

Robust Nonlinear Model Predictive Control
of Biosystems described by Dynamic

Metabolic Flux Models

by

Honghao Zheng

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Chemical Engineering

Waterloo, Ontario, Canada, 2019

© Honghao Zheng 2019

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

The accuracy of the model used for prediction in Nonlinear Model Predictive Controller (NMPC)

is one of the main factors affecting the closed loop performance. Since it is impossible to formulate

a perfect model for a real process, there are always differences between the responses predicted by

the model and the responses observed from the process. Hence, robustness to model error is an

essential property that the controller must have to be adopted in industrial applications.

Propagating the uncertainty in the model onto the variables used by the controller is one the key

challenges for efficient implementation of a robust controller. Uncertainty propagation approaches

such as Monte Carlo simulations and the Polynomial Chaos Expansions (PCE) has been found to

suffer from exponentially increasing computational effort with the number of uncertain

parameters. Accordingly, the main goal of this thesis is to develop a novel formulation of NMPC

based on an uncertainty propagation approach that is more computationally efficient as compared

to previously reported approaches. The proposed robust controller in this thesis is specifically

targeted to biosystems that are modeled by Dynamic Metabolic Flux models. These models that

are becoming increasingly popular for modelling bioprocesses are based on the premise that

microorganisms have learned through natural evolution to optimally allocate their resources

(nutrients) to maximize a biological objective such as growth or ATP production. Accordingly,

these flux models are formulated by LP (Linear Programming) optimizations with constraints that

are solved at each time interval and then can be used in conjunction with mass balances to predict

the dynamic evolution of different metabolites. The uncertainty in these models is associated to

inaccuracies of model parameters involved in the constraints. Thus, although the problem can be

solved for particular model parameters by an LP, in the presence of uncertainty the problem

becomes nonlinear since different active sets of constraints may become active for parameters’

values within their possible range of variation. Accordingly, the solution space of this nonlinear

system can be divided into a set of polyhedrons where each point corresponds to a particular set

of parameters within their range of uncertainty. The solution space is often referred in the thesis

as the RHS (Right Hand Side) space since it is defined by the variations in the RHS of the

constraints with respect to the uncertain parameters. To identify these polyhedrons a dividing

procedure has been developed. Since all the polyhedrons can be proven to be convex cones based

on a standard simplex form of LP, this dividing method is referred to as the Convex Cone Method

 iv

(CCM). The regions found by the CCM method are then compared to regions calculated with 100

Percent Rule where the latter has been often used to find a region of existence of a particular

tableau in the Simplex method. From this comparison it is found that the CCM can both identify

all the possible tableaus with a given region of uncertain parameters and it can also be used the

probability for occurrence of each one of the tableaus. These two facts make the CCM an attractive

basis for uncertainty propagation in an LP problem instead of the 100 Percent Rule.

After identifying the possible tableaus for a given region of model parameters, a novel method is

developed for propagating uncertainty onto the controlled variables to be referred to as Tableau

Based Tree (TBT) method. The TBT method is based on the concept of propagating uncertainty

into the prediction horizon of the controlled by using a tree structure which branches correspond

to different tableaus identified by the CCM approach. It is then shown that the conservativeness

of the NMPC controller can be significantly reduced based on this tree structure as compared to a

Monte Carlo approach for uncertainty propagation. After propagating the uncertainty onto the

relevant variables, the control actions for each branch of the tree structure can be obtained by a

simple linear calculation. An EMPC (Economic Model Predictive Controller) is adopted in this

work as a special realization of an NMPC algorithm where the controller pursues the maximization

of an economic objective function. A simple theoretical comparison with a Monte Carlo

uncertainty propagation approach shows that the TBT method have a potential to save considerable

computational effort as compared to Monte Carlo simulation and PCEs. Finally, the TBT-based

robust EMPC is applied in a case study dealing with a fed-batch reactor which is described by

dynamic metabolic flux model (DMFM).

 v

Acknowledgements

Firstly, I would like to express the most sincerely thanks to my supervisor Professor Hector

Budman and Professor Luis Ricardez-Sandoval for their inspiration, guidance and support during

my entire master’s program. Thank you for your kindness, trust and patience, it really provides me

much for my free study environment.

I would also like to extend my thanks to the readers of my thesis.

I would like to thank my office-mate Piyush Agarwal, Yue Yuan for their continued assistance

and companionship throughout my research studies.

I am also grateful to all of the members from Professor Hector Budman’s and Professor Luis

Ricardez-Sandoval’s group, all the staffs and faculty members of the Department of Chemical

Engineering at the University of Waterloo.

Finally, I would like to express my deepest gratitude to my parents who has always been there for

me.

 vi

Dedication

To my father, my mother and other family members.

I would not be here without your support.

 vii

Table of Contents

AUTHOR'S DECLARATION .. ii

Abstract .. iii

Acknowledgements ... v

Dedication .. vi

List of Figures ... x

List of Tables ... xi

List of Abbreviations .. xii

List of Symbols .. xiii

 Introduction .. 1

1.1 Objectives of the Research .. 3

1.2 Overview of the Thesis ... 4

 Background and Literature Review .. 6

2.1 Model Predictive Control .. 6

2.2 Economic Model Predictive Control ... 9

2.3 Robust Nonlinear Model Predictive Control (NMPC) .. 12

2.3.1 LMI’s for Robust Control .. 12

2.3.2 SSV for Robust Control ... 13

2.3.3 Main Algorithms on Robust NMPC .. 14

2.3.4 Tree (Scenario) Based Structure of Nonlinear Model Predictive Control 16

2.4 Sensitivity Analysis of RHS ... 20

2.4.1 Simplex Algorithm for Linear Programming ... 20

2.4.2 100 Percent Rule for Linear Programming .. 22

2.5 Bioreactor Control and Optimization .. 23

2.6 Metabolic Flux Model ... 25

2.7 Summary ... 27

 Convex Cone Methodology and Case Study .. 29

3.1 Proposed Robust EMPC.. 31

3.2 Sensitivity Analysis of the RHS of the LP problem (DMFM) .. 35

3.2.1 Introduction and Motivation .. 36

3.2.2 Map of RHS ... 40

3.2.3 100 Percent Rule: Theory and Limitations .. 49

3.2.4 Convex Cone Method .. 54

 viii

3.2.5 Sensitivity Analysis Based on CCM Algorithm .. 58

3.3 Case Study .. 61

3.3.1 2D RHS Map Generator ... 61

3.3.2 Sensitivity Analysis in 2D RHS Space .. 65

3.4 Conclusions ... 68

 Robust Nonlinear MPC based on Convex Cone Method and Its Applications in Control of

Bioreactors Based on Dynamic Metabolic Flux Balance Models .. 70

4.1 Illustrative Case Study: CCM Algorithm .. 71

4.1.1 Introduction .. 71

4.1.2 A 3D Case Study .. 72

4.2 Robust NMPC Controller Formulation ... 77

4.2.1 Tree Structure of Different Tableaus ... 79

4.2.2 Mathematical Formulation ... 84

4.2.3 Theoretical Comparison of Computation Effort for the TBT Approach and the Monte Carlo

Based Approach for Uncertainty Propagation .. 88

4.3 Robust Control Based on DFBM (Case Study) .. 91

4.3.1 Dynamic Flux Balance Model (DFBM) .. 92

4.3.2 Modeling with Uncertainty .. 92

4.3.3 DFBM on the Growth of E. coli .. 95

4.3.4 Uncertainty Propagation .. 97

4.3.5 Nominal Controller Formulation ... 103

4.3.6 Robust Controller Formulation .. 103

4.4 Results ... 104

4.4.1 Comparison of Nominal and Robust Model Predictions for Pure Batch Operation 105

4.4.2 Comparison of Robust Case Studies .. 107

4.4.3 Comparison of a Specific Robust Case Study .. 109

4.5 Summary ... 112

 Conclusions and future work .. 114

5.1 Conclusions ... 114

5.1.1 CCM Algorithm in Sensitivity Analysis of RHS Space .. 114

5.1.2 TBT-Based Robust EMPC ... 115

5.2 Future work ... 117

References ... 118

Appendix A Supplementary information for Chapter 4 .. 123

 ix

Appendix B MATLAB Codes ... 129

 x

List of Figures

Figure 1.1 Hierarchical structure in process operations .. 2
Figure 2.1 One step of a closed-loop MPC trajectory .. 9
Figure 2.2 Graphic showing the most profitable solution is away from the calculated set-points 10
Figure 2.3 Scenario tree of the uncertainty evolution ... 17
Figure 2.4 The uncertainty evolution with robust horizon represented by scenario tree structure 18
Figure 3.1 The control process in one time interval ... 34
Figure 3.2 Uncertainty region and distribution of tableau regions in RHS space 36
Figure 3.3 Distribution of two tableaus in a 3 dimensions RHS map... 38
Figure 3.4 Procedure of the sub-cones generating .. 39
Figure 3.5 The convex cone 𝓥𝓥 of set 𝓥𝓥 ... 44
Figure 3.6 An example of RHS space by using 100 Based Hull Method 54
Figure 3.7 The initial region of 𝑇𝑇𝑇𝑇1∗ ... 63
Figure 3.8 The initial region of 𝑇𝑇𝑇𝑇5∗ ... 64
Figure 3.9 The tableau distribution and main edges of the mentioned RHS space 65
Figure 3.10 The region of uncertainty in RHS space .. 66
Figure 3.11 The basic structure of the CCM algorithm .. 69
Figure 4.1 Tableaus distribution of 𝑀𝑀𝑀𝑀1 in RHS map .. 73
Figure 4.2 Tableaus distribution of 𝑀𝑀𝑀𝑀1, 𝑀𝑀𝑀𝑀2 and 𝑀𝑀𝑀𝑀3 in RHS map ... 74
Figure 4.3 Region of 𝑀𝑀𝑀𝑀1 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄∆𝒃𝒃 76
Figure 4.4 Region of 𝑀𝑀𝑀𝑀2 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄∆𝒃𝒃 77
Figure 4.5 Uncertainty evolution with robust horizon represented by scenario tree structure 78
Figure 4.6 (a) Uncertainty evolution with robust horizon represented by scenario tree structure in

TBT; (b) Uncertainty evolution of a specific parameter 𝜓𝜓𝑖𝑖 in the first and second stages of
an individual TBT scenario ... 80

Figure 4.7 A typical uncertainty evolution represented by scenario tree structure in TBT 82
Figure 4.8 Probability distribution of one parameter at different stages 91
Figure 4.9 A schematic process flowsheet of the bioreactor with the feed and perfusion system 93
Figure 4.10 The basic structure of the Robust NMPC formulation in this study 94
Figure 4.11 Simplified Metabolic Network for E.coli growth on Glucose: Flux balances and

stoichiometric coefficients .. 95
Figure 4.12 Uncertainty evolution with prediction horizon represented by scenario tree structure

... 99
Figure 4.13 Flowchart of the procedure for propagating uncertainty along the prediction

horizon 𝒑𝒑 ... 102
Figure 4.14 Robust Prediction of Worst Case Scenario vs Nominal Prediction 106
Figure 4.15 Robust vs. Nominal Controller: Feeding, Perfusion, Biomass, Glucose and Acetate

.. 111
Figure 4.16 Robust vs. Nominal Controller: Oxygen and Acetate ... 112

 xi

List of Tables

Table 3.1 Whole procedure of procedure Π .. 48
Table 4.1 Process parameters for E. coli growth on glucose and acetate used for uncertainty

propagation ... 105
Table 4.2 Process parameters for E. coli growth on glucose and acetate used for robust/nominal

controller ... 107
Table 4.3 Robust controller and nominal controller performance .. 109
Table A.1 Main tableau 𝑀𝑀𝑀𝑀1 𝜈𝜈1, 𝜈𝜈2 for 2D RHS map .. 124
Table A.2 Main tableau 𝑀𝑀𝑀𝑀2 𝜈𝜈2, 𝜈𝜈4 for 2D RHS map .. 124
Table A.3 Main tableau 𝑀𝑀𝑀𝑀1 𝜈𝜈1, 𝜈𝜈2 for 5D RHS map .. 125
Table A.4 Main tableau 𝑀𝑀𝑀𝑀2 𝜈𝜈2, 𝜈𝜈4 for 5D RHS map .. 126

 xii

List of Abbreviations

BF Basic feasible

CCM Convex cone method

CSTR Continuous stirred-tank reactor

deFBA Dynamic enzyme-cost flux balance analysis

DFBM Dynamic flux balance modeling

E. coli Escherichia coli

EMPC Economic model predictive control

FBA Flux balance analysis

LHS Left hand side

LMI’s Linear matrix inequalities

LP Linear programming

MC Monte Carlo

MFA Metabolic flux analysis

MPC Model predictive control

NLP Nonlinear programming

NMPC Nonlinear model predictive control

ODE Ordinary differential equation

PCE Polynomial chaos expansions

PI Proportional and Integral Controller

QP Quadratic programming

RHS Right hand side

RTO Real time optimization

SAA Sample average approximation

SSV Structured singular value

TBT Tableau based tree

 xiii

List of Symbols

List of English symbols

𝑎𝑎𝑖𝑖𝑖𝑖 Left hand side parameters of constraints

𝑨𝑨 The matrix of 𝑎𝑎𝑖𝑖𝑖𝑖

𝑨𝑨𝒑𝒑 The square matrix selected form [𝑨𝑨 𝑰𝑰] and corresponding to a certain 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝

𝓐𝓐 Stoichiometric matrix

𝑏𝑏𝑖𝑖 Right hand side parameters of constraints

𝒃𝒃 The column vector of 𝑏𝑏𝑖𝑖

𝓫𝓫 Vector of consumption or production rate of extracellular metabolites

𝑩𝑩 Basis matrix

𝑐𝑐𝑗𝑗 Parameters of the objective function

𝒄𝒄𝑩𝑩 Vector of objective function coefficients with zeros for slack variables

𝒄𝒄 The row vector of 𝑐𝑐𝑗𝑗

𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 The coefficients of the vector [−𝒄𝒄 𝟎𝟎] and corresponding to a certain 𝒙𝒙𝑛𝑛𝑛𝑛

𝑝𝑝

𝒞𝒞 The amount of all possible tableaus in the RHS space

𝑑𝑑 Uncertainty or disturbance

𝒅𝒅 The vector of uncertainty

𝑒𝑒𝑖𝑖 An edge constraint of a polyhedron

𝒇𝒇𝒂𝒂𝒂𝒂 The additional constraints of CCM

𝑓𝑓𝑏𝑏𝑏𝑏 Feed back

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 A function that can generate a set 𝓣𝓣

𝐹𝐹 Feed rate

𝐹𝐹𝑏𝑏 Full complex blocks

𝐹𝐹(𝑥𝑥) Linear matrix inequalities based analyses

𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 The maximum uptake rate constraints

𝑰𝑰 Identity matrix

𝑰𝑰𝐵𝐵 The set of possible indices of branches 𝑰𝑰𝐵𝐵(𝑠𝑠, 𝑟𝑟) in the TBT scenario tree

𝑰𝑰𝐵𝐵𝑛𝑛𝑛𝑛 The set of non-active branches 𝑰𝑰𝐵𝐵𝑛𝑛𝑛𝑛(𝑠𝑠, 𝑟𝑟) in the TBT scenario tree

𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 The set of active branches 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑟𝑟) in the TBT scenario tree

 xiv

𝑘𝑘𝐿𝐿𝑎𝑎 The oxygen mass transfer coefficient

𝑘𝑘𝑇𝑇 The number of branches of a certain node

𝐾𝐾 A constant parameter

𝐾𝐾𝑚𝑚 Substrate saturation constant

𝒦𝒦𝑅𝑅𝑅𝑅 The number of active tableaus in the uncertainty region

𝒦𝒦𝑀𝑀𝑀𝑀 The amount of the main tableaus that are active in 𝑅𝑅𝑅𝑅

𝑙𝑙 The time where each controller inputs 𝑢𝑢 can be manipulated

𝑚𝑚 Control horizon

𝑀𝑀 Interconnection matrix for SSV analysis

𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 A main tableau

𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹 RHS map

𝑁𝑁𝑀𝑀 Number of the repeating random sampling in each time interval

𝑂𝑂𝑂𝑂𝑖𝑖 An overlap region is defined of two different 𝑻𝑻𝑻𝑻𝒊𝒊

𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 The maximum rate of oxygen uptake reaction

𝑝𝑝 Prediction horizon

𝓅𝓅𝑖𝑖 Vertex of a polyhedron region

𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 A set of 𝑚𝑚 points along the axes corresponding to ∆𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 in a certain orthant

P Probability

𝑃𝑃𝑐𝑐 Product concentration

𝑷𝑷𝑻𝑻𝑻𝑻𝒊𝒊 Probability of 𝑻𝑻𝑻𝑻𝒊𝒊

𝓟𝓟𝒊𝒊 A polyhedron region

𝑟𝑟𝜇𝜇 Robust horizon

𝑟𝑟𝐹𝐹 Feed rate

𝑟𝑟𝑃𝑃 Perfusion rate

𝑅𝑅𝑅𝑅 RHS space of 𝒃𝒃

𝑅𝑅𝑅𝑅|∆𝒃𝒃 The region 𝑅𝑅𝑅𝑅 with respect of ∆𝒃𝒃

𝑠𝑠 A stage in the TBT method

𝑆𝑆 Substrate concentration

𝑆𝑆𝑆𝑆𝑆𝑆|∆𝒃𝒃 The overall sensitivity range of 𝑅𝑅𝑅𝑅|∆𝒃𝒃

 xv

𝑆𝑆𝑏𝑏 Scalar blocks

𝑺𝑺𝑺𝑺𝒏𝒏𝒏𝒏 Sensitivity ranges of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 with uncertainty range of ∆𝒃𝒃

𝑺𝑺𝝍𝝍𝑠𝑠𝑟𝑟 All of the possible states that are generated from each node 𝝍𝝍𝑠𝑠
𝑟𝑟

𝑡𝑡 Time

𝑡𝑡𝑓𝑓 Final time of the process

𝑇𝑇𝑛𝑛𝑛𝑛 A certain tableau corresponding to a particular 𝒙𝒙𝒏𝒏𝒏𝒏
𝒑𝒑

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 A region corresponding to a certain tableau in RHS space

𝓣𝓣 A set consist all possible 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 ’s combinations of tableaus 𝑇𝑇𝑛𝑛𝑛𝑛

𝑢𝑢 Manipulated variables or control actions

𝕌𝕌𝒇𝒇 Constraints’ set of 𝑢𝑢

𝑼𝑼𝐿𝐿 Index of the input values 𝑢𝑢 of this model

𝑉𝑉 Batch volume

𝑉𝑉𝑓𝑓 Economic stage cost with a terminal cost

𝑉𝑉𝒫𝒫𝑖𝑖 Volume of 𝓟𝓟𝒊𝒊

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃 The volumes of every sub-tableau in the region ∆𝒃𝒃

𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏 Vertices set of 𝑇𝑇𝑛𝑛𝑛𝑛

𝓥𝓥 A convex cone

𝒱𝒱�⃗ 𝓀𝓀 Affine vectors that start from the origin 𝑶𝑶

𝑤𝑤𝑖𝑖 Amounts of growth precursors required per gram of biomass

𝑥𝑥 Plant states, decision variables in optimization

𝑋𝑋 Biomass concentrations

𝒙𝒙𝒔𝒔 Column vector of slack variables

𝒙𝒙𝑩𝑩 Vector of basic variables

𝒙𝒙� Prediction of plant states

𝒙𝒙𝒏𝒏𝒏𝒏
𝒑𝒑 One of the possible solution vectors corresponding to a point 𝒃𝒃 in 𝑅𝑅𝑅𝑅

𝑿𝑿𝒑𝒑 Matrix of all of the possible solution vectors corresponding to a point 𝒃𝒃 in 𝑅𝑅𝑅𝑅

𝕏𝕏𝑓𝑓 Terminal set of plant states profile

𝑦𝑦 Plant output

𝑦𝑦� Prediction of plant output

 xvi

𝒚𝒚𝑠𝑠𝑠𝑠 Set-point trajectory

𝑌𝑌𝑃𝑃|𝑆𝑆 Yield coefficient of product from substrate

𝑌𝑌𝑋𝑋|𝑆𝑆 Yield coefficient of biomass from substrate

𝒛𝒛 Current metabolites’ concentrations

𝑍𝑍 Cost, value of overall measure of performance

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 The cost corresponding to each possible solution vector of a point 𝒃𝒃 in 𝑅𝑅𝑅𝑅

List of Greek symbols

𝜶𝜶𝒏𝒏𝒏𝒏 A set of coefficients corresponding to the tableau 𝑇𝑇𝑛𝑛𝑛𝑛

𝛼𝛼𝐼𝐼,𝑠𝑠 The number of active scenarios in stage 𝑠𝑠

𝜷𝜷 The main source of uncertainty in the model of current work

𝜎𝜎� Perturbation within the given uncertainty set

𝛥𝛥 Uncertainty description

ℰ Tuning parameter of 𝑁𝑁𝑀𝑀

𝜇𝜇𝛥𝛥 Measure of the smallest perturbation within the given uncertainty set

𝛿𝛿𝑖𝑖 Certain pre-specified error

𝜇𝜇 Rate of cell growth

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 Maximum growth rate

𝜏𝜏 Discrete-time of an MPC controller model

𝜏𝜏𝑐𝑐 Time consumed for each scenario

𝝂𝝂 Vector of reaction fluxes

𝜃𝜃 A set of the points that within the simplex generated region

𝛷𝛷 Additional constrains in 𝒇𝒇𝒂𝒂𝒂𝒂

𝚿𝚿𝒇𝒇 Constraints’ set of 𝝍𝝍

𝝍𝝍 Vector of plant states, such as the concentrations of metabolites

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 A specific element from 𝝍𝝍 as an objective function

𝜁𝜁 The amount of uncertainty parameters in the system

𝝆𝝆 An upper triangular matrix used for the division of the non-convex region

𝝆𝝆𝒌𝒌𝒌𝒌 The (𝑘𝑘𝑘𝑘 − 1)th column vector from 𝝆𝝆

 1

Introduction

Automation is prevalent in every aspect of modern life, such as energy, technology, fertility,

security and productivity. Controllers can be used to attain quality control and improve

productivity while satisfying operational, safety and environmental constraints. For instance,

controllers in the chemical industry can be used to produce desired products while minimizing the

utilization of raw materials and energy and reduce the production of environmentally

adverse(Gutierrez, Ricardez-Sandoval, Budman, & Prada, 2014; Mehta & Ricardez-Sandoval,

2016; Patil, Maia, & Ricardez-Sandoval, 2015) By using an optimized model-based control system,

the process can be manipulated under physical, environmental and economical constraints and be

able to maintain a certain level of robustness to disturbances arising from the environment, to

uncertainty in the process measurements or model parameters or to variability in the plant’s input,

e.g. quality of the raw materials. In this thesis, the robustness of an Economic Model Predictive

Controller (EMPC), a particular version of Model Predictive Control (MPC), is investigated. (He,

Sahraei, & Ricardez-Sandoval, 2016; Rasoulian & Ricardez-Sandoval, 2016; Santander, Elkamel,

& Budman, 2016)

A conventional MPC is a control methodology that provides a set of future moves in the control

actions so as to minimize the variability of the controlled variables with respect to the targets while

respecting constraints in both input and output variables. In MPC the optimal future control actions

are calculated based on predicted trajectories of the controlled variables using a model. The control

actions are calculated from a constrained optimization problem by taking into account the physical

limits of the system and its parameters such as inputs and outputs. In most cases, the applications

of MPC in industry practices are based on empirical linear models which are derived from

experimental data or linearization of mechanistic (nonlinear) process models. While easy to

implement, it has been shown that the application of linear models in the MPC formulation may

produce a loss in plant’s performance, particularly when the process that need to be controlled

exhibits highly nonlinear dynamic behavior. Therefore, a nonlinear model is required for accurate

prediction. The resulting predictive control strategy that is based on the nonlinear model is referred

to as Nonlinear Model Predictive Control (NMPC).

 2

MPC, as a typical multivariable controller, holds a key position in the organization of an advanced

process system. The integration of optimization and control in chemical plants is generally

achieved by hierarchical control structures that are typically of the form shown in Figure 1.1 (Ellis,

Liu, & Christofides, 2017). This structure contains a Real Time Optimization (RTO) layer at the

top of the pyramid a second layer that involves MPC or other multivariable control strategies and

finally a lower level involving singular input/output regulatory controllers, e.g. PID controllers. In

most cases, the RTO is generally used to optimize the economic cost of a system based on a steady

state model. This RTO level will provide optimal set-points to the multivariable controllers, e.g.

MPC, that are expected to maintain the plant on target. Thus, MPC aims to control the process

around the set-points which are generated by RTO. Subsequently, the multivariable controller

computes the values of the control actions either directly or indirectly by calculating the set-points

for the PID controllers in the lower level. This hierarchical strategy generally maintains

satisfactory performance. However, since chemical process are rarely at steady state, the set-points

designed by the RTO, and enforced by MPC controller, may be suboptimal or even infeasible in

the presence of transient scenarios (Santander et al., 2016). Following these considerations, there

is a great incentive for improving the performance within this hierarchical control approach.

Figure 1.1 Hierarchical structure in process operations

When discussing model uncertainty, it is inherently assumed that there exists an accurate

mathematical model that describes the process but this model is never available to the user due to

the use of noisy data for model calibration, the limited amount of data for calibration and

incomplete physical knowledge about the process phenomena. As a result of that the process

models available to the user are never perfect and there is always model structure and/or parameter

RTO

MPC

PID

Process

 3

uncertainty that is collectively referred to as plant-model mismatch. Since predictive controllers

rely heavily on models robustness to model error must be provided in order to ensure adoption of

these controllers in industrial applications (Findeisen, Imsland, Allgower, & Foss, 2003; Lalo

Magni & Scattolini, 2010). Accurate and fast uncertainty propagation onto the variables involved

in the control strategy is the key element for formulating an efficient robust controller. Currently

reported methods such as the Monte Carlo simulations (Kawohl, Heine, & King, 2007),

Polynomial Chaos Expansions (PCE) (Ghanem & Spanos, 1990; Kumar & Budman, 2017;

Mandur & Budman, 2012) or Power Series Expansions (PSE) (Rasoulian & Ricardez-Sandoval,

2015) cannot avoid the exponentially increasing computational load needed to estimate control

actions as a function of the number of model uncertain parameters. Thus, developing a NMPC

framework that is insensitive to the number of the uncertain parameters is one of the main

objectives of this thesis.

1.1 Objectives of the Research

As discussed above, the motivation of current research is the development of a novel formulation

of NMPC which requires less computational effort than conventional NMPC controllers. In the

current research we have focused on bioprocesses that are modelled by a particular modelling

approach referred to as Dynamic Metabolic Flux Model (DMFM). These models assume that

organisms are able to allocate resources optimally so as to achieve a biological objective, e.g.

growth rate. Accordingly, DMFM are formulated as constrained Linear Programming (LP)

problems. The uncertainty in the problem is captured by allowing variation of the model

parameters that define the constraints of the LP problem. The algorithms presented in this work

explicitly make use of the mathematical properties of LP problems in order to propagate the

uncertainty onto the variables involved in the EMPC strategy. Although the problem is an LP for

each particular set of model parameters, in the presence of uncertainty the problem becomes

nonlinear since it is described by a family of LP problems each corresponding to a particular set

of model parameters’ values.

With this in mind, an assumption is introduced here for the current study: the output/solution space

of a nonlinear system can be divided into a set of polyhedrons each corresponding to a particular

active set of constraints, i.e. a region corresponding to a Simplex tableau or part of it. Based on

 4

this partitioning approach, the main objectives that have been accomplished in the current study

are outlined as follows:

 Provide a new uncertainty propagation algorithm that can quantify uncertainty into the

solutions of an LP problem. This algorithm aims to divide and bound the output/solution

space of a nonlinear system. Accordingly, it is able to generate the entire uncertainty regions

which can be composed by a series of polyhedrons, the solutions in any one of these

polyhedrons can be calculated by using simple linear operation.

 Compare the proposed uncertainty propagation algorithm with other conventional

approaches, such as the partially uncertainty region generating algorithm based on the 100

Percent Rule where the latter has been proposed in the classical LP literature to calculate

regions of existence of a particular Simplex tableau.

 Develop an uncertainty propagation algorithm based on a tree structure where each branch

of the tree corresponds to one of the polyhedrons calculated by partitioning the space as

explained above. Although a tree structure has been proposed before for MPC in (Lucia,

Finkler, & Engell, 2013) the approach proposed in this work is more efficient as compared

to the reported work since it exploits the LP structure of the model.

 Formulate a novel robust economic MPC (EMPC) controller for a biochemical process that

uses steady state and dynamic metabolic flux model under uncertainty. The proposed robust

EMPC makes use of the new uncertainty propagation algorithm as well as the tree structure.

1.2 Overview of the Thesis

Overall this thesis is organized in 5 chapters as follows:

 Chapter 2 discusses the background and literature review relevant to the proposed research

objectives. The tree (scenario) based structure of NMPC, simplex algorithm for Linear

Programming (LP), control and optimization of bioreactors and the dynamic Metabolic Flux

Analysis (MFA) modeling are the fundamental concepts of the methodology that are

reviewed in this section and that are relevant for this thesis.

 Chapter 3 presents two novel algorithms referred to as the 100 Percent Rule Based Method

and the Convex Cone Method (CCM) for propagating the uncertainty in model parameters

onto the solutions of an LP problem. This chapter shows that the 100 Percent Rule Based

 5

Method can provide a necessary but not sufficient polyhedron region based bounds around

a nominal point but it cannot cover the entire uncertainty region and thus is computationally

inefficient. To address this problem, the novel CCM algorithm is proposed that it is able to

account in an efficient fashion for the entire region of uncertainty. A series of lemmas and

theorems are presented that served as the basis of the proposed CCM algorithm. Some simple

case studies and examples are also discussed in this chapter to illustrate the algorithm in a

graphical form.

 Chapter 4 presents a novel robust EMPC algorithm which is computationally efficient with

respect to the number of uncertain parameters as compared to other methods. This algorithm

is accomplished based on an algorithm, referred as CCM, for partitioning the parameter

space of the family of LP problems describing the uncertain model into a series of

polyhedrons where for the supremum for each one of them can be obtained by linear

calculations. Based on the polyhedrons calculated by the CCM algorithm, a tree structure

multistage uncertainty propagation method is proposed and is referred as Tableaus Based

Tree (TBT) method. Each branch of the tree corresponds to a polyhedron identified by the

CCM method. Based on a theoretical comparison this proposed method is found to be more

computationally efficient than Monte Carlo or PCE method. Finally, the robust EMPC

algorithm is applied in a case study where the final biomass amount in a bioreactor is

maximized. The robustness of the proposed controller is assessed based to comparisons to a

non-robust algorithm.

 Chapter 5 summarizes the key conclusions and contributions of this thesis; recommendations

and research plan for future work are also discussed in this section.

 6

Background and Literature Review

In this section, the background and literature review on concepts relevant to this thesis are

presented. Nonlinear Model Predictive Control (NMPC) and Economic Model Predictive Control

(EMPC) that are the fundamental theories of this study are introduced in the first sections of this

chapter. Then robustness of NMPC algorithms, a key focus of the current work, is reviewed. This

is followed by a discussion on contributions related to the tree (scenario)-based structure on Robust

NMPC and the sensitivity analysis of the Right Hand Side (RHS) of the constraints in LP problems

which is often used for studying parametric sensitivity. Then, a review on control and optimization

of bioreactors as well as metabolic flux models are presented.

2.1 Model Predictive Control

Model Predictive Control (MPC) is one of the most commonly used model-based control

technologies where the internal model may be linear or nonlinear. When the process to be

controlled exhibits highly nonlinear dynamic behavior, a nonlinear model is required for accurate

prediction. The resulting predictive control strategy that is based on the nonlinear model is referred

to as Nonlinear Model Predictive Control (NMPC). Since models are never perfect, it is essential

to design a control strategy that is robust to model plant mismatch, where such mismatch is often

referred to as model uncertainty. Although there are multiple techniques that can be used to analyze

robustness of controllers that are based on linear models, e.g. SSV (Structured Singular Value or

μ) and LMI’s (Linear Matrix Inequalities), the design of nonlinear robust controllers is still

challenging, particularly for NMPC; thus, this is a currently an active area of research (Allgöwer,

Findeisen, & Nagy, 2004; Lalo Magni & Scattolini, 2010). Since chemical processes generally

exhibit highly nonlinear behavior, most of the robust control techniques that have been developed

for linear systems may not be applicable to NMPC or they may lead to highly conservative control

actions. Accordingly, robust nonlinear predictive control algorithms are a very attractive

alternative to control chemical systems that will result in improved performance as compared to

robust linear strategies. Therefore, accounting for robustness to model errors has been identified

as one of the key challenges in the research of NMPC controllers (Allgöwer et al., 2004).

 7

Model Predictive Control usually refers to a series of control algorithms in which a performance

criterion is optimized along a prediction horizon subject to a set of input/output constraints. In

general, a dynamic nominal process model is used to predict the output along the prediction

horizon, and some pre-defined norm of the errors between the controlled variables and pre-defined

references’ trajectories is optimized to ensure a desired closed loop performance. In most cases, a

pre-defined number of future control moves are used as the decision variables for the optimization

problem, and this number is referred to as the control horizon; whereas the number of future

predictions considered in the objective function is referred to as the prediction horizon.

The optimization problem is solved at every time interval with respect to the decision variables

(control moves) but only the first control move is actually implemented into the plant while the

rest are ignored (Findeisen et al., 2003; Michael A Henson, 1998). By repeating the optimization

procedure at every time interval, the controller can compensate for unmeasured disturbances that

may enter the process as well as discrepancies between the model and the process outputs that lead

to inaccurate predictions. In a linear MPC, the nominal model used for prediction is linear with

respect to the manipulated variables and the controlled variables; similarly, process constrains, e.g.

valve saturation limits, are also expressed as linear functions. The cost function in linear MPC is

commonly formulated as a quadratic function thus resulting in a QP (quadratic programming) for

which the global optimal solution can be found in a finite number of iterations using off-the-shelf

standard algorithms. On the other hand, in NMPC the nominal model as well as the process

constraints can be both linear and nonlinear. In most cases, the MPC schemes which involve

nonlinear input/output constraints or with a non-quadratic cost function must be resolved with

nonlinear optimization algorithms that can only guarantee local optima.

As it is illustrated in Fig. 2.1, the main steps of an NMPC algorithm are as follows:

1. Using a nonlinear model of the form,

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝑑𝑑)

𝑦𝑦� = 𝑔𝑔�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)�

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘)

𝑖𝑖 = {0,1,2, … ,𝑝𝑝},𝑘𝑘 ∈ ℕ

(2.1)

where 𝑥𝑥 is plant states, 𝑥𝑥� is prediction of plant states, 𝑢𝑢 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 + 1), … ,𝑢𝑢(𝑘𝑘 + 𝑚𝑚)}

are the adjustable variables and they are equal to the manipulated variables or control

 8

actions, 𝑥𝑥(𝑘𝑘 = 0) is measured plant output, 𝑦𝑦� is prediction of plant output, 𝒅𝒅 is vector of

uncertainty, which is set to its normal condition if no disturbances are considered, 𝑓𝑓 and 𝑔𝑔

are nonlinear vector functions of plant inputs and outputs which starting from a current

output measurement 𝑦𝑦 = 𝑔𝑔(𝑥𝑥(𝑘𝑘 = 0)) in order to correct for unmeasured disturbances or

model errors, future predictions of the outputs are generated over a prediction horizon, 𝑝𝑝

as a function of a sequence of inputs defined over a control horizon 𝑚𝑚, where 𝑚𝑚 ≤ 𝑝𝑝.

2. The optimal control actions are calculated to minimize the cost function with respect to the

decision variables, i.e. the manipulated variables. In most cases, this cost function is

assumed as a weighted sum of the errors in future predictions with respect to a reference

trajectory (or set-point profile) and plant inputs, where the latter are included in the

objective function to avoid excessive control actions. Therefore, the typical cost used in the

MPC algorithm is as follows:

𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢(𝑘𝑘+1|𝑘𝑘),𝑢𝑢(𝑘𝑘+2|𝑘𝑘),…,𝑢𝑢(𝑘𝑘+𝑚𝑚|𝑘𝑘)

�[(𝒚𝒚�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝒚𝒚𝑠𝑠𝑠𝑠)𝑇𝑇𝑸𝑸(𝒚𝒚�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝒚𝒚𝑠𝑠𝑠𝑠)]
𝑖𝑖=𝑝𝑝

𝑖𝑖=1

+ �𝒖𝒖(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)𝑇𝑇𝑹𝑹𝑹𝑹
𝑚𝑚

𝑖𝑖=1

(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)

(2.2)

where 𝑸𝑸, 𝑹𝑹 are weights in the MPC formulation and 𝒚𝒚𝑠𝑠𝑠𝑠 is the set-point profile.

3. The solution of the optimization problem shown in (2.1) consists of 𝑚𝑚 control actions and

as previously discussed, only the first control action, i.e. 𝑢𝑢(𝑘𝑘 + 1|𝑘𝑘) is implemented in the

plant.

4. After implementation of the control action, new plant measurements are obtained and step

1 to 4 are repeated for the next sampling interval.

The algorithm described above generally requires supplementary stability constrains since it

cannot guarantee process closed-loop stability during operation. Eliminating the error between the

prediction and set-points at the end of an infinite control horizon is one method proposed in the

literature to ensure stability. This method, referred to as a “terminal constraint condition”, needs

high computation effort (Chen & Allgöwer, 1998; Findeisen et al., 2003); also, it may be infeasible

in the presence of input constrains or may result in overly conservative control actions. This

 9

terminal constraint condition can be mathematically implemented into the optimization problem

based on two different options:

i - An exact terminal equality constraint is added in the optimization problem.

ii- A terminal inequality constraint as well as a terminal cost are added to the problem. In the

second option the terminal constraint is relaxed by requiring the output terminal prediction to

remain within a range of a certain pre-specified error. Thus, using this second approach, the

optimization problem is re-formulated.

Figure 2.1 One step of a closed-loop MPC trajectory

The design of the terminal region and terminal penalty , have been reported elsewhere (Chen &

Allgöwer, 1998; Michalska & Mayne, 1993). The output is forced to reach the region ℰ by the

terminal penalty weight 𝑬𝑬 and the plant output would ultimately converge to the reference

trajectory if ℰ is selected appropriately.

2.2 Economic Model Predictive Control

When an MPC algorithm optimizes control actions based on linear or nonlinear formulations to

satisfy economic cost functions instead of (or in addition to) traditional set-point tracking

objectives, it is referred to as Economic Model Predictive Control (EMPC). As explained in

Chapter 1, the hierarchical control structure consisting of an RTO level sending set-points to lower

control levels is generally sub-optimal during transients since the RTO is based on steady state

𝑖𝑖 = 0

𝑢𝑢

Past Future (Prediction horizon)

Inputs

Outputs 𝑦𝑦

Set-point 𝒚𝒚𝑠𝑠𝑠𝑠

Prediction of output 𝑦𝑦�

 10

information. Thus, the hierarchical strategy is only optimal when the system is operating in the

neighborhood of a particular steady state. However, since the process conditions might be far away

from steady state due to dynamic disturbances or transitions between operating points, the RTO

calculations for optimal solution is often found to be inaccurate. Figure 2.2 illustrates the situation

in which the line projection of all steady state solutions is not optimal (Rawlings, Angeli, & Bates,

2012). In this figure, the profit function is illustrated in terms of a state as well as an input assuming

for simplicity that the system involves only one-state and one-input. The data in the figure is

expressed in deviation terms with respect to the economic global optimum. The blue plane

indicates steady state conditions. It is obvious from this figure that the best steady state condition

(maximum in the red surface), which is defined as the most profitable solution, is not the optimal

point in terms of the RTO calculated set-points. Moreover, due to the highly nonlinear nature of

chemical process, there may exist dynamic operating regimes which result in higher profitability

than that obtained from steady state, i.e. periodic regimes (David Angeli, Amrit, & Rawlings,

2012). For this reason, to operate the system at the economic global optimum, the control actions

must be calculated based on the system’s dynamic behavior as it is performed in EMPC.

Figure 2.2 Graphic showing the most profitable solution is away from the calculated set-points

(blue plane represent steady state solutions) (Rawlings et al., 2012)

In addition to providing a convenient method for computing the economic optimum, EMPC

generally maintains a number of other benefits when compared to the standard MPC. For instance,

direct handling of dynamic (path) constraints, the use of dynamic MIMO models for prediction (J.

Economic global
Optimum Economic steady

state / Set point

 11

Ma, Qin, Salsbury, & Xu, 2011), online computation of control actions, etc. Furthermore, since

EMPC uses an economic performance index instead of a quadratic stage cost, it does not rely on

any particular set point value calculation thus eliminating the need for the RTO level (Rawlings et

al., 2012). The risk of bypassing the RTO level is that the stability or robustness of the controller

has to be ensured. These aspects are challenging since generally nonconvex stage costs, which is

generally defined as 𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑢𝑢(𝑖𝑖)� in (2.1), with multiple minima instead of quadratic cost as in

NMPC, must be considered. The use of nonconvex stage cost might result in convergence to a

local optimum instead of a global optimum point.

The classical discrete-time version of the EMPC with finite-time prediction horizon can be

formulated as an online optimization problem as follows (Rawlings et al., 2012):

min
𝑢𝑢

� 𝑙𝑙𝑒𝑒(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝑑𝑑 = 0) + 𝑉𝑉𝑓𝑓(𝑥𝑥�(𝑘𝑘 + 𝑝𝑝))
𝑝𝑝−1

𝑖𝑖=0

s. t.

(2.3)

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓𝑑𝑑(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖), 0) (2.4)

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘) (2.5)

𝑓𝑓�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)� = 0 𝑖𝑖 = {0,1,2, … ,𝑝𝑝},𝑘𝑘 ∈ ℕ (2.6)

𝑥𝑥�(𝑘𝑘 + 𝑝𝑝) ∈ 𝕏𝕏𝑓𝑓 (2.7)

As per the general approach in dynamic optimization problems, the control actions are given by a

series of piecewise constant inputs along the trajectory of the prediction horizon, i.e. in each time

interval [𝑖𝑖, 𝑖𝑖 + 1), 𝑥𝑥� refers to the predicted state trajectory sequence over the prediction horizon,

and p is the number of sampling intervals that form the prediction horizon.

The cost function (2.3) contains the economic stage cost with a terminal cost/penalty 𝑉𝑉𝑓𝑓: 𝕏𝕏𝑓𝑓 → ℝ.

The nominal dynamic model (2.4) is used to predict the future evolution of the system and it is

initialized with each state’s corresponding measurement (2.5). Equations of (2.6) represents the

process or system constrains. Furthermore, the constraint (2.7) is a terminal constraint, which

ensures that at the end of horizon the predicted 𝑥𝑥� will be within a neighborhood of a terminal value

defined by the terminal set 𝕏𝕏𝑓𝑓.

Angeli et al.(2009) reported a receding horizon control algorithm to control a nonlinear plant with

stage cost that is not necessarily convex (D Angeli, Amrit, -, 2009, & 2009, 2009). Those authors

 12

illustrated that, when the optimal steady state is used as a terminal constraint with feasible initial

conditions, the average economic performance of their algorithm will at least achieve a same level

performance as the optimal steady state. Nevertheless, no further explicit assumption was made in

that study on the issue of closed-loop stability. After that, that group developed relatively simple

stability conditions for EMPC based on Lyapunov arguments (Diehl, Amrit, On, & 2011, 2011).

Based on a predefined Lyapunov function, they proposed a formulation of the EMPC algorithm

for a continuous system 𝑓𝑓(𝑥𝑥,𝑢𝑢) , with continuous stage cost 𝑙𝑙(𝑥𝑥,𝑢𝑢) and terminal point-wise

constraints to ensure nominal stability (David Angeli et al., 2012). It should be emphasized that

robustness to model error was not addressed in that study.

2.3 Robust Nonlinear Model Predictive Control (NMPC)

Robustness to model error remains as an essential challenge for the design of NMPC methods

(Findeisen et al., 2003; Lalo Magni & Scattolini, 2010). Generally, there are several reasons that

contribute to the model-plant mismatch, such as disturbances arising from changes in operating

conditions, uncertainty derived from simplifications of the model structure or model reduction,

lack of knowledge of key parameters, inaccurate understanding of physical mechanisms of the

process, etc. Therefore, robustness should be a main emphasis in the design of NMPC algorithms

to ensure its adoption in industrial applications.

A key consideration when addressing robustness to model error is that the robust controller would

not become excessively conservative. The degree of conservatism will generally depend on how

the model error is quantified with respect to the nominal model and on how this error is propagated

onto the objective function and the constraints of the optimization problem. A nominal model

which maintains a desirable accurate prediction over the prediction horizon would require a small

level of uncertainty to explain the overall process behavior. Since uncertainty may also destabilize

a control system, robust performance must be considered during the design stage. Following these

considerations, some techniques that can be used to analyze the stability and performance of a

robust controller are reviewed in the following sections.

2.3.1 LMI’s for Robust Control

Linear Matrix Inequalities based analysis (LMI’s) consists in formulating a series of algebraic

matrix inequalities that serve to test the stability and performance properties of a closed loop

 13

system with respect to a polytopic representation of model uncertainty (Vanantwerp & Braatz,

2000). Three main problems are generally addressed by LMI’s in the control field, the Feasibility

problem, Generalized Eigenvalue problem, and Linear programming problems. This approach has

gained considerable attention in the control field, since it can be used to analyze both robust

stability and robust performance and can be also used for the formulations of on-line robust MPC

control algorithms that involve input and output constrains (Kothare, Balakrishnan, & Morari,

1996). A formal theoretical method for synthesis of robust MPC with infinite horizon and different

forms of uncertainty was proposed in the literature (Kothare et al., 1996). That approach was based

on an infinite norm based objective function (S Boyd, Ghaoui, Feron, & Balakrishnan, 1994) and

it was extended to include inputs as well as outputs constrains. This LMI formulation was then

used for the design of Robust Distributed MPC for polytopic uncertainty with both time-varying

and time-invariant models (Al-Gherwi, Budman, & Elkamel, 2011). Distributed MPC refers to the

case where MPC controllers are applied to subsets of input and output variables in a chemical plant

and communication is exchanged among these multivariable controllers. The sporadic loss of

communication has also been addressed in Al-Gherwi, 2011 by using a robust estimator based on

LMI’s. The distributed MPC approach has been proposed as an option to decrease the complexity

of computation in the algorithms in a real plant implementation (Kumar & Budman, 2017). Though

LMI’s have been generally used for linear robust control, it could also be used for analyzing

robustness when a nonlinear process that can be approximated by uncertainty polytopes with

respect to a nominal linear model (Santander et al., 2016). However, investigating polytopic

uncertainty to describe the actual nonlinear process is challenging and may result in conservative

uncertainty descriptions that result in conservative controller designs (Doyle, Packard, & Morari,

1989).

2.3.2 SSV for Robust Control

Another method for investigating stability and performance of controllers is Structured Singular

Value (SSV) analysis, which also referred to as 𝜇𝜇-analysis. This mathematical tool is generally

used for analyzing controller based on uncertain models with either structured or unstructured

uncertainties. The main idea of 𝜇𝜇 norms is to extract the uncertain part of the nominal model and

then generate a Linear Fractional Transformation (LFT) relation between the inputs and outputs

that can be schematically described by an interconnection matrix. Given a structure of the resulting

 14

interconnection matrix (𝑀𝑀) and the uncertainty description 𝛥𝛥, the 𝜇𝜇 norm provides a measure of

the smallest perturbation within the given uncertainty set, which can cause destabilization or

violation of a pre-defined performance bound. The ability to quantify performance by an SSV

based norm has been proposed for calculating worst-case deviations of the output with respect to

the set-point along the prediction horizon based on a predictive control strategy (Kumar &

Budman, 2017).

Some studies have used SSV in the context of robust NMPC algorithms in order to develop a

competitive method which require lower computational effort. For example, several studies have

used an analytical approach where the parametric uncertainty is propagated by using Taylor series

and then an optimization problem is formulated in terms of the Structured Singular Values (SSV)

of the decision variables (D.L. Ma & Braatz, 2001; David L. Ma, Chung, & Braatz, 1999; Nagy &

Braatz, 2003). However, since the calculation of SSV-norm is a NP-hard type problem, the

computational demand for these methods grows exponentially when the dimensions of the process

with respect of inputs and outputs are large.

2.3.3 Main Algorithms on Robust NMPC

Robust NMPC is generally based on a max-min problem involving the minimization of a control

cost calculated for the maximal uncertainty (Findeisen et al., 2003; Lalo Magni & Scattolini,

2010). Thus, this is paramount to the optimization of the worst case within the uncertainty set.

To address robustness, Mayne et al., 2011 proposed a tube-based method where NMPC calculated

the control actions based on a nominal model and an additional controller was used to drive the

outputs towards the nominal time trajectory calculated with the nominal model. In this way, the

tube-based controller ensure that the outputs’ trajectories are bounded within a tube (envelope)

around the nominal output trajectories (L. Magni, Raimondo, & Scattolini, 2006; Mayne, Kerrigan,

van Wyk, & Falugi, 2011). At each time interval the tubes around the nominal trajectories are

determined by computing certain state constraints which are used to ensure Lyapunov stability

with respect to bounded disturbances. A modification of this approach is proposed by Cannon et

al., 2011, where the nonlinear model is converted into successive linear functions for every

prediction into the time horizon. In most cases, these tube-based algorithms were designed based

on mechanistic models and estimates of the potential disturbances that may enter the process. For

this reason, it is difficult to apply this method for the case of uncertainty in parameters rather than

 15

uncertainty that captures disturbances. Therefore, when designing a robust NMPC controller with

significant parametric uncertainty, the tube-based controller has not been used.

A key disadvantage of the min-max algorithms mentioned above is the high computational effort

required to solve the optimization problem on-line. To circumvent this issue, some approximations

have been proposed. For instance, using a bounded set description of the parametric uncertainties,

Diehl et al., 2008 developed an algorithm that satisfies the necessary first order optimality

conditions instead of the inner maximization problem, and assumed that the worst-case occurs at

the boundary of the uncertainty set. Zavala and Biegler, 2009 performed a preliminary nominal

model based estimation of the controller actions at given time steps thus reducing considerably the

online calculations necessary in their approach. However, both two approaches need to calculate

the derivatives of the objective function, constraints and disturbance uncertainty set which may be

time consuming and may be very complex for nonlinear mechanistic models of high dimensions.

Thus, there is still a good motivation to reduce the online computations of robust NMPC

algorithms, which is the focus of the current research.

The general area of optimization with uncertainty is vast. Several different methods in terms of the

optimization algorithms with uncertainty have been proposed. Some studies, i.e. Kawohl et al.,

2007 provided a simulation based method where the Monte Carlo simulations was used to obtain

the worst-case of the weighted contribution of the first two statistical momenta (Kawohl et al.,

2007). Monte Carlo is a method where the uncertainty is propagated onto the outputs of interest

for a large number of samples selected from a priori known uncertainty distribution. However,

the high computation costs associated with this approach made it difficult to be applied for on-line

implementations of MPC robust controllers (Birge & Louveaux, 2011; Niederreiter, 1978).

