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Abstract

Technology advancements in the past decades has led to an immense increase in data traffic

over various networks. Videos constitute a major percentage of this traffic and their share

is projected to increase at an accelerating speed in the coming years. Service providers

aim to deliver videos that have high quality while at the same time keeping the data

rate as low as possible. Effective and efficient objective Video Quality Assessment (VQA)

algorithms are essential in order to provide real time estimate of video quality so that

the best compromise between data rate and quality can be achieved. Data rate of video

transmission can be altered by controlling different parameters of the video, among which

frame rate is one of the most important parameters. So far, only limited works have been

done to study the impact of frame rate variations on video quality.

The purpose of this work is to investigate the impact of varying frame rate on the quality

of videos and to develop novel VQA models that integrate frame rate variations into the

task of quality assessment. In order to achieve this goal, we first construct two new video

databases that contain videos of diverse content, and spatial and temporal resolutions. We

carry out subjective studies on these databases to obtain human opinions on video quality.

The subjective study allows us to evaluate the performance of well known objective VQA

algorithms on cross-frame rate videos. The results reveal that there is considerable disparity

between the subjective scores and the predictions from state-of-the-art objective models

that do not take frame rate into consideration.

We explore statistical models for video quality analysis. In particular, we conduct cross-

frame local phase statistical analysis, which provides new insights on video motion smooth-

ness as an important factor that affects video quality across different frame rates. Our

evaluations of the proposed motion smoothness metric using the subject-rated databases

show that this novel measure provides a new means to capture the impact of frame rate on
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video quality, and demonstrates strong promise at improving the performance of objective

video quality assessment models.

We also propose the notions of perceptual temporal aliasing factor and perceptual

spatiotemporal aliasing factor to incorporate the characteristics of human visual contrast

sensitivity variations into the framework of spatial and temporal aliasing analysis. We

incorporate the proposed aliasing factors into the VQA process to predict the quality of

video under frame rate change, resolution change, and lossy compression. Our performance

evaluation using the subjective database shows that the proposed perceptual aliasing fac-

tors are strong quality predictors across-frame rate, resolution, and data rate, significantly

outperforming baseline VQA methods without aliasing modeling.
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sampling rate in IVC-HFRVQA-I database. . . . . . . . . . . . . . . . . . . 94

5.5 X-Y, X-T, and Y-T planes constructed from 3D video volume [3]. . . . . . 96

5.6 Aliasing in temporal down-sampling in two-dimensional frequency spectrum

of X-T plane is represented by the overlapping region between central spec-

trum and its repetitions when the sampling rate is lower than the Nyquist

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xvii



5.7 Aliasing in spatial and temporal down-sampling in two-dimensional fre-

quency spectrum of X-T plane is represented by the overlapping region be-

tween central spectrum and its repetitions when the sampling rate is lower

than the Nyquist rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Spatiotemporal contrast sensitivity function as function of both temporal

and spatial frequency components [4]. . . . . . . . . . . . . . . . . . . . . . 100

5.9 Perceptual aliasing factor versus Mean Opinion Score (MOS) for video se-

quences at different frame rates without compression. . . . . . . . . . . . . 103

5.10 X-T aliasing factor versus MOS for videos in IVC-HFRVQA-I database. . . 105

5.11 Video processing path from source video acquisition to display at end user

side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 Schematic diagram of the proposed VQA method based on aliasing factor. 111

5.13 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 117

5.14 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 118

5.15 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset(cont’d). . . . . . . . . . . . . . . . . 119

5.16 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset. . . . . . . . . . . . . . . . . . . . . . 120

5.17 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 121

5.18 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 122

xviii



5.19 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 123

5.20 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 124

5.21 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 125

5.22 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 126

5.23 Scatter plots of the predicted values by VQA methods vs. MOS values on

videos from IVC-HFRVQA-II dataset (cont’d). . . . . . . . . . . . . . . . . 127

xix



List of Abbreviations

CSF Constrast Sensitivity Function. 99, 101

CV Circular Variance. 65–67

DCT Discrete Cosine Transform. 56

DFT Discrete Fourier Transform. 89

fps Frame Per Second. 2, 3, 14, 15, 18, 19, 25, 26, 40, 43, 44, 61, 129

FR-VQA Full Reference Video Quality Assessment. 12, 13

HD High Definition. 40

HVS Human Visual System. 2, 6–8

IQA Image Quality Assessment. 5–9, 13, 22, 55, 56

IW-SSIM Information Weighted SSIM. 8

kbps Kilo bits per second. 17

KRCC Kendall’s Rank Correlation Coefficient. 21, 22

xx



MAE Mean Absolute Error. 7, 20, 21

MOS Mean Opinion Score. xviii, 7, 17, 20–22, 29, 30, 55, 56, 103, 113–115

MS-SSIM Multi-Scale SSIM. xv, 8, 13, 55, 56, 60, 110, 111, 113, 114, 128, 130

MSE Mean Squared Error. 7, 8, 13

NR-VQA No Reference Video Quality Assessment. 12, 13

NSS Natural Scene Statistics. 62, 86

PLCC Pearson Linear Correlation Coefficient. 21, 22, 114

PSNR Peak Signal to Noise Ratio. 7, 8, 13, 16, 17

QoE Quality of Experience. 18, 78

QP Quantizatin Parameter. 17, 19, 26, 44

RMSE Root Mean Squared Error. 7, 21, 114

RR-VQA Reduced Reference Video Quality Assessment. 12, 13

SD Standard Definition. 40

SI Spatial Information. 17

SRCC Spearman’s Rank Correlation Coefficient. 22, 114

SSIM Structural Similarity. xv, 8, 13, 14, 16, 55, 56, 58, 114

SVR Support Vector Regression. 110, 111, 113, 114

xxi



TI Temporal Information. 17

VQA Video Quality Assessment. xii, 2, 5, 6, 9, 11–14, 17, 19, 20, 22, 24, 29, 30, 41,

55–57, 61, 63, 86, 107, 109, 110, 114, 128–131

VQM Video Quality Metric. xv, 55, 56, 59, 114

xxii



Chapter 1

Introduction

1.1 Motivation

Today videos compose a majority of data traffic over various networks. It is predicted

that more than 80 percent of the traffic over the Internet would be composed of videos

by 2021 [5, 6]. Such a gigantic amount of data is the result of the fast advancement of

video capturing, delivery and display technologies. In particular, a great number of video

capturing devices including mobile phones and personal SLR cameras have been spread to

common consumers, and capturing images and videos has become part of their everyday

life. The increased access to online videos is another important factor that drives the

significant increase of video production and distribution.

In the past decade, the industry has made tremendous effort to build capable yet

inexpensive devices for capturing and displaying videos. Each year many new models

of these devices are released. Meanwhile, cable, satellite, IPTV and Internet Over-the-

Top (OTT) video service providers have been striving to offer a better quality service while
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keeping the amount of traffic on the network as low as possible. The traffic of network

may be reduced by increasing the strength of video compression, decreasing the spatial

resolution, or decreasing the temporal resolution or frame rate. This allows the service

providers to support more customers with the same network resources. Such data rate

reduction has to be performed without loss of the perceptual quality of the videos being

delivered to the end consumers. However, currently effective and efficient quality control

mechanisms are largely lacking in the industry. In particular, trusted VQA methods that

can be used to evaluate, compare, monitor, control and optimize the video acquisition

processes, video delivery services, and video display systems in a perceptually meaningful

manner are lacking in the ecosystem. This has been one of the major driving forces that

have led to a remarkable growth of VQA research in recent years [7, 8, 9, 10].

VQA evaluation may be done in two ways: subjective assessment by humans or objec-

tive evaluation by computational models. Subjective quality assessment may be considered

more reliable because humans are the ultimate consumers of most video services, but it also

has significant drawbacks. Specifically, it is slow, expensive, and cannot be embedded into

video processing systems for design and optimization purposes. Objective VQA models

do not suffer from these drawbacks and have become a desired method of choice in most

practical applications.

In this work we focus on the impact of frame rate on video quality. A digital video is

typically represented as a sequence of 2D image frames that are discrete in time. Frame

rate refers to the frequency at which the frames are displayed, and is quantified in the

unit of Frame Per Second (fps). Frame rate is an important aspect of video quality, but

surprisingly has rarely been deeply investigated in the literature.

Theoretically the Human Visual System (HVS) can process up to 1000 images per

second but for untrained eyes, the difference is not noticeable after about 150 fps [11].
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In image recognition tasks, people have been found to recognize a distinct image in an

unbroken series of different images, each of which lasts as little as 13 milliseconds that

leads to about 77 fps. In the industry of film making and cinema, early silent films in the

first decades of the 20th century, had used frame rates between 16 and 24 fps. This rate

was not fixed as the equipment were tuned manually. To avoid flickering and other effects,

silent films were often intended to be shown at higher frame rates than the capturing

rates. Nevertheless, some jerky motions still remained. The higher frame rates between

20 to 26 fps were used in the late 1920s. With the introduction of sound film, 24 fps

became the standard to avoid changes in audio frequency and to keep audio and video

synchronized. Three main frame rate standards are used in the TV and digital cinema

business: 24p, 25p, and 30p. They all come from the initial standard of 24 fps with some

considerations of the broadcasting technologies of PAL, SECAM, and NTSC standards.

Multiple projection and interlace display techniques are applied in 24 fps video display to

increase display rate and to avoid motion artifacts such as flickering and motion blur.

With the advancement of technology in film making and display devices in the last two

decades, frame rates higher than the traditional 24 fps such as 48, 50, 60, and recently

120 fps have been used in cinema, television, and computer display industry. These frame

rates are typically used in progressive format to avoid motion blur. Despite of such increas-

ing use of high frame rate video, its impact on perceptual quality has rarely been deeply

investigated in the literature. At this point, it still remains to be fully understood the

impact of increasing frame rates more than 24 fps on human visual perception. Such un-

derstanding may play an important role in finding the best acquisition, coding and display

conditions in particular application environment.
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1.2 Objectives

The objectives of this research are to investigate the impact of frame rate on perceptual

video quality and develop objective models that can automatically quantify and compare

the quality of videos at different frame rates, so as to apply such models in the practice of

video coding and display.

Specifically, considering a pristine uncompressed video that passes through a sequence

of encoding steps including frame rate change to create a compressed version, the objective

is to investigate the perceptual quality of the compressed video in comparison to the pristine

version as a function of frame rate, and to develop objective models that automatically

quantify the overall quality of the compressed video.

1.3 Contributions

The contributions of this work are summarized as follows.

• Constructed two new databases for cross-frame rate VQA and conducted two sub-

jective studies to create a VQA benchmark.

• Proposed and evaluated a temporal motion smoothness (TMS) factor and showed its

power in predicting video quality degradation due to frame rate reduction.

• Proposed and evaluated perceptual temporal and spatiotemporal aliasing factors

• Proposed a series of new VQA models based on the proposed perceptual aliasing

factors to predict cross-frame rate video quality.
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1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, We provide an overview of the field of

Image Quality Assessment (IQA) and VQA, and introduce the well-known models for IQA

and VQA. We then focus on the discussions about the relationship between frame rate

and other video and visual characteristics such as motion perception, video quality, VQA

models, and rate control in video coding. Standard evaluation criteria of objective VQA

models are also discussed.

In Chapter 3, we introduce our work to create two databases and to perform subjective

studies on the databases. We report the key observations from the results related to the

impact of frame rate to perceptual video quality. We also investigate the performance of

well-known VQA methods in predicting the video quality scores obtained from subjective

studies on our video databases.

The impact of frame rate changes by considering natural scene statistics is analyzed in

Chapter 4. In particular, the smoothness of motion in natural scenes is analyzed based

on cross-frame rate phase correlation of complex wavelet transform. We measure the

smoothness of motion in video and explore its relationship with perceptual video quality

in cross frame rate videos.

In Chapter 5, the concepts of perceptual temporal aliasing factor and perceptual spatio-

temporal aliasing factor are proposed by considering human visual contrast sensitivity mod-

els. The relationship between these perceptual aliasing factors and video quality degra-

dation is also investigated. The perceptual aliasing factors are combined with frame rate

blind VQA models to create comprehensive VQA models that significantly outperform

baseline VQA methods that do not incorporate aliasing models.

The last chapter summarizes the current work and discusses potential future directions.
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Chapter 2

Literature Review

In this chapter we first review the field of image quality assessment IQA and video quality

assessment VQA, with special attention to the relationship between frame rate and video

quality. We then introduce the standard criteria used to evaluate the performance of IQA

and VQA models.

2.1 Image Quality Assessment

Various image processing algorithms and systems produce output images, and the perfor-

mance of such algorithms and systems is evaluated by the quality of the output images

that are typically consumed by human eyes. Therefore, IQA is of critical importance in

evaluating these algorithms and systems.

Challenges of IQA in general have been reviewed in [12] and these include: complexity

of the HVS, variety of distortions, influence of distortion on image appearance, impact of

multiple distortions, geometrical distortion of image, enhanced image quality, and memory
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requirement. In addition, some other challenges are color handling, 3D distortions, and

varying viewing conditions.

Since humans are the ultimate receivers of images, the most reliable method in IQA

would be subjective assessment of image quality by human observers. One of the difficulties

of subjective testing is the variations between human subjects [12]. To address this issue,

the quality score of an image is often labeled by calculating the Mean Opinion Score MOS

of all subjects [13]. Also, the subjective tests need to be carefully designed to collect

reliable data about human opinions [14]. Efforts have been made by standard bodies to

make recommendations to perform subjective test [15]. However, subjective testing is

time consuming and cannot be directly embedded into IQA algorithms for optimization

purposes.

Because of the fundamental limitations of subjective quality assessment, designing ob-

jective methods that can automatically estimate the quality of images is highly desirable.

Traditional methods for quality assessment of signals such as Mean Squared Error (MSE),

Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), and Root Mean Squared

Error (RMSE) can be applied on images as well [16, 17]. However, they have been shown

to poorly correlate with perceptual image quality [16]. The limitations of using MSE and

PSNR to perform IQA have been presented in [16]. The author of [16] discusses why there

is still very significant interest in MSE and why we need more sophisticated methods for

image quality assessment. Detailed discussions about the validity of PSNR for assessing

image quality are given in [17].There are also efforts to make MSE more compatible to

visual perception [18].

Considering the poor performance of traditional signal quality assessment metrics in IQA,

better objective IQA models should be designed to predict the quality assessment behav-

iors of the HVS. However, it is difficult to construct IQA algorithms that fully mimic the
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various functional blocks of the HVS due to the non-linearity [19, 20], complexity, and

our limited knowledge about the HVS [21]. Algorithms developed under this bottom-up

framework of HVS simulation have achieved only limited success and their performance

is often shown to be at a similar level of MSE or PSNR but with significantly increased

computational cost.

