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Abstract 

Land-use change and agricultural intensification have increased food production but at 

the cost of polluting surface and groundwater. Best management practices implemented to 

improve water quality have met with limited success. Such lack of success is increasingly 

attributed to legacy nutrient stores in the subsurface that may act as sources after reduction of 

external inputs. These legacy stores have built up over decades of fertilizer application and 

contribute to time lags between the implementation of best management practices and water 

quality improvement. However, current water quality models lack a framework to capture these 

legacy effects and corresponding lag times. The overall goal of this thesis is to use a combination 

of data synthesis and modeling to quantify legacy stores and time lags in intensively managed 

agricultural landscapes in the Midwestern US. The specific goals are to (1) quantify legacy 

nitrogen accumulation using a mass balance approach from 1949 - 2012 (2) develop a SWAT 

model for the basin and demonstrate the value of using crop yield information to increase model 

robustness (3) modify the SWAT (Soil Water Assessment Tool) model to capture the effect of 

nitrogen (N) legacies on water quality under multiple land-management scenarios,  and (4) use a 

field-scale carbon-nitrogen cycling model (CENTURY) to quantify the role of climate and soil 

type on legacy accumulation and water quality. For objectives 1 and 2, the analysis was 

performed in the Iowa Cedar Basin (ICB), a 32,660 km2 watershed in Eastern Iowa, while for 

objective 3, the focus has been on the South Fork Iowa River Watershed (SFIRW), a 502 km2 

sub-watershed of the ICB, and for objective 4 the focus was at the field scale. 

 

For the first objective, a nitrogen mass balance analysis was performed across the ICB to 

understand whether legacy N was accumulating in this watershed and if so, the magnitude of 

accumulation. The magnitude of N inputs, outputs, and storage in the watershed was quantified 

over 64 years (1949 – 2012) using the Net Anthropogenic Nitrogen Inputs (NANI) framework. 

The primary inputs to the system were atmospheric N deposition (9.2 ± 0.35 kg/ha/yr), fertilizer 

N application (48 ± 2 kg/ha/yr) and biological N fixation (49 ± 3 kg/ha/yr) and while the primary 

outputs from the system was net food and feed that was estimated as 42 ± 4.5 kg/ha/yr. The Net 

Anthropogenic Nitrogen Input (NANI) to the system was estimated to be 64 ± 6 kg/ha/yr. 

Finally, an estimated denitrification rate constant of 12.7 kg/ha/yr was used to estimate the 
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subsurface legacy nitrogen storage as 33.3 kg/ha/yr. This is a significant component of the 

overall mass budget and represents 48% of the NANI and 31% of the fertilizer added to the 

watershed every year. 

For the second objective, the effect of crop yield calibration in increasing the robustness 

of the hydrologic model was analyzed. Using a 32,660 km2 agricultural watershed in Iowa as a 

case study, a stepwise model refinement was performed to show how the consideration of 

additional data sources can increase model consistency. As a first step, a hydrologic model was 

developed using the Soil and Water Assessment Tool (SWAT) that provided excellent monthly 

streamflow statistics at eight stations within the watershed. However, comparing spatially 

distributed crop yield measurements with modeled results revealed a strong underestimation in 

model estimates (PBIAS Corn = 26%, PBIAS soybean = 61%). To address this, the model was 

refined by first adding crop yield as an additional calibration target and then changing the 

potential evapotranspiration estimation method -- this significantly improved model predictions 

of crop yield (PBIAS Corn = 3%, PBIAS soybean = 4%), while only slightly improving 

streamflow statistics. As a final step, for better representation of tile flow, the flow partitioning 

method was modified. The final model was also able to (i) better capture variations in nitrate 

loads at the catchment outlet with no calibration and (ii) reduce parameter uncertainty, model 

prediction uncertainty, and equifinality. The findings highlight that using additional data sources 

to improve hydrological consistency of distributed models increases their robustness and 

predictive ability. 

For the third objective, the SWAT model was modified to capture the effects of nitrogen 

(N) legacies on water quality under multiple land-management scenarios. My new SWAT-LAG 

model includes (1) a modified carbon-nitrogen cycling module to capture the dynamics of soil N 

accumulation, and (2) a groundwater travel time distribution module to capture a range of 

subsurface travel times. Using a 502 km2 SFIR watershed as a case study, it was estimated that, 

between 1950 and 2016, 25% of the total watershed N surplus (N Deposition + Fertilizer + 

Manure + N Fixation – Crop N uptake) had accumulated within the root zone, 14% had 

accumulated in groundwater, while 27% was lost as riverine output, and 34% was denitrified. In 

future scenarios, a 100% reduction in fertilizer application led to a 79% reduction in stream N 

load, but the SWAT-LAG results suggest that it would take 84 years to achieve this reduction, in 
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contrast to the two years predicted in the original SWAT model. The framework proposed here 

constitutes a first step towards modifying a widely used modeling approach to assess the effects 

of legacy N on time required to achieve water quality goals.  

 

The above research highlighted significant uncertainty in the prediction of 

biogeochemical legacies -- to address this uncertainty in the last objective the field scale 

CENTURY model was used to quantify SON accumulation and depletion trends using climate 

and soil type gradients characteristic of the Mississippi River Basin. The model was validated 

using field-scale data, from field sites in north-central Illinois that had SON data over 140 years 

(1875-2014). The study revealed that across the climate gradient typical of the Mississippi River 

Basin, SON accumulation was greater in warmer areas due to greater crop yield with an increase 

in temperature. The accumulation was also higher in drier areas due to less N lost by leaching. 

Finally, the analysis revealed an interesting hysteretic pattern, where the same levels of SON in 

the 1930s contributed to a lower mineralization flux compared to current.  
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Chapter 1: Introduction  

1.1 Background 

Nitrogen (N) is one of the essential nutrients that support life on earth (Keeney and 

Hatfield, 2008). It is consumed by living organisms for the production of bio-molecules such as 

carbohydrates, proteins, lipids, and nucleic acids. Abundant nitrogen (78%) in the atmosphere is 

in the form of inert di-nitrogen gas (N2), which is not readily available for assimilation by living 

organisms. Plants can only make use of inorganic forms of N such as ammonium (NH4
+) and 

nitrate (NO3
-) from soil solution for their growth. The inert N2 gas is converted into readily 

available inorganic N (NH4
+) through the process of fixation. Fixation occurs naturally through 

lightning, lava flow, and forest fires or through biological nitrogen fixation, where symbiotic 

bacteria (Rhizobia) in the root nodules of certain crops fix N that can be utilized by the plants. 

Other types of N inputs that sustain plant growth are fertilizer application (mineral and manure) 

and atmospheric N deposition (wet depositions: ammonium, nitrate; dry depositions: ammonia, 

nitrous oxide, etc.). The readily available N (mineral form) contributed by fertilizers and 

atmospheric deposition are utilized for plant growth, and the rest is stored in the soil root zone. 

Apart from these inputs, the soil receives inputs from the dead roots and crop residues after the 

harvest. These inputs to the soil are mainly in organic form and are immobile, and not readily 

available for crop growth, though, the organic N in soil is subjected to decomposition, where the 

fresh residues are broken down into simpler organic compounds. The simpler organic 

compounds are then converted into ammonium ions (NH4
+) through the mineralization process 

while the reverse process by which ammonium ions are converted into organic form by micro-

organisms is referred to as immobilization. Mineralization and immobilization are controlled by 

factors such as crop residues, soil moisture content, and pH (Haynes, 1986; Bingner et al., 

2018). A portion of the ammonium ions is converted into nitrite and then subsequently the 

nitrites (NO2
-) are converted into nitrates (NO3

-). This process of conversion of ammonium ions 

into nitrate is known as nitrification. The nitrates stored in the soil stores are subjected to 

leaching through which the nitrate particles move to the groundwater stores. Also, the nitrates in 

the soil stores are subjected to denitrification process by which nitrates are converted into NO2, 

N2O, NO, and N2 (gaseous atmospheric losses), when the soil is saturated for a long period, and 
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the oxygen is depleted. In addition to these atmospheric losses, another loss from the soil 

system, to the atmosphere, occurs through the volatilization process. The ammonium ion 

resulting from mineralization and fertilizer application could be converted into ammonia gas. 

Factors favoring volatilization may include high soil temperature, high pH, windy conditions, 

coarse soil texture, etc. (Johnson et al., 2005). 

 

Human modification of the Nitrogen (N) cycle has resulted in a twofold increase in 

fixation of reactive N compared with pre-industrial levels (Galloway et al., 1995). This increase 

has primarily occurred through emissions from burning fossil fuels, fertilizer production, and 

leguminous crop production (Galloway et al., 2004; Vitousek et al., 1997). Use of inorganic 

fertilizers for crop production increased dramatically after the discovery of the Haber-Bosch 

process for producing ammonia at an industrial scale, allowing for large increases in crop 

productivity (Smil, 2011). The food produced as a result of inorganic N fertilizer use now feeds 

more than 45% of the world’s population (Smil, 2011). High levels of N fertilizer use have now 

significantly perturbed the global N cycle, and it has been argued that planetary boundaries for 

maintaining human and ecosystem health have been exceeded by the intensive use of N in 

modern agriculture (Rockström et al., 2009).   

 

Excess nitrogen in the atmosphere (Chameides et al., 1994) due to fossil fuel combustion, 

burning of biomass, and fertilizer use deteriorates air quality leading to reactive airway disease, 

asthma and cardiovascular diseases (Pope et al., 2002). Increased inputs of N to water bodies 

have resulted in water quality impairment that degrades human and ecosystem health. For 

example, in the U.S, 10-20% of groundwater sources exceed the nitrate limit of 10 ppm adopted 

by the World Health Organization (Townsend et al., 2003). Excess nitrate in drinking water 

causes methemoglobinemia (“blue-baby” syndrome) in infants (Vitousek et al., 1997). In Iowa, 

rising groundwater nitrate levels have been found to increase the risk of bladder and ovarian 

cancer (Weyer et al., 2001).  

 

Increased anthropogenic N inputs have increased the riverine N flux by 11-fold in the 

North Sea region, by six-fold in Europe and by threefold in the North American region 

(Howarth, 1998). Increased N inputs to the marine environment have altered the coastal nutrient 

cycling and accelerated eutrophication and hypoxia globally (Moss, 2011).  Increased N flux to 
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coastal and inland waters has accelerated eutrophication, reduced biodiversity through species 

loss, and significantly reduced the long-term coastal fish catch (Vitousek et al., 1997). The inputs 

are expected to increase even further in the future to meet the food demands of a growing global 

population through intensive agriculture (Vitousek et al., 1997). 
 

1.2 Time Lags in Catchment Response 

 

Recognition of the detrimental effects of nitrate has led to the adoption of various best 

management practices (BMPs) for improving water quality. However, these practices have not 

led to expected improvements in water quality. For example, in the USA, the Gulf of Mexico 

experiences a massive dead zone formation which spreads across 20,000 km2 (during 1999), with 

a 5-year running average size of 10,000 km2 (for 1996-2000). In 2001, the Watershed Nutrient 

Task Force (WNTF) developed an Action Plan calling for reduction in size (5 year running 

average) of the dead zone to less than 5,000 km2, by implementing a series of best management 

practices (e.g. wetland restoration, creation of riparian buffer zones, growing cover crops and 

improved nutrient management strategies). Even though millions of dollars have been spent on 

reducing the size of the dead zone, during 2015 the average size was still around 15, 000 km2 and 

the target has been pushed to 2035 (Van Meter et al., 2018). Attempts have been made to reduce 

inorganic fertilizer inputs in United Kingdom watersheds since 1980 though no substantial 

decrease has been observed in riverine N concentrations (Howden et al., 2010). Nutrient input 

reductions in four Northern European ecosystems have also failed to restore past ecological 

conditions (Duarte et al., 2008). Recently, in the Yongan river watershed of China, stream N 

concentrations have been observed to increase progressively, despite a reduction in inorganic 

fertilizer inputs since 1999 (Chen et al., 2014). The same trend was observed in the watersheds 

of Finland and Poland in 1990s (Fenton et al., 2011).  

 

A time lag, defined as the time between implementation of agricultural BMPs and 

improvements in stream water quality, is often recognized as an important factor behind the 

“apparent failure” of these stream improvement measures (Fenton et al., 2011; Meals et al., 

2010; Van Meter & Basu, 2015). For example, Fenton et al. (2011) have stated that most water 

bodies in the European Union will not attain good water quality status by the targeted year 2015 
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due to the influence of lag times, although improvements will be seen within a 6-12 year time 

frame. Meals et al. (2010) in a data synthesis study found that time lags can range from 5 to 

more than 50 years as a function of watershed size, soil type, climate, and management practices. 

Time lag can be conceptualized as made up of two components: (a) a hydrologic time lag that 

arises from dissolved nitrate in the vadose zone and groundwater reservoirs that take their time to 

show up in the stream due to slow groundwater pathways, and (b) a biogeochemical time lag 

arising due to accumulation of soil organic N in the root zones of agricultural soils. While the 

existence of hydrologic time lags is well accepted, the recognition of the possibility of 

biogeochemical time lags for N is relatively recent (Burt et al., 2010; Chen et al., 2014a; Van 

Meter & Basu, 2015) and to date no work has been on using process-based models to explore 

these lag times.  

1.3 Nitrogen Mass Balance Studies: Is there a Legacy?  

To quantify lag times, it is necessary to understand the fate of N applied to the landscape. 

Several mass balance studies have attempted to quantify the fate of applied N in the agricultural 

landscapes (Howarth et al., 1996; Goolsby et al., 1999; Baker et al., 2001; Bouwman et al., 

2005; Hong et al., 2011, 2013). The most widely used method for N mass balance at the 

watershed scale is the Net Anthropogenic Nitrogen Inputs (NANI) method formulated by 

Howarth et al. (1996), which is the summation of Atmospheric N Deposition, Fertilizer N 

Application, Biological Nitrogen Fixation, and Net food and Feed Import / Export. Boyer et al. 

(2002) and Howarth et al. (1996) have used this approach for global watersheds and found that 

only ~ 25% of net inputs were exported as riverine N flux. So, what could be the fate of the 

remaining nitrogen? While it is well established that the remaining N is either denitrified or 

stored in subsurface reservoirs, the exact mass of this stored N is not well known (Galloway & 

Cowling, 2002). Indeed, in most mass balance studies, it is assumed that the rates of soil N 

mineralization (Goolsby et al., 1999; Han & Allan, 2008), immobilization (Goolsby et al., 1999), 

ammonia volatilization (Bouwman et al., 2005; Boyer et al., 2002) and denitrification (Goolsby 

et al., 1999) balance each other so that there is no net N accumulation. However, recent work 

suggests that this might not be the best assumption (Galloway et al., 2008; Van Meter et al., 

2013; Worrall et al., 2015). One study, for example, found that even after accounting for 

denitrification and the groundwater store, 17% of nitrogen inputs were unaccounted for at a 
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global scale (Schlesinger, 2009). Worrall et al. (2015) estimated that even after accounting for 

groundwater N accumulation beneath the river Thames drainage basin in the UK, the 

unaccounted for N was 55 kg/ha/yr, which they attributed to soil accumulation.   

1.4 Evidence of Soil Nitrogen Legacy 

While the above-mentioned mass balance studies have attributed the missing N to soil N 

accumulation, very few studies have quantified the potential of agricultural soils to retain N in 

the soil. David et al. (2009) which measured the changes in soil organic carbon (SOC) and total 

nitrogen (TN) at 19 locations in central Illinois, revealed significant increases in C and N 

concentrations in the soil profile. This study had resampled the soils by depth (0-100 cm) in 

2002, at sites that were previously sampled during 1957. The results showed no significant 

change in C and N concentration in the first soil layer (0-20cm), however, from 20-100 cm, there 

was a significant increase in C and N concentrations, reflecting the translocation of nutrients to 

lower depths. Overall the study documented an increase in C and N concentrations in the soil 

profile. More recently, Van Meter et al. (2016) analyzed long term soil data from 1957 to 2010, 

at 2069 sites in Mississippi River Basin, and estimated the accumulation of N in croplands as 25 

– 70 kg/ha/yr. Also, the study analyzed the soil data from 61 sites across Iowa that were sampled 

in 1959 and again in 2007 and observed a net 14% increase in soil total N (1478 ± 547 kg/ha) 

over the study depth of 0 to 100 cm, due to high inputs from agriculture (Figure 1.1). Similar to 

these field measurements, (Yan et al., 2014) has documented the increase in total soil N content 

in croplands of China. Based on the total soil N content, measured in 1393 cropland sites across 

China. Yan et al. (2014) have estimated a 5.1% increase in total soil N content between 1979-

1982 and 2007-2008. While N accumulation is evident in the above field measurements and data 

analysis studies, long term Broadbalk Continuous Wheat experiments in Rothamsted (UK) also 

indicates legacy N accumulation under two fertilizer application scenarios: (i) over a period of 

115 years (1852-1967), an experimental plot that received 35 t/ha of farmyard manure showed 

two-fold increase in total soil N content (Jenkinson et al., 1982) and (ii) another plot that 

received mineral N fertilizer application of 144 kg/ha/yr, over a period of 140 years (1852-1992) 

has increased total soil N content by 21% (Glendining et al., 1996). In addition to the field 

measurements and experimental studies, few mass balance and modeling studies at national 

scales (Leip et al., 2011- Europe; Science Advisory Board, 2011- U.S; Clair et al., 2014- 
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Canada) have indicated that the agricultural soils have retained 15-20% of the total N inputs to 

the system. Furthermore, the global scale mass balance and modeling studies (Galloway et al., 

2004; Fowler et al., 2013; Zaehle S., 2013) suggests that the terrestrial ecosystem may be 

sequestering N in the order of 20-100 Tg-N/yr. These findings highlight the accumulation of 

nitrogen in agricultural soils. 

 

Figure 1.1. Accumulation of TN in agricultural soils across the MRB, 1980–2010, based on 

2069 soil samples from the NCSS database. (a) The number of samples used for the TN analysis, 

by sub-basin. (b)TN accumulation rates for the four depth intervals (0–25 cm, 25–50 cm, 50–75 

cm, 75–100 cm). Data points correspond to yearly means, and error bars to standard errors for 

the yearly means. Trend lines are obtained from multiple linear regression analysis of TN data. 

(c) Depth patterns of soil TN content in 1980 and 2010 reveal the greatest accumulation in the 

top 25 cm. Source: Van Meter et al., (2016) 
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1.5 Modelling Nutrient Legacies and Time Lags 

Despite the overall understanding that legacy nitrogen accumulation in soils and 

groundwater leads to lag times between implementation of best management practices and water 

quality improvement, most existing models can’t predict these lag times. In the next section, the 

existing models, as well as some newer approaches that address legacy issues, are reviewed. 

1.5.1 Brief Review of Existing Models: Capabilities and Gaps 

 

In general, models that predict nutrient fluxes at stream outlet based on the inputs, land-

use, and management practices are of three types: (i) empirical models (ii) conceptual and 

statistical models and (iii) process-based models, based on increasing complexity in process 

representations (Cherry et al., 2008). Examples of empirical models are the (i) Export coefficient 

models and (ii) NANI based models. Export coefficient models (ECM) predict the nutrient 

loading in the stream network as function of export of nutrients from each of the sources (such as 

fertilizer application, atmospheric deposition etc.), in which the export coefficients (proportional 

nutrient loss from sources) are derived from literature review and field experiments (Johnes, 

1996). Because of its simplicity and minimal data requirement, this approach has been used 

extensively by many studies (Mattikalli and Richards, 1996; Worrall and Burt, 1999; Ding et al., 

2010; Ma et al., 2011) to estimate the stream nutrient export at watershed and regional scales 

(Alexander et al., 2002).  

 

Conceptual and statistical models include Spatially Referenced Regression on Watershed 

Attributes (SPARROW) and Geospatial Regression Equation for European Nutrient Losses 

(GREEN). SPARROW (Smith et al., 1997) is a spatially explicit, statistical model that relates 

the total N and P riverine loads, with the nutrient sources (both point and nonpoint sources), 

stream-channel characteristics (channel depth and travel time) and watershed attributes (slope, 

soil permeability, percent wetlands etc.) (Preston et al., 2011). SPARROW has been used at 

multiple scales, ranging from smaller watersheds to conterminous U.S. (Preston et al., 2011) to 

understand (i) major sources of nutrients in the stream waters (ii) role of stream processes in 

nutrient delivery and (iii) impact of environmental factors on sediment export. The GREEN 

model is similar to SPARROW (Grizzetti et al., 2008), and is a spatially explicit regression 

model but routes the N and P inputs from both diffuse and point sources to the outlet through the 
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internal sub-basins (Bouraoui and Grizzetti, 2014). Grizzetti et al. (2005, 2008) and Thieu et al. 

(2012) have used GREEN at the basin (Brittany) and continental scale (Europe) to predict the 

impact of various fertilizer and manure application scenarios on riverine nitrogen loads. 

 

There is a wide variety of process-based models, with varying levels of complexity, 

including CENTURY, Environmental Policy Integrated Climate (EPIC) model, Hydrological 

Simulation Program – Fortran (HSPF), Annualized Agricultural Non-Point Source 

(AnnAGNPS), Soil Water Assessment Tool (SWAT) and MIKE-SHE.  CENTURY is a plot 

scale, plant-soil-carbon interaction, biogeochemical model that predicts Nitrogen (as well as 

Carbon, Phosphorus, and Sulphur) dynamics in grassland, forest, and cropland systems at a 

monthly time-step (Parton et al., 1988, 1993). CENTURY and its daily version, DAYCENT has 

been used extensively to analyze Soil Organic Carbon / Soil Organic Nitrogen dynamics (Parton 

et al., 1988b, 1993; Del Grosso et al., 2002) and estimate greenhouse gas emissions (Del Grosso 

et al., 2002, 2005, 2008, 2009, 2011; Adler et al., 2007; Davis et al., 2012; Field et al., 2016). 

EPIC is a field scale model that simulates hydrology, crop growth, nutrient cycling, and erosion 

processes, and runs at a daily time step. The model has the capability to estimate the SOC 

dynamics and impact of agricultural management practices changes on nutrients (Forster et al., 

2000; Izaurralde et al., 2006, 2007; X. Wang et al., 2006; Causarano et al., 2008; Gaiser et al., 

2008; Balkovič et al., 2011; Zessner et al., 2017). HSPF (Bicknell et al., 1996) is a semi-

distributed, watershed scale model that includes hydrology, crop growth, and nutrient cycling 

processes in urban and agricultural landscapes. HSPF has multiple flow pathways such as surface 

runoff, lateral flow, and groundwater flow (Skahill, 2004). AnnAGNPS (Parsons et al., 2004; 

Bingner et al., 2018) is a distributed, watershed scale model that has hydrology, crop growth, and 

nutrient cycling processes modules. It simulates only surface runoff, lateral flow, and tile flow 

pathways and lacks groundwater component. Both HSPF and AnnAGNPS are being used widely 

for nutrient abatement strategy modeling (Suir., 2002; Shirinian-Orlando and Uchrin, 2007; Li et 

al., 2012, 2017; Liu, 2015; Luo et al., 2015) such as analyzing the impact of crop/land-use 

change, fertilizer application change, tillage practices change on nutrient loading. SWAT is a 

semi-distributed, watershed scale model that can simulate crop growth, hydrology, and nutrient 

cycling processes at a daily time step. It has multiple flow pathways (surface runoff, lateral flow, 

tile flow, and groundwater flow) and is used worldwide at various spatial scales (Arnold and 
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Fohrer, 2005; Gassman et al., 2014). Due to its distributed and process-based nature, SWAT has 

been utilized for hydrological modeling, crop grow assessment, nutrient abatement strategies 

using agricultural Best Management Practices (BMPs), sediment transport estimation, land-use, 

and climate change and optimization and uncertainty analysis (Arnold and Fohrer, 2005; 

Krysanova and Arnold, 2008; Gassman et al., 2014). MIKE-SHE is a physically based, 

distributed, fully integrated model that captures all components of the hydrological cycle. The 

model has multiple modules to simulate ET, channel flow, surface runoff, unsaturated zone flow, 

and saturated zone flow. It can be characterized with any desired spatial scale (grids) and offers 

multiple numerical solvers to simulate hydrologic and hydraulic processes based on the choice of 

lumped or fully distributed process representations (Frana, 2012; Butts and Graham, 2005; 

Hughes and Liu, 2008; Ma et al., 2016). 

 

Although empirical and statistical models like SPARROW and GREEN can estimate 

stream N loading at a watershed outlet, their ability to predict time lags instream responses 

induced by land-use changes are limited due to their inherent assumption of steady-state N in 

subsurface stores (Chen et al., 2014b). Process-based field-scale models like CENTURY, EPIC 

and AnnAGNPS can predict field-scale SON accumulation and depletion but lack groundwater 

transport processes to capture hydrologic legacy. Watershed scale models like SWAT, HSPF, 

and MIKE-SHE have the groundwater transport processes; however, there has been no previous 

attempt to use them for time lag assessment. Chapter 4 describes the modifications needed to 

achieve this goal. 

 

1.5.2 New Modelling Frameworks to describe Legacy 

In the recent past, a new modeling framework has been developed called the Exploration 

of Long Term Nutrient Legacies (ELEMeNT) model. This is a parsimonious, process-based 

model (Van Meter et al., 2017) that couples SON accumulation and depletion dynamics in the 

soil profile with a travel time approach that includes the transformation and transport of nutrients 

in subsurface hydrologic pathways. Van Meter et al. (2017) applied this modeling framework at 

the Mississippi River Basin (MRB) and Susquehanna River Basin (SRB) to quantify the N 

legacies (both hydrological and biogeochemical) and time lags in stream nitrate response. Over 

214 years (1800-2014), the modeling results highlight that soil legacies are dominant in MRB, 
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while groundwater legacies are dominant in SRB. Moreover, the study found that approximately 

55% and 18% of the current annual N loads in the MRB and SRB are more than ten years old. 

Finally, the model predicted that if aggressive management strategies were implemented in MRB 

such that N application was achieved at 100% efficiency (all nitrogen applied was taken up by 

crops), it would take 35 years to achieve the 60% load reduction target suggested by the Gulf of 

Mexico Task Force. 

 

Although the parsimonious process based ELEMeNT model developed by Van Meter et 

al. (2017) successfully captured the N legacies and time lags, it is difficult in the ELEMENT 

framework to estimate the impact of cropping pattern, soil texture and management changes 

(such as tillage) on SON dynamics and time lags. Thus, this thesis has focused on using widely 

accepted field-scale and watershed scale models, CENTURY and SWAT, to understand the 

accumulation and depletion of hydrologic and biogeochemical legacies as a function of climate, 

soil texture and land-use and land management. 

 

1.5.3 Modelling Philosophy: Getting the right answers for the right reasons 

 

One of the biggest limitations in describing water flow and solute transport through 

natural systems arises from a large number of unknown parameters that describe that 

physicochemical and biological processes, and the limited amount of measured data that the 

models are calibrated against. This leads to the problem of equifinality and non-uniqueness 

issues where multiple combinations of parameters can lead to similar streamflow and water 

quality responses at the catchment outlet (Basu et al., 2010; Beven and Freer, 2001, Beven and 

Binley, 1992; Beven, 2006). Such models, if used to predict the future responses, will result in 

greater prediction uncertainties (Yen et al., 2014). 

An effective way of reducing equifinality and model prediction uncertainty is to include 

multiple data sources (Beven, 1993; Seibert and McDonnell, 2002) that govern the internal 

watershed processes in the model calibration. For example, spatially distributed soil moisture and 

crop yield data have been used in addition to streamflow measurements at the catchment outlet 

for model validation (Baumgart, 2005, Hu et al., 2007). Kannan et al. (2007) and Nair et al. 

(2011) argued that the inclusion of crop growth components for calibration improves the 
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prediction efficiencies of the SWAT model. Furthermore, Cusack et al., (1997), Yilmaz et al., 

(2005), Spies et al., (2014), Alazzy et al., (2017), Hunink et al., (2017), Ren et al., (2018), Rajib 

et al., (2016), & Qiao et al., 2013, used spatially distributed rainfall, vegetation, soil moisture 

and Qiao et al 2013 & Seibert and McDonnell 2002 used field measured water table elevations in 

hydrological modeling to improve the model consistency.  