Alternatively, several competitive methods which require lower computational effort than the

Monte Carlo approach have been proposed. For example, some studies have used an analytical

approach where the parametric uncertainty is propagated by using Taylor series and then an

optimization problem is formulated in terms of the Structured Singular Values (SSV) of the

decision variables (D.L. Ma & Braatz, 2001; David L. Ma et al., 1999; Nagy & Braatz, 2003). This

latter method was found valid when first order estimates are not sufficiently accurate to capture

the uncertainty and second or higher order estimates are necessary. Using that approach, Diaz-

Mendoza and Budman, 2010 proposed an RNMPC method based on SSV norms for continuous

 16

processes (Díaz-Mendoza & Budman, 2010). The cost function in that method is formulated as a

function of SSV norm where the latter provides a bound on the worst possible output deviation

with respect to the set-point in the presence of model errors. However, the computational demand

for this method grows exponentially when the dimensions of the process with respect of inputs and

outputs are large since the calculation of SSV-norm is a NP-hard type problem. Moreover, the

performance of this algorithm might be conservative as it is based on the worst case of the output’

deviations with respect to the set-point.

In an effort to address these drawbacks, an alternative method, which is based on the propagation

of parametric uncertainty using Polynomial Chaos Expansions (PCE), was proposed. PCE refers

to a random process where orthogonal basis functions are used to generate a spectral expansion as

a function of random variables (Ghanem & Spanos, 1990). Hover and Triantafyllou, 2006

proposed a PCE based method to analyze the stability of an explicit nonlinear system with random

initial conditions or random parameters and showed that the approach significantly reduces the

computational load as compared to Monte Carlo approaches(Hover & Triantafyllou, 2006). Smith,

Monti and Ponci, 2009 provided an LQG controller design for linear systems that was based on

PCE approximations of the parametric uncertainty (Smith, Monti, & Ponci, 2009). Recently,

Kumar and Budman, 2017 have proposed a new PCE-based method for nonlinear systems where

the parametric uncertainty was propagated onto the cost and constraints of a robust optimization

of a batch process. Both on-line and off-line robust optimization problems were addressed. In the

online problem Kumar and Budman, 2017 also demonstrated the role of the feedback in reducing

the conservatism of the controller (Kumar & Budman, 2017). On the other hand, the computational

effort of this PCE based approach was shown to be highly sensitive to the number of parameters

and states and the conservatism of the controller significantly increased with respect to the

prediction horizon due to the cumulative effect of uncertainty.

2.3.4 Tree (Scenario) Based Structure of Nonlinear Model Predictive Control

To handle some of the limitations of robust NMPC and EMPC strategies such as conservatism and

the computational complexity of the methods discussed above, scenario based strategies have been

recently proposed (Lucia et al., 2013). In this type of strategy different scenarios, corresponding

to different uncertainty realizations, can occur with different degrees of probability. Then, the

future predictions of the controlled variables are assumed to follow different possible trajectories

 17

thus forming a tree like structure that it is used for formulating a robust optimization problem. This

tree-based approach has been shown to reduce the conservatism of the resulting NMPC scheme as

compared to previous robust approaches and it is valid a for variety of controller strategies, such

as Multi-stage nonlinear model predictive control (Multi-stage NMPC) and economic NMPC

(Lindhorst, Lucia, Findeisen, & Waldherr, 2016; Lucia, Andersson, Brandt, Diehl, & Engell, 2014;

Lucia et al., 2013).

Prediction Horizon

Figure 2.3 Scenario tree of the uncertainty evolution (Lucia et al., 2013)

The main idea of this method is that the time trajectories corresponding to different parameter

uncertainty or disturbance realizations can be represented by a tree composed of discrete scenarios

as shown in Fig. 2.3. For generality, both parameter uncertainty and disturbance uncertainty are

treated in the same fashion. Each node of the branches in this tree structure is generated by

uncertainty, i.e. parameter or disturbance related uncertainty. Each uncertainty realization is

denoted as 𝑑𝑑𝑘𝑘
𝑟𝑟(𝑗𝑗). Each one of the paths from the root node 𝑥𝑥0 to a leaf node is referred to as a

scenario. The scenario tree approach involves discrete time computations of the nonlinear system

of equations defining the process as follows:

𝑥𝑥𝑘𝑘+1
𝑗𝑗 = 𝑓𝑓(𝑥𝑥𝑘𝑘

𝑝𝑝(𝑗𝑗),𝑢𝑢𝑘𝑘
𝑗𝑗 ,𝑑𝑑𝑘𝑘

𝑟𝑟(𝑗𝑗)) (2.8)

𝑥𝑥0

𝑥𝑥11

𝑥𝑥12

𝑥𝑥13

𝑥𝑥22

𝑥𝑥23

𝑥𝑥24

𝑥𝑥25

𝑥𝑥26

𝑥𝑥27

𝑥𝑥28

𝑥𝑥29

𝑢𝑢01
𝑑𝑑01

𝑢𝑢02𝑑𝑑02

𝑢𝑢03
𝑑𝑑03

𝑢𝑢12𝑑𝑑12
𝑢𝑢13𝑑𝑑13

𝑢𝑢11𝑑𝑑11

𝑢𝑢14𝑑𝑑14
𝑢𝑢15𝑑𝑑15
𝑢𝑢16𝑑𝑑16

𝑢𝑢17𝑑𝑑17
𝑢𝑢18𝑑𝑑18
𝑢𝑢19𝑑𝑑19

𝑥𝑥21

 18

where each state 𝑥𝑥𝑘𝑘+1
𝑗𝑗 depends on present state 𝑥𝑥𝑘𝑘

𝑝𝑝(𝑗𝑗), the corresponding control input 𝑢𝑢𝑘𝑘
𝑗𝑗 as well

as corresponding realization 𝑟𝑟 of the uncertainty at stage 𝑘𝑘, 𝑑𝑑𝑘𝑘
𝑟𝑟(𝑗𝑗). For simplicity, the branches

from each one of the nodes are defined by the corresponding value of the uncertainty realization

by 𝑑𝑑𝑘𝑘
𝑟𝑟(𝑗𝑗) = {𝑑𝑑𝑘𝑘1 ,𝑑𝑑𝑘𝑘2, … ,𝑑𝑑𝑘𝑘𝑠𝑠} at stage stage 𝑘𝑘 for 𝑠𝑠 different possible values of the uncertainty.

Prediction Horizon = 4

Robust Horizon = 2

Figure 2.4 The uncertainty evolution with robust horizon represented by scenario tree structure

(Lucia et al., 2014)

As the prediction horizon is expanded, there is an exponential growth of the tree structure that will

result in increasing computational costs. To avoid this increased computational cost, a

modification has been proposed, as shown in Fig. 2.4, whereby branching with respect to different

uncertainty realizations is only done for the initial time intervals of the prediction horizon (2 first

intervals in Fig. 2.4) and then the uncertainty realization in each trajectory is assumed to remain

constant until the end of the horizon (intervals 3 and 4 in Fig. 2.4). The rationale for this

modification is that only the first steps of the prediction horizon may describe the actual process

behavior whereas the later stages of the prediction are not accurate anyways and they will be

significantly changed along the solution due to disturbances entering the process and random

measurement noise. The number of intervals for which branching is done has been referred to as

𝑥𝑥0

𝑥𝑥11

𝑥𝑥12

𝑥𝑥13

𝑢𝑢01
𝑑𝑑01

𝑢𝑢02𝑑𝑑02

𝑢𝑢03
𝑑𝑑03

𝑢𝑢12𝑑𝑑12
𝑢𝑢13𝑑𝑑13

𝑢𝑢11𝑑𝑑11

𝑢𝑢14𝑑𝑑14
𝑢𝑢15𝑑𝑑15
𝑢𝑢16𝑑𝑑16

𝑢𝑢17𝑑𝑑17
𝑢𝑢18𝑑𝑑18
𝑢𝑢19𝑑𝑑19

𝑥𝑥21 𝑢𝑢21𝑑𝑑21 𝑥𝑥31 𝑢𝑢31𝑑𝑑31 𝑥𝑥41

𝑥𝑥22 𝑢𝑢22𝑑𝑑22 𝑥𝑥32 𝑢𝑢32𝑑𝑑32 𝑥𝑥42

𝑥𝑥23 𝑢𝑢23𝑑𝑑23 𝑥𝑥33 𝑢𝑢33𝑑𝑑33 𝑥𝑥43

𝑥𝑥24 𝑢𝑢24𝑑𝑑24 𝑥𝑥34 𝑢𝑢34𝑑𝑑34 𝑥𝑥44

𝑥𝑥25 𝑢𝑢25𝑑𝑑25 𝑥𝑥35 𝑢𝑢35𝑑𝑑35 𝑥𝑥45

𝑥𝑥26 𝑢𝑢26𝑑𝑑26 𝑥𝑥36 𝑢𝑢36𝑑𝑑36 𝑥𝑥46

𝑥𝑥27 𝑢𝑢27𝑑𝑑27 𝑥𝑥37 𝑢𝑢37𝑑𝑑37 𝑥𝑥47

𝑥𝑥28 𝑢𝑢28𝑑𝑑28 𝑥𝑥38 𝑢𝑢38𝑑𝑑38 𝑥𝑥48

𝑥𝑥29 𝑢𝑢29𝑑𝑑29 𝑥𝑥39 𝑢𝑢39𝑑𝑑39 𝑥𝑥49

 19

the robust horizon. This idea have been also used in many other scheduling problems such as a

linear max-min MPC (de la Pena, Alamo, Bemporad, & Camacho, 2006).

The most challenging problem of the scenario tree structure based method is how to generate a

reasonable tree structure that maintains a balance between an accurate estimation of uncertainty

and acceptable size of the robust horizon. To address this issue, there are three main methods that

have been discussed in the literature as follows: i) Monte Carlo simulations in combination with

sample average approximations (SAA) method (Shapiro, 2003), for which the computation still

increases exponentially with the horizon length; ii) a deterministic method, such as moment

matching method (Høyland, Kaut, & Wallace, 2003) of a probability distribution or the

minimization of a certain probability matrix like the Wasserstein distance (de Oliveira,

Sagastizábal, Penna, Maceira, & Damázio, 2010); iii) machine learning techniques for generation

of scenario trees (Defourny, 2010).

Several versions of the tree structure based MPC have been reported. Lucia, Finkler and Engell in

2013 initially established the method and applied it a multi-stage NMPC controller of semi-batch

polymerization benchmark problem with uncertainty; later on, Lucia et al., 2014 further improved

this model by using an economic NMPC controller which optimizes the process over a set of affine

control policies. Lindhorst et al., 2016 have used this approach for bioreactor control and

optimization. A robust controller framework was generated by Lindhorst et al, 2016 to handle the

uncertainty of a dynamic enzyme-cost Flux Balance Analysis (deFBA) describing a bioreactor

process. A receding prediction horizon and a simplified deFBA model describing only the short

term behavior of the process were used in order deal with the exponential computation cost

increase along the prediction horizon. However, in Lindhorst approach the number of scenarios

still increases two-fold with each additional uncertainty. Thus, this framework is only acceptable

for online implementation with a short prediction horizon or a limited number of uncertainties of

the deFBA model.

Considering these limitations, in the current work, a novel tree structure based algorithm is

proposed in Chapter 3 of the thesis that exploits the particular nature of the dynamic metabolic

flux model describing the system, i.e. linear programming based model, to reduce the

computational effort to estimate control actions in the presence of model uncertainty.

 20

2.4 Sensitivity Analysis of RHS

This thesis is dealing with robust optimization of a biotechnological process that is described by a

Linear Programming (LP) problem. This model will be formally introduced in Chapter 3.

Sensitivity analysis of the Right Hand Side (RHS) of the inequalities in the LP optimization

problem is an essential theoretical element of the strategy proposed in this work and it is thus

reviewed here for completeness. A standard LP problem can be formulated as follows (Hillier,

2001):

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = 𝒄𝒄𝒄𝒄 (2.9)

s. t.

𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃

𝒙𝒙 ≥ 0

 (2.10)

where 𝑍𝑍 is an overall measure of performance, 𝒙𝒙 is the vector of 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗 is decision variables

(solution) with the amount of 𝑛𝑛 (𝑗𝑗 = 1, 2, . . ., 𝑛𝑛), 𝒄𝒄 is the row vector of 𝑐𝑐𝑗𝑗, 𝑨𝑨 is the matrix of

𝑎𝑎𝑖𝑖𝑖𝑖, 𝒃𝒃 is the vector of 𝑏𝑏𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑗𝑗 (for 𝑖𝑖 = 1, 2, . . ., 𝑚𝑚 and 𝑗𝑗 = 1, 2, . . ., 𝑛𝑛) are the input

constants which are generally referred as the parameters of the model. The matrix 𝑨𝑨 in (2.10) is

often referred to as the Left Hand Side of the constraints equations and it will be referred to as LHS

for short; 𝒃𝒃 is a vector of independent coefficients as will be referred to as the Right Hand Side

(RHS).

2.4.1 Simplex Algorithm for Linear Programming

The Simplex algorithm (or Simplex method) is the most popular algorithm method for solving

LPs. The solution of LPs is iterative in nature and it involves the use of tableaux that are particular

matrix representations of either the original problem formulation or transformed formulations

describing each one of the iterations of the optimization search. The standard initial tableau of the

simplex method (the original set of equations) is as follows (Hillier, 2001):

�1 −𝒄𝒄 0
0 𝑨𝑨 𝑰𝑰� �

𝑍𝑍
𝒙𝒙
𝒙𝒙𝒔𝒔
� = �0𝒃𝒃�

(2.11)

�
𝒙𝒙
𝒙𝒙𝒔𝒔� ≥ 0 (2.12)

 21

𝒙𝒙𝒔𝒔 = �

𝑥𝑥𝑛𝑛+1
𝑥𝑥𝑛𝑛+2
⋮

𝑥𝑥𝑛𝑛+𝑚𝑚

�

(2.13)

where 𝑰𝑰 is 𝑚𝑚 × 𝑚𝑚 identity matrix, 𝒙𝒙𝒔𝒔 is column vector of slack variables that is needed to obtain

the augmented form of the problem as it is shown in (2.13). For the given matrix (2.11), the basic

solutions of this tableau are the solutions of the 𝑚𝑚 equations in (2.14), i.e.

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃

(2.14)

Since the system of algebraic equations given by (2.14) is underdetermined 𝑛𝑛 variables referred to

as non-basic can be eliminated out of a total of 𝑛𝑛 + 𝑚𝑚 variables of the vector �
𝒙𝒙
𝒙𝒙𝒔𝒔� by equating

these variables to zero. This transforms (2.14) into a set of 𝑚𝑚 equations with 𝑚𝑚 unknowns which

are referred to as the basic variables, i.e.

𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒃𝒃 (2.15)
where the vector of basic variables is as follows:

 𝒙𝒙𝑩𝑩 = �

𝑥𝑥𝐵𝐵1
𝑥𝑥𝐵𝐵2
⋮

𝑥𝑥𝐵𝐵𝐵𝐵

�

 and the basis matrix is as follows:

𝑩𝑩 = �
𝐵𝐵11 ⋯ 𝐵𝐵1𝑚𝑚
⋮ ⋱ ⋮

𝐵𝐵𝑚𝑚1 ⋯ 𝐵𝐵𝑚𝑚𝑚𝑚

�

Matrix 𝑩𝑩 is generated by eliminating the columns corresponding to coefficients of non-basic

variables from [𝑨𝑨 𝑰𝑰]. The simplex method searches for a solution through a series of iterations

where each involves a Gaussian elimination procedure. The rearrangement of the resulting tableau

for the basic and non-basic variables identified at each iteration is referred to as pivoting. During

the iterations of the simplex method, the order of 𝒙𝒙𝑩𝑩 as well as the column order of 𝑩𝑩 may be

different from one iteration to the next. The detailed description of the pivoting process is shown

elsewhere (Hillier, 2001). When the pivoting process of the Simplex Algorithm meets a user

defined stopping criteria, the inverse matrix 𝑩𝑩−1 of 𝑩𝑩 is obtained. Since 𝒙𝒙𝑩𝑩 is not zero by

 22

definition (basic variables) then 𝑩𝑩 is nonsingular and 𝑩𝑩−1 always will exist. This inverse of 𝑩𝑩 is

used to solve for the basic variables from (2.15) as follows:

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1𝒃𝒃 (2.16)
Let 𝒄𝒄𝑩𝑩 be a vector of the objective function coefficients, including zeros for slack variables, for

the corresponding elements of 𝒙𝒙𝑩𝑩. The optimal solution 𝑍𝑍 of the objective function for the basic

solution can be calculated as follows:

𝑍𝑍 = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒄𝒄𝑩𝑩𝑩𝑩−1𝒃𝒃 (2.17)

2.4.2 100 Percent Rule for Linear Programming

Sensitivity analysis of the RHS is conducted to assess the effect of changes in the elements of the

vector 𝒃𝒃 (RHS of LP), on the basic solutions 𝒙𝒙𝑩𝑩 as well as the cost function 𝑍𝑍 . Since the

uncertainty in most problems is captured through changes in 𝑏𝑏𝑖𝑖 the sensitivity of the RHS is of

particular interest in robust LP solutions. In most cases, the sensitivity analysis of the RHS is used

to find an allowable feasibility range with respect to a nominal optimal basic feasible (BF) solution

(Hillier, 2001). Within the feasible range, the structure of the tableau remains constants for all

possible changes in 𝒃𝒃. Thus, within the feasible range of the tableau, variables that are basic for

one combination of 𝑏𝑏𝑖𝑖’s are basic for another combination of 𝑏𝑏𝑖𝑖’s, and 𝑩𝑩−1 is constant. Using this

fact, the effects of changes in 𝑏𝑏𝑖𝑖 on 𝒙𝒙𝑩𝑩 and 𝑍𝑍 can be easily calculated by using (2.16) and (2.17),

respectively. The rate at which 𝑍𝑍 may be increased by (slightly) changes in the 𝒃𝒃 are referred to as

a kind of shadow prices. Thus, the shadow prices, which is the partial derivative of 𝑍𝑍 with respect

of 𝒃𝒃 in some extent, inside a feasible range of one tableau is also constant.

It is straightforward and fast to calculate the allowable range of feasibility for changes in only one

of the 𝑏𝑏𝑖𝑖 . From the formula (2.16), the adjusted values in 𝑩𝑩−1 for the basic variables can be

obtained. Consequently, the solution of the allowable feasibility range consists on calculating the

range of values of 𝑏𝑏𝑖𝑖 such that 𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎. However, analyzing the effect of simultaneous changes in

RHS is more involved. An approximation of the allowable feasibility region can be obtained by

using the 100 percent rule (Hillier, 2001). The idea of this method is that the shadow prices remain

feasible for predicting the effect of simultaneously changing the RHS as long as the changes of

𝑏𝑏𝑖𝑖’s are small enough so as to satisfy the 100% rule. The sum of the percentage changes of all 𝑏𝑏𝑖𝑖

is used to check if the changes are small enough. When the summation of changes in 𝒃𝒃 does not

 23

exceed 100 percent, the shadow prices will surely be allowed. However, this method only provides

a necessary condition but not sufficient since it cannot provide an explicit judgement if the sum

does exceed the 100 percent limit.

The100 percent rule has been often used to perform sensitivity analysis with respect to changes in

the RHS that emerge due to model uncertainty. However, the application of this method for robust

NMPC has been found limited and computationally inefficient in the current work as will be shown

in Chapter 4. For instance, this algorithm is found to provide small regions of feasibility in the

neighborhood of current solutions but cannot provide an accurate description about the entire

feasibility range. This is especially problematic when, for a given uncertainty set, many ranges of

feasibility, i.e. many tableaus, are possible. This requires an exhaustive search of allowable

feasibility regions around different solutions which is computationally prohibitive for problems of

high dimensions, e.g. problems involving several energies, momentum and mass conservation

balance equations. Further discussion about these limitations are presented in the following

chapter. In the present work, an alternative computationally efficient approach is proposed that is

particularly targeted to seek for the feasibility regions contained within pre-defined ranges of

changes of the elements 𝑏𝑏𝑖𝑖’s in the RHS of the LP.

2.5 Bioreactor Control and Optimization

The industrial application to be considered in this work is the design of a robust NMPC controller

for bioreactors. Modelling of biological systems is challenging in some extent, since these systems

generally exhibit highly nonlinear behavior and the models have large dimensions due to the

interconnected nature of the metabolic network of reactions that describe microorganism behavior.

In addition to model complexity, bioreactors are generally operated in four different operating

modes, batch, fed-batch, perfusion and continuous which adds further complexity to the controller

design. Currently, the most popular mode of operation in the pharmaceutical industry is fed-batch

mode where the substrate is gradually fed into the reactor and the product is only drawn at the end

of the process. A key advantage of this mode is the avoidance of high initial concentrations of

nutrients that may inhibit growth. For instance, high initial glucose concentration inhibits yeast

growth but in fed-batch mode the gradual supplementation of substrate into the reactor can result

in good growth while the glucose concentration is maintained at low (acceptable) levels. Another

advantage of batch and fed-batch operations is that it is easier to maintain sterilized conditions in

 24

the bioreactor since the products are only drawn out after the end of the process (Yamuna Rani &

Ramachandra Rao, 1999) as compared to continuous or perfusion operations were products or

media are continuously withdrawn. Following these considerations, the review below is focused

only on fed-batch reactor operation and control since this is the operating mode that will be

considered in this research study.

Classical fed-batch reactors have been controlled based on simple PID controllers that are aimed

at maintaining key operating parameters, e.g. PH, temperature or concentration of some inorganic

composition, at their set-points by making changes in the substrate feed rate. The limitations of

this approach is that closed loop bioreactor performance is impacted by the nonlinear dynamic

behavior of the bioprocess as well as the difficulty to acquire online measurement of important

metabolites (Lübbert & Jørgensen, 2001; Yamuna Rani & Ramachandra Rao, 1999). However,

recent advances has been done in bioprocess sensor technology, such as stringent FDA guidelines

for online bioprocess measurements (M A Henson, 2010), may improve the performance of model

based controllers in the future.

Due to the lack of reliable sensors, many past studies have proposed offline dynamic optimization

of the bioprocess or online open-loop economic controllers that aim to optimize the final product

concentration by determining a suitable substrate feeding profile. Accordingly, these past open

loop studies have often produced conservative results since they did not exploit the feedback error

to correct for unmeasured disturbances. More recently a periodic online re-calculation method of

feed-profiles have been introduced based on infrequent measurements (Banga, Alonso, & Singh,

1997).

There are three main reasons for addressing robustness of model based fed-batch bioreactor

controllers (Kuhlmann, Bogle, & Chalabi, 1998): i) although the model parameters are assumed

to be constant, they are generally time-varying due to metabolic shifts occurring along the process

ii) unmodeled dynamics due to incomplete knowledge about the process, and iii) large disturbances

occurring in the process. It should be noticed that in current industrial practice offline optimization

is often preferred over online feedback strategies for fed-bath due to the lack of sophisticated

online-measurement techniques in the current pharmaceutical industries as well as tight limitations

imposed by regulatory bodies such as FDA. Hence it is important to investigate the effect of plant

model mismatch and disturbances on recipes resulting from robust optimization calculations

 25

(Srinivasan, Bonvin, Visser, & Palanki, 2003). As discussed in section 2.3, in most studies about

robust controller optimization techniques the model uncertainty is propagated with the Monte

Carlo sampling algorithm though this method requires high computational effort. Recently, PCE’s

has been used for uncertainty quantification and propagation in robust optimization problems in a

bioreactor process modelled by a Dynamic Metabolic Flux Model as used in the current work

(Kumar & Budman, 2017). In this work, uncertainty was propagated by representing the uncertain

model parameters by PCE expansions where the coefficients of the expansions are calculated form

the first principles equations in combination with Galerkin’s projection methods. Since the current

work consider a similar case study to the one studied by Kumar and Budman study, the latter will

be used for comparison purposes with the current approach presented in Chapter 4.

2.6 Metabolic Flux Model

To conduct either off-line robust optimization or robust predictive control of a bioreactor system,

it is essential to formulate an appropriate dynamic process model that describes the system in a

wide range of operating conditions. This is especially critical in batch or fed-batch operation since

in these processes the variables evolve with time over a wide range of conditions in contrast to

continuous operations that remain in the neighborhood of a fixed operating point.

Dynamic models of biological systems are generally classified as unstructured and structured

models based on the extent of the biological/metabolic detail included in the model. The

unstructured models consist of simplistic substrate and biomass balances coupled to each other

through the growth rate kinetic expression. However, those models often ignore the complex

interactions among many different metabolites existent in the system. A classical dynamic

unstructured model with enzyme kinetic that has been used extensively in past bioreactor control

and optimization studies is as follows:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐹𝐹|𝑖𝑖𝑖𝑖 −
𝜇𝜇𝜇𝜇
𝑌𝑌𝑋𝑋|𝑆𝑆

𝑑𝑑𝑃𝑃𝑐𝑐
𝑑𝑑𝑑𝑑

=
𝜇𝜇𝜇𝜇𝑌𝑌𝑃𝑃|𝑆𝑆

𝑌𝑌𝑋𝑋|𝑆𝑆
, 𝜇𝜇 =

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆
𝐾𝐾𝑚𝑚 + 𝑆𝑆

(2.18)

where 𝐹𝐹 is feed rate, 𝑉𝑉 is batch volume, 𝑋𝑋 is concentration of biomass, 𝜇𝜇 is rate of cell growth, 𝑆𝑆

is substrate concentration, 𝑃𝑃𝑐𝑐 is product concentration, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is maximum growth rate, 𝐾𝐾𝑚𝑚 is

substrate saturation constant, 𝑌𝑌𝑃𝑃|𝑆𝑆 and 𝑌𝑌𝑋𝑋|𝑆𝑆 are yield coefficients. Since the structured models are

 26

based on metabolic reactions that are specific to the organism under study, the unstructured models

are simpler than structured ones while the latter can correctly describe the relations between each

metabolite participating in the process.

Metabolic flux analysis (MFA) modeling is a method to generate structured models based on flux

balance of metabolites at quasi-steady state (Varma & Palsson, 1994), i.e. steady state is either

assumed at each time interval or over a certain culture duration. MFA consists of formulating a

stoichiometric matrix 𝓐𝓐𝑚𝑚×𝑛𝑛 with respect of the reaction fluxes vector 𝝂𝝂𝑛𝑛×1 and solving mass

balances of extracellular metabolites as per the following equation:

𝓐𝓐𝓐𝓐 = 𝓫𝓫 (2.19)
where 𝓫𝓫𝑚𝑚×1 represents a vector of consumption or production rate of extracellular metabolites

such as nutrients and by-products, 𝝂𝝂 is the vector of fluxes (mol/h/mol biomass). Since each

metabolite generally participates in more than one reaction the resulting system of algebraic

equations in (2.20) is generally under-determined and thus additional constraints are needed in

order to uniquely define the fluxes. Varma and Palsson, 1994 proposed an assumption where the

organisms are continuously trying to maximize growth and allocate resources in order to complete

this task. This fundamental assumption is generally justified by the occurrence of naturally

evolutionary processes by which the cells have adapted to act as an optimizer of resources. For

example, bacteria have evolved mostly to proliferate by optimally distributing their available

resources/nutrients. Based on this assumption, and assuming that growth 𝜇𝜇 is to be maximized, the

MFA modelling can be represented as a Linear Programming (LP) problem, with the flux balance

equations in (2.19) as constraints, i.e.

max
𝜈𝜈𝑖𝑖

 𝜇𝜇 = �𝑤𝑤𝑖𝑖𝜈𝜈𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡. 𝓐𝓐𝓐𝓐 = 𝓫𝓫

(2.20)

where 𝑤𝑤𝑖𝑖 are the amounts of the growth precursors required per gram of biomass. Then, assuming

that at every time step the growth rate is maximized by the organism the consumption or production

of species can be calculated with time as follows:

max
𝑥𝑥,𝝂𝝂

𝜇𝜇

𝑠𝑠. 𝑡𝑡.
𝑑𝑑𝒛𝒛
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝓐𝓐𝓍𝓍,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇, 𝜇𝜇 = 𝒘𝒘𝑇𝑇𝝂𝝂

(2.21)

 27

where 𝓍𝓍 and 𝒛𝒛 are the current biomass and metabolites’ concentrations respectively. This dynamic

modeling approach of the cell metabolism is referred to as Dynamic Flux Balance Modeling

(DFBM) and it has been applied successfully to explain the microbial growth of Escherichia coli

(E.coli) in batch reactor (Mahadevan, Edwards, & Doyle, 2002). Another reported DFBM

application described the ethanol producing yeast Saccharomyces cerevisiae (Hjersted & Henson,

2006). Both Mahadevan’s and Henson’s studies introduced additional kinetic rate constrains to

achieve realistic flux distribution 𝝂𝝂, metabolite concentration 𝒛𝒛 as well as biomass concentration

𝓍𝓍. Moreover, this model has been used to accomplish robust NMPC with feedback controller

currently (Kumar & Budman, 2017). A key advantage of the DFBM approach is its ability to fit

data with a relatively smaller number of kinetic parameters in contrast with other structured models

where each possible reaction is modelled by a separate kinetic term. The parsimonious nature of

these modelling approach makes them attractive since they have the potential to avoid overfitting

of noisy and limited amount of data. Due to these advantages, these models have received in the

last decade significant attention from the pharmaceutical research community (Kumar & Budman,

2017). Therefore, the robust algorithms developed in the current work are based on this modelling

approach and they exploit its particular mathematical structure to reduce computation time.

2.7 Summary

Economic Model Predictive Control (EMPC) has recently received attention by both academics

and industrial practitioners since it has the ability to simultaneously control the system while

optimizing an economic profit functions whereas in the past control and optimization has been

traditionally conducted by separate (independent) algorithms. Thus, EMPC has the potential to

simplify the implementation of advanced control and optimization strategies in chemical plants.

Beyond this advantage, the ability of EMPC for maximizing a profit function along a dynamic

time horizon confers it with a significant advantage over strategies that separately optimize and

control the process since in such strategies the optimization module is often based on steady state

information only. Robustness to model error is a crucial topic in the design of NMPC or EMPC

algorithms that must be addressed to promote its adoption in industrial settings (Findeisen et al.,

2003; Lalo Magni & Scattolini, 2010). Robustness is particularly critical for EMPC algorithms

that do not explicitly minimize the feedback error. Though there are several robust NMPC

algorithms that have been reported, the limitations are often related to computational demands, i.e.

 28

their online implementation is often prohibitive due to the computational cost of the uncertainty

propagation step that is based on sampling such as Monte Carlo simulations. Polynomial Chaos

Expansions (PCE) and Power Series Expansions (PSE) representations have also been reported for

uncertainty propagation and for designing robust controllers but when the numbers of uncertain

parameters and states increases, e.g. more than ~10 parameters, these methods also become

computationally demanding. These past studies motivate the need to develop efficient uncertainty

propagation methods for which the computational effort does not increase significantly with the

number of uncertain parameters and states. This thesis presents a novel algorithm to address

robustness of an EMPC algorithm that is specifically applied to a process described by a dynamic

metabolic flux model. Although the presented technique is specifically tailored to dynamic

metabolic flux models, the problem is very relevant since such models are expected to be the

standard modelling approach for biotechnological processes in the future.

 29

Convex Cone Methodology and Case Study

Model Predictive Control (MPC) based on linear models has become the standard multivariable

control strategy in the process industries. However, when the process to be controlled exhibits

highly nonlinear dynamic behavior, a nonlinear model is preferred for more accurate prediction

that will result in improved performance. The resulting nonlinear model based predictive control

strategy is referred to as Nonlinear Model Predictive Control (NMPC). The typical cost function

that is generally minimized in either linear MPC or NMPC algorithms is the sum of squared

feedback errors between the set point and the measured values of the controlled variables. On the

other hand, there is an alternative family of NMPC algorithms where the function to be optimized

describes an economic profit instead of the minimization of the feedback error done in NMPC.

Due to the nature of the economic cost function this algorithm is referred to as Economic Model

Predictive Control (EMPC). As stated in Chapter 2 this algorithm has recently received significant

attention by both academics and industry since it has the ability to simultaneously control the

system while optimizing an economic profit whereas in the past the control and optimization tasks

have been traditionally conducted by separate algorithms. Thus, EMPC has the potential to

simplify the implementation of advanced control and optimization in chemical plants. Beyond this

advantage, the ability of EMPC of maximizing profit along a dynamic time horizon confers it with

a significant advantage over strategies that separately optimize and control the process since in

such strategies the optimization module is based on steady state models. The case study in the

current work is based on an Economic MPC (EMPC) formulation which will be presented in the

current chapter.

Robustness to model error remains as an essential challenge for the design of NMPC methods

(Findeisen et al., 2003; Lalo Magni & Scattolini, 2010) and particularly for EMPC algorithms

since the latter do not explicitly minimize the feedback error. As discussed in Chapter 2, there are

several reasons that may contribute to the model-plant mismatch, such as disturbances arising from

changes in operating conditions, uncertainty derived from simplifications of the model structure

or model reduction, inaccurate understanding of physical mechanisms of the process, lack of

knowledge of key parameters, etc. Therefore, robustness is crucial in the design of NMPC or

EMPC algorithms to promote its adoption in industrial settings.

 30

Robust NMPC is generally based on min-max formulations, where the maximization action is

conducted with respect to model uncertainties or bounded disturbances and then, for the worst case

calculated by the previous maximization, an economic cost is minimized with respect to the

control actions (Findeisen et al., 2003; Lalo Magni & Scattolini, 2010).

In Chapter 2, several previously reported robust NMPC algorithms, which propagate model

uncertainties and/or disturbances by different means as well as the limitations for each of these

methods were reviewed. For instance, Monte Carlo simulations have been used to propagate model

uncertainties and disturbances but the online implementation of this approach is often prohibitive

due to its computational cost (Birge & Louveaux, 2011; Kawohl et al., 2007; Niederreiter, 1978;

Srinivasan et al., 2003).

Polynomial Chaos Expansions (PCE) have also been used to propagate uncertainty to provide

robustness to NMPC strategies. This approach has considerable advantages over Monte Carlo

based algorithms in terms of computational time making it significantly more amenable for online

implementation (Kumar & Budman, 2017). However, when the numbers of uncertain parameters

and states is very large, e.g. more than ~10 parameters, this method also becomes computationally

demanding.

These past studies motivate the finding of uncertainty propagation methods for which the

computational effort does not increase significantly with the number of uncertain parameters and

states. This chapter presents a novel algorithm to address robustness of an EMPC that is

specifically applied to a process that is described by a dynamic metabolic flux model. Thus,

although the presented technique is specifically tailored to dynamic metabolic flux models, the

problem is very relevant since such models are increasingly becoming the standard approach for

modelling biotechnological processes.

Dynamic metabolic models, as described in chapter 2, are given by a Linear Programming

optimization where a biological cost is optimized with respect to reactions’ fluxes subject to kinetic

and positivity constraints. Since some of these constraints involve parameterized kinetic

expressions in their RHS (right hand side), addressing robustness for these models is equivalent to

studying the sensitivity of the LP based model to uncertainties in the parameters of the RHS

expressions. In the following section, an approach for sensitivity analysis of the RHS of the

constraints within an EMPC formulation will be introduced. Then, a series of rigorous proofs are

 31

presented to support the validity of the approach. Subsequently, two novel methods for sensitivity

analyses with respect to changes in the RHS of the constraints within the LP problem describing

the dynamic metabolic model will be formulated and investigated.

3.1 Proposed Robust EMPC

The robust EMPC algorithm proposed in this section is specifically tailored to biochemical

processes that are described by a dynamic metabolic flux model (DMFM). Since the DMFM is

formulated as a constrained LP problem the uncertainty propagation approach proposed here is

based on the sensitivity analyses of the RHS of the constraints of the LP problem.

Although the method has been specifically tailored to DMFM problems, in principle, it could be

also applied to any EMPC formulation where the internal model can be described by an LP. The

general formulation of an EMPC controller involves the minimization of an economic terminal

cost/penalty 𝑉𝑉𝑓𝑓as follows:

min
𝑢𝑢
𝑉𝑉𝑓𝑓�𝑥𝑥�(𝑘𝑘 + 𝑝𝑝)�

s. t.
(3.1)

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓𝑑𝑑(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝒅𝒅 = 0) (3.2)

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘) (3.3)

𝑓𝑓�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)� = 0 𝑖𝑖 = {0,1,2, … , 𝑝𝑝},𝑘𝑘 ∈ ℕ (3.4)

𝑥𝑥�(𝑘𝑘 + 𝑝𝑝) ∈ 𝕏𝕏𝑓𝑓 (3.5)

where 𝑥𝑥𝑚𝑚 is measured plant states, 𝑥𝑥� is prediction of plant states, 𝑢𝑢 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 + 1), … ,𝑢𝑢(𝑘𝑘 +

𝑚𝑚)} are the decision variables and they are equal to the manipulated variables or control actions,

𝒅𝒅 is the vector of disturbance or it may also represent the effect of model uncertainty. At each

time interval indexed as [𝑖𝑖, 𝑖𝑖 + 1), the future predicted states’ trajectories are calculated over a

prediction horizon 𝑝𝑝, as a function of a sequence of manipulated variables defined over a control

horizon 𝑚𝑚, where 𝑚𝑚 ≤ 𝑝𝑝. The nominal dynamic model defined by (3.2) is used to predict the

future nominal evolution of the system and it is initialized with each state’s corresponding

measurement given by equation (3.3). Equations of (3.2) and (3.4) represents the process or system

constrains of EMPC system. Furthermore, the constraint (3.5) is a terminal constraint, which

ensures that at the end of horizon the predicted 𝑥𝑥� will be within a neighborhood of a terminal value

defined by the terminal set 𝕏𝕏𝑓𝑓. If maximization of a profit is desired rather than minimization of a

 32

cost, it is straightforward to convert such maximization into a minimization by considering the

negative value of the profit that has to be maximized.

Figure 3.1 is a schematic block diagram of the EMPC controller. The controller uses a nominal

model for predicting future values of the states. If the model is perfect, i.e. the model is equal to

the process and disturbances 𝒅𝒅 = 0, then the feedback signal to the EMPC controller is zero.

However, it is clear from figure 3.1 that if either there is mismatch between the process and the

model or there are unmeasured disturbance d entering the system, the feedback signal returned to

the EMPC controller will not be equal to zero. Since the model is never perfect and disturbances

may continuously enter the process this will cause the system to evolve along different time

trajectories from the nominal dynamic internal model given by (3.2) and referred as the model in

Figure 3.1. For the particular case treated in the current research that the process is described by a

DMFM, equations (3.2) to (3.5) in the formulation above are substituted by an LP problem

describing the dynamic metabolic model. Thus, the resulting control problem involves a two level

optimization where the outer level involves minimization of cost with respect to the control actions

in the final time 𝑡𝑡𝑓𝑓 of the process which has been shown in (3.6) and the inner level involves the

LP problems 𝑓𝑓𝐿𝐿𝐿𝐿 as in (3.7) to (3.11).

min
𝑢𝑢
𝑉𝑉𝑓𝑓 �𝜓𝜓�𝑜𝑜𝑜𝑜𝑜𝑜�𝑡𝑡𝑓𝑓��

s. t.

𝜓𝜓�(𝑡𝑡 + 1) = 𝑓𝑓𝐿𝐿𝐿𝐿�𝜓𝜓�(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝒅𝒅�

𝜓𝜓�(𝑡𝑡 = 0) = 𝜓𝜓𝑚𝑚(𝑡𝑡 = 𝑘𝑘)

𝑓𝑓𝑐𝑐�𝑢𝑢(𝑡𝑡)� = 0

(3.6)

max
𝝂𝝂

𝜓𝜓�𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒘𝒘𝒘𝒘

s. t.
(3.7)

𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃 (3.8)

𝒃𝒃 = 𝑓𝑓𝑏𝑏(𝝍𝝍(𝑡𝑡),𝝂𝝂𝒎𝒎𝒎𝒎𝒎𝒎) (3.9)

𝝍𝝍(𝑡𝑡 + 1) = 𝝍𝝍(𝑡𝑡) + � 𝑨𝑨𝑨𝑨𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
𝑡𝑡+1

𝑡𝑡
 (3.10)

𝝂𝝂 ≥ 0, 𝒃𝒃 ≥ 0 (3.11)

where a specific element from 𝝍𝝍, i.e. 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 is a biological objective function such as growth rate

or ATP production, 𝑨𝑨 is a stoichiometric matrix describing the set of reactions occurring for the

 33

particular microorganism and 𝒘𝒘 is a vector of weights describing the contribution of the fluxes to

the biological objective 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜, 𝝂𝝂 is the vector of optimal solutions of the inner level optimization,

𝝍𝝍 is the vector elements are the concentrations of all metabolites, and the uncertain parameters are

on the Right Hand Side (RHS) 𝒃𝒃. The vector 𝝂𝝂 represents, within the DMFM model, the fluxes of

the reactions composing the metabolic network. Thus, the robust EMPC problem consists in

solving a bi-level optimization in the presence of uncertainty in the RHS of the constraints of the

inner level, i.e. in terms of deviations 𝛥𝛥𝒃𝒃.

Generally, nonlinear terms arise in the original inner LP optimization in equation (3.9) when

uncertainty is considered. For instance, if a function of 𝑏𝑏𝑖𝑖 is formulated as this form:

𝑏𝑏𝑖𝑖 =
𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝜓𝜓𝑖𝑖
𝐾𝐾 + 𝜓𝜓𝑖𝑖

 (3.12)

where 𝐾𝐾 is assumed to be a constant parameter while 𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 is uncertain. At the beginning of any

sampling interval, if 𝜓𝜓𝑖𝑖 = 𝜓𝜓𝚤𝚤��� + 𝛥𝛥𝜓𝜓𝑖𝑖. The substitution of these uncertain values into a Monod type

kinetic term, that is typically used to describe the bounds (RHS) on consumption/production rates

of metabolites, can be easily split into a nominal term plus a perturbation as follows:

𝑏𝑏𝚤𝚤� + 𝛥𝛥𝑏𝑏𝑖𝑖 =
𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝜓𝜓𝚤𝚤���

𝐾𝐾 + 𝜓𝜓𝚤𝚤���
+

𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝛥𝛥𝜓𝜓𝑖𝑖
(𝐾𝐾 + 𝜓𝜓𝚤𝚤���)(𝐾𝐾 + 𝜓𝜓𝚤𝚤��� + 𝛥𝛥𝜓𝜓𝑖𝑖)

 (3.13)

Although 𝛥𝛥𝑏𝑏𝑖𝑖 is nonlinear from (3.13), using the fact that 𝐾𝐾 ≥ 0, 𝝂𝝂 ≥ 0 and 𝜓𝜓𝑖𝑖 ≥ 0, it is possible

to that the perturbation of 𝑏𝑏𝑖𝑖 is linear with respect to the uncertainty of concentration 𝜓𝜓𝑖𝑖 since the

partial derivative of 𝛥𝛥𝑏𝑏𝑖𝑖 with respect of 𝛥𝛥𝜓𝜓𝑖𝑖 is positive:

𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝛥𝛥𝜓𝜓𝑖𝑖

=
𝐾𝐾𝜐𝜐𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

(𝐾𝐾 + 𝜓𝜓𝑖𝑖)2
≥ 0 (3.14)

The positivity of the derivative according to (3.14) is crucial since it implies that the extreme values

of the metabolites 𝜓𝜓𝑖𝑖 occur at the extreme values of the perturbations 𝛥𝛥𝑏𝑏𝑖𝑖. Thus, the bounds of the

metabolite’s concentrations can be obtained by substituting the extreme values of the deviations

𝛥𝛥𝑏𝑏𝑖𝑖 into the linear equations valid for each tableau. This result can be extended to the entire vector

describing the RHS of the inequality constraints in the LP problem as follows:

 𝒃𝒃 = 𝒃𝒃� + 𝛥𝛥𝒃𝒃 (3.15)

 34

d

EMPC Process

Model

Figure 3.1 The control process in one time interval

A strategy is formulated in this work to solve the min-max problem in presence of uncertainty.

This strategy requires the nonlinear terms arising from uncertainty to be approximated by

linearized equations at each time interval. Then the maximum and minimum states and cost of the

DMFM in the presence of uncertainty in the RHS terms of the LP can be calculated by the

following sequence:

i. Calculate the uncertainty range �𝛥𝛥𝝂𝝂|𝛥𝛥𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 ,𝛥𝛥𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜�, i.e. maximum variations in the fluxes

and cost.

ii. Conduct the outer optimization for the maximal variations in states obtained in step i.

iii. Integrate the concentrations one step ahead using the minimum and maximum values of

the states resulting from the variations in the states calculated in step ii in combination with

the Euler integrations of the equation that defined in (3.10).

iv. Go back to step i.

Step i involving the propagation of the parametric uncertainty onto the states is the most

challenging one (Findeisen et al., 2003; Lucia et al., 2013; Lalo Magni & Scattolini, 2010).

Therefore, establishing a method for this uncertainty propagation step is the key emphasis of this

chapter. Step 1 requires a sensitivity analysis on RHS, since the goal is to investigate the effect of

RHS on the states. A novel convex cone method is proposed in this thesis as an efficient RHS

sensitivity analysis that is based on the generation of a map of the optimization solutions in the

space defined by the RHS vector of the LP problem (DMFM) as explained further below in this

Chapter.

 35

To simplify the problem the function in RHS 𝒃𝒃 are assumed to be positive linear or have been

approximated into a linearized positive form. LP problems such as the one in the inner optimization

in equation (3.7) are solved, as discussed in Chapter 2, by finding an active set of constraints for

particular values of the RHS of the constraints. However, in the presence of uncertainty in the

RHS, many solutions may arise corresponding to many possible active sets. Each active set define

a linear problem for which the uncertainty can be easily propagated by a set of linear equations.

Thus, although the problem for each active set of constraints is linear, in the presence of uncertainty

the overall problem is nonlinear since it involves solutions for different active sets of constraints.

Following the explanations given above related to the block diagram in Figure 3.1 the disturbances

and/or uncertainty 𝒅𝒅 are lumped together since their effect is to cause a nonzero feedback signal

back to the EMPC controller. The lumped effect due to disturbance and model uncertainty is

denoted in the rest of the chapter by the uncertainty symbol 𝛥𝛥, if not otherwise specified.

3.2 Sensitivity Analysis of the RHS of the LP problem (DMFM)

As discussed in the previous section, the sensitivity analysis of the RHS is the basis for the

propagation of uncertainty in the LP. As shown above, it is assumed that the nonlinear terms arising

from the introduction of uncertainty are of bilinear form and can be properly bounded as shown in

equation (3.15). Thus the problem boils down to assess the changes in the solution of the LP to

simultaneous changes in RHS.

The sensitivity analysis of RHS is mainly depending on finding a set of tableaus where in each one

of them the shadow prices remains constant and can be used for evaluation of the effect of changes

in 𝑏𝑏𝑖𝑖 (elements of the vector defining the RHS of the LP) on 𝑍𝑍. Thus, the shadow prices, which

are the partial derivative of 𝑍𝑍 with respect of 𝒃𝒃, remain constant within each tableau where the

latter correspond to a specific active set of constraints. The shadow prices can be organized into a

Jacobian matrix of 𝑍𝑍 or 𝒙𝒙 with respect to changes in 𝒃𝒃. Since the LP representing the dynamic

metabolic flux model represents a strategy of the cell to allocate resources to optimize a particular

biological objective, the different tableaus obtained for a particular range of uncertainty in the RHS

can be viewed as representing different strategies adopted by the cell to optimize its biological

objective.

 36

In the following section key concepts and methods to perform sensitivity analysis of the LP

solution with respect to changes in the RHS of the constraints will be introduced. Then, a series of

lemmas and proofs will be given to support the proposed sensitivity analysis approaches. Finally,

two novel methods of sensitivity analyses of RHS space will be formulated and investigated.

3.2.1 Introduction and Motivation

In this section some key concepts and approaches will be described intuitively with figures for

clarity of the presentation.

Fig. 3.2 illustrates the solution space of an LP that involves only two inequalities corresponding to

RHS elements 𝑏𝑏1 and 𝑏𝑏2. The rectangle in Fig. 3.2 represents the region of uncertainty in the RHS

at a particular time interval as defined by maximal deviations in 𝑏𝑏1 and 𝑏𝑏2.

Figure 3.2 Uncertainty region and distribution of tableau regions in RHS space

It is first hypothesized, and later proven in section 3.2.2, that different regions of solutions of the

LP problem can be identified in the space described by the elements of the RHS 𝑏𝑏𝑖𝑖’s where each

such region correspond to a specific tableau of the LP problem. Thus, it will be shown that the

regions of solutions, each corresponding to a tableau, can be described in the RHS space by a series

of adjacent non-overlap cones, e.g. 𝑻𝑻𝑻𝑻𝟏𝟏 to 𝑻𝑻𝑻𝑻𝟒𝟒 in Fig. 3.2. The edges of each cones can be

described by the equations corresponding to each of the constraints at their equality limit 𝑒𝑒1 𝑒𝑒2 and

𝑒𝑒3. Then, since within each tableau region 𝑻𝑻𝑻𝑻𝒊𝒊 the shadow prices change linearly with respect to

𝑒𝑒1 𝑒𝑒2 𝑻𝑻𝑻𝑻𝟏𝟏 𝑻𝑻𝑻𝑻𝟐𝟐

𝑻𝑻𝑻𝑻𝟑𝟑

𝑏𝑏1

𝑏𝑏2

𝑶𝑶

𝓅𝓅2

𝓟𝓟𝟏𝟏

𝑻𝑻𝑻𝑻𝟒𝟒

𝑒𝑒3 𝓅𝓅3

𝓅𝓅4

𝓅𝓅1

𝓟𝓟𝟐𝟐

𝓟𝓟𝟑𝟑

𝓅𝓅5

uncertainty

region →

 37

changes in the RHS and the basic solutions remain constant, the effect of changes in the RHS on

the cost can be easily calculated. Thus, it is crucial to identify the regions corresponding to each

tableau, , i.e. 𝓟𝓟𝟏𝟏 , 𝓟𝓟𝟐𝟐 and 𝓟𝓟𝟑𝟑 for each corresponding tableaus, within the uncertainty region

(rectangle in Fig 3.2) since it provides and efficient way of quantifying the effect of uncertainty

on the cost 𝑍𝑍.

For example, in Fig. 3.2 there are 5 different vertices 𝓅𝓅1 to 𝓅𝓅5 for the uncertainty region 𝓟𝓟𝟐𝟐

within the total uncertainty region described by the rectangle in the Figure. As shown later in the

chapter these vertices can be efficiently calculated from the intersections of the maximal

uncertainty region with the equations corresponding to the inequality constraints at their equality

limit. Since the shadow prices are linear inside 𝓟𝓟𝟐𝟐, it is straightforward to obtain the maximum

and minimum values of the cost 𝑍𝑍 as well as each of the basic solutions 𝒙𝒙 in this tableau by solving

a set of linear equations with respect to changes in the values of the elements of 𝒃𝒃.

After calculating extreme (maximum/minimum) values of metabolites and costs within each

tableau it is proposed to assign a particular probability for each of the solutions to occur. If the

possible range of parameters values defining a particular tableau is defined as 𝑷𝑷𝑻𝑻𝑻𝑻𝒊𝒊 , then, the

possibility of any solution within 𝑻𝑻𝑻𝑻𝒊𝒊 is also can be obtained as:

𝑃𝑃𝑇𝑇𝑇𝑇𝑖𝑖 =
𝑉𝑉𝒫𝒫𝑖𝑖

∑ 𝑉𝑉𝒫𝒫𝑖𝑖
𝒦𝒦𝑅𝑅𝑅𝑅
𝑖𝑖=1

 (3.16)

under the assumption of uniform probability distribution of parameters, i.e. uniform distribution

of 𝒃𝒃 in the RHS space, where the number of active tableaus in the uncertainty region is 𝒦𝒦𝑅𝑅𝑅𝑅 = 3

in this situation. The detailed description of this procedure will be further detailed in section 3.2.4.

