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Abstract

Wind power is a clean, renewable and low-carbon resource for power generation

that has received increasing attention in power systems over the last few decades. There

are two main challenges associated with the large-scale integration of wind power plants

in the power system: i) the intermittent nature of wind power results in prediction errors

that can greatly impact the system’s operational security and reliability requirements,

and ii) large-scale offshore wind farms are typically located far from onshore loads and

require new developments in the transmission system of power grids, e.g., realization of

mixed alternating current-high voltage direct current (AC-HVDC) power systems, which

will introduce new reliability requirements to the system operator.

The security-constrained economic dispatch (SCED) problem deals with deter-

mining a power dispatch schedule, for all generating units, that minimizes the total opera-

tional cost, while taking into account system reliability requirements. Robust optimization

(RO) has recently been used to tackle wind power uncertainty in the SCED problem. In

the literature of RO, the budget of uncertainty was proposed to adjust the solution con-

servatism (robustness) such that higher budgets of uncertainty correspond to more conser-

vative solutions. This thesis shows that the budget of uncertainty approach may not be

meaningful for problems with RHS uncertainty since increasing the budget of uncertainty

by more than a certain threshold may not always impact the level of conservatism. This

thesis proposes a new tractable two-stage robust optimization model that effectively in-

corporates the budget of uncertainty in problems with RHS uncertainty, controls the level

of conservatism, and provides meaningful insights on the trade-off between robustness and

cost.
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Furthermore, this thesis examines the applicability of the proposed robust ap-

proach for the SCED problem in mixed AC-HVDC power systems with large integration

of wind power. The proposed robust SCED model considers the impact of wind power

curtailment on the operational cost and reliability requirements of the system. Extensive

numerical studies are provided to demonstrate the economic and operational advantages

of the proposed robust SCED model in mixed AC-HVDC systems from five aspects: the

effectiveness of the budget of uncertainty, robustness against uncertainty, contribution to

real-time reliability, cost efficiency, and power transfer controllability.
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Chapter 1

Introduction

1.1 Motivation: Power Dispatch under Uncertainty

Environmental concerns and commitments to fight climate change are changing the land-

scape of power systems across the world to shift power generation resources from fossil fuels

to clean, reliable, low-carbon alternatives. For example, Ontario’s climate leadership plan

includes a long-term greenhouse gas emissions reduction target of 80% below the 1990 levels

by 2050 (Di Placido et al., 2014). The integration of emission-free renewable energy sources

(RESs) in the power system is a promising option and has received increasing attention.

Among RESs, wind is one of the prominent sources of energy (Lopez et al., 2012), mainly

due to its availability, zero emissions, costless fuel resource, and technological maturity

(Morales-España, 2014).

Large-scale wind power integration poses various operational challenges to energy
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systems. First, the uncertainties associated with the intermittent nature of wind, partic-

ularly forecast errors, can greatly impact the system’s operational security and reliability

requirements (Lund, 2010). Therefore one cannot accurately plan the power dispatch based

on predicted data. Wind power uncertainty can directly or indirectly impact the system in

various forms depending on the time horizon. In long-term planning (years to decades) and

medium-term planning (month to years), wind power unpredictability adversely influences

the system generation adequacy and management (Amelin, 2009). In short-term planning

(hours to days), prediction errors may impact power output and reserve capacity which

are determined based on available wind power forecast (Smith et al., 2007). Finally, in

real-time planning (seconds to minutes), wind power volatility directly impacts the power

system operation due to potentially violating the operational limits of the system.

Furthermore, large-scale wind farms (e.g., area 1 of Figure 1.1) are typically

located far from load centers or are geographically distributed in different regions of a

multi-area power system (Li et al., 2016a). In such systems, where distributed areas are

connected via tie-lines, interregional power dispatches are crucial to: (i) fully utilize the

wind power in a distributed multi-area system by exchanging the available wind power

between neighboring areas and (ii) share reserve capacities among interconnected areas in

case of sudden variations in wind power or load (Lieu et al., 1995).

Over the past century, alternating current (AC) technology has served as the

primary technology for power transmission. However, the recent development of high

voltage direct current (HVDC) transmission systems has become an attractive alternative

due to its various advantages including: (i) improved controllability of transferred power,

and (ii) reduced overall cost of transmission over long distances due to lower losses (Kim
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Figure 1.1: Abstract schematic of a multi-area power system

et al., 2009; Kundur et al., 1994). Converting the existing AC tie-lines of a multi-area

system into HVDC tie-lines enables controllable and low-loss bulk power transfer among

the various areas of a mixed AC-HVDC system.

Due to the fundamentally different operating characteristics of mixed AC-HVDC

systems with RESs, as compared to AC systems with conventional generators, system

safety and reliability faces various challenges. This thesis is motivated by the practical

challenges for the integration of intermittent wind power generating units in mixed AC-

HVDC power systems for short-term planning. In this thesis, a decision-making framework

for power dispatch under uncertainty with an emphasis on wind power integration in mixed

AC-HVDC systems is developed.

This chapter reviews the literature of security-constrained (SC) power dispatch

problems. Next, the relevant background on decision-making under uncertainty is pre-
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sented. Finally, the structure and contributions of this thesis are outlined.

1.2 Security-Constrained Power Dispatch Problems

In competitive electricity markets, a power dispatch with minimal cost is essential (Shahideh-

pour et al., 2003). The economic dispatch (ED) problem deals with determining the gen-

eration amount of generating units such that the required electric power is provided to

all system loads (demand) at the lowest cost (Al Farsi et al., 2015). Reliability concerns

have been one of the main focuses of researchers in power dispatch studies since 1960s

(Billinton and Bollinger, 1968). Particularly, security-constrained (SC) dispatch problems

are concerned with operational security and reliability of the system to mitigate the risk

of a system failure under unforeseen contingencies (Frank and Rebennack, 2016). The

security-constrained economic dispatch (SCED) is a branch of the ED problem where the

objective is to find a power dispatch schedule that minimizes the total operational cost,

while taking into account various operational constraints of generating resources, trans-

mission lines, and reserves (Chowdhury and Rahman, 1990). In SC-based problems, wind

power can be generated up to the available amount. Thus, the uncertainty associated with

the available wind power is considered in the right-hand side (RHS) of constraints as an

upper bound on wind power generation.

To tackle the wind uncertainty in such problems two main modeling approaches

have been used in the literature. Stochastic programming (SP) is a technique that considers

a probability distribution for the uncertain parameter in an optimization problem (Birge

and Louveaux, 2011). SP was used by Wiget et al. (2014), Ahmadi-Khatir et al. (2013),
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Wang et al. (2008), and Ruiz et al. (2009) to accommodate for wind power uncertainties in

various power dispatch problems. The main drawback of this approach is that it requires

the exact probability distribution of the uncertain parameter. Robust optimization (RO)

(Bertsimas and Sim, 2004; Ben-Tal and Nemirovski, 1998) is an alternative tractable ap-

proach that does not rely on the probability distribution of the uncertain parameters, and

instead, considers an uncertainty set that encapsulates all possible scenarios of an uncer-

tain parameter. Then, it optimizes an objective function under the worst-case scenario of

the uncertainty set to ensure problem feasibility under any other scenario of the uncertain

parameter (Bertsimas and Sim, 2004).

The RO methodology has been extensively used to solve problems such as ED

(Jabr, 2013; Xie et al., 2014; Wu et al., 2014; Li et al., 2015a, 2016a) and security-

constrained unit commitment (SCUC) (Bertsimas et al., 2013; Ye and Li, 2016; Zhang

et al., 2019) − which is a branch of the ED problem. However, only a few studies ( e.g.,

Ding et al. (2016), Lu et al. (2018)) used an RO approach for solving the SCED problem

that is the focus of this thesis. There are three main shortcomings associated with the

existing RO models for SC dispatch problems in the literature: (i) A large number of

studies assumed that wind power can be entirely absorbed in the power system (e.g., Lu

et al. (2018); Ding et al. (2016)). However, when there is an excessive amount of wind

power that cannot be absorbed by the system, the wind power should be “curtailed” to

maintain the security of the power system and to have practically meaningful solutions;

(ii) A number of studies lead to conservative robust solutions which may not be practical

(e.g., Ding et al. (2016)); (iii) Most studies focus on single-area power systems or pure AC

multi-area systems and do not consider the new advancements in multi-area power systems

(e.g., Li et al. (2016a)), where HVDC transmission lines are used to transfer power from
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offshore wind farms to onshore loads.

This thesis focuses on addressing the gaps in the literature of robust SCED op-

timization. In what follows, the relevant literature of RO is reviewed, and the gap in the

literature of RO with RHS uncertainty is further elaborated on.

1.3 Robust Optimization

Soyster (1973) was the first to consider RO to tackle data uncertainty, and the theory

was further refined in several studies (Ben-Tal and Nemirovski, 1998, 2002; Ben-Tal et al.,

2009; Bertsimas and Sim, 2003; Bertsimas and Thiele, 2004). Recently, the applications of

RO have been studied in various problems such as portfolio selection (e.g., Hassanzadeh

et al. (2014)), network flows (e.g., Atamtürk and Zhang (2007)), inventory management

(e.g., Ang et al. (2012)), radiation treatment planning (e.g., Chan et al. (2014)), as well as

power dispatch problems (e.g., Li et al. (2016a)). See Bertsimas et al. (2011) and Gabrel

et al. (2014) for a comprehensive review of other applications.

The main focus of this thesis is on the applications of RO in the SCED problem

with RHS uncertainty. In what follows, two different classes of RO, i.e., “row-wise” and

“column-wise” uncertainty, are introduced. Next, the relevant background on the budget

of uncertainty and the potential challenges of having uncertainty in the RHS column of an

optimization problem are presented.
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1.3.1 Row-Wise Uncertainty versus Column-Wise Uncertainty

Ben-Tal and Nemirovski (1998, 2002) and El Ghaoui and Lebret (1997) studied “row-

wise” uncertainty, i.e., where the rows of the constraint matrix belong to a given convex

set, for different shapes of the uncertainty set (e.g., ellipsoid or polyhedral). In row-

wise uncertainty, the complexity of the problem depends of the shape of the uncertainty

set. For example, models with row-wise ellipsoidal and polyhedral uncertainty sets can

be reformulated as conic quadratic and linear counterparts, respectively (Ben-Tal and

Nemirovski, 1999; Bertsimas and Sim, 2003).

On the other hand, Soyster (1973) studied “column-wise” uncertainty, i.e., where

the columns of the constraint matrix belong to a given uncertainty set, and proposed a

linear model where columns ai’s of the constraint matrix belong to uncertainty sets Ui as

follows:

max
x

cTx, (1.1a)

s.t
n∑

i=1

xiai ≤ b, ∀ai ∈ Ui, i = 1, ..., n (1.1b)

x ≥ 0. (1.1c)

It has been shown that the following linear problem can be used to guarantee the feasibility
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of problem (1.1) under all scenarios.

max
x

cTx, (1.2a)

s.t
n∑

i=1

xia
∗
i ≤ b, (1.2b)

x ≥ 0. (1.2c)

where a∗ij = supai∈Uj(ai)j. The term sup indicates the supremum of a set and is the least

upper bound of that set.

