
An Implementation of a Predictable
Cache-coherent Multi-core System

by
Paulos Tegegn

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Paulos Tegegn 2019



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Chapter 2 and 3 has been incorporated within a paper that has been submitted for publi-
cation. The paper is co-authored by Kaushik, A. M., my supervisor Patel, H., and myself.
In Chapters 6, Zhuanhao Wu aided in implementing the tethered system.

iii



Abstract

Multi-core platforms have entered the realm of the embedded systems to meet the
ever growing performance requirements of the real-time embedded applications. Real-
time applications leverage the hardware parallelism from multi-cores while keeping the
hardware cost minimum. However, when the real-time tasks are deployed on the multi-core
platforms, they experience interference due to sharing of hardware resources such as shared
bus, last level cache and main memory. As a result, it complicates computing the worst-
case execution time of the real-time tasks. In this thesis, I present a hardware prototype
that implements a predictable cache-coherent real-time multi-core system. The designed
hardware follows the design guidelines outlined in the predictable cache coherence protocol.
The hardware uses a latency insensitive interfaces to integrate the multi-core components
such as the processor, cache controller and interconnecting bus. The prototyped multi-core
hardware is synthesized and implemented in a low-cost and high-performing FPGA board.
The hardware is validated and verified on a tethered system that enables the design to run
multi-threaded pthread applications.

iv



Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Professor Hiren
Patel for his relentless patience, guidance, and training over the past two years. Your help
has been invaluable. I thank my readers Professor Nachiket Kapre and Mahesh Tripunitara
for reviewing this thesis.

I thank my colleagues and friends Anirudh M. Kaushik, Zhuanhao Wu and Nivedita
Sritharan in the Computer Architecture and Embedded Systems Research group at Uni-
versity of Waterloo for the guidance, support and expert advice.

I thank my family for providing me with unfailing support and continuous encourage-
ment throughout my years of study. Thank you.

Thanks to all my friends here at Waterloo.

v



Dedication

For my family

vi



Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 4

2.1 Real-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Interconnect Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Background 6

3.1 Hardware Cache Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Conventional Coherence Protocol . . . . . . . . . . . . . . . . . . . 8

3.1.2 Predictable cache coherence for real-time systems: PMSI . . . . . . 10

4 System Overview 15

4.1 Baseline System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



5 Implementation 17

5.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.2 Cache Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.3 Snooping Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Access to DDR3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Testing Hardware Environment 34

6.1 Development FPGA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Dual-Core Top Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Tethered System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 RISCV Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.6 Communication Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.6.1 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6.2 Shared Memory on DDR3 DRAM . . . . . . . . . . . . . . . . . . . 38

7 Evaluation 40

7.1 Test Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Conclusions and Future Work 44

References 45

viii



List of Figures

3.1 Snooping based cache coherence example. . . . . . . . . . . . . . . . . . . 8

3.2 MSI cache coherence protocol with stable states and respective transitions. 9

3.3 PMSI Architectureal support . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Baseline Multi-core System Model . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Valid and Ready handshake interface. . . . . . . . . . . . . . . . . . . . . . 18

5.2 Input and output ports of the Data Array interface . . . . . . . . . . . . . 19

5.3 Basic interface ports of the FIFO design . . . . . . . . . . . . . . . . . . . 20

5.4 The processor interfaces and the message format of the cache-request and
cache-response channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.5 Cache controller interfaces and the message format of memory-request and
memory-response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.6 A sample write data path diagram of the direct-mapped cache. . . . . . . . 24

5.7 Cache Controller three stage state machine . . . . . . . . . . . . . . . . . . 25

5.8 Snooping bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.9 Memory controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.10 Memory controller state machine . . . . . . . . . . . . . . . . . . . . . . . 31

5.11 Content Addressable Memory . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.12 DDR3 interface diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Tethered System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Address mapping of RISCV run time to handler virtual address . . . . . . 39

ix



List of Tables

3.1 Cache coherence problem example when core c1 and c2 access data at address
A. ”A:1” indicates that address A has value of 1. And the column tells
whether it is in the cache or main-memory. Note that if the entry is empty
in the cache column, it means no data is cached. . . . . . . . . . . . . . . 7

3.2 Optimized MSI Snooping Protocol - Cache Controller [20] . . . . . . . . . 12

3.3 Optimized MSI snooping protocol of the memory controller [20] . . . . . . 13

3.4 Additional states and transitions in PMSI [10] . . . . . . . . . . . . . . . . 13

3.5 PMSI coherence table [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Cache controller event encoding. Note that ID denotes the Core ID number. 23

5.2 Enumeration of all instructions that the cache controller can perform on the
cache and FIFO modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Cache coherence table logic for cache hit event. U represent the pending
store operation after refill of the data line. . . . . . . . . . . . . . . . . . . 26

5.4 Cache coherence table logic for cache miss event. oldAddr is the evacuated
cache line address due to the new address request. . . . . . . . . . . . . . . 27

7.1 Total resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Resource utilization per components of the dual-core top module. . . . . . 41

7.3 comparison our RISCV core to the sodor . . . . . . . . . . . . . . . . . . . 42

7.4 Worst case latency of memory request of SPLASH2 benchmarks . . . . . . 43

x



Chapter 1

Introduction

Modern real-time systems comprises multiple tasks with different timing and performance
demands. These tasks may share the common hardware resources that they are deployed
on. Several certification standards require that high critical tasks never exceed their tempo-
ral guarantees. if these tasks exceed their temporal requirements, it will lead to catastrophic
consequences. For instance, the Anti-lock Braking System (ABS) of the automotive must
finish before the asserted deadline, otherwise it will lead to deadly consequences.

As the real-time task performance requirement increases, multi-core platforms have
gained interest to meet the demand trend. leveraging the multi-cores provides hardware
parallelism that real-time applications can exploit while reducing the hardware cost. How-
ever, when real-time applications are deployed on multi-core platforms, It raises several
issues. One problem is it makes the process of analyzing the worst case execution time of
the tasks difficult because the off-the-shelf multi-core platforms are curated for average case
performance. And when these real-time tasks run on the multi-cores, they may experience
varies interference due to sharing common hardware resources such as last-level caches,
main memory. The other challenge is successfully leveraging the parallelism of multi-cores
while guaranteeing predictability. For example, some platforms such as Kalray’s multi-core
platforms do not support hardware cache coherence. that means it does not allow exchang-
ing data with in many-core processors that will allow to use the available processing power.
This results prohibiting parallel execution of task.

There has been limited research on bounding the interference when different tasks
exchange shared data. Particularly, predictably exchanging shared data between tasks
while delivering high-performance. The reason is many works assume tasks do not share
data [9, 12, 6]. However, for tasks that do share data, designers use software techniques such

1



as enforcing non-caching of shared data, data duplication in the main memory [11], selective
partitioning of the data to ensure predictability of the tasks [5, 8, 11, 6]. This places
a burden on the designer to invest efforts in the real-time application and programming
model to achieve predictable data sharing. Furthermore, these approaches pay a significant
price on performance, and strain memory requirements and cost of real-time application
deployment.

PMSI [10] proposed a set of design guidelines to enable predictable data sharing via
hardware cache coherence. This technique enabled multiple copies of shared data to si-
multaneously exit in the private caches of multi-cores while guaranteeing predictable data
sharing. Furthermore, enabling predictable data sharing through cache coherence gave
significant performance advantages (up to 4X and 71% on average) over prior real-time
approaches without the need to make changes to the application to identify shared data.

1.1 Contributions

This thesis proposes a hardware implementation of a predictable cache coherence protocol
for multi-core real-time systems. The contributions are as follows:

• A hardware prototype that implements the first predictable cache coherent real-time
multi-core system.

• A latency insensitive interfaces that is used in the cache coherence policy for data
exchanging between multi-core components.

• The RTL of the multi-core hardware implementation is synthesized and verified on
small size FPGA board (Pynq).

• A tethered system where the multi-core hardware is enabled to run multi-threaded
pthread applications.

1.2 Overview

The remainder of this thesis is organized into several sections as follows: Chapter 2 dis-
cusses the related work in real-time multi-core systems and interconnect protocols. chapter
3 provides a background on a conventional cache coherence protocol in a multi-core system

2



as well as a predictable cache coherence protocol. Chapter 4 gives the system model of the
designed multi-core hardware and how it is mapped in the FPGA hardware. Chapter 5
details the cache coherent hardware design, its components and the latency insensitive in-
terface used to integrate the components. Chapter 6 describes the tethered system created
in the FPGA hardware, and the support for atomic instructions in the core and cache con-
troller in order to run pthread applications. Chapter 7 shows the results of the designed
resource utilization and the used test applications to validate the correctness. Finally,
Chapter 7 provides a conclusion and description of future work to improve the system.

3



Chapter 2

Related Work

2.1 Real-time systems

Multi-core real-time systems is composed of components such as interconnects, main mem-
ory and last level caches that are shared among cores. When a core tries to make access
to these shared components, it could experience interference from other cores. This will
result in non-trivial worst case timing analysis of real-time tasks. Prior works followed
several approaches to achieve predictable data sharing.

1. The first approach is by disabling caching of exchanged data in private caches [9, 12,
6]. This achieved bounded latency in accessing shared data at the cost of reduced
average cache performance. The reason is it is not benefiting from low latency private
cache hits.