The use of alternate data sources in improving the consistency of watershed models is a theme 

that runs through this thesis. Our overall hypothesis is that the inclusion of spatially distributed 

ancillary datasets like crop yield, and SON accumulation in soil and groundwater increases the 

consistency and predictive ability of hydrological and water quality models. In Chapter 3, we 

focused on modeling hydrology using SWAT, and show that including crop yield in model 

calibration increases model robustness, and improves the ability of the models to predict nitrate 

loads. In Chapter 4 and 5, we demonstrate the use of alternate sources of biogeochemical data, 

namely the build-up of soil organic nitrogen in the landscape to improve the robustness of water 

quality models. 

1.6 Objectives 

The overall objective of this research is to understand the N dynamics in agricultural 

landscapes and how stream nitrate responds to changes in land-use and management practices, 

with a specific focus on the role of legacy N stores in the landscapes in altering time lags 

between landscape changes and stream responses. This will be achieved through four closely 

related sub-objectives, as described below. This study focuses on Midwestern watersheds of the 

U.S. 

 

Objective 1:  Historical reconstruction of N data from 1949 to present, to quantify the 

fate of N Inputs, N output and legacy N storage in agriculture-dominated 

Midwestern US watershed, using a mass balance approach 

Objective 2:  Demonstrate the use of crop yield and flow partitioning data into model 

calibration to improve the hydrologic consistency and robustness of the 

SWAT model 
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Objective 3:  Develop a framework to couple SWAT with the travel time distribution 

model to capture N accumulation in subsurface legacy stores (root zone 

and groundwater) and quantify time lags (combined biogeochemical and 

hydrologic time lags) for future land-use and management scenarios 

Objective 4: Evaluate long term (> 100 years) SON accumulation and N leaching 

dynamics at the field scale, and understand how climate and soil texture 

control SON accumulation and depletion using the CENTURY model  

 

1.7 Thesis Outline 

 

The thesis has an introductory chapter (Chapter 1), four research chapters (Chapter 2 

through 5) and a conclusion chapter (Chapter 6). Chapter 2 focuses on the quantification of N 

dynamics,  through a mass balance approach, in a 32,660 km2 agricultural watershed in Iowa. 

The goal here was to quantify the magnitude of subsurface legacy nitrogen stores and develop 

input time-series that can be used in the SWAT model developed in Chapter 4. This is possibly 

the chapter that is further away from publication, but the results from here informed the 

watershed model. Chapter 3, which is to be submitted to Hydrology and Earth System Sciences 

(Ilampooranan, Schnoor, and Basu) demonstrates the value of using ancillary data (crop yield 

and flow partitioning) into model calibration to ensure proper representation of the internal 

watershed process and improve model robustness. Chapter 4, Ilampooranan et al. (2019), which 

was published in Water Resources Research (Ilampooranan, Van Meter and Basu) focuses on the 

development of a novel modeling framework (SWAT-LAG model) by coupling the SWAT 

model with a travel time distribution framework to capture biogeochemical and hydrologic 

legacies. The SWAT-LAG model is then applied to the South Fork Iowa River Watershed, a 502 

km2 watershed in the midwestern US, to ascertain lag times under various land-use and 

management scenarios. Finally, in Chapter 5, which is under preparation to be submitted to 

Environmental Research Letters (Ilampooranan, Van Meter and Basu), we delve deeper to 

understand the fate of soil organic nitrogen accumulation under changing the climate, land-use 

and management practices by using the field-scale carbon-nitrogen cycling model CENTURY.   
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Chapter 2: Estimation of Legacy Nitrogen Storage in Agricultural Landscapes 

using data synthesis approach 

2.1 Abstract 

Massive land-use changes and the industrial production of fertilizers have increased food 

production but at the cost of significantly altering the global nitrogen (N) cycle. Increased N 

concentrations in surface and groundwater bodies have severely affected human and ecosystem 

health. Best management practices implemented to improve water quality have generally met 

with limited success. Such lack of success can be attributed to the increased buildup of legacy N 

stores in the subsurface, that act as an additional source even when N inputs have been reduced. 

It is critical to understand the magnitude of such legacy stores, and their timescales of 

accumulation/depletion to predict water quality impacts following land-use shifts. Here, we 

propose a data synthesis framework to understand and quantify the magnitude of legacy stores 

and their timescales of accumulation/depletion in a 32,660 km2 agricultural watershed in Eastern 

Iowa, the Iowa Cedar Basin. The magnitude of N inputs, outputs, and storage in this watershed 

over 64 years (1949–2012) was quantified using the Net Anthropogenic Nitrogen Inputs (NANI) 

framework. Inputs to the system, Atmospheric N Deposition, Fertilizer N Application and 

Biological N Fixation were estimated as 9.2 ± 0.35, 48 ± 2 and 49 ± 3 kg/ha/yr and outputs, Net 

Food and Feed, was estimated as 42 ± 4.5 kg/ha/yr, leading to Net Anthropogenic Nitrogen Input 

(NANI) as 64 ± 6 kg/ha/yr. Using the estimated values of riverine N export (18 kg/ha/yr) and 

denitrification (12.7 kg/ha/yr), we found that a significant portion of N (33.3 kg/ha/yr) was 

retained in the subsurface stores. 

2.2 Introduction 

Human activities over the last century have resulted in a twofold increase in nitrogen 

fixation in the terrestrial ecosystem through fossil fuel combustion, fertilizer production and 

cultivation of nitrogen-fixing crops (Galloway et al., 1995, 2004; Vitousek et al., 1997). Indeed, 

the inputs are expected to increase in the future to meet the growing demand for food (Vitousek 

et al., 1997). Increased N inputs have significantly deteriorated water bodies and affect human 

and ecosystem health. To understand the fate of N in the agricultural system several studies 

(Bouwman, 2005; Howarth et al., 1996; Goolsby et al., 1999; Baker et al., 2001; Han and Allan, 
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2008; Hong et al., 2011, 2013; Hong, 2012) have quantified N by employing different mass 

balance frameworks. Within which the Net Anthropogenic Nitrogen inputs (NANI) framework 

introduced by Howarth et al. (1996) has been most commonly used to understand the fate of 

reactive N. NANI is estimated commonly as the summation of the four major components: (i) 

fertiliser application (ii) fixation by leguminous crops (iii) atmospheric deposition and (iv) net 

food and feed imported or exported. The NANI framework since then has been used most 

extensively using agricultural census and other databases. For example, Boyer et al., (2002) used 

this framework in the 16 Northeastern U.S. watersheds and observed an average net N input of 

30.8 kg /ha/yr. David et al. (2010) had found that the net N inputs to the Mississippi river basin 

have averaged 18.3 kg/ha/yr for the period 1997 to 2006.  

 

Out of the total NANI, only a certain fraction shows up as a riverine output. Studies at 

large scale show this fraction to be around 25% for 14 major regions draining to the North 

Atlantic Ocean (Howarth et al., 1996) and the same fraction was observed for 16 Northeastern 

U.S. watersheds (Boyer et al., 2002). At the local scale, this fraction can be quite variable. Hong 

et al. (2013) analyzed the regional variation of NANI and riverine N flux by grouping 106 U.S. 

watersheds into five groups. The fraction of NANI exported by rivers varied from 25 to 35 due to 

regional variation in climate, discharge, and presence of tile drains. David and Gentry (2000) 

reported a high value, 51%, for Illinois rivers.  

 

While it is well established that a fraction of NANI leaves the watershed as riverine N 

flux, the fate of the remaining NANI is mostly unknown (Galloway et al., 2004). David and 

Gentry (2000), David et al. (2009) and Drinkwater et al. (1998) argues that there was no 

significant change in soil SON levels and assumes that the missing N in their studies was 

attributed to denitrification. However, Van Meter et al. (2016) has emphasized that a certain 

fraction of the inputs get stored in the soil as organic N. Van Meter et al. (2013) analyzed soil 

databases in Iowa and Illinois and found that soil organic N accumulates in the root zone of 

agricultural soils in fields under intensive agriculture. Similarly, Chen et al. (2014) highlighted 

the increase in soil organic nitrogen levels in Yongan River Watershed in Eastern China. Thus, 

in this study, the following questions were answered: (i) whether soil organic nitrogen 

accumulates in agricultural landscapes of Iowa and (ii) if it accumulates, what is the magnitude 
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of legacy N stores. The NANI based mass balance approach was used to understand the fate of 

missing N. 

2.3 Site Description 

The Iowa-Cedar Basin (ICB) which covers an area of 32,660 km2, was selected as the 

study site. The ICB is drained by the Iowa and Cedar rivers, two major tributaries of the 

Mississippi River in the U.S. (Figure 2.1). The ICB extends from southern Minnesota to the 

confluence with the Mississippi River at New Boston (downstream of Port Louisa). The region 

has a humid continental climate with cold winters and hot and humid summers. The average 

annual temperature is 10 oC (ICRB Report, 2010), and the mean annual rainfall is approximately 

864 mm (Seo et al., 2013). Heavy rainfall occurs during spring and snowmelt events that often 

lead to flooding.  

The Iowa landscapes, primarily tallgrass prairies, wetlands, and forests, were transformed 

into agricultural lands beginning in the 1850s (ICRB Report, 2010). Today the land is under 

intensive agriculture with predominantly corn and soybean crops, covering an area of ~73% of 

the Iowa Cedar Basin. The remaining area of the basin is in pasture and rangelands (11.7%), 

forests (3.4%), wetlands and water bodies (3.3%), and urban areas (8.7%). The intensive 

agriculture in Iowa has required excessive fertilizer application that has led to degraded water 

quality (Davis et al., 2014). ICB has been ranked as one of the highest contributors of nutrients 

and sediments to the Upper Mississippi River Basin, causing Gulf Hypoxia (Davis et al., 2014; 

ICRB Report., 2010). The nutrient concentration at the outlet of ICB has been slightly increasing 

between 1980 and 2008 (Sprague et al., 2011). Furthermore, ICB exhibits annual flow 

normalized nitrate concentration levels of 4.8 mg/l, which is the one of the highest compared to 

other sites in the Mississippi River Basin (Murphy et al., 2013). These factors make it important 

to study this watershed for developing nutrient reduction strategies. 
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Figure 2.1. Location of Iowa Cedar Basin and Wapello Outlet for which discharge and nitrate 

concentration was measured 

 

2.4 Methods 

2.4.1 Historical reconstruction of nutrient budgets to estimate temporal trends in Net 

Anthropogenic N Inputs over the Iowa Cedar Basin (1949-2012) 

The Net Anthropogenic Nitrogen Input (NANI) was estimated as the summation of 

atmospheric N deposition, fertilizer N application, agricultural N fixation, and net food and feed 

imports, following the approaches of Howarth et al. (1996) and Hong et al. (2013). Data required 
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for this study, such as fertilizer application, atmospheric deposition, human population, animal 

count, crop harvested area and crop yield for the period 1949 to 2012 (see Table 2.1 for data 

sources), were collected at county scale (35 counties) and aggregated to watershed scale based 

on the area proportions i.e. based on the ratio of the watershed area over the county area. Ten 

crop types and nine animal groups were considered for Net Food and Feed component, and 

analysis was performed in MATLAB & ArcGIS at a yearly time step. Please refer the Table 2.1 

for details on data sources and spatiotemporal resolution of NANI components. 

 

The NANI was estimated as the difference between total N inputs and total N outputs of 

the system. Total inputs include atmospheric N deposition (amount of N in rainfall), fertilizer N 

application (inorganic fertilizer applied for crops), agricultural N fixation (biological nitrogen 

fixation by leguminous crops) and human and animal consumption (amount of N present in 

human food and animal feed). Total N outputs include crop N production (nitrogen removed in 

crop harvest) and animal N production (amount of nitrogen in animal products, i.e., in the form 

of meat). Sewage and animal wastes (manure) are not considered as new inputs as they represent 

redistribution or recycling of nitrogen within the region (Howarth et al., 1996). NANI was 

estimated as  

 

 NANI = DEP + FERT + FIX +/- NFF     (Eq. 2.1) 

 

Where NANI is the Net anthropogenic nitrogen input (kg/ha/yr), DEP is the N in atmospheric 

deposition (kg/ha/yr), FERT is the N in inorganic fertilizer applied (kg/ha/yr), FIX is the N fixed 

by the crops (kg/ha/yr) and NFF is the N in net food and feed for humans and animals (kg/ha/yr). 

A schematic of this framework is presented in Figure 2.2. 
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Figure 2.2. Schematic representation of NANI analysis (Howarth et al., 1996) 
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Table 2.1. Summary table with the data type, source and spatiotemporal resolution of data for 

each component of NANI 

NANI Components Data Type Data Sources 
Temporal 

Resolution 

Spatial 

Resolution 

Atmospheric N 

Deposition 

NOx (oxidized 

forms of N) 

1949 to 1984, Dentener 

(2006) 

1985 to 2012, NADP1 

1949 to 2012 (annual 

data corresponding to 

census years were 

selected) 

Station data 

 

Fertilizer N Application 
Annual N 

Fertilizer applied  

Alexander and Smith 

(2000) 

USGS2 (2012) 

1949 to 2012 (every 

five years) 
County-scale 

Biological N Fixation 

Crop production 
Census of Agriculture, 

USDA3 

1949- 2012 (every 5 

years) 
County-scale 

Crop harvested 

area 

Census of Agriculture, 

USDA 

1949 to 2012 (every 

five years) 
County scale 

Net 

food 

and 

Feed 

Crop N 

Production 
Crop production 

Census of Agriculture, 

USDA 

1949 to 2012 (every 

five years) 
County scale 

Animal N 

Production  
Animal inventory 

Census of Agriculture, 

USDA 

1949 to 2012 (every 

five years) 
County scale 

Animal N 

Consumption 
Animal inventory 

Census of Agriculture, 

USDA 

1949 to 2012 (every 

five years) 
County scale 

Human N 

Consumption 
Human population U.S. Census Bureau 

1949 to 2012 (annual 

data corresponding to 

census years were 

selected) 

County scale 

1-National Atmospheric Deposition Program,  

2United States Geological survey and  

3-United States Department of Agriculture 
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(i) Atmospheric N Deposition: 
 

Only oxidized N (NOX) is considered for analysis and reduced forms of nitrogen (NHx, 

i.e., ammonia and ammonium) were excluded based on the assumption that emissions from 

manure will get re-deposited in large watersheds (Howarth et al., 1996). For the period 1985 to 

2012, atmospheric N deposition data were obtained from NADP (2014) for four stations in and 

around Iowa and spatially interpolated in ArcGIS to obtain county scale deposition values. The 

NADP dataset is based on weekly precipitation samples that were collected and analyzed for 

nitrate, ammonium and other constituents at the NADP Central Analytical Laboratory, operated 

by Illinois State Water Survey in Champaign, Illinois. The point location of those sites was 

populated in ArcGIS for corresponding years and interpolated to get 250 m resolution grid cells 

that contain the atmospheric N deposition values. County scale annual deposition values were 

obtained by calculating the mean deposition rate of grid cells within the county boundary. 

Finally, county scale values were converted into watershed-scale values based on the area 

proportions. For the years before 1985, data was obtained from Dentener (2006) that provided 

global scale N deposition values. 

 

(ii) Fertilizer application: 

 

County-level fertilizer (kg/ha/yr) inputs were obtained from the United States Geological 

Survey (USGS) reports. In particular, data from 1949 to 1985 were obtained from Alexander and 

Smith (1990) and from 1985 to 2007, USGS (2012) data were used. The data obtained from 

Alexander and Smith (1990) and USGS (2012) were based on state-level fertilizer sales values 

that were disaggregated to county level values using (a) the county and states’ fertilized acreage 

from 1949 to 1985 and (b) the county and states’ expenditure on fertilizers from 1985 to 2012.  

 

(iii) Biological Nitrogen Fixation: 

 

The three major crops that perform biological nitrogen fixation in the Iowa Cedar Basin 

are soybeans, alfalfa hay, and non-alfalfa hay. Biological nitrogen fixation for soybeans and 

alfalfa hay was computed using yield based method (Hong et al., 2013), as follows  

 

FIX = FIX(soybean & alfalfa hay) + FIX(other hay)     (Eq. 2.2) 
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FIX(soybean & alfalfa hay) = H * c * D% * N% * p% * (1+b)   (Eq. 2.3) 

 

Where FIX(soybean & alfalfa hay) is the biological nitrogen fixation for soybean and alfalfa hay 

(kg/ha/yr), H is the harvested quantities (yield) reported in Census of Agriculture, United States 

Department of Agriculture (bushels), C is the conversion factor (from bushels to kg), D is the 

percent dry matter, N is the percent N in dry matter, p is the percent of harvested N that can be 

attributed to fixation, and b is the ratio of non-harvested N to harvested N. The p values adopted 

from Hong et al. (2013) for soybeans, and alfalfa hay is 74% and 82% respectively. The term b 

accounts for below-ground biomass nitrogen fixation, and the value adopted from Hong et al. 

(2013) was 50%. For non-alfalfa hay, area-based fixation was followed based on Hong et al. 

(2011):  

FIX(other hay) = A * n        (Eq. 2.4) 

 

where FIX(other hay) is the biological nitrogen fixation for non-alfalfa hay (kg/ha/yr), A is the non-

alfalfa hay harvested area (ha) and n is the fixation rate for non-alfalfa hay (117 kg/ha/yr, 

adopted from Hong et al. (2011)). 

 

Harvested quantity (H) and harvested area (A) of crops were obtained from Census of 

Agriculture, United States Department of Agriculture from 1949 to 2012 (in a 5-year time 

interval) at the county scale. Biological nitrogen fixation rates were calculated using equations 

2.2 to 2.4 and crop parameters D, and N in equations 2.3 and 2.4 were adopted from Hong et al. 

(2011) and Hong et al. (2013) (Table 2.2).  
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Table 2.2. Crop nitrogen parameters for NANI analysis, adapted from Hong et al. (2013) 

   D N phuman panimal 

Crops Yield Unit 

Kilograms 

harvested 

per yield 

unit 

Percent 

dry matter 

Percent N 

in dry 

matter 

Percent 

distributed 

to human 

Percent 

distributed 

to animal 

Corn for Grain Bushels 25.4 86.70% 1.64% 4% 96% 

Corn for Silage or 

Green Chop 
Green tons 907.2 28.40% 1.25% 0 100% 

Sorghum for Grain 

or Seed 
Bushels 25.4 89.40% 1.96% 0 100% 

Soybeans for Beans Bushels 27.2 90.60% 6.54% 2% 98% 

Wheat for Grain Bushels 26.1 88.50% 2.15% 61% 39% 

Oats for Grain Bushels 14.5 89.40% 2.05% 6% 94% 

Barley for Grain Bushels 21.8 88.90% 2.11% 3% 97% 

Rye for Grain Bushels 25.4 88.10% 2.17% 17% 83% 

Alfalfa Hay Dry tons 907.2 90.40% 2.79% 0 100% 

Other Hay Dry tons 907.2 86.70% 1.27% 0 100% 

 

(iv) Net Food and Feed: 

 

Net food and feed were calculated as the difference between human and animal nitrogen 

consumption and production as described below: 

 

NFF = (CA＋CH)－ (PCA＋PCH)－ PA              (Eq. 2.5) 

Where NFF is the net food and feed (kg/ha/yr), CA  is animal N consumption (kg/ha/yr), CH  is 

human N consumption (kg/ha/yr), PCA is crop N production distributed to animals (kg/ha/yr), PCH  

is crop N production distributed to humans (kg/ha/yr), and PA  is animal N production (kg/ha/yr). 

It is assumed that the crops produced (PCA & PCH) in the watershed are consumed by the humans 

(CH) and animals (CA) in the watershed and the crop N production exceeding human and animal 

consumptions will be exported out of the watershed. Estimation of these subcomponents of NFF 

are described below 

Animal and Human N consumption (CA & CH): The equations for calculating animal and 

human N consumption (Hong et al., 2011) are as follows: 
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CA = AA * IA         (Eq. 2.6) 

CH = AH * IH         (Eq. 2.7) 

Where CA is the animal N consumption (kg/ha/yr), AA is the animal inventory. Animal inventory 

data for the six animal groups (beef cows, milk cows, hogs & pigs, sheep & lambs, chicken, and 

turkeys) were obtained from Census of Agriculture, United States Department of Agriculture. IA 

(kg/animal/yr) is the parameter for animal N intake (Hong et al., 2011) (refer Table 2.3). Human 

consumption (CH, in kg/ha/yr) was calculated by multiplying population (AH, obtained from the 

United States Census Bureau) by the estimated human N intake rate IH, 5 kg/person/yr (Boyer et 

al., 2002; Hong et al., 2011).  

 

Table 2.3. Animal nitrogen requirement parameters used in Animal N consumption calculation, 

adopted from Hong et al. (2011) 
 

 IA EA 

Animal groups 

Animal N 

intake 

(kg/animal/yr) 

N in animal 

excretion 

(kg/animal/yr) 

Beef Cows 66.75 58.51 

Milk Cows 156 121 

Hogs and Pigs 8.51 5.84 

Sheep and Lambs 5.97 5 

Chickens 0.84 0.55 

Total Turkeys 0.62 0.39 

 

Crop N production distributed to animals and humans (PCA & PCH): Amount of N present in 

harvested crops is calculated as  

PCA = H * c * D% * N% * panimal% *0.9         (Eq. 2.8) 

PCH = H * c * D% * N% * phuman% *0.9          (Eq. 2.9) 

Where PCA & PCH are the crop N production distributed to animals and humans respectively 

(kg/ha/yr), H is the harvested quantities (yield) reported in Census of Agriculture, United States 

Department of Agriculture (bushels or tons), C is the conversion factor (from bushels or tons to 
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kg), D is the percent dry matter, N is the percent N in dry matter, panimal and phuman are percent 

crop N distributed to animals and humans respectively (Table 2.2). A loss of 10% of crop N 

production during storage and processing, due to spoilage, consumption by insects and vermin 

were considered based on Hong et al. (2011). Ten crop groups (corn for grain, corn for silage, 

sorghum, soybean, wheat, oats, barley, rye, alfalfa hay, and other hay) were considered for 

analysis, and the crop yield data were obtained from the Census of Agriculture, United States 

Department of Agriculture at county scale from 1949 to 2012. 

Animal N Production (PA): Animal N production is calculated as the difference between animal 

N consumption (CA) and animal N excretion (EA), as follows: 

PA = (CA － (AA * EA)) * 0.9              (Eq. 2.10) 

Where PA is the animal N production in the form of meat and dairy products (kg/ha/yr), CA is the 

animal N consumption (kg/ha/yr), AA is the animal inventory. CA and AA were obtained from 

equation 2.6 and 2.7. EA (kg/animal/yr) is the parameter corresponding to the N in animal 

excretion for each animal group (Table 2.3). A 10% loss of N is assumed for the animal 

production term due to losses incurred in the processing of animal products.  

 

2.4.2 Uncertainty analysis 

The parameters governing the NANI estimation though obtained from published 

literature were subject to variation. For example, different parameters for computing soybean 

fixation rates were adopted by Bouwman et al. (2005), David et al. (2009), and Hong et al. 

(2013) that led to a range of NANI values. In addition to the input parameters, the input data 

might also have uncertainty. To account for these variations in input parameters and input data, 

an uncertainty analysis was performed using Monte-Carlo simulation following Chen et al. 

(2014). Based on Chen et al (2014) and (Zhang, 2016), a normal distribution with coefficient of 

variation of 0.3 was assumed for each of the input parameters (mentioned in Table 2.2 and 

Table 2.3) and also for the input data (crop yield, animal count etc.,), resulting in 10,000 

randomly generated NANI, Atmospheric N deposition, Biological N Fixation, Fertilizer N 

Application and Net Food and Feed for each year. The interquartile range (75th percentile minus 
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25th percentile) obtained from 10, 000 Monte-Carlo runs was used to highlight the input and 

parameter uncertainty and the median values (50th percentile) were used for further analysis  

2.4.3 Estimation of riverine N flux using WRTDS 

 

Monthly nitrate concentration data for the Wapello outlet of ICB was obtained from 

USGS (2016) from 1977 to 2012 and Weighted Regression on Time Discharge and Season 

(WRTDS) model was used to obtain the daily nitrate concentration data from which annual 

nitrate flux data was estimated. The WRTDS model estimates daily nitrate concentration using 

the following equation 

 ln(c) =  𝛽𝑜 + 𝛽1t +  𝛽2ln(Q) +  𝛽3sin(2πt) +  𝛽4cos(2πt) +  є  (Eq. 2.11) 

where, c is concentration (mg l-1), 𝛽𝑜 to 𝛽4 are fitted regression coefficients, Q is daily discharge 

(m3 s-1), t is time and  є is an error term. The WRTDS estimated daily nitrate concentration 

values were closer to observed values, with a flux bias statistic of 1.3%  

2.5 Results and Discussion 

2.5.1 Temporal trends of N fluxes and NANI 

 

Nitrogen fertilizer application rate has increased from 1950 till 1982, at a rate of 10 ± 0.4 

kg/ha/yr (Figure 2.3). Such an increasing pattern in fertilizer application can be attributed to (i) 

the rapid increase in fertilizer production that took place after World War II and (ii) growing 

demand for food grains, during 1950s and 1980, leading to usage of high yielding, fertilizer 

intensive crop varieties (Ruddy et al.,2006; Cao et al., 2018). After the peak usage in 1980, the 

fertilizer trends were stable till the early 2000s, following the corn acreage trend (USDA-

Agricultural Census, 2012). From the early 2000s, there was a shift in corn acreage in Iowa, 

driven by the growing demand for corn-based biofuel (Green et al., 2014). Due to the increase in 

corn prices, most productive lands in Iowa were put under continuous corn rotation in contrast to 

the conventional corn-soybean rotation (Secchi et al., 2011). Increases in corn acreages at the 

expense of soybean acreages, since the early 2000s, lead to an increase in usage of commercial 

fertilizers by 57% when compared to 1950-1982 magnitudes.  
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Biological nitrogen fixation trend has also been increasing consistently since the 1950s due 

to the adoption of high yielding soybean varieties and increase in soybean acreages. Soybean 

acreages and yield have increased continuously since the 1950s till 2002, which in turn increased 

the biological nitrogen fixation magnitudes at a rate of 6 ± 0.5 kg/ha/yr. Since 2002, a significant 

reduction in soybean acreages occurred due to increasing land under corn for biofuels. This has 

reduced the biological nitrogen fixation magnitudes by 20%. 

 

Finally, atmospheric nitrogen fixation values have remained relatively stable from 1950 to 

2012, with an average magnitude of 9.2 ± 0.35 kg/ha/yr. The main N outputs from the system 

include crop and livestock production. In the NANI framework, the net food and feed (NFFI) 

indicate the food and feed produced that is in excess of the internal demand. The NFFI is zero till 

1959 and then increases from 1959 till 2007 at a mean rate of -9 ± 5 kg/ha/yr. 
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Figure 2.3. Temporal trend of Biological Nitrogen Fixation, Atmospheric Nitrogen Deposition, 

Fertilizer Nitrogen Application, Net Food, and Feed and Net Anthropogenic Nitrogen Input 

(NANI), for Iowa Cedar Basin from 1949 to 2012 (a). Values shown in the plots are the median 

values of 10,000 Monte-Carlo simulations. The interquartile range (green shaded area) and 

median (solid and dotted black lines) of individual NANI components were obtained from 

10,000 Monte-Carlo simulations (b). 
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The Net Anthropogenic Nitrogen Inputs (NANI) increased from 1950 to 1982 due to an 

increase in fertilizer application, N fixation, and atmospheric deposition. However, from 1982 to 

2007, though the biological N fixation has increased slightly (at a rate of 2.7 ± 0.3 kg/ha/yr), N 

fertilizer application has remained approximately constant while there was a substantial increase 

in net food and feed, at a rate of 7.3 ± 0.3 kg/ha/yr (Figure 2.3). This can be attributed to the use 

of higher-yielding crop varieties that are more efficient at harnessing fertilizer and soil N. 

Finally, there is an increase in NANI from 2007 – 2012 – this can be attributed to an increasing 

fertilizer application rates to meet biofuel demand driven corn production, coupled with 2012 

being a drought year that led to decreased crop production (Rippey, 2015).  Despite these annual 

trends, there was an overall significant decrease in NANI from 1977-2012. 