Column-wise uncertainty was further developed by Falk (1976) and Singh (1982).

A special case of column-wise uncertainty is when uncertain parameters only appear in the

RHS of a problem. However, addressing problems with uncertain RHS is more challenging.

Specifically, Minoux (2008) considered problem (1.3) with an uncertain parameter b̃ in the

RHS.

max
x

cTx, (1.3a)

s.t. x ≤ b̃, ∀b̃ ∈ [b,b] (1.3b)

x ≥ 0. (1.3c)

Denoting α as the vector of dual variables corresponding to constraint (1.3b), Minoux

(2008) showed that the robust formulation of problem (1.3) can be derived through two

possible formulations that are not necessarily equivalent. Specifically, formulation [D1]

corresponds to the case where the worst-case of the uncertain parameter b̃ is found, i.e., b =

minb̃{b̃}, and then problem (1.3) is converted into an equivalent dual problem. However,
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formulation [D2] corresponds to the the case where the equivalent dual reformulation of

problem (1.3) is formulated first, and then the worst-case scenario of the dual problem is

presented.

[D1] [D2]

min
α

αTb, min
α

max
b̃

{αT b̃},

s.t. αT ≥ c, s.t. αT ≥ c,

αT ≥ 0. αT ≥ 0.

(1.4)

These problems may not lead to the same solutions as αTb ≤ maxb̃ {αT b̃}, for α ≥ 0

(Minoux, 2008). Therefore, the duality approach used for row-wise uncertainty cannot be

directly applied to RHS uncertainty. Minoux (2012) and Ouorou (2016) further studied

RHS uncertainty for specific shapes of uncertainty sets, such as polyhedral and ellipsoidal.

1.3.2 The Budget of Uncertainty

Since RO models seek to find a solution that is feasible under any realization of the uncer-

tain parameter, they may lead to overly-conservative solutions (Bertsimas and Sim, 2004).

For example, in Soyster’s approach, in the worst-case scenario, every single entry of the

constraint matrix is allowed to deviate from its nominal value. However, one could argue

that the case in which all uncertain parameters take their absolute worst-case values is

as unlikely as the case where all uncertain parameters are equal to their nominal values

and have no deviation from what was predicted. This worst-case approach is therefore

considered overly conservative in the literature.

9



Bertsimas and Sim (2004) later proposed the concept of “budget of uncertainty”

to control the level of conservatism for problems with row-wise uncertainty. Assume that

the uncertain parameter ãij can take any value within an uncertainty set [âij− ȧij, âij + ȧij]

where âij and ȧij are the nominal value and the error in estimating the nominal value,

respectively. Parameter Γi is defined as the budget of uncertainty for each row i so that

the maximum total scaled deviation, denoted as zi,j, of all uncertain parameters within

the same row i is limited to the budget of uncertainty Γi. The mathematical formulation

of the budget of uncertainty for row i can be written as:

ãij = âij + zij ȧij, ∀i, j,

|zij| ≤ 1, ∀i, j,
n∑

j=1

|zij| ≤ Γi ∀i.
(1.5)

Parameter Γi for row i can take values in [0, |Ji|] where Ji is the set of coefficients

that are subject to uncertainty in each row i. In particular, a zero budget, i.e., Γi =

0, corresponds to the nominal problem where the uncertain parameters do not deviate

from the nominal values. If Γi increases, the solution becomes more conservative against

uncertainty and results in a worse value of the objective function. Ultimately, a full budget,

i.e., Γi = |Ji|, refers to the satisfaction of constraint i under all scenarios of the uncertainty

set, which is equivalent to the worst-case approach.

The conventional budget of uncertainty approach proposed by Bertsimas and

Sim (2004) may not be meaningful for some problems with uncertainty in the RHS. The

intuition behind this issue is as follows: It is often expected to see a change in the objective

value (level of conservatism) with a change in the budget; thus, the higher the budget,

10



the worse the objective value is expected to become. However, this behavior may not be

observed explicitly with problems with RHS uncertainty. That is, deviating the value of the

RHS parameters from their nominal value by more than a certain threshold may not have

any further effect on the objective, simply because the corresponding constraint would

become redundant. Therefore, any consideration of uncertainty beyond such threshold

would be “ineffective” and the robust solution would remain unchanged regardless of the

higher level of uncertainty considered. In this thesis, we refer to this phenomenon as

“partially-ineffective budgets”. The SCED problem with uncertainty in the available wind

power falls into this general category.
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1.4 Contributions

The specific contributions of this thesis are as follows:

• A modified column-wise budget of uncertainty approach is proposed for a class of

problems with RHS uncertainty that have “partially-ineffective budgets”. This ap-

proach converts the ineffective budgets of uncertainty into “effective” budgets and

performs similar to the conventional budget approach defined for the row-wise un-

certainty.

• A new tractable two-stage robust optimization model is developed to effectively incor-

porate the proposed budget approach. This thesis shows that the proposed two-stage

approach accurately controls the level of robustness of the optimal solution without

affecting the set of feasible solutions.

• The applicability of the proposed robust approach is demonstrated on the SCED

problem in a mixed AC-HVDC multi-area system with large integration of wind

power. While most studies do not consider the impact of wind power curtailment

on system operation cost and reliability requirements, the proposed robust approach

addresses wind power curtailments. Extensive numerical experiments are presented

to examine the merits of the proposed robust approach in a mixed AC-HVDC system

from five aspects: the effectiveness of the budget of uncertainty, robustness against

uncertainty, contribution to real-time reliability, economic efficiency, and power trans-

fer controllability.
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1.5 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 discusses a new robust optimization

approach for RHS uncertainty. In Chapter 3, the operational challenges of a mixed AC-

HVDC system with wind power penetration are addressed and a robust formulation for

the SCED problem is presented. In Chapter 4, the performance of the proposed approach

is examined on various test systems and numerical results are discussed. Finally, Chapter

5 concludes the thesis and presents discussions for future research.
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Chapter 2

A Robust Optimization Approach for

Partially-Ineffective Uncertainty

Robust optimization (RO) with the budget of uncertainty has been mainly studied in

problems with row-wise uncertainty, where the rows of the constraint matrix belong to

a given convex set. However, there are several real-world applications − such as power

dispatch problems, project management, scheduling, dynamic inventory management, and

telecommunication problems − with right-hand side (RHS) uncertainty which is a special

case of column-wise uncertainty. Addressing the budget of uncertainty in problems with

uncertain RHS parameters is challenging since the budget may be partially-ineffective and

may not meaningfully adjust the level of conservatism.

This chapter proposes an approach for RHS uncertainty when there are partially-

ineffective uncertainty sets. The chapter is organized as follows: Section 2.1 defines a

14



general problem with uncertain RHS. In Section 2.2, admissible and effective uncertainty

sets are introduced. Section 2.3 identifies an effective budget of uncertainty for such sets,

and finally Section 2.4 proposes a two-stage robust optimization approach to tackle the

challenges of RHS uncertainty with the budget of uncertainty.

2.1 Problem Definition

Consider problem [M] with uncertain parameter ỹ ∈ U as follows:

[M] : min
x,y

c1(x) + c2(y), (2.1a)

s.t. Ax + By ≤ g, (2.1b)

y ≤ ỹ, ∀ỹ ∈ U = [y,y] (2.1c)

y,x ≥ 0. (2.1d)

Problem [M] corresponds to an optimization problem with two types of resources. The

objective function consists of linear cost functions c1(x), i.e., the cost of using resource 1,

and c2(y), i.e., the penalty for not utilizing resource 2, where each of decision variables

x and y are vectors of size m × 1. Let c2(y) = max
ỹ

dT (ỹ − y) be the penalty for non-

utilized resource 2 under the worst-case scenario. Constraint (2.1b) captures the limitations

of the system on both x and y, where matrices A and B are of size n × m, and, for

simplicity, consider B ≥ 0. In particular, B = 0 corresponds to the upper limit of vector

x. The objective function maximizes the amount of resource 2 used while considering

the uncertainty in its available amount, as shown in the RHS of constraint (2.1c). In
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particular, model [M] can be used for the SCED problem where vectors x and y correspond

to the power generation of conventional generators and wind power plants, respectively.

Thus, c2(y) corresponds to the penalty for wind power curtailment, and the uncertainty

of available wind power is considered in the RHS of constraint (2.1c).

Following the concept of the budget of uncertainty proposed by Bertsimas and

Sim (2004), consider the uncertainty set UB with budget Γ as follows:

UB :=
{

ỹ ∈ Rm : ỹ = ŷ + z� (y − ŷ),
m∑
i=1

zi ≤ Γ, 0 ≤ z ≤ 1.
}
, (2.2)

where ŷ is the nominal value of the uncertain parameter and the worst-case realization of

ỹ always occurs within [ŷ,y] - this point is later proved in Proposition 4.

In (2.2), operator� is the “Hadamard Product” (Horn, 1990) and is used through-

out this chapter for expressing element-wise multiplication of vectors with the same dimen-

sion where

z� (y − ŷ) =


z1
...

zm

�

y1 − ŷ1

...

ym − ŷm

 =


z1(y1 − ŷ1)

...

zm(ym − ŷm)

 .
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Incorporating UB in formulation [M], the following formulation is obtained:

min
x,y,z

c1(x) + c2(y), (2.3a)

s.t Ax + By ≤ g, (2.3b)

y ≤ ŷ + z� (y − ŷ), (2.3c)

m∑
i=1

zi ≤ Γ, (2.3d)

0 ≤ z ≤ 1, (2.3e)

x,y ≥ 0. (2.3f)

Based on constraints (2.3b) and (2.3c), two upper bounds can be written for Ax + By as

follows:

Ax + By ≤ g, (2.4a)

Ax + By ≤ Ax + B
(
ŷ + z� (y − ŷ)

)
. (2.4b)

Depending on the value of z, one of the constraints (2.4a) and (2.4b) would become re-

dundant and would not impact the solution. Consider a feasible z0 such that (2.4a) is

binding and g = Ax + B
(
ŷ + z0 � (y − ŷ)

)
. Denote the budget and the robust solution

corresponding to z0 as Γ0 and y0, respectively. When B > 0, ∀z1 ∈ (z0,1], it can be

shown that g < Ax+B
(
ŷ +z1� (y− ŷ)

)
and hence constraint (2.4b) becomes redundant.

Let Γ1 and y1 be the budget and the robust solution corresponding to z1, respectively;

For Γ1 > Γ0 (as z1 > z0), y1 = y0 since the additional budget does not have any further

impact on the solution. Thus, even though there is a penalty in the objective function for
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Figure 2.1: Comparison between uncertainty set [y,y], admissible interval [s, s], and effective
interval [ŝ, s].

underutilization of resource 2, constraint (2.4a) may not allow U = [y,y] to be entirely

utilized. In this thesis, the value of Γ1−Γ0 is called the “ineffective” budget of uncertainty

and can be calculated as
∑m

i=1(zi
1 − zi0).