2. The second way to attain predictability is by replicating the exchanged data [11].
This approach minimizes the opportunity to execute tasks in parallel.

3. The other approach is by scheduling tasks that share data on the same core by applies
support on the OS layer [5, 8, 11, 6].

These approaches obtain predictable data sharing at the cost of reduced average-case
performance. Similarly, Pyka et al. [16] modified the applications to use software locks
when tasks are accessing the same data. However, only one core were able to have access
to the communicated data at any time instance.

4



Hassan et al. [10] proposed PMSI, a predictable cache coherence protocol that was built
on a set of general design guidelines to realize predictable data sharing through hardware
cache coherence. PMSI significantly improved average-case performance of tasks compared
to prior real-time approaches while maintaining predictability.

2.2 Interconnect Architecture

There has been different open source interconnect standards [22, 18] published to be used in
architecting system-on-chip designs. AMBA ACE [22] is one standard that can be used in
integrating components in SoC. TileLink [18] is the new open standard that came with the
popularity of RISCV ISA. Tilelink is an interconnect protocol used in cache coherence data
transactions. cache coherence transactions are the data transactions used in implementing
a cache coherence policy. The purpose of TileLink is to isolate the design of on-chip
interconnects and the implementation of cache coherence protocol in the cache controllers.
Tilink is the closest interconnect standard that can be used in designing predictable multi-
core system.

5



Chapter 3

Background

This chapter introduces the principle of cache coherence in a multi-core system. I will use
a conventional cache-coherence protocol for illustration. This will provide the reader with
the necessary background to discuss the PMSI cache coherence protocol [10], which this
thesis implements in hardware.

3.1 Hardware Cache Coherence

All cores in modern multi-core platforms have access to data in the main memory, and
employ a private cache. The reason for using a private cache is to utilize spatial and
temporal locality to improve application performance. The task running on the core can
access exclusive or shared data from main memory. A data access is called exclusive when
only one core accesses the data, and shared access when more than one core access the
data. If the task running on the core accesses the data exclusively, it sees the correct view
of the memory and benefits from the private cache due to low access latency. However, if
it accesses shared data, it could see different values of the same data than what the other
cores see. Table 3.1 shows the problem. Suppose there are two cores c1 and c2 accessing
the data at address A in main memory. First, c1 reads the data at address A. Then, core
c2 loads the same data. At this point both cores have the same data for address A. Later,
core c2 modifies address A, which makes the cached data in core c1 stale. When c1 reads
address A again, it will read the old value. This results in incorrect execution of the parallel
program. Hence, all cores must have the same view of the shared data to guarantee correct
program execution. Hardware cache coherence is a mechanism that guarantees coherent
access to shared data.

6



Event c1 Cache c2 Cache Main-memory

A:0
c1 Load:A A:0 A:0
c2 Load:A A:0 A:0 A:0
c2 Store:A=1 A:0 A:1 A:1
c1 Load:A A:0 A:1 A:1

Table 3.1: Cache coherence problem example when core c1 and c2 access data at address
A. ”A:1” indicates that address A has value of 1. And the column tells whether it is in the
cache or main-memory. Note that if the entry is empty in the cache column, it means no
data is cached.

Hardware cache coherence is a set of rules that data exchanging components follow
such that the shared data is always coherent. Each cache and the memory employ a
state machine controller called cache controller and memory controller respectively. These
controllers implement the set of rules. These set of rules, also known as the cache coherence
protocol, consists of the states that represents the read/write access permissions of the data
and the transitions between states with its corresponding triggering events that occur due
to core’s memory activity. These coherence controllers exchange messages with each other
through snooping or directory based interconnect to maintain coherent view of the main
memory. This work chose snooping based interconnect because it provides low-latency
coherence message transactions and simpler design for implementation in a small FPGA
board. The granularity of data exchanged between cores and shared memory is in cache
line size.

The following example demonstrates the basic principle of cache coherence by using
Figure 3.1. This example uses core c0 accessing a cache line Z. Suppose core c0 issues a
store request to cache line Z 1©. Core c0’s cache controller checks if cache line Z exists in the
private cache 2©. If it was a cache hit, the controller would perform a write operation into
the line and acknowledge the processor marking the request completed. If it is a cache miss
3©, the controller issues a coherence message on the snooping bus; thereby broadcasting it
to all cores and the shared memory asking for the cache line in modified state and waits
for a response 4©. A coherence message is said to be broadcasted on the bus when all cores
and the shared memory observe the coherence message. The shared memory observes the
memory request and responds with the data to the requesting core c0 5©. When the cache
controller receives the requested cache line from the bus, it fills the line in the private
cache, performs the write operation 6©, and acknowledges 7© the core marking the request
completed.

7



Addr Data State 
  

  

Cache

CPU0

Bus

1 Store

 Controller
2 Lookup

3 Miss

 Controller

Addr Data  
Z 100  

A 200  

Main   Memory

Cache

CPU1

 Controller

4 Broadcast

5 Response

7 Ack

6 Refill;Store

Addr Data State 
  

  

Figure 3.1: Snooping based cache coherence example.

3.1.1 Conventional Coherence Protocol

The Modified-Shared-Invalid (MSI) cache coherence protocol is a basic protocol that several
modern cache coherence protocols, such as MESIF, and MOESI protocols, are built upon.
As illustrated in Figure 3.2, MSI consists of three stable states: (1) Invalid (I) denotes
the cache does not hold a valid cache line. (2) Modified (M) denotes the core has modified
and owns the cache line. We refer to a core that owns cache lines as owners (3) Shared
(S) denotes that a core has read-only access to the cache line. More than one core may
have the cache line in S state. The objective of the cache coherence protocol is to enforce
single-writer-multiple-reader (SWMR) invariant at all times [20].

The coherence messages are the triggering events that walk the cache line state through
the coherence protocol. Owner or remote core’s memory activities initiate these coher-
ence messages. A cache controller generates a GetM(Z) coherence message when it ob-
serves a store memory request from its own processor. GetM(Z) entails the core’s in-
tent to keep the line in M once it receives the requested line from the bus. Similarly,
GetS(Z) entails the core’s intent to cache the line in S after it receives the line. When
a cache controller wants to write back a line that exists in M , it generates PutM(Z).
When a core issues a store request to a line that is present in the private cache as
S, the cache controller generates an Upg(Z). Note that after the bus orders the coher-

8



I

M S

O
th

er
G

et
M

 o
r

O
w

nP
ut

M

O
w

nG
et

M
 

O
w

nG
etS

O
therG

etM
 or

O
therU

pg
OwnUpg
 

OwnGetS
 

OwnGetM
 

OwnGetS 
or 
OtherGetS
 

Figure 3.2: MSI cache coherence protocol with stable states and respective transitions.

ence message to all endpoints, the requesting cache controller sees its own requests as
OwnGetM(Z)/OwnGetS(Z)/OwnPutM(Z)/OwnUpg(Z), while other cores see the messages as
OtherGetM(Z)/OtherGetS(Z)/OtherPutM(Z)/OtherUpg(Z). Transitions between states occur
based on the initial state, its own processor memory request, and the coherence mes-
sage as shown in Figure 3.2. For instance, when a core sees OtherGetM(Z) to a line in S
state, it moves to I.

The MSI coherence protocol discussed so far assumes the bus to be atomic. No other
memory request is broadcasted on the bus while one core has already ordered a memory
request and is waiting the memory response. This simplifies the protocol at the cost of per-
formance. However, high performance coherence protocols use nonatomic transactions to
improve bandwidth of the bus. This requires introducing additional states in the protocol.

The high performing MSI coherence protocol introduces transient states. These in-
termediate states allow cores to keep track of interleaving memory requests broadcasted
on the bus. A memory request may experience other requests while waiting for permis-
sion to broadcast the coherence message on the bus or waiting for a response to already
broadcasted coherence message. For example, the IMAD transient state is an intermediate
state between the invalid (I) state and the modified (M) state. When a core issues a store
request to a cache line that is present in the private cache as (I) state, cache controller
will identify it as a cache miss by marking the line as IMAD state. Then, the controller
generates a pending write request coherence message and waits for the bus permission to

9



broadcast it on the bus. Here A indicates the core is waiting to broadcast its coherence
message on the bus and D indicates core is waiting for data response. When a core sees its
own coherence message ordered on the bus, the controller marks the cache line to another
transient state IMD. Once the core receives the data, it performs the write operation, and
updates the line as M state.

I present the full coherence specification of the state MSI protocol in Table 3.2 and
Table 3.3. The additional transient states are due to non atomic transaction. As a result,
it increased the overall complexity of the protocol.

3.1.2 Predictable cache coherence for real-time systems: PMSI

Although conventional coherence protocols provide cores access to shared data, it does not
address the problem of providing bounded latency in accessing the shared data necessary
for real-time multi-core systems. PMSI [10] work proposed a template to realize cache
coherence protocols that enables sharing data predictably in multi-core systems. The
template consists of design guidelines applied to the cache controllers, memory controllers,
and the arbitration policy. Cache coherence protocols must adhere to these guidelines in
order to guarantee bounded latency for shared data accesses. PMSI is a concrete realization
of the proposed template that extends the MSI cache coherence protocol by equipping it
with predictable data sharing.