It should be noticed that although the 100% rule is a well-established tool for sensitivity analysis

with respect to changes in the RHS, it is only necessary and not sufficient. Thus, it will be shown

by an example in section 3.2.3 that the 100% rule is inefficient for uncertainty propagation as

required in this thesis.

Following the above arguments, the main goal is to generate the different regions in the RHS

variable space where each such region corresponds to a tableau. Finding the distribution of these

regions in the RHS space will be referred heretofore as generating an RHS map While this task is

relatively straightforward in the two dimensional example given above, it becomes significantly

more complex in higher dimensions.

 38

(b)

(a)

Figure 3.3 Distribution of two tableaus in a 3 dimensions RHS map

To illustrate the complexities associated with generating an RHS map in higher dimensions, a

problem with 3 inequality constraints is used for illustration. The axes in Fig. 3.3 correspond to

each one of the RHS bounds, i.e. 𝑏𝑏1, 𝑏𝑏2 and 𝑏𝑏3, for each of the 3 inequalities considered in this

illustrative problem. A main difficulty is that the cones that describe the region corresponding to

each tableau in the RHS space are not necessarily convex in higher dimensions. The reason that

convexity is lost derives from the occurrence of overlaps between regions delimited by the

constraints of the problem. It is imperative to address this overlap since counting specific regions

more than once will introduce error in the probability calculation given by equation (3.16).

An instance of two tableaus in a 3 dimensions RHS map is illustrated in Fig. 3.3 and corresponding

projections in Fig. 3.4. In Fig. 3.3(a), two tableau regions are shown with different colors, the 𝑻𝑻𝑻𝑻𝟏𝟏

is in orange and the 𝑻𝑻𝑻𝑻𝟐𝟐 is in blue. Fig. 3.3(b) is the right side view of Fig. 3.3(a); it is obvious

that in Fig. 3.3(b) although 𝑻𝑻𝑻𝑻𝟏𝟏 is not a convex polyhedron it can be described by 3 different

convex cones to be referred to as sub-cones in the following discussion. Fig. 3.4 describes the

procedure for generating these sub-cones generated:

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟐𝟐

𝑏𝑏1

𝑏𝑏2

𝑶𝑶

𝑏𝑏3

𝑻𝑻𝑻𝑻𝟏𝟏 𝑻𝑻𝑻𝑻𝟐𝟐

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟏𝟏

 39

i. In Fig. 3.4(a), the two constraints 𝑒𝑒1 and 𝑒𝑒2 divide the space into two polyhedrons 𝓟𝓟𝟏𝟏 and

𝓟𝓟𝟐𝟐. The shadow price strategy corresponding to tableau 1 (𝑻𝑻𝑻𝑻𝟏𝟏) is used to obtain a feasible

solution for both 𝓟𝓟𝟏𝟏 and 𝓟𝓟𝟐𝟐, but the shadow price strategy corresponding to tableau 2

(𝑻𝑻𝑻𝑻𝟐𝟐) is used to obtain a feasible solution in 𝓟𝓟𝟏𝟏 only. Thus, the region 𝓟𝓟𝟏𝟏 is an overlap

region. Since the initial polyhedron of 𝑻𝑻𝑻𝑻𝟏𝟏 and 𝑻𝑻𝑻𝑻𝟐𝟐 will be shown by a proof in section

3.2.2 to be convex, 𝓟𝓟𝟏𝟏 is an intersection of two convex polyhedron and thus 𝓟𝓟𝟏𝟏 is

guaranteed to be convex. However, 𝓟𝓟𝟐𝟐 is the result of the subtraction of a convex

polyhedron from another convex polyhedron, which cannot guarantee to be convex.

Therefore, two different strategies need to be applied for overlap region 𝓟𝓟𝟏𝟏 and the non-

convex region 𝓟𝓟𝟐𝟐, respectively.

ii. Fig. 3.4(b) shows the two different strategies that are applied for 𝓟𝓟𝟏𝟏 and 𝓟𝓟𝟐𝟐. For 𝓟𝓟𝟏𝟏, a

new constraint 𝑒𝑒3 is added and then the side of this constraint that results in a better

optimum is identified by the shadow price strategy. In this example, 𝑒𝑒3 is dividing 𝓟𝓟𝟏𝟏 into

𝓟𝓟𝟑𝟑 and 𝓟𝓟𝟒𝟒, and the superior optimal solution strategy is identified to belong to 𝑻𝑻𝑻𝑻𝟐𝟐 for

𝓟𝓟𝟑𝟑 and 𝑻𝑻𝑻𝑻𝟏𝟏 to 𝓟𝓟𝟒𝟒. Similarly for 𝓟𝓟𝟐𝟐, one of the edge constraints 𝑒𝑒1 is extended to obtain

two convex polyhedrons 𝓟𝓟𝟓𝟓 and 𝓟𝓟𝟔𝟔 where both of them belong to Tableau 𝑻𝑻𝑻𝑻𝟏𝟏.

iii. Fig. 3.4(c) shows that the overlap region and 𝓟𝓟𝟓𝟓 and 𝓟𝓟𝟔𝟔 have been allocated as follows:

 𝑻𝑻𝑻𝑻𝟐𝟐 = {𝓟𝓟𝟑𝟑}, and 𝑻𝑻𝑻𝑻𝟏𝟏 = {𝓟𝓟𝟒𝟒,𝓟𝓟𝟓𝟓 ,𝓟𝓟𝟔𝟔}

The theoretical basis and the detailed steps of the procedure outlined above are further described

in 3.2.2 and 3.2.4.

(a) (b) (c)

Figure 3.4 Procedure of the sub-cones generating

𝑒𝑒1

𝑒𝑒2
𝓟𝓟𝟏𝟏

𝓟𝓟𝟐𝟐

𝓟𝓟𝟑𝟑

𝓟𝓟𝟒𝟒
𝑒𝑒3

𝓟𝓟𝟓𝟓

𝓟𝓟𝟔𝟔

𝑒𝑒1

𝑻𝑻𝑻𝑻𝟐𝟐

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟏𝟏

 40

3.2.2 Map of RHS

In this section the method for generating the map of regions in the RHS space, each corresponding

to a tableau, is presented. Using the notation presented in Chapter 2, the standard simplex form of

an LP problem is as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔� (3.17)

s. t.

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃 (3.18)

�
𝒙𝒙
𝒙𝒙𝒔𝒔� ≥ 0, 𝒃𝒃 ≥ 0

𝒙𝒙𝒔𝒔 = �

𝑥𝑥𝑠𝑠1
𝑥𝑥𝑠𝑠2
⋮

𝑥𝑥𝑠𝑠𝑠𝑠

� = �

𝑥𝑥𝑛𝑛+1
𝑥𝑥𝑛𝑛+2
⋮

𝑥𝑥𝑛𝑛+𝑚𝑚

�
 (3.19)

where 𝑰𝑰 is 𝑚𝑚 × 𝑚𝑚 identity matrix, 𝒙𝒙𝒔𝒔 is a column vector of slack variables that is used to obtain

the augmented form of the problem where inequalities are converted into equalities and 𝒃𝒃 is a

column vector of 𝑚𝑚 dimensional inequalities.

Definition 1. An LP sensitivity analysis function where this function mapping is the solution of

the cost function 𝑍𝑍 is represented as 𝒵𝒵(𝒃𝒃):𝑅𝑅𝑅𝑅 → ℝ, where 𝑅𝑅𝑅𝑅 ⊆ ℝ𝑚𝑚+ is the RHS space of 𝒃𝒃,

∀𝑏𝑏𝑖𝑖 ∈ ℝ+, 𝑖𝑖 = 1, 2, . . ., 𝑚𝑚.

The basic solutions of a specific tableau are the solutions of the 𝑚𝑚 equations in (3.18), where 𝑛𝑛

nonbasic variables 𝒙𝒙𝑵𝑵𝑵𝑵 from the 𝑛𝑛 + 𝑚𝑚 elements of �
𝒙𝒙
𝒙𝒙𝒔𝒔� are eliminated by equating them to zero

which leaves a set of 𝑚𝑚 equations in 𝑚𝑚 unknowns where the latter are referred to as the basic

variables. This set of equations that is used to solve the basic variables is represented as follows:

𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒃𝒃 (3.20)

where the vector of basic variables

 𝒙𝒙𝑩𝑩 = �

𝑥𝑥𝐵𝐵1
𝑥𝑥𝐵𝐵2
⋮

𝑥𝑥𝐵𝐵𝐵𝐵

�

is obtained by eliminating the nonbasic variables from �
𝒙𝒙
𝒙𝒙𝒔𝒔�, and the basis matrix

 41

𝑩𝑩 = �
𝐵𝐵11 ⋯ 𝐵𝐵1𝑚𝑚
⋮ ⋱ ⋮

𝐵𝐵𝑚𝑚1 ⋯ 𝐵𝐵𝑚𝑚𝑚𝑚

�

is generated by eliminating the coefficients multiplying the nonbasic variables from the matrix

[𝑨𝑨 𝑰𝑰] . Then, using this standard formulation, the Simplex procedure can be applied as discussed

in Chapter 2 using the pivoting concept to obtain the basic variables. After completing the Simplex

procedure, the inverse matrix 𝑩𝑩−1 of the resulting matrix 𝑩𝑩 is obtained, and the solution for the

basic variables 𝒙𝒙𝑩𝑩 and the solution 𝑍𝑍 of the cost function is computed as per the following

equations:

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1𝒃𝒃 (3.21)

𝑍𝑍 = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒄𝒄𝑩𝑩𝑩𝑩−1𝒃𝒃 (3.22)

where, 𝒄𝒄𝑩𝑩 is a vector which elements are the objective function coefficients, including zeros added

to multiply the slack variables in the objective.

However, in the presence of uncertainty in b the map from 𝑍𝑍 to 𝑅𝑅𝑅𝑅 given by Definition 1 as

𝑍𝑍 = 𝒵𝒵(𝒃𝒃) = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩 (3.23)

 may result in more than one combination (more than one tableau), i.e. more than one 𝒙𝒙𝑩𝑩 from

which all possible combination of 𝑿𝑿, i.e. 𝑿𝑿𝒑𝒑, can meet same 𝑍𝑍 at same 𝑅𝑅𝑅𝑅 point, where 𝑿𝑿 = �
𝒙𝒙
𝒙𝒙𝒔𝒔�

such that �𝑥𝑥𝑗𝑗�𝑥𝑥𝑗𝑗 ∈ 𝒙𝒙𝑵𝑵𝑵𝑵� = 0 and (𝑥𝑥𝑠𝑠𝑠𝑠|𝑥𝑥𝑠𝑠𝑠𝑠 ∈ 𝒙𝒙𝑵𝑵𝑩𝑩) = 0 (𝑖𝑖 relates to the number of inequality

constraint 𝑖𝑖 = 1, … ,𝑚𝑚), 𝑗𝑗 = 1, 2, . . ., 𝑛𝑛, ∀𝑿𝑿 ∈ ℝ(𝑚𝑚+𝑛𝑛)+, ∀𝑋𝑋𝑘𝑘 ∈ ℝ+, 𝑘𝑘 = 1, 2, . . ., 𝑚𝑚 + 𝑛𝑛.

Definition 2. A matrix generating function 𝒳𝒳(𝒃𝒃):𝑅𝑅𝑅𝑅 → ℝ𝑚𝑚×𝒞𝒞+, where 𝒞𝒞 = 𝐶𝐶𝑚𝑚+𝑛𝑛
𝑚𝑚 , the result of

this function is a (𝑚𝑚 + 𝑛𝑛) by 𝒞𝒞 matrix which column vectors are in 𝑿𝑿𝒑𝒑 (all the possible solutions)

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = �

𝒙𝒙
𝒙𝒙𝒔𝒔� . Thus 𝑋𝑋𝑛𝑛𝑛𝑛

𝑝𝑝 is one of the possible solution vector corresponding to a point 𝒃𝒃 in 𝑅𝑅𝑅𝑅, i.e.

∀𝑋𝑋𝑛𝑛𝑛𝑛
𝑝𝑝 ∈ 𝑿𝑿𝒑𝒑, 𝑛𝑛𝑛𝑛 = 1, 2, … ,𝒞𝒞.

 Then, the cost corresponding to each possible solution is:

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝

such that 𝑿𝑿𝒑𝒑 = 𝒳𝒳(𝒃𝒃), and ∀�𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 �𝒳𝒳(𝒃𝒃)� ∈ �𝑍𝑍𝑝𝑝�𝒳𝒳(𝒃𝒃)�

(3.24)

where 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝑓𝑓𝑇𝑇𝑛𝑛𝑛𝑛([−𝒄𝒄 𝟎𝟎]), i.e. 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 is the coefficients of the vector [−𝒄𝒄 𝟎𝟎] which multiply

nonzero 𝑥𝑥 values of a solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 .

 42

Definition 3. Any possible solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 obtained for a particular element of 𝒃𝒃 from 𝑅𝑅𝑅𝑅

corresponds to a certain tableau 𝑇𝑇𝑛𝑛𝑛𝑛, 𝑇𝑇𝑛𝑛𝑛𝑛 ∈ ℝ1×𝑚𝑚, is a row vector which elements describe the

indices of the nonzero variables (basic variables 𝒙𝒙𝑩𝑩) in the solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 . For instance, if 𝑿𝑿 have 4

elements, and the 𝒙𝒙𝑩𝑩 of 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 is the first and fourth elements from 𝑿𝑿, then 𝑇𝑇𝑛𝑛𝑛𝑛 = [1 4]. For this

simple example, 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 defined in Definition 2 is a row vector that contains the first and fourth

element of the vector [−𝒄𝒄 𝟎𝟎] followed by 𝑚𝑚 zeros, i.e. 𝑚𝑚 is the number of slack variables

(inequality constraints in the problem).

Additionally, from equation (3.18), we can easily get all possible solutions 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 for 𝓣𝓣 tableau based

on Definition 3 as follows:

𝑨𝑨𝒑𝒑𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒃𝒃 (3.25)

where 𝑨𝑨𝒑𝒑 ∈ ℝ𝑚𝑚×𝑚𝑚 is the square matrix corresponding to 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , such that 𝑨𝑨𝒑𝒑 = 𝑓𝑓𝑇𝑇𝑛𝑛𝑛𝑛([𝑨𝑨 𝑰𝑰]), where

the square matrix 𝑨𝑨𝒑𝒑 is selected by extracting the number 𝒾𝒾 columns from [𝑨𝑨 𝑰𝑰], where 𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛,

i.,e by considering only the columns of A that are multiplying basic variables 𝒙𝒙𝑩𝑩 of the solution.

Theorem 1. Let 𝑅𝑅𝑅𝑅 be the set of all vectors 𝒃𝒃, where 𝒃𝒃 is referred to as a specific point in space

𝑅𝑅𝑅𝑅, i.e. a particular combination of possible 𝑏𝑏𝑖𝑖 values. Let assume that 𝑨𝑨 and 𝒄𝒄 are constant and

that the elements in the vector 𝒃𝒃 are linearly independent. For ∀𝒃𝒃 ∈ 𝑅𝑅𝑅𝑅, at least one column vector

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 of the 𝑿𝑿𝒑𝒑 from 𝒳𝒳(𝒃𝒃), i.e. tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , exist that satisfies the corresponding cost function

solution 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒵𝒵(𝒃𝒃), i.e. an optimal solution.

Proof. Applying Cramer's Rule (Poole, 2014) to equation in (3.25) for a specific type tableau 𝑇𝑇𝑛𝑛𝑛𝑛:

𝒙𝒙𝑖𝑖 =
det�𝑨𝑨𝒊𝒊

𝒑𝒑�
det(𝑨𝑨𝒑𝒑)

(3.26)

where 𝒙𝒙𝑖𝑖 is a column vector corresponding to one of the possible optimal solution matrix 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 =

[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚]𝑇𝑇 = ��
𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, 𝑛𝑛𝑛𝑛 = 1, 2, … ,𝒞𝒞, 𝑨𝑨𝒊𝒊
𝒑𝒑 is the matrix formed by replacing the number 𝑖𝑖

column of 𝑨𝑨𝒑𝒑 by the column vector 𝒃𝒃. Thus, 𝑨𝑨𝒊𝒊
𝒑𝒑 is in terms of 𝑨𝑨𝒑𝒑 and 𝒃𝒃, additionally, 𝑨𝑨𝒑𝒑 =

([𝑨𝑨 𝑰𝑰])𝑇𝑇𝑛𝑛𝑛𝑛 . Since 𝑨𝑨 is constant for a specific tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , then 𝑥𝑥𝑖𝑖 and consequently 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 are

functions of 𝒃𝒃. This function can be represented as follows:

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) (3.27)

 43

Meanwhile, Definition 3 indicated that there are at a set of 𝑇𝑇𝑛𝑛𝑛𝑛 in the 𝑅𝑅𝑅𝑅 region where the latter is

defined in Definition 1. From (3.24) and (3.27), for a specific vector 𝒃𝒃:

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) (3.28)

Thus, there are 𝒞𝒞 potential optimal solution 𝑿𝑿𝒑𝒑 corresponding to 𝒁𝒁𝒑𝒑 in terms of 𝒃𝒃. As the goal of

an LP program is to find a minimum value of 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 in 𝒁𝒁𝒑𝒑 then:

𝒵𝒵(𝒃𝒃) = min
𝓣𝓣

𝒁𝒁𝒑𝒑

𝓣𝓣 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝒞𝒞},𝒁𝒁𝒑𝒑 = �𝑍𝑍1
𝑝𝑝,𝑍𝑍2

𝑝𝑝, … ,𝑍𝑍𝒞𝒞
𝑝𝑝�

(3.29)

Thus for ∀𝒃𝒃 ∈ 𝑅𝑅𝑅𝑅, ∃𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 ∈ 𝑿𝑿𝒑𝒑 such that 𝑍𝑍𝑛𝑛𝑛𝑛

𝑝𝑝 = 𝒵𝒵(𝒃𝒃). □

Theorem 1 shows that for an LP problem when the matrix 𝑨𝑨 and vector 𝒄𝒄 are constant, certain

point 𝒃𝒃 in the space of RHS, i.e. 𝑅𝑅𝑅𝑅 region, would always result in at least one specific tableau

𝑇𝑇𝑛𝑛𝑛𝑛, where shadows prices 𝑩𝑩−1 and basic solutions 𝒙𝒙𝑩𝑩 can be determined. If there is more than

one tableau that satisfies the optimal solution 𝒵𝒵(𝒃𝒃) at the same point 𝒃𝒃 of the 𝑅𝑅𝑅𝑅 region, then this

region is referred as an overlap region

Remark: it is assumed in this work that a condition where more than one 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 satisfies a same set

of vectors 𝒃𝒃 as well as 𝑍𝑍 in a corresponding 𝑅𝑅𝑅𝑅 region will not be occurred. If such situation is

encountered in future studies, the condition should be identified, and procedure should be

developed to address it.

Definition 4. The function 𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1, 𝑐𝑐𝑐𝑐𝑐𝑐) = 𝒫𝒫2 + 𝒫𝒫3, where 𝑐𝑐𝑐𝑐𝑐𝑐 is a constraint that may divide

a polyhedron 𝒫𝒫1 into two sub-tableaus 𝒫𝒫2 and 𝒫𝒫3.

Also, 𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1) are the constraints that bound the polyhedron 𝒫𝒫1. There is at most only one empty

polyhedron in {𝒫𝒫2,𝒫𝒫3}, where an empty polyhedron is defined as one for which there is no feasible

solution for a given set of constraints. The procedure of the function 𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1, 𝑐𝑐𝑐𝑐𝑐𝑐) :for generating

sub-tableaus (see Section 3.1.1) is as follows:

i. Generate another constraint as the negative of the constraint 𝑐𝑐𝑐𝑐𝑐𝑐, i.e. – 𝑐𝑐𝑐𝑐𝑐𝑐.

ii. Then 𝒫𝒫2 ≜ {𝒞𝒞𝑜𝑜𝑜𝑜(𝒫𝒫1), 𝑐𝑐𝑐𝑐𝑐𝑐} and 𝒫𝒫3 ≜ {𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1),−𝑐𝑐𝑐𝑐𝑐𝑐} . If 𝒫𝒫1 is a convex polyhedron,

then it can be guaranteed that 𝒫𝒫2 and 𝒫𝒫3 are also convex.

 44

Figure 3.5 The convex cone 𝓥𝓥 (shown shaded) of set 𝓥𝓥��⃗

Lemma 1. If a polyhedron is defined by a set of constraints as in (3.30), where 𝜶𝜶 ∈ ℝ1×𝑚𝑚 is a row

vector with 𝑚𝑚 coefficients, 𝒃𝒃 ∈ ℝ𝑚𝑚×1, then this polyhedron is a convex cone.

𝜶𝜶𝒃𝒃 ≤ 0 (3.30)

Proof. A convex cone 𝓥𝓥 is an affine set space (a space generated by affine vectors 𝒱𝒱�⃗ 𝓀𝓀 that start

from the origin 𝑶𝑶), which is defined by a set 𝓥𝓥��⃗ of vector 𝒱𝒱�⃗ 𝓀𝓀 (Berger, Pansu, Berry, & Saint-

Raymond, 2013), as what have been shown in function (3.31) and the shaded pie slice in Fig. 3.5.

�� 𝜃𝜃𝓀𝓀𝒱𝒱�⃗ 𝓀𝓀
𝓀𝓀=1

� 𝒱𝒱�⃗ 𝓀𝓀 ∈ 𝓥𝓥,𝜃𝜃𝓀𝓀 ≥ 0,𝓀𝓀 = 1,2,3, … �

(3.31)

If the polyhedron defined by (3.30) is not an affine set space, there must be at least an affine vector

in 𝑅𝑅𝑅𝑅 passing across a point (𝑏𝑏𝑜𝑜𝑜𝑜) on the constraint and crossing through a point either inside (𝑏𝑏𝑖𝑖𝑖𝑖)

or outside (𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜) of the polyhedron 𝒫𝒫. Let assume the vector 𝑏𝑏𝑜𝑜𝑜𝑜������⃗ defined by 𝑏𝑏𝑜𝑜𝑜𝑜 and the vector

𝑏𝑏𝚤𝚤𝚤𝚤�����⃗ defined by 𝑏𝑏𝑖𝑖𝑖𝑖 are collinear with each other, then is ∃𝜆𝜆 ∈ ℝ, such that:

𝑏𝑏𝑜𝑜𝑜𝑜������⃗ = 𝜆𝜆𝑏𝑏𝚤𝚤𝚤𝚤�����⃗ (3.32)

Since 𝑏𝑏𝑜𝑜𝑜𝑜 is on the constraints (3.30), then vector 𝑏𝑏𝑜𝑜𝑜𝑜������⃗ must satisfies:

𝜶𝜶𝑏𝑏𝑜𝑜𝑜𝑜������⃗ = 0 (3.33)

𝑏𝑏𝑖𝑖𝑖𝑖

𝑏𝑏𝑜𝑜𝑜𝑜

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜

𝓥𝓥

𝓥𝓥��⃗
𝜃𝜃𝓀𝓀𝒱𝒱�⃗ 𝓀𝓀

𝑶𝑶

 45

Substituting (3.32) into (3.33), then 𝜆𝜆𝜶𝜶𝑏𝑏𝚤𝚤𝚤𝚤�����⃗ = 0 ⇒ 𝜶𝜶𝑏𝑏𝚤𝚤𝚤𝚤�����⃗ = 0.Thus, the point 𝑏𝑏𝑖𝑖𝑖𝑖 is also on the

boundary of the polyhedron, which contradicts the definition of 𝑏𝑏𝑖𝑖𝑖𝑖 that was assumed to be a point

within 𝒫𝒫. So, there is no affine vector across 𝒫𝒫, all vector 𝒱𝒱�⃗ 𝓀𝓀 would be either inside or outside of

this cone. Therefore, the polyhedron 𝒫𝒫 bounded by the constraints in (3.30) is a convex cone. □

The following theorem is given to provide a theoretical basis for the generation of the map of

tableaus 𝑇𝑇𝑛𝑛𝑐𝑐 in 𝑅𝑅𝑅𝑅.

Theorem 2. Let 𝑅𝑅𝑅𝑅 be the set of all vectors 𝒃𝒃, where 𝒃𝒃 is referred to as an explicit point in RHS

space 𝑅𝑅𝑅𝑅 . Let assume that 𝑨𝑨 and 𝒄𝒄 have constant elements and the elements in vector 𝒃𝒃 are

linearly independent. For ∀𝒃𝒃 ∈ 𝑅𝑅𝑅𝑅, the distribution region of each 𝑇𝑇𝑛𝑛𝑛𝑛, i.e. 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛, is a polyhedral

region that can be described as a set of convex cones 𝐶𝐶𝐶𝐶 and the pointwise supreme of this set is

also convex.

Proof. As discussed for equation (3.28), for a specific tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , a corresponding solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝

is a function of 𝒃𝒃. Then using (3.27), the function ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) is given as follows:

ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) = 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃

𝜶𝜶𝒏𝒏𝒏𝒏 = �
𝛼𝛼11 ⋯ 𝛼𝛼1𝑚𝑚
⋮ ⋱ ⋮

𝛼𝛼𝑚𝑚1 ⋯ 𝛼𝛼𝑚𝑚𝑚𝑚

�

(3.34)

where 𝜶𝜶𝒏𝒏𝒏𝒏 is a set of coefficients corresponding to the tableau 𝑇𝑇𝑛𝑛𝑛𝑛. Since, 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝜶𝜶𝜶𝜶, then for

each 𝑥𝑥𝑖𝑖 from 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 :

𝑥𝑥𝑖𝑖 = 𝜶𝜶𝒊𝒊𝒃𝒃 (3.35)

where 𝜶𝜶𝒊𝒊 is the 𝑖𝑖-th row vector from 𝜶𝜶𝒏𝒏𝒏𝒏, where each of the elements in 𝜶𝜶𝒊𝒊 can be calculated with

Cramer’s rule as follows:

(𝜶𝜶𝒊𝒊)𝒊𝒊 =
𝜕𝜕 �

det�𝑨𝑨𝒊𝒊
𝒑𝒑�

det(𝑨𝑨𝒑𝒑)�

𝜕𝜕𝑏𝑏𝑖𝑖
�

(3.36)

Since 𝒙𝒙𝑩𝑩 > 𝟎𝟎, then ∀𝑋𝑋𝑖𝑖 ≥ 0, from (3.36), then a subset of the constraints of the 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛, defined

as𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ , are given as follows:

−𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 0 (3.37)

By substitute (3.34) into (3.28), 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 of 𝑇𝑇𝑛𝑛𝑛𝑛 is obtained:

 46

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 (3.38)

Additionally, though many regions in 𝑅𝑅𝑅𝑅 with different 𝑇𝑇𝑛𝑛𝑛𝑛 are distinguished from each other by

using (3.37), there still occur considerable overlap between regions. To avoid the consideration of

regions more than once due to overlap, constraints are used that can explicitly divide the

overlapping region into subset, and allocate each of these subsets to a one 𝑇𝑇𝑛𝑛𝑛𝑛 . These additional

constraints that are needed to separate the overlapping regions are based on (3.28). Accordingly,

the additional constraint/s are added so as to obtain the minimum 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 possible among all possible

𝑇𝑇𝑛𝑛𝑛𝑛, i.e. 𝑇𝑇𝑖𝑖𝑖𝑖 ,𝑖𝑖𝑖𝑖 = 1,2, … ,𝒞𝒞; 𝑖𝑖𝑖𝑖 ≠ 𝑛𝑛𝑛𝑛, in each overlap region, where the overlap region is defined

as 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖=𝑇𝑇𝑇𝑇𝑛𝑛𝑐𝑐∗ ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ , the symbol ∗ means that this polyhedron has not been divided yet or tested

yet for all possible overlaps after computing constrains in (3.37). The set of all 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ is referred as:

 𝓣𝓣𝒊𝒊𝒊𝒊 = {𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ |𝑖𝑖𝑖𝑖 = 1,2, … ,𝒞𝒞; 𝑖𝑖𝑖𝑖 ≠ 𝑛𝑛𝑛𝑛}

and the set of other 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 in terms of 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ is referred as �𝑍𝑍𝑖𝑖𝑖𝑖

𝑝𝑝 |𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ � , thus the new necessary

constraints that are used to separate one tableau from another tableau is emerging as follows:

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 ≤ �𝑍𝑍𝑖𝑖𝑖𝑖

𝑝𝑝 |𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ � (3.39)

By substituting (3.38) in to (3.39) for only one constraint in (3.39):

𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 𝒄𝒄𝑖𝑖𝑖𝑖

𝑝𝑝 𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃 (3.40)

Or:

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏 − 𝒄𝒄𝑖𝑖𝑖𝑖

𝑝𝑝 𝜶𝜶𝒊𝒊𝒊𝒊�𝒃𝒃 ≤ 0 (3.41)

Thus, the use of constraints (3.41) results in a region to be divided into two sub-regions, where

one sub-region is defined as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,1 where (3.41) which constraints are as follows,

−𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 0

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏 − 𝒄𝒄𝑖𝑖𝑖𝑖

𝑝𝑝 𝜶𝜶𝒊𝒊𝒊𝒊�𝒃𝒃 ≤ 0

−𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃 ≤ 0

(3.42)

From (3.42), it is evident that all constraints can be converted into the following form:

𝜶𝜶𝒃𝒃 ≤ 0 (3.43)

where 𝜶𝜶 ∈ ℝ1×𝑚𝑚 , 𝒃𝒃 ∈ ℝ𝑚𝑚×1 . Based on the discussion in Lemma 1, the polyhedron that is

generated by constraint of the form of (3.43) is a convex cone.

 47

Hence, the resulting 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ from the division of overlap regions is also a convex cone. And 𝑂𝑂𝑅𝑅𝑖𝑖𝑖𝑖

(𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗) is also convex cone since it is the intersection of two convex cones.

However, another region defined by 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗2 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ − 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ , it is not necessarily convex, since it

is generated by the subtraction of one convex polyhedron from another convex polyhedron. Then,

as explained in an earlier section, the region resulting from the subtraction of two convex

polyhedrons, must be further divided into smaller convex sub-regions (sub-tableaus):

 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑘𝑘𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑐𝑐

∗2,2,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,3, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,(𝑚𝑚+1), 𝑘𝑘𝑘𝑘 = 2,3, … ,𝑚𝑚 + 1

by cutting off 𝑚𝑚 times the region to be divided with one of the constrains given by (𝜶𝜶𝒊𝒊𝒊𝒊)𝑖𝑖𝒃𝒃 ≤ 0

where each of these constraints is used only one time. The division of the non-convex region into

convex sub-regions is done by using the 𝒞𝒞𝒞𝒞𝒞𝒞 function given in definition 4:

𝒞𝒞𝒞𝒞𝒞𝒞�𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗𝑘𝑘𝑘𝑘, (𝜶𝜶𝒊𝒊𝒊𝒊)𝑖𝑖𝒃𝒃 ≤ 0� = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,𝑘𝑘𝑘𝑘 + 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗(𝑘𝑘𝑘𝑘+1) (3.44)

where 𝑖𝑖 = 𝑘𝑘𝑘𝑘 − 1. After completing this division process, the constraints that describe any one of

the resulting convex cones from 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑘𝑘𝑘𝑘 are given as follows:

−𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 0

𝝆𝝆𝒌𝒌𝒌𝒌 ⋅ (𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃) ≤ 0

(3.45)

where 𝝆𝝆𝒌𝒌𝒌𝒌 is the (𝑘𝑘𝑘𝑘 − 1)th column vector from 𝝆𝝆, which is an 𝑚𝑚 × 𝑚𝑚 upper triangular matrix:

𝝆𝝆𝒌𝒌𝒌𝒌 = (𝝆𝝆)𝑘𝑘𝑘𝑘−1, 𝝆𝝆 = �
1 −𝟏𝟏

⋱
𝟎𝟎 1

�

(3.46)

Hence (3.47) implies that all the constraints for any 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑘𝑘𝑘𝑘, i.e. 𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,𝑘𝑘𝑘𝑘�, define a set of

convex hulls. Then, using the constraints in (3.40) defined as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2−1, the resulting set of sub-

regions (sub-tableaus) is obtained as 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗𝟐𝟐 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,(𝑚𝑚+1)�. Thus, for each step

of the division of a non-convex region into convex sub-regions at most (𝑚𝑚 + 1) convex cones are

allocated to corresponding sub-tableaus 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈, 𝓇𝓇 = 1,2, … ,𝒞𝒞 − 1, 𝓈𝓈 = 1,2, … , (𝑚𝑚 + 1)𝓇𝓇.

The procedure of dividing each overlap region and generating new region of sub-tableaus 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈

in the 𝓇𝓇-th steps of procedure 𝚷𝚷 is summarized in Table 3.1:

a) Select basic tableau region 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ in 𝓣𝓣𝒊𝒊𝒊𝒊 that have not been used to divide and generate new
regions of sub-tableaus.

 48

b) Manipulating inner iteration (step i. to step ii) for (𝑚𝑚 + 1)𝓇𝓇 times:

i. Select one of the sub-tableaus 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈 that generated from former 𝓇𝓇-th steps 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝓇𝓇 and have

not been used to test overlap region in step b).

ii. Calculate 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗(𝓇𝓇+1),(𝓈𝓈∗2) = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗𝓇𝓇,𝓈𝓈 ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ , which generate one new convex cone region of
sub-tableau, and 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),𝓈𝓈 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈 − 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖∗ , which generate 𝑚𝑚 new convex cones region

of sub-tableau.

c) Let 𝓇𝓇 = 𝓇𝓇 + 1. Then, the set of tasting tableaus in next iteration 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗𝓻𝓻 = 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏
∗(𝓻𝓻+𝟏𝟏)

d) Loop step a) to step c), for 𝒞𝒞 − 1 times, then let 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 = 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏
∗(𝓻𝓻+𝟏𝟏).

Table 3.1 Whole procedure of procedure 𝚷𝚷

After applying one iteration from step a) to step c) of procedure 𝚷𝚷 (Table 1.) on 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗𝓻𝓻, a new set

of sub-tableaus is obtained as follows:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏
∗(𝓻𝓻+𝟏𝟏) = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗(𝓇𝓇+1),2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),(𝑚𝑚+1)(𝓇𝓇+1)
� (3.47)

Continuing iteration, the resulting set of sub-tableaus after 𝓇𝓇 steps of the 𝚷𝚷 procedure is referred

as:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝓇𝓇,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,(𝑚𝑚+1)𝓇𝓇� (3.48)

Thus, the constraints that define each element in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 , i.e. 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈, are of the following form:

−𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 0

�

𝜦𝜦1 ∙ 𝜞𝜞1
𝜦𝜦2 ∙ 𝜞𝜞2

⋮
𝜦𝜦𝒞𝒞−1 ∙ 𝜞𝜞𝒞𝒞−1

� ≤ 0,

(3.49)

where:

𝚲𝚲𝓇𝓇 = �
0
0
1
� or �

1
1
0
�, 𝜞𝜞𝓇𝓇 = �

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏 − 𝒄𝒄𝑖𝑖𝑖𝑖

𝑝𝑝 𝜶𝜶𝒊𝒊𝒊𝒊�𝒃𝒃
−𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃

𝝆𝝆𝒌𝒌𝒌𝒌 ∙ (𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃)
�, 𝑖𝑖𝑖𝑖 = 𝓇𝓇,and 𝝆𝝆𝒌𝒌𝒌𝒌 is the function with element as in

(3.46). It is evident that all the constraints in each 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈 are of the form (3.31) and thus, the

polyhedron that 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈) defines is a convex cone as per Lemma 1.

Additionally, although 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 cannot be guaranteed to be convex, the pointwise maximum and

minimum of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 is convex. Since if 𝑓𝑓1 and 𝑓𝑓2 are convex, then pointwise maximum 𝑓𝑓, which is

 49

defined by 𝑓𝑓(𝑥𝑥) = max{𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥)}, is also convex (Stephen Boyd & Vandenberghe, 2004).

That is: 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓻𝓻 = max �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝓇𝓇,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,(𝑚𝑚+1)𝓇𝓇� is convex. □

Remark: Although this proof is based on a generic nonnegative orthant, i.e. 𝒃𝒃 ≥ 𝟎𝟎, Theorem 2 is

still valid in each single orthant of the real number RHS space.

A map of RHS space can be generated by Theorem 2. In this map, the RHS space can be divided

into different set of convex cones, which correspond to different tableaus.

The following section discusses an additional approach for generating an RHS map based on the

100 percent rule.

3.2.3 100 Percent Rule: Theory and Limitations

As discussed in Chapter 2, the 100 Percent Rule is based on formula (2.16). Based on the 100%

rule for a specific tableau, the feasible range of change of each 𝑏𝑏𝑖𝑖 can be computed by using the

𝑩𝑩−1 that is obtained in (2.16). The 100 Percent Rule states than when the sum of the percentage

changes of all 𝑏𝑏𝑖𝑖 is smaller than 1 (100%) the solution of the LP can be calculated with the current

tableau. Thus, this method is generally used for analyzing the effect of simultaneous changes in

RHS space. However, this rule is only providing a necessary condition but not sufficient one since

it cannot provide a conclusive statement about the tableau if the sum does exceed 100 percent.

In this section, a method is proposed that can approximates the allowable feasibility region of 𝑏𝑏𝑖𝑖

for each tableau based on the 100 Percent Rule. In this case the allowable feasibility region refers

to the maximal range of simultaneous changes in parameters that are allowed for the LP to be

solved by the same tableau. In this sense, the proposed method will expand upon the original 100%

by approximating the entire region of feasibility rather than the limited region provided by the

necessary but not sufficient 100% rule.

The argument and description of the original 100 Percent Rule on RHS was introduced in (Bradley,

Hax, & Magnanti, 1977), where the Rule is formulated as:

�
∆𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

≤ 1

(3.50)

where ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the calculated feasible range of 𝑏𝑏𝑖𝑖 when only one of the 𝑏𝑏𝑖𝑖 are allowed to change.

For the application of the rule it is required that ∆𝑏𝑏𝑖𝑖 and ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 must have the same sign. Thus,

 50

the 100 Percent Rule is actually generating a convex hull in the RHS space where the feasible

solution is stable, i.e. it is obtained with the same tableau, with respect to changes of ∆𝑏𝑏𝑖𝑖. Then,

this convex hull can be calculated a series of simplexes around the normal (nominal) point 𝒃𝒃�.

Proof. To proof the mentioned property within a simple process, the changes in 𝑏𝑏𝑖𝑖 are defined in

terms of deviations with respect to the normal point 𝒃𝒃� where the latter is moved to the origin. Thus,

in each orthant the signs of each coefficients in 𝒃𝒃� are constant. In any one of the orthant, the

∆𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 defines a set of 𝑚𝑚 points along the axes as:

𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑰𝑰 ∆𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 (3.51)

Each of these points is represented by row vector in 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 and it is referred as 𝓹𝓹𝒊𝒊. Then, a simplex

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (convex hull) in this orthant is generated along with the original point 𝑶𝑶.

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = �𝜃𝜃𝑜𝑜𝑶𝑶 + �𝜃𝜃𝑖𝑖𝓹𝓹𝒊𝒊

𝑚𝑚

𝑖𝑖=1

� 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 = 1�

(3.52)

where 𝜃𝜃 ∈ ℝ(𝑚𝑚+1)×1, 𝜃𝜃𝑖𝑖 is the fraction of point 𝓹𝓹𝒊𝒊 in the mixture convex combination of the points

𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔. Since 𝜃𝜃𝑜𝑜𝑶𝑶 = 0, and 0 ≤ 𝜃𝜃𝑜𝑜 ≤ 1, (3.52) can be converted into:

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = ��𝜃𝜃𝑖𝑖𝓹𝓹𝒊𝒊

𝑚𝑚

𝑖𝑖=1

� 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1�

(3.53)

where 𝜃𝜃 ∈ ℝ𝑚𝑚×1, (3.51) is a set of the points that within the simplex generated region. Substitute

(3.51) into one point 𝒃𝒃 of (3.53):

𝒃𝒃 = 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔𝜃𝜃 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1 (3.54)

Pre-multiply (3.54) with 𝓹𝓹𝑠𝑠𝑠𝑠𝑠𝑠
−1 ,then:

(𝑰𝑰 ∆𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎)−𝟏𝟏𝒃𝒃 = 𝓹𝓹𝑠𝑠𝑠𝑠𝑠𝑠
−1 𝒃𝒃 = 𝜃𝜃 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1 (3.55)

multiply (3.55) with 1𝑇𝑇,then:

�
𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

= �𝜃𝜃𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1𝑇𝑇𝜃𝜃 ≤ 1

(3.56)

Since 𝒃𝒃� has already been moved to the origin 𝑶𝑶, ∆𝒃𝒃 = 𝒃𝒃, substitute it into (3.56):

�
∆𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

= �𝜃𝜃𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1

(3.57)

 51

It is obvious from (3.57) that there is an equivalence between the definition of the orthant simplex

in (3.52) and the 100 Percent Rule based region in the corresponding orthant as in (3.50). Thus,

the simplex generated in each orthant by using the points 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 defined with 100 Percent Rule with

respect to the nominal point 𝒃𝒃� is actually the region of feasibility, i.e. solution is obtained with

same tableau, when simultaneous changes in RHS space. Since all adjacent simplexes in this

condition are sharing common vertices, the regions obtained from each single application of the

100 % rule can be joined (connected) together to form bigger regions of feasibility of the tableau.

Thus, the convex hull generated by all these points 𝓹𝓹 will also consist of simplexes. If a region is

defined by the 100 Percent Rule, then this region is a convex polyhedron which belongs to a certain

tableau. A conservative polyhedron that satisfied the 100 Percent Rule can be obtained by applying

convhulln in MATLAB to generate a convex hull around the extreme vertices. □

Based on the previous discussion, the procedure of the 100 percent rule based method, which is

referred heretofore as 100 Based Hull Method here, is as follows:

i. Select a point 𝒃𝒃� from the RHS space (𝑅𝑅𝑅𝑅), calculate the 𝒙𝒙𝑩𝑩 and 𝑩𝑩−1 by using the Simplex

method for Linear Programing (LP) Problem (The procedure of the Simplex algorithm was

introduced in Section 2.4.1).

ii. Computing the maximal feasible range of 𝑏𝑏𝑖𝑖 when only one of the 𝑏𝑏𝑖𝑖 is allowed to change,

i.e. ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, by using the formula that obtained from (2.16) such that 𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎, which is:

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1�𝒃𝒃� + ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�

𝑠𝑠. 𝑡𝑡.

𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎

(3.58)

iii. From (3.53), a series of allowable range of ∆𝑏𝑏𝑖𝑖 are obtained, i.e. ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 . Generating a

matrix of corresponding point from ∆𝒃𝒃, by apply the range of ∆𝒃𝒃 on 𝒃𝒃�, which is referred

as:

𝓹𝓹 = �
𝓅𝓅11 𝓅𝓅12
⋮ ⋮

𝓅𝓅𝑚𝑚1 𝓅𝓅𝑚𝑚2

�

(3.59)

where 𝓅𝓅𝑖𝑖1 = 𝒃𝒃� + (∆𝑏𝑏𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓅𝓅𝑖𝑖2 = 𝒃𝒃� + (∆𝑏𝑏𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚.

iv. Applying convhulln in MATLAB to generate a convex polyhedron around the extreme

vertices 𝓹𝓹 as well as 𝒃𝒃� , an expression of each plane of this polyhedron also can be

 52

obtained. This convex hull is a conservative set in a region of a specific tableau where the

same tableau can still be used to obtain the LP solutions.

To illustrate the method a simple example is shown as follows.

An LP problem with 2 inequalities is defined as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = 𝒄𝒄𝒄𝒄
s. t.

𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃

𝑨𝑨 = �1 2
3 2� , 𝒄𝒄 = [3 5], 𝒃𝒃 = �𝑏𝑏1𝑏𝑏2

� ≥ 0, 𝒙𝒙 = �
𝑥𝑥1
𝑥𝑥2� ≥ 0

(3.60)

Convert (3.57) into a standard initial tableau form as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔�

s. t.

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃

𝑰𝑰 = �1 0
0 1� , 𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4� ≥ 0

 (3.61)

Equations (3.62), also illustrated in Fig. 3.6, indicate that there are 3 different regions in the RHS

that belongs to different tableaus and the edges 𝒆𝒆 of each tableau regions, i.e. 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 as per the

notation used in the previous section, are marked as two dot lines 𝑒𝑒1 and 𝑒𝑒2. The sub-indexes 10,

11, and 01 in 𝒏𝒏𝒏𝒏 of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 are used to denote the 3 different regions for which either 𝑥𝑥1, {𝑥𝑥1, 𝑥𝑥2},

and 𝑥𝑥2 are basic variables in each 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏, respectively. It should be noticed that the regions 𝑻𝑻𝑻𝑻 as

well as edges 𝒆𝒆 are generated by using the method proposed in section 3.2.4 and 3.3.

𝑒𝑒1 = {3𝑏𝑏1 − 𝑏𝑏2 = 0|𝒃𝒃 ≥ 0}

𝑒𝑒2 = {𝑏𝑏1 − 𝑏𝑏2 = 0|𝒃𝒃 ≥ 0}
 (3.62)

Now apply the proposed 100% Based Hull Method, the first initial point is 𝒃𝒃�𝟏𝟏 = (12,9). After

applying the Simplex Algorithm for this point, the final tableau is shown as:

� 𝑨𝑨∗ 𝑺𝑺∗ 𝒃𝒃∗
𝒛𝒛∗ − 𝒄𝒄 𝒚𝒚∗ 𝑧𝑧∗� = �

−2 0 1 −1 3
1.5 1 0 0.5 4.5
4.5 0 0 2.5 22.5

� (3.63)

The detailed description of the Simplex Algorithm as well as the parameters in final tableau as in

(3.63) is given elsewhere (Hillier, 2001). From the final tableau (3.60), the 𝑩𝑩−1 is given by:

 53

𝑩𝑩−1 = 𝑺𝑺∗ = �1 −1
0 0.5�

A series of inequalities can be obtained by using (3.58) (step ii of the 100 Based Hull Method

above).

𝑩𝑩−1�𝒃𝒃� + ∆𝑏𝑏1� = �1 −1
0 0.5� �

12 + ∆𝑏𝑏1
9 � ≥ 0

𝑩𝑩−1�𝒃𝒃� + ∆𝑏𝑏2� = �1 −1
0 0.5� �

12
9 + ∆𝑏𝑏2

� ≥ 0

(3.64)

Then, obtaining the range of each ∆𝑏𝑏𝑖𝑖 by computing (3.64) and the results are as following:

−3 ≤ ∆𝑏𝑏1

−9 ≤ ∆𝑏𝑏2 ≤ 3

(3.65)

By substitute (3.65) into (3.59) in step iii. a series of points will be generated as (since (∆𝑏𝑏1)𝑚𝑚𝑚𝑚𝑚𝑚

does not exist the point 𝓅𝓅12 will be eliminated):

𝓅𝓅11 = (9,9), 𝓅𝓅21 = (12,0), 𝓅𝓅22 = (12,12) (3.66)

Then a convex hull 𝓟𝓟𝟏𝟏 can be generated around �𝒃𝒃�𝟏𝟏,𝓅𝓅11,𝓅𝓅21,𝓅𝓅22� by using convhulln in

MATLAB, and the edge of this polyhedron can also be obtained as the bold line around 𝒃𝒃�𝟏𝟏in Fig.

3.6.

Following the same procedure, another conservative polyhedron 𝓟𝓟𝟐𝟐 in tableau range 𝑻𝑻𝑻𝑻𝟏𝟏𝟏𝟏 can

also be obtained by applying 𝒃𝒃�𝟏𝟏 = (6,8) into 100 Based Hull Method and the set of 𝓅𝓅 is:

𝓅𝓅11 = (2.67,8), 𝓅𝓅12 = (8,8), 𝓅𝓅21 = (6,6), 𝓅𝓅22 = (6,18) (3.67)

And the edge of polyhedron 𝓟𝓟𝟐𝟐 is also marked as the bold line around 𝒃𝒃�𝟐𝟐 in Fig. 3.6.

The limitations of 100 % Based Hull Method are obvious for this example as shown in Fig. 3.6

since it can only provide a necessary condition but not sufficient. Hence, it cannot give an explicit

judgement if the sum does exceed 100 percent. Thus, uncertainty propagation cannot be efficiently

accomplished by using this single algorithm only as compared to the algorithm presented in section

3.2.1. It is worth noticing that while in 2 dimensional cases, i.e. 2 inequalities as in the example

discussed here this method can generate some edges of the conservative polyhedrons that can cover

the edges of the corresponding tableaus, such as the line generated by 𝓅𝓅11 and 𝓅𝓅22 is equal to 𝑒𝑒2,

in higher dimensions of the RHS space this method is found to be very inefficient.

 54

Figure 3.6 An example of RHS space by using 100 Based Hull Method

3.2.4 Convex Cone Method

Based on the discussion in 3.2.2, the main purpose of the RHS map generation algorithm is to find

a set 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 where all of the convex cones 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝓇𝓇 belongs to a specified tableau. However, in 3.2.3,

the 100 Based Hull Method has been shown to be incapable of providing a complete description

of the tableau distribution in RHS map in finite time. Therefore, an approach that addresses the

limitations of 100 Based Hull Method is proposed in this section.

Since this method is based on the segmentation and allocation of the convex cones in RHS space,

this method will be referred heretofore in this thesis as Convex Cone Method (CCM). The key

ideas and basic procedures of CCM algorithm have already presented in 3.2.1 and 3.2.2, such as

the dividing process of overlap regions in Fig. 3.4. Thus, this algorithm will be described with the

same symbols and defined functions which have been introduced in the previous sections:

i. Compute a set 𝓣𝓣 where consist all possible 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 ’s combinations of tableaus 𝑇𝑇𝑛𝑛𝑛𝑛 by using

function 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 = 1, 2, … ,𝒞𝒞, 𝒞𝒞 = 𝐶𝐶𝑚𝑚+𝑛𝑛
𝑚𝑚 . This function can be formulated as following

form:

𝑇𝑇𝑛𝑛𝑛𝑛 = (𝓣𝓣)𝑛𝑛𝑛𝑛 = �𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛(𝑚𝑚,𝒌𝒌)�
𝑛𝑛𝑛𝑛

 (3.68)

𝑒𝑒1 𝑒𝑒2
𝑻𝑻𝑻𝑻𝟏𝟏𝟏𝟏

𝑻𝑻𝑻𝑻𝟏𝟏𝟏𝟏

𝑻𝑻𝑻𝑻𝟎𝟎𝟎𝟎

𝑏𝑏1

𝑏𝑏2

𝑶𝑶

𝒃𝒃�𝟏𝟏
𝒃𝒃�𝟐𝟐

𝓅𝓅11
𝓅𝓅22

𝓅𝓅21

𝓟𝓟𝟏𝟏

𝓟𝓟𝟐𝟐

 55

where 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 is a function that can generate a set 𝓣𝓣 where consists all of the possible

combinations (𝑇𝑇𝑛𝑛𝑛𝑛) by choosing 𝑚𝑚 elements from vector 𝒌𝒌, 𝒌𝒌 = 1,2, … , (𝑚𝑚 + 𝑛𝑛). This

function can be accomplished by applying the function nchoosek in MATLAB.

ii. Calculate the basic solution vector 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 corresponding to each 𝑇𝑇𝑛𝑛𝑛𝑛 by using 𝒙𝒙𝑛𝑛𝑛𝑛

𝑝𝑝 =

��
𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, where 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 is the number 𝒾𝒾 element from �

𝒙𝒙
𝒙𝒙𝒔𝒔�, where 𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛. 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 ∈ ℝ𝑚𝑚×𝑚𝑚 is

the square matrix corresponding to 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , such that 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 = ([𝑨𝑨 𝑰𝑰])𝑇𝑇𝑛𝑛𝑛𝑛, where the subscript

𝑇𝑇𝑛𝑛𝑛𝑛 indicates the number 𝒾𝒾 columns from [𝑨𝑨 𝑰𝑰], where 𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛 . 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 = ([−𝒄𝒄 𝟎𝟎])𝑇𝑇𝑛𝑛𝑛𝑛 ,

where the subscript 𝑇𝑇𝑛𝑛𝑛𝑛 indicates the number 𝒾𝒾 element from [−𝒄𝒄 𝟎𝟎], where 𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛.

iii. Obtain each element 𝑥𝑥𝑖𝑖 of the solution vector 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 with respects to 𝒃𝒃 by using (3.26)

(Cramer’s rule).