The following section introduces “admissible” and “effective” uncertainty sets

that can be entirely utilized.

2.2 Admissible and Effective Uncertainty Sets

This section introduces “admissible” and “effective” intervals for RHS uncertainty. The

admissible interval [s, s] is defined as a subset of [0,y] such that for any solution y ∈ [s, s]

the problem is feasible. The effective interval [ŝ, s] is a subset of the admissible interval

within which the worst-case scenario of the admissible interval always occurs. Fig. 2.1

shows the admissible and effective intervals. In what follows, an optimization problem

is first proposed to obtain the admissible interval. Next, the effective interval is derived

accordingly.
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2.2.1 Admissible Interval

The admissible interval [s, s] is within interval [0,y], and may partially or entirely lay

outside of the uncertainty set [y,y] since the RHS parameters might not be fully utilized.

Thus:

s ≤ y, (2.5a)

s ≤ y, (2.5b)

where s = y means that the RHS can be fully utilized and the entire uncertainty set is

admissible. Proposition 1 demonstrates how to identify whether a given interval [s, s] is

entirely admissible. Remark 1 further explains how to find the largest possible such interval

that is as close as possible to the uncertainty set U = [y,y].

Proposition 1. Any solution y ∈ [s, s] satisfies constraint (2.1b) of formulation [M]

under any scenario of the uncertainty set if s and s meet the following conditions:

Ax + Bs +α ≤ g, (2.6a)

α ≥ B(s− s), (2.6b)

α ≥ 0. (2.6c)

Proof. Variable y ∈ [s, s] can be written as s + r � (s − s), where 0 ≤ r ≤ 1. Thus,

constraint (2.1b) is reformulated as Ax + By ≤ Ax + B(s + r � (s − s)) ≤ g. To meet

this constraint under its worst-case scenario, the following constrains should be satisfied:

Ax + By ≤ Ax + β(r) ≤ g, (2.7)
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where

β(r) = max
r

B
(
s + r� (s− s)

)
, (2.8a)

s.t. 0 ≤ r ≤ 1. (2.8b)

Considering α as the dual vector for constraint (2.8b) and replacing the dual of problem

(2.8) into (2.7), formulation (2.6) can be recovered.

Remark 1. The following optimization problem finds the largest admissible interval [s, s]

that has the smallest distance from the uncertainty set U = [y,y].

min
s,s,α,x

(y − s) + (y − s), (2.9a)

s.t. Ax + Bs +α ≤ g, (2.9b)

α ≥ B(s− s), (2.9c)

s ≤ y, (2.9d)

s ≤ y, (2.9e)

x, s, s,α ≥ 0. (2.9f)

Proof. As shown in Proposition 1, constraints (2.9b), (2.9c), and α ≥ 0 in (2.9f) identify

whether a given interval [s, s] is admissible. Constraints (2.9d) and (2.9e) demonstrate that

the admissible interval may lay outside of the uncertainty set since the RHS parameters

might not be fully utilized. Given that the objective function (2.9a) minimizes the gap

between [y,y] and [s, s], formulation (2.9) always obtains the largest possible admissible

interval.
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Proposition 2. The admissible interval [s, s] can always be categorized as one of the fol-

lowing four cases:

a) s = y and s = y

b) s = y and ŷ ≤ s < y

c) s = y and y < s < ŷ

d) s = s ≤ y

Proof. For any feasible solution of problem (2.9), ∃α ≥ 0, such that α ≥ B(s − s). By

assumption, B ≥ 0. If B = 0, constraint (2.9c) would become redundant since B(s −

s) = 0. Constraint (2.9b) is also independent on s since Bs = 0. Thus, due to the

minimization objective function, constraints (2.9d) and (2.9e) are binding at optimality,

and the admissible interval always corresponds to case (a), where s = y and s = y. If, on

the other hand, B > 0, two cases are considered:

First, for α > 0, it is obvious that s > s. Thus, replacing (2.9c) in (2.9b), it is concluded

that Ax+Bs < g always holds for any value of s ∈ [0,y]. Due to the minimization objective

function in (2.9a), s = y at optimality. Depending on the value of α, by substitution, it

can be observed from (2.9b) and (2.9c) that:

• If B(y − y) ≤ α, then Ax + Bs ≤ Ax + By ≤ g is satisfied for any value of s ≤ y.

Thus, due to the minimization objective function (2.9a), s = y at optimality, which

corresponds to case (a).
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• Similarly, if B(ŷ − y) ≤ α < B(y − y), then ŷ ≤ s < y at optimality, which

corresponds to case (b).

• If 0 < α < B(ŷ − y), then y < s < ŷ at optimality, which corresponds to case (c).

Second, for α = 0, it is concluded that s = s. Denote sets I = [0,y] and J = (y,y],

where I ∩ J = ∅ and I ∪ J = [0,y]. Assume ∃ s, s ∈ J , such that s = s. This contradicts

constraint s ≤ y and thus s, s /∈ J . Therefore, s, s ∈ I and s = s, which corresponds to

case (d).

Consider formulation [M′] where the uncertainty set U = [y,y] of problem [M] is substi-

tuted with the admissible uncertainty set [s, s] denoted by UA:

[M′] : min
x,y

c1(x) + c2(y), (2.10a)

s.t. Ax + By ≤ g, (2.10b)

y ≤ s̃, ∀s̃ ∈ UA = [s, s] (2.10c)

x,y ≥ 0. (2.10d)

The following proposition shows the equivalency of problems [M] and [M′].

Proposition 3. Problems [M] and [M′] have the exact same feasible region.

Proof. Let X and X′ be the feasible sets of [M] and [M′], respectively. To conclude that

the two feasible sets are equal, it is sufficient to show that any feasible solution in X is also

feasible for X′ and vice-versa.
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First, let x′,y′ ∈ X′, where y′ ≤ s̃ ∈ [s, s]. Since [s, s] falls into one of the cases of

Proposition 2, it satisfies the conditions of Proposition 1. Thus, x′,y′ ∈ X as well.

Similarly, let x,y ∈ X, where y ≤ ỹ ∈ [y,y]. From the constraints of (2.4), it is observed

that for values of z corresponding to ỹ ∈ (s,y] constraint (2.4b) becomes redundant. Thus,

y ≤ s and it demonstrates that x,y ∈ X′ as well.

From Proposition 3, it can be concluded that instead of incorporating a budget of uncer-

tainty in problem [M] with partially-ineffective uncertainty set, problem [M′] can be used

without changing the feasible region.

The admissible uncertainty set of problem [M′] can be formulated as follows.

UA :=
{

s̃ ∈ Rm : s̃ = ŝ + z+ � (s− ŝ) + z− � (s− ŝ), 0 ≤ z+, z− ≤ 1
}
, (2.11)

where ŝ is the middle point of the interval [s, s], and z+ and z− denote positive and negative

scaled deviations from ŝ.

2.2.2 Effective Interval

The following proposition identifies a subset of the admissible uncertainty set in which the

worst-case scenario of the admissible uncertainty set would always occur.

Proposition 4. The worst-case realization of the admissible uncertainty set UA always

occurs within interval [ŝ, s], where ŝ is the middle point of the interval [s, s].

23



Proof. Using the definition of UA, it is observed that [s, s] = [s, ŝ]∪ [ŝ, s]. Thus, the worst-

case of constraint (2.7) can be re-written by considering β(z+, z−) instead of β(r), where:

β(z+, z−) = max
z+,z−

B
(
ŝ + z+ � (s− ŝ) + z− � (s− ŝ)

)
, (2.12a)

s.t. 0 ≤ z+ ≤ 1, (2.12b)

0 ≤ z− ≤ 1. (2.12c)

Separating the constant Bŝ from the objective function and considering dual vectors η and

ζ for constraints (2.12b) and (2.12c), respectively, the dual formulation of problem (2.12)

is as follows

Bŝ + min
η,ζ

η + ζ, (2.13a)

s.t. η ≥ B(s− ŝ), (2.13b)

ζ ≥ B(s− ŝ), (2.13c)

η, ζ ≥ 0. (2.13d)

Since s− ŝ ≤ 0 and B ≥ 0 by assumption, constraint (2.13c) is redundant and thus ζ = 0.

By removing the redundant constraint (2.13c) and taking the dual of model (2.13) with

vector r as the dual vector corresponding to constraint (2.13b), the following formulation

is obtained:

Bŝ + max
r

B
(
r� (s− ŝ)

)
, (2.14a)

s.t. 0 ≤ r ≤ 1, (2.14b)
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ŝ
ŝ
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Figure 2.2: Relationships between the original uncertainty set U = [y,y], the admissible un-

certainty set UA = [s, s], and the effective uncertainty set UE = [ŝ, s] for all possible cases. The
horizontal axis shows the four different cases that could occur, and the vertical axis shows the
corresponding uncertainty sets and admissible intervals.

which shows s̃ ∈ [ŝ, s].

Proposition 4 shows the equivalency of the uncertainty sets [s, s] and [ŝ, s] in terms of their

worst-case scenarios. Throughout this thesis, effective uncertainty set [ŝ, s] is denoted by

UE where:

UE :=
{

s̃ ∈ Rm : s̃ = ŝ + r� (s− ŝ), 0 ≤ r ≤ 1.
}

(2.15)

Therefore, the effective uncertainty set UE = [ŝ, s] can be used in formulation [M′].

In the following section, an effective budget of uncertainty is identified and incorporated

in the effective uncertainty set.

2.3 Effective Budget of Uncertainty

This section draws a one-to-one correspondence between the conventional and proposed

budget approaches to specify how Γ would impact the solutions of four cases in Proposition
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2. Then, an effective budget of uncertainty is identified by mapping the partially-ineffective

budgets to effective budgets.

In the conventional budget approach, the worst-case scenario occurs within un-

certainty set [ŷ,y] (see Proposition 4), and Γ captures deviations from the nominal value

ŷ. However, ŝ is the nominal value of the effective uncertainty set UE = [ŝ, s], which

is not necessarily equal to ŷ as shown in Fig (2.2). In particular, the conventional ap-

proach with zero deviation (Γ = 0) corresponds to solution y = s in cases (c) and (d)

since s < ỹ ∈ [ŷ,y]. To generate the same solution in UE, a positive deviation r from

ŝ is required where y ≤ ŝ + r � (s − ŝ). Otherwise, for a zero value of r, UE would re-

sult in y = ŝ, which is different than the solution of the conventional approach with no

uncertainty. Thus, to keep the properties of the conventional approach in the proposed

approach, such deviations should be allowed but should not be taken into account in the

budget of uncertainty constraint for cases (c) and (d).