An increasingly popular IQA design principle is to consider the HVS as a black box

and then to develop IQA algorithms that try to simulate the overall functionality of the

HVS. The SSIM index is one of the earliest and best-known metrics in quality analysis of

images follows this top-down principle [22]. This metric uses a combination of luminance,

contrast, and structural distortion to arrive at an objective quality score, and meanwhile

produces a quality map.

Due to the success of SSIM, different variations of SSIM have been proposed as well.

One of the most well-known variations of SSIM is the MS-SSIM method proposed in [23].

In this method, a hierarchy of down-sampled images constructs a pyramid of different scales

and quality degradation is calculated from the higher to the lower levels of the pyramid

based on the visibility and importance of quality degradation at different levels. Infor-

mation Weighted SSIM (IW-SSIM) is another well-known variation of SSIM that weights

different regions in an image based on the amount of information that it contains [24]. The

information content of a block is determined by applying information theoretic concepts.

With the remarkable success of deep neural networks (DNN) in many applications of

computer vision [25, 26], it has been the focus of many recent studies in image quality

assessment as well [27, 28, 29, 30]. While traditional IQA models using hand-crafted or

learned features, DNN based IQA models may perform end-to-end quality prediction using

image pixels as the input data [31, 32, 33].
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2.2 Video Quality Assessment

Video quality assessment is much more difficult in comparison with IQA because it has

an additional dimension of time which adds novel distortion types along the temporal

direction. The visual experience in the perception of motion is another critical aspect that

creates new challenges on VQA as opposed to IQA.

2.2.1 Perceptual Artifacts in Compressed Video

A distortion artifact in video is any change in the appearance of the original (high quality)

video which alters the perceptual quality of video. Some of these changes are more visible

and annoying than others.

Distortions can occur at different stages of creating, processing, transmitting, and dis-

playing a video. In real-world video delivery systems, one of the most common causes of

distortions is lossy video compression. Perceptual distortion artifacts that usually occur

in compressed videos are summarized in [1], where distortions have been divided into two

categories: spatial artifacts and temporal artifacts. Spatial artifacts are those artifacts

that change the appearance of individual frames, while temporal artifacts occur during

video playback. More detailed descriptions of different perceptual artifacts created by

video compression are summarized in Fig. 2.1.

In spatial artifacts, blurring is usually caused by quantization of high frequency com-

ponents. Blocking is usually caused by the application of block-based transforms and

quantization. Another spatial artifact is ringing which occurs when the coefficients of

frequency or wavelet transforms are quantized.

In temporal artifacts, flickering occurs due to frequent and repetitive changes in bright-

ness or color [34]. Jerkiness is caused by high speed motion faster than the sampling
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Figure 2.1: Perceptual artifacts of compressed videos [1].

frequency in time. Floating appears as a region in a frame moving in the wrong direction

or at a wrong speed. This may be caused by the Skip mode in certain video compression

standards, where the motion prediction residues are not coded due to limited bit budget.

2.2.2 Subjective vs Objective VQA

Traditionally the quality of videos have been evaluated by subjective tests, in which hu-

man subjects are asked to score the test video based on their perceptual quality judgments.

Subjective tests are usually performed in laboratory environment. Several standards and
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recommendations [15, 35, 36] on how subjective tests should be conducted have been widely

used in practice, where the conditions of the test environment, scoring methodology, and

display conditions are defined explicitly. In particular, ITU-T P.910 [15] is a recommen-

dation for subjective video quality assessment for general multimedia application, ITU-R

BT.500 [36] is for television pictures quality tests, and ITU-T BT.710 [37] is designed for

HD videos.

Depending on the presence of the pristine (undistorted) version of the test video, sub-

jective test may be conducted using Single Stimulus (SS) or Double Stimulus (DS) ap-

proaches [15]. In SS methods the subjects view a test video and score based on perceptual

quality judgments. In DS methods, the subjects view a pristine reference video first and

then the test video and score the quality of the test video comparing with its pristine

reference.

In a subjective test, the number of sequences should be selected to cover diverse content

and to avoid a viewing session being boring for the subject. It is recommended to have at

least four video sequences in each session [15].

In the subjective test session test video sequences are displayed to user one by one

and after each sequence a gray screen is displayed while the subject is asked to score the

perceptual quality of video on paper, or on a graphical interface, or using other scoring

devices. The score is usually a number between 1-5, 0-10 or 0-100, where 5, 10 or 100 is the

score for the best perceptual quality in human opinion. The categorical scoring can also

be used by using 5 Likert scale questions about quality with the labels of “poor quality”,

“bad quality”, “moderate quality”, “good quality”, and “excellent quality”.

Subjective VQA has many drawbacks. They are costly and time-consuming. They are

sensitive to test environment and conditions. They are also difficult to be used for real-time

quality monitoring and performance optimization applications.
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Table 2.1: Summary of pros. and cons. of Subjective vs. Objective VQA.
Pros. Cons.

Subjective VQA Reliable
Expensive,

Time consuming,
Difficult-to-use

Objective VQA
Automatic,
Low cost,

Easy-to-use
Less Reliable

In contrast to subjective VQA, objective quality assessment of videos has the potentials

to be performed in real time with low cost. The goal is to build objective models that

make video quality predictions that correlate well with human perception. The demand

for objective VQA is increasing in recent years due to the dramatical growth of video

content being distributed in various communication networks.

2.2.3 Existing Objective VQA Methods

Humans may assess the quality of a test video by basing their judgements on perceptual

expectations or by comparing the video with a reference video that is assumed to have

pristine quality. Similarly, depending on the availability of the reference video, objective

VQA models may be classified into three categories:

• Full Reference Video Quality Assessment (FR-VQA) methods

• Reduced Reference Video Quality Assessment (RR-VQA) methods

• No Reference Video Quality Assessment (NR-VQA) methods

In FR-VQA methods the original high quality video is available and is used as the

reference to evaluate the quality of a distorted video (test video). In this case the quality
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evaluation may be performed at a precision up to pixel level in which the pixel values

and/or features related to the appearance of frames are compared. The result of such local

comparisons, in regions within a frame or across frames are aggregated to estimate the

overall quality of the test video.

In RR-VQA methods, the original video is not fully available due to the limitations on

the bandwidth of video relative to network capacity. A set of quality-sensitive features are

extracted from the original video and these features are transmitted to the end users where

they are compared with a similar set of features extracted from the test video in order to

evaluate video quality.

In NR-VQA methods, there is no access to the reference video or its features. In this

case the test video alone is used to estimate the video quality. Some statistical information

of the appearance of video or specific artifacts are extracted from the videos [12]. For

example sharpness/blurrines or image coding artifacts such as blockiness may be assessed

in NR-VQA methods.

In this research, we focus on investigating the impact of frame rate change on video

quality, and assume that the original video is available. Therefore, the main focus here is

on FR-VQA. Cross-frame rate NR-VQA is an even more challenging problem for future

research.

Numerous VQA methods have been proposed and some well-known ones have been

made publicly available [38]. Traditional metrics like MSE and PSNR, are still widely used

in IQA and VQA applications because they are easy to understand and easy to calculate.

SSIM was extended for videos and is widely used in the industry [39]. In practice, the

SSIM score of each frame is often calculated and averaged to yield the overall score for

the video under test. MS-SSIM is an extension of SSIM that is originally proposed for

IQA [23] but has been extended to VQA by averaging or weighted averaging MS-SSIM
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scores of all frames [38]. Another video-SSIM method [40] uses features of human visual

speed perception [41] in its objective model, which are combined with SSIM to calculate

the final quality score of video. A VQA method proposed by National Telecommunications

and Information Administration (NTIA), named Video Quality Metric (VQM) [42], works

with three dimensional spatio-temproal patches and extracts empirical features in both

frame and time direction. In the time direction, VQM simply uses the difference of frames.

Motion-based Video Integrity Evaluation (MOVIE), the VQA index proposed in [43, 44],

not only evaluates quality of videos in space, but also looks at the motion trajectories in

video in spatio-temporal space, so as to take into consideration the quality of motion in

the overall quality evaluation.

2.3 Frame Rate and Video Quality

A video is a set of images captured in a sequence of consecutive time stamps. Each image

in this set is called a frame. Frame rate is the number of frames that are displayed in

one second during the video playback and is calculated by the fps unit. Frame rate is an

important factor that has direct impact on the perception of motion. Significant effort has

been made to explore the values of frame rate with a long history from the first years in

the development of cinema to state-of-the-art high frame rate video acquisition and display

develiped in the past few years.

In the early 20th century, cameras were capturing videos with frame rates between 16

to 24 fps. By the late 1920’s the frame rate of 24 fps became the standard for displaying

videos in cinema. This standard has been used in cinemas world wide for many years and

is currently still in use. This rate was claimed to give humans the perception of motion

without any significant flickering. For different television broadcasting technology, this
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standard frame rate varies. For European television broadcasting standard which is known

as PAL, 23.976 fps (24x1000/1001) is used as the standard frame rate. 25 fps is used

in NTSC standard. From the traditional TV systems to the current digital world, there

are many display technologies and compression standards, and different frame rates are

selected. Examples of the most commonly used frame rates include 23.976, 24, 25, 29.97,

30, 59.94, 60, 120 fps.

The reason for selecting different frame rates depends on the applications and technol-

ogy constraints. Low frame rates are useful for applications such as video conferencing

over mobile devices which desires real-time low data transfer rate, while high frame rates

are preferred for digitally stored videos displayed on large screens, digital home cinema,

and game entertainment containing high motion contents. The most common frame rates

for video broadcast at the moment are 24 and 30 fps. These are classified as low frame

rates and their performance is analyzed in [45]. With the advancements in technology

and with the increasing availability of high frame rate (60fps, 120 fps) on higher video

acquisition and display devices, it is now possible to move towards high frame rate content

production and distribution. However, video quality research is largely lacking for videos

at frame rates beyond 30 fps, making it difficult to fully understand or justify the benefits

of switching to high frame rates.

2.3.1 Frame Rate and Motion

A video may be considered as a three-dimensional signal with two spatial dimensions and

one temporal dimension. Frame rate is the temporal sampling rate. With regard to the

scene that video is captured from, the frame rate is the number of times that we capture

an image from the scene in each second. If there is a moving object in the view of camera,

the frame rate is the number of positions of the object that are captured in one second
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during its movement.

Conversion of high frame rate to low frame rate content is usually performed by drop-

ping certain number of frames. As a three dimensional signal, if this sampling rate (frame

rate) is not high enough, aliasing may occur due to the violation of the Nyquist criterion of

sampling. Perceptually this may lead to annoying temporal artifacts in motion perception.

Changing frame rate for a video that would be subsequently compressed has more

implications than just sampling rate changes. Almost all standard video compression

algorithms use motion estimation/compensation of consecutive frames. The motion vectors

obtained from compression algorithm is an estimation of motion in the time between two

frames. Given a fixed scene, the more time duration between two frames, the larger the

motion vector obtained from motion estimation algorithm. With the increase in the time

interval between two consecutive frames, the motion vectors will be larger but less accurate.

As a result, there would be more residual energy between the real frame and the motion

compensated one from motion vectors. Subsequently, more bits are needed to encode the

video, and at the same rate of data for each frame, the accuracy would be less and the

quality would be degraded.

On the other hand, increase in temporal resolution of video (increase in frame rate)

may not result in a monotonic increase of perceived quality because the human visual

system may or may not be able to fully capture the fine details contained in high frame

rate representations.

In [46] the results of [41] is used for speed sensitivity analysis of human visual percep-

tion. This model can be used as an importance factor (of information content) of different

regions of a frame. The improvement of quality estimation using the model on top of SSIM

is significant while an improvement against PSNR is less obvious. This may be due to the

poor quality prediction of PSNR on individual frames.
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2.3.2 Frame Rate and VQA Model

Most VQA methods ignore the impact of frame rate. Only a limited number of models

consider frame rate as a factor. In [47] a model is proposed based on 5 parameters which

include: encoder type, video content, bit-rate, frame rate, and frame size. The low bit-

rates of up to 384 Kilo bits per second (kbps) are used with small sizes of the frames

QCIF (176×144) and CIF (352×288). Frame rates of 7.5 to 30fps are used. Perhaps the

most interesting observation in this research is that in low bit-rate conditions, small frame

size is preferred to low frame rate. Ou, et al. in [48] performed an analysis on the impact

of the frame rate on quality. They have conducted a subjective test with two different

resolutions of CIF and QCIF, respectively. They used source videos of 30 fps and created

three other frame rates of 15, 10, 7.5 fps by temporal downsampling the source video. The

30fps videos are used as the reference and the MOS obtained from users is analyzed. It is

shown that the impact of frame rate on quality can be modeled by using a combination

of two exponential terms. In [49] the work is extended and the impact of both frame rate

and the quantization parameter is analyzed. An objective model based on the frame rate

and quantization parameter is presented that fits the results of the subjective test. The

model is composed of a multiplication of two independent functions, one for frame rate

and the other for the quantization parameter. In [50], Ou used the result of subjective

test for different frame rates of 3.75, 7.5, 15, 30 fps in the combination of 4 different values

of Quantizatin Parameter (QP). The spatial term of the model is replaced by a temporal

factor and the quantization factor is accounted for by a sigmoid function of PSNR. The

resulting method is named Q-STAR. In [51], frame rate and resolution changes are used

to estimate video quality. The Spatial Information (SI) is used in combination with the

Temporal Information (TI) defined in [15] to create a quality model. A nonlinear model

for VQA is proposed in [52] with a combination of frame rate, bit rate, display size, and
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video content. Six different video contents are coded in different bit rates and CIF display

are used. The frame rate is up to 30 fps, and the final model is a nonlinear combination

of four different variables corresponding to the four parameters mentioned above.

Low bit rate analysis has been done for different frame rates [53, 54, 55, 56]. In most

cases, the low resolution video frames are used in low bitrate videos. The frame rate has

been analyzed as a parameter in video broadcasting applications to control the quality of

video in transmission over a network [53, 57].

Only in a few works, frame rates above 30fps have been considered. The frame rates

of 5, 7.5, 15, 30, 60 in a gaming environment have been analyzed in [58]. It is reported

that the higher frame rates better entertain the user and improve the performance of the

players. The frame rates above 30fps also have been used in [59, 60] for 3D video Quality

of Experience (QoE) assessment. Specific indoor environment with a limited number of

subjects has been used for the subjective test.