2.5.2 River N Concentrations and Quantification of legacy N stores 

 

The analysis of riverine N flux at the Wapello station (outlet of ICB) shows that there is a 

decreasing trend from 1977 to 2012 (Figure 2.5). This can be attributed to the decreasing trend 

in the NANI. The average annual NANI over the 50 years was estimated as 64 ± 6 kg/ha/yr, 

while the annual average riverine N flux was estimated as 18 kg/ha/yr. 
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Figure 2.5. Net Anthropogenic Nitrogen Input (NANI) and mean annual riverine N flux from 

1950 to 2012. (a) NANI decreasing significantly (p<0.001) from 1977-2012 (b) Circles: 

Observed nitrate concentration, Solid black line: Modelled riverine N flux using WRTDS 

method from 1977 to 2012  

 

 

It is well known that the remaining nitrogen is either lost to denitrification or accumulates as 

legacy N stores in the landscapes. Denitrification fluxes at the landscape scale are difficult to 

quantify due to their great temporal and spatial variability and limitations in the measurement 

techniques to quantify the nitrous oxide and di-nitrogen gas fluxes due to the abundance of di-

nitrogen gas in the environment (Groffman et al., 2006). Following the uncertainty prevailing in 

the estimation of denitrification fluxes, David et al. (2009) performed a multi-modeling study to 

simulate the denitrification potential in a Central-Illinois watershed, which is similar to ICB in-

terms of land-use, management practices, and weather. We used the David et al. (2009) value of 

12.7 kg/ha/yr in this study and estimated legacy nitrogen as 33.3 kg/ha/yr (Figure 2.6 and 2.7). 

The estimated subsurface legacy N store (organic N in the root zone + dissolved nitrate in the 
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groundwater and soil water) value of 33.3 kg/ha/yr is close to the total soil organic nitrogen 

accumulation magnitude outlined in Van Meter et al. (2016) for Iowa soils (31 kg/ha/yr). 

 

 

 

 

 

Figure 2.6. Temporal trend of N stores and fluxes from 1977 to 2012. Annual Riverine N flux 

obtained from WRTDS model using monthly nitrate data from USGS (2016). Denitrification rate 

of 12.7 kg/ha/yr was adopted from David et al. (2009). Note that NANI was initially estimated 

for 1 in 5 years (census years) (shown in Figure 2.3) and then interpolated to get the annual 

values 
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Figure 2.7. Mass balance showing N inputs, N outputs, NANI, riverine N output, denitrification, 

and subsurface N accumulation 

 

 

2.6 Conclusion 

Historical reconstruction of N inputs, outputs, and stores was performed from 1950 to 

2012 for the Iowa Cedar Basin, agricultural watershed (i) to confirm the presence of legacy 

nitrogen stores and (ii) to quantify the magnitude of subsurface legacy nitrogen stores through 

mass balance approach. Using the most common Net Anthropogenic Nitrogen Inputs (NANI) 

method developed by Howarth et al. (1996), the N inputs such as atmospheric N deposition, 

fertilizer N application, and biological N fixation were estimated as 9.2 ± 0.35, 48 ± 2 and 49 ± 3 

kg/ha/yr respectively. Net Food and Feed and NANI were estimated as 42 ± 4.5 kg/ha/yr. Then, 

the Riverine N Output was accounted for 28% of NANI (18 kg/ha/yr), and denitrification was 

estimated as 23% of NANI (12.4 kg/ha/yr). The rest, 48% of NANI (33.3 kg/ha/yr) was 

attributed to subsurface nitrogen storage. The quantification of legacy N storage implies that not 

all the missing N in the agricultural system is lost through denitrification and a significant 
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portion of the N inputs stays in the subsurface stores. Such accumulation of nitrogen in the soil 

root zone, predominantly in organic form, constitutes long-term mineralization and nitrate 

leaching – referred to as biogeochemical legacy (Van Meter et al., 2016). While the 

biogeochemical legacy of P in agricultural soils is well accepted, the biogeochemical legacy of N 

is relatively new, since it was neglected before due to non-sorbing and highly leaching nature of 

nitrate-nitrogen (Hamilton, 2012). Indeed, the evidence is now emerging recently (Sebilo et al., 

2013: Isotope tracer experiment; Van Meter et al., 2016: Parsimonious modeling and site 

measurements of SON accumulation), indicating the presence of biogeochemical nitrogen legacy 

in agricultural soils. In this chapter, rough estimates of nitrogen accumulation in subsurface 

stores were provided and there is a substantial need to employ modeling approaches (i) to 

quantify legacy nitrogen accumulation in soil and groundwater stores (ii) to understand the fate 

of legacy nitrogen under land-use and management changes and (iii) to quantify time lags 

between implementation of best management practices and corresponding improvement in 

riverine N exports 
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Chapter 3: Pitfalls in Model Calibration - Getting the Right Answers for the 

Wrong Reasons 

3.1 Abstract 

 

Hydrologic models are most commonly calibrated only for streamflow at one or multiple 

stations within the watershed. Using the distributed hydrologic models with large numbers of 

parameters, it is possible to get good streamflow statistics with the completely incorrect 

representation of the internal watershed processes. Consequently, these models fail when they 

are used to predict nutrient fluxes or effect of climate change. Using a 32,660 km2 agricultural 

watershed in Iowa as a case study, a stepwise model refinement approach was used to show how 

the consideration of additional data sources can increase model consistency. We first developed a 

hydrologic model using the Soil and Water Assessment Tool that provided excellent monthly 

streamflow statistics (KGE, RSR and PBIAS values of 0.79, 0.59 and 6.5% during calibration 

and 0.75, 0.63 and 7.5% during the validation period, respectively) at eight stations within the 

watershed (Baseline Scenario, BS). However, comparing spatially distributed crop yield 

measurements with modeled results revealed a strong underestimation in model estimates 

(PBIAS Corn = 26%, PBIAS soybean = 61%). To address this, the model was refined by first 

adding crop yield as an additional calibration target (Scenario S1) and then changing the 

potential evapotranspiration estimation method (Scenario S2) -- this significantly improved 

model predictions of crop yield (PBIAS Corn = 3%, PBIAS soybean = 4%), while only slightly 

improving streamflow statistics. As a final step, for better representation of tile flow, the flow 

partitioning method (Scenario S3) was modified. While the model was developed for monthly 

streamflow, only version S3 was able to reproduce acceptable daily streamflow statistics. 

Furthermore, the S3 scenario was also able to (i) better capture variations in nitrate loads at the 

catchment outlet with no calibration and (ii) reduce parameter uncertainty, model prediction 

uncertainty, and equifinality. These findings highlight that using additional data sources to 

improve hydrological consistency of distributed models increases their robustness and predictive 

ability. 
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3.2 Introduction 

Conventional distributed hydrologic models are most commonly evaluated using only 

streamflow information at one or multiple gaging stations within the watershed (Cao et al., 2006; 

Rouhani et al., 2007; Santhi et al., 2008; Wang et al., 2012, 2016; Boscarello et al., 2013; Wi et 

al., 2015; Xue Xianwu et al., 2016). These models are often limited by a lack of adequate 

spatially distributed data (Grayson et al., 2002) and rely on complex calibration-validation 

techniques for the estimation of a large number of model parameters (Madsen, 2003). This leads 

to what is commonly referred to as the equifinality issue, where multiple model combinations 

can lead to the same integrated response at the watershed outlet (Beven and Binley, 1992; Beven 

and Freer, 2001; Beven, 2006). 

 Recent studies have highlighted the ability of ancillary datasets, either spatially 

distributed information on vegetation and rainfall (Cusack et al., 1997; Yilmaz et al., 2005; Spies 

et al., 2014; Alazzy et al., 2017; Hunink et al., 2017; Ren et al., 2018) or soft data on flow 

partitioning (Seibert and McDonnell, 2002; Yilmaz et al., 2008; Arnold et al., 2015), to increase 

the consistency of hydrologic models. For example, models driven by remotely sensed 

meteorological data (e.g., NEXRAD rainfall data, and land surface temperature) had been shown 

to capture spatial patterns of runoff with greater accuracy than conventional hydrologic models 

(Andersen et al., 2002; Stisen et al., 2008; Zhang et al., 2009; Cunha et al., 2012). Remotely 

sensed vegetation data had been used as either model inputs to drive evapotranspiration (Glenn et 

al., 2007, 2011) or for model calibration and validation (Immerzeel and Droogers, 2008; Liang 

and Qin, 2008). Rajib et al., (2016) used remotely sensed soil moisture data to improve 

hydrologic predictions, while Qiao et al., (2013) used GRACE-derived water storage and field 

measured water table information to reduce parameter uncertainty. Seibert and McDonnell, 

(2002) and Pfannerstill et al., (2017) showed how soft data on flow partitioning could be used 

effectively in improving consistency in hydrologic modeling. Shafii et al., (2017) observed 

adding additional flow partitioning constraints in model calibration, which helped improve the 

parameter identifiability and reduced model uncertainty. Incorrect flow partitioning can also 

affect solute transport since different pathways have unique biogeochemical signatures (Kannan 

et al., 2007a; Yen et al., 2014; Bieger et al., 2015; Mockler et al., 2016; Shafii et al., 2017). 
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 However, these examples of using ancillary data are few, and the vast majority of 

hydrologic model studies rely solely on streamflow data. A SCOPUS literature review was 

performed by the authors by considering modeling studies between 1995 - 2015 that used the 

Soil Water Assessment Tool (SWAT). The literature review revealed that only 31 (1.5%) of the 

2084 SWAT papers used crop yield as a calibration target, in addition to streamflow. This is 

somewhat surprising, given that crop yield information, unlike remotely sensed data or ancillary 

field data, are relatively easy to obtain at the watershed scale since agricultural agencies in all 

countries routinely collect and curate this data. Furthermore, SWAT, unlike some hydrologic 

models, models crop growth and thus can provide information on crop yield that can be directly 

used in model calibration and validation.  

The overall objective of this study is to demonstrate the value of ancillary data (crop 

yield and flow partitioning information) in increasing the consistency and robustness of 

hydrologic models by the proper representation of internal watershed processes, leading to the 

right answers for the right reasons (Kirchner, 2006). A secondary objective is to show how 

increasing model consistency with respect to water flow leads to a reduction in equifinality and 

increased predictive ability for solutes like nitrate.  

3.3 Methods  

3.3.1 Study Site  

The 32,660 km2 Iowa Cedar Basin (ICB) (Figure 3.1) is drained by the Iowa and Cedar 

Rivers, and the watershed extends from southern Minnesota to the confluence with the 

Mississippi River. The mean annual rainfall in ICB is approximately 864 mm (Seo et al., 2013), 

and the average annual temperature is around 10 oC  (ICRB Report, 2010). The ICB is an 

agricultural watershed with corn and soybean being the dominant crops. While the corn and 

soybean cultivation occupies approximately 42% and 26% of the watershed area respectively, 

6% of the watershed is occupied by other crop varieties. Rest of the watershed area comprises 

pasture and rangelands (15%), urban areas (8%) and wetlands and water bodies (3%) (USDA, 

2012). The predominant soils of ICB are loam and silty-loam soils, which cover approximately 

96% percent of the watershed (Le, 2015).  
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Figure 3.1. (a) Map showing the location of the Iowa Cedar Basin (ICB), with eight stream 

gauge locations (in red) that were used for model calibration (b) ICB with the location of sub-

basins where crop yield calibration was performed 

 

3.3.2 SWAT Model Description 

Soil Water Assessment Tool (SWAT) is a watershed scale, process-based, continuous 

simulation model that runs at daily time steps to predict streamflow and nutrient loads. The 

watershed is divided into sub-basins that are further subdivided into Hydrologic Response Unit 

(HRU), characterized by the unique soil, land-use, and slope. Major modules of SWAT are 

climate, hydrology, plant growth, erosion, nutrients, pesticides, and management practices. 

Surface runoff is computed using either the SCS-curve number method that computes runoff 

under varying land-use and soil type, or the Green-Ampt infiltration method that requires sub-

daily precipitation data. Infiltrated water is stored in soils and used for evapotranspiration or 

reaches the stream network as lateral flow. A portion of the infiltrated water also reaches the 

groundwater. Crop yield is calculated as the product of above ground biomass and crop-specific 

harvest index, where harvest index is the fraction of above-ground dry biomass removed during 
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harvest. The remaining fraction of crop, after the harvest, is converted into the residue. For more 

details on the modeling water and nutrient fluxes in SWAT, see Neitsch et al. (2011). 

3.3.3 SWAT Model Setup, Input Data, and Parameters 

The SWAT model developed by Le (2015) for ICB was used for this study. Digital Elevation 

Model (DEM) data (30 m resolution) was downloaded from United States Geological Survey 

(USGS) National Elevation Dataset (USGS, 2013), while soil data was obtained from the United 

States Department of Agriculture (USDA) STATSGO2 (Soil Survey Staff., n.d.) dataset. Land-

use and land cover data were derived from the Iowa Department of Natural Resources (DNR) 

(Iowa DNR, 2012), the Multi-Resolution Land Characteristics Consortium’s (MRLC), National 

Land Cover Dataset (NLCD) (Fry et al., 2012), and the USDA’s Crop Data Layer (CDL) 

(USDA-CDL., 2012). These three datasets had different spatial and temporal extents, and thus, 

all three were needed to capture the land-use trends appropriately. Using the DEM, the watershed 

was first divided into 67 sub-basins using a 1% flow accumulation area threshold (327 km2), and 

the sub-basins were further discretized into hydrological response units (HRUs) using a threshold 

of 5% for land-use, soil, and slope. For more details on input data and model setup, please refer 

Le (2015) 

Daily precipitation and temperature data for 48 weather stations (Figure 3.1) were obtained 

from the US National Weather Service (US-NWS, n.d.), United States Environmental Protection 

Agency (US-EPA, 2013) and Iowa Environmental Mesonet, n.d. while SWAT’s automatic 

weather generator was used for relative humidity, wind speed and solar radiation data. Discharge 

data for the eight stream gauge stations were obtained from USGS (2016), from 1993 to 2012. 

The major crop varieties of ICB are corn and soybean. County scale annual corn and soybean 

yield data downloaded from the USDA-Agricultural survey (2012) was used for crop yield 

calibration. Annual crop yield data obtained for 35 counties of ICB in wet weight (bu/acre) was 

converted to dry weight (t/ha) based on guidelines outlined in Gassman (2008) to compare with 

SWAT simulated crop yield. Crop yield at the county scale was converted to the sub-basin scale 

using area weighting. Given the ICB is dominated with poorly drained and moderately drained 

soils (Sloan, 2013), and due to lack of information of the exact location of the tile drains, we 

assumed that tile drains were present on all agricultural HRUs. We explored alternate methods of 

estimating tile drain density based on databases provided by Iowa DNR (2017) that were based 
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on either (i) an incomplete digitized record of tile drains, or (ii) estimate of soils requiring based 

on slopes and soil type, as described by Kalcic et al. (2015). However, ground truthing in several 

sub-watersheds revealed that on-the-ground tile density was much greater than estimated by 

these maps. Indeed, with increasing high flow events, tile density has been increasing in Iowa, 

and thus, we used the conservative estimate that all agricultural areas were drained. 

Auto-fertilization routine was used to estimate fertilizer application rates. The maximum 

amount of elemental nitrogen and P2O5 applied to corn and soybean per year was restricted to 

218.5 kg/ha/yr and 45 kg/ha/yr based on the recommendations of Mallarino et al. (2013) and 

Sawyer (2015). Mineral fertilizer was applied through the surface broadcast method, and No-till 

tillage practice was considered for the model simulation. Fertilizer application and tillage 

methods - there is significant uncertainty in these input variables; however, the main goal of the 

nitrate model developed in this chapter is to evaluate how alternate streamflow calibration 

techniques impact nitrate loads. 

3.3.4 Model Calibration and Validation  

Discharge-specific calibration parameters were selected based on Le (2015), while crop 

growth parameters were selected based on Nair et al. (2011) (Table A1). The Sequential 

Uncertainty Fitting Algorithm version 2 (SUFI2) (Abbaspour et al., 2007), which is capable of 

performing multi-objective calibration and uncertainty analysis, was used for model calibration 

and validation  (Yang et al., 2008, Faramarzi et al., 2009). The model was calibrated from 1993 

to 2002 and validated from 2003 to 2012 with a three-year warm-up period from 1990 to 1992. 

Stepwise model refinement was used to demonstrate the value of adding crop yield and flow 

partitioning. Since the development of each scenario was guided by the model results obtained 

from the previous scenario, details of the scenario development are described in Section 3.1-3.3.  

The Kling-Gupta Efficiency (KGE) was used as the objective function in a multi-

objective calibration, and the SUFI2 algorithm (Abbaspour, 2012) was used for model 

calibration and validation. While the streamflow was calibrated at a monthly time step 

(Equation 3.4 and 3.5), crop yields were calibrated at an annual time step (Equation 3.5). For 

the baseline scenario, simultaneous calibration was done at eight streamflow stations (Figure 

3.1), with each station given equal weight, and the SUFI2 algorithm was used to maximize the 
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KGEoverall (Equation 3.4). For the crop yield scenarios, the objective function (Equation 3.5) 

used is the average of 8 streamflow station KGEs, nine sub-basin level corn yield KGEs (at annual 

time step), and nine sub-basin level soybean yield KGEs (for a total of 26 KGEs; Figure 3.1). The 

SUFI2 algorithm tries to achieve a KGE value of 1 through multiple iterations. 

All scenarios were subjected to three iterations, with 250 runs per iteration (750 runs in 

total). The SUFI2 algorithm produced a best parameter set at the end of each iteration and also 

provided the new calibration parameter ranges for the next iteration, which is narrower than the 

previous iteration’s calibration parameter ranges. Results from the third iteration are then used 

for comparing between alternate model realizations. Although calibration and validation were 

done using only KGE, we also evaluated the performance of the models with respect to the 

performance metrics RMSE-observations Standard Deviation Ratio (RSR) and Percent Bias 

(PBIAS). The evaluation metrics were estimated using the best parameter set of the third 

iteration of each scenario.   

KGE = 1 −  √(r − 1)2 +  (α − 1)2 +  (β − 1)2    (Eq. 3.1) 

where r is the linear coefficient between simulated and measured data 

α = 
σs

σm
 ; σs and σm are the standard deviation of simulated and measured data 

β = 
μs

μm
 ; μs and μm are mean of simulated and measured data 

 

RSR =  
√∑(Qm−Qs)

2

√∑(Qm−Qm)
2
         (Eq. 3.2) 

where Qm and  Qs are measured and simulated data & Qm is the mean of measured data 

 

PBIAS = 100 ∗ 
∑(Qm−Qs)

∑ Qm
       (Eq. 3.3) 

where Qm and  Qs are measured and simulated data. A positive PBIAS value indicates an 

underestimation, and a negative PBIAS value indicates an overestimation 
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KGE𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  
1

𝑥
∑ 𝐾𝐺𝐸𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤

𝑥
𝑖=1 , for baseline scenario  (Eq. 3.4) 

where x = 8 (streamflow stations; Figure 3.1a) 

 

KGE𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
1

𝑛
[ 

1

𝑥
∑ 𝐾𝐺𝐸𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤

𝑥
𝑖=1  + 

1

𝑦
∑ 𝐾𝐺𝐸𝑐𝑜𝑟𝑛 𝑦𝑖𝑒𝑙𝑑

𝑦
𝑗=1   

+ 
1

𝑧
∑ 𝐾𝐺𝐸𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑦𝑖𝑒𝑙𝑑

𝑧
𝑘=1 ], for crop yield scenarios (Eq. 3.5)   

where n = 3, x = 8 (streamflow stations; Figure 3.1a), y = 9 (sub-basin scale corn yield; Figure 

3.1b), and z = 9 (sub-basin scale soybean yield; Figure 3.1b)     

    

3.3.5 Uncertainty Analysis 

Both parameter uncertainty and prediction uncertainty were evaluated using the 

methodologies developed by Abbaspour (2012). Parameter uncertainty was estimated based on 

behavioral solution sets that comprise of multiple parameter combinations that can produce 

equally satisfactory responses at the watershed outlet (Beven, 1993; Rajib and Merwade, 2016). 

Following Her and Chaubey (2015), a behavioral threshold was defined as parameter sets that 

produced the top 2.5% KGE values in the third iteration, and these are hereafter referred to as 

behavioral solutions. Then the  normalized parameter uncertainty score Pn was defined as 

Pn = [
𝑃𝑏 − 𝐿𝑙

𝑈𝑙 − 𝐿𝑙
]* 100        (Eq. 3.6) 

Where, Pb is the behavioral parameter value, and Ul and Ll are the upper and lower limit of the 

parameter, respectively (Rajib and Merwade, 2016; Rajib et al., 2016). The IQR of the Pn values 

for each of the key parameters was compared between model scenarios to evaluate the effect of 

modifications on parameter uncertainty. The prediction uncertainty was quantified using two 

metrics, the p-factor (defined as fraction of the observed data bracketed by the 95% prediction 

uncertainty (PPU)) and the r-factor (defined as average thickness of 95 PPU band divided by 

standard deviation of the observed data) (Yang et al., 2008; Abbaspour., 2012). The p-factor and 

r-factor can vary between 0 and 1 and 0 and infinity, respectively, and higher p-factor value and 
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lower r-factor value imply a lower prediction uncertainty (Ekstrand et al., 2010; Bouda et al., 

2012). Theoretically, a p-factor of 1 and r-factor of 0 is a simulation that corresponds exactly to 

observed data.   

3.4 Results and Discussion 

3.4.1 Streamflow Calibration and Validation (Baseline Scenario) 

 
As mentioned previously, the model was calibrated from 1993 to 2002 and validated 

from 2003 to 2012. Simultaneous calibration and validation were done using monthly 

streamflow data at all eight stations within the watershed. The model performed well during the 

calibration and the validation periods, both at the outlet of the watershed in the Wapello station, 

and at all seven internal stations. The metrics KGE, RSR, and PBIAS, varied between 0.74 to 

0.87, 0.42 to 0.68 and -13.7 to 8.6, respectively during the calibration period, and between 0.43 

to 0.85, 0.49 to 0.92 and -25.9 to 8.7, respectively during the validation period (Table 3.1). This 

scenario is hereafter referred to as the Baseline Scenario (BS). 

3.4.2 Crop Yield Performance Evaluation (Baseline Scenario) 

 
The calibrated model was then used to estimate crop yield across the entire watershed. 

The model underpredicted both corn and soybean yields (Figure 3.2b and 3.2c), with 

underestimation being greater for soybean compared to corn (26% underestimation of the mean 

yield for corn and 61% for soybean). Crop yields are generally low when there is water or 

temperature stress in the system. On exploring model outputs, it was identified that the corn 

HRUs were under water stress on an average for 27 days out of the 150-day growing season 

between 1993 and 2012, while, soybean HRUs were under water stress on an average for 33 days 

out of the 150-day growing season (Figure 3.2d). Furthermore, the water storage within the soil 

profile was below the field capacity and wilting point, leading the system to water stress for the 

entire growing season (Figure 3.2d). This explained the poor crop yield observed in the results 

and highlighted the need for adding crop yield as a calibration target. 
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Figure 3.2. (a) Monthly discharge at the Wapello Station for the Baseline Scenario, (b) Annual 

Corn yield (left) and Soybean yield (right) at the Watershed Scale, (c)  Histogram of Corn yield 

(left) and Soybean yield (right) and (d) Soil water content, Field capacity and Wilting point in 

the soil profile for Corn HRUs (left) and Soybean HRUs (right). Note: Corn and soybean HRUs 

were aggregated at the watershed scale to plot the figures 
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3.4.3 Stepwise Model Refinement: Crop Yield Calibration (Scenario S1) 

 
In the next step of model refinement (scenario S1), the annual corn and soybean yields at 

nine internal sub-basins were added as calibration targets in addition to discharge. Crop-specific 

parameters like maximum potential leaf area index (BLAI), heat units (HEAT_UNITS), plant 

radiation use efficiency (BIO_E) and harvest index (HVSTI) were used for model calibration, in 

addition to streamflow specific parameters (Table A1). This led to a slight improvement in crop 

yield, but corn and soybean yield was still underpredicted by 27% and 52%, respectively (Figure 

3.3a and 3.3b). Streamflow metrics were predicted with a similar level of accuracy as the 

baseline scenario (Table 3.1). The crop water stress values and soil water content were also 

similar between the two scenarios (Figure 3.3d), and much higher than what is typically 

expected in a humid climate like Iowa. We hypothesize that this can be created by 

overestimation of potential evapotranspiration (PET) which would potentially lead to “drying 

up” of the soil, contributing to water stress and reduced crop uptake of water.  This led us to 

consider alternate model formulations for the estimation of evapotranspiration, as described 

below.  
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Figure 3.3. (a) Monthly discharge at the Wapello Station for the S1 Scenario, (b) Annual Corn 

yield (left) and Soybean yield (right) at the Watershed Scale, (c)  Histogram of Corn yield (left) 

and Soybean yield (right) and (d) Soil water content, Field capacity and Wilting point in the soil 

profile for Corn HRUs (left) and Soybean HRUs (right). Note: Corn and soybean HRUs were 

aggregated at the watershed scale to plot the figures 
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3.4.4 Stepwise Model Refinement: Model Structural Changes - Improvement of 

Evapotranspiration (Scenario S2) 

 
Due to its wide usage, the PM-PET method was used in the Baseline and the S1 scenario 

(Schneider et al., 2007; Milly and Dunne, 2016). However, the average annual PET estimated by 

the model (1516 mm) seemed to be exceedingly high compared to estimated data in Iowa during 

the same years (Green et al., 2006: 1190 mm; Daryl Herzmann, Iowa Environmental Mesonet, 

2019: 1175 mm). To address this issue, the temperature-based Hargreaves (HG)-PET method 

was considered in the next step of model refinement (Scenario S2), with everything else being 

the same as scenario S1. This led to a significant improvement in crop yield (Figure 3.4b and 

3.4c) with corn and soybean yield being underpredicted by only 2% and 9%, respectively. 

Potential evapotranspiration predicted by the HG method was lower than the PM method  (963 

mm compared to 1516 mm), and the average water stress days for both corn and soybean HRUs 

were reduced to zero days during the150-day growing season between 1993 and 2012 (Figure 

3.4d).  
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Figure 3.4. (a) Monthly discharge at the Wapello Station for the S2 Scenario, (b) Annual Corn 

yield (left) and Soybean yield (right) at the Watershed Scale, (c)  Histogram of Corn yield (left) 

and Soybean yield (right) and (d) Soil water content, Field capacity and Wilting point in the soil 

profile for Corn HRUs (left) and Soybean HRUs (right). Note: Corn and soybean HRUs were 

aggregated at the watershed scale to plot the figures 
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3.4.5 Stepwise Model Refinement: Model Structural Changes - Improvement of Flow 

Partitioning (Scenario S4) 

We then evaluated the effect of model refinement on the partitioning of water along the 

lateral flow pathways, namely, surface runoff, lateral flow, tile flow, and groundwater flow. 

Although scenario S2 yielded acceptable model statistics for both crop yield and streamflow, it 

led to the tile flow pathway contributing to only 17% of the total flow, while surface runoff, 

lateral flow, and groundwater flow corresponded to 74%, 7% and 2% of the total flow, 

respectively (Table 3.2). This highlights serious underestimation of tile flow for a watershed that 

is 68% tile-drained. A review study conducted by (Howe and Moore, 2016)  highlighted that the 

percent flow through tiles could range from 37-86% in North-American Watersheds, while a 

study in a neighboring watershed reported a tile flow percent of 67% (Green et al., 2006). Thus, 

the next stage of model refinement involved interrogating the variables responsible for flow 

partitioning.  

It has been argued that the traditional curve number method in SWAT that uses soil moisture 

based curve number prediction (ICN = 0 in SWAT manuals) generates too much surface runoff 

in shallow soils (Kannan et al., 2007; Neitsch et al., 2011; Amatya and Jha, 2011). There exists 

an alternate evapotranspiration based curve number method in SWAT (ICN=1) that links the 

retention parameter (S) in CN with soil moisture depletion, which in turn is governed by PET, 

rainfall, and runoff. In this method, it is possible to have control over the allocation of surface 

and subsurface flow (through infiltration) without affecting the ET (Amatya and Jha, 2011). 