Similarly, in case (b), when s̃ < ŷ, for any value of Γ, the conventional approach

corresponds to y = ŷ. Fig. 2.3 elaborates on case (b) and compares the uncertain pa-

rameters in UE and UB based on their scaled deviations. Recall from Section 2.1 that the

conventional budget is ineffective for ỹ ∈ (s,y]. Intuitively, only the scaled deviations in

UB corresponding to segment A′C are effective in the conventional approach. It can be

proved that normalizing the scaled deviations based on the length of each uncertainty set,

segment A′C with uncertainty set [y,y] corresponds to A′B′ with uncertainty set [s, s].

For segment A′B′, solutions are effectively adjusted by an effective budget of uncertainty.

Thus, to keep the consistency of the proposed approach with the conventional budget ap-

proach, the uncertainty set of the proposed approach is to be able to construct all point
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Figure 2.3: Comparison of the uncertain parameters in UB, UE , and UEB for 1 unit of scaled
deviation in case (b)

of segment A′B′. To do so, AB′ corresponding to UE is to be mapped to segment A′B′.

Thus, a shift from ŝ (point A) to ŷ (point A′) is required but the required budget for this

shift should not be taken into account in the budget of uncertainty constraint. Otherwise,

the budget is not effectively used. The shaded regions in Fig. 2.3 show the areas within

which the budget of uncertainty of the conventional approach does not impact the solu-

tions. Definition 1 corresponds to an effective uncertainty UEB where an effective budget

ΓE is incorporated in UE. Proposition 5 explains a linear mapping between Γ and ΓE.

Definition 1. The effective uncertainty set UEB with an effective budget of uncertainty

ΓE is defined as

UEB :=
{

s̃ ∈ Rm : s̃ = ŝ + r� (s− ŝ), (2.16a)

m∑
i=1

eiri ≤ ΓE, (2.16b)

v ≤ r ≤ 1.
}

(2.16c)
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where vectors v, e are pre-calculated and parameter ΓE is a function of Γ as follows:

h =
1

2

(
1− sgn(ŷ − s)

)
, (2.17a)

e = h� (
s− ŝ

y − ŷ
), (2.17b)

v = h� (
ŷ − ŝ

s− ŝ
), (2.17c)

ΓE = Γ +
m∑
i=1

vi(
si − ŝi
yi − ŷi

). (2.17d)

Proposition 5. The partially-ineffective budget Γ in the uncertainty set UB is linearly

mapped into an effective budget of ΓE in the uncertainty set UEB.

Proof. Consider h = 1
2

(
1 − sgn(ŷ − s)

)
. Based on the definition of h, it is observed that

h = 1 for cases (a) and (b), and h = 0 for cases (c) and (d). Since e is a function of h,

constraint (2.16b) ensures ΓE is effectively used by not taking into account the deviations

of case (c) and case (d). Similarly, consider v = h � ( ŷ−ŝ
s−ŝ ), which takes a value of 0 for

all cases except case (b), due to h = 0 in cases (c) and (d), and ŷ = ŝ in case (a). The

nonzero value of v is the scaled deviation required to map ŝ to ŷ. Thus, v ≤ r ensures ŝ

is mapped to ŷ. To ensure the proposed approach allows this mapping without using the

budget of uncertainty, Γ is linearly mapped to Γ + v, where

m∑
i=1

hiri ≤ Γ + v (2.18)

Note that v and r are scaled deviations based on the length of (s− ŝ), while Γ is an scaled

parameter based on the magnitude of (y − ŷ). To normalize the scaled deviations, factor
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s−ŝ
y−ŷ is multiplied by v and r. Doing so, formulations (2.16) and (2.17) can be recovered.

In proposition 5, it was shown that the initial budget of uncertainty can be mapped to

an effective budget of uncertainty. The original Γ in the conventional budget approach

takes a value within [0, |m|] (Bertsimas and Sim, 2004). Similarly, ΓE = Γ +
∑m

i=1 vi ∈[∑m
i=1 vi,

∑m
i=1 vi + |m|

]
. Term

∑m
i=1 vi is constant and is positive only if the uncertain

parameter corresponds to the effective interval of case (b). In such a case,
∑m

i=1 vi is used

for the mapping and only Γ is adjustable in the definition of ΓE. Particularly, Γ = 0 in the

conventional approach corresponds to ΓE =
∑m

i=1 vi in the proposed approach to generate

the same solution (point A′ of Fig. 2.3). Furthermore, where all uncertain parameters

can be entirely utilized, i.e., case (a), for each i, it is concluded: ei = 1, vi = 0, ŝi = ŷi,

si = yi. Therefore ΓE = Γ and the proposed approach becomes the same as the previous

budget approach. Thus, the proposed column-wise approach for the budget of uncertainty

is consistent with the conventional budget approach.

2.4 The Proposed Two-Stage RO Model

This section summarizes a new two-stage robust model to solve RHS uncertainty with

effective budget of uncertainty. Given the original uncertainty set U = [y,y], the first

stage solves an auxiliary problem to identify the largest admissible interval UA = [s, s],

and then the effective uncertainty set UE = [ŝ, s] is derived. The second stage problem

incorporates the effective budget ΓE in the effective uncertainty set UE = [ŝ, s].
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2.4.1 Stage I

The following optimization problem finds the admissible uncertainty set UA = [s, s] that

has the smallest distance from the original uncertainty set U = [y,y] (recall Remark 1).

min
s,s,α,x

(y − s) + (y − s), (2.19a)

s.t. Ax + Bs +α ≤ g, (2.19b)

α ≥ B(s− s), (2.19c)

s ≤ y, (2.19d)

s ≤ y, (2.19e)

x, s, s,α ≥ 0. (2.19f)

After solving this optimization problem, the effective uncertainty set UE is calculated and

is used as the input of stage II.

2.4.2 Stage II

Given the effective uncertainty set obtained in stage I, parameter ΓE and vectors v and e

are pre-calculated via (2.17). Then, the following optimization problem that incorporates
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the effective budget of uncertainty in the robust model is solved.

min
x,y,r

c1(x) + c2(y), (2.20a)

s.t Ax + By ≤ g, (2.20b)

y ≤ s̃ (2.20c)

s̃ = ŝ + r� (s− ŝ), (2.20d)

m∑
i=1

eiri ≤ ΓE, (2.20e)

v ≤ r ≤ 1, (2.20f)

x,y ≥ 0. (2.20g)

The proposed two-stage approach provides insights on the admissibility of resources with

uncertain parameters in the RHS of constraints. From a managerial point of view, the

trade-off between the robustness and objective function value can be explicitly observed

since changing the uncertainty budget would change the objective function. This would

allow for a more intuitive way for decision makers to determine the level of conservatism

of the robust solutions and decide on the value of the budget of uncertainty in the model.
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Chapter 3

Robust SCED of Mixed AC-HVDC

Multi-Area Power Systems

This chapter addresses the wind power uncertainty of the security-constrained economic

dispatch (SCED) problem in a mixed alternating current-high voltage direct current (AC-

HVDC) power system. The chapter is organized as follows: Section 3.1 provides the power

flow equations in a conventional AC system. Section 3.2 describes the main components

of a mixed AC-HVDC power system and formulates the SCED problem in a mixed AC-

HVDC power system. In Section 3.5, the proposed robust approach of Chapter 2 is applied

to the SCED problem in mixed AC-HVDC multi-area power systems.
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3.1 Power Flow Equtions in AC Power Systems

Any power system constitutes of three major parts: (i) generating units, (ii) transmission

systems, and (iii) loads (Kundur et al., 1994). A power system is represented by a network

of buses and transmission lines as shown in Fig. 3.1.

DC power flow is a simplified version of a full power flow, where the voltage

magnitude at all buses is assumed to be 1 per-unit (pu) and the resistance of all transmission

lines are neglected (Vrakopoulou et al., 2013). Considering a power system with N buses

and L transmission lines, let Pi denote the power injection at bus i. Thus, DC power flow

equations can be written as:

Pi =
N∑
j=1
j 6=i

Bij(θi − θj), ∀i ∈ N (3.1)

where Bij is the admittance of line connecting buses i and j, and θi represents the volt-

age angle of bus i (Vrakopoulou et al., 2013). Let Fij denote the DC power flow of the

Di

pj

Bus j

Bus iBus n

Line f

Figure 3.1: A three-bus power system with load Di and generation pj .
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transmission line connecting buses i and j. Thus:

Fij = Bij(θi − θj). ∀i, j ∈ N (3.2)

DC load flow equations (3.1) and (3.2) can be written in matrix form as follows:

P = Bθ, (3.3)

F = Mθ, (3.4)

where matrix M is directly determined from line data and network characteristics (Chang

et al., 1993). For a given line f connecting buses i to j, Mft is defined as follows (Van den

Bergh and Delarue, 2015):

Mft =


Bij for t=i

−Bij for t=j

0 for t 6= i and t 6= j .

(3.5)

In equations (3.3) and (3.5), the matrices B and M are singular and cannot

be inverted. Selecting an arbitrary bus as a reference bus and eliminating the elements

associated with the reference bus, sub-matrices B′ and M′, and sub-vectors P′, θ′, and F′

can be obtained. Therefore, equations (3.3) and (3.5) can be re-written as follows:

P′ = B′θ′ → θ′ = B′
−1

P′, (3.6)
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F′ = M′θ′. (3.7)

Substituting θ′ from equation (3.6) to equation (3.7), the following equation is

obtained:

F′ = M′B′
−1

P′, (3.8)

where in matrix GI = M′B′−1, the rows and columns correspond to the transmission lines

and buses, respectively. This matrix is called the generation shift distribution factor and

denotes the sensitivity of power flow of a given internal line f to power injection at a given

internal bus i Van den Bergh and Delarue (2015). Thus, DC line flow equations can be

written as follows with respect to injections at buses (Li et al., 2016a):

Ff =
N∑
i=1

GI
f,i(pi −Di), ∀f ∈ L. (3.9)

3.2 Mixed AC-HVDC Multi-Area Power Systems

The development of mixed AC-HVDC systems has resulted in significant enhancements in

the controllability of the transferred power, system efficiency, and operational flexibility

(Kundur et al., 1994). A mixed AC-HVDC power system has three main components: AC

system, converters, and HVDC tie-lines, Fig. 3.2a.
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AC system I AC system II

(a)

Rectifier Inverter

HVDC tie-line l

AC system

pacj,t pdcj,t
θi,t, vi,t θj,t, vj,t

Boundary
Bus j

(b)

Figure 3.2: (a) Model of a mixed AC-HVDC multi-area power system. (b) Reduced converter
model with external injections instead of tie-line flows.

3.2.1 AC Power Systems

In this section, the power flow equations associated with the AC system for the SCED

problem are presented. These equations consist of the operational limits and power balance

requirements of the AC system.