PMSI is an extension of MSI with new transient and stable states, and state transitions.
Table 3.4 summarizes the additional coherence states and the state transitions. As shown
in Figure 3.3, PMSI adds the following four architectural components that coordinate with
the coherence protocol to guarantee predictable data sharing:

1. The pending request lookup table (PR LUT) at the memory controller. The PR LUT
records pending requests to cache lines. PR LUT records multiple pending requests
to a cache line in the broadcast order. Similarly, memory controller responds to the
requesting core in broadcast order.

2. Each cache controller contains two FIFO buffers: pending request (PR) and pending
write-back (PWB) buffer. The PR buffer holds request coherence messages waiting
for the cache controller to broadcast them on the bus, while PWB buffer holds the
pending write-back response generated in the cache controller due to either remote
core memory activity or cache eviction due to replacement.

10



3. Each cache controller services requests, responses, and write-backs in work conserving
round-robin arbitration. When a core gets its turn to use the bus, either it services
the coherence message in PR buffer or responses from PWB buffer. Furthermore,
serving requests in the PR buffer consists either generating request coherence message
to the bus or receiving a response from the memory controller to already broadcasted
request coherence message.

4. PMSI uses a time-division multiplexing (TDM) bus arbitration policy to avoid star-
vation cores in accessing the shared resources. TDM arbitrates accesses to shared
bus and memory in a predictable manner. The TDM arbitration policy allocates
slots fixed time for each core to access the shared bus and the shared memory.

Main Memory 

Cache

CPU

Cache
Controller Cache

CPU

Cache
Controller 

Work conserving roundrobin
arbitration

Address Address

Pending Request
(PR) FIFO 

Pending writeback
(PWB) FIFO 

Pending request
Lookup table (PRLUT) 

Address  Core ID  Coherence 
message 

     

     

Bus TDM arbiter

Memory Controller
  PR LUT

Figure 3.3: PMSI Architectureal support

The following example illustrate an example of unpredictable circumstance and how
the PMSI extension avoids it. This sample of interference is between two actions from
the same core. The first action is core having a pending request waiting to be issued
on the underlying memory. The second is core’s pending write-backs to lines cached in
modified state due to remote core requests. If we look at conventional MSI protocol,
pending request has lower priority than write-back response. As a result, the pending
request can be indefinitely postponed because of back to back write-backs due to remote
probing. PMSI solves the source of unpredictability by allocating a slot between pending
request and pending write-back in round robin. Therefore, the latency of the remote core’s
memory request is bounded.

11



T Load Store Replac-
ement

Own
GetS

Own
GetM

Own
PutM

Other
GetS

Other
GetM

Other
PutM

Own
Data

I issue
GetS
/ISAD

issue
GetM
/IMAD

- - -

ISAD stall stall stall ISD - - - /ISA

ISD stall stall stall - ISDI load
hit/S

ISA stall stall stall load
hit/S

- -

ISDI stall stall stall - - load
hit/S

IMAD stall stall stall IMD - - - IMA

IMD stall stall stall IMDS IMDI store
hit/M

IMA stall stall stall store
hit/M

- - -

IMDI stall stall stall - - store
hit,
send
data/I

IMDS stall stall stall - IMDSI store
hit,
send
data/S

IMDSI stall stall stall - store
hit,
send
data/I

S hit issue
GetM
/SMAD

I - I

SMAD hit stall stall SMD - IMAD SMA

SMD hit stall stall SMDS SMDI store
hit/M

SMA hit stall stall store
hit/M

- IMA

SMDI hit stall stall - - store
hit,
send
data/I

SMDS hit stall stall SMDSI store
hit,
send
data/S

SMDSI hit stall stall - - store
hit,
send
data/I

M hit stall issue
PutM/
MIA

send
data/S

send
data/I

MIA hit stall stall send
data/I

send
data/IIA

send
data/IIA

IIA hit stall stall -/I - - -

Table 3.2: Optimized MSI Snooping Protocol - Cache Controller [20]

12



T GetS GetM PutM from
Owner

PutM from Non-
Owner

Data

IorS send data to re-
quester

send data to
requester, set
owner to re-
quester

-

M clear
Owner/IorSD

set owner to re-
quester

clear
Owner/IorSD

write data to
memory/IorSS

IorSD stall stall stall write data to
memory/IorS

IorSA clear
Owner/IorS

clear
Owner/IorS

Table 3.3: Optimized MSI snooping protocol of the memory controller [20]

Design guideline Coherence protocol extensions

Cores write-back owned cache
lines that are requested by other
cores in their allocated slots

1) New transient states:MIwb and MSwb

2) New state transitions between M and MSwb, M
and MIwb and MSwb and MIwb based on the re-
questing cores’ memory activity

Cores upgrade cache lines in
their allocated slots

1) New stable state SMw that indicates a pending
upgrade
2) New state transition between S and SMw and
SMw and I based on the requesting cores’ memory
activity

Table 3.4: Additional states and transitions in PMSI [10]

13



T Load Store Replac-
ement

Own
Data

Own
Upg

Own
PutM

Other
GetS

Other
GetM

Other
Upg

Other
PutM

Own
GetS

Own
GetM

I issue
GetS
/ISAD

issue
GetM
/IMAD

X X X X X

S hit issue
Upg
/SMW

I X X I I X X X

M hit hit issue
PutM
/MIWb

X X X issue
PUTM
/MSWb

issue
PUTM
/MIWb

X X X X

ISAD X X X X X ISD X

ISD X X X read/S X X ISDI ISDI X X

IMAD X X X X X X IMD

IMD X X X write/M X X IMDS IMDI X X X

SMW X X X write/M X I I X X

MIWb hit hit X X send
data/I

X X X X

MSWb hit hit MIWb X X send
Data/S

X X X X

IMDI X X X write/MIWb X X X X

ISDI X X X X X X X

IMDS X X X X IMDI X X X

Table 3.5: PMSI coherence table [10]

14



Chapter 4

System Overview

This chapter discusses the main components in the system model and its interfaces.

4.1 Baseline System Model

The hardware prototype implementation is based on the shared-memory system model
with multi-core processors. The processor is a traditional in-order CPU and has 5 pipeline
stages. It executes instructions and issues store and load memory requests to the under-
lying memory hierarchy. The core is comprised of instruction and data private caches.
This private cache helps to lower the memory request latency and increase the memory
bandwidth by utilizing the temporal and spatial locality. The private cache used here is
chosen to allow implementation in small FPGAs. Hence, it is a write-back, direct-mapped
cache that supports a simple replacement policy. However, it can be extended to have
high performing caches with higher associativity as well. The cache controller is the unit
that services requests coming from processor and coherence requests from the interconnect.
Multiple copies of cores are connected by the snoopy bus to the shared memory.

The memory controller is similar to cache controller except it does not generate co-
herence messages into the snooping bus. The memory controller responds to coherence
requests, and keeps track of the overlapping pending requests by using the hash table and
pending lookup table modules.

The baseline system is based on the snooping protocol. The idea of snooping protocol
is that all coherence controllers, cache controllers, and memory controllers, observe coher-
ence messages in the same order of broadcast and collectively perform tasks in tandem to

15



maintain coherence [20]. The controller generates the coherence messages due to load and
store activities of the processor. The bus acts as an ordering point to coherence messages
by making sure all coherence controllers snoop the same series of coherence messages in
the same order. The response messages from shared memory to the requesting cores use
separate on-to-one interconnect. This is because these response messages do not affect the
serialization of the coherence transactions.

Figure 4.1: Baseline Multi-core System Model

Snoopy Bus

Cache

CPU

Cache
Controller 

Snoop
ReqResp

Load/Store

Memory
Controller 

(offchip)
Shared Memory 

Memory RequestMemory Response

PR LUTCAM

Cache

CPU

Cache
Controller 

Snoop
ReqResp

Load/Store

FPGA Proggrammable Logic

The interconnecting shared bus allows the cores in the multi-core system to access the
shared memory. It broadcasts the core’s load and store requests to all connected endpoints
including the shared memory. The bus implements an arbitration scheme to equally share
the shared bus among the cores. In order to avoid starvation of any core from accessing the
bus, the arbitration scheme needs to be predictable. Time Division Multiplexing (TDM)
is one predictable arbitration scheme that avoids unbound interference of remote cores to
a given memory request. TDM allocates slots of fixed time duration to each core to access
the shared bus. This work uses TDM arbitration scheme because it enables predictable
access to the shared bus and it is easier to implement.

16



Chapter 5

Implementation

This chapter discusses the design of the core components of the multi-core system and the
interfacing protocol. This includes the processor, cache controller, the memory controller
and snooping bus. Furthermore, it discusses the private cache organization used in the core,
how the coherence controllers implement the cache coherence protocol, and the additional
modules used in the memory controller to track pending requests.

5.1 Hardware Design

The objective is to design a simple memory hierarchy system that can be synthesized in
small-sized FPGA boards and can easily be modified for exploration of different cache
coherence protocols. The prototyped hardware is verified on Xilinx Pynq FPGA. The
cores and the memory hierarchies are implemented in the programmable logic. The off-
chip SDRAM is used as main memory. Since the programmable size of Pynq is small, the
core design size must be small enough to fit multiple copies of it in the fabric. Therefore,
this work chose RISCV processor with RV32UI target. These processors are in-order and
have 5 pipeline stages.

