 alkane  

1325-1440 cm-1 δ C-H alkane bending  

1243 cm-1 δ O-H bending 

900-1250 cm-1 ν C-O stretching 

1160 cm-1 ν C-O stretching aliphatic ether 

770 cm-1 δ C-H bending  

  

  

  

 

The DSC can provide an examination of the crystallinity of a material and look at its change in 

morphology following chemical modification. The enthalpy (heat) of melt (fusion) (ΔHm) is the 

measurement of heat absorbed during the phase transformation from solid to liquid. The 

enthalpy (heat) of crystallizations (ΔHc) is the measurement of the heat given off during the 

phase transition from liquid to solid. The determination of ΔHm and ΔHc is through the 

integration of the areas under the peaks of a normalized DSC curve. The units of measurement 

for  ΔHm and ΔHc are recorded in Joules / gram (J/g) (Widmann 2001). 
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The degree of crystallinity (χc) in a material is a function of the enthalpy of melt for the material 

in its current state, divided by its enthalpy of melt at 100% crystalline state  (ΔHm0) as outlined 

in Equation 2-9.  (Sichina 2000)  The values for ΔHm0 are found in literature.  

 

𝑫ⅇ𝒈𝒓ⅇⅇ 𝒐𝒇 𝒄𝒓𝒚𝒔𝒕𝒂𝒍𝒍𝒊𝒏𝒊𝒕𝒚 (𝝌) =
[𝚫𝐇𝐦− 𝚫𝐇𝐜]

𝚫𝐇𝐦𝟎 
 𝒙 𝟏𝟎𝟎%        Equation 2-9 Degree of  crystallinity 

 

2.7.2 Thermogravimetric Analysis (TGA) 

 

Thermogravimetric analysis (TGA) determines endotherms, exotherms, and weight loss on 

heating /cooling used in identifying specific polymers.  ASTM E1131 is the standard test 

method for compositional analysis by thermogravimetry. This test method provides a general 

technique incorporating thermogravimetry to determine the amount of highly volatile matter, 

medium volatile matter, combustible material, and ash content of compounds. This test method 

will be useful in performing a compositional analysis in cases where agreed upon by interested 

parties. (ASTM E1131) TGA analysis is beneficial in determining if the product evaluated is 

obtained from melt mixture of independent ingredients, a material exhibiting covalent bonding 

or intramolecular interactions, between the various raw materials. The shifts in the peaks from 

the raw materials suggest the potential of some bond interaction between the raw materials and 

is reflected in thermal stability changes of the material being evaluated.  

 

In situations of potential covalent bonds occurring, TGA can be used to investigate chemical 

reactions where there is the potential for changes in weight. With stoichiometric reaction, the 

molar mass of the eliminated molecule can be determined and, as such, indicates how complete 

the chemical reaction achieved. (Widmann 2001)    
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Chapter 3 

Materials and Methods 

3.1 Introduction: 

 

The foundation of this work was built on the selection of specific materials and methods which 

were employed, followed by the subsequent examination and analysis of the data gathered. 

 

In this chapter, the considerations and specific choices of materials and methods are discussed 

as they relate to these topics:  

• Raw material selection 

• Sample Preparation 

• Systematic development of compounds for analysis  

• Characterization methods of analysis as applied to products developed in compounding 

 

3.2 Raw Materials 

3.2.1 Starches 

 

Consideration was given to the materials selected based on their contrasting properties and 

commercial availability. In the example of starch selection, one of the questions considered 

dealt with which type of starch would destructure the fastest under given conditions.  

 

The starch samples were obtained from Ingredion Incorporated of Bedford Park IL USA. A 

generic food grade maize dent starch was selected as a reference material for a base line 

comparison. The other samples were chosen from Ingredion’s product portfolio based on the 

various properties which they offer.   The properties taken into consideration were: 
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• Type of starch: Corn (Maize) or Potato 

• Morphology based on amylose content: Ranging from 1% through 70 % amylose (1% / 

25% / 70%). Starches with higher levels of amylose contain larger areas of crystallinity 

• Viscosity: Ranging from high viscosity of conventional dent starch through to the lower 

viscosity of modified versions 

• Chemical Modification: Oxidized starches displaying various levels of carbonyl and 

carboxyl group formation between C2-C3 in the glucose unit structure (ranging 0.1% 

through 3%) 

 

3.2.2 Plasticizers 

 

As discussed in the literature reviews, both water and glycerol are efficient at destructuring and 

plasticizing starch. These materials were sourced from: 

• Honeywell High Purity Water Lot # DA 150 

• Brenntag Glycerol ≥98 % pure Lot# 1306030035 

 

3.2.3 Polyester Resins 

 

Consideration was taken to evaluate the dominant commercial and biodegradable resins. 

Aliphatic polyester resin, polylactic acid (PLA) and aromatic / aliphatic copolyester resin, 

polybutylene adipate terephthalate (PBAT) polyester resins were identified as the resins of 

choice. It is to be noted that both polyesters are hydroscopic in natural and will hydrolysis in the 

presence of heat, shear and water to form lower molecular weight polymers. Samples were 

acquired from BASF and NatureWorks. 

• PBAT - BASF Ecoflex F Blend C1200 Lot 15197068E0 item# 50167513 

• PLA - NatureWorks Ingeo 4043D Lot # C10428B111       
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Table 3-1 summarizes the starches evaluated in this study. 

 

Table 3-1 Ingredion Incorporate starch samples selected for evaluation  

Name  Description  Lot Number Amylose: 

Amylopectin 

ratio 

Moisture 

level % 

Hylon VII  GMO Hi-Amylose 

Corn 

KCK5510 70:30 7.83 

30050  Paper coating - 

Chemically modified 

between C2 and C3 

with 0.1-0.3% of 

carbonyl and carboxyl 

group formation. 

1246150100 25:75 8.02 

55310  Modified - Reduced 

Viscosity Oxidized 

7280100001 25:75 6.60 

Novation 1600  Potato 6/28/2017 25:75 10.58 

055720  Modified - Reduced 

Viscosity Oxidized 

7281129102 25:75 6.73 

Stablebond 

055110 

 Modified Reduced 

Viscosity 

7284212104 25:75 4.25 

Amioca  Waxy Maize Starch – 

predominately 

amylopectin 

ED8646 1:99 5.89 

Dent starch  Food Grade Maize 

Starch (conventional) 

SA18D00312 25:75 10.21 
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3.2.4 Peroxides 

 

The challenge in working with organic peroxides is the danger associated with their rapid decay 

and the release of hydrogen, if handled incorrectly. As such, the organic peroxides were chosen 

with respect to safety and the properties offered. Selection of the organic peroxides was based 

on the criteria of:  

• Stability at room temperature  

• Free radical initiator half-life at compounding temperatures 

Three organic peroxides were identified, and they were acquired from:  

• AkzoNobel Trigonox 101 (2-5 Dimethyl, 2-5-di(tert-butylperoxyl) hexane)  

Lot # PAE 12051D1201  

• Alfa Aesar Dilauroyl Peroxide 97% pure (item#L14310-100g), lot#10185597  

• Alfa Aesar Dibenzoyl Peroxide 97% pure (dry weight basis) with 25% water 

(item#L13174-50g), Lot# 10186486  

 

Table 3-2 Peroxides and their half-life (Aldrich) 

 T(oC) – 1h T(oC) – 10 h T(oC) – > 15 second 

Trigonox 101   147  124  214  

Dibenzoyl Peroxide 97% pure 91 72 <150  

Dilauroyl Peroxide 97% pure 79  61  <130 

Note: the half-life of each material and the temperature to achieve less than 15 seconds 
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3.2.5 Grafting Agent 

 

Maleic Anhydride (MAH) is a well-known building block in polymerization. Its bifunctional 

nature allows for covalent bonding between polymers, starches and other materials. High purity 

(99.0%+) maleic anhydride pastels (item # 63200-500G-F) Lot # BCBP1063V  

were acquired from Fluka Analytical. 

 

3.3 Sample Preparations 

 

3.3.1 Formulation sheets 

   

Formulations sheets (Figure 3-3) were developed to calculate the specific weights of each 

ingredient for compounding in a CWB Mixer-Measuring Head for an open volume of 60cc. The 

example below is for thermoplastic starch compound formulation. A mixture of starch and a 

plasticizer blend of glycerol and water were compounded in Mixer-Measuring Head with 

Banbury blades rotating at 45 RPM and initial mixer body preheated temperature of 150oC.   

Table 3-3 Compounding Formulation Sheet 

         

 

Blade 

Type: Banbury Blades 
  

Temp: 150oC 
 

         

Ingredients Addition phr 

spec. gravity      

kg/ltr 

 volume 

phr/sg 

batch 

weight US$/# 

ml of 

liquid 

gram 

weight 

                  

Starch  a 31.10  1.20 0 25.9167  0.11242  $0.45   50.99 

PBAT  b 0.00 1.26 0.0000  0.00000  $1.95   0.00 

MAH (powder) b 0.00 1.310 0.0000  0.00000  $1.55   0.00 

Glycerin  a 7.78 1.129 6.8911  0.02812  $0.59 11.30 12.76 

Peroxide  b 0.00 0.877 0.0000  0.00000  $4.10 0.00 0.00 

                      

Water (demineralized) a 1.50 1.000 1.5000  0.00542  $0.01 2.46 2.46 

                      
         

         
Totals 

 
40.4  

 
34.3  0.1  $0.46   66.2  

  
phr 

 
ltr/kg lbs lbs 

 
grams 
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3.3.2 Compounding Techniques  

 

Formulations were developed to explore starch’s behaviour in various compounding situations. 

This technique was developed to manufacture the samples for evaluation which offer some form 

of consistency and reproducibility.    Dry raw materials were weighed out on Sartorius Signum 

1 scale and placed into a stainless-steel bowl where they were whisked together. Liquids were 

premeasured and uniformly blended. Using a 5 ml syringe, the required volume of blended 

liquids was drawn and introduced slowly into the dry mix while under continuous whisking. C 

W Brabender (CWB) 3-piece Mixer-Measuring Head with Banbury style blades (Figure 3-1 and 

3-3) were mounted on CWB Intelli-Torque Plasti-Corder® Torque Rheometer (Figure 3-2). The 

predetermined amount of mixture was introduced into CWB quick load chute with piston and 5 

kilo weight. The chute was placed on the Mixer-Measuring Head once the Intelli-Torque Plasti-

Corder® Torque Rheometer had reached the established conditions and completed calibration. 

The quick load chute with piston and 5 kilo weight were employed to quickly, efficiently and 

uniformly introduce the formulation into the torque rheometer mixer in an effort to create 

reproducible data and process so that information collected could be compared.   

 

 

Figure 3-1 View of thermoplastic starch on rotor of the CWB mixer on opening 
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3.3.3 CWB Intelli-Torque Plasti-Corder® Rheometer Compounding 

 

CWB Intelli-Torque Plasti-Corder® Rheometer with 3-piece mixer/measuring head with 

Banbury Blades was employed to generate the compounds. Banbury blades were chosen as they 

duplicate the mixing action of a commercial Banbury Mixer which offers medium shear-rate 

mixing action ideal for compounding studies. The Intelli-Torque Plasti-Corder® with 

WINMIX® software program captures the mix blade speed, torque rheometry, and body and 

material temperatures in real time during the compounding process, then offers the data in 

graphic or excel format for further analysis in OriginLab’s Origin® or other analytical 

softwares.    

 

 

 

 

 

Figure 3-2 C.W. Brabender Plasticorder 
 

Figure 3-3 Thermoplastic starch covered 

Banbury rotors 

 

3.4 The systematic development of compounds for analysis  

 

The experimental design identified that several formulations /compounds were required so that 

the following concepts could be explored:  

i. The destructuring and plasticization of food grade maize dent starch 

ii. The destructuring and plasticization of various starches 

iii. The effect of free radical initiators on chemically modifying starch 

iv. The effects of MAH on chemically modifying starch 
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v. The effects of pre-drying starch before compounding 

vi. The investigation of compounds made with PBAT and PLA 

 

3.4.1 Destructuring and plasticization of regular dent starch  

  

  Multiple trials were designed to explore the relationship between several variables and their 

influence on the rate at which dent maize starch would destructure and plasticize during 

compounding. These studies cover the concepts outlined, while examining their impact on the 

gelatinization of regular dent starch, 

• at various levels of water addition in compounding  

• over various ratios of water and glycerol in compounding  

• over various shear in compounding 

• over various temperature employed in compounding 

 

Data was collected on torque and temperature as a function of time from the CWB and 

compared to establish relationships of these variable on destructuring and plasticizing dent 

maize starch.  

3.4.2 Destructuring and plasticization of various starches  

 

In the previous section, the relationship between several variables and their influence on the rate 

at which dent starch  destructures during compounding were explored. Subsequently, an 

assessment of a variety of starches and their rate of gelatinization was undertaken with a 

standardized group of conditions. The data was collected for analysis. 
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3.4.3 The effect of free radical initiators  

    

Three of the starches were selected from the previous group of starches based on their ability to 

quickly and efficiently destructure and plasticize under the conditions considered. 

 

These starches were compounded with the three organic peroxides and the properties examined. 

In each formulation, one of the chosen starches was compounded with the other materials 

outlined. Note that these starches were conditioned before compounding for this evaluation. 

 

3.4.4 The effect of increasing free radical initiator 

 

The experimental design examines the impact of increasing the amount of the fastest free 

radical initiator. In this scenario, the amount of organic peroxide was increased by three times 

the initial amount added, then compared to the baseline compound.  

 

3.4.5 The effects of MAH on chemically modifying starch 

 

Maleic Anhydride (MAH) is a well-known building block in polymerization. Its bifunctional 

nature allows for covalent bonds to be formed. This experimental design examines the starch 

polyester compound and the impact of increasing the amount of MAH added during 

compounding. The quantity of MAH added increased by two and three times over the initial 

amount.  

 

3.4.6 The effect of pre-drying the starch before compounding 

 

Starch samples were dried in a Cascade TEK 5 cubic foot vacuum oven at 104oC and under 

4.40 Torr vacuum (Figure 3-3). At timed intervals of three and five hours, samples were pulled 
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and moisture content determined with Ohaus MB 45 moisture balance. Following this, the dried 

samples were compounded according to the design outlined in section 5.  

 

Figure 3-4 Photos of the Cascade TEK Vacuum Oven and Process Conditions. 

 

 

3.4.7 Pre-drying starch and master batching 

 

This study assumed that drying the starch imparted some value to the process. Accepting that 

premise, the concept of pre-dying the starch offline may be required. Given the time required 

for drying, the hypothesis was raised “if the starch is dried offline and blended with the other 

ingredients, would there be a shelf life to the mixture” To explore that notion, and to understand 

the impact of allowing a master batched formulation of dry starch to sit for a period of time, one 

starch sample was dried for five hours and analyzed for moisture content. Four samples, large 

enough for compounding, were drawn and mixed together with all the other ingredients. Each 

mixture was placed in a labeled zip lock bag. These mixtures were left standing for a 

predetermined time before compounding. At time zero (0 seconds) bag 1 was immediately 

compounded. Then at two hours, five hours and 24 hours, the other corresponding labeled 

materials were compounded. 

 

 

 

 

 

 

Vacuum 

level 

 

 

Ohaus 

MB45 

Moisture 

Balance 

 

 

Temperature 

in the oven 
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3.4.8 Investigation of compounds with PBAT and PLA 

 

The experimental design to this point focused on compounding PBAT polyester with starches. 

As such, an investigation of PLA-starch compounds was conducted, and its properties 

compared with PBAT – starch compounds. 

 

3.5 Characterization methods of analysis  

3.5.1 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Chemical analysis of the compounded samples was conducted on a Perkin Elmer Spectrum 400 

MIR FITR equipped with an Universal ATR.  Each sample was scanned four times with a 

single bounce through a Diamond/ZnSe crystal with a resolution of 4 cm-1. The total scan 

covered the spectrum from 4,000 – 650 cm-1. Perkin Elmer Spectrum 400 MIR FITR calibration 

was verified with polystyrene film calibration standard and an atmospheric correction was 

captured before ATR FTIR spectrum of the samples were taken in accordance to ASTM E1252 

 

3.5.2 Differential Scanning Calorimetry (DSC) 

 

Differential Scanning Calorimetry (DSC) analysis of the samples were conducted on a Perkin 

Elmer DSC 8500 with Pyris software in accordance to ASTM D3418. The DSC was calibrated 

with Indium and Zinc and the verification of the calibrate was conducted with Indium standard. 

DSC was conducted in an inert nitrogen atmosphere with a flow rate of 30 ml min-1. All 

temperature transitions occurred with a uniform temperature rate change of 10oC min-1. Samples 

weighing between 3-12 mg were hermetically sealed in 50ml aluminum pans. The samples were 

subjected to two cycles of heating and cooling as per the following program: (i) samples were 

held at 40oC for five minutes, (ii) ramped from 40 oC to 190oC, (iii) held for five minutes at 190 

oC, (iv) cooled from 190oC to 40oC, (v) held for five minutes at 40oC, (vi) ramped from 40oC to 

190oC, (vii) held for five minutes at 190oC, (vii) cooled from 190oC to 40oC, (ix) held for five 
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minutes at 40oC. Following this process, the curve from the second heating pass was analyzed 

for temperatures of melt onset, melt end, and peak temperature and heat of fusion with the Pyris 

software. The second cooling curve was also analyzed for crystallization, looking for the 

temperatures for the onset, end point, and peak temperature and heat of crystallization.  

 

3.5.3 Thermal Gravimetric Analysis (TGA) 

 

Thermal Gravimetric Analysis (TGA) were conducted on the samples with a Perkin Elmer Pyris 

1 TGA instrument in conjunction with Pyris software in accordance to ASTM E1131. The 

TGA’s temperature calibration was established with reference samples of Nickel, Perkalloy, 

Zinc and Iron. The weight calibration was established with certified Troemner 100 mg standard 

weight. TGA was conducted in an inert nitrogen atmosphere with a flow rate of 30 ml min-1. All 

temperature transitions occurred with a uniform temperature rate change of 10oC min-1. Samples 

weighing between 5-10 mg were placed in ceramic pans. The samples were subjected to the 

following program: (i) samples were held at 50oC for five minutes, (ii) ramped from 50oC to 

600oC, (iii) held for five minutes at 600oC, (iv) cooled from 600oC to 50oC. Following this, the 

samples were analyzed for composition as outlined in the ASTM standard. 
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Chapter 4 

Results and Discussions: Destructuring and Plasticization of Starch 

4.1 Introduction 

 

When looking to migrate the process outlined in Wolff’s patent (2013) to a twin screw extruder, 

there is the need to define the challenges in the process which will have to be addressed up 

front. Understanding these limitations helps make the experimental results more meaningful and 

aids in the success of process migration to a twin screw extruder. 

 

Reaction extrusion involves several processes within the confines of the extruder’s length and 

limited time. These processes may be broken down into stages, however it is probable that some 

could overlap others and occur simultaneously. For the purpose of this thesis it is assumed that 

these stages occur one after the other.  (Xie F. 2007) 

Stage 1. Destructuring and plasticization of starch  

Stage 2. Chemical modification of starch with maleic anhydride 

Stage 3. Introduction of polyesters  

Stage 4. Chemical reactions 

Stage 5. Venting of gases 

Stage 6. Mixing 

Stage 7. Venting of gases 

Stage 8. Meter of the material to die 
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As there are several stages / processes that need to be performed within the confines of the 

extruder within a limited time, the goal is to identify the most time efficient parameters that will 

allow for the desired results to be achieved.  