∑
i∈N I

a

(∑
g∈Gi

pg,t +
∑
k∈Ki

pWk,t −Di,t

)
=
∑
j∈NC

a

pacj,t, ∀a ∈ A, t ∈ T (3.10)

F f ≤
∑
i∈N I

a

GI
f,i

(∑
g∈Gi

pg,t +
∑
k∈Ki

pWk,t −Di,t

)
≤ F f , ∀a ∈ A, f ∈ Fa,∀t ∈ T (3.11)

− Ud
g .∆t ≤ pg,t − pg,t−1 ≤ Uu

g .∆t, ∀g ∈ Gi, i ∈ N I
a , a ∈ A, t ∈ T (3.12)∑

i∈N I
a

∑
g∈Gi

r+g,t ≥ Ru
a,t, ∀a ∈ A, t ∈ T (3.13)
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∑
i∈N I

a

∑
g∈Gi

r−g,t ≥ Rd
a,t, ∀a ∈ A, t ∈ T (3.14)

r+g,t ≤ min
{
P g − pg,t , Ug.∆t

}
, ∀g ∈ Gi, i ∈ N I

a , a ∈ A, t ∈ T (3.15)

r−g,t ≤ min
{
pg,t − P g , Dg.∆t

}
, ∀g ∈ Gi, i ∈ N I

a , a ∈ A, t ∈ T (3.16)

P g ≤ pg,t ≤ P g, ∀g ∈ Gi, i ∈ N I
a , a ∈ A, t ∈ T (3.17)

pWk,t ≤ W̃k,t. ∀k ∈ Ki, i ∈ N I
a , a ∈ A, t ∈ T (3.18)

Equation (3.10) represents the power balance requirement of each area. The transmission

capacity of internal lines are taken into account in constraint (3.11). Constraint (3.12)

represents the upper and lower limits of the ramping rates of conventional generators. To

respond to unforeseen power outages, upward/downward reserve requirements are added in

constraints (3.13) and (3.14), respectively. Upward/downward reserves denote a fraction of

the generator’s capacity that can be available to increase/decrease the unit’s power output

in a short amount of time (e.g., 10 minutes) (Li et al., 2013). Upward and downward

reserve capacity constraints are presented in (3.15) and (3.16). Constraints (3.17) and

(3.18) represent the output limits of conventional generators and wind farms, respectively.

3.2.2 Converters and HVDC Tie-Lines

Converters, i.e., rectifiers or inverters, are the intersections of AC grids and HVDC tie-lines

as shown in Fig. 3.2(a) (Kundur et al., 1994). Unlike the AC systems where power flow of

transmission lines depend on the voltage angles of two ends of transmission lines, in a mixed

AC-HVDC system, tie-line flows are controllable variables that can be adjusted based on

37



the net power difference between generation and load in each area. Therefore, in a mixed

AC-HVDC system, the SCED problem can be decomposed into several subproblems such

that the SCED problem associated with each area can be solved individually by considering

a controllable net power exchange with neighboring areas. In this thesis, converter losses

are not considered, and for each area, the relationships between the net AC and DC power

injections can be expressed as:

∑
j∈NC

a

pacj,t =
∑
j∈NC

a

pdcj,t. ∀a ∈ A, ∀t ∈ T (3.19)

A mixed AC-HVDC multi-area power system is decomposed into |A| single-area systems by

modeling the HVDC tie-line flows as power injections/absorption at the boundary buses.

Therefore, each HVDC tie-line is modeled as two external DC power injections with equal

magnitudes but in opposite directions. Equation (3.20) describes the relationship between

tie-line flows and external DC power injections to each area. In (3.20), matrix H consists

of only 0 and 1 elements. For example, Hli = 1 indicates an external injection to bus i,

which corresponds to the power flow of tie-line l. Furthermore, the operational limits of

the HVDC tie-lines are presented in equations (3.21).

Hpdc = 0, (3.20)

Lj ≤ pdcj,t ≤ Lj. ∀j ∈ NC
a ,∀a ∈ A,∀t ∈ T (3.21)
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3.3 Wind Power Admissible Interval

Considering a prediction error ek,t, the available wind power W̃k,t can vary within the

uncertainty set W̃k,t ∈ [Ŵk,t − ek,t, Ŵk,t + ek,t], where W k,t = Ŵk,t − ek,t and W k,t =

Ŵk,t + ek,t. In the SCED problem, the available wind power cannot be fully absorbed

in case of violations in the spinning reserve or transmission flow constraints. In such

a scenario, wind power curtailment is required. The admissible interval of wind power

output [sk,t, sk,t] is defined as the largest subset of wind power generation which results in

feasible solutions to the SCED problem:

sk,t ≤ pWk,t ≤ sk,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T (3.22)

sk,t ≤ W k,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T (3.23)

sk,t ≤ W k,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T (3.24)

where sk,t = 0 and sk,t = W k,t respectively refer to full curtailment and no curtailment

of wind power that can potentially occur due to security issues. To ensure the system

security, the worst-case scenarios of transmission constraint (3.11) and reserve constraints

(3.13) and (3.14) should be satisfied. Constraints (3.25) to (3.28) correspond to the worst-

case scenarios of constraints (3.11) and (3.13)-(3.14), respectively. Since pWk,t ≤ sk,t, system

security will be guaranteed for any sk,t satisfying the following constraints.

max
sk,t

∑
i∈N I

a

GI
f,i

∑
g∈Gi

pg,t +
∑
k∈Ki

sk,t −Di,t

 ≤ F f , ∀a ∈ A,∀f ∈ Fa, ∀t ∈ T (3.25)

min
sk,t

∑
i∈N I

a

GI
f,i

∑
g∈Gi

pg,t +
∑
k∈Ki

sk,t −Di,t

 ≥ F f , ∀a ∈ A, ∀f ∈ Fa,∀t ∈ T (3.26)
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min
sk,t

∑
i∈N I

a

∑
g∈Gi

pg,t +
∑
g∈Gi

r+g,t +
∑
k∈Ki

sk,t −Di,t

− ∑
j∈NC

a

pacj

 ≥ Ru
a,t, ∀a ∈ A,∀t ∈ T (3.27)

min
sk,t

∑
i∈N I

a

Di,t −
∑
g∈Gi

pg,t +
∑
g∈Gi

r−g,t −
∑
k∈Ki

sk,t

+
∑
j∈NC

a

pacj

 ≥ Rd
a,t. ∀a ∈ A,∀t ∈ T (3.28)

3.4 Effective Budget of Uncertainty

As shown in Section (2.3), for a given [ŝk,t, sk,t], the following polyhedral uncertainty set can

be used in the SCED problem where an effective budget of uncertainty ΓE is considered:

UEB :=
{
s̃k,t : s̃k,t = ŝk,t + rk,t(sk,t − ŝk,t), ∀k ∈ Ki,∀i ∈ N I

a , ∀a ∈ A,∀t ∈ T (3.29a)∑
i∈N I

a

∑
k∈Ki

ek,t.rk,t ≤ ΓE
a,t, ∀a ∈ A,∀t ∈ T (3.29b)

vk,t ≤ rk,t ≤ 1, ∀a ∈ A,∀t ∈ T
}

(3.29c)

where parameters ek,t, vk,t, and ΓE
a,t are calculated based on Section 2.3.

3.5 Robust SCED Formulation

In this section, the proposed two-stage robust approach of Chapter 2 is applied to the

SCED problem with right-hand side (RHS) uncertainty, where vectors y, ŷ, ỹ and y of

the proposed approach respectively correspond to parameters W k,t, Ŵk,t, W̃k,t, and W k,t.

Stage I of the proposed optimization approach solves an auxiliary problem to identify the
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admissible and effective uncertainty sets. Then, Stage II uses the optimal solution of the

first stage and solves the SCED problem with an effective budget of uncertainty.

3.5.1 Stage I

The auxiliary optimization problem (3.30) is used to find the largest admissible wind power

interval [sk,t, sk,t]:

min
s,s,p,α,η,ζ,β

∑
t∈T

∑
a∈A

∑
i∈N I

a

∑
k∈Ki

(
W k,t − sk,t

)
+
(
W k,t − sk,t

)
(3.30a)

s.t.
∑
i∈N I

a

GI
f,i

(∑
g∈Gi

pg,t −Di,t +
∑
k∈Ki

sk,t

)
+
∑
i∈N I

a

∑
k∈Ki

αk,f,t ≤ F f , (3.30b)

∀k ∈ Ki,∀i ∈ N I
a , ∀a ∈ A,∀f ∈ Fa,∀t ∈ T

αk,f,t ≥ GI
f,i(sk,t − sk,t), ∀k ∈ Ki,∀i ∈ N I

a ,∀a ∈ A, ∀f ∈ Fa, ∀t ∈ T (3.30c)

∑
i∈N I

a

GI
f,i

(∑
g∈Gi

pg,t −Di,t +
∑
k∈Ki

sk,t

)
−
∑
i∈N I

a

∑
k∈Ki

ζk,f,t ≥ F f , (3.30d)

∀k ∈ Ki,∀i ∈ N I
a , ∀a ∈ A,∀f ∈ Fa,∀t ∈ T

ζk,f,t ≥ −GI
f,i(sk,t − sk,t), ∀k ∈ Ki,∀i ∈ N I

a ,∀a ∈ A,∀f ∈ Fa,∀t ∈ T (3.30e)

∑
i∈N I

a

(∑
g∈Gi

pg,t +
∑
g∈Gi

r+g,t −Di,t +
∑
k∈Ki

sk,t −
∑
k∈Ki

ηk,t

)
≥
∑
j∈NC

a

pacj +Ru
a,t, (3.30f)

∀a ∈ A,∀t ∈ T

ηk,t ≥ −(sk,t − sk,t), ∀k ∈ Ki,∀i ∈ N I
a , ∀a ∈ A,∀t ∈ T (3.30g)
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∑
i∈N I

a

(∑
g∈Gi

pg,t −
∑
g∈Gi

r−g,t −Di,t +
∑
k∈Ki

sk,t +
∑
k∈Ki

βk,t

)
≤
∑
j∈NC

a

pacj −Rd
a,t, (3.30h)

∀a ∈ A,∀t ∈ T

βk,t ≥ sk,t − sk,t, ∀k ∈ Ki,∀i ∈ N I
a , ∀a ∈ A,∀t ∈ T (3.30i)

sk,t ≤ W k,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T (3.30j)

sk,t ≤ W k,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T (3.30k)

α,η, ζ, β ≥ 0, (3.30l)

where dual vectors α,η, ζ, β correspond to constraints (3.25) and (3.28). The optimal

solution of the auxiliary problem (3.30) corresponds to the largest admissible wind power

interval within which the system security is guaranteed. The effective uncertainty set

[ŝk,t, sk,t], within which the worst-case scenario of the admissible wind power interval occurs

as shown in Section 2.2, is used in the second stage of the proposed approach.

3.5.2 Stage II

In the second-stage of the problem, objective function (3.31), which minimizes the total

operation cost, is considered. In (3.31), the first and the second terms are respectively

associated with the generation and wind power curtailment costs under the worst-case
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scenario.

min
pg,t,pWk,t

∑
t∈T

∑
a∈A

∑
i∈N I

a

∑
g∈Gi

Cgpg,t + max
s̃k,t

[∑
t∈T

∑
a∈A

∑
i∈N I

a

∑
k∈Ki

σk
(
s̃k,t − pWk,t

)] (3.31)

The inner maximization term corresponds to the worst-case wind curtailment cost and

the penalty factor σk is set to the maximum generation cost of conventional generators

such that the dispatch priority is given to wind power generators rather than conventional

generating units Li et al. (2016a).