Interface Architecture

The implemented design extensively uses the latency insensitive Valid Ready handshake
protocol to connect modules. The modules follow this handshake protocol to talk to one
another whether to send and receive data. The diagram in Figure 5.1 illustrates the one

17



directional handshake specification. The module A and module B are connected to
each other. Module A is the source module that outputs the data. Module B is the
destination module that receives the data. The two modules are connected through three
signals. Data is the wire that passes the actual data from the source to destination. I
will use message or packet to denote the data transmitted. Valid and Ready are the
handshaking wires, which allows the source and destination to communicate when it is
time to pass the data through the Data wire. When Valid is high, it tells the source
module has asserted a valid data on the Data wire. When Ready is high, it tells that the
destination module is ready to accept data. if both Valid and Ready are asserted, data
has been exchanged. The one way connection interconnect between source and destination
module is called a channel. Two modules can have more than one channel. From this time
on wards, I will ignore the Valid and Ready control wires, and only show the Data wires
with the direction to denote the channel.

Module A Module B 
valid

Data

ready

clk

data data1 data2 data3 data4

valid

ready

Figure 5.1: Valid and Ready handshake interface.

Cache

The private cache is the module where core stores the cache line data and its state. The
controller performs read and write operations on the private cache. The cache is reconfig-
urable to allow variable cache line size and number of cache line entries. In this work, the
private cache is set to 1k bytes direct mapped data cache. Each cache line is 64 bytes,
with 16 lines per cache. The private cache has Data Array and Tag Array sub units.

The Data Array is a dual port simple memory and synthesized as block RAM. The
Data Array design interface is shown in Figure 5.2. The inputs and outputs of the design
follow the timing standard of the BRAM interface. The read and write timing is shown
on the right side of Figure 5.2. BRAM reading timing shows that the data is returned on
the read data wire after one cycle the address is asserted in the addr wire. Similarly,
in the writing timing, when the data and address are asserted on the write data and
write addr wire, the data is written on the address location one cycle later. This implies
the Data Array can accept a new read or write request every cycle.

18



The Tag Array has similar top level design interface as the Data Array. However,
because the Tag Array memory requirement is less than what a minimum block RAM
offers, it is implemented as distributed RAM. So, the read timing is different. The read
port timing has no latency limitation, while the write operation takes a cycle. Additionally,
the Tag Array has another read port with different clock. This port is used for debugging
purpose. The debug port allows to see the states of all cache lines.

Data Array
reset
clock

read_en
read_addr

read_data

write_en
write_addr

write_byte_en
write_data

clk

read_en

read_addr addr

read_data data

write_en

write_addr addr

write_byte_en bytes

write_data data

Figure 5.2: Input and output ports of the Data Array interface

The cache is designed to be extended to other types of cache by replacing it with higher
associativity and larger sized caches with out affecting the cache controller functionality.

FIFOs

FIFOs are one of the building blocks used in the design. It allows different components
to asynchronously operate independent of each other. It is a module where a data enters
on the input port and leaves on the output port. The number of entries that the FIFOs
can buffer before it gets full tells how deep the FIFO is. The FIFO width is the width of
the data that enters and leaves the FIFO. The FIFO width and depth are parameterized.
The FIFO design uses distributed RAM to store the data because most of the instantiated
FIFOs require relatively less memory. The top level design interface is shown in Figure
5.3. Because the read output is configured to have no registers, the read timing is latency
insensitive. It also has two more wires to give information whether the FIFO is full or
empty. The surrounding logic should never read when the FIFO is empty and write when
it is full.

19



FIFOreset
clock

write_en
write_data

read_data
read_en

full
empty

Figure 5.3: Basic interface ports of the FIFO design

5.1.1 Processor

The processor implements a 5 stage RISCV based instruction set architecture (ISA). RISCV
is an open hardware ISA which is gaining a lot of attention because of many features: a
fewer instruction set, hence the area and power usage will be less; and the RTL can be
provided if the industry requires certifications. The design implements RV32IA RISCV
target ISA [24, 25]. RV32I stands for the base instruction set with 32 bits wide instructions
and registers, and A denotes the support for atomic instructions. The processor is in-order,
that means it can only issue one memory request at a time.

The RISCV processor is the central processing unit that initiates data transactions. It
issues requests to the cache controller to perform load, store and atomic instructions. Figure
5.4 shows the interfaces of the core module. The processor issues a memory request oper-
ation through cache-request channel, and receives the response on the cache-response
channel. Once the processor issues a memory request, it will wait for the response to its
request.

The list of memory operation that the processor orders on to the cache controller are
as follows.

• Load and Store: read and write operations at the specified address in the main
memory. It is encoded in cache-request mem type bit. The packet is a load type
when mem type=1 and store type when mem type=0.

• Load-Reserve (LR): Load a word from the specified address and reserve the address
in registers.

• Store-Conditional (SC): Store a word on the specified address if it matches with
the reserved address.

• AMO operations: Atomically load a data from the specified address, modify the
data based on the amo alu op, then store the result back. Swap, add, logical OR,

20



logical XOR, and signed and unsigned interger maximum and minimum are the
supported AMO operations encoded in amo alu op.

CPU

cacheresponse
cacherequest

mem_type length data

address data length mem_type amo amo_alu_op lr sccacherequest

cacheresponse

32 32 2 1 1 5 1 1

1 2 32

Figure 5.4: The processor interfaces and the message format of the cache-request and
cache-response channel.

5.1.2 Cache Controller

The cache controller is a fundamental component of the memory hierarchy. It services
memory requests coming from its own processor and coherence requests generated from
the remote core. The controller is prototyped as a state machine that realizes the coherence
protocol. As depicted in Figure 5.5, the controller module interfaces with the core, the
cache, and the snooping bus. The controller inherently uses FIFO buffers to asynchronously
operate on multiple requests.

The cache controller has three input channels:

1. Cache-Request: This is the channel where the cache controller receives memory
requests from the processor. As described in Processor section, load, store, LR/SC
and AMO operations are the type of memory request supported.

2. Memory-Response: This is the channel where the controller receives memory re-
sponses of the requested cache line from main memory through the bus.

3. Snoop: This is the channel through which the bus tells the processors what memory
request message is broadcasted on the bus.

The controller also has two output channels:

1. Cache-Response: This is output channel through which the controller replies re-
sponse messages to the requesting processor.

21



cacheresponse
cacherequest

memoryresponse
memoryrequest

snoop
State Machine  

Controller
Cache

writeback
FIFO

Request
FIFO

Response
queue

memoryrequest

memoryresponse
512

ack data

32 2 5 1

1

address data req_type requester_id req_wb

address req_type requester_id

snoop
32 2 5

RR arbiter

512

Figure 5.5: Cache controller interfaces and the message format of memory-request and
memory-response

2. Memory-Request: The controller propagates processor memory requests to the
underlying bus through memory-request channel.

Although there are three input channels, the cache controller can only process one
packet at a time. The cache controller gives priority from high to low in the following
order: cache response, snoop, and cache request. The cache controller must assert
valid and drive the request data on the data wire when it wants to tell the bus its intent
to send a memory request. This is because the bus uses the signal to perform work-
conserving arbitration between accepting a request from the controller or responding to
pending request by replying the data. The cache controller uses the valid signal from the
three input channels and assign the ready signal to the highest priority channel. Note that
a combinational loop in the valid ready hand shake signal can never happen because the
bus pieces of logic that drive the valid signal on snoop and memory-response channels
do not check the corresponding controller’s ready signal. Also the processor designed in a
way so that it does not use the cache-request ready signal to drive the valid signal.

The packets that the controller receives from the three input channels are encoded
into cache events. Table 5.1 shows the encoding of packets coming from input channels
into cache events. Every event has associated address. Events may also have additional
arguments depending on the event type. For example, store event has the data word

22



argument.

Input channel Condition Event

cachere request
mem type = 1 Load(Addr)

mem type = 0 or is amo = 1 Store(Addr, word)

is amo = 1 Store(Addr, word)

snoop

req type = GetS(Addr) & requester id = ID OwnGetS(Addr)

req type = GetM(Addr) & requester id = ID OwnGetM(Addr)

req type = Upg(Addr) & requester id = ID OwnUpg(Addr)

req type = PutM(Addr) & requester id 6= ID OwnPutM(Addr)

req type = GetS(Addr) & requester id 6= ID OtherGetS(Addr)

req type = GetM(Addr) & requester id 6= ID OtherGetM(Addr)

req type = Upg(Addr) & requester id 6= ID OtherUpg(Addr)

req type = PutM(Addr) & requester id 6= ID OtherPutM(Addr)

memory response data MemData

Table 5.1: Cache controller event encoding. Note that ID denotes the Core ID number.

The cache-response and memory-request are the channels through which the con-
troller responds to the processor and the remote core coherence requests respectively. Both
channels uses FIFOs to enable the cache controller processes requests asynchronous from
the core and the bus. A small piece of logic, which is independent from cache controller,
drive the packets into to output channels.

Following the PMSI [10] template realization, two FIFOs and a multiplexer are used to
allow arbitration between request and write-back on the memory request channel. As
shown in Figure 5.5, the multiplexer arbitrates the memory-request channel to the the
request and write-back FIFOs in work conserving round-robin fashion.