Using the ET based CN prediction method, the CNCOEFF parameter was manually adjusted to 

achieve a tile flow of 67%, similar to Green et al. (2006) and Howe and Moore (2016). Also, this 

scenario (S3), was able to provide good streamflow (Figure 3.5a) and crop yield estimates a 

(Figure 3.5b and 3.5c). Better site-specific flow partitioning estimates can be used, if available, 

to refine the model further for reasonable flow partitioning, while still maintaining streamflow 

(Table 3.1) and crop yield statistics (Table 3.3).  
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Figure 3.5. (a) Monthly discharge at the Wapello Station for the S3 Scenario, (b) Annual Corn 

yield (left) and Soybean yield (right) at the Watershed Scale, (c)  Histogram of Corn yield (left) 

and Soybean yield (right) and (d) Soil water content, Field capacity and Wilting point in the soil 

profile for Corn HRUs (left) and Soybean HRUs (right). Note: Corn and soybean HRUs were 

aggregated at the watershed scale to plot the figures 
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3.4.6 Model Comparisons in Space and Time 

Across the four scenarios analyzed in this paper (BS, S1, S2, S3), the addition of crop 

yield and flow partitioning parameters led to some improvement in streamflow prediction (Table 

3.2). The biggest improvement, however, occurred in crop yield estimates where watershed-scale 

PBIAS of corn decreased from decreased from 26 and 27% for the BS and S1 scenarios to 2 and 

3% in the S2 and S3 scenarios and PBIAS of soybean decreased from 61 and 52% for the BS and 

S1 scenarios to 9 and 4% in the S2 and S3 scenarios (Figures 3.2 to 3.5 and Table 3.3). Also, 

the crop yield estimates for nine selected sub-basins were significantly better for the S2 and S3 

scenarios compared to the baseline and S1 scenarios (Table 3.3) due to the change in the 

representation of potential evapotranspiration in the model.  
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Table 3.1. Streamflow statistics  (KGE, RSR, and PBIAS) for all eight stations and all four 

scenarios, during the calibration (validation) periods. The model was calibrated from 1993 to 

2002 and validated from 2003 - 2012 

 

 
Monthly 
streamflow 
statistics 

KGE 

Stations BS S1 S2 S3 

Charles City 0.74 (0.43) 0.76 (0.51) 0.87 (0.55) 0.92 (0.70) 
New Providence 0.74 (0.83) 0.80 (0.83) 0.85 (0.86) 0.87 (0.89) 
Marshalltown 0.85 (0.84) 0.81 (0.85) 0.91 (0.87) 0.92 (0.90) 
Cedar Rapids 0.77 (0.78) 0.75 (0.82) 0.83 (0.81) 0.83 (0.91) 
Iowa City 0.79 (0.75) 0.77 (0.71) 0.84 (0.81) 0.87 (0.83) 
Lone Tree 0.87 (0.85) 0.81 (0.84) 0.87 (0.86) 0.82 (0.91) 
Old Man’s Creek 0.82 (0.81) 0.79 (0.77) 0.88 (0.86) 0.86 (0.87) 
Wapello 0.81 (0.78) 0.78 (0.79) 0.86 (0.77) 0.83 (0.84) 
Overall 0.79 (0.75) 0.78 (0.76) 0.86 (0.79) 0.86 (0.85)          

 
Monthly 
streamflow 
statistics 

RSR 

Stations BS S1 S2 S3 

Charles City 0.68 (0.92) 0.66 (0.85) 0.50 (0.72) 0.34 (0.52) 
New Providence 0.68 (0.59) 0.63 (0.58) 0.53 (0.48) 0.47 (0.42) 
Marshalltown 0.54 (0.54) 0.54 (0.53) 0.44 (0.46) 0.36 (0.42) 
Cedar Rapids 0.68 (0.63) 0.67 (0.60) 0.55 (0.54) 0.37 (0.40) 
Iowa City 0.63 (0.64) 0.62 (0.64) 0.57 (0.61) 0.47 (0.55) 
Lone Tree 0.42 (0.49) 0.43 (0.48) 0.39 (0.42) 0.36 (0.41) 
Old Man’s Creek 0.56 (0.56) 0.55 (0.56) 0.49 (0.53) 0.40 (0.48) 
Wapello 0.59 (0.65) 0.58 (0.63) 0.49 (0.61) 0.37 (0.49) 
Overall 0.59 (0.63) 0.58 (0.61) 0.49 (0.55) 0.39 (0.46) 

 

Monthly 
streamflow 
statistics 

PBIAS 

Stations BS S1 S2 S3 

Charles City -13.7 (-25.9) -10.5 (-20.4) 0.0 (-17.0) 3.9 (-11.7) 
New Providence -11.3 (-0.1) -3.1 (5.7) -1.2 (8.0) -5.6 (5.3) 
Marshalltown 0.7 (-6.8) 7.5 (-0.6) -1.0 (-5.9) 1.4 (-5.3) 
Cedar Rapids 3.5 (-5.1) 8.3 (0.3) 7.2 (-1.7) 10.8 (1.6) 
Iowa City 3.8 (8.7) 9.5 (14.2) -2.2 (3.1) 6.0 (7.0) 
Lone Tree 3.6 (3.7) 9.6 (6.2) -11.1 (-8.2) 7.5 (0.2) 
Old Man’s Creek 5.4 (7.7) 11.1 (12.8) -3.5 (0.2) 7.5 (5.4) 
Wapello 8.6 (2.1) 13.6 (7.4) 6.8 (0.7) 13.5 (5.0) 
Overall 6.3 (7.5)a 9.1 (8.4)a      4.1 (5.6) a 7.0 (5.2) a  

a  Average of absolute PBIAS values of individual stations           
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Table 3.2. Water balance components for all four scenarios (BS through S3) 

Processes BS (mm) S1 (mm) S2 (mm) S3 (mm)  

 ONLY FLOW 
(PM-

PET+ICN0) 

FLOW+CROP 
YIELD (PM-
PET+ICN0) 

FLOW+CROP 
YIELD (HG-
PET+ICN0) 

FLOW+CROP 
YIELD (HG-
PET+ICN1) 

Precipitation 892 892 892 892 
Snowmelt 93 93 93 93 
Surface runoff 294 278 225 35 
Lateral flow 6 6 21 38 
Tile flow 0 0 53 190 
Base flow 1 1 7 21 
Water yield 302 286 306 283 
PET 1516 1516 963 963 
ET 596 613 594 583 
Change in 
Storage 

87 86 85 118 

Water stress 
days 

27 15 1 1 
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Table 3.3. PBIAS of Corn (a) and Soybean yield (b) for nine internal basins for all four 

scenarios, during the calibration (validation) periods. The model was calibrated from 1993 to 

2002 and validated from 2003 - 2012 
Crop yield 
statistics 

Corn 

Subbasins BS S1 S2 S3 

Sub basin 1 30.7 (44.1) 31.0 (43.0) -12.7 (6.0) -9.9 (11.3) 
Charles City 2.6 (20.8) 0.2 (12.6) -19.7 (-2.3) -19.5 (-0.4) 
New Providence 31.2 (48.1) 33.4 (42.1) -4.2 (11.8) -5.6 (17.6) 
Marshalltown 18.6 (40.0) 23.8 (37.7) 0.2 (15.3) -1.0 (14.1) 
Cedar Rapids 23.9 (31.0) 25.6 (29.7) -0.9 (9.6) -2.9 (7.5) 
Iowa City 3.4 (28.1) 11.4 (27.8) -4.9 (3.2) -7.6 (1.7) 
Lone Tree 16.7 (30.3) 15.6 (35.4) -6.0 (9.9) -6.5 (9.0) 
Old Man’s Creek 20.8 (20.5) 23.3 (31.2) -2.0 (10.1) -2.8 (10.4) 
Wapello 21.5 (28.0) 20.9 (29.6) -8.6 (8.3) -10.8 (7.9) 
Overall* 18.8 (32.3) 20.6 (32.1) 6.5 (8.5) 7.4 (8.8) 

Crop yield 
statistics 

Soybean 

Subbasins BS S1 S2 S3 

Sub basin 1 62.3 (76.9) 57.3 (67.3) -3.4 (1.5) -8.8 (-3.7) 
Charles City 60.2 (73.9) 38.7 (45.9) 2.3 (9.5) -3.1 (4.3) 
New Providence 57.4 (74.5) 64.3 (72.1) 2.6 (11.7) -2.8 (7.1) 
Marshalltown 70.2 (71.7) 50.2 (70.9) 10.1 (17.0) 5.4 (12.6) 
Cedar Rapids 64.8 (70.0) 54.5 (60.1) 5.5 (7.0) 0.8 (2.2) 
Iowa City 54.2 (61.3) 35.6 (59.4) 1.6 (4.0) -4.3 (-1.4) 
Lone Tree 57.6 (64.1) 50.4 (61.2) 9.7 (14.4) 5.3 (10.2) 
Old Man’s Creek 67.1 (61.7) 60.6 (54.2) 14.9 (14.9) 10.9 (10.7) 
Wapello 65.2 (64.2) 57.2 (63.0) 3.8 (13.2) -1.6 (8.6) 
Overall* 62.1 (68.7) 52.1 (61.6) 5.9 (10.3) 4.7 (6.7) 

Note. (i) * Average of absolute PBIAS values of individual stations (ii) KGE values were not reported since they 

were poor, due to the difficulty in matching the crop yield at the annual time-step 

 

 

 Since the model was calibrated for crop yield at only nine sub-basins, the ability of the 

model to describe spatial variations in crop yield for all 67 sub-watersheds within the Iowa Cedar 

Basin was evaluated further (Figure 3.6). For corn, only 12% of the sub-basins fell within the 

acceptable PBIAS window (-10 to 10%) for BS, while 95% and 97% of the sub-basins had 

acceptable PBIAS values for S2 and S3 scenarios, respectively. For soybean, the results were 

more dramatic, where no sub-basins with acceptable PBIAS existed in the BS scenario, while 

51% and 78% of the sub-basins had acceptable PBIAS values for the S2 and S3 scenarios, 

respectively. It is possible that further model refinement of SWAT’s crop representation is 

needed for better performance for soybean.  
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Figure 3.6. PBIAS estimates for corn (top row) and soybean (bottom row) at the sub-basin scale 

for BS (a and d), S2 (b and e) and S3 (c and f) scenarios. Note that, the S1 scenario was not 

included this point forward for comparison since results from S1 were very similar to the BS 

scenario 

 

3.4.7 Model Performance Evaluation: Parameter Uncertainty 

 

The impact of model refinement (BS vs. S2 vs. S3) on parameter uncertainty was 

evaluated by plotting the normalized uncertainty scores of the twelve parameters across all 

behavioral solutions (56 for BS, 19 for S2 and 19 for S3). A reduction in the interquartile range 

of the normalized uncertainty score indicates a reduction in uncertainty for the particular model 

scenario. Overall, there is a reduction in uncertainty for most of the parameters between the 

baseline and the S2 and S3 scenarios (CH_N2, SOL_Z, SOL_AWC, SOL_K, ESCO, EPCO, 

ALPHA_BF, and GW_REVAP), indicating that model refinement successfully constrained the 

parameter space. The reduction in uncertainty in the S3 scenario was generally more than the S2 
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scenario. Three of the parameters (SURLAG, GW_DELAY, and DEP_IMP) showed little 

difference in uncertainty between BS and S2 and S3 scenarios, while the most dramatic increase 

in uncertainty between the BS, S2 and S3 scenarios was apparent for CN2. The IQR of CN2 

increased from 2 for the BS to 9 for the S2 and 14 for the S3 scenarios (Figure 3.7).  

To understand this increase in uncertainty, the magnitude of the CN2 parameter was 

explored between the BS and the S2 and S3 scenarios. In the BS scenario, the CN2 parameter is 

tightly constrained with the best value being equal to 94, a curve number magnitude that more 

closely represents urban areas with impervious land cover (Curve Number = 98, USDA-NRCS, 

2004) than agricultural areas that characterize the ICB. In contrast, the best parameter value of 

CN2 under the S2 and S3 corresponds to CN2 values of 76 and 73, which is closer to curve 

number values that can be expected for this watershed given soil type and predominant land-use. 

Based on USDA-NRCS (2004), the average runoff curve number value, for soil hydrologic 

group B, which covers 97% of agricultural lands in the study area, and agricultural row crops 

under multiple residue cover treatments, corresponds to 76. Thus, even though the BS scenario 

led to a more tightly constrained CN2 estimate, it led to a hydrologically unrealistic estimate of 

CN2 compared to the other two scenarios. 

 

 

Figure 3.7. Normalized parameter uncertainty scores of the calibration parameters for the 

Baseline, S2, and S3 scenarios. The red marker on each box plot indicates the positioning of the 

normalized best parameter value. Increase in the inter-quartile range of the normalized scores 

implies an increase in parameter uncertainty. Parameters CN2 and DEP_IMP show an increase in 

uncertainty, CH_N2, SOL_Z, SOL_AWC, SOL_K, ESCO, EPCO, APPHA_BF, GW_REVAP 

show a decrease in uncertainty, while SURLAG and GW_DELAY show no significant change in 

uncertainty between the BS and the S2 and S3 scenarios 
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3.4.8 Prediction Uncertainty and Equifinality 

 

Model refinement led to a decrease in prediction uncertainty. Specifically, the p-factor in 

model predictions decreased from 0.39 in BS to 0.26 in S2 and 0.31 in S3, while the r factor 

decreased from 0.44 in the BS scenario to 0.16 in S2 and 0.14 in S3. Achieving a low r-factor 

also reduces the p-factor, and thus, there should be a reasonable trade-off between these two 

factors (Yang et al., 2008; Ekstrand et al., 2010; Abbaspour., 2012; Bouda et al., 2012; Zuo et 

al., 2015). The results indicate that while almost the same amount of observed streamflow 

variability is captured within the 95 PPU band for all three scenarios (39% of observed data in 

BS versus 31% in S3), a narrower uncertainty band was achieved in scenario S3, with flow 

partitioning and crop yield inclusion, compared to the baseline scenario (0.44 in BS compared to 

0.14 in S3). This demonstrates that the inclusion of flow partitioning and crop yield constraints 

in calibration reduced the prediction uncertainty (Table 3.4). 

 

Table 3.4. Prediction Uncertainty Estimation for three scenarios (BS, S2, and S3) 

                        

 p - factor r - factor 

Stations BS S2 S3 BS S2 S3 

Charles City 0.35 0.27 0.32 0.35 0.15 0.14 
New Providence 0.34 0.27 0.26 0.64 0.24 0.19 
Marshalltown 0.43 0.29 0.29 0.52 0.18 0.15 
Cedar Rapids 0.40 0.28 0.36 0.45 0.16 0.15 
Iowa City 0.38 0.24 0.29 0.42 0.16 0.13 
Lone Tree 0.37 0.22 0.32 0.33 0.15 0.12 
Old Man’s Creek 0.40 0.24 0.30 0.40 0.15 0.12 
Wapello 0.47 0.29 0.33 0.45 0.16 0.14 
Overall 0.39 0.26 0.31 0.44 0.16 0.14 

                               * Values are calculated for the period 1993-2002 

 

                     We further evaluated whether model improvement led to a reduction in equifinality by 

analyzing the simulations that led to the top 2.5% KGE estimates (behavioral solutions) for both 

BS and S3 scenario. The analysis revealed that the baseline scenario had 56 behavioral solutions, 

while both S2 and S3 had only 19 behavioral solutions. The reduction in the number of 

behavioral solutions due to the inclusion of additional crop yield and flow partitioning 

constraints indicates a reduction in equifinality of the model simulations. 
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3.4.9 Model Predictive Ability at Daily Time-scale 

 

The model was calibrated and validated at the monthly timescale. To further evaluate the 

effect of developing a more hydrologically consistent model on streamflow statistics, the ability 

of BS, S2, and S3 scenarios to predict daily streamflow were estimated. The BS and S2 scenarios 

were not able to capture the daily streamflow statistics (Table 3.5) despite being able to describe 

the monthly streamflow (Table 3.1). The overall KGE improved from -0.46 (-0.75) in BS to -

0.06 (-0.36) in S2 and 0.73 (0.66) in S3 during the calibration (validation) periods (Table 3.5). 

The overall RSR reduced from 2.16 (2.48) in BS to 1.69 (2.03) in S2 and 0.69 (0.80) in S3 

during the calibration (validation) periods (Table 3.5). There was no significant improvement in 

the PBIAS metric between the different scenarios. The improvement achieved in the S3 scenario 

is also clearly visible in the daily hydrographs (Figure 3.8). 

Improvement in daily streamflow statistics from BS to S2 and S3 is attributed primarily 

to the increase in flow through the subsurface pathway. Modification of the evapotranspiration 

method from BS to S2 did lead to an increase in the subsurface flow contribution from 2% of 

water yield to 26% of water yield, but the increase was not substantial enough to generate 

adequate daily streamflow metrics, although it generated adequate monthly metrics. A 

substantial increase in flow through the subsurface pathway (88% of total water yield) was 

achieved in S3 due to change of the flow partitioning method, and this led to a substantial 

improvement in the daily streamflow statistics. Such increased water availability in the 

subsurface system could have triggered the drain tile lag time (GDRAIN) and baseflow recession 

constant parameter (ALPHA_BF), which has the potential to affect the hydrograph at the daily 

time step. Figure 3.7 reveals that ALPHA_BF’s interquartile range under S2 and S3 scenarios 

have reduced by 20% and 50%, respectively when compared with BS, which in-turn indicates 

that ALPHA_BF was constrained more in S3 than S2. This shows that improvement in daily 

streamflow statistics could be attributed to the inclusion of flow partitioning constraints in the S3 

scenario. Generally, there is no guarantee for a monthly calibrated model to provide reasonable 

daily statistics since the parameter values are aligned towards matching the monthly flow values 

which could suppress the errors at the daily time step (Sudheer et al., 2007). The ability of the 

refined model to capture daily streamflow statistics, despite being calibrated at the monthly time 

scale, demonstrate the increase of the hydrologic consistency of the model by the modifications.  
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Table 3.5. Comparison of daily streamflow statistics (KGE, RSR, and PBIAS) of all eight 

discharge calibration targets for BS, S2, and S3 
 

Daily 
streamflow 
statistics 

KGE 

Stations BS S2 S3 

Charles City -0.26 (-1.12) 0.26 (-0.54) 0.65 (0.61) 
New Providence -0.70 (-0.30) -0.06 (0.17) 0.80 (0.74) 
Marshalltown -0.29 (-0.52) 0.15 (-0.08) 0.87 (0.81) 
Cedar Rapids -0.59 (-0.96) -0.05 (-0.43) 0.77 (0.72) 
Iowa City -0.61 (-0.85) -0.30 (-0.56) 0.64 (0.56) 
Lone Tree -0.15 (-0.26) -0.07 (-0.13) 0.70 (0.66) 
Old Man’s Creek -0.52 (-0.84) -0.26 (-0.60) 0.69 (0.60) 
Wapello -0.59 (-1.14) -0.18 (-0.68) 0.72 (0.59) 
Overall -0.46 (-0.75)a -0.06 (-0.36)a 0.73 (0.66)a          

 
Daily  
streamflow 
statistics 

 
RSR 

Stations BS S2 S3 

Charles City 1.99 (2.82) 1.37 (2.18) 0.73 (0.88) 
New Providence 2.34 (1.93) 1.62 (1.37) 0.59 (0.66) 
Marshalltown 1.96 (2.22) 1.42 (1.69) 0.50 (0.59) 
Cedar Rapids 2.36 (2.78) 1.74 (2.17) 0.63 (0.75) 
Iowa City 2.36 (2.66) 1.99 (2.33) 0.87 (0.98) 
Lone Tree 1.70 (1.90) 1.58 (1.72) 0.70 (0.80) 
Old Man’s Creek 2.24 (2.61) 1.94 (2.32) 0.80 (0.90) 
Wapello 2.35 (2.96) 1.86 (2.43) 0.73 (0.88) 
Overall 2.16 (2.48) a 1.69 (2.03) a 0.69 (0.80) a 

 
Daily 
streamflow 
statistics 

 
PBIAS 

Stations BS S2 S3 

Charles City -13.9 (-25.1) 0.2 (-16.2) 3.9 (-11.6) 
New Providence -11.9 (-0.1) -1.0 (8.5) -5.7 (5.2) 
Marshalltown 0.7 (-6.7) -0.6 (5.2) 1.6 (-5.3) 
Cedar Rapids 3.4 (-4.4) 7.5 (-0.6) 10.9 (1.6) 
Iowa City 3.9 (9.0) -1.8 (3.5) 6.3 (7.0) 
Lone Tree 4.0 (5.1) -10.8 (-8.5) 7.7 (0.3) 
Old Man’s Creek 5.6 (8.0) -3.1 (0.5) 7.8 (5.4) 
Wapello 8.5 (2.6) 7.1 (1.4) 13.7 (5.0) 
Overall 6.32 (7.51)b 4.0 (5.5)b 7.02 (5.18)b 

                                                            a Average of KGE / RSR values of individual stations 
                                                                     b Average of absolute PBIAS values of individual stations 

   Values outside (inside) parentheses are for the period 1993-2002 (2003-2012) 
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Figure 3.8. Comparison of daily discharge at Wapello outlet for Baseline Scenario (grey line), 

Scenario S2 (blue line) and Scenario S3 (red line) during 1993-1994. Observed data is shown as 

a black line. Simulated discharge of Scenario S3 corresponds well with the observed discharge 

data (black line) than the simulated discharge of BS and S2 Scenario 

 

3.4.10 Model predictive ability for Nitrogen Fluxes 

 

The ability of the model to predict annual nitrate loads without any calibration was also 

evaluated. The baseline scenario and S2 scenario showed significant underprediction (PBIAS = 

61% for BS and 28%) of nitrate loads whereas PBIAS was only equal to -10% without any 

calibration for S3 (Figure 3.9). The capability of the S3 model setting to predict nitrate loads 

similar to that of observed values is attributed to both proper simulations of crop yield and 

appropriate flow partitioning. In S3, more water is diverted to the subsurface flow pathway that 
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accesses nitrogen stores, leading to an increase in the nitrate flux values closer to the measured 

values. Thus, the hydrologic consistency of models increases their ability to describe solute 

transport. 

 

 

 

Figure 3.9. Comparison of annual nitrate loads at Wapello outlet for Baseline Scenario (BS), 

Scenario S2, and Scenario S3 during 1993-2012. S3 predicts nitrate loads closer to observed 

values even when the model is not calibrated for nitrate loads 

3.5 Summary and Conclusions 

 

Hydrologic models are most commonly only calibrated for streamflow at one or multiple 

stations within the watershed. These calibrated models are then used to predict future streamflow 

and water quality trends. It is well established now that large, heavily parametrized, hydrologic 

models are often subject to issues of equifinality where multiple parameter combinations can 

lead to similar streamflow prediction. It has been argued that this issue can be somewhat 

addressed using a diagnostic model evaluation with ancillary data (e.g., soil moisture) and 

sometimes soft data to detect structural model deficiencies. One of the most commonly available 

datasets for hydrological models in agricultural areas is information on crop yield that is 

routinely collected and archived. Here, we show, using a case study of a 32,660 km2 large 
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agricultural watershed in the Midwestern US how the inclusion of crop yield data and soft data 

(flow partitioning) for model calibration increases the hydrological consistency of the model, and 

thus its predictive ability.  

A hydrologic model was first developed using the Soil and Water Assessment Tool 

(SWAT) and was able to reproduce very well the monthly streamflow statistics at eight stations 

within the watershed (KGE, RSR, and PBIAS). However, when the crop yield estimates from the 

model were compared with available crop yield data from the agricultural census, the model 

severely underestimated crop yield (PBIAS corn = 26%, and PBIAS soybean = 61%). This low 

crop yield was the product of a landscape where the soil water content was low, and the corn and 

soybean crops were water stressed for 27 and 33 days respectively, during the 150 days growing 

period. This is an unrealistic scenario for a humid Iowa landscape, except maybe for some very 

dry years. The next step of model refinement (scenario S1) involved performing a multi-

objective calibration by adding crop yield as a calibration target. While this led to a slight 

improvement in crop yield (PBIAS corn = 27%, and PBIAS soybean = 52%) and a reduction in 

water stress (corn:14 days and soybean: 28 days), the results remained unsatisfactory. 

A diagnostic model evaluation allowed us to identify high potential evapotranspiration 

(PET) estimated by the most commonly used Penman-Monteith method to be the underlying 

cause of the model deficiency. Altering the PET method to Hargreaves method (scenario S2) 

decreased the PET, and thus led to excellent crop yield statistics (PBIAS corn = 2%, and PBIAS 

soybean = 9%), while not significantly altering the streamflow statistics. Although PM-PET is 

the most commonly used PET formulation in hydrologic models (Schneider et al., 2007; Earls 

and Dixon, 2008), recent study has shown that they lead to consistent overestimation (Milly and 

Dunne, 2016) and alternate methods like the Hargreaves, Makkink and Priestley-Taylor PET 

methods can often lead to more reasonable estimates (Wang et al., 2006; Schneider et al., 2007; 

Earls and Dixon, 2008; Sperna Weiland et al., 2012; Alemayehu Tadesse et al., 2016; Samadi, 

2016). Indeed, in the Milly and Dunne (2016) study, it was found that the continental drying 

projected by most global studies is merely a methodological artifact of the PM-PET method. 

Sperna-Weiland et al. (2012) argued against using PM-PET for future climate scenarios, due to 

its higher data requirement and sensitivity towards input data. These studies imply that the use of 

the most common PM-PET method does not always guarantee reasonable PET estimates, and 
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this study also confirm these findings. What is interesting is that despite such an overestimation 

of PET, the model was able to capture the discharge statistics adequately by reducing the actual 

evapotranspiration to realistic values by allowing the crops to die, such that actual 

evapotranspiration and thus, streamflow is similar for all  three scenarios -- a classic example of 

getting the right streamflow but for the wrong reasons.  

The final stage of model refinement involved exploring the partitioning of flow between 

the surface and subsurface flow pathways. In the model scenario S2, only 17% of the flow was 

routed through the tiled pathway, despite the watershed being 68% tile drained. To address this 

issue, the flow partitioning method in SWAT was changed from the more traditional soil 

moisture based curve number method to the evapotranspiration based curve number method. 

This structural change and manual calibration contributed to 67% of the flow to be transmitted 

through the tiled pathway, in accordance with values estimated for nearby watersheds. A more 

rigorous calibration could be done if measured values of tile flow are available at the site. 

However, the use and value of such “soft data” for model calibration are increasingly being 

recognized as critical for increasing the consistency of hydrologic models (Seibert and 

McDonnell, 2002; Arnold et al., 2015; Pfannerstill et al., 2017; Shafii et al., 2017). 

Increasing the consistency of the hydrological model by incorporating crop yield 

information, and soft data on flow partitioning had multiple benefits. First, it led to a reduction in 

model predictive uncertainty by reducing the 95% prediction interval of the model predictions, 

and also reduced parameter uncertainty and equifinality in model predictions. Second, the 

modified model proved to be superior in predicting daily flows, despite being calibrated at the 

monthly timescale. And finally, increasing the hydrologic consistency of the model increased its 

ability to predict nitrate fluxes without any calibration.  The study highlights the value of using 

soft data and ancillary datasets like crop yield information to improve the consistency of 

hydrologic models.  
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Chapter 4: A Race against Time: Modelling Time Lags in Watershed 

Response 

4.1 Abstract 

Land-use change and agricultural intensification have increased food production but at 

the cost of polluting surface and groundwater. Best management practices implemented to 

improve water quality have met with limited success. Such lack of success is increasingly 

attributed to legacy nutrient stores in the subsurface that may act as sources after reduction of 

external inputs. However, current water quality models lack a framework to capture these legacy 

effects. This study uses a modified Soil Water Assessment Tool (SWAT) model to capture the 

effects of nitrogen (N) legacies on water quality under multiple land-management scenarios. The 

new SWAT-LAG model includes (1) a modified carbon-nitrogen cycling module to capture the 

dynamics of soil N accumulation, and (2) a groundwater travel time distribution module to 

capture a range of subsurface travel times. Using a 502 km2 Iowa watershed as a case study, we 

found that between 1950 and 2016, 25% of the total watershed N surplus (N Deposition + 

Fertilizer + Manure + N Fixation – Crop N uptake) had accumulated within the root zone, 14% 

had accumulated in groundwater, while 27% was lost as riverine output, and 34% was 

denitrified. In future scenarios, a 100% reduction in fertilizer application led to a 79% reduction 

in stream N load, but the SWAT-LAG results suggest that it would take 84 years to achieve this 

reduction, in contrast to the two years predicted in the original SWAT model. The framework 

proposed here constitutes a first step towards modifying a widely used modeling approach to 

assess the effects of legacy N on time required to achieve water quality goals.   