A cross-frame rate video quality assessment model named FRQM [61] is proposed based

on the comparison of temporal wavelet decomposition of a low frame rate video with its

original high frame rate version. Spatiotemporal pooling is used to aggregate the com-

parison results and calculate the overall quality score of each video. For performance

evaluation, a cross-frame rate video database consisting 88 videos (22 pristine 120 fps and

converted lower frame rates at 15, 30, 60 fps versions) is used. The results show that tem-

poral wavelet decomposition as is used in FRQM is a promising tool in predicting video

artifacts in cross-frame rate videos.

VQA of compressed videos with cross-frame rate support has been investigated by

learning a model to fuse well-known existing VQA methods [62]. This fusion-based model,

named by Video Multi-method Assessment Fusion or VMAF, has been used to predict

video quality in different applications such as transcoding and streaming [63, 64, 65, 66].
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Considering the efforts already made for VQA of frame rates higher than 30 fps, it

is clear that a more comprehensive analysis is desirable for high frame rate VQA. Given

that high frame rate content and displays are becoming increasingly popular, it is desired

to develop VQA models that appropriately account for the impact of frame rate and use

such models to optimize practical video acqusition, compression, transmission, and display

systems.

2.3.3 Frame Rate and Rate Control

In many applications such as scalable video coding, there are different parameters that

can be adjusted in order to reach lower bit rate, including frame size, compression rate,

and frame rate. The goal is to make video bit rate matched with the transmission channel

capacity while keeping the video quality as high as possible.

Downsampling the frame size and then interpolating the frame spatially at the user end

is one of the methods that is used for scalable video transmission, but this method also

causes degradation in quality. Another control factor is the QP value that directly adjust

the quantization level in compression. Increasing QP means increasing the quantization

step, and as a result leading to a lower bit rate and lower quality. This is a common

approach to control the bit rate.

Frame dropping or decreasing the frame rate is another way to control the bit rate.

However, converting the frame rate may cause non smooth motion. In addition, receivers

should be informed about the altered frame rate for proper playback. Changing the frame

rate does not necessarily result in proportional reduction in bit rate. For example if the

frame rate of a video is reduced from 30 fps to 15 fps, it does not guarantee that the

bandwidth of the new video would be half of the original one. This is because frame
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dropping affects the accuracy of motion estimation, leading to larger motion compensation

residuals to be encoded, and thus more bits are needed for each frame than before in order

to maintain similar quality level.

The complications discussed above suggest that using frame rate to control bit rate

should be used in a smart way and with caution. For each video, the best solution should

be obtained by jointly optimize the bit rate control factors with the guidance of a trusted

comprehensive VQA model.

2.4 Evaluation Criteria

An important step in the evaluation of objective VQA models is to validate them using

subjective-rated video quality databases, which consist of a collection of videos and their

subjective ratings typically in the form of the MOS. Statistical evaluation criteria may be

used to compare quality prediction by objective VQA methods against the MOS values

obtained from human subjective study. A list of common evaluation criteria used in the

literature are as follows.

• Mean Absolute Error (MAE) is defined as

MAE =
1

N

∑
i

|S(i)− Ŝ(i)|, (2.1)

where S(i) is the MOS of the i-th video in the database, and Ŝ(i) is the score

generated by the objective model for the i-th video, and N is the number of videos

in the database. Before MAE is computed, a monotonic nonlinear mapping should

be used to linearize the mapping and unify the scale between the objective and

subjective scores.
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• Root Mean Square Error (RMSE) is given by

RMSE =

√
1

N

∑
i

(S(i)− Ŝ(i))2. (2.2)

Similar to MAE, RMSE should be computed after the score mapping between objec-

tive and subjective scores.

• Pearson Linear Correlation Coefficient (PLCC) is defined as

PLCC =
σSŜ
σSσŜ

=

∑n
i=1(S(i)− µS)(Ŝ(i)− µŜ)√∑n

i=1(S(i)− µS)
∑n

i=1(Ŝ(i)− µŜ)
,

(2.3)

where, µx, σx, and σxy denote the mean and standard deviation of x and the cross-

correlation of x and y, respectively. SImilar to MAE and RMSE, PLCC should be

computed after the score mapping between objective and subjective scores.

• Kendall’s Rank Correlation Coefficient (KRCC) is defined based on the score rank

of the test videos in the database. Considering a set of observations of the MOS

values and objective scores calculated for videos in a video dataset as (MOS1, O1),

(MOS2, O2), ...,(MOSn, On), the KRCC is given by

KRCC =
Nc −Nd

n(n− 1)/2
(2.4)

where, Nc is the number of concordant pairs of videos and Nd is the number of

discordant pairs in the ranking list of videos under test. A concordant pair is a pair

of videos with the same relative order for both MOS values and objective score values

in their corresponding ranked order. In another word, two videos (i and j) in a rank
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order of videos are concordant if their MOS and objective scores follow one of the

below two conditions

MOSi < MOSj and Oi < Oj (2.5)

MOSi > MOSj and Oi > Oj (2.6)

If a pair of videos are not concordant, they are counted as a discordant pair.

• Spearman’s Rank Correlation Coefficient (SRCC) is PLCC between rank values

SRCC = PLCC(r, r̂) =
σr,r̂
σrσr̂

, (2.7)

where r and r̂ are the ranks of a video in terms of MOS and objective quality score

in the test video database, respectively. Both KRCC and SRCC depend on the score

ranks of the test videos in the database only, and are independent from the potential

monotonic non-linear mapping that may be applied before they are calculated.

2.5 Summary

In this chapter, we first provided a general overview of IQA and VQA, and discussed some

of the well-known IQA and VQA models. We then focused on the frame rate aspect of VQA

and discussed how frame rate is related to motion perception, video quality, VQA models,

and rate control in video compression. Finally, we reviewed the evaluation criteria of

objective VQA models when using subject-rated video databases as benchmarks. Overall,

existing studies on the impact of frame rate on video quality are very limited, and advanced

VQA models that well account for the impact are largely laking but highly desirable. This
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inspires us to proceed with deeper investigations of the problem.
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Chapter 3

Database Construction and

Subjective Study for Cross Frame

Rate Video Quality Assessment

The quality of video is ultimately judged by humans. The best objective Video Qual-

ity Assessment (VQA) models are those that have the highest correlations with human

opinions. Testing VQA methods needs test videos with quality scores given by human sub-

jects. Therefore we create two databases namely Image and Vision Computing lab High

Frame Rate Video Quality Assessment video database one (IVC-HFRVQA-I) and Image

and Vision Computing lab High Frame Rate Video Quality Assessment video database

second (IVC-HFRVQA-II). We also conducted two subjective studies on the databases.

Using the data collected through the IVC-HFRVQA-I and IVC-HFRVQA-II databases, we

evaluate the performance of well-known VQA models.
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3.1 IVC-HFRVQA-I Video Database

3.1.1 Database Construction

A new database of videos is built to investigate the impact of frame rate on top of 7 pris-

tine videos. Videos are selected from online resources of videos on the Internet including

technical YouTube channels. In the selection process, we tried to cover diverse content and

motion types. In addition, the perceptual quality of the source videos and the coverage

of different combinations of spatial and motion complexities were considered. The source

pristine videos all have a frame rate of 60 fps. All the videos are 10-second long and with

a resolution of 1920×1080 in YUV420 color format. Sample frames of the source videos

are shown in Figure 3.1. The specification of the content types of these source videos

used to generate the IVC-HFRVQA-I video database is summarized in terms of “object

motion”, “camera motion”, and “spatial complexity” in Table 3.1. The source video is

compressed with FFMPEG using H.264 compression standard. Different configurations of

compression, resolution, and frame rate are used to generate the comprehensive database.

The values used for different parameters in generating this database are summarized in

Table 3.2. We used the following command template to encode videos using FFMPEG.

ffmpeg -i input-file -c:v libx264 -crf qp -r fr -s res output-file

where input-file and output-file are the address of the input and output files respectively,

and qp, fr, and res represent the compression level (qp), frame rate, and spatial resolution,

respectively.

Two different spatial resolutions are used: 640×480 progressive scan (480p) and 1920×1080

progressive scan (1080p). 480p represents standard definition (SD) formats and 1080p is
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Table 3.1: Details of the source videos in IVC-HFRVQA-I database
Sequence Obj. Motion Camera Motion Spatial Complexity

Battle High Yes High
Beach High Yes Low

Carousel Medium No High
Notre Dame Medium Yes High

Guys High No Low
Sea Low Yes Low
Talk Low No Low

Table 3.2: Configurations used to generate test videos from the source video

Parameter Values
Frame Rate 5,10,15,30,45,60

Quantization Level 22, 27, 32, 37
Frame Size 640× 480, 1920× 1080

a common High Definition (HD) format supported by all HDTV display devices. The

480p videos are generated from 1080p original videos by bi-cubic interpolation followed by

down-sampling. Different frame rates from 5fps to 60fps were generated for different com-

binations of quality, resolution, and content. The values of frame rate have been selected

based on different needs. 30 fps is a common frame rate in many current applications.

15fps and the lower frame rates are often used to support lower bit-rate encoding as a

compromise for limited storage space or transmission bandwidth. 60fps is the most com-

mon high frame rate being used in practice. 45fps is the middle frame rate that is included

to make a better spaced temporal resolution in the subjective test. Different frame rate

has been generated using FFmpeg tool using dropping and duplicating methods. Four dif-

ferent QP values have been used in order to cover different levels of compression from low

compression of QP=22 to high compression of QP=37. As such, for each source content,

there are 6(Frame rate) x 4(QP) x 2(Resolution) = 48 test video sequences. Altogether,
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there are totally 48 x 7 = 336 video sequences in the database.

There are three important features of the database. First, the database contains se-

quences with a wide range of frame rates from 5fps to 60fps, which allows us to directly

examine the general trend of the impact of frame rate on perceptual video quality. The

better coverage of the frame rates makes the database better suited to study a wider range

of practical applications, and to better observe the general trend of quality variations as a

function of frame rate that could be extrapolated beyond the frame rates currently being

tested. Second, the database contains sequences with different combinations of spatial

complexity, object motion, and camera motion, allowing us to study the interactions be-

tween frame rate and video content. Third, the database contains sequences with different

compression levels and frame sizes, allowing us to investigate the trade-offs between frame

rate, compression level, and spatial resolution.

Compared with the new database, existing databases in the literature are limited in one

aspect or another. In [17], the authors attempted to consider time complexity with motion,

but only videos with low spatial resolution (352x240) and frame rates (up to 30fps) were

used. Similarly, in [2, 3, 5, 4, 18], only small resolution videos (CIF or QCIF size) were

employed. In [9] only low bit rate videos are considered, which are not able to cover the

HD cases where the bit rates are often much higher. In [14, 15], 60fps videos were studied,

but the impact of spatial and temporal complexities on video quality was investigated

separately, making it impossible to study the combined effect of complexities as well as

variations in video content and quantization levels. In [19], the effects of quantization and

frame rate were studied while the dimension of spatial resolution and content complexity

were missing, making it difficult to build or test a complete model.
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Table 3.3: Parameters of display and viewing conditions in subjective study
Parameter Value

Subjects Per Monitor 1
Screen Resolution 1920 × 1080
Screen Diameter 31.5”
Viewing Distance 30.00”

Screen Width 27.45”
Viewing Angle 49.2◦H/28.9◦V
Screen Height 15.44”

Pixels Per Degree 78.1/74.8 pixels(H/V)

3.1.2 Subjective Study

A subjective study was done to obtain human subjective quality scores of the videos in

IVC-HFRVQA-I database. 25 people including 13 female and 12 male aged between 22

to 33 scored the quality of all 336 videos in the database. The subjective test was done

in Image and Vision Computing at University of Waterloo. The subjects asked to score

the quality of each video based on their overall perception of quality. Each sequence is

displayed to each subject once. The floor, ceiling, and walls of the experiment room had no

reflection and was not insulated by any audio/visual pollution. The display and viewing

conditions used in the subjective test are shown in Table 3.3.

A single stimulus, 11-grade numerical categorical scale (SSNCS) protocol was employed

in this subjective test. A general introduction was given at the beginning of the whole test,

and more specific instructions and a training session were given afterwards. The video

content of the training videos is similar but different from those in the formal test session.

The parameters used to generate the training videos are also similar to the test video

parameters. The subjects were asked to rate training videos until they fully understood

the requirements and stabilized their rating strategies.

All stimuli were displayed in actual pixels, and in the case of 480p sequences, display
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regions outside the frames were filled with black pixels. A still gray image was displayed

for 7 seconds after each test video for subject scoring. Each stimulus was shown once and

the order of stimuli was randomized. Eighty-four videos were evaluated in one session. To

reduce visual fatigue, each session was controlled to be within 20 minutes and sufficient

relaxation periods (5 minutes or more) were given between sessions. The MOS for each test

video was computed using scores of all users. In the next section we focus on the impacts

of frame rate on perceived video quality with different quantization levels, different frame

sizes, and different complexities of spatial content and motion.

3.1.3 Key Observations on Subjective Study Results

Based on the subjective test results, we have carried out a series of statistical analysis.

In this section we focus on a few main observations that are related to the design of our

cross-frame rate objective VQA models later.

Fig. 3.2 shows the MOS values for all source sequences with respect to different quan-

tization levels (QP values) and different frame sizes (480p or 1080p). It can be observed

that there is a significant improvement in terms of MOS values from 5fps to 30fps, which

is consistent with previous results [50, 60]. Such improvement decreases with increasing

frame rate, especially after 30fps. Even though small, the improvement from 30fps to 60fps

can still be clearly discerned, which justifies the value of going beyond 30fps. The general

trend being observed here suggests that the quality improvement saturates at high frame

rates, thus increasing frame rate beyond 60fps may not lead to distinguishable quality

gain, depending on video content. Scrupulous observers may find that the improvement

from 30fps to 45fps seems to be below expectation from the general trend. This may be

because unlike 5fps, 10fps, 15fps, and 30 fps videos, the 45fps videos could not be gener-

ated directly by uniformly picking one of every integer number of frames from the source
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video sequences of 60fps. Instead, three of every four frames were picked, which affects the

uniformity of frame time-spacing. An alternative way of creating 45fps video from 60fps

ones is to temporally interpolate and insert new frames to satisfy the uniform time-spacing

condition. However, the interpolation process creates additional quality degradations of

the video.

Across distortion levels, it can be seen that the quality improvement decreases with the

level of quantization, where QP = 22 (less compression, higher quality) shows the largest

improvement and QP = 37 shows the least improvement. This implies that there is a

competing relationship in terms of perceived video quality between reducing compression

artifact and increasing frame rate. Previous work [48, 49] addressed this aspects for 5fps to

30fps videos and proposed certain computational VQA models to compromise both factors.

However, this trend saturates again in the range of 30fps to 60fps, which indicates that

previously developed models need to be reexamined for their generalization ability to high

frame rate levels.