𝑥𝑥𝑖𝑖 =
det�𝑨𝑨𝒏𝒏𝒏𝒏,𝒊𝒊

𝒑𝒑 �
det�𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 �

(3.26)

where 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚]𝑇𝑇 = ��

𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, 𝑨𝑨𝒏𝒏𝒏𝒏,𝒊𝒊
𝒑𝒑 is the matrix formed by replacing the

number 𝑖𝑖 column of 𝑨𝑨𝑛𝑛𝑛𝑛
𝑝𝑝 by the column vector 𝒃𝒃. Thus, 𝑨𝑨𝒏𝒏𝒏𝒏,𝒊𝒊

𝒑𝒑 is a function of 𝑨𝑨𝑛𝑛𝑛𝑛
𝑝𝑝 and 𝒃𝒃.

Then the matrix 𝜶𝜶𝒏𝒏𝒏𝒏 is defined as follows:

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃

𝜶𝜶𝒏𝒏𝒏𝒏 = �
𝛼𝛼11 ⋯ 𝛼𝛼1𝑚𝑚
⋮ ⋱ ⋮

𝛼𝛼𝑚𝑚1 ⋯ 𝛼𝛼𝑚𝑚𝑚𝑚

� =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏2

⋯
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏𝑚𝑚

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏2

⋯
𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏𝑚𝑚⎦

⎥
⎥
⎥
⎤

(3.69)

Since 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃, and 𝒙𝒙𝑛𝑛𝑛𝑛

𝑝𝑝 ≥ 0, the possible edges of tableau 𝑇𝑇𝑛𝑛𝑛𝑛 can be described as in

(3.37).

−𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 ≤ 0 (3.37)

Meanwhile the cost function of 𝑇𝑇𝑛𝑛𝑛𝑛 is represent as in (3.38).

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 (3.38)

 56

From this step polynomial expression of edges and cost function with respect to 𝒃𝒃 for every

𝑇𝑇𝑛𝑛𝑛𝑛 in 𝓣𝓣 are obtained. The region in defined by (3.37) is referred as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛0 , and the resulting

polyhedrons are convex cones (the proof of this is in 3.2.2).

iv. Select tableau 𝑇𝑇𝑛𝑛𝑛𝑛 from 𝓣𝓣, where the set of remaining tableaus are referred to as 𝓣𝓣𝒊𝒊𝒊𝒊, 𝑖𝑖𝑖𝑖 =

1,2, … ,𝒞𝒞; 𝑖𝑖𝑖𝑖 ≠ 𝑛𝑛𝑛𝑛. At this stage if there are tableaus for which is known a priori that they

cannot be possible in the RHS space (𝑅𝑅𝑅𝑅) , then these tableaus can be eliminated from 𝓣𝓣

in advance. For example, in some case the tableau 𝑇𝑇𝑛𝑛𝑛𝑛 where the basic solutions are 𝒙𝒙𝑩𝑩 =

�𝟎𝟎𝟏𝟏� ∙ �
𝒙𝒙
𝒙𝒙𝒔𝒔� would only contribute the cost function 𝑍𝑍𝑛𝑛𝑛𝑛

𝑝𝑝 = 0 since ∀𝒙𝒙 = 𝟎𝟎. It is generally

impossible for this type of tableaus to produce a competitive cost function solution than

other tableaus where the cost functions 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 ≤ 0.

v. Select a tableau 𝑇𝑇𝑖𝑖𝑖𝑖 from 𝓣𝓣𝒊𝒊𝒊𝒊. Define a set of the convex cones that compose the region of

𝑇𝑇𝑛𝑛𝑛𝑛 (𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗) as 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝒦𝒦} , where symbol ∗ means that this

polyhedron has not been divided or further processed by further iterations, 𝒦𝒦 ∈ ℕ. At the

start of these iterations, 𝒦𝒦 = 1, 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1} = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛0 . For each convex cone 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑘𝑘 (𝑘𝑘 =

1,2, … ,𝒦𝒦) in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ , a subset 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝒌𝒌 is generated by adding a series of constrains, and each

element in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝒌𝒌 generated in each iteration are referred as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,𝑘𝑘𝑘𝑘:

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,𝑘𝑘𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

 �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑘𝑘)

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏 − 𝒄𝒄𝑖𝑖𝑖𝑖

𝑝𝑝 𝜶𝜶𝒊𝒊𝒊𝒊�𝒃𝒃
−𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃

� ≤ 0, 𝑘𝑘𝑘𝑘 = 1

 � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑘𝑘)
𝝆𝝆𝒌𝒌𝒌𝒌 ⋅ (𝜶𝜶𝒊𝒊𝒊𝒊𝒃𝒃)� ≤ 0, 2 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚 + 1

(3.70)

where 𝑘𝑘𝑘𝑘 = 1,2, … ,𝑚𝑚 + 1, 𝝆𝝆𝒌𝒌𝒌𝒌 is a column vector defined in (3.46):

𝝆𝝆𝒌𝒌𝒌𝒌 = (𝝆𝝆)𝑘𝑘𝑘𝑘−1, 𝝆𝝆 = �
1 −𝟏𝟏

⋱
𝟎𝟎 1

� (3.46)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇) means all of the constraints that may contribute to define the edge of 𝑇𝑇𝑇𝑇 and

these constraints can be extracted as a property belonging to the corresponding objects 𝑇𝑇𝑇𝑇.

After the calculation in (3.65), the subset 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝒌𝒌 is obtained:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝒌𝒌 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝑘𝑘,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,𝑚𝑚+1� (3.71)

After all of the 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝒌𝒌 have been manipulated by (3.70), the set of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ is obtained as:

 57

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ =

⎩
⎨

⎧𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏
𝟏𝟏 ,

 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝟐𝟐 ,
… ,
𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏𝓚𝓚 ⎭

⎬

⎫
=

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

1,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
1,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

1,𝑚𝑚+1,
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

2,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
2,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

2,𝑚𝑚+1,
… ,

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝒦𝒦,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦,𝑚𝑚+1

⎭
⎪
⎬

⎪
⎫

(3.72)

Renumber the convex cone elements 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,𝑘𝑘𝑘𝑘 in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ such that:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
(𝒦𝒦−1)(𝑚𝑚+1)+𝑘𝑘𝑘𝑘�

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑘𝑘,𝑘𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘 = (𝑘𝑘 − 1)(𝑚𝑚 + 1) + 𝑘𝑘𝑘𝑘

(3.73)

Save the set in (3.73) as a property belonging to the corresponding object 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ and the 𝒦𝒦

in this set is reassigned such that 𝒦𝒦 = (𝒦𝒦 − 1)(𝑚𝑚 + 1) + 𝑘𝑘𝑘𝑘 as well as 𝑘𝑘 = 𝑘𝑘𝑘𝑘 =

1,2, … ,𝒦𝒦.

vi. Eliminate empty 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘 as well as the redundant constraints in each convex cone 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘 from

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ . This procedure can be accomplished by using the noredund algorithm from

lcon2vert package in MATLAB (Matt, 2017). Avoiding the inclusion of the origin is

important when eliminating redundant constraints by using these mentioned methods.

Since all of the tableau region 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘 have a vertex on the origin, then all the constrains are

weakly redundant at that point. Thus, it is impossible to distinguish the redundant

constraints from the no redundant constrains when the origin is included. Therefore, some

additional constraints should be initially added in the constraints set of every 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘 , such

that:

(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘)𝑛𝑛𝑛𝑛 = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘)
−1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚
1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 𝟎𝟎, 0 < 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 < 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚

(3.74)

where 𝛷𝛷 ∈ ℝ. The function −1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ensures that the neighborhood of the origin

is not considered when assessing redundancy and the function 1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ensures

that the polyhedron of (𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘)𝑛𝑛𝑛𝑛 exists in a finite space thus can be recognized and

eliminated by most redundant constraints eliminating algorithms. These additional

constraints that related with 𝛷𝛷 are referred as 𝒇𝒇𝒂𝒂𝒂𝒂.

vii. Renumber the 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑘𝑘 that still remain after the elimination of non-redundant constraints

(step vi) and let the number 𝒦𝒦 equals to the amount of the existing convex cones. Thus,

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝒦𝒦} . Then, select another tableau region 𝑇𝑇𝑖𝑖𝑖𝑖 from 𝓣𝓣𝒊𝒊𝒊𝒊 that

 58

have not been manipulated yet, return to step v and iteration step v. vi. vii. until all of the

𝑇𝑇𝑖𝑖𝑖𝑖 have been used for checking the edge of the tableau region set 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ .

viii. After all the 𝑇𝑇𝑖𝑖𝑖𝑖 have been used for checking the edge of the tableau region set 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏∗ the

final set of a certain tableau 𝑇𝑇𝑛𝑛𝑛𝑛’s region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 that consist of a series of convex cones is

obtained, such that:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛� (3.75)

where 𝒦𝒦𝑛𝑛𝑛𝑛 is the number of convex cones that contains in the final tableau region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏.

ix. Select another tableau 𝑇𝑇𝑛𝑛𝑛𝑛 from 𝓣𝓣 and iterate step v. to step viii. until the final tableau

region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 is computed.

x. The profile of RHS map, i.e. 𝑅𝑅𝑅𝑅, is obtained once all of the final tableau region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 in

terms of 𝑇𝑇𝑛𝑛𝑛𝑛 in 𝓣𝓣 have been generated as follows:

𝑅𝑅𝑅𝑅 = �

𝑻𝑻𝑻𝑻𝟏𝟏 ,
 𝑻𝑻𝑻𝑻𝟐𝟐 ,

… ,
𝑻𝑻𝑻𝑻𝒦𝒦𝑅𝑅𝑅𝑅

� =

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑇𝑇11,𝑇𝑇𝑇𝑇12, … ,𝑇𝑇𝑇𝑇1

𝒦𝒦1 ,
𝑇𝑇𝑇𝑇21,𝑇𝑇𝑇𝑇22, … ,𝑇𝑇𝑇𝑇2

𝒦𝒦2 ,
… ,

𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅
1 ,𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅

2 , … ,𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅

𝒦𝒦𝒦𝒦𝑅𝑅𝑅𝑅
⎭
⎪
⎬

⎪
⎫

(3.76)

Since a considerable number of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 may have already eliminated during the previous

procedures 𝒦𝒦𝑅𝑅𝑅𝑅, the 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 that still exist in the 𝑅𝑅𝑅𝑅, might be much smaller than 𝒞𝒞, such

that 𝑛𝑛𝑛𝑛 = 1,2, … ,𝒦𝒦𝑅𝑅𝑅𝑅, 𝒦𝒦𝑅𝑅𝑅𝑅 ≤ 𝒞𝒞.

The step i. to step x. is the main procedure of generating an RHS map part of the CCM algorithm.

It should be noticed that in some cases a tableau does not involve any slack value 𝒙𝒙𝒔𝒔. In those

cases, it is necessary to assess whether the basic solution 𝒙𝒙𝑩𝑩 is identical in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 to another one

without accounting for the slack values 𝒙𝒙𝒔𝒔 part.

3.2.5 Sensitivity Analysis Based on CCM Algorithm

Two levels of tableaus are considered, main tableaus and sub-tableaus.

 Main-tableaus, are referred to as 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 where 𝑚𝑚𝑚𝑚 = 1,2, … ,𝒦𝒦𝑀𝑀𝑀𝑀, 𝒦𝒦𝑀𝑀𝐶𝐶 is the amount of the main

tableaus that are active in 𝑅𝑅𝑅𝑅. A main tableau is a one for which the basic and non-basic variables

of the non-slack value part 𝒙𝒙 remain the same, however the 𝒙𝒙𝒔𝒔 is not.

 59

The second level is the sub-tableaus level. These sub-tableaus are the tableaus that are discussed

in the previous sections and referred as 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 . Thus, each 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 may contains several 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏

regions.

The sensitivity analysis procedure of CCM algorithm is straightforward based on the RHS map as

follows:

i. Compute the uncertainty range of 𝒃𝒃, such that:

∆𝒃𝒃 = �

∆𝒃𝒃𝟏𝟏
 ∆𝒃𝒃𝟐𝟐
⋮

∆𝒃𝒃𝒎𝒎

� = [𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎] =

⎣
⎢
⎢
⎡𝑏𝑏1

𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏1𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏2𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏2𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⎦

⎥
⎥
⎤

(3.77)

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎

� ≤ 𝟎𝟎 (3.78)

The expressions in the RHS in the current thesis are assumed to be linear.

ii. Choose one sub-tableau region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 from 𝑅𝑅𝑅𝑅, calculate the region 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 as well as the

vertices 𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 of the convex cones 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 that may satisfy constraints from ∆𝒃𝒃

(3.78) by using lcon2vert algorithm (𝑐𝑐2𝑣𝑣) in MATLAB. The result 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 is shown as

follows:

𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 = 𝑐𝑐2𝑣𝑣 �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃� = 𝑐𝑐2𝑣𝑣 ��𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦)
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) � ≤ 𝟎𝟎� (3.79)

After computing all of the convex cone regions that contained in 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏|∆𝒃𝒃, and the vertices

set 𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃 also have been obtained as:

𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏|∆𝒃𝒃 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 |∆𝒃𝒃,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 |∆𝒃𝒃, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛�

∆𝒃𝒃
� (3.80)

𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃 = �𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛1 |∆𝒃𝒃,𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛2 |∆𝒃𝒃, … ,𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛�

∆𝒃𝒃
� (3.81)

iii. A series of 𝒙𝒙𝑛𝑛𝑛𝑛 will be calculated by substituting 𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃 into (3.69), similarly a series of

𝑍𝑍𝑛𝑛𝑛𝑛 will be obtained by substituting 𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃 into (3.38). Select the maximum and

minimum values from𝒙𝒙𝑛𝑛𝑛𝑛 and 𝑍𝑍𝑛𝑛𝑛𝑛, resulting in sensitivity ranges of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 with uncertainty

range of ∆𝒃𝒃 to be:

 60

𝑺𝑺𝑺𝑺𝒏𝒏𝒏𝒏|∆𝒃𝒃 = �∆𝑍𝑍𝑛𝑛𝑛𝑛 ∆𝒙𝒙𝑛𝑛𝑛𝑛
�
∆𝒃𝒃

= �𝑍𝑍𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝒙𝒙𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 𝒙𝒙𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�
∆𝒃𝒃

=

⎣
⎢
⎢
⎢
⎡𝑍𝑍𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑛𝑛𝑛𝑛,1
𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑛𝑛𝑛𝑛,1

𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑥𝑥𝑛𝑛𝑛𝑛,𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑛𝑛𝑛𝑛,𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚⎦
⎥
⎥
⎥
⎤

∆𝒃𝒃

(3.82)

iv. Calculate the volume of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏|∆𝒃𝒃 by substituting all vertices of 𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃 into convhulln in

MATLAB. Then the volume is:

𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛|∆𝒃𝒃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑽𝑽𝑽𝑽𝒏𝒏𝒏𝒏|∆𝒃𝒃) (3.83)

v. Chose another sub-tableau region 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 from 𝑅𝑅𝑅𝑅 and start repeat again from step ii. to step

iv. Then the region 𝑅𝑅𝑅𝑅 with respect of ∆𝒃𝒃, i.e. 𝑅𝑅𝑅𝑅|∆𝒃𝒃, the overall sensitivity range of 𝑅𝑅𝑅𝑅|∆𝒃𝒃,

𝑆𝑆𝑆𝑆𝑆𝑆|∆𝒃𝒃, as well as the volumes of every sub-tableau in this region 𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃 are given as

follows:

𝑅𝑅𝑅𝑅|∆𝒃𝒃 = �𝑻𝑻𝑻𝑻𝟏𝟏|∆𝒃𝒃,𝑻𝑻𝑻𝑻𝟐𝟐|∆𝒃𝒃, … ,𝑻𝑻𝑻𝑻𝒦𝒦𝑅𝑅𝑅𝑅�∆𝒃𝒃� (3.84)

𝑆𝑆𝑆𝑆𝑆𝑆|∆𝒃𝒃 = �∆𝑍𝑍 ∆𝑋𝑋�∆𝒃𝒃
= �𝑍𝑍

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚�
∆𝒃𝒃

= �

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋1𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋1𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�

∆𝒃𝒃

= �

𝑺𝑺𝑺𝑺𝟏𝟏 ,
 𝑺𝑺𝑺𝑺𝟐𝟐 ,

… ,
𝑺𝑺𝑺𝑺𝒦𝒦𝑅𝑅𝑅𝑅

�

∆𝒃𝒃

 (3.85)

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃 = 𝑠𝑠𝑠𝑠𝑠𝑠��𝑉𝑉𝑉𝑉𝑉𝑉1|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑉𝑉2|∆𝒃𝒃 , … ,𝑉𝑉𝑉𝑉𝑉𝑉𝒦𝒦𝑅𝑅𝑅𝑅�∆𝒃𝒃�� = �∆𝑏𝑏𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= ��𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�
𝑚𝑚

𝑖𝑖=1

(3.86)

It is worth to note that the 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏|∆𝒃𝒃 might be non-feasible solution in the region of ∆𝒃𝒃 and such

regions can be eliminated from 𝑅𝑅𝑅𝑅|∆𝒃𝒃 during this process. Additionally, the vertices 𝑉𝑉𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚|∆𝒃𝒃,

sensitivity range 𝑆𝑆𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚|∆𝒃𝒃 and volume 𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝑚𝑚𝑚𝑚|∆𝒃𝒃of main tableau region 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 with respect of

∆𝒃𝒃 also can be obtained by using the same method as in (3.84) to (3.86).

Another conclusion can be derivate from this section is that: In RHS space for same parameter 𝑏𝑏�𝑖𝑖

if 𝑏𝑏�𝑖𝑖,𝑠𝑠 ≪ 𝑏𝑏�𝑖𝑖,𝑔𝑔, where 𝑏𝑏�𝑖𝑖,𝑠𝑠 and 𝑏𝑏�𝑖𝑖,𝑔𝑔 are two nominal conditions of a same tableau, then for the same

amount of change, 𝑏𝑏𝑖𝑖,𝑠𝑠 will be more sensitive than 𝑏𝑏𝑖𝑖,𝑔𝑔, however, if the ratio of change is same,

then they are same sensitive. A more general description of this conclusion is: for an explicit given

uncertainty range of RHS 𝑅𝑅𝑅𝑅|∆𝒃𝒃, if the nominal condition of 𝒃𝒃�𝒔𝒔 is much closer to original point

than the nominal condition 𝒃𝒃�𝒈𝒈. Then, in most case, the number of tableaus in the uncertainty region

of 𝒃𝒃�𝒔𝒔 is larger than which in the uncertainty region of 𝒃𝒃�𝒈𝒈. Since the conic cones’ distribution of

 61

the sub-tableaus with respect to finite edges that are more compact in the region that close to

original point. What can be found from this conclusion is that if some of the nominal parameters

in RHS space is big enough, then they are negligible for some sensitivity analysis. And if they are

too small, they might be very sensitive and generally hard to be investigated. This conclusion is

useful when manipulating CCM algorithm in higher dimensional RHS space, since it provides a

method to reduce the computation demanding by eliminate the negligible dimensions of the RHS

space.

3.3 Case Study

Generally, in CCM algorithm, the RHS map are obtained from offline calculation, and the

sensitivity analysis is used for generating the online uncertainty range. Therefore, the case study

will also be based on this sequence.

3.3.1 2D RHS Map Generator

The example is the same as shown (3.60) and (3.61) in section 3.2.3. The example involves two

inequalities and thus the RHS space is two-dimensional with respect to variables 𝑏𝑏1 and 𝑏𝑏2. The

standard form of this LP problem is as following:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔�

s. t.

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃

𝑨𝑨 = �1 2
3 2� , 𝑰𝑰 = �1 0

0 1� , 𝒄𝒄 = [3 5],

𝒃𝒃 = �𝑏𝑏1𝑏𝑏2
� ≥ 0, 𝒙𝒙 = �

𝑥𝑥1
𝑥𝑥2� ≥ 0, 𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4� ≥ 0

 (3.61)

Step i: As discussed in section 3.2.4 of the CCM method is to compute the set 𝓣𝓣 by using nchoosek

in MATLAB. In this problem, the amount of constraints 𝑚𝑚 = 2, the amount of unknowns 𝑛𝑛 = 2,

𝒞𝒞 = 𝐶𝐶(𝑚𝑚,𝑚𝑚 + 𝑛𝑛) = 6, which means that this problem have 6 possible combinations of 𝑋𝑋𝑛𝑛𝑛𝑛
𝑝𝑝 with

respect of each tableau 𝑇𝑇𝑛𝑛𝑛𝑛 . For instance, 𝑇𝑇1 = [1 2] means that 𝑥𝑥1 and 𝑥𝑥2 are both basic

variables for this tableau. Thus, using this notation, the entire set 𝓣𝓣 is as following:

𝓣𝓣 = �

𝑇𝑇1,𝑇𝑇2,𝑇𝑇3
𝑇𝑇4,𝑇𝑇5,𝑇𝑇6

� = �[1 2], [1 3], [1 4]
[2 3], [2 4], [3 4]�

(3.87)

 62

Step ii: After obtaining the set 𝓣𝓣, the parameters of each objective tableaus 𝑇𝑇𝑛𝑛𝑛𝑛: 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 and 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝

are calculated. 𝑇𝑇1 is used as an example to illustrate the following several steps, and these steps

are also applied on the other tableaus. Following (3.88), the 𝒙𝒙1
𝑝𝑝, 𝑨𝑨1

𝑝𝑝 and 𝒄𝒄1
𝑝𝑝 corresponding to 𝑇𝑇1

are:

𝒙𝒙1
𝑝𝑝 = �

𝑥𝑥1
𝑥𝑥2� , 𝑨𝑨1

𝑝𝑝 = �1 2
3 2� , 𝒄𝒄1

𝑝𝑝 = −[3 5] (3.88)

In 𝑇𝑇1 each basic variable is calculated as follows:

𝑥𝑥1 =
det�𝑨𝑨𝟏𝟏,𝟏𝟏

𝒑𝒑 �
det�𝑨𝑨1

𝑝𝑝�
=

det ��𝑏𝑏1 2
𝑏𝑏2 2��

det ��1 2
3 2��

=
1
2
𝑏𝑏2 −

1
2
𝑏𝑏1

𝑥𝑥2 =
det�𝑨𝑨𝟏𝟏,𝟐𝟐

𝒑𝒑 �
det�𝑨𝑨1

𝑝𝑝�
=

det ��1 𝑏𝑏1
3 𝑏𝑏2

��

det ��1 2
3 2��

=
3
4
𝑏𝑏1 −

1
4
𝑏𝑏2

(3.89)

Step iii: 𝜶𝜶𝟏𝟏 can be represented as:

𝜶𝜶𝟏𝟏 = �
𝛼𝛼11 𝛼𝛼12
𝛼𝛼21 𝛼𝛼22� =

⎣
⎢
⎢
⎡
𝜕𝜕𝑋𝑋1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑋𝑋1
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑋𝑋2
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑋𝑋2
𝜕𝜕𝑏𝑏2⎦

⎥
⎥
⎤

= �
−

1
2

1
2

3
4

−
1
4

�

(3.90)

Since, 𝑥𝑥𝑖𝑖 ≥ 0 and 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒏𝒏𝒏𝒏𝒃𝒃 , applying (3.37) and (3.38), the initial edge 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1) =

−𝜶𝜶𝟏𝟏𝒃𝒃 as well as the cost function 𝑍𝑍1
𝑝𝑝 of 𝑇𝑇1 are:

−𝜶𝜶𝟏𝟏𝒃𝒃 = −�
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎

𝑍𝑍1
𝑝𝑝 = 𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏𝒃𝒃 = [−3 −5] �
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� = −

9
4
𝑏𝑏1 −

1
4
𝑏𝑏2

(3.91)

Step iv – v: The (3.91) is an initial property of objective tableau 𝑇𝑇1 as well as an initial property of

tableau region 𝑻𝑻𝑻𝑻𝟏𝟏∗ , which is defined by the initial edges as well as the constrains of 𝒃𝒃 ≥ 𝟎𝟎, such

that:

1
2
𝑏𝑏1 −

1
2
𝑏𝑏2 ≤ 0 (3.92)

 63

−𝑏𝑏1 +
1
3
𝑏𝑏2 ≤ 0

𝑏𝑏1 ≥ 0, 𝑏𝑏2 ≥ 0

Fig. 3.7 illustrates the initial region of 𝑻𝑻𝑻𝑻𝟏𝟏∗ , which is enclosed in the red lines as well as a property

of objective tableau 𝑇𝑇1 with the additional constraints 𝒇𝒇𝒂𝒂𝒂𝒂 as in (3.93).

Step vi: The additional constraints 𝒇𝒇𝒂𝒂𝒂𝒂 in this example are:

𝒇𝒇𝒂𝒂𝒂𝒂 = �
−1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏1 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏2 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 𝟎𝟎, 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 10−6, 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20

(3.93)

Figure 3.7 The initial region of 𝑻𝑻𝑻𝑻𝟏𝟏∗

Another tableau is introduced here, the tableau 𝑇𝑇5, with the similar steps of generating 𝑻𝑻𝑻𝑻𝟏𝟏∗ . The

initial property for 𝑇𝑇5 are:

𝒙𝒙5
𝑝𝑝 = �

𝑥𝑥2
𝑥𝑥4� = �𝑋𝑋2𝑋𝑋4

� , 𝑨𝑨5
𝑝𝑝 = �2 0

2 1� , 𝒄𝒄5
𝑝𝑝 = −[5 0]

−𝜶𝜶𝟓𝟓𝒃𝒃 = −�
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎

𝑍𝑍5
𝑝𝑝 = 𝒄𝒄5

𝑝𝑝𝜶𝜶𝟓𝟓𝒃𝒃 = [−5 0] �
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
� = −

5
2
𝑏𝑏1

(3.94)

 64

Therefore, the initial regions of 𝑇𝑇5, i.e. 𝑻𝑻𝑻𝑻𝟓𝟓∗ , with constraints of 𝒃𝒃 ≥ 𝟎𝟎 and 𝒇𝒇𝒂𝒂𝒂𝒂 have been shown

by the region enclosed within the red lines plane in Fig. 3.8. It is obvious that there is an overlap

region of 𝑻𝑻𝑻𝑻𝟏𝟏∗ and 𝑻𝑻𝑻𝑻𝟓𝟓∗ . Step v. in section 3.2.4 can be used to solve this overlap.

Figure 3.8 The initial region of 𝑻𝑻𝑻𝑻𝟓𝟓∗

Applying (3.70) for 𝑻𝑻𝑻𝑻𝟏𝟏∗ and 𝑻𝑻𝑻𝑻𝟓𝟓∗ , since in the condition of this example, 𝑻𝑻𝑻𝑻𝟏𝟏∗ = {𝑇𝑇𝑇𝑇1∗1}, 𝒦𝒦 = 1,

𝑘𝑘𝑘𝑘 = 1:

𝑇𝑇𝑇𝑇1
1,1 = �

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)
�𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏 − 𝒄𝒄5
𝑝𝑝𝜶𝜶𝟓𝟓�𝒃𝒃

−𝜶𝜶𝟓𝟓𝒃𝒃
� = �

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)
1
4
𝑏𝑏1 −

1
4
𝑏𝑏2

−𝜶𝜶𝟓𝟓𝒃𝒃

� ≤ 0

𝑇𝑇𝑇𝑇1
1,2 = �𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)

𝝆𝝆1 ⋅ (𝜶𝜶𝟓𝟓𝒃𝒃)� = �

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)

�10� ⋅ �
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
�
� ≤ 0

𝑇𝑇𝑇𝑇1
1,3 = �𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)

𝝆𝝆2 ⋅ (𝜶𝜶𝟓𝟓𝒃𝒃)� = �

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇1∗1)

�−1
1 � ⋅ �

1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
�
� ≤ 0

(3.95)

Thus 𝑻𝑻𝑻𝑻𝟏𝟏∗ has been divided into 3 convex cones: 𝑻𝑻𝑻𝑻𝟏𝟏∗ = �𝑇𝑇𝑇𝑇1
1,1,𝑇𝑇𝑇𝑇1

1,2,𝑇𝑇𝑇𝑇1
1,3� . Then these 3

convex cones are checked for feasibility and redundancy of constraints by using noredund

algorithm from lcon2vert package in MATLAB (Matt, 2017) along with additional constrains 𝒇𝒇𝒂𝒂𝒂𝒂.

 65

The result of this test is that only 𝑇𝑇𝑇𝑇1
1,1 has a feasible solution and 1

4
𝑏𝑏1 −

1
4
𝑏𝑏2 ≤ 0 as well as

−𝜶𝜶𝟓𝟓𝒃𝒃 ≤ 𝟎𝟎 are redundant constrains. After eliminating the constraints, 𝑻𝑻𝑻𝑻𝟏𝟏 = �𝑇𝑇𝑇𝑇1
1,1�. Similar

procedure has to be applied between Tableau 𝑇𝑇1 and the remaining tableaus in 𝓣𝓣. In the end of this

iteration, the result of the tableau 𝑇𝑇1 is still 𝑇𝑇𝑇𝑇1
1,1.

Similar procedure will be applied as done above for tableau 𝑇𝑇1 has to be applied to the other

tableaus. After checking all of the 6 tableaus, the final results are only 3 tableaus are active in the

RHS map space (RS), they are: 𝑇𝑇1, 𝑇𝑇3 and 𝑇𝑇4. The region of each tableau are 𝑻𝑻𝑻𝑻𝟏𝟏, 𝑻𝑻𝑻𝑻𝟑𝟑 and 𝑻𝑻𝑻𝑻𝟒𝟒,

respectively. The tableau distribution of this RHS map is illustrated in Fig. 3.9.

Figure 3.9 The tableau distribution and main edges of the mentioned RHS space

3.3.2 Sensitivity Analysis in 2D RHS Space

After obtaining the RHS map in Fig. 3.9, the properties of every active tableau region are

calculated. For instance, the parameters of 𝑇𝑇𝑇𝑇1 are:

−𝜶𝜶𝟏𝟏𝒃𝒃 = −�
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎

(3.96)

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟑𝟑

𝑻𝑻𝑻𝑻𝟒𝟒

3𝑏𝑏1 = 𝑏𝑏2

𝑏𝑏1 = 𝑏𝑏2

 66

𝑍𝑍1
𝑝𝑝 = 𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏𝒃𝒃 = [−3 −5] �
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� = −

9
4
𝑏𝑏1 −

1
4
𝑏𝑏2

𝒆𝒆𝟏𝟏 ≜ �−3𝑏𝑏1 + 𝑏𝑏2 ≤ 0
 𝑏𝑏1 − 𝑏𝑏2 ≤ 0 �

If the uncertainty ranges of the RHS are ∆𝒃𝒃, and the nominal condition of RHS is 𝒃𝒃�, then the

constraints of the uncertainty region can be generated by using (3.77) and (3.78). For instance, for

particular numerical values of 𝒃𝒃� and ∆𝒃𝒃, the 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) is represented as:

𝒃𝒃� + ∆𝒃𝒃 = �68� + �−4 2
−6 6� = [𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎] = �2 8

2 14�

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎

� = �

2 − 𝑏𝑏1
2 − 𝑏𝑏2
𝑏𝑏1 − 8
𝑏𝑏2 − 14

� ≤ 𝟎𝟎

(3.97)

Figure 3.10 The region of uncertainty in RHS space

The region described by 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) is illustrated in Fig. 3.10. It is obvious that the uncertainty

region, i.e. 𝑅𝑅𝑅𝑅|∆𝒃𝒃, enclosed within the dotted lines in the figure, can be divided into 3 regions

corresponding to the 3 different tableaus. For example, 𝑇𝑇𝑅𝑅1|∆𝑏𝑏 is used to describe the procedure

of sensitivity analysis in the CCM algorithm.

𝑻𝑻𝑻𝑻𝟏𝟏

𝑻𝑻𝑻𝑻𝟑𝟑

𝑻𝑻𝑻𝑻𝟒𝟒

3𝑏𝑏1 = 𝑏𝑏2

𝑏𝑏1 = 𝑏𝑏2

𝑻𝑻𝑻𝑻𝟏𝟏|∆𝒃𝒃

𝑻𝑻𝑻𝑻𝟒𝟒|∆𝒃𝒃

𝑻𝑻𝑻𝑻𝟑𝟑|∆𝒃𝒃 ↓

 67

The vertices of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 can be computed by using lcon2vert in MATLAB (Matt, 2017) following

(3.79) such that:

𝑉𝑉𝑉𝑉1|∆𝒃𝒃 = 𝑐𝑐2𝑣𝑣(𝑇𝑇𝑇𝑇1|∆𝑏𝑏) = 𝑐𝑐2𝑣𝑣 ��𝑐𝑐𝑐𝑐𝑐𝑐
(𝑇𝑇𝑇𝑇1|∆𝑏𝑏)

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) � ≤ 𝟎𝟎� = 𝑐𝑐2𝑣𝑣 ��
𝒆𝒆𝟏𝟏

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃)� ≤ 𝟎𝟎� (3.98)

The resulting vertices, shown as red dots in Fig. 3.10, are:

𝑉𝑉𝑉𝑉1|∆𝒃𝒃 = {(4.67,14) (8,14) (8,8) (2,2) (2,6)}

Then by applying (3.82) with 𝑉𝑉𝑉𝑉1|∆𝒃𝒃, the maximum and minimum values of each parameter can

be obtained. It should be noticed that if the dimensions of RHS space are too large, there may be

too many vertices that need to be calculated. In that case, in order to decrease the calculation effort,

the function linprog in MATLAB can be applied to (3.98) to reduce the computation load. For

each point in 𝑉𝑉𝑉𝑉1|∆𝒃𝒃 the results of for each variable are:

�
𝑍𝑍1
𝑥𝑥1
𝑥𝑥2
�
∆𝒃𝒃

= �
−14 −21.5 −20 −5 −6
 4.67 3 0 0 2

0 2.5 4 1 0
�

(3.99)

After selecting the maximum and minimum values of each variable in (3.99), the corresponding

sensitivity range of 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 under uncertainty of ∆𝒃𝒃, i.e. 𝑺𝑺𝑺𝑺𝟏𝟏|∆𝒃𝒃, can be summarized as follows:

𝑺𝑺𝑺𝑺𝟏𝟏|∆𝒃𝒃 = �∆𝑍𝑍1 ∆𝒙𝒙1
�
∆𝒃𝒃

= �
−𝑍𝑍1𝑚𝑚𝑚𝑚𝑚𝑚 −𝑍𝑍1𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥1,1
𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥1,1

𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥1,2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥1,2

𝑚𝑚𝑚𝑚𝑚𝑚
�

∆𝒃𝒃

= �
5 21.5
0 4.67
0 4

�
∆𝒃𝒃

The volume of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 can be obtained by using convhulln in MATLAB as shown in (3.83):

𝑉𝑉𝑉𝑉𝑉𝑉1|∆𝒃𝒃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑉𝑉𝑉𝑉1|∆𝒃𝒃) = 43.32

Following the same approach, the sensitivity range of the other 2 tableaus can also be computed

by using the previous methods. Since the whole volume of uncertainty region 𝑅𝑅𝑅𝑅|∆𝒃𝒃 is:

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃 = 𝑠𝑠𝑠𝑠𝑠𝑠({𝑉𝑉𝑉𝑉𝑉𝑉1|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑉𝑉3|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑉𝑉4|∆𝒃𝒃}) = �∆𝑏𝑏𝑖𝑖

2

𝑖𝑖=1

= 72

Therefore, if the probability distribution of occurrence of parameters RHS are assumed to be

uniform, then the possibility of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 region to be active under the uncertainty range of ∆𝒃𝒃 is:

𝑃𝑃(𝑇𝑇𝑇𝑇1|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉1|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

=
43.32

72
= 60.17%

 68

The possibility of the other 2 tableaus also can obtained along with this method and are:

𝑃𝑃(𝑇𝑇𝑇𝑇3|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉3|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

=
10.68

72
= 14.83%

𝑃𝑃(𝑇𝑇𝑇𝑇4|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉4|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

=
18
72

= 25%

The mathematical complexity of the approach obviously increases with the dimensions as shown

for a 3D case study in Chapter 4.

3.4 Conclusions

In this chapter, two algorithms referred to as the 100 Percent Rule Based Method and the Convex

Cone Method (CCM) were proposed in order to propagate uncertainty into the solutions of an LP

problem. It was shown that the 100 Percent Rule Based Method can provide a necessary but not

sufficient polyhedron region based bounds around a nominal point but it cannot generate the entire

region of uncertainty. To address this problem, the CCM algorithm is proposed that it is able to

generate the entire uncertainty regions. A series of lemmas and theorems were proved and served

as the basis of the proposed CCM algorithm.

There are two main layers in the CCM algorithm, as shown in Fig. 3.11. The first layer is focusing

on generating the RHS map. This layer is highly computationally demanding but it has to be

performed only once for any values of the RHS of the inequalities of the LP problem. In this layer,

after generating every possible combination of solutions, the feasible region of every possible

tableau can be obtained. Then these tableaus will be divided and bounded by comparing with the

intersection tableaus that have an overlap region with each other. The final feasible region of each

tableau can be computed by using a series of overlap region allocation steps and by dividing the

remaining polyhedron part of this tableau into many smaller convex cones. The final RHS map is

then generated by gathering together all of these active tableaus. The second layer of this

uncertainty propagation algorithm involves an on-line sensitivity analysis. By using the RHS map

that is computed in the previous layer and based on the uncertainty region, which is assumed in

this layer, the sensitivity ranges of each variable of the LP problem with respect to each of the

tableaus can be calculated. Though this layer needs to be executed whenever the uncertainty

bounds of the RHS changes, the computational effort is not as high as for the first layer. This fact

makes the CCM an attractive approach for uncertainty propagation in an LP problem.

 69

CCM

RHS map
generating
(off-line)

Sensitivity
analysis
(on-line)

Combination
generating

Divide and
bound of
tableaus

Overlap
region

allocation

Remaining
polyhedron

dividing

Uncertainty
region

generating

Sensitivity
analysis of

tableaus

Sensitivity
range

calculation

Possibility
computing

Figure 3.11 The basic structure of the CCM algorithm

 70

Robust Nonlinear MPC based on Convex Cone Method and Its

Applications in Control of Bioreactors Based on Dynamic Metabolic
Flux Balance Models

In this chapter, the controller algorithm based on the Convex Cone Method (CCM) proposed in

Chapter 3 is applied to a bioreactor culture described by a Dynamic Flux Balance Model (DFBM).

As shown in Chapter 3 the proposed CCM algorithm is significantly more efficient for generating

the uncertainty regions, each corresponding to a different active set of basic solutions, as compared

with the 100 Percent Rule Based Method. Thus, the CCM algorithm is adopted in this chapter for

propagating the uncertainty along with the prediction horizon of the controller. The tree structure

framework (Lucia et al., 2013) is applied in this work for implementing a robust Economic Model

Predictive Control (EMPC) where the branches of the tree correspond to different uncertainty

regions identified by the CCM method. It will be shown with simple calculations that the resulting

EMPC controller is computationally more efficient for estimating control actions as compared to

the currently used uncertainty propagation methods, such as Monte Carlo sampling (Kawohl et al.,

2007) and Polynomial Chaos Expansions (PCE) (Ghanem & Spanos, 1990), in the presence of a

large amount of model uncertainty parameters, e.g. more than 10 parameters.

The dynamic metabolic flux model (DMFM) that is used as internal models in the proposed EMPC

algorithm of this Chapter is formulated as Linear Programming (LP) optimization. As discussed

in Chapter 2, both academia and industrial practitioners are increasingly adopting DMFM to model

numerous biotechnological processes models; hence, the DMFM based controller proposed in the

current chapter is expected to have wide applicability. Moreover, although the presented

application is specifically targeted to dynamic metabolic flux models, the controller with the novel

uncertainty propagation method proposed in this chapter is applicable for not only

biotechnological processes but also for other processes that may be modeled as LP’s in the future.

This chapter is organized as follows. Section 4.1 proposes a preliminary illustration of the

application procedure for CCM algorithm using a 3D case study method. The discussion of the

prediction model development based on CCM and a tree structure algorithm as well as the

propagation of the uncertainty onto the outputs’ predictions based on robust NMPC are presented

 71

in section 4.2. A comparison of this approach with other algorithms is also discussed in this section.

In section 4.3, the algorithm described in section 4.2 will be used to develop the robust-model

predictive controller based on DFBM; this controller is then used to formulate a robust bioreactor

control framework. The results from such implementation are presented in section 4.4. Concluding

remarks are presented at the end.

4.1 Illustrative Case Study: CCM Algorithm

4.1.1 Introduction

In this section, the CCM algorithm is illustrated for a 3D case study to facilitate visualization of

the method. This application reveals that when the size of the uncertain inequality constraints

grows, which is generally referred as the growing of the dimension of the RHS space in this

section, the number of convex cones as well as the computational complexity of the RHS space

may tend to increase exponentially.

There are two main layers in the CCM algorithm, as shown in Fig. 3.11. The first layer focus on

generating the RHS map. This layer is computationally demanding but it has to be performed only

once for any values of the RHS of the inequalities of the LP problem. Thus, for the case of a

controller application it can be executed off-line. In this layer, after generating every possible

combination of solutions, the feasible region for every possible tableau can be obtained. Note that

each tableau corresponds to a particular set of basic solutions. When overlap between tableaus

occurs, they will be divided and bounded by comparing with the intersection tableaus that have an

overlap region with each other. The final feasible region of each tableau can be computed by using

a series of overlap region allocation steps and by ultimately dividing the remaining polyhedron

part of this tableau into many smaller convex cones. The final RHS map is then generated by

gathering together all the active tableaus.

The second layer of this uncertainty propagation algorithm involves an on-line sensitivity analysis

calculation. By using the RHS map that is computed in the previous layer and based on the

uncertainty region which is defined a priori in this layer, the sensitivity ranges of each variable of

the LP problem with respect to each of the tableaus can be calculated. However, this layer needs

to be executed only when the uncertainty bounds of the RHS changes; hence, the computational

 72

effort for the execution of this second layer is not as high as for the first layer. This fact makes the

CCM an attractive approach for uncertainty propagation.

It will be shown that the computational complexity increases considerably in the 3D case as

compared to the 2D case presented in Chapter 3, but the algorithm is still computationally attractive

as compared to the Monte Carlo sampling.

4.1.2 A 3D Case Study

A 3 dimensional example is presented here to illustrate the application of the CCM method

proposed in Chapter 3. The objective is to show how the methodology scales with an increase in

the number of dimensions, i.e. the number of uncertain inequalities considered in the example. In

particular, a comparison between the current 3D case with the 2D case presented in Chapter 3 will

be conducted to evaluate the complexity of the proposed approach.

The LP problem under consideration is defined as follows:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔�

s. t.

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃

𝑨𝑨 = �
1 2
1 1
4 1

� , 𝑰𝑰 = �
1 0 0
0 1 0
0 0 1

� , 𝒄𝒄 = [2 1],

𝒃𝒃 = �
𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� ≥ 0, 𝒙𝒙 = �

𝑥𝑥1
𝑥𝑥2� ≥ 0, 𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
� ≥ 0

 (4.1)

The CCM algorithm proposed in Chapter 3 is applied here to calculate the 3D RHS map for this

problem. The space is divided into 3 different main tableaus:

𝓣𝓣 = �

𝑴𝑴𝑴𝑴𝟏𝟏,𝑴𝑴𝑴𝑴𝟐𝟐,𝑴𝑴𝑴𝑴𝟑𝟑� (4.2)

where 𝑴𝑴𝑴𝑴𝟏𝟏 includes all tableaus where 𝑥𝑥1 is basic and 𝑥𝑥2 is non-basic; 𝑴𝑴𝑴𝑴𝟐𝟐 includes all tableaus

where both 𝑥𝑥1 and 𝑥𝑥2 are basic; 𝑴𝑴𝑴𝑴𝟑𝟑 contains all tableaus where 𝑥𝑥2 is basic and 𝑥𝑥1 is non-basic.

For example, as illustrated in Fig. 4.1, tableau 𝑴𝑴𝑴𝑴𝟏𝟏 contains 3 convex cones shown in different

colors with 2 additional constrains 𝒇𝒇𝒂𝒂𝒂𝒂 where 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 10 and 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20 as in function (3.71).

The relationship among these tableaus can be represented as follows:

 73

𝑴𝑴𝑴𝑴𝟏𝟏 = {𝑻𝑻𝑻𝑻𝟓𝟓,𝑻𝑻𝑻𝑻𝟔𝟔}

𝑻𝑻𝑻𝑻𝟓𝟓 = {𝑇𝑇𝑇𝑇51,𝑇𝑇𝑇𝑇52}, 𝑻𝑻𝑻𝑻𝟔𝟔 = {𝑇𝑇𝑇𝑇61}

(4.3)

where the convex cones in 𝑻𝑻𝑻𝑻𝟓𝟓 are in terms of 𝑇𝑇5 = [1 3 5] for which the corresponding basic

variables are 𝒙𝒙𝑩𝑩 = [𝑥𝑥1 𝑥𝑥3 𝑥𝑥5]𝑇𝑇; the convex cones in 𝑻𝑻𝑻𝑻𝟔𝟔 are in terms of 𝑇𝑇6 = [1 4 5] with

the corresponding basic variables 𝒙𝒙𝑩𝑩 = [𝑥𝑥1 𝑥𝑥4 𝑥𝑥5]𝑇𝑇. The polyhedron of 𝑇𝑇𝑇𝑇51, 𝑇𝑇𝑇𝑇52 and 𝑇𝑇𝑇𝑇61 are

colored in Figure 4.1 in red, green and blue, respectively. It is evident from Fig. 4.1 that the

polyhedron of 𝑴𝑴𝑴𝑴𝟏𝟏 is nonconvex. Other regions of 𝑴𝑴𝑴𝑴𝟐𝟐 and 𝑴𝑴𝑴𝑴𝟑𝟑 as well as their convex cones

can also obtained by using CCM algorithm as illustrated in Fig. 4.2 where each main tableau is

shown in different color.

Figure 4.1 Tableaus distribution of 𝑴𝑴𝑴𝑴𝟏𝟏 in RHS map

Once the 3D RHS map has been identified, the sensitivity analysis also can be performed with the

method introduced in section 3.3.2. The uncertainty range in this case is defined as follows:

𝒃𝒃� = �
3
4

12
� , ∆𝒃𝒃 = [𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎] = [0.5 2] ∙ 𝒃𝒃� = �

1.5 6
2 8
6 24

�

𝒇𝒇𝒂𝒂𝒂𝒂: 1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0

𝒇𝒇𝒂𝒂𝒂𝒂: −1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0

𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 10

𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20

 74

Thus, the constraints describing the uncertain ranges of all parameters 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) can be represented

as follows:

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎

� =

⎣
⎢
⎢
⎢
⎢
⎡
1.5 − 𝑏𝑏1
2 − 𝑏𝑏2
2 − 𝑏𝑏3
𝑏𝑏1 − 6
𝑏𝑏2 − 8
𝑏𝑏3 − 24⎦

⎥
⎥
⎥
⎥
⎤

≤ 𝟎𝟎

Figure 4.2 Tableaus distribution of 𝑴𝑴𝑴𝑴𝟏𝟏, 𝑴𝑴𝑴𝑴𝟐𝟐 and 𝑴𝑴𝑴𝑴𝟑𝟑 in RHS map

After intersecting the regions of 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝒃𝒃) with the main tableaus calculated in the RHS map by

eliminating the redundant constraints, the sensitivity region for each of the uncertain model

parameters for each main tableau can be obtained. After this procedure, it was found that 2 main

tableaus,𝑴𝑴𝑹𝑹𝟏𝟏 and 𝑴𝑴𝑴𝑴𝟐𝟐 , have active tableaus in the uncertainty region. For instance, the region

𝑴𝑴𝑴𝑴𝟏𝟏 maintains 2 different tableaus {𝑻𝑻𝑻𝑻𝟓𝟓,𝑻𝑻𝑻𝑻𝟔𝟔}, i.e. 3 polyhedrons {𝑇𝑇𝑇𝑇51,𝑇𝑇𝑇𝑇52,𝑇𝑇𝑇𝑇61}, in this region

which are indicated as bounded by the dash-dotted line in Fig. 4.3. The sensitivity region of 𝑴𝑴𝑴𝑴𝟏𝟏

(𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏) can be obtained by analyzing the sensitivity region of each of the polyhedrons and select

the maximum and minimum values of each parameter within each polyhedron.

𝑴𝑴𝑴𝑴𝟏𝟏

𝒇𝒇𝒂𝒂𝒂𝒂

𝒇𝒇𝒂𝒂𝒂𝒂

𝑴𝑴𝑴𝑴𝟐𝟐

𝑴𝑴𝑴𝑴𝟑𝟑

 75

Then, the cost function values, referred to as sensitivity ranges, for each polyhedron are as follows:

𝑍𝑍51|∆𝒃𝒃 = [4 12]∆𝒃𝒃, 𝑍𝑍52|∆𝒃𝒃 = [4 6]∆𝒃𝒃, 𝑍𝑍61|∆𝒃𝒃 = [3 12]∆𝒃𝒃

accordingly, the sensitivity ranges of the cost function in 𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏 is as follows:

𝑍𝑍𝑺𝑺𝑺𝑺𝑺𝑺𝟏𝟏�∆𝒃𝒃 = [min{𝑍𝑍51|∆𝒃𝒃,𝑍𝑍52|∆𝒃𝒃,𝑍𝑍61|∆𝒃𝒃} max{𝑍𝑍51|∆𝒃𝒃,𝑍𝑍52|∆𝒃𝒃,𝑍𝑍61|∆𝒃𝒃}] = [3 12]∆𝒃𝒃

The volume of each polyhedron in 𝑴𝑴𝑴𝑴𝟏𝟏 are:

𝑉𝑉𝑉𝑉𝑉𝑉51|∆𝒃𝒃 = 70.67, 𝑉𝑉𝑉𝑉𝑉𝑉52|∆𝒃𝒃 = 14.67, 𝑉𝑉𝑉𝑉𝑉𝑉61|∆𝒃𝒃 = 200.33

hence, the complete volume of 𝑅𝑅𝑅𝑅|∆𝒃𝒃, which is the sum of each polyhedron in 𝑴𝑴𝑴𝑴𝟏𝟏, is as follows:

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃 = �∆𝑏𝑏𝑖𝑖

3

𝑖𝑖=1

= 486

Thus, the probability of occurrence of each tableau in the uncertainty region under consideration

can be determined as follows:

𝑃𝑃(𝑻𝑻𝑻𝑻𝟓𝟓|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉51|∆𝒃𝒃 + 𝑉𝑉𝑉𝑉𝑉𝑉52|∆𝒃𝒃

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃
= 17.56%

𝑃𝑃(𝑻𝑻𝑻𝑻𝟔𝟔|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉61|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

= 41.22%

The possibility of 𝑴𝑴𝑴𝑴𝟏𝟏 can also be obtained as follows:

𝑃𝑃(𝑴𝑴𝑴𝑴𝟏𝟏|∆𝑏𝑏) = 𝑃𝑃(𝑻𝑻𝑻𝑻𝟓𝟓|∆𝑏𝑏) + 𝑃𝑃(𝑻𝑻𝑻𝑻𝟔𝟔|∆𝑏𝑏) = 58.78%

The sensitivity range for another main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 that is active in the overall uncertainty region

also can be computed using the CCM algorithm. The results for 𝑴𝑴𝑴𝑴𝟐𝟐 are illustrated in Fig. 4.4

with different colors for the different polyhedrons. In this graph, the 𝑴𝑴𝑴𝑴𝟐𝟐 maintains 2 different

tableaus {𝑻𝑻𝑻𝑻𝟏𝟏,𝑻𝑻𝑻𝑻𝟐𝟐}, i.e. 3 polyhedrons {𝑇𝑇𝑇𝑇11,𝑇𝑇𝑇𝑇12,𝑇𝑇𝑇𝑇21}, in the uncertainty region shown in Fig.