4.2 Introduction  

 

 Human modification of the nitrogen (N) cycle has resulted in a twofold increase in the 

fixation of reactive N compared to pre-industrial levels (Galloway et al., 1995). This increase 

can be primarily attributed to emissions from burning fossil fuels, fertilizer production, and 

leguminous crop production (Galloway et al., 2004; Vitousek et al., 1997). It is estimated that 

around 50% of the total inorganic N used thus far has been applied in the last 15 years (Howarth 

et al., 2002; Townsend et al., 2003), and food produced as a result of inorganic N fertilizer now 
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feeds more than 45% of the world’s population (Smil, 2011). High levels of N fertilizer use have 

significantly perturbed the global N cycle, and it has been argued that planetary boundaries for 

maintaining human and ecosystem health have been exceeded (Rockström et al., 2009). 

Increased N flux to coastal and inland waters has accelerated eutrophication, reduced 

biodiversity through species loss, and significantly reduced the coastal fish catch (Vitousek et al., 

1997). The inputs are expected to increase even further in the future to meet the food demands of 

a growing global population (Vitousek et al., 1997).  

 

Recognition of the detrimental effects of agricultural intensification has led to the 

adoption of various best management practices (BMPs) for improving water quality. However, 

these interventions have, in many cases, not led to expected improvements. For example, 

attempts have been made to reduce inorganic fertilizer inputs in the United Kingdom since the 

1980s; however, no substantial decrease has been observed in riverine N concentrations 

(Howden et al., 2010). In the Susquehanna River Basin, while fertilizer application rates were 

constant between 1971 and 2002, the riverine nitrate load continued to increase (Van Meter et 

al., 2017). A recent study in the Yongan river watershed of China shows that stream N 

concentrations have been increasing consistently, despite reductions in inorganic fertilizer inputs 

since 1999 (Chen et al., 2014). Similarly, in a review study, Grimvall et al., (2000) show that 

despite reductions in fertilizer application since the 1990s, the majority of Eastern European 

rivers have failed to show any reduction in riverine N loads.  

 

The time lags, defined as the time between implementation of agricultural BMPs and 

improvements in stream water quality, are increasingly recognized as an important factor behind 

the “apparent failure” of BMPs (Fenton et al., 2011; Meals et al., 2010; Van Meter & Basu, 

2015). Meals et al. (2010), in a data synthesis study, found that time lags can range from five to 

more than 50 years and are a function of watershed size, soil type, climate, and management 

practices. Van Meter and Basu (2017) have estimated watershed lag times to be between 12 and 

34 years in the Grand River Watershed in Southern Ontario. 

 

Van Meter and Basu (2015) conceptualized time lags in nitrate response as the sum of 

two components: (a) a hydrologic time lag that arises from accumulation of dissolved nitrate in 

the vadose zone and groundwater reservoirs, and (b) a biogeochemical time lag that arises due to 
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accumulation of soil organic N in the root zones of agricultural soils. While the existence of 

hydrologic time lags is well accepted, the recognition of biogeochemical time lags for N is 

relatively recent (Burt et al., 2010; Chen et al., 2014; Van Meter & Basu, 2015). In a recent 

study, Van Meter et al., (2016) analyzed soil core data from 61 agricultural sites across Iowa that 

were sampled in 1959 and again in 2007 and observed a net 14% increase in soil N (1478±547                 

kg/ha) over a depth of 0 to 100 cm. 

 

Despite recognition that the buildup of nutrient legacies can lead to time lags in 

watershed response, there has until recently been no modeling framework that can predict the 

time lags. Most watershed models, like the Soil Water Assessment Tool (SWAT) that are used to 

predict the impact of BMPs can predict the magnitude of the concentration reduction that might 

be finally achieved, but not how long it will take to achieve that reduction. For policymakers, 

however, knowing the time required to meet concentration reduction goals is critical to making 

informed choices.  

 

Recognizing the need to model time lags, Van Meter and Basu (2015) developed a 

parsimonious, travel time-based approach to quantify time lags, and this method was further 

refined by adding a simplified biogeochemistry module in Van Meter et al. (2016). The model 

thus developed, also referred to as the ELEMeNT model (Exploration of Long Term Nutrient 

Trajectories), was able to describe time lags at the outlet of the Mississippi River Basin (Van 

Meter et al., 2018). However, while the ELEMeNT model can capture long-term trends in soil 

and stream N, it is not designed to simulate complex agroecosystem dynamics, including the 

variations in crop type and nutrient management that are routinely handled in agricultural models 

like SWAT. Accordingly, the present study has two primary objectives: (1) to modify the 

existing SWAT model to capture time lags in watershed response, and (2) to use the modified 

model to quantify N time lags under various management scenarios. Specifically, this chapter 

focuses on two aspects of SWAT modification: (i) refining the ability of SWAT to describe N 

accumulation in soils that lead to the creation of biogeochemical legacy and time lags, and (ii) 

coupling SWAT with a travel time distribution model to capture time lags due to slow 

groundwater flow pathways.  
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4.3 Modeling Framework: Development of SWAT-LAG to represent Time Lags 

A new version of SWAT, SWAT-LAG, was developed by integrating a travel time 

distribution model into the existing SWAT model. The new SWAT-LAG model accounts for 

time lags arising from legacy nutrient accumulation in both soil and groundwater reservoirs. In 

the following sections, the background on the SWAT model, the travel time distribution model, 

and the model coupling were provided. 

4.3.1 SWAT Model: Background and Limitations 

SWAT is a watershed-scale, process-based, continuous simulation model that works at a 

daily time step. In this model, a watershed is divided into sub-basins that are further subdivided 

into Hydrologic Response Units (HRUs), characterized by the unique soil, slope, land-use, and 

management attributes. Each HRU is vertically discretized into three compartments, the soil 

profile (0-2 m), the shallow aquifer (2-20 m), and the deep aquifer (>20 m) (Narula and Gosain, 

2013). Runoff and nutrients generated by each HRU are aggregated at the top of the reach 

specific to the subbasin and then routed through that reach towards the watershed outlet.  

 

One of the most critical model components for adequate representation of nutrient fluxes 

is the carbon-nitrogen (C-N) cycling module within the soil profile. The most commonly used 

SWAT formulation for C-N cycling (hereafter referred to as SWAT), tracks five different N 

pools in the soil: two inorganic N pools (ammonia and nitrate), and three organic N pools (fresh, 

stable and active). Nitrogen dynamics are driven by water, temperature, soil moisture conditions, 

and plant uptake. It has been argued that this formulation overlooks several key factors 

controlling organic carbon dynamics in the soil, including the movement of organic carbon with 

water and the loss of organic C through soil erosion (Zhang et al., 2013).  Recognizing this 

limitation,  Zhang et al. (2013) integrated more rigorous C-N cycling equations into the SWAT 

framework that are adapted from a more complex field-scale agroecosystem model, the 

CENTURY model. The modified model hereafter referred to as SWAT-M, can accurately 

capture greenhouse gas emissions from agricultural sites under different soil, climate, and 

management practices (Zhang et al., 2013).  

The other major limitation of the SWAT model is its ability to accurately describe nitrate 

transport component through the subsurface (Bouraoui et al., 2005; Ekanayake and Davie., 
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2005). While SWAT considers a lag time in modeling lateral flow and groundwater flow, the 

magnitude of this lag time is generally of the order of a few days and represents the recession 

behaviour of the hydrograph, but not the slow groundwater pathways that have been implicated 

in longer-term delays in nitrate response (McDonnell and Beven, 2014; Van Meter et al., 2016). 

Or, in other words, while the parameters GW_DELAY, LAT_TTIME and SURLAG provide 

information on the celerity of water in the watershed, they do not describe the velocity of water 

(McDonnell and Beven, 2014). Thus, while SWAT (default SWAT model) can predict what will 

be the final streamflow nitrate concentration many years after the land-use change (after the 

system has reached a steady state), it provides no information on the time required to achieve 

that change in concentration, information that is critical for policymakers and managers.  

4.3.2 SWAT-LAG: SWAT coupled with a Travel Time Distribution (TTD) model 

 

To address the issues identified in the above section, the SWAT-LAG model was 

developed by coupling the SWAT-M model (Zhang et al., 2013) with a travel time distribution 

model, which includes simulation of N transport through slower groundwater pathways. The new 

SWAT-LAG model describes the groundwater mass loading Jb,lagged (t) (M/T) at the watershed 

outlet as a function of the groundwater load through the baseflow pathway simulated in SWAT-

M, Jb(t), and the travel time distribution f(τ) as  

𝐽𝑏,𝑙𝑎𝑔𝑔𝑒𝑑(𝑡) =  ∫ 𝐽𝑏 (𝑡 −  𝜏) 𝑓(𝜏)  𝑑𝜏
∞

0
     (Eq. 4.1) 

The modeled nitrate flux at the watershed outlet J(t) is then calculated as the sum of the nitrate 

flux through surface flow (Jsurfaceflow), lateral flow (Jlateralflow), tile flow (Jtileflow), and lagged 

baseflow (Jb,lagged) (estimated from Eq. 4.1) (Figure 4.1). The outlet nitrate flux is calibrated 

against the measured stream nitrate data using the Dynamically Dimensioned Search (DDS) 

algorithm (Tolson and Shoemaker, 2007), in OSTRICH calibration tool (Matott, LS. 2017). In 

the present study, the coupling of SWAT and the Travel Time Distribution (TTD) model was 

performed externally using MATLAB (MATLAB, 2018) where for each calibration run, 

MATLAB extracted Jb(t) from SWAT-M output files and estimated Jb,lagged(t) and J(t) (Figure 

B5). Modifications to SWAT-M source code to capture nitrogen legacies were described in 

Appendix Section B3 (Zhang et al., 2013), while details on assumptions regarding 

biogeochemical losses are presented in Appendix Section B4.  
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Figure 4.1. Conceptual modeling framework showing the coupling of SWAT-M with the travel 

time distribution model to create SWAT-LAG model 

4.4 Materials and Methods 

4.4.1 Study Site 

The South Fork Iowa River Watershed (SFIRW), a 502 km2 predominantly agricultural 

watershed that is a part of the Iowa-Cedar basin in the Midwestern U.S (Figure 4.2), was used in 

the present study to evaluate the role of legacy nitrogen on time lags in watershed response. The 

South Fork is representative of typical watersheds in the Midwestern US that contribute 

significant N loads to the Mississippi River, and thus was a good candidate for analysis. The 

mean annual rainfall over this watershed is 83 cm, and the mean monthly temperature varies 

between -7.7 0C and 23.4 0C. The watershed lies in the Des Moines Lobe in Iowa, which is 

characterized by poorly drained soils with low relief and is drained by subsurface tile drains 

(Green et al., 2006; Tomer et al., 2008). The dominant soil type is Clarion (fine loam), which 
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makes up 73.8% of the watershed. Land-use in the watershed is dominated by row-crop 

agriculture (86% of the area under corn-soybean rotations), followed by urban (6.59%) pasture 

(4.09%), and forest (2.47%).  

 

Figure 4.2. Site map showing the location of South Fork Iowa River watershed (SFIRW) and the 

current land-use (depicting crop rotations) obtained by overlaying 9-year (2004-2012) Crop Data 

Layers (CDLs) in ArcGIS 
 

4.4.2 SWAT Input Datasets and Model Parameters 

Streamflow and nitrate concentration data from 1996 to 2015 were obtained for the gauging 

station ID 05454300 at the outlet of SFIRW from USGS (2016). Streamflow data were available 

at the daily timescale, while N concentration data were available at the monthly frequency. The 
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Weighted Regression on Time, Discharge and Season (WRTDS) model was used to estimate the 

monthly stream nitrate flux from the sparse data, and these monthly values were used for model 

calibration and validation (Hirsch et al., 2010; Corsi et al., 2015). Monthly stream nitrate fluxes 

simulated using WRTDS corresponded well with the observed nitrate flux values with a percent 

bias (PBIAS) of 2%. The watershed has only one weather station for which daily rainfall and 

temperature data were obtained from the US National Weather Service (NWS), n.d., United 

States Environmental Protection Agency (US-EPA, 2013) and Iowa Environmental Mesonet, 

n.d. for the period 1950 to 2016. SWAT’s weather generator was used to simulate solar 

radiation, relative humidity, and wind speed. Evapotranspiration was estimated using the 

Hargreaves Potential Evapotranspiration method (Nair et al., 2011). Soil characteristics were 

obtained from the SWAT’s State Soil Geographic Dataset (STATSGO) soil database. We 

defined 5 slope classes as 0-0.5%, 0.5-1.45%, 1.45-2%, 2-3.5% and >3.5%. The soil, land-use, 

and slope layers were intersected to create 395 unique HRUs with distinct attributes. The 

STATSGO soil database was used instead of the finer-resolution Soil Survey Geographic 

Database (SSURGO) database since increasing the number of HRUs beyond 395 would 

significantly increase the computational burden of the model. SWAT models that use the 

SSURGO database often reduce the number of HRUs by focusing on the most dominant HRUs 

and neglecting the contribution of the others. In this model, we needed a spatially distributed grid 

of HRUs to couple with the grid scale travel times, and thus the “dominant HRU” option was not 

feasible. A brief review of studies that compared nitrate flux estimates from STATSGO versus 

SSURGO inputs revealed mixed conclusions -- while Chaplot (2005) observed improved 

predictability when using SSURGO data, Geza and McCray (2008) and Bhandari et al. (2018) 

did not observe significant differences between STATSGO and SSURGO predictions. Also, the 

watershed was assumed to have only one sub-basin. Given the dynamic land use that had to be 

simulated in the model, adding more subbasins would have significantly increased the 

computational burden. Furthermore, a larger number of sub-basins is more important for routing 

that is relevant for daily predictions, while our focus was on decadal lag times.  

All the agricultural HRUs with slopes less than 2% were assumed to have tiles (Green et 

al., 2014) since site-specific tile drain data were not available. This assumption led to 58% of the 

watershed area (67% of the cropped area) being tile-drained. Depth to sub-surface drain 

(DDRAIN), time to drain soil to field capacity (TDRAIN) and drain tile lag time (GDRAIN) 
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values were set to 1000 mm, 48 h and 96 h respectively based on Green et al. (2006) and Nair et 

al. (2011). Initial soil N and C mass in 1949 were estimated at the HRU scale based on the 

regression equations developed by Van Meter et al. (2016), in which soil C and N is described as 

a function of soil type (% sand, silt, and clay). These calculations led to an area-weighted 

average initial organic N mass estimate of 16,347 kg/ha/yr across the SFIRW, which is close to 

the range 16,744 - 17,485 kg/ha/yr estimated by Van Meter et al. (2016).  

Annual crop yield data were estimated using the methods outlined in Appendix Section B1 

(Gassman, 2008; Hong et al., 2013; USDA-Agricultural Census, 2012; USDA-Agricultural 

Survey, 2012). Mineral fertilizer applications rates, estimated using fertilizer sales data 

(Alexander and Smith, 1990 and USGS, 2012), varied between 2 kg/ha/yr and 211 kg/ha/yr 

across different years. Estimation of mineral fertilizer application rates was detailed in Appendix 

Section B1 (Alexander and Smith, 1990; Sawyer, 2015; USGS, 2012). Manure application rates 

were estimated using the animal data in the USDA-Agricultural Census (2012) and nitrogen in 

animal excretion information from Hong et al., (2011) (Appendix Section B1). The watershed 

has a large number of Concentrated Animal Feeding Operation (CAFO) lots (Tomer et al., 

2008), and manure produced in these CAFOs is known to be one of the major sources of 

fertilizer (McCarthy et al.,2012). The typical manure N application rates varied between 37 

kg/ha/yr and 105 kg/ha/yr. HRUs under corn, oats, and hay received N fertilizer (inorganic and 

organic) while soybean and alfalfa HRUs were supplied with P2O5 at rates of 45 kg/ha/yr and 73 

kg/ha/yr respectively based on Iowa State University’s recommendation guide (Mallarino et al., 

2013).  

4.4.3 Estimation of Travel Time Distribution  

The travel time distribution, f(τ), was estimated using the GIS approach that was 

proposed by Schilling and Wolter (2007) and Basu et al. (2012) and that has been shown to 

capture groundwater travel times in Iowa landscapes adequately. In this methodology, the travel 

time τ corresponding to each point in the landscape is described by: 

τ =  
length

average linear velocity
=  

L

(K ∗ i)/ n 
    (Eq. 4.2)  
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Where L is the flow path length from each cell in the landscape to the nearest stream (m), K is 

the hydraulic conductivity (m/s), i is the hydraulic gradient, and n is the aquifer porosity.  The 

primary assumption of this approach is that the water table follows the topography (Schilling and 

Wolter, 2007; Basu et al., 2012), and thus the hydraulic gradient can be approximated as the ratio 

of the elevation difference (as estimated from the Digital Elevation Map, DEM) and the flow 

path distance L between the cell of interest and the nearest outlet.  

Using the hydrology toolset in ArcGIS 10.4.1, the 30 m DEM (USGS, 2013) was filled to 

get the flow direction and flow accumulation raster. The stream network was created by applying 

a stream initiation threshold of 100 acres on the flow accumulation raster. Using the flow 

direction and the stream network raster, flow path length (L) (routed value along the flow 

direction network, towards the stream) was computed for each 30-m cell using the “Flow 

Length” tool. The hydraulic gradient was estimated using the DEM and the stream network. 

Saturated hydraulic conductivity (K) was extracted from SWAT’s STATSGO soil database. 

Aquifer porosity was assumed to be equal to 0.3, following Schilling and Wolter (2007) and 

Basu et al. (2012). Average linear velocity was estimated for each 30-m cell in the watershed 

using K, i, and n as inputs, using the “Darcy Velocity” tool. Using “L” and average linear 

velocity rasters, the travel time for each 30-m cell in the watershed was computed. The mean 

travel time τ of each HRU was obtained by averaging the travel time of all cells inside each 

HRU.  

4.4.4 Model Calibration, Validation and Uncertainty Estimation 

 

The modified SWAT model (SWAT-LAG) was calibrated to simulate monthly discharge 

and nitrate loads, and annual crop yield. Parameters sensitive to hydrology, nitrate flux, and crop 

yield were selected based on extensive literature review (Baumgart, 2005; Green et al., 2006; Hu 

et al., 2007; Jha et al., 2007; Kannan et al., 2007; Le, 2015; Faramarzi et al., 2009; Nair et al., 

2011), and a One-at-a-time (OAT) sensitivity analysis that was done manually. Fifty-two 

parameters were selected for calibration, and suitable upper and lower bounds were fixed based 

on literature values (Table 4.1 and Table B2).  The model was calibrated from 1996 to 2008 and 

validated from 2009 to 2015 for monthly streamflow and nitrate flux (Equation 4.4; Figure B2). 
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Annual crop yields were calibrated from 1950 to 2008 and validated from 2009 to 2015 

(Equation 4.4).  

The OSTRICH calibration tool - a model-independent, flexible optimization program 

with a multi-objective calibration environment, was used for model calibration and validation. 

Multi-objective calibration was performed by assigning seven calibration targets (discharge, 

nitrate flux, corn yield, soybean yield, oats yield, alfalfa yield, and hay yield). The Dynamically 

Dimensioned Search (DDS) algorithm was used to calibrate the KGE values simultaneously in 

OSTRICH. Specifically, the KGE values of all seven calibration targets were aggregated to 

obtain the overall objective function (KGEoverall in Equation 4.4) by assuming equal weights 

for all the calibration targets. Also, the DDS algorithm allowed for the PBIAS for the seven 

calibration targets to be constrained within ±10%. The DDS algorithm optimized the parameter 

solutions based on two conditions (i) increase the KGEoverall value towards 1 and (ii) constrain 

the PBIAS of all the seven calibration targets to be within ±10%. Multiple iterations were 

performed sequentially with 250 runs per iteration. OSTRICH provided an optimal solution at 

the end of each iteration, and the calibration parameter ranges were narrowed down manually 

with each iteration until no further improvement in results was observed. The KGE and PBIAS 

values were estimated using the optimal solution obtained in the final iteration. Acceptance 

criteria for KGE was formulated by synthesizing eleven studies as explained in Appendix 

Section B2 (Formetta et al., 2014; Hoch et al., 2017; Hublart et al., 2015; Kuentz et al., 2013; 

Pechlivanidis et al., 2010; Pechlivanidis and Arheimer, 2015; Rajib et al., 2016; Revilla-Romero 

et al., 2015; Thiemig et al., 2013; Trautmann, 2016; Yang et al., 2016) and Table B3. Moreover, 

the calibration methodology follows the findings of Chapter 3, i.e., consideration of crop yield as 

additional calibration targets, selection of appropriate PET estimation method (HG-PET), and 

inclusion of flow partitioning constraints. 

KGE = 1 −  √(r − 1)2 +  (α − 1)2 +  (β − 1)2     (Eq. 4.3) 

where r is the linear coefficient between the simulated and measured time series 

α = 
σs

σm
 ; σs and σm are the standard deviation of simulated and measured series 

β = 
μs

μm
 ; μs and μm are the mean of simulated and measured time series 
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KGE𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
1

𝑛
[𝐾𝐺𝐸𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤 + 𝐾𝐺𝐸𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑓𝑙𝑢𝑥 + 

1

𝑥
∑ 𝐾𝐺𝐸𝑐𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑

𝑥
𝑖=1 ] (Eq. 4.4) 

where n = 3 and x = 5 (watershed scale crop yield for 5 crops)     

        

PBIAS = 100 ∗ 
∑(Qm−Qs)

∑ Qm
        (Eq. 4.5)  

where Qm and  Qs are measured, and simulated data and PBIAS of all seven calibration targets 

were constrained to be within ±10% 

 

The model prediction uncertainty was estimated as a function of both parameter 

uncertainty and input uncertainty. Parameter uncertainty was estimated by considering all the 

250 parameter sets from the 250 DDS runs. In addition to parameter uncertainty, input 

uncertainty due to rainfall, fertilizer application rates and travel time were also estimated. 

Specifically, the rainfall, fertilizer application rates, and travel time magnitudes were varied by 

±25% and created 281 parameter sets for estimation of input uncertainty. The input uncertainty 

was considered in conjunction with the parameter uncertainty to estimate the 95% prediction 

uncertainty (95 PPU) (Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2006; 

Abbaspour. K. C., 2012) for discharge and nitrate load at a monthly time step.  

4.4.5 Developing temporally varying land-use maps (crop rotations) in SWAT 

 

As the final set of input parameters, time-varying land-use maps for the study were 

developed. One of the challenges in simulating a long trajectory of land-use change and nitrogen 

accumulation in SWAT is related to the appropriate representation of land-use change and crop 

rotation patterns over time. Capturing these trajectories is important, as the exact sequence of 

land-use change and rotation impacts legacy accumulation and depletion. As described below, to 

effectively simulate crop rotations and land-use change in SWAT, two different methodologies 

were used, dependent on data availability across the simulation period. Only agricultural census 

data was available before 2004, while more detailed crop data layers were available in the later 

period as described below. 
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 For the period 1950–2003, the county (a subdivision of states in the U.S) scale 

information on annual cropped areas from USDA-Agricultural survey (2012) was used in 

conjunction with USDA-Agricultural Census (2012) data to estimate the annual area under each 

crop (Figure B1). Given the difficulty in reassigning HRUs continuously in time as a function of 

land-use change, the period was split into two time-blocks (1950-1960, 1961–2003) and 

maintained the land-use and crop rotation constant within each time block. The time-blocks were 

chosen based on land-use trends, as indicated by the survey data. Specifically, there was a 

dramatic shift in land-use between 1961-1964, with large increases in the area under soybean and 

decreases in the area under oats and hay. Average crop acreages within each time block were 

calculated as the mean of the time series of the cropped area within that block (Figure B1). The 

rotation history for each block was estimated based on prior knowledge regarding crop rotations 

in the Midwest (Anderson, 2005; Bruns, 2012). The resulting crop rotations and land-use data 

are presented in Table B1.  

The methodology followed for the 2004-2012 period is based on Srinivasan et al.,(2010) 

and Teshager et al.,(2016) and involved using Crop Data Layers (CDL) from the National 

Agricultural Statistics Service (USDA-CDL, 2012). These CDL layers were intersected with the 

watershed and classified to identify the crop rotations. For example, if a CDL cell had corn from 

2004 to 2012, it was considered to be continuous corn. Based on this analysis, the following 

rotation types were estimated in the study area: continuous corn (CC): 20.2%, soybean-corn 

(SC): 33.12%, corn-soybean (CS): 28.46%, corn-corn-soybean (CCS): 2.54%, soybean-corn-

corn (SCC): 2.06%, continuous alfalfa (0.14%). Other land-use types included: forest (2.47%), 

pasture (4.09%), urban (6.59%), waterbody (0.1%) and wetland (0.23%) (Table B1). Since corn 

and soybean yields have been increasing since the 1950s due to the introduction of hybrid crop 

varieties, three different corn and soybean crop varieties were used in the three time-blocks to 

replicate the observed yield trends.  

4.4.6 Model Runs and Scenario Formulation 

 

The effect of model conceptualization on time lags was evaluated by comparing the 

default SWAT model with two modifications of SWAT that explicitly consider lag times in the 

landscape. The first modification, SWAT-M, involves the use of modified C-N cycling equations 
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to capture the accumulation of soil organic N. In the second modification, SWAT-LAG, SWAT-

M was coupled with the travel time distribution model to capture hydrologic and biogeochemical 

time lags. All three model versions (SWAT, SWAT-M, and SWAT-LAG) were compared to 

evaluate differences in performance.  

For future projections, only SWAT-LAG model was used and simulated four nutrient 

management scenarios and three land-use change scenarios for 84 years (2017-2100). Daily 

rainfall and temperature data corresponding to average rainfall year during the simulation period 

(1950-2016) was used to simulate the climate, following Muenich et al. (2016). The actual future 

climate scenarios were not used as the goal was to isolate the effects of landscape legacies and 

time lags. For the business-as-usual (BAU) scenario, the land-use and management practices 

from 2004-2016 were maintained from 2017 to 2100. We considered four nutrient management 

scenarios in which land-use was kept the same as BAU, but the fertilizer application on corn 

HRUs was reduced by 25% (NM1), 50% (NM2), 75% (NM3) and 100% (NM4). Also, three 

land-use change scenarios were considered, in which agricultural land was converted to land 

under switchgrass production. These scenarios were based on the U.S Renewable Fuel standard 

mandate that sets a goal of producing more than half of biofuel from cellulose-based sources 

(primarily switchgrass and miscanthus) by 2022. We used the Shawnee switchgrass (upland 

cultivar) and adopted the plant growth parameters outlined in Cibin et al. (2010) and Trybula et 

al. (2014), and a fertilization rate of 30 kg/ha/yr to maintain switchgrass yields. The three 

scenarios included planting switchgrass in all agricultural HRUs (LU1), planting switchgrass 

only in agricultural HRUs with slopes greater than 0.5% (LU2) or greater than 1.45% (LU3).  

4.5 Results and Discussion 

4.5.1 Groundwater Travel Time Distribution for the South Fork Iowa Watershed 

 

 Modeled groundwater travel times in the South Fork Iowa watershed ranged from 36 

days in some areas of the watershed to more than 50 years in others (Figure 4.3a).  

Approximately 8% of the watershed has a travel time > 50 years, which corresponds to an area of 

poorly drained clayey soils. Travel times are much smaller (< 10 years) around the stream 

network where the soil is sandier and has a greater hydraulic conductivity. The distribution of 

travel times was described well by an exponential distribution (Figure 4.3b) with a mean travel 



 

76 
 

time of 13 years, which is similar to the mean travel time of 10 years estimated for the Walnut 

Creek Watershed in Northern Iowa (Schilling and Wolter, 2007; Basu et al., 2012). The travel 

time distribution obtained from this analysis was convoluted with the nitrate fluxes generated in 

SWAT-M to generate lagged nitrate concentrations at the catchment outlet.  

 

 

Figure 4.3. Groundwater Travel Time (a) map and (b) histogram for the South Fork Iowa River 

Watershed (SFIRW) 

 

4.5.2 Model Calibration and Validation 

 

 We calibrated three model versions (SWAT, SWAT-M, and SWAT-LAG) and found the 

calibrated parameters to be not significantly different with respect to current and past predictions 

of crop yield, discharge, and nitrate flux. Similarities between the three approaches are most 

likely due to the water quality time series of 20 years being too short of capturing legacy effects. 