In the objective function (3.31), s̃k,t should be identified first, and then the op-

timal solutions are obtained. Using duality theorems, and considering the definition of

the uncertainty set UEB in (3.29), the corresponding linear reformulation of the objective

function is presented in (3.32)-(3.34):

min
pg,t,pWk,t

∑
t∈T

∑
a∈A

∑
i∈N I

a

∑
g∈Gi

Cgpg,t +
∑
t∈T

∑
a∈A

∑
i∈N I

a

∑
k∈Ki

σk
(
ŝk,t + µk,t − vk,tλk,t + ΓE

a,tξa,t − pWk,t
)

(3.32)

µk,t − λk,t + ek,tξa,t ≥ (sk,t − ŝk,t), ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A, ∀t ∈ T (3.33)

µk,t, λk,t, ξa,t ≥ 0, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A, ∀t ∈ T (3.34)

where dual variables µk,t and λk,t correspond to the upper and lower limits of constraint

(3.29c), respectively, and dual variable ξa,t corresponds to constraint (3.29b).

The second-stage robust SCED problem in a mixed AC-HVDC with the effective
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budget of uncertainty is summarized as follows:



Objective Function: Equation (3.31),

s.t. Equations (3.10)− (3.17),

0 ≤ pWk,t ≤ s̃k,t, ∀k ∈ Ki,∀i ∈ N I
a ,∀a ∈ A,∀t ∈ T

Equations (3.19)− (3.21),

Equations (3.29), (3.33)− (3.34).
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Chapter 4

Numerical Results

In this chapter, the performance of the proposed RO approach for the SCED problem is

examined on three systems. In Section 4.1, the data and system settings are explained. In

Section 4.2, the proposed RO approach is applied to the SCED in a simple single-area test

system for the purpose of demonstration. This section examines the performance of the

proposed approach in terms of the effectiveness of the budget of uncertainty in comparison

to that of the conventional budget of uncertainty approach. Section 4.3 addresses the

challenges of the SCED problem in a two-area mixed AC-HVDC system and demonstrates

the merits of the proposed approach in such systems in terms of robustness, reliability,

and power transfer controllability between areas of a mixed AC-HVDC system. Sensitivity

of the solutions to system parameters is reviewed in this section as well. Finally, Section

4.4 applies the RO approach to a three-area AC-HVDC system with higher wind power

penetration that captures the complexity of real-world power systems. Various power

transfer strategies are introduced in this section to further evaluate the performance of the
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proposed approach in AC and mixed AC-HVDC systems.

The analyses carried out throughout this chapter fall into one of the followings:

day-ahead, look-ahead, or real-time. Day-ahead optimization considers the predicted data

of the available wind power for the next 24 hours and solves the SCED problem for a

24-hour time horizon with 1-hour intervals. Look-ahead optimization is based on a more

up-to-date wind power prediction and considers the wind power for the next 6 hours with

15-minutes intervals (Lorca and Sun, 2017). Intra-day optimization considers the actual

realization of the wind power in real-time to solve the SCED problem.

All results reported in this chapter are obtained using the C++ and CPLEX

12.7.1 combination.

4.1 Test Systems

In this Section, the single-area, two-area, and three-area test systems are introduced. In

all test systems, each area is represented by the IEEE reliability test system (RTS) (Grigg

et al., 1999).

In the single-area system, a 24-hour time horizon is considered and the SCED

problem is executed every hour (day-ahead optimization). Fig. 4.1(a) represents the

hourly load of the single-area test system. In the single-area test system, two instances are

considered. The first-instance is a small-scale system including two wind farms with wind

power profile #1 (Fig. 4.2(a)) added to buses 113 and 116 of the IEEE RTS. The second

instance emphasizes on higher wind power penetration (Lopez et al., 2012) and therefore,
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two additional wind farms with wind power profile #2, shown in Fig. 4.2(b), are added to

buses 118 and 108.

In the two-area test system, a 6-hour time horizon is considered and the SCED

problem is executed every 15 minutes (look-ahead optimization). The two-area test system

consists of two tie-lines and is obtained by removing area 3 and tie-lines 3,4, and 5 from

Fig. 4.3. Fig. 4.1.(b) represents the hourly load of this test system. In this test system,

two wind farms with wind profiles #3 and #4, shown in Fig. 4.2(c) and Fig. 4.2(d), are

added to buses 113 of area 1 and 208 of area 2, respectively.

In the three-area system, a 6-hour time horizon is used and the SCED problem

is executed every 15 minutes (look-ahead optimization). The three-area system is shown

in Fig. 4.3. In this test system, three wind farms with wind profile #3, Fig. 4.2(c), are

added to buses 113 and 117 of area 1 as well as bus 301 of area 3. Also, two wind farms

with wind profile #4, Fig. 4.2(d), are connected to buses 119 of area 1 and 309 of area 3.

There are no wind power plant in area 2. The total capacity of wind power generation in
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Figure 4.1: Hourly load profiles
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d) Wind Profile #4
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Figure 4.2: Nominal value, upper bound, and lower bound of the predicted wind power

the three-area test system is 2500 MW which is approximately 23% of the total capacity of

conventional generators. To accommodate for the increased power generation capacity, the

hourly load of Fig. 4.1(b) is increased by 10%, 50%, and 10% in areas 1 to 3, respectively.

In all test systems, the upward spinning reserve requirement Ru
a,t is set to 400MW,

which is equal to the maximum capacity of conventional generators (Li et al., 2016a), and

the downward spinning reserve requirement Rd
a,t is 300MW. These settings are compatible

with the power system stability requirements described by Kundur et al. (2004).
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Figure 4.3: Abstract schematic of the multi-area power system

4.2 Single-Area Test System

This test system is designed to demonstrate the performance of the proposed approach

in the day-ahead SCED optimization problem and to compare the effectiveness of the

proposed approach against the conventional approach for various budgets of uncertainty.

Section 4.2.1 illustrates the admissible wind power interval in the first instance of the single-

area test system and demonstrates the effectiveness of the proposed approach. Section 4.2.2

highlights the merits of the proposed approach in the second instance of the single-area

test system with larger wind power integration.

4.2.1 Instance I

The admissible wind power intervals for instance I of the single-area test system are shown

as the shaded regions in Fig. 4.4. The day-ahead solution of the proposed RO approach
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Figure 4.4: Wind power admissible intervals (shaded regions) of the proposed approach

(pWk,t) with a full budget of uncertainty is also demonstrated in Fig. 4.4. Recall that a full

budget of uncertainty corresponds to the case where the output power of all wind farms

can have maximum deviations from their predicted values. The four cases of Proposition 2

are observed in Fig. 4.4. For example, case (a) is observed in wind farm #1 output power

during periods 9 to 13, where the available wind power can be entirely absorbed. Cases (b)

and (c) are observed in wind farm #1 output power during periods 22 and 15, respectively,

in which a part of the available wind power cannot be utilized. Case (d) corresponds to
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wind farm #2 output power during period 3, where the admissible wind power interval is

outside of the uncertainty set.

Recall that the budget of uncertainty in the SCED problem is defined per time

period and since there is only one area in this test system, the budget of uncertainty is

shown by Γt. To demonstrate the effectiveness of the proposed approach, Fig. 4.5 shows

the day-ahead wind power utilization versus the budget of uncertainty for two sample time

periods (17 and 22), where the admissible intervals correspond to case (b), as shown in Fig.

4.4 . It is observed from Fig. 4.5(a) that, for Γ22 ∈ [0, 0.64], the conventional and proposed

approaches result in the same wind power utilization, and an increase in the budget of

uncertainty leads to higher wind power utilization. This is because the uncertain parameter

W̃k,t of the conventional approach is still within the admissible wind power interval and

is equal to the uncertain parameter s̃k,t of the proposed approach. Thus, since within

the admissible wind power interval the problem feasibility is guaranteed, higher budgets of

uncertainty corresponds to larger wind power availability interval that consequently results

in more wind power utilization without violating the system security.

For Γ22 ∈ (0.64, 1], the conventional approach leads to an ineffective budget of

uncertainty, and changing the budget of uncertainty does not impact the robust solution

and consequently the utilized wind power. The reason is that the uncertain parameter

W̃k,t in the conventional approach is not within the admissible interval (W̃k,t ∈ (sk,t,W k,t]),

and hence the corresponding constraint becomes redundant, as shown in Section 2.1. In

contrast, the proposed robust approach takes this point into account and its uncertain

parameter s̃k,t always lies within the admissible interval. Thus, the proposed approach

effectively uses the budget of uncertainty and controls the trade-off between the budget of
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Figure 4.5: Utilized wind power versus budget of uncertainty

uncertainty and wind power utilization, as intuitively expected.

For Γ22 ∈ (1, 2), an increase in the budget of uncertainty results in higher wind

power utilization in both approaches since the budget of uncertainty is spread out over

both wind farms. Finally, for Γ22 = 2 which corresponds to the full budget of uncertainty,

both approaches lead to similar overly-conservative solution under the worst-case wind

power scenario. Similar observations can be made for time period 17, Fig. 4.5(b) .
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Figure 4.6: Total operational cost under various budgets of uncertainty

4.2.2 Instance II

Fig. 4.6 shows the trade-off between the total operational cost over the 24-hour time

horizon and the budget of uncertainty considered for each time period. This trade-off is

often referred to as “the price of robustness” (Bertsimas and Sim, 2004) as it indicates the

additional operational cost associated with the robust approach to account for uncertainty.

Recall that the deterministic approach corresponds to the case where there is no uncer-

tainty, i.e., Γ = 0. Fig. 4.6 demonstrates that the operational cost goes up as the budget

of uncertainty increases since the corresponding solutions become more conservative. A

more conservative solution results in more wind power curtailment in critical time periods

than can potentially lead to security issues, which in turn increases the objective function

due to the wind power curtailment cost (Li et al., 2016a).

The shaded region in Fig. 4.6 demonstrates the effectiveness of the proposed
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approach compared to the conventional approach as the budget of uncertainty increases.

For Γ = 0 and Γ = 4 (full budget of uncertainty), both robust approaches result in similar

operational costs. For 0 < Γ < 4, the proposed RO model maps the partially-ineffective

budgets into effective budgets and leads to more wind power utilization when the admissible

wind power interval is aligned with case (b), as shown in Instance I. Therefore, the proposed

approach results in a lower operational cost compared to the conventional approach.