Fig. 3.3,3.4 reports the MOS values for different complexity levels of spatial content

with respect to quantization level and spatial resolution. A similar general trend of quality

versus frame rate is observed. An interesting point to notice here is that for the case of 480p

videos, although the MOS curves corresponding to low and high spatial complexity videos

almost overlap with each other from 5fps to 30fps, there is a significant gap between them

from 30fps to 60fps, where low complexity videos always obtain lower MOS values. One

potential explanation is that high frequency, high texture complexity videos desire not only

higher spatial sampling rate but also higher temporal sampling rate in order to accurately

represent the complex content without strong (aliasing) artifacts, especially when there is

motion associated with the complex textures. As a result, when the frame rate goes from

low to high, humans recognize more quality improvement than that from relatively simple
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texture content. In the case of 1080p videos, the spatial resolution is already sufficient

to precisely represent more complex content, and thus the benefit of moving towards high

frame rate is less pronounced.

Fig. 3.5 and 3.6 reports the MOS values for different levels of object motion (low,

medium and high) with respect to different quantization levels and different frame sizes.

Based on previous studies (e.g. [59, 60]), it was expected that there exists some strong

object motion dependency, i.e., with increasing frame rate, higher object motion videos

would pronounce more improvements than lower ones. Somewhat surprisingly, this is not

the case in our experiment, as no clear object motion dependency can be found in Fig. 3.5.

Through more careful observations of the data and discussions with the subjects who did

the experiment, we found two possible explanations. First, the uncertainty of human visual

perception increases with the speed of motion [46, 67]. When the object motion is extremely

high, the perceptual uncertainty becomes so high that further increasing frame rate would

not help the visual system to capture more information from the scene. Second, in the

case of low to moderate object motion, if they are accompanied by slow camera motion,

humans tend to be more sensitive to temporal artifacts [1] and thus the effect of increasing

the frame rate could be strong. It is also worth noting that the trend is independent of

the quantization level.

The way the new database was built allows us to examine not only the impact of in-

dividual parameters including frame rate, quantization level, and spatial resolution on the

overall video quality, but also their combined effect in a joint parameter space. Fig 3.7 (a)

and Fig 3.7 (b) show the overal MOS score as a joint function of frame rate and quantiza-

tion level, for 480p and 1080p resolution videos respectively. It can be seen that although

increasing frame rate is generally helpful in improving the overall video quality, the speed

of improvement depends on the quantization level. In other words, the overall quality
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improvement is not a simple additive effect of improving frame rate and reducing quan-

tization. Their interactions need to be taken into account. A similar conclusion may be

drawn when we include the spatial resolution parameter into the equation. Moreover, the

results we presented earlier also show that spatial and motion complexities are adding more

complications into the picture. Therefore, building a comprehensive objective quality pre-

diction model that considers the impact of all parameters is a challenging but important

task that desires deeper understanding and further investigation.
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(a) Battle (b) Beach

(c) Carousel (d) Guys

(e) Notre Dame (f) Sea

(g) Talk

Figure 3.1: Sample frames of the source pristine videos used in the database.
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Figure 3.2: MOS versus frame rate for all test videos.
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Figure 3.3: MOS versus frame rate for videos with low and high spatial complexities.
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Figure 3.4: MOS versus frame rate for videos with low and high spatial complexi-
ties(cont’d).
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Figure 3.5: MOS versus frame rate for videos with low, medium and high object motion.
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Figure 3.6: MOS versus frame rate for videos with low, medium and high object motion.
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Figure 3.7: MOS as a function of frame rate and quantization parameter for 480p (a) and
1080p (b) videos.
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3.2 IVC-HFRVQA-II Video Database

3.2.1 Database

The Waterloo-IVC High Frame Rate Video Quality database two (IVC-HFRVQA-II) is

constructed using various frame rates, resolutions, and compression quantization levels.

IVC-HFRVQA-II is built from 10 pristine source HFR videos from the BVIHFR dataset [68]

and spans diverse content, including humans, plants, natural scenes, objects, and synthetic

scenes. The source videos are at a resolution of 1920×1080, and a high frame rate of 120 fps.

Fig 3.8 shows the screenshots of the video contents in the IVC-HFRVQA-II dataset. The

detailed specifications of the contents are listed in Table 3.4. As it can be seen in Table 3.4,

the video contents are selected from various combinations of object motion, camera motion,

and spatial complexity.

Table 3.4: Specification of pristine videos used in IVC-HFRVQA-II dataset.
Sequence Object Motion Camera Motion Spatial Complexity

Bubblehead High No High
Books Low Yes High

Bouncy ball Medium No Low
Catch Low No High

Catch and Track Low Yes High
Cyclist Medium Yes Medium

Guitar Focus Low No Low
Hamster High No High

Lamppost Medium No High
Plasma High No Low

Table 3.5: Configurations used to generate test videos in IVC-HFRVQA-II database from
the source videos.

Parameter Values
Frame Rate (fps) 15,30,60, 120

Quantization Parameter(QP) 27, 32, 37, 42
Frame Size 320× 240,640× 480,720× 1280, 1920× 1080
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Using the aforementioned sequences as the source, each video is encoded into four

quantization levels with FFMPEG (H.264 compression standard) at 4 spatial resolutions

and 4 frame rates to cover diverse quality levels. The choices of resolution are 320×240,

640×480, 1280×720, and 1920×1080, covering a wide range of common video resolutions

used in different devices and different networks. Frame rate choices are based on the com-

monly used parameters for transmission of HD videos over networks. To be specific, 15,

30, 60, and 120 fps correspond to mobile network display, standard display, HFR TV dis-

play, and gaming monitor displays, respectively. Table 3.5 summarize the configurations

used to generate test videos in IVC-HFRVQA-II database from the source videos. In total,

IVC-HFRVQA-II database contains 480 videos. We used the following command template

to encode videos using FFMPEG.

ffmpeg -i input-file -c:v libx264 -crf qp -r fr -s res output-file

where input-file and output-file are the address of the input and output files, respectively,

and qp, fr, and res represent the compression level (qp), frame rate, and spatial resolution,

respectively.

In comparison to the IVC-HFRVQA-I database [69], the IVC-HFRVQA II database has

a more complete family of resolutions, from a low resolution of 320×240 to a high resolution

of 1920×1080, while in IVC-HFRVQA-I there are only two resolutions: one for Standard

Definition (SD) and one representing High Definition (HD) resolutions. In addition to the

extension to the number of resolutions, a higher frame rate of 120 fps is added to IVC-

HFRVQA-II in comparison to IVC-HFRVQA-I as this frame rate has recently become more

common in gaming monitors and is proposed for future cinema standard. Similar to IVC-

HFRVQA-I, four different quantization levels are used in the IVC-HFRVQA-II database
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Table 3.6: Comparison of configuration parameters in cross-frame rate VQA databases.

Database Spatial Resolutions (pixel) Temporal Resolutions (fps)
Zhai et al. [47] CIF, QCIF 30, 15, 7.5

Ou et al. (I) [48] CIF, QCIF 30, 15, 7.5
Ou et al.(II) [49] CIF, QCIF 30, 15, 7.5

Janowski [51] SD, CIF, QCIF, SCIF, SQCIF 30, 25, 20, 15, 10, 5
Banitalebi et al. [59] Full HD (1080p) 60, 48, 30, 24

Mackin et al. [68] Full HD (1080p) 120, 60, 48, 30, 24
IVC-HFRVQA-I. [69] 1080p, 480p 60, 45, 30, 15, 10, 5

IVC-HFRVQA-II 1080p, 720p, 480p, 240p 120, 60, 30, 15

in order to cover different levels of compression and have various numbers of compression

artifacts. The quantization level varies from a low compression level of QP=27 to a high

compression level of QP=42. The comparison of IVC-HFRVQA-I and IVC-HFRVQA-II

and other cross-frame rate VQA databases is summarized in Table 3.6

3.2.2 Subjective Study

The subjective testing experiment is set up as a normal indoor home setting with ordinary

illumination level, with no reflecting ceiling walls and floors. All videos are displayed at

full screen on an LCD monitor at a resolution of 1080 × 1080 pixels with True color (32

bit) at 165 Hz. The monitor is calibrated in accordance with the recommendations of

ITU-T BT.500 [70]. A customized graphical user interface is used to render the videos on

the screen in random order and to record the individual subject ratings on the database.

The details of the display parameters and viewing conditions are reported in Table 3.7.

The study adopts a single-stimulus quality scoring strategy. A total of 36 näıve subjects,

including 20 males and 16 females aged between 21 and 38, participated in the subjective

test. Visual acuity (i.e., Snellen test) and color vision (i.e., Ishihara) are confirmed from
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each subject before the subjective test. The study took about two hours, which was

divided into 4 sessions with 5-minute breaks in between to avoid the fatigue effect. A

general introduction was given at the beginning of the test, and more specific instructions

and a training session were given after this. The video content of the training videos was

similar, but different from those in the formal test session. The parameters used to generate

the training videos are also similar to the test video parameters. The choice of a 100-point

continuous scale as opposed to a discrete 5-point ITU-R Absolute Category Scale (ACR)

has advantages of expanded range, finer distinctions between ratings, and demonstrated

prior efficacy [71].

The raw subjective scores are used in the subsequent analysis. After the subjective

user study, 5 outliers are removed based on the outlier removal scheme suggested in [70].

The final quality score for each individual video is computed as the average of subjective

scores, namely the mean opinion score (MOS), from all valid subjects.

For analysis of the reliability of the MOS values, we evaluated the correlation between

the scores given by each participant in our subject study to different videos by the average

of quality score of each video. Figure 3.9 shows the Pearson Linear Correlation Coeffi-

cient (PLCC) and Spearman Rank correlation Coefficient (SRCC) for each individual’s

scores with the average quality score measured by MOS. From the results on Figure 3.9,

we observe significant general agreement between the participants on scoring of the video

quality.

In addition to the evaluation of correlation of each participant’s score to videos with

the MOS values, we also investigate the variation of scores given to each video with spe-

cific compression parameters by different participants. Figure 3.10 shows the average and

error bar (±1 std) of scores given by participants to different video sequences for loss-less

compression (QP=0) and high spatial resolution (1080p) across different frame rates. We
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Table 3.7: Viewing conditions of the subjective test.
Parameter Value

Subjects Per Monitor 1
Screen Resolution 1920 × 1080

Refresh Rate 165 Hz
Screen Diameter 27”
Viewing Distance 30.00”

Screen Width 23.5”
Screen Height 13.2”
Aspect Ratio 16:9

Viewing Angle 49.2◦H/28.9◦V
Pixels Per Degree 78.1/74.8 pixels(H/V)

observe that for higher frame rate there is less variation of scores a high quality level.

Figure 3.11 also shows the same analysis for videos with loss-less compression (QP=0) and

high frame rate (120 fps) and across different resolutions in the subjective study on IVC-

HFRVQA-II database. Moverover, the impact of compression on variation of subjects’

scores was investigated for videos with high spatial resolution (1080p) and high frame

rate (120 fps) in the subjective study on IVC-HFRVQA-II in Figure 3.12.

3.2.3 Key Observations on Subjective Study Results

The analysis of the subjective test results is reported in this section. There are many

interesting observations that can be discussed regarding the impact of frame rate on video

quality. We investigate the average subjective quality scores of videos in IVC-HFRVQA-II

with different viewpoints to explore the integrated impact of frame rate and other param-

eters including resolution and quantization on video quality.

The first observation comes from the overall trend of perceptual quality of video in

different frame rates. Fig. 3.13.a shows the MOS values of all source sequences with

respect to different frame rates. It can be seen from Fig. 3.13.a that the there is significant

improvement in terms of MOS values from 5 fps to 60 fps but such improvement in quality

score is not the same with the increase of frame rate to 120 fps. Fig. 3.13.b shows the MOS
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values of only source videos with lossless compression (QP=0). Comparing part a and b of

Fig. 3.13 it is obvious that the improvement in the quality score between 60 fps to 120 fps

is more significant for videos without lossy compression. This shows that the impact of

frame rate on video quality is not independent of the compression. In fact, the impact of

frame rate change on the quality score is more significant for the users when there is no

information loss due to compression.

Fig. 3.14 shows the MOS values of all source sequences with respect to different frame

rates and different QP values. It can be seen in Fig. 3.14, the difference in the quality

trend, when the frame rate increases, is more significant for lower quantization values and

for lower bit-rate compression (or equally higher values of QP) the frame rate increase

does not lead to an increase in quality. Also, the impact of compression on video quality

is always perceivable by human subjects in different frame rates and resolutions.

To analyze the impact of resolution and frame rate on the results of subjective testing,

the MOS values of all source sequences with respect to different frame rates and different

resolutions are shown in Fig. 3.15.a . Fig. 3.15.b also shows the MOS values with the same

grouping of resolutions and frame rates but only for lossless compressed videos (QP=0).

According to Fig. 3.15.a, the quality improves with the increase of frame rate for different

groups of videos with different resolutions; however, this trend is more significant for higher

resolutions. From the observation on the impact of resolution and frame rate on quality,

it can be seen that the impact of resolution reduction on video quality is more significant

for frame rates higher than 30 fps.

To investigate the impact of frame rate increase on the quality of different source

contents in IVC-HFRVQA-II, the MOS values of different source sequences with respect

to different frame rates is shown in Fig. 3.16. An interesting observation from Fig. 3.16 is

that the quality trend after 30fps varies across content. It reveals the fact that the impact
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of higher frame rate on video quality is strongly dependent on the content and might not

be significant at all for some content. This content dependency should be investigated

more in a video dataset with more various content. An effort to investigate this content

dependency is done by grouping videos based on different criteria in the current database.

For example, we group the videos into two groups: moving camera and still camera based

on the existence of camera motion. Fig. 3.17 shows the MOS values of all sources in these

two groups with respect to different frame rates. As it can be observed in Fig. 3.17 the

impact of frame rate increases on video quality improvement is more significant for the

moving camera video group. It can be concluded that frame rate increase can be more

beneficial in quality improvement when there is a general motion.