The private cache organization that is used in the design is direct-mapped cache. The
advantages is that it is simple to implement and verify, and reading a cache line from the
Data Array only takes a cycle. The drawback is that the cache will have high cache miss
rate compared to higher associative caching schemes. The cache design can be extended
to a other schemes such as associative caches.

The cache unit allows separate read and write operations on the Tag and Data Array.
An example of the Data Array write operation on cache hit case is shown in Figure 5.6.
During cache write, the address is split into three parts: tag, index, and offset. The index
and offset goes to the Data Array while only the index goes to the Tag Array. The tag

23



read from the tag array is compared to the tag of the requested address. In another cycle,
the write state machine controller writes the registered store data into the data array.

tag index offset
31                     10 9            6 5                2 1    0

Tag
Array

Data Array

Data Array write  
state machine= tag match

store
data
reg 

Figure 5.6: A sample write data path diagram of the direct-mapped cache.

Cache Coherence Protocol Implementation

The cache controller takes three steps to process the incoming packets from the input
channels.

1. When the cache controller receives a packet from the input channels, it encodes the
message into an event based on the Table 5.1. The controller also reads the data and
Tag Array to determine the cache state and tag match status.

2. Using the event and the cache state, the controller looks up the coherence-table
module to determine the list of operations. The coherence-table module is a com-
binational logic that determines the state that performs the list of instructions for a
given event and cache state. The coherence-table returns the starting state in the
state machine that executes the list of instructions.

3. The controller execute the list of operations by walking through the controller state
machine.

The possible operations that the cache controller can take is divided into two:

24



Perform list of
instructions Encode event Look up Coherence

tableIDLE 

receive a packet  
on input ports

pending cache request

Figure 5.7: Cache Controller three stage state machine

1. Read and write operations on the cache unit.

2. Push packets into request, write-back and cache response FIFOs.

Table 5.2 enumerates all possible actions per module.

Module Instruction Notation

TAG Array
write to tag array of the cacheline at address Addr Wr(Addr, state, dirty, valid)
read the cacheline’s Tag at address Addr Rd(addr, state, dirty, valid)
fill the data array line at address Addr with data WrLine(addr, Data)

Data Array
read cache line data at address addr RdLine(Addr, Data)
write a word in to data array at address addr WrWord(addr, word)
read a word from data Array at address addr RdWord(addr, word)

Cache Response FIFO push a cache response packet push(word)
Request FIFO push a memory request packet (any request type) push(addr, broadcast type, core id)
Writeback FIFO push a memory request packet (PutM() only) push(addr, putM, core id)

Table 5.2: Enumeration of all instructions that the cache controller can perform on the
cache and FIFO modules.

The coherence-table module is based on the PMSI [10] cache coherence specification,
which is shown in Tables 5.3 and 5.4. Table 5.3 shows the coherence logic for cache hit
event while Table 5.4 shows the coherence logic for cache miss event. The coherence logic
for cache miss event is shown separately because replacements occur only in a few cases,
which is during cache stable states. The tables show the list of operations for a given event
and cache state. The controller performs the list of operations using states in the state
machine. For example, when Load(Addr) event occur on cache state=I, dirty=0, valid=0 and
core c0, indexing coherence-table returns two operations: write(Addr, state=ISAD, dirty=0,

valid=1) on Tag Array and push(GetM(Addr), core id=0) on request FIFO.

25



Event cache state TAG Array Data Array cache Resp FIFO REQ FIFO WB FIFO

Load

I Wr(Addr, ISAD, 0 , 1) push(Addr, getM, ID)
S RdWord(Addr) push(word)
ISUI Wr(Addr, I, 0, 1) RdWord(Addr) push(word)
M push(word)

Store

M Wr(Addr, M , 1, 1) WrWord(Addr) push(ack)
IMUI Wr(Addr, MIA, 1, 1) WrWord(Addr) push(ack) push(Addr, putM, ID)
IMUS Wr(Addr, MSA, 0, 1) WrWord(Addr) push(ack) push(Addr, putM, ID)
S Wr(Addr, SMW , 0, 1) push(Addr, Upg, ID)
I Wr(Addr, IMAD, 0, 1) push(Addr, getM, ID)

OwnGetM IMAD Wr(Addr, IMD, 0, 1)
OwnGetS ISAD Wr(Addr, ISD, 0, 1)

OtherGetM

M Wr(Addr, MIA, 1 , 1) RdLine(Addr) push(Addr, putM, ID)
S Wr(Addr, I, 0 , 0)
IMD Wr(Addr, IMDUI, 0, 1)
ISD Wr(Addr, ISDI, 0, 1)
MSA Wr(Addr, MIA, 1, 1)
SMW Wr(Addr, IMW , 0, 1)

OtherGetS
M Wr(Addr, MSA, 0, 1) RdLine(Addr) push(Addr, putM, ID)
IMD Wr(Addr, IMDUS, 0 ,1)

OwnUpg
SMW Wr(Addr, M , 1, 1) WrWord(Addr) push(ack)
IMW Wr(Addr, IMAD, 0 ,1) push(Addr, getM, ID)

OtherUpg
S Wr(Addr, I, 0, 0)
SMW Wr(Addr, IMW , 0, 1)

OwnPutM
MIA Wr(Addr, I, 0 , 0)
MSA Wr(Addr, S, 0, 1)

MemData

IMD Wr(Addr, M , 0, 1) WrLine(Addr)
ISD Wr(Addr, S, 0, 1) WrLine(Addr)
IMDUI Wr(Addr, IMUI, 0, 1) WrLine(Addr)
IMDUS Wr(Addr, IMUS, 0, 1) WrLine(Addr)
ISDI Wr(Addr, ISUI, 0, 1) WrLine(Addr)

Table 5.3: Cache coherence table logic for cache hit event. U represent the pending store
operation after refill of the data line.

The cache controller executes the list of operations by walking the states in the state
machines. In the above Load(Addr) example, the controller performs the two operations
using one state that writes the cache state=ISAD on the Tag Array and pushs the memory
request packet with GetM(Addr) and core id=0 attributes on the request FIFO.

The coherence logic divides some of the transitions between intermediate states. This
is because the operation done during the transition requires multiple cycles. As a result,
the cache controller takes the three step process more than once for some of the events.
For instance, when the controller receives data packet on memory response while the
cache line state=IMD, dirty=0, valid=0, based on the cache coherence, it needs to perform
fill the cache line and write word on Data Array operations. The controller keeps pending
request to perform the three step process twice. So, at the end of the step process, the
controller checks for the pending request before going to IDLE.

Furthermore, cache fill and store operation during state transition from IMDI to I

26



Event Cache State TAG Array Data Array cache Resp FIFO REQ FIFO WB FIFO

Load
M Wr(Addr, MIA, 0, 1) RdLine(oldAddr) push(oldAddr, putM, ID)
S Wr(Addr, IMAD, 0, 1) push(addr, getS, ID)

Store
M Wr(Addr, MIA, 0, 1) RdLine(oldAddr) push(oldAddr, putM, ID)
S Wr(Addr, IMAD, 0, 1) push(addr, getM, ID)

Table 5.4: Cache coherence table logic for cache miss event. oldAddr is the evacuated cache
line address due to the new address request.

is divided in to two. U is used to tell the pending store operation after filling the line.
The reason to add this new state is the refill and store operation is done in Data Array
takes two steps. Although the cache controller enforces performing the two tasks as atomic
operation.

Cache Coherence Example in Action

I will use the following example to illustrate the process. Suppose the cache controller
receives a packet with addr=A, mem type=0, and is amo=0 on cache request channel. (1)
based on the encoding table, the controller encodes the packet into Store(A). The controller
also reads the tag and Data Array and finds that it is in I state. (2) The controller uses the
collected data in the first state, and looks up the coherence-module. The coherence-
module returns the state that performs two tasks: write(state=ISAD) on Tag Array and
push(GetM(A), core id=0) on the request FIFO. (3) The controller walks the state machine
executing the two task. Once it completes performing the two tasks, it goes back to IDLE
state. When the control signal driver at the memory-request channel gets a ready
signal, it asserts GetM(A) broadcast packet. After the coherence message is ordered on
the bus, the controller sees its own broadcast event on the snoop channel. The controller
encodes the snooped packet into OwnGetM(A) event and traverses through the three step
process performing write(state=ISD) on Tag Array before going to IDLE state. Finally,
the controller receives the data event at the memory-response channel. and sends an
acknowledgment to the processor through cache response channel after it fills the cache
line and perform the initial store operation in the Data Array.

5.1.3 Snooping Bus

The snooping bus connects all cores of the multi-core platform and the shared memory.
All endpoints on the bus observe load and store requests and coherence messages in the
same order they were broadcasted on the bus. In this work, the bus uses TDM arbitration

27



scheme, and each core will have a dedicated time slot where the bus allocates to cores to
access the bus. The arbitration can be extended to support different arbitration schemes.

Coherence request messages are broadcasted on bus to allow all cache controller see the
requested message, however, data responses are exchanged between cache controllers and
the memory controller.

bus 
response 

memory 
request

memory 
response 

bus 
request 

cache
controller 0

cache
controller 1

snoop

cache
controller 2

cache
controller 3

Arbiter

broadcast
wires

bus resp valid  

Memory Controller

bus resp ready 

Snooping Bus

Mux and Dmux

Figure 5.8: Snooping bus

Each core is connected to the bus through three different channels.