Since the calibrated parameters were not significantly different, to ensure consistency across 

model versions, we used the calibrated parameters from SWAT-LAG in SWAT and SWAT-M to 

evaluate the goodness of fit metrics for streamflow, nitrate flux, and crop yield. All three model 

versions (SWAT, SWAT-M, and SWAT-LAG) performed adequately, with KGE values for 

streamflow and nitrate flux ranging from 0.45 to 0.77, and PBIAS varying from -11.2% to 

20.2%, respectively (Figure B2, Figure B6, Figure B7 and Table 4.2). PBIAS values for crop 
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yield were also good, ranging from -7.6% to 14.9% (Table 4.3). For comparison, we have also 

presented model simulations from the individual calibrated models, and the statistics are not 

significantly different (Appendix Figure B8 and Figure B9). For the remainder of this chapter, 

we have used SWAT-LAG’s parameters to ensure a more accurate comparison of the three 

model versions. Despite the similarity in predicting the current loads, the models varied in their 

ability to predict future scenarios and time lags, which is addressed in Section 4.5. The final 

calibrated parameters are presented in Table 4.1 and Table B2. Also, the evaluation of the 

monthly calibrated SWAT-LAG model to simulate the daily discharge from 1996 through 2016, 

revealed a satisfactory performance with a KGE value of 0.5 and a PBIAS value of 1% (Figure 

B10). 

 

Table 4.1. Hydrology and nitrate flux calibration variables, descriptions, ranges and final 

calibrated parameter values  

Variables Description Range Calibrated 

Values 

Hydrology     

CN2_1 Runoff curve number 1 59 - 73.7 61.6 

CN2_2 Runoff curve number 2 66 - 82.5 73.9 

CN2_3 Runoff curve number 3 69 - 86.3 85.2 

CN2_4 Runoff curve number 4 77 - 96.3 84.9 

CN2_5 Runoff curve number 5 78 - 97.5 83.1 

CN2_6 Runoff curve number 6 86 - 100 94.6 

CN2_7 Runoff curve number 7 92 - 100 96.4 

ESCO Soil evaporation compensation coefficient 0.8 - 1.0 0.92 

DEP_IMP Depth to impervious layer, mm 3250-3650 3502 

GWQMN Threshold water content in shallow aquifer 

before groundwater can flow, mm 

75 - 175 104 

REVAPMN Threshold depth of water in the shallow 

aquifer for REVAP (movement of water from 

shallow aquifer into the overlying 

unsaturated zone) to occur, mm 

75 - 175 105 

CNCOEFF Plant ET curve number coefficient 0.1 - 0.3 0.21 

Nitrate Flux     

HLIFE_NGW Half-life of nitrate in groundwater, day 5 - 75 71 

BIOMIX Biological mixing efficiency 0.18 - 0.22 0.18 

CDN Soil denitrification rate coefficient 0.1 - 1 0.53 

NPERCO Nitrogen percolation coefficient 0.2 - 1 0.95 
(i) CN2_1to7: The study area has seven different types of curve numbers which were treated as individual calibration 

parameters in OSTRICH calibration tool and  

(ii) Crop calibration parameters are provided in Table S2 
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4.5.3 Nitrogen Stores and Fluxes over Time 

 

The SWAT-LAG model was used to explore how N stores and fluxes have changed over 

the last 67 years (1950-2016) in the South Fork Iowa Watershed. During this period, application 

rates for N fertilizer and N fixation rates increased consistently from 1960–1970 and then 

stabilized (Figure 4.4a). This was accompanied by a concomitant increase in the crop N uptake 

rates, leading to an approximately constant N surplus value since the 1980s (Figure 4.4a and 

Figure B3). Nitrogen surplus in agricultural landscapes is often used for evaluating the 

efficiency of the agricultural practices – an N surplus of zero indicates that the N added to the 

landscape has been utilized efficiently by the crops. The analysis indicates 4-year average N 

surplus values ranging between 39 and 122 kg/ha/yr from 1950 to 2016. The magnitude of the N 

surplus is significant considering that it is 79–101% of the sum of fertilizer and manure addition 

(which varies from 43 to 143 kg/ha/yr) to the watershed over this period.   

 

A fraction of this N surplus is denitrified and lost as riverine N, while the remaining, 

what we hereafter refer to as legacy N, is stored in soil and groundwater (Howden et al., 2011; 

Worrall et al., 2015, Van Meter et al., 2016). The exact magnitudes of the denitrification flux are 

a challenge to estimate at the landscape scale (David et al., 2008, 2010), making it difficult to 

quantify magnitudes of legacy stores.  In this modeling study, the magnitudes of riverine N and 

denitrification flux has increased from 1950 through the 1980s, concurrent with increases in the 

N surplus (Figure 4.4b). Nitrogen accumulation in soil and groundwater has also been 

increasing over this period. While the rate of accumulation of the biogeochemical legacy (soil 

organic N) appears to have plateaued since the last decade, the hydrologic legacy continues to 

increase (Figure 4.4b).  

 

On a cumulative basis, over the 67 years (1950-2016) simulated in this study, the total N 

surplus over the South Fork Iowa River watershed was 6181 kg/ha (92 kg/ha/yr), of which 2111 

kg/ha (34%) was denitrified, 1688 kg/ha (27%) was lost as riverine output, 1588 kg/ha (25%) 

accumulated in the root zone, while 859 kg/ha (14%) accumulated in groundwater (Figure 4.4c 

and 4.4d). Our estimates of 27% of the total N surplus exported as riverine output is very close 

to Boyer et al. (2002) estimates (25%). The estimated values for soil N accumulation (1588 

kg/ha) fell within the range of values (931-2025 kg/ha) reported by Van Meter et al. (2016), in 
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which they synthesized soil core data at multiple sites in Iowa. Also, our numbers for 

groundwater N accumulation (859 kg/ha) were close to groundwater nitrogen accumulations 

reported for the Susquehanna River Basin (390–655 kg/ha) and within the same order of 

magnitude for Thames River Basin (503-950 kg/ha) (Worrall et al., 2015). It is interesting to 

note that the overall magnitude of accumulation of biogeochemical legacy is greater than the 

magnitude of accumulation of hydrology legacy.  

 

Figure 4.4. (a) Temporal trends in nitrogen surplus and its components (N deposition, fertilizer, 

manure, fixation, and crop N output), (b) Trends in riverine output and denitrification, soil and 

groundwater N accumulation and (c) Watershed-scale cumulative mass balance from 1950 to 

2016 across SFIRW. Note that each stacked bar and data point represents a four-year averaged 

value  
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4.5.4 Spatial Patterns in Soil Nitrogen Accumulation  

 

We next evaluated the spatial patterns of soil nitrogen accumulation and how topography 

and land-use characteristics contributed to accumulation. Initial Soil Organic Nitrogen (SON) 

levels in the watershed followed a predictable pattern, with higher SON levels along the river 

network and lower values in the upland (Figure 4.5a). Patterns of accumulation (Figure 4.5b), 

however, were found to vary as a function not just of landscape position, but numerous factors, 

including cropping patterns, soil type, and slope. To explore this further, we explicitly compared 

the effect of cropping choices (Continuous Corn and Corn-Soybean rotation), soil type (Canisteo 

with 26% clay and Clarion with 21% clay) and topography (<3% and >3% slope), on soil N 

accumulation. As land-use was temporally varying over the study period, we selected the last 

decade (2004-2016), during which land-use remained constant, for this analysis.  

 

We found that under the Continuous Corn (CC) rotation, clayey Canisteo soils 

accumulated 4 kg/ha/yr (< 3% slope) and 6 kg/ha/yr (> 3% slope) more SON than sandy Clarion 

soils (Figure 4.5c). Similarly, under the Corn-Soybean (CS) rotation, clayey soils accumulated 3 

kg/ha/yr (for both slope categories) more than sandy soils. The greater accumulation of organic 

nitrogen in clayey soils is consistent with existing literature that reports greater organic content, 

and slower organic matter decomposition rates in clays (Legg., n.d; Six et al., 2002; 

McLauchlan, 2006). Also, the land under CC accumulates 7 kg/ha/yr (< 3% slope category) and 

8 kg/ha/yr (> 3% slope category) more SON than land under a CS rotation in clayey soils, and 6 

kg/ha/yr (< 3% slope category) and 5 kg/ha/yr (> 3% slope category) more than land under CS in 

sandy soils (Figure 4.5c). This phenomenon is consistent with findings of Varvel (1994) and 

Jagadamma et al. (2007), where Continuous Corn (CC) rotation led to a greater increase in the 

soil total nitrogen concentrations. This most likely arises due to (i) high fertilizer application 

rates in CC, (ii) high C/N ratio of corn residue (Jagadamma et al., 2007; DeJong Hughes and 

Coulter, 2009) which has more resistance towards microbial decomposition and (iii) more 

residue contribution in Continuous Corn rotation than in Corn-Soybean rotation (Varvel, 1994; 

DeJong Hughes and Coulter, 2009). Finally, the flatter areas of the landscape (slope < 3%) 

accumulated more organic nitrogen, possibly due to lower slopes leading to less N loss to the 

stream.  
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Figure 4.5. Soil organic N in SFIRW: a) Initial SON (1950), (b) Soil nitrogen accumulation 

(SON) rates between 1950 and 2016, and (c) SON accumulation rates between 2004-2016 as a 

function of soil type (clayey Canisteo soil and sandy Clarion soil), crop rotation (Continuous 

Corn and Corn-Soybean) and slope 

 

4.5.5 Time Lags in Watershed Response 

 

There was no significant difference in performance between the three models for current 

and past simulations (Table 4.2 and Table 4.3). It is important to note that even though baseline 

model performance is not different between the model versions, getting the time lags correct is 

important when the model is used to predict future scenarios of water quality due to land 

management. It is important for policymakers to know these time lags to be able to set realistic 

policy goals. Indeed, when a management change was implemented in SWAT-LAG for the 

forecast period (2017-2100), the three models responded differently (Figure 4.6). The 

management scenario implemented was a 100% reduction in fertilizer application rate. The 

original SWAT model (SWAT) responded by predicting a 46% reduction in nitrate load within 

one year of the change (Figure 4.6a), while the N loads generated by the SWAT-M and SWAT-

LAG models remained consistently high for multiple decades. The lag times to achieving a 50% 
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N load reduction were, respectively, 1 year for SWAT, 4 years for SWAT-M, and 19 years for 

SWAT-LAG (Figure 4.6b), while the times to achieving a 70% N load reduction were 2 years 

for SWAT, 22 years for SWAT-M, and 62 years for SWAT-LAG. However, regardless of the 

different lag times, all models predicted an approximately 75% nitrate load reduction by the year 

2100 (84 years after the land-use change) (Figure 4.6b). Significant uncertainty lies in the 

estimation of these time lags, given the uncertainty in parameters like the travel time, as well as 

inputs like fertilizer application rates. This is captured in the 95 PPU band predicted around the 

lag time (Figure 6c) that shows, for example, that in 2025 that N load predicted by SWAT-LAG 

can vary between 277 to 1354 tons/year, with the median value being equal to 827 tons/year. For 

comparison, nitrate load reduction for a 100% fertilizer reduction scenario for the individually 

calibrated models (SWAT, SWAT-M, and SWAT-LAG) is reported in Appendix (Figure B11). 

SWAT showed the greatest load reduction soon after the land management change, as the 

C-N module in SWAT is not sophisticated enough to capture how the organic matter responds to 

changes in management practices. Addition of the more sophisticated organic matter dynamics in 

SWAT-M leads to a greater lag time than that obtained with SWAT – this is what has been 

referred to before as the “biogeochemical time lag” (Hamilton Stephen K., 2011; Van Meter et 

al., 2016). Finally, the greatest lag time is observed in SWAT-LAG due to the additional 

consideration of the nutrient buildup in the groundwater reservoir – this has been referred to 

“hydrologic time lag” (Schilling et al., 2008; Meals et al., 2010). The time lag predicted by 

SWAT-LAG, which includes both the hydrologic and biogeochemical time lag, is critical for 

predicting changes in water quality after changes in management, making it possible for 

policymakers to make appropriate decisions and also to manage expectations among 

stakeholders.  
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Table 4.2. Monthly calibration (1996-2008) and validation statistics (2009-2015) for streamflow 

and nitrate flux for three model versions (SWAT, SWAT-M, and SWAT-LAG) 
 

Variables KGE Performance PBIAS (%) Performance  

SWAT     

Streamflow 0.61 (0.63) Moderate (Moderate) 20.2 (8.8) - (Good) 
Nitrate flux 0.68 (0.45) Good (Moderate) -6.5 (-7.8) Very good (Very good) 
SWAT-M     

Streamflow 0.72 (0.68) Good (Good) 5.8 (-4.2) Good (Good) 
Nitrate flux 0.72 (0.62) Good (Moderate) -11.2 (-9.1) Good (Very good) 
SWAT-LAG     

Streamflow 0.72 (0.68) Good (Good) 5.8 (-4.2) Good (Good) 
Nitrate flux 0.77 (0.58) Good (Moderate) 9.7 (8.0) Very good (Very good) 

(i) KGE performance criteria were based on an extensive literature review (refer Sect. S.2)  

(ii) PBIAS performance was based on (Moriasi et al., 2015) 

 

 

 

Table 4.3. Annual calibration (1950-2008) and validation statistics (2009-2015) for crop yields 

for three model versions (SWAT, SWAT-M/LAG)   

 

Variables SWAT SWAT-M/LAG 

 PBIAS (%) PBIAS (%) 

Corn yield 4.7 (14.9) 3.1 (8.0) 
Soybean yield 5.6 (2.8) 5.0 (1.4) 
Alfalfa yield -7.4 (-) -7.4 (-) 
Oats yield 0.7 (-) -0.0 (-) 
Other hay yield -4.1 (-) -7.6 (-) 

Note. (i) PBIAS <±15% is considered to be good based on Srinivasan et al. (2010)  

(ii) KGE values were not reported since they were poor, due to the difficulty in matching the crop 

yield at the annual time-step 
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Figure 4.6. (a) Stream N load and (b) N load reduction as a function of time, simulated by 

SWAT, SWAT-M and SWAT-LAG for NM4 (100% fertilizer reduction in Corn HRUs). (c) 

Uncertainty in stream N load prediction quantified by SWAT-LAG, as captured by the 95% 

prediction band (95 PPU). The stream nitrate load reduction trajectory was obtained by 

subtracting N load for the NM4 scenario from that of the BAU scenario. Longer lag times are 

observed for the SWAT-LAG and SWAT-M scenarios, compared to the SWAT scenario 
 

4.5.6 Effects of Land Management on Nitrogen Time Lags 

 

 The effects of different land-use and land management on time required to see reductions 

in N loads at the catchment outlet was evaluated using the modified SWAT-LAG model. In the 

first set of scenarios, NM1, NM2, NM3, and NM4, fertilizer application on all corn HRUs was 

reduced by 25%, 50%, 75%, and 100%, respectively, which corresponded to 26%, 44%, 63%, 

and 80% decreases in the N surplus at the watershed scale. These reductions led to reductions in 

the stream nitrate load in all cases; however, time lags between the reductions in input and 

subsequent load reductions at the outlet differed across the different fertilizer reduction scenarios 

(Figure 4.7a). The relationship between reductions in fertilizer application rates and N load 

reductions was linear, but the slope of the relationship increased over time indicating that for the 

more extreme scenario (NM4), waiting for longer leads to proportionally greater benefits 

compared to a less extreme scenario like NM2 (Figure 4.7b). For the 25% reduction in fertilizer 

application rate scenario, the N load reduction is ~ 14% in 2025, while it is 23% in 2050. For a 

100% reduction in fertilizer application rates, the N load reduction is ~ 45% in 2025, while it is 

70% in 2050. A 40% reduction in N load can be achieved by a 100% reduction in fertilizer 

application within seven years after implementation; whereas if one is willing to wait 30 years 

the same load reduction can be achieved with only 50% reduction in fertilizer application rates.  
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In the second set of scenarios, switchgrass was planted in the agricultural HRUs, thus 

reducing both the N surplus (LU1- 86%, LU2- 52% and LU3- 37%) and N loads at the 

catchment outlet (Figure 4.7c and Figure 4.7d). Much greater magnitudes of N reduction were 

evident under the switchgrass scenario, as switchgrass is actively harvested and removed from 

the system, thus reducing the amount of residue in the field that would serve as a source of 

mineralizable N. While corn was also harvested, corn yields were poor under the extreme 

fertilizer reduction scenarios, thus decreasing their effectiveness as an N-sink. Under LU1, when 

all agricultural HRUs were planted with switchgrass, 67% N load reduction was achieved in 

2025, while an 81% reduction in N load was attained in 2050 (Figure 4.7d). As can be seen in 

the figure, the relationship between percent land-use change and N load reduction is linear, and 

the slope increases over time. 
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Figure 4.7. Effect of land-use and land management on time lags: (a) Percent N load reduction 

trajectories for four management scenarios where nitrogen fertilizer application rates on Corn 

HRUs were reduced by 25% (NM1), 50% (NM2), 75% (NM3) and 100% (NM4), (b) Percent N 

load reduction as a function of % fertilizer reduction in 2025 and 2050, (c) Percent N load 

reduction trajectories for three land management scenarios where 100% (LU1), 74% (LU2) and 

61% (LU3) of agricultural lands were planted with switchgrass and the rest of row crop HRUs 

followed BAU, (d) Percent N load reduction as a function of percent land-use change in 2025 

and 2050.  

 

The above two paragraphs highlight that there are fundamental tradeoffs between the 

time required to achieve a given N load reduction and the magnitude of the N surplus reduction. 

For example, the Watershed Nutrient Task Force (WNTF) set a goal to reduce the 5-yr average 

area of the hypoxic zone in the gulf to less than 5,000 km2 by 2035, which corresponds to N load 
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reduction of 60% for the Mississippi River Watershed (Scavia et al., 2017). The results indicate 

that in the SFIRW it would theoretically be possible to achieve the target loads by 2035 with N 

fertilizer reductions of 100% (red line in Fig. 8a), or with the conversion of 86% of land under 

row crop to switchgrass (Figure 4.8).  However, if the target year were extended by another 32 

years to 2067, less drastic reductions in fertilizer application (75%) or changes in land-use (77%) 

would be necessary. In other words, if we are willing to wait longer to achieve water quality 

goals, less aggressive measures to improve nutrient management can be pursued.  Conversely, 

the more we reduce nutrient inputs now, the faster we can reduce nitrate concentrations to 

desired levels. 

 

Figure 4.8.  Cost- time tradeoffs in achieving reductions in N loads as a function of (a) reduction 

in fertilizer application, and (b) conversion of land under row crop agriculture to switchgrass. 

The contour lines represent percent reductions in N loading at the watershed outlet. The red and 

black arrows in (a) show that it may take between 18 and 50 years to achieve a 60% reduction in 

N loading, depending upon the magnitude of fertilizer reduction. The red and black arrows in (b) 

show that it may take between 18 and 50 years to achieve a 60% reduction in N loading as a 

function of the magnitude of land-use conversion 
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4.6 Conclusion 

The buildup of nitrogen legacies in agricultural landscapes has been linked to time lags 

between changes in land management and measurable improvements in stream water quality 

(Chen et al., 2015; Van Meter & Basu, 2015; Van Meter et al., 2016, 2017). However, current 

watershed models do not explicitly consider the accumulation and depletion of legacies and the 

corresponding time lags in water quality improvement (Van Meter et al., 2016 and Van Meter et 

al., 2017). The water quality model SWAT was modified to capture time lags in water quality 

response that arise from the accumulation of legacy nitrogen. The new SWAT-LAG includes (1) 

a modified carbon-nitrogen cycling module to capture the accumulation and depletion of soil 

organic N, and (2) a groundwater travel time distribution module to capture the dynamics of the 

groundwater nitrate store. While the focus of this paper is on the modification of the SWAT 

model, a similar approach could be used to modify any spatially distributed watershed model to 

account for legacies. 

A 502 km2 agricultural watershed in North-Central Iowa was used as a case study, and 

the model was run from 1950 to 2016 to capture the build-up of legacy nitrogen in the landscape. 

The results show that over the 67 years simulated in the study, the cumulative N surplus in the 

landscape was 6181 kg/ha, of which 2111 kg/ha (34%) was denitrified, and 1688 kg/ha (27%) 

was lost as riverine output, while 1588 kg/ha (25%) accumulated in the root zone, and 859 kg/ha 

(14%) accumulated in the groundwater as legacy N. The SWAT-LAG model was able to 

describe the time lag in the landscape response – a 100% reduction in fertilizer application led to 

a 79% reduction in stream N load, and reduction was achieved in 84 years in SWAT-LAG, while 

it took only 2 years in the original SWAT model. Varying land-use and land management 

practices impacted both the final reduction in N load that could be achieved, as well as the time 

taken to achieve the load reduction. It is thus important to recognize the trade-offs between costs 

incurred for a particular land-use change and the water quality benefits achieved. Larger changes 

in land-use or greater implementation of new management practices come with a greater cost but 

can lead to a faster rate of achievement of water quality benefits. Of course, other routes to faster 

achievement of water quality goals may exist.  More specifically, it has been shown that when 

the implementation of conservation measures is spatially targeted to areas identified as having 

faster travel times to the catchment outlet, stream concentrations are reduced more quickly (Van 

Meter and Basu, 2015). Alternatively, "end-of-pipe" solutions, such as restoration of riverine 
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wetlands that can intercept legacy nitrate loads before they enter the stream, could be used to 

reduce legacy-related loads via denitrification directly. 

It is important to note that there is significant uncertainty in the actual magnitude of lag 

times estimated by my model, given a lack of long-term datasets for model validation. While 

nitrogen surplus information is available for longer periods, water quality data is often available 

for < 20 years. In a recent paper, Van Meter et al. (2018) modeled water quality in the 

Mississippi River Basin (MRB) over the past 100 years, and used sediment core information, 

preserved in the Gulf, for model validation. Furthermore, the water quality data available at the 

outlet of MRB is for 40 years and demonstrates the effect of legacy stores. Specifically, data at 

the outlet of the MRB shows that inputs have been decreasing since the 1970s, but water quality 

has remained stable, which is clearly due to the presence of legacy (Van Meter et al., 2018). A 

similar effect was also observed at the Wapello outlet of Iowa cedar River Basin (Figure B4). 

Unfortunately, such long-term datasets are not most commonly available. 

Furthermore, even when such datasets are available, equifinality in model predictions 

makes it difficult to identify lag times only through model fits. Often information content in the 

output time series is not enough to distinguish between models considering lag times and models 

not including lag times. It should be noted, however, that the groundwater travel times estimated 

in the current model are based on calculated travel times for a similar Iowa watershed (Basu et 

al., 2012).   

Despite such uncertainties, lag time models like SWAT-LAG must be developed to 

provide policymakers and regulators with realistic time frames for recovery of water quality. To 

constrain such models, one needs to use ancillary datasets, like soil nitrogen accumulation, and 

sediment records. Given the lack of data, uncertainty in model predictions is a function of 

uncertainty in the estimation of groundwater travel times, and reaction rates. Future work would 

thus include using various tracers to constrain groundwater travel time distributions, as well as 

using various ancillary datasets like sediment cores for model validation. 
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Chapter 5: Intensive Agriculture, Nitrogen Sequestration, and Water Quality: 

Intersections and Implications 

5.1 Abstract 

The field-scale biogeochemical model CENTURY was used to quantify SON 

accumulation and depletion trends using climate and soil type gradients characteristic of the 

Mississippi River Basin. The model was validated using field-scale data, from field sites in 

north-central Illinois that had SON data over the 100 years. The study revealed that across the 

climate gradient typical of the MRB, SON accumulation was greater in warmer areas due to 

greater crop yield with an increase in temperature. The accumulation was also higher in drier 

areas due to less N lost by leaching. Finally, the analysis revealed an interesting hysteretic 

pattern, where the same levels of SON in the 1930s contributed to a lower mineralization flux 

compared to current.  

5.2 Introduction 

Since the early 1800s, much of the North American landscape has been converted to 

agricultural land. In many parts of Iowa and Illinois, key agricultural states in the intensively 

cultivated Upper Mississippi River basin, as much as 75-80% of all land is planted in commodity 

crops such as corn and soybeans. This extensive conversion of the midwestern U.S. landscape 

from pristine prairie and grassland to cropland has been accompanied by the widespread use of 

commercial fertilizers as well as increases in livestock densities and the number of concentrated 

animal feeding operations. With this intensification of agriculture, we have seen troubling 

increases in nutrient pollution, both in groundwater and surface water. Across the U.S., the EPA 

estimates that greater than 40% of all stream miles suffer from nutrient pollution (EPA), and 

problems of hypoxia and eutrophication are increasingly arising in coastal zones (USEPA, 2017). 

In the Gulf of Mexico, the summer “dead zone,” driven primarily by nitrogen (N) runoff from 

the Mississippi River Basin commonly covers an area larger than the state of New Jersey (Action 

Plan, 2001). 
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Many attempts have been made to address the problems of nutrient pollution in 

intensively farmed areas. Millions of state, federal, and individual farmer dollars have been spent 

on implementing a range of conservation measures, from straightforward reductions in fertilizer 

use to the planting of cover crops and the creation of riparian buffers (Van Meter et al., 

2018).  While some small-scale improvements in water quality have been observed in response 

to these efforts, in general, the results have been disappointing. The Gulf of Mexico hypoxic 

zone continues to grow to 2-3 times the target size set by policy groups, and in 2018, Chesapeake 

Bay water quality received a failing grade for nitrogen (N) pollution in the Chesapeake Bay 

Program’s biennial “State of the Bay” report (State of the Bay, 2018).  

 

The clear difficulties in meeting water quality goals are increasingly understood to be 

due, at least in part, to the often long lag times between implementation of new management 

practices and measurable improvements in water quality (Meals et al., 2010; Van Meter and 

Basu, 2015; Vero et al., 2018). For nitrate, it is generally well understood that such lags can be 

attributed to long groundwater transit times, leading to increases in groundwater nitrate 

concentrations and potentially large accumulations of N mass in the subsurface (hydrologic N 

legacy). Less understood, however, is the potential for N to accumulate within soil organic 

matter and the likelihood that this biogeochemical N legacy can also lead to increased leaching 

of N to surface and groundwater. 

It has typically been assumed that with intensive agricultural production, soil organic N is 

depleted from the soil profile and must be annually replenished with manure or commercial 

fertilizers for the soil to remain productive. First, it is well-documented that large losses of soil 

carbon (C) and soil organic N occurred after initial cultivation of nutrient-rich soil of the North 

American prairie region (Arrouays and Pelissier, 1994; Murty et al., 2002; Van Meter et al., 

2016), largely due to a loss of physical protection provided by soil aggregates (Six et al., 2002). 

Also, it is clear that soil fertility can be lost if high rates of agricultural production are not 

accompanied by sufficient application of mineral fertilizers or manure to replenish lost 

nutrients—a problem that still exists in Africa today (Sanchez, 2002).  However, with regular 

fertilizer use as well as implementation of management practices leaving higher fractions of crop 

residues in the field, it has been observed that agricultural fields can operate with a positive mass 

balance for both C and N, opening the opportunity for C sequestration as well as for the 
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accumulation of legacy N (Lal, 2015; Van Meter et al., 2016). For example, within the 

Mississippi River Basin, Van Meter et al. (2016) have found, since 1980, accumulation rates of 

soil organic N on the order of 3.8 Mt/year. 

Although simple modeling frameworks have been developed to explain increases in soil 

N under intensive agriculture (Van Meter et al., 2016, 2017), it remains unclear the ways in 

which coupled C-N dynamics as well, variations in soil type and climate, and different cropping 

patterns may impact accumulation and depletion trajectories for N in agricultural landscapes or 

the ultimate impacts on water quality.  The present work has three primary objectives: 

1. Using CENTURY, a detailed, C-N cycling model, test the hypothesis that nitrogen will 

accumulate in agricultural soils under conditions of a positive N surplus, residue 

management, and conservation tillage practices 

2. Explore the impacts of climate, soil type, and management on accumulation and 

depletion rates for soil nitrogen 

3. Explore the linkages between soil organic nitrogen and the leaching of nitrate to the 

subsurface to answer the question “does legacy soil N serve as a long-term source to 

groundwater and surface water”? 