45



(a) Bubblehead (b) Books

(c) Bouncy ball (d) Catch

(e) Catch and Track (f) Cyclist

(g) Guitar Focus (h) Hamster

(i) Lamppost (j) Plasma

Figure 3.8: Sample frames from the pristine videos used in IVC-HFRVQA II database.46
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(b) SRCC

Figure 3.9: Correlation between each participant’s score and MOS values on IVC-
HFRVQA-II database.
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Figure 3.10: Average and error bar (±1 std) of participants’ scores to each video sequence
with QP=0 and spatial resolution of 1080p across different frame rates on IVC-HFRVQA-II
database.
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Figure 3.11: Average and error bar (±1 std) of participants’ scores to each video se-
quence with QP=0 and frame rate of 120fps across different resolutions on IVC-HFRVQA-
II database.
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Figure 3.12: Average and error bar (±1 std) of participants’ scores to each video sequence
with frame rate of 120fps and spatial resolution of 1080p across different compression level
(QP values) on IVC-HFRVQA-II database.
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(a)

(b)

Figure 3.13: MOS versus frame rate for all test videos in IVC-HFRVQA-II database.
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Figure 3.14: MOS versus frame rate for test videos in IVC-HFRVQA-II database grouped
by QP values.
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(a)

(b)

Figure 3.15: MOS versus frame rate for test videos in IVC-HFRVQA-II database grouped
by different resolutions a) for all QP values, b) for only lossless compressed videos (QP=0).
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Figure 3.16: MOS versus frame rate for different contents in IVC-HFRVQA-II database
with lossless compression(QP=0).

Figure 3.17: MOS versus frame rate for different videos in IVC-HFRVQA-II grouped by
camera motion.
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3.3 Test of VQA Models Blind to Frame Rate Varia-

tion

Before developing frame rate dependent VQA models, we first examine the performance of

state-of-the-art VQA methods that do not consider the impact of frame rate directly. We

evaluate the performance of well-known VQA methods including SSIM[21], MS-SSIM[23],

and VQM[72].

For performance evaluation, we used the perceptual quality assessment results obtained

from our subjective study on IVC-HFRVQA-II database as the ground truth. The quality

scores for videos in the IVC-HFRVQA-II database is calculated by using three aforemen-

tioned methods and are compared against the MOS values. In our work, the MOS values,

from the best to the worst, range from 100 to 0 while the score range of the objective

models may be in different ranges. We scaled all scores from each method to be in the

same range of 100 to 0.

SSIM: SSIM is a quality metric originally designed for IQA but has also been used

for VQA by comparing frames in the reference and test videos one by one and averaging

the per-frame scores as an overall quality of the video. The scatter plot of the SSIM

scores versus MOS values for the videos in the IVC-HFRVQA-I database is displayed in

Figure 3.18, where it can be seen that SSIM has low correlation with human opinions

across different frame rates. This disparity between subjective and objective scores is

because SSIM does not consider the impact of frame rates on perceptual quality.

As it can be seen in Figure 3.18, SSIM does not capture the quality degradation made

by resolution change. This can be observed from the scatter plot of MOS values vs.

SSIM scores for different resolutions. This can be explained by considering that SSIM is

blind to frame rate and resolution changes and cannot capture the perceptually important
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differences caused by frame rate and resolution change.

VQM:VQM is a well-known VQA method based on the comparison of coefficients

of encoded frames in the Discrete Cosine Transform (DCT) space. VQM considers local

contrasts and contrast sensitivity. VQM produce a score greater or equal to zero, where

zero denotes the best quality. The quality scores by using VQM are calculated for IVC-

HFRVQA-II database and normalized in the range of 100 to 0 for the best and worst

quality, respectively. Figure 3.19 shows the VQM scores vs MOS values, where VQM also

fails to take into account of frame rate and resolution changes.

MS-SSIM: MS-SSIM is a variation of SSIM which showed a significant improvement

over SSIM in predicting quality of still images and videos. Similar to SSIM, MS-SSIM is

originally designed for IQA task, but has also been used for VQA by pooling per-frame

scores. We calculated the MS-SSIM scores for videos in the IVC-HFRVQA-II database and

normalized the scores to the range of 100 to 0 for the best to worst quality. Figure 3.20

shows the scatter plot of MS-SSIM scores vs MOS values, where MS-SSIM generally works

better than SSIM and VQM in predicting quality, especially at low quality range. However,

the overall quality prediction performance is still poor. Although MS-SSIM is a multi-scale

approach, the cross-scale weighting is not adapted to the resolution of the video or the

viewing conditions. In addition, it is also blind to frame rate changes.

Table 3.8: The performance of the well-known VQA methods on predicting the quality of
videos in IVC-HFRVQA-II dataset.

Method SRCC PLCC RMSE
SSIM 0.3298 0.2907 33.27
VQM 0.2089 0.2501 30.60

MS-SSIM 0.6423 0.6704 39.03

Table 3.8 shows the performance of the aformentioned VQA methods in predicting video

quality for IVC-HFRVQA-II database. The results show that even the best-performing

MS-SSIM method only has limited capability at predicting subjective quality evaluation.
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The test results of state-of-the-art VQA models on the IVC-HFRVQA-II database sug-

gest that existing VQA methods are very limited at producing meaningful quality pre-

diction for video content cross different frame rates and resolutions, suggesting deeper

investigation on the impact of frame rate and resolution changes is highly desirable.
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Figure 3.18: Scatter plot of MOS values versus SSIM scores for the IVC-HFRVQA database.
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Figure 3.19: Scatter plot of MOS values versus VQM scores for the IVC-HFRVQA-II
database.
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Figure 3.20: Scatter plot of MOS values versus MS-SSIM scores for the IVC-HFRVQA-II
database.
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3.4 Summary

We constructed two video databases and subsequently performed subjective testing on the

quality of videos at different quantization levels, spatial resolutions and frame rates. We

have several interesting observations of the data which can be used for creating objective

VQA model. In overall, quality has direct relation with frame rate, however the impact is

more significant for frame rates lowever than 60 fps. Also, the impact of resolution change

is more dominant to frame rate change specially for high frame rates.

We also evaluated some well-known VQA methods in predicting video quality in our

databases. We showed that the performance of traditional VQA methods that do not take

frame rate and resolution change into account is far from the human opinion obtained from

subjective studies.
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Chapter 4

Statistical Modeling of Motion

Smoothness for Cross-Frame Rate

Video Quality Assessment

4.1 Statistical Motion Smoothness Factor

Natural Scene Statistics (NSS) have attracted significant amount of attention in recent

years [73] and have been used in a number of applications such as object classification

in images [74], image coding [75], image representation [76], NSS have also been used in

quality assessment of image and videos [77, 78, 79]. It has been long hypothesized that the

biological visual systems are highly adapted to NSS during the evolution and development

processes. As a result, NSS based analysis can help understand the behavior of biological

processes in the human visual system on how visual information is extracted and encoded.

Motion smoothness is one of such statistical information from both the perspective of
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vision science and the engineering practice of video quality assessment. In [80] motion

smoothness is used to analyze natural image sequences, where it has been shown that

temporal distortions are related to the loss of local phase correlations. This characteristic

is used for reduced reference video quality assessment in [81] and the results show that

motion smoothness is a useful feature in estimating the quality of distorted videos. Here

we opt to use motion smoothness to estimate motion distortions caused by frame rate

changes in cross-frame rate VQA. We hypothesize that motion smoothness will decrease

with reducing frame rate. Thus the comparison of motion smoothness between the reference

and distorted videos may be used as an indicator of quality degradations caused by frame

rate change.

For calculating motion smoothness, we first assume that there is a rigid motion for a

one dimensional signal f(x) and this motion can be modeled as

h(x, t) = f(x+ u(t)) + b(t) (4.1)

where b(t) is the time varying background luminance which is approximately constant in

a short period of time and u(t) is the motion over time.

Consider a family of complex wavelets of the form w(x) = g(x)ejwcx, where g(x) is

varying slowly with x and wc is the wavelet center frequency. The variations of a mother

wavelet w(x) can be generated as follows :

ws,p =
1√
s

(
x− p
s

) =
1√
s

(
x− p
s

)ejwcx/s (4.2)

where s and p are scale and shift factors, respectively. Then the complex wavelet transform
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of the signal f(x) can be computed as

F (s, p) =

∫ ∞
−∞

f(x)w∗s,p(x)dx

=
1

2π

∫ ∞
−∞

F (w)
√
sG(sw − wc)ejwpdw,

(4.3)

where F (w) and G(w) are Fourier transforms of f(x) and g(x), respectively. Applying this

transform on the motion model of Eq. 4.1 leads to

H(s, p, t) =

∫ ∞
−∞

F (w)
√
sG(sw − wc)ejw(p+u(t))dw

≈F (s, p)ej(wc/s)u(t)

(4.4)

Take a logarithm on both sides, we have

logH(s, p, t) ≈ logF (s, p) + j(wc/s)u(t) (4.5)

The imaginary part of the above equation has a linear relationship with respect to motion

u(t). To relate motion smoothness with this complex wavelet transform, we examine

complex wavelet coefficients starting from a time instance t0 and sample the sequence at

consecutive time steps t0 + n∆t for n=0,1,...,N . The N -th order temporal correlation

function is defined as

LN(s, p) ≈
N∑
n=0

(−1)n+N(Nn ) logH(s, p, t0 + n∆t) (4.6)

Using (4.5), it can be shown that when the motion is (N -1)-th order smooth (meaning that
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all derivatives of u(t) in degree higher than N are zero), LN(s, p) ≈ 0. However this result

is for the ideal case of perfectly smooth motion. Real-world videos deviate from the ideal

case, and such deviation may be used as a measure of motion smoothness.

Meanwhile we define a temporal energy function as

MN(s, p) ≈
N∑
n=0

(Nn ) logH(s, p, t0 + n∆t) (4.7)

By examining the temporal correlation function (LN) and temporal energy function (MN)

jointly, one can observe how temporal motion smoothness varies as a function of local

signal energy.

An example of the joint histogram is shown in Figure 4.1(a), where brighter indicates

more frequent occurrence. To observe the trend of motion smoothness with respect to

the local signal energy, the Circular Variance(Circular Variance (CV)) [82, 83] of the two

dimensional histogram is calculated for each column, which results in a measure of variation

in the histogram for each energy level (column). Given the 2D joint histogram, the CV is

calculated for each column of the histogram by

CVq = 1−
|
∑M

p=1 hp,qe
jθp |∑M

p=1 hp,q
, (4.8)

where θp and hp,q are the center angle and height of bin p in column q and M is the number

of bins in the histogram.

The trend of the CV versus the energy level is shown in Figure 4.1(b). In the case

of perfect motion smoothness, the phase prediction error or the imaginary part of L2

should be zero. As a result, the whole histogram is concentrated at the center zero line

regardless of the energy measure. Diffusion from the central line indicates reduction in
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motion smoothness, and the level of diffusion is measured by the CV curve at different

energy level, as examplified by Figure 4.1(b).
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Figure 4.1: Temporal motion smoothness by (a) joint histogram of (LN , MN); and (b)
measure of circular variance on columns of joint histogram.

The normalized area under CV curve quantify the overall temporal motion smoothness

(TMS) as

TMS =

∑K
q=1(1− CVq)

K
, (4.9)

where K is the number of columns.

4.2 Evaluation of Motion Smoothness Factor on IVC-

HFRVQA-I database

The proposed measure of motion smoothness is applied to the IVC-HFRVQA-I database to

estimate motion smoothness. Figure 4.2 shows the histogram of the imaginary part versus

energy for all seven contents of the IVC-HFRVQA-I database in addition to the CV plots
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for each sequence.

To observe the trend of motion smoothness in different frame rate, Figure ?? shows the

joint histogram along with the CV for each content and for three frame rates of 15, 30,

and 60 fps.

It appears that increasing the frame rate leads to less variance in motion and smoother

motion. As we increase the frame rate from 15 to 30 and then to 60fps (from column 2 to 4),

the histogram concentrates on the middle line of zero phase prediction error representing

smooth motion. From the CV curves in the last column, it can be observed that the

smoothness decreases as we decrease the frame rate, however the trend varies for different

contents. For example the difference in sequence 1 and 3 are more significant than the

others. Interestingly, our subjective test shows these two sequences produce more MOS

improvement by increasing frame rate. Another observation is that for sequence 5 (talk)

the motion is low, and the smoothness of motion is not varying significantly across different

frame rates.

To investigate the relationship between temporal motion smoothness and the compres-

sion level controlled by QP values, different levels of compression is analyzed for three

different frame rates. Figures 4.5 to 4.11 show the trend for CV and for different QP levels

and different frame rates. It can be seen that motion smoothness is almost the same for

different QP levels. This suggests that motion smoothness may not be an ideal measure

to capture the severeness of compression artifacts.
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Figure 4.2: Temporal motion smoothness by 2D joint histogram and measure of circular
variance for different content at 60fps and 480p resolution. First column: snapshot of
video; Second column: 2D joint histogram; Third column: CV curve.

68



Figure 4.3: Temporal motion smoothness by 2D joint histogram and measure of circular
variance for different frame rates.
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Figure 4.4: Temporal motion smoothness by 2D joint histogram and measure of circular
variance for different frame rates(cont’d).
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Seq 1: Carousel

Figure 4.5: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 1.

71



Seq 2: Sea

Figure 4.6: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 2.
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Seq 3: Notre Dame

Figure 4.7: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 3.
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Seq 4: Guys

Figure 4.8: Temporal motion smoothness 2D histogram and circular variance for Sequence
4.
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Seq 5: Talk

Figure 4.9: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 5.
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Seq 6: Beach

Figure 4.10: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 6.
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Seq 7: Battle

Figure 4.11: Temporal motion smoothness by 2D joint histogram and circular variance for
Sequence 7.
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4.3 Evaluation of Motion Smoothness Factor on IVC-

HFRVQA-II database

We evaluate the proposed TMS measure on IVC-HFRVQA-II database. In this database,

each source sequence is originally at 120 fps and is converted to lower frame rate test

sequences at 60 fps, 30 fps, and 15 fps, respectively. We focus on the frame rate change

between lossless compressed videos (qp=0) only in IVC-HFRVQA-II database. Using the

database, we first examine how the proposed TMS measure correlates with video frame

rate and human subjective QoE for individual video content. We then investigate further

on motion-based content dependencies.

4.3.1 Validation

To better understand and to demonstrate the proposed motion smoothness measure, we

examine how the joint histogram and its corresponding CV change with respect to different

frame rates for videos in IVC-HFRVQA-II in Figs. 4.12, 4.13, 4.14, and 4.15. It can be

observed from Fig. 4.14, and 4.15 that regardless of the content variation, the effect of

frame rate reductions is well captured by the departure of the CV curves of the distorted

videos from the reference CV curves. Specifically, the CV curve generally moves away

from the reference CV curve with the decrease in frame rate. This is further confirmed

by the high Spearman rank-order correlation coefficient (SRCC) between the TMS factor

and MOS shown in Table 4.1. The only exception appears to be the “hamster” sequence,

where the proposed TMS factor is unable to distinguish the reference and distorted videos.