 

One significant challenge in the formation of starch copolymers with polyesters is with the 

chemical modification of starch. To achieve effective modification, the starch granule must 

open first and form the gel ball as describe by Yu & Christie, 2005. This process is the 

destructuring and plasticization of the starch. 

 

In this chapter, multiple trials were designed to explore the relationship between several 

variables and their influence on the rate at which dent maize starch would destructure and 

plasticize during compounding. These studies cover the concepts outlined, while examining 

their impact on the gelatinization of regular dent starch: 

• at various levels of water addition in compounding  

• over various ratios of water and glycerol in compounding  

• over various shear rates in compounding 

• over various temperature employed in compounding. 

    

Time is money when performing reaction extrusion with a twin screw extruder. The limitation 

of resident time, the time that the materials remain in the extruder, dictates the total time frame 

available to perform every step in the desired process(es) or reactive extrusion polymerization. 

These studies were carried out in a laboratory scale internal mixer instead of an extruder 

because of the flexibility offered by the internal mixer with respect to running experiments in 

different times. 

 

As a point of reference, residence time on a 42 mm with 52:1 L/D Leistritz twin screw extruder, 

configured for reaction extrusion with starch, maleic anhydride, glycol, and polyester, was 
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determined to be one minute and thirty seconds. This residence time frame was established on a 

42 mm with 52:1 L/D lab line located at company Leistritz Extrusion Ltd. in Sommerville NJ.  

 

As such, the limitation of one minute and thirty seconds was accepted as the window of 

evaluation when looking at these properties being assessed. 

 

4.2 The influence of water on the destructuring of dent starch 

 

Common dent starch was chosen to create a baseline for studying the influences of various 

parameters on the process of destructuring starch. The dent starch sample utilized in these 

evaluations contained 10.2% moisture as determined with Ohaus MB45 moisture balance.  

Blends of starch with various amounts of water, as outlined in Table 4-1, were evaluated for 

torque and temperature over time with CWB Intelli-Torque Plasti-Corder® Rheometer with 3-

piece mixer/measuring head and Banbury Blades with body temperature at 90oC. The 

temperature of 90oC was recognised by Yu & Christie (2005) as being high enough for the 

gelatinization of dent starch, while being below the boiling point of water. Employing this 

temperature mitigates the potential for moisture loss due to evaporation, thereby identifying the 

amount of water required to effectively destructure the starch granule and within what 

timeframe.  

Table 4-1 Formulations evaluated in an effort to interrupt the influence of water on the 

destructuring starch 

Label Starch Water 

Wt-%  

Glycerol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

DM-W0 Dent Maize 0 -- 45 90 

DM-W5 Dent Maize 5 -- 45 90 

DM-W10 Dent Maize 10 -- 45 90 

DM-W20 Dent Maize 20 -- 45 90 
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In Figure 4-1 the initial slope of the curve represents the rate at which the dent starch is being 

destructured. The increase in torque reflects the opening of the amylopectin and amylose 

molecules from their granule structure thereby increasing the viscosity of the mix.  The height 

of the curve denotes the amount of energy required to complete the destructure of the starch 

granule. In fact, the height of the curve or the area under the curve are indicative of the work 

required during this process. The decline of the torque curve following the maximum height 

illustrates the plasticization of the amylopectin and amylose molecules and indicates the 

effectiveness of that specific amount of water to reduce the viscosity of the mixture.  

 

 

Figure 4-1 Displays of the torque measurements as a function of time for the blends of starch and 

water outlined in Table 4-1 
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Table 4-2 Summary of the energy (torque) and time required to destructure starch compounds 

outlined in Table 4-1 

Property  DM-W0 DM-W5 DM-W10 DM-W20 

Total moisture Wt-% 10.21% 15.21% 20.21% 30.21% 

Onset Torque [mg] 650 985 0 214 

Max Torque [mg] >10,000 5093 3235 1334 

Delta Torque [mg] >10,000 4108 3235 1120 

Time [sec] at onset 360 7 0 17 

Time to max torque [sec] 366 26 14 26 

Initial Temp [oC] at onset 87 70.1 72.4 74.9 

Final[oC] 103 78.4 73.7 71.9 

 

 

 

Figure 4-2 Displays of the temperatures of the mixes measured as a function of time for the blends 

of starch and water outlined in Table 4-1 
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Figure 4-3 Displays of the torque measurements as a function of time for the mixes of starch and 

water outlined in Table 4-1 during the first 22 seconds. 

 

Figure 4-4 Displays of the temperatures of the mixes measured as a function of time for the blend 

of starch and water outlined in Table 4-1 during the first 22 seconds. 
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The addition of 5% moisture seems to offer the ability to quickly destructure the starch 

(DMW5). However, when the temperature parameter is taken into consideration, a dramatic 

increase is noted. This temperature increase is believed to be a result of a lack of plasticizer. 

The energy transferred into the mixture by the rotating Banbury Blades is not sufficiently 

compensated and allow for free movement of the amylopectin and amylose molecules due to 

lack of plasticizer. As a result, higher torque values are recorded, reflecting higher viscosities of 

the mixture. With the continuous addition of energy into the mixture, higher shear occurs 

between the molecules which translates into additional heat being captured within the mix. The 

net result is an increase in temperature which exceeds the boiling point of water, thus resulting 

in the evaporation of the plasticizer. As time passes, the loss of plasticizer increases and the 

viscosity of the mix and temperature increases. At about 5 minutes of exposure to continuous 

mixing, the torque exceeds the maximum safety value of 10,000 mg and severs the safety shear 

pin, stopping the equipment at a recorded temperature of 114oC. This indicates that starch, with 

the addition of 5% moisture, was not suitable to be considered efficient in the destructuring and 

plasticization of dent starch.     

 

Of interest is the assessment of the starch by itself (DMW0). The defined sample of dent starch 

utilizes in this evaluation contained 10.2% moisture from the manufacturer and is introduced 

into the 3-piece mix head with no addition of extra moisture. Within the confines of this 

evaluation, there is no destruction or plasticization of the starch occurring.  After six minutes of 

mixing within the 3-piece mix head, the torque rapidly increases indicating that starch is 

destructuring or potentially degrading. Within seconds, the torque exceeded the maximum 

safety value of 10,000 mg, severing the safety shear pin, stopping the equipment with a 

recorded temperature of 103oC. Figure 4-5  These results indicate that dent starch, containing a 

minimum of 10.2% moisture from the manufacturing process without any additional moisture, 

is not efficient in the destructuring of the starch granule nor its plasticization within the 3-piece 

mix head. 
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Figure 4-5 Curve of torque versus time for DMWO 

 

 From the results seen in Figure 4-1, the addition of 20% moisture seems to suggest effective 

destruction and plasticization of the starch (DMW20), however not within the confines of the 

identified time frame.  When evaluating the temperature curve for this process in Figure 4-2, it 

is noted that temperature of the mix is below that of the 3-piece mix head body temperature 

thereby indicating that the mix is drawing heat from the body and potentially indicating that it is 

not fully destructured. At three minutes of continuous mixing, the temperature of the mixture 

finally reaches the temperature of the body of the 3-piece mixer. At that point in time, it is 

suggested that effective destructure and plasticization of the starch could have occurred. The 

challenge associated with this time frame is that it exceeds that of the residence time of the twin 

screw extruder. As such, 20% addition of moisture to starch is not a favourable parameter for 

consideration. 
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Polarized light microscopy of dent starch, in Figure 4-6, depicts untreated starch on the left and 

that of dent starch with 20% moisture addition following 1 minute and 30 seconds of mixing. In 

both cases, the Maltese cross is present under polarized light confirming that crystallinity still 

resides within the starch structure, thereby confirming the hypothesis that little or no 

gelatinization of the starch has occurred.    

 

  

  
 

 

Figure 4-6 Polarized light microscopy photographs of dent starch on the left and that of dent 

starch with 20% moisture addition following 1 minute and 38 seconds of mixing of the right 

[Magnification 150x with scale were each mark represents 0.01mm] 

 
 

Finally, Figure 4-1 suggests that the addition of 10% moisture acts as the most effective level 

needed to achieve both destruction and plasticization of the starch (DMW10) in a timely 

fashion. As well, the temperature curve for this process indicated in Figure 4-2, exhibits a 

minimal temperature increase of the mixture over that of the 3-piece mix head body 

temperature, thereby indicating effective plasticization of the starch with minimal shearing and 

additional heat energy buildup. This suggests that 10% moisture addition to dry starch under 

these conditions would effectively achieve destructuring and plasticization of dent starch.  
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4.3 The influence of water / glycerol on the destructuring of dent starch 

 

When looking at the destructuring of starch and its subsequent plasticization, Yu & Christie 

(2005) determined that higher temperatures were required when dealing with higher amylose-

based starches. They concluded that starches containing levels of amylose greater than 50% 

would have gelatinization temperatures in the range 120 – 140oC. Given this understanding and 

the findings gained from Section 4.2 when exploring the addition of 10% moisture with starch, 

once the temperature of the mixture rises above 100oC, water tends to evaporate and 

plasticization of the starch decreases (Figure 4-2 and 4-1). As such, there is the need to explore 

alternative plasticizers, and/or blends thereof, which offer higher vapour pressures and allow for 

processing at higher temperatures. 

 

Based on the work of Kaseem 2011, glycerol was identified as the plasticizer of choice to 

address the high processing temperatures required to destructure starch. 

 

In this evaluation, it was assumed that the starch had a higher affinity for water than it would 

for glycerol or other plasticizers as stated by Willet 1995.  This was confirmed in the evaluation 

depicted in Figure 4-7. These curves indicate that water is more efficient in destructuring and 

plasticization of starch than glycerol under similar conditions. 

 

It is to be noted that water is miscible in glycerol. Pure glycerol has a boiling point of 290oC 

which offers several advantages for higher temperature processing. However, a dilemma occurs 

with water dilution of glycerol. As the ratio of water to glycerol increases, the blend’s boiling 

point becomes further depressed. Table 4-3 outlines the effect of increasing water percentage on 

the boiling point of water/glycerol blend. (Miller 1953) Although in the evaluation at 90oC, 

there is little potential to boil off this plasticizer blend, attention to process temperatures are 

important to follow when looking at the ability of a water glycerol blend in destructuring and 

plasticizing starch.  
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Table 4-3 The effect of  water dilution on glycerol’s boiling point (Miller 1953) 

 

Glycerol / Water 

Wt-% 

Ratio Boiling Point @ 760mm 

oC 

100 / 0 1:0 290.0 

95 / 5 9.5:0.5 164.0 

90 / 10 9:1 138.0 

80 / 20 4:1 121.0 

75/ 25 3:1 116.7 

50 / 50 1:1 106.0 

25 / 75 1:3 102.3 

0 / 100 0:1 100.0 

 

 

In this section, blends of water and glycerol are evaluated to understand their influence on the 

destructuring and plasticization of regular dent starch at 90oC. 

 

In Figure 4-7, it is noted that pure glycerol is less efficient than water itself in destructuring and 

plasticization of starch.  It is surmised that some amount of water may be required to achieve 

destructuring and plasticization of starch within the desired timeframe. Table 4-4 reflects the 

formulations and blends of water and glycerol that were considered and evaluated, along with 

the processing parameters for the CWB Intelli-Torque Plasti-Corder® Rheometer with 3-piece 

mixer/measuring head and Banbury Blades. 
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Table 4-4 Water / glycerol blends and formulations for determination of their effectiveness to 

destructure and plasticize starch 

Label Ratio of 

H2O:Glycerol 

Starch 

Wt-% 

Water 

Wt-% 

Glycerol 

Wt-% 

Screw Speed  

RPM 

Temperature 

oC 

DM-W20 1:0 77 23 0 45 90 

DM-G20 0:1 77 0 23 45 90 

DM-W1:G1 1-1 77 11.5 11.5 45 90 

DM-W1:G3 1-3 77 5.7 17.3 45 90 

DM-W3:G1 3-1 77 17.3 5.7 45 90 

DM-W1:G4 1-4 77 3.6 19.4 45 90 

     

 

  

 

Figure 4-7 Destructuring and plasticization of starch in the presences of water and glycerol 
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Table 4-5 Summary of the effect of glycerol on destructuring starch 

 Units DM-W20 DM-G20 DM-W0 

On set mg 214 99.4 538.10 

Max mg 1334 3986 >10,000 

On set sec 17 28 360 

Max sec 26 56 366 

 

Figure 4-8 depicts the relationship identified between the blends of water and glycerol and their 

ability to efficiently destructure and plasticize starch. Blends of starch with small amounts of 

water in glycerol produced significantly faster rates of higher torque than the blends of starch 

with just glycerol as depicted in Figure 4-8.   

  

From the curves in Figure 4-8 it is noted that the ratio of 1:4 water:glycerol blend was effective 

in destructuring and plasticizing starch. According to Miller’s (1953) finding in Table 4-3, 

formulation DM-W1:G4 would allow for the highest processing temperature before the 

plasticizer’s boiling point is reached. The formulation DM-W1:G4 was found to be efficient in 

plasticizing starch with no noticeable increase in mixture temperature over that of the body 

temperature of 90oC. 

 

Of interest are the results noted from the substitution of a small amount of glycerol with water. 

Formulation DM-W3:G1 quickly and efficiently destructured and plasticized the starch. 

However, it lacked the characteristic which would allow for processing at temperatures beyond 

102.3oC before evaporating the plasticizer from the compound. 

 

As such, the formulation DM-W1:G4 seems to offer the best compromise for rate of 

destructured and plasticization of the starch while granting the highest processing temperature 

before the plasticizer would reach boiling point and evaporate. 
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Figure 4-8 Depicts the relationship between ratio of water:glycerol and its ability to destructure 

and plasticize starch in the initial 14 seconds of mixing.  

 

 

Table 4-6 Summary of the effects of blends of water and glycerol on destructing starch  

Label Onset 

mg 

Max 

mg 

Onset 

seconds 

Max 

seconds 

Glycerol:Water 

boiling point 
oC 

DM-W1:G1 0 n/c 0 n/c 106.0 

DM-W1:G3 0 1567 0 42 116.7 

DM-W3:G1 0 880 0 30 102.3 

DM-W1:G4 0 1569 0 42 121.0 

DM-W20 156 1334 16 26 100.0 

DM-G20 99.4 3986 28 56 290.0 
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Figure 4-9 Depicts the relationship of torque as a function of time for the various ratios of 

water:glycerol as outlined in Table 4-4 including those for 20% water and 20% glycerol with 

starch 

 

 

4.4 The influence of temperature on the destructuring of starch 

 

Yu & Christie (2005)concluded that shear and heat work together in the extrusion process in 

order to achieve gelatinization of the starch. In this section, the parameter of temperature was 

examined by studying torque, material temperature response as a function of times for a mixture 

under varied temperatures of the CWB.  

Table 4-7 outlines the four different temperatures that were evaluated utilizing the same 

formulation of starch, water and glycerol and the 45 RPM. Figure 4-10 depicts the resulting 

torque curves and Figure 4-11 the resulting material temperature curves as a function of time for 

these evaluations over the first twelve seconds.  
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Table 4-7 Evaluation to study the effects of temperature on destructuring starch for 

Water:Glycerol ratio 1:4 (W1:G4) 

Label Starch – Dent 

WT-% 

Water 

Wt-% 

Glycerol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

DM-150C 77 3.6 19.4 45 150 

DM-160C 77 3.6 19.4 45 160 

DM-170C 77 3.6 19.4 45 170 

DM-180C 77 3.6 19.4 45 180 

DM-90C 77 3.6 19.4 45 90 

 

 

 

 

Figure 4-10 Depicts the resulting torque curves as a function of time for various temperatures over 

the initial 14 seconds of compounding 
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Table 4-8 Summary of the time frame and maximum torque in achieving starch destructuring 

 Onset 

mg 

Max 

mg 

Onset 

seconds 

Max 

seconds 

Max 

Temperature 
oC 

DM-150C 493 2050 24 31 133.1 

DM-160C 0 2537 0 202 137.6 

DM-170C 0 2386 0 188 143.0 

DM-180C 0 2346 0 162 153.1 

DM-90C 0 1569 0 42 86.7 

 

 

 

Figure 4-11  Graph of the material temperature curves as a function of time for the temperatures 

evaluated 

The torque curves for temperature of 90, 160, 170 and 180oC demonstrate similar initial 

behaviour with faster rates for destructuring. It is noted that torque curves for 160 and 170oC, 

during the first several seconds, seem to almost overlap as depicted in Figure 4-10.    
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The temperature curves of the compounds, for the first twelve seconds shown in Figure 4-11 ran 

25–35oC cooler than the body temperature programmed in each evaluation outlined in Table 4-

7. This is an important point to capture. Processing these samples with a CWB Intelli-Torque 

Plasti-Corder® Rheometer with 3-piece mixer/measuring head and Banbury Blades is a batch 

process. The total mass of material is quickly charged into the mixer with the weighted chute.  

The materials rapidly absorb the heat from the mixer’s body, thus displaying a drop in the 

recorded temperature. As time progresses, the continuous heating of the body brings up the 

temperature of the compound (stock). Additional heating is transferred into the feedstock 

through the energy imparted through torque and shear to the materials.   

 

The torque curve as a function of time for 160 and 170oC, suggests that these temperatures are 

effective in achieving the destruction and plasticization of the starch. However, signs of 

plasticizer evaporation were noted during mixing. In Figure 4-12 the weighted loading ram is 

seen raised 18mm above its neutral position, resting on the chute. The elevation of the ram 

suggests the potential of pressure building up in the mixing chamber. When removing the 

compound, gas bubbles were noted in the polymer melt (Figure 4-13) confirming that 

evaporation of the plasticizer had occurred. On review of the temperature versus time curves for 

170oC trial, the final temperature of the stock was 143oC. According to Miller’s (1953) 

findings, outlined in Table 4-3, the boiling point of the plasticizer had been exceeded.   

 

This insight collected from torque and temperature suggests that the ideal temperature would be 

closer to 150oC as indicated in Figure 4-15 for torque and Figure 4-16 for temperature to 

achieve efficiency in destructuring and plasticizing starch. 

 

With extrusion, a continuous process, small quantities of material are being introduced 

uniformly and constantly into the throat of the extruder. The continuous introduction reduces 

the early temperature loss between the material and that of the extruder. With the ability to 

meter material in the extruder, there is the possibility that 150oC may be higher than what is 
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required for the processing of the starch. This temperature would need to be revisited when 

finally migrating to an extruder.  

 

 
 

Figure 4-12 Photograph depicting the 

loading chute ram and weight raised above 

the neutral position displayed at charge.  

Figure 4-13 Photograph of the polymer 

melt with gas bubbles present 

 

 

4.5 The influence of shear on the destructuring of starch 

 

Yu & Christie (2005) surmised that shear and heat work together in the extrusion process in 

order to achieve gelatinization of the starch. In this section, the parameter of shear is examined 

by studying the torque, temperature response as a function of time for a mixture under varying 

revolutions per minute (RPM) of the Banbary Blades.  