4.4 as the regions bounded by the dash-dotted lines.The volume of each polyhedron composing

𝑴𝑴𝑴𝑴𝟐𝟐 are:

𝑉𝑉𝑉𝑉𝑉𝑉11|∆𝒃𝒃 = 3.33, 𝑉𝑉𝑉𝑉𝑉𝑉12|∆𝒃𝒃 = 20.73, 𝑉𝑉𝑉𝑉𝑉𝑉21|∆𝒃𝒃 = 176.27

Thus, the probability of occurrence of each tableau in the uncertainty region under consideration

with the assumption that the probability distribution of this RHS space are uniform is as follows:

𝑃𝑃(𝑻𝑻𝑻𝑻𝟏𝟏|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉11|∆𝒃𝒃 + 𝑉𝑉𝑉𝑉𝑉𝑉12|∆𝒃𝒃

𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃
= 4.95%

 76

𝑃𝑃(𝑻𝑻𝑻𝑻𝟐𝟐|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉21|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

= 36.27%

The probabilities for 𝑴𝑴𝑴𝑴𝟐𝟐 can also be obtained as follows:

𝑃𝑃(𝑴𝑴𝑴𝑴𝟐𝟐|∆𝑏𝑏) = 𝑃𝑃(𝑻𝑻𝑻𝑻𝟏𝟏|∆𝑏𝑏) + 𝑃𝑃(𝑻𝑻𝑻𝑻𝟐𝟐|∆𝑏𝑏) = 41.22%

Figure 4.3 Region of 𝐌𝐌𝐌𝐌𝟏𝟏 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄(∆𝒃𝒃)

Note that the sum of 𝑃𝑃(𝑴𝑴𝑴𝑴𝟏𝟏|∆𝑏𝑏) and 𝑃𝑃(𝑴𝑴𝑴𝑴𝟐𝟐|∆𝑏𝑏) is 100% as expected. To assess the progressive

increase in computational complexity as the number of uncertain parameters increases, the 3D case

study discussed above is compared to the 2D case study presented in Chapter 3 (see section 3.3).

It is evident from the comparison that for the 3D case, the main tableaus are generally containing

more sub-tableaus as well as convex cones that compose each of them. Thus, the tableaus are less

likely to be convex in 3D RHS space. In most cases, as the dimension of the RHS increases, the

complexity of the tableau distribution also increases with respect to both the number of different

active tableaus and the convex cones composing each one of them. However, this increase in

complexity is mitigated to some extent, since generally only few of the tableaus are active in a

certain RHS space. A typical example of higher dimension sensitivity analysis (6D RHS space

𝑇𝑇𝑇𝑇51�∆𝑏𝑏

𝑇𝑇𝑇𝑇52�∆𝑏𝑏

𝑇𝑇𝑇𝑇61�∆𝑏𝑏

 77

case study) will be discussed below in a case study of a robust EMPC controller algorithm for a

bioreactor which is the main focus of this thesis.

Figure 4.4 Region of 𝑴𝑴𝑴𝑴𝟐𝟐 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄(∆𝒃𝒃)

4.2 Robust NMPC Controller Formulation

As discussed in Chapter 3, the purpose of this novel algorithm is to propagate the uncertainty in

model parameters onto a cost of an LP problem. An EMPC algorithm is proposed in this section

which is made robust by using the CCM for uncertainty propagation along the prediction horizon.

More specifically, the CCM algorithm in this work is tailored to the robust EMPC procedure where

the biochemical processes are described by a dynamic metabolic flux model (DMFM) that is based

on the solution of an LP problem at each time step. The DMFM is used to describe a batch

bioreactor process and the objective is to maximize a cost at the end of the batch.

The general formulation of an EMPC controller involves the minimization or maximization of an

economic terminal cost/penalty 𝑉𝑉𝑓𝑓 function as earlier presented in equations (3.1) to (3.5). The bi-

level optimization to be solved for the EMPC was introduced in (3.6) to (3.11). Additionally, the

𝑇𝑇𝑇𝑇11�∆𝑏𝑏

𝑇𝑇𝑇𝑇12�∆𝑏𝑏

𝑇𝑇𝑇𝑇21�∆𝑏𝑏

 78

uncertain parameters on the Right Hand Side (RHS) 𝒃𝒃 as well as the linearly supremum bounding

procedure with respect to the uncertain parameters of the RHS were discussed in equations (3.12)

to (3.15). The robust controller formulation of the current chapter is based on these earlier

definitions.

Another important theoretical basis of the Tree (scenario) based structure of NMPC was discussed

in section 2.3.4. As shown schematically in Fig. 4.5, the main idea of this method as reported in

the recent literature is that the time trajectories corresponding to different parameter uncertainty

or disturbance realizations can be represented by a tree composed of discrete scenarios. Each node

of the branches in this tree structure is generated by uncertainty, i.e. parameter or disturbance

related uncertainty. To avoid the increased computational cost expected with the exponential

growth nature of the tree structure, branching with respect to different uncertainty realizations is

only done for the initial time intervals of the prediction horizon (2 first intervals in Fig. 4.5) and

then the uncertainty realization in each trajectory is assumed to remain constant until the end of

the horizon (intervals 3 and 4 in Fig. 4.5).

Prediction Horizon = 4

Robust Horizon = 2

1(0)

Time Interval (stages)

2(1) 3(2) 4(3)

Figure 4.5 Uncertainty evolution with robust horizon represented by scenario tree structure

The most challenging problem of the scenario tree structure is how to generate a reasonable tree

structure that maintains a balance between an accurate estimation of uncertainty and an acceptable

 79

size of the robust horizon. Many methods have been proposed to address this issue, such as the

Monte Carlo simulations (Shapiro, 2003), the deterministic moment matching method (Høyland

et al., 2003) of a probability distribution, the minimization of a certain probability matrix (de

Oliveira et al., 2010) or machine learning techniques (Defourny, 2010). Several versions of the

tree structure based MPC have been reported (Lucia, Finkler and Engell, 2013; Lindhorst et al.,

2016). However, those frameworks are only acceptable for online implementation with a short

prediction horizon or a limited number of uncertainties of the dynamic enzyme-cost Flux Balance

Analysis (deFBA) model.

Considering these limitations, a novel tree structure based algorithm is proposed here in order to

exploit the particular nature of the dynamic metabolic flux model describing the system, i.e. linear

programming based model. The expectation is that the proposed approach would reduce the

computational effort to estimate control actions in the presence of model uncertainty.

4.2.1 Tree Structure of Different Tableaus

The main assumption of the proposed EMPC algorithm is that the space of the outputs that are

generated from the uncertainty parameters can be divided into a series of polyhedrons; for each

polyhedron, max-min of outputs can be easily obtained based on linearity. The CCM procedure is

used to find ranges of output values for each one of the Tableaus identified at each time step along

the prediction horizon. Using the minimum and maximum values calculated at each time interval

𝑘𝑘, the ranges of outputs in a following time interval 𝑘𝑘 + 1 can be calculated using the CCM

method together with the differential equations describing the mass balances in the DMFM model,

the distribution of these time intervals has been shown as in Fig. 4.6 (b). Therefore, a tree structure

uncertainty propagating method can be obtained by this approach where the tree expands along

the prediction horizon from the current time interval, k. Thus, the novel controller algorithm

proposed here will be referred to as a Tableau Based Tree (TBT) method. The schematic structure

of the TBT algorithm is shown in Fig. 4.6 and Fig. 4.7. Each branch originating from a node

represents a specific tableau corresponding to a particular range of uncertainty and for a particular

input (control action or manipulated variable). In this structure, the path from the root node (initial

state) 𝑥𝑥0 to a leaf node is referred to as a scenario. The tree may branch at each stage where the

branches originating from each node depends on the numbers of tableaus that are generated from

the uncertain parameters. There are three different layers of sampling time interval in this

 80

prediction system, the basic sampling time interval is ∆𝑡𝑡, the instant where the new branches can

be generated is referred as a new stage 𝑠𝑠 and the time interval of each stage is ∆𝑠𝑠, the interval of

the time where each controller inputs 𝑢𝑢 can be manipulated is ∆𝑙𝑙. Generally, ∆𝑠𝑠 can be equal or

longer than ∆𝑡𝑡 and ∆𝑙𝑙 can be equal or longer than ∆𝑠𝑠, while the larger one of these values are

generally be multiple times of the less one. For instance, as it has been shown in Fig. 4.6 (b), if the

∆𝑙𝑙 is 2 times longer than ∆𝑠𝑠:

∆𝑙𝑙 = 2∆𝑠𝑠

The control inputs of this tree structure are equal to each other every two stages, such as:

𝑢𝑢01 = 𝑢𝑢11, 𝑢𝑢21 = 𝑢𝑢31

(a) (b)

k0 5 10

s = 0
s = 1

Figure 4.6 (a) Uncertainty evolution with robust horizon represented by scenario tree structure in

TBT; (b) Uncertainty evolution of a specific parameter 𝝍𝝍𝒊𝒊 in the first and second stages of an

individual TBT scenario (the red bold line when 𝒌𝒌 = 𝟎𝟎,𝟓𝟓,𝟏𝟏𝟏𝟏 is the range of 𝝍𝝍𝟎𝟎,𝒊𝒊 , 𝝍𝝍𝟏𝟏,𝒊𝒊
𝟏𝟏 and 𝝍𝝍𝟐𝟐,𝒊𝒊

𝟐𝟐

corresponding to the nodes in the red scenario of figure 4.6 (a), respectively)

Additionally, from the CCM algorithm, the probability for each tableau to occur relative to the

other tableaus can be calculated and thus, with this information, some of the leaves can be

eliminated if the probability for them to occur is smaller than a certain user-defined threshold.

Although some parameters, such as controller inputs, plants states and fluxes etc., may remain

constant along different stages, they are denoted by different stage number 𝑠𝑠. For example, the

values of uncertain parameters might remain constant during a certain scenario; however, they are

marked as different superscripts in order to clearly identify their relative positions in the tree

structure. Furthermore, the probability distribution of occurrence of parameters of the RHS of the

constraints of the LP problem solved at each stage are assumed to be uniform in this work in order

𝝍𝝍0

∆𝑠𝑠
∆𝑙𝑙

𝝍𝝍0,𝑖𝑖

𝝍𝝍1
1

𝝍𝝍2
2

𝑢𝑢01 𝑢𝑢11𝒅𝒅11

𝑢𝑢01 𝑢𝑢11

𝝍𝝍1,𝑖𝑖
1 𝝍𝝍2,𝑖𝑖

2

𝜓𝜓𝑠𝑠,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚

𝜓𝜓𝑠𝑠,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚

𝝍𝝍1
2

𝝍𝝍2
1 𝑢𝑢11𝒅𝒅11

𝒅𝒅01

∆𝑡𝑡

𝑢𝑢01 𝒅𝒅01

𝜓𝜓

 81

to simplify the problem, if not otherwise specified. Also, it is assumed that all of the possible states

𝑺𝑺𝝍𝝍𝑠𝑠𝑟𝑟 that are generated from each node 𝝍𝝍𝑠𝑠
𝑟𝑟 with the possibility 𝑃𝑃𝑠𝑠+1

∗𝑟𝑟(𝑞𝑞) of each states 𝝍𝝍𝑠𝑠+1
𝑟𝑟(𝑞𝑞) to occur

within the tree scenario can be calculated from an uncertain nonlinear system that is represented

as follows:

𝑺𝑺𝝍𝝍𝑠𝑠𝑟𝑟 =

⎣
⎢
⎢
⎢
⎢
⎡�𝝍𝝍𝑠𝑠+1

𝑟𝑟1(1)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(1)

�𝝍𝝍𝑠𝑠+1
𝑟𝑟(2)�

𝑇𝑇
𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(2)

⋮ ⋮
�𝝍𝝍𝑠𝑠+1

𝑟𝑟(𝑘𝑘𝑇𝑇)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(𝑘𝑘𝑇𝑇)

⎦
⎥
⎥
⎥
⎥
⎤

= 𝑓𝑓𝑛𝑛𝑛𝑛(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)

(4.4)

where 𝑠𝑠 is the identifier of different stages, 𝑟𝑟 and 𝑟𝑟(𝑞𝑞) is the identifier of the leaves in one specific

stage with 𝑟𝑟 ∈ [1,2, … , 𝑘𝑘𝑠𝑠] and 𝑞𝑞 ∈ [1,2, … , 𝑘𝑘𝑇𝑇], 𝑘𝑘𝑠𝑠 is the amount of scenario in the stage 𝑠𝑠, 𝑘𝑘𝑇𝑇 is

the amount of the branches/tableaus that can be generated from node 𝝍𝝍𝑠𝑠
𝑟𝑟 with the controller inputs

𝑢𝑢𝑠𝑠𝑟𝑟 and the uncertainty region 𝒅𝒅𝑠𝑠𝑟𝑟, 𝝍𝝍𝑠𝑠
𝑟𝑟 is a matrix that contains two column vectors that illustrate

the maximum and minimum states of the corresponding tableaus respectively:

𝝍𝝍𝑠𝑠
𝑟𝑟 = �𝝍𝝍𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝝍𝝍𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� (4.5)

the uncertainty region is defined as follows:

𝒅𝒅𝑠𝑠𝑟𝑟 = �𝒅𝒅𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝒅𝒅𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� (4.6)
It is worth to note that the probability that obtained form (4.4) is not the actual probability 𝑃𝑃𝑠𝑠+1𝑟𝑟 of

each tableaus (𝑇𝑇|𝝍𝝍𝑠𝑠+1
𝑟𝑟) for each of the states 𝝍𝝍𝑠𝑠+1

𝑟𝑟 , a ∗ sign is used in the superscript of such

probability symbols such as 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 for avoiding the confusion of these two probabilities. The actual

probability 𝑃𝑃𝑠𝑠+1𝑟𝑟 can be computed by using the probability 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 in (4.4) and the concept of

conditional probability as follows:

𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 𝑃𝑃𝑠𝑠𝑟𝑟 (4.7)

In this work 𝑓𝑓𝑛𝑛𝑛𝑛 is an uncertain nonlinear system that is formulated by using the CCM algorithm

combined with Euler integrations of the equation defined in (3.10). Therefore, each of the states

𝝍𝝍𝑠𝑠+1
𝑟𝑟(𝑞𝑞) and their corresponding probability 𝑃𝑃𝑠𝑠+1

∗𝑟𝑟(𝑞𝑞) in (4.4) are dependent on the current vector of

states 𝝍𝝍𝑠𝑠
𝑟𝑟 , the corresponding probability 𝑃𝑃𝑠𝑠𝑟𝑟 , the corresponding control input 𝑢𝑢𝑠𝑠𝑟𝑟 and the

corresponding uncertainty region 𝒅𝒅𝑠𝑠𝑟𝑟 at stage 𝑠𝑠 and realization (scenario) 𝑟𝑟. For example, using

Fig. 4.7, all the states 𝑺𝑺𝝍𝝍23 that are generated from 𝝍𝝍2
3 can be represented as:

 82

𝑺𝑺𝝍𝝍23 = �𝝍𝝍3
5 𝑃𝑃3∗5

𝝍𝝍3
6 𝑃𝑃3∗6

� = 𝑓𝑓𝑛𝑛𝑛𝑛(𝝍𝝍2
3,𝑃𝑃23,𝑢𝑢23,𝒅𝒅23)

where in this particular case, the previous stage is 𝑠𝑠 = 2, the previous state identifier 𝑟𝑟 = 3 and

the two new generating branches are the 5th and 6th scenario of current stage, thus 𝑟𝑟(1) = 5 and

𝑟𝑟(2) = 6. Using CCM algorithm, the number of active tableaus within the uncertain region 𝒅𝒅𝑠𝑠𝑟𝑟 is

obtained as 𝒦𝒦𝑅𝑅𝑅𝑅 = 2; thus, the number of branches 𝑘𝑘𝑇𝑇 of the node 𝝍𝝍2
3 is:

𝑘𝑘𝑇𝑇 = 𝒦𝒦𝑅𝑅𝑅𝑅 = 2 (4.8)

Figure 4.7 A typical uncertainty evolution represented by scenario tree structure in TBT

For simplicity, the set of possible indices of branches 𝑰𝑰𝐵𝐵(𝑠𝑠, 𝑟𝑟) in the scenario tree is referred to as

𝑰𝑰𝐵𝐵. Additionally, if the probability 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 of a new branch is less than a criterion 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
∗ that is defined

a priori, then this branch is set as a non-active branch 𝑰𝑰𝐵𝐵𝑛𝑛𝑛𝑛(𝑠𝑠 + 1, 𝑟𝑟). Thus, this branch will be

eliminated from the scenario tree 𝑰𝑰𝐵𝐵 and will not be used as a node in the branch generating process

in the next stage. The set of non-active branches is denoted as 𝑰𝑰𝐵𝐵𝑛𝑛𝑛𝑛 and are determined as per the

following criterion:

𝑃𝑃𝑠𝑠+1∗𝑟𝑟 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
∗ (4.9)

Robust Horizon = 3

Prediction Horizon = 5

𝝍𝝍0

𝝍𝝍1
1𝑃𝑃11

𝑢𝑢01
𝒅𝒅01

𝑢𝑢01
𝒅𝒅01

𝑢𝑢11𝒅𝒅11

𝑢𝑢12𝒅𝒅12

𝑢𝑢11𝒅𝒅11

𝑢𝑢12𝒅𝒅12

𝑢𝑢12𝒅𝒅12

𝝍𝝍1
2𝑃𝑃12

𝝍𝝍2
1𝑃𝑃21

𝝍𝝍2
2𝑃𝑃22

𝝍𝝍2
3𝑃𝑃23

𝝍𝝍2
4𝑃𝑃24

𝝍𝝍2
5𝑃𝑃25

𝝍𝝍3
1𝑃𝑃31

𝝍𝝍3
2𝑃𝑃32 𝑢𝑢32𝒅𝒅32 𝝍𝝍4

1𝑃𝑃32 𝑢𝑢41𝒅𝒅41 𝝍𝝍5
1𝑃𝑃32

𝝍𝝍3
3𝑃𝑃33 𝑢𝑢33𝒅𝒅33 𝝍𝝍4

2𝑃𝑃33 𝑢𝑢42𝒅𝒅42 𝝍𝝍5
2𝑃𝑃33

𝝍𝝍3
4𝑃𝑃34

𝝍𝝍3
5𝑃𝑃35 𝑢𝑢35𝒅𝒅35 𝝍𝝍4

3𝑃𝑃35 𝑢𝑢43𝒅𝒅43 𝝍𝝍5
3𝑃𝑃35

𝝍𝝍3
6𝑃𝑃36

𝝍𝝍3
7𝑃𝑃37 𝑢𝑢37𝒅𝒅37 𝝍𝝍4

4𝑃𝑃37 𝑢𝑢44𝒅𝒅44 𝝍𝝍5
4𝑃𝑃37

𝝍𝝍3
8𝑃𝑃38

𝝍𝝍3
9𝑃𝑃39 𝑢𝑢39𝒅𝒅39 𝝍𝝍4

5𝑃𝑃39 𝑢𝑢45𝒅𝒅45 𝝍𝝍5
5𝑃𝑃39

𝑢𝑢21𝒅𝒅21

𝑢𝑢22𝒅𝒅22
𝑢𝑢22𝒅𝒅22
𝑢𝑢22𝒅𝒅22

𝑢𝑢23𝒅𝒅23
𝑢𝑢23𝒅𝒅23

𝑢𝑢25𝒅𝒅25
𝑢𝑢25𝒅𝒅25
𝑢𝑢25𝒅𝒅25

 83

where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
∗ is the largest probability that determines one branch from the possible states set 𝑺𝑺𝝍𝝍𝑠𝑠𝑟𝑟

can be eliminated. Meanwhile, the number of active branches from the parent node, which means

the node that has generated these branches, is denoted as 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎. The set of active branches is denoted

as 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎. Therefore, the probability 𝑃𝑃𝑠𝑠+1𝑟𝑟 of active branch 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟) will be re-normalized by

using (4.10) to compensate for the inactive branches that were eliminated:

𝑃𝑃𝑠𝑠+1𝑟𝑟 =
𝑃𝑃𝑠𝑠+1∗𝑟𝑟 𝑃𝑃𝑠𝑠𝑟𝑟

∑�𝑃𝑃∗|𝑰𝑰𝐵𝐵(𝑠𝑠 + 1, 𝑟𝑟)�
 (𝑰𝑰𝐵𝐵 ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎)

(4.10)

where 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 and �𝑃𝑃∗|𝑰𝑰𝐵𝐵(𝑠𝑠 + 1, 𝑟𝑟)� means the corresponding probability of the tableau that is

obtained from (4.4), i.e. the branch 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟). For instance, in Fig. 4.7 if the 𝑰𝑰𝐵𝐵(2,4) is a non-

active branch, the state of this node 𝝍𝝍2
4 is denoted by a white dot, and the probability of the branch

that originates from the same parent node 𝑰𝑰𝐵𝐵(1,2) with (4.4) are 𝑃𝑃2∗3 and 𝑃𝑃2∗5. Then by using (4.10)

the probability of the node 𝑰𝑰𝐵𝐵(2,3) that will be further used in the tree scenario is:

𝑃𝑃23 =
𝑃𝑃2∗3𝑃𝑃12

𝑃𝑃2∗3 + 𝑃𝑃2∗5
 (𝑰𝑰𝐵𝐵(2,3) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑰𝑰𝐵𝐵(2,5) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎)

Similarly, the probability of the node 𝑰𝑰𝐵𝐵(2,5) is:

𝑃𝑃25 =
𝑃𝑃2∗5𝑃𝑃12

𝑃𝑃2∗3 + 𝑃𝑃2∗5
 (𝑰𝑰𝐵𝐵(2,3) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑰𝑰𝐵𝐵(2,5) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎)

Similar to the tree scenario work previously reported in the literature (Lindhorst et al., 2016; Lucia

et al., 2014), for simplicity, the branching with respect to different tableaus is only done for the

initial 3 first time intervals as shown in Fig. 4.7 corresponding to the last scenario 𝑰𝑰𝐵𝐵(5,5). Then

the tableaus in each trajectory are assumed to remain constant at the tableau (branch) that has the

largest probability among the possible branches (generally this branch is at the nominal value)

until the end of the horizon (intervals 4 and 5 in Fig. 4.7 for the last scenario 𝑰𝑰𝐵𝐵(5,5)). This

approach can be justified as follows: as the branching procedure progresses over the prediction

horizon, it is expected that the sum of the probabilities ∑�𝑃𝑃𝑠𝑠+1𝑟𝑟 |𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟)� of all tableaus that

are generated from the same parent node is smaller than the threshold 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 as defined in (4.11).

Then, the number of branches in the rest of time intervals will remaining constant as shown by

condition (4.12). Furthermore, the probability of each of the remaining branches in the rest of time

intervals until the end of the prediction horizon 𝑙𝑙𝑃𝑃 is assigned the last calculated probability for

 84

that branch calculated at the end of the robust horizon 𝑙𝑙𝑅𝑅 as shown by condition (4.13). Therefore,

the resulting lengths of the robust horizon 𝑙𝑙𝑅𝑅, which is defined in (4.14) by substituting (4.10) into

(4.11), are different with respect to different scenario in this tree structure, where 𝑃𝑃𝑠𝑠−1𝑟𝑟 is the

probability of the parent node of 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑟𝑟). Additionally, the prediction horizon is fixed in every

tree structure, as 𝑙𝑙𝑃𝑃 = 5 in the example shown in Fig. 4.7. As a merit of this method, the scenario

with lager probability maintains longer robust horizon, which can provide a reasonable allocation

for the computation effort.

��𝑃𝑃𝑠𝑠+1𝑟𝑟 |𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟)� ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
(4.11)

𝝍𝝍𝑠𝑠+1
𝑟𝑟 = (𝝍𝝍𝑠𝑠+1

𝑟𝑟 |𝑃𝑃𝑠𝑠+1∗𝑟𝑟 ≥ ∀𝑃𝑃𝑠𝑠+1∗𝑟𝑟) (4.12)

𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑃𝑃𝑙𝑙𝑅𝑅
𝑟𝑟 (4.13)

�𝑙𝑙𝑅𝑅 = 𝑠𝑠|��𝑃𝑃𝑠𝑠𝑟𝑟|𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑟𝑟)� ≥ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, ∀𝑃𝑃𝑠𝑠𝑟𝑟 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑠𝑠−1𝑟𝑟 ≥ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚�
(4.14)

For instance, based on Fig. 4.7, if the sum of the probability of the active branches originating

from parent node 𝑰𝑰𝐵𝐵(1,2) are:

(𝑃𝑃23 + 𝑃𝑃25) ≥ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

and the probability of 𝑰𝑰𝐵𝐵(2,3) is less than 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, then the length of the robust horizon 𝑙𝑙𝑅𝑅 = 3 for

scenario 𝑰𝑰𝐵𝐵(3,5). If there are 2 tableaus that can be generated from 𝑰𝑰𝐵𝐵(2,3), which are 𝑰𝑰𝐵𝐵(3,5)

and 𝑰𝑰𝐵𝐵(3,6), the probability of 𝑰𝑰𝐵𝐵(3,5) is larger than 𝑰𝑰𝐵𝐵(3,6), then by using (4.12):

𝝍𝝍3
5 = (𝝍𝝍3

5|𝑃𝑃3∗5 ≥ 𝑃𝑃3∗6)

and the probability of this tableau/scenario 𝑰𝑰𝐵𝐵(3,5) is 𝑃𝑃35 = 𝑃𝑃23 and remains at that value beyond

the end of the robut horizon until the end of the prediction horizon.

4.2.2 Mathematical Formulation

A tree based scenario optimization problem to accomplish economic predictive control can be

formulated using the Tableau Based Tree (TBT) branch-pruning strategy presented in the previous

section as follows:

min
𝑢𝑢𝑠𝑠𝑟𝑟,∀(𝑠𝑠,𝑟𝑟)∈𝑰𝑰𝐵𝐵

𝑎𝑎𝑎𝑎𝑎𝑎
 𝐽𝐽 (4.15)

s. t.
𝝍𝝍𝑠𝑠+1
𝑟𝑟 = 𝑓𝑓(𝝍𝝍𝑠𝑠

𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.16)

 85

𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑔𝑔(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.17)

𝝍𝝍𝑠𝑠
𝑟𝑟 ∈ 𝚿𝚿𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.18)

𝑢𝑢𝑠𝑠𝑟𝑟 ∈ 𝕌𝕌𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.19)

where 𝐽𝐽 is defined as follows:

𝐽𝐽 = 𝑉𝑉𝑓𝑓 �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝐽𝐽𝑠𝑠𝑓𝑓

𝑟𝑟
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

(4.20)

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 is the cost function of each one of the scenario 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎�𝑠𝑠𝑓𝑓, 𝑟𝑟� at the final stage 𝑠𝑠𝑓𝑓 , 𝑃𝑃𝑠𝑠𝑓𝑓

𝑟𝑟 is the

probability of 𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 . 𝑁𝑁𝑠𝑠 is the total number of branches in the 𝑠𝑠 stage. 𝑉𝑉𝑓𝑓 is the function that

quantifies the economic terminal cost/penalty. The states 𝝍𝝍𝑠𝑠
𝑟𝑟 and controller actions 𝑢𝑢𝑠𝑠𝑟𝑟 must be

within their pre-specified constraints’ sets 𝚿𝚿𝒇𝒇 and 𝕌𝕌𝒇𝒇 as defined in (4.18) and (4.19), respectively.

To achieve robustness, the cost function 𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 of each one of 𝑟𝑟 scenarios can be defined as follows:

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 = 𝐿𝐿𝑓𝑓𝝍𝝍𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚, ∀𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝝍𝝍𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑖𝑖 ∈ ℕ𝑜𝑜𝑜𝑜𝑜𝑜 ,∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.21)

where 𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value of the 𝑖𝑖-th element in terminal branch 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎�𝑠𝑠𝑓𝑓, 𝑟𝑟�, which can

be obtained by using (4.5), and the set ℕ𝑜𝑜𝑜𝑜𝑜𝑜 is the identifier of the elements in 𝝍𝝍 that are being

optimized. 𝐿𝐿𝑓𝑓 is a function that reflect the significance of each 𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 into the cost function in

(4.21). In the current work, for our particular bioreactor study only one of the elements in 𝝍𝝍 needs

to be optimized, i.e. the one corresponding to the growth rate. In this case, this specific element is

denoted as 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 ; thus, the cost function can be defined as in (4.22).

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 = 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.22)
It is necessary to establish a time-discrete model since discretization is the nature of the scenario

tree structure model. However, most of the process models are formulated by using a continuous

time domain since they describe continuous balances by sets of ODE’s, i.e.

𝜓̇𝜓 = 𝛺𝛺(𝜓𝜓,𝑢𝑢,𝑑𝑑) (4.23)

Additionally, the NMPC algorithm that is applied in the current work involves both the control

actions as well as the model states as decision variables of the optimization problem. Hence, the

states described by ODEs need to be discretized thus resulting in a nonlinear optimization (NLP)

problem. To address this problem, the ODE’s are discretized and calculated over time by using the

 86

Euler discrete integrations of the DMFM model (equation 3.10). The resulting discretized model

can be written as follows:

𝝍𝝍𝑠𝑠
𝑟𝑟(𝑡𝑡 + 1) = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡) + ∆𝑡𝑡�𝛺𝛺(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.24)

where ∆𝑡𝑡 is the duration of each time interval and each of the stages 𝑠𝑠 may contain several

sampling time intervals 𝑡𝑡 and generally ∆𝑠𝑠 needs to be multiple times of ∆𝑡𝑡. Two main options

can be implemented to improve the accuracy of (4.24): i) reduce the time intervals of ∆𝑡𝑡 and ∆𝑠𝑠

and ii) use a different algorithm from Euler integrations for time integration of the differential

equations of the model. For instance, the forward differentiation formula (FDF) of 1st order was

used in the current study to integrate eq. (4.24). To further improve the accuracy of the integration,

higher order methods explicit Runge-Kutta methods such as ode45 in MATLAB can be adopted.

It is worth noticing that the control inputs 𝑢𝑢𝑠𝑠𝑟𝑟 should be changed every 𝛼𝛼𝑢𝑢 (𝛼𝛼𝑢𝑢 ∈ ℤ) times for each

stage, the actual time interval between each time of manipulation 𝑙𝑙 is ∆𝑙𝑙. Also, the uncertainty

range 𝒅𝒅𝑠𝑠𝑟𝑟 is always assumed to involve percentages of the region 𝜹𝜹𝒅𝒅 with respect to the nominal

parameters 𝒅𝒅� that result in feasible solutions of the optimization problem. Thus, to ensure

feasibility two additional constraints are added to the optimization problem as follows:

𝑢𝑢𝑠𝑠𝑟𝑟 = 𝑢𝑢𝑙𝑙𝑟𝑟 , 𝑰𝑰(𝑠𝑠 − 1, 𝑟𝑟) → 𝑰𝑰(𝑠𝑠, 𝑟𝑟), 𝑠𝑠 ≤ 𝑙𝑙𝛼𝛼𝑢𝑢 < 𝑠𝑠 + 𝛼𝛼𝑢𝑢,∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,∀𝑢𝑢𝑙𝑙𝑟𝑟 ∈ 𝑼𝑼𝐿𝐿 (4.25)

𝒅𝒅𝑠𝑠𝑟𝑟 = 𝜹𝜹𝒅𝒅 ∙ 𝒅𝒅�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.26)

where 𝑼𝑼𝐿𝐿 is the set of the input values 𝑢𝑢 of this model and 𝑙𝑙 is a subscript identifying each of the

elements 𝑢𝑢𝑙𝑙𝑟𝑟 in 𝑼𝑼𝐿𝐿. The constrains in (4.25) are also introduced to ensure that decisions (control

inputs) anticipating the future are avoided. These are generally referred as the non-anticipatively

constraints. That is, the branches generated from same parents nodes share same control inputs in

every 𝛼𝛼𝑢𝑢 stage, just as what has been shown in Fig. 4.7 where 𝛼𝛼𝑢𝑢 = 1, 𝑰𝑰(1,1) and 𝑰𝑰(1,2) are

computed by using same control inputs 𝑢𝑢01. Thus, different scenario in TBT method maintains

different profiles of control inputs. In some cases, the size of the set 𝑼𝑼𝐿𝐿 might be unstable during

optimization. This problem can be partially addressed by introducing a fixed number of active

scenarios 𝛼𝛼𝐼𝐼,𝑠𝑠 for each stage 𝑠𝑠. For example, in Fig. 4.7, for the 0-2 stages:

𝑼𝑼𝐿𝐿 = {𝑢𝑢01,𝑢𝑢11,𝑢𝑢12,𝑢𝑢21,𝑢𝑢22,𝑢𝑢23,𝑢𝑢25}

the 𝑢𝑢24 is not in this set since the corresponding scenario 𝑰𝑰(2,4) has been eliminated with 𝑃𝑃24 ≤

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. However, if the value’s changing of 𝑢𝑢01 during optimization result in 𝑃𝑃24 > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the 𝑢𝑢24

 87

should be introduced in 𝑼𝑼𝐿𝐿 and thus the size of 𝑼𝑼𝐿𝐿 is unstable. If 𝛼𝛼𝐼𝐼 is available in this stage as

𝛼𝛼𝐼𝐼,2 = 4, which means the active amount of scenario of the 2nd stage is fixed to 4, and:

𝑃𝑃24 ≤ ∀𝑃𝑃2𝑟𝑟

then the scenario 𝑰𝑰(2,4) still not be active thus the size of 𝑼𝑼𝐿𝐿 is maintained stable. Generally, the

𝛼𝛼𝐼𝐼,𝑠𝑠 of each stage 𝑠𝑠 are different according to different models and can be obtained by analyzing

the normal condition of the TBT branching structure.

Based on the above, the overall NLP optimization problem to be solved for calculating control

actions is based on a two layers’ optimization that has been previously partially introduced in

(3.6) − (3.11). This problem is now re-formulated as an EMPC (Economic Model Predictive

Control Problem) by using the proposed tree structure as follows:

min
𝑼𝑼𝐿𝐿

 𝑉𝑉𝑓𝑓 �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑓𝑓�
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

(4.27)

s. t.
𝐸𝐸𝐸𝐸𝐸𝐸. (4.4) − (4.14)

𝝍𝝍𝑠𝑠
𝑟𝑟(𝑡𝑡 + 1) = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡) + ∆𝑡𝑡�𝛺𝛺(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.28)

𝝍𝝍𝑠𝑠+1
𝑟𝑟 = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡 + ∆𝑠𝑠), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.29)

𝝍𝝍𝑠𝑠
𝑟𝑟 ∈ 𝚿𝚿𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.30)

𝑢𝑢𝑠𝑠𝑟𝑟 ∈ 𝕌𝕌𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 (4.31)

𝐸𝐸𝐸𝐸𝐸𝐸. (4.25) − (4.26)

where the economic terminal cost/penalty 𝑉𝑉𝑓𝑓 in (4.27) includes the sum of the minimum condition

at the end of each scenario, in which the objective function is 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 at the terminal time 𝑡𝑡𝑓𝑓 of the

final stage 𝑠𝑠𝑓𝑓, multiplied by its corresponding probability 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 . The probability of each node 𝑃𝑃𝑠𝑠𝑟𝑟 at

each time interval can be obtained by using 𝐸𝐸𝐸𝐸𝐸𝐸. (4.4) − (4.14), i.e. the equations defining the

TBT strategy outlined before for creating the tree structure and for pruning the branches with low

probability. The function 𝛺𝛺 represents the discretized dynamics (4.28). This function is formulated

via the CCM algorithm that was introduced in section 3.2.5 and the uncertainty propagation

procedure that was presented in 3.1. The initial states 𝝍𝝍𝑠𝑠+1
𝑟𝑟 of each stage is equal to the final states

𝝍𝝍𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 + ∆𝑠𝑠) of the previous stage. Additional constraints for this model are bounds on the

 88

states (4.30) and the inputs (4.31). Equations (4.25) − (4.26) provide the non-anticipatively

constraints and the uncertainty constraints, respectively.

4.2.3 Theoretical Comparison of Computation Effort for the TBT Approach and the Monte
Carlo Based Approach for Uncertainty Propagation

In this section, the TBT method that forms the basis of the EMPC algorithm is compared on a

theoretical basis with other methods such as Monte Carlo sampling and PCEs.

Generally, the computational costs of Monte Carlo simulation and PCEs highly depends on the

number of uncertain parameters that are being considered. For instance, for Monte Carlo

simulation, if the number of uncertain parameters in the system is 𝜁𝜁, then the number 𝑁𝑁𝑀𝑀 of the

repeating random sampling in each time interval is as in (4.32) needs to be large enough so as to

let the distribution of the sample points approaching to become uniform.

𝑁𝑁𝑀𝑀 = ℰ𝜁𝜁 (4.32)
where ℰ is a tuning parameter that is generally related to the sampling size of the input space. For

instance, when ℰ is increasing, the accuracy of the Monte Carlo algorithm is also increasing. Thus,

ℰ cannot be very small so as to avoid prohibitive computational effort. For a simple comparison,

let the Monte Carlo simulation be applied in the tree scenario structure method illustrated

schematically in Fig. 2.4. If the robust horizon of this model is 𝑟𝑟𝜇𝜇, then the number of calculations

for sampled values 𝑘𝑘𝑇𝑇𝑇𝑇 for this particular scenario in this tree structure can be calculated. Since

each sample of 𝑁𝑁𝑀𝑀 would generate 𝑁𝑁𝑀𝑀 samples in the next time interval then the corresponding

number of sampled values is determined as follows:

𝑘𝑘𝑇𝑇𝑇𝑇 = ℰ𝑟𝑟𝜇𝜇𝜁𝜁 (4.33)

If the time required for each scenario is 𝜏𝜏𝑐𝑐, then time 𝑇𝑇𝑀𝑀 that is required for the procedure can be

calculated as follows:

𝑇𝑇𝑀𝑀 = 𝑘𝑘𝑇𝑇𝑇𝑇𝜏𝜏𝑐𝑐 (4.34)

For comparison, for the TBT approach, let assume that the space of the nonlinear system is divided

into 𝑁𝑁𝑇𝑇 polyhedrons. Since the model for each polyhedrons of the process are linear, then the

maximum and minimum of the variable of interest within each of these polyhedrons can be

obtained by two calculations, i.e. minimum and maximum bounds, for each 𝑁𝑁𝑇𝑇. Thus, the amount

𝑘𝑘𝑇𝑇 of braches that are generated in every time interval for each node is as follows:

 89

𝑘𝑘𝑇𝑇 = 2𝑁𝑁𝑇𝑇 (4.35)

Without initial consideration of the probability of each branch, the robust horizon of this model is

𝑟𝑟𝜇𝜇 , the number of 𝑘𝑘𝑇𝑇𝑇𝑇 calculations of this scenario in this tree structure is:

𝑘𝑘𝑇𝑇𝑇𝑇 = (2𝑁𝑁𝑇𝑇)𝑟𝑟𝜇𝜇 (4.36)

In this case, if the computational time consumed for each scenario is 𝜏𝜏𝑐𝑐, then the total time 𝑇𝑇𝑇𝑇 that

consumed for the TBT procedure will be as follows:

𝑇𝑇𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑇𝑇𝜏𝜏𝑐𝑐 (4.37)

Without consideration of other details of the algorithm that might further affect the computational

effort of either the MC approach or our proposed TBT approach, such as the calculation of the

vertices generating algorithm and the volume obtaining algorithm of each polyhedron, substituting

(4.33) and (4.36) into (4.34) and (4.37) provides a ratio of the computational costs of the two

methods, i.e.

𝑇𝑇𝑀𝑀
𝑇𝑇𝑇𝑇

=
ℰ𝑟𝑟𝜇𝜇𝜁𝜁

(2𝑁𝑁𝑇𝑇)𝑟𝑟𝜇𝜇

(4.38)

Generally, ℰ and 𝑁𝑁𝑇𝑇 are of the same order of magnitude, and each symbol in (4.38) are positive

integers, thus, the time required by the Monte Carlo based method is approximately (ℰ𝑟𝑟𝜇𝜇)𝜁𝜁−1 times

of that required by the present TBT method. For instance, for ℰ = 10, 𝑟𝑟𝜇𝜇 = 3 and 𝜁𝜁 = 7, the

computational time of the Monte Carlo based method is expected to be 1 × 1018 times the

computational time of the TBT method.

From this comparison, it can be concluded that the TBT method have the potential to save

considerable computational costs. The explanations for this computational advantage are: i) the

computational time in the TBT method is cubic, for a robust horizon of 3 time intervals, with

respect to the number of polyhedrons 𝑁𝑁𝑇𝑇, created by the intersection of the constraints of the LP

problem whereas for the computation in MC is exponential with respect to the number of uncertain

parameters 𝜁𝜁 , as shown in (4.38); ii) the TBT method also offers an efficient approach for

calculating probability for each node of the tree structure; thus, the scenario with less probability

will be eliminated in time thus reducing the computational costs.

On the one hand, it should be pointed out that the ability to save computational cost by pruning

branches of low associated probability depends on the simplifying assumption that the probability

distribution of occurrence of parameters in each polyhedron is uniform. In principle, the

 90

probability distribution of each node could be identified from experimental data and assuming that

the data would be corrupted by sensor noise, the resulting probability distribution of each node

would obey the central limit theorem as generally assumed in the Monte Carlo method. On the

other hand, it can be shown that due to the propagation of uncertainty along the robust horizon,

the assumption of uniform probability may not be very restrictive since the probability distribution

of each node results from the concatenation of probabilities of previous branches to that node. For

example, for any one of the parameters from the system states 𝜓𝜓𝑖𝑖, if the probability distribution in

a parent node of 𝜓𝜓𝑖𝑖 is denoted as 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖), and the probability distribution in current node of 𝜓𝜓𝑖𝑖 is

referred to as 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) . Assuming that 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) is uniform, the function 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) is represented as

follows:

𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) = �𝑃𝑃𝑠𝑠
𝑟𝑟�𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�

−1
𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜓𝜓𝑖𝑖 ≤ 𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

0 𝜓𝜓𝑖𝑖 ≤ 𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜓𝜓𝑖𝑖
 ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

(4.39)

Then, the 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) can be calculated via the convolution of 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) and 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) as follows:

𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) = � 𝑓𝑓𝑝𝑝(𝜓𝜓)𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖 − 𝜓𝜓)𝑑𝑑𝑑𝑑
∞

−∞

(4.40)

In the first stage, the 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) is only an initial point, thus the distribution of 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) via (4.40) is a

rectangular function as shown in Fig. 4.8(a). However, in the second stage, following (4.40) the

distribution of 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) is a convolution of several rectangular functions thus resulting in a non-

rectangular distribution of 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) as shown in Fig. 4.8(b). If uncertainty in 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 is propagated

through several stages, it is expected that the distribution of 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) will approach a normal

distribution as Fig. 4.8(c) in some extent by using the convolution operation represented by (4.40).

However, the differences between the probability distributions occurring between the nodes can

impose additional demand for extra sampling if accurate calculations of the distribution are

required. For instance, if the range of rectangular functions 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖), which are generated from the

probability distribution in the parent node 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖), are not much different from each other the

probability distribution in the current node 𝑓𝑓𝑐𝑐(𝜓𝜓𝑖𝑖) can be obtained without extra sampling. On the

other hand, if 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) from the same parent node are very different from each other, additional

sampling would be necessary. These distributions are not taken explicitly into account in the TBT

method, since this method is mainly focused on the marginal property of each node/tableau, such

as the maximum and minimum condition of the distribution set. However, if non-uniform

 91

probability assumption is made or if it is desired to calculate accurate probability distributions at

each stage, further sampling is needed thus potentially increasing the computational effort. A study

on these topics is left for future research studies.

 Figure 4.8 Probability distribution of one parameter at different stages

Finally, it is worth noticing that, just as for the parameter ℰ in the Monte Carlo based method, the

number of linearly polyhedrons 𝑁𝑁𝑇𝑇 in solution space also can be adjusted in order to maintain a

balance between the computational effort and the accuracy of the algorithm. In some cases, the

polyhedrons with similar inherent linear coefficients can be considered as one linear polyhedron.

Thus, the number of polyhedrons 𝑁𝑁𝑇𝑇 can be controlled thus saving additional computational costs.

One additional opportunity in this study for computational savings is by taking advantage of the

use of the two levels of tableaus (main tableaus and sub-tableaus) that were discussed in section

3.2.5. If the differences between main tableaus is much larger than the differences among the sub-

tableaus contained within each of them, then only the main tableaus could be considered for

uncertainty propagation.

4.3 Robust Control Based on DFBM (Case Study)

In section 4.2, the TBT method and its advantages for propagating uncertainty were outlined. In

this section, a robust controller based on the idea of Economic Model Predictive Controller that

uses a DFBM as internal model is proposed. The robustness of the proposed algorithm is provided

by using the TBT uncertainty propagation approach.

(a) (b) (c)

 92

4.3.1 Dynamic Flux Balance Model (DFBM)

Dynamic Flux Balance Model (DFBM) is based on an a priori known network of 𝑛𝑛 metabolites

participating in 𝑚𝑚 different reactions where the vector of metabolites’ concentrations is

represented by 𝒛𝒛𝒏𝒏×𝟏𝟏. Each reaction in this model is associated to a flux, 𝝂𝝂𝒏𝒏×𝟏𝟏 given in units of

metabolite/hr/mM of cell. A stoichiometric matrix 𝓐𝓐𝑚𝑚×𝑛𝑛 is formulated to describe the

stoichiometric relations between all metabolites according to the reactions considered in the

metabolic network. As discussed in Section 2.6, the model assumes that the organism is optimal

by allocating resources to maximize the growth rate at all time. This fundamental assumption

indicates that the cells have adapted through natural evolution to act as an optimizer of resources.

Based on this assumption, the DFBM model can be formulated as a Linear Programming (LP)

problem, based on the flux balance equations and the defined stoichiometric matrix as follows:

max
𝑋𝑋,𝝂𝝂

 𝜇𝜇 = 𝒘𝒘𝑻𝑻𝝂𝝂

𝑠𝑠. 𝑡𝑡. 𝓐𝓐𝝂𝝂 ≤ 𝒃𝒃,
𝑑𝑑𝒛𝒛
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝝂𝝂𝑋𝑋,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇

|𝝂̇𝝂| ≤ 𝝂̇𝝂𝑚𝑚𝑚𝑚𝑚𝑚, 𝝂𝝂, 𝒛𝒛 ≥ 0

(4.41)

where 𝒃𝒃𝑚𝑚×1 represents a vector of consumption or production rate of extracellular metabolites

such as nutrients and by-products, 𝑋𝑋 is concentration of biomass, 𝒛𝒛 is the current metabolites’

concentrations, 𝒘𝒘 is a vector that indicates the amounts of the growth precursors required per gram

of biomass (Mahadevan et al., 2002). This dynamic flux model have been previously used by our

research group for predictive control by (Kumar & Budman, 2017) based on a PCEs (Polynomial

Chaos Expansion) method. Implementation of this technique resulted in computational demands

that increased exponentially as a function of the uncertainty parameters of the model and

consequently it was applied in that earlier study for a case study with only two uncertain

parameters. In the current work, the TBT method is adopted to address this computational problem

when considering a larger number of uncertain parameters.

4.3.2 Modeling with Uncertainty

The bioreactor study in the current work involves the development of a robust-EMPC based on a

DFBM given in (4.41). The objective of the EMPC is to maximize the biomass at the end of the

culture by manipulating the feeding rate of fresh media and the perfusion rate of supernatant. A

schematic process flowsheet of this process has been shown in Fig. 4.9 with the indication of the

 93

main inputs and outputs. As for the perfusion operation it is assumed that only supernatant is

perfused while all the cells are returned back to the bioreactor vessel. Accordingly, the dynamic

mass balances that account for the feeding rate 𝑟𝑟𝐹𝐹, the perfusion rate 𝑟𝑟𝑃𝑃 and the resulting changing

reactor contents’ volume 𝑉𝑉 are formulated in terms of the fluxes 𝝂𝝂, as per equations (4.42) -(4.44).

Perfusion is implemented in the current work to ensure that the negative impact on growth by

accumulation of high levels of some metabolites, such as acetate and glucose, is avoided

(Mahadevan et al., 2002).

Figure 4.9 A schematic process flowsheet of the bioreactor with the feed and perfusion system

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃

(4.42)

𝑑𝑑𝒛𝒛
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝝂𝝂𝑋𝑋 +
𝑟𝑟𝐹𝐹�𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 − 𝒛𝒛�

𝑉𝑉
= 𝑓𝑓�𝓐𝓐, 𝑟𝑟𝐹𝐹 ,𝑉𝑉, 𝑟𝑟𝑃𝑃,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂,𝑋𝑋, 𝒛𝒛�

(4.43)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 −
𝑋𝑋(𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃)

𝑉𝑉
= 𝑔𝑔�𝓐𝓐, 𝑟𝑟𝐹𝐹 ,𝑉𝑉, 𝑟𝑟𝑃𝑃,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂,𝑋𝑋, 𝒛𝒛�

(4.44)

where 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 is the concentration of metabolites in the feed and functions 𝑓𝑓 and 𝑔𝑔 represent the

RHS of ODE’s for the metabolites, i.e. 𝒛𝒛 in (4.43), and biomass, i.e. 𝑋𝑋 in (4.44). The DFBM model

is then formulated as an LP that is solved at each time interval 𝑘𝑘 as follows:

max
𝝂𝝂

 𝜇𝜇(𝑘𝑘) = 𝒘𝒘𝑻𝑻𝝂𝝂(𝑘𝑘)

𝑠𝑠. 𝑡𝑡. 𝓐𝓐𝝂𝝂(𝑘𝑘) ≤ 𝒃𝒃(𝒛𝒛(𝑘𝑘 − 1),𝜷𝜷)

�
𝝂𝝂(𝑘𝑘) − 𝝂𝝂(𝑘𝑘 − 1)

𝛥𝛥𝛥𝛥
� ≤ 𝝂̇𝝂𝑚𝑚𝑚𝑚𝑚𝑚

𝝂𝝂(𝑘𝑘), 𝒛𝒛(𝑘𝑘),𝑋𝑋(𝑘𝑘) ≥ 0

(4.45)

where the vector of uncertainty parameters 𝜷𝜷 in this model is assumed as the main source of

uncertainty 𝒅𝒅, 𝛥𝛥𝛥𝛥 is the time step, 𝑘𝑘 used for discretization of the mass balances. The constraints

𝑟𝑟𝐹𝐹
𝑟𝑟𝑃𝑃

 94

in (4.45) consist of kinetic based bounds on flux rates and positivity constraints on fluxes and

metabolites’ concentrations; 𝒛𝒛 and 𝑋𝑋 are calculated from the discretized form of the process

equations as given in (4.42) – (4.44). 𝒃𝒃 is formulated as a function of a particular metabolite

concentration. If there is no bound for the accumulation or depletion rates of a specific metabolite,

then the corresponding 𝒃𝒃 for this metabolite is equal to zero. The material balances of 𝒛𝒛 and 𝑋𝑋

(4.42) – (4.44) are discretized using an Euler discretization scheme and the resulting discrete

equations are then used for the prediction until the batch end time 𝑡𝑡𝑓𝑓.