5.3 Methods 

5.3.1 Model Description 

 

CENTURY is an ecosystem model that simulates major processes associated with the 

cycling of  Carbon (C), Nitrogen (N), Phosphorous (P) and Sulphur (S) in grassland, forest, and 

cropland systems (Parton et al., 1988, 1993). The model runs at a monthly time step and includes 

sub-models that represent soil water and temperature dynamics, crop growth, litter chemistry, 

soil organic matter (SOM) decomposition, land-atmosphere gaseous exchange, and C and N 

leaching mechanisms (Del Grosso et al., 2002; Adler et al., 2007). The model simulates C and N 

stocks which are described by two litter pools (structural and metabolic litter) and three soil 

organic pools, namely active, slow, and passive, which differ in size and turnover rates. The 

active pool has turnover rates of a few years (1 to 5 years) while the slow and the passive pools 

have turnover rates varying from 20 to 50 years and 200 to 1500 years respectively (Begum et 
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al., 2017). The flow of carbon and nitrogen between pools is controlled by the sizes of the pools, 

C/N ratios and lignin content of the pools, soil water/temperature factors and soil texture (Adler 

et al., 2007; Davis et al., 2010). Transformation of SOC/SON between pools involves respiration 

of CO2 or nitrogen gases. Mineralized nitrogen from SON pools and mineral N inputs from 

atmospheric deposition, symbiotic, and non-symbiotic N fixation enter mineral N pool where it 

is susceptible to leaching and volatilization (Metherell et al., 1993). CENTURY and its daily 

version DAYCENT has been successfully used to study SOC and SON dynamics in grasslands, 

forest and agricultural lands (Parton et al., 1988, 1993; Del Grosso et al., 2002; Evans et al., 

2011), predict greenhouse gas emissions (Del Grosso et al., 2002, 2005, 2008, 2009, 2011; Adler 

et al., 2007; Davis et al., 2012; Field et al., 2016), and to explore the climate and edaphic 

controls on SOC and SON dynamics (Burke et al., 1989; Evans et al., 2011; Follett et al., 2012). 

5.4 Illustrative Case Study for SON Accumulation 

5.4.1 Model Inputs  

 

The field data from Champaign County, Illinois was used as a case study in the 

CENTURY model to explore dynamics in SON depletion following plowing in the 1875-1950 

and then the subsequent build-up of organic matter under intensive agriculture (David et al., 

2009). The David et al. (2009) study consisted of five field sites that were maintained under 

corn-soybean rotation since the 1950s, and soil organic nitrogen levels were measured during 

1957 and 2002. This study was selected since it is one of the very few studies that have SON 

data across such long timescales.  

 

We modeled four different phases to represent the anthropogenically induced evolution 

of the landscape: (1) native grassland, pre-cultivation (warmup period of 10,000 years before 

1875); (2) post-cultivation, low-input agriculture (1875 - 1924); (3) post-cultivation, low-input 

agriculture (1925–1950); (4) post-cultivation, high input agriculture (1951–2014). Information 

on land-use and land management for the field plots was obtained from David et al. (2008, 2009) 

for 1950-2014 (Table 5.1). For the earlier period (1875-1950), we used general management 

practices followed in the Mid-Western US based on literature values and databases (Huggins et 

al., 1998; Manies et al., 2000; USDA-Agricultural Census, 2012). We used Corn–Oats–Hay 
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(COH) crop rotation from 1875 to 1925 and Corn-Soybean (CS) from 1925 to 2014. To account 

for the difference in the start of different rotation types, six scenarios were formulated and 

aggregated to represent ensemble model behavior. For example, for the 1875-1924 period, which 

involves Corn–Oats–Hay (COH) rotation, three rotations were formulated, i.e., COH, OHC, and 

HCO. From 1925-2014, Corn-Soybean (C-S) and Soybean-Corn (S-C) rotation were developed 

for each of the three scenarios (COH, OHC, and HCO), resulting in six scenarios namely COH-

CS, COH-SC, OHC-CS, OHC-SC, HCO-CS, and HCO-SC. Thus, the base model represents the 

aggregated responses of all of the above six scenarios. 

 

Crop residues were not returned to the field till 1950 and returned after that based on 

David et al. (2009) and Huggins et al. (1998). Conventional tillage was considered from 1875 to 

1980s, and No-till was done after that based on Manies et al. (2000) and David et al. (2009). 

Manure application was considered from 1875 to 1950 at a rate of 20 kg/ha/yr based on the 

animal count in Champaign county (USDA-Agricultural Census, 2012) and N content in animal 

excretion (Hong et al., 2013). Mineral N application estimates from 1951 to 2014 were obtained 

from Alexander and Smith (1990) and USGS (2012) for Champaign County. Fertilizer 

application rates for corn increased over time from approximately 15 kg/ha/yr in 1950 to 187 

kg/ha/yr in 2014.   

 

Nitrogen deposition was estimated over the timeframe of analysis (1875 - 2014) using a 

combination of National Atmospheric Deposition Data (NADP, 2014) and a global study on N 

deposition (Dentener, 2006). From 1978 to 2014 N deposition data was obtained from the NADP 

dataset for the Bondville station, located in Champaign County. Nitrogen deposition information 

for the earlier years was obtained by linear interpolation between NADP data in 1978, and the 

Denterner (2006) study that provided global N deposition maps in 1860. Nitrogen deposition 

data for the time-blocks 1875-1924, 1925-1966, and 1967-2014 were estimated as 3, 7, and 11 

kg/ha/yr, respectively. 

 

Monthly precipitation and temperature data for the Champaign station were obtained for 

the period 1890s to 2014 from the cli-MATE online tool (cli-MATE, 2019). The study sites were 

located one Drummer soil, and the soil texture information was obtained from STATSGO soil 

map (9% sand, 63% silt and 28% clay) (Soil Survey Staff., n.d.). 
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Table 5.1. Land-use and management practices for the study area, obtained through literature 

review 
Timeframe Land-use Fertilizer Tillage Residue return Sources 

1875-1924 Corn-Oats-

Alfalfa Hay 

Manure Conventional No David et al., (2008, 2009); 

Huggins et al., (1998);  

Manies et al., (2000);  

USDA-Agricultural 

Census, (2012) 

1925-1950 Corn-Soybean Manure Conventional No 

1951-1980 Corn-Soybean Mineral N Conventional Yes 

1981-2014 Corn-Soybean Mineral N No-Tillage Yes 

 

5.4.2 Model Outputs and Parameterization:  

Rigorous model calibration and validation were not done due to a lack of site-specific 

field data. However, the model parameters were adjusted so that the modeled time-varying crop 

yields, SON accumulation, nitrate leaching fluxes, N fixation rates, and denitrification losses 

matched observed or literature values. This step ensured the consistency of model runs.  

 

One of the key factors that contribute to SON buildup is the return of crop residue, which 

is impacted by crop yields that change over time. Since crop yield information was not available 

for the specific field plots, we used crop yield values for Champaign County, obtained from the 

USDA Agricultural Census (2012) and USGS Agricultural Survey (2012) databases. To account 

for the fact that crop yields have increased over time, multiple crop varieties were simulated to 

match the observed crop yield patterns. This was achieved by modifying model parameters 

PRDX (Potential aboveground monthly production for crops, g-C/m2), and HIMAX (Maximum 

harvest index for crops) intermittently (Table C1). Also the model parameters VLOSSE 

(fraction per month of excess N left in the soil after nutrient uptake by the plant, which is 

volatilized) and VLOSSG (fraction per month of gross mineralization which is volatilized) were 

adjusted so that crop N uptake (119 kg/ha/yr) and gaseous N loss (12 kg/ha/yr) were comparable 

with the values reported by David et al. (2008) (129 kg/ha/yr - N uptake and 11 kg/ha/yr - 

gaseous N loss).  
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Soil organic nitrogen levels reported for five of the five field plots (Ogden, Manteno, 

Onarga, Roseville, and Sheldon), during 1957 and 2002, were aggregated to compare with 

modeled values. The study also reported SON values of native prairie sites, adjacent to the 

agricultural field plots, which were considered as surrogate for initial SON levels for the year 

1875. The other critical component of the nitrogen budget is N fixation by leguminous crops. 

The model parameter SNFXMX, representing the maximum symbiotic N fixation was adjusted 

so that the N fixation rates for alfalfa and soybean fell within the ranges proposed by Russelle 

and Birr (2004) and David et al. (2008)  (Table C1). Finally, since site-specific information on 

N leaching was not available, the parameters MINLCH (critical water flow depth for leaching of 

minerals, cm of H2O leached below 30 cm soil depth) and FLEACH (slope and intercept values 

for a normal month to compute the fraction of mineral N which will leach to the next layer when 

there is a saturated water flow) were adjusted so that the mean N leaching flux (22 kg/ha/yr) over 

1951 - 2014 was similar to 26 kg/ha/yr for the Embarrass River Watershed (David et al., 2008) 

and falling within the range 14 to 38 kg/ha/yr, measured by Mitchell et al. (2000) in the East-

Central Illinois agricultural field sites 

 

5.4.3 Effect of Climate and Soil Type on SON Accumulation: 

 

One of the objectives of this study is to evaluate the effect of variations in soil texture and 

climate on SON accumulation. For climate scenarios, we focused on the Mississippi River Basin 

(MRB) as a case study and used precipitation and temperature data across MRB. MRB has 179 

climate regions for which Mean Annual Precipitation (MAP) and Mean July Temperature (MJT) 

data were obtained for 30 years (1985-2014) from Midwestern Regional climate Centre’s 

(MRCC) cli-MATE online portal (cli-MATE, 2019). The CENTURY model was then run for 

MAP values between 536 and 1290 mm (Mean ± 1 Standard Deviation, covering 83% of the 

observed values) and MJT values between 17-30 C (Mean ± 2 Standard Deviation, covering 98% 

of the observed values). By choosing 4 MAP values (equally spaced between the 536-1290 mm 

range) and 6 MJT values (equally spaced between 17-30 oC range), 24 unique climate scenarios 

were created, and these mean values were then scaled to the baseline precipitation time series to 

create monthly precipitation values. We used only one crop rotation type (COH-CS) with 

soil,  fertilizer inputs, land-use, and management details, same as the baseline scenario explained 
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in Section 5.4.1. Each of the 24 unique scenarios was subject to a 10,000-year warm-up period to 

simulate SOC and SON levels in soil in the 1850s under different climate conditions. For the soil 

scenarios, we had created 11 different soil texture combinations between the extreme ranges 0% 

Sand & 100% (Silt+Clay) and 100% Sand & 0% (Silt+Clay). The soil scenarios have been 

executed only for one crop rotation type (COH-CS) with the weather, fertilizer inputs, land-use, 

and management data, same as the baseline scenario. 

5.5  Results and Discussion  

5.5.1 Crop Yield and Soil Organic Nitrogen:  

 

 The model was able to capture crop yields for corn, and soybean from 1925 to 2014, with 

PBIAS values of 20% and -1% for corn and soybean, respectively (Figure 5.1). There was a 

significant increase in the yields of corn and soybean over this time frame, with corn yields 

increasing from 1 to 10 t/ha/yr, and soybean yields increasing from 1 to 4 t/ha/yr. The parameters 

PRDX and HIMAX were modified intermittently to capture (potential aboveground monthly 

production for crops, g-C/m2), and HIMAX (maximum harvest index for crops) over the entire 

time frame (Table C1). The model was also able to capture the crop yield values over the earlier 

period, from 1875-1924, with PBIAS of 3%, -15% and -0.2% for corn, oats, and hay 

respectively. Realistic representation of crop growth is critical to appropriately simulating trends 

in SOC and SON accumulation.  

 

 
Figure 5.1. (a) Corn yield and (b) Soybean yield validation from 1925 to 2014. Note that the 

simulation involves multiple crop varieties mimicking the usage of hybrid crop traits (Edgerton, 

2009; Brekke et al., 2011) and (c) Comparison of observed and simulated SON levels (t/ha/yr)   
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The decomposition rates for the slow and the passive pools were adjusted such that SON 

levels in the soil matched the observed values. Specifically, we had three points in time when 

SON levels were measured in the soil, and the model was able to capture all three points in time 

adequately. The first point in time is pre-cultivation SON levels (before 1875) that were the 

highest values observed and equal to 22.6 ± 1.5 t/ha/yr. This value was matched by running the 

model for a warm-up period of 10,000 years and adjusting the decomposition rates of the slow 

and the passive pools to simulate lower decomposition rates in more stable prairie soils (Table 

5.2). The decomposition rates were increased post-1875 to represent the increase in soil organic 

matter oxidation during plowing. This led to a decrease in SON levels to 14.7 ± 0.6 t/ha/yr in the 

1950s. The landscape saw two major changes after 1950 -- crop residue return post-1950 and 

change from conventional tillage to no-till in the 1980s. The change to no-till agriculture in the 

1980s was simulated by a slight lowering of the decomposition rates to match the observed SON 

level of 16 ± 0.6 t/ha/yr in 2014. The model was thus able to capture measured SON values over 

the entire time frame with an R2 of 1 and a PBIAS value of 1.6%. Also, the rate of SON 

accumulation (22.6 kg/ha/yr) was closer to the SON accumulation rate (24 kg/ha/yr) reported by 

Ilampooranan et al. (2019) for the SFIRW in Iowa. 

 

Table 5.2. CENTURY parameters used for calibration/validation of SON levels, N Leaching and 

Atmospheric N Depletion, along with final calibrated values 
Parameter Warm-up period 1875-1980 1981-2014 
DEC5 0.1 0.216 0.146 

DEC4 0.003 0.006 0.004 
DEC5: Maximum decomposition rate of surface organic matter with intermediate turnover (slow pool);  

DEC4: Maximum decomposition rate of soil organic matter with slow turnover (passive pool) 

 

5.5.2 Nitrogen Stores and Fluxes from 1875 to 2014 

 

The model results were then used to understand how nitrogen stores and fluxes changed 

in this landscape over the last 140 years, from 1875 to 2014 (Figure 5.2a). Before the 

introduction of commercial fertilizers in the 1950s, the primary N input to the system was 

through biological fixation (alfalfa hay - 99 kg/ha/yr), followed by atmospheric deposition (5 

kg/ha/yr) and manure N (13 kg/ha/yr). The primary output from the system is N removed in 

grain and stover. Average N removal in stover during 1875-1925 was 158 kg/ha/yr (C-O-H 

rotation), while during 1925-1950, it was 45 kg/ha/yr (C-S rotation). Such higher stover N 
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removal magnitude during 1875-1925 was due to higher production of alfalfa hay that has a 

higher N content. We assumed that stover was removed in this earlier period based on literature 

that state that stover removal for bedding and fodder was in practice from 1875 - 1950, while 

post-1950 crop residues were returned to the soil. This led to N deficit in the system from 1875 - 

1950, with mineralization of SON and biological N fixation supplying most of the N needs of the 

crops again.  

The system dynamics changed significantly since the 1950s, with the introduction of 

commercial fertilizers and the return of crop residue to the soil. The dominant N input from the 

1950s has been commercial fertilizer followed by biological N fixation and atmospheric 

deposition. Atmospheric N deposition has increased from 4 kg/ha/yr in 1875 to 11 kg/ha/yr in 

2014 but is a small component of the overall N budget. The amount of N removed in grain has 

increased since 1875, from 50 kg/ha/yr in 1875 to 142 kg/ha/yr in 2014, reflecting the periodic 

introduction of high yielding crop traits that have higher grain production. This led to a build-up 

of N surplus in the system from 12 kg/ha in 1950 to 83 kg/ha in 2014 (Figure 5.2a). These N 

surplus values are of similar magnitudes to those observed for the Midwest by Van Meter et al. 

(2016).  

 A portion of the N surplus leaves the system via denitrification or leaching, while the 

remaining build up as soil organic N. N leaching has increased from 1875-2014, with higher 

leaching magnitudes observed during 1966-2014 (Figure 5.2b), a period involving higher 

mineral N fertilizer application and higher mineralization rates. The denitrification loss rate was 

approximately constant over the entire time frame (15 kg/ha/yr). During 1966-2014, when the 

system was under N accumulation phase, 22 kg/ha/yr (30% of N Surplus) and 14 kg/ha/yr (20% 

of N Surplus) was lost through N Leaching and denitrification, respectively, while a significant 

portion (38 kg/ha/yr, which is 51% of the N surplus) (Figure 5.2b) remains in the system as soil 

organic N, and could contribute to leaching losses even when fertilizer application has ceased.  
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Figure 5.2. (a) Temporal trend of N Inputs (Biological Nitrogen Fixation, Atmospheric Nitrogen 

Deposition, Fertilizer Nitrogen Application), N Outputs (Crop N Uptake) and N Surplus (N 

Inputs - N Outputs) from 1875 to 2014. Note that each stacked bar in (a)  represents a five-year 

averaged value; (b) Cumulative N Leaching, Denitrification and Soil N Storage from 1966 to 

2014. The bar graph inside the subplot (b) denotes average annual N Leaching, Denitrification, 

and Soil N Storage, and the Pie-chart indicates the percentage of N Surplus lost through N 

Leaching and Denitrification and percent N Surplus stored in the soil, during 1966-2014 
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5.5.3 Soil Organic Nitrogen (SON) dynamics from 1875 - 2014: 

 

 The Century model was able to capture both the depletion of SON following plowing in 

the 1900s and the accumulation of SON since the 1950s (Figure 5.3).  We observed a 34% 

decline in SON between 1875-1950s, and this is attributed to plowing that led to breakup and 

oxidation of organic aggregates. Furthermore, during this period the soil received minimal N 

inputs, manure at a rate of 13 kg/ha/yr, N fixation by alfalfa hay at a rate of 99 kg/ha/yr and N in 

atmospheric deposition at 5 kg/ha/yr, and this was not sufficient to sustain the crop N uptake 

(194 kg/ha/yr) leading to a depletion of SON. This changed dramatically since the 1950s, with 

mineral fertilizer application rates increasing from 8 kg/ha/yr in 1950 to 90 kg/ha/yr in 2014. 

Furthermore, crop residues were returned to the soil after 1950, and no-till practices were 

adopted after 1980. During this period, N inputs exceeded N outputs creating an N surplus that 

led to an increase in soil organic nitrogen levels at a rate of ~ 25 kg/ha/yr. Increase in soil 

organic nitrogen levels over time occurred due to the introduction of mineral fertilizers, 

increased crop yield, and incorporation of the residue with high N content into the soil matrix. 

The model was able to capture both the earlier declining trend in SON and the later increase in 

SON over time (Figure 5.3).  

 

It is also interesting to note the different temporal dynamics of the active, slow, and 

passive SON pools. Specifically, the passive recalcitrant pool with a turnover time of 200-1500 

years, gets depleted through the entire timeframe of the simulation (1875-2014), while the active 

and slow pools start accumulating nitrogen since the 1960s. This is important since it implies that 

although intensive agriculture led to an increase in SON, the accumulation occurred in the two 

pools that had faster decay kinetics. This has implications, as shown in Section 5.5.5, for the 

ability of this pool to mineralize and supply N fluxes through leaching to downstream waters. 

 



 

102 
 

 
Figure 5.3. Soil organic nitrogen dynamics from 1850 to 2014. The CENTURY model simulates 

three SON pools, the active pool (blue), the slow pool (orange) and the passive pool (grey). The 

symbols with the error bars represent measured SON values by David et al. (2009) 

 

5.5.4 Climate and Soil Texture Controls on SON Accumulation:   

 

Soil organic nitrogen levels during the 1850s were simulated for the different climate 

scenarios by running the model for 10,000 years under each scenario. SON values decreased 

with plowing and intensive agriculture between 1875 to 1950, and then again increased over time 

from 1950 to 2014 due to no-till agriculture and the return of crop residue (Figure 5.4). Overall, 

higher SON levels were associated with lower temperatures, consistent with the understanding 

that there is less decomposition, and thus greater accumulation in a colder climate (Cole, 1988). 

SON levels were the maximum for moderately wet areas (750 mm to 1150 mm) but decreased at 

both higher and lower precipitation values. Lower SON in a more arid climate is possibly due to 

greater aerobic degradation rates in these landscapes, while lower SON at very high rainfall 

values is possibly due to greater N leaching rates at higher rainfall.  

Soil organic nitrogen accumulation magnitudes, over 1951 - 2014, varied from 0.3 to 2.4 

t/ha (4.7 kg/ha/yr to 37.5 kg/ha/yr) for precipitation and temperature gradients relevant to the 

MRB. While this is a small amount in comparison to existing SON levels, it is a large component 
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of the soil N budget, given croplands receive around 67 kg/ha/yr of fertilizer. The patterns of 

SON accumulation are however counter to existing paradigms, with lower accumulation in 

colder temperatures and accumulation increases with an increase in the mean July temperature. 

We argue that this is likely because lower temperatures are associated with lower crop yields that 

translate to lower crop residue and thus less SON accumulation. Indeed, average annual crop 

yields increased by 22% for corn (Figure C1.a), and 60% for soybean (Figure C1.b) over the 

temperature gradient analyzed in the current study. It is also interesting to note that accumulation 

decreases with an increase in rainfall, again contrary to existing paradigms. We argue that at 

higher rainfall more nitrogen is lost through leaching leading to lower accumulation (refer 

Figure C1.c for the dependence of N leaching on mean annual rainfall). Others have argued it 

before that SOC and SON accumulation is a complex function of rainfall and temperature 

patterns (Smith, 2008; Gottschalk et al., 2012). However, what we see here is an interesting 

example of how human landscape management changes these patterns from what would be 

expected in a more natural landscape. 

Also, we explored the pattern of variation in SON accumulation magnitudes as a function 

of soil texture in Figure 5.5. The SON accumulation increased with increase in silt and clay 

fraction in soils, possibly because clay particles offer physical and biochemical protection 

against decomposition (Six et al., 2002; Müller and Höper, 2004), leading to accumulation of 

soil organic nitrogen. Also, the plots under continuous corn had more accumulation than the 

plots under corn-soybean rotation, possibly due to the greater application rates of fertilizers and 

residue incorporation. 
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Figure 5.4. Soil Organic Nitrogen (SON) levels (t/ha/yr) as a function of precipitation and 

temperature gradients in the MRB, for the years 1875, 1950 and 2014; Soil Organic Nitrogen 

accumulation from 1951 to 2014 (t/ha) 
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Figure 5.5. Soil Organic Nitrogen accumulation as a function of soil texture for Continuous 

Corn (C-C) and Corn-Soybean (C-S) rotations, under no-tillage condition. SON accumulation 

increases with increase in Silt+Clay fractions in soil and SON accumulation is higher under 

Continuous Corn (C-C) rotation 

 

5.5.5 Soil Organic Nitrogen and Mineralization Fluxes 

 

Finally, we ask the question: what is the role of increased N sequestration with intensive 

agriculture on N leaching fluxes to the stream? Given that current SON levels of ~ 16 t/ha/yr are 

still significantly less than the SON levels of the 1900s (19 t/ha/yr), is there any increased risk 

that SON accumulation poses to the environment? If organic matter rich prairie soils leached 

much lower levels of nitrate to the aquatic environment, would current nitrate leaching rates go 

back to those pristine values once fertilizer application is ceased?  Or in other words, is the 

relationship between SON levels in soils and N mineralization rates linear and reversible?  

 

To explore this question, we looked at both time trajectories of SON and N 

mineralization rates and the relationship between N mineralization and soil quality. It is apparent 

from Figure 5.6a that mineralization is a function of SON levels and an increase in SON levels 

contributes to increasing mineralization fluxes. This is somewhat unsurprising given that 
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mineralization is modeled as a first-order process. What is surprising and interesting, however, is 

the relationship between SON levels in soil and N mineralization fluxes (Figure 5.6b). 

Specifically, we observed a hysteretic response, where N mineralization fluxes are higher 

currently (1981-2014) compared to the fluxes in the early period (1905-1950), for the same SON 

level in the soil. For example, soil N level of 16 t/ha in 1930-1940 time frame corresponds to a 

mineralization flux of 125 kg/ha/yr, while the same soil N level in 2004-2014 corresponds to a 

flux of 190 kg/ha/yr. We hypothesize that this hysteretic response occurs due to change in the 

forms of SON that accumulate under intensive agriculture (Figure 5.6c). For example, in the 

current times, there is a much greater proportion of N in the active and slow pools (24%) 

compared to the 1950s (8%) or the 1900s (19%), and this is what possibly contributes to the 

higher mineralization fluxes (Figure 5.6a and b) 
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Figure 5.6. Temporal changes in Soil Organic N levels and Net N Mineralization flux from 

1905-2014, (b) Comparison of Soil Organic N Levels and Net N Mineralization fluxes indicating 

a hysteric relationship and (c) Proportions (%) of Soil Organic N in active, slow and passive soil 

pools from 1905-2014. Increase in Soil Organic N levels has increased Net N mineralization flux 

during 1905-1950 and 1981-2014; however, for the same soil organic N, the mineralization flux 

is greater in the 1981 - 2014 period compared to the earlier period. Higher Net N Mineralization 

rates during 1981-2014 are attributed to the higher proportion of the N in active and slow pools 

compared to the passive pool.   
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5.6 Conclusion: 

 

A process-based C-N cycling model, CENTURY, was used to test the hypothesis that N will 

accumulate in agricultural soils under conditions of a positive N surplus, residue management, 

and conservation tillage practices. Using realistic temporal trajectories of land-use and 

management practices, the model was able to  capture the SON depletion that occurred in the 

1870s during conversion of prairie grassland to low-input agriculture, as well as the 

accumulation of SON that has been observed since the 1950s with intensive use of mineral 

fertilizer, and return of crop residues to the soil.    

 

The magnitude of SON accumulation as a function of climate and soil type characteristic of 

the Mississippi River Basin was then explored. Contrary to the consensus that SON 

accumulation increases with an increase in precipitation and decreases with an increase in 

temperature, we found that SON accumulation was more in warmer and drier areas. We argue 

that such a higher accumulation in a warmer climate can be attributed to an increase in crop yield 

with a temperature that contributes to increasing crop residue and thus, SON accumulation. The 

lower accumulation at higher rainfall can be attributed to greater nitrate leaching at higher 

rainfall.  

 

Finally, we explored the effect of SON accumulation on N mineralization fluxes and found 

an interesting hysteretic response between SON magnitudes and N mineralization rates, where 

mineralization rates are higher in 2005-2014 compared to 1930-1940 for the same SON level in 

the soils. Increasing mineralization rates were attributed to changing composition of the SON 

that was dominated by the more recalcitrant, passive pool in the 1950s, compared to the slow and 

active pools in the current day SON. Future work would involve measuring SON composition 

across a land-use gradient to understand how land-use and management impact changes in SON 

composition. 
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Chapter 6: Summary and Conclusions 

6.1 Summary  

 

Previous research has shown that legacy nitrogen accumulates in agricultural watersheds due 

to decades of fertilizer application, and contributes to lag times between implementation of 

watershed conservation measures and water quality improvement. Legacy nitrogen can 

accumulate as soil organic N in the root zone of agricultural soils, also referred to as 

biogeochemical legacy, or nitrate dissolved in soil water and groundwater, also referred to as 

hydrological legacy. The overall goal of this thesis was to understand and quantify hydrological 

and biogeochemical legacies at the watershed scale using commonly used watershed and field-

scale models. 

 

As a first step (Chapter 2), a mass balance approach was used to quantify the magnitude  of 

legacy stores in a large (32,660 km2) agricultural watershed in the Iowa corn belt, the 

Midwestern U.S. The long term (64 years) data synthesis revealed that net inputs (NANI) to the 

system has increased from the 1950s to 1980s, and decreased since 1980s, following crop yield 

and N fertilizer application patterns. The magnitude of subsurface legacy nitrogen accumulation 

was estimated as 33.3 kg/ha/yr, which accounts for 48% of the N surplus in the landscape.  

 

My next major objective was to modify the SWAT model to predict N legacies and time lags. 

However, before predicting nutrient dynamics, we needed to develop a robust hydrology model. 