1. Memory-request:The cache controller issues memory requests GetM(Z)/GetS(Z)/
PutM(Z)/Upg(Z) through this channel. Request coherence messages are only broad-
casted at the beginning of owner’s TDM slot. The bus orders these coherence mes-
sages to all end points connected to the bus. GetM(Z)/GetS(Z)/Upg(Z) coherence
request messages are generated due to owner cores memory requests, while PutM(Z)

is due to remote core memory activity.

2. Memory-response: The bus replies to the requesting core with requested data
through the memory-response channel.

28



3. Snoop: The bus uses the snoop channel to broadcast the coherence message to all
cores connected to the bus.

In addition, the bus interfaces to the memory controller use two channels.

1. Bus-Request: The bus sends memory requests to the memory controller, which is
generated from cores. The bus arbitrates accessing bus-request channel by using
TDM arbitration schemes.

2. Bus-Response: The bus receives data for GetM(Z)/GetS(Z) memory requests from
the memory controller through bus-response channel.

The memory controller provides information about which core has pending responses
by using bus-response valid signals. The bus-response valid and ready wire width is
as many as the number of core. For example, in the Figure 5.8, there are 4 cores, therefore
the bus-response has 4 valid and ready wires. The bus picks the memory response from
the memory controller based on the arbitration scheme by asserting the right ready signal.
Enabling the bus to see the current pending response in memory controller is important
because only the arbiter decides what response to be replied to the requesting core based
on the arbitration scheme, and the memory controller does not know anything about the
arbitration.

The following example illustrates how the bus orders the coherence messages and reply
the response data. Suppose the current cycle is the beginning of core c1 TDM slot, and
core c1 has a request packet on the memory-request channel. The TDM arbiter asserts
the ready control signal of memory-request channel. Then, it asserts the mux controller
wire so that the memory-request drives the wires of bus-request. The state machine in
TDM arbiter waits until all of cache controllers and the memory controller receives the
requested packet on the snoop and bus-request channels respectively. Once the message is
broadcasted, the arbiter waits for the response on the bus-response channel by checking
the second valid wire for the remaining time of the slot. When the memory controller
replies the data in the same slot, the arbiter asserts the demux controller so that the
bus-response drives the memory-response channel of core c1.

At the beginning of a slot, The TDM arbiter decides whether the slot is request or
write-back slot by reading req wb bit range in the memory-request packet. When the
slot is for memory request, it arbitrate between memory request and data response in work
conserving round-robin. Otherwise, it allocates the slot for write-back.

29



5.1.4 Memory Controller

Memory controller is the coherence controller at the shared memory side. It is similar to
cache controller except it does not issue coherence message. The memory controller services
GetM(Z)/GetS(Z)/PutM(Z) /Upg(Z) coherence requests from bus. Similar to cache controller,
it is implemented as a state machine controller that realizes the memory coherence protocol.
Figure 5.10 shows the state machine. Note that the memory controller we refer here is
not the DRAM memory controller that performs the reads and writes from the DRAM
memory. The memory controller interfaces with the bus through the bus-request and
bus-response channel. It receives coherence requests from the bus through the bus-
request, and replies the data to the bus through the bus-response.

Bus-Response
Bus-RequestValidReady

NN

RAM Request
RAM Response

State Machine  
Controller

CAM

PR LUT

address length mem_typedata

lengthmem_type data

busrequest

busresponse
2 1 512

Pending
response

FIFOs 

32 512 2 1

Figure 5.9: Memory controller

As shown in 5.9, the controller has as many valid signals as the number of cores on
bus response channel. The controller uses this valid signal to inform the bus about the
pending response to all cores. Since there is only one data wire on bus-response channel,
the bus must tell the memory controller which core’s data response to read by asserting the
corresponding ready signal. And, the controller asserts the correct data response on the
data wires based on the asserted ready signal. For instance, Suppose we have four cores
c0, c1, c2, c3, and hence there will be four valid and ready signals on the bus response
channel. And suppose there are pending responses to c0 and c1. The memory controller
drives the valid signals corresponding to c0, c1. If the bus wants to read the response data

30



to c0, It must assert the ready signal corresponding to c0. Then the memory controller
drives the response data to c0 on the data wire of the channel. Note that here there is
no combinational loop in the valid ready signal because the memory controller logic that
derive bus-response valid signals does not depend on any of bus response ready signal.

The memory controller also has additional interface to the off-chip memory by using
DRAM controller. The memory controller issues read and write operations to main memory
through RAM request and RAM response channels.

PR_TABLE_READ
service pending request

pending GETS found   

IDLE

pending GETM found   

CAM_READ

PUTM/UPG   

CAM_WAIT

found & PUTM   

CAM write done   

CAM_WRITE

not found & UPG   

ERROR

(fnd & UPG) or (not fnd PUTM)   issued   

CAM read issued   

IDLE

CAM_READ

GETS/GETM   

CAM_WAIT

CAM read issued   

PR_TABLE_WRITE

done   

CAM_WRITE

issued   

CAM write done   

CAM found   

MEMORY_READ

CAM not found   

MEMORY_WAIT

issued   

PUSH_TO_RESP_Q

done   

GETS   

GETM   

Figure 5.10: Memory controller state machine

Content Addressable Memory

The memory controller keeps information about all the cache lines stored in the cores
private caches. The controller instantiates a Content Addressable Memory to track
the cached addresses. Content Addressable Memory (CAM) is used to provide faster

31



lookup to check if a request address is cached or not. It is capable of performing parallel
searching over all stored data in the CAM to find out whether the content exists. If it
exists it return the address in the CAM where that content is stored. The content is the
cache line addresses. The size of the CAM is large enough to hold all the cacheable memory
address in all cores.

=
=

=
=

=
=

=
=

Insert key
Search key

Search result

Register array

Multiplexer

Demultiplexer

FIFO

CAM FSM

Figure 5.11: Content Addressable Memory

PR LUT

In addition, memory controller uses PR LUT module to track pending request per cache
line. PR LUT is implemented as a full associative cache. The entry size of the full
associative cache is same as the number of cores. This is because given that we have in-
order processors, in the worst case, there will be one pending request per core where each
requested addresses are different. Hence, one entry per core is needed in the associative
cache. The other extreme case is when all core request on the same cache line. a FIFO
per entry in the associative cache is used to track pending requests on the same address in
the order of broadcast.

The memory controller uses CAM and PR LUT module to track which cache line
has been cached in the private caches, and all the pending requests per cache line.

32



5.2 Access to DDR3 Memory

The multi-core design is built on programmable logic of the Pynq board [27] and uses the
DDR3 memory on processing system as the main memory. The design interfaces with the
High Performance (HP) AXI slave port, which provides connection from PL to PS to access
the DDR3 memory. The HP AXI port has 64-bit data width. So, it requires a streaming
interfacing module to convert the 512-bit data coming from the designed memory controller
to 64-bit HP AXI port back and forth. The streaming interface is implemented using the
HLS. Figure 5.12 shows how the design connects to the DDR3 controller through HP AXI
port by using the intermediate module written in HLS.

HLS  
512bit <> 64bit HP

port interface 

Valid
Data (512bit)

Ready

Valid

Ready
Data (512bit)

HP
AXI
port

Programmable
Logic to Memory
interconnect

DDR3
controller DRAM

PL PS

Memory
Controller

Figure 5.12: DDR3 interface diagram.

33



Chapter 6

Testing Hardware Environment

The baseline RISCV core is not a standalone processor, so it does not support running an
operating system. It depends on another system (host system) to begin program execution,
and handle syscalls such as file read and write operations. In order to enable the baseline
RISCV core run pthread applications without supporting an OS, the top design must
emulate three thread related syscalls: Clone, Futex, and Exit syscalls and atomic memory
operations: Load Reserve and Store Conditional, which are used in the pthread application.
The design should also handle the remaining general syscalls such as mmap, and brk for
correct program execution. This chapter describes the tethered system setup and the
extensions on the RISCV core to enable the top design run pthread applications.

6.1 Development FPGA Board

Pynq [27] is a development board based on Zynq-7020 System-on-Chip (SoC) manufactured
by Xilinx. Zynq-7020 is composed of the processing systems (PS) and Programmable Logic
(PL). The PS has permanently embedded hard components. These components are dual-
core ARM Cortex-A9 [3, 2], 512MB DDR3 16-bit bus DRAM, and GPIO peripherals.
The ARM core on the PS is a general purpose processor that runs Linux OS. The DDR3
controller is hardcore. So, PL can only access it through AXI slave ports on PS. On the
other side, The PL is a Xilinx Artix-7 FPGA, which is used to build custom hardwares.
The FPGA has 13,300 logic slices, each with four 6-input LUTs and 8 flipflops. It has 630
KB of block RAM.

The SoC embedded system is designed for software applications that run on the PS
side and leverage the customized accelerator hardware on the PL. However, this work uses

34



a target design on the PL as the main processing unit and a host program running on PS
as support system that provides facilities to the target design.