Since the EMPC method is adopted in the current work, the economic objective is to maximize

the amount of biomass 𝑋𝑋 at the end of the fed-batch 𝑋𝑋𝑋𝑋�𝑡𝑡𝑓𝑓�. It is also assumed that the biomass

𝑋𝑋(𝑘𝑘) and the main metabolite, glucose, can be measured online and can be used for the purpose

of feedback. Therefore, the biomass 𝑋𝑋�𝑡𝑡𝑓𝑓� at the end of the batch can be predicted in 2 steps: i)

solution of the LP in (4.45) at every time interval to obtain the fluxes 𝝂𝝂(𝑘𝑘); and ii) calculation of

output predictions of the ODE’s in (4.42) – (4.44) by using the ode45 solver in MATLAB. These

two steps constitute the inner problem of the EMPC controller as discussed in (3.7) – (3.11).

Robust
NMPC

Linearly
polyhedron map

generation (off-line)

Sensitivity
analysis

RHS map
generation

based on LP
CCM

TBT based
EMPC model

(on-line)

Tree structural
based uncertainty

propagation Determine
ODEs’

supremum

Multistage
economic

optimization

Feedback
corrections

Figure 4.10 The basic structure of the Robust NMPC formulation in this study

 95

The uncertainty propagation TBT procedure is also based on the inner level problem given by

(4.42) – (4.45). Accordingly, the effect of uncertain parameters 𝜷𝜷 on the model predictions

obtained with the discretized ODE’s (4.42) – (4.44) coupled to the LP (4.45) is calculated using

the TBT algorithm based on the following two steps: i) partition of the LP into many polyhedrons

corresponding to different tableaus where for each polyhedron the maximal and minimal reaction

fluxes 𝝂𝝂 can be determined by using the sensitivity analysis of the CCM algorithm; and ii)

propagation of the maximal and minimal bounds of the fluxes into corresponding the predictions

of 𝒛𝒛 and 𝑋𝑋 as given by the discretized ODE’s in (4.42) – (4.44). A schematic flowchart of the

EMPC controller based on the TBT algorithm is shown in Fig. 4.10.

4.3.3 DFBM on the Growth of E. coli

A simplified DFBM model that is developed by Mahadevan et al., 2002 for illustrating the growth

of E. coli on glucose is used in this work as a case study. Fig. 4.11 demonstrates the DFBM

metabolic network with glucose (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺), acetate (𝐴𝐴𝐴𝐴) and oxygen (𝑂𝑂2) as input and the biomass

(𝑋𝑋) as the output.

𝜈𝜈1 39.43 𝐴𝐴𝐴𝐴 + 35 𝑂𝑂2 → 𝑋𝑋

𝜈𝜈2 9.46 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 12.92 𝑂𝑂2 → 𝑋𝑋

𝜈𝜈3 9.84 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 12.73 𝑂𝑂2 → 1.24 𝐴𝐴𝐴𝐴 + 𝑋𝑋

𝜈𝜈4 19.23 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 → 12.12 𝐴𝐴𝐴𝐴 + 𝑋𝑋

Figure 4.11 Simplified Metabolic Network for E.coli growth on Glucose: Flux balances and

stoichiometric coefficients (Mahadevan et al., 2002)

This network contains 4 fluxes given by the vector 𝝂𝝂 = [𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3, 𝜈𝜈4]𝑇𝑇 and 3 metabolites denoted

by vector 𝒛𝒛 = �𝑧𝑧𝐺𝐺𝐺𝐺 , 𝑧𝑧𝐴𝐴𝐴𝐴 , 𝑧𝑧𝑂𝑂2�, the growth rate 𝜇𝜇 and the stoichiometric matrix 𝓐𝓐𝟑𝟑×𝟒𝟒 that describes

the stoichiometric relations among the 3 metabolites and the growth rate are as follows:

𝓐𝓐 = �
0 −9.46 −9.84 −19.23

−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

�

𝜇𝜇 = � 𝜈𝜈𝑖𝑖
4

𝑖𝑖=1

(4.46)

 96

The dynamic mass balances of metabolites are given by (4.47) while problem (4.48) generates at

each time interval the optimized fluxes 𝝂𝝂 that are used in (4.47) at each instant. There are 3

distinct metabolic phases in the growth process of E.coli described by (4.48): i) Aerobic growth

on Glucose, ii) Anaerobic growth on Glucose, and iii) Anaerobic growth on a second metabolite,

acetate. These 3 phases can occur at the same time, but their occurrence is dependent on the

concentration of 𝑂𝑂2 . The RHS map 𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹 of (4.48) is first generated with the procedure

introduced in 3.2.4. Only 2 main active tableaus 𝑴𝑴𝑴𝑴𝟏𝟏 and 𝑴𝑴𝑴𝑴𝟐𝟐 were found which correspond to

the basic fluxes {𝜈𝜈1, 𝜈𝜈2} or {𝜈𝜈2, 𝜈𝜈4} . The detailed information of these two tableaus and the

procedure and proofs are presented in Appendix A. Correspondingly, 2 different regions in RHS

map, i.e. 𝑴𝑴𝑴𝑴𝟏𝟏 and 𝑴𝑴𝑴𝑴𝟐𝟐 , can be considered where each region represents a distinct nutrient

allocation strategy that the cell can adopt during the batch.

Equations (4.47) and (4.48) are first used to formulate a nominal controller with the function

proposed in 4.3.5. The uncertainty range of RHS 𝜷𝜷 that is used in this model is assumed as in

(4.26), i.e. 𝜷𝜷 = 𝒅𝒅, where 𝒅𝒅 is the uncertainty of the entire system, and thus 𝜷𝜷 = 𝜹𝜹𝒅𝒅 ∙ 𝒅𝒅� where the

vector of nominal parameters is 𝒅𝒅�. In this work, the maximum uptake rate constraints 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,

𝑑𝑑𝑧𝑧𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝐺𝐺𝐺𝐺𝝂𝝂𝑋𝑋 +
𝑟𝑟𝐹𝐹�𝑧𝑧𝐺𝐺𝐺𝐺,𝑖𝑖𝑖𝑖 − 𝑧𝑧𝐺𝐺𝐺𝐺�

𝑉𝑉

𝑑𝑑𝑧𝑧𝑂𝑂2
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝑂𝑂2𝝂𝝂𝑋𝑋 −
𝑟𝑟𝐹𝐹𝑧𝑧𝑂𝑂2
𝑉𝑉

+ 𝑘𝑘𝐿𝐿𝑎𝑎�0.21 − 𝑧𝑧𝑂𝑂2�

𝑑𝑑𝑧𝑧𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝓐𝓐𝐴𝐴𝐴𝐴𝝂𝝂𝑋𝑋 −
𝑟𝑟𝐹𝐹𝑧𝑧𝐴𝐴𝐴𝐴
𝑉𝑉

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 −
𝑋𝑋(𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃)

𝑉𝑉

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃

 (4.47)

𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋,𝝂𝝂𝑖𝑖

 𝜇𝜇 = � 𝜈𝜈𝑖𝑖
4

𝑖𝑖=1

(4.48)

s. t. 𝑧𝑧𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ [1,3], 𝜈𝜈𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ [1,4]

|𝓐𝓐𝐺𝐺𝐺𝐺𝝂𝝂| ≤
𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝐺𝐺𝐺𝐺
𝐾𝐾𝑚𝑚 + 𝑧𝑧𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔 − ℎ𝑟𝑟

−𝓐𝓐𝑂𝑂2𝝂𝝂 ≤ 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝓐𝓐𝐴𝐴𝐴𝐴𝝂𝝂 ≤ 100

 97

the maximum rate of oxygen uptake reaction 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and the oxygen mass transfer coefficient

𝑘𝑘𝐿𝐿𝑎𝑎 are chosen as the uncertain parameters. Therefore,

𝒅𝒅� = [𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝐿𝐿𝑎𝑎]𝑻𝑻

is the vector of nominal values of these parameters that is used in (4.26) to generate the uncertainty

range 𝜷𝜷. Finally, based on the nominal condition that have been developed and the uncertainty

range 𝜷𝜷, the robust controller can be designed based on the uncertainty propagation procedure

(TBT) outlined in section 4.3.6.

4.3.4 Uncertainty Propagation

The detailed steps of the uncertainty propagation procedure for this case study are described below.

4.3.4.1 Generation of RHS Map based on the LP in (4.45) offline using the CCM in 3.2.4

The uncertainty parameter space of the LP (4.45), described by the uncertainty in the parameters

of the LP model, has to be divided into a set of polyhedrons for the purpose of uncertainty

propagation to be done with the TBT method. Thus, the CCM method is applied to generate the

RHS map of the LP in (4.45) by following the procedure described in section 3.2.4. Since this

process is often found to be computational demanding, part of the constraints that do not involve

uncertainty can be eliminated from LP (4.45) during the RHS map generation process so that the

computational effort is reduced. For instance, the constraints of 𝝂𝝂(𝑘𝑘) ≥ 0 in LP (4.45) are not

necessary in the current work. This is because the CCM method is based on the tableau analyses

of the Simplex method, where the optimal solutions are forced to be positive. Also, following the

outcomes established in section 3.2.5, if one of the coefficient 𝒃𝒃�𝒊𝒊 in the RHS is large enough so

as the corresponding constraint will never become active during the duration of the culture, then

this constraint can also be eliminated from the CCM search procedure. The generated map of RHS

with respect to the LP (4.45) is denoted as 𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹 in this work.

4.3.4.2 Propagation of uncertainty onto fluxes (Sensitivity Analysis of CCM approach) using LP

in (4.45)

Once the RHS map of LP (4.45 worst case for the LP) have been obtained, the robust NMPC based

on TBT method can be formulated following the procedure outlined in 4.2.1. In this work, a

scenario tree structure is generated along with the prediction horizon as illustrated in Fig. 4.12. For

 98

simplicity, most of the branches in this tree are eliminated in advance while only the nominal

scenario (the green branch in Fig 4.12) and the worst case scenario (the red one in Fig 4.12) are

left. Note that even though a worst-case scenario that is used in this tree structure represents the

condition of the scenario that generated the worst case branch, it does not imply that only the worst

case scenario is considered in this case study. Actually, this research is based on the computation

of probability that the worst case of each scenario/branch may occur. The elimination can reduce

the computational effort considerably while calculating the worst case of the current study. The

reason of the application of this elimination is that only two main-tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 which

interestingly correspond to two alternative cell strategies for its survival, i.e. either an aerobic or

anaerobic respiration modes, can be active in the current work while the sub-tableaus 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 of each

one of these two main-tableaus are not significantly different in terms of fluxes from the results

obtained with the main tableaus. The detailed properties of the set of main tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎

developed in this work is discussed in Appendix A. Thus, the RHS map is divided into 2 different

polyhedrons in terms of 2 different main-tableaus’ region 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎. Since the production of biomass

resulting from anaerobic respiration must be smaller than the rate under aerobic respiration, as

long as the survival strategy of cells stay in the tableau region of the anaerobic respiration

corresponding to one specific branch during the propagation process, then this branch consistently

results in the minimum production of biomass which corresponds to the worst case. Thus, in this

instance, the number of active scenarios 𝛼𝛼𝐼𝐼,𝑠𝑠 for each stage 𝑠𝑠 is 𝛼𝛼𝐼𝐼,1 = 1, 𝛼𝛼𝐼𝐼,𝑖𝑖 = 2, 𝑖𝑖 ∈ [2,3, …].

Therefore, the nominal branch and the worst case branch can be obtained based on (4.49) as

follows:

𝑺𝑺𝒛𝒛𝑠𝑠𝑟𝑟 = �
�𝝂𝝂𝑠𝑠+1

𝑟𝑟(1)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(1)

�𝝂𝝂𝑠𝑠+1
𝑟𝑟(2)�

𝑇𝑇
𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(2)

� = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟 ,𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹)

(4.49)

where the 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 is the function that calculates the minimal and maximal values of the fluxes as per

the CCM algorithm, which have been introduced in section 3.2.5, using the lcon2vert algorithm in

MATLAB. The elements in 𝒛𝒛𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 and 𝜷𝜷𝑠𝑠𝑟𝑟 are the corresponding maximum and minimum values

as follows:

𝒛𝒛𝑠𝑠𝑟𝑟 = �𝒛𝒛𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝒛𝒛𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� (4.50)
𝑋𝑋𝑠𝑠𝑟𝑟 = �𝑋𝑋𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� (4.51)

 99

where the uncertainty region is defined by:

𝜷𝜷𝑠𝑠𝑟𝑟 = �𝜷𝜷𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝜷𝜷𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� (4.52)

Figure 4.12 Uncertainty evolution with prediction horizon represented by scenario tree structure

Additionally, the ∆𝒃𝒃 which are the variations in the RHS of the constraints of the LP problem that

are used in 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 as in (3.77) with its constraints in (3.78) are obtained from (4.53). The supreme

of 𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟) can also be calculated as per equations (3.12) – (3.15) in section 3.1.

∆𝒃𝒃 = [𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟)𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟)𝒎𝒎𝒎𝒎𝒎𝒎] (4.53)
The probability of each sub-tableau is derived by substituting (3.83) and (3.86) into (3.16):

𝑃𝑃(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑉𝑉|∆𝒃𝒃

(4.54)

the probability of the 2 main-tableaus can be obtained as follows:

𝑃𝑃𝑠𝑠
∗𝑟𝑟(𝑚𝑚𝑚𝑚) = � 𝑃𝑃(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛|∆𝑏𝑏)

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∈𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎

, 𝑚𝑚𝑚𝑚 ∈ [1,2]
(4.55)

where 𝑚𝑚𝑚𝑚 ∈ [1,2] for current 𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹 . Meanwhile, the optimized flux 𝜇𝜇𝑠𝑠𝑟𝑟 of biomass 𝑋𝑋𝑠𝑠𝑟𝑟 can be

calculated by substituting 𝝂𝝂𝑠𝑠𝑟𝑟 into (4.45) as follows:

Robust Horizon = 3

Prediction Horizon = 5

𝒛𝒛11𝑋𝑋11𝑃𝑃11

𝑢𝑢01
𝜷𝜷01

𝑢𝑢01
𝜷𝜷01

𝑢𝑢11𝜷𝜷11

𝑢𝑢12𝜷𝜷12

𝒛𝒛12𝑋𝑋11𝑃𝑃12

𝒛𝒛21𝑋𝑋11𝑃𝑃21

𝒛𝒛22𝑋𝑋11𝑃𝑃22

𝒛𝒛31𝑋𝑋11𝑃𝑃31 𝑢𝑢31𝜷𝜷31 𝒛𝒛41𝑋𝑋11𝑃𝑃31 𝑢𝑢41𝜷𝜷41 𝒛𝒛51𝑋𝑋11𝑃𝑃31

𝒛𝒛32𝑋𝑋11𝑃𝑃32 𝑢𝑢32𝜷𝜷32 𝒛𝒛42𝑋𝑋11𝑃𝑃32 𝑢𝑢42𝜷𝜷42 𝒛𝒛52𝑋𝑋11𝑃𝑃32

𝑢𝑢21𝜷𝜷2
1

𝑢𝑢22𝜷𝜷2
2

𝒛𝒛0𝑋𝑋0𝑃𝑃0

 100

𝜇𝜇𝑠𝑠𝑟𝑟 = 𝒘𝒘𝑻𝑻𝝂𝝂𝑠𝑠𝑟𝑟 (4.56)

4.3.4.3 Propagation of uncertainty in fluxes of two scenarios in the TBT’s tree structure into the

predictions of 𝒛𝒛 and 𝑋𝑋

As shown above, there are only two active scenarios 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 in the TBT’s tree structure of this work,

which are the nominal scenario 𝑰𝑰𝐵𝐵𝑛𝑛 and the worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 , respectively. Thus the

probability 𝑃𝑃𝑠𝑠𝑤𝑤 of worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 can be obtained at each stage with the functions of (4.9)–

(4.14) while the probability 𝑃𝑃𝑠𝑠𝑛𝑛 of the nominal scenario 𝑰𝑰𝐵𝐵𝑛𝑛 can be obtained by using (4.57) for

simplicity.

𝑃𝑃𝑠𝑠𝑛𝑛 = 1 − 𝑃𝑃𝑠𝑠𝑤𝑤 (4.57)
Correspondingly, the predictions of 𝒛𝒛 and 𝑋𝑋 at each stages can be obtained by using the functions

(4.58)– (4.59) that were developed from (4.42)–(4.44).

𝑑𝑑𝒛𝒛𝑠𝑠+1𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

(4.58)

𝑑𝑑𝑋𝑋𝑠𝑠+1𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

(4.59)

where the controller inputs 𝒖𝒖𝑠𝑠𝑟𝑟 are the feeding rate [𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟 and the perfusion rate [𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟 of the

corresponding stages:

𝒖𝒖𝑠𝑠𝑟𝑟 = [[𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟 [𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟], ∀[𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟 ∈ 𝒓𝒓𝑭𝑭, ∀[𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟 ∈ 𝒓𝒓𝑷𝑷 (4.60)
Then, the vectors which elements are the control actions during the entire process are defined as

follows:

𝒖𝒖𝒍𝒍𝒓𝒓 = [𝒓𝒓𝑭𝑭 𝒓𝒓𝑷𝑷]𝑟𝑟 , ∀𝒖𝒖𝒍𝒍𝒓𝒓 ∈ 𝑼𝑼𝐿𝐿 (4.61)
The functions 𝑓𝑓𝑟𝑟 and 𝑔𝑔𝑟𝑟 are formulated as follows:

𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� = �
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

�
𝑇𝑇

(4.62)

𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� = �
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

�
𝑇𝑇

(4.63)

It is assumed that in each time interval, the maximum and minimum of function 𝑓𝑓 and 𝑔𝑔 can be

obtained by calculating the partial derivatives or the Jacobian Matrix for each function and then

 101

using the maximum and minimum values of each parameter. For instance, within a specific time

interval, if the partial derivative of 𝑓𝑓 is expressed as:

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

≤ 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

≥ 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

≤ 0

then the maximum value of this function at this instant is:

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓�𝑥𝑥1𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥3𝑚𝑚𝑚𝑚𝑚𝑚�

Meanwhile, it is also assumed that the initial condition is known since it can be measured; thus,

the uncertainty of the first stage is propagated from the uncertainty range of 𝝂𝝂𝑠𝑠𝑟𝑟 from (4.49).

4.3.4.4 Prediction with uncertainty until the end of the batch by combining step 2 and step 3

above

At a given time interval 𝑘𝑘, 𝑘𝑘 ∈ ℕ, when the vector of the manipulated variables 𝑼𝑼𝐿𝐿 is available,

then the feed 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and perfusion 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) for each stage 𝑠𝑠 are available, ∀𝑙𝑙 ∈

�1,2,3, … , 𝑙𝑙𝑓𝑓�. The end time 𝑡𝑡𝑓𝑓 of the batch operation 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + ∆𝑙𝑙�𝑙𝑙𝑓𝑓� is also defined as a function

of the sampling intervals for each of the stages as 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + ∆𝑠𝑠�𝑠𝑠𝑓𝑓�, all of the different scale of

time intervals, i.e. ∆𝑙𝑙,∆𝑠𝑠 and ∆𝑡𝑡, are illustrated as in Fig. 4.6(b), 𝜏𝜏 = {0,1,2, … , 𝑝𝑝}, 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + 𝑝𝑝.

Thus, the procedure for propagating uncertainty along the prediction horizon 𝑝𝑝 is as follows:

1. Set the initial conditions, 𝑖𝑖 = 0, 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) are known form 𝑼𝑼𝐿𝐿, so are

the 𝜷𝜷0, 𝝂𝝂0, 𝒛𝒛0, 𝑋𝑋0, 𝑉𝑉0. Let 𝑙𝑙 = 1, 𝑠𝑠 = 0, 𝝂𝝂(𝑘𝑘 − 1) = 𝝂𝝂0, 𝒛𝒛(𝑘𝑘 − 1) = 𝒛𝒛0, 𝑋𝑋(𝑘𝑘 − 1) = 𝑋𝑋0.

2. 𝑖𝑖 = 𝑖𝑖 + 1, calculate 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏) and other relevant parameters by

following the procedure in 4.3.4.2.

3. Determine 𝒛𝒛𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑋𝑋𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑃𝑃𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) using 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏)

from step 2 and 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) as well as 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) based on the instructions in 4.3.4.3.

4. If ∃𝛼𝛼 ∈ ℕ, 𝜏𝜏 = 𝛼𝛼∆𝑙𝑙, then 𝑙𝑙 = 𝑙𝑙 + 1, update 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) form 𝑼𝑼𝐿𝐿; if ∃𝛼𝛼 ∈

ℕ, 𝜏𝜏 = 𝛼𝛼∆𝑠𝑠, then 𝑠𝑠 = 𝑠𝑠 + 1; if 𝜏𝜏 = 𝑝𝑝, then break this uncertainty propagation procedure;

else go to Step 2 and 3.

A flowchart of this section is demonstrated in Fig. 4.13.

 102

Figure 4.13 Flowchart of the procedure for propagating uncertainty along the prediction horizon 𝒑𝒑

Start

Set the initial conditions of 𝑼𝑼𝐿𝐿, 𝜷𝜷0, 𝝂𝝂0,

𝒛𝒛0, 𝑋𝑋0, 𝑉𝑉0. Let 𝑖𝑖 = 0, 𝑙𝑙 = 1, 𝑠𝑠 = 0

Calculate 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏)

𝑖𝑖 = 𝑖𝑖 + 1

Determine 𝒛𝒛𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑋𝑋𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏)

𝜏𝜏 = 𝑝𝑝?

∃𝛼𝛼 ∈ ℕ
𝜏𝜏 = 𝛼𝛼∆𝑠𝑠?

∃𝛼𝛼 ∈ ℕ
𝜏𝜏 = 𝛼𝛼∆𝑙𝑙?

Update 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and

𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) form 𝑼𝑼𝐿𝐿

𝑙𝑙 = 𝑙𝑙 + 1

𝑠𝑠 = 𝑠𝑠 + 1

Stop

Obtain 𝒛𝒛𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�,

𝑋𝑋𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�, 𝑃𝑃𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�,

𝑉𝑉�𝑘𝑘 + 𝑡𝑡𝑓𝑓�

Y

Y

Y

N

N

N

 103

4.3.5 Nominal Controller Formulation

The nominal controller of the current study is used for comparison with the robust controller. Since

the strategy of the controller here is EMPC, an economic objective function is chosen as the

biomass at the end of the batch 𝑋𝑋�𝑡𝑡𝑓𝑓 = 𝑘𝑘 + 𝑝𝑝�𝑉𝑉�𝑡𝑡𝑓𝑓�, which represents the amount of the biomass

at the end of the batch. Meanwhile, it is assumed that the biomass 𝑋𝑋0 = 𝑋𝑋(𝑘𝑘) and the nutrient 𝒛𝒛0 =

𝒛𝒛(𝑘𝑘) can be measured as 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) and 𝒛𝒛𝑚𝑚𝑚𝑚(𝑘𝑘) at the current sampling interval. The measured data

is used to reinitialize the prediction procedure by using 𝑋𝑋0 = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) and 𝒛𝒛0 = 𝒛𝒛𝑚𝑚𝑚𝑚(𝑘𝑘). Thus, the

open-loop prediction model can be updated with the feedback: 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) by

using 𝑋𝑋(𝑘𝑘 + 𝑝𝑝) = 𝑔𝑔(𝑘𝑘 + 𝑝𝑝) + 𝑓𝑓𝑏𝑏𝑏𝑏. Therefore, the nominal control problem, that is, the controller

that does not consider the model uncertainty, can be formulated as in (4.64) by a two-level

optimization problem. The inner level (Problem (4.45)) involves the calculation of fluxes in order

to maximize growth rate at each instant. Then, the outer optimization calculates the control actions

𝑼𝑼𝐿𝐿, i.e. the optimal feeding and perfusion rates, needed to maximize the biomass amount at the

end of the batch. In the current work, the outer level is solved using interior point methods within

fmincon in MATLAB, and the inner level (Problem (4.45)) is generally solved with dual simplex

method in linprog in MATLAB (Kumar & Budman, 2017).

max
𝑼𝑼𝐿𝐿

 𝑋𝑋�𝑡𝑡𝑓𝑓|𝑘𝑘�𝑉𝑉�𝑡𝑡𝑓𝑓|𝑘𝑘� (4.64)

s. t. 𝐸𝐸𝐸𝐸𝐸𝐸. (4.42) − (4.45)

𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1)

𝑋𝑋�𝑡𝑡𝑓𝑓|𝑘𝑘� = 𝑔𝑔�𝑡𝑡𝑓𝑓|𝑘𝑘� + 𝑓𝑓𝑏𝑏𝑏𝑏

𝒛𝒛(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑚𝑚(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ, 𝑘𝑘 = 𝛼𝛼∆𝑙𝑙

𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ, 𝑘𝑘 = 𝛼𝛼∆𝑙𝑙

𝒖𝒖𝒍𝒍 = [𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘)], ∀𝒖𝒖𝒍𝒍 ∈ 𝑼𝑼𝐿𝐿

4.3.6 Robust Controller Formulation

Once the uncertainty propagation procedure as described in section 4.2 has been implemented, the

robust EMPC model of current work can be formulated based on the Problem (4.27) and the

relevant constraints that have been discussed in section 4.2.2. To propagate uncertainty, first the

offline procedure in 4.3.4.1 is used to generate the RHS map 𝑴𝑴𝑹𝑹𝑹𝑹𝑹𝑹 as per problem (4.45). Then,

the online EMPC calculations are done as per problem (4.65). Similar to the feedback corrections

that are used in problem (4.64) of the nominal controller EMPC formulation, feedback corrections

 104

in the robust controller are used 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) for updating the concentration of the

biomass prediction, such as 𝑋𝑋(𝑘𝑘 + 𝑝𝑝) = 𝑔𝑔(𝑘𝑘 + 𝑝𝑝) + 𝑓𝑓𝑏𝑏𝑏𝑏. Meanwhile, the current concentration of

each nutrient at the root node (current time interval) are also updated by using the measurements,

such as 𝒛𝒛0(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑚𝑚(𝑘𝑘), 𝑋𝑋0(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙. Additionally, since

there are only two scenarios in the tree structure of the current work, i.e. the nominal scenario and

the worst case scenario, the number of active scenarios is 𝑁𝑁𝑠𝑠 = 2 for problem (4.65). Finally, as

for the nominal controller case, problem (4.65) is also solved using fmincon and linprog in

MATLAB for solving the bi-level optimization.

4.4 Results

This section aims to compare the performance of the nominal and robust optimization formulations

in terms of robustness to uncertainty. In the first part (section 4.4.1), a simple case study is

presented to illustrate the uncertainty propagation in a pure batch operation, i.e. without feed and

perfusion, and the predictions with the nominal and robust model predictions are compared. In a

second case study, 8 combinations of 2 different mean values for 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 are

used to generate different disturbance conditions as in Table 4.2 and the results of the robust and

nominal controller are compared in section 4.4.2. Finally, the detailed performance of one specific

simulated controller in Section 4.4.2 is analyzed in Section 4.4.3.

max
𝑼𝑼𝐿𝐿

 𝑉𝑉𝑠𝑠𝑓𝑓�𝑡𝑡𝑓𝑓|𝑘𝑘� �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝑋𝑋𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑓𝑓|𝑘𝑘�
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

 (4.65)

s. t. 𝐸𝐸𝐸𝐸𝐸𝐸. (4.49) − (4.63)

𝒛𝒛𝑠𝑠𝑟𝑟(𝜏𝜏 + 1|𝑘𝑘) = 𝒛𝒛𝑠𝑠𝑟𝑟(𝜏𝜏|𝑘𝑘) + ∆𝑡𝑡 �𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟��

𝑋𝑋𝑠𝑠𝑟𝑟(𝜏𝜏 + 1|𝑘𝑘) = 𝑋𝑋𝑠𝑠𝑟𝑟(𝜏𝜏|𝑘𝑘) + ∆𝑡𝑡 �𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟��

∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎, 𝜏𝜏 ∈ [0,1,2, … , 𝑝𝑝]

𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘) − 𝑋𝑋𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘|𝑘𝑘 − 1)

𝑋𝑋𝑠𝑠𝑓𝑓
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑓𝑓|𝑘𝑘� = 𝑋𝑋𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�𝜏𝜏 = 𝑡𝑡𝑓𝑓|𝑘𝑘�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(4.66) + 𝑓𝑓𝑏𝑏𝑏𝑏

𝒛𝒛0(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑚𝑚(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙

𝑋𝑋0(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑚𝑚(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙

 (4.66)

 105

4.4.1 Comparison of Nominal and Robust Model Predictions for Pure Batch Operation

In this section, a simple case study of the uncertainty propagation based on 𝐸𝐸𝐸𝐸𝐸𝐸. (4.47) and the

problem(4.48) is done by following the procedure illustrated in section 4.3.4. Then, the result of

this propagation procedure onto the model predictions is compared with nominal predictions. In

this section, feed and perfusion are not considered; similarly, the prediction of the robust model is

the worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 from the start of the batch process. Also, an initially higher glucose

concentration 𝑧𝑧𝐺𝐺𝑙𝑙,0 than the one presented in Table 4.1 is used in order to ensure the occurrence of

all the possible phases of cell growth mentioned before. Thus, the parameter values used in the

current study are as in Table 4.1.

Table 4.1 Process parameters for E. coli growth on glucose and acetate used for uncertainty

propagation

Name Value

𝑘𝑘𝐿𝐿𝑎𝑎 4 ℎ𝑟𝑟−1

𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 12.0 𝑚𝑚𝑚𝑚/𝑔𝑔 − 𝑑𝑑𝑑𝑑/ℎ𝑟𝑟

𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 6.5 𝑚𝑚𝑚𝑚/𝑔𝑔

𝜹𝜹𝒅𝒅 1 + [−0.2 0.2]

𝐾𝐾𝑚𝑚 0.015 𝑚𝑚𝑚𝑚

�𝑡𝑡𝑓𝑓 ,∆𝑡𝑡� [10.0,0.1] ℎ𝑟𝑟

�𝑠𝑠𝑓𝑓 ,∆𝑠𝑠� [20,0.5] ℎ𝑟𝑟

∆𝑙𝑙 1.0 ℎ𝑟𝑟
[𝑟𝑟𝐹𝐹 , 𝑟𝑟𝑃𝑃] [0,0] 𝐿𝐿/ℎ𝑟𝑟

�𝑧𝑧𝐺𝐺𝐺𝐺,0, 𝑧𝑧𝑂𝑂2,0, 𝑧𝑧𝐴𝐴𝐴𝐴,0� [2.0,0.21,0.20] 𝑚𝑚𝑚𝑚

[𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚] [0.2,0.4] 𝐿𝐿
[𝑋𝑋0,𝑉𝑉0] [1 × 10−3 𝑚𝑚𝑚𝑚, 0.3 𝐿𝐿]

[𝑃𝑃0,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
∗ ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚] [1,0.2,0.2]

The worst case scenario for each metabolite, i.e. biomass (𝑋𝑋), glucose (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺), acetate (𝐴𝐴𝐴𝐴) and

oxygen (𝑂𝑂2), can be obtained from the tree structure shown in Fig. 4.14, where the difference

between the red line 𝜓𝜓𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 and the blue line 𝜓𝜓𝑖𝑖

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 is due to the uncertainty.

 106

(a) Prediction of the glucose concentration 𝑧𝑧𝐺𝐺𝐺𝐺 (b) Prediction of the biomass concentration 𝑋𝑋

(c) Prediction of the oxygen concentration 𝑧𝑧𝑂𝑂2 (d) Prediction of the acetate concentration 𝑧𝑧𝐴𝐴𝐴𝐴

Figure 4.14 Robust Prediction of Worst Case Scenario vs Nominal Prediction (blue line is the

maximum bound 𝝍𝝍𝒊𝒊
𝒓𝒓,𝒎𝒎𝒎𝒎𝒎𝒎 of worst case scenario, red line 𝝍𝝍𝒊𝒊

𝒓𝒓,𝒎𝒎𝒎𝒎𝒎𝒎 is the minimum bound of the worst

case scenario, the yellow dot line is the prediction of the nominal process)

It can be noticed that the prediction of the oxygen concentration 𝑧𝑧𝑂𝑂2 and the acetate concentration

𝑧𝑧𝐴𝐴𝐴𝐴 in Fig. 4.14(c) and Fig. 4.14(d) exhibits highly nonlinear behavior while the uncertainty range

is still predictable by using TBT method. The predictions of the nominal model are also shown in

Fig. 4.14 by the yellow dot line. It is evident that the nominal predictions fall between the

maximum and the minimum bounds of the robust model predictions. Also, it is evident that the

𝑡𝑡/ℎ𝑟𝑟 𝑡𝑡/ℎ𝑟𝑟

𝑡𝑡/ℎ𝑟𝑟 𝑡𝑡/ℎ𝑟𝑟

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚

G
lu

co
se

 c
on

ce
nt

ra
tio

n
𝑧𝑧 𝐺𝐺

𝐺𝐺

B
io

m
as

s c
on

ce
nt

ra
tio

n
𝑋𝑋

O
xy

ge
n

co
nc

en
tra

tio
n
𝑧𝑧 𝑂𝑂

2

A
ce

ta
te

 c
on

ce
nt

ra
tio

n
𝑧𝑧 𝐴𝐴
𝐴𝐴

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚

 107

final production of biomass is equal for both nominal and robust model predictions as expected

from the mass balance since all the glucose is consumed towards biomass. These facts corroborate

the ability of the TBT method to propagate the uncertainty onto the predictions while complying

with the mass balances.

Note that the differences between the two branches of the robust predictions of biomass shown in

Fig. 4.14(b) reflect the differences of the growth rates when reaching the maximal biomass value

corresponding to the complete depletion of the initial glucose. Finally, from Fig. 4.14(c) and Fig.

4.14(d), it is obvious that at the time instant of 5 ℎ𝑟𝑟 the minimum bound line (red line) 𝜓𝜓𝑖𝑖
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 has

changed dramatically since at that instant for this scenario (worst case scenario), the robust horizon

for the prediction of this first time interval is 5 ℎ𝑟𝑟. After this instant, the probability of the tableau

that defines the minimum bound of this scenario is less than the minimum probability criteria

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2. Thus, the tableau corresponding to this bound will always be set to the nominal tableau

as discussed in section 4.2.1.

4.4.2 Comparison of Robust Case Studies

Two controllers are compared in this section: i- the robust EMPC controller based on equations

 (4.47) and the problem (4.48) using the TBT for uncertainty propagation as proposed in 4.3.5

and ii- the nominal EMPC controller based on equations (4.47) and the problem(4.48) with the

formulation proposed in 4.3.6.

The nominal parameter values of the parameters that are used for the comparative case study of

the robust and nominal EMPC controllers are presented in Table 4.2.

As shown in table 4.2, eight different set of parameters corresponding to the different combinations

of upper and lower limits of 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 are used to generate different disturbance

conditions. Each of these parameters, i.e. 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, are kept constant during the

run of the semi-batch operation, and the results of the robust and nominal controllers are compared

in Table 4.2. Table 4.3 presents the amounts of biomass (cost) 𝑉𝑉�𝑡𝑡𝑓𝑓�𝑋𝑋�𝑡𝑡𝑓𝑓� that are produced at the

end of the batch 𝑡𝑡𝑓𝑓 using the robust and nominal controllers respectively.

Table 4.2 Process parameters for E. coli growth on glucose and acetate used for robust/nominal

controller

 108

Name Value

𝑘𝑘𝐿𝐿𝑎𝑎 4 ℎ𝑟𝑟−1

𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 12.0 𝑚𝑚𝑚𝑚/𝑔𝑔 − 𝑑𝑑𝑑𝑑/ℎ𝑟𝑟

𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 6.5 𝑚𝑚𝑚𝑚/𝑔𝑔

𝜹𝜹𝒅𝒅 1 + [−0.2 0.2]

𝐾𝐾𝑚𝑚 0.015 𝑚𝑚𝑚𝑚

�𝑡𝑡𝑓𝑓 ,∆𝑡𝑡� [10.0,0.1] ℎ𝑟𝑟

�𝑠𝑠𝑓𝑓 ,∆𝑠𝑠� [20,0.5] ℎ𝑟𝑟

∆𝑙𝑙 1.0 ℎ𝑟𝑟

�𝑧𝑧𝐺𝐺𝐺𝐺,𝑖𝑖𝑖𝑖, 𝑧𝑧𝑂𝑂2,𝑖𝑖𝑖𝑖, 𝑧𝑧𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖� [5.0,0,0] 𝑚𝑚𝑚𝑚

�𝑧𝑧𝐺𝐺𝐺𝐺,0, 𝑧𝑧𝑂𝑂2,0, 𝑧𝑧𝐴𝐴𝐴𝐴,0� [0.40,0.21,0.20] 𝑚𝑚𝑚𝑚

[𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚] [0.2,0.4] 𝐿𝐿
[𝑋𝑋0,𝑉𝑉0] [1 × 10−3 𝑚𝑚𝑚𝑚, 0.3 𝐿𝐿]

[𝑃𝑃0,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
∗ ,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚] [1,0.2,0.2]

From Table 4.3, it is obvious that the production of biomass is less sensitive to changes in 𝑘𝑘𝐿𝐿𝑎𝑎 and

more sensitive to changes in 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚. For this particular case study it was found that positive

changes in the 3 uncertain parameters, i.e. 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, have positive effects on

the biomass productivity value. Accordingly, when these 3 parameters are increasing the feeding

of oxygen for tableau 𝑴𝑴𝑴𝑴𝟏𝟏 occurring is insufficient and thus the worst case strategy of tableau

𝑴𝑴𝑴𝑴𝟐𝟐 is more likely to happen. This is one of the reasons why the robust controller performance is

improving when the uncertainty parameters are larger than the nominal condition, as shown in

Table 4.3. Another case that supports this conclusion is that when 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 9.1𝑚𝑚𝑚𝑚/𝑔𝑔 the

resulting biomass productivity of the robust controller is 0.4905, which is about 4% better than

that of the nominal controller (0.4733). However, the benefits of the robust controller are not

significant when the uncertainty parameters are similar or slightly less than their corresponding

nominal conditions, for which case the performance of the robust and nominal controllers are

similar to each other. The explanation for this similarity stems from one or a combination of the

following: i) the prediction interval of the nominal controller is ∆𝑡𝑡 = 0.1ℎ𝑟𝑟 while for robust

controller it is based on the intervals used for the stages ∆𝑠𝑠 = 0.5ℎ, which result in less precise

prediction for the current study; ii) the nominal scenario of the TBT method in this case study was

 109

obtained by directly using the result of nominal prediction. Improvements regarding both of these

items are left for future work. Nevertheless, if the uncertain parameter realizations are far lower

than the nominal values, the performance of the robust controller can be also better that for the

nominal controller as shown in the next subsection.

The CPU time of each controller is also presented in Table 4.3. The CPU time reported contains

corresponds to the maximum time where the robust/nominal controller computes an optimized

control action during one manipulating time interval (1 hour). As shown in this table, the average

CPU time of the robust controller is approximately 30.4 times of the nominal controller. This

results also indicates that the performance of the proposed TBT-based robust controller is more

competitive than the sampling based methods, such as MC simulation and PCE, when the number

of sampling points would require larger CPU times on each time interval.

Table 4.3 Robust controller and nominal controller performance

𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 9.6 𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =14.4

𝑘𝑘𝐿𝐿𝑎𝑎 = 3.2 𝑘𝑘𝐿𝐿𝑎𝑎 = 4.8 𝑘𝑘𝐿𝐿𝑎𝑎 = 3.2 𝑘𝑘𝐿𝐿𝑎𝑎 = 4.8

Robust
Cost

Nominal
Cost

Robust
Cost

Nominal
Cost

Robust
Cost

Nominal
Cost

Robust
Cost

Nominal
Cost

5.2 0.0898 0.0900 0.0991 0.996 0.1140 0.1120 0.1276 0.1290

7.8 0.2656 0.2654 0.3085 0.3112 0.3389 0.3329 0.3868 0.3770

Ratio 1.00 0.99 1.02 1.03

CPU
Time 0.8062 0.0151 0.9737 0.0248 0.5944 0.0205 0.6080 0.0362

4.4.3 Comparison of a Specific Robust Case Study

Following the results presented in the previous section, one particular case is analyzed in the

current section where the uncertainty parameters are significantly smaller than the corresponding

nominal values. The 3 uncertain parameters considered here are set as 𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 4.6,𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =

8.4,𝑘𝑘𝐿𝐿𝑎𝑎 = 2.8 while the other parameter are as listed in Table 4.2. The productivity for the robust

and nominal controllers that used the same methods as in section 4.4.2 are compared here as shown

in Fig. 4.15.

 110

As shown in Fig. 4.15(b), the terminal biomass productivity 𝑉𝑉�𝑡𝑡𝑓𝑓�𝑋𝑋�𝑡𝑡𝑓𝑓� of this robust controller

system is 0.0527, which is about 4% better than that of the nominal controller of 0.0508. When

analyzing the time trajectories, it can be seen that between time=0 to approximately 6ℎ𝑟𝑟, though

the feed and perfusion are slightly different at the initial several hours, the biomass growth occurs

on glucose while the acetate profiles are similar for the robust and the nominal controllers.

Accordingly, the nominal and robust controllers show similar performance during this time. In the

time period 6ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 9ℎ𝑟𝑟, the concentration of acetate for both robust and nominal controllers

have been exhausted while the supplementation of glucose for the robust controller is larger than

for the nominal system. Since the controller action of the feeding and perfusion in the robust

controller during this time interval is much more radical than for the nominal controller, especially

within the period 6ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 7ℎ𝑟𝑟. However, the biomass growth is still similar for both controllers

during this time period.

During the last phase of the batch, i.e. 9ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 10ℎ𝑟𝑟, the controller action differs significantly

between the robust and the nominal controller, in particular with respect to the perfusion rates

calculated by each of the controllers. As a result of these actions, the acetate concentration under

the action of the nominal controller is growing much faster than for the robust controller. As a

result of this increase, the biomass growth for the nominal controller is significantly lower than for

the robust controller. However, the nominal controller cannot predict the occurrence of such worst

case thoroughly, thus it cannot provide an appropriate controller action for reducing the probability

for occurrence of the anaerobic process in advance. In conclusion, based on the performance

comparison that have been discussed, the robust controller generally showed better final

productivity (biomass level) than the nominal controller by 4% in higher disturbance or uncertainty

conditions. Though it is a quite small improvement, the profit can be improved signigicantly for a

high value product, a highly unstable system or a process with a more complex dynamic models.

The difference in the control actions of the robust and nominal controller in the last one hour also

contributes to the difference in the production of byproducts, such as the acetate. For instance, in

the last one hour, as it has been illustrated in Fig. 4.15(d), the growth of the acetate concentration

using the nominal controller is significantly higher than that obtained with the robust controller.

 111

Time ∆𝑡𝑡 = 0.1ℎ𝑟𝑟

Figure 4.15 Robust vs. Nominal Controller: Feeding, Perfusion, Biomass, Glucose and Acetate

 112

(a) The profile of Oxygen and Acetate
concentration in 10 hours

 (b) The profile of Oxygen and Acetate
concentration in the last 1 hour

Figure 4.16 Robust vs. Nominal Controller: Oxygen and Acetate

Fig. 4.16 illustrates the oxygen and acetate profiles using the two controllers. Based on the

concentration of oxygen, the production of the biomass can be divided into 2 phases, as it as been

shown in Fig. 4.16(a), during the first 9 hours, cells mainly adopt aerobic growth on glucose and

acetate, this is the aerobic phase with high efficiency in biomass production since byproducts is

less. However, during the last one hour, when the oxygen is insufficient, the anaerobic growth on

glucose will be the only choice, this is the worst case phase and the byproduct is acetate. Fig.

4.16(b) illustrated that in the last one hour, since the worst cases has already been predicted in the

process of robust controller, the occurrence of the anaerobic growth was delayed significantly.

Thus, less byproducts are obtained in the case of the robust controller; hence, the corresponding

performance as well as the efficiency of the closed-loop process are improved considerably.

4.5 Summary

This chapter proposed a novel robust EMPC. In the current work a tree structure is used to

propagate the uncertainty following different scenarios. The scenario based tree structure is based

on the idea that the space described by the uncertain parameters can be sub-divided into a series

of polyhedrons where the supremum can be obtained by linear calculations within each polyhedron

region. Though there are many different ways to divide the uncertainty space, in the current work

a novel algorithm referred to as the CCM algorithm presented in Chapter 2 has been adopted. Since

0

0.05

0.1

0.15

0.2

0.25

10 h0
0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nominal O2
Robust O2
Nominal Ac
Robust Ac

h

Mm Mm

 113

the biochemical processes of the case study presented in this chapter is described by a dynamic

metabolic flux model (DMFM) that is formulated by a constrained LP problem, the CCM method,

which was particularly designed for this kind of applications, can be readily applied to the present

case study. A tree structure multistage uncertainty propagation method is proposed that is referred

to as tableaus based tree (TBT) method. Based on theoretical arguments it was shown that the TBT

based propagation method is significantly more efficient than Monte Carlo or PCE method and

thus it is particularly amenable for online implementation. Finally, a series of case studies were

used to illustrate the proposed EMPC algorithm. It was shown that the robust controller is able to

provide superior productivity as compared to the nominal controller for most cases.

 114

Conclusions and future work

5.1 Conclusions

This thesis presented a new robust EMPC algorithm based on a novel uncertainty propagation

algorithm, which has been referred to as the Tableau Based Tree (TBT) method. This algorithm is

shown to be less sensitive to the number of the uncertain parameters as compared to other robust

algorithms that are based on sampling the uncertain parameters for uncertainty propagation. The

method exploits the LP structure of the model used to describe the bioprocess considered for

control.

5.1.1 CCM Algorithm in Sensitivity Analysis of RHS Space

The key goal of this study was to develop a computationally efficient robust EMPC algorithm. The

computationally demanding step of any robust control algorithm is the propagation of uncertainty

onto the variables involved in the control strategy.

The key idea proposed in the current work is to identify convex regions in the parameter space

where each region corresponds to a Simplex tableau or part of it. It is assumed that the parameter

space of the family of LP problems describing the uncertain system can be divided into a set of

polyhedrons where for each polyhedron upper and lower bounds can be calculated by linear

operations. In chapter 3, a series of lemmas are presented that provide the theoretical basis for the

partitioning of the uncertain parameter space, i.e. the parameters used in the RHS of the constraints

of the LP problem, into a finite number of polyhedrons. Since all of the polyhedrons in the RHS

space can be illustrated as convex cones based on a standard simplex form of LP, the proposed

partitioning method is referred to as the Convex Cone Method (CCM).

The 100 Percent Rule that has been widely used in LP problem to calculate local sensitivity of the

LP solution has been found to be inefficient for uncertainty propagation in the context of robust

control design. It was shown in this thesis that the 100 Percent Rule can only provide necessary

but not sufficient conditions regarding the applicability of a particular Simplex tableau in the

neighborhood of a nominal point but this method is not efficient for calculating all the Simplex

tableaus that may exist for given ranges of uncertainty parameters’ values. Beyond its ability to

identify convex regions that correspond to different Simplex tableaus the CCM was also found

 115

useful for providing the probability of occurrence of each of these regions by following the

procedure presented in chapter 3. These two aspects make the CCM an attractive basis for

uncertainty propagation in an LP problem as compared to the 100 Percent Rule that is of limited

applicability for our problem.

Though the CCM method can be adopted for multi-dimensional cases, from a series of case studies

of the CCM approach, it was found that with the dimensionality of the LP problem increasing, the

complexity of the problem also increases dramatically. Actually, without optimization, the time

complexity of CCM algorithm off-line is approximately 𝑂𝑂(𝑛𝑛!) in the worst case, where 𝑛𝑛 is the

dimension of RHS. Fortunately, in most cases, this complexity mostly contributes on the CPU time

of the first layer in CCM, the RHS map generation part, which has to be performed only once off-

line. Although the second sensitivity analysis layer needs to be executed online, the computational

effort is not as high as for the first layer. Thus, the negative impact of the time complexity in this

algorithm can be relatively mitigated.

5.1.2 TBT-Based Robust EMPC

Following the identification of the convex polyhedrons by the CCM method the TBT method was

developed to propagate the uncertainty in parameters onto the variables used in the control

strategy.

Based on the CCM, the RHS map can be obtained where each polyhedron is referred to as tableaus

or tableau regions in this thesis. With the intention of demonstrating the conditions of each tableau

in any specific time instant during the process, the main idea of TBT method is introduced. In

general, the TBT method is a tree structure based uncertainty propagating method where the

branches correspond to each one of the convex cones calculated by the CCM algorithm. This

approach is found to reduce the conservativeness of the uncertainty propagation step considerably,

since not only all of the present uncertainty but also the influence of the previous uncertain

parameters and control actions can be considered into the TBT formulation.

A theoretical comparison is conducted in terms of the computational demand as a function of the

number of uncertain parameters. According to this comparison, it can be concluded that the TBT

method have a potential to save considerable computational demand as compared to Monte Carlo

simulations and PCEs. For instance, if the robust horizon is 3 with 7 uncertainty parameters and

each of them have 10 different uncertainty conditions, the computational time of the Monte Carlo

 116

based method is expected to be 1 × 1018 times the computational time of the TBT method. The

two main reasons that are contributing to this advantage are: the computational time in the TBT

method is cubic, for a robust horizon of a limit time intervals, whereas for the computation in MC

is exponential with respect to the number of uncertain parameters; the TBT method has the ability

to prune branches with low probability thus saving unnecessary computations.

It is worth to note that the TBT also have its scope of application. When uncertainty parameters

are less or RHS dimensions are too many, the TBT method might not such appropriate than other

algorithms. For instance, the case study of the bioreactor indicates that the performance of this

TBT based robust controller is more competitive than the sampling based measured (Monte Carlo

simulations, PCEs, etc.) when the number of sampling points is more than 30.4 in each time

interval.

In this thesis, the application of TBT-based robust EMPC controller was illustrated for a fed-batch

reactor that is described by a dynamic metabolic flux model (DMFM). The robust controller

showed a potential for obtaining higher final productivity (biomass level). This computational

efficiency of the proposed approaches, i.e. the combination of the CCM with the TBT algorithms,

strengthens the applicability of the algorithm in real time applications.