The possible reason could be that the spatial variation in motion pattern and speed are

very high, or the local motion pattern in high speed refresh rate may be too complicated

to be fully captured by the phase correlation between complex wavelet coefficients.
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Table 4.1: Correlation of TMS factor with frame rate and DMOS for individual video
sequences of different motion types (global vs local motion) and spatial motion variation
levels.

video sequence motion type spatial motion
variation

SRCC of TMS
vs. DMOS

bobblehead global low -1
books global low -1

bouncyball local medium -1
cath track global low -1

cath local high -0.8
cyclist global low -1

guitar focus local medium -0.8
hamster local high -0.4
lamppost local medium -1
plasma local medium -1

mean/std - - -0.90 /0.18

4.3.2 Motion Content Dependency

Although the proposed TMS factor exhibits a high correlation with perceptual quality

within each content, its behavior varies significantly across different videos as is evident in

Fig. ??. For example, for high motion videos such as the “cyclist”, there is much larger

variation from the ideal smooth motion. This motivates us to study motion-based content

dependency of the proposed motion smoothness measure.

An important aspect of motion in the video is the presence of camera geometric trans-

formation in the video acquisition process. Such camera motion transformations result

in global motion in video. The global motion has important impact on the visibility of

distortion in video and general perception of video quality [39]. For example, the blurring

artifact is less visible in videos with globally very fast motion and such effects have been

considered in existing video quality models [39].

We classify videos into two groups based on the presence of global motion, and computed
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SRCC between the TMS factor and DMOS on each group. The experimental results are

reported in Table 4.2. It can be seen that the proposed metric better predicts human

opinions for videos containing global motion. This could be because the motion is more

easily perceived in global motion videos as most regions of the frames are moving in a

consistent manner. For the videos free of global motion (e.g. captured by static cameras),

as moving regions are part of the frames only, the global statistics based TMS factor is less

effective at reflecting the impact of such local changes in the overall perceptual quality.

Motion perception provides another important perspective that is missing in the pro-

posed motion smoothness measure to study cross-frame-rate video quality assessment.

Specifically, it has been shown that the perceptual motion information content is pro-

portional to the strength of the relative motion and the inverse of global background

motion [41]. A simple model to account for this relationship is given by

V =
σ(d̃)

µ(d̃)
(4.10)

where V represents the spatial motion variation, σ is the variation of frame difference,

µ is the average of frame difference in pixels, and d̃ is the temporal frame difference.

Intuitively, V increases as the motion statistics becomes more complex, and decreases as

the uncertainty of motion perception µ increases. It is considered a measure of spatial

motion variation, or perceptual motion information content (following the principle used

in [41, 40]).

We use V to classify the videos used in this study into three classes-low, medium, and

high spatial motion variation, as shown in Table 4.1. By conducting correlation analysis

as reported in Table 4.2, we observe that the proposed metric works better for the videos

with lower variation of motion across space. For the medium variation of motion videos,
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Table 4.2: SRCC between S̃ and DMOS for different motion-based content types.
video group SRCC

all 0.78
local motion 0.62

global motion 0.93
high spatial motion variation 0.71

medium spatial motion variation 0.87
low spatial motion variation 0.93

the correlation is close to low V class, and the accuracy of prediction drops significantly for

the class of videos with high spatial variation in motion. This could be because for these

videos, the proposed method calculates the average correlation of wavelet coefficients over

the entire frame, while the motion is local and the human attention could be attracted to

certain moving parts of the video frames. This suggests that segmenting the videos into

different regions based on their motion characteristics and apply local TMS analysis is a

direction worth deeper investigation in the future.
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Sequence bobblehead books cyclist

Snapshot

15 fps

30 fps

60 fps

120 fps

Figure 4.12: Temporal motion smoothness by 2D joint histogram of (Re{M2}, Im{L2})
for selected videos from BVI-HFR at four different frame rates [2]
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Sequence guitar-focus lamppost

Snapshot

15 fps

30 fps

60 fps

120 fps

Figure 4.13: Temporal motion smoothness by 2D joint histogram of (Re{M2}, Im{L2})
for selected videos from BVI-HFR at four different frame rates [2]
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Figure 4.14: Circular variance curves of 2D joint histograms of (Re{M2}, Im{L2}) for the
selected videos at different frame rates.
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Figure 4.15: Circular variance curves of 2D joint histograms of (Re{M2}, Im{L2}) for the
selected videos at different frame rates.
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4.4 Summary

In this chapter, we investigated the impact of frame rate changes from the perspective

of NSS and statistical analysis of motion in video. We employed a statistical model on

the temporal correlations of complex wavelet transform coefficients to measure temporal

motion smoothness of videos. We found that temporal motion smoothness monotonically

decreases with the reduction of frame rate, which suggests that temporal motion smooth-

ness may be a useful factor for VQA.

The statistical model investigated in this chapter revealed promising factors that may

contribute to cross-frame rate VQA. However, more complete VQA models are to be de-

veloped that combine these models with other distortion measures to further improve the

performance.
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Chapter 5

Perceptual Aliasing Analysis for

Cross-Frame Rate Video Quality

Assessment

When considering a video as a three-dimensional signal with one temporal dimension and

two spatial dimensions, frame rate is essentially the sampling rate in the temporal direction.

Aliasing is a fundamental cause of signal degradation when the sampling rate is inadequate.

In this chapter, we investigate various aliasing factors during frame rate changes and their

relationship with perceptual video quality degradation. As both resolution change and

frame rate change are common transforms to reduce the data rate of video, we explore the

impact of frame rate in combination with variations in resolution changes.
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5.1 Perceptual Aliasing Analysis

5.1.1 1D Temporal Aliasing Factor

Changing the frame rate of a video is equivalent to changing the sampling rate of the video

in the temporal dimension. Therefore, distortions introduced by reducing the frame rate

could be explored by analyzing the information loss caused by sampling rate reduction.

The most common method of frame rate reduction is performed by dropping a number

of frames from the sequence of frames in the video. Frames are typically dropped in a

uniform pattern depending on the original and target frame rates. An essential consider-

ation in dropping frames or any down-sampling process is to consider the Nyquist theory

of sampling, in which the sampling frequency (fs) should be at least twice of the highest

frequency component of the signal; otherwise aliasing occurs. Since images and videos

usually contain a variety of frequency components in their frequency spectrum, obeying

the Nyquist criteria in order to avoid aliasing requires the signal to be filtered by a low-pass

anti-aliasing filter before down-sampling.

In practice, however, low-pass filtering is not commonly performed before frame rate

reduction due to the added computational cost and memory requirement. This leads to

temporal artifacts in the resulting low frame rate videos, accompanied by loss in perceptual

video quality. The amount of distortion in the low frame rate video depends on the

video content and the amount of motion in the video. In this section we investigate

the relationship between quality degradation due to frame rate conversion and the level of

aliasing in the frequency domain.

The values of a sample pixel in a video over time constitutes a one dimensional sig-

nal (Figure 5.1). We refer to this signal as a “pixel signal”. The frequency spectrum of
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a pixel signal can be generated by applying the Discrete Fourier Transform (DFT). When

down-sampling is performed on a pixel signal, the frequency spectrum of the original pixel

signal is repeated with a smaller period than the original signal spectrum (Figure 5.2). It

can cause overlaps between successive repetitions of the original signal’s spectrum. This

overlap is termed aliasing. We will use the power of the signal in this aliasing region to

estimate the information loss and predict perceptual video quality.

Figure 5.1: An example of pixel intensity in time and the corresponding frequency spec-
trum.
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Figure 5.2: Aliasing produced by sampling with frequency lower than the Nyquist rate and
without pre-filtering.

In order to find the power in the aliasing region that we refer to as aliasing power,

we perform frequency analysis by modeling the pixel signal. We consider a video as a

three-dimensional signal V (r, c, t) where r refers to the row, c refers to the column, and t

refers to the time component.

Given a pixel in a video frame, we name its row ri, and its column cj. Then the
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one-dimensional pixel signal as a function of time (t) is defined as

uri,cj(t) = {Vg(r, c, t)|r = ri, c = cj}. (5.1)

By applying a Fourier transform to the pixel signal the frequency spectrum is obtained by

sri,cj(f) =

∫
uri,cj(t)e

−j2πftdt, (5.2)

where sri,cj(f) is the frequency spectrum. The frequency spectrum for a sample pixel in

one of the videos of the IVC-HFRVQA database and the steps to create the frequency

spectrum are illustrated in Figure 5.1.

The pixel signals obtained from a sequence of frames in a video can be viewed as the dis-

crete version of a continuous signal obtained by identifying the pixel value at each instance

of time. Due to the limitations of our digital machines, we can only store and process

the discrete version of a pixel signal. Therefore, the pixel signal is a digital representation

of the continuous pixel signal obtained from a process of sampling. In this sampling pro-

cess, the frequency spectrum of the discrete signal is a repeated version of the continuous

signal’s spectrum with a period equaling the sampling frequency, as shown in Figure 5.2.

This repetition may cause aliasing between two repetitions of the spectrum. In theory,

the pixel signal may have an infinite bandwidth. In practice, it is typically reasonable to

assume a signal to be bandlimited. An example of a frequency spectrum for a continuous

pixel signal, together with an example of a sampling process with or without aliasing is

shown in Figure 5.2. If the sampling frequency is less than the Nyquist rate, aliasing will

be present, as indicated by the overlapping areas of the spectrum repetitions. The size of

the overlapping area, indicated as the S1 region in Figure 5.3, depends on the sampling

frequency and the signal bandwidth. We can use the power of the aliasing part to estimate
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Figure 5.3: Frequency spectrum of sampled signal when aliasing occurs.

the aliasing distortions caused by frame rate reduction or temporal sampling. The power

of the signal in the aliased region (S1 in Figure 5.3) is given by

Pri,cj(fst) =

fst/2∫
0

|sri,cj(fst − ft)|2dft =

fst∫
fst/2

|sri,cj(ft)|2dft (5.3)

where |sri,cj(ft)| is the magnitude of the frequency component in the frequency spectrum

of the pixel signal for row ri and column cj at temporal frequency of ft, fst is the sampling

frequency and P (fst) is the estimate of aliasing power.

A more meaningful way to judge the impact of aliasing is by measuring aliasing power

relative to the power distribution of the entire signal. As it can be seen in Figure 5.3, when

aliasing occurs, the aliasing region is influenced by another period of frequency spectrum

repetition. To measure the power in the aliased region relative to the signal power (S2
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region in Figure 5.3), we define a normalized aliasing factor by

AT,ri,cj(fst)=

fst/2∫
0

|sri,cj(fst−ft)|2dft

fst/2∫
0

|sri,cj(ft)|2dft

=

fst∫
fst/2

|sri,cj(ft)|2dft

fst/2∫
0

|sri,cj(ft)|2dft

. (5.4)

where the power of the signal in the aliased region is normalized by the power of the signal

in the low frequency region of the spectrum. This aliasing factor can be used as an estimate

of aliasing strength by frame rate down-sampling.

The temporal aliasing factor is computed for each pixel signal (as in Figure 5.1) ex-

tracted from the video and averaged to yield an overall temporal aliasing factor of the

sampled video by

AT (fst) =
1

N ×M

N∑
i=1

M∑
j=1

AT,ri,cj(fst). (5.5)

where N is the number of pixels in a frame and AT,ri,cj(fst is the temporal aliasing factor

for pixel locate at row ri and column cj. Considering the local similarity of pixel values

in the video frame, for computational efficiency, a random subset of pixel signals may be

used to represent all pixel signals. Using the subset of pixels in the calculation of Eq. 5.25,

the estimated temporal aliasing factor is computed by

ÃT (fst) =
1

k

∑
(ri,cj)∈φ

AT,ri,cj(fst). (5.6)

where φ is the set of the selected pixels in video and k is the number of pixels in this set.

For videos in the IVC-HFRVQA-I database with different frame rates which are con-

structed from the original 60fps, we assume that 60fps is a sampling rate without aliasing

and lower frame rates may result in aliasing due to the overlaps in the frequency spectrum.
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Figure 5.4: Estimated temporal aliasing factor (ÃT ) vs MOS for four different down-
sampling rate in IVC-HFRVQA-I database.

Figure 5.4 shows the temporal aliasing factor (ÃT ) for different video content in the IVC-

HFRVQA-I database for four different frame rates of 30, 15, 10, and 5fps, respectively,

created from the original 60fps videos.

5.1.2 2D Spatiotemporal Aliasing Factor (X-T and Y-T)

In the previous section, we analyzed the effect of aliasing along the temporal direction.

The temporal analysis of pixel signals does not consider the spatial context. For example

the shifts of pixel values in the horizontal or vertical directions in consecutive frames are

not taken into account. In this section, we extend our analysis to joint spatio-temporal

analysis.
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A simple model of spatio-temporal analysis is time-space plane analysis. The joint

observation of space and time is performed on the two-dimensional plane of X-T or Y-T

for horizontal or vertical analysis respectively in which ‘X’ represents a row, ‘Y’ represents

a column, and ‘T’ indicates the time axis. Geometrically, we can observe these planes as an

intersection of the horizontal/vertical plane with the video sequence in a three-dimensional

spatio-temporal space. Figure 5.5 shows two sample of spatio-temporal planes extracted

from a video in the IVC-HFRVQA-I database. It can be observed that the X-T and Y-T

planes create very different pattern from the spatial X-Y plane and provide a different

perspective on horizontal and vertical motion. Non-smooth motion due to frame dropping

can be captured in these planes better than pixel signals.

Using the X-T (or Y-T) plane, and the corresponding two dimensional frequency spec-

trum s(ft, fx), the aliasing due to temporal down-sampling is indicated as the overlap of

frequency spectra with its repetition in the temporal direction (ft) as shown in Figure 5.6.

This overlapping can also occur due to spatial down-sampling, which corresponds to frame

resolution reduction in video. Considering the general case when both temporal and spatial

down-sampling may be applied to a video, the aliasing region may happen in both direc-

tions in frequency spectra as shown in Figure 5.7. Therefore, a spatiotemporal aliasing

factor is calculated by

AXT,ri(fsx, fst) =

fsx/2∫
0

fst/2∫
0

|sri(fst − ft, fsx − fx)|2dftdfx

fsx/2∫
0

fst/2∫
0

|sri(ft, fx)|2dftdfx

. (5.7)

where ri is the index of a selected row to create the X-T plane, fst is the sampling frequency

in temporal direction, and fsx is the sampling frequency in X direction. A similar method

may be applied on a Y-T analysis for a selected column to calculate AY T,cj(fsy, fst) for fsy
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(a) X-Y plane (frame)

(b) Y-T plane (c) X-T plane

Figure 5.5: X-Y, X-T, and Y-T planes constructed from 3D video volume [3].

to be sampling frequency in Y direction. This aliasing factor is calculated for each X-T

plane (corresponding to each row ri) and Y-T plane (corresponding to each column cj) in

the sequence of video frames. The average of this spatio-temporal aliasing factor for all

X-T planes results in the overall 2D spatiotemporal aliasing factor (AXT ) for the entire

video and is calculated as follows

AXT (fst) =
1

N

N∑
i=1

AXT,ri(fst), (5.8)

where N is the number of rows in the video frame and AXT,ri(fst) is the 2D spatiotemporal
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Figure 5.6: Aliasing in temporal down-sampling in two-dimensional frequency spectrum
of X-T plane is represented by the overlapping region between central spectrum and its
repetitions when the sampling rate is lower than the Nyquist rate.

aliasing for an X-T plane corresponding to ri. The same approach can be used to define

2D spatiotemporal aliasing factor for Y-T planes created from columns (AY T ).