One advantage of the robust approach is that its optimal solution is less sensitive

to changes in the uncertain parameter compared to that of the deterministic approach. To

demonstrate this advantage, the performance of the robust and deterministic approaches

are compared during intra-day optimization, where the actual realization of the uncertain

wind power WActual
k,t is considered. For the intra-day optimization, a large number of wind

power scenarios are randomly generated within the initial uncertainty set [W k,t,W k,t]. For

each scenario, an intra-day SCED problem is solved with W̃k,t = WActual
k,t . The absolute

values of the difference between the operational cost of intra-day and day-ahead solutions

(∆C) is calculated. In fact, ∆C represents the weighted sum of the difference between

the dispatches in intra-day and day-ahead solutions. This process is repeated until there

are up to 100 randomly generated wind power scenarios of WActual
k,t ∈ [Ŵk,t + rk,t(W k,t −

Ŵk,t), Ŵk,t + rk,t(W k,t − Ŵk,t)] for values of Γ =1, 2, 3, and 4.

Fig. 4.7 compares the performance of the three approaches in terms of the sen-

sitivity of day-ahead solutions to intra-day solutions where the actual realizations of the

uncertain parameter in real-time is known. The deterministic approach corresponds to

large ∆C values since its day-ahead solution results in low operational cost, especially

low wind power curtailment cost, that considerably differs from the intra-day wind power
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Figure 4.7: The sensitivity of day-ahead solutions to intra-day solutions with respect to the
budget of uncertainty

curtailment since the deterministic approach does not take wind power uncertainty into

account. The proposed robust approach corresponds to small ∆C values as its day-ahead

solution accounts for the worst-case wind power scenario. Particularly, for Γ = 1, the av-

erage ∆C for the proposed robust approach is approximately 25% and 40% less than those

of the conventional robust and deterministic approaches, respectively. The smaller ∆C

in the proposed approach − compared to the conventional robust approach − is because

the proposed approach maps the partially-ineffective budgets of uncertainty to effective

budgets of uncertainty and consequently leads to less day-ahead wind power curtailment

and provides a day-ahead solution that is closer to the intra-day solution.
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4.3 Two-Area Test System

In this section, the performance of the proposed RO approach in the two-area mixed

AC-HVDC system is examined from various aspects such as robustness, power transfer

controllability, reliability, and sensitivity to system parameters.

4.3.1 Wind Power Generation

Figs. 4.8 demonstrates the admissible wind power interval (shaded regions) obtained from

solving the look-ahead SCED optimization problem using the proposed robust approach.

The look-ahead wind power dispatches based on the deterministic (Γa,t = 0) and robust (

Γa,t = 1) SCED optimization as well as a sample wind power scenario in real-time (WActual)

are shown in Fig. 4.8. Furthermore, Fig. 4.9 shows the remaining upward reserve (RUR),

inadequate upward reserve (IUR), and inadequate downward reserve (IDR) associated with

area 2, which are calculated based on the the look-ahead scheduled wind power dispatch

(pWk,t) and the intra-day optimization for the sample wind power scenario. In particular, if

WActual
k,t < pWk,t in the intra-day optimization, UR is required to compensate for the wind

power shortage. Otherwise, the system may encounter security issues. RUR is calculated

after responding to these shortages and is an indicator of the system security level. IUR

corresponds to the additional reserve needed for meeting the system security requirements

to respond to contingencies and outages. On the other hand, if pWk,t ≤ WActual
k,t , wind power

curtailment will be required when there is IDR in the system. IDR is not an indicator

of system security violation, as opposed to IUR, and corresponds to an extra DR that is

required to prevent potential wind power curtailment. The following findings are obtained
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from Figs. 4.8 and 4.9 for area 2. Similar conclusion can be made about area 1 as well.

• During time periods 9 and 10, since there is a sudden drop in Ŵk,t of area 2, the

maximum wind power admissibility (sk,t) of the look-ahead solution is reduced to

guarantee an RUR larger than 400 MW (UR requirement in constraint 3.27) under

potential low wind scenarios in the intra-day optimization. However, even though the

look-ahead wind power dispatch in the deterministic approach is more during these

periods, it is outside of the admissible region and may causes security issues. In

particular, RUR based on the proposed approach is above the security baseline over

the entire time horizon (IUR= 0), while in the deterministic approach, during critical

time periods 9, 14, and 15, the security of the system cannot be guaranteed due to

the non-zero IUR under potential low wind power scenarios, such as the sample wind

power scenario, in the intra-day optimization.

• During time periods 13 to 16 with low power demand, sk,t decreases to ensure that

look-ahead pWk,t resulting from the proposed approach is set at a low level to meet the

DR requirement of the system in the intra-day optimization. Thus, as pWk,t is reduced,

conventional generators are dispatched at a high level to accommodate the system

DR requirement under potential high wind scenarios in the intra-day optimization.

• The DR requirement in constraint (3.28) is met based on the proposed and determin-

istic approaches, while the maximum IDR is larger based on the proposed approach

for the sample wind power scenario. A higher IDR resulting from the proposed ap-

proach does not necessarily result in more intra-day wind power curtailment over

the entire time horizon (compared to the deterministic approach) since the intra-day

IDR occurs less frequently in the proposed approach.
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Figure 4.8: Look-ahead power wind power dispatch of the two-area system
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Table 4.1: Look-ahead and intra-day solutions of the proposed and deterministic approaches

Look-ahead Intra-day (average values)

Curtailed
wind

(MWh)

Utilized
wind

(MWh)

Operational
cost

×($1000)

Curtailed
wind

(MWh)

Utilized
wind

(MWh)

Operational
cost

×($1000)

IUR IDR
% of scenarios with IUR

during N intervals or more:
Max
IUR

% of scenarios with IDR
during N intervals or more:

Max
IDR

Budget Area N=1 N=2 N=3 (MW) N=6 N=8 N=10 (MW)

Γa,t = 0
1 94 8,702

2,340.1
639 8,932

2,371.2
97.1 85.3 60.8 51 100 97.6 85.3 132

2 0 4,870 471 5,021 95.6 79.8 51.1 58 99.5 95.7 83.1 107

Γa,t = 1
1 814 9,384

2,395.8
703 9,041

2,383.8
0 0 0 0 91.2 19.2 0 189

2 698 5,649 567 5,281 0 0 0 0 54.3 0 0 121

4.3.2 Reliability Analysis and Robustness Verification

To verify the robustness and reliability of the proposed approach, 1000 wind power scenarios

(WActual
k,t ) are randomly generated, and an intra-day optimization is carried out for each

scenario. In the intra-day optimization, the tie-line power flows are set to the flows obtained

from the look-ahead solutions. The curtailed wind, utilized wind, operational cost, IUR,

and IDR resulting from both approaches are summarized in Table 4.1, where the maximum

IUR and IDR are calculated with respect to the look-ahead solution and are obtained

from all scenarios over the entire time horizon. The rest of the table corresponds to

average values over all scenarios. Table 4.1 shows that the proposed approach outperforms

the deterministic approach in terms of satisfying the UR requirement. For example, the

solution from the deterministic approach fails to meet the system UR requirement at least

during one time interval in approximately 97% of the generated wind power scenarios, while

the solution from the proposed approach does not result in a positive IUR. Furthermore,

the look-ahead solution of the proposed approach results in less frequent IDR over the time

horizon. In Table 4.1, the look-ahead solution of the proposed approach corresponds to a

higher wind power utilization and wind power curtailment, compared to the deterministic

approach. The reason is that Γa,t = 1 corresponds to a larger wind power availability

interval and consequently a higher look-ahead wind power utilization when the available
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wind power can be dispatched without any security issue (e.g., periods 18-24 of Fig. 4.4).

On the other hand, the larger wind power availability interval enables a higher look-ahead

wind power curtailment during critical periods (e.g., periods 13-16 of Fig. 4.4) since it

accounts for the worst-case scenario to guarantee the system security under all wind power

scenarios in real-time. Thus, the worst-case wind curtailment consequently leads to a

higher operational cost in the proposed approach. This extra cost is considered as the

price of robustness, i.e., the price that is paid for accommodating the system security

under wind power uncertainty (Bertsimas and Sim, 2004). For each approach, the intra-

day wind power curtailment and operational cost of Table 4.1 correspond to the solution

of the intra-day optimization when the tie-line power flows are set to the flows obtained

from its look-ahead solution. This point will be more elaborated on in Section 4.4.

4.3.3 Maximum Wind Power Admissibility

To study the impact of line limits on the maximum wind power admissibility sk,t, the power

flow limits of internal lines 18, 20, and 22 in area 1 are decreased and other system settings

are kept unchanged. Fig. 4.10(a) shows sk,t of area 1 for various power flow limits. A lower

power flow limit results in more wind power curtailment to prevent overloading of the lines

under high wind power scenarios. In Fig. 4.10(b), the impacts of Rd
1,t on sk,t of area 1 is

illustrated (line flow limits are the original values), where higher values of Rd
1,t result in

more wind power curtailment to satisfy the DR requirements of the system under all wind

power scenarios in real-time. A similar conclusion can be made for Ru
1,t that higher values

of Ru
1,t result in more wind power curtailment to ensure the RUR is sufficient to satisfy UR

requirements of the system under all wind power scenarios in real-time.
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Figure 4.10: Sensitivity of sk,t in area 1 to a) F f and b) Rd
1,t.

4.3.4 System Type

Fig. 4.11 shows the tie-line flows based on the look-ahead RO approach with Γa,t = 1 for

AC and mixed AC-HVDC systems, where a positive flow denotes power flowing from area

1 to area 2. The AC system is considered as a large single-area system, where the tie-line

flows are described in constraint (3.11). Fig. 4.11 shows that in the mixed AC-HVDC
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system, the proposed approach more dynamically responds to the variability of wind and

load profiles. For example, the proposed approach in the mixed AC-HVDC system results

in less power transfer to area 2 during time periods 13-16 due to low wind power in area

1, while in later time periods, the net power exchange of area 1 with the adjacent area

increases due to higher levels of wind power in area 1. This is because the tie-line flows

in the mixed AC-HVDC system can be independently controlled (modeled as external

injections in the optimization problem). However, such a controllability does not exist

in the AC system since the power flow in the AC tie-lines is more constrained due to its

dependency on the voltage angle of the boundary buses, which is incorporated in GI
f,i in

constraint (3.11). Table 4.2 summarizes the look-ahead solution of the proposed approach

in both systems and shows that the mixed AC-HVDC system outperforms the AC system

in terms of utilized wind power and total operational cost.
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Figure 4.11: Tie-line flows and wind power dispatches of area 1 based on the look-ahead RO
approach in AC and mixed AC-HVDC systems for Γa,t = 1

62



Table 4.2: Look-ahead solution of the proposed approach in AC and mixed AC-HVDC systems

System
Power exchange

(MWh)
Utilized wind
power (MWh)

Total operational
cost ($1000)

AC 2,593 14,942 2,403.6
Mixed 3,010 15,033 2,395.8

4.4 Three-Area Test System

Tables 4.3 and 4.4 present the look-ahead solution based on the proposed RO and conven-

tional approaches for AC and mixed AC-HVDC systems under various budgets of uncer-

tainty. The following observations can be obtained for the proposed approach form Tables

4.3 and 4.4:

• Larger budgets of uncertainty result in more conservative solutions (Bertsimas and

Sim, 2004), where more wind power is curtailed in the look-ahead solution to ensure

the system security under the worst-case wind power scenario in real-time. Thus, as

the budget of uncertainty increases, the total operational cost increases due to the

increased wind power curtailment cost.