 

Table 4-9 outlines the three different rates of shear that were evaluated utilizing the same 

formulation of starch, water and glycerol. Figure 4-14 depicts the resulting torque curves and 

Figure 4-15 the resulting temperature curves as a function of time for these evaluations. 
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Figure 4-14 Depicts the torque curves as a function of time for the different CWB body 

temperature 

  

 
Figure 4-15 Graph of the material temperatures as a function of time for the different CWB body 

temperature 
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Table 4-9 The effects of shear on destructuring starch 

Label Starch – Dent 

Wt-% 

Water 

Wt-% 

Glycerol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

DM-45-150 77 3.6 19.4 45 150 

DM-60 77 3.6 19.4 60 150 

DM-120 77 3.6 19.4 120 150 

DM-45-90 77 3.6 19.4 45 90 

 

 

 

Figure 4-16 Graphs the relationship of shear [torque] as a function of time for the first 38 seconds 
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Table 4-10 Summary of the torque and time required to achieve destructuring of the starch 

Label Onset 

mg 

Max 

mg 

Onset 

seconds 

Max 

seconds 

DM-45-150 493 2050 24 31 

DM-60 638 1604 34 46 

DM-120 787 2110 20 28 

DM-45-90 0 1587 0 42 

 

 

 

 

 

Figure 4-17 Graph of the influence of shear on temperature as a function of time in the first 

minute and 38 seconds 
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The application of a higher RPM suggests better efficiency in the destructuring and 

plasticization of the starch. However, it is noted that by 21 seconds into the mix, DM-120 

compound had achieved 121oC, and by a minute and thirty-eight seconds into the mix that 

temperature had exceeding 145oC. (Figure 4-17) The drop off on the temperature curves in 

Figure 4-16, seen around 21 seconds, suggests the potential of evaporation of plasticizer and the 

cooling of the stock. The subsequent increase in temperature would then be the result of low 

plasticizer present and the net increase in viscosity of the compound. On removal of the 

compound from the mixing chamber, gas bubbles were found in the stock suggesting that 

evaporation had occurred.  

 

The compounds of DM-45-150 and DM-60 both indicated similar temperatures below 121oC 

following 60 seconds of mixing [Figure 4-18] and reached compound temperatures of 128 -

131oC at one minute and thirty-eight seconds into the mix.  

 

DM-45-150 indicated a quicker torque response, suggesting faster destructuring and 

plasticization of the starch than DM-60.  

 

DM-45-90 saw a quick rise in torque. However, DM-45-90 did not achieve maximum torque 

until 42 seconds into the mixing. Based on the concept of quick formation of the gel ball, as 

outlined by Yu & Christie (2005), the destructuring of the starch was not achieved in a 

reasonable period of time. It was surmised that insufficient heat at 90oC and 45 RPM was 

present to facilitate destructuring and plasticization of the starch and that significantly more 

shear and time was required to compensate for lack of heat.   

 

DM-45-150 conditions demonstrated the ability to most effectively destructure and plasticize 

the starch in a timely manner while not building excessive heat. As such, this defines the 

optimal condition with 45 RPM shear at 150oC temperature. 
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Figure 4-18 Graphs the relationship of shear [torque] as a function of time 

 

Figure 4-19 Graphs of the relationship of the curves of temperature as a function of time for the 

compounds defined in Table 4-9 
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4.6 Summary of the ideal parameters in destructuring and plasticizing 

starch  

 

In this chapter, the goal was to understand the parameters that would allow for the efficient 

destructuring and plasticization of the starch in the timeliest fashion. The following parameters 

were studied: 

• Influence of water on the destructuring of dent starch 

• Influence of water / glycerol on the destructuring of dent starch 

• Influence of shear on the destructuring of dent starch 

• Influence of temperature on the destructuring of dent starch 

The conclusions reached from these studies are reported and discussed. As a result of this work, 

the parameters outline in Table 4-11 were established for the formulations and mixing 

conditions for the materials studied from here forward.  

 

The following conclusions were obtained from the work completed to this point:  

• Starch has a preferred affinity towards water, in its ability to quickly destructure the 

starch granule 

• Water can act as an effective plasticizer for starch. Water can reduce the viscosity of 

the mixture with increased addition. [reducing the interactions between molecules]  

• Higher mechanical energy [RPM] is preferential in achieving destructuring of starch 

granule  

• Higher thermal energy [temperature] is preferential in achieving destructuring of 

starch earlier  

• Elevated temperatures [greater than 100oC] require alternative plasticizer systems are 

required due to evaporation 
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• Thermal and mechanical energy employed are limited to the boiling point of the 

plasticizer in the compound   

Glycerol was identified in many literature searches as a suitable plasticizing agent for starch. 

However, in order to enhance the rate of plasticization, it was determined that some amount of 

water needs to be present.  

 

Miller’s (1953) reviewed the influence which water had on depressing the boiling point of 

glycerol blends. This information played a significant role in determining appropriate 

conditions for processing the compounds. (Miller 1953)   Miller determined that the boiling 

point of the 1:4 glycerol/water blend is 121oC (Table 4-3).  Processing compounds at higher 

temperature would exceed the boiling point of the water / glycerol blend, resulting in the 

evaporation of the water / glycerol blend from the plasticized starch and the potential for 

retrogradation of the starch. This suggests that poor aging properties of the thermoplastic starch 

compound could occur. 

 

Table 4-11 The parameters for compounding and mixing which efficiently allow for the 

destructure and plasticize starch. 

Parameter Value  

Residence time  1 minute, 38 seconds [42mm, 52:1 L/D, Leistritz twin 

screw extruder]  

Minimum plasticizer level  18-25% [including the moisture within the starch] 

Minimum moisture level 4-10% [including the moisture within the starch] 

Ratio water: glycerol 1:4 [excluding the internal moisture of the starch] 

RPM 45 RPM  

Temperature 150oC [body temperature] 
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4.7 The destructuring and plasticization of various starches 

 

In the previous selection, the relationship between several variables and their influence on the 

rate at which dent starch would be destructured was explored. As a result, parameters were 

established that define the favourable conditions required to evaluate different materials with 

the objective to study their similarities and differences within a controlled format.   

 

Subsequently, an assessment of a variety of starches, and their rate of gelatinization was 

undertaken with standardized conditions. The data was collected for analysis.  The ensuing table 

describes the formulations evaluated. 

 

The objective is to study several commercially available starches (Table 4-12) and understand 

which starches could offer the fastest destructuring under the parameters defined in Table 4-11. 

At the same time, to look at the various starches and choose three which offer different 

characteristics which may impart unique characteristic in the formation of starch co-polyester 

polymers or alloys.    

 

The starches, listed in Table 4-12, were run in accordance with the conditions defined and 

analyzed for the speed at which they would be destructured and plasticized.  In analysis, it was 

noted that three fastest destructuring and plasticizing starches where Hylon VII (Hylon), 55310 

and 30050.  (Figure 4-20) This result was particularly interesting, in that it identified three 

different types of starch which could offer unique properties to a compound.  

 

Hylon VII starch, derived a genetically modified genus of maize, possesses a high level of 

amylose within the starch granule. This particular strain exhibited 70:30 amylose: amylopectin 

ratio. The high amylose starch should offer higher processing stability to the final compound. 

 

The 55310 starch is a chemically oxidized and viscosity reduced grade of industrial starch 

which offers a broad range of molecular weights. The broad molecular weight may offer ease of 

processing and produce a good injection molding compound. 



 

 84 

Table 4-12 Formulation and conditions explored in the destructuring of various starches 

Starch  Water 

Wt-% 

Glycerol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

Hylon VII 3.6 19.4 45 150 

30050 3.6 19.4 45 150 

55310 3.6 19.4 45 150 

Novation 1600 3.6 19.4 45 150 

055720 3.6 19.4 45 150 

Stablebond 055110 3.6 19.4 45 150 

Amioca 3.6 19.4 45 150 

DM 3.6 19.4 45 150 

 
 

The 30050 starch is a paper coating starch which has been chemically modified. The 

modification resulted in a minor substitution of the hydroxyls at C2 and C3 with carbonyl and 

carboxyl groups. This particular starch contains between 0.1 and 0.3% degrees of substitution 

[DS]. With the DS, this starch was chosen due to its ability to react differently with the 

peroxides, glycerol and MAH which may offer a compound with more resistance to 

retrogradation. 

 

Although the Amioca starch showed good potential in the initial screening of the various 

starches, it was not considered at this time. Amioca starch is a waxy starch with 99% 

amylopectin. Due to the DS on 30050, it was believed to offer interesting characteristic in 

reaction with the peroxides and MAH, characteristic which may not have been as easy to 

achieve with the Amioca starch.  
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Figure 4-20 Torque curves as a function of time for the destructuring of the starch samples 

 

 

Table 4-13 Summary of the time and maximum torque required to achieve destructuring of the 

various starches 

Starch Onset 

mg 

Max 

mg 

Onset 

seconds 

Max 

seconds 

Amioca 0 3652 0 8 

55310 0 2298 0 6 

55720 0 2338 0 16 

30050 0 2803 0 16 

55110 0 2305 0 18 

Novation 0 1079 0 56 

Hylon VII 0 3818 0 8 

Dent Maize 493 2050 24 31 
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Figure 4-21 Depicts torque as a function of time in the destructuring of various starches 

 

 

In Figure 4-20, the selection of  three starches was made based on the ability of these starches to 

quickly increase in torque. Kalambur believed that shear in the presence of an appropriate 

amount of water and heat will facilitate the destructuring of starch. (Kalambur2012) As such, it 

is concluded that starches which respond quickly with increased torque will destructure faster. 

Figure 4-21 examines all the starches over the complete time frame. Figure 4-21 confirms the 

selection of  Hylon and 55310 as starches which exhibit their fast ability to effectively 

destructure and plasticize. As noted in Figure 4-21, starch 30050 is slower than starches 55720 

and 55110. The decision to pick 30050 over the other two is because a similar oxidized starch 

has already been selected. That starch is 55310. The selection of the starch 30050 is due to the 

presence of carbonyl and carboxy groups resulting from Ingredion chemical modification 

during production.  
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4.8 Thermal characteristics of starches (Hylon, 55310, & 30050) 

 

In this section, the thermal characteristic of the starches identified in Section 4.7 were 

evaluated. Samples were subjected to Thermal Gravimetric Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) in accordance to their ASTM standards. 

 

4.8.1 TGA  analysis of the Dent Maize, Hylon, 30050 and 55310 

 

TGA were conducted on the four starches (Dent Maize, Hylon, 30050 and 55310) and reported 

in Figure 4-22 and in Table 4-14.  

 

The 55310 starch, having been chemically modified, possessed low viscosity and broader 

molecular weight, displayed a weight loss curve that reflected higher changes in weight loss  at 

lower temperatures over a larger temperature range. The first derivative of this lost weight curve 

presented the two peaks. The first at 294oC, and the second at 374oC (Table 4-14). 

 

Hylon starch, having 70% amylose and 30% amylopectin, displayed the narrowest (steepest) 

weight loss curve covering the smallest temperature range. The first derivative of this lost 

weight curve presented the three peaks. The first at 280oC, the second at 310oC, and the third at 

500oC (Table 4-14). 

 

Of particular interest was the loss weight TGA curve for 30050. It indicated relatively higher 

heat stability over all four starches.  Its first derivative of loss weight curve presented three 

peaks. The first at 283oC, the second at 317oC, and the third at 502oC (Table 4-14). Although 

30050 had first derivative peaks with similar values to Hylon, 30050 had a higher weight 

percentage at 502oC. (Table 4-14) 
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Figure 4-22 TGA curves for the starches 55310,30050, Hylon VII and Dent Maize Starch 

 
 

 

4.8.1 DSC Analysis of the Dent Maize, Hylon, 30050 and 55310 

 

Two groups of samples were taken from the four starches. The first group were conditioned at 

23oC and 50% relative humidity for 24 hours. While the second set were dried for 4 hours at 

104oC. Samples for both groups were weighed out and hermitically sealed in 50 ml pans for 

DSC analysis.   
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Table 4-14 Summary of the TGA derivative peaks for the 4 selected starches 

 

Starch Onset End Peak Wt-% 

 oC oC oC  

     

Dent Maize     

 volatiles   9.43 

 282.55 293.35 288.97 5.53 

 298.94 331.26 318.55 61.40 

 487.39 489.11 488.13 19.72 

     

Hylon     

 volatiles   6.80 

 274.17 283.71 280.01 2.87 

 288.19 324.47 310.67 65.17 

 444.76 531.11 500.74 21.58 

     

30050     

 volatiles   7.16 

 277.23 287.67 283.40 2.22 

 294.83 331.37 317.26 60.00 

 474.10 529.48 502.61 27.16 

     

55310     

 volatiles   9.261 

 283.62 300.17 293.89 50.95 

 372.25 383.41 374.15 37.10 
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4.8.1.1 DSC analysis of the conditioned starch samples 

 

DSC curves for the normalized 1st heat pass of the conditioned starch samples (Figure 4-23)  

were analyzed and reported in Table 4-15. 

 

Table 4-15 Summary of the normalized 1st heat pass DSC curves for the four starches 

Starch Onset End Peak ΔHm 

 oC oC oC J/g 

     

Dent Maize     

 90.80 98.39 69.29 0.3913 

 102.14 103.55 102.52 0.1903 

 105.22 108.39 107.51 0.7052 

 108.90 115.06 113.68 0.8610 

Hylon      

 108.10 113.28 109.95 4.3427 

30050     

 123.61 125.08 124.07 1.0869 

 134.60 135.72 134.94 6.3878 

55310     

 116.69 118.25 117.15 1.8196 

 

The DSC curves from the normalized 1st heat pass for the conditioned starch samples concludes 

that dent maize starch displays a multitude of endothermic peaks which reflect the gelatinization 

of the starch and the melting of various fat/amylose complexes (Bemiller 2009). The DSC 

curves for both 55310 and 30050 starches show less melting of fat/amylose complexes and 

more endothermic peak for gelatinization. This is believed to reflect the chemically 

modification of both starches. 
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Figure 4-23  DCS curves for the normalized 1st heat pass of the conditioned starch 55310, 30050, 

Dent Maize and Hylon VII (first heat pass) 

 

The DSC curve for Hylon displays an exothermic step, suggesting a phase transition followed 

by an endothermic peak for gelatinization. This step transition could not be identified in 

literature for Hylon VII and seems to be characteristic of this particle lot of starch evaluated. 

 

DSC curves from normalized 2nd heat pass for the conditioned starch samples were analyzed 

and found not to yield any endothermic peaks, (Figure 4-24) suggesting that all the starches had 

gelatinized and display amorphous characteristics. (Table 4-16) 

 

On analyzing the 2nd cooling pass for the conditioned starch samples, heats of crystallization 

were identified (Figure 4-25) and reported in  Table 4-17. The presence of peaks occurring in 

the 2nd cooling pass is believed to be due to syneresis and  retrogradation of the starch. 

 



 

 92 

 

Figure 4-24  DSC 2nd melt cycle curves for the four conditioned starches 

 

To depict all four DSC curves together on the same graph in Figure 4-24, the scale for the 

Normalized Heat Flow Endothermic legend is too broad to depict the subtleties in the different 

compound melts.   

 

4.8.1.1 DSC analysis of the dried starch samples 

 

Unlike the DSC curves from normalized 2nd heat pass for the conditioned starch samples in 

Table 4-16, the DSC curves from normalized 2nd heat pass for the dried starch samples yielded 

melt peaks which allowed for heat of fusion to be calculated. (Table 4-18) These small peaks 

suggest that the starches had gone through some form of phase transformation. Due to lack of 

moisture being present, no gelatinization would be expected to occur. It could be surmised that 

the minimum signs of crystalline characteristic are from starch degradation.  
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Table 4-16 Summary of the 2nd melt cycle DSC curves on the conditioned starches  

Starch Onset End Peak ΔHm 

 oC oC oC J/g 

     

Dent Maize     

 No peaks were identified  

Hylon      

 No peaks were identified  

30050     

 No peaks were identified  

55310     

 No peaks were identified  

     

 

 

 

Table 4-17 Summary of the 2nd cooling cycle DSC curves on the conditioned starches 

Starch Onset End Peak ΔHc 

 oC oC oC J/g 

Dent Maize 120.99 93.88 101.12 -16.58 

    

Hylon  114.36 94.08 101.57 -12.30 

    

30050 119.47 63.11 91.48 -44.16 

    

55310 119.24 94.53 94.55 -5.27 
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Figure 4-25 Normalized 2nd melt cycle DSC curves on the conditioned starches 

 

 

 

On analyzing the 2nd cooling pass for the dried starch samples, heat of crystallization is 

identified and reported in Table 4-19. It is noted that the ΔHc in Table 4-17 are significantly 

higher than those in Table 4-19. This would support the assumption that the starches have 

degraded in the previous cycle. 
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Table 4-18 Summary of the 2nd melt cycle DSC curves on the selected starches following drying 

Starch Onset End Peak ΔHm 

 oC oC oC J/g 

Dent Maize     

 149.70 154.68 152.39 0.15 

Hylon      

 104.27 115.19 109.88 1.37 

 146.87 156.72 148.21 0.23 

30050     

 99.02 108.23 103.06 0.06 

 125.85 146.01 134.74 0.94 

55310     

 132.36 181.67 165.78 17.27 

     

 

Table 4-19 Summary of the 2nd cooling cycle DSC curves on the selected starches following drying 

Starch Onset End Peak ΔHc 

 oC oC oC J/g 

Dent Maize     

 113.85 91.06 97.57 -0.70 

Hylon     

 172.15 158.48 163.66 -2.58 

 152.07 133.88 144.94 -3.44 

30050     

 120.45 104.21 116.70 -3.00 

55310     

 130.99 113.98 119.74 -2.33 
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Chapter 5 

Results and Discussions: In situ Plasticization of Starch and Co-

blend with Polyesters 

 

5.1 Introduction 

 

The scope of chapter five is to investigate the three starches (Hylon, 30050 and 55310) and the 

influences which different free radical initiators, maleic anhydride and different polyesters have 

on the starch - polyester co-blends. Analytical techniques of FTIR, TGA and DSC were 

conducted on these compounds as well as analyses of the data obtained from the CWB. This 

information was assembled to paint a picture of the influence of these parameters on starch -

polyester compounds.     

 

5.2 The effects of free radical initiators 

 

In Chapter 4, it was determined that the preferred temperature profile for the body of the CWB 

was 150oC. As such, it brought into question the effectiveness of the peroxide to efficiently 

dissociate and generate free radicals to promote chemical reactions within the initial seconds of 

introduction into an extruder, and before exiting one minute and thirty seconds later. This 

section studies the influence of employing three different free radical initiators with decreasing 

half-life temperatures. The three starches selected (Hylon, 30050 and 55310) based on their 

unique properties, were compounded with the free radical initiators and evaluated as per Table 

5-1. These starches were conditioned for 24 hours at 23oC and 55% relative humidity before 

blending and compounding. 
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Table 5-1 Table of  formulations exploring the effects of free radical initiators  

Label Starch Peroxide 

Type 

Peroxide 

Wt-% 

MAH 

Wt-% 

PBAT 

Wt-% 

Water 

Wt-% 

Glycol 

Wt-% 

Screw 

Speed  

RPM 

Temperature 

oC 

Hylon-101 Hylon  101 0.1 1.0 58.2 1.5 7.7 45 150 

Hylon-Ben Hylon Dibenzoyl 0.1 1.0 58.2 1.5 7.7 45 150 

Hylon-Lau Hylon  Dilauroyl 0.1 1.0 58.2 1.5 7.7 45 150 

30050-101 30050 101 0.1 1.0 58.2 1.5 7.7 45 150 

30050-Ben 30050 Dibenzoyl 0.1 1.0 58.2 1.5 7.7 45 150 

30050-Lau 30050 Dilauroyl 0.1 1.0 58.2 1.5 7.7 45 150 

55310-101 55310 101 0.1 1.0 58.2 1.5 7.7 45 150 

55310-Ben 55310 Dibenzoyl 0.1 1.0 58.2 1.5 7.7 45 150 

55310-Lau 55310 Dilauroyl 0.1 1.0 58.2 1.5 7.7 45 150 

 

 

5.2.1 Hylon starch and the effects of various free radical initiators  

 

In this section, the effects of the three different peroxides were explored using conditioned 

Hylon starch.  