AY T (fst) =
1

M

M∑
j=1

AY T,cj(fst), (5.9)

where M is the number of columns in the video frame. Similar to the temporal aliasing

factor calculation, the computational costs may be reduced by performing calculations on

selected lines (rows or columns) using

ÃXT (fst) =
1

R

∑
ri∈Ψ

AXT,ri(fst) (5.10)

97



Figure 5.7: Aliasing in spatial and temporal down-sampling in two-dimensional frequency
spectrum of X-T plane is represented by the overlapping region between central spectrum
and its repetitions when the sampling rate is lower than the Nyquist rate.

ÃY T (fst) =
1

C

∑
cj∈Ω

AY T,cj(fst), (5.11)

where Ψ is a selected subset of rows and Ω is a selected subset of columns in a frame, and

R and C are the sizes of these subsets, respectively.

5.1.3 2D Spatial Aliasing Factor

Similar to the analysis of X-T and Y-T planes explained in the previous chapter, 2D aliasing

can be performed on the 2D X-Y plane in which the aliasing will be used as an estimation

of information loss due to frame size reduction. Considering the X-Y plane in Figure 5.5
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and its corresponding frequency spectrum, the 2D spatial aliasing factor can be calculated

using

AXY,fi(fsx, fsy) =

fsx/2∫
0

fsy/2∫
0

|s(fsx − fx, fsy − fy)|2dfxdfy

fsx/2∫
0

fsy/2∫
0

|s(fx, fy)|2dfxdfy

. (5.12)

where fsx and fsy are the sampling frequency in spatial direction of X and Y respectively.

5.1.4 3D Spatio-temporal Aliasing

The aliasing analysis of digital videos can be performed in the complete three-dimensional

space of XYT. We consider the power of the signal in the 3D overlapped volume in 3D

frequency space analysis. The 3D spatio-temporal aliasing factor is then given by

AXY T (fsx, fsy, fst) =

fsx/2∫
0

fsy/2∫
0

fst/2∫
0

|s(fst − ft, fsx − fx, fsy − fy)|2dftdfxdfy

fsx/2∫
0

fsy/2∫
0

fst/2∫
0

|s(ft, fx, fy)|2dftdfxdfy

. (5.13)

5.1.5 Perceptual Contrast Sensitivity

The aliasing factors introduced in the previous sections assume the same importance for all

frequency components, but human visual perception has different sensitivity to different

frequencies [4, 84]. This sensitivity is characterized by the visual Constrast Sensitivity

Function (CSF) which is defined as a function of visual sensitivity in terms of both temporal
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Figure 5.8: Spatiotemporal contrast sensitivity function as function of both temporal and
spatial frequency components [4].

and spatial frequencies. Kelly explored the CSF for moving pictures by psycho-visual

experiments with stimuli of different spatial and temporal frequencies [4] and modeled the

CSF function as a surface on spatial and temporal frequency space (Fig. 5.8). This function

has been used in many subsequent studies [84, 85] and quantified by [84] as

λ(f, vr) = kc0c2vR(c12πf)2exp(
−c14πf

fmax
) (5.14)

where k and fmax are defined as

k = s1 + s2|log(
c2vR

3
)|3, fmax =

f1

c2vR + 2
, (5.15)
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where, s1 = 6, s2 = 7.3, f1 = 45.9, c0 = 1.14, c1 = 0.67, and c2 = 1.92 are constants

selected according to [84]. vr is the retinal velocity and f is the spatial frequency. λ is the

sensitivity as a function of f and vr. Following the X-T analysis and considering motions

projected in X-T planes, spatial frequency in Eq. (5.14) can be estimated by the spatial

frequency of X-T plane (fx) by using

f ≈ g(fx) = fx D, (5.16)

where D is the angular resolution measured by pixel/degree unit. The same analysis can

be defined for Y-T planes. Retinal velocity (vr) can be estimated by spatial and temporal

frequency components by

vR ≈ h(ft, fx) =
ft R

fx
(5.17)

where, R is the frame rate. Using Eq. (5.16), (5.17), we obtain an estimate of the sensitivity

function (λ) as a function of ft and fx as follows

λ̃(ft, fx) = λ(g(fx), h(ft, fx)). (5.18)

where λ̃ is the estimate of the sensitivity function for X-T plane frequency analysis. The

same equation can be applied to fy for Y-T planes and define λ̃(ft, fy).

The sensitivity function for 1D signals of T, X, and Y can be extracted from two-

dimensional λ by fixing the second input parameter to a typical average frequency value

of the video based on the size and content. These sensitivity functions are applied in the

proposed aliasing factors to consider human visual perception characteristics. The aliasing

factors proposed in previous sections can be modified to perceptual factors by applying

CSF-based weighting.
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5.1.6 Perceptual Temporal Aliasing Factor

We extract a simplified 1D temporal contrast sensitivity function from 2D sensitivity func-

tion (λ) in the previous section and apply it to the pixel signal in temporal aliasing anal-

ysis. To calculate 1D temporal contrast sensitivity, the spatial frequency component (fx)

in Eq.5.18 is fixed to a specific value as follows

λ̃t(ft) = λ̃(ft, fx0) = SF (g(fx0), h(ft, fx0)). (5.19)

where the value of fx0 is the fixed spatial frequency, selected to be one quarter of the

maximum possible frequency in a video frame by considering all frame resolutions, display

size, and viewing distance of observer. We selected one quarter of maximum possible spatial

frequency as the spatial frequency in frames are usually much lower than the maximum

which correspond to the pattern of the black and while neighboring pixels. We considered

at least 4 pixel for the details of frame which. The selected fixed spatial frequency is close

to the resolution considered in pixel-wise operators normally defined and used in basic

image processing operations.

Using the definition in (5.19), the perceptual temporal aliasing factor is defined based

on (5.25) by

APT,ri,cj(fst)=

fst/2∫
0

λt(ft)|sri,cj(fst−ft)|2dft

fst/2∫
0

λt(ft)|sri,cj(ft)|2dft

. (5.20)

The perceptual temporal aliasing factor for the entire video is defined in a similar way by

pooling from the selected pixels as
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ÃPT (fst) =
1

k

∑
(ri,cj)∈φ

APT,ri,cj(fst). (5.21)
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Figure 5.9: Perceptual aliasing factor versus MOS for video sequences at different frame
rates without compression.

The perceptual temporal aliasing factors APT (fst) of the videos in IVC-HFRVQA-I

database are calculated using. (5.21) and the results are reported in Figure 5.9 for all

seven contents and four levels of frame rates, by assuming no aliasing in the 60fps videos

in the database. It can be observed that the perceptual aliasing factor decreases with

the frame rate for each individual sequence, but the rate of decrement varies. It is also
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interesting to see that for high motion or high texture videos, the decreasing trend is more

significant. This may be because the high motion videos or those videos with complex

content but moderate motion have significant energy in the high frequency components of

the spectrum.

5.1.7 Perceptual 2D Spatio-Temporal Aliasing Factor

The sensitivity function (λ) may be incorporated with the proposed two dimensional spa-

tiotemporal aliasing factors. Using two dimensional sensitivity as defined in (5.18) as the

weighting factor, the perceptual X-T aliasing factor by using (5.7) is defined as follows

APXT,ri(fxt) =

fsx/2∫
0

fst/2∫
0

λ̃(ft, fx)|s(fst − ft, fx)|2dftdfx

fsx/2∫
0

fst/2∫
0

λ̃(ft, fx)|s(ft, fx)|2dftdfx

(5.22)

ÃPXT (fst) =
1

R

∑
ri∈Ψ

APXT,ri(fst) (5.23)

A similar method applies to Y-T planes. The calculated perceptual aliasing factor on

uncompressed videos of the IVC-HFRVQA-I database is shown in the Figure 5.10, where

it can be seen that the correlation between the aliasing factor and MOS for different frame

rates of various contents are better than the pixel signal frequency analysis in the previous

section.
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Figure 5.10: X-T aliasing factor versus MOS for videos in IVC-HFRVQA-I database.

5.1.8 Perceptual Spatial Aliasing Analysis

Resolution change is a down-sampling of video signals in the spatial dimensions. The

1D temporal aliasing can be rewritten for 1D-X signal (for rows) and 1D-Y signals (for

columns) on selected rows and columns of video frames. For perceptual aliasing analysis,

λ̃(fx) and λ̃(fy) can be extracted from the original definition of λ̃ by fixing ft to a selected

value:

APX,ri,cj(fst)=

fsx/2∫
0

|sfi,yj(fsx−fx)|2dfx

fsx/2∫
0

|sfi,yj(fx)|2dfx

. (5.24)
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APX(fsx) =
1

N

N∑
i=1

M∑
j=1

APX,fi,cj(fsx). (5.25)

Considering the 2D case of X-Y plane, we calculate the perceptual 2D spatial aliasing

as

APXY,fi(fsx, fsy) =

fsx/2∫
0

fsy/2∫
0

λ̃(fx)λ̃(fy)|s(fsx − fx, fsy − fy)|2dfxdfy

fsx/2∫
0

fsy/2∫
0

λ̃(fx)λ̃(fy)|s(fx, fy)|2dfxdfy

(5.26)

ÃPXY (fsx, fsy) =
1

F

∑
fi∈φ

APXY,fi(fsx, fsy) (5.27)

where fsx and fsy are the sampling frequency in the x and y dimensions, respectively, and

F is the number of frames selected for the analysis from φ set. For perceptual analysis, the

original sensitivity function is converted to one-dimensional spatial sensitivity functions

(λ(fx) and λ(fy)) in the same way by fixing ft to one quarter of the maximum possible

temporal frequency.

5.1.9 Perceptual 3D Spatio-Temporal Aliasing Factor

The perceptual analysis can be extended to the three dimensional frequency analysis in

XYT space. The two dimensional sensitivity function of λ is extended by introducing

spatial frequency component (fxy) as follows

fxy =
√
f 2
x + f 2

y . (5.28)
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fxy integrates X and Y frequency components by considering the distance of frequency

component to the origin at X-Y frequency spectrum. Using fxy in the original 2D equation

in (5.18), the sensitivity function for XYT analysis is defined as

λ̃(ft, fx, fy) = λ(g(fxy), h(ft, fxy)). (5.29)

The equations for perceptual 2D aliasing factors introduced in the previous sections can

be rewritten for the 3D cases by using λ(ft, fx, fy) to calculate ÃPXY T (fst, fsx, fsy).

5.2 Objective Video Quality Assessment Incorporat-

ing Aliasing Factors

5.2.1 Video Quality Assessment Framework

To design a comprehensive objective VQA method, the entire path from acquisition of the

pristine source video to the display at the end user side should be considered. Figure 5.11

shows a typical path of video encoding, transmission, and display which contains a series

of processing steps. Each step in this flow may introduce artifacts and cause quality

degradations. Ignoring the device dependent post processing at the end users’ side, the

video quality control is usually performed by controlling the encoding parameters on the

encoding side before channel transmission as shown in Figure 5.11, where the quality might

be affected by the frame rate change, the resolution change, the compression level, or their

combinations. Therefore the entire quality prediction model (Q) can be described as a

function of the frame rate down-sampling factor, the resolution down-sampling factor, and
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Figure 5.11: Video processing path from source video acquisition to display at end user
side.

the compression ratio as follows

QE = Q(∆fr,∆res, rcomp) (5.30)

where ∆fr, and ∆res are down-sampling factors along temporal and spatial directions, and

rcomp is the compression ratio. The frame rate and resolution change blind VQA methods

discussed in Chapter 2, are only supporting quality modeling by considering rcomp.

The aliasing factors for proposed in the previous section were targeted at capturing the
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quality degradations due to frame rate and resolution changes change (considering ∆fr and

∆res).

QAlias
E (∆fr,∆res) (5.31)

However, in real applications any combination of resolution change, frame rate change,

and compression may occur. Therefore, to design a comprehensive objective VQA model,

the aliasing factor are not sufficient, and the impact of compression algorithms on quality

should also be taken into account.

Quality degradation due to lossy compression usually happens because of the quantiza-

tion of frequency components. The quantization effect, when combined with the impact of

motion estimation/compensation and block-based encoding, causes visible artifacts such as

blocking and blurring. Based on the compression algorithms used in encoding and the level

of compression selected in the encoding process, different types and numbers of artifacts

may appear in the compressed video.

Quality degradation due to compression has been the topic of many earlier works and

some VQA methods are widely recognized in the literature. The quality predictive model

considering compression artifacts only as a simplified version of Eq. 5.30 can be expressedk

as

QComp
E (rcomp) (5.32)

where rcomp is the compression ratio factor. These VQA methods are blind to frame rate and

resolution changes (∆fr and ∆res). We opt to use a frame rate and resolution change blind

VQA method in combination with our proposed aliasing factors to design a comprehensive

VQA method that could perform quality assessment task in any combination of changes.

From Eq. 5.30, we can express this comprehensive model by using Eq. 5.31 and Eq. 5.32
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as

Q̃E = Ψ(QAlias
E , QComp

E ), (5.33)

where Ψ is a function that integrates these two parameters. For compression level qual-

ity assessment method, we specifically selected MS-SSIM, which is one of the most well-

known VQA methods that has shown high quality prediction performance and computa-

tional efficiency in predicting the quality of compressed videos [23]. It is also the best

performing baseline model according to our test in Section 3.3.

Figure 5.12 shows the schematic diagram of the proposed method which uses MS-SSIM

and a selection of aliasing factors as input. For the integration method, Ψ function in

Eq. 5.33, we used Support Vector Regressor to predict video quality given two types of

inputs (aliasing factor(s) and MS-SSIM scores). We select Support Vector Regression

(SVR) because it is a simple and robust learning algorithm that works well in complex

training tasks.