As a novel method, this TBT uncertainty propagating approach cannot avoid challenges and

limitations. The first limitation is that it does not show a clear advantage in performance to other

robust control methods, such as nominal controller or MC sampling method, when the number of

uncertain parameters is small. Though the TBT method have been proved to be more efficient

theoretically when dealing with a large number of uncertain parameters, the condition with such a

large number has not been investigated in this work due to time limitations and thus a practical

comparison of nominal or other robust controller methods has not been established yet. Another

challenge of this method is that it is based on the assumption that the uncertain parameters are

independent of each other, and the distribution of the uncertainty is assumed to be uniform.

Therefore, when the full dimensional probability distribution needs to be considered with the

highly correlated uncertain parameters. Accounting for such correlation might be necessary for

reducing the conservatism considerably at the expense of increasing the computational costs.

 117

5.2 Future work

The current work generated several research questions to be considered in future research for future

research work, i.e.

1. Update the formulation of CCM algorithm in order to improve efficiency: Though the

CCM algorithm proposed in this work is able to generate the entire region of RHS map and

the generation process is off-line, the time required by this method as well as the proposed

method for eliminating redundant constraints could be potentially reduced. Other topics

that need further study are: finding bounds and make suitable decisions in case that for two

tableaus the value of the cost function is equal in the overlap region, dealing with the case

where the shape of the uncertainty region is not a convex polyhedron, etc.

2. Multivariable probability distribution of the multi-dimensional output space: In

chapter 4, the probability distribution of each convex region can be calculated based on the

assumption that the probability distribution of occurrence of parameters in each polyhedron

of RHs space are uniform. Other more realistic probability distributions should be

considered in the future.

3. Correlation between parameters: The uncertainty in the model parameters were assumed

to be independent but in reality, they may be highly correlated. Accounting for such

correlation may reduce further the conservatism of the method.

4. Develop a method that can handle larger number of scenarios: In the case study of

current research, the amount of scenario is only 2 to simplify the computation. It is

necessary to investigate the algorithm with a large number of scenarios.

5. Application to large-scale process systems: In this thesis, the application of the proposed

algorithms is based on the fed-batch reactor. However, control has to be often applied to

continuous processes thus necessitating modifications to the currently proposed algorithm.

A moving horizon approach could be considered for such case.

 118

References

Al-Gherwi, W., Budman, H., & Elkamel, A. (2011). A robust distributed model predictive control

algorithm. Journal of Process Control, 21(8), 1127–1137.

Allgöwer, F., Findeisen, R., & Nagy, Z. K. (2004). Nonlinear Model Predictive Control : From Theory to

Application. Chinese Institute Of, 35(3), 299–315.

Angeli, D., Amrit, R., J. R., U. (2009). Receding horizon cost optimization for overly constrained

nonlinear plants. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held

jointly with 2009 28th Chinese Control Conference (pp. 7972-7977). IEEE.

Angeli, D., Amrit, R., & Rawlings, J. B. (2012). On average performance and stability of economic

model predictive control. IEEE transactions on automatic control, 57(7), 1615-1626.

Banga, J. R., Alonso, A. A., & Singh, R. P. (1997). Stochastic Dynamic Optimization of Batch and

Semicontinuous Bioprocesses. Biotechnology Progress, 13(3), 326–335.

Berger, M., Pansu, P., Berry, J.-P., & Saint-Raymond, X. (2013). Problems in geometry. Springer Science

& Business Media.

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer.

Boyd, S., Ghaoui, L. El, Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and

control theory (Vol. 15).

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Bradley, S. P., Hax, A. C., & Magnanti, T. L. (1977). Applied mathematical programming.

Chen, H., & Allgöwer, F. (1998). A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme

with Guaranteed Stability. This paper was accepted for publication in revised form by Associate

Editor W. Bequette under the direction of. Automatica, 34(10), 1205–1217.

de la Pena, D. M., Alamo, T., Bemporad, A., & Camacho, E. F. (2006). Feedback min-max model

predictive control based on a quadratic cost function. In 2006 American Control Conference (pp. 6-

pp). IEEE.

de Oliveira, W. L., Sagastizábal, C., Penna, D. D. J., Maceira, M. E. P., & Damázio, J. M. (2010).

Optimal scenario tree reduction for stochastic streamflows in power generation planning problems.

Optimization Methods and Software, 25(6), 917–936.

Defourny, B. (2010). Machine Learning Solution Methods for Multistage Stochastic Programming.

 119

Díaz-Mendoza, R., & Budman, H. (2010). Structured Singular Valued based robust nonlinear model

predictive controller using Volterra series models. Journal of Process Control, 20(5), 653–663.

Diehl, M., Amrit, R., On, J. R.-I. T., & 2011, U. (2011). A Lyapunov function for economic optimizing

model predictive control. IEEE Transactions on Automatic Control, 56(3), 703-707.

Diehl, M., Gerhard, J., W. M.-C. & C., & 2008. Numerical solution approaches for robust nonlinear

optimal control problems. Computers & Chemical Engineering, 32(6), 1279-1292.

Doyle, F. J., Packard, A. K., & Morari, M. (1989). Robust controller design for a nonlinear CSTR.

Chemical Engineering Science, 44(9), 1929–1947.

Ellis, M., Liu, J., & Christofides, P. D. (2017). Advances in Industrial Control Economic Model

Predictive Control Theory, Formulations and Chemical Process Applications.

Findeisen, R., Imsland, L., Allgower, F., & Foss, B. A. (2003). State and Output Feedback Nonlinear

Model Predictive Control: An Overview. European Journal of Control, 9(2–3), 190–206.

Gatley, S. L., Bates, D. G., Hayes, M. J., & Postlethwaite, I. (2002). Robustness analysis of an integrated

flight and propulsion control system using μ and the ν-gap metric. Control Engineering Practice,

10(3), 261–275.

Ghanem, R., & Spanos, P. D. (1990). Polynomial Chaos in Stochastic Finite Elements. Journal of Applied

Mechanics, 57(1), 197.

Gutierrez, G., Ricardez-Sandoval, L. A., Budman, H., & Prada, C. (2014). An MPC-based control

structure selection approach for simultaneous process and control design. Computers & Chemical

Engineering, 70, 11–21.

He, Z., Sahraei, M. H., & Ricardez-Sandoval, L. A. (2016). Flexible operation and simultaneous

scheduling and control of a CO2 capture plant using model predictive control. International Journal

of Greenhouse Gas Control, 48, 300–311.

Henson, M. A. (1998). Nonlinear model predictive control: current status and future directions.

Computers and Chemical Engineering, 23, 187–202.

Henson, M. A. (2010). Model-based control of biochemical reactors. The Control Handbook. New York:

Taylor and Francis.

Hillier, F. (2001). Introduction to operations research (7th ed.). Tata McGraw-Hill Education.

Hjersted, J. L., & Henson, M. A. (2006). Optimization of Fed-Batch Saccharomyces cerevisiae

Fermentation Using Dynamic Flux Balance Models. Biotechnology Progress, 22(5), 1239–1248.

 120

Hover, F. S., & Triantafyllou, M. S. (2006). Application of polynomial chaos in stability and control.

Automatica, 42(5), 789–795.

Høyland, K., Kaut, M., & Wallace, S. W. (2003). A Heuristic for Moment-Matching Scenario Generation.

Computational Optimization and Applications, 24(2/3), 169–185.

Kawohl, M., Heine, T., & King, R. (2007). A new approach for robust model predictive control of

biological production processes. Chemical Engineering Science, 62(18–20), 5212–5215.

Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained model predictive control

using linear matrix inequalities. Automatica, 32(10), 1361–1379.

Kuhlmann, C., Bogle, I. D. L., & Chalabi, Z. S. (1998). Robust operation of fed batch fermenters.

Bioprocess Engineering, 19(1), 53.

Kumar, D., & Budman, H. (2017). Applications of Polynomial Chaos Expansions in optimization and

control of bioreactors based on dynamic metabolic flux balance models. Chemical Engineering

Science, 167, 18–28.

Lindhorst, H., Lucia, S., Findeisen, R., & Waldherr, S. (2016). Modeling metabolic networks including

gene expression and uncertainties. arXiv preprint arXiv:1609.08961.

Lübbert, A., & Jørgensen, S. (2001). Bioreactor performance: a more scientific approach for practice.

Journal of Biotechnology,85(2), 187-212.

Lucia, S., Andersson, J. A. E., Brandt, H., Diehl, M., & Engell, S. (2014). Handling uncertainty in

economic nonlinear model predictive control: A comparative case study. Journal of Process

Control, 24(8), 1247–1259.

Lucia, S., Finkler, T., & Engell, S. (2013). Multi-stage nonlinear model predictive control applied to a

semi-batch polymerization reactor under uncertainty. Journal of Process Control, 23, 1306–1319.

Ma, D. L., & Braatz, R. D. (2001). Worst-case analysis of finite-time control policies. IEEE Transactions

on Control Systems Technology, 9(5), 766–774.

Ma, D. L., Chung, S. H., & Braatz, R. D. (1999). Worst-case performance analysis of optimal batch

control trajectories. AIChE Journal, 45(7), 1469–1476.

Ma, J., Qin, J., Salsbury, T., & Xu, P. (2011). Demand reduction in building energy systems based on

economic model predictive control. Chemical Engineering Science, 67, 92–100.

Magni, L., Raimondo, D. M., & Scattolini, R. (2006). Regional Input-to-State Stability for Nonlinear

Model Predictive Control. IEEE Transactions on Automatic Control, 51(9), 1548–1553.

 121

Magni, L., & Scattolini, R. (2010). An Overview of Nonlinear Model Predictive Control. In L. del Re, F.

Allgöwer, L. Glielmo, C. Guardiola, & I. Kolmanovsky (Eds.), Automotive Model Predictive

Control: Models, Methods and Applications (pp. 107–117). London: Springer London.

Mahadevan, R., Edwards, J. S., & Doyle, F. J. (2002). Dynamic Flux Balance Analysis of Diauxic

Growth in Escherichia coli. Biophysical Journal, 83(3), 1331–1340.

Mandur, J., & Budman, H. (2012). A Polynomial-Chaos based Algorithm for Robust optimization in the

presence of Bayesian Uncertainty. IFAC Proceedings Volumes, 45(15), 549–554.

Matt, J. (2017). Analyze N-dimensional Polyhedra in terms of Vertices or (In)Equalities. Accessed 21

Dec 2016. http://www.mathworks.com/matlabcentral/fileexchange/30892-

representing-polyhedral-convex-hulls-by-vertices-or--in-

equalities/content/vert2lcon.m.

Mayne, D. Q., Kerrigan, E. C., van Wyk, E. J., & Falugi, P. (2011). Tube-based robust nonlinear model

predictive control. International Journal of Robust and Nonlinear Control, 21(11), 1341–1353.

Mehta, S., & Ricardez-Sandoval, L. A. (2016). Integration of Design and Control of Dynamic Systems

under Uncertainty: A New Back-Off Approach. Industrial & Engineering Chemistry Research,

55(2), 485–498.

Michalska, H., & Mayne, D. Q. (1993). Robust Receding Horizon Control of Constrained Nonlinear

Systems. Ieee Transactions on Automatic Control, 38(I), 1623–1633.

Nagy, Z. K., & Braatz, R. D. (2003). Robust nonlinear model predictive control of batch processes.

AIChE Journal, 49(7), 1776–1786.

Niederreiter, H. (1978). Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin of the

American Mathematical Society, 84(6), 957–1042.

Patil, B. P., Maia, E., & Ricardez-Sandoval, L. A. (2015). Integration of scheduling, design, and control

of multiproduct chemical processes under uncertainty. AIChE Journal, 61(8), 2456–2470.

Poole, D. (2014). Linear algebra: A modern introduction. Cengage Learning.

Rasoulian, S., & Ricardez-Sandoval, L. A. (2015). A robust nonlinear model predictive controller for a

multiscale thin film deposition process. Chemical Engineering Science, 136, 38–49.

Rasoulian, S., & Ricardez-Sandoval, L. A. (2016). Stochastic nonlinear model predictive control applied

to a thin film deposition process under uncertainty. Chemical Engineering Science, 140, 90–103.

Rawlings, J. B., Angeli, D., & Bates, C. N. (2012). Fundamentals of Economic Model Predictive Control.

 122

Santander, O., Elkamel, A., & Budman, H. (2016). Economic model predictive control of chemical

processes with parameter uncertainty. Computers & Chemical Engineering, 95, 10–20.

Shapiro, A. (2003). Monte Carlo Sampling Methods. Handbooks in Operations Research and

Management Science, 10, 353–425.

Smith, A., Monti, A., & Ponci, F. (2009). Uncertainty and Worst-Case Analysis in Electrical

Measurements Using Polynomial Chaos Theory. IEEE Transactions on Instrumentation and

Measurement, 58(1), 58–67.

Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2003). Dynamic optimization of batch processes: II.

Role of measurements in handling uncertainty. Computers & Chemical Engineering, 27(1), 27–44.

Vanantwerp, J. G., & Braatz, R. D. (2000). Tutorial on linear and bilinear matrix inequalities. Journal of

Process Control, 10(4), 363–385.

Varma, A., & Palsson, B. O. (1994). Metabolic Flux Balancing: Basic Concepts, Scientific and Practical

Use. Bio/Technology, 12(10), 994–998.

Yamuna Rani, K., & Ramachandra Rao, V. S. (1999). Control of fermenters – a review. Bioprocess

Engineering, 21(1), 77–88.

 123

Appendix A
Supplementary information for Chapter 4

The RHS map generated for the problem (4.48) is listed in this section. For the LP form of the

problem (4.48), the main parameters such as 𝑨𝑨, 𝒄𝒄 and 𝒃𝒃 are listed below:

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡

0 9.46 9.84 19.23
35 12.92 12.73 0

−39.43 0 1.24 12.12
0 9.46 9.84 19.23

35 12.92 12.73 0
39.43 0 −1.24 −12.12⎦

⎥
⎥
⎥
⎥
⎤

𝒄𝒄 = [1 1 1 1]

𝑏𝑏1 =
𝑮𝑮𝑮𝑮𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 𝒁𝒁𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮
𝑲𝑲𝒎𝒎 + 𝒁𝒁𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

𝑏𝑏2 = 𝑶𝑶𝑶𝑶𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎

𝑏𝑏3 = 100

𝑏𝑏4 = 𝑿𝑿−1 �
𝑟𝑟𝐹𝐹�𝒛𝒛𝑮𝑮𝑮𝑮,𝒊𝒊𝒊𝒊 − 𝒛𝒛𝑮𝑮𝑮𝑮�

𝑉𝑉
+
𝒛𝒛𝑮𝑮𝑮𝑮
𝑑𝑑𝑑𝑑
�

𝑏𝑏5 = 𝑿𝑿−1 �−
𝑟𝑟𝐹𝐹𝒛𝒛𝑶𝑶𝟐𝟐
𝑉𝑉

+ 𝒌𝒌𝑳𝑳𝒂𝒂�0.21 − 𝒛𝒛𝑶𝑶𝟐𝟐� +
𝒛𝒛𝑶𝑶𝟐𝟐
𝑑𝑑𝑑𝑑
�

𝑏𝑏6 = 𝑿𝑿−1 �−
𝑟𝑟𝐹𝐹𝒛𝒛𝑨𝑨𝑨𝑨
𝑉𝑉

+
𝒛𝒛𝑨𝑨𝑨𝑨
𝑑𝑑𝑑𝑑
�

In most cases, the constraint corresponding to 𝑏𝑏3, 𝑏𝑏4, 𝑏𝑏5 and 𝑏𝑏6 are too large to be active; thus,

when all these four parameters are larger than 50, only 𝑏𝑏1 and 𝑏𝑏2 are considered to generate the

RHS map in order to improve the efficiency of the sensitivity analysis procedure. In this case, the

RHS map is 2 dimensional which is referred as 2D RHS map for short. When any one of the 𝑏𝑏4,

𝑏𝑏5 and 𝑏𝑏6 are smaller than 50, then all of these 3 parameters are also considered in the RHS map

generation procedure, the map is referred to as 5D case. The map for 2D case is listed in Table A.1

for 𝑴𝑴𝑴𝑴𝟏𝟏 and Table A.2 for 𝑴𝑴𝑴𝑴𝟐𝟐 , which correspond to the basic fluxes {𝜈𝜈1, 𝜈𝜈2} or {𝜈𝜈2, 𝜈𝜈4}

respectively. Similarly, the map for 5D case is also able to maintain these two tableaus which are

listed Table A.3 and Table A.4, respectively.

 124

Table A.1 Main tableau 𝑴𝑴𝑴𝑴𝟏𝟏 {𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐} for 2D RHS map

Sub-
tableaus

Convex
cones

Main
properties

coefficients
 𝛼𝛼1 𝛼𝛼2

[1,2] 1

Edge
constrains

𝑒𝑒1 -1.0000 0.0000

𝑒𝑒2 1.0000 -0.7322

Basic
solutions

𝜈𝜈1 -0.0390 0.0286

𝜈𝜈2 0.1057 0.0000

𝜈𝜈3 0.0000 0.0000

𝜈𝜈4 0.0000 0.0000

Table A.2 Main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 {𝝂𝝂𝟐𝟐,𝝂𝝂𝟒𝟒} for 2D RHS map

Sub-
tableaus

Convex
cones

Main
properties

coefficients

 𝛼𝛼1 𝛼𝛼2

[2,4]

1

Edge
constrains

𝑒𝑒1 -1.0000 0.7322

𝑒𝑒2 1.0000 -0.7730

Basic
solutions

𝜈𝜈1 0.0000 0.0000

𝜈𝜈2 0.0000 0.0774

𝜈𝜈3 0.0000 0.0000

𝜈𝜈4 0.0520 -0.0381

2

Edge
constrains

𝑒𝑒1 0.0000 -1.0000

𝑒𝑒2 -1.0000 0.7730

Basic
solutions

𝜈𝜈1 0.0000 0.0000

𝜈𝜈2 0.0000 0.0774

𝜈𝜈3 0.0000 0.0000

𝜈𝜈4 0.0520 -0.0381

As shown in Table A.1. and Table A.2., there are only two main-tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎 which correspond

to two alternative cell strategies for its survival, i.e. either an aerobic or anaerobic respiration

modes, while the sub-tableaus 𝑻𝑻𝑻𝑻𝒏𝒏𝒏𝒏 of each one of these two main-tableaus are not significantly

 125

different in terms of fluxes, i.e. the 𝜶𝜶 matrix of basic solutions, from the results obtained with the

main tableaus.

Table A.3 Main tableau 𝑴𝑴𝑹𝑹𝟏𝟏 {𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐} for 5D RHS map
Sub-tableau [1 2 5 6 8]
Convex cones Edge constrains (Matrix 𝜶𝜶) Basic solutions (Matrix 𝜶𝜶)
1 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00

- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 3 6 5 8 - 0 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 4 0 5 6 0 . 0 0 0 0 - 0 . 8 8 7 6
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 3 2 2 0 . 6 4 9 9
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 4 0 5 6 0 . 0 0 0 0 - 0 . 8 8 7 6
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 3 2 2 0 . 6 4 9 9
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 4 0 5 6 - 0 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 1 1 5 - 0 . 6 3 1 5

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

4 -0 .0000 -0 .00 00 -1 .0000 - 0 .0000 -0 .00 00
-0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 4 0 5 6 - 0 . 0 0 0 0 0 . 8 8 7 6
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 1 1 5 0 . 6 3 1 5

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [1 2 5 6 9]
1 -0 .0000 -0 .00 00 -1 .0000 - 0 .0000 -0 .00 00

- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6
0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 6 4 9 9

0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [1 2 5 8 9]
1 -0 .0000 -0 .00 00 -1 .0000 - 0 .0000 -0 .00 00

- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 2 8 6 - 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 5 5 9 5 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 2 8 6 - 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 5 5 9 5 - 0 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 3 6 5 8 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 2 8 6 - 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [1 2 6 7 8]
1 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00

1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 6 4 9 9
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 0 . 7 1 1 5 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 6 3 1 5
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

 126

1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 3 2 2 0 . 6 4 9 9
- 1 . 0 0 0 0 0 . 7 1 1 5 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 6 3 1 5
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 3 2 2 0 . 6 4 9 9
1 . 0 0 0 0 - 0 . 7 1 1 5 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 6 3 1 5
- 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 7 1 1 5 - 0 . 6 3 1 5

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

4 -1 .0000 -0 .00 00 -0 .0000 - 0 .0000 -0 .00 00
-0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 1 1 5 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 6 3 1 5
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 1 1 5 0 . 6 3 1 5

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 5 4
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [1 2 6 7 9]
1 -1 .0000 -0 .00 00 -0 .0000 - 0 .0000 -0 .00 00

1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

- 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

- 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6
- 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 7 3 2 2 - 0 . 6 4 9 9

- 0 . 0 3 9 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 8 6 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [1 2 7 8 9]
1 -1 .0000 -0 .00 00 -0 .0000 - 0 .0000 -0 .00 00

1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

- 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 1 . 7 8 7 5 0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 5 8 6 6

- 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 1 . 7 8 7 5 - 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 5 8 6 6
- 1 . 0 0 0 0 0 . 7 3 2 2 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 6 4 9 9

- 0 . 0 3 9 0 0 . 0 2 8 6 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 1 0 5 7 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Table A.4 Main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 {𝝂𝝂𝟐𝟐,𝝂𝝂𝟒𝟒} for 5D RHS map
Sub-tableau [2 4 5 6 9]
Convex cones Edge constrains (Matrix 𝜶𝜶) Basic solutions (Matrix 𝜶𝜶)
1 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0

- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

4 -0 .0000 -0 .00 00 -0 .0000 - 1 .0000 -0 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0

 127

- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

5 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

6 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0

Sub-tableau [2 4 5 8 9]
1 -0 .0000 -1 .00 00 -0 .0000 - 0 .0000 -0 .00 00

- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 2 9 3 7 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

2 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 2 9 3 7 0 . 0 0 0 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 5 5 9 5 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 2 9 3 7 0 . 0 0 0 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 5 5 9 5 - 0 . 0 0 0 0 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

4 - 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 2 9 3 7 - 0 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

5 - 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 2 9 3 7 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 5 5 9 5 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

6 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 0 . 0 0 0 0 1 . 0 0 0 0 - 1 . 3 6 5 8 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 1 . 2 9 3 7 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 5 5 9 5 - 0 . 0 0 0 0 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0

Sub-tableau [2 4 6 7 9]
1 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0

- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

2 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
- 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

4 -0 .0000 -0 .00 00 -0 .0000 - 1 .0000 -0 .00 00
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

 128

- 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

5 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 0 . 8 8 7 6
- 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 7 8 7 5 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

6 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 7 8 7 5 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 3 8 1 0 . 0 0 0 0

Sub-tableau [2 4 7 8 9]
1 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

2 - 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
- 1 . 0 0 0 0 1 . 7 8 7 5 0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

3 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
- 1 . 0 0 0 0 0 . 7 3 2 2 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 0 . 7 7 3 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
1 . 0 0 0 0 - 1 . 7 8 7 5 - 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

4 -0 .0000 -1 .00 00 -0 .0000 - 0 .0000 -0 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 8 8 7 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

5 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 8 8 7 6
- 1 . 0 0 0 0 1 . 7 8 7 5 0 . 0 0 0 0 0 . 0 0 0 0 - 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

6 -0 .0000 -0 .00 00 -0 .0000 - 0 .0000 -1 .00 00
1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
- 0 . 0 0 0 0 1 . 0 0 0 0 - 0 . 0 0 0 0 - 1 . 0 0 0 0 - 0 . 0 0 0 0
- 1 . 0 0 0 0 0 . 7 7 3 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0
1 . 0 0 0 0 - 1 . 7 8 7 5 - 0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 5 8 6 6

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 7 7 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 5 2 0 - 0 . 0 3 8 1 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

 129

Appendix B
 MATLAB Codes

Main codes that designed for Chapter 3 CCM algorithm

classdef AtabDistribution
 properties
 Tab_type = 0;
 Basic_tab = [];
 List = [];
 List_edge = [];
 List_temp = [];
 Possible = 0;
 MaxMin = [];
 end

 methods
 function obj = AtabDistribution(tab_type, basic_tab, list, list_edge,
list_temp, possible, maxmin)
 % Tab_type, Basic_tab, List, List_edge, List_temp, Possible, MaxMin
 obj.Tab_type = tab_type;
 obj.Basic_tab = basic_tab;
 obj.List = list;
 obj.List_edge = list_edge;
 obj.List_temp = list_temp;
 obj.Possible = possible;
 obj.MaxMin = maxmin;
 end

 end
end

classdef branchList
 % tree list
 properties
 Time = 0;
 BranchSubtab = [];
 Pos_list = []; % possiblility of different line
 Scenario = [];
 Wholerange = [];
 end

 methods
 function list = branchList(time, branchsub, pos_list, scenario, wholerange)
 % time, branchsub, pos_list, scenario
 list.Time = time;
 list.BranchSubtab = branchsub;
 list.Scenario = scenario;
 list.Pos_list = pos_list;
 list.Wholerange = wholerange;
 end

 end % methods

end % classdef

 130

classdef branchSubtab

 properties
 Prev = []; %[subtab#]
 Mid = [];
 Next = [];
 Time = 0;
 Up_leaf = [];
 Mid_leaf = [];
 Low_leaf = [];
 List_conbine = [];
 Possible = 0;
 X_grad = []; % grad of biomass
 Prob_dis = []; % Probalitity distribution
 Unit = [];
 Nodes = [];
 MaxMin_nu_mu = [];
 MaxMin_y = [];
 Data
 end

 methods
 function node = branchSubtab(time, up_leaf, mid_leaf, low_leaf, list_conbine,
possible, x_grad, prob_dis, unit, nodes, maxmin_nu_mu, maxmin_y, data)
 % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad,
prob_dis, unit, nodes, maxmin_nu_mu, maxmin_y, data
 % DLNODE Constructs a node object.
 node.Time = time;
 node.Up_leaf = up_leaf;
 node.Mid_leaf = mid_leaf;
 node.Low_leaf = low_leaf;
 node.List_conbine = list_conbine;
 node.Possible = possible;
 node.X_grad = x_grad;
 node.Prob_dis = prob_dis;
 node.Unit = unit;
 node.Nodes = nodes;
 node.MaxMin_nu_mu = maxmin_nu_mu;
 node.MaxMin_y = maxmin_y;
 node.Data = data;
 end

 end % methods
end % classdef

classdef Leaves
 % tree list
 properties
 Time = 0;
 Num = 0; % 1-up, 2-mid, 3-low
 Prev = []; %[subtab#]
 Lenu = []; % unitlength
 Possible = 0;
 Br_node_list = [];
 MaxMin_nu_mu = [];
 MaxMin_y = [];
 end

 131

 methods
 function list = Leaves(time, num, prev, lenu, possible, br_node_list,
maxmin_nu_mu, maxmin_y)
 % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y
 list.Time = time;
 list.Num = num;
 list.Prev = prev;
 list.Lenu = lenu;
 list.Possible = possible;
 list.Br_node_list = br_node_list;
 list.MaxMin_nu_mu = maxmin_nu_mu;
 list.MaxMin_y = maxmin_y;
 end

 end % methods

end % classdef

classdef Subspace
 properties
 Num = 0;
 Base_con = [];
 Space_con = [];
 K = [];
 Verties = [];
 Vol = [];
 Mid_point = [];
 Tab = [];
 Basic_sol = [];
 Tab_type = [];
 Radius = 0;
 Basic_sol_v = [];
 MaxMin = [];
 Possible = 0;
 end

 methods
 function obj = Subspace(n, base_con, sc, k, v, vol, mid, tab, radius,
basic_sol, tab_type, basic_sol_v, max_min, possible)
 % Num, Base_con, Space_con, K, Verties, Vol,
 % Mid_point, Tab, Basic_sol, Tab_type, MaxMin, Possible
 obj.Num = n;
 obj.Base_con = base_con;
 obj.Space_con = sc;
 obj.K = k;
 obj.Verties = v;
 obj.Vol = vol;
 obj.Mid_point = mid;
 obj.Tab = tab;
 obj.Radius = radius;
 obj.Basic_sol = basic_sol;
 obj.Tab_type = tab_type;
 obj.Basic_sol_v = basic_sol_v;
 obj.MaxMin = max_min;
 obj.Possible = possible;
 end

 function Show(obj)
 disp(['Subspace number: ', num2str(obj.Num)]);

 132

 end

 end
end

function [Tab_distribution] = gen_rhs_map_subspace_5d_newmet(A, c, rand_b, lowbound,
possible_tol)

% This function is intend to

% example for this research:
% A = [0 9.4600 9.8400 19.2300
% 35.0000 12.9200 12.7300 0
% 0 9.4600 9.8400 19.2300
% 35.0000 12.9200 12.7300 0
% 39.4300 0 -1.2400 -12.1200];
% c = [1 1 1 1]';
% c = -c; % max
% rand_b = [10 15]; % an asumption of b range for calculation, no need to be changed
% lowbound = 0;
% possible_tol = 1e-9;
% [Tab_distribution] = gen_rhs_map_subspace_5d_newmet(A, c, rand_b, lowbound,
possible_tol)

%%%%%%% Main Part of Functoin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Initialize constrains

lenb = length(A(:,1));
lenA = length(A(1,:));
lenc = length(c(:, 1));
Anew = [A, eye(lenb)];
lenAnew = length(Anew(1,:));

syms_b = ' ';
syms_bound = ' ';

for i = 1:lenb
 syms_b = [syms_b 'b' num2str(i) ' '];
 % b1 b2 b3;
end

eval(['syms', syms_b, 'real'])
% syms b1 b2 b3 real
eval(['b = [', syms_b, '];'])
% b = [b1 b2 b3];
b = b';

for i = 1:lenb
 syms_bound = [syms_bound 'diff(xi,b' num2str(i) ') '];
 % diff(xi, b1) diff(xi, b2) diff(xi, b3)
end

N = nchoosek(1:lenAnew,lenb);
N = N(1: (end-1), :);%eliminate 0 0 0 ... condition
lenN = length(N(:,1));
factor = ff2n(lenA);
factor = factor(2:end, :);%eliminate 0 0 0 ... condition
lenF = length(factor);

 133

Tab_distribution = cell(lenF, 1);
for i = 1:lenF
 Tab_distribution{i} = AtabDistribution(i, factor(i, :), [], [], [], 0, []);
 % Tab_type, Basic_tab, List, List_edge, List_temp, Possible, MaxMin
end

%% Initialize Subspaces
Subspace_list = cell(lenN, 1);
space_con = [];
vert_set = [];
Mid_point = zeros(lenb,1);
radius = inf;
base_con = [];
basic_sol = [];
tab_type = [];
Subspace_list{1} = Subspace(1, base_con, space_con, [], ...
 vert_set, [], Mid_point, [], radius, basic_sol, tab_type, [], [], 0);
% Num, Base_con, Space_con, K, Verties, Vol, Mid_point, Tab, Radius,
% Basic_sol, Tab_type, Basic_sol_v

%% Find Base Subspaces
n = 0;
bound_set = zeros(lenb, lenb + 1);
basic_sol_v = bound_set;
basic_zero_tab = zeros(1, lenA);
for i = 1:lenN
 Atemp = Anew(:,N(i,:)');
 if rank(Atemp) == lenb
 ls = linsolve(Atemp,b);
 for j = 1:lenb
 xi = ls(j,:);
 eval(['bound = [', syms_bound, '];'])
 % bound = [diff(xi, b1) diff(xi, b2) diff(xi, b3)];
 basic_sol_v(j, :) = [bound, 0];
 unitlize = find(abs(bound) > 0); % trying to avoid bug of noredund
 bound = bound/abs(bound(unitlize(1)));
 bound_set(j, :) = [bound, 0];% f(b_i) > bound_set(:,end)
 end
 % setting each subspace
 % core properties
 f = ones(lenb, 1);
 [~,~,EXITFLAG] = linprog(f,- bound_set(:, 1:end-1),- bound_set(:,end));
 % [An,bn,~] = noredund(A_space, b_space);
 if EXITFLAG ~= 2
 n= n + 1;
 basic_sol_temp = basic_zero_tab;
 Subspace_list{n} = Subspace_list{1};
 Subspace_list{n}.Num = n;
 Subspace_list{n}.Base_con = - bound_set;% f(b_i) < bound_set(:,end)
 Subspace_list{n}.Tab = N(i,:);
 Subspace_list{n}.Basic_sol_v = basic_sol_v;
 basic_sol_temp(Subspace_list{n}.Tab(N(i,:) <= lenA)) = 1;
 for k = 1:lenF
 if basic_sol_temp == Tab_distribution{k}.Basic_tab
 Subspace_list{n}.Basic_sol = basic_sol_temp;
 Subspace_list{n}.Tab_type = k;
 % obtaining basic solutoin value which could be used in cost
function
 basic_tab = Subspace_list{n}.Tab(Subspace_list{n}.Tab <= lenc);
 basic_n = (sum(1 == basic_sol_temp));
 basic_sol_v = Subspace_list{n}.Basic_sol_v;
 basic_v = basic_sol_v(1:basic_n, :);

 134

 basic_sol_v = zeros(lenc, lenb + 1);
 s = 0;
 for r = 1:lenc
 if 1 == basic_sol_temp(r)
 s = s + 1;
 basic_sol_v(r, :) = basic_v(s, :);
 end
 end
 Subspace_list{n}.Basic_sol_v = basic_sol_v;
 Tab_distribution{k}.List = [Tab_distribution{k}.List;
Subspace_list{n}];
 break
 end
 end
 end
 end
end
Subspace_list((n+1): end) = [];

%% upper section can run for only one time

A_wholeSpace = [-ones(1,lenb);ones(1,lenb); -eye(lenb)];
b_wholeSpace = [-rand_b(1); rand_b(2); ones(lenb,1)*lowbound];

[V_whole,~,~] = lcon2vert_ef(A_wholeSpace, b_wholeSpace,[],[],[]);

[~,wholeVol] = convhulln(V_whole);

[Subspace_edge_list] = subspace_edge_new(Subspace_list, lenb, rand_b, lowbound);
lenSe= length(Subspace_edge_list);

for i = 1:lenF
 Tab_distribution{i}.List_edge = [];
end

for i = 1:lenSe
 type = Subspace_edge_list{i}.Tab_type;
 Tab_distribution{type}.List_edge = [Tab_distribution{type}.List_edge;
Subspace_edge_list{i}];
end

% eliminate some tableaus which volume is too small to be happen
j_eli = 0;
for i = 1:lenF
 lenL = length(Tab_distribution{i}.List_edge);
 sub_s_list = Tab_distribution{i}.List_edge;
 edge_list_empty = [];
 for j = 1:lenL
 % [~,Voltab] = convhulln(sub_s_list(j).Verties, {'QJ'});
 try
 [~,~] = convhulln(sub_s_list(j).Verties);
 % Voltab/wholeVol <= possible_tol
 catch
 edge_list_empty = [edge_list_empty, j];
 j_eli = j_eli + 1;
 end
 end
 sub_s_list(edge_list_empty) = [];
 Tab_distribution{i}.List_edge = sub_s_list;
end

 135

%% cut one side of the overlap range from same basic tableau %% analyse by set theory
(this part is needed to be reconsidered)

for i = 1:lenF
 lenL = length(Tab_distribution{i}.List_edge);
 Tab_distribution{i}.List_temp = Tab_distribution{i}.List_edge;
 if lenL >= 2
 list_edge = Tab_distribution{i}.List_edge;
 List_temp = [];
 for j = 1: lenL
 n_sub_cut = Tab_distribution{i}.List_edge;
 n_sub_cut(j) = [];
 n_sub_remain = Tab_distribution{i}.List_edge(j);
 for k = 1 : lenL - 1
 n_sub_remain_temp = [];
 for kk = 1:length(n_sub_remain)
 [~, extr_Subspace_list_q, ~, overlap_q] = ...
 cost_fun_cut_better(n_sub_cut(k), n_sub_remain(kk), c);
 n_sub_remain_temp = [n_sub_remain_temp; extr_Subspace_list_q;
overlap_q];
 end
 n_sub_remain = n_sub_remain_temp;
 end
 List_temp = [List_temp; n_sub_remain];
 end
 Tab_distribution{i}.List_temp = List_temp;
 Tab_distribution{i}.List_edge = Tab_distribution{i}.List_temp;
 end
end

% getting vertices and midpoint
Subspace_edge_list = [];
j_eli2 = 0;
V_eli = 0;
P_eli = 0;
for i = 1:lenF
 lenL = length(Tab_distribution{i}.List_edge);
 if lenL >= 1
 sub_s_list = Tab_distribution{i}.List_edge;
 edge_list_empty = [];
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% (this part may not need
)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 for j = 1:lenL
 A_space = sub_s_list(j).Space_con(:, 1:(end - 1));
 b_space = sub_s_list(j).Space_con(:, end);
 [V,~,~]=lcon2vert(A_space, b_space, [], [], 1e-9, []);
 if isempty(V)
 edge_list_empty = [edge_list_empty, j];
 else
 sub_s_list(j).Verties = V;
 [~,Voltab] = convhulln(V, {'QJ'});
 if Voltab/wholeVol <= possible_tol
 edge_list_empty = [edge_list_empty, j];
 j_eli2 = j_eli2 + 1;
 V_eli = V_eli + Voltab;
 P_eli = P_eli + Voltab/wholeVol;
 else
 for k = 1:lenb
 sub_s_list(j).Mid_point(k) = (max(V(:,k))+min(V(:,k)))/2;
 end

 136

 midpoint = sub_s_list(j).Mid_point;
 lenV = length(V(:,1));
 distance_p = zeros(lenV, 1);
 for k = 1:lenV
 distance_p(k) = norm(midpoint - V(1, :)');
 end
 sub_s_list(j).Radius = max(distance_p);
 end
 end
 end

%%%
 sub_s_list(edge_list_empty) = [];
 Tab_distribution{i}.List_edge = sub_s_list;
 Subspace_edge_list = [Subspace_edge_list; sub_s_list];
 end
end

% eliminate empty Tab_distribution
tab_edge_dis = [];
for i = 1:lenF
 if ~isempty(Tab_distribution{i}.List_edge)
 tab_edge_dis = [tab_edge_dis; i];
 end
end

% save('5d_de_bug_308.mat');

%% calculating cost function cutting

% load 5d_de_bug_308.mat

lent = length(tab_edge_dis);

% A_space = [-ones(1,lenb);ones(1,lenb); -eye(lenb)];
% b_space = [-rand_b(1); rand_b(2); ones(lenb,1)];
% [V,~,~]=lcon2vert(A_space, b_space, [], [], 1e-9, [])
% [~,sum_vol_real] = convhulln(V);

Tab_distribution_mant = Tab_distribution;

error_tab_conb = [];
% for i = 1:lent
for i = 1:lent
 j_list = tab_edge_dis;
 j_list(i) = [];
 for j = 1:length(j_list)
 disp([i, j, tab_edge_dis(i), j_list(j), lent, lent - 1]);
 List_L = Tab_distribution{tab_edge_dis(i)}.List_edge;
 List_R = Tab_distribution_mant{j_list(j)}.List_edge;
 if ~isempty(List_L) && ~isempty(List_R)
 L_remain_temp = List_L;
 for k = 1:length(List_R)
 L_remain = [];
 for kk = 1:length(L_remain_temp)
 try
 [extr_Subspace_list_p, ~, overlap_p, ~] = ...
 cost_fun_cut_better(L_remain_temp(kk), List_R(k), c);
 L_remain = [L_remain; extr_Subspace_list_p; overlap_p];
 % if j > 1

 137

 % [L_remain, ~] = check_L_remain(L_remain, 1e-12, 1,
sum_vol_real);
 % end
 catch
 error_tab_conb = [error_tab_conb; tab_edge_dis(i), j_list(j)];
 L_remain = L_remain_temp;
 end
 end
 L_remain_temp = L_remain;
 end
 % [L_remain, ~] = check_L_remain(L_remain, 1e-12, 1, sum_vol_real);
 Tab_distribution{tab_edge_dis(i)}.List_edge = L_remain;
 end
 end
 % [Tab_distribution{tab_edge_dis(i)}.List_edge, ~] =
 % check_L_remain(Tab_distribution{tab_edge_dis(i)}.List_edge, 1e-9, 0, 0);
 % elimate subtab smaller than 1e-9 of whole tab
end

for i = 1:lenF
 lenL = length(Tab_distribution{i}.List_edge);
 if lenL >= 1
 for j = 1:lenL
 Tab_distribution{i}.List_edge(j).Space_con(1:2, :) = [];
 end
 end
end

save('rhs_map_5d_new_all');
save('rhs_map_5d_new', 'Tab_distribution', 'A', 'c');
end

function [extr_Subspace_list_p, extr_Subspace_list_q, overlap_p, overlap_q] = ...
 cost_fun_cut_better(Subspace_list_p, Subspace_list_q, c)
% since this part might generate nonconvex hull, using convex part cutting another one
% always want to obtain min cost function

% [p_Space_con, q_Space_con] =
cot_fun_cut(Subspace_edge_list{p},Subspace_edge_list{q}, c);
% Subspace_edge_list{p}.Space_con = p_Space_con;
% Subspace_edge_list{q}.Space_con = q_Space_con;

% ef = one of [1 2 3 4 5]
% ef = 0;

cost_fun_con = c'*Subspace_list_p.Basic_sol_v - c'*Subspace_list_q.Basic_sol_v;

unitlize = find(abs(cost_fun_con) > 0); % trying to avoid bug of noredund
cost_fun_con = cost_fun_con/abs(cost_fun_con(unitlize(1)));

% cost_p < cost_q ==> cost_p - cost_q < 0 ==> cost_fun_con < 0

% 1. find the overlap range
% 2. check if c across or not the range
lenSp = length(Subspace_list_p.Space_con);
overlap_range_re = [Subspace_list_p.Space_con; Subspace_list_q.Space_con];

 138

%% overlap cutting
[~,nro,~,ef] = lcon2vert_ef(overlap_range_re(:, 1: end-1), overlap_range_re(:, end),
[], [], 1e-10, []);
% [An,bn,nro] = noredund(overlap_range_re(:, 1: end-1), overlap_range_re(:, end));

if 0 == ef && ~isempty(nro) %overlap

 overlap_range = overlap_range_re(nro,:);

 extr_p = find(nro <= lenSp);
 if ~isempty(extr_p)
 overlap_con_p = overlap_range_re(nro(extr_p), :);
 extr_Subspace_list_q = overlap_cut(Subspace_list_q, overlap_con_p);
 else
 extr_Subspace_list_q = [];
 end

 extr_q = find(nro > lenSp);
 if ~isempty(extr_q)
 overlap_con_q = overlap_range_re(nro(extr_q), :);
 extr_Subspace_list_p = overlap_cut(Subspace_list_p, overlap_con_q);
 else
 extr_Subspace_list_p = [];
 end

 %% cosfunction cutting

 overlap_p = Subspace_list_p;
 overlap_q = Subspace_list_q;

 A_con = [overlap_range(:, 1: end-1); cost_fun_con(1: end-1)];
 b_con = [overlap_range(:, end); cost_fun_con(end)];
 [~,nr,~,ef]=lcon2vert_ef(A_con, b_con, [], [], 1e-10, []);

 if 0 ~= ef || isempty(nr) % overlap part belongs to q
 overlap_q.Space_con = overlap_range;
 overlap_p = [];
 else
 overlap_p.Space_con = [A_con(nr,:), b_con(nr,:)];

 A_con = [overlap_range(:, 1: end-1); - cost_fun_con(1: end-1)];
 b_con = [overlap_range(:, end); - cost_fun_con(end)];
 [~,nr,~,ef]=lcon2vert_ef(A_con, b_con, [], [], 1e-10, []);
 if 0 ~= ef || isempty(nr) % overlap part belongs to p
 overlap_q = [];
 else
 overlap_q.Space_con = [A_con(nr,:), b_con(nr,:)];
 end

 end

else %non-overlap
 extr_Subspace_list_p = Subspace_list_p;
 extr_Subspace_list_q = Subspace_list_q;
 overlap_p = [];
 overlap_q = [];
end

end

 139

Main codes that designed for Chapter 4 Nominal EMPC

% Nominal Control
%---
% Main function for model, control parameters and initial conditions
%---
clear variables
close all
clc
%% Initial Conditions
% z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X)
z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X)
V0 = 0.3; % L, Initial Volume of the reactor, guess
Vmax = 0.4; % L, Final maximum batch volume, guess
Vmin = 0.2; % L, Final minimum batch volume, guess
% Fig = 0.1; % L/h
Fmax = 0.3; % L/h
Zgl_feed = 5;
%% Model parameters
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12];
c = ones(4,1);
kla = 4; % hr^-1, Mahadevan paper
Km = 0.015; % mM, Mahadevan paper
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper
OUR_max = 12; % mM/g-dw/hr, Mahadevan paper
Ki = 1.0;
% Uncertainty Information
GUR_sig = 0.2; % +/- 20%, guess
OUR_sig = 0.2; % +/- 20%, guess
kla_sig = 0.2;
Km_sig = 0.01;
Ki_sig = 0.2;
% # of time steps and step size
% nit = 110;
% tend = 11; % h, total time of cell culture growth, guess
nit = 100; %110
tend = 10; % 1h, total time of cell culture growth, guess
dt = tend/nit; % h, time, guess
%% frequency for disturbance
%% frequency for disturbance
t = [1:1:nit]'; n = 11; % frequency for disturbance
% disturbance for 109, se01
% disturbance = sin(2*pi/n*t);
% disturbance2 = cos(pi/n*t);
% disturbance3 = - sin(pi/n*t);
% disturbance for se02——1.5
disturbance = -1*ones(length(t), 1);
disturbance2 = 1*ones(length(t), 1);
disturbance3 = 1*ones(length(t), 1);
dist = [disturbance, disturbance2, disturbance3];
% n2 = 8; % frequency for changing plant definition
% load('perf_disturbance.mat');
% load('perf_disturbance2.mat');
beta = 0; % cell death paramete
%% controller parameters
number_of_inputs = 10; % # of manipulation
p = number_of_inputs;
u = zeros(2*p,1); % combination of F and P predictions
dl = tend/number_of_inputs; % h, time interval of each measurement and manipulation
% Initial guess for Feed rate
% load('feed_rate_ig_nit_110_nominal.mat');
uig = 0.001*ones(p*2,1);

 140

% uig = [(Vmax-V0)/dt/nit(1)*ones(nit(1),1); 1e-3*ones(nit,1)];
% uig = 0.02*ones(2*number_of_inputs,1);
umax = Fmax*ones(2*number_of_inputs,1);
%% Optimisation parameters
op = optimset('fmincon');
op.Display = 'On';
op.TolFun = 1E-7;
op.TolX = 1E-6;
op.MaxIter = 10000;
op.MaxFunEvals = 100000;
op.Algorithm = 'interior-point';
op.UseParallel = 1;
GUR_plant_list = [6.5 6.5 6.5 8 4];
kla_plant_list = [4 2.4 5.6 4 4];
% GUR_plant = GUR_max;
%% the control and plant loop
% initialisation
z0_plant = z0_model;%(Glc,O2,Aci,X)
% z0_plant = [0.4 0.21 0.2 0.001]';%(Glc,O2,Aci,X)
fb_k = 0; % initialisation of fb error
if isempty(gcp('nocreate')) == 1 %matlab pool not yet started
 parpool('local');
 % for both=======================================
else %matlab pool already started
 disp('matlab pool already started');
end
 GUR_plant = 6.5;
 kla_plant = 4;
 filename = strcat('nominal_control_GUR_OUR_kla1010_se02_-1_1_1_0.1.mat');
 main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,...
 OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,...
 V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...
 GUR_plant, kla_plant, dl, number_of_inputs, dist)
% end
% delete(gcp('nocreate'))%commented when adjusting or debugging parpool
% matlabpool close %commented when adjusting or debugging parpool

%--
% Main Controller (Nominal Control)
%--
function main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,...
 OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,...
 V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...
 GUR_plant, kla_plant, dl, number_of_inputs, dist)
%% variables to store
Basic_model = zeros(nit,4);
Basic_plant = zeros(nit,4);
y_plant = zeros(nit,5);
z_plant = zeros(nit,3);
x_plant = zeros(nit,1);
V_plant = zeros(nit,1);
u_plant = zeros(2*nit,p);
nu_plant = zeros(nit,4);
F_plant = zeros(nit,1);
P_plant = zeros(nit,1);
x_model = zeros(nit,1);
u_model = zeros(2*p,p);
fval_model = zeros(p,1);
% y_model = zeros(nit,5);
z_model = zeros(nit,3); % stores model predictions
nu_model = zeros(nit,4);

 141

fb_plant = zeros(nit,1); % feedback error in nominal model prediction
time_store = zeros(p,1);
ef_plant = zeros(nit,1);
fval_plant = zeros(nit,1);
cost_plant = zeros(nit,1); % cost or yield is equal to x*V
% obj_plant = zeros(nit,5);
y_measured = zeros(p,5); %(Glc,O2,Aci,X,V)
nu_measured = zeros(p,4);
%% initialise the control inputs
%n = length(c);
y = [z0_model;V0];%initial plant (Glc,O2,Aci,X,V)
nu = zeros(4,1);%initial rate (Glc,O2,Aci,X)
mu = sum(nu);
mu_m = mu;
tl = 0;
maninter = dl/dt;
disp('Controller without cell death,bounded reference trajectory');
%% Plant parameters
for k = 1:nit
 %% controller prediction
 if mod((k-1), maninter) == 0 % decide which time to measure & manipulate
 kp = k;
 tl = 1+tl;
 % fb_k0 = fb_k/maninter;
 fb_k0 = 0;
 p = number_of_inputs+1-tl;
 % measurements records
 y_measured(tl,:) = y';
 nu_measured(tl,:) = nu';
 z0_model = y(1:4); % adjusting model after be measured
 tstart = clock; % to save the time that fmincon cost
 % Linear Optimisation Constraints
 umax = Fmax*ones(2*p,1);
 % du_max = Fmax;
 % u = zeros(2*p,1);
 % objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x)
 A_cons = [tril(ones(p,p)) tril(-ones(p,p)); ... % Linear Constraint:
V(k+i)<=Vmax
 -tril(ones(p,p)) tril(ones(p,p))]; % Linear Constraint: V(k+i)>=Vmin
 b_cons = [(Vmax - V0)/dl*ones(p,1); ... % Linear Constraint: V(k+i)<=Vmax
 (V0 - Vmin)/dl*ones(p,1)]; % Linear Constraint: V(k+i)>=Vmin
 [u, fval, exitflag] = fmincon(@(u) objfun (u, z0_model, V0, dt, A, c, kla, Km,
GUR_max,...
 OUR_max, Ki, Zgl_feed, nit, p, kp, maninter,
fb_k),uig,A_cons,b_cons,[],[],zeros(2*p,1),umax,[],op); %ÕâÀï²»´«µÝmu
 % save prediction results and time consumption
 u_model(tl:number_of_inputs,tl) = u(1:p)';
 u_model(number_of_inputs+tl:end,tl) = u(p+1:end)';
 fval_model(tl,1) = -fval;
 time_store(tl,1) = etime(clock,tstart)/60; % min
 % initial guess for next time interval comes from computed solution
 uig = [u(2:p); u(p+2:end)];
 end
 F0 = u(1);
 P0 = u(p+1);
 %% plant dynamics
 % plant parameters
 GUR_p = GUR_max*(1 + GUR_sig*dist(k, 1));

 OUR_p = OUR_max*(1 + OUR_sig*dist(k, 2));

 kla_p = kla*(1 + kla_sig*dist(k, 3));

 142

 Ki_p = 1;