• The total operational cost of the mixed AC-HVDC system is lower than that of

the AC system since more wind power is utilized in the entire system due to the

controllability of HVDC tie-line power flows.

• The level of conservatism of the solution can be adjusted based on the budget of

uncertainty. A larger budget of uncertainty leads to a more conservative solution

(higher robustness) with more wind power curtailment and consequently a higher

operational cost.
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Table 4.3: Look-ahead solution based on the proposed approach for AC and mixed AC-HVDC
systems under various budgets of uncertainty

Mixed system AC system
Budgets Curt. Utilized Operational Curt. Utilized Operational

wind wind cost wind wind cost
Γ3,t Γ1,t (MWh) (MWh) ($1000) (MWh) (MWh) ($1000)
0.0 0.0 131 34,447 3,269.7 1,572 33,066 3,338.3

1.0
0.5 901 36,916 3,320.4 2,779 34,146 3,416.5
1.5 1,453 38,870 3,335.4 4,398 35,925 3,442.9
3.0 2,343 39,605 3,372.0 5,51 36,797 3,468.9

2.0
0 .5 1,494 38,647 3,339.6 4,348 35,793 3,439.9
1.5 1,916 39,723 3,353.2 4,888 36,749 3,455.1
3.0 3,009 40,254 3,402.1 5,850 37,413 3,503.1

Table 4.4: Look-ahead solution based on the conventional robust approach for AC and mixed
AC-HVDC systems under various budgets of uncertainty

Mixed system AC system
Budgets Curt. Utilized Operational Curt. Utilized Operational

wind wind cost wind wind cost
Γ3,t Γ1,t (MWh) (MWh) ($1000) (MWh) (MWh) ($1000)
0.0 0.0 131 34,447 3,269.7 1,572 33,066 3,338.3

1.0
0.5 993 36,832 3,325.0 2,835 34,090 3,418.8
1.5 1,513 38,810 3,338.4 4,424 35,899 3,462.6
3.0 2,385 39,563 3,376.1 5,237 36,711 3,473.2

2.0
0 .5 1,618 38,523 3,345.8 4,449 35,692 3,443.9
1.5 2,138 39,501 3,364.3 5,038 36,599 3,462.6
3.0 3,009 40,254 3,402.1 5,850 37,413 3,503.1

• A larger budget of uncertainty corresponds to a larger wind power availability interval

and consequently a solution with larger curtailed and utilized wind power over the

entire time horizon. The reason is that a larger wind power availability enables

more wind power curtailment to ensure the system security during time periods with

potential low wind power dispatch. In contrast, in the rest of time periods, where the

wind power can be dispatched at a high level without violating the security of the

system, a larger wind power availability interval results in more utilized wind power.
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• The proposed approach outperforms the conventional robust approach, in terms of

wind power utilization and leads to lower operational costs. The reason is that the

proposed approach maps the ineffective budgets into effective budgets, as shown

in section 4.2.1. For no and full budgets of uncertainty, both approaches lead to

similar solutions, which are shown in the first and the last rows of Tables 4.3 and

4.4, respectively.

In a multi-area power system, power exchanges among areas are scheduled based on the

day-ahead or look-ahead market. Changing a scheduled tie-line flow in real-time requires

an agreement from all neighbouring areas since such changes may lead to security issues

or additional costs. To verify the real-time cost efficiency and reliability of the look-ahead

robust solution of the proposed approach, the wind power curtailment and operational

cost associated with the intra-day optimization should be calculated. In this section,

three strategies are proposed to solve the intra-day optimization problem: i) constant

flows (CF), ii) semi-flexible flows (SFF), and iii) flexible flows (FF). In CF, no deviation

from the scheduled tie-line flows (based on the look-ahead solution) is allowed. In the SFF,

relatively small deviations (5%) from the scheduled tie-line flows are allowed, but a penalty

term is added to the objective function to account for the deviations. In FF, unlimited

deviations from the scheduled tie-line flows are allowed.

To performe the intra-day optimization model under various strategies, 100 wind

power scenarios are generated, and the SCED problem is solved under each generated wind

power scenario for AC and mixed AC-HVDC systems. The intra-day solutions based on

CF and SFF strategies are summarized in Tables 4.5 and 4.6, respectively. Maximum,

average, and minimum values of the total operational cost based on CF, SFF, and FF
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strategies as well as the total operational cost of the look-ahead robust and deterministic

solutions for the mixed AC-HVDC system are plotted in Fig. 4.12. The following findings

can be observed from Tables 4.5 and 4.6 and Fig. 4.12:

• The deterministic approach does not guarantee the system security in real-time as it

results in IUR (IUR > 0).

• The intra-day robust solution corresponds to no IUR (IUR = 0), and therefore the

proposed RO approach guarantees the system security in real-time. However, the

intra-day robust solution corresponds to a higher IDR, as compared to the determin-

istic approach, since more wind power is utilized in the proposed approach, which

corresponds to lower power dispatches of conventional generators for a given load.

Thus, the robust solution corresponds to a lower DR in the system, which is required

to prevent wind power curtailment. In addition, the look-ahead robust solution pro-

vides an upper bound for the total operational cost of the intra-day robust solutions

since the look-ahead decisions are made for the worst-case wind power scenario.

• The SFF strategy corresponds to a lower total operational cost, compared to the

CF strategy, due to its flexibility in adjusting the scheduled tie-line flows. The tie-

line flow deviations correspond to the flow difference between the look-ahead and

intra-day solutions.

• The FF strategy corresponds to a lower bound for the total operational cost in real-

time as in this strategy, the tie-line flows can be fully adjusted based on WActual
k,t .

• In the mixed AC-HVDC power system, the wind power utilization and operational

cost are respectively higher and lower than those of the AC system, due to the con-
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Table 4.5: Intra-day RO solution based on CF strategy

Mixed AC-HVDC system AC system
Budgets Curtailed Utilized Max Max Operational Curtailed Utilized Max Max Operational

wind wind IUR IDR cost wind wind IUR IDR cost
Γ3,t Γ1,t (MWh) (MWh) (MW) (MW) ×($1000) (MWh) (MWh) (MW) (MW) ×($1000)
0.0 0.0 544 35,088 131 181 3,333.5 2,532 32,100 212 162 3,447.4

- 16% of scenarios are infeasible

1.0
0.5 591 35,055 0 196 3,320.1 2,061 33,585 0 183 3,414.0
1.5 744 36,895 0 201 3,329.3 3,352 34,290 0 194 3,439.2
3.0 928 37,849 0 219 3,353.2 3,594 35,283 0 208 3,458.7

2.0
0.5 451 35,419 0 227 3,330.4 3,101 32,769 0 198 3,425.1
1.5 598 38,025 0 279 3,339.1 3,312 35,412 0 271 3,448.1
3.0 1,342 38,162 0 282 3,371.9 3,921 35,583 0 273 3,490.3

Table 4.6: Intra-day RO solution based on SFF strategy

Mixed AC-HVDC system AC system
Budgets Curtailed Utilized Operation Tie-line flow Curtailed Utilized Operation Tie-line flow

wind wind cost deviations wind wind cost deviations
Γ3,t Γ1,t (MWh) (MWh) ($1000) (MWh) (MWh) (MWh) ($1000) (MWh)
0.0 0.0 472 35,161 3,325.6 334 2,395 32,237 3,434.1 206

- 7% of scenarios are infeasible

1.0
0.5 301 35,339 3,316.1 531 1,790 33,858 3,403.3 281
1.5 398 37,233 3,322.9 567 3,305 34,105 3,770.3 286
3.0 565 38,311 3,337.2 628 3,382 35,495 3,447.2 318

2.0
0.5 331 35,534 3,321.4 683 2,820 32,949 3,414.8 241
1.5 420 38,303 3,325.1 702 3,130 35,493 3,433.1 294
3.0 908 38,595 3,351.6 815 3,786 35,717 3,466.7 335

trallability of HVDC tie-line flows. However, in the AC system, the IDR is relatively

smaller due to lower tie-line flows. The lower power transfer from area 1 (generation-

dominant area) to the other areas results in higher dispatch levels of conventional

generators of areas 2 and 3. This ultimately spares more DR in areas 2 and 3 of the

AC system and corresponds to a lower IDR in real-time.
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Figure 4.12: Maximum, average, and minimum values of the total operational cost based on
the intra-day robust, look-ahead robust, and look-ahead deterministic approaches (Γ3,t = 2)
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Chapter 5

Conclusion

The development of robust optimization (RO) models is essential to address wind power

uncertainty in the security-constrained economic dispatch (SCED) problem for alternating

current (AC)-high voltage direct current (HVDC) power systems. In such SCED problems,

available wind power is often used in the right-hand side (RHS) of the constraint associated

with the upper bound of wind power dispatch. The traditional RO approach for solving

such SCED problems may be overly conservative since it finds a solution that is feasible

under any possible realization of the uncertain wind power. The budget of uncertainty

approach has been proposed in the literature of RO to adjust the level of conservatism.

This thesis showed that the conventional budget of uncertainty approach is not particularly

meaningful for a class of problems with the RHS uncertainty since increasing the budget

of uncertainty may not always impact the the level of conservatism of the robust solutions.

Therefore, any consideration of the budget of uncertainty beyond a certain threshold would

lead to “partially-ineffective” budgets.
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This thesis proposed a new two-stage RO approach to tackle the uncertainty in

problems with RHS uncertainty. The proposed two-stage approach first solves an auxiliary

problem to identify an admissible uncertainty set within which the feasibility of the solution

is guaranteed. Then, an effective uncertainty set is defined as a subset of the admissible set

where the worst-case scenario always occurs. In the second stage, an uncertainty budget

is incorporated in the model by mapping the partially-ineffective budgets into effective

budgets. This thesis showed that the proposed model not only effectively controls the level

of conservatism in such problems, but also provides meaningful insights into the trade-off

between the robustness and operational cost.

The applicability of the proposed approach was examined for the SCED problem

in mixed AC-HVDC multi-area power systems. This thesis considered the new advance-

ments in multi-area power systems, where HVDC transmission lines are used to transfer

power from offshore wind farms to onshore loads, and addressed the operating character-

istics and reliability requirements of such mixed AC-HVDC systems. The existing gaps

in the literature of robust SCED were addressed by considering the impact of wind power

curtailment on the operational cost and reliability requirements of the system. Finally,

the practical merits of the proposed approach from various aspects such as reliability,

robustness, and cost efficiency were demonstrated.

Power dispatch problems, in particular the SCED problem, are only one of the

many areas dealing with the RHS uncertainty. In many real-world applications such as

project management, scheduling, dynamic inventory management, and telecommunication

problems, various parameters − such as time, resource availability, stock level, arrival

rates − appear in the RHS of constraints which are potentially uncertain. The proposed
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approach can be adapted in such problem settings to effectively control the level of con-

servatism of the robust solutions.
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