As one of the input parameter in the proposed method, the aliasing factors were cal-

culated by analyzing the frequency spectrum of the high resolution and high frame rate

source video of each content in the database. For each compressed video (test video) in

the dataset , the corresponding version of the video content with the frame rate of 120 fps

and the resolution of 1920×1080 and with lossless compression (qp=0) is selected as the

reference video. Given a the reference video of a test video, the aliasing factors are calcu-

lated by using frequency spectrum of the reference video together with the frame rate and

resolution down-sampling ratios to determine the sampling frequency in Eqs. 5.20, 5.22,

and 5.26.

For calculating MS-SSIM scores, we compared the video before and after applying

compression in Figure 5.11 to take into account the impact of compression. We consider

the source video after applying resolution change and frame rate change as a reference for
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Figure 5.12: Schematic diagram of the proposed VQA method based on aliasing factor.

MS-SSIM computation when evaluating a compressed video. We used the implementation

provided by the authors of the original paper [23] as provided in [86].

The SVR is trained by videos in IVC-HFRVQA-II database produced using different

combinations of encoding parameters. For each video in the dataset, we used frame rate

and resolution change of the test video to calculate the aliasing factors and we calculate

MS-SSIM as described before as inputs to SVR. Extracting the SVR’s input parameters

for all videos in the dataset, We used leave-one-out cross validation method for training

and testing. Specifically, we select the videos in the database from all content except one

for training the SVR, and use the remaining content for testing. This process is repeated

for all possible combinations of training and testing combinations, and the final reported

performance measures are the average of all repetitions.

5.2.2 VQA Methods for Comparison

We compare the performance of the proposed methods with state-of-the-art VQA meth-

ods. We use eight objective VQA models for performance evaluation including MSE,

PSNR, SSIM [22], MS-SSIM [23], VQM [87], VMAF [62], Q-STAR [88], and FRQM [61].
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Since none of these methods except for Q-STAR supports cross-resolution video quality

assessment, the test videos were up-sampled to 1920×1080 resolution for evaluations. For

those methods that do not support cross-frame rate video quality evaluation, including

MSE, PSNR, SSIM, MS-SSIM, and VQM, the test videos were up-sampled to 120 fps in

temporal direction by repeating frames in the lower frame rate videos. From the cross-

frame rate VQA methods reviewed in Chapter 2, we used Q-STAR, FRQM, AND VFAM

for comparison. Other methods are not selected for comparisons, because some of them

use similar approaches to the ones selected, and some are designed for the low bit-rate

low-resolution analysis, or for specific cases of 3D video analysis only.

SSIM has been implemented in many libraries and mathematical tools such as MAT-

LAB, OpenCV and R and we used its implementation in MATLAB. For MS-SSIM, the

implementation provided by the authors of the original paper [23] was used as provided

in [86]. The code provided by ITS (Institute for Telecommunication Science) as in [87] was

used with default parameter settings. For VMAF, the implementation is publicly available

as a script [89]. The Python implementation of VMAF is used with default parameters.

The FRQM [61] was tested using the code by the main author of the original paper with

the provided settings of parameters. As FRQM does not support resolution change, for the

quality assessment of any test video, the pristine reference was converted to the same res-

olution of frames first (with bi-cubic interpolation) and then passed to the code for quality

evaluation. For the Q-STAR methods, the parameters proposed in the main paper [88]

were used. We used the quality score (MOS) value of the reference video as reference in

the implementation of Q-STAR as suggested by the original paper.
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5.2.3 Performance in Quality Prediction

The list of all spatial and temporal aliasing factors proposed in this research is reported in

Table 5.1. To exploit the potentials of the spatial, temporal, and spatiotemporal aliasing

factors in quality prediction, different combination of aliasing factors in Table 5.1 are used.

We created 7 combinations of the aliasing factors in addition to MS-SSIM to each combi-

nation as the inputs for the training algorithm. The selected aliasing factor combinations

are reported in Table 5.2. The combinations are selected to cover different variations of

1D, 2D, 3D aliasing factors and also cover variations of spatial and temporal aliasing to

investigate the effect of the proposed aliasing factors in predicting video quality. Each

selected set of aliasing factors is combined with the MS-SSIM score to form a complete

feature vector as the input to train the SVR, as explained in the previous section.

Table 5.1: List of aliasing factors used for training.
Aliasing factor Description

APT 1D temporal aliasing factor defined on pixel signals
APX 1D spatial aliasing factor defined on rows of frames
APY 1D spatial aliasing factor defined on columns of frames
APXT 2D spatio-temporal alising factor defined on X-T palnes
APY T 2D spatio-temporal aliasing factor defined on Y-T palnes
APXY 2D spatial aliasing factor defined on frames
APXY T 3D spatio-temporal aliasing factor defined on volume video frames

Table 5.2: The selected aliasing factor combination.
Feature set APT APX APY APXT APY T APXY APXY T MS-SSIM

A x
B x x
C x x
D x x
E x x x x
F x x x
G x x x x

The predicted quality values by seven variations of the proposed algorithm are com-

pared against the MOS values from the subjective test in IVC-HFRVQA-II dataset. The
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Table 5.3: Performance comparison of VQA methods on IVC-HFRVQA-II dataset.
Method SRCC PLCC RMSE

MSE 0.2437 0.1415 43.65
PSNR 0.2438 0.3500 45.87
SSIM 0.3298 0.2907 33.27

MS-SSIM [23] 0.6423 0.6704 39.03
Q-STAR [88] 0.2654 0.2754 32.20
FRQM [61] 0.4583 0.4012 41.88
VQM [87] 0.2089 0.2501 30.60

VMAF [62] 0.6094 0.5777 32.95
Proposed A 0.7063 0.7212 27.95
Proposed B 0.7352 0.7183 20.77
Proposed C 0.9318 0.9362 9.1889
Proposed D 0.7609 0.7597 21.68
Proposed E 0.9454 0.9418 10.0
Proposed F 0.9592 0.9597 7.8139
Proposed G 0.9650 0.9652 7.20

performance metrics, including PLCC, SRCC, and RMSE, are used to evaluate the pro-

posed algorithm.

Table 5.3 reports the performance evaluation results on the IVC-HFRVQA-II database

for seven proposed methods and VQA methods used for comparisons as mentioned in the

previous section. Figures 5.13, 5.14, and 5.15 show the scatter plots of predicted values

vs. MOS for different variation of proposed VQA methods alongside the selected VQA

methods for comparison. Figures 5.16, 5.17 and 5.18 report the comparison of MOS and

the predicted values color coded for different frame rates, resolutions and the sequences to

provide insights on cross-frame rate , cross-resolution, and cross-content performance.

From the results reported in Table 5.3, we observe that well-known VQA methods

such as SSIM, MS-SSIM, and VQM do not perform well in predicting video quality when

the frame rate changes alongside other parameters of video such as resolution change and

compression level. By contrast, the proposed methods based on aliasing factors shows

better performance in general. According the reported performance in Table 5.3 and Fig-

ures 5.16, 5.17 and 5.18 from different combinations of aliasing factors used in learning

SVR, the combination of spatial and temporal aliasing factors can provide better per-
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formance in the quality assessment task. For example the combinations of features in

Proposed F (MS-SSIM, XY, T) and Proposed G (MS-SSIM, XT, YT, and XY) show the

highest correlations with MOS values where T represents temporal aliasing factor, XT,

YT, and XY represent 2D spatial and spatio-temporal aliasing factors calculated in X-T

planes (extracted from rows), Y-T planes (extracted from columns), and X-Y planes (for

selected frames), respectively.

Comparing the performance of spatial aliasing with temporal aliasing factors shows that

the resolution change in general has a greater impact on the quality prediction. This is

in direct relationship with the higher impact of resolution in subjective quality assessment

reported in Chapter 3. This can be clearly observed from the comparison of Proposed

C (MS-SSIM, XY) and Proposed B (MS-SSIM, T) in Table 5.3. Based on the results

reported in the left most column of Figures 5.16, 5.17 and 5.18, it can be observed that,

there is still a small impact of content dependency in the performance of the proposed

method. This shows the opportunity of further improving the proposed method by adding

content-dependent parameters in the feature set.

The proposed method used aliasing factors and MS-SSIM score as the inputs to training

algorithm for predicting video quality. The spatio-temporal aliasing factors, as results in

best performance, are designed to capture the quality degradation caused by frame rate

and resolution change. On the other hand MS-SSIM is designed to predict quality degra-

dation cause by compression. Therefore, it is expected that the combination of MS-SSIM

scores and aliasing factors can cover degradations caused by the entire path of encoding

as indicated in Fig 5.11.

We have also included the temporal motion smoothness (TMS) features proposed in

Chapter 4 to train the overall VQA algorithm, and performed direct comparisons between

the cases with and without using the TMS features. The results are given in Table 5.4.
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When compared with Table 5.3, it suggests that adding the TMS factor into the feature

set does not lead to further performance improvement. There might be two reasons. First,

as has been shown in Chapter 4, the strength of TMS is highly content dependent, and

thus in order to make use of TMS as a feature, certain content-dependent normalization

process is needed. Second, there may be significant overlap or redundancy between the

TMS and the aliasing factors, i.e., a video that is more smooth in motion is likely to create

less aliasing. In such cases, adding TMS as an extra feature is not expected to enhance

the quality prediction performance.

Table 5.4: The performance of the selected proposed methods with/without TMS factor
on predicting the quality of videos in IVC-HFRVQA-II dataset.

Method SRCC PLCC RMSE
Proposed A 0.7063 0.7212 27.95

Proposed B -T + TMS (SVR(MS-SSIM, TMS)) 0.7252 0.7395 22.5902
Proposed B (SVR(MS-SSIM,T)) 0.7352 0.7183 20.77

Proposed B + TMS (SVR(MS-SSIM, T, TMS)) 0.7180 0.7298 22.1674
Proposed F (SVR(MS-SSIM,XY,T)) 0.9592 0.9597 7.8139

Proposed F - T + TMS (SVR(MS-SSIM,XY,TMS)) 0.9539 0.9543 8.0403
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Figure 5.13: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.14: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.15: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset(cont’d).
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Figure 5.16: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset.
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Figure 5.17: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.18: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.19: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.20: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.21: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.22: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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Figure 5.23: Scatter plots of the predicted values by VQA methods vs. MOS values on
videos from IVC-HFRVQA-II dataset (cont’d).
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5.3 Summary

In this chapter, we investigated the impact of frame rate changes from the perspective

of human visual system models. Specifically, we examined the aliasing power of videos

after frame rate and resolution reduction. We proposed the notion of perceptual aliasing

factor, where the aliasing power is weighted by human visual contrast sensitivity along

temporal direction or in spatio-temporal domain. The proposed perceptual temporal and

spatio-temporal aliasing factors demonstrated good promise in cross-frame rate VQA. The

proposed aliasing factor in combination with a frame rate-blind VQA model namely MS-

SSIM creates a comprehensive model considering frame rate changes, resolution changes,

and compression artifacts together. The performance analysis shows that it outperforms

well-known VQA models on videos containing frame rate and resolution changes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The main focus of this thesis is to understand the impact of frame rate on video quality,

and to develop perceptual VQA models that produce consistent quality scoring on videos

undergoing frame rate change, resolution change, and compression. To evaluate the sub-

jective quality of video when the frame rate changes, we construct two video databases

and perform subjective studies on these databases to investigate the quality of videos at

different quantization levels, spatial resolutions and frame rates. Our overall observation

is that, quality has direct relationship with frame rate, but the impact is more significant

for frame rates lower than 60 fps. Depending on the content, the impact of resolution

reduction on video quality could be dominant over the impact of frame rate reduction,

especially at high frame rates. We also evaluate well-known VQA methods in predicting

video quality using our databases. Our results show that the performance of existing VQA

methods is limited in predicting human opinions.
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The quality of videos with changing frame rate is investigated from the perspective of

statistical analysis of motion in video. A statistical model on the temporal correlations of

complex wavelet transform coefficient is constructed to measure temporal motion smooth-

ness of videos. We found that temporal motion smoothness has direct relationship with

the change in frame rate. It suggests that temporal motion smoothness may be a useful

factor for VQA. On the other hand, content dependency is observed that has strong impact

on the correlation of these two factors.

Significant effort has been dedicated to investigating the impact of frame rate changes

from the perspective of human visual system models. We examined the aliasing power

of videos after frame rate and resolution reduction and proposed the notion of perceptual

aliasing factor, for which the aliasing power is weighted by human visual contrast sensitivity

along temporal or spatio-temporal dimensions. The proposed aliasing factor in combination

with a frame rate-blind VQA method namely MS-SSIM creates a comprehensive model

that jointly considers frame rate changes, resolution changes, and compression artifacts

together. Performance analysis shows that the joint model outperforms well-known VQA

models when the test videos contain a mixture of quality degradations caused by frame

rate changes, resolution changes, and compression.

6.2 Future Work

The current work may be extended in different ways.

Extension of Subjective Study: One meaningful further step in extending this work

is to construct a bigger database of videos with more contents and performing a subjective

study to gain a more reliable statistical analysis of the results. One common problem

in subjective VQA studies is the trade-off between the number of the videos and the
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limited time for subjective testing in a session. The latter is strongly constrained by visual

fatigue effect. Running another subjective test in addition to the current one with richer

video content could help in this regard. Extending the experiment with crowd-sourcing is

desirable but should be carried out with caution because of the complication in setting up

a reliable and controllable visual testing environment.

Exploration of Content Dependent Features: One of the observations from the

subjective study and the evaluation of VQA models in cross-frame rate video database is

the strong content dependency, especially for frame rates higher than 30 fps. This content

dependency needs to be investigated more deeply by exploiting content dependent features

so as to better predict the impact of frame rate changes on different video content. This

need is highlighted in the analysis of the proposed motion smoothness factor. Classifying

the videos into different groups using content dependent features and designing or learning

separate models for each group would be a potential direction. The new content dependent

features could be from low-level signal analysis of video signal or higher-level concepts of

motion and objects in the video. One reasonable way to find such features is to investigate

temporal artifacts and related features to frame rate reduction. The appearance of video

artifacts and the sensitivity of human visual perception are different to different types of

video degradations.

Applications to Rate-Distortion Optimization: One extension of significant po-

tential is to use the proposed VQA model for rate-distortion optimization, which is one of

the most important applications of objective VQA models in video coding and transmis-

sion. Joint frame rate, spatial resolution, and quantization parameter optimization based

on the proposed model can be investigated to achieve high-performance video coding using

perceptual rate-distortion optimization to achieve the best perceptual quality at any de-

sired bit rate. The modeling along the temporal direction may help video encoders to find
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the optimal trade-off point between bit rate and quality in a space that includes frame rate

as a key parameter. This encoding and quality evaluation loop may be embedded in state-

of-the-art video compression and streaming algorithms to improve coding and transmission

efficiency in visual communication networks.
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