6.2 Dual-Core Top Design

The top design used as a testing platform is a dual-core system. The dual-core design is
synthesized on the PL of the board. The top design integrates the two RISCV processors,
L1 cache controllers, the snooping bus and the memory controller to build a dual-core
system. Each core has 1K bytes data and instruction cache. The L1 caches use direct-
mapped scheme with 16 entries of each having 64 bytes cacheline. The interconnecting
bus uses TDM arbitration of 128 cycles slot width. The reason why we chose 128 is the
latency of accessing the DDR RAM takes approximately 50 cycles, and it takes 10 cycles
to propagate the request to DRAM and back to the core. So, the total latency to access
uncached data from the DRAM takes 60 cycles. So, the 128 cycles slot width fulfills
the PMSI guidelines. Although the designed memory controller does not use caches, it
plays a part of the role in maintaining the coherence. The designed memory controller is
parametrized to have as many number of total address entries as in the private caches.

6.3 Tethered System

In this work we use tethered top design system to run pthread applications. As shown in
Figure 6.1, the tethered system has two components. (1) The dual-core (target) design on
PL and (2) the handler program (host) running on the PS. The host helps the dual-core
design in running the pthread applications. The baseline RISCV core can only run bare
metal applications, and does not support running an OS. So, the riscv core need to emulate
certain syscalls to run the pthread application.

The RISCV core traps all of the syscall and handles it either in trap subroutine or
delegates it to the host program. The main syscalls involved in thread managements are
clone, futex and exit. These are handled inside the RISCV trap routines. In addition,
there are general syscalls used in the pthread applications, such as read and mmap, which
are required for correct execution. The target design delegates the these syscalls to the host
system. The handler program dispatches the syscalls on behalf of the target top design.

35



Top Design

RISCV Core

Ctr

I$

Ctr

D$

RISCV Core

Ctr

I$

Ctr

D$

Snooping Bus

Mem
Ctr 

DDR3
Interface 

HP
AXI
port

DRAM

Handler
(ARM) 

GPIO
AXI
Lite 
port

PSPL

Figure 6.1: Tethered System

6.4 RISCV Core

This target system implements a simple thread scheduler subroutine that assigns threads
to cores. Since the tethered system does not support an OS, there is no thread scheduler.
So, the RISCV core uses a scheduler subroutine that statically assign threads to core one-
to-ones. Therefore, a core can not run more than one thread simultaneously. The RISCV
core supports thread management (thread creation, synchronization, and termination) by
handling the Clone, Futex, and Exit syscalls in the trap subroutines. So, there are three
trap subroutines for each of the syscalls. The core traps these syscalls and redirect them
to the corresponding trap handler.

Clone is the syscall that the caller thread invokes to spawn another thread. clone
subroutine checks the hardware thread context and picks the first idle core it finds. each
core will use specific address values to store their the context to notify their running status.
when the core is done executing the spawned thread (reaches exit) and it goes back to idle
routine.

Futex is the thread synchronization syscall. The RISCV core supports only FU-
TEX WAIT and FUTEX WAKE operations. In both cases, futex simply checks that
the passed argument is valid and then return. Such implementation is valid because futex
is used in locks and futex caller should check the lock status after a FUTEX WAIT op-
eration is done. And since no thread is waiting, FUTEX WAKE operation will always

36



succeed.

The core handles the three syscalls, and it delegates the rest to the handler program
on the PS. When the core delegates the syscalls, it executes instructions that flushes the
private cache lines, so that the handler can read the up-to-date data from shared memory.
This is a way used to make the handler program coherent with the RISCV core.

The RISCV pthread programs are compiled with the clone, futex and exit subroutines.
The trap vector redirects the execution to these subroutines when the traps occur. There
are additional start and idle subroutines. All program will begin from the start subroutine.
The start routine has two paths of execution. One that goes to the main of the program, and
the other goes to idle subroutine. Idle subroutines are a simple while loop read operation
to check their thread context if it is assigned a thread to run.

6.5 Handler

Handler is a program running on the PS that provides facilities to the target design. The
RISCV core needs these facilities to run RISCV programs. The handler and the top design
shares the DDR3 main memory. The handler serves as bootloader. It loads the necessary
kernel environment on the RISCV stack address space. It also reads the RISCV ELF
binary program and loads it on the RISCV program address space. When the handler
finishes bootstrapping, it sets the starting address of the top design and deassert the reset
to trigger the dual core top design start executing the loaded program. The handler waits
for syscalls by polling from the target design for syscall events. By the time the handler sees
a syscall events, it must have up-to-date view of the shared memory for correct emulation
of the syscall. So, it polls the state of all lines in the caller private cache and wait until
the core finish flushes the lines before dispatching the syscalls. The host program notifies
the waiting RISCV core by writing at the global variable fromhost address on the shared
memory when the handler finishes running the syscall.

6.6 Communication Channels

There are two ways where the handler program and the top design communicates.

37



6.6.1 GPIO

We instantiate GPIO IPs on the PL to enable the dual-core communicates with the host.
These GPIOs modules are assigned some address spaces on the DDR3 RAM. The host
program maps the physical address to its virtual address to have access to it. The target
system uses these GPIOs to redirect the syscalls to the host, and to pass the syscall
arguments. The handler uses it to reset the top design, assign start address of the RSICV
cores program counter and check the status of each cache line.

6.6.2 Shared Memory on DDR3 DRAM

The handler allocates a contiguous array of memory on the DRAM to reserve the RISCV
address space. It uses the sds alloc non cacheable, sds mmap and sds munmap
functions in libsds library that comes with the xilinx-linux on the PS. Usually the RISCV
programs does not need all 512MB storage, and the sds library has limitation that at max
it can only allocate 128MB contiguous array of memory [28]. So, the handler only allocates
128MB for RISCV address space. The handler access these address space by mmaping the
physical address to its virtual address space. The dual-core design access the 132MB by
using the HLS module explained in the section 5.2. The handler notifies the syscall caller
by writing on the global variable fromhost address in shared memory. The host reads
the global address parsing the RISV program ELF binary. The delegator core waits and
reads the the fromhost global variable for completion of the host handling the syscall. The
RISCV core avoids reading the stale value of fromhost by continuously evacuating the
line in private cache and reading it again.

Figure 6.2 shows how RISCV program are mapped in RISCV address space, Handler
virtual address space, and the physical memory. The syscall arguments passed to the host
are in the RISCV address space. So the host program should be able to work on the same
address space as the RISCV address space. Therefore, the RISCV program entry point is
carefully selected so that it is available in the host virtual address space. And the designed
DDR3 interfacing module uses a dram base offset to convert the RISCV memory request
address to physical address.

38



Handler  
Virtual Address 

DDR3 Memory 
/dev/mem

12
8M

BProgram

brk

stack

mmap

GPIO

RISCV
Address Space 

physical address

entry point on ELF

Program

brk

stack

mmap

0x18100000

0x800000

Program

brk

stack

mmap

0x800000

dram_base_address = pysical_address - entry_point

Figure 6.2: Address mapping of RISCV run time to handler virtual address

39



Chapter 7

Evaluation

The dual-core system is implemented in Verilog. It is simulated and tested on the open
source RTL simulator Verilator[19]. The top design is sythesized with Xilinx Vivado 2018.2.
SPLASH2 benckmark [26] programs were compiled and set up with gcc-8.2.0 and binutils
2.31.1 on linux machine. The dual-core top design is implemented on a Xilinx Zynq-7020
SoC board. It has 53,200 4-input LUTs, 106,400 flipflops, and 630KB of BRAM. The
Vivado is setup to use the default strategy for synthesis and implementation.

Table 7.1 shows the total resource utilization of the design. The result includes the
external IPs used to communicate with the Prosessing System unit of the board, generate
clocks and debug the top design. These components are the clock wizard, GPIO, AXI
interconnect, HP AXI IPs and the debugging IPs (Integrated Logic Analyzer). The dual-
core top design only takes 58.84% LUTs, 54.37% LUTRAM and 20.84% FF of the utilized
resources. However majority of the BRAM is used by the top design (87.67%). The
external components takes the remaining percentage of resource utilization.

Resource Utilization Available Utilization %
LUT 45943 53200 86.36
LUTRAM 8917 17400 51.25
FF 40207 106400 37.79
BRAM 73 140 52.14
IO 2 125 1.60
MMCM 1 4 25.00

Table 7.1: Total resource utilization

40



Name LUT as Logic LUT as Memory LUT Flip Flop Pairs BRAM
tb dual core 27033 4848 8378 64

core[0].dcache ctr 3433 820 1154 16

core[0].dcache ctr.tag array cache 70 40 13 0
core[0].dcache ctr.data array cache 2351 0 0 16
core[0].dcache ctr.coherence table 88 0 0 0
core[0].dcache ctr.request fifo 12 372 7 0
core[0].dcache ctr.cache response fifo 8 24 6 0
core[0].dcache ctr.snoop response fifo 19 0 7 0
core[0].dcache ctr.rr arbiter 563 0 1 0

core[0].icache ctr 3044 820 1135 16
core[0].processor 2349 0 254 0
core[1].dcache ctr 3405 820 1161 16
core[1].icache ctr 3112 820 1157 16
core[1].processor 2540 0 273 0
bus 2927 0 565 0
memory ctr 4547 1568 462 0

memory ctr.cam 1851 0 315 0
memory ctr.pr lookup table 499 192 99 0
memory ctr.resp queues[0] 716 344 5 0
memory ctr.resp queues[1] 14 344 4 0
memory ctr.resp queues[2] 12 344 5 0
memory ctr.resp queues[3] 352 344 4 0

Table 7.2: Resource utilization per components of the dual-core top module.