 

Figure 5-1 illustrates the plots of the torque curves as a function of time for the Hylon 

compounds described in Table 5-1. In this figure, the Hylon-Lau compound, with the free 

radical initiator dilauroyl peroxide, displays a rapid response in torque to a maximum of 1559 

mg and subsequent decline. The drop in torque indicates the effective plasticization of the starch 

molecules within the compound following the gelatinization of the starch. The formation of the 

gel balls, described in the Yu & Christie 2005 paper, suggests that the starch molecules are 

opening and available for free movement. It is this free movement which accounts for the drop 

in torque. As the development of the gel balls increase, it creates an environment within the 

starch molecule to open up and the steric hindrances, hydrogen bonding, van Der Waals forces 
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and other intermolecular forces are reduced thus producing the opportunity for potential 

chemical reactions to occur.    

 

The curves for Hylon-Ben and Hylon-101, at nine seconds, start to show the onset of 

destructuring. Both compounds indicate similar timing to achieve maximum torque before 

plasticization occurs. Yet, Hylon-Ben exhibits a significantly higher torque value than Hylon-

101 at 16 and 17 seconds respectfully.  

 

The maximum torque values  recorded for Hylon-Lau and Hylon-101 in the destructuring of the 

starch were 1559 mg and 1575 mg with Hylon-Ben at 2022 mg. A Summary of the results is 

found in Table 5-2. 

 

Figure 5-1 The evaluation of torque as a function of time for the various free radical initiators 

with Hylon starch over the first 28 seconds 
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Table 5-2 The summary of torque and time for Hylon compounds with various free radical 

initiators in achieving destructuring 

Property Hylon - 101 Hylon-Ben Hylon-Lau 

Torque mg mg mg 

On Set 173 173 0 

Max 1575 2022 1559 

Time seconds seconds seconds 

On Set 9 9 0 

Max 17 16 6 

 

Figures 5-2 and 5-4 are of plots of temperature versus time for the Hylon compounds outlined 

in Table 5-1, although to different time scales. The disruption of the starch granule occurs with 

the addition of the appropriate amount of thermal and mechanical forces in the presence of the 

suitable amount of water / plasticizer (Nafchi 2013). For this purpose, it is important to look at 

the first 15-38 seconds to understand the heat profile and torque required to achieve the free 

motion of the starch molecules, thereby establishing the potential for a chemical reaction to 

occur. 

 

In Figure 5-2, the time at which Hylon-Lau’s temperature curve is at its lowest corresponds 

with the time it takes Hylon-Lau torque curve to achieve its maximum torque value as seen in 

Figure 5-1. This relationship seems to make sense, as until the starch is destructured and the 

onset of plasticization occurs, all the energy from thermal and mechanical sources are being 

absorbed by the Hylon-Lau compound. Once the compound has achieved gelatinization and 

plasticization is occurring, the compound requires less energy to break the lamellae crystalline 

structure within the amylopectin molecules, thus resulting in an identifiable increase in 

temperature. The same relationship between torque and temperature as a function of time is 

seen for Hylon-Ben. However, Hylon-101 displays a delay in obtaining the minimum 
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temperature. The time to achieve maximum torque does not match up with minimum 

temperature.   

 

 

 

Figure 5-2 The evaluation temperature as a function of time for the various free radical initiators 

with Hylon starch over the first 38 seconds 

 

 

In Figure 5-3, it is noted that once the various compounds achieve their maximum torque value, 

they start to exhibit signs of plasticization with torque decreasing as time progresses. As time 

approaches one minute, the torque values of the various compound seem to stabilize. 

 

 In compounding thermoplastic starch, it was determined in section 4.6, that the temperature 

should not exceed 150oC.  In Figure 5-4, it is concluded that the three compounds do not exceed 

that temperature during compounding. 
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Figure 5-3 The evaluation torque as a function of time for the various free radical initiators with 

Hylon starch over 1 min. 38 sec. 

 

Figure 5-4 The evaluation temperature as a function of time for the various free radical initiators 

with Hylon starch over  1 min. 38 sec. 
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TGA analysis was conducted on the individual ingredients and the Hylon compounds outlined 

in Table 5-1. The objective was to determine if the Hylon compounds displays any signs of 

change in thermal stability over that of the individual raw materials. 

 

Figure 5-5 displays the derivative of the percentage weight loss curve as a function of 

temperature with the Hylon compounds outlined in Table 5-1 with Table 5-4 summarizing the 

data.  

 

In Figure 5-6, higher thermal stability is noted with Hylon-Ben over the temperature range 380- 

440oC and greater than that of Hylon-101 and Hylon-Lau. Although this is an interesting 

finding for these compounds, it is to be noted that the thermal decomposition is happening well 

above the beginning of the thermal degradation of these compounds.      

 

In comparing Tables 5-3 and 5-4, the data suggests that some form of starch molecular 

interaction or modification occurs within all three compounds. In Table 5-3, the TGA peak for 

Hylon starch is recorded at 310.67oC and in table 5-4, the peak increased between 321.03 to 

326.02oC. 

 

Of interest was Hylon-101 TGA curve, which suggests that the compound may be an add 

mixture with PBAT with little or no compatibilization occurring between the starch and the 

PBAT. This conclusion is reached by comparing the peak temperature and the predicted 

percentage of PBAT between Tables 5-3 and 5-4 and noting minimal change. The results in 

Table 5-4 for Hylon-Ben suggest increased thermal stability with PBAT. Potentially, a small 

amount of compatibilization, intermolecular attraction, or chemical modification occurring offer 

increased thermal stability. As well, the predicted percentage weight of PBAT is noted to be 

lower than expected by about 9% (Table 5-3). In Table 5-4, two new peaks at 434.6oC and 

470.59 are identified which was not expected. These peaks represent 9.8% and 11.4% weight of 

the overall Hylon-Ben compound, comparatively.  
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The Hylon-Lau compound displays a loss in thermal stability relative to the other two 

compounds. Of interest is peak at 409.24oC. The peak is believed to be from PBAT and 

represents a temperature shift down from 412.91oC. This peak reflects 51.8% weight of the 

overall Hylon-Lau compound, down 5.35% from the predicted value for PBAT in the 

compound. Other peaks of interest are the two new peaks found at 429.85oC and 475.51oC 

representing 5.1% and 11.4% weight of the overall Hylon-Lau compound, relatively.  

 

 

Table 5-3 Summary of the TGA  derivative peaks for the individual components compounded  

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 99% 243.26 279.99 264.72 99.7 7.8 7.7 

Starch 277.23 287.67 283.40 2.22 31.5 6.9 

Hylon  288.19 324.47 310.67 65.17 31.5 18.9 

 444.76 531.11 500.74 21.58 31.5 8.5 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  
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Figure 5-5  Composite of the TGA derivative curves for all three Hylon compounds 

 

 

Table 5-4 Summary of the TGA derivative peaks for all three Hylon compounds from Table 5-1 

Peak Hylon-101 Hylon-Ben Hylon-Lau 

Assignment oC Wt-% oC Wt-% oC Wt-% 

<150  7.5  5.2  8.5 

1 326.02 23.1 322.94 24.3 321.03 22.9 

2 413.40 58.4 414.32 48.5 409.24 51.8 

3 467.03 8.1 434.60 9.8 429.85 5.1 

4 490.85 2.4 470.59 11.4 475.51 11.4 
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Figure 5-6 Composite of the TGA curves for all three Hylon compounds covering the range of 

370oC – 440oC 
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DSC analysis was conducted on the Hylon compounds outlined in Table 5-1. Table 5-5 and 

Table 5-6 summarize the DSC peaks for 2nd melt cycle and 2nd cooling cycle for the compounds 

described in Table 5-1.  

 

In Table 5-5, Hylon-Lau presents the lowest enthalpy of melt  (ΔHm ) of the three compounds. 

Overall, all three compounds display a low degree of crystallization and require minimal heat to 

be absorbed to melt the crystalline regions. The enthalpy of melt (ΔHm)  value is noted to be low 

and ranging from 0.11 to 1.7 J/g.  

 

In Table 5-6, Hylon-Lau presents the highest enthalpy of crystallization (ΔHc) of the three 

compounds. Of interest is the point that all compounds present values for ΔHc  that are greater 

than the ΔHm . This phenomenon is also noted with the conditioned Hylon starch sample. It is 

believed to be a result of plasticizer migration from the sample and subsequent retrogradation of 

the starch, thereby creating areas of crystallinity within the compound.  

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling. It is 

believed that the plasticizer evapourated from the sample as a result of exposure to heat during 

the second heating of the compound, thereby deforming the DSC pan with increased vapour 

pressure.  

 

To depict all three DSC curves together on the same graph in Figure 5-7, the scale of the 

Normalized Heat Flow Endothermic legend is too broad to depict the subtleties in the different 

compound melts.  However, the glass transition temperature is visible for each compound and is 

clearly distinguished at the far left side of  each curve. On analysis, both Hylon-Ben and Hylon-

101 have the same glass transition temperature of 41.07oC and Hylon-Lau compound is 

measured at 43.27oC 
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Figure 5-7 Compilation of the normalized DSC curves from the Hylon compounds derived from 

various free radical initiators 

 

 

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-8 shows the FTIR spectra for all three Hylon compounds. Due to the details in the two regions 

outlined in Figure 5.8, between 2,500 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra were separated into 

these two areas and zoomed in on with detailed spectra reflected in Figures 5-9 and 5-10 respectfully 
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Table 5-5 Summary of the DSC melt peaks for the Hylon compounds outlined in Table 5-1    [2nd 

pass - melt cycle] 

 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

Hylon     

 No peak    

Hylon-101     

1 117.60 127.64 126.79 1.005 

Hylon-Ben     

1 119.89 127.92 126.30 0.956 

2 155.93 162.45 160.83 0.821 

Hylon-Lau     

1 157.42 162.56 161.22 0.11 

 

 

 

Table 5-6 Summary of the DSC crystallization peaks for the Hylon compounds outlined in Table 

5-1   [2nd pass cooling cycle] 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

Hylon      

 114.36 94.08 101.57 -12.30 

Hylon-101     

 103.05 80.61 91.70 -5.39 

Hylon-Ben     

 101.81 82.08 89.33 -7.19 

Hylon-Lau     

 104.35 79.75 91.45 -8.36 
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Figure 5-8 FTIR of the three Hylon compounds derived from the various free initiators 

 

The spectra of the three compounds displayed in Figure 5-9 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1 arising from the hydroxyl groups (-OH) are seen in both Hylon-

Ben and Hylon-Lau compounds. This peak is above the 3,300 cm-1 for hydroxyl groups 

seen in Hylon-101 and that of 3,219 cm-1 from the spectra of Hylon starch, 

• The two peaks at 2918 cm-1 and 2853 cm-1,  seen in the spectra of Hylon-Lau, indicate 

the presence of aliphatic groups arising from grafting. These two peaks are not 

perceived in any of the spectra for the raw materials including PBAT nor Hylon starch 
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Figure 5-9 Zoom in on Figure 5-11 looking at wavenumbers of 2500 - 3450 cm-1 

. The spectra of the three compounds displayed in Figure 5-10 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1 characteristic of carbonyl groups and suggesting the esterification 

reaction with maleic anhydride (MAH). Of interest is the increasing intensity of the peak 

• from Hylon-Lau to Hylon-101 to Hylon-Ben. It is to be noted that carbonyl peak of 1715 

cm-1 for PBAT is not present. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) is 

absent, thereby suggesting that it has been opened. 
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Figure 5-10 Zoom in on Figure 5-11 looking at wavenumbers of 650 - 1800 cm-1 

 

• Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. 

However, the ratio of the intensities between the two peaks is noted to be the same with 

PBAT and  Hylon-101 and different with Hylon-Lau and Hylon-Ben. 
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5.2.2 30050 starch and the effects of various free radical initiators  

 

In this section, three peroxides were compounded with 30050 starch and the properties 

evaluated. 

 

Figure 5-11 illustrates the plots of the torque curves as a function of time for the 30050 

compounds describe in Table 5-1. In this figure, all compounds display a delay in the onset of 

starch granular destruction. 30050-101 compound, with the free radical initiator Trigonox 101 

peroxide, is the first compound to display a rapid change in torque. Compound 30050-101 

achieves a maximum torque peak of 1435 mg and subsequent decline. The drop in torque is in 

response to the effective plasticization of the starch molecules following the gelatinization of 

the starch.  

 

The curves for 30050-Lau and 30050-Ben start to show the onset of destructuring shortly after 

30050-101. 30050-Lau and 30050-Ben compounds achieve maximum torque at 1841 mg and 

1540 mg. However, both 30050-Lau and 30050-Ben exhibit higher torque value than 30050-

101.  

 

Summary of  torque values for the three 30050 compounds as a function of time is outlined in 

Table 5-7. 

 

In Figure 5-12, the time at which 30050-101 temperature curve is at its lowest, corresponds 

with the time it takes 30050-101 torque curve to achieve its maximum torque value in Figure 5-

11. This relationship seems to make sense, as until the starch is destructured and the onset of 

plasticization occurs, all the energy from thermal and mechanical sources are being absorbed by 

the 30050-101 compound. Once the compound had achieved gelatinization and plasticization is 

occurring, the compound requires less energy to break the lamellae crystalline structure within 

the amylopectin molecules, thus resulting in an increase in temperature being identified. The 

same relationship between torque and temperature as a function of time is seen for 30050-Lau. 
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However, 30050-Ben displays a delay in obtaining the minimum temperature. The time to 

achieve maximum torque does not match up with minimum temperature 

 

Figure 5-11 Compilation of torque as a function of time curve for the various 30050 compounds 

over the first 28 seconds 

 

In Figure 5-13, it is noted that once the various compounds achieve their maximum torque 

value, they start to exhibit signs of plasticization and decreasing torque values as time 

progresses. As time approaches one minute, the torque values of the various compound seem to 

stabilize except for 30050-Ben. At one minute, the CWB software notes an increase in the 

torque of the  30050-Ben compound.  

 

In compounding thermoplastic starch, it was determined in section 4.6, that the temperature 

should not exceed 150oC.  In Figure 5-1, it is concluded that the three compounds do not exceed 

that temperature during compounding. 
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Table 5-7 Summary of  torque as a function of time for 30050 compounds from Table 5-1 

 30050-101 30050-Ben 33050-Lau 

Torque mg mg mg 

On Set 157 157 157 

Max 1435 1540 1841 

Time seconds seconds seconds 

On Set 9 15 11 

Max 15 23 18 

 

Figures 5-12 and 5-14 are plots of temperature versus time for the 30050 compounds outlined in 

Table 5-1, although to different time scales.  

 

Figure 5-12 Compilation of temperature as a function of time curve for the various 30050 

compounds from Table 5-1 for the first 28 seconds 
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Figure 5-13 Compilation of torque as a function of time curve for the various 30050 compounds 

from Table 5-1 for the complete cycle 

 

Figure 5-14 Compilation of temperature as a function of time curve for the various 30050 

compounds from Table 5-1 for the complete cycle 
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Figure 5-15 Compilation of TGA for the various 30050 compounds from Table 5-1 

 

 

TGA analysis was conducted on the individual ingredients and the 30050 compounds outlined 

in Table 5-1. The objective was to determine if the 30050 compounds display any signs of 

changes in thermal stability over that of the individual raw materials. 

 

Figure 5-15 displays the derivative of the percentage weight loss curve as a function of 

temperature with the 30050 compounds outlined in Table 5-1, with Table 5-9 summarizing the 

data.  

 

In Figure 5-16, higher thermal stability is noted with 30050-Lau over the temperature range 

160oC - 330oC, and greater than that of 30050-101 and 30050-Ben. Although this is an 

interesting finding for these compounds, it is to be noted that the thermal decomposition is 

happening well above the beginning of the thermal degradation of these compounds.      
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In comparing Tables 5-8 and 5-9, the data suggests that some form of starch molecular 

interaction or modification occurs within all three compounds. In Table 5-8, the TGA peak for 

30050 starch is recorded at 317.26oC and in table 5-9, the peak increases between 321.03 to 

323.60oC. 

 

Of interest is 30050-101 TGA curve, with figures suggesting that the compound may be an add 

mixture with PBAT with little or no compatibilization occurring between the starch and the 

PBAT. This conclusion is reached by comparing the peak temperature and the predicted 

percentage of PBAT between Tables 5-8 and 5-9 and noting minimal change. The results in 

Table 5-9 for 30050-Ben and 33050-Lau suggest slight increased thermal stability with PBAT. 

This may be due to a small amount of compatibilization, intermolecular attraction or chemical 

modification occurred which offers increased thermal stability.  

 

Table 5-8 Summary of the TGA peaks for the raw materials 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 99% 243.26 279.99 264.72 99.7 7.8 7.7 

Starch 277.23 287.67 283.40 2.22 31.5 6.9 

30050 294.83 331.37 317.26 60.00 31.5 18.9 

 474.10 529.48 502.61 27.16 31.5 8.5 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  
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Table 5-9  Summary of the TGA peaks for various 30050 compounds from Table 5-1 

Peak 30050-101 30050-Ben 30050-Lau 

Assignment oC Wt-% oC Wt-% oC Wt-% 

<150  1.8  1.0  1.6 

1 212.36 7.8 203.48 6.1   

2 321.02 22.1 323.60 23.7 322.92 30.5 

3 412.13 55.9 414.74 57.4 414.39 57.9 

4 479.93 11.9 481.22 11.3 487.14 9.3 

       

 

 

 

 

Figure 5-16 Compilation of TGA curve for the various 30050 compounds from Table 5-1 for the 

temperature range of 136oC through 320oC 
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DSC analysis was conducted on the 30050 compounds outlined in Table 5-1. Tables 5-10 and 

5-11 summarize the peaks for 2nd melt cycle, and 2nd cooling cycle of the compounds from 

Table 5-1, respectively.  

 

In Table 5-10, 30050-101 presents the lowest enthalpy of melt  [ΔHm ] of the three compounds. 

Overall, all three compounds display a low degree of crystallization and require minimal heat to 

be absorbed to melt the crystalline regions. The enthalpy of melt ΔHm  value are noted to be low 

and ranging from 1.20 – 4.43 J/g.  

 

In Table 5-11, 30050 –Lau presents the highest enthalpy of crystallization [ΔHc] of the three 

compounds. Of interest is the point that all compounds present values for ΔHc  that are greater 

than the ΔHm . This phenomenon is also noted with the conditioned Hylon starch sample. It is 

believed to be a result of plasticizer migration from the sample and subsequent retrogradation of 

the starch, thereby creating areas of crystallinity within the compound.  

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling. It is 

believed that the plasticizer evapourated from the sample as a result of exposure to heat during 

the second heating of the compound, thereby deforming the DSC pan with increased vapour 

pressure.  

To depict all three DSC curves together on the same graph in Figure 5-17, the scale of the 

Normalized Heat Flow Endothermic legend became too broad to depict the subtleties in the 

different compound melts.  However, the glass transition temperature is visible for each 

compound and is clearly distinguished at the far left side of each curve. On analysis, 30050-Ben 

has the glass transition temperature of 40.70oC, 30050-101 at 43.71oC and 30050-Lau 

compound is measured at 41.16oC 
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Figure 5-17 Compilation of the DSC curves of 30050 compounds from Table 5-1 

 

 

Table 5-10 Summary of the DSC melt peaks for 30050 compounds of various free radical initiators 

outlined in Table 5-1 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

30050-101     

1 113.43 144.69 119.72 1.203 

30050-Ben     

1 151.13 165.06 157.62 1.347 

2 171.79 182.53 178.19 1.312 

30050-Lau     

1 108.88 123.30 123.06 4.432 
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Table 5-11 Summary of the DSC cooling peaks for 30050 compounds of various free radical 

initiators outlined in Table 5-1 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

30050-101     

1 95.24 74.83 86.42 -8.08 

30050-Ben     

1 102.25 78.71 89.83 -11.65 

2 158.29 152.25 156.51 -7.89 

30050-Lau     

1 101.26 81.11 89.39 -9.50 

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-18 shows the FTIR spectra for all three 30050 compounds. Due to the detail in the two 

regions outlined in Figure 5-18, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra 

were separated into these two areas and zoomed in on with detailed spectra reflected in Figures 

5-19 and 5-20, respectfully.  