 % GUR_p = GUR_plant(k); kla_p = kla_plant(k);
 % OUR_p = OUR_plant(k); Ki_p = Ki_plant(k);
 [y, nu, Basic, mu] = plant_dynamics(z0_plant, V0, F0, P0, dt, A, c, ...
 kla_p, Km, GUR_p, OUR_p, Ki_p, Zgl_feed, mu);
 %% run nominal model dynamics for one time step
 fb_ke = fb_k0;
 [y_m, nu_m, Basic_m, mu_m] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu_m);
 % reinitialise
 z0_plant = y(1:4);
 z0_model = y_m(1:4);
 z0_model(4, :) = z0_model(4, :) + fb_ke;
 V0 = y(5);
 fb_k = y(4) - z0_model(4);
 %% save the results
 Basic_model(k,:) = Basic_m;
 Basic_plant(k,:) = Basic;
 y_plant(k,:) = y';
 z_plant(k,:) = y(1:3)';
 u_plant(k,1:p) = u(1:p)';
 u_plant(nit+k,1:p) = u(p+1:end)';
 F_plant(k,1) = u(1);
 P_plant(k,1) = u(p+1);
 % F_plant(k,1:p) = u(1:p)';
 % P_plant(k,1:p) = u(p+1:end)';
 V_plant(k,1) = y(5);
 x_plant(k,1) = y(4);
 nu_plant(k,:) = nu';
 ef_plant(k,1) = exitflag;
 fval_plant(k,1) = -fval; % modeled cost
 cost_plant(k,1) = y(4)*y(5);
 x_model(k,1) = z0_model(4);
 % y_model(k,:) = [z0_model; V0]';
 z_model(k,:) = z0_model(1:3)';
 nu_model(k,:) = nu_m';
 fb_plant(k,1) = fb_k;
 save(filename);
end
end

function ydot = model_dynamics(~,z, kla, ...
Anu_gl, Anu_o2, Anu_Ac, mu, Zgl_feed, F0, P0)
% function ydot = model_dynamics(t,z, kla, ...
% Anu_gl, Anu_o2, Anu_Ac, mu, Zgl_feed, F0, P0)
V = z(5); X0 = z(4);
ydot(1,1) = F0/V*(Zgl_feed - z(1)) - Anu_gl*X0 ;
ydot(2,1) = kla*(0.21 - z(2)) - Anu_o2*X0 - F0/V*z(2);
ydot(3,1) = -F0/V*z(3) + Anu_Ac*X0 ;
ydot(4,1) = mu*X0 - (F0-P0)/V*X0;
ydot(5,1) = F0-P0;
end

function fmin = objfun (u, z0_model, V0, dt, A, c, kla, Km, GUR_max, ...
 OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, fb_k)
% structure of z0_model = [zgl, zo2, zac, x]
% y_plant_p = zeros(nit,5);
% nu_plant_p = zeros(nit,4);

 143

tl = 0;
mu = 0;% initial condition of mu always be zero.
for k = kp:nit
 if mod((k-1), maninter)==0
 tl = tl+1;
 F0 = u(tl);P0 = u(p+tl);
 end
 [y, ~, ~, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu);
 % Reinitialise z0_model and V0 for next time step
 % y(4) = y(4) + fb_k;
 z0_model = y(1:4);
 V0 = y(5);
 % store the plant dynamics (not essential)
 % nu_plant_p(k,:) = nu';
 % y_plant_p(k,:) = y';
end
fmin = -(y(4) + fb_k)*y(5); % max cost = final_x*final_V

function [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu)
% structure of z0_plant = [zgl, zo2, zac, x]
% LP Model solution
% n = length(c);
if (z0_model(1)<=1e-3 && z0_model(3)<=1e-3)
 X_k = z0_model(4);
else
 X_k = z0_model(4) + (-mu*z0_model(4) - (F0-P0)/V0*z0_model(4))*dt;
end
Anew = [A; A(1:2,:)*X_k; -A(3,:)*X_k];
b = [GUR_max*(z0_model(1)/(Km + z0_model(1)));...
 OUR_max; ...
 100; ...
 F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt; ...
 kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt;...
 F0/V0*z0_model(3) + z0_model(3)/dt;];
% - F0/V0*z0_model(3) + z0_model(3)/dt;];
[nu, mu, Basic] = simplex_tab(-c,Anew,b,[],[],[]);
Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;
tspan = [0 dt];
z0 = [z0_model; V0];
if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0)
 z = [0 0 0 z0(4) V0];
else
 [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ...
 -mu, Zgl_feed, F0, P0), tspan, z0);
% [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ...
% -mu, Zgl_feed, F0, P0), tspan, z0);
end
y = z(end,:)';
if (z(end,1) <= 1e-6) % check for O2 concentration
 y(1,1) = 1e-6;
end
if (z(end,2) <= 1e-6) % check for O2 concentration
 y(2,1) = 1e-6;
end
if (z(end,3) <= 1e-6) % check for O2 concentration
 y(3,1) = 1e-6;
end
end

 144

Main codes that designed for Chapter 3 Robust EMPC

% Nominal Control
%---
% Main function for model, control parameters and initial conditions
%---
clear variables
close all
clc
%% Initial Conditions
z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X)
V0 = 0.3; % L, Initial Volume of the reactor, guess
Vmax = 0.4; % L, Final maximum batch volume, guess
Vmin = 0.2; % L, Final minimum batch volume, guess
% Fig = 0.1; % L/h
Fmax = 0.3; % L/h
Zgl_feed = 5;
%% Model parameters
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12];
c = ones(4,1);
kla = 4; % hr^-1, Mahadevan paper
Km = 0.015; % mM, Mahadevan paper
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper
OUR_max = 12; % mM/g-dw/hr, Mahadevan paper
Ki = 1.0;
% Uncertainty Information
GUR_sig = 0.2; % +/- 20%, guess
OUR_sig = 0.2; % +/- 20%, guess
kla_sig = 0.2;
Km_sig = 0.01;
Ki_sig = 0.2;
% # of time steps and step size
% nit = 110; %110
% tend = 11; % 1h, total time of cell culture growth, guess
nit = 100; %110
tend = 10; % 1h, total time of cell culture growth, guess
dt = tend/nit; % h, time, guess
%% frequency for disturbance
t = [1:1:nit]'; n = 12; % frequency for disturbance
disturbance = -1*ones(length(t), 1);
disturbance2 = 1*ones(length(t), 1);
disturbance3 = 1*ones(length(t), 1);
dist = [disturbance, disturbance2, disturbance3];
% n2 = 8; % frequency for changing plant definition
% load('perf_disturbance.mat');
% load('perf_disturbance2.mat');
beta = 0; % cell death paramete
%% controller parameters
number_of_inputs = 10; %11% # of manipulation
eti = 0.5; %0.5h per estimation (propagate uncertainty)
p = number_of_inputs;
u = zeros(2*p,1); % combination of F and P predictions
dl = tend/number_of_inputs; % h, time interval of each measurement and manipulation
% Initial guess for Feed rate
% load('feed_rate_ig_nit_110_nominal.mat');
% load feed_rate_ig_nit_110_wb.mat;
uig = 0.001*ones(p*2,1);
% u = uig_discrete;
% uig = [(Vmax-V0)/dt/nit(1)*ones(nit(1),1); 1e-3*ones(nit,1)];
% uig = 0.02*ones(2*number_of_inputs,1);
load rhs_map_5d_new.mat
load rhs_map_2d_new.mat

 145

t2d = Tab_distribution_2d;
t5d = Tab_distribution_5d;
umax = Fmax*ones(2*number_of_inputs,1);
tab_tol = 0.20;
%% Optimisation parameters
op = optimset('fmincon');
op.Display = 'On';
op.TolFun = 1E-7;
op.TolX = 1E-6;
% op.TolFun = 1E-6;
% op.TolX = 1E-5;
% op.MaxIter = 10000;1000
op.MaxIter = 10000;
% op.MaxFunEvals = 100000;3000
op.MaxFunEvals = 100000;
op.Algorithm = 'interior-point';
op.UseParallel = 1;
% op.LargeScale = 'on';
% objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x)
opt = optimoptions('linprog','Algorithm','interior-point');
GUR_plant = GUR_max;
kla_plant = kla;
%% the control and plant loop
% initialisation
z0_plant = z0_model;%(Glc,O2,Aci,X)
% z0_plant = [0.4 0.21 0.2 0.001]';%(Glc,O2,Aci,X)
fb_k = 0; % initialisation of fb error
if isempty(gcp('nocreate')) == 1 %matlab pool not yet started

 parpool('local');
 % for both=======================================
else %matlab pool already started
 disp('matlab pool already started');
end
 filename = strcat('robust_control_wb_GUR-20_OUR-20_kla-201010_se02_-
1_1_1_dt0.50.1.mat');
 main_controller(nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,...
 OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,...
 V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...
 GUR_plant, kla_plant, dl, number_of_inputs, dist, tab_tol, eti, opt, t2d, t5d)
% delete(gcp('nocreate'))%commented when adjusting or debugging parpool
% matlabpool close %commented when adjusting or debugging parpool

%--
% Main Controller (Nominal Control)
%--
function main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,...
 OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,...
 V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...
 GUR_plant, kla_plant, dl, number_of_inputs, dist, tab_tol, eti, opt, t2d, t5d)
%% variables to store
Basic_model = zeros(nit,4);
Basic_plant = zeros(nit,4);
y_plant = zeros(nit,5);
z_plant = zeros(nit,3);
x_plant = zeros(nit,1);
V_plant = zeros(nit,1);
u_plant = zeros(2*nit,p);
nu_plant = zeros(nit,4);
F_plant = zeros(nit,1);
P_plant = zeros(nit,1);

 146

x_model = zeros(nit,1);
u_model = zeros(2*p,p);
fval_model = zeros(p,1);
% y_model = zeros(nit,5);
z_model = zeros(nit,3); % stores model predictions
nu_model = zeros(nit,4);
fb_plant = zeros(nit,1); % feedback error in nominal model prediction
time_store = zeros(p,1);
ef_plant = zeros(nit,1);
fval_plant = zeros(nit,1);
cost_plant = zeros(nit,1); % cost or yield is equal to x*V
% obj_plant = zeros(nit,5);
y_measured = zeros(p,5); %(Glc,O2,Aci,X,V)
nu_measured = zeros(p,4);
%% initialise the control inputs
%n = length(c);
y = [z0_model;V0];%initial plant (Glc,O2,Aci,X,V)
nu = zeros(4,1);%initial rate (Glc,O2,Aci,X)
mu = sum(nu);
mu_m = mu;
tl = 0;
maninter = dl/dt;
disp('Controller without cell death,bounded reference trajectory');

for k = 1:nit
 %% controller prediction
 if mod((k-1), maninter) == 0 % decide which time to measure & manipulate
 kp = k;
 tl = 1+tl;
 % fb_k0 = fb_k;
 fb_k0 = 0;
 p = number_of_inputs+1-tl;
 % measurements records
 y_measured(tl,:) = y';
 nu_measured(tl,:) = nu';
 z0_model = y(1:4); % adjusting model after be measured
 z0_model_n = z0_model;
 tstart = clock; % to save the time that fmincon cost
 % Linear Optimisation Constraints
 umax = Fmax*ones(2*p,1);
 % du_max = Fmax;
 % u = zeros(2*p,1);
 % objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x)
 A_cons = [tril(ones(p,p)) tril(-ones(p,p)); ... % Linear Constraint:
V(k+i)<=Vmax
 -tril(ones(p,p)) tril(ones(p,p))]; % Linear Constraint: V(k+i)>=Vmin
 b_cons = [(Vmax - V0)/dl*ones(p,1); ... % Linear Constraint: V(k+i)<=Vmax
 (V0 - Vmin)/dl*ones(p,1)]; % Linear Constraint: V(k+i)>=Vmin
 [u, fval, exitflag] = fmincon(@(u) objfun (u, z0_model, V0, dt, A, c, kla, Km,
GUR_max, ...
 OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, GUR_sig, OUR_sig, kla_sig, fb_k,
tab_tol, eti, opt, t2d, t5d),uig,A_cons,b_cons,[],[],zeros(2*p,1),umax,[],op);
 % save prediction results and time consumption
 u_model(tl:number_of_inputs,tl) = u(1:p)';
 u_model(number_of_inputs+tl:end,tl) = u(p+1:end)';
 fval_model(tl,1) = -fval;
 time_store(tl,1) = etime(clock,tstart)/60; % min
 % initial guess for next time interval comes from computed solution
 uig = [u(2:p); u(p+2:end)];
 end
 F0 = u(1);
 P0 = u(p+1);
 %% plant dynamics

 147

 % plant parameters
 GUR_p = GUR_max*(1 + GUR_sig*dist(k, 1));

 OUR_p = OUR_max*(1 + OUR_sig*dist(k, 2));

 kla_p = kla*(1 + kla_sig*dist(k, 3));

 Ki_p = 1;
 % GUR_p = GUR_plant(k); kla_p = kla_plant(k);
 % OUR_p = OUR_plant(k); Ki_p = Ki_plant(k);
 [y, nu, Basic, mu] = plant_dynamics(z0_plant, V0, F0, P0, dt, A, c, ...
 kla_p, Km, GUR_p, OUR_p, Ki_p, Zgl_feed, mu);
 %% run worst branch dynamics for one time step
 % [y_m, nu_m, Basic_m, mu_m] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c,
...
 % kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu_m);

 bran_tol = 0.05;
 % tab_tol = 0.05;
 fb_ke = fb_k0;
 ti = eti/dt;
 if mod((k-1), maninter) == 0
 % lentime = nit - kp + 1;
 time_conv = 2; % every 2 time interval converge branchs

 GUR_range = GUR_max*[1-GUR_sig 1+GUR_sig];
 OUR_range = OUR_max*[1-OUR_sig 1+OUR_sig];
 kla_range = kla*[1-kla_sig 1+kla_sig];

 % [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
 % kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu)

 y_m = [z0_model; V0];
 time = 0;
 brsubtab = branchSubtab(time, [], [], [], [], 1, [], [], [], [], [], y_m, []);
 % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis,
unit, nodes, maxmin_nu_mu, maxmin_y, data
 brsubtab.Prev = 0;
 brsubtab.Mid = [];
 brsubtab.Next = 1;
 branchlist = branchList(time, brsubtab, 1, 1, []);
 % time, branchsub, pos_list, scenario

 i = 2;
 branchlist(i) = branchlist(i - 1);

 time = branchlist(i - 1).Time + 0.1;
 branchlist(i).Time = time;

 branchlist(i).BranchSubtab = [];
 branchlist(1).Wholerange = z0_model;
 z0_model = branchlist(i - 1).BranchSubtab.MaxMin_y(1:4);
 X_k = z0_model(4);

 pre = 1;

 [brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c,
...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed,
mu, X_k, pre, bran_tol, tab_tol, opt, t2d, t5d);

 148

 branchlist(i).BranchSubtab = brsubtab_list;

 %generate scenario

 branchlist(i).Wholerange = branchlist(i).BranchSubtab.MaxMin_y;
 list_sub = branchlist(i).BranchSubtab;
 lensub = length(list_sub);
 branchlist(i).Pos_list = ones(lensub, 1);
 branchlist(i).Scenario = 1;
 % for j = 1:lensub
 % branchlist(i).Pos_list(j) = list_sub(j).Possible;
 % branchlist(i).Scenario(j, end) = j;
 % branchlist(i).Scenario(j, 1: end - 1) = branchlist(i -
1).Scenario(list_sub(j).Prev, :);
 % end

 y_m = branchlist(i).Wholerange(:, 2);
% z0_model = y_m;
% V0 = y_m(5);

 branchlist(1) = branchlist(2);
 branchlist(2) = [];
 cur_subtabmap = [];
 fti = 1;
 else
 i = k - kp + 1;

 lenbran = length(branchlist(i - 1).BranchSubtab);
 branchlist(i) = branchlist(i - 1);
 branchlist(i).BranchSubtab = [];
 time = branchlist(i - 1).Time + 0.1;
 branchlist(i).Time = time;
 sump = 0;

 %% only for worst case branch
 if branchlist(i - 1).Pos_list <= tab_tol
 z0_model = branchlist(i - 1).Wholerange(1:4, :);
 V0 = branchlist(i - 1).Wholerange(5, :);
 n = [2 1];
 for j = 1:2
 nn = n(j);
% [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A,
c, ...
% kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu);
 [y_m, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A,
c, ...
 kla_range(nn), Km, GUR_range(nn), OUR_range(nn), Ki, Zgl_feed, mu);
 branchlist(i).Wholerange(:, j) = y_m;
 end
 else
 %%

 for j = 1:lenbran
 % lenbfr = length(branchlist(i).BranchSubtab);
 pre = j;
 % [subtablist, sump] = gene_sub_tab(time, z0_model, V0,
F0, P0, dt, A, c, ...
 % kla, Km, GUR_max, OUR_max,GUR_range,OUR_range,
kla_range, Ki, Zgl_feed,...
 % mu, branchlist(i - 1).BranchSubtab(j), pre,
bran_tol, tab_tol, sump);

 149

 [subtablist, sump, cur_subtabmap] = gene_sub_tab_wb(time, z0_model,
V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki,
Zgl_feed,...
 mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol,
sump, fti, cur_subtabmap, opt, t2d, t5d);

 if mod((i + 1), ti)==0
 fti = 1;
 else
 fti = 0;
 end

 branchlist(i).BranchSubtab = [branchlist(i).BranchSubtab; subtablist];
 end

 % generate scenario
 lensub = length(branchlist(i).BranchSubtab);
 branchlist(i).Pos_list = zeros(lensub, 1);
 branchlist(i).Scenario = zeros(lensub, i);
 yylistmi = zeros(5, lensub);
 yylistma = zeros(5, lensub);

 for j = 1:lensub
 branchlist(i).BranchSubtab(j).Possible =
branchlist(i).BranchSubtab(j).Possible/sump;
 branchlist(i).Pos_list(j) = branchlist(i).BranchSubtab(j).Possible;
 branchlist(i).Scenario(j, end) = j;
 % branchlist(i).Scenario(j, 1: end - 1) = branchlist(i -
1).Scenario(branchlist(i).BranchSubtab(j).Prev, :);
 branchlist(i).Scenario(j, 1: end - 1) = 1;
 yylistmi(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 1);
 yylistma(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 2);
 end

 branchlist(i).Wholerange = [min([yylistmi, yylistma], [], 2)
max([yylistmi, yylistma], [], 2)];
 branchlist(i).Wholerange(4, :) = fliplr(branchlist(i).Wholerange(4, :));
 y_m = branchlist(i).Wholerange(:, 2);
 %% only for whole branch method

 % if rem(i, time_conv) == 0 && lensub > 1
 % [branchlist(i)] = branch_conv(branchlist(i),
branchlist(i).Wholerange);
 % end
 % y_m = branchlist(i).Wholerange(:, 2);
 %% only for worst case branch method
 branchlist(i).Pos_list =
branchlist(i).BranchSubtab.List_conbine.Possible*branchlist(i).Pos_list;
 %%
% z0_model = y_m;
% V0 = y_m(5);

 end
 end

 V0 = V0(1);

 [z0_model_y, ~, ~, mu] = plant_dynamics(z0_model_n, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu);

 150

 z0_model_n = z0_model_y(1:4);

 % reinitialise
 z0_plant = y(1:4);
 z0_model = tab_tol*y_m(1:4) + (1 - tab_tol)*z0_model_n;
 z0_model(4, :) = z0_model(4, :) + fb_ke;
 z0_model_n = z0_model;
 V0 = y(5);
 fb_k = y(4) - z0_model(4);
 %% save the results
% Basic_model(k,:) = Basic_m;
 Basic_plant(k,:) = Basic;
 y_plant(k,:) = y';
 z_plant(k,:) = y(1:3)';
 u_plant(k,1:p) = u(1:p)';
 u_plant(nit+k,1:p) = u(p+1:end)';
 F_plant(k,1) = u(1);
 P_plant(k,1) = u(p+1);
 % F_plant(k,1:p) = u(1:p)';
 % P_plant(k,1:p) = u(p+1:end)';
 V_plant(k,1) = y(5);
 x_plant(k,1) = y(4);
 nu_plant(k,:) = nu';
% ef_plant(k,1) = exitflag;
% fval_plant(k,1) = -fval; % modeled cost
 cost_plant(k,1) = y(4)*y(5);
 x_model(k,1) = z0_model(4);
 % y_model(k,:) = [z0_model; V0]';
 z_model(k,:) = z0_model(1:3)';
% nu_model(k,:) = nu_m';
 fb_plant(k,1) = fb_k;
 try
 save(filename);
 catch
 keyboard
 end
end
end

function [fmin, branchlist] = objfun (u, z0_model, V0, dt, A, c, kla, Km, GUR_max, ...
 OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, GUR_sig, OUR_sig, kla_sig, fb_k,
tab_tol, eti, opt, t2d, t5d)
% structure of z0_model = [zgl, zo2, zac, x]
V0n = V0;
z0_model_n = z0_model;
ti = eti/dt;

% y_plant_p = zeros(nit,5);
% nu_plant_p = zeros(nit,4);

% fb_ke = fb_k;
fb_ke = 0;
tl = 1;
mu = 0;% initial condition of mu always be zero.
bran_tol = 0.05;
% tab_tol = 0.05;
F0 = u(1);P0 = u(p+1);

% nit >= 3

 151

lentime = nit - kp + 1;
time_conv = 2; % every 2 time interval converge branchs

GUR_range = GUR_max*[1-GUR_sig 1+GUR_sig];
OUR_range = OUR_max*[1-OUR_sig 1+OUR_sig];
kla_range = kla*[1-kla_sig 1+kla_sig];

% [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
% kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu)

y = [z0_model; V0];
time = 0;
brsubtab = branchSubtab(time, [], [], [], [], 1, [], [], [], [], [], y, []);
% time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis, unit,
nodes, maxmin_nu_mu, maxmin_y, data
brsubtab.Prev = 0;
brsubtab.Mid = [];
brsubtab.Next = 1;
branchlist = branchList(time, brsubtab, 1, 1, []);
% time, branchsub, pos_list, scenario

i = 2;
branchlist(i) = branchlist(i - 1);

time = branchlist(i - 1).Time + 0.1;
branchlist(i).Time = time;

branchlist(i).BranchSubtab = [];
branchlist(1).Wholerange = z0_model;
z0_model = branchlist(i - 1).BranchSubtab.MaxMin_y(1:4);
X_k = z0_model(4);
pre = 1;

[brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu, X_k,
pre, bran_tol, tab_tol, opt, t2d, t5d);
branchlist(i).BranchSubtab = brsubtab_list;

%generate scenario

branchlist(i).Wholerange = branchlist(i).BranchSubtab.MaxMin_y;
list_sub = branchlist(i).BranchSubtab;
lensub = length(list_sub);
branchlist(i).Pos_list = ones(lensub, 1);
branchlist(i).Scenario = 1;
% for j = 1:lensub
% branchlist(i).Pos_list(j) = list_sub(j).Possible;
% branchlist(i).Scenario(j, end) = j;
% branchlist(i).Scenario(j, 1: end - 1) = branchlist(i -
1).Scenario(list_sub(j).Prev, :);
% end

y = branchlist(i).Wholerange(:, 2);
z0_model = y;
z0_model(4, :) = z0_model(4, :) + fb_ke;
V0 = y(5);

branchlist(1) = branchlist(2);
branchlist(2) = [];
cur_subtabmap = [];

 152

fti = 1;

for i = 2:lentime

 if mod((i - 1), maninter)==0
 tl = tl+1;
 F0 = u(tl);P0 = u(p+tl);
 end
 lenbran = length(branchlist(i - 1).BranchSubtab);
 branchlist(i) = branchlist(i - 1);
 branchlist(i).BranchSubtab = [];
 time = branchlist(i - 1).Time + 0.1;
 branchlist(i).Time = time;
 sump = 0;

 %% only for worst case branch
 if branchlist(i - 1).Pos_list <= tab_tol
 z0_model = branchlist(i - 1).Wholerange(1:4, :);
 V0 = branchlist(i - 1).Wholerange(5, :);
 n = [2 1];
 for j = 1:2
 nn = n(j);
% [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, c,
...
% kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu);
 [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, c,
...
 kla_range(nn), Km, GUR_range(nn), OUR_range(nn), Ki, Zgl_feed, mu);
 branchlist(i).Wholerange(:, j) = y;
 end
 else
 %%

 for j = 1:lenbran
 % lenbfr = length(branchlist(i).BranchSubtab);
 pre = j;
% [subtablist, sump] = gene_sub_tab(time, z0_model, V0, F0, P0, dt, A, c,
...
% kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki,
Zgl_feed,...
% mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol,
sump);
 [subtablist, sump, cur_subtabmap] = gene_sub_tab_wb(time, z0_model, V0,
F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki,
Zgl_feed,...
 mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol, sump,
fti, cur_subtabmap, opt, t2d, t5d);

 if mod((i + 1), ti)==0
 fti = 1;
 else
 fti = 0;
 end

 branchlist(i).BranchSubtab = [branchlist(i).BranchSubtab; subtablist];
 end

 % generate scenario
 lensub = length(branchlist(i).BranchSubtab);
 branchlist(i).Pos_list = zeros(lensub, 1);

 153

 branchlist(i).Scenario = zeros(lensub, i);
 yylistmi = zeros(5, lensub);
 yylistma = zeros(5, lensub);

 for j = 1:lensub
 branchlist(i).BranchSubtab(j).Possible =
branchlist(i).BranchSubtab(j).Possible/sump;
 branchlist(i).Pos_list(j) = branchlist(i).BranchSubtab(j).Possible;
 branchlist(i).Scenario(j, end) = j;
 % branchlist(i).Scenario(j, 1: end - 1) = branchlist(i -
1).Scenario(branchlist(i).BranchSubtab(j).Prev, :);
 branchlist(i).Scenario(j, 1: end - 1) = 1;
 yylistmi(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 1);
 yylistma(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 2);
 end

 branchlist(i).Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi,
yylistma], [], 2)];
 branchlist(i).Wholerange(4, :) = fliplr(branchlist(i).Wholerange(4, :));
 y = branchlist(i).Wholerange(:, 2);
 %% only for whole branch method

 % if rem(i, time_conv) == 0 && lensub > 1
 % [branchlist(i)] = branch_conv(branchlist(i), branchlist(i).Wholerange);
 % end
 % y = branchlist(i).Wholerange(:, 2);
 %% only for worst case branch method
 branchlist(i).Pos_list =
branchlist(i).BranchSubtab.List_conbine.Possible*branchlist(i).Pos_list;
 %%
 z0_model = y;
 z0_model(4, :) = z0_model(4, :) + fb_ke;
 V0 = y(5);
 end %%%only for worst case branch method
end
fmin_wb = - (y(4) + fb_k)*y(5);% max cost = final_x*final_V

%% nominal part
y = [z0_model_n;V0n];%initial plant (Glc,O2,Aci,X,V)
% structure of z0_model = [zgl, zo2, zac, x]
% y_plant_p = zeros(nit,5);
% nu_plant_p = zeros(nit,4);
tl = 0;
mu = 0;% initial condition of mu always be zero.
for k = kp:nit
 if mod((k-1), maninter)==0
 tl = tl+1;
 F0 = u(tl);P0 = u(p+tl);
 end
 [y, ~, ~, mu] = plant_dynamics(z0_model_n, V0n, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu);
 % Reinitialise z0_model and V0 for next time step
 z0_model_n = y(1:4);
 V0n = y(5);
 % store the plant dynamics (not essential)
 % nu_plant_p(k,:) = nu';
 % y_plant_p(k,:) = y';
end
fmin_n = - (y(4) + fb_k)*y(5); % max cost = final_x*final_V

%%

 154

% worst case
fmin = fmin_n*(1 - tab_tol) + fmin_wb*tab_tol;
% fmin = fmin_wb;
end

function [brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c,
...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu, X_k,
pre, bran_tol, tab_tol, opt, t2d, t5d)

% Anew = [A; A(1:2,:); -A(3,:)];
Anew = [A(1:2,:); -A(3,:)];

bmax = [GUR_range(2)*(z0_model(1)/(Km + z0_model(1)));...
 OUR_range(2); ...
 100; ...
 (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla_range(2)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];

% GUR_range(1)*(z0_model(1)/(Km + z0_model(1) + (z0_model(1)^2)/Ki)
bmin = [GUR_range(1)*(z0_model(1)/(Km + z0_model(1)));...
 OUR_range(1); ...
 100; ...
 (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla_range(1)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];

rand_b = [bmin bmax];

[cur_subtabmap, ~, ~] = propagate_rhs_5d([rand_b(1:2, :);rand_b(4:6, :)], opt, t2d,
t5d);

yrange = zeros(5,2);
brsubtab_list = [];

for i = 1:length(cur_subtabmap)
 list_conbine = cur_subtabmap(i);
 possible = cur_subtabmap(i).Possible;
 sump = 0;

 if possible >= tab_tol
 sump = sump + possible;
 brsubtab = branchSubtab(time, [], [], [], list_conbine, possible, [], [], [],
[], [], [], []);
 % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis,
unit, nodes, maxmin_nu_mu, maxmin_y, data
 brsubtab_list = [brsubtab_list; brsubtab];

 for j = 1:2 %leaves
 kla = kla_range(j);
 nu = cur_subtabmap(i).MaxMin(1:4, j);
 %%%avoiding unnecessary eliminatating upper bound of nu. mu
 bnew = [(F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) +
z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];

 155

 % [numin, ~, ~] = simplex_tab(-c,Anew,bnew,[],[],[]);
 [numin, ~] = linprog(- c, Anew, bnew,[],[],zeros(1, 4), nu' + 1e-9, opt);
 %%%
 % mu = cur_subtabmap(i).MaxMin(5, j);
 % mu = - max(sum(nu), mu);
 nu = min([nu, numin], [], 2);
 mu = - sum(nu);

 Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;
 tspan = [0 dt];
 z0 = [z0_model; V0];
 if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0)
 z = [0 0 0 z0(4) V0];
 else
 [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac,
...
 -mu, Zgl_feed, F0, P0), tspan, z0);
 % [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2,
Anu_Ac, ...
 % -mu, Zgl_feed, F0, P0), tspan, z0);
 end
 y = z(end,:)';
 if (z(end,1) <= 1e-6) % check for O2 concentration
 y(1,1) = 1e-6;
 end
 if (z(end,2) <= 1e-6) % check for O2 concentration
 y(2,1) = 1e-6;
 end
 if (z(end,3) <= 1e-6) % check for O2 concentration
 y(3,1) = 1e-6;
 end
 yrange(:, j) = y;

 end
 maxmin_y = [yrange(:,2), yrange(:, 1)];
 possible = brsubtab_list(end).Possible;

 brsubtab_list(end).Mid_leaf = Leaves(time, [], [], [], possible, [], [],
maxmin_y);
 % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y

 brsubtab_list(end).MaxMin_y = maxmin_y;
 % brsubtab = branchSubtab(time, [], [], [], list_conbine, possible,
[], [], [], [], []);
 % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, nodes,
maxmin_nu_mu, maxmin_y, data
 brsubtab_list(end).Prev = pre;
 brsubtab_list(end).X_grad = maxmin_y(1:5, 2) - maxmin_y(1:5, 1);

 [prob_dis, unit, nodes] = pro_dist(brsubtab_list(end).X_grad, maxmin_y(1:5,
1));

 brsubtab_list(end).Prob_dis = prob_dis;
 brsubtab_list(end).Unit = unit;
 brsubtab_list(end).Nodes = nodes;

 end % if 1 == length(current_tabmap)

end

for i = 1:length(brsubtab_list)

 156

 brsubtab_list(i).Possible = brsubtab_list(i).Possible / sump;
end

%% only for find worst case branch

lensub = length(brsubtab_list);
yylistmi = zeros(5, lensub);
yylistma = zeros(5, lensub);

for j = 1:lensub
 % brsubtab_list.BranchSubtab(j).Possible =
brsubtab_list.BranchSubtab(j).Possible/sump;
 % brsubtab_list.Pos_list(j) = brsubtab_list.BranchSubtab(j).Possible;
 yylistmi(:, j) = brsubtab_list(j).MaxMin_y(1:5, 1);
 yylistma(:, j) = brsubtab_list(j).MaxMin_y(1:5, 2);
end

Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi, yylistma], [], 2)];
Wholerange(4, :) = fliplr(Wholerange(4, :));

for j = 1:lensub
 if brsubtab_list(j).MaxMin_y(4, 2) == Wholerange(4, 2)
 maint = j;
 break
 end
end

brsubtab_list = brsubtab_list(maint);

% brsubtab_list(j).MaxMin_y = Wholerange;
brsubtab_list.Possible = brsubtab_list.Possible*sump;

end

function [prob_dis, unit, nodes] = pro_dist(grad, miny)
dgrad = grad./7;
nodes = zeros(5,5);
for i = 1:5
 miny = miny + dgrad;
 nodes(:, i) = miny;
end
prob_dis = {ones(1, 5)*(1/5), ones(1, 5)*(1/5), ones(1, 5)*(1/5), ones(1, 5)*(1/5)};
unit = abs(grad./5);
end

function [brsubtab_list, sump, cur_subtabmap] = gene_sub_tab_wb(time, ~, V0, F0, P0,
dt, A, c, ...
 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu,
BranchSubtab, pre, bran_tol, tab_tol, sump, fti, cur_subtabmap, opt, t2d, t5d)
% worst case branch
% sub_pos_list = [];
pos = BranchSubtab.Possible;
%% posible of subtab
% Anew = [A; A(1:2,:); -A(3,:)];
Anew = [A(1:2,:); -A(3,:)];

 157

% [z0_model, X_k] = cubcut(BranchSubtab, 1);
 z0_model = BranchSubtab.MaxMin_y(1:3, 2);
 X_k = BranchSubtab.MaxMin_y(4, 2);

bmax = [GUR_range(2)*(z0_model(1)/(Km + z0_model(1)));...
 OUR_range(2); ...
 100; ...
 (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla_range(2)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];

% [z0_model, X_k] = cubcut(BranchSubtab, 2);
 z0_model = BranchSubtab.MaxMin_y(1:3, 1);
 X_k = BranchSubtab.MaxMin_y(4, 1);

bmin = [GUR_range(1)*(z0_model(1)/(Km + z0_model(1)));...
 OUR_range(1); ...
 100; ...
 (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla_range(1)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];

rand_b = [bmin bmax];
rand_b = [rand_b(1:2, :);rand_b(4:6, :)];

if fti == 1
 [cur_subtabmap, ~, ~] = propagate_rhs_5d([min(rand_b, [], 2) max(rand_b, [], 2)],
opt, t2d, t5d);
%
% else
% [tab_m] = simp_prop_rhs_5d([min(rand_b, [], 2) max(rand_b, [], 2)], opt, t2d,
t5d);
% for i = 1:2
% cur_subtabmap(i).MaxMin = tab_m{i};
% end
end

brsubtab_list = [];

lencur = length(cur_subtabmap);
poslist = zeros(lencur, 1);
for i = 1:lencur
 poslist(i) = cur_subtabmap(i).Possible;
end
maxpos = max(poslist);
if maxpos < tab_tol
poslist(poslist == maxpos) = tab_tol;
end
%
for i = 1:lencur
 if poslist(i) >= tab_tol
 poslist(i) = poslist(i)*pos;
 sump = sump + poslist(i);
 yrange = zeros(5,2);

 list_conbine = cur_subtabmap(i);

 158

 brsubtab = branchSubtab(time, [], [], [], list_conbine, poslist(i), [], [],
[], [], [], [], []);
 % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis,
unit, nodes, maxmin_nu_mu, maxmin_y, data
 brsubtab_list = [brsubtab_list; brsubtab];

 splist = zeros(7, 5, 2);
 spnodes = [BranchSubtab.MaxMin_y(:, 1), BranchSubtab.Nodes,
BranchSubtab.MaxMin_y(:, 2)];

 % for j = 1:7 %Up and Low leaves
 for j = 1:6:7 %Up and Low leaves
 z0_model = spnodes(1:4, j);
 X_k = z0_model(4);

 for k = 1:2
 kla = kla_range(k);
 nu = cur_subtabmap(i).MaxMin(1:4, k);
 %%%avoiding unnecessary eliminatating upper bound of nu. mu
 bnew = [(F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ...
 (kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) +
z0_model(2)/dt)/X_k;...
 (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k];
 % [numin, ~, ~] = simplex_tab(-c,Anew,bnew,[],[],[]);
 [numin, ~] = linprog(- c, Anew, bnew,[],[],zeros(1, 4), nu' + 1e-9,
opt);
 %%%
 % mu = cur_subtabmap(i).MaxMin(5, k);
 % mu = - max(sum(nu), mu);
 nu = min([nu, numin], [], 2);
 mu = - sum(nu);

 Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;
 tspan = [0 dt];
 z0 = [z0_model; V0];
 if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0)
 z = [0 0 0 z0(4) V0];
 else
 [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2,
Anu_Ac, ...
 -mu, Zgl_feed, F0, P0), tspan, z0);
 % [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2,
Anu_Ac, ...
 % -mu, Zgl_feed, F0, P0), tspan, z0);
 end
 y = z(end,:)';
 if (z(end,1) <= 1e-6) % check for O2 concentration
 y(1,1) = 1e-6;
 end
 if (z(end,2) <= 1e-6) % check for O2 concentration
 y(2,1) = 1e-6;
 end
 if (z(end,3) <= 1e-6) % check for O2 concentration
 y(3,1) = 1e-6;
 end
 yrange(:, k) = y;

 maxmin_y = [yrange(:,2), yrange(:, 1)];

 end
 splist(j, :, :) = maxmin_y;
 if 7 == j

 159

 brsubtab_list(end).Up_leaf = Leaves(time, [], [], [], [], [], [],
maxmin_y);
 % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu,
maxmin_y
 end
 if 1 == j
 brsubtab_list(end).Low_leaf = Leaves(time, [], [], [], [], [], [],
maxmin_y);
 % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu,
maxmin_y
 end
 end

 maxmin_y_list = [brsubtab_list(end).Low_leaf.MaxMin_y(:, 2),
brsubtab_list(end).Up_leaf.MaxMin_y(:, 1)];

 % maxmin_y = [min(maxmin_y_list, [],2), max(maxmin_y_list, [],2)];

 brsubtab_list(end).MaxMin_y = [brsubtab_list(end).Low_leaf.MaxMin_y(:, 1),
brsubtab_list(end).Up_leaf.MaxMin_y(:, 2)];

 brsubtab_list(end).Mid_leaf = Leaves(time, [], [], [], [], [], [],
maxmin_y_list);
 % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y

 %% Probability distribution for each element

 xgrad = brsubtab_list(end).MaxMin_y(1:5, 2) - brsubtab_list(end).MaxMin_y(1:5,
1);
 brsubtab_list(end).X_grad = xgrad;
 brsubtab_list(end).Prev = pre;

 dgrad = brsubtab_list(end).X_grad ./ 7;
 nodes = zeros(5,5);
 miny = brsubtab_list(end).MaxMin_y(1:5, 1);
 for j = 1:5
 miny = miny + dgrad;
 nodes(:, j) = miny;
 end
 brsubtab_list(end).Nodes = nodes;

 end

end % if 1 == length(current_tabmap)

%% find worst case branch

 lensub = length(brsubtab_list);
 yylistmi = zeros(5, lensub);
 yylistma = zeros(5, lensub);

 for j = 1:lensub
 % brsubtab_list.BranchSubtab(j).Possible =
brsubtab_list.BranchSubtab(j).Possible/sump;
 % brsubtab_list.Pos_list(j) = brsubtab_list.BranchSubtab(j).Possible;
 yylistmi(:, j) = brsubtab_list(j).MaxMin_y(1:5, 1);
 yylistma(:, j) = brsubtab_list(j).MaxMin_y(1:5, 2);
 end

 Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi, yylistma], [], 2)];

 160

 Wholerange(4, :) = fliplr(Wholerange(4, :));

 for j = 1:lensub
 if brsubtab_list(j).MaxMin_y(4, 2) == Wholerange(4, 2)
 maint = j;
 break
 end
 end
 try
 brsubtab_list = brsubtab_list(maint);
 catch
 keyboard
 end

 % brsubtab_list(j).MaxMin_y = Wholerange;
 brsubtab_list.Possible = brsubtab_list.Possible*sump;

end

function [current_tabmap,cur_subtabmap, efl] = propagate_rhs_5d(rand_b, opt, t2d, t5d)
% A = [0 9.4600 9.8400 19.2300
% 35.0000 12.9200 12.7300 0
% 0 9.4600 9.8400 19.2300
% 35.0000 12.9200 12.7300 0
% 39.4300 0 -1.2400 -12.1200];
% b_norm = [1
% 1
% 1
% 1
% 1]; % 10
% % using 1e-10 instead of 0 in this part
% rand_b1 = [0 2]; %min and max of b. max = rand_b(1)*b_range
% % use 1e-6 instead of 0 for avoiding an error of lcon2vert

% rand_b = [0 1; 0 1; 0 1; 0 1; 0 1]; %delta[b1 b2 b4 b5 b6]'
efl = 0;
if min(rand_b(3:5,1)) <= 50

 A = [0 9.4600 9.8400 19.2300
 35.0000 12.9200 12.7300 0
 0 9.4600 9.8400 19.2300
 35.0000 12.9200 12.7300 0
 39.4300 0 -1.2400 -12.1200];
 c = [-1;-1;-1;-1];
 Tab_distribution = t5d;

else

 A = [0 9.4600 9.8400 19.2300
 35.0000 12.9200 12.7300 0];
 c = [-1;-1;-1;-1];
 Tab_distribution = t2d;
 rand_b = rand_b(1:2, :);
end

lenb = length(rand_b(:,1));

b_spacecon = [eye(lenb) rand_b(:, 2); -eye(lenb) -rand_b(:, 1)];

 161

lenF = length(Tab_distribution);

whole_vol = prod(rand_b(:, 2) - rand_b(:, 1));

if whole_vol <= 1e-9 %a small epsilon for lower dim range
 rand_b(:, 2) = rand_b(:, 2) + 1e-4;
 b_spacecon = [eye(lenb) rand_b(:, 2); -eye(lenb) -rand_b(:, 1)];
 whole_vol = prod(rand_b(:, 2) - rand_b(:, 1));
end

% finding possible subspace
tab_map = Tab_distribution;

error = [];

lenf = length(A(1, :)) + 1;

for i = 1:lenF
 lenL = length(Tab_distribution{i}.List_edge);
 if lenL >= 1
 tab_vol = 0;
 empty_tab = [];
 max_s = [];
 min_s = [];
 for j = 1:lenL
 Space_con = Tab_distribution{i}.List_edge(j).Space_con;
 subpace_con = [Space_con; b_spacecon];
 A_space = subpace_con(:, 1:end - 1);
 b_space = subpace_con(:, end);
 try
 % [V,nr,ef] = con2vert(A_space,b_space);
 [V,nr,~,ef] = lcon2vert_ef(A_space,b_space,[],[],[],[]);
 catch
 ef = 5;
 efl = 1;
 error = [error; i, j];
 end
 if 0 == ef && ~isempty(V)
 At = A_space(nr,:);
 bt = b_space(nr,:);
 tab_map{i}.List_edge(j).Space_con = [At, bt];
 tab_map{i}.List_edge(j).Verties = V;
 [K,vol] = convhulln(V);
 tab_map{i}.List_edge(j).Vol = vol;
 tab_map{i}.List_edge(j).K = K;
 tab_vol = tab_vol + vol;
 tab_map{i}.List_edge(j).Possible = vol/whole_vol;
 % calculate for the worst case
 sol_fun_con = tab_map{i}.List_edge(j).Basic_sol_v;
 cost_fun_con = c'*sol_fun_con;
 % [maxmin_mat] = maxmin(At, bt, sol_fun_con, cost_fun_con, opt);
 [maxmin_mat] = maxmin_v(V, sol_fun_con, cost_fun_con);
 max_s = [max_s, maxmin_mat(:, 2)];
 min_s = [min_s, maxmin_mat(:, 1)];
 tab_map{i}.List_edge(j).MaxMin = maxmin_mat;
 % mid/morm point
 for k = 1:lenb
 tab_map{i}.List_edge(j).Mid_point(k) =
(max(V(:,k))+min(V(:,k)))/2;
 end

 162

 else
 empty_tab = [empty_tab; j];
 end
 end
 tab_map{i}.List_edge(empty_tab) = [];
 tab_map{i}.Possible = tab_vol/whole_vol;
 % calculate for the worst case for base tab
 if tab_map{i}.Possible > 0
 maxmin_wt = zeros(lenf, 2);
 for k = 1:lenf
 maxmin_wt(k, 1) = min(min_s(k, :));
 maxmin_wt(k, 2) = max(max_s(k, :));
 end
 tab_map{i}.MaxMin = maxmin_wt;
 end
 end
end

empty_tab_map = [];
for i = 1:lenF
 if 0 == tab_map{i}.Possible
 empty_tab_map = [empty_tab_map; i];
 end
end
tab_map(empty_tab_map) = [];
current_tabmap = [];

for i = 1:length(tab_map)
current_tabmap = [current_tabmap; tab_map{i}];
end

%% generate subspace tab map
cur_subtabmap = [];

end

function [maxmin_mat] = maxmin(A, b, sol_fun_con, cost_fun_con, opt)
fm = [sol_fun_con(:, 1:end - 1); cost_fun_con(:, 1:end - 1)];
[lenf, lens] = size(fm);
maxmin_mat = zeros(lenf, 2);

for i = 1:lenf
 f = fm(i, :)';
 % [bmin, tmin, ~] = simplex_tab(f, A, b, [], [], []);
 [~,tmin] = linprog(f,A,b,[],[],zeros(1, lens),[],opt);
 % [bmax, tmax, ~] = simplex_tab(- f, A, b, [], [], []);
 [~,tmax] = linprog(- f,A,b,[],[],zeros(1, lens),[],opt);
 if i == lenf
 maxmin_mat(i, :) = [tmax, - tmin];
 %actuall [min max] since c = -c
 else
 maxmin_mat(i, :) = [tmin, - tmax];
 end
 %convert from -c condition
end
end
function [maxmin_mat] = maxmin_v(V, sol_fun_con, cost_fun_con)
fm = [sol_fun_con(:, 1:end - 1); cost_fun_con(:, 1:end - 1)];
[lenf, ~] = size(fm);
maxmin_mat = zeros(lenf, 2);

 163

for i = 1:lenf
 f = fm(i, :)';
 sol = V*f;
 tmax = max(sol);
 tmin = min(sol);
 if i == lenf
 maxmin_mat(i, :) = abs([tmax, tmin]);
 %actuall [min max] since c = -c
 else
 maxmin_mat(i, :) = abs([tmin, tmax]);
 end
 %convert from -c condition
end
end

function [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ...
 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu)
% structure of z0_plant = [zgl, zo2, zac, x]
% LP Model solution
% n = length(c);
if (z0_model(1)<=1e-3 && z0_model(3)<=1e-3)
 X_k = z0_model(4);
else
 X_k = z0_model(4) + (-mu*z0_model(4) - (F0-P0)/V0*z0_model(4))*dt;
end

Anew = [A; A(1:2,:)*X_k; -A(3,:)*X_k];
b = [GUR_max*(z0_model(1)/(Km + z0_model(1)));...
 OUR_max; ...
 100; ...
 F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt; ...
 kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt;...
 F0/V0*z0_model(3) + z0_model(3)/dt;];
% - F0/V0*z0_model(3) + z0_model(3)/dt;];
[nu, mu, Basic] = simplex_tab(-c,Anew,b,[],[],[]);
Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;
tspan = [0 dt];
z0 = [z0_model; V0];
if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0)
 z = [0 0 0 z0(4) V0];
else
 [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ...
 -mu, Zgl_feed, F0, P0), tspan, z0);
% [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ...
% -mu, Zgl_feed, F0, P0), tspan, z0);
end
y = z(end,:)';
if (z(end,1) <= 1e-6) % check for O2 concentration
 y(1,1) = 1e-6;
end
if (z(end,2) <= 1e-6) % check for O2 concentration
 y(2,1) = 1e-6;
end
if (z(end,3) <= 1e-6) % check for O2 concentration
 y(3,1) = 1e-6;
end
end

	AUTHOR'S DECLARATION
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction
	1.1 Objectives of the Research
	1.2 Overview of the Thesis

	Chapter 2 Background and Literature Review
	2.1 Model Predictive Control
	2.2 Economic Model Predictive Control
	2.3 Robust Nonlinear Model Predictive Control (NMPC)
	2.3.1 LMI’s for Robust Control
	2.3.2 SSV for Robust Control
	2.3.3 Main Algorithms on Robust NMPC
	2.3.4 Tree (Scenario) Based Structure of Nonlinear Model Predictive Control

	2.4 Sensitivity Analysis of RHS
	2.4.1 Simplex Algorithm for Linear Programming
	2.4.2 100 Percent Rule for Linear Programming

	2.5 Bioreactor Control and Optimization
	2.6 Metabolic Flux Model
	2.7 Summary

	Chapter 3 Convex Cone Methodology and Case Study
	3.1 Proposed Robust EMPC
	3.2 Sensitivity Analysis of the RHS of the LP problem (DMFM)
	3.2.1 Introduction and Motivation
	3.2.2 Map of RHS
	3.2.3 100 Percent Rule: Theory and Limitations
	3.2.4 Convex Cone Method
	3.2.5 Sensitivity Analysis Based on CCM Algorithm

	3.3 Case Study
	3.3.1 2D RHS Map Generator
	3.3.2 Sensitivity Analysis in 2D RHS Space

	3.4 Conclusions

	Chapter 4 Robust Nonlinear MPC based on Convex Cone Method and Its Applications in Control of Bioreactors Based on Dynamic Metabolic Flux Balance Models
	4.1 Illustrative Case Study: CCM Algorithm
	4.1.1 Introduction
	4.1.2 A 3D Case Study

	4.2 Robust NMPC Controller Formulation
	4.2.1 Tree Structure of Different Tableaus
	4.2.2 Mathematical Formulation
	4.2.3 Theoretical Comparison of Computation Effort for the TBT Approach and the Monte Carlo Based Approach for Uncertainty Propagation

	4.3 Robust Control Based on DFBM (Case Study)
	4.3.1 Dynamic Flux Balance Model (DFBM)
	4.3.2 Modeling with Uncertainty
	4.3.3 DFBM on the Growth of E. coli
	4.3.4 Uncertainty Propagation
	4.3.4.1 Generation of RHS Map based on the LP in (4.45) offline using the CCM in 3.2.4
	4.3.4.2 Propagation of uncertainty onto fluxes (Sensitivity Analysis of CCM approach) using LP in (4.45)
	4.3.4.3 Propagation of uncertainty in fluxes of two scenarios in the TBT’s tree structure into the predictions of 𝒛 and 𝑋
	4.3.4.4 Prediction with uncertainty until the end of the batch by combining step 2 and step 3 above

	4.3.5 Nominal Controller Formulation
	4.3.6 Robust Controller Formulation

	4.4 Results
	4.4.1 Comparison of Nominal and Robust Model Predictions for Pure Batch Operation
	4.4.2 Comparison of Robust Case Studies
	4.4.3 Comparison of a Specific Robust Case Study

	4.5 Summary

	Chapter 5 Conclusions and future work
	5.1 Conclusions
	5.1.1 CCM Algorithm in Sensitivity Analysis of RHS Space
	5.1.2 TBT-Based Robust EMPC

	5.2 Future work

	References
	Appendix A Supplementary information for Chapter 4
	Appendix A
	Appendix B MATLAB Codes