The resource utilization of the cache controller, bus, memory controller of the dual-
system is shown in Table 7.1. The shaded rows show the utilization of sub-modules inside
the cache controller and memory controller. Initially, the Data Array was implemented
using distributed Memory (LUTs as Memory), and the utilization was 3444 LUTs. We
managed to free 1093 LUTs by mapping the module to use 16 BRAMs. Although the
Data Array is using BRAMs, the LUTs utilization is still high. This is because the logic
around the Data Array that generates the byte enable data and control wires requires
higher number of LUTs. The request data can be any of the 4 byte coming from data bit
range of the cache-request packet. Any of the 4 bytes need to be shifted to the right byte
in the 64 bytes cache line based on the address. Therefore, the control logic that maps the
request data byte to corresponding byte to the input wires of the BRAM use large LUT
resource. One other way to decrease the LUTs usage is by disabling the byte writing and
reading on the Data Array, and only supporting cache line size read and write. This comes
with the cost of increased Data Array write and read latency. So, we chose the byte enable

41



design to keep the latency low.

Table 7.2 also shows there is high LUTs usage by the CAM unit compared to other
memory controller sub-modules. This is because of the parallel comparison of over all
stored data.

Name LUT as Logic LUT as Memory LUT Flip Flop Pairs BRAM
sodor zynq [14] 4122 0 549 0
RocketChip(Tinycore) [4] 2388 48 1240 0
Our RISCV processor 2349 0 254 0

Table 7.3: comparison our RISCV core to the sodor

Rocket Chip [4] is an open-source SoC design generator that compiles synthesizable
RTL of RISCV cores, caches and interconnects. we picked TinyCore configuration that
has same RISCV ISA target (RV32IA) but uses the smallest resources. The result in Table
7.3 shows that our RISCV processor compares well with TinyCore RISCV core in terms
of resource utilization. We also compared our processor to Sodor’s [14] 5 stage piplined
RISCV core implementation. Our processor used 50% less than the Sodor core.

7.1 Test Applications

The design is tested using three different RISCV compliance tests according to our RISCV
target. We used RV32UI, RV32MI and RV32UA set of test programs in RISCV-test suits
to cover machine-level, user-level, and atomic instructions respectively. We also created
memory instruction generator that emits memory requests based on the EEMBC [15]
program to verify the implemented coherence protocol in the coherence table. The memory
request traces are chosen in such a way that covers all the state transitions in the coherence
table. The coherence verification was done before integrating the memory hierarchy with
the core.

Finally, we integrated the modules into a dual-core top design and verified the dual-core
design by running the SPLASH2 benchmarks. All of the benchmark program we used is
statically linked pthread programs. The programs are setup to use two threads. we were
are able to run 7 of the benchmarks up until finish point. The worst case latency of a
memory request is shown in the Table 7.4

42



SPLASH2 programs LU BARNS FFT FMM RADIX CHOLESKY
Worst Case Latency (cycles) 1593 1983 1509 1456 1102 1094

Table 7.4: Worst case latency of memory request of SPLASH2 benchmarks

43



Chapter 8

Conclusions and Future Work

This thesis describes a design and implementation of a predictable cache-coherent multi-
core system. The coherence is based on the PMSI [10] guidelines. The core used in the
design comprises 5 stage pipelined and fully bypassed RISCV processor. The processors
implements the RISCV RV32IA target ISA. Each core has data and instruction caches.
And each cache has 1Kbytes size with direct-mapped cache organization. The cache con-
troller realizes the coherence protocol using state machines. Last-level memory controller
is implemented as a directory on the memory side. The cores and the last-level memory
controller is connected through snooping bus. The snooping bus uses TDM arbitration
scheme.

A dual-core system was put together and simulated in the Verilator simulator. The
design was validated by running RISCV regression test programs. We also validated the
coherence manually by using memory instruction generator to cover all the state in the
coherence table. Finally, We synthesized and verified the design on the Pynq board by
running SPLASH2 benchmark programs.

After looking at the resource utilization, Data Array takes the major resource in the
cache controller unit. As a future work, investigating a better design of Data array that will
use less resource will help in fitting more core in the design. The other result we saw is the
CAM unit does not scale well when the private cache line size is increased. Replacing the
CAM unit with HASH table that maps to Block RAM will help in increasing the private
cache sizes.

44



References

[1] Predictable cache coherence for multi-core real-time systems.

[2] ARM. Cortex-R5 and Cortex-R5F Technical Reference Manual. 2011.

[3] ARM. ARM Architecture Reference Manual ARMv8. 2013.

[4] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar
Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The
rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[5] J. M. Calandrino and J. H. Anderson. On the Design and Implementation of a Cache-
Aware Multicore Real-Time Scheduler. In 2009 21st Euromicro Conference on Real-
Time Systems, pages 194–204, July 2009.

[6] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D.
Smith. Reconciling the tension between hardware isolation and data sharing in mixed-
criticality, multicore systems. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 57–68, Nov 2016.

[7] ARM Cortex. Cortex-A9 MPCore. Technical Reference Manual, 2009.

[8] Giovani Gracioli and Antônio Augusto Fröhlich. On the Design and Evaluation of a
Real-Time Operating System for Cache-Coherent Multicore Architectures. SIGOPS
Oper. Syst. Rev., 49(2):2–16, January 2016.

45



[9] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for
multi-core processors with shared instruction caches. In 2009 30th IEEE Real-Time
Systems Symposium, pages 68–77, Dec 2009.

[10] M. Hassan, A. M. Kaushik, and H. Patel. Predictable cache coherence for multi-core
real-time systems. In 2017 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 235–246, April 2017.

[11] N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D. Smith. Allowing shared
libraries while supporting hardware isolation in multicore real-time systems. In 2017
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 223–234, April 2017.

[12] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches Conflicts
Reduction for WCET Computation in Multi-Core Architectures. In 18th Interna-
tional Conference on Real-Time and Network Systems, page 2283, Toulouse, France,
November 2010.

[13] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in
avionics. In Ninth European Dependable Computing Conference, 2012.

[14] The Regents of the University of California. Riscv-sodor. https://www.librecores.
org/codelec/riscv-sodor, April 2019.

[15] Jason Poovey et al. Characterization of the EEMBC benchmark suite. North Carolina
State University, 2007.

[16] A. Pyka, M. Rohde, and S. Uhrig. Extended performance analysis of the time pre-
dictable on-demand coherent data cache for multi- and many-core systems. In 2014
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), pages 107–114, July 2014.

[17] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. System level
performance analysis for real-time automotive multicore and network architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2009.

[18] Henry Cook SiFive. Diplomatic design patterns : A tilelink case study. 2017.

[19] Wilson Snyder. Verilator. url=https://www.veripool.org/wiki/verilator, April 2019.

46

https://www.librecores.org/codelec/riscv-sodor
https://www.librecores.org/codelec/riscv-sodor


[20] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis Lectures on Computer Architecture, 2011.

[21] JEDEC Standard. Ddr3 sdram standard. JESD79-3, Jun, 2007.

[22] Ashley Stevens. Introduction to amba R© 4 ace and big. little processing technology.
ARM White Paper, CoreLink Intelligent System IP by ARM, 2011.

[23] Dana Vantrease, Mikko H Lipasti, and Nathan Binkert. Atomic coherence: Leveraging
nanophotonics to build race-free cache coherence protocols. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on. IEEE,
2011.

[24] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and Krste
Asanovic. The risc-v instruction set manual volume ii: Privileged architecture ver-
sion 1.9.1. Technical Report UCB/EECS-2016-161, EECS Department, University of
California, Berkeley, Nov 2016.

[25] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The risc-
v instruction set manual, volume i: User-level isa, version 2.1. Technical Report
UCB/EECS-2016-118, EECS Department, University of California, Berkeley, May
2016.

[26] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Characterization and Methodological Considera-
tions. In Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995. ACM.

[27] Xilinx. Pynq. http://www.pynq.io/, April 2019.

[28] Xilinx. Pynq xlnk module. https://pynq.readthedocs.io/en/v2.4/pynq_

package/pynq.xlnk.html, April 2019.

47

http://www.pynq.io/
https://pynq.readthedocs.io/en/v2.4/pynq_package/pynq.xlnk.html
https://pynq.readthedocs.io/en/v2.4/pynq_package/pynq.xlnk.html

	List of Figures
	List of Tables
	Introduction
	Contributions
	Overview

	Related Work
	Real-time systems
	Interconnect Architecture

	Background
	Hardware Cache Coherence
	Conventional Coherence Protocol
	Predictable cache coherence for real-time systems: PMSI


	System Overview
	Baseline System Model

	Implementation
	Hardware Design
	Processor
	Cache Controller
	Snooping Bus
	Memory Controller

	Access to DDR3 Memory

	Testing Hardware Environment
	Development FPGA Board
	Dual-Core Top Design
	Tethered System
	RISCV Core
	Handler
	Communication Channels
	GPIO
	Shared Memory on DDR3 DRAM


	Evaluation
	Test Applications

	Conclusions and Future Work
	References