 

The spectra of the three compounds displayed in Figure 5-19 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1 arising from the hydroxyl groups (-OH) is seen in both 30050-

101 and 30050-Lau compounds. This peak is above the 3,300 cm-1 for hydroxyl groups 

seen in 30050-Ben and that of 3,224 cm-1 from the spectra of 30050 starch. 

• The two peaks at 2918 cm-1 and 2853 cm-1 seen in the spectra of 30050-101 and 30050-

Ben indicate the presence of aliphatic groups arising from grafting. These two peaks are 

not perceived in any of the spectra for the raw materials including PBAT nor 30050 

starch. 
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Figure 5-18 FTIR of the three 30050 compounds from Table 5-1 

 

 

Figure 5-19 FTIR of the three 30050 compounds from Table 5-1 over the wavenumbers of 2600 -

3500 cm-1 
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Figure 5-20 FTIR of the three 30050 compounds from Table 5-1  over the wavenumbers of 600 -

1800 cm-1 

 

The spectra of the three compounds displayed in Figure 5-20 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1 is characteristic of carbonyl groups, suggesting the esterification 

reaction with maleic anhydride (MAH). Of interest is the increasing intensity of the peak 

from 30050-101 to 30050-Ben to 30050-Lau. It is noted that carbonyl peak of 1715 cm-1 

for PBAT has shifted. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

• Characteristic peaks at 1267 cm-1 and 1243 cm-1 represent ester stretches in PBAT with 

a ratio of intensity which approaches 1:1. However, the ratio of the intensities between 

the two peaks is noted to be different for all three compounds.  30050-Lau and 30050-

Ben have a ratio of 1:>1, and 30050-101 having a ratio of 1>:1. 
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5.2.3 55310 starch and the effects of various free radical initiators  

 

In this section, the effects of the three different peroxides is explored on conditioned 55310 

starch.  

 

Figure 5-21 illustrates the plots of the torque curves as a function of time for the 55310 

compounds described in Table 5-1. In this figure, all compounds display a delay in the onset of 

starch granular destruction. The 55310-101 compound, with the free radical initiator Trigonox 

101 peroxide, is the first compound to display a rapid change in torque. Compound 55310-101 

achieves a maximum torque peak of 1435 mg and subsequent decline. The drop in torque is in 

response to the effective plasticization of the starch molecules following the gelatinization of 

the starch.  

 

The curves for 55310-Lau and 55310-Ben start to show the onset of destructuring shortly after 

55310-101. 55310-Lau and 55310-Ben compounds achieve maximum torque at 1209 mg and 

1540 mg. However, both 55310-Ben and 55310-101 exhibit higher torque values than 55310-

Lau.  

 

Summary of torque values for the three 30050 compounds as a function of time are outlined in 

Table 5-7 

 

Figures 5-22 and 5-24 are plots of temperature versus time for the 55310 compounds outlined in 

Table 5-1, although to different time scales.  

 

In Figure 5-22, the time at which 55310-101 temperature curve is at its lowest, corresponds 

with the time it takes 55310-101 torque curve to achieve its maximum torque value in Figure 5-

21. However, both 55310-Lau and 55310-Ben display a time lag in obtaining the minimum 

temperature after obtaining maximum torque.   
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Figure 5-21 Compilation of torque as a function of time curve for the various 55310 compounds 

for the first 28 seconds 

 

 

Table 5-12 Summary of torque as a function of time for 55310 compounds from various free 

radical initiators 

 55310-101 55310-Ben 55310-Lau 

Torque mg mg mg 

On Set 226 211 204 

Max 1435 1540 1209 

Time seconds seconds seconds 

On Set 8 10 11 

Max 15 18 18 
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TGA analysis was conducted on the individual ingredients and the 55310 compounds outlined 

in Table 5-1. The objective is to determine if the 55310 compounds display any signs of 

changes in thermal stability over that of the individual raw materials. 

 

Figure 5-25 displays the derivative of the percentage weight loss curve as a function of 

temperature with the 55310 compounds outlined in Table 5-1, with Table 5-14 summarizing the 

data.  

 

 

Figure 5-22 Compilation of temperature as a function of time curve for the various 55310 

compounds for the first 28 seconds 

 

In Figure 5-25, higher thermal stability is noted with 55310-Ben over the temperature range 

380- 440oC and greater than that of 55310-101 and 55310-Lau. Although this is an interesting 

finding for these compounds, it is to be noted that the thermal decomposition is happening well 

above the beginning of the thermal degradation of these compounds.        
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Figure 5-23 Compilation of torque as a function of time curve for the various 55310 compounds 

for one minute and 38 seconds 

 

Figure 5-24 Compilation of temperature as a function of time curve for the various 55310 

compounds for one minute and 38 seconds 
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In comparing Tables 5-13 and 5-14, the data suggests that some form of starch molecular 

interaction or modification has occurred within all three compounds. In Table 5.13, the TGA 

peak for 55310 starch is recorded at 293.89oC and in Table 5-14 the peak increases between 

309.81 oC to 314.54oC. 

 

In Figure 5-25, 55310-Lau TGA curve is lowest thermal decomposition stability of the three 

55310  compounds with greater stability being recognized with 55310-101 and 55310-Ben 

respectively.   

 

 

 

 

Figure 5-25 Compilation of TGA derivative curves for the various 55310 compounds  
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Table 5-13 Summary of the TGA derivative curves for the various raw materials 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 

99% 

243.26 279.99 264.72 99.7 7.8 7.7 

Starch 283.62 300.14 293.89 71.68 31.5 22.60 

55310 372.25 383.41 374.15 16.38 31.5 5.16 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  

 

 

Table 5-14 Summary of the TGA derivative peaks for 55310 compounds defined in Table 5-1 

Peak 55310-101 55310-Ben 55310-Lau 

Assignment oC Wt% oC Wt% oC Wt% 

<150  1.4  1.4  1.2 

1 261.00 5.2 261.00 9.6 269.01 10.1 

2 311.95 24.3 314.54 19.8 309.81 19.6 

3 410.20 52.4 416.15 53.6 409.15 52.0 

4 451.01 15.4 454.26 14.3 446.75 17.5 

       

 

DSC analysis was conducted on the 55310 compounds outlined in Table 5-1. The summaries of 

the peaks for 2nd melt cycle and 2nd cooling cycle are presented in Table 5-15 and Table 5-16 

respectively.  

 

In Table 5-15, 55310-101 presents the lowest enthalpy of melt  [ΔHm ] of the three compounds. 

Overall, all three compounds display a low degree of crystallization and require minimal heat to 
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be absorbed to melt the crystalline regions. The enthalpy of melt  ΔHm  value is noted to be low 

and ranging from 1.71 – 2.33 J/g.  

 

In Table 5-16, 55310-Ben presents the highest enthalpy of crystallization [ΔHc] of the three 

compounds. Of interest is the point that 55310-Ben and 55310-101 compounds present values 

for ΔHc  that are greater than the ΔHm . This phenomenon is also noted with the conditioned 

55310 starch sample. It is believed to be a result of plasticizer migration from the sample and 

subsequent retrogradation of the starch, thereby creating areas of crystallinity within the 

compound.  

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling. It is 

believed that the plasticizer evapourated from the sample as a result of exposure to heat during 

the second heating of the compound, thereby deforming the DSC pan with increased vapour 

pressure.  

 

Figure 5-26 Compilation of normalized DSC curve for 55310 compounds defined in Table 5-1 
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To depict all three DSC curves together on the same graph in Figure 5-26, the scale of the 

Normalized Heat Flow Endothermic legend became too broad to depict the subtleties in the 

different compound melts.  However, the glass transition temperature is visible for each 

compound and is clearly distinguished at the far left side of  each curve. On analysis,  

55310-Ben had the glass transition temperature of 40.70oC, 55310-101 at 43.11oC and 55310-

Lau compound is measured at 41.31oC 

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-27 Shows the FTIR spectra for all three Hylon compounds. Due to the detail in the two 

regions outlined in Figure 5-27, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra 

were separated into these two areas and zoomed in on with detailed spectra reflected in Figures 

5-28 and 5-29 respectfully.  

 

Table 5-15 Summary of the normalized DSC melt peaks for the 55310 compounds 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

55310-101     

1 122.76 126.44 125.32 1.709 

55310-Ben     

1 92.04 109.33 98.20 0.465 

2 115.15 133.77 123.71 1.364 

3 146.45 157.75 151.35 0.220 

4 161.88 172.17 167.00 0.281 

55310-Lau     

1 112.11 137.27 125.53 1.984 
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DSC Cool 

Table 5-16 Summary of the normalized DSC crystallization peaks for the 55310 compounds 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

55310-101     

1 96.34 79.89 88.80 -6.41 

55310-Ben     

1 97.15 78.82 86.48 -9.89 

2 149.06 134.29 135.37 -3.56 

55310-Lau     

1 93.88 81.18 89.78 -0.86 

 

 

 

Figure 5-27 Compilation of the FTIR curves for the 55310 compounds  
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Figure 5-28 Compilation of the FTIR curves for the 55310 compounds from Table 5-1  over the 

wavenumbers 2500-3450 cm-1 

 

The spectra of the three compounds displayed in Figure 5-28 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1  arising from the hydroxyl groups (-OH) is seen in 55310-Lau, 

55310-Ben and 55310-101 compounds with increasing intensities.  

• The two peaks at 2918 cm-1 and 2853 cm-1, seen in the spectra of 55310-101, indicate 

the presence of aliphatic groups arising from grafting.  
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Figure 5-29 Compilation of the FTIR curves for the 55310 compounds from Table 5-1  over the 

wavenumbers 650-1800 cm-1 

 

The spectra of the three compounds displayed in Figure 5.29 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1 is characteristic of carbonyl groups and suggests the esterification 

reaction with maleic anhydride (MAH). Of interest is the increasing intensity of the peak 

from 55310-101 to 55310-Ben to 55310-Lau. It is to be noted that carbonyl peak of 

1715 cm-1 for PBAT is not present. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

• Characteristic peaks at 1267 cm-1 and 1243 cm-1 represent ester stretches in PBAT 

where present with 55310-Lau and 55310-Ben, with both having higher absorbance 

intensity. 
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In section 5.2, the question was raised with regards to the selection of free radical initiators and 

whether certain free radical initiators could dissociate in a timely fashion to allow for chemical 

reactions to occur within the residence time and body temperature of the CWB at 150oC. The 

results from the trials conducted are reported in Table 5-17. 

 

From Table 5-17 the following patterns are identified, independent of the starch considered, and 

for the compounds outlined in Table 5-1. However, it is noted that the type of starch seems to 

have a predisposition to how it reacts with different free radical initiators. The faster the ability 

to destructure the starch in the presence of a free radical initiator:  

• The more likely that lower torque will be required in the process 

• The more likely that the resulting compound will be more amorphous in characteristic 

• The more likely that the two peaks at 2918 cm-1 and 2853 cm-1  will be seen in the FTIR 

spectra, indicating the presence of aliphatic groups from grafting 

• The more likely that a lower amount of carbonyl covalent bonds develop, as seen in the 

drop in intensity of the peak at 1710 cm-1 

 

Conversely, the following pattern is identified independent of the starch considered with the 

slower the destruction of the starch granule:  

• The more likely that higher torque energy will be required. 

• The more likely that higher compound thermal stability can be achieved 

• The more likely that more crystallinity residue will reside in the compound 

• The more likely additional carbonyl covalent bonds are developed as noted with the 

increased intensity of FTIR peak at 1710 cm-1, thereby suggesting the potential of 

greater number of esterification and transesterification bonds occurring.  
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Table 5-17 Summary of the results in Section 5.2 

Starch Hylon 30050 55310 

Amylose : Amylopectin 

ratio in Starch 

70:30 25:75 25:75 

Torque / destructuring 

Increasing rate 

101<  Ben< Lau  Ben<Lau <101 Ben<Lau <101 

Torque / Maximum at 

destructuring point 

Lau<101<Ben 101<Ben<Lau Lau<101<Ben 

TGA / increasing 

thermal stability 

101<Lau<Ben 101 < Lau < Ben Lau<101<Ben 

DSC / Increasing ΔHm Lau < 101 < Ben 101 < Ben < Lau 101 < Lau < Ben 

DSC / Increasing ΔHc 101<Ben<Lau 101<Lau<Ben Lau<101<Ben 

FTIR / Additional 

Peaks 2918 & 2853cm-1 

Lau 101 & Ben 101 

Increase Intensity @ 

1710 cm-1 

Lau<101<Ben 101 < Ben < Lau 101 < Ben < Lau 

 

5.3 The effects of increasing the amount of free radical initiators 

 

In section 5.2, dibenzoyl peroxide was identified as being an efficient free radical initiator with 

various starches at 0.1% addition. In this section, the concept was to look the effects of 

increasing the amount of free radical initiators by three time (0.3%) and comparing the results 

found between the two compounds.  The formulations in this evaluation are outlined in Table 5-

18, with 30050 starch being used in the balance of the recipe.  
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Table 5-18 Formulations for the evaluation of the effect of increasing of peroxide the compound 

properties 

Label Peroxide 

type 

Peroxide 

Wt-% 

MAH 

Wt-% 

PBAT 

Wt-% 

Water 

Wt-% 

Glycol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

0.1% Dibenzoyl 0.1 1.0 58.2 1.5 7.7 45 150oC 

0.3%  Dibenzoyl 0.3 1.0 58.2 1.5 7.7 45 150oC 

 

 

The evaluation of the torque and temperature as a function of time yield similar curves. At  23 

seconds into the mix, the maximum torque 1540 mg is obtained, and lowest temperature is 

reached on both curves for 0.1% and 0.3% peroxide addition. 

 

Looking into the results from TGA, the same level of thermal stability for both compounds 

(0.1% and 0.3% peroxide) is seen with the different levels of peroxide 

 

The analysis of the DSC curve offers similar results for the two compounds. Both samples were 

analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-31 shows the FTIR spectra for both compounds. Due to the detail in the two regions 

outlined in Figure 5-31, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra were 

separated into these two areas and zoomed in on, with detailed spectra reflected in Figures 5-32 

and 5-33 respectfully.  

 

The spectra of the three compounds displayed in Figure 5-32 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The spectra peaks from both samples almost completely overlap each other. 

• The peak at 3,300 cm-1 arising from the hydroxyl groups (-OH) is seen in both.  

• The two peaks at 2918 cm-1 and 2853 cm-1 seen in the spectra indicate the presence of 

aliphatic groups arising from grafting. These two peaks are not perceived in any of the 

spectra for the raw materials including PBAT nor 30050 starch. 
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Figure 5-30 FTIR curve on the compound evaluating the effect of increasing of peroxide  

 

Figure 5-31 FTIR curve on the compound evaluating the effect of increasing of peroxide 
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Figure 5-32 FTIR curve on the compound evaluating the effect of increasing of peroxide 

 

The spectra of the two compounds displayed in Figure 5-32 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1, characteristic of carbonyl groups, and suggests the esterification 

reaction with maleic anhydride (MAH). It is to be noted that carbonyl peak of 1715 cm-1 

for PBAT is not present. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

 

5.4 The influence of increasing the amount of MAH 

 

Maleic Anhydride (MAH) is a well-known building block in polymerization. Its bifunctional 

nature allows for covalent bonds to be formed. This experimental design examines the starch 



 

 140 

polyester compound and the impact of increasing the amount of MAH added during 

compounding. The quantity of MAH added increased by two and three times over the initial 

amount.  

 

The formulations in this evaluation are outlined in  Table 5-19 with 30050 starch being used in 

the balance of the recipe. 

 

Table 5-19 The Effects of Increasing Maleic Anhydride 

Starch Peroxide 

type 

Peroxide 

Wt-% 

MAH 

Wt-% 

PBAT 

Wt-% 

Water 

Wt-% 

Glycol 

Wt-% 

Screw Speed 

RPM 

Temperature 

oC 

MAH-1X Lauroyl 0.1 1.0 58.2 1.5 7.7 45 150oC 

MAH-2X Lauroyl 0.1 2.0 58.2 1.5 7.7 45 150oC 

MAH-3X Lauroyl 0.1 3.0 58.2 1.5 7.7 45 150oC 

 

 

Figure 5-34 illustrates the plots of the torque curves as a function of time for the 30050 

compounds describe in Table 5-19. In this figure, all compounds display a delay in the onset of 

starch granular destruction. MAH-3X compound, with three times the amount of MAH, is the 

first compound to display a rapid change in torque. Compound MAH-3X achieves a maximum 

torque peak of 1875.49 mg and subsequent decline. The drop in torque is in response to the 

effective plasticization of the starch molecules following the gelatinization of the starch.  

 

The curves for MAH-2X and MAH-1X start to show the onset of destructuring shortly after 

MAH-3X. MAH-2X and MAH-1X compounds achieve maximum torque at 1618.25 mg and 

1828.60 mg.  

 

Summary of  torque value for the three MAH compounds as a function of time are outlined in 

Table 5-20. 
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Figure 5-33 Compilation of torque curve as a function of time evaluating the effects of increasing 

MAH levels. 

 

 

Table 5-20 Summary of the torque and time values in achieving destructuring of starch 

 MAH-1X MAH-2X MAH-3X 

Torque mg mg mg 

On Set 211.91 99.63 169.98 

Max 1828.60 1618.25 1875.49 

Time seconds seconds seconds 

On Set 11 9.5 8 

Max 18 17 15 
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Figure 5-34 Compilation of the temperature as a function of time for the various compounds with 

increasing levels of MAH over the first 28 seconds of compounding 

 

 

Figures 5-35 and 5-37 plot temperature versus time for the 30050 compounds outlined in Table 

5-19, although to different time scales.  

 

In Figure 5-35, the time at which MAH-3X temperature curve is at its lowest, corresponds with 

the time it takes MAH-3X torque curve to achieve its maximum torque value as seen in Figure 

5-34. This relationship seems to make sense, as until the starch is destructured and the onset of 

plasticization occurs, all the energy from thermal and mechanical sources is being absorbed by 

the MAH-3X compound. Once the compound achieves gelatinization and plasticization is 

occurring, the compound requires less energy to break the lamellae crystalline structure within 

the amylopectin molecules, thus resulting in an increase in temperature being identified. The 

same relationship between torque and temperature as a function of time is seen for MAX-2X 

and MAH-1X.  
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Figure 5-35 Compilation of the torque as a function of time for the various compounds with 

increasing levels of MAH  

 

Figure 5-36 Compilation of the temperature as a function of time for the various compounds with 

increasing levels of MAH  
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In Figure 5-35, it is noted that once the various compounds achieve their maximum torque 

value, they start to exhibit signs of plasticization and decreasing torque values as time 

progresses. As time approaches one minute, the torque values of the compounds seem to 

stabilize  

 

In compounding thermoplastic starch, it was determined in section 4.6, that the temperature 

should not exceed 150oC.  In Figure 5-36, it is concluded that the three compounds do not 

exceed that temperature during compounding. 

 

TGA analysis was conducted on the individual ingredients and the MAH compounds outlined 

in Table 5-21. The objective was to determine if the MAH compounds display any signs of 

changes in thermal stability over that of the individual raw materials. 