Since crop growth plays such a key role in nutrient accumulation, the ability of the SWAT model 

to simultaneously predict water flow and crop growth was evaluated using the 32,660 km2 Iowa 

Cedar Basin as a case study (Chapter 3). The calibration of the model using only streamflow led 

to a solution in which the crop yield was severely underestimated to match observed streamflow 

patterns. Thus, good calibration metrics for the hydrology model were achieved with poor 

representation of internal watershed partitioning of water, a great example of getting the right 

answer for the wrong reasons. The crop yield and flow partitioning calibration targets were then 

used, and the PET method in SWAT was changed so that the model was able to capture 

streamflow, crop yield, and percent flow through the tiled pathway. The modified model was 

hydrologically more robust, with lower prediction uncertainty and better ability to predict nitrate 
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loads without calibration. Based on the findings, we would recommend that SWAT modelers 

routinely use crop yield as a calibration target in addition to streamflow. Crop yield data is easily 

available and would increase the hydrologic consistency of the models. Currently, less than 1.5% 

of SWAT studies use crop yield information.  

 

In Chapter 4, the focus was on modifying SWAT to include nitrogen legacies and time lags. 

Note that modification of the SWAT model is not necessary to predict the observed nitrate 

concentration patterns at the outlet. As others have noted before, SWAT can adequately capture 

N concentrations at the catchment outlet without adequate considerations of lag times. This is 

because of the information content of the nitrate time series is not enough to differentiate 

between legacy fluxes and current day fluxes. However, it has also been noted that models like 

SWAT cannot appreciably capture lag times in the landscape. In this chapter, we focused on a 

small (502 km2) sub-watershed of the Iowa Cedar Basin, the South Fork Iowa River Watershed 

(SFIRW), and developed a new model SWAT-LAG to predict lag times to watershed response. 

The model was developed by using the more complex carbon-nitrogen cycling model in SWAT 

to capture biogeochemical legacies and coupling it to a travel time distribution model to estimate 

hydrologic legacies. The SON accumulation in soil stores (biogeochemical legacy) and 

groundwater stores (hydrological legacy) was estimated as 24 and 13 kg/ha/yr from 1950 to 

2016, respectively. The C-N cycling model was modified such that the biogeochemical legacy 

store magnitude was compatible with independent estimates from Van Meter et al. (2016). This 

is another example of using internal watershed data to increase model robustness. Between 1950 

and 2016, 25% of the total watershed N surplus (N Deposition + Fertilizer + Manure + N 

Fixation – Crop N uptake) had accumulated within the root zone, 14% had accumulated in 

groundwater, while 27% was lost as riverine output, and 34% was denitrified. Also, the SON 

accumulation was greater for fields under continuous corn compared to corn-soybean rotation), 

and in more mildly sloping clayey soils. Finally, SWAT-LAG model was used to predict time 

lags under various management scenarios. For a 100% fertilizer reduction scenario, the default 

SWAT mode, showed approximately 74% of the reduction in stream nitrate reduction within two 

years, while the SWAT-LAG model needed 84 years to achieve the same reduction. The 

framework proposed here constitutes a first step towards modifying a widely used modeling 

approach to assess the effects of legacy N on time required to achieve water quality goals.  
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The analysis in Chapter 4 highlighted a significant uncertainty in the prediction of 

biogeochemical legacies -- to address this uncertainty in Chapter 5, the field scale model 

CENTURY was used to quantify SON accumulation and depletion trends using climate and soil 

type gradients characteristic of the Mississippi River Basin. We first used field-scale data from 

field sites in north-central Illinois that had SON data over 140 years (1875-2014). Specifically, 

there was SON data collected in a set of field sites in the 1950s and current, as well as SON data 

in neighboring prairie sites as a control. We showed that the CENTURY model was able to 

capture the SON depletion (1875-1950) and accumulation (1951-2014) dynamics due to changes 

in agricultural practices over time. The SON accumulation during 1951-2014 was estimated as 

25 kg/ha/yr. The study revealed that across the climate gradient typical of the MRB, SON 

accumulation was greater in warmer areas due to greater crop yield with an increase in 

temperature. The accumulation was also higher in drier areas due to less N lost by leaching. 

Finally, the analysis revealed an interesting hysteretic pattern, where the same levels of SON in 

the 1930s contributed to a lower mineralization flux compared to current. We argue that this is 

because the newer SON is associated with, the more easily degradable pools of N, while the 

older SON was in more recalcitrant pools. This analysis highlights how humans have changed 

the nature of soil organic matter and its implications for riverine fluxes. 

  

6.2 Major contributions 

The thesis has four significant contributions. First, a 64-year mass balance approach was 

used to document the presence of legacy N stores in a midwestern US watershed. Second, a 

novel modeling framework was developed by coupling the well-established SWAT model with a 

travel time distribution framework, to describe nutrient legacies and time lags in an intensively 

managed watershed in the midwestern US. The modeling framework developed can be used by 

others that are trying to address legacy issues in agricultural watersheds. Third, it was 

demonstrated that the use of crop yield as a calibration target in watershed models significantly 

improves hydrologic consistency and predictability. We recommend, based on our findings, that 

crop yield could be routinely used in hydrologic model calibration. Finally, we showed how 

human intervention could completely alter trends and forms of soil organic nitrogen 

accumulation in anthropogenic landscapes. 
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6.3 Limitations and future works 

 

The study of nutrient legacies is fraught with uncertainties. Most of the time, the data 

available is limited, leading to large error bounds on legacy estimates. However, despite this, it is 

important to understand and quantify legacy accumulations and time lags to be able to guide 

policy. The following are some of the key limitations:  

 

1. The groundwater travel time used in Chapter 3, is based on simplified assumptions of the 

water table following the topography. Future work would involve using numerical 

groundwater solvers like MODFLOW and couple it to SWAT to quantify lag times. It 

would also be valuable to have site-specific tracer data for validation of groundwater 

data. 

 

2. Another major limitation is the lack of long term water quality data for model validation. 

Such data are relatively scarce; however, as shown by Van Meter et al. (2018), sediment 

core data in lakes or estuaries can be used to evaluate long term patterns. Further work 

can also involve using additional data sources like soil nitrogen accumulation or 

groundwater accumulation as additional data sources for model validation. 

 

3. A major limitation of using the field scale model across climate and land-use gradients in 

the MRB is the cross-correlation between soil and climate factors in the region. Future 

work will include more accurate constraining of soil type and climate combinations to 

capture accumulation patterns. Future work will also include the estimation of SOC and 

SON stocks and lag times at the U.S and global scale. 
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Appendix A: Supplementary Information for Chapter 3 

Table A1. SWAT calibration parameters with the description, adjustments made, initial range 

and final calibrated values for BS through S3 
Parameters Description Adjustmenta Calibration 

Range 

Calibrated values  

    BS S1 S2 S3 

Hydrology        

CN2 Runoff curve number  Relative -0.10-0.25 0.213 0.199 -0.022 -0.053 

CHN2 Main Channel Manning’s “n” 

value 

Relative -0.10-0.10 -0.032 -0.020 0.008 -0.023 

SURLAG Surface Runoff Lag 

Coefficient 

Relative -0.50-0.50 -0.224 -0.294 -0.423 -0.093 

DEP_IMP Depth to impervious layer, mm Replace 2400-2600 2438 2400 2534 2547 

ESCO Soil evaporation compensation 

coefficient 

Replace 0.85-1.00 0.997 0.997 0.926 0.983 

EPCO Plant uptake compensation 

coefficient 

Replace 0.90-1.00 0.954 0.957 0.978 0.969 

SOL_Z Depth from soil surface to 

bottom of layer (mm) 

Relative -0.15-0.10 -0.128 -0.034 0.056 -0.049 

SOL_AWC Available water capacity of 

soil layers (mmH20/mm soil) 

Relative -0.10-0.20 -0.005 0.022 -0.005 0.027 

SOL_K Saturated hydraulic 

conductivity (mm/hr) 

Relative -0.15-0.10 -0.051 -0.054 -0.001 -0.058 

GW_REVAP Groundwater re-evaporation 

coefficient 

Relative -0.10-0.15 0.117 0.055 0.048 0.059 

GW_DELAY Groundwater delay time (days) Relative -0.10-0.10 0.038 0.031 -0.006 0.040 

ALPHA_BF Baseflow recession constant 

(days) 

Relative -0.15-0.10 -0.046 -0.045 -0.031 0.029 

Crop yield        

BIO_E_CORN Plant radiation use efficiency 

for corn, MJ/m2  

Relative -0.10-0.10 - -0.008 -0.001 -0.014 

BIO_E_SOYB Plant radiation use efficiency 

for corn, MJ/m2  

Relative -0.10-0.10 - 0.044 0.028 -0.013 

HVSTI_CORN Harvest Index for corn Relative -0.10-0.10 - -0.014 -0.018 0.020 

HVSTI_SOYB Harvest Index for soybean  Relative -0.10-0.10 - -0.046 -0.094 0.054 

BLAI_CORN The maximum potential leaf 

area index for corn 

Relative -0.10-0.10 - -0.002 -0.033 -0.006 

BLAI_SOYB The maximum potential leaf 

area index for soybean 

Replace 3.00-5.00 - 3.885 3.678 3.424 

HEATUNITS_

CORN 

Heat units of corn    

(cumulative oC) 

Replace 1000-1150 - 1032 1104 1078 

HEATUNITS_ 

SOYB 

Heat units of soybean 

(cumulative oC)  

Replace 1300-1600 - 1309 1595 1595 

Tile drain 

Parameters 

Description  Adjustment             Values 

DDRAIN Depth at which tile drains are installed (mm) Fixed                        1000 

TDRAIN Time required to drain the soil to field 

capacity (hr) 

Fixed                        48 

GDRAIN Drain tile lag time (hr) Fixed                        96 
a Type of change applied over the SWAT’s default values during calibration, where (i) Relative means: SWAT’s default value is multiplied by the 

adjustment factor (1 + “a given value within the calibration range which is identified by the calibration algorithm during each run”) (ii) Replace 
means: SWAT’s default parameter value is replaced with a given value within the calibration range which is identified by the calibration 

algorithm during each run and (iii) Fixed means: Constant values, where the tile drain parameters are based on Green et al. (2006) and Nair et al. 

(2011) 
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Appendix B: Supplementary Information for Chapter 4 

 

Section B1: Estimation of crop yield, mineral N fertilizer, and manure application rates 

            Annual corn and soybean yield data for counties in the study area (Franklin, Hamilton, 

Hardin, and Wright counties) were downloaded from USDA-Agricultural Survey (2012) and 

converted to the watershed scale using proportional areas. Where annual data was not available, 

the USDA-Agricultural Census (2012)  (1 in 5 years) data was interpolated to estimate the 

annual yield. Since SWAT simulates yield on a dry weight basis, observed corn and soybean 

yield were corrected for moisture based on the procedure outlined in (Gassman, 2008). For oats, 

alfalfa and other hay observed yields were multiplied by dry matter percentages 89.4%, 90.4%, 

and 86.7% respectively, based on Hong et al. (2013). 

 County-scale fertilizer application data were obtained from Alexander and Smith (1990) 

and USGS (2012). County-scale magnitudes were converted to watershed-scale magnitudes 

based on the area proportions of each county within the watershed. Mineral N application rates 

estimated by this method varied between 2 kg/ha/yr and 211 kg/ha/yr, with the lower numbers 

representative of application rates in the 1950s, and the higher values corresponding to current 

typical N application rates recommended for cropland in Iowa (Sawyer, 2015)  

            It was assumed that all manure generated in the watershed was used as fertilizer. This 

assumption is reasonable considering the costs of transporting manure over long distances. 

Animal counts at county scale were obtained from the USDA-Agricultural Census (2012). Based 

on the “N in animal excretion” parameters obtained from Hong et al.,(2011), manure N was 

computed by multiplying the animal count with respective “N in animal excretion” values. 

County-scale magnitudes were converted into watershed-scale magnitudes based on the area 

proportions of each county within the watershed. The typical manure N application rates varied 

from 37 kg/ha/yr to 105 kg/ha/yr. 
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Section B2: Synthesis of Publications to Estimate acceptable ranges for the Kling-Gupta 

Efficiency 

There is a lack of information on the range of KGE values that are acceptable in 

watershed modeling. To address this, we synthesized 11 studies (Formetta et al., 2014; Hoch et 

al., 2017; Hublart et al., 2015; Kuentz et al., 2013; Pechlivanidis et al., 2010; Pechlivanidis and 

Arheimer, 2015; Rajib et al., 2016; Revilla-Romero et al., 2015; Thiemig et al., 2013; 

Trautmann, 2016; Yang et al., 2016) that used KGE as a performance metric to calibrate 

streamflow, rainfall estimates, snow water equivalent, soil moisture and evapotranspiration at 

daily / monthly / annual time step. Based on the distribution of KGE values obtained in these 

studies, the acceptance criteria ranges were formulated, as shown in Table S3. Specifically, KGE 

values between the 1st quartile and the median (0.64 to 0.79) of the dataset were categorized as 

“good”, values between the median and the 3rd quartile (0.79 to 0.86) of the dataset were 

categorized as “Very good”, and values between the 3rd quartile and maximum (0.86 to 0.98) of 

the dataset were categorized as “Excellent” 

 

Section B3: Modifications to the SWAT source code 

 

The SWAT2012 – rev.659 version was used for all the analyses in this thesis. The 

SWAT-M model version (Zhang et al., 2013) could be availed by setting the CSWAT option in 

basins.bsn file to “2” (note that, option “0” indicates default C-N cycling routines, referred to as 

“SWAT” in this study, and option “2” denotes CENTURY based C-N routines, referred to as 

SWAT-M in this study). However, this version was not able to appropriately capture soil 

nitrogen accumulation. Furthermore, there were some inconsistencies in the equations described 

by Zhang et al. (2013) and the published equations in SWAT. To address these issues, the 

following modifications were made to SWAT-M that were then coupled to the TTD model to 

create SWAT-LAG.  
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Subroutine Changes Explanation 

soil_chem.f in 

SWAT -M 

Changed  

IF (FHP<1.E-10) FHP=.7-

.4*EXP(-.0277*100) to

  

IF (FHP<1.E-10) FHP=.97      

Changed SWAT-M’s passive pool size to be 

97%, slow pool size to be 1%, and active pool 

size to be 2% of initial soil organic nitrogen 

mass (Table B4). 

carbon_zhang2

.f90 

in SWAT -M 

Changed 

ABP=.003+.00032*sol_clay(

k,j)   to  

ABP=.003+.02*sol_clay(k,j) 

This parameter (slope of the equation) helps to 

change the allocation of decomposed 

carbon/nitrogen from the active pool to passive 

pool. A discrepancy in slope value was 

observed between Zhang et al. (2013) and 

SWAT source code. In Zhang et al. (2013), the 

slope value was reported as 0.032, whereas, in 

the SWAT source code, the slope value was 

reported as 0.00032. However, this value was 

manually calibrated and fixed at 0.02 (during 

each trial, we checked whether the simulated 

soil organic nitrogen accumulation magnitudes 

are closer to observed soil organic nitrogen 

accumulation magnitudes) 

 

Changed 

ASP=MAX(.001,PRMT_45-

.00009*sol_clay(k,j))       to 

ASP=MAX(.001,PRMT_45

+.00009*sol_clay(k,j)) 

 

Zhang et al. (2013) used positive sign before 

the slope value (0.00009) whereas, SWAT 

source code used negative sign before the slope 

value. The authors changed the negative sign 

before the slope value (0.00009) to positive 

based on Supplementary Information of Zhang 

et al. (2013), page 6, equation 24 

 

SWAT-LAG The parameter NO3GW (HRU-scale NO3-N in kg/ha/month, available in 

output.hru file) from SWAT-M model was coupled with the travel time 

distribution (TTD) model written in MATLAB (external to SWAT) to create 

SWAT-LAG (Figure B5).  
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Section B4: Biogeochemical loss pathways for nitrate 

Loss of nitrate from the system can occur via uptake (plant or algal) and denitrification in 

the hillslope and stream network. In SWAT, denitrification in the shallow aquifer is captured by 

the half-life parameter (HLIFE_NGW) that describes the time taken (days) to reduce nitrate 

concentration by a factor of two (Neitsch et al., 2011). We assumed this parameter to capture the 

decay of nitrate in the groundwater system and calibrated this parameter (Table 4.1) to match the 

simulated nitrate load values with observed values.   

SWAT has the option to simulate in-stream N cycling and removal processes. In general, in-

stream N removal occurs through biotic N uptake and denitrification in the streambed 

(Mulholland et al., 2008; Basu et al., 2011). Default SWAT parameters were used for simulating 

biotic N uptake processes since site-specific information was not available. SWAT does not 

simulate streambed denitrification; however, it is well established that the majority of 

denitrification (87%) occurs in soils and groundwater (Seitzinger et al., 2006; Beaulieu et al., 

2011), and thus it is reasonable to neglect this component of the N budget (Royer et al., 2004; 

Seitzinger et al., 2006; Alexander et al., 2009; Gentry et al., 2009; Beaulieu et al., 2011).  
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Table B1. Watershed area under various crop rotation types from 1950 to 2012 

 

S. No 
Land-use / Rotation 

Description 

Land-

use 

Code 

Percent 

watershed 

area (%) 

from 1950 to 

1960 

Percent 

watershed 

area (%) 

from 1961 to 

2003  

Percent 

watershed 

area (%) 

from 2004 to 

2012  

1 Continuous Alfa AAAA     0.14 
2 Continuous corn CCCC - - 20.2 
3 2-year alfa – 2-year 

corn 

AACC 5.48 2.21 0 

4 2-year corn – 2-year 

alfa 

CCAA 5.48 2.21 0 
5 2-year corn - soybean CCSC 0.86 3.32 2.54 

6 Soybean – 2-year 

corn 

SCCS 0.54 1.93 2.06 
7 Corn - soybean CSCS 9.67 37.21 28.46 

8 Deciduous forest FRSD 2.47 2.47 2.47 

9 Pasture PAST 15.20 7.59 4.09 
10 Soybean - corn SCSC 8.63 31.03 33.12 

11 Hay-Oats-Corn HOCH 4.93 0.87 0 
12 Oats-Corn-Hay OCHO 4.93 0.87 0 

13 Corn-Hay-Oats CHOC 4.93 0.87 0 

14 Oats-Corn OCOC 14.99 1.25 0 
15 Corn-Oats COCO 14.99 1.25 0 

16 Urban URBN 6.59 6.59 6.59 
17 Waterbody WATR 0.10 0.10 0.10 

18 Wetland WETF 0.23 0.23 0.23 

  Total area     100.00 100.00 100.00 

Note: Column 4, 5 and 6 represent percent watershed area under each land-use/rotation types for three different time-

blocks   
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Table B2. Crop yield calibration ranges and final calibrated values  

 

Variables Range Calibrated 

Values 

Variables Range Calibrated 

Values 

BIOE_CORN1 28.9 – 34 31.87 BLAI_CORN1 5 – 5.75 5.56 

BIOE_CORN2 31.45 - 37 35.47 BLAI_CORN2 5.1 – 6 5.22 

BIOE_CORN3 37 – 42.5 39.9 BLAI_CORN3 5.6 – 6.44 6.1 

BIOE_SOYB1 19 – 21.8 20.76 BLAI_SOYB1 3.8 – 4.37 3.96 

BIOE_SOYB2 19.5 – 23 22.92 BLAI_SOYB2 3.4 - 4 3.93 

BIOE_SOYB3 23.5 – 27 25.11 BLAI_SOYB3 3.7 – 4.25 4.14 

BIOE_ALFA 19 – 20 19.45 BLAI_ALFA 3.6 – 4 3.76 

BIOE_OATS 10 – 20 14.29 BLAI_OATS 3.6 – 4 3.82 

BIOE_HAY 20 – 25 20.07 BLAI_HAY 3.6 – 4 3.76 

HVSTI_CORN1 0.32 – 0.37 0.33 HEATUNITS_CORN1 1000-1400 1001 

HVSTI_CORN2 0.38 – 0.45 0.41 HEATUNITS_CORN2 1000-1400 1299 

HVSTI_CORN3 0.52 – 0.59 0.58 HEATUNITS_CORN3 1000-1400 1146 

HVSTI_SOYB1 0.19 – 0.22 0.21 HEATUNITS_SOYB1 1400-1600 1535 

HVSTI_SOYB2 0.22 – 0.26 0.22 HEATUNITS_SOYB2 1400-1600 1474 

HVSTI_SOYB3 0.27 – 0.31 0.28 HEATUNITS_SOYB3 1400-1600 1549 

HVSTI_ALFA 0.85 – 0.90 0.86 HEATUNITS_ALFA 1000-1300 1267 

HVSTI_OATS 0.36 – 0.42 0.36 HEATUNITS_OATS 1400-1600 1402 

HVSTI_HAY 0.85 – 0.9 0.86 HEATUNITS_HAY 1000-1300 1162 

Description of calibration variables: Note that we had used three different corn and soybean traits so that CORN1/SOYB1, 

CORN2/SOYB2, and CORN3/SOYB3 represents the crop traits used during 1950-1960,1961-2003 and 2003-2012, respectively; 

BIOE_CORN/SOYB/ALFA/OATS/HAY represents the Plant radiation use efficiency of respective crops, MJ m-2, 

HVSTI_CORN/SOYB/ALFA/OATS/HAY: Harvest index of respective crops; BLAI_CORN/SOYB/ALFA/OATS/HAY: The 

maximum potential leaf area index of respective crops; HEATUNITS_CORN/SOYB/ALFA/OATS/HAY: Heat units of 

respective crops, cumulative oC 
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Table B3. KGE performance criteria 

 

KGE Ranges Range description Performance 

0.00 - 0.31 Zero to minimum Poor 

0.31 - 0.64 Minimum to 1st quartile Moderate 

0.64 - 0.79 1st quartile to the median Good 

0.79 - 0.86 Median to 3rd quartile Very good 

0.86 - 0.98 3rd quartile to maximum Excellent 

 

 
 
 

Table B4. Changes made to pool sizes of SWAT-M / SWAT-LAG model version 

 

Initial Pool sizes SWAT SWAT-M / SWAT-LAG 

Active 2% of initial soil organic nitrogen mass 5% of initial soil organic nitrogen 

mass (changed to 2%) 

Slow - 28% of initial soil organic nitrogen 

mass (changed to 1%) 

Passive 98% of initial soil organic nitrogen mass 67% of initial soil organic nitrogen 

mass (changed to 97%) 

  For a fair comparison with SWAT’s 

soil organic nitrogen accumulation 

values, SWAT-M’s initial pool sizes 

were made similar to SWATs 
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Figure B1. Crop harvested area trends (Agricultural Census vs. SWAT simulated) over the last 

68 years in the South Fork Iowa Watershed. Note that simulated land-use is constant within each 

time block (1949-1960, 1961-2003 and 2004-2012) 
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Figure B2. Observed vs. simulated monthly (a) discharge and (b) nitrate load from 1996 to 2015, 

using SWAT-LAG model version. Note: A grey area represents the 95% Prediction Uncertainty 

(95 PPU) band  
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Figure B3. Model simulated trends in N fluxes for the SFIRW: (a) N deposition and N fixation, 

(b) fertilizer and manure application, (c) riverine output and denitrification and (d) crop N output 

and N surplus. Note that each data point represents a four-year average value 
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Figure B4. Comparison of N Surplus and Observed nitrate flux for (a) South Fork Iowa River 

Watershed (SFIRW) and Iowa Cedar Watershed (with an outlet at Wapello). The circles in the 

bottom plot denote observed nitrate flux values (estimated using WRTDS), and the solid line 

denotes the 10-year moving average of observed nitrate flux 
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Figure B5. Schematic of SWAT-LAG model development. Nitrate-nitrogen of each HRU in the 

watershed, from shallow aquifer of SWAT-M, was transported to the stream outlet based on 

travel time magnitudes of the HRUs obtained from ArcGIS 
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Figure B6. Observed vs. simulated monthly nitrate load from 1996 to 2015 for (a) SWAT, (b) 

SWAT-M, and (c) SWAT-LAG model versions, where SWAT and SWAT-M’s nitrate load were 

obtained by using SWAT-LAG’s calibration parameters. The dashed line separates calibration 

and validation periods 
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Figure B7. Relative error (abs(observed-simulated)/observed) of monthly nitrate load from 1996 

to 2015 for (a) SWAT, (b) SWAT-M, and (c) SWAT-LAG model versions, where SWAT and 

SWAT-M’s nitrate load were obtained by using SWAT-LAG’s calibration parameters. Though 

the relative error of all the three model versions was increasing insignificantly, SWAT-LAG’s 

mean relative error (11) was 31% lesser than the mean relative error of both SWAT and SWAT-

M (16) versions. Note: p-values obtained from Mann-Kendall trend test are as follows: SWAT = 

0.9; SWAT-M = 0.8; SWAT-LAG = 0.2. 
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Figure B8. Observed vs. simulated monthly nitrate load from 1996 to 2015 for (a) SWAT, (b) 

SWAT-M, and (c) SWAT-LAG model versions. The simulated nitrate load of each model 

version was obtained from the individual model calibration. The dashed line separates calibration 

and validation periods 
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Figure B9. Relative error (abs(observed-simulated)/observed) of monthly nitrate load from 1996 

to 2015 for (a) SWAT, (b) SWAT-M, and (c) SWAT-LAG model versions. The simulated nitrate 

load of each model version was obtained from the individual model calibration. Though the 

relative error of all the three model versions was increasing insignificantly, SWAT-LAG’s mean 

relative error (11) was 38% lesser than the mean relative error of both SWAT and SWAT-M (18) 

versions. Note: p-values obtained from Mann-Kendall trend test are as follows: SWAT = 0.6; 

SWAT-M = 0.7; SWAT-LAG = 0.2. 

 

 

Figure B10. Observed vs. Simulated daily discharge from 1996 to 2015, using SWAT-LAG 

model version. Note: The monthly calibrated SWAT-LAG model version was checked for daily 

discharge simulation. The daily discharge was simulated adequately with a KGE value of 0.5 and 

a PBIAS value of 1%. 
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Figure B11. (a) Stream N load and (b) N load reduction as a function of time, simulated by 

SWAT, SWAT-M and SWAT-LAG for NM4 (100% fertilizer reduction in Corn HRUs). The 

stream nitrate load reduction trajectory was obtained by subtracting N load for the NM4 scenario 

from that of the BAU scenario. Longer lag times are observed for the SWAT-LAG and SWAT-

M scenarios, compared to the SWAT scenario. Note that, the simulated nitrate load of each 

model version was obtained from the individual model calibration. 

 

 

  



 

154 
 

 

Appendix C: Supplementary Information for Chapter 5 

 

 

Figure C1. Improvements in average annual corn (a) and soybean yield (b) with increase in 

Mean July Temperature (oC) and the error bars in (a) and (b) represent the standard error 

obtained from the four precipitation scenarios; (c) Dependence of average annual N leaching on 

Mean Annual Precipitation (mm). Average annual N Leaching magnitudes increase with an 

increase in Mean Annual Precipitation, and the error bars represent the standard error obtained 

from the six temperature scenarios. 
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Table C1. Crop yield and biological nitrogen fixation calibration parameters and final values 

 

  Crop   Crop  

Years  Varieties PRDX 

 

HIMAX Varieties PRDX SNFXMX 

1875-1924 Corn1 10 0.4 
Oats 

Alfalfa 

8 

15 

- 

0.11 

1925-1934 Corn2 10 0.6 Soy1 10 0.11 

1935-1936 Corn2 10 0.6 Soy2 30 0.034 

1937-1948 Corn3 90 0.8 Soy2 30 0.034 

1949-1956 Corn3 90 0.8 Soy3 90 0.012 

1957-1960 Corn4 150 0.8 Soy3 90 0.012 

1961-1966 Corn5 230 0.8 Soy3 90 0.012 

1967-1980 Corn5 230 0.8 Soy4 110 0.012 

1981-1986 Corn6 150 0.7 Soy4 110 0.012 

1987-1990 Corn6 150 0.7 Soy5 130 0.012 

1991-1996 Corn7 150 0.7 Soy5 130 0.012 

1997-2000 Corn7 150 0.7 Soy6 150 0.012 

2001-2010 Corn8 100 0.8 Soy6 150 0.012 

2011-2012 Corn9 250 0.8 Soy6 150 0.012 

2013-2014 Corn10 300 0.8 Soy6 150 0.012 
PRDX: Potential aboveground monthly production for crops, g-C/m2; HIMAX: Maximum harvest index for crops;  

SNFXMX: Maximum symbiotic N fixation, grams N fixed per gram C fixed 

Crop rotations: 1875-1924 – Corn-Oats-Alfalfa Hay; 1925-2014 – Corn-Soybean 

HIMAX: Oats = 0.28; Alfalfa Hay = 0.8 and All soybean varieties = 0.52  

 
 

 

 

 