 

In comparing Tables 5-21 and 5-22, the data suggests that some form of molecular interaction 

or modification has occurred within all three compounds. In Figure 5-38, higher thermal 

degradation temperatures are noted with MAH-1X over the temperature range 350 oC - 450oC, 

than seen with MAH-2X and MAH-3X.    

 

Figure 5-38 displays the derivative of the percentage weight loss curve as a function of 

temperature with the MAH compounds outlined in Table 5-19, with Table 5-22 summarizing 

the data.  

 

DSC analysis were conducted on the MAH compounds outlined in Table 5-19. The summaries 

of the DSC peaks for 2nd melt cycle and 2nd cooling cycle are in Table 5-23 and Table 5-24 

respectively. 
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Table 5-21 TGA derivative peaks for the raw material employed in the various compounds 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 

99% 

243.26 279.99 264.72 99.7 7.8 7.7 

Starch 277.23 287.67 283.40 2.22 31.5 6.9 

30050 294.83 331.37 317.26 60.00 31.5 18.9 

 474.10 529.48 502.61 27.16 31.5 8.5 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  

 

 

 

Table 5-22 Summary of the TGA derivative peaks for the compounds defined in Table 5-17 

Peak MAH-1X MAH-2X MAH-3X 

Assignment oC Wt-% oC Wt-% oC Wt-% 

<150  1.53  11.44  10.76 

1 322.92 30.5 306.60 21.73 306.78 22.34 

2 414.39 57.88 411.51 60.36 399.25 50.84 

3 484.17 9.26 478.80 5.69 425.57 14.35 

       

 

In Table 5-23, MAH-3X presents the lowest enthalpy of melt  [ΔHm ] of the three compounds. Overall, 

all three compounds display a low degree of crystallization and require minimal heat to 

be absorbed to melt the crystalline regions. The enthalpy of melt  ΔHm  values are noted to be 

low and ranging from 1.28 – 4.43 J/g.  
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Figure 5-37 Compilations of the TGA derivative curves for the compounds defined in Table 5-17 

 

In Table 5-24, MAH-1X presents the highest enthalpy of crystallization [ΔHc] of the three 

compounds. It is noted that as the level of MAH increases, the measurement for ΔHc  decreases 

along with ΔHm for the same compound.  

 

To depict all three DSC curves together on the same graph in Figure 5-26, the scale of the 

Normalized Heat Flow Endothermic legend became too broad to depict the subtleties in the 

different compound melts.  However, the glass transition temperature is visible for each 

compound and is clearly distinguished at the far left side of  each curve. On analysis, MAH-1X 

had the glass transition temperature of 40.70oC, MAH-2X at 43.11oC and MAH-3X compound 

is measured at 41.31oC. 
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Figure 5-38 Compilations of the normalized DSC curves for the compounds defined in Table 5-19 

 

 

Table 5-23 Summary of the normalized DSC melt curves for the compounds defined in Table 5-19 

 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

MAH-1X     

1 108.88 123.30 123.06 4.432 

MAH-2X     

1 84.52 93.24 91.02 1.607 

2 94.08 100.34 97.00 0.720 

3 107.28 114.86 110.82 1.977 

MAH-3X     

1 95.17 96.76 96.18 0.197 

2 124.46 134.14 133.76 1.0864 
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Table 5-24 Summary of the normalized DSC crystallization curves for the compounds defined in 

Table 5-19 

 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

MAH-1X     

 101.26 81.11 89.39 -9.50 

MAH-2X     

 93.03 78.53 87.53 -0.60 

MAH-3X     

 82.04 74.59 78.71 -0.39 

 

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-40 shows the FTIR spectra for all three MAH compounds. Due to the detail in the two 

regions outlined in Figure 5-40, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra 

were separated into these two areas and zoomed in on with detailed spectra as reflected in 

Figures 5-41 and 5-42 respectively. 

 

The spectra of the three compounds displayed in Figure 5-41 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,300 cm-1 arising from the hydroxyl groups (-OH) is seen for all three 

compounds. It is noted that the intensity of this peak increases as the amount of MAH 

increases.  

• The two peaks at 2918 cm-1 and 2853 cm-1, seen in the spectra of MAH-2X and MAX-

3X, indicate the presence of aliphatic groups arising from grafting. These two peaks are 

not perceived in any of the spectra for the raw materials, including PBAT and 30050 

starch 
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Figure 5-39 Compilation for the FTIR curves for the compounds define in Table 5-19 

 

 

 

Figure 5-40 FTIR spectra for MAH effect on starch over the wavenumber between 2500-3500 cm-1 
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Figure 5-41 FTIR spectra for MAH effect on starch over the wavenumber between 650-1800 cm-1 

 

The spectra of the three compounds displayed in Figure 5-42 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1 is characteristic of carbonyl groups.  It is noted that this peak 

decreases in intensity as the amount of MAH increases.  

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is not seen, thereby suggesting that it has been opened. 

 

5.5 The effect of the starch’s initial moisture on the compound synthesized  

 

In the Wolff’s patent (2013), it is suggested that drying the starch is important in achieving 

the desired results. In section 5.5, starch samples were dried to various levels of moisture as 

outlined in Table 5-26 and compounded in accordance with the formulations outlined in Table 

5-25. The compounds were evaluated with the analytical techniques of FTIR, TGA and DSC in 
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combination with the data of torque and temperature versus time obtained from the CWB 

during compounding. This information was assembled to shed some light on the influence of 

starch moisture and the formation of starch co-polyester polymers. 

 

Table 5-25 Formulation developed to evaluate the effects of pre-drying starch before compounding 

Starch Dried 

hours 

Peroxide 

Wt-% 

MAH 

Wt-% 

PBAT 

Wt-% 

Water 

Wt-% 

Glycol 

Wt-% 

Temperature 

oC 

Scew Speed 

RPM 

Hylon VII 0 0.1 1.0 58.2 1.5 7.7 150 45 

Hylon VII 3  0.1 1.0 58.2 1.5 7.7 150 45 

Hylon VII 5  0.1 1.0 58.2 1.5 7.7 150 45 

30050 0 0.1 1.0 58.2 1.5 7.7 150 45 

30050 3  0.1 1.0 58.2 1.5 7.7 150 45 

30050 5  0.1 1.0 58.2 1.5 7.7 150 45 

55310 5  0.1 1.0 58.2 1.5 7.7 150 45 

 

 

Table 5-26 Moisture levels of the starch following a period of drying 

Label Starch Dried 

hours 

Moisture level 

Wt-% 

Peroxide 

Hylon -7% Hylon 0 7.8 Dilauroyl  

Hylon -1.6% Hylon 3  1.6 Dilauroyl  

Hylon -0.7% Hylon 5  0.7 Dilauroyl  

30050 -8% 30050 0 8.02 Dilauroyl  

30050 -3% 30050 3  3.0 Dilauroyl  

30050- 0.7% 30050 5 0.7 Dilauroyl  

55310-0.7% 55310 5 0.7 Dilauroyl  
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5.5.1 Compounds of dried Hylon VII starch with various moisture levels 

 

In section 5.2.1 Hylon starch was studied with various free radical initiators. In that study, 

Hylon-Lau displayed the quickest ability to destructure and plasticize. This study looks at the 

effects of moisture on the ability of the Hylon starch at various levels of moisture before 

compounding, to destructure and plasticize, then reviews the analytical data collected from the 

TGA, DSC, FTIR and from torque and temperature versus time figures obtained from the CWB 

during compounding.  

 

Figure 5-42 illustrates the plots of the torque curves as a function of time for the various levels 

of dried Hylon compounds describe in Table 5-25. In this figure, the compounds display a delay 

in the onset of starch granular destruction as the moisture level of the Hylon starch drops. 

Hylon-7% compound is the first compound to display a rapid change in torque. Compound 

Hylon-7% achieves a maximum torque peak of 1,275.6 mg and subsequent decline. The drop in 

torque is in response to the effective plasticization of the starch molecules following the 

gelatinization of the starch.  

 

Hylon-7% is the same compound as Hylon-Lau evaluated earlier. In section 5.2.1, Hylon-Lau 

was found to be the quickest and most effective achieve in the destructure and plasticize the 

starch.  

 

The curves for Hylon-1.6% and Hylon-0.7% start to show the onset of destructuring shortly 

after Hylon-7%. Hylon-1.6% and Hylon-0.7% compounds achieve maximum torque at 2,466.7 

mg and 2,347.2 mg.  The summary of  torque value for the three Hylon compounds as a 

function of time is outlined in Table 5-27. 
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Figure 5-42 The effect of drying Hylon starch on destructuring through the measurement of 

torque as a function of time over the first 18 seconds 

 

 

Table 5-27 Summary of the torque and time in achieving destructuring of dried Hylon starch 

 7%  1.6% 0.7% 

Torque mg mg mg 

On Set 0 97 102 

Max 1275.6 2466.7 2347.2 

Time seconds seconds seconds 

On Set 0 10 14 

Max 6 21 26 
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Figure 5-43 Compilation of the temperature as a function of time curves evaluating the 

destructuring of starch over the first 18 seconds 

 

 

Figure 5-44 Compilation of  torque as a function of time curves evaluating the destructuring of 

starch 
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In Figure 5-44, it is noted that once the compounds achieve their maximum torque value, they 

start to exhibit signs of plasticization with torque decreasing as time progresses. As time 

approaches one minute, the torque values of the various compounds seem to stabilize. 

 

 In compounding thermoplastic starch, it was determined in section 4.6, that the temperature 

should not exceed 150oC.  In Figure 5-45, it is concluded that the three compounds do not 

exceed that temperature during compounding. 

 

 

Figure 5-45 Compilation of temperature as a function of time curves evaluating the destructuring 

of starch 

 

TGA analysis was conducted on the individual ingredients and the Hylon compounds outlined 

in Table 5-25. The objective is to determine if the Hylon compounds display any changes in 

thermal stability as a result of reducing the amount of moisture in Hylon starch from its native 

level. 
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Figure 5-46 displays the derivative of the percentage weight loss curve as a function of 

temperature with the Hylon compounds outlined in Table 5-25 with Table 5-29 summarizing 

the data.  

 

Figure 5-46 notes a higher level of thermal stability with Hylon-7% over the temperature range 

350- 440oC, and greater than that of Hylon-1.6% and Hylon-0.7%.  In comparing Tables 5-28 

and 5-29, the data suggests that, as the amount of moisture in Hylon starch is reduced from its 

native level of 7%, the thermal stability correspondingly decreases as well.    

 

DSC analysis was conducted on the Hylon compounds outlined in Table 5-25. Table 5-30 and 

Table 5-31 summarize the peaks for 2nd melt cycle and 2nd cooling cycle, respectively  

 

In Table 5-30, Hylon-7% presents the lowest enthalpy of melt  [ΔHm ] of the three compounds. 

Overall, all three compounds display a low degree of crystallization and require minimal heat 

absorption to melt the crystalline regions. The enthalpy of melt ΔHm  values are  noted to be low 

and ranging from 0.11 to 1.1 J/g.  

 

In Table 5-31, Hylon-0.7% presents the highest enthalpy of crystallization [ΔHc] of the three 

compounds. Of interest is the point that all compounds present values for ΔHc  that are greater 

than the ΔHm . This phenomenon is also noted with the conditioned Hylon starch sample. It is 

believed to be a result of plasticizer migration from the sample and subsequent retrogradation of 

the starch, thereby creating areas of crystallinity within the compound.  

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling. It is 

believed that the plasticizer evapourated from the sample as a result of exposure to heat during 

the second heating of the compound, thereby deforming the DSC pan with increased vapour 

pressure. 
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Table 5-28 Summary of TGA peaks of the raw materials 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 

99% 

243.26 279.99 264.72 99.7 7.8 7.7 

Starch 277.23 287.67 283.40 2.22 31.5 6.9 

Hylon VII 294.83 331.37 317.26 60.00 31.5 18.9 

 474.10 529.48 502.61 27.16 31.5 8.5 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  

 

 

 

Table 5-29 Summary of the TGA peaks for the evaluation of the effects of drying Hylon starch 

Peak Hylon – 7% Hylon – 1.6% Hylon – 0.7% 

Assignment oC Wt-% oC Wt-% oC Wt-% 

<150  8.5  0.42  7.52 

1     269.01 1.35 

2 321.03 22.9 308.72 25.48 308.87 21.66 

3 409.24 51.8 396.44 14.10 397.75 39.69 

4 429.85 5.1 412.24 44.13 407.71 17.28 

5 475.51 11.4 456.92 10.58 472.64 11.86 
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Figure 5-46 The TGA derivative curves for the evaluation of the effects of drying Hylon starch 

 

Table 5-30 Summary of the DSC melt peaks for the evaluation of the effects of drying Hylon 

starch 

Material On Set End Peak ΔHm 

 oC oC oC J/g 

Hylon-7%      

[Hylon-Lau] 157.42 162.56 161.22 0.11 

Hylon – 1.6%     

1 123.43 128.39 126.68 1.092 

2 152.31 154.63 153.74 0.05 

Hylon – 0.7%     

1 111.68 135.43 121.55 1.08 
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Table 5-31 Summary of the DSC crystallization peaks for the evaluation of the effects of drying 

Hylon starch 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

Hylon – 7%     

 104.35 79.75 91.45 -8.36 

Hylon – 1.6%     

 105.82 79.71 91.73 -9.45 

Hylon – 0.7%     

 96.36 78.28 89.42 -2.58 

 

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  

 

Figure 5-47 shows the FTIR spectra for all three Hylon compounds. Due to the detail in the two 

regions outlined in Figure 5-47, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra is 

separated into these two areas and zoomed in on with detailed spectra reflected in Figures 5-48 

and 5-49 respectively. 

 

The spectra of the three compounds displayed in Figure 5-48 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1 arising from the hydroxyl groups (-OH) is seen in all spectra of 

Hylon-7%, Hylon 1.6% and Hylon-0.7% compounds.  

• The two peaks at 2918 cm-1 and 2853 cm-1 are seen in the spectra of Hylon-7% and 

Hylon-1.6% indicating the presence of aliphatic groups arising from grafting. However, 

these peaks exhibited very lower intensity with Hylon-0.7% compound.   
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Figure 5-47 FTIR spectra for the evaluation of the effects of drying Hylon starch 

 

 

Figure 5-48  FTIR spectra for the evaluation of the effects of drying Hylon starch over the 

wavenumbers 2500 – 3500 cm-1  
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Figure 5-49 FTIR spectra for the evaluation of the effects of drying Hylon starch over the 

wavenumbers 650 – 1800 cm-1 

 

The spectra of the three compounds displayed in Figure 5-49 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  

• The peak at 1710 cm-1, characteristic of carbonyl groups, suggests the esterification 

reaction with maleic anhydride (MAH) and or glycerol. Of interest is the increasing 

intensity of the peak from Hylon-7% to Hylon-1.6% to Hylon-0.7%. It is noted that 

carbonyl peak of 1715 cm-1 for PBAT shift down to 1710 cm-1. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that the MAH was opened with the possibility of forming 

esters and or transesterification.  

• Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. 

However, the ratio of the intensities between the two peaks is noted to be the same with 

PBAT and  Hylon-0.7% and different with Hylon-7% and Hylon-1.6%. 
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5.5.2 Reaction compounding with dried Starch 30050 of various 

moisture levels 

 

In section 5.2.2, 30050 was studied with various free radical initiators. In that study, 30050-Lau 

displayed the ability to destructure and plasticize. This study looks at the effects of 30050 starch 

at various levels of moisture, before compounding, in destructure and plasticization of those 

compounds. The analytical data was collected from the TGA, DSC, FTIR and the torque and 

temperature versus time curves from the CWB for further analysis and review.  

 

Figure 5-50 illustrates the plots of the torque curves as a function of time for the various level of 

dried 30050 compounds described in Table 5-25 and 5-26. In this figure, the compounds display 

a delay in the onset of starch granular destruction as the moisture level of the 30050 starch 

drops. 30050-3% compound is the first compound to display a rapid change in torque. 

Compound 30050-3% achieves a maximum torque peak of 2,075 mg and subsequent decline. 

The drop in torque is in response to the effective plasticization of the starch molecules 

following the gelatinization of the starch.  

 

The curves for 30050-8 and 30050-0.7% start to show the onset of destructuring shortly after 

Hylon-3%. The 30050-8% and 30050-0.7% compounds achieve maximum torque at 1,842 mg 

and 2,591 mg. A summary of torque values for the three 30050 compounds as a function of 

time is outlined in Table 5-32. 

 

Figures 5-51 and 5-53 are plots of temperature versus time for the 30050 compounds outlined in 

Table 5-25 although to different time scales.  

 

In Figure 5-51, the time at which 30050-3% temperature curve is at its lowest corresponds with 

the time it takes 30050-3% torque curve to achieve its maximum torque value in Figure 5-52. 

This relationship seems to make sense, as until the starch is destructured and the onset 

plasticization occurs, all the energy from thermal and mechanical sources is being absorbed by 
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the 30050-3% compound. The same relationship between torque and temperature as a function 

of time is seen for 30050-8% and 30050-0.7%.  

 

 

Figure 5-50 Torque as a function of time for the effects of drying 30050 starch on compounds over 

the first 14 seconds 

 

Table 5-32 Summary of the torque and time values, at the point of destructuring, for 30050 starch 

compounds 

 30050-8%  30050-3.0% 30050-0.7% 

Torque mg mg mg 

On Set 165 165 155 

Max 1842 2075 2591 

Time seconds seconds seconds 

On Set 11.2 8 10.4 

Max 18 16 18 
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Figure 5-51 Temperature as a function of time for the effects of drying 30050 starch on 

compounds over the first 14 seconds 

 

 

 

Figure 5-52 Torque as a function of time for the effects of drying 30050 starch on compounds 
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Figure 5-53 Temperature as a function of time for the effects of drying 30050 starch on 

compounds 

 

TGA analysis was conducted on the individual ingredients and the 30050 compounds outlined 

in Table 5-25. The objective was to determine if the 30050 compounds display any sign of 

changes in thermal stability as the level of moisture in the starch changed. 

 

Figure 5-54 displays the derivative of the percentage weight loss curve as a function of 

temperature with the 30050 compounds outlined in Table 5-25, with Table 5-33 summarizing 

the data.  

 

In Figure 5-55, highest thermal stability is noted with 30050-8% over the temperature range 

380- 440oC, and greater than that of 30050-3% and 30050-0.7%.  Figure 5-54 and Table 5-34 

suggest that the thermal stability of the 30050 compounds outlined in Table 5-25 diminishes as 

the amount of initial moisture in the starch decreases.  
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Table 5-33 Summary of the TGA peaks for the raw materials 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 

99% 

243.26 279.99 264.72 99.7 7.8 7.7 

Starch 277.23 287.67 283.40 2.22 31.5 6.9 

30050 294.83 331.37 317.26 60.00 31.5 18.9 

 474.10 529.48 502.61 27.16 31.5 8.5 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  

 

 

Table 5-34 Summary of the TGA peaks for 30050 compounds with various levels of drying 

Peak 30050-8% 30050-3% 30050-0.7% 

Assignment oC Wt-% oC Wt-% oC Wt-% 

<150  1.5  1.8  6.7 

1 322.92 30.5 307.20 24.7 306.63 26.3 

2   407.62 45.1 391.37 42.9 

3 414.39 57.9 417.20 10.1 410.52 17.1 

4 487.14 9.26 466.28 11.4 453.96 5.5 

       

 

DSC analysis was conducted on the 30050 compounds outlined in Table 5-25. Table 5-35 and 

5-36 summarizes the peaks for 2nd melt cycle and 2nd cooling cycle for the compounds outlined 

in Table 5-25.  
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Figure 5-54 Compilation of the TGA derivative curves for 30050 compounds outlined in  table 5-

24 

 

 

In Table 5-35, 30050-3% presents the lowest enthalpy of melt  [ΔHm ] of the three compounds. 

Overall, all three compounds display a low degree of crystallization and require minimal heat to 

be absorbed to melt the crystalline regions. The enthalpy of melt ΔHm  values are noted to be 

low and ranging from 1.00 – 5.31 J/g.  

 

In Table 5-36, 30050-3%  presents the highest enthalpy of crystallization [ΔHc] of the three 

compounds. Of interest is that all three compounds possess values for ΔHc  that are greater than 

the ΔHm . This phenomenon is also noted before and is believed to be a result of plasticizer 

migration from the sample and subsequent retrogradation of the starch, thereby creating areas of 

crystallinity within the compound.  
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Figure 5-55 Compilation of the TGA curves for the temperature range of 343 - 420oC 

 

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling. It is 

believed that the plasticizer evapourated from the sample as a result of exposure to heat during 

the second heating of the compound. The plasticizer, when heated, goes through a phase 

transition and forms gas. As the heat increases, the gas expands within the sealed pan resulting 

in the deformation the DSC pan.  

 

All three samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  
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Table 5-35 DSC peaks from the melt curves of the 30050 compounds defined in Table 5-25 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

30050-8%     

1 108.88 123.30 123.06 4.43 

30050-3%     

1 124.28 128.23 126.65 1.00 

30050-0.7%     

1 62.73 66.69 63.71 0.37 

2 118.17 128.07 122.93 0.63 

3 136.09 137.32 136.41 4.31 

 

 

Table 5-36 DSC crystallization peaks from the cooling curves of the 30050 compounds defined in 

Table 5-25 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

30050-8%     

 101.26 81.11 89.39 -9.50 

30050-3%     

1 105.82 78.62 91.78 -11.37 

30050-0.7%     

2 102.99 79.94 91.55 -9.78 

 

 

 

Figure 5-56 shows the FTIR spectra for all three 30050 compounds. Due to the detail in the two 

regions outlined in Figure 5-56, between 2,600 – 3,450 cm-1 and 650 – 1800 cm-1, the spectra 

are separated into these two areas and zoomed in on with detailed spectra reflected in Figures 5-

57 and 5-58 respectively. 
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Figure 5-56 FTIR spectra for the 30050 compounds with differing levels of moisture 

 

 

Figure 5-57 FTIR spectra for the 30050 compounds for 2500-3500 cm-1 
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The spectra of the three compounds displayed in Figure 5-49 focuses on the wavenumbers 

between 2,500 and 3,450 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1 arising from the hydroxyl groups (-OH) is seen in all spectra of 

30050-8%, 30050-3% and 30050-0.7% compounds.  

• The two peaks at 2928 cm-1 and 2886 cm-1, are seen in the spectra of 30050-0.7% and 

30050-8%, and are due to the formation of inter and intramolecular bonding of hydroxyl 

groups between starch and glycerol. 

• The two peaks at 2918 cm-1 and 2853 cm-1 are seen in the spectra of 30050-3% 

indicating the presence of aliphatic groups arising from grafting.  

 

 
Figure 5-58 FTIR spectra for the 30050 compounds for 650-1800 cm-1 

 

The spectra of the three compounds displayed in Figure 5-50 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra are:  
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• The peak at 1710 cm-1 is characteristic of carbonyl groups. Of interest is the increasing 

intensity of the peak from Hylon-3% to Hylon-0.7% to Hylon-8%.  

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

• Characteristic peaks at 1267 cm-1 and 1243 cm-1 represent ester stretches in PBAT. 

However, the intensities of two peaks change with the level of moisture initially in the 

starch. 

 

5.6 The ability to offline dry and master batch the starch for further 

synthesis 

 

The data collected in section 5.5 suggests that mechanisms can be driven in favour of an 

alternative by changing the level of moisture in the starch before compounding. In section 5.6, it 

is assumed that drying the starch is required. As such, for processing it is assumed that once the 

starch is dried, it can be fully blended before compounding. The question then arises, “what is 

the influence on the final compound from fully blending the raw materials together (master 

batch) then allowing it to sit  for a period of time before compounding?”  Is there a window of 

time which master batched materials can offer the best results?  

 

The 55310 starch sample was dried for 5 hours and analyzed for moisture content. Four samples 

of 55310 starch were drawn, blended with all the other ingredients outlined in Table 5-37 and 

placed in a labeled zip locked bag. These mixtures were left standing for a predetermined time 

before compounding, as defined in Table 5-37. At time zero (0), bag one was immediately 

compounded. Then at two hours, five hours and 24 hours corresponding to the compound label.  

 

Figure 5-59 illustrates the plots of the torque curves as a function of time for the 55310 

compounds describe in Table 5-37. In this figure, the compound t=5 immediately responds with 

a fast rate of granular destruction while the other three compounds display a delay in the onset 

of starch granular destruction. Starch 55310 compounds  t=0 and t=2 seem to respond at the 
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same time, while t=24 is the slowest to reflect the onset of destruction.  The torque values and 

the time frames are recorded in Table 5-38 

 

Table 5-37 Formulation for evaluating the ability to process drying off line, master batch the 

materials and allow them to stand before processing 

Label Time  

hours 

Peroxide 

Wt-% 

MAH 

Wt-% 

PBAT 

Wt-% 

Water 

Wt-% 

Glycol 

Wt-% 

Temperature 

oC 

Screw Speed 

RPM 

t=0 0 0.1 1.0 58.2 1.5 7.7 150 45 

t=2 2 0.1 1.0 58.2 1.5 7.7 150 45 

t=5 5  0.1 1.0 58.2 1.5 7.7 150 45 

t=24 24 0.1 1.0 58.2 1.5 7.7 150 45 

 

 

 

Figure 5-59 Torque as a function of time evaluation of the ability to master batch the raw 

materials and allowing them to sit for a period of time before processing over the first 18 seconds 

of compounding 
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Figures 5-60 and 5-62 are plots of temperature versus time for the 55310 compounds outlined in 

Table 5-37, although to different time scales.  

 

Figure 5-60 does not reflect the similar relationship noted be the peak torque value and the 

lowest temperature. In all cases there seems to be a delay, where the temperature seems to lag 

the torque curve.  

 

Table 5-38 Summary of the torque and time required to destructure the starch in the master 

batched compounds defined in Table 5-37 

Label t=0 t=2  t=5 t=24 

Torque mg mg mg mg 

On Set 172 184 0 118 

Max 2066 2310 1773 2645 

Time seconds seconds seconds seconds 

On Set 6.4 7.3 0 11.2 

Max 16.1 15.2 8 17.2 

 

In Figure 5-61, it is noted that once the various compounds achieved their maximum torque 

value, they started to exhibit signs of plasticization with torque decreasing as time progresses. 

As time approaches one minute, the torque values of the various compound seem to stabilize. 

 

 In compounding thermoplastic starch, it was determined in section 4.6, that the temperature 

should not exceed 150oC.  In Figure 5-62, it is concluded that the four compounds do not 

exceed that temperature during compounding 
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Figure 5-60 Temperature as a function of time evaluation of the ability to master batch the raw 

materials and allowing them to sit for a period of time before processing over the first 18 seconds 

of compounding 

 

 

Figure 5-61 Torque as a function of time evaluation of the ability to master batch the raw 

materials and allowing them to sit for a period before processing  
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TGA analysis was conducted on the individual ingredients and the 55310 master batched 

compounds outlined in Table 5-37. The objective was to determine if the 55310 master batches 

displayed any signs of changes in thermal stability as the level of moisture in the starch was 

changed. 

 

Figure 5-62 Torque as a function of time evaluation of the ability to master batch the raw 

materials and allowing them to sit for a period of time before processing  

 

Figure 5-63 displays the derivative of the percentage weight loss curve as a function of 

temperature with the 30050 compounds outlined in Table 5-37, with Table 5-40 summarizing 

the data.  

 

In Figure 5-63, highest thermal stability is noted with master batch t=5 over the temperature 

range 380- 440oC and greater than t=0, t=2 and t=24.  Figure 5-63 and Table 5-34 suggest that 

the thermal stability of the 55310 compounds outlined in Table 5-37 obtain the greatest thermal 

stability at t=5 hours, and that thermal stability marginally drop off earlier or 19 hours later. 
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Table 5-39 TGA of the raw material used in the compounds defined in Table 5-37 

Material OnSet End Peak Wt-% Formulation Predicted 

 oC oC oC  Wt-% Wt-% 

Water   <104 99.9 1.5 1.5 

Glycerol 99% 243.26 279.99 264.72 99.7 7.8 7.8 

Starch 283.62 300.14 293.89 71.68 31.5 22.60 

55310 372.25 383.41 374.15 16.38 31.5 5.16 

PBAT 379.2 437.58 412.91 98.2 58.2 57.15 

Peroxide     1.0  

       

Total     100.0  

 

 

 

Table 5-40 TGA of the raw material used in the compounds defined in Table 5-37 

Peak t=0 t=2 t=5 t=24 

Assignment oC Wt-% oC Wt-% oC Wt-% oC Wt-% 

<150  5.50  3.65  5.37  5.14 

1 264.35 6.56 263.13 7.80 264.72 6.02 266.00 4.14 

2 317.55 22.14 316.81 20.81 318.44 22.08 314.72 21.95 

3 417.32 58.20 414.94 60.17 419.84 58.66 415.44 52.99 

 

DSC analysis was conducted on the 55310 master batched compounds outlined in Table 5-37. 

The summaries of the peaks for 2nd melt cycle and cooling cycle are in Table 5-41, and Table 5-

42, respectively.  

 

In Table 5-41, 55310 master batch compound t=0 presents the lowest enthalpy of melt (ΔHm ) of 

the four compounds. Overall, all four compounds display a low degree of crystallization and 

require minimal heat to be absorbed to melt the crystalline regions. The enthalpy of melt ΔHm  

value were noted to be low and ranging from 0.44 – 3.34 J/g.  
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Figure 5-63 Compilation of the derivative curves for the TGAs of the master batched compounds 

 

 

 

In Table 5-42, 55310 master batch compound t=5 presents the highest enthalpy of 

crystallization (ΔHc) of the four compounds. Of interest is that all four compounds possess 

values for ΔHc  that are greater than the ΔHm . This phenomenon was noted before and believed 

to be a result of plasticizer migration from the sample and subsequent retrogradation of the 

starch, thereby creating areas of crystallinity within the compound.  

 

Swelling of the DSC pans was noted following the 2nd cycle of heating and cooling.  

 

All four samples were analyzed by FTIR with an attenuated total reflectance (ATR) technique.  
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Figure 5-64 Compilation of the normalized DSC curves for master batched compounds 

 

Table 5-41 Summary of the DSC peaks for the master batched compounds 

Material On Set End Peak ΔHm 

Peak oC oC oC J/g 

t=0     

 111.74 128.02 127.45 0.44 

t=2     

 115.07 127.30 121.94 1.66 

t=5     

 114.76 126.61 122.91 2.24 

t=24     

 114.35 125.93 120.05 3.34 

 

Figure 5-65 shows the FTIR spectra for all four 55310 master batched compounds. Due to the 

detail in the two regions outlined in Figure 5-65, between 2,600 – 3,450 cm-1 and 650 – 1800 

cm-1, the spectra were separated into these two areas and zoomed in on with detailed spectra 

reflected in Figures 5-66 and 5-67 respectively. 
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Table 5-42 Summary of the DSC peaks for the master batched compounds 

Material On Set End Peak ΔHc 

Peak oC oC oC J/g 

t=0     

 94.03 78.56 86.02 -6.25 

t=2     

 95.73 79.06 86.76 -8.57 

t=5     

 95.81 78.46 86.60 -9.35 

t=24     

 90.55 77.07 85.21 -2.76 

 

The spectra of the four compounds displayed in Figure 5-66 focuses on the wavenumbers 

between 2,500 and 3,500 cm-1. Of interest are the following areas:  

• The peak at 3,330 cm-1, arising from the hydroxyl groups (-OH) is seen in all spectra of 

55310 master batched compounds. The intensity of the peak seems to be somewhat 

aligned and increasing with time. The only anomaly exists with t=2. 

• The two peaks at 2928 cm-1 and 2886 cm-1, seen in the spectra of  t=0, t=5, and t=24, are 

due to the formation of inter and intramolecular bonding of hydroxyl groups between 

starch and glycerol. The peak intensity increases over time.  

• The two peaks at 2918 cm-1 and 2853 cm-1  seen in the spectra of 55310 master batch 

t=2,  indicate the presence of aliphatic groups arising from grafting.  
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Figure 5-65 FTIR spectra for the master batched compounds 

 

 

 

Figure 5-66 FTIR spectra for the master batched compounds for the wavenumbers of 2500-3500 

cm-1 
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The spectra of the four compounds displayed in Figure 5-67 focuses on the wavenumbers 

between 600 and 1,800 cm-1. The area of interest in these spectra ae:  

• The peak at 1710 cm-1 is characteristic of carbonyl groups. Of interest is the increasing 

intensity of the peak as the master batch sat. The 55310 master batch t=5 didn’t follow 

the relationship and noted a significant increase in carbonyl functional groups.   

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. The 

intensities of these two peaks seem to follow the same relationship noted above at 1710 cm-1 . 

The intensity of the peak increases as the master batch sat longer before compounding. 

However, 55310 master batch t=5 didn’t follow that relationship. 

 

 

Figure 5-67 FTIR spectra for the master batched compounds for the wavenumbers of 650-1800 

cm-1 
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5.7 Investigation of various polyesters in the co-blending 

 

In this section, the intension was to evaluate the two main biodegradable polyester resins, PLA 

and PBAT, under the same conditions and compound formulation, and in the same process, 

studying the  physical / chemical properties which developed. The compound’s formulations, 

outlined in Table 5-43, employed dilauroyl peroxide as a free radical initiator.  

 

Table 5-43 Starch co-polyesters with PBAT & PLA 

Label  

% 

Peroxide 

% 

MAH 

% 

Hylon 

% 

Water 

% 

Glycol 

% 

Temperature 

oC 

RPM 

revolutions 

PBAT-St 58.2 0.1 1.0 31.5 1.5 7.7 150 45 

PLA-St 58.2 0.1 1.0 31.5 1.5 7.7 150 45 

 

The torque versus time graph, in Figure 5-68, suggests that starch is effectively destructured and 

plasticized for the PBAT-St compound as reflected in the maximum torque peak at 1540 mg 

and six seconds, and follows with the subsequent decay of the curve. 

 

Although a peak is seen at 750 mg and 16 seconds for PLA-St compound of the torque versus 

time curve (Figure 5-68), the PLA-St curve continues to increase afterwards. In Figure 5-70 the 

evaluation is run over a wider time frame, the PLA-St curve is seen to achieve maximum torque 

at 2527 mg and 100 second. This period of 105 seconds is beyond the compounding time frame 

established. This could suggest that neither the starch nor PLA-St had achieved destructuring, 

or melt phase, respectively, in the initial evaluation depicted in Figure 5-68, suggesting that the 

probability for covalent bonding between the PLA-St and modified starch would be low during 

the first 90 seconds of compounding.  

 

In Chivac 2007 paper, the ΔHm for PBAT at 100% crystallinity is identified at 114 J/g, and 

Khoo’s 2016 paper defines ΔHm for PLA at 100% crystallinity as 93.6 J/g. 
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Figure 5-68 Torque as a function of time for the two starch copolyester compounds 

 

 

Figure 5-69 Temperature as a function of time for the two starch copolyester compounds 
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Figure 5-70 Torque as a function of time for the two starch copolyester compounds over a great 

compounding window.  

 

Based on the assumption that the starch is believed to have been destructured and plasticized in 

both compounds, then it is assumed that ΔHm  is a reflection of the crystallinity resulting from 

the polyester resin fraction of the compound. In Table 5-44,  the values of ΔHm  are determined 

for the DSC curves and interpreted with Pyris software for the two compounds.  This enthalpy 

of fusion for the starch – PBAT compound concludes that the degree of crystallization is less 

than one percent or presents amorphous characteristics. The PLA-St compound presents a 

significantly higher enthalpy of fusion, thereby suggesting a 49.5% degree of crystallinity 

within the PLA-St compound. 

 

The degree of crystallinity (χc ) is noted to be the higher within PLA-St copolymer than any of 

the PBAT compounds in this paper. The high level of PLA-St crystallinity is believed to be a 

result of the compounding conditions. It is suggesting that these conditions were not effective in 

creating a melt of the PLA early enough.  As a result,  chemical modified of starch occurred 
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first. This suggests that the PLA Starch compound is more of an add mixture with limited, or 

no, modification of the PLA. 

In Table 5-45, Starch-PBAT compound presents the higher enthalpy of crystallization [ΔHc] of 

the two compounds. Of interest is that Starch-PBAT compound possesses  values for ΔHc  that 

are greater than the ΔHm . This phenomenon is also noted before and is believed to be a result of 

plasticizer migration from the sample and subsequent retrogradation of the starch, thereby 

creating areas of crystallinity within the compound 

The DSC pans for both PLA-St and PBAT-St are noted to have swollen following the 2nd cycle 

of heating and cooling suggesting that a vapour had been released from the compound. 

 

Table 5-44 DSC melt peaks for the polyester copolymers outlined in Table 5-43 

 

Label On Set End Peak ΔHm 

Peak oC oC oC J/g 

PBAT-St     

1 116.13 135.26 131.80 0.411 

2 157.42 162.56 161.22 0.11 

PLA-St     

1 83.46 104.35 95.96 17.09 

2 137.34 144.14 141.06 4.62 

3 145.43 152.53 145.43 5.24 

 

Table 5-45 DSC cooling peaks for the polyester copolymers outlined in Table 5-43 

Label On Set End Peak ΔHc 

Peak oC oC oC J/g 

PBAT-St     

 104.35 79.75 91.45 -8.36 

PLA-St     

 130.68 105.07 105.74 -6.58 
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Figure 5-71 FTIR spectra of the copolymers of PBAT and PLA 

 

The spectra of the two polyester compounds with starch are displayed in Figure 5-71. On 

review of these spectra, there is evidence of maleic and glycerol interactions with both the 

polyester and the starch. The following are comments highlighting those peaks:  

• The peak at 3,330 cm-1  arising from the hydroxyl groups (-OH) from the starch and 

glycerol is seen in spectra of both PLA-St and PBAT-St compounds. This peak is absent 

in PLA and PBAT polymers by themselves.  

• The two peaks at 2918 cm-1 and 2853 cm-1  are seen in the spectra of PBAT-St 

indicating the presence of aliphatic groups arising from grafting.  



 

 188 

• Absorbance peaks at 1850 cm-1  and 1854 cm-1  are seen in the PLA-St curve. It 

represents the antisymmetric and asymmetric C-O stretching of the MAH, forming 

succinic anhydride.  

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent in the PBAT-St curve, thereby suggesting that it has been opened. 

• The peak at 1748 cm-1  is characteristic of carbonyl groups from δ lactone C=O bond 

and other ester formations. 

• The peak at 1710 cm-1 is characteristic of carbonyl groups. The peak is existing in the 

PBAT-St compound.  

• The characteristic peak of 1640 cm-1 associated with δ (O-H) bend for water in starch is 

not observed in either PLA-St or PBAT-St compound spectrum. This suggests 

plasticization with glycerol and the displacement of the water within the starch.  

• Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT-St. 

 

5.8 Mechanism 

 

In Chapter 2.6, several different reaction mechanisms were suggested, and some of them were 

found within this study. The potential of maleation, etherification, esterification and 

transesterification of starches with various polyesters were discussed. The mechanisms 

suggested by Stagner 2011, Raquez 2006 / 2008, Narayan 2009, Moad 2011, Hablot 2012, 

Kalambur 2012 and Nabar 2005 were outlined to create a baseline to evaluate the samples 

generated with hopes of proposing mechanism(s) for the reactions.    

 

These potential reactions and modification of starches and polyesters were identified in their 

writings and are simplified into five categories. These categories cover the breadth of the 

experimentation covered in this thesis:  

• Maleated Poly(butylene adipate-co-terephthalate) PBAT in the presence of peroxide 
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• Maleated Polylactic Acid (PLA) in the presence of peroxide 

• Maleated Starch 

• Starch hydrolysis followed by its subsequent maleation 

• Starch ether formation with glycerol 

 

The maleation of Poly(butylene adipate-co-terephthalate) (PBAT) in the presence of peroxide 

was studied in Nabar’s 2005 paper. Nabar suggested a mechanism for the maleation of PBAT 

with the subsequent reduction in molecular weight through the β scission of the PBAT as 

outlined in Figure 2-25.  Nabar noted that maleation of the PBAT would occur with the 

assistance of a free radical initiator and the temperature of 185oC within a twin screw extruder. 

In Nabar’s experiments, Trigonox 101 was employed as the free radical initiator to achieve the 

grafting of MAH to PBAT. Nabar concluded that maleation of the PBAT had occurred with the 

presence of two new carbonyl peaks being observed with the FTIR at 1861 and 1787 cm-1.  

 

In the experiments conducted in this paper, neither peak at 1861 nor 1787 cm-1 were  observed 

in the FTIR spectral analysis of the compounds developed. This suggests that maleation of the 

PBAT, as described by Nabar, did not occur in this work. 

 

Starch maleation described in the Jean-Marie Raquez (2008) and Elodie Hablot (2013)  work 

was achieved through reaction extrusion. In their work, they noted that they could maleate 

starch, and as well, esterify glycerol with starch and achieve transesterification of glycerol with 

starch-polymer graft copolymers. Raquez and Hablot’s work defines five reaction mechanisms 

which can occur during reactive extrusion and formation of modified thermoplastic starch.   

1. Maleation of starch by means of a condensation reaction between the hydroxyl group at 

C6 in the starch and opened MAH, thereby forming an ester covalent bond at C6, and 

releasing water 

2. Hydrolysis of starch in the presence of maleated starch and an excess of water  
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3. Hydrolysis and ether formation between glycerol and the C1 hydroxyl group of starch 

4. Transesterification of MAH grafted starch to the  C6 of glycerylated starch 

5. Transesterification of MAH grafted starch to the  C1 of glycerylated starch 

 

Raquez (2008) and Hablot (2013)  were able to qualify the occurrence of maleation of starch 

and other reactions through the presence of  FTIR peaks developing, or disappearing, depending 

on what mechanism was taking place. The following are specific FTIR peak that they had 

identified, defined in Table 2.2 and embellished here: 

• 3200-3400 cm-1 for O-H stretching resulting for change in O-H in starch and the 

glycerol  

• 2940 cm-1 for  C-H stretching from heterocyclic ring hydrogen 

• 2890 cm-1 for  C-H stretching from glycerol 

• 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

• 1710-1715 cm-1 for C=O stretching from carbonyl and carboxyl bonds and characteristic 

of PBAT. As well, from  the maleation of the starch and or PBAT in the development of 

esters, transesterification and cross linking 

• 1640-1690 cm-1  for δ (O-H) bending of water – derived from the free water residing in 

the starch granule  

• 1440 cm-1  for CH2- bending peak  

• 1400 cm-1  for CH2- bending peak  

• 1200-1275 cm-1  for C-O stretching of alkyl aryl ethers (PBAT) 

• 1163-1210 cm-1  for C-O bond stretches esters – carboxyl formation from maleation 

• 1160 and 770 cm-1  for C-O bond stretches ether formation from glycerylated 

• 1025-1060 cm-1  for -O-H primary hydroxyl groups stretch 
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• 1040-1050 cm-1  for -CO-O-CO  anhydride stretching  

• 770 cm-1  for C-O bond stretches ethers potential from condensation reaction between 

two (-OH) hydroxyl groups forming an ether    

 

 

Figure 5-72 FTIR spectra of PBAT, Starch-Hylon VII, and compounds Hylon-Lau and Hylon-Ben 

from section 5.2.1 

 

Within this paper, two different FTIR spectra signatures were identified as occurring. It seemed 

peculiar that only a limited number of similar spectra were found, given that several compounds 

derived from different starches and peroxides with PBAT were evaluated. 

 

For the point of discussion, the spectra of Hylon-Lau and Hylon-Ben were identified as 

representing the two different FTIR spectra and were reviewed to discern if potential 

mechanisms could be identified. 
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Figure 5-72 depicts the FTIR spectra of the raw materials starch Hylon VII and PBAT in the 

compounding of Hylon-Lau and Hylon-Ben as outlined in section 5.2.1. Several of peaks 

described by Hablot exist in both spectra of Hylon-Lau and Hylon-Ben indicating the maleation 

of starch. 

 

Figure 5-72 contains the spectra for Hylon VII starch, PBAT and that of the two compounds, 

however there is too much spectra congestion which makes it difficult to identify key peaks of 

interest. As such, Figure 5-73 and 5-74 were created to focus on the individual spectra of 

Hylon-Ben and Hylon-Lau  in comparison with the raw materials over the wavenumbers 

between 2600-3200 cm-1. 

 

 
Figure 5-73 FTIR spectra of raw materials and Hylon-Ben compounds obtained from 

compounding 

 

In Figure 5-73, the spectra for Hylon-Ben is very similar to Hablot’s spectra for maleated 

starch. Key peaks of interest exist on the spectra at 2938 cm-1 C-H stretching from heterocyclic 



 

 193 

ring hydrogen, 2912 cm-1 C-H stretching from an alkane,  and 2890 cm-1 for  C-H stretching 

from glycerol.  

 

Figure 5-74 FTIR spectra of raw materials and Hylon-Lau compounds obtained from 

compounding 

 

In Figure 5-74, the spectra for Hylon-Lau is similar to  Hablot’s spectra for maleated starch. 

However, key peaks of interest exist on Hylon-Lau spectra at 2949 cm-1 C-H stretching from 

heterocyclic ring hydrogen, 2917 cm-1 C-H stretching from CH3 glycerol , 2874 cm-1 for  C-H 

stretching from the CH2 of glycerol, and 2850 cm-1 C-H stretching from an alkane. However, 

the intensity of the peaks at 2917 cm-1 is significantly higher, and the presence of  2850 cm-1  

peak is new altogether. The difference between the Figures 5-73 and 5-74 suggest that alkane 

groups are added into the Hylon-Lau copolymer structure.  
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In Figure 5-72 there exists the spectra for Hylon VII starch, PBAT and that of the two 

compounds, however, here too there is too much congestion which makes it difficult to identify 

key peaks of interest. As such, Figure 5-75 and 5-76 were created to focus on the individual 

spectra of Hylon-Ben and Hylon-Lau  in comparison with the raw materials over the 

wavenumbers between 800-1950 cm-1. 

 

 

Figure 5-75 FTIR spectra of raw materials and Hylon-Ben compounds over the wavenumbers 800 

– 1950 cm-1 
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In Figure 5-75, the spectra of the Hylon-Ben compound focus on the wavenumbers between 

800 and 1,950 cm-1. The area of interest in these spectra are:  

• The peak at 1712 cm-1 is characteristic of carboxyl groups and suggests the reaction with 

maleic anhydride (MAH) implying that esterification and or transesterification had 

occurred. 

• A peak at 1640 cm-1 for δ (O-H) bending of water, derived from the free water residing 

in the starch granule, is noted in Hylon VII starch FTIR spectra, disappears in the 

spectra of the Hylon-Ben compound.  

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened. 

• Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. 

However, the ratio of the intensities between the two peaks is different between PBAT 

resin and  Hylon-Ben compound. This suggests the possibility that some portion of the 

PBAT may have been scissored. This explains the reduction in intensity of the spectra at 

wavenumbers 1267 and 1243 cm-1. 

• The characteristic peak of 1780 cm-1 for the ring anhydride of maleic anhydride (MAH) 

is absent, thereby suggesting that it has been opened 

• Characteristic peaks at 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. 

However, the ratio of the intensities between the two peaks is different between PBAT 

resin and  Hylon-Lau compound. This suggests that the PBAT may have been scissored 

at some the ester sights in the PBAT structure.  A similar phenomenon was described in 

Nibar’s paper with regards to β scissoring of ester groups following maleation of PBAT. 

However, the typical FTIR peaks which Nibar had identified are not present.  

Based on the information obtained from the FTIR spectra of the compounds in this paper, and 

the discussion on these two compound spectra in reference to the raw materials, it is believed 

that two groups of mechanisms were prevalent 
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Figure 5-76 FTIR spectra of raw materials and Hylon-Lau compounds over the wavenumbers 800 

– 1950 cm-1 

 

As Hablot and Raquez outlined in their papers, the spectra of Hylon-Ben reflect the maleation 

of the starch including the glycerylate of starch forming esters and transesterification.  

 

However, the spectra of Hylon-Lau offers unique peaks not identified by Hablot and Raquez in 

their compounds of starch – PBAT copolymer. The Hylon-Lau spectra presents unique peaks at 

2917 cm-1 C-H stretching from CH3 glycerol , 2874 cm-1 for  C-H stretching from the CH2 of 

glycerol, and 2850 cm-1 C-H stretching from an alkane.  

 

As well, the spectra of Hylon-Lau reflect the loss in intensity at several other peaks. This 

suggests a lower incidence of specific bonds occurring. These are reflected  at 1712 cm-1, 1267 
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cm-1  and 1243 cm-1. The peak at 1712 cm-1 is characteristic of carboxyl groups and suggests the 

reaction with maleic anhydride (MAH) implying that esterification and or transesterification has 

occurred. However, the intensity of the curve is reduced for the Hylon-Lau. This suggests a 

decrease in carboxyl ester bonds in the compound.   

 

The characteristic peaks of 1267 cm-1  and 1243 cm-1 represent ester stretches in PBAT. 

However, the ratio of the intensities between the two peaks were different between PBAT resin 

and  Hylon-Lau compound. One explanation for this phenomenon was described in Nibar’s 

paper with regards to β scissoring of ester groups following maleation of PBAT. However, the 

lack of peaks described by Nibar suggests the possibility of other reactions occurring which 

involve the  β scissoring of ester groups in the PBAT. 

 

It is believed that the mechanisms proposed by Raquez and Hablot cover much of the work 

conducted in this paper. However, additional analysis with other tools is required to understand 

why there was a loss in ester, and what mechanism may be contributing towards that.  
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Chapter 6 

Conclusion and Recommendation 

6.1 Contributions and Summary 

 

 At the onset, the objective of this research was to understand starch and the conditions which 

are required for its physical and chemical modification, examine the influence of different type 

of starches, taking into consideration the various sources and ratios of amylose / amylopectin. 

The initial focus was to be on the gelatinization of the starch granule and then progress to an 

understanding of the influences that grafting agents, free radical initiators, and polyester resins 

have on the synthesized polymer.  

 

The first study was to understand the parameters that would allow for the efficient destructuring 

and plasticization of the starch in the timeliest fashion. The following parameters were studied: 

• Influence of water on the destructuring of dent starch 

• Influence of water / glycerol on the destructuring of dent starch 

• Influence of shear on the destructuring of dent starch 

• Influence of temperature on the destructuring of dent starch 

 

The following conclusions were obtained regarding the parameters required to destructure and 

gelatinize starch granules.  

• Starch has a preferred affinity towards water, specifically its ability to quickly 

destructure the starch granule. 

• Water can act as an effective plasticizer for starch. Water can reduce the viscosity of 

the mixture with increased addition (reducing the interactions between molecules).  
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• Higher mechanical energy (RPM) is preferential in achieving destructuring of starch 

granule.  

• Higher thermal energy (temperature) is preferential in achieving destructuring of 

starch.  

• Elevated temperatures (greater than 100oC) require alternative plasticizer systems due 

to evaporation.  

• Blends of alternative plasticizer with limited amounts of water enhance the ability of 

the mixture to quickly destructure and plasticize the starch. 

• Thermal and mechanical energy employed are limited to the boiling point of the 

plasticizer in the compound.   

 

The second study was to select three starches, from the collection of starches studied, and 

evaluate their properties. Hylon VII, 30050 and 55310 starches were chosen from the collection, 

and used for evaluation throughout the balance of the paper. They represented the three starches 

which would quickly destructure and plasticize. These starches also represented starches with 

different ratios of amylose to amylopectin and modification. 

 

The third study dealt with the selection of the desired free radical initiator, and the question of 

whether certain free radical initiators could dissociate in a timely fashion to allow for chemical 

reactions to occur within the residence time and body temperature of the CWB at 150oC.  The 

choice of free radical initiator is dependent on the ratio of amylose to amylopectin. Quicker free 

radical initiators seem to favour high amylose grades of starch, while slower free radical 

initiators favour higher amylopectin grades of starch.  

 

The influence of free radical initiators on the rate of destructure and plasticization of the 

compound was examined.  Hylon starch with 70:30 amylose to amylopectin ratio favoured the 

use of dilauroyl peroxide. The 30050 and 55310 starches, with a 25:75 amylose to amylopectin 

ratio, favoured Trigonox 101.  In this study, it was noted that two very distinct mechanisms 
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presented themselves. The choice of peroxide with the amylose to amylopectin ratio allowed for 

one mechanism to prevail over the other. Table 6.1 offers some insight into the relationship 

which was seen between starch and peroxide.  

 

Table 6-1 Summary of the free radical initiators on the compound generated 

Starch Hylon 30050 55310 

Amylose : Amylopectin 

ratio in Starch 

70:30 25:75 25:75 

Torque / destructuring 

Increasing in rate 

101<  Ben< Lau  Ben<Lau <101 Ben<Lau <101 

Torque / Maximum at 

destructuring point 

Lau<101<Ben 101<Ben<Lau Lau<101<Ben 

TGA / increasing 

thermal stability 

101<Lau<Ben 101 < Lau < Ben Lau<101<Ben 

DSC / Increasing ΔHm Lau < 101 < Ben 101 < Ben < Lau 101 < Lau < Ben 

DSC / Increasing ΔHc 101<Ben<Lau 101<Lau<Ben Lau<101<Ben 

FTIR / Additional 

Peaks 2918 & 2853cm-1 

Lau 101 & Ben 101 

Increase Intensity @ 

1710 cm-1 

Lau<101<Ben 101 < Ben < Lau 101 < Ben < Lau 

 

Study four looked at the influence of increasing the level of peroxide from 0.1 – 0.3% in the 

compound. Changing the level of peroxide seemed to have little or no effect on the resulting 

compound. However, work done by Raquez and Hablot suggested that employing levels greater 

than 0.5% had an impact on the mechanism and species generated. 

 



 

 201 

Study five investigated the effect of increasing the ingredient MAH from one percent to two 

and three times that level, in the compound. Changes in the level of MAH had a dramatic effect 

on the resulting compound and gave rise to a change in the predominate reaction mechanism.  

 

Study six looked at the influence of initial starch moisture and its effect on destructure, 

plasticization and resulting physical-chemical properties. It was noted that lowering the initial 

moisture content before compounding changed the predominate reaction mechanism expected.  

 

Study seven looked at blending the dry starch with the other raw materials into a master batch 

and allowing it to sit for a period of time before compounding. The question posed by the study 

was: “is there a window of time for which the master batch blend is good and able to obtain the 

desired results?” It was concluded from this study that, if looking for the predominate reaction 

mechanism to occur, one must blend the materials together and allow the mixture to sit for five 

hours, or more, before compounding. It was seen that blended material, which sat for two hours 

before compounding, resulted in a change in the reaction mechanism. 

 

6.2 Main Conclusions 

 

The  reaction mechanisms offered by Raquez and Hablot were seen in the studies conducted. By 

adjusting the parameters as outlined below, the ability to drive the mechanisms in one direction 

or another exists. The following relationships played a role in achieving the desired reaction 

mechanisms:  

• The starch must efficiently destructure and plasticize to form the gel balls in order for 

the starch molecules to open up and be available for modification.  

• Effective achievement of gelatinization is obtained with a limited amount of water and 

plasticizer blend in the presence of energy (heat, shear) over a period of time. 
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• The desire reaction is predicated on the relationship between peroxide and the amylose 

to amylopectin ratio. 

• The addition of excess peroxide is of little value to the developing the final compound. 

• The addition of excess MAH influences the reaction mechanism.  

• Drying starch has an influence on the reaction mechanism desired. 

 

6.3 Recommendations 

 

This paper offers a firm foundation to build upon. There is still more to learn from this work. 

The following is recommended as the next steps in this research:  

• Additional analysis be conducted on the samples developed 

• The compounds be taken to a twin screw reaction extrusion  

• Application development be explored  

 

Looking at the additional analysis to be conducted, it is suggestion that the following be 

explored: 

• Look at preforming dynamic mechanical analysis on the sample and explore the glass 

transition temperature Tg over the two different mechanisms. 

• Look at the physical properties of tensile and elongation analysis and how they change 

between the two different mechanisms. 

•  Explore the compound viscosities between the two different mechanisms.  

• Consider running proton and C13 NMR on the compounds. This information will shed 

more light on the final structures synthesis and allow for more refined mechanisms to be 

predicted.   
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• Explore the morphology of the compounds developed through the SEM and XRD 

studies to validate the destructurization and plasticization of the starch. 

 

Expand the research into reactive extrusion on a twin screw extruder and look at what other 

variables present themselves. The following is suggested: 

• Sequencing of the same raw materials in their introduction to the extruder 

• The physical-chemical analysis of the compounds created 

When compounds of interest are developed, look at the potential applications in which the 

material could be used. Explore the materials processing ability to blow film, injection mold, 

sheet extrude and vacuum form.   

 

These are but a few of thoughts and recommendations to explore in continuing the concepts 

explored in this thesis. More concepts and opportunities will present themselves as further 

studies are pursued. 
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Appendix 

 

 

Appendix 1 TGA Analysis of starch 30050 with peroxide 101, glycerol and PBAT 

 

Appendix 2 TGA Analysis of starch 30050 with dibenzoyl peroxide, glycerol and PBAT 
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Appendix 3 TGA Analysis of starch 30050 with dilauroyl peroxide, glycerol and PBAT 

 

 

 

 

Appendix 4 TGA Analysis of starch Hylon 
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Appendix 5 TGA Analysis of starch 30050 

 

 
 

Appendix 6 TGA Analysis of starch 55310 
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Appendix 7 TGA Analysis of dent maize starch 

 

 

 

Appendix 8 DSC Analysis ( 1st heat pass) of 30050 
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Appendix 9 DSC Analysis ( 1st heat pass) of Hylon 

 

 

 

Appendix 10 DSC Analysis ( 1st heat pass) of 55310 

 

 

Appendix 11 DSC Analysis ( 1st heat pass) of dent maize starch 
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Appendix 12 CWB Torque curves as a function of time for various levels of peroxide in 

compounding 

 

 

The torque curves for both the 0.1% and 0.3% dibenzoyl peroxide lay on top of each other. As such, 

they have been stacked to show that they are identical. Otherwise you would not be able to 

distinguish  

 

Appendix 13 CWB Temperature curves as a function of time for various levels of peroxide in 

compounding 
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The temperature curves for both the 0.1% and 0.3% dibenzoyl peroxide lay on top of each other. As 

such, they have been stacked to show that they are identical. Otherwise you would not be able to 

distinguish  

